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Abstract

The main results of this thesis concern the spatial decomposition of Gaussisn fi
and the structural stability of a class of dynamical systems near a nombljige
fixed point. These are two problems that arise in a renormalization group thetho
for random fields and self-avoiding walks developed by Brydges #dadeS This
renormalization group program is outlined in the introduction of this thesis with
emphasis on the relevance of the problems studied subsequently.

The first original result is a new and simple method to decompose the Green
functions corresponding to a large class of interesting symmetric Dirichietsfo
into integrals over symmetric positive semi-definite and finite range (propaply s
ported) forms that are smoother than the original Green function. Thit giges
rise to multiscale decompositions of the associated free fields into sums of inde-
pendent smoother Gaussian fields with spatially localized correlations. d&dch
compositions are the point of departure for renormalization group analysis
novelty of the result is the use of the finite propagation speed of the waise eq
tion and a related property of Chebyshev polynomials. The result impsevesal
existing results and also gives simpler proofs.

The second result concerns structural stability, with respect to ctimég #itird-
order perturbations, of a certain class of dynamical systems near laypenbolic
fixed point. We reformulate the stability problem in terms of the well-posedrfess o
an infinite-dimensional nonlinear ordinaryfidirential equation in a Banach space
of carefully weighted sequences. Using this, we prove the existenceguldrity
of flows of the dynamical system which obey mixed initial and final boundary
conditions. This result can be applied to the renormalization group map dfBsy
and Slade, and is an ingredient in the analysis of the long-distance beb&faar
dimensional weakly self-avoiding walks using this approach.



Preface

Chaptef 1 is an introduction and motivation for the problems studied in the remain-
der of the thesis. No originality is claimed and, to give an informative exposition
we explain a number of ideas from a number of references mentionedijthott
explicit reference to the origin of each single idea.

Chaptef 2, in slightly modified form, has been accepted for publication in the
journal Probability Theory and Related Fieldsee reference [8].

Chaptef B is based on joint work with David Brydges and Gordon Slader-a v
sion of it has been accepted for publication in the jouArahales Henri Poincaré
see reference [11].

Chaptef 4 discusses ideas developed together with David Brydges addnGo
Slade.
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Chapter 1

Introduction

1.1 Outline and preliminaries

1.1.1 Ouitline

The main results of this thesis concern the spatial decomposition of Gaussisn fi
and the structural stability of a class of dynamical systems near a hombmyjige
fixed point, and are given in Chaptéis 2 and Chdpter 3, respectivietypiimary
motivation for the study of the these problems is an applicationremarmaliza-
tion group methodor the analysis of four-dimensional weakly self-avoiding walks
developed by Brydges and Slade. However, the results of Chapiere-rdt spe-
cific to the application to self-avoiding walks, and we expect that they maybalso
useful for renormalization group analysis of other models.

The aim of the present chapter is to sketch the background of the problems
studied in Chapter 243, in particular their advent in the renormalization gransp
text. In Section 1.2, some aspects of random polymer models are introdiiese;
models of phenomena from polymer chemistry are our primary motivation. Their
relation to the problems studied in this thesis is indirect, however, via randhls fie
which are introduced in Sectign 1.3. Random fields are related to a brogel o
models of statistical mechanics, for example the description of interfacesldes
ing phase separation and models for ferromagnetism. In the descriptiandwim
polymers, they appear as the local time of a perturbed Markov processmain
results of this thesis are discussed in Sectioh 1.4.

In statistical mechanics, the behaviolage distance®f a model is of main
interest. For random polymer and random field models, the large distahaeibe
is notoriously dfficult to study, however, because both classes of models involve a
large number of strongly coupled degrees of freedom. The renormalizatap,
which is discussed in Sectidn 1.4, is a program to study the large-distana¢de
of random fields, pioneered in this sense by the theoretical physicistWilkoe
mathematical realization of Wilson’s ideas has been a major challenge since their
seminal proposal. We discuss some of tHadlilties involved in it, and then sketch
important aspects of one of several approaches to resolve thasaltigs, initi-
ated by Brydges and Yau, and much generalized and improved in reoekow
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Brydges and Slade, based on work of many others. The emphasis asthisglon
is on how, specifically, the problems studied in the main part of this thesis pertain
to this program, but we also aim to give an introduction to the general ideas.

1.1.2 Preliminaries

General notation. We use the usudlandau notation

fO) =o(s(t) ast—T iflim f(t)/s(t) - 0; (1.1)
f(t) = O(g(t)) ast— T iflimsup|f(t)/g(t)| < oo; (1.2)
t—>T

and also the usualsymptotic notation
f~g ast>T ifft)=gt)(1+0(1)ast—>T (1.3)

whereT is often 0 oreo.

Limits are abbreviated by (t+) = lim,_,,. f(s). The indicator function lis
given by 1 = 1if conditionzis satisfied and 1= 0 otherwise. The symbo(S and
¢ will mostly denote constants whose values are allowed to change between two
occurances. The dependence of a constant on a parameter is sometphasieed
by a subscript. The lettat is reserved for the dimension of the relevant physical
space, i.e., a4 or R4, and for metrics (which of the two should be clear from the
context). The expectation value of a random variaples denoted bye (o).

Graphs. It will be convenient at various places to use the language of graphs, b
we do not use any non-trivial results from graph theory. Welsay(X, E) is a
(simple)graphif X is a finite or countable set okrticesandE c P,(X) is a set of
(undirectededgeswhereP,(X) denotes the set of subsetsXfwith exactly two
elements. The words simple and undirected will be implicit from now on. Vertices
will typically be denoted by the lettepsandy and edges by the letter The edge
connecting two vertices andy is written asxy = yx = {X, y}. Thegraph distance
d(x, y) between two vertices, y € X is the number of edges of the shortest path
between two verticeg andy, if there is one, ando otherwise. Thak andy are
neighborsxy € E, is denoted by ~ y. All graphs will be assumed to be locally
finite, i.e., for anyx € X there are only finitely many € X with x ~ y.

The graphs of primary relevance for this thesislatgce graphswhich can be
embedded iR or in the torusT¢ = R4/Z4. The most important examples are the
Euclidean (or hypercubic) lattic& with nearest-neighbor edges, i.ey, € E(Z%)

if X; — y;| =1 for exactly oné € {1,...,d} and otherwisé¢x; — y;| = 0, and the
discrete torus of side length denotedz?, for whichxy € E(Z%) if |x; — y;| = 1
mod n for exactly ond € {1, ..., d} and otherwisex; — y;| =0 modn.
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1.2 Random polymers

1.2.1 The simple random walk

LetI'= (X, E) be a graph. AvalkonT of lengtht € (0, o] is a right-continuous
pathw : [0,t) — X with finitely many jumps in finite intervals, i.ed(w, wy_) <

1 for all s € (0, t) with equality for only finitely manys in each bounded subinter-
val of (0,t). LetW,; denote the set of all walks of lengthAn important subclass
of walks arediscrete walksdenotedV,” c W, for which a jump happens atif
and only ifsis an integer and & s < t. Fort < oo, each walkw € W, can be
specified uniquely by an integar> 0, a finite sequendg =0 <t; <tp < --- <

t, <t,+1 =1, and an element* € W as

*
n

wy =w  if s€[t,, t,11). (1.4)
The walkw* is called theskeleton wallof w and ¢y, .. .,t,) are thgump times
LetW, , = {w € W; : wo = X} andWy , = W n W, , be the sets of (contin-
uous and discrete) walks startingxat There are several natural probability mea-
sures onW, , that arise as restrictions of measures/dn.. andWy ., (stochastic
processes). Th&mple random walks the discrete Markov process which chooses
uniformly from its neighbors at each step. The constant-speed simplemandlk
is a continuous Markov process with skeleton walk given by the simple rando
walk and the times between two jumps distributed independently with exponential
distribution with parameter 1. The variable-speed simple random walk likewise
has the simple random walk as skeleton walk, but the waiting times between two
jumps now have exponential distribution with parameter given by the defjtke o
vertex before the jump. This can also be interpreted as that each edgsinggsly
of exponential clocks with parameter 1 and that the next jump is along the edge
whose clock rings first. The two continuous processes orffgrddy rescaling of
the time when the graph is regular, i.e., when all vertices have the same dsgree
is in particular the case for the graph of main interEst,z¢.
To illustrate what is understood, consider (any of) the simple random walks
Z¢. Then, for anyt > 0,

A2, 5 N, (4> ) (1.5)

where the convergence is in distribution adds a vector of independent Gaussian
random variables with mean 0 and variam¢er 2dt for the variable-speed walk).
This result is essentially the classical central limit theorem. It showssthgtows
typically like vt ast — co. A less precise way of measuring this is the statement
thatE|w, |2 ~ t ast — 0. But much more is understood. It is also a well-known
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result that if B,), is theWiener processa continuous random path,[®) — R?
(thus not inW,,) with Gaussian distribution defined By = 0, E(B;) = 0, and
E(B/B]) = 4;; min{s,t} fori,j € {1,...,d}, that then the convergence of (1.5)
holds on a space of paths,[®) — R, i.e., for allt simultaneously in a sense.
Proofs of the latter result, Donsker’s invariance principle, can bedoammany
textbooks on advanced probability theory; see e.g. reference [t@&lscribes the
behavior atarge distance®f the paths of ,);.

1.2.2 Polymers and local time

In polymer science, ¢inear polymeris a long chain of molecules (monomers).
The simplest mathematical model for a linear polymer isuhdgorm ensemble
the uniform probability measures o ;, for some graph (in particular fatd),
but it is not a well motivated approximation. For example, polymers shoultenot
able to intersect themselves due to the finite extent of each molecule. A madel tha
takes this into consideration is te#ictly self-avoiding walkthe uniform measure
on (discrete) walks conditioned on the event that walks do not interszotstives.

For regular graphs, the uniform ensemble and the simple random walkeare th
same. This has turned out to be an important observation for the studydufma
polymers. Moreover, in some aspects, the continuous-time random waikgaia
vorable analytic properties over the discrete-time random walk. For regraghs,
the constant- and variable-speed walks are identical, up to rescaling ofytithe b
constant vertex degree, their jump sequences are Poisson proeesstise skele-
ton walks are simple random walks, thus uniform when conditioned on theearumb
of jumps. In view of the last aspect, the continuous-time random walks &reaha
variants of the uniform ensemble.

In reference [43], den Hollander gives a broad overview of matheatatiod-
els forrandom polymersLike the strictly self-avoiding walk, these polymer mod-
els for example suppress self-intersections by giving smaller weight teéutang
paths with respect to a reference measure. Natural choices for dremeé¢ mea-
surePfj,, are any of the simple random walk models on the regular gréphenere
d=1,2,.... These models are then defined by an energylamilton function,
H; : W, — R, assigning an energy cost to every path, as a probability meB&yre
onW, ; by

PH (dw) = %e-HMW) P2, (dw) (1.6)

X

whereZ = Z}Zt is a normalizing constant, called tpartition function The mea-
sureP¥, can be viewed as a kind @ibbs measuren walks. For a number of
interesting models, the energy function is a functional ofittwal time The local
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Figure 1.1: Polymer with one self-intersection and several self-contacts.

time of a walkw is given by:

L) = [ 2y ds (L.7)

where we recall the indicator function;J, = 1if a = band 1,-;, = 0 otherwise.
To say thaH is a functional of the local time means that therélis M, (X) — R,
whereM, (X) ={m: X - R, Y, cx My < oo}, such thait

H (w) = H(L'(w)) (w e W,). (1.8)
For example, an interesting class of Hamilton functions is given by

HAY(L) = B Z |_)2€ —y Z Z LyLy, (B,y=0). (1.9)

xeX xeX yeXiy~x

This model is known under a number of names: ¥ 0, it is called thaveakly self-
avoiding walk soft polymerdiscrete Edwards modehindDomb-Joyce modgl5,

43, 88], andwith self-attractionis added to the name jf > 0 [43]. The repulsive
force (B > 0) models the fiect that polymers should not intersect themselves by
suppressing self-intersections of walks, as can be seen from the ¢deyridentity

t t
D Li(w)? = fo fo L, -w,, ds ds. (1.10)

xeX

The (optional) attractive forcey(> 0) models the fect of a solution in which the
polymer is immersed, by making it energetically beneficial for a polymer to be in
contact with itself (rather than the solution). This can be understood from

> Y vt = [ [, dade @

xeX yeX:iy~x

10bserve thal e x L% (w) =t < oo for w € W; and thusL! (W;) ¢ My (X).
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Note that thestrictly self-avoiding walkis obtained in the limity = 0, 8 — o
of the discrete-parameter versionlof (1.6); see e.g. referenc&8]8#,can also be
related to the continuous-parameter model, but then the relation is more séhtle [2

Figure 1.2: A trapped self-avoiding walk.

Unlike the simple random walks, random polymer models [ike (1.6) are almost
never stochastic processes. For example, it is easy to see that strictyaidihg
walks can get trapped as shown in Figuré 1.2. The parareténe measureB?,
can thereforeot be interpreted asme, but it is rather a measure of ttengthsof
the polymers described by the measures. In analogy to the classical tfigaises
in statistical mechanics, the measut@é,t describeensemble®f walks (which
take the role of particle configurations of a gas) with fixed length (takingdlee r
of a fixed number of particles in the gas).

As a consequence, the standard tools for the analysis of stochasispae
not available to study the measurés (1.6), making their analysis decidedly more
difficult than that of simple random walks. It turns out that random polymer leode
depend sensitively on the presence of an interaction given asin (bi6@x&mple,
it is believed (but only proved in dimensiah= 1 so far; but see Section 4.2) that
even arbitrarily small values g8 > 0 can change the asymptotic behavior of the
walks drastically compared to the cg8e= 0. On the other hand, the behavior for
all B > 0 is believed to be similar.

1.2.3 Asymptotic behavior and universality

From now on, the discussion will be restricted to polymer models on the Euclidea
latticeZ4; we also consider only spatially homogeneous interactions, i.e., interac-
tions that are invariant under translations like (1.9). To simplify the notatien, w
then set the starting point to 0 and drop it from the notation, for example i (1.6

The perhaps most interesting mathematical problem about random polymers is
to determine the typical growth of the distance between the starting and ethdpoin
with its length t. For the simple random walk, this, and almost any other question,
are very well understood, for example by (1.5). However sklf-interactingran-
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dom polymersid # 0), it is in general a diicult (open) problem to determine the
growth of theend-to-end distancg, |w,|?. It is a general conjecture that the end-
to-end distance is asymptotically described by a power law, i.e., tha, for> O,
there are constants> 0 andv > 0 such that

EX w12 ~ ct? ast — oo (1.12)

whereE! (F) is the expectation value of a random variable- F(w) underP.
For the simple random walk, the exponent is % in any dimension. Itis believed
that, for general polymers, the constant 0 depends on all o, 8, andy, but
that the exponentis universal i.e., constant for appropriate rangegsadindy and
also independent of the lattice of a given dimengdoiit does in general depend on
d. In Figure[ 1.8, the conjectured phase diagram for the weakly selfiagoidalk
with self-attraction is shown; it was conjectured by v.d. Hofstad and KI¢hke).

Y
v =1/(1+d)

V = VSAW

Figure 1.3: The phase diagram conjectured (for discrete-tima X2, from [110]

The kind of universality described in the last paragraph is one of traggans
in equilibrium statistical mechanics, yet in general only understood in fewisp
examples mathematically. For the self-avoiding walk, without self-attractiom; se
inal results by Brydges and Spencer [20] and by Hara and Slad&%]provide
an essentially complete picture in dimensions five and higher. In particulae the
results include the resu! |w, |2 ~ ct which is the same behavior as for the simple
random walk, except for the constant. In dimension two, there is stradgree

7
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that the long-distance behavior of (strictly) self-avoiding walks is desdrliy the
so-calledSchramm-Loewner-Evolutid83]. This is a subject of intense research,
but proofs are not known at the time this thesis is written. Wbeaklyself-avoiding
walk, even without self-attraction, seems even mofeadilt to understand in two
dimensions, but it is believed to be in the sammaversality classas the strictly
self-avoiding walk in any dimension. The teumiversality classefers to the class
of models that share the same scaling limit (or at least the s&tiwl exponents
The validity of the former conjecture is known only for dimension one [11t, a
as discussed, in dimensions five and above without self-attraction. Fphyise
cally most interesting dimension three, only numerical estimates of the values for
the critical exponents are known [41]. Dimension four is expected twibieal, in
the sense that the behavior of self-avoiding walks changes from iogelsawilar to
that of the simple random walk to complex behaviodagets smaller through 4.

The critical dimension. Many models of discrete equilibrium statistical mechan-
ics can be defined, by the “same” specification I[kel(1.9), on an (essentalliy
trary graph. It is a paradigm of statistical mechanics that when such maudels
defined oriz4, there is a critical dimensionl,., such that fod < d., the behavior

is complex meaning for self-avoiding walks, for example, that it ifelient from
that of the simple random walk, while fat > d., the model has the so-called
mean-fieldoehavior, meaning for self-avoiding walks that the behavior is the same
as that of the simple random walk. The tenmean-fieldstems from analogy with
models of ferromagnetism, but it is standard terminology for more generatlsiod
For self-avoiding walk models, there is overwhelming evidence that the ¢diica
mension isd. = 4. In the critical dimension, the behavior is expected to be that
of the mean-field model with universkagarithmic corrections For example, for
self-avoiding walks (with additional small self-attraction allowed), it is cotjesd
that, ind = 4, in the phase wherg > 0,y < g,

EX w2 ~ ct(logt)s  (t — oo); (1.13)

see e.g. references [17,28,29 50,88]. The expo%ﬂmdexpected not to depend on
the “details” of the model. Brydges and Slade have developed methodsibly wh
a proof of [1.18) seems within reach (but not reached, see also Sdc#pnThe
work of this thesis is a contribution to this program which we will thereforewdisc
in some detail.
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1.2.4 The two-point function as a Laplace transform

Let E, (F) be the expectation value of a random variable- F(w) with respect
to the simple random walk probability distributi®? on walks starting aa, let

c(a,b) =E,(e "1, ) (a,be X) (1.14)

be theprobability weight functiorof the endpoinb for the ensemble of walks of
lengtht that start ag, and set? (x) = ¢ (0, x) onZ¢. The main goal in the study
of random polymers is to understand this function “very well,” in the limit co.
For example, this would enable one to understand

> e (X)IxI?

EX|w,|? = 1.15
An approach to understandieff (x) is via its Laplace transform i
GH (x) = f E(e HII1, _ e  dt (ueR), (1.16)
0

which is called théwo-point functiorfor the random polymer described by Hamil-
tonianH. To recover information abouw (X), ast — oo, from G, (X), it is partic-
ularly important to understan@, (x) as the minimal valuey = ., above which
the Laplace transform converges is approached.

To illustrate this, it is instructive to consider the simple random walk with, say,
variable-speed. In this case, the two-point function isGineen functiorof —A + u
whereA is the graph Laplace operator given by

Af(X) = Z (f(y) - f(x). (1.17)

yiy~x

By use of the Fourier transform, it is straightforward to establish the egkttons

Zey(x) = % Z 1X12G,(x) = i—(j (1 > 0). (1.18)

In particular,u. = 0 and the Laplace transforms of the numerator and the denomi-
nator in [1.15) can be inverted explicitly to obtain

E/lw/?=2d-t (1.19)

as explained in |28, p. 526]. Even though it may not be the mi@isient way to
computeE, |w, |2 for the simple random walk by analysis of the two-point function,



1.3. Random fields and local time

as the result is elementary there, this approach has proven fruitfuld@rtalysis
of interacting models as we will explain (see also [28, 29]).

The two-point function is however also of independent interest. Foritingle
random walk, it is possible to determine the asymptotic behavior of the two-point
function for fixed value ofu. For reference, we record from [64] that i > 2,

(o]
G0~ ey (X » o). (L20)
u(X) ~ Cu u |X| — 00). 1.
—M ()b (x/]x])-x
P (u>0)

whereb : §7~1 — R? and the rate of exponential decay satisfiés= M (u) ~ vz
asu | 0. Itis related to the divergence of (1118); see e.d. [88, AppendixTAg
parametep: > 0 is also called th&illing rate of the simple random walk because it
has an interpretation in terms of random walks that die (stop) after a finid@man
time, if u > 0. In the context of the next section,is also called the square of the
massand we writeu = n? also in the context of the simple random walks.

It turns out that questions about random polymers are related to queabont
random fields.

1.3 Random fields and local time

1.3.1 Generalities

Let X be a countable set. It should be thought of as a spatial configuratioimd$po
in the main examples, itis the vertex set of a grdph, (X, E). Let us call any map
¢ : X = R areal-valuedield on X. It is also of interest to consider vector-valued
fields or more generally maps: X — M that take values in a manifolil, but
most of the discussion will be restricted to the simplest case of real-vallés, fie
M = R. The space of fields iIM1¥X = {¢ : X — M}.

Random fields, or probability measures ¥, are one of the main structures
of interest in equilibrium statistical mechanics, in particular vitan infinite set or
in the limit whenX tends to an infinite set. Examples of random fields in statistical
mechanics include spin models, i.e., models of ferromagnetism in which a random
field describes spins of particles located at the vertices of a graph, sbept®n
of dislocations of particles from a crystal, the modelling of phase interfaeaght
functions of some configuration models (e.g. dimers), the local time of Mgov
more general random) processes, and more.

2The formula fory > 0 also holds fod = 2, but foru = 0, the homogeneous functior] |42
is replaced by log |x|. For simplicity, we restrict tal > 2.

10
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In general, it is non-trivial to define random fields on an infinite $eto that
their definition often proceeds through an approximation by finite sets.

1.3.2 Gaussian fields

A class of random fields of fundamental importance@agissian fieldsThese are
special in many ways: they can be defined essentially directly on infiniteasets (
also in the continuum), many properties are accessible by elementary caltsilatio
and they play an important role in the study of a number of non-Gaussias.field

Let X be afiniteset andC = (C,,)x,yex be a symmetric positive semi-definite
matrix with real entries indexed by, i.e.,C,, = C,, forall x,y € X and

D fCofy 20 forall f eRY, (1.21)

x,yeX

The Gaussian measuRe on RX with mean0 andcovariance Cis uniquely de-
fined by the Fourier transform:

f &4/ Po(dp) = e 7SS forall f e RX (1.22)
where
of = Z fop,, fCf= Z fCyy fy. (1.23)
xeX x,yeX

In particular, wherC is a strictly positive definite matrix, i.e., if equality in (1121)
holds only if f, = 0 for all x € X, then the inverse matrik = C~1 exists and the
Gaussian measuf- is equivalently given by the density
Pc(d e 1.24
=———— 2 :
c (do) AEETe) x (d¢) (1.24)

wherel x denotes théX|-dimensional Lebesgue measurelfoh. We then say that
Pc is a non-degenerate Gaussian measure. The ntaigxhe covariance matrix
or two-point function ofP¢ in the sense that

Ec(tedy) = f 6.0, Pe(d) = Cy (1.25)

where we have introduced the notatigga (F) for the integral orexpectatiorof a
random variabld- with respect to the Gaussian measBre
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1.3. Random fields and local time

Wick'’s formula

The moments oP¢ are given explicitly in terms of by:

2p p
Ec []—[ %] = > ] 1 m, (1.26)
i=1 P j=1
where the sum ranges over all pairingsof 1, ..., 2p into p distinct unordered
pairs{ny, M}, ..., {n,, m,}; the odd moments vanish [104, Proposition 1.2].

Consistency

Gaussian fields are consistent, in the sense thatsfa Gaussian field oX with
covariance matrixC = (Cy, )« yex, then for any subseéf c X, the restriction ofp
toY is also a Gaussian field with covarian€®.() ., yey; this follows from [1.22).

The consistency implies the existence of Gaussian fields on infinite index sets.
A matrix C on an infinite index seX is positive definite if, for every finite subset
Y c X, the restriction ofC to Y is positive definite. For any positive definite ma-
trix C indexed by a seX, Kolmogorov's extension theorem [61, Theorem 10.18]
implies that there exists a random figlan X such that, for each finité c X, the
restriction of¢ to Y is a Gaussian field with covariance the restrictiol©db Y.

Free fields

Now suppose thaX is the vertex set of a gragh= (X, E). A random fieldy on
X is called aMarkov fieldonT if, for any A c X, {¢, : X € A} is independent
of {¢, : d(A,x) > 1} conditionally on{¢, : d(x,A) = 1}. Markov random
fields play an important role in statistical mechanics because the Markogrnpyop
describegocal interactions. It is not dficult to see that a non-degenerate Gaussian
field on a finite graph is Markovian if and only if the mattix= C~1 is local in the
sense that ,, = 0if d(x,y) > 1; see e.g. |88, Theorems 2.1-2.2].

Let&(¢, ¢) = ¢L¢ denote the quadratic form associated to such.adote that
every quadratic form compatible with the locality requirement is given bytians
a:E—>Randu: X > Ras

E(@.0) = Lo = > ac(VP)2+ > pcg? (1.27)
ecE xeX
( =2 Z a’xy¢x¢y + Z (,ux +2 Z a’xy)¢)2c)
xyeE xeX yiy~x
where
(Vo) = (6x — dy)>. (1.28)

12



1.3. Random fields and local time

A quadratic form of this form is called Ririchlet form on X whena, u > 0, but
there are also interesting situations in which the last requirement is relact@cign
positive definiteness df is required [3, 4]. The inverse matr = L~ is called

the Green functiorof £. A Gaussian field whose covariance is the Green function
of a Dirichlet form¢& is called theree fieldassociated t6. Much interest is already

in the simplest case wheteandu are both constant, say, = 1 foralle € E and

ux = m? > 0forall x € X. Then such a field is called the discrete free fieldon
with massm. This terminology has its roots in quantum field theory [104].

Local perturbations of Gaussian fields

It turns out that a number of interesting problems can be studied thropghofe
imately)local perturbationsof Gaussian fields, in particular local perturbations of
free fields. By a local perturbation, we shall understand a randomdiedth on a
finite graphby a measure of the form

1
Pc,z,(d¢) = zzo(ff)) Pc(d¢) (1.29)
wherelocal means tha¥ is a product ofocal field functionaB.
Zo(9) = | | Zox(9), (1.30)
xeX

i.e., Zo x depends orjg,, : d(x,y) < 1} only. The most interesting examples are
given by homogeneous perturbations for whigf, is the same functional for all
x which is analogous to the requirement thaandu are constant i (1.27).

The term “perturbation” might suggests that fields described by suchumesas
are very similar to free fields, in particular whery', ~ 1,” but it turns out that the
large distance behavior can be drasticalljedent, in a way very much analogous
to the behavior of polymer models discussed in the last paragraph of Sédién
This is no coincidence. In Section 1.8.3, we will sketch how, in terms of argene
ized notion of Gaussian field, random polymers are models that can héaeso
terms of such local perturbations. This description is closely relatsgitonodels
subsequently discussed briefly in Secfion 1.3.4.

3We use the ternfield functionalrather than random variable for several reasons. It emphasizes
the point of view that the former are defined on the fields themselves thtrea probability space.
For example, it will become useful to evaluate field functionals on detéstigriields. The second
reason is that, in a generalized context involvinfjedential forms (Fermions) introduced later, the
notion of random variable does not exist while the notion of field functistithidoes.
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1.3. Random fields and local time

1.3.3 Local time of Markov processes and free fields

The local time of a Markov process on a grdphk (X, E) is a random field orX,
given (for everyt > 0) by (1.7). It is of considerable interest for random polymers.
For example, the ratio of weight functionf (a, b) /c%(a, b) of Sectiori 1.2.4 is the
expectation of a functional of the random fiéllunder the conditional probability
distributionP, (- |w; = b) of the simple random walk.

The distribution of the local time of a Markov process iffidult to study di-
rectly, but it is known that, for continuous-time Markov processes, tha toned is
closely related to the free field associated to the Dirichlet form of the Mgokov
cess. (The connection of Dirichlet forms and Markov processes iasfied in the
next subsection.) These relations go back to Symanzik [107], Brydgeslich,
and Spencer [18], and Dynkin [51-54], and there are also a nunbssre recent
results [103]. For example, Dynkin’s so-callsdmorphism theorermstates [108]

Ec(datsF(26%)) = fo T(Ec ®E)(F(3¢? + L)Ly, p)e ™ dt (L31)

whereC is the covariance of the free fielgl with massm? = u > 0, ie., the
Green function of the variable-speed simple random walkilled at rateu, E¢
is the expectation functional of the fiedd andE,, is the expectation of the simple
random walkw, started atvg = a.

Parisi and Sourlas [92, 93] and McKane [89] discovered a moretdktion-
ship involvingsupersymmetnsee also Luttinger [87]. In notation to be introduced
below, the so-called-isomorphisni17,30] can be stated as

Ec(udnF (60 + i) = fo CELF(L)Le e dt (1.32)

where the paird, ¢) asupersymmetriGaussian field with the same covariaite
Thus, if the square of the free field is replaced by the square of thessupeetric
field on the left-hand sidézgﬁz + L' is replaced by only.” on the right-hand side.
Thesupersymmetric partner of the complex free fiel decouples the two sides.

Dirichlet forms, random walks, and free fields

The theory oDirichlet formsis concerned with far-reaching generalizations of the
qguadratic form[(1.27); see reference/[63]. Dirichlet forms stand isectmnnection
to continuous-parameter Markov processes. For example, the Diriohte{1.27)
with constant cofficients,a, = 1, u, = m? > 0, is associated to the variable-speed

4For continuous-time Markov processes, the local time is also often cademttiupation time to
distinguish it from the local time of the skeleton Markov chain.
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1.3. Random fields and local time

simple random walk on the gragh Indeed, {&.).ce With @, = 1 can be viewed
as the adjacency matri\(, ). yex of I', defined by

1 (xyekE),

0 e (1.33)

Axy = lxyeE = {

Let Dyx = Xy ~x Avy be the number of neighbors of the vertexand seD,., = 0
if X # y. The generator of the form (1.27) with?® = 0 can then be written as the
graph Laplace operator

L=-A=D-A (1.34)

Standard theory of Markov process implies that there is a Markov psdee¥ >o
on X with E,(L,,,=y) = [e"1'],. The two-point function of this process is

G,2(X,y) = f Ex(Ly,=y)e ™" dt
0

_ ® (A—m?)t _ [/ 2\—1
_fo E ]xy dt = [(-A +mP) ]xy. (1.35)
Thus the two-point functions of the simple random walk and the two-poirutioim
of the free field are the same. The connections between a Markov pracéshe
corresponding free field go much further, however.

Complex and supersymmetric Gaussian fields

A natural variant of (real) Gaussian fields a@mplex Gaussian fieldén general,

a complex field is merely a two-component real field, but we restrisytometric
complex Gaussian fields which means that the real and imaginary parts @lthe fi
are independent real Gaussian fields with the same covariance [#$ymetric
complex field is then determined by

E(¢x¢y) = Cry,  E(dx6y) = E(dx6y) =0 (1.36)

andC is called its covariance. (The real and imaginary componenisbotth have
covariancelC in the usual sense.)

Let us consider the symmetric complex Gaussian measu@omith strictly
positive definite covariance matr® for a finite setX. Then, withL = C~1, the
expectation of a random variabfe: CX — C is given by

1 _ _
Ec(F(¢)) = m[@x F(¢) exp{— Z ¢x|-xy¢y] dedy  (1.37)

x,yeX
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1.3. Random fields and local time

which is interpreted as follows: in terms of two real fieldsandv, ¢ and¢ are
given by¢, = Uy +iv, and¢x = u, —ivy, and the measur®¢ d¢ is a shorthand
for dgy, doy, - - - doy, doy,, if X ={xq,...,X,}, where

de; dp; = 2i du, dvy (1.38)

with du, dv, the usual Lebesgue measurese R?.
Now observe that the probability density of the complex Gaussian measure is
thetop degree parof the diterential form

Yc = eXp( xyze“x ¢x xy¢y 2 i xyZG:X d¢x nyd¢y] . (139)
Here diferential forms are multiplied with the anticommuting wedge product (sup-
pressed in the notation above), and the exponential function is definegagson

into a power series (which is unambiguous because the argument hategvea).

An interesting property of this formula is that the normalization factor of the mea-
sure does not appear explicitly. The expectation (1.37) can now be waiten

Ec(Fo) = [ Fre (1.40)

with the convention that the integral of af@irential form is the integral of the top
degree part of the form only, in the usual sense of integralsttdrdntial forms.

Observe that, while equation (1137) only has an interpretation for ordiaary
dom variables=(¢), i.e., diferential forms of degree 0, equatién (1.40) has a natu-
ral interpretation whef is a more general fferential form, namely as the integral
of the top degree part of theftkrential formFy. Differential forms can then be
viewed as functionals of the fielg, and the dferential formy, = (2ri)~Y/2dg, 3

¢, andy, appear in a (formally) symmetric way in the formula far. In
the terminology of quantum mechani@gshas the interpretation of Bosonfield,
while ¢ can be interpreted askermionfield. The formal symmetry betweef
andy is called asupersymmetrand has several fascinating implications which
we will not discuss, but see references [17, 30]. We still call the pairy.) the
supersymmetric Gaussian fieldth covarianceC. The identification of Fermion
fields with diferential forms in this context is due to Le Jan |85, 86].

To exemplify in which ways supersymmetric Gaussian fields behave like ordi-
nary Gaussian fields, let us mention that the sum of two supersymmetrici@auss
fields can again be interpreted as a supersymmetric Gaussian field wivasie co
ance is the sum of the covariances/[34, Proposition 2.6]. The covarianc

E(fxdy) = E(xty) = ~E(@y¥) = Cyy. (1.41)

5The complex square root function is fixed in an arbitrary way.
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1.3. Random fields and local time

This can be generalized to a versionVdgiitk’s formulafor the moments:

p q p q
Ec {l_[ by, l_l%j%j] - [Z l_[me] 2, D™ [Cu
i=1 j=1 j=1

nesy, i=1 neSy
(1.42)
whereS, is the symmetric group of order and (-1)*! is the sign of a permutation
7 € S,. More details are given in [29, 30], but the upshot is that again, as26),1
all moments can be calculated in a simple way in terms of the covariance.

Local time and supersymmetry

Finally, we can discuss the connection between random walks and gunpeesry,
discovered by Parisi and Sourlas [92, 93] and McKane [89], in thm ftated in
reference [33]. To explain it, defineftérential formsr,, x € X, onCX by

_ 1 — _ _
Ty = Oxx + ﬁd¢xd¢x = GxPx + YWy (1.43)

ForF : RX — R smooth, it is natural to define aftérential formF (7) as thefinite
Taylor series around the degree 0 part ofhich is¢¢ = |¢|?:

1 X| m
1 — 1 -
FO=) = D, Fun,(00) ] | 57déx, oy, (1.44)
m=1 Xlyeens Xm€X j=1
whereF,,...,,, (t) is themth derivative ofF(t) in direction €,,...,€e,,,). The

Taylor series is finite becausdi@irential forms on a finite dimensional space have
a maximal degree (the dimension of the space). It is unambiguous because th
differential formr is even.

Theorem 1.3.1.Let X be afinite se{w;);>0 be a continuous-time Markov process
on X, and C be the Green function @f,),o with killing rate n? > 0:

C., = f E.(Ly,y)e" dt. (1.45)
0
Then, for any smooth ERX — R that does not grow too rapidly,

fo EX(F(L’)th:y)e‘mzt dt = Ec(F ()¢ dy). (1.46)

Proof. See |30, Propositions 2.7 and 4.4]. O
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1.3. Random fields and local time

Theorem L.3J1 withF = [], e~ &7~ (#=m*)7x for somem? > 0 implies that the
two-point function of the continuous-time weakly self-avoiding walk on a finite
graph is equal to the two-point function of a local perturbation of the rsype
metric free field on the same graph, in the sense of Section 1.3.2 with the Gaussia
measurePc replaced by the supersymmetric Gaussian “measure’lf we write
g instead ofg and sety = 0, the two-point function (1.16) is thus, more explicitly,

Gy (a.b) = Ec(4a1Z0) (1.47)
whereC = [-A + m?]~ 1 and
Zp= | | e -tummin (1.48)
xeX

is a local perturbation. In fact, there is some flexibility in the split of perturinatio
and Gaussian measure, for example, by choigg?oft turns out that this split can
be made use of in the context of the renormalization group, and that thealdgbis
necessary to consider a more general splitthg;, (1 + z)[-A + m?] ~* with

Zo = l_l o875~ (u—zm®)Tx—z7a, (1.49)
xeX

and
TAx = % [¢x (Agb_)x + (A¢x)¢_x + wx(A'vb)x + (A'vb)x‘;x] . (150)

The study of the perturbatioh (1)48) is actually also very interesting when the
Fermionic (diferential form) part of is dropped, and then such perturbations have
been studied extensively, agin modelsvhich are models of ferromagnetism.

1.3.4 Spin models

LetI' = (X, E) be a finite graph. Aspin modelon I' is real- or vector-valued
random field o™ with distribution given by [60]
_1.He
P(dg) = Ze @ [ ] p(dsy) (1.51)

xeX

whereZ is a normalizing constang, is a probability measure k" calleda priori
measureof the spin modelg : E — [0, o) arepair interactions and

H(¢) = - Z Axy ¢x : ¢y- (152)

xyeE
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1.3. Random fields and local time

The best-known case is whenis constant, i.e.q¢. = @ > 0, and the a priori
measure is given by the uniform (surface) measure of the unit sgerec RV.
These so-called\ -vector modelinclude thelsing modelN = 1), therotor or XY
model(N = 2), and theHeisenberg moddIN = 3). Much attention has also been
devoted to thep* models, given by, = 1 and a priori measure

p(dgy) = e 8lox I =slgxl? (1.53)
The ¢* models include thé\-vector models as limits witg — co ands « —g; see
references [€0, 100]. They can be written in exact analody tol(1s48) a

1
dP=>ZdPe, Zo=[] e 810l -uloxl?, (1.54)
xeX

whereP¢ is the Gaussian measure with covarigngen byC = [-A + m?] -1
andy =s—1-n?.

Spin models and walks

The relation[(1.54) witiN = 2 components is the same &s (1.46) withreplaced
by its 0-degree partp,|2. Thus the weakly self-avoiding walk model is a super-
symmetric version of the two-componepft-model. It is known that spin models
also have interpretations in terms of walks, but with additional loops [1.8,160]
fact, the discovery of the relations between walks and fields departadtfris
direction in the study of field theories in terms walks and loops [107].

De Gennes |42] also argued that the self-avoiding walk is describeckbiyrtt
N — 0 of the N-vector model (also see [20,88]), but this limit does not have a
meaning at the level of probability measures. The supersymmetric versiovaig a
of giving rigorous meaning to it, in the context of the weakly self-avoidingkwa
The essential idea is that the Fermion componentscofunt, in a sensaegatively
to the number of components due to the minus sign in equation (1.42), in this sense
giving “N = 2 - 2 = 0.” For a more complete discussion, see reference [30].

Behavior of spin models

In view of the connection between spin models and interacting walks (with)oops
it is not surprising that many qualitative features of the weakly self-avgidialk

are shared by the spin models. In the context of spin models, the critical yalu
has an instructive interpretation. For example, considepfrmodel withN = 1

SEach component is an independent Gaussian field with this covariartiee Miector-valued case.
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andg > O fixed (or the Ising model). It is known, see e.g. reference [6], thakth
is e > —oo such that its infinite volume limits oA“, d > 2, satisfy

(1) = 3 1EGos) {j Do (1.55)

The field¢, can be interpreted as a kind gffinof a particle (an arrow) located at
vertexx. Foru < u., (1.55) means that the spins anelered This corresponds to

the ferromagnetic phase of a magnet in which most spins point in the same direc
tion. On the other hand, the cage> u. corresponds to a disordered phase. The
variation of u corresponds to a variation in inverse temperature. crhieal point

u = u. corresponds to the critical temperature of the phase transition between the
ordered and the disordered phase. Nas 1, the picture is similar, but much more
delicate due to theontinuous @N)-symmetry of the model on finite graphs. This
continuous symmetry is “spontaneously” broken in the ordered phaseifithite
volume limit [6Z], giving a diferent magnitude of éliculty to the problem.

1.4 The renormalization group

1.4.1 The concept of renormalization in statistical mechaitis

Random polymer models on the Euclidean lattice are expected tshaleg lim-
its. The fundamental example of this is the convergence of the simple randiém wa
to the Wiener proces$ (1.5). This is a statement about large distances asd time
related by difusive scaling. The basic ideamhormalizations to study the large-
distance behavior of a model by reduction of the degrees of freeddine ehodel
by a version oftoarse grainingi.e., disregarding information about the behavior
at small distances, say, smaller tharkOL < . The fundamental hypothesis
of the renormalization idea is that, after coarse graining and rescaling, ttiel mo
should be similar to the original model with modified parameters. The combination
of the two operations of coarse graining and rescaling is callet@malization
group transformationHowever, concrete formulations of such transformations for
models of self-avoiding walks on the Euclidean lattices, in any dimension edefin
directly in terms of walks and amenable to analysis, seem not to be unddistood
The renormalization group concept is, however, much better underistoloel
context of (neargritical random fields, in particular if these doeal perturbations

70On hierarchical groups, the work of Brydges, Evans, and Imb#2e€., 29] has an interpretation
in terms of walks, and there is also work in preparation by Ohno in whicbrrealization of self-
avoiding walks on hierarchical lattices is studied directly in terms of walks.
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of a Gaussian field of?, i.e., described in finite volume by measures

Pe.7a(d9) = 2 Zo(6) P (d9) (1.56)

whereP¢ is a Gaussian measure B, Zo(¢) is a local perturbation, in the sense
discussed in Section 1.3.4, adds the normalization constad@t = E (Zp). In this
context (but not only in this), the renormalization group has been usegssfully

to study the long-distance behavior of a number of such models. It alsalpso
an approach to a renormalization group study of random polymers vig) (T.Hé
termcritical random field refers, for example, to a spin model at the critical point;
see Section 1.3.4. In the context of models of walks, the near critical loehav
related to the behavior dbéng polymers as discussed in Section 1.2.4.

Let us mention two historically important ideas for the renormalization group
study of random fields: Kadaffd80] proposed the intuitively appealing idea to
replace a random field in dnx L x --- x L block of points inZ¢ by an dfective
block spinfield, constructed for example by averaging the field in that block. He
claimed that this block spin field should behave in a similar way as the original
field, but did not provide arguments to justify such an approximation. Wilsen la
argued, still non-rigorously but with deep insight, how a variant of thia idey be
justified. He was awarded the Nobel Prize in Physics in 1982 for his catitits
[113]. Following the introduction of [1], let us sometimes refer to the mathentatica
realization of Wilson's ideas a&filson’s program There has been quite remarkable
progress in the realization of approaches like Wilson’s renormalizatiampgid/e
do not attempt to provide a comprehensive list of references, butdeiyisnention
a few relevant references: Benfatto et al./[13], Feldman et al. {(5&Jyedzki and
Kupiainen [67], and Brydges and Yau [22]. Unfortunately, thesek&all involve
numerous technical challenges, and it seems unlikely that the full capéciig o
renormalization group idea has been attained yet. Nonetheless, it is orenodsh
powerful tools available for the study of random fields.

We will give a short heuristic account of our interpretation of the chaéeng
of Wilson’s program and also sketch very briefly aspects of the approati-
ated by Brydges and Yau [22], in a further developed form of Brgdaed Slade
[10,34--38]. The latter authors conceptualized, simplified, and geredahe ap-
proach in significant aspects to study weakly self-avoiding walks via (1 Piée
method of Brydges and Yau has, however, also been applied to a nufrdibeo
models, including the dipole and Coulomb gases [44-46, 43, 49, 55]iegtad-
terface models |3], as well as problems from quantum field theory [B2,@.7].
Introductions to concepts of the method are given in [12, 24, 25, 106}. dB-
cussion is inspired by many of the references previously mentioned atieby
general expositions on the renormalization group [14, 67,100, 1183.fGcus of
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our discussion is on the relation to the problems studied in this thesis.

1.4.2 Progressive integration, dynamical systems, and catnates

Let us consider a random field that is a local perturbation of the freg {El56),
with covariance given by the Green functi@n= [-A+m?] 1 of the graph Laplace
operator om\ c Z¢. The perturbatiorZy makes sense only if it depends on a finite
setA and thenm? > 0 may be required, but the goal is to analyze such measures
Pc.z, inthe limitA — 74 andm? | 0; we will, however, not devote much attention
to the details of these limits.

In principle, the measur€c 2, can of course be studied in terms of

Ec (F2o), (1.57)

for enough field functionals which we callobservablesFor instance, withr = 1,

(1.57) expresses the normalization factofin (1.56), and Rith¢,, ¢, it gives the
unnormalized two-point function. Itis well-known, however, that it carubeful to
study a measure in terms of a transform, e.g., its Laplace or Fourier traragion.
Let us denote the Laplace transform of thenormalizedneasureZy dPc by

/= Ec(e7%' Zo(9)) =1 Ec(Z{(9)). (1.58)

To study thdarge distance behaviasf the field, the class of test functiofisshould
be insensitive to fluctuations at short distances. For examplealang limitwould
be determined by increasingiynooth f= ¢ given by f¢ = &% f (¢X), (x € Z9),
for some exponent > 0 andf € Cg"(Rd), in the limite | O. Itis, however, also
interesting to consider pointwise asymptotics of correlation functions, fonele
with f = f9° = 5,6, + 0,6}, asd(a, b) — oo, whereo . are constant(= a, b),
and ¢.)x = 1if c = xand ¢.), = 0 otherwise. Then the normalized two-point
function is the derivative of log/ with respect tar, ando,.

The accurate analysis of expectations like (11.57)—(1.58) is howevdymgh-
trivial because the free field s&rongly correlated for example, see (1.20}, (1/18),

Ec((¢x — Ec(¢x)(¢y — Ec(4y))) = Ec(dxdy) —» O (1.59)

so slowly thaty’, [Ec (¢x¢y)| — o asA — Z¢ andm | 0. The crucial property
that will facilitate the analysis is that the perturbatifgis local, i.e., a product

Zo=]]20. (1.60)

where eact? , is a local field functional; see Section 1)3.2. This factorization
property provides the important structure, as we will sketch, for the ieratial-
ysis of such expectations by a particular form of coarse graining.
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The fundamental idea is to decompose the free ffeldto a sum of two in-
dependent Gaussian fields,= ¢, + ¢;, corresponding temall and large dis-
tances. The coarse graining step is then implemented by taking the expectation o
the fieldgg which is called thdluctuation fieldbecause it captures the small dis-
tance fluctuations that are to be eliminated. Wilson’s renormalization group pro
gram involves iteration of this procedure and rescaling of the underhliggipal
space after each step. The motivation is that tairmalization group transfor-
mation the combination of coarse graining and rescaling, should bricrifiaal
model approximately back to its original form so that the transformation can be
iterated to obtain anffective description for increasingly large distances.

In practice, it can be convenient to omit the rescaling step and insteaideons
“increasingly smooth” test functions, as discussed below [(1.58). Fumthre, the
iterated decomposition of the Gaussian field, or equivalently of its covajamo
small and large distance contributions can be implementedgdrori decomposi-
tion of the initial covariance,

C=Ci+Cp+--- (1.61)

into a sum of covariances corresponding to geometrically increasing leogjlis.
This idea goes back to Wilson, but was perhaps first explicitly formulategigmy
fatto et al. [13]. The somewhat vague telengthor distance scaleneans that each
C; should account for the fluctuations of the free field in an exponentigleran
distanced./~1 < |x| < L/ for a fixedL > 1. This is discussed in the next section.
From a pragmatic point of view, the covariance decomposflienC;+Cp+- - -
allows to evaluate the expectatibg (Zg(gb)) progressively, in terms of a sequence

of field functionalsz’ which are integrated with respect to the Gaussian fields with
covarianceC;,1 + - - -, defined by

Z],1(9) = Enz] () =EL (2] (0+)). (1.62)

where the expectation on the right-hand side is that of the fluctuationsfiel; is
thus theconvolution operatoof the Gaussian measure with covaria@;e It then
follows that the expectation is givenﬂ)y

z/ = 77(0) = lemw Z1(0). (1.63)

The progressive integratiorEf) can be regarded adiane-dependerdynami-
cal system, with the scale parametéen the role of “time:” if N is an appropriate

8The limit requires some mild assumptions on the decomposition. Moreoy#gctice, it can be
more convenient to stop the iteration after finitely many steps, when thengesition has reached
the size of the finite seX; we will ignore such details.
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space of field functionals and; c N a subspace of field functionals which are
integrable with respect to the Gaussian measure with covar@neeC; 1 + - - -,
thenE; 1 : N; — N;;1 € N. This picture, in itself, is not a simplification of the
problem since the dynamical systef;]; is enormously complicated and time-
dependent, and it must be understood in the limit> Z<. To analyze particular
aspects of this dynamical system, one must find appropriate coordinatdscim w
an aspect of consideration becomes tractable, uniformdy in

In particular, it is natural to consider the evolution of the perturbaZigonly,
without f. For example, by an elementary calculation for Gaussian measures,

7/ =71, (0) = &/ Z,.(CT) (1.64)

whereZ, on the right-hand side does not have a supersdrifthus, in principle,
i.e., given sficient knowledge abol,.,, the general case can be reduced to it.

The goal of the next subsections is to outline remerdinates x can be found
in which the action of the Gaussian convolution with covaria@ge; on Z; is
expressed in a much simpler form by a nipacting onx;:

Ej+1(Z; (%)) = Zj1(®;(X;)) (1.65)

for some coordinate mag; that map an “abstract” coordinase to a field func-
tional Z; (x;) = Z;(x;, ¢). In his pioneering work, Wilson argued how this should
be possible and, with the previously mentioned rescaling step, his dynawyseal s
tem is approximately autonomous. In the rigorous approach of BrydgkSlade
[10,34--37], it has turned out useful to allow the coordinate spacesperdl on the
scalej. Thus there is a sequence of spa¥gsuch thaix; € X; and the evolution
maps are given a®; : X; — X;,1, but approximate invariance under rescaling
must, of course, still play a role. Finding such coordinatgsigorously, is at the
heart of the diiculties of the renormalization group.

Let us mention again, with the more specific context that has now been intro-
duced, that the main results of this thesis are the following.

e Chapter[2provides a new method for decomposition of Green functions that
give decompositions of free fields with particularly useful propertiegtfer
analysis of the renormalization group transformations that they induce.

e Chapter[3is the analysis of a class of general dynamical systeras(®;)
that arise as coordinates of the renormalization group map for four-dimen-
sional weakly self-avoiding walks [10, 37].

The outline of this subsection will be expanded with further details in the follgwin
subsections. In Appendix/ A, we provide some concrete details how tlagianee
decomposition of Chaptér 2 gives rise to the assumptions of CHapter 3.
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1.4.3 Decomposition of the free field

The starting point for the renormalization group, in the form discussed iprewe-
ous section, is a decomposition of the free field, or equivalently the detigno
of its covarianceC, into distance scales

C=Ci+Cot---. (1.66)

The covariance should here be regarded as an infinite (in theAimit Z¢) sym-
metric matrix Cyy), ez« thatispositive definiten the sense that

Z fxCyy fy > 0 for all finitely supportedt 174 SR, (1.67)

x,yezd

The decomposition (1.66) must be such that each @rsatisfies[(1.67), in order
for theC; to be the covariances associated to Gaussian fields, and, at the same time,
the covariance€; must “capture” the distance scaleé™! < |x| < L/ for some
fixedL > 1, whereL/ = L x --- x L. These are two competing constraints.

In Chaptef 2, in particular in Theordm 2.11.2 and Exarhple 2.1.3, we prove that,
if Cis the Green function of a quadratic form in general class (containingtbetic
forms on a general graph, not necessdzfly, then a strong form of the decompo-
sition of the above kind is possible. There existx, y), t > 0 such that

© dt
Cov= [ aitx) § (1.68)

whereg, is positive definitefor eacht > 0. The use of the scale-invariant measure
dt/t on [0, ) in (1.68), rather than the Lebesgue meagitrés not important but
a natural choice. The kerng} satisfies thdinite range property

¢ (x,y) =0 ifd(x,y) > t, (1.69)

andnatural estimates For example, ifC is the Green function associated to the
lattice Laplace operator, then, for all multi-indides|, € N{***},

Vi h g, (x, y)| < Ct- (@2l (1.70)

where negative componentslafenote discrete gradients in the negative coordinate
directions andl|; = Zle(ll- +1_;). Moreover,¢, is then also translation-invariant,
i.e.,¢,(X,y) = ¢,(0,y — X), and symmetric, i.e¢, (0, X) = ¢,(0, —X).
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1.4. The renormalization group

To obtain a discrete decomposition, adin (1.66), the integrall(1.68) calibe s
into integrals over finite intervals. For example, for dny 1, set

1
2

L dt .
¢z(x,y)T (j=1),

[Cilxy = 10 ot (1.71)
[ a0 >0,
LIt
The properties of, immediately imply
C, is positive definite;
C; has the finite range propertyC/[l., = 0 if d(x, y) > $L/; 1.72)

C; is translation-invariant:Q;] x+a,y+a = [Cjlxy;
C; satisfies[Vir Vi Cjlyy| < O(L ™2 Ity =1)),

In addition, we show that th¢ of the Euclidean lattice hasszaling limit For
the discrete decomposition, this means that there erxist@ﬁ"(B% (0)) such that

[Cilay = LW@=2ig(L77 (x = y)) + O(L~ =2y, (1.73)

An analogous result also holds for all discrete gradients;ofThe existence of the
scaling limit implies that certain functions @f; can be computed very precisely in
the limit j — oo, as illustrated in Appendix]A.

As hinted at, the two constraints th@f is positive definite and finite range are
non-trivial to satisfy simultaneously. It is a natural question if covariatemom-
positions in whichC; is localized exponentially, e.g., for soe- 0,

I[Cilayl < O(L~(@-DU-Dege L0 Phx-yly, (1.74)

would be equally useful. It is much easier to find decompositions with this rlaxe
localization property. The answer is that such decompositions are almaosstfas,
and, in fact, they have been used in earlier results on the renormalizadiom, gee

in particular [13, 65]. The use of the finite range property, originallyppsed by
Brydges [90], leads to simplifications of the method and, in some aspectdsligh
better results.

1.4.4 Formal perturbation theory

Physicists have long understood that the evolu#gr- Z;,; = E;,1Z; becomes
formally simple when expressed as an exponential functionViet —log Z; be
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the gffective potential In particular, for the weakly self-avoiding walk model, by

@)l ~
Vo= (8072 + HoTx + ZoTa x) (1.75)
XEA
is parametrized by the thremupling constantg$go, uo, Z0). Formally, by which
we mean by expanding the exponential function into a power series withging
attention to its convergence,

Vis1 = —10g(Ejs1(exp(-V)))
~ Epa(%) + 3(Eja(V)? - Ejaa(V2) + - - (1.76)

where~ means in the sense of a formal power serieg;inThis relation is called
the cumulant expansioand alsgperturbation expansiom the physics literature.

If \7] was a polynomial (or formal power series) of the field, asvpin (1.75),
then the terms of each order of on the right-hand sidé 0f (1.76) couldhdaizd
explicitly in terms of the covariance by Wick’s formula (1142). Ignoring a nemb
of problems with[(1.76), Wilson observed that in this formal series of monowiials
the field, a few terms seem to be much more important than the others. He argued
that, in dimensions four and ab@vy can be approximated by a polynomial of the
same form a¥). Effectively, this reduces the complexity from an infinite number
of variables to three variablesg;( u;, z;), parametrizing7j as in [1.75).

First-order perturbation theory and local field monomials

To explain Wilson’s argument, some terminology is convenient. A field fundtiona
M is alocal field monomigllocalized atx € A, if M can be expressed as a mono-
mial in ¢, andV¢,, and corresponding terms in other fields (such as the Fermionic
field ). Moreover,P is alocal field polynomiaif there isX c A and local field
monomialsM, for x € X such thalP = ¥, cx M,. For exampleg? is a local field
monomial andy ., #2 is a local field polynomial. In particulay, is a local field
polynomial.

Then, to explain a fundamental idea, suppose\ﬁ‘@tls given by the first term
of the right-hand side of (1.76) only, i. e/,+1 = E;.1V;. Observe that

Ej(Tx) =T, @.77)
E;(2) = 72 + 2[ClxxTx = 72 + 2[C;l00Tx (1.78)
Ej(7a.x) = Ta.x, (1.79)

9In fact, he also considers dimension=4,” but we will not be concerned with this case. Below
we outline the considerations in general dimendiptbut for field theories with “quadric interac-
tions,” these will only be useful id > 4 which is our main interest.
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by the definitions ot andr,, (1.43) and[(1.50), Wick’s formula (1.42), and transla-
tion-invariance oC;, i.e., [C;].x = [C;]oo. The exact expressions of the right-hand
sides in[(1.7]7) rely on the filerential form parts of, andra ., but for many other
purposes one can think ef andra , simply as their degree 0 parts, ¢, and
$(x(Ag)x + (A)+¢x), and we will then do so, and also replace the complex
field by a real field if the distinction is not importa@t. It follows that, in the
linear approximation, aN7j are local field monomials of the same form\aswith

(g0, mo, 20) replaced by £, fi;, Z;) determined by the recursion relation

(8j+1> lj+15 Zj41) = (&, fij + 2[Cjr1]00g; > Z))- (1.80)

Now observe that, according to the discussion about the decompositioa of th
Green function in the previous section,

Var(Vija1.x) = [ViV3,Cralay |, ~ cL™ 722 = o =201 (1.81)

for any multi-index. The constantd] := %(d — 2) on the right-hand side is called
thedimensiorof ¢. A measure of théypical magnitudef a field is the square root
of its variance and, in this sense,

41| ~ LTIV, (1.82)

Moreover, by[(1.81), each discrete derivatWef ¢,.1 decreases this typical mag-
nitude by an additional factor df~/ (up to an absolute constant). TtiEnension
[M] of a local field monomiaM is defined so thatM (¢,.1)| ~ LM/ according
to this heuristic, i.e., by adding a summaudifor each factor ofp and a summand
of 1 for each discrete gradieRt For example,

[¢] = 4l¢] = 2(d - 2), [(V$)] = 2[¢] +2=d. (1.83)

In dimensiond > 2, the typical magnitude of a fluctuation field decreasgs as
increases, by (1.82), but at the same time its range increasds lilr a scaling
limit, the natural “dfective size” of a field monomial is that of its sum over a block
B of approximate diametdr/, i.e.,

DT IM(@41.)] ~ LMD, (1.84)

xeB

This gives rise to the following classification of local field monomials:

0The expressions with fierential forms are simpler than those of their degree 0 parts alone. This
is because of cancellations duestqpersymmetrylt corresponds to the cancellation of “loops” in the
random walk representation; see Section 1.3.4.
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e if [ M] > d, the heuristic magnitude &l contracts(M is irrelevani);
e if [ M] < d, the heuristic magnitude &l expand{M is relevan);
e if [ M] = d, the heuristic magnitude &fl remains the sam@M is marginal).

It is therefore natural to consider the coupling constagfs(;, z;) with respect
to the “normalized” field monomiéﬂsL("“‘)fo, L-%,, andrs . In the formal
first order approximation, the evolution of these is given by:

(€41, 1j+1, Zj41) = (L7 Vg;, L2(wj - 2L7[Cju1l00g))- Z).  (1.85)

These heuristic considerations lead to the following predictions for the large
distance behavior of the perturbed field. In dimension five and higherntii@on-
contracting local field monomials compatible with the symm@ieﬁthe model
aret andry,; in particularg; — 0, and the large distance behavior is expected to
be that of the free field. In dimension three and lower, there are sawdeabnt
local field monomials, finitely many in dimension three, for exampésdr2, and
infinitely many in dimension two, and in both cases the large distance behavior is
expected to be non-trivial (flerent from the free field). In dimension four, there is
only one relevant field monomiat, and only two marginal field monomials? and
7a, and the first-order approximation is notficient to (heuristically) determine
the long-distance behavior. A second-order analysis reveals thatrih@istance
behavior should be like that of the free field, but in a much more subtle way tha
in dimensions above four.

Higher-order perturbation theory and approximation by local polyn omials

The immediate dficulty encountered when trying formallyinclude higher-order
terms of [1.76) in the previously described heuristic procedure is thattsums

are not local field monomials. For example, an (important, as it will turn out) term
arising at second-order is

~82 Y [Cjal?, bxbr by by (1.86)
X,y

This term involvesp, and¢,, with d(x, y) ~ L/*1 and is therefore not lacal field
polynomial. However, such terms which arise[in (1.76) can always becexplay

uFor simplicity, we refer to, e.gz, = ¢xdx + Uxibx as a “monomial,” even though it is actually
a sum of two monomials in the fields in the previously introduced terminology.

12 The model is symmetric under Euclidean transformation that preseeviattice and under a
so-called supersymmetry [1.0./35].
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a local field polynomial and eontractingnon-local remainder term. For example,
for the above term, one can make the replacement

D ICHl, hcpidydy w C2) > (9:61)? (1.87)
X,y p'Y

where we have introduced the abbreviation

c?®=>[c2, (1.88)
y

which is independent of, by translation-invariance &;. The right-hand side of
(1.87) is again a local field monomial and, as such, it can be included asrdsec
order correction to the flow of coupling constangs, (u;, z;) — (gj+1, Kj+1, Zj+1)-
The above term results in a contributiongqa like gj+1 = g; — ﬂjg_f + -+ with
B; > 0. More details of the resulting equations are given in Appendix A.

The diference between the right- and left-hand side§ 0f (1.87) is

D ICHa12, (8:6:) (By by — G- (1.89)
X,y

This term “contracts” in dimensiorg > 4, roughly, since the flierence between a
local field monomial at two points decays faster than the individual monomials, b
(1.72), if the distance between the points remains fixed. To illustrate thisdeons
(1.89) withy = x + re wheree is a unit lattice vector and an integer withr| <
O(L/*1); the latter restriction om is because of the finite range condition that
Ci(x,y) =0if d(x,y) > cL’. Then

-1

Dxx(Bydy = B20x) = D 6xbu (Ve (00))xske- (1.90)

r
k=0

This term, at scale> |, i.e., if tested with fluctuation covarian€g, has the ffec-

tive sizeO(rL (¢-4¢1-11) = Q(L~-(=/)L(@-4¢D!) which decreases exponentially
in | (because and thereforg remain fixed). This argument can be made for each
term appearing in(1.76). Brydges and Slade developed a systematic meffje

1.4.5 Dynamical systems

That the space of relevant and marginal spatially homogeneous locgbdigiao-
mials hasfinite dimensior(in dimension four and above), and that every term in
(1.76) can be approximated by such a local field polynomial with a “contigetin
ror,” is the principal idea of Wilson’s renormalization group. Wilson asgy|lel3
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that the contractive terms should not influencedhgcal behaviorof the model,
determined by the evolution of the relevant and marginal terms, in our example,
the three dimensional system;(z;, ;) = (gj+1, Zj+1, 1j+1)-

There are numerous mathematicdtidulties encountered when trying to jus-
tify this picture given by formal perturbation theory; these are discu@sgart) in
Section 1.4.6. Formal perturbation theory suggests that there shoubdizbnates
X; = (K;,V;) determiningZ; whereV; = (g;, z;, u;) is the three dimensional vec-
tor describing the marginal and relevant monomials of formal perturbati@mythe
andK; is an infinite-dimensional vector capturing all of the irrelevant directions.
The evolution ofV; should approximately be given by a “localized” version of
(1.76) as illustrated in (1.87), whil€; should be contractive in some sense.

In Chaptei_ 8, the following abstract version of this set-up is considevéal.
assume that there is a sequence of Banach spaceach that; € K, that the
joint evolution of K, V;) is described by an evolution map

D K; xR3- K x R3 (1.91)

of the form

D;(K;, V) = (¢ (Kj, Vi), 9 (V) + 0 (K, Vi) (1.92)
with y; and p; contractivein K; andthird-order in V;, ande; a quadraticpoly-
nomial ofV;. The quadratic polynomials; describe the formal second-order per-
turbation theory of the relevant and marginal directions and therefgendieorv;
only; p, describes higher-order contributions which can either be due to the rele-
vant and marginal coordinates or due to the contracting directions. Thednap
are allowed to have weakscale-dependence. In addition, we assume thap the
not have constant parts which allows for the interpretadig(0, 0) = (0, 0) such
that 0= (0, 0) can be considered a kind fiked poir@ of the dynamical system
® = (d;);. This corresponds to the fact that the evolutiorZefs trivial if Zg = 1.

The main interest is in the long-time behavior of this dynamical system, as
this is related to the large distance behavior of the fields. For a dynamit¢ahsys
near ahyperbolicfixed point, the structure of the flows near the fixed point are well
understood. A dynamical systein: X — X on a Banach space€ has a hyperbolic
fixed point O if the spectrum dD®(0) is bounded away from 1. Informally stated,
the stable manifold theorelj®9, Theorem 6.1] asserts thatdifis a hyperbolicC”
map (for some integar > 0), then there exists a decompositin= X, & X,, such
that, near 0, the domain of attractidbh c X is the graph of & map X, — X,,
and that the convergence under iteratioradf points onM to 0 is exponentially

130 is a diterent element in every spage = K ; x R3, but we will neglect this point in the present
discussion.
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fast. This gives rise to a schematic phase portrait as shown in FigurenltAe |
context of the renormalization group, the choicé/pon the stable manifold of a
fixed point corresponds toaitical mode| whose scaling limit is the same as that
of the perturbed Gaussian measure. (This is knownfeared asymptotic freedom
in the physics literature. It will be discussed again in Sedtion1.4.8.)

stable manifold fixed point
v

unstable manifold

Figure 1.4: Schematic phase portrait of the renormalization group.

The “fixed point” of the dynamical system arising in the renormalization group
analysis of the four dimensional weakly self-avoiding walk, outlined apisveot
hyperbolig the reason is that? is marginal. The analysis of the (local) long-time
behavior of non-hyperbolic fixed points is more subtle than that of hyierbnes
and depends on specific properties of the dynamical system. For exanspha)|
change of the value of a single ¢beient of the quadratic terma above can change
the long-time behavior in an important way; see e.g. Examplel3.1.6.

In Chaptef B, we study dynamical systems of the fdrm (1.92), and pratge th
for the class of dynamical systems considered, an analog of a stable lthaiméo
orem holds. The exponentially fast convergence along the stable trgjettine
stable manifold theorem is replaced in our result by a polynomial bound with log
arithmic correction (which is likely optimal). Informally said, we show that, for
suficiently smallVp andKg, there is a codimension two manifold dd, V) such
that the solution toK;.1, Vj.1) = ®;(K;,V;) exists for allj € N and is a pertur-
bation of the solution to the analogous two dimensional manifold for the recursio
Vii1 = ¢;(V;) which can be studied by elementary means.

In AppendiX A, we provide the explicit expression of the quadratic gz¢t,0f
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the dynamical system that arises in the renormalization group map for théyweak
self-avoiding walk [10]. Itis expressed in terms of the covariance mgosition of
Chaptef 2. It turns out thaty is not exactly of the form op studied in Chapter! 3.
We provide an explicit transformation which expresggsin terms of a may to
which the result of Chaptér 3 can be applied.

1.4.6 The error coordinate and polymer gases

Finally, we provide some indication how the error coordirtatean be found. This
is, of course, the major mathematicaffaiulty in implementing Wilson’s program.
In essence, this amounts to obtaining an approximate version of (1.76) ugtfa
remainder estimate

This was first achieved for thg* model, in a somewhat fierent formulation,
by Gawedzki and Kupiainen [65—67]; this model has also been studididfbyent
approaches, see e.qg. [58]. An infamouidilty, known as théarge field problem
is that [1.76) can only be a good approximation wkieand, thusp, are small. This
problem, in its simplest form, is already present in perturbations of the sthnda
one-dimensional Gaussian measure. For example,

I (g) = f e8'e "’ (gt (1.93)
R

is a singular function o atg = 0 because~¢" is not integrable fog < 0. Large
fields turn out to cause filiculties for the applicability of certain expansion meth-
ods, but their probability is very small (in a large deviation sense). Theisolaf
Gawedzki and Kupiainen to the large field problem involves a separatenget

of small and large fields, in which the small field contribution gives rise to similar
effective action as the formal analysis of Secfion 1.4.4, while the large field-contr
bution is very small. Brydges and Yeu [22] developedféedént solution in which

no distinction between small and large fields has to be made, by use of weéifcho
weights on the space of field functionals.

The main issue, however, is that the perturbati@nsnvolve an unbounded
number of variables (a& — Z4) and that it is dificult to estimate the error to a
formal approximation like(1.76) in a uniform way. Thidi@tulty has historically
been handled bgluster expansionf22,65--67]. There, an important role is played
by apolymer gas which, informally said, can describe the irrelevant directions of
the formal analysis. The previously mentioned references use covaritom-
positionsC = C1 +- - - in which theC; are only exponentially localized, rather than

14As a warning, we emphasize that the polymers that appear in the polyasarg not the same
kind of polymers as in Sectidn 1.2.
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finite range, discussed in Section 114.3. The use of the finite range tyrafiews
a simplified treatment without cluster expansion [25, 27, 90].

Polymer gases

The simplest version of polymer gass defined as follows; see [23,68]. Lig§(A)

be the set of finite subsets Af, for later convenience, we include the empty &et

in Po(A) although, at the moment, it would be more natural not to do so. Suppose
that, for eactpolymer Ye Py(A), there is a weighK (Y), calledpolymer activity

The patrtition function of the polymer gas with activityis given by

2= 3 koK)

N=0 " Yi,..., YN €Po

disjoint,Y; #0
- 1 Y
=2 0w D KWKo [ e, (1.94)
N=0 Y1,..., Yn €Pg i£j

with the hard core interaction

VO Y)) = {0 (6 0% = 0). (1.95)
oo (otherwise)

K(Y) appears in analogy to the activity of the “particle’Yain the grand canonical

partition function of a gas, which is why it is called polymer activity.

A simplification is theconnected polymer gasith configuration space given
by connectedpolymersCPy c Py. This requires a notion of connected polymer
with the property that eac¥l € Py has a unique disjoint decompositi¥h= Y; U
--- U Yy into connected polymers i@Py. The activitiesK can then naturally be
extended fronCPg to Py by

K(Y) = K(W) --- K(Yn) (1.96)

with the conventiorK (0) = 1. We identify polymer activities defined @Pg with
such defined oy satisfying (1.95) and call themonnected polymer activities
The partition function[(1.84) witlRy replaced byCPg then has the simple form

Z=1+ Z K(Y):ZK(Y). (1.97)

YePo,Y#0 Y ePg

The first expression shows that % 1”if K is “small,” but observe tha®q has 2!
elements, so that, for the sum to be smiél{ X) must be very small for mosf.
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For the further development, it turns out convenient to introduce an r@igeb
structure on polymer activities, introduced in [22, 25]. Define a commutatice
associative product on polymer activities by

(FoG)(X)= > F(Y)G(X\Y) (1.98)
Y ePo(X)
where Po(X) denotes the polymers contained X1 Let 1 denote the constant
polymer activity given by 1) = 1 for all Y € Po. Then the partition function of a
connected polymer gas is given by

Z = (K o 1)(A). (1.99)

1.4.7 Polymer representation

In the use of polymer gases to control the renormalization group, the poictier
ities K(X) arelocal field functionals More precisely, the space of field functionals
N is considered a commutative algebra with subalgeNg¥) c N of field func-
tionals that only depend on the field Yhe Py and a “small neighborhood” of.
The polymer activities are thdacal in the sense th& (Y) € No(Y).

The simplest example is theivial polymer activity denotedK = 14, and
defined by $(X) = 1if X =0 and % (X) = 0 else. } is the unit of the product.
The initial partition function can then be written as

Zo =1lo(A) = (1o 0 10)(A) (1.100)

wherelg : Pg — N is given byl (X) = [], e~ "o-~.

If the covariance decomposition has the finite range property, see Séati@n
it turns out that allZ; can be expressed in a similar way, but to obtain a useful
representation, the class of polymers must be restricted to reflect thasimgky
long range nature of the remaining fluctuation fields. More specifically, i a
finite torus or cube of side length™ for some integerd andN, let B;(A) be a
set of mutuallydisjoint blocksof side lengthL’/ with the property that their union
equalsA. LetP;(A) be the set of finite unions of blocks By (A); these are called
scalej polymers. Then everything discussed in the previous section about polyme
gases has a straightforward scglgeneralization, given by replaciri®y with P;,
andNo(Y) with N;(Y) which are field functionals that are allowed to dependfon
and a small neighborhood of blocks®#) nearY. In particular, the circle product
o then depends ojy although we will not emphasize this in the notation.

Brydges and Slade [25,37] show that, if the finite range decompositiowndn gi
in terms of the same parameter- 1, thenZ; can be written as

Zi=(Kiol)(A) =L;(A) + > Ki(X)1i(A\X) (1.101)
XeP;(A),X#0
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1.4. The renormalization group

wherel; andK; ando are defined on scalgpolymers,|; is to second order es-
sentially given by[(1.76), anl{; represents all of the higher order terms of formal
perturbation theory in a rigorous fashion. To understand the signifduat poly-
mers must be at the correct length scale, observenthairder terms of the formal
approximation[(1.7/6) have ran@gnL/). This is easily understood by the example
of the the second-order terin (1.86). The polymer gas description beassaéul

if it can be arranged in such a way thih order terms correspond, approximately,
to polymer activitiesK (X) on polymers withO(n) blocks so thak (X) can be
expected to be smaller and smaller wh¢ris large. This compensates “loss of
locality” by smallness.

Finite range property

To illustrate how the finite range property is helpful in obtaining the reptatien
(1.101), we recall that the finite range prope®y]l,, = 0 if d(x, y) > cL/ has the
consequence that, if; = (¢, ). is a Gaussian field with such a covariance, then
¢;.x andg; , areindependenif d(x,y) > cL’. In particular, ifY,...,Yy € P;

do not touch each other, then

N N
E [ [kow =] [EKM). (1.102)
i=1 i=1

Now suppose that a local field functional, = 11 «(¢2+¢3+---), independent
of the first fluctuation fieldg1, is given in some way, and léto , = lo.x — I1,x
wherelp y = lo x(¢1+ @2 + - - -) does depend op;. Then

Zo=1lo(A) = [ [ 1o = [ [(1x + 610.) = (5loo 1) (A). (1.103)

xeA xeN

The expectation oZgy with respect taC; can be written as

Zi=BEZ= ) (]—[ ll,x]El[]_[alo,x]=(K1o|1)(A), (1.104)

XePo(A) \xeA\X xeX
where
11(X) = n Iy, Ki(X)=E; [l_[ 5|o,xJ (1.105)
xeX xeX

and the product on scale 0. HoweveK1(X) depends on the field in a neighbor-
hood of X of rangeO(L*') (or more generallyD(L/) at scalej). To write (1.104)
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in terms of scale 1 polymers, one can restridb B; and “coarsen’K; by setting

KiU)= > []—[ |1,x] El[l_[ 5|O,x] (1.106)

XePo(U):X=U \X€U\X xeX

for U € Py, where the closurX e P;.1 of a polymerX € P; is the smallest scale
j +1 polymer such thaX > X. The finite range property d@&; implies that,(U)
only depends on the field ld and inB1-blocks touchindJ ; the appropriate choice
of N; is such thaK1(U) € N (U).

The representatiodd; = K; o |; is far from unique There are many choices of
K; andl; that satisfyZ; = K; ol;. Itis crucial to choose thk correctly to capture
the important directions, and t& such thakK;,; contracts compared #; in an
appropriate norm. The details of this are quite delicate [25, 37]. Thegeptation
Z; = K; o |; bridges between the representations asfiatve action, i.e., as an
exponential and as a polymer gas. It resembles the expressionK ; sufficiently
well to serve as a replacement, but gives at the same time the flexibility to measure
the non-locality of the error.

1.4.8 Conclusion

The renormalization group, in the sense sketched in the previous subsecto
provide a complete description of the evolution of a local perturbation ofus-Ga
sianfield,Z;.1 = E;;17Z;, induced by a finite range decomposition of its covariance

C=C+Co+---, (1.107)
in terms of tractable coordinates = (K}, V;) defining field functionalZ, (K;, V;)
such that, withV; = (g;, u;, z;),
Ej - EZo(Vo) = 2;(K;. V) = [ [ emssmmmamas, (1.108)
xX€eA

The coordinates; lie on the trajectory of a dynamical systebn
D;(K;,V)) = (Kjy1, Vjs). (1.109)

The long-time properties of the dynamical systéntan be used to establish
properties of the large distance behavior of the fields. For examplgjsfchosen
carefully, the flowV; converges to the fixed point O; this choice descritxétscal
models The phenomenol,; — O is calledinfrared asymptotic freedomThe
terminfrared means that it concerns the large distance (short “wavelength”) limit,
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1.4. The renormalization group

while freedomrefers to the fact that = 0 describes a free field. Together with
detailed estimates d;, guaranteeing that its contribution isfBaiently small, the
convergenc®/; — 0 can, for example, be used to prove that the critical model has
the same scaling limit as the perturbed Gaussian field (in an appropriatg. danse
addition, the trajectories @b close to the criticalp reveal information about the
approach of the critical point, again with appropriate (non-trivial) estimatethe
remainder park;.

In the next two chapters, two aspects of this program are studied in degail, th
decomposition of Gaussian fields and the analysis of a class of dynanstaisy
that arises in the renormalization group study of the weakly self-avoiditig va
mentioned, we provide some explicit details of the connection between tHisresu
of Chaptef 2 and Chapter 3 in Appendik A.
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Chapter 2

Decomposition of free fields

2.1 Introduction and main result

2.1.1 The Newtonian potential

Let us place the result of this chapter into context via an example. Cortkigler
Newtonian potential, the Green function of the Laplace operat@ogiven by

Ix|~@=2 (d > 3)

forall x e R4, x # 0. (2.1)
log1/Ix| (d=2)

q)(X) =Cy {

Ford > 3 andanymeasurable functiop : [0, o) — R such that?=3¢(t) is
integrable, the Newtonian potential can be written, up to a constant, as

x|~@-2) = f =2 o(Ix|/1) ? forall x e RY, x # 0. (2.2)
0

This is true because both sides are radially symmetric and homogeneouged de
—(d-2), where homogeneity of the right-hand side simply follows from the change
of variables formula. In particulag can be chosen smooth with compact support
and such thap(]x|) is a positive semi-definite function d. The last condition
means that(|x|) is positive as a quadratic form: for arfy e C°(R9), that is,

f : RY — R smooth with compact support,

@, (f. f) = fRd y e(Ix=yl/) f(x)f(y) dxdy = 0. (2.3)

Similarly, if d = 2, andy : [0, ) — R is any absolutely continuous function
with ¢(0) = 1 and such thap’ (t) is integrable, then

log 1/|x| = f (e(Ix]/t) = ¢(1/1)) ? forall x € R?, x # 0. (2.4)
0
Indeed, forx # 0,

10 1/1X| = (0) log 1/|x| = - fo ¢ (3)log 1/|x| ds

- [ve [ /Sm L as (2.5)
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2.1. Introduction and main result

and thus, since’ is integrable, by Fubini’s theorem,

[eS) t|x| oo
o= [ [e@asF - [Cewa-en o @

showing [(2.4) after the change of variabtes> 1/t. Now suppose again that

is chosen such thag(|x|) is a positive semi-definite function dk?. Then the
functionR? 3 x — ¢(|x|/t) — ¢(1/t) is positive as a quadratic form on the domain
of smooth and compactly supported functions with vanishing integral:

®,(f., 1) = fR X1 e O T0) Iy @)
=f (X yI/t) 1) F(y) dx dy > O
R2xR2

forall f € C°(R?) with [ f dx=0.

The above shows that the Newtonian potentials (2.1) can be decomposed into
integrals of compactly supported and positive semi-definite functions, withpghe
propriate restriction of the domain for= 2.

Let us recall at this point that the positivity of a quadratic form has the impor
tant implication that it entails the existence of a corresponding Gaussiaess;oc
discussed briefly in Sectian 2.1.4. However, it is also of interest in matheratica
physics for dfferent reasons [71].

2.1.2 Finite range decompositions of quadratic forms

It is an open problem to characterize the class of positive quadratic f@ms
D(S) x D(S) — R, that admit decompositions into integrals (or sums) of positive
guadratic forms of finite range: for afl, g € D(S),t > 0,

stho)= [ st ¢

S :D(S) x D(S) - R, (2.8)
S(f,f)>0,
S(f,g) =0 if d(supp(f),suppg)) > 6(t),

wheref : (0, ) — (0, =) is increasing and is a distance function. The condition

of finite range the last condition in[(2]8), generalizes the property of compact
support of the functiorp in (2.3) to quadratic forms that are not defined by a
convolution kernel. The diculty in decomposing quadratic forms in such a way
is to achieve the two conditions of positivity and finite range simultaneously. Note
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2.1. Introduction and main result

that by splitting up the integral, one can obtain a decomposition into a sum from
(2.8), and conversely, a decomposition into a sum can be written as anaintegr
(without regularity int).

For applications, not only the existence, but also the regularity of thentleco
position [2.8) is important. LetX, u) be a metric measure space, i.e., a locally
compact complete separable metric spXcwith a Radon measurg on X with
full support (i.e.,u is strictly positive),C.(X) the space of continuous functions
on X with compact support, and, (X) the space of bounded and continuous func-
tions onX. Let us say that the decomposition (2.8) is regul&@itX) N D(S) is
S-dense irD(S) and if everyS has a bounded continuous kersgk C, (X x X):

S(f.¢) = fst(x,y)f(x)g(y) du(x) du(y) forall f,g e C.(X) N D(S).

(2.9)
For the decompositions (2.2)), (2.4), the kernels are of course givermis taf
the smooth functio by the explicit formula

Bo(X,y) =t @ Dp(x - y|/t) forall x,y € R¢,t > 0. (2.10)

Note that ford = 2 the second term in_(2.4) could be omitted by [(2.7), with the
understanding that the quadratic form is restricted to functions with vagistin
tegral. It follows in particular that

16: (X, y)| < Ct™(@=2) uyniformly in all x, y € R, (2.11)

This reflects the decay of the Newtonian potential. Moreover, for all imsege
I, 1, > 0, the derivatives of the kerng} decay according to

IDL DLy gy (%, y)| < Gt~ @27l (2.12)

reflecting thai D' ®(x)| < C;|x|~(@=2-) for all x € R4, x # 0.

The main result of this chapter is a rather simple construction of decomposi-
tions [2.8) with estimates liké (2.11) for quadratic forms that arise by duality with
Dirichlet forms in a large class. We call such for@eeen formsmotivated by the
Newtonian potential, or Green function, that is a special case; this is egglain
Sectior 2.1.8.

The main idea of our method is that (2.8) can be achieved by applying formulae
like (2.2) to the spectral representation of the Green form, and then exglfiitite
propagation speed properties of appropriate wave flows. Theseeeadjzations
of the fact that ifu(t, x) is a solution to

d2u—Au=0, u(0,x)=ug(x), du(0,x) =0 (2.13)
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2.1. Introduction and main result

with compactly supported initial datg that then

supp((t,-)) < N (supp (o)) (2.14)

whereN, (U) = {x € X : d(x,U) <t} foranyU c X.

The idea of exploiting properties of the wave equation in the context ofgprob
bility theory is not new. For example, Varopoulos [112] used the finite ggapon
speed of the wave equation to obtain Gaussian bounds on the heatdegeeat
eral Markov chains, by decomposing it into an integral over compactipatgd
parts. Our objective is slightly fferent in that we are interested in the constraint
of positive definite decompositions.

Decompositions of singular functions into sums or integrals of smooth and
compactly supported functions have a history in analysis. For exampfier+e
man'’s celebrated proof of pointwise almost everywhere convergdrtloe Bourier
series [56] uses a decomposition gkbnR like (2.2), albeit without using positive
semi-definiteness. Hainzl and Seiringer/[71], motivated by applicationsaotgm
mechanics such as |57], decompose general radially symmetric funatibheut
assuming a priori that they are positive definite, into weighted integralstexer
functions These, likep(|X|) in (2.2), are positive semi-definite. They statdfisu
cient conditions for the weight to be non-negative, and thus obtain dexzitigns
like (2.2) for a class of radially symmetric potentials includirdg'*!/|x| on R3.
Special cases and similar results have also appeared in earlier wordtyaf #4]
and of Gneiting/[69, 70].

These results, likeé (2.2), make essential use of radial symmetry. One kexamp
of particular interest for probability theory—where radial symmetry is mag—
is the Green function of the discrete Laplace operator:

AzaU(X) = Z (u(x+e€) —u(x)) foranyu:z¢ - R, xezZ¢ (2.15)

ecZd:|e|1=1

Brydges, Guadagni, and Mitter [27] showed that also in this discrete tlase
corresponding Green function, or more generally the resolvent, adnétsoagbo-
sition like (2.8) into a sum (instead of an integral) of positive semi-definite lattice
functions with estimates analogousto (2.12). Brydges and Talarczyti$2e a
related construction which applies to quite general elliptic operators on dstnain
R4, but estimates on the kernels of this decomposition are only known when the
codficients are constant. Their construction was adapted by Adams, Koterky, a
Mdiller [4] to show that the Green functions of constantfGo&nt discrete ellip-

tic systems orz¢ admit decompositions with estimates analogous to (2.12) and
that the decomposition obtained this way is analytic as a function of the (ctnstan
codficients. These results are based on constructions that average Reissss.
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Our method, sketched earlier, idférent from that of [4, 21,27, 31] and yields
simpler proofs of their results about constantf&iceent elliptic operators—both in
discrete and continuous context. It furthermore naturally yields a decsitigoo
into an integral instead of a sum (with integrand smooth),imnd gives fective
estimates for decompositions of Green functions of variabléictnt operators.

2.1.3 Duality and spectral representation of the Green form

Let us now introduce the general set-up in which our result is framed prere
cisely. For motivation, we first return to the quadratic forms defined by thetdde
nian potentials(211):

(f,g) := fR yoa QXN TE020) dx . fgeD@)  (2.16)
where
_ > d
D(®) = CZ(RY) (d=3) (2.17)
D(®) = {f eCX(R?): [, f dx=0} (d=2).

These quadratic forms are not bounded.8(R¢), as is most apparent when= 2.
They are closely related to the Dirichlet forms given by

&(u,v) :=f Vu-Vvdx, u,veCZ(RY). (2.18)
R4

The correspondence between the twduslity. for all f € D(®),

Jo(f, f) = sup{fRd fu dx:ue C®(RY),E(U,u) < 1}. (2.19)

This set-up admits the following natural generalization: Lety) be a metric
measure space ahd(X) be the Hilbert space of equivalence classes of real-valued
squareu-integrable functions oiX with inner product @, v) = (u,v);2. Leté :
D(€) x D(&) — R be a closed positive quadratic form @A(X) with D(€) <
L2(X) a dense linear subspace. It is sometimes convenient to assurnt ithat
regular, i.e., thaC.(X) n D(€) is E-dense iND(E). Thaté is closed means that
D(&) is a Hilbert space with inner produéiu, v) + m?(u, v), . for anym? > 0.
For the example(2.18), the domain of the form closDi&) of C°(R9) is the
usual Sobolev spadé’(R¢) and (1, v) 1 = £(u, v) + (u, v); 2 is the usual Sobolev
inner product.

It follows [96] from closedness that is the quadratic form associated to a
unique self-adjoint operatdr : D(L) — L2(X),

E(u,v) =(u,Lv) forue D(E),v e D(L), (2.20)
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whereD(L) ¢ D(€) is a dense linear subspacelifi(X). The self-adjointness of

L gives rise to a spectral family and functional calculus. This means in plarticu
that for any Borel measurable : [0, ) — R, there is a self-adjoint operator,
denotedF (L) : D(F(L)) — L2(X), where

F(L) := fmFu) dpP;, (2.21)
0
D(F(L)) := {u e L%(X) : foo F(1)? d(u, Pyu) < oo} (2.22)
0

with P, the spectral family associated kg and (i, P,u) is the spectral measure
associated th. andu € L2(X). In these termsS has the representation

e = ILulz = [ AdwPuw). ueDE) =D, @223)
spec()

whereé (u, v) is defined by the polarization identity,uf+ v. Similarly, the corre-

sponding Green form can be defined by polarization and

O(f, f) = IL72 fll 200 =f 271 d(u, Pu), f e D(®) = D(L"2).

specl)
(2.24)
This representation will be our starting point for the decomposition of therGre
form. Before stating the result and its proof, let us sketch how the decsitigmo
problem arises in probability theory.

2.1.4 Gaussian fields and statistical mechanics

The linear spac® (&) is complete under the metric induced by the inner product
&(u,v) + m?(u,v),2 for anym? > 0, but it is generally not complete fon® = 0.
It may however be completed to a Hilbert space abstractly; we denote thigtHilbe
space by He, (-, -)¢). Similarly, we can complete the domay(®) to a Hilbert
space under the quadratic fordn this Hilbert space is denoted by, (-, o).
He andHg are dual in the following sense: The inner product can be restricted
to

(,):D(@) x D) =R, (f,uy=(f,u)=(L"2f,L2u) (2.25)

which extends to a bounded bilinear form Blg x He. L acts by definition iso-
metric fromD(€) to D(®), with respect to the norms éfs andHg, and it extends
to an isometric isometry frorkle to He. ThusHy is identified with the dual space
of H¢ naturally, via the extension of tHe? pairing (-, -).
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Remark2.1.1 To give some insight into the interpretation of the spadesand
He, let us mention howHe can be characterized in the case of the Newtonian
potential [40]:

He = {f : RY - R measurable :
there exists ad-Cauchy sequencg, € D(E) with f,, —» f a.e}/ ~;, (2.26)

where~, is the usual identification of functions that are equal almost everywhere
whend > 3. Ford = 2, ~4 in contrast identifies functions that mayfféir by a
constant almost everywhere. (It is therefore sometimes said that the ssafsske
field does not exist in two dimensions, but that its gradient does. The raassle
free field is the free field correspondingdoin the terminology explained below.)

To understand this distinction, take a smooth diithanction o1 onR?, e.g. with

91 = 1 onBy(0) andy; = 0 on By(0)°, sety,(X) = ¢i1(x/n), and note that
E(@n, en) = N42E(p1, ¢1). Thus, (o) is bounded inHg wheneverd < 2, and
then (by the Banach-Alaoglu theorem) thergis He such thatp,, — v weakly
along a subsequenceliy; however, — 1 pointwise, so that = 1 € He. Now
€(1,1) = 0 implies that the constant functions must be in the same equivalence
class as the zero function.

It is well-known that any separable real Hilbert spatt (-, )y) defines a
Gaussian process indexed by[105]. This is a probability space), P) and a
unitary mapf € H — (f, ¢) € L?(P) such that the random variablés, ¢) are
Gaussian with variancef( f)y. Note that(f, ¢) is merely a symbolic notation
for the random variable oh?(P) that corresponds té € H. It cannot in gen-
eral be interpreted as the pairing 6fe H with a random element(w) € H
defined forw € Q; see e.qg. [101]. In particular, itH, (-, -)g) is the Hilbert space
(Ho, (-, -)m,). this process is called tHeee fieldor theGaussian free fieldcorre-
sponding to Dirichlet forn€ or Green functionb).

This is a generalization of the context introduced in Section1.3.2 wkésea
countable set anél, € H, (x € X) so that the fields, = (6, #) has a pointwise
interpretation.

2.1.5 Main result

Let (X, u) be ametric measure space. In addition, supposelthatx X — [0, o]
is an extended pseudometric #n (Extendedmeans thatl(x, y) may be infinite
andpseudathatd(x, y) = O for x # y is allowed. Examplé 2.1.4 below gives an
example of interest wheris not the metric oiX.)

Let & : D(&) x D(&) — R be a regular closed symmetric form @s3(X)
as in Section 2.113 and denote by: D(L) — L?(X) its self-adjoint generator.
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Theorem 2.1]2 assumes that, (4, d, €) satisfies one of the following twiéinite
propagation speedonditions that we now introduce: Fgr> 0, B > 0, and an
increasing functio : (0, o) — (0, o), let us say thatX, u, d, £) satisfies[P, ¢)

respectively if:
supp(cos(%yt)u) C Ny (supp@)) forallue C.(X),t >0, (Py.0)
respectively

€(u,u) < Bllullzx) forallue L3(X),

n (Pg,B)
suppl"u) € Ny (supp)) forallue C.(X),neN,

where as beforél; (U) = {x € X : d(x,U) <t} foranyU c X. The left-hand side
of is defined in terms of functional calculus for the self-adjoint operator
Note that ifL = —Azs = — ¥4 02 is the standard Laplace operatorRsf,
thenu(t, x) = [cos(L%t)uo](x) is a solution to the standard wave equation (2.13),
and the conditionR, ¢) with y = 1 andé(t) = t is the finite propagation speed
property (2.14). The property holds for more general elliptic operatodsellip-
tic systems (not necessarily of second order), however; see Exanpleb2low.
Similarly, if L = —Aya is the discrete Laplace operator (2.15), t@ holds
with B = 2d andd(n) = n, sinceLu(x) only depends oni(y) whenx andy are

nearest neighbors. As for the prope(®y ), the condition ©,.5) remains true for
more general discrete Dirichlet forms; see Examples 2.1.4+2.1.5.

Letus introduce a further condition: The heat kernel bolkig {) holds when
the heat semigroupe(’%),.o has continuous kerne[s for all t > 0 and there is
a > 0 and a bounded functian : X — R, such that

Py (X, X) < w(X)t™¥/2 forall x € X. (He.w)

Criteria for are classic; see e.q. |91] for second-order elliptic operators and
also the discussion in the examples below.

Theorem 2.1.2. Suppos€ X, u, d, €) satisfies(P, ¢)) or (E;’B'. Then the corre-
sponding Green fornf2.24)admits a finite range decompositi@.8) with S= ®
and S = @, such that theb, are bounded quadratic forms with

|©,(f,8)] < Cy st fll2x)lgllzxy forall f,g e L2(X). (2.27)

Moreover,(H, ) implies that theD, have continuous kerneis that satisfy
161 (%, )1 < Cay V()72 (2.28)
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2.1.6 Examples

Example2.1.3 (Elliptic operators with constant dieients) Leta = (a;;)1<i,j<a
be a strictly positive definite matrix iR?*< and

tawn = [

(D)3 (Dr()) dx.  uveCI®EY).  (229)

ij=1vEk
d
eaun)= 30 ) (Vut)ay (V). uveCe(zd).  (230)
i’j:l.XEZd
whereD;u(x) is the partial derivative afi(x) in directioni = 1,...,d,

Viu(x) = u(x + &) — u(x) (2.31)

with e; the unit vector in the positiveth direction, andC.(Z¢) is the space of
functionsu : Z¢ — R with finite support. Fom? > 0, further set

Eam2(U,v) = E(U,v) + P f u(x)v(x) dx (2.32)
R4

and define;, - analogously. Assume that the eigenvalues afe contained in
the interval B2, B2], and in the discrete case also that e [0, M?] for some
B2, B2, M2 > 0; these assumptions are only important for uniformity in the con-
stants below.

In the continuous context, let be the Euclidean distance ot = R? and
be the Lebesgue measure. It follows thAt g, d, &) satisfies with y = 1,
0(t) = B,t; see Example 2.1.4 for more details. In the discrete context| bet
the infinity distance oiX = 24, i.e.,d(X,y) = max-1.. 4 |X; — yi|, andu be the
counting measure. The holds withB = B, + M2 andéd(n) = n.

Theorem 2.1.2 implies that the Green functions associatéd te and¢ -
admit finite range decompositions. We denote their kernels, by, y; a, n?) and
¢r (X, y;a,m?). In addition to [[2.2B), it is not diicult to obtain estimates on the
decay of the derivatives af, and ¢}, like (2.12), in this situation of constant
codficients. Since these estimates are of interest for applications, we provide the
details in Sectioh 2.312 (in a slightly more general context). We show that theere a
constant<; x > 0 depending only oB_ andB., and in the discrete case also on
M., such that

DL Dl DYy Dl gy (x, y; @, mP)| < €t =727 02l (1 4 n?t2) 7k (2.33)
and

Dl DIn? Wy Vi g7 (x, .t 8, MP)| < C it~ (@Dl =l 2l (1 4 n22) =k (2.34)
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for all integerd, 1,,,2, | «, |, andk such that
[,.2 < %(d+|x+ly), (2.35)

and that the following approximation result holds: There is 0 such that

ViV o7 (%, y;a,m?) = ¢! ?Dlx Dl ¢, (cx, cy; &, c2m?)
+O(t~@=2L=L=11 4 p?t?) =Ky (2.36)

This reproduces and generalizes many results of [4, 27]. More ptgcige
verify that there exists a smooth function R¢ x[B?, B2] x[0, c0) — R supported
in |X| < B, such that

é: (X, y;a,m?) = t‘(d‘2)¢_(¥; a, mztz) (2.37)

which has the same structure s (2.10) wh&n= 0; this is scale invariance.
Moreover, by[(2.36), the discrete Green function has a scaling limit andrtbe
is of the order of the rescaled lattice spac@~1). This result improves; [31].

Example2.1.4 (Elliptic operators and systems with variablefiorents) Let M €
Nanda; : RY —» RM*M i j = 1,...,d, be the smooth cdicients of a uni-
formly elliptic system (or in particular, iM = 1, of a uniformly elliptic operator):

M d
B2I£P < Y > all()ekel < B2gP forallé e R xeRY,  (2.38)
Ki=1i,j=1
with B_, B, > 0. Let us writeu = (u',...,uM) e R™ with u* € R?, | =

1,...,M. Let

d
&(u,v) = Z f (DU (x)aff (x)(D;u’ (x)) dx, u,veC® (R, RM)
ij=1YRY
(2.39)
and analogously in the discrete case (a5in (2.29),1(2.30)).

To apply Theorern 2,112 X u, d) is defined byX = R? x {1,..., M}, uis the
product of the Lebesgue measureRshand the counting measure ¢h ..., M},
and the distance is given @((x,1), (y,])) = d(x,y). In particular,d is only a
pseudometric 0. We may use the identification af: R4 - R™ andu: X - R
by u(x,i) = u’(x).

It suffices to verify the conditionRy g,,) for smooth, compactly supported
uo : R — RM. For such aug, set, by using spectral theory for self-adjoint
operators:

u(t) := cos(L + m?)2t)uo. (2.40)
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Then, sinceaug is smoothu(t, X) : R x R¢ — RM is smooth jointly in ¢, x), and
d2u+Lu+mPu=0, 4u(0)=0, u(0)=ug (2.41)

holds in the classical sense.M = 1, m? = 0, anda is thed x d identity matrix,
(P1.;) is the finite propagation speed of the wave equation.

Similarly, in the general situation, the proper#; (. ;) can be deduced from
the finite propagation speed of first order hyperbolic systems. This iskweiim,
but the explicit reduction for the case bf (2.41) with(2.39) i&dilt is to find in the
literature. Let us therefore sketch how to convert (2.41) to a hyperbgdiem for
readers interested in this case. For example, one can defiRex RY — R(@+2M

by:

d M
Vs = g,uf, vk = Z Z aflou, v =muk, (2.42)
j=11=1
wherei = {1,...,d}andk € {1, ..., M}. It follows thatv satisfies

So,v+ » Ajdyv+Bv=0, v(0)=(0,(aDup)’,...,(aDug)?, mug) (2.43)

d
1

J
whereS, A ;, B : R? — RA+2AMx(d+2M gre defined as the block matrices

vxm Oamixm Omxm Oix1 Ogxz m
S=|0umxam al  Omxam|, B=|01xd Ouxa Oixa|®lprxm,
Omxm Oamxm  Imxm -m  Ogx1 O1x1

(2.44)
and
0 -6y -+ —6ai O
—01; o ... 0O O
A=| : : : ol®lyxm, 1=1,...,d (2.45)
-0q; 0O ... 0O O
0 o - 0O O

It is immediate that this system is symmetric uniformly hyperbolic, by the sym-
metry and uniform ellipticity of the matrig. The property P z,,;) now follows
from the finite propagation speed of linear hyperbolic systems; see ¢84][7

Nash showeo [91] thatH; ,) holds whenM = 1. In [77,81], conditions are
given for (Hs,.,) to hold whenM > 1. In particular, this includes the constant
codficient case. The latter case can be treated by using the Fourier transéam;
Sectior 2.3.2.

49



2.1. Introduction and main result

Example2.1.5 (Random walk on graphslet (X, E) be a (locally finite) graph,
with vertex setX and edge seE c P,(X), whereX is a countable (or finite) set
and P,(X) are the subsets of with two elements. Let : X x X — [0, o] be
the graph distance orX( E), i.e.,d(X, y) is the (unweighted) length of the shortest
path fromx to y.

Suppose that edge weights, = u,, > 0, X,y € X are given. These induce a
natural measure, also denotedon X by:

Ux = Z My, H(A) = Z uy forall Ac X. (2.46)
yeX xXeA

The associated Dirichlet form is

EUU) =3 > i (U() —u(y))? forallue D(E) = L?() (2.47)
xyeE

and its generator is given by

Lu(x) = u;t Z My (U(X)—u(y)) forall finitely supporteds : X — R. (2.48)
yeX

L is called theprobabilistic Laplace operatoassociated to the simple random walk
on the weighted graphX(, ) with transition probabilitieg:,, /u.. Let us remark
that a probabilistic interpretation (or a maximum principle) does not hold inrgeéne
for Examples$ 2.113-2.1.4 (whenis non-diagonal or vector-valued).

The Dirichlet form [2.47) is bounded drf () with operator norm 2 so that the
property holds withd(n) = nandB = 2, and Theorern 2.1.2 is applicable.

For applications, it is often useful to add a killing rate to the random walk: The
probabilistic Green density with killing ratec (0, 1) is defined by:

G(x.y) = Z PO IKT = (kL + (L= ) 7Hxy) = (L) THx,y)  (2.49)

n>0

wherep”(x, y) is the kernel of the operatd®” on L?(x). Note that[(2.49) only
converges fok = 0 when the random walk is transient, but that! still makes
sense as a quadratic form on its appropriate domain when the random wedk is
current, as in[(2.16)[ (2.17) fa = 2. Note further that spet() ¢ [0, 2] for all
k € [0, 1], so that Theorem 2.1.2 is applicable uniformlyir [0, 1].

Closely related to the killed Green functi@ is the resolvent kernel df. The
resolvent ofL is defined orL?(u) by G,,2 = (L + m?)~1 for m? > 0. It is related
to the killed Green density by:

G* = kG- k- (2.50)
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One diference compared with the killed Green function is thatn? is not bound-
ed uniformly inm? > 0. To achieve the condltlor- for fixedB > 0, itis
therefore necessary to restrictrté < M? with M2 = B —

Remark2.1.6 Other examples which Theorém 2J1.2 is appllcable to include Dir-
ichlet spaces that satisfy a Daviesfibay estimate [103] such as weighted mani-
folds and quadratic forms corresponding to powers of elliptic operatarafik

2.1.7 Remarks

Remark2.1.7. Theoreni 2.1.)2 also gives the decomposition into sums as in/[4, 21,
27]: Suppose that the assumptions of Thedrem2.1.2 are satisfied mmotational
simplicity, that the resulting decomposition has a kernel. Then, folasyl,

O(x,y) = > Cj(x,y) forallx,yeXx X (2.51)
JEZ

where the function€; : X x X — [0, ), j € Z are given by

L.l

Ci(x,y) = s (X, y) — forall x,y € X. (2.52)
Li-1
They satisfy the following properties:
C; is the kernel of a positive semi-definite form (2.53)
Ci(x,y) =0 forallx,y e Xwithd(x,y) > L/, (2.54)

and, if holds,
L-@-20-D (g > 2)
ICj (X, )| < Co(X, ) { L@ (@ < 2) (2.55)
log(L) (@ =2)
with ¢, (X, y) is independent of. Thus, C;);cz is a finite range decomposition

into discrete scales of the Green functidn Similarly, gradient estimates such as
(2.33), (2.34),[(2.36) in Example 2.1.3 have obvious discrete versions.

Remark2.1.8 More generally than in Theorem 2.1..2, we may considanaly of
symmetric forms, £*),cy, whereY is a domain in a Banach space, with generators
L¢. Let us assume that* is smooth ins, in the following sense: There exists a
projection-valued measufeon a measurable spabkand a functio’/ : M xY —

(0, ), smooth inY, such that

F(L*%) :f . F(1) dP} = L F(V(s, 1)) dP;. (2.56)
specls
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2.2. Proof of main result

An example of this condition ig*(f, f) = E(f, f) + s(f, f) so thatV(s, 1) =
A+ sand L*)!is the resolvent oL; similarly, the killed Green function of
Example[ 2.1.6 can be expressed in this way. Then the family of kesrieis
continuous irs, and if holds fors = 0, andV (4, s) > z%(S)V (4, 0)+n7(s),
then

167 (% )| < Cayi (N () (2(8)t) =27 (1 + tm(s)) . (2.57)
This can be verified by a straightforward adaption of the proof of Téwadz.1.2.

2.2 Proof of main result

2.2.1 Spectral decomposition

The starting point for the proof is the spectral representation of thenGoeen
(2.24):
O(f, f) =f A7Ld(f,P,f) forall f € D(®), (2.58)
specl)

where f € D(®) implies that the integral can be restricted to spgc(0. The
main result follows by decomposition of the functian?® : spec() \ 0 — R,.
Different decompositions are needed under the two condi(. The
main idea of the proof is that decompositions with good properties exist. bk re
that we prove after using it to deduce Theofem 2.1.2 is summarized in theifuglow
lemma.

Lemma 2.2.1(Spectral decompositionSuppose that L satisfi¢B, ¢) or (Po.5);

in the second case, we assume that 1. Then there exists a smooth family of
functions W € C*(R), t > 0, such that for alll € spec{) \ 0,t > 0, and all
integers I,

-1 _ o % g
A _fo trW, (1) o (2.59)
W, (1) >0, (2.60)
(1+t7 )W, (1) < C,, (2.61)
and that for all ue C. (X),
suppW; (L)u) € No()(supp()). (2.62)
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2.2. Proof of main result

Remark2.2.2 More precisely, we will give explicit formulae fal, that imply

(1+t22) ™ W, (1)

am
_ < .
| W) < Crm (2.63)

for all mandl, improving [2.61). This improvement is used in Secfion 2.3.2.
Proof of Theorerh 2,112t follows from (2.59) that, for anyf € D(®),

< 2 dt
(D(f’f):fspecu (fo YW, (1) T) d(f, P, f) (2.64)

2 dt
_fo 2 (fspecmw,u) d(f,P,lf)) .
=f w2

0 t

The exchange of the order of the two integrals in the equation above is justi-
fied by non-negativity of the integrand, by (2.60). The latter also implies that
(f,W,;(L)f) > 0 forall f € L?(X). The polarization identity allows to recover
o(f,g) forall f,g € D(®). Finally, (2.62) completes the verification 6f (2.8) for
@, defined by

2
O, (f,8) =t (f, W, (L)g). (2.65)
It remains to prove thalH, ) implies [2.28). The semigroup property and the
continuity ofp; imply thatp, € C, (X, L?(X)) with
1P (. lzzgny = [ X IPX) ci) = pa(x . (266)

P (X, ) = Pe (v, Illzzexy = Par (X, X) + P2 (v, ¥) — 2p2:(X, y) > 0 asx — y.
(2.67)

This implies thae=*L : L2(X) — C,(X) is a bounded linear operat@ - f (x) =
(p: (x,-), f)). Duality then also implies continuity af L : C,(X)* — L?(X)
(with respect to the strong topology @), (X)*). Let M(X) < C,(X)* be the

space of signed finite Radon measuresXoaquipped with the weak-* topology.
Letm; € M(X) with m; — 0. Then:

ue-fLml-uLZ(X):( [ ( [ pten dm-(y))z dIJ(X)]%

=( [ [eoope dm-(y)dm-(Z))%—>0 (2.68)
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2.2. Proof of main result

which means tha¢~% : M(X) — L?(X) is continuous (becaus¥ is separable
and therefore the weak-* topology &f (X) is metrizable). This implies that (£
t?7L)~L : M(X) — L?(X) is likewise continuous for all > /4. To see this, we
use the relation

(L+t27 ) =)t f e sd 1517 gg (2.69)
0

which holds by the change of variables formula and the definition of Euartama
function. The spectral theorem thus implies that, for aryL?(X),

1L+ 277 L) Ul 2y < T() 7 f e ey py ds (2.70)
0

Sincey has full supportL.2(X) N M(X) is dense irM (X) (whereL? (X) is always
with respect tqu), and the claimed continuity of @ t%”L)~! : M(X) — L2(X)
follows from (2.68). In particular, the pointwise bound fpr implies that for
| > a/4,

1L+ 27 L) 6l 2 < TU) 7 f e e LS |l o) ds (2.72)
0

< T() o ()t fm e g~/ ds
0
- CYa (/2.

Let x, (1) = W, (1)Y2. Then [2.61) and the spectral theorem also imply that
e (L) (L + L) 20— 12x) = SUPK () (L +127 ) < Gy (2.72)
>0

uniformly int > 0. It follows from {2.71) thak, (L) : M(X) — L2(X) with

ke (L)Sxll2 < Clw(X)t=2/% . (2.73)
Finally, by the Cauchy-Schwarz inequality,

160 (X, ) = %7 (k, (L) Sy, k¢ (L)6x) <t Nl (L) Nl 2y ke (L) Sicll 2

(2.74)
which, with (2.738), proves (2.28). The continuity@fis implied by the continuity
of k,(L) : M(X) = L%(X) and ofé, in x € X (in the weak-* topology). O

Remark2.2.3 The decay fop* claimed in[(2.577) can be obtained by a straightfor-
ward generalization of the above argument, replac¢ing (2.69) by

(1+t2/722/1 +t2/7m2)—l — F(I)_lfoo e_sSl_le—sz?/ymZe_sZZtZ/v/l ds. (275)
0
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Remark2.2.4 Furthermore, byl (2.61), the operatdks(L) are smoothing fot >
0, in the general sense that, for any O,

W, (L) : L2(X) = C®(L), whereC®(L) := ﬁ D(L") c LX)  (2.76)
n=0

is the set ofc*°-vectors forl; see |95]. Standard elliptic regularity estimates imply
e.g. thatC® (L) = C=(X) whenE is the quadratic form associated to an elliptic
operator with smooth cdicients.

2.2.2 Proof of Lemmd 2.2.1

To complete the proof of Theorem 2.1.2, it remains to demonstrate Lémma 2.2.1.
We first prove it under conditiofF, ) in Lemma2.2.5 below; this proof is quite
straightforward using the assumption andl(2.2). Then we prove Lémma 2tBel in
situation of condition in Lemmd 2.2.7; here additional ideas are required.

To fix conventions, let us define the Fourier transform of an integraipletion
¢:R—> Rby

G(k) = (2r) 1 f o(x)e** dx forallk e R. (2.77)
R

Lemma 2.2.5(Lemma2.2.1 unde[R, 4)). Foranyy : R — [0, o) such thatp is
smooth and symmetric wigupp{) < [-1, 1], and for anyy > O, thereisC> 0
such that .

W, (1) := Cp(127t) (2.78)

satisfieq2.59) (2.60) (2.61) and also(2.63) forall 4 > 0,t > 0; and if
holds, then(W,) also satisfie§2.62)

Remark2.2.6 It is not difficult to see that such exist. For example, ik is a
smooth real-valued function with support in§, 1], theny = |«|? satisfies the
assumptions. For simplicity, let us assume sometimes in the followinggtieat
chosen such tha@ = 1 when Lemma 2.2l1 is applied.

Proof. Note that for anyp : [0, ) — R with tg(t) integrable, there i€ > 0 such
that

1= cf tr o(1371) ? forall A > 0. (2.79)
0

This simply follows (as in[(2]2)) because the right-hand side is homogeneous
in 1 of degree—1, which is immediate by rescaling of the integration variable.
This shows[(2.59);(2.60) is obvious by assumption; and (2.61) follonse h
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is smooth. The improved estimafe (2.63) follows from the chain rule (or Faa di
Bruno’s formula) and

m

<Cy.m 2.80
s <G (2.80)

for non-negative integers, using that supp{)"c [-1, 1] implies thaty is smooth.
Moreover, since supp( c [-1, 1], and sincep is smooth,

1 1
AT 7Y

W, (L)u = Cfl @(s) cosa_%Vts)u ds forallue L?(X), (2.81)
-1

where the integral is the Riemann integral, i.e., the strong limit of its Riemann sums
(with values inL?). Therefore[(Z.622) follows fromiR, o). O

The previous proof makes essential use of the finite propagation sp#eel o
wave equation[, ) to prove {(2.62). This property fails for discrete Dirichlet
forms such ad (2.30) where we instead know the prop that polynomials
of degreen of the generator have finite rangén).

This leads to the following problem. Find polynomi&&‘, t > 0O, of degree
at mostt satisfying the propertie$ (2.60), (2161), (2.63) such that the decomposi-
tion formula [2.59) for 11 holds. In the proof of Lemma_2.2.5, the verification
of (2.61) (and[(2.63)) and of the decomposition form{la (2.59) are dirkakgd
to the “ballistic” scaling of the wave equatiolV, (1) = W;(At?). To construct
polynomials satisfying such “ballistic” estimates, we are led by the following re-
markable discovery of Carne [39]: The Chebyshev polynoniigl& € Z, defined
by

Tr () = coskarccos)) forallge[-1,1],k e Z, (2.82)

are solutions to the discrete (in space and time) wave equation in the following
sense: Lev,f(n) = f(n+1) - f(n)andV_f(n) = f(n- 1) - f(n) be the
discrete (forward and backward) timeférences. Then, as polynomialsin

V_V.T,(X) = VoV_T,(X) = 2(X = )T (X). (2.83)

In particular, when 2X — 1) = —L or equivalentlyX = 1 — %L, thenv(n, x) =
[T.(1 - %L)u](x) solves the following “Cauchy problem” for the discrete wave
equation:

-V.Vv+Lv=0, v(0)=u,(Vov-V_v)(0)=0. (2.84)

The analogy between the discrete- and the continuous-time wave equati@as is
that between the discrete- and the continuous-time random walk. It tutnisadu
the structure of Chebyshev polynomials allows to prove the following lemma.
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Lemma 2.2.7(Lemmal2.2.11 undefRj ;). Lety : R — [0, o) satisfy the as-
sumptions of Lemma 2.2.5. Theri W0, 4] — [0, ), defined by

W () = Z p(arccos(1- %/l)t —2nnt) forall 2 €[0,4],t >0, (2.85)
nez
is the restriction of a polynomial in of degree at most t tf), 4], with cogficients

smooth in t, and, for any > 0, (2.59) (2.60) (2.61) (2.62) and (2.63)hold for
all 1€ (0,4-¢],t>0.

Proof. The proof verifies thatV;* as defined in[(2.85) has the asserted properties.
Let
¢ (X) = Z @(xt — 27nt) = Z t~15(k/t) coskX) (2.86)
nez keZ
where the second equality follows by symmetrypfthie change of variables for-
mula, and a version of the Poisson summation formula which is easily verified, fo
suficiently nicep. Then the claim[(2.59) can be expressed as

A1 = f t?p; (arccos(1- 3)) ? forall A € (0, 4]. (2.87)
0

Letx = arccos(} 31) or equivalentlyd = 2(1-cosx) = 4sir?(3x). In terms
of this change of variables, (2/87) and thus the claim (2.85) are thewvadeyti to

%sin‘z(%x):f t2¢;‘(x)$ for all x € (O, x]. (2.88)
0

The left-hand side defines a meromorphic function®with poles at ZZ. Its
development into partial fractions is (see e.g. [5, page 204])

3sin2(3x) = > (x-2mn)~2 forallx e C\ 21Z. (2.89)
nez
It follows, by (2.79) withy = 1 and = (x — 2zn)?, assumingC = 1, that
1sin?(3x) = Z f t2p((x — 27n)t) ? for all x € (0, x]. (2.90)
nez 0

The order of the sum and the integral can be exchanged, by notivitygaf the
integrand, thus showin@ (2.88) and therefare (2.59).
To verify thatW;* is the restriction of a polynomial, we note that by (2.85),

(2.86), and supp{)"c [-1, 1],
W;"(2) = ¢} (arccos(1- 31)) = Z t15(k/t) coskarccos(- 1)) (2.91)
keZ
= > tTRRkMT(L-32)
keZn[—t,t]
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whereT,, k € Z, are the Chebyshev polynomials defined [by (2.82). This shows
thatW;" () is indeed the restriction of a polynomial inof degree at mostto the
interval 1 € [0, 4]. In particular, [(2.62) is a trivial consequence which
states that polynomials ib of degreen have range at most(n).

Finally, we verify the estimaté (2.63) and thus in particular (2.61). To this end,
we note that, in analogy t6 (2.80), fare [0, 4 — £] and non-negative integers,

m

1
/lm__
(9/1

arccos(1- 32)| < Cy . (2.92)
For example, fom=1,

% arccos(l- 1) =1(1- 1493 <£73177 forae[0,4-¢]. (2.93)
Therefore[(2.63) follows, by the chain rule (or Faa di Bruno’s formftam

(L +t%(1 - cos))/'t™™ ‘:Tn:ngof (X)

<Cim (2.94)

which we will now show. The argument is essentially a discrete version of the
classic fact that the Fourier transform acts continuously on the Scheate of
smooth and rapidly decaying functions RnTo show[(2.94), first note that

(1_ COS(X))eikx — gikx _ %ei(k+1)x _ %ei(k—l)x = Akeikx (295)
and thus by induction, for anlye N,

(1 -cosk))' e** = (1 - cos)) 1A e**
= Ar(1 - cos(x)) te’** = Al &%~ (2.96)

It follows by (2.86) and summation by parts that

(1+t%(1- cos@))’t‘m%sa:‘(x) = > TRk k)™ (L + AL €]

keZ
(2.97)
= > 1@+ PA) T G (k1) ik /)" ek,
keZ
Leth(s) = 2(|s| — 1)1j5<1 for s € R. Then, for any smootti : R — R,
Al f(K) = (h* = D*" f)(K), (2.98)
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wherex denotes convolution of two functions & h** = h= hx*---x h, andD f
is the derivative off . Indeed,

1
Akf(k):—%fo [Df(k+t) — Df(k —t)] dt

1 t
:—%foszf(k+s)dsdt
-t

= f D2f(s)h(s - k) ds= (h* D?f)(k), (2.99)
R
and [2.98) then follows by induction:
ALf = A(h*™ « D?'f) = hx D?(h*" « D*'f) = h« h*" « D?D?'f. (2.100)

It then follows using the facts that, . |h*"(k — s)| < C,, uniformly ins € R,
and thatyis smooth and of rapid decay,

t! Z |(1 +t2A2) [ p(k/t) (ik/t)™] (2.101)
keZ

= ZZ: Cl,nt_l
n=0

[
-1 2n \m » d
snzzocl,nt fR D ()" &)](s/t)| ds

>, [ = 9112 ()" dlcsr) ds

keZ

1
= nzzocl,n L D2 ()" )](s)| ds < Co

and thus([(2.94), and therefofe (2.63), follow from this inequality and/{2.9 o

Proof of Lemma2.2l1Lemmad2.2.11 undefR, ¢) is an immediate consequence of
Lemmd& 2.2.5; unde, it follows from Lemmd 2.2.J7 with appropriate rescal-
ing to achievel < 3, i.e., by settingV; (1) = c~*W;(c) for somec > 0. O

2.3 Extensions

2.3.1 Discrete approximation

In view of the discussion about Chebyshev polynomials before Lemmad 2.2.7,

is not surprising that the function&/;* of Lemmal2.2.l7 approximate th&/, of
Lemmd2.2.b. In Proposition 2.3.1 below, we show that this is indeed the case with
natural errolO(t~1) ast — co. This result is used in Sectién 2.B.2 to prove (2.36).
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Proposition 2.3.1(Discrete approximation)Lety be asin Lemma2.2.5 ahd 2.2.7,
with associated functions Mand W' for vy = 1. Then, for any integer |,

W (1) =W, ()] < G (Avit)t@a+t22)~! forall 1 €]0,4]. (2.102)

In particular, W* (1/t2) — Cy(12) ast— .

Proof. Note that it stfices to restrict ta > 1, since fort < 1, the claim follows
from (2.61). The left-hand side df (2.1102) is then proportional to thelabsvalue
of

p(arccos(1- %/l)t) - cp(/l%t) + Z p(arccos(1- %ﬂ)t +27nt).  (2.103)
nez\{0}
We estimate the dlierence of the first two terms in (2.103) and the sum separately,
and show that each of them satisfies (21102). The first two terms cantbevas

p(arccos(l- 1)) — p(17t) = (arccos(i- 1) — A2)t, (1) (2.104)

with L
4() = f ¢’ (sarccos(l- SA)t + (1 - 5)A3t) ds. (2.105)
The bounds ’
V21 = arccos(- 1) + O(1) asA — O+, (2.106)
V21 < arccos(I- 1) < V22 forall 1 €0, 2], (2.107)
and the rapid decay @ therefore imply that
14 ()] < C(1+ at?) ™! (2.108)
and
p(arccos(l- J)t) — p(7t) < Ct L (L +t22) 7, (2.109)

To estimate the sum i (2.703), we can use the rapid decayvath the in-
equalityx + y > 2(xy)/? to obtain that

DL e(xt+2mt) <C Y (L+xt+2mmnt)! (2.110)
nez\{0} nezZ\{0}
< C(1+ xt)~H/?%7t/2? Z N2 < (1 + xt)~1/2t~1/2

n>0

for anyl > 2, with the constant changing from line to line. In particular, upon
substitutingx = arccos(1- %/l), this bound and (2.107) imply

¢(arccos(1- 1)t + 27nt) < Gt~ % (1 +t22) . (2.111)
nezZ\{0}

The claim then follows by adding (2.109) and (2.111). m]
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2.3.2 Estimates for systems with constant cflécients

In this section, we verify the assertions of Exaniple 2.1.3. We work in the slightly
more general context of second-order elliptic systems (instead oftop®ravith
constant coficients. These are defined as in Example 2.1.4, and we now show that
claims of Examplé 2.113 hold mutadis mutandis. The analysis is straightforward,
with aid of the Fourier transform. It reproduces several results Sfl[4 Note that

by writing L = 4[%L]~* and considering’ L instead ofL, we may assume that

the codficients,a, are bounded such th holds withB = 3 (for example).

Spectral measures

The spectral measures corresponding to the vector-valued cas@9f §2e given
in terms of the Fourier transform as follows. Her. [0, ) — R,

d
b FLw = ) [, [Z aijfifjJ
iJ ki

TR (&) de (2.112)

k,1=1 j=1
whereu' = (0%, ...,0™) is the Fourier transform af = (ul, ..., u™), separately
for each component,
d
a() = ) &&= [Z ajj &ié ] (2.113)
i,j=1 i,j=1 k.i=1,...M

are symmetric positive definitel x M matrices, for al¢ € R4, and the matrices
F(a(¢)) are defined in terms of the spectral decompositioa(@). Similarly, for
the (vector-valued case of the) discrete Dirichlet form (2.30),

d
(v. F(L)u) = Z f " [ (Zau(l—efff)(l—e-fff)” 5k ()0 (¢) de
kl

k=1 i,j=1
(2.114)
where herai s the component-wise discrete Fourier transform. Let us also write

d d
a'(¢) = ), ay(1-€4)(1-e74) = [Z afl(1-e4)(1- e‘i‘fj)]

i,j=1 J=1

We will often use, without mentioning this further, that the spectra@f) and
a*(¢) are bounded from above and from below|bjf.
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Estimates

Let us introduce the following notation for derivatives: For a functionR¢ —
R, we regard thdth derivative, D'u(x), as anl-linear form, and/D’u(x)| is a
norm of the formD’u(x). In terms of the Fourier transform, we denoteD{(¢)
the corresponding “multiplier” operator from functionsltinear forms, and by
ID!(£)| its norm. Similarly, for a discrete function : Z¢ — R, thelth order
discrete diference inpositive coordinate directiors denoted byv!u(x) and has
Fourier multiplierV’ (). In particular, when = 1,

D(&) = (iéa,....i€1), V(&)= (641-1,..., eéa_1). (2.116)

Furthermore k and p will denote integers that may be chosen arbitrarily, &d
constants that can change from instance to instance and may depkradp, as
well asl = (I, 1y,14,1,2), By, B_, andM,, but not onx, £, andm.

Proof of (2.37)(2.33)(2.34) It follows by the change of variables— t&, from
the fact thaw(¢) is homogeneous of degree 2, and frédw(1) = Wy (At?) that

b (X, y;a,m?) =t? f W, (a(€) + mP)e )¢ dg (2.117)
]Rd
Y fas ; Y. a, mt?)
with
d(x;a,m?) = f Wi (a(é) + mP)ef =3¢ dg (2.118)
Rd

which is supported inx| < B,. This verifies [(2.37). Furthermore, (2133) is a
straightforward consequence of (2.117) bffetientiation and (2.63). Let us omit
the details and only verify them explicitly in the discrete case {2.34): Thévéder
tives of the) decomposition kerng} can here be expressed as

Dl D Vil 7 (X, y; @, mP) = t~ @727 hemhw2ln2 g (x — yia ) (2.119)
with
¢y (X @, mP) = tdHletly=2m? f[ e Dl Dl Wy (8" (£) + M)V Vv e € de.
) (2.120)
Thus [2.68)|V(¢)| < CI¢|, andy - a*(£)n = CI¢|?In|? for n € RM imply

|¢_f-1(X; a,m?)| < Cf (1 + Cl&[42 + mPt2) k=P (&))< Hy —2m? td g
' [~7.7]
(2.121)
< C(1+mPt?)~k f (1+ ClE[) P ||+ =2m? g
Rd
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2.3. Extensions

and therefore that the integral convergeé@ﬂ + 1 +1y) > |,,2 andpis chosen
suficiently large. It follows that

67, (x; &, m?)| < C(1+ mPt?)~* (2.122)
verifying the claim. O

Proof of (2.36)

Vw4 ) - D Db gy = € [

[—71',71']

W (@' (£) ¥ T e ) g
d
(2.123)
—t? f W, (a(&)) D> Dl €2 ge.
Rd
To simplify notation, we will writeD! = DxDb = Bl @ Db if | = (I.1,),

and similarly forV. Then the dference((2.123) may be estimated as follows.
Propositiori 2.3/1 implies

Jo @+ ) - Wa @)+ I o)
< crlf (1+CIEPP + mPt?) P 7Kgl dé < CrdI=H L+ nft?) ¢ (2.124)
Rd
where we have assumed in the second inequality abovepthais chosen <fi-
ciently large so that the integral is convergent. Similarly, we may proceetthdor
other diferences, always choosimqglarge enough in the estimates. Usihg (2.63)

with m = 1 and|a*(¢) - a(¢)| = O(|¢]®), which follows from Taylor’s theorem,
we obtain

J o M@+ ) - WiGate) + A6 o)

< cf 1E1(1+ CI€)%t2 + m?t2) P~ g)l de < Ctm 917 (1 + m?t?) =k,
R4
(2.125)

Taylor's theorem similarly impliegV! (&) — D! (¢)| < C|&£|!* so that, by[(2.61),

I e @« I - B @)l e

< cf (1+Cle2t? + mPt) P18 de < Ctm 97t + m?t2) k. (2.126)
Rd
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2.3. Extensions

Finally, we obtain by((2.61) that

f W, (a(¢) + m?)1B! ()] dé
RA\[-m 7]

< cf (1+ Cl&)%t2 + mPt?) P~ g)l dé < Ct72P (1 + mPt?) k.
RA\[-7,7]4
(2.127)

The combination of the previous four inequalities gives (2.36). i
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Chapter 3

Structural stability of a class of
dynamical systems

3.1 Introduction and main result

3.1.1 Introduction

LetV = R3 with elementd/ € V writtenV = (g, z, u) and considered as a column
vector for matrix multiplication. For each € Ng = {0,1,2,...}, we define the
quadratic flowy; : V — V by

1 0 0 Vigiv
o;V)=|0 1 O0fv-|VigV], (3.1)
njovi A vigiv
with the quadratic terms of the form
B; 0 0O 0, 3¢ O
=0 0 0, g = i, 0 0, (3.2)
0 0O 0O 0 O
and 88 1, 8z 1, 8H
vi - 2Y% 2Y
of = |3v5° viE o st (3.3)
1 8u 1. zu
?Uj ?UJ 0

All entries in the above matrices are real numbers. We assume that theseaexis
A > 1suchthatl; > A for all j, together with assumptions that ensure that for
most values of we haves; > ¢ > 0and{; < 0. Our hypotheses on the parameters
of ¢ are stated precisely in Assumptions (A1-A2) below. The significance of the
assumptiort > 0 is explained in Sectidn 3.1.3 below.

The quadratic flowp defines a time-dependent discrete-time 3-dimensional dy-
namical system. It is triangular, in the sense that the equatigndoes not depend
on zor u, the equation foe depends only og, and the equation fqu depends on
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3.1. Introduction and main result

g andz. Moreover, the equation faris linear inz, and the equation fqu is linear
in u. This makes the analysis of the quadratic flow elementary.

Our main result concerns structural stability of the dynamical systemder a
class of infinite-dimensional perturbations. LK&t;};cw, be a sequence of Banach
spaces an&; = K; @ V. We writex; € X; asx; = (K;,V;) = (Kj, gj, Zj, ;). A
norm onX; is given by

I1Xjllx, = maxiiK;llk;, IV;liv} = max{iIK;llk; . 1g;1, 1Z;], |11} (3.4)

We identifyK ; andV with subspaces oX;, so thafl|K; [k, = [IK;|lx; and[[V]ly =
IVllx; with this norm onX;. However, we will only make use of the norm of the
K- andV-components inX; separately, but never difx;||x;. (The reason is that
the two components will need to be re-weighted.) Suppose that we aremgaen
Y X; = Kjandp; @ X; — V. Then we defin®; : X; — X;,1 by

@;(K;,V;) = (0 (K, V)), 0 (V) + p;i (K;, V). (3.5)

This is an infinite-dimensional perturbation of the 3-dimensional quadratic flo
¢, which breaks triangularity and which involves the spakgsin a nontrivial
way. We will impose estimates af; and p; below, which makeb a third-order
perturbation ofp.

We give hypotheses under which there exists a sequen¥g i, with x; € X;
which is aglobal flowof @, in the sense that

Xjp1=®;(x;) forallj e No, (3.6)

obeying the boundary conditions thaq go) is fixed, z; — 0, andu; — O.
Moreover, within an appropriate space of sequences, this global flomidsie.

As we have discussed in more detail in Chapter 1, this result providesen-es
tial ingredient in a renormalisation group analysis of the 4-dimensional cenis?
time weakly self-avoiding walk [9, 1.9, 38], where the boundary conditipr- 0
is the appropriate boundary condition for the study ofitical trajectory. It is this
application that provides our immediate motivation to study the dynamical system
®, but we expect that the methods developed here will have further ajppfisdo
dynamical systems arising in renormalisation group analyses in statistical mecha
ics.

3.1.2 Dynamical system

We think of @ = (®;);cn, as theevolution mapof a discrete time-dependent dy-
namical system, although it is more usual in dynamical systems to have the space
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3.1. Introduction and main result

X; be identical. Our application in [9. 19, 38] requires the greater generdlity o
j-dependent spaces.

In the case thab is a time-independent dynamical system, i.e., wiben= @
andX; = X forall j € Ny, its fixed points are of special interest: € X is a fixed
point of @ if x* = ®(x*). The dynamical system is calléyperbolicnear a fixed
pointx* € X if the spectrum oD®(x*) is disjoint from the unit circle [99]. Itis a
classic result that for a hyperbolic system there exists a spliXirgX; @ X, into
a stableand anunstable manifolchearx*. The stable manifold is a submanifold
Xy € X such thatx; — x* in X, exponentially fast, whenx() satisfies[(3.6) and
Xo € Xs. This result can be generalised without muchidilty to the situation
when the®; and X; are not necessarily identical, viewing “0” as a fixed point
(although 0O is the origin in dierent spaceX;). The hyperbolicity condition must
now be imposed in a uniform way [25, Theorem 2.16].

By definition, ¢;(0) = 0, and we will make assumptions below which can be
interpreted as a weak formulation of the fixed point equatg0) = O for the
dynamical system defined by (8.5). Despite this technical condition, will simply
refer to 0 as a fixed point ab. This fixed point 0 is not hyperbolic due to the two
unit eigenvalues of the matrix in the first term bf (3.1). Thusghandz-directions
arecentredirections, which neither contract nor expand in a linear approximation.
On the other hand, the hypothesis that> A > 1 ensures that the-direction is
expanding and we will assume below that; : X; — K, is such that theK-
direction iscontractivenear the fixed point 0. The behaviour of dynamical systems
near non-hyperbolic fixed points is much more subtle than for the hypedadi
A general classification does not exist, and a nonlinear analysis is edquir

3.1.3 Main result

In Sectiori 3.2, we give an elementary proof that there exists a uniquel §ma
V = (g, z, u) of the quadratic flowp with boundary conditiongg = go (always
assumed diiciently small) and £, ) = (0,0), where we are writing, e.g.,
Zo = lim;_ . z;. Our main result is that, under the assumptions stated below,
there exists a unique global flow df with small initial conditions Ko, go) and
final conditions ¢, ) = (0, 0), and that this flow is a small perturbation\of

The sequencg = (g;) plays a prominent role in the analysis. Determined by
the sequencef;), it obeys

<§’_j+1=g_j—,31g_]2, g0 =go>0. (3.7)

We regarck as a known sequence (only dependent on the initial condjgprirhe
following examples are helpful to keep in mind.
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3.1. Introduction and main result

Example3.1.1 (i) Constant3; = b > 0. In this case, it is not dicult to show
thatg; ~ go(1+ gobj)™* ~ (bj)~t asj — oo (e.g., by applying[(3.41) below with
y(t) =t?).

(if) Abrupt cut-of, with 8; = bfor j < Jandg; = 0forj > J,withJ > 1. In
this caseg; is approximately the constartbd)~1 for j > J. In particular,g; does
not go to zero a$ — oo.

Examplé 3.1.1 prompts us to make the following general definition of aftut-o
time for bounded sequencgs. Let||Slo = SUP»o 1Bl < oo, and letn, = nif
n > 0 and otherwis@, = 0. Given a fixed2 > 1, we define th&-cut-gf time j,
by
jo=inflk > 0:18,] < QU=+, forall j > 0}. (3.8)

The infimum of the empty set is defined to equale.g., if 3; = bfor all j. By
definition, jo < jo- if Q < Q. To abbreviate the notation, we write

Xj = Q-U-ja)+ (3.9)

The evolution mapsp; are specified by the real parameters y;, 1;, B;,
0, ¢;, u;’ﬁ, together with the mapg; andp; on X;. Throughout this paper, we
fix Q > 1 and make Assumptions (A1-A2) on the real parameters and Assump-
tion (A3) on the maps, all stated further below. The constants in all estimages ar
permitted to depend on the constants in these assumptions, incladingnot on
jo andgo > 0. Furthermore, we consider the situation when the parameters of
are continuous maps from a metric spadg; of external parameters) € Meyy,
into R, that the map#; andp; similarly have continuous dependenceronand
that j, is allowed to depend om, but that Assumptions (A1-A3) hold with the
constants independentwf Corollary 3.1.7 below then shows that the solutions to
(3.6) constructed in Theorem 3.11.4 below also depend continuousty on

In Section[3.2, as a preliminary result to the proof of the main result, we
prove the following Proposition 3.1.2 concerning flows of the three-dimaeasio
guadratic dynamical systeg [ts proof is elementary.

Assumption (Al). The sequencg: The sequencef;) is bounded:|S|lc < co.
There existg > 0 such thajs; > c for all butc! values ofj < jq.

Assumption (A2). The other parameters gf There existsl > 1 suchthafl; > A
forall j > 0. There existe > 0 such that; < 0 for all butc™! values ofj < jq.
Each ofZ;, n;, v;, 0}, ¢j, v}"ﬁ is bounded in absolute value I6y(y;), with a
constant that is independent of bgtand .
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Note that wherjg < oo, Assumption (A1) permits the possibility that eventu-
ally gx = 0 for largek. The simplest setting for the assumptions is in the situation
whenjq = oo, for which y; = 1 for all j. Our applications include situations in
which g; approaches a positive limit gs— oo, but also situations in whic3; is
approximately constant i over a long initial intervalj < jo and then abruptly
decays to zero.

Proposition 3.1.2. Assume (A1-A2). b > 0is syficiently small, then there exists
a unique global flow = (V);en, = (g). Zj» 1) en, Of ¢ with initial condition go
and (Z., 1) = (0, 0). This flow satisfies the estimates
_ 20 _ _ _ _
X8 =0 (——) z; =0(x;8;), Hj =0(x;8) (3.10)
1+ go]

with constants independent ¢f aindgo. Furthermore, if the mapg; depend con-
tinuously on an external parameter such that (A1-A2) hold with uniformstemts,

thenV; is continuous in this parameter, for every jNo.

We now define domain; c X; on which we assume the perturbatign (p;)
to be defined, and an assumption which states estimates fop (). The domain
and estimates depend on an initial conditggn> 0 and a possible external param-
eterm. Theoreni_3.1)4 below shows existence and uniqueness of solutions)to (3.6
with this initial condition, and existence andigirentiability of solutions for initial
conditions in a neighborhood g§.

For parameters,u > 0 and sificiently smallgg > O, let (g;, Z;, u;) en, be
the sequence determined by Proposition 3.1.2 with initial condifios go, and
define the domai; = D;(go,r,u) c X; by

Dj = {Xj € X] . ||K]||K, < r)(jg_f,

18 — g < ugZllogg;l,

|2 — Zj| < uy;g2llogg;l,

|uj = 171 < uy;g2llog ;). (3.11)
Note that if 3; depends on an external parametethenD; also depends on this
parameter through; = g;(m). For statements concerning continuitynmwe will
assume thab; is defined on the union of these domains avet Meyt.

Throughout this chapter, we denote by, ¢ the Fréchet derivative of a map

with respect to the componeat and byL™ (X;, X;,1) the space of boundea-

linear maps fronX; to X;,1. The following Assumption (A3) depends on positive
parametersgp,r, u, k, Q, R, M).
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Assumption (A3). The perturbationThe mapsy; : D; — K11 € X;.1andp; :
D; — V c X;;1 are three times continuously Frecheffelientiable, there exist
ke (0,91, Re (0,r(1-«9Q)), andM > 0 such that, for alk; = (K;,V;) € Dj,

llrj (0, Vi)llk .y < R)(j+1g_]‘?’+1, loj(X)lIv < M)(j+1g_?+1, (3.12)
IDkY; (X)L, K e0) < & [IDxp; (X)L, .v) < M, (3.13)

and such that, for both = ¢ and¢ = pand 2< n+ m < 3,

IDy &; (X)) ILev.x;.0) < Mng_Jerl, (3.14)
HD$D1n<¢j(xj)||L”+'"(X‘,',Xj+1) < M(ng_?+1)l_n((g_?+1| IOgg_j+1|)_m- (3-15)

The bounds[(3.12) guarantee tldais a third-order perturbation af. More-
over, sincex < 1, they-part of (3.18) ensures that tike-direction is contractive
for @. (3.15) imposes bounds on the second and third derivativgsaofl p which
permit these derivatives to be quite large. _

The following elementary Lemma 3.1.3 shows that a sequeigg i, can be
defined inductively b¥X;,1 = ;(K;,V;), assuming that is large enough. Denote
by nx D; the projection oD, ontoK, i.e.,

nkD; = {K; € Kj 1 lIKjlik, <1y g% (3.16)

Lemma 3.1.3. Assume Assumption (A3), léte (R/(1-«Q),r], and assume that
go > Ois syficiently small. Thew;(D;(go,r*,u)) € mxDj,1(g0. 1™, u).

Proof. The triangle inequality and the first boundsof (3.12)—(3.13) imply

s (K, Vi n < 1050,V ik + 1 (K, V5) = (0, V)l
< Ryj+185,1 + 1 (kQ(L+ O(20)) 418511
< xj85hs (3.17)

where the last inequality uses trgiji’[/§3+l = 1+ O(go) whose elementary verifica-
tion is given in Lemma 3.2/ 1(i) below, and that > 0 is suficiently small. O

The sequence = (K, V) e, is a flow of the dynamical system = (, ¢)
in the sense of (316), with initial conditiork, go) = (Ko, go) and final condition
(Zeo, o) = (0,0). We consider this sequence as a function(Ko, go) — X =
X(Ko, go) of the initial condition Ko, go). Our main result is the following Theo-
rem[3.1.4 about flows of the dynamical system® = (¥, ¢ + p) = @ + (0, p) of
interest, as perturbations of the flowsf ®.

70



3.1. Introduction and main result

Theorem 3.1.4. Assume (A1-A3) with parametgg, r,u, «, Q, R, M), letr, €
(R/(1-«Q),r), be (0,1). There exists u> 0such that for all u> u,, there exists
g« > Osuchthatifg € (0, g.] and||Kollk, < r*gg’, the following conclusions hold.

() There exists a global flow x (K;,V;) en, Of @ = (¥, ¢ + p) with initial
condition (Ko, go) and final condition(z., u«) = (0, 0) such that, withx =
X(Ko, go), the following estimates hold:

1Ky = Kjll, < b(r =r.)x;85, (3.18)
18 — &1 < bug?|logg;l. (3.19)
1z, - Z;| < buy;g2|log g1, (3.20)
|luj — it < buy;g7llogg;l. (3.21)

The sequence x is the unique solution(3d8) which obeys the boundary

conditions and the bound8.18)-(3.21)

(i) There is a neighbourhoodl = 1(Kp, go) € Ko @ R of (Ko, go) such that,
for initial conditions (Kj, gg) € I, there also exists a global flow xf ®
with (2, 12.) = (0,0), and (3.18)3.21) hold with x replaced by xand x
replaced byx” = x(K{, g3). Moreover, for all j € No, the mapg(K;,V;) :
| - K; @V are continuously Fréchet glerentiable, and

Ao

o(1), P o(1). (3.22)

0 _
0go

Remark3.1.5 (i) For jo = o and with [3.10), the bounds (3!18) and (3.19)—(3.21)
imply [IK;llk, = O(j %) andV; = O(j~2logj), respectively. However, the latter
bounds do not reflect th&t;, V; — 0 asgo — 0, while the former do. Furthermore,
(3.10) impliesy;g; — 0 asj — oo (also whenjq < o), and thus[(3.18) and
(3.20)3.21) implyK; — 0,z; — 0, u; — 0 asj — . More precisely, these
estimates implyz;, u; = O(yx;g;) so thatz; and y; decay exponentially after
the Q-cut-of time jo; we interpret this as indicating that the boundary condition
(Zoo, o) = (0, 0) is essentially achieved alreadyjat

(i) We do not give a proof, but we expect that the error bound$ iri8)3{B.21)
have optimal decay agp — oo. Some indication of this can be found in Re-
mark(3.3.2 below.

Theoreni 3.14 is an analogue oft@mble manifold theorerfor the non-hyper-
bolic dynamical system defined by (8.5). It is inspired by [25, Theoreb$]2
which however holds only in the hyperbolic setting. Irwin [78] showed that
stable manifold theorem for hyperbolic dynamical systems is a conseqogtiee
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implicit function theorem in Banach spaces (see elsa [99, 102]). Insipfgoach
was inspired by Robbir [97], who showed that the local existence thetoe
ordinary diterential equations is a consequence of the implicit function theorem.
By contrast, in our proof of Theorem 3.1.4, we directly apply the localtemrise
theorem for ODEs, without explicit mention of the implicit function theorem. This
turns out to be advantageous to deal with the lack of hyperbolicity.

Our choice ofy in (3.1) has a specific triangular form. One reason for this is
that (3.1) accommodates what is required in our applicaticn in [9,19, 38¢cAnd
reason is that additional nonzero termgican lead to the failure of Theorem 3.1.4.
The condition tha3; is mainly non-negative is important for the sequepge®f
(3.17) to remain bounded. The following example shows that fozjhterm in the
flow of z, our sign restriction o is also important, since positivg can lead to
violation of a conclusion of Theorem 3.1.4.

Example3.1.6 Suppose that; = 6; = 8; = 1, thatp = 0, and thatgo > 0 is
small. For this constam sequencejq = oo (for anyQ > 1) and hencegy; = 1 for
all j. As in Examplé 3.1]1g; ~ j 1. By (3.1) and[(3.7),

_ _ _ - _&gi+1 -
Zia=7z(1-g)-8 =17 ;;:- - &% (3.23)
J

Lety, = z;/g,;. Sinceg;/g;+1 = (1 —g;)~t > 1, we obtainy; > y;,1 + g; and
hence

Yi 2 yne1t ) &1 (3.24)

Suppose that; = O(g;), as in [3.20). Thery; = O(1) and hence by taking the
limit n — co we obtain

n o
yi > |imsup(y‘n+l+zg‘,] >-C+ > & (3.25)
e 1=j 1=j
However, sincg; ~ j 1, the last sum diverges. This contradiction implies that the

conclusionz; = O(g;) of (3.20) is impossible.

Because of its triangularity, an exact analysis of the flowg with the bound-
ary conditions of interest is straightforward: the three equationg.faru can be
solved successively and we do this in Secfion 3.2 below. Triangularity miutes
hold for @, and we prove that the flows df with the same boundary conditions
nevertheless remain close to the flowgwih Sectior 3.3.
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3.2. The quadratic flow

3.1.4 Continuity in external parameter

The unigueness statement of Theofem 3.1.4 implies the following Corbllary 3.1.7
regarding continuous dependence on an external parameter of thierstdu3.6)
given by Theorermn 3.11.4.

Corollary 3.1.7. Assume that thé; depend continuously on an external param-
eter me Mgy and that Assumptions (A1-A3) hold uniformly in m. Lénk =
(K(m),V(m)) be the solution for external parameter m given by Thedrem13.1.4.
Then % (m) is continuous in m for eachg No.

Proof. Theoren_3.1)4 implies that(m) is bounded uniformly ifm € Mey:. This
implies that there exists some limit poixf of \o(m’) asm’” — m. Let X; =
(Vj.*, K;.‘) be the flow of(D(m_,-) started with thisvy” andK; = Ko independent
of m. By Propositiori 3.1J]2Vp(m) is continuous inm € Mey. The continuity of
K, (m) follows inductively from this and the assumed continuity of gheandp;.
This continuity and(3.18)=(3.21) imply that any limit poixit must satisfy

IK; = K (mlik, < b(r —r.) x; (m)g; (m)>, (3.26)
18} — & (m)| < bug; (m)?|log g; (M), (3.27)
w5 — i (M)] < buy; (m)g; (M) log g; (M), (3.28)
1Z; = Z;(m)| < buy; (m)g;(m)?|log g; (m)]. (3.29)

The uniqueness assertion of Theofem 3.1.4 impliesxthat x; (m), and therefore
that\p is continuous irm. The continuity ofx; now follows immediately from the
continuity of thed;. o

3.2 The quadratic flow

In this section, we prove that, for the quadratic approximagipthere is a unique
solutionV = (V;) en, = (8), Zj» 1;) e, t0 the flow equation

Vi = ¢;(V;) with fixed smallgg > 0 and with €, iie) = (0,0).  (3.30)

Due to the triangular nature @f, we can obtain very detailed information about
the sequency¥.

3.2.1 Flow ofg
We start with the analysis of the sequergevhich obeys the recursion
g+1=8 — P& & >0. (3.31)
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3.2. The quadratic flow

The following lemma collects the information we will need abgut —

Lemma 3.2.1. Assume (Al1). The following statements hofgif 0is syficiently
small, with all constants independent gf and go.

(i) Forallj, g; >0,
gj =O(inf g). and 881 =1+0(x;8)=1+0(2). (3.32)
Moreover, for any j and kg; is non-increasing irx.

(i) Forn > 1and m> O, there exists ¢,, > 0such that for all k> j > 0,

k —ym+1
—m |loggr|™* n=1
D agloggl™ < Cum{ S (3.33)
= X8 “llogg;[™ n>1,
and there exists G 0 such that for all j> 0,
_ Cgo
Xj8j = (3.34)

(iif) (a) For y > 0and j > 0, there exist constants & 1+ O(x,g;) (depending
onvy) such that, for all 1> j,

[ o\
l‘[(l—yﬁkg‘kr%(;ﬁ) (c; + O(x121)). (3.35)

k=j

(b) For ¢; < 0except for ¢t values of j< jo, {; = O(x;), and j < I, (with
a constant independent of j and |),

!
[ @- et <o) (3.36)

k=j

(iv) Suppose thag and g each satisfy(3.31) Lets > 0. If [go — gol < 6o then
1g; — &1 < 62;(1+ O(go)) for all j.
Proof. (i) By (3.31),
gj+1=8;(1— B;g))- (3.37)
Sinceg; = O(x;), by (3.37) the second statement lof (3.32) is a consequence the

first, so it sufices to verify the first statement of (3132). Assume inductively that
g; > 0andthag; = O(infr<; gx). Itis then immediate from (3.37) that,1 > O if
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3.2. The quadratic flow

go is suficiently small depending o3|, and thaig;,1 < g; if 8; > 0. By (A1),
there are at most~? values ofj < jq for which g; < 0. Therefore, by choosing
go suficiently small depending o]l andc, it follows thatg; < O(infr<; g«)
forall j < jo with a constant that is independentjof

To advance the inductive hypothesis for> jo, we use 1-t < e’ and
Yi2jo 1Bl < X2, Q7" = O(1) to obtain, forj > k > jg,

Jj=1 =1
8j < 8k €Xp|— Zﬂzé} < geexp|Cai Y 18il| < O(&w). (3.38)
1=k I=k

This shows thag; = O(inf;,<x<; g&«). However, by the inductive hypothesis,
gjo = O(infr <, k) for j < jq, and hence fof > jo we haveg; = O(infx<; gk)
as claimed. This completes the verification of the first bound of [(3.32) arsd disu
already noted, also of the second.
The monotonicity og; in Bx can be proved as follows. Since it is obvious that

g; does not depend ofi; if k > ], we may assume th&t < j. Moreover, by
replacingj by j + k, we can assume thét= 0. Letgj = dg;j/9dPo. Clearly,gl =0
and therefore

g =-g<0. (3.39)

Assuming thagj’._< 0 by induction, it follows that foj > 1,

8.1 =8,(1-2p;8) <0, (3.40)

and the proof of monotonicity is complete.
(ii) We first show that if : R, — R is absolutely continuous, then

: g g
Ysw@@- [ vwarol [ awoia). @
I=j g g

k+1 k+1

To prove [(3.411), we apply (3.81) to obtain
f _

k k g1
Y Bu@E =Y @@ -a) =y, [ v@d @42
[ 1=j

I=j 81+1

The integral can be written as

Yu@di= [ u@dtes f “ f “U9dsdt (3.43)

8l+1 841 8l+1
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3.2. The quadratic flow

The first term on the right-hand side &f (3.41) is then the sum bedrthe first
term on the right-hand side df (3143), so it remains to estimate the double integra
By Fubini's theorem,

81 81 g1 s
f W’ (s)dsdt= f f W' (s)dtds
8141 Vit g_lil gl+1

= _gl (s— gy’ (s) ds (3.44)

81+1

By (3.31) and[(3.32), fos € [g;+1, g/] we have
Is— gi+1l < |1 — g1l = 181187 < (1+O(%0)) 181187, < O(sD).  (3.45)

This permits us to estimate (3144) and conclude (3.41).
Direct evaluation of the integrals in (3141) with(t) = t" 2| logt|” gives
k — 1
lo mil o p=1
{| 98kl (3.46)

o"llogg/|™ < C _ _
;Bzgll 9l " @ log g > 1

To deduce[(3.33), we only consider the case 1, as the casa = 1 is similar.
Suppose first that < jo (andjo < ). Assumption (A1) implies
Bi |81

o + (1+ T) 1g,<c <O(B1) +O(1p,<c) (3.47)

1<

and therefore that

k

Jjo Jjo
> xigrlloggl™ < > 0(B)&; 1 log&l™ + > O(Lg, <)@l log g™

I=j I=j I=j
k

+ Y QUi gnlog g™, (3.48)

[=jo+1

By (3.46), the first term is bounded l@(g_j?‘ll logg;|™). The second term obeys
the same bound, by (A1) and (3132), as does the last term due to theegxipbn
decay. This proves (3.83) for the cajs& jo. On the other hand, if > jo, then
again using the exponential decayafand [3.32), we obtain

k

> xigrllog g™ < Cy gt 1log g™ < Cgox;gl tlogg; ™. (3.49)
I=j

This completes the proof of (3.83) for the case 1.
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3.2. The quadratic flow

To prove (3.34), let > 0 be as in Assumption (A1) and set.{ = g; — Cg;
with go = go. Letjo = —1 and denote by & j; < j2 < ... the sequence of
such thatg; < c. By induction, we show thag;, .1 < (1 + O((%))kgjk.”_. This is
trivial for k = 0. To advance the induction, note that, siggés monotone ing,
g; < (1+0(go))*g; for j < ji+1, and therefore

g_jk+1+1 = g_jk+l(1 - ﬁjk+1<g_jk+l) < (1 - ﬁjk+1g_jk+l)(1 + O(z%))kgjku

1-8: .o _
- 2Bt g o) gy n (350)

T MK+l

The induction is advanced since

1- IBjk+1g_jk+1

~ =1+ 0(go). (3.51)
1- C8jk+1

By Assumption (Al)m = maxK : jx < jo} is bounded so that, fgr< jo,

X8 =8 < (1+0(g0))"g; < (1+0(g0))g;- (3.52)

Forj > ja, we use that, fogg sufficiently small,

0 l<1-cgo<l-cg =t (3.53)
8j
and that, by[(3.32), = O(g;,) Which together imply
j_l g
— —(—ja) = —(—ja) A 1+1 | R
Xj8j < O(Q U JQ)ng) < O(Q U Jﬂ)gjg) <0 l_[ g_;r] 8ja = O(gj)-
I=ja
(3.54)

The proof of {3.34) is concluded by the observation thasatisfies the bound
claimed, as can be seen by applying (8.41) with) = t=2.

(iii-a) By Taylor's theorem and (3.31), there exisfs= O(8xgx)? such that

pu Y
(L-yBear) Y= (1= Brar) (L +1y) = (g_i"l) (1+71%). (3.55)
Let l
Cjy = ]—[(1+ [e). (3.56)
k=j
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3.2. The quadratic flow

With the bounds &t < el’l and B, = O(xx), we obtain

l l

Zrk l_[ (1+r,)

1 l
< > O(x«gd) exp[ > Olxmsa)
k=j m=k+1

lej. -1 =

<O(x;5).  (357)

In particular,c; ; = 1+ O(go) = O(1) uniformly in j andl. Similarly, we obtain
that, withri = (1+ 1)t = 1= O(xxg?), forn > I,

ﬁ(1+rk)‘1— 1

ICi.i = Cj.nl =Cjn

k=1
=Cjm sz P ]_k[ 1(1+ )| < O(vi2l). (3.58)
= m=k+

In particular, €;;); is a Cauchy sequencg, = lim;_, . C; ; exists, and with (3.57),
cj = 1+ 0O(yx;g;). Italso follows thatic; ; — ¢;| < O(x;g;) as claimed, and the
proof is complete.

(iii-b) Since¢; < 0 for all butc™! values ofj < jgo, by (3:.32) withgo sufficiently
small, Hf{zj(l — Ggr) "t < 0O(1) forl < jq, with a constant independent ff.
Forj > jo, we use (1 - x) < 2e* for x € [-3, 3] to obtain

Cgj i Lxl

k=ja

! [
]_[(1 ~ @) < 2exp Z{@] < 2exp <0O(1). (3.59)
k=j k=j

The bounds fot < jg andj > jq together imply[(3.36).

(iv) If 1g; — g;1 < 6,;&; then by [(3.31),

18j+1 = gj+1l = 185 — &1(1 = B;(&j + &;)) < 641841 (3.60)
with 1- B8+ 2) 8.7
- P8+ 8
5~1:5~J—°:5~(1— . ) (3.61)
1= B ’ 1-pjg;

In particular, if 3; > 0, thendé;1 < 6;. By (Al), there are at most ! values of
j < jo forwhich g; < 0, and hencé; < §(1+ O(go)) for j < jo. The desired
estimate therefore holds f¢r< jo. Forj > | > jgo, as in (3.38) we have

J J
[ @+0w8kar) < exp|O@) D x| < 1+0(z0), (3.62)
k=1 k=1
and thus the claim remains true also far jq. O
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3.2. The quadratic flow

3.2.2 Flow ofzand x and proof of Proposition[3.1.2

We now establish the existence of unique solutions tazthed i recursions with
boundary conditiong., = u. = 0, and obtain estimates on these solutions.

Lemma 3.2.2.Assume (A1-A2). } is syficiently small then there exists a unique
solution t0(3.30) obeyingz., = e = 0. This solution obeyg; = O(y;g;) and
i = O(x;g;). Furthermore, if the mapg; depend continuously on an external
parameter me Mey such that (A1-A2) hold with uniform constants, tierand
uj are continuous in .

Proof. By (8.1), 211 = Z; — £;;Z — 6,87, so that

n n 1
zi = |a-aa) za+ D [ - aa) 0zt (3.63)
k=j

=) k=j

In view of (3.36), whose assumptions are satisfied by (A2), the unigué@oto
the recursion foz which obeys the boundary conditiag, = 0 is

co I

z=> []a-aa) st (3.64)

1=j k=j

and by (A2),[(3.3B), and (3.36),

1zl < )" O(x1)sf < O(x;g;). (3.65)
=]
To verify continuity of z; in an external parameter, leg, = 2= Hf(:,.(l -
{rgk) 10,87, Clearly, sinceg; is continuous inMey: for any j > 0, z; , is also
continuous, for any < n. (3.33)(3.34) of Lemma 3.2.1(ii) imply thit; - z; ,,| <
O(xngn) — 0 uniformly, asn — oo, and thus, as a uniform limit of continuous

functions, it follows thatz; must be continuous iMey;.
For u, we first define

o) =408 + 9% = v~ 8 g — v T = v+ ]'E. (3.66)
so that the recursion fqr can be written as
[7_,'.;.1 = (/lj - TI)III + gj. (367)

Alternatively,
,u_j = (/1]' — Tj)_l(,ll_j+1 - O'j). (368)
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3.2. The quadratic flow

Givena € (171, 1), we can choosgy sufficiently small that
It< -tz (3.69)

The limit of repeated iteration of (3.68) gives

o (1
Hj == Z [n(ﬂk - Tk)_l] o (3.70)

1=j \k=j

as the unique solution which obeys the boundary conditign= 0. Geometric
convergence of the sum is guaranteed(by (3.69), together with the &et the
O(x;g;) <O(1). To estimate (3.70), we use

1 < Y ') (3.71)
I=j

Sincea < 1, the first bound of (3.32) and monotonicity gfimply that

il < O(x;8))- (3.72)
The proof of continuity ofu; in Mey is analogous to that foz;. The proof is
complete. O

Proof of Proposition 3.112(3.10) follows immediately from Lemnia 3.2.1(ii) and
Lemma 3.2.2. Sincg; is defined by a finite recursion, its continuity fim € Mex
is trivial. The continuity ofz; andy; was proved in Lemma 3.2.2. ]

3.2.3 Dfferentiation of quadratic flow

The following lemma gives estimates on the derivatives of the componeh_gs of
with respect to the initial conditiogy. We write f” for the derivative off with re-
spect tagg. These estimates will be an ingredient in the proof of Thedrem|3.1.4(ii).

Lemma 3.2.3.Foreach j> 0, \7] = (g, z;, ij) is twice djferentiable with respect
to the initial conditiongg > 0, and the derivatives obey

-2 -2 -2
7 =0|% 7 20|y, 7 =0| 2 3.73
§=01=|- =05l K=0x=] (3.73)
& g &
-2 -2 -2
g_'.':o g:] 5 Z’.’:O Xlg% N /7~,:O ng% . (374)
J 80 J .go ! gO
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3.2. The quadratic flow

Proof. Differentiation of[(3.]7) gives

81 =8;(1-2B;g)), (3.75)

from which we conclude by iteration agg = 1 that forj > 1,

-1
=| |@-2s2). (3.76)
=0
Therefore, by[(3.35), ,
7= (i) (1+ O(%)). (3.77)

For the second derivative, we ugg = 0 anng+l =g/ (1-2B;8;) - Zﬁjg_J’.z to
obtain

j-1 j-2
g/ =-2) ag?| |a-280). (3.78)
=0 k=1
With the bounds of Lemnia 3.2.1, this gives
g—. 2j-1 g_2
g =0 (:’) Z Big2 =0 [:’] . (3.79)
g) g0

For z, we definec;; = Hf{zj(l — Zrge)™L. Then [(3.64) becomes; =
2127, lelgl By (3.36),07,; = O(1). It then follows from (A2),[(3.77), and

1= Z(l Ckgk) rg) = Zo(é’kgk) = (X]%] (3.80)

=j =j 0

We differentiate[(3.64) and apply (3177) and Lenima 3.2.1(ii) to obtain

b 2
8
ZO-_] 19181 +ZZO-] 1918181 (X] _2) (3.81)
I= 80
Similarly, a”l = O( ) and

%) oo —
g
= Zo-]"lelgl +4Z O'J lelglgl +ZZ oy, lel(glgl +gl ) = (Xjé]
l=j l=j =)

(3.82)
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3.3. Proof of main result

using the fact thag]:ﬁg_g1 = 0(§12/§g) by (3.32). Itis straightforward to justify the
differentiation under the sum in_(3181)—(3.82).

For 1, we recall from((3.69)+(3.70) that

o [

Hj=- Z {l_[(/ik - Tk)_l] o, (3.83)
I=j \k=j

with 7; ando; given by [3.66), and with & (1, — 7;) 7! < @ < 1. This gives

) l
== [H(/lk - Tk)_l]

I=j \k=j

1
o+ (i - Ti)—lr;J . (3.84)
i=j

The first product is bounded hy ~/*1, and this exponential decay, together with
(3.66), [3.65), and the bounds just proved g6rand Z’, lead to the upper bound

|| < O(x,8%8;%) claimed in(3.78). Straightforward further calculation leads to
the bound om}TCIaimed in(3.74) (the leading behaviour can be seen fronz’the N

contribution to ther;” term). O

3.3 Proof of main result

In this section, we prove Theorem 3.J1.4. We begin in Se€tion|3.3.1 with a siletch
the main ideas, without entering into details. The remainder of Sectibn 3.3dxpan
the sketch into a complete proof.

3.3.1 Proof strategy

Two difficulties in proving Theorern 3.1.4 arflow-e: (i) from the point of view of
dynamical systems, the evolution m&@gds not hyperbolic; and (ii) from the point
of view of nonlinear diferential equations, a priori bounds that any solutioh id (3.6)
must satisfy are not readily available due to the presence of both initial mald fi
boundary conditions.

Our strategy is to consider the one-parameter family of evolution nbaps
(®")¢epo,1) defined by

@' (X) = O(t, x) = (Y(X), o(X) +tp(x)) fort € [0, 1], (3.85)

with the t-independent boundary conditions th&§ and go are given and that
Z» = 0 andu.0). This family interpolates between the probl@mh = ® we
are interested in, and the simpler problé@h= ® = (¢, ¢). The unique solution
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3.3. Proof of main result

for @ is X; = (K;,V;), whereV is the unique solution af from Sectiori 3.2, and
whereK; is defined inductively fof > 0 by

Kiva =9;(V;,K)),  Ko=Ko. (3.86)

We refer tox as theapproximate flow
We seek &-dependent global flow which obeys the generalisation 6f (3.6)
given by

Xj+1 = (D;(X]) (3.87)
Assuming thak; = X;(t) is differentiable irt for eachj € No, we set
: 0
Xj = an. (3.88)

Then diterentiation of [(3.87) shows that a family of flows= (X;(t));ewq,:e[0,1]
must satisfy the infinite nonlinear system of ODEs

Xjr1 = Dx®@;(t, X)X = pj(X;),  %;(0) = X;. (3.89)

Conversely, any solutior(t) to (3.89), for which each; is continuously dferen-
tiable int, gives a global flow for eac’.
We claim that[(3.89) can be reformulated as a well-posed nonlinear ODE

%x=F(tx), x(0)=x, (3.90)

in a Banach space of sequences (Xg, X1, ...) with carefully chosen weights,
and for a suitable nonlinear functionfal To see this, consider thimear equation

yj+1 — Dx®@;(t, X;)y; =1, (3.91)

where the sequencesandr are held fixed. Its solution with the same boundary
conditions as stated beloWw (3185) is writtenyas= S(t, x)r. Then we defind-,
which we consider as a map on sequences, by

F(t, x) = S(t, X) p(X). (3.92)

Thusy = F(t, x) obeys the equation;,1 — D ®;(t, X;)y; = p;(X), and hence
(3.90) is equivalent td (3.89) with the same boundary conditions.

The main work in the proof is to obtain good estimatesS(r, x), in the Ba-
nach space of weighted sequences, which allow us to (3.90) biatitasd
theory of ODE. We establish bounds on the solution simultaneously with exéstenc
via the weights in the norm. These weights are useful to obtain bounds oo-the s
lution, but they are also essential in the formulation of the problem as a wadldpo
ODE.
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3.3. Proof of main result

As we will see in more detail in Section 3.8.4, the occurrencB gb; (t, X;)
in (3.89), rather than the naive linearisatibp®;(0) at the “fixed point"x = 0,
replaces the eigenvalue 1 in the upper left corner of the square matrixiinb{d
a smaller eigenvalue 2 28;g; < 1. This helps addressfticulty (i) mentioned
above. Also, the weights guarantee that a solution in the Banach spacethbe
final conditions ¢.., t~) = (0, 0), thereby helping to solve fiiiculty (ii).

3.3.2 Sequence spaces and weights

We now introduce the Banach spaces of sequences used in the retiosmofa
(3.89) as an ODE. These are weight&dspaces.

Definition 3.3.1. Let X* be the space of sequences= (X;);en, With X; € X;.
For eachr = K, g, z, p andj e No, we fix a positive weightv, ; > 0. We write
X; € Xj = Kj eV asx; = (Xa’j)Q:K,g,z’ﬂ. Let

-1
IXillxy = _max (wa;) " IXallx;  IXlxw = suplix;lix»,  (3.93)
I a=K.g.z.p Jj€Ng
and
={xe X*:|[X|]|xw < oo}. (3.94)

It is not difficult to check thaiX" is a Banach space for any positive weight
sequencey. Different choices of weights will be needed. These are all defined
in terms of the sequenge= (g;),en, Which is the same as the sequepcir a
fixedgo; i.e., givengo > 0, it satisfieg;11 = g; — ,Bjéj?. We define the two weights
W = W(go, I, u) andr = r(go, r, u) by

(r-r)gy; a=K (r-r)gy; a=K
Wa,j = U§]2| log g, =g lo,j = uéij a=g (3.95)
U§]2| IOggojl)(] a =7, U§J3XJ a=1Zu,

where (y;) is theQ-dependent sequence definedlby|(3.9). Furthermore, we recall
thatx = (K, V) = X(Ko, go) denotes the sequenceXt uniquely determined from
the boundary conditionsKp, go) = (Ko, g0) and e, te) = (0, 0) via \/J+1 =
e (V) andKj+1 = L//](K,,V) whenever the latter is well-defined. Given an initial
condition q<0,g0) letX = X(Ko,go)

Denoting the closed ball of radissin X" by sB, observe that, itg = go and
Ko = Ko, the bounds[(3.18)=(3.21) are equivalentxte= X + bB, and that, by
definition, the projection ok + B onto the thejth sequence element is contained
in the domainD,. We will always assume thap = go andgo are close, but not
necessarily that they are equal. The usg oither thang permits us to vary the
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3.3. Proof of main result

initial condition go = go without changing the Banach spack¥, X". The use
of go-dependent weights rather than, e.g., the weigitiog j for jo = o (See
Remark 3.1.5(i)) allows us to obtain estimates with good behaviogp as O.
Note that the weightv, ; does not include a factgy;, and thus does not go to 0
whenjq < o (see Example 3.1.1(ii)).

Remark3.3.2 The weightsw apply to the sequence(seel(3.88)). As motivation
for their definition, consider the explicit example of(x;) = ng?. In this case,
the g equation becomes simply

8j+1=8j — ﬂjg]2 + t)(jé’_?- (3.96)
With the notatiorg; = %g}’., differentiation gives
gj+1 =81 (1—2B;g; +3tx,87) + x 85- (3.97)

Thus, by iteration, usingp = 0, we obtain

j-1 j-1
g =y xigt | | (1-2Begr +3txeg). (3.98)
=0 k=l+1

For simplicity, consider the cage= 0, for whichg = g. In this case, it follows

from (3.35), (3.3R), and (3.46) that
j-1

=1, = \2

. 8 _ _- _

i <00 Y (-] g -0 Y, i < O@iloagh. (.99
1=0 \o'* 1=0

which produces the weight, ; of (3.95). (It can also be verified usirig (3141) that
if we replacey; by g; in the above then no smaller weight will work.)

3.3.3 Reduction to a linear equation with nonlinear perturbation

For given sequencesr € X*, we now consider the equation
yj+1 = Dx®;(t, X;)y; =1T;. (3.100)

For x andr fixed, (3.100) is an inhomogeneous linear equation. ihemmg 3.3.8
below, which lies at the heart of the proof of Theorem 3.1.4, obtainsdmon
solutions to[(3.100), including bounds onxslependence. The latter will allow us
to use the standard theory of ODE in Banach spaces to treat the origimalesy
equation, where andr are both functionals of the solution as a perturbation of
the linear equation.
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In addition to the decompositioX; = K; @ V;, with x; € X; written x; =
(K;,V;), it will be convenient to also use the decompositién= E; & F; with
E; = K; @ RandF; = R @R, for which we writex; = (u;, v;) withu; = (K;, g;)
andv; = (z;, 1;). We denote byr, the projection operator onto thecomponent
of the space in which itis applied, within any of{K, V}, {u, v} = {(K, g), (z, 1)},
or{K, g, z, u}.

Recall that the spaces of sequeni&sare defined in Definition 3.3.1 and the
specific weightsv andr in (3.95).

Lemma 3.3.3. Assume (A1-A3). There exists a constanti@dependent of r and
u, and a constant C = C¢(r,u), such that ifgo > 0 is syficiently small, the
following hold for all t€ [0, 1], x € X + B.

() Forr e X', there exists a unique solution= S(t, x)r € XV of (3.100)with
boundary conditiong, yo = 0, 7, yeo = 0.

(i) The linear solution operator @, x) satisfies

1S(t, X Iz (xr,xw) < Cs. (3.101)

(i) Asamap S: [0,1] x (X + B) — L(X", X"), the solution operator is contin-
uously Fréchet gierentiable and satisfies

IDx S(t, X) Il (xw,L(xr,xw) < Cé. (3.102)

Lemma3.3.B needs to be supplemented with information about the initial con-
dition x and the perturbatiop for the analysis of[(3.90) witH (3.92). (Note that
the sequence serves as initial condition, at= 0, for the ODE [(3.89), not as
initial condition for the flow equation (3.5).) Some information abrig already
contained in Lemma 3.2.2. For we definep : X + B — X* by

(p(X))o =0, (p(X))j+1=p;(X;)s (3.103)

wherep; is the map of[(3)5). The map: X+B — X* is defined analogously. The
next lemma expresses immediate consequences of Assumption (Asamholy in
terms of the weighted spaces. Although the proof of Thedrem|3.1.4 onlgtlglire
requires the estimates fpr we will also need bounds anto prove Lemma 3.313,
so for convenience we combine both in a single lemma.

Lemma 3.3.4. Assume (A3), leb > «Q, and assume thaly > 0 is syficiently
small. Then(y, p) : X+ B — X" is twice continuously Fréchettrentiable,

le()lxr < M/u, (3.104)
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and there exists a constant£C(r, u) such that
IDk p(X)lLxw.xy < C, 1Dy p(X)lxw,x7) < O(Lol loggol),
IDkY () lLxw,xry < w, [IDvr(X)lLxw,x) < O(Lolloggol), (3.105)

and

”D)Zcp(X)HLZ(XW,Xr) <C, ||D)2c¢(x)||L2(XW,Xr) <C. (3.106)

We defer the proofs of Lemmas 3.3.3-313.4 to Secfions|3.3.4and 3.3.5,-respec
tively. Given these, we now prove Theorem 3.1.4(i).

Proof of Theorern 3.1l4(i)Let Cy be the constant of Lemma 3.3.3, define =
CsM/(3b A (1- b)), and assume > u,. Fort € [0, 1] andx € X + B, let

F(t, X) = S(t, X) p(X). (3.107)

Let (Ko, 80) = (Ko, g0). Lemmas 3.3]3=3.3.4 imply that g > 0 is suficiently
small,F : [0, 1] x (X + B) — X" is continuously Fréchet fierentiable and

1
IF () lxw < 1St X) e, xwm llp(X) llxr < CsM/u < ébA (1-Db). (3.108)
Similarly, by the product rule, it follows that there@ssuch that
IDF (t )l x < IIDxS(E X)] o) 1z v x0
+[IS(t, X)[Dx p(X)]llL(xw xwy) < C, (3.109)

and thus, in particular, thdt is Lipschitz continuous oR € X + B.
The theorem now follows from the well-known local existence theory foEO
in Banach spaces. Indeed, foe B, let

E(ty) = F(t.%+y). (3.110)

Let X§' = {y € X" . m,y0 = 0}, Bo = BN Xg'. Then the statement about boundary
conditions of Lemma 3.3.3() and (3.108) imply tHaft, 3bBo) < F(t,Bo) <
%bBo. With (3.108)-(3.109), the local existence theory for ODEs on Bangates
[2, Chapter 2, Lemma 1] implies that the initial value problem

y=F(t.y). y(0)=0 (3.111)

has a uniqueCt-solutiony : [0,1] — XY with y(t) € 3bBg for all t € [0, 1].
(The length of the existence interval of the initial value problem (3.115)B is
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bounded from below byb/(b A (1 - b)) > 1 becausgF(t, )|l < 1bA (1 - b)
whenl||y|| < %b. It does not depend on the Lipschitz constanlt%c)f

In particular, as discussed around (3.90), it follows tkat X + y(1) is a
solution to [(3.6). By constructiom,Xo = m.%0 = (Ko, 80) = (Ko, g0). Also,

7, Yeo (1) = 0 because (1) € XV, and sincer, X, = 0, it is also true that, Xo, =
0. Thusx satisfies the required boundary conditions. The estimates (3.18)—(3.21)
are an immediate consequencd|ofixw < %b, with (3.95).

To prove uniqueness, suppose tkats a solution to[(3.6) with boundary con-
ditions (K{, &) = (Ko, g0) and @, u,) = (0,0), and such thaf (3.18)—(3.21)
hold (with x replaced byx’, and withx as before). Lek = x as before. By as-
sumption,x’ — X € bBg. It follows thatF : [0,1] x (X’ + (1 — b)Bg) — X%
is Fréchet dierentiable and|F(t, X)[|x» < 1 - bforallt € [0, 1] and for all
X € X’ + (1 -b)Bg c X + Bg as discussed around (3.107)=(3./109). In particular
there is a unique solutiox’ (t) fort € [0, 1] to X’ = F(t, x) with x’(1) = x” and
X’ (t) ¢ X+ Bo, by considering the ODE backwards in time, which is equally well-
posed. It follows thak’ (0) is a flow of®° = ® with the same boundary conditions
asX. The unigueness of such flows, by Lemma 3.2.2, impliesxh@) = X, and
the uniqueness of solutions to the initial value problem (3.11%)-#Bg then also
thatx = x” as claimed. This completes the proof of Theofrem 3.1.4(i). m]

To prove Theorem_3.1.4(ii), we need to know that the initial conditxois
differentiable in a small balk + §B. The smoothness of is addressed in the
following lemma, whose proof is deferred to Secfion 3.3.5.

Lemma 3.3.5. Assume (A1-A3), and lét> O and gy > O bo'Eh be sgiciently
small. Then there exists a neighbourhdod |5 c Ko @ R, of (Ko, go) such that
X : | — X+ 6B is continuously Fréchet gierentiable with

IDgoXllxw < O(85 2l log ol ™). (3.112)

Proof of Theoremn 3.1l4(ii)For fixed initial condition (20,§0) = (Ko, go0) = U
obeying the hypothesis of Theorém 3]1.4(i), liéke the neighbourhood ab de-
fined by Lemma 3.3]5 witid < 3b. By Lemma3.35x <1 —» X+ 6B c X" is
continuously Fréchet fferentiable. It follows from [2, Chapter 2, Lemma 4] that

y=F(t,y), y(0)=X(Up) - X (3.113)

has a uniqu€-solutiony : [0, 1] x | — X with [|y(t)|lx» < 3b. [2, Chapter 2,
Lemma 4] and Lemma 3.3.5 also imply

IDgo (t. Ko, 80)||xw < C||DeoX(Ko. £0)||yw < O(&5%I10g g0l ™Y).  (3.114)
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Let X(ug) = X + y(1,up). It follows as previously thak(ug) = (u(ug), v(ug)) is a
solution to [(3.6) with boundary conditiongug) = up andv., (Up) = 0. Moreover,
the diterentiability in the sequence spaxX¥ implies in particular that, as elements
of the space¥;, eachx; = (K;,V;) is aC function ofuo. Also (3.114) with[(3.95)
immediately implies that

97 _ O o

7o = O, 5.2 =00, (3.115)

To prove [3.18)5(3.21) for(ug) with ug € | C I, we use that|x(up) — X|| < %b
and||x(up) — X||xw < & imply

1K) = Kjllk, < IK; = Kylik, + 1K) = Kjllk, < (3b+6)(r —r.)g3  (3.116)

and analogously that

18 — &1 < (3b+ 6)ug?llog g7l (3.117)
|2 - Zj| < (3b+6)uy; 82| log &7 (3.118)
|luj = f1j1 < (3b+ 6)uy; 87 log g71. (3.119)

Since (%b+ 8) < b, by assuming thago — go| is suficiently small, i.e., shrinking
| to a smaller neighborhoddf necessary, we obtain with (3.73) that

(3b+06)&7logg?| < bg?llogg?l. (3.120)
This completes the proof of Theorém 311.4(ii). m]
It now remains only to prove Lemmas 3.3.3—3.3.5. We begin with Lemmé 3.3.3,
which lies at the heart of the proof.
3.3.4 Proof of Lemma3.3.B

The proof proceeds in three steps. The first two steps concern aoxappte
version of the equation and the solution of the approximate equation, andrthe th
step treatd (3.100) as a small perturbation of this approximation.

Step 1. Approximation of the linear equation

Defmed)0 X; — X;,1 by extendingy; trivially to the K-component, i.e.9? =
0, ¢;) with respect to the decompositiok;,1 = Kj1 @ V. Thus®(t,x) =
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3.3. Proof of main result

DO(x) + (¥ (X), tp(x)). Explicit computation of the derivative of; of (3.5), using
(3.1), shows that

0 0 0 0
— 0 1-28g 0 0
O(y .} — j8J
DH() = |5 £ g o | (3.121)
0 7 Vi A
with
ﬁj =nj- vaggj - U}?sz - U}?'u/v‘j,
Vi=v—viig - vtz - vy,
/1]' = /lj — Ufﬂgj - UJZ.'qu,

The block matrix structure i (3.121) is with respect to the decomposKioe:
E; ® F; introduced in Section 3.3.3.

The matrichD?(xj) depends orx; € X;, but it is convenient to approximate
it by the constant matrix

(3.123)

L =00 = (5 2.

B G
where the blocks\;, B;, andC; of L; are defined by evaluating the blocks of the
matrix (3.121) atx; rather than ak; (given explicitly in (3.129) below). We will

study the equation
yi+1 =Ly +r1;, (3.124)

which approximates (3.100). Lemrna 3I3.6 below provides a useful refatipnla
of (3.124). For its statement, we define linear operatbrs D(H) — X* and
U: D) - X* (whereD(H) andD(U) are the subspaces &f* on which the
infinite sums converge) by

mH =0, (m,Hx);=->Ct - 'Bmx, (3.125)
I=j

and

j-1
(mUX); = Z Aj—1 s Aamy X,
1=0

(mUx); == > Cte--Crlmx. (3.126)
l=j
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It follows from the definitions (recallingx A; = 0 = A;rk) that

7TKH =0= Hﬂ'K, ﬂvH=H=H7Tv, 7TKU=U7TK, ﬂvU =U7T\/.
(3.127)
The empty product in the formula for,UX is interpreted as the identity, so the
term in the sum correspondingte= j — 1 is simplyn, X;.

Lemma 3.3.6. Assume (A1-A2) and thag > 0 is syficiently small. If re D(U)
andy € D(H) satisfiest, yo = 0 andr, y. = 0, then(3.124)holds if and only if

y=Hy+Ur, (3.128)
holds.

The proof is straightforward, but requires an estimate on the produitteof
matricesC; which we will prove first. Products of th€; and A; will also play an
important role in the analysis of the operatét®ndU in the following section, so
that it is convenient to prove a more precise statement about them now kizn w
is needed for the proof of Lemma 3.B.6. Let us first record explicitly thelkslo€
Lj:

0 0 0 —5-) (1—2g~§~ 0)
A = o |, B;= s, Ci= SRR 3.129

! (0 1- 2:3181) ! (0 i) 5 4 G129
with 777, v;, ij, andéj as in [3.12P) withx replaced byx.’

Lemma 3.3.7. Assume (A1-A2). Let € (171, 1). Then forgg > 0 syficiently
small (depending on), the following hold.

(i) Uniformlyinalll < j,

0 0
A A= (0 O(OJ?+1/§12))' (3.130)
(i) Uniformly in all j,
_ (0 O(gx))
B, = (0 o ) (3.131)

(iii) Uniformlyinalll > j,

_ _ o(1 0
R R S | 2452
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Proof. (i) It follows immediately from [(3.129) that

}
A A= (- 2Bk, (3.133)
k=1

and thus[(3.35) implies (i).
(i) It follows directly from (3.129) and Lemnia 3.2.2 that (3.131) holds.

(iii) Note that
cg O ¢c. 0\ (c* O
(b1 al) o (bn a,,) - (b* a*) (3.134)

a‘*=a;---ay,, b*:Zal---a,-_lb,-cm---cn, c"=c---C,. (3.135)

We apply this formula with the inverse matrices

_ 1-27;8.)71 0)
C- 1 = ( o] 1 o o o 3136
/ ((1— 2i8)) yiq; @ ( )

wherea’; = 471, Thus

cit..cit= (ff” . ) (3.137)
gj.r @yl
with
l
Gra=d;dn fa=] |0-20807h (3.138)
k=i
I—j+1( 1 j+i=2
&= ( []@- zgkék)‘l] «§j+,~_1{ [ &k]. (3.139)
i= k=j+i k=j

The product defining;’; is O(1) by (3.36). Assume thal, is suficiently small
that, with Lemmd 3.2]2 and (A2)y,,, < « for all m. Thenca’;; < O(a’~/*1).
Similarly, sincey;, < O(xm),

I—-j+1
67l < Z a'O(x;+i-1) < O(x;)- (3.140)
i=1
This completes the proof. O
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Proof of Lemma 3.316Theu-component of[(3.124) is given by
Ujy1 = Ajuj+7rurj. (3141)

By induction, under the initial conditiomg = 0O this recursion is equivalent to

j-1
Uj = m,y; = Z Aj g Aamry, (3.142)
=0

which is the same as thecomponent of[(3.128).
Thev-component of[(3.124) states that

Vil = BjUj + CjVj + mry, (3143)
and this is equivalent to

vj = C;i v — CiBju; — Citayr . (3.144)

By induction, for anyk > j, the latter is equivalent to
k
vy =Cite Cotvia = ) Gt G B + 7). (3.145)
I=j

By Lemmal3.3.17(iii), with somer € (17%,1) and with gy sufficiently small,
IC5 %+ - C Il is uniformly bounded. Thus, if; = (u;, v;) satisfies[(3.124) and
v; — 0, thenCy*-- - C; tvi 1 — 0 and hence

v, =— ZQi_l---Cl_l(Bzuz +ur), (3.146)
I=j

which is the same as thecomponent of[(3.128). Conversely, suppose that
satisfies[(3.128) and; — 0. It is also straightforward to conclude that (3.146)
implies (3.145) and thus that thhecomponent ofy satisfies[(3.124). O

Step 2. Solution of the approximate equation

We now prove existence, uniqueness, and bounds for the solution tpphexa

mate equatior (3.124).

Lemma 3.3.8. Assume (A1-A2) and thgs > 0 is syficiently small. For each
r e X"and x € X + B, there exists a unique solution= S°r € X% to (3.124)
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obeying the boundary conditioms yo = 0, 71,y = 0. The solution operator &s
block diagonal w.r.t. the decomposition=x(K, V), with

soz(cl) Sé) ) (3.147)

and there is a constant& > 0 such that, uniformly in smaf,

1)y llLxr,xw) < Cgo. (3.148)
The constant & is independent of u and r.

Proof. According to Lemma 3.316, it $lices to prove that there is a unique solu-
tion in X% to (3.128) (instead of (3.124)) which obeys the required boundanjicon
tions. Observe that as a block matrix with respect to the decompositio(u, v),
with H,,,, = 7, Hr,, the operator + H is triangular of the form

1 0
1-H-= (_HW 1). (3.149)
We will prove thatH,,, is a bounded operator in(X", X*W). It follows that 1- H
has a bounded inverse &Y given by the block matrix

n-1_ (10
Q1-H)"= (HW 1) (3.150)
We further show thalt) is a bounded operator in(X", XW). This implies that the
unique solution inX¥ of (3.124) is given by

y=8r=(1-H)"Ur (3.151)

and, sincer, (1 - H)™! = 7, andzxU = ng, that [3.147)-£(3.148) hold.

The boundary condition, y., = 0 is a consequence ofe X", and the initial
conditionz,yo = 0 is implicit in the equation[(3.128). The claim that S° =
Sk anday S = Ly then follows from [(3.127). Since, S°r = x,Ur, the
casesr = K, g of (3.148) follow from the bounds claimed fa.

To complete the proof, we require estimatesAgU for a € {K, g, z, u}, and
onr,H for @ = z, u. Thus there are six estimates in all. Their treatment is similar,
and uses Lemmia 3.2.1(ii), which gives that forkalt j > 0 andm > 0,

k o 1
. o |log gx|™* n=1
Z/\/lglnl Ioggllm < Cn,m op—1 I ° 'm

= xjg;"llogg; " n>1.

(3.152)

94



3.3. Proof of main result

(i) Bound for K-component. By definition, sincex A; = 0, we havergU = ng.
Therefore,

-1
lrxUr|lxw < Sljlp”ﬂ'KerX}f" < sup[wi T Il = 1irllxe (3.153)
J J

(if) Bound for g-component. By Lemmla 3.3.7(i). (3195), (3.32), and (3.152),

Jj-1 Jj—1
IgUT llxw < SUPY " llg Ay Arsarllxew < SUp Y Wity 1O(8;/&) I llxe
J =0 ' J 1=0
j-1
o -1 o
< cllrllxr supllog &1 > xudi < clif llxr. (3.154)
J 1=0

(iii) Bound for z-component. By Lemmla 3.3.7(iii). (3.95), and (3.152),

(o]
-1 -1
Iz Urflxw < sup>” flw.Crt - Gl

J I=j
< hywyt 83 < clloggo| L 3.155
< csuphywy; > xigllirlixe < cllogdol iirllxr.  (3.155)
J I=j

(o]
-1 -1
Iz Hllzoxw xny < sup ) llwCrm -+ Bl e xv)
j — .

I=j

< csupwy Z)(zézwv,z <c. (3.156)
TR

(iv) Bound for u-component. Using Lemma 3.38.7(iii), we obtain

Iz Ur llxw < sup| > I, Gt - Mrillw |
Y ‘
< csupwi | D xigd + Y ' g il
J I=j I=j
< cllog gol HIrllxr, (3.157)

where we used (3.152) and also thift o' *17/ y, g} < chgif in the last step. To
bound||z, HllL(xw, xw), we argue similarly as for,Ur, and use Lemm@a_3.3.7 to
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obtain

-1 -1
I H il xony < SUPY I, Gt C Byl e
J o= '

(o] o0
< csupwy Zé‘;}-){jwv,l + Z o yiwy ;| <c. (3.158)
J 1= 1=

This proves the required bounds fer= u and thus completes the proof. O

Step 3. Solution of the linear equation
We now prove Lemmia 3.3.3, which involves solving the equafion (3.100).

Proof of Lemma 3.313Fix w € (xQ, 1).
(i) We define

Wi (t, xj) = Dx®@;(t, x;) - L;
= [D,09(x;) - D@ + Doy (X)) 1oy (x)),  (3.159)
and rewrite[(3.100) as
Vi1 = Dx(l)j(t, Xj)yj +r; = I—jyj +VVJ'(t, Xj)yj +1r;. (3.160)

It will be convenient to combine thé/; (t, X) to an operator on sequences via
(W(t,x))o = 0 and W(t, x));+1 = W;(t, x). This operator can be written as a
block matrix with respect to the decompositinr= (K, V) as

W(t, X) = (WVK wou |- (3.161)

with W, 5 = 1, W(t, X)75. We claim thaW : [0, 1] x (X + B) — L(X%, X"), that
W is continuously Fréchet flerentiable, and that if € x + B then,

Wik llL(xwxny <@, [WykllLeewxny < G,
IWkvllLxw xny < 0(1), Wy liLxw,xry < o(1), (3.162)

asgp — 0, and

IDxW; (6 XDl e, e, x ) < C- (3.163)

To see this, note that the first term on the right-hand side of (3.159) opbndis
on theV-components, and is continuously Fréchéfetentiable since, by (3.121),
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DZ(I_)? is a constant matrix for eaghwith coeficients bounded b®(y ;). There-
fore, forx € X + B,

ID®Y(X;) = DOI(x) v Il x ) < CxsTyaaWe 1% = X;llx
= O(ugol l0og £0/?). (3.164)

This contributes to the bounds (3.162), withtaken small enough. The second
term on the right-hand side df (3.159), as well as its derivative, hase beunded
in Lemma 3.3.4, completing the proof 6f (3.163).

By the assumption thate X, Lemma 3.3.8, and (3.162), the equation (3]1160)
with the boundary conditions of Lemrha 3.3.3(i) is equivalent to

y = L(W(t, X)y +1). (3.165)

(i) To solve this equation, we use that A and B are bounded operators on a
Banach space such thatas a bounded inverge ! and||A~1B|| < 1, thenA— B
has a bounded inverse. (Indeéd; B = A(1- A"1B) and the inverse of £ A~'B

is given by the Neumann series.) As[in (3.1147), we wtas a block matrix with
respect to the decomposition= (K, V) as

Q- (é sé) ) (3.166)
Let
(5 ) B) o

such that - SW(t, x) = A — B. Then [3.16R) withgs sufficiently small implies
Wk kllLxw,xwy < 1 and||S0, Wy llL(xw,xw < 1. ThusAis a block matrix of
the form

Axk 0
A= 3.168
(AVK Avv) ( )

where Axx and Ayy have inverses i (X, XV), and it follows thatA has the
bounded inverse oK™ given by the block matrix

A—1=( Akk 0 ) (3.169)
AvAKAL Ay

Moreover, [[3.162) witlyg sufficiently small implies thal A=2B||(xw, xw) < 1 and
thus that 1- SW(t, x) has a bounded inverse In(X", X"). It follows that the
solution operator is given by

S(t, x) = (1 - SPw(t, x)) 1P (3.170)
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(iii) By (B.170), continuous Fréchetftierentiability inx of S(t, x) follows from the
continuous Fréchet fierentiability ofS°W(t, x), which itself follows from part (i)
and fromD, S'W(t, x) = S’ D, W(t, x) by linearity of °. Explicitly,

D, S(t, X) = (1 — SPW(t, X)) 1D, SPW(t, x) (1 - SW(t, x)) 1S’ (3.171)
By (3.163),
DX SW(t, X) Il (xw, Loxw,xwy) < CIDXW(t, X)]llzcxw,Lixw,xry) < C. (3.172)

Together with the boundedness of the operators @W(t, x))~* and &, this
proves|(3.102) and completes the proof. m]

3.3.5 Proofs of Lemmas$ 3.314-3.3.5

Proof of Lemma 3.3l4We begin with the verification of the bounds on the first
derivatives in [(3.104). By assumptions (3.18)—(8.14), together Wwit2)3tBe
definition of the weights (3.95), and far (3.174) also the fact thaty ;.1 < Q by
(3.9), we obtain fox € X + B,

1DV () llx xr ) < MR Wy < O(Zol log gol). (3.173)
Dk (X)L xw xr, ) < KT WK ] <kQ(1+0(%)).  (3.174)
1Dy p; (X)L xw,xt ) < My, Wy ;< O(ol log gol), (3.175)
IDk pj (X)L cxw xr,) < Mr\_/':}j-;_]_WK,j < 0(1), (3.176)

which establishes the bounds on the first derivatives in (3.104), tigpgssmall
enough. The bounds on the second derivatives are also immediatggenses of
Assumption (A3). Letp denote eithey or p. Then [(3.15) and the definition of the
weights [(3.95) imply that, for 2 n+ m < 3,

ID% DY) ¢llnem (xw xry < C. (3.177)

In addition, these bounds on the second and third derivatives imply that
l¢(x+ ) = $(X) = D(X)ylIxr < Cliylizu, (3.178)
ID¢(x + y) = D(X) = D*$(X)yllLxw,xry < Cllyliw, (3.179)

and hence that : X + B — X' is indeed twice Fréchet fierentiable. The above
bound on the third derivatives also implies continuity of thi§etentiability. The
p-bound is equivalent to Assumption (A3) since

o (})lxr,, = 1y M1y = M/u. (3.180)

This completes the proof. O

98



3.3. Proof of main result

Proof of Lemma 3.3l5Let
1'= (1180, 280] x Ko) N X L(% + 6B). (3.181)

We will show thatl is a neighbourhood oﬂ(o 20) and thats | — % + 0B is con-
tinuously Fréchet dierentiable. Sinca t(X+6B) = V-1(%+6B) NK~1(%+4B),
it suffices to show that each h ¥F1(% + 6B) andK ~1(% + ¢B) is a neighbourhood
of (Ko, 20), and that each of andK is continuously Fréchet fierentiable on as
maps with values in subspacesX¥.

We begin withV. LetV’ denote the derivative cV with respect tagg, and

letV’ = (V ) denote the sequence of derivatives. It is straightforward to coeclud
from Lemmas 3.2]3 arid 3.2.1(iv) and (3.95) that

IV llxw < O(Z52Ilog ol ™), (3.182)
and hence tha¥” € X" if go € I,  [480,280], and similarly thatv~1(% + 6B)
contains a neighbourhood gf ThatV’ is actually the derivative of in the space

X% can be deduced from the fact that the sequéﬁéégo) is uniformly bounded
in XV for go € I, (though not uniform irngg). In fact, by Lemma3.2]3,

IV; (g0 + &) = V; (g0) = &V (80)llx» < O(s?) sup IV} (g +&)llxw. (3.183)

O<e’<e

The continuity oV’ in XV follows  similarly.
For K, we first note thaf| D x,Kollz(ko.ke) = 1, ||DgOK0||K0 = 0. By (A3) and
induction,

||DK0K_j+1”L(K0,Kj+1) < K”DKOK_j”L(Ko,Kj) < x/*L (3.184)
Sincex < Q71 < 1, and sincg;,1/¢; — 1 by (3.32), we obtain
IDkoK+1llL (KoK 1) < O(80 Wk j41).- (3.185)
Similarly, by (3.14) and Lemnia 3.2.3,

IDgoK 41l 1 < &lIDgoK;llk, + O(x 821D,V llv
< K”Dgon“Kj + O(ng] /go) (3186)

By induction as in the proof of Lemma 3.1.3, again using Q 1, we conclude

IDgoKjs1llk ;s < O(x;87/88) < O(8g Wk j41)- (3.187)
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3.3. Proof of main result

These bounds imply tha€ (X + 6B) contains a neighbourhood ok§, o) and
also that the component-wise derivativeoivith respect tgo andKg are respec-
tively in X% = L(R, X¥) andL (Ko, XV). _

To verify that the component-wise derivative Kfis the Fréchet derivative in
X", it again stifices to obtain bounds on the second derivative¢'inas in (3.18B).
For example, sinc®2 Ko =0, Dg,V; =0, and

02, K11 = Dk (K}, V) D2, K + D3R, V)DioK Doy, (3188)

it follows from (3.184) and induction that, foKg, go) € Iwith | ¢ Ko @R chosen
suficiently small,

1D%, Kj1ll < klID, Kl + Cx® < C(L+ ji)w’ < O(§g Wi 41).  (3.189)

Thus the component-wise derivatig_ K is uniformly bounded_2(K o, X¥) for
(Ko, go) € I. Similarly, slightly more complicated recursion relations tHan (3.188)
for D3, K; andD,,D K, show that the component-wise second derivativé of
is unlformly bounded irL?(Ko @ R, X*) for | sufficiently small. This shows as in
(3.183) thak is continuously Fréchet fierentiable fron to X",

We have thus shown thatis continuously Fréchet flerentiable from a neigh-

bourhood of (Ko, $0) to X%, and [3.11R) follows froni(3.182), (3.187). o
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Chapter 4

Outlook

4.1 The weakly self-avoiding walk with contact attraction

In Section 1.2, the weakly self-avoiding walk with additional contact sel&etiton
was introduced, seg (1.9), but the subsequent discussion foautfesispecial case
without self-attractiony = 0. For the model with self-attractive interaction, there
is the conjectured phase diagram of Figure 1.3 which, in particular, psettie
same behavior as far = 0 also for stficiently smally > 0. However, even small
self-attraction makes the analysis morgidult than the weakly self-avoiding walk
already is because the energy functional then loses the superadditbpsriy. For

y =0,

HL+L) =) (Le +L)? 2 (L2 + L) = H(L) + H(L).  (4.1)

This superadditivity implies, for example, that= )’ . ¢;(x) is submultiplicative,
i.e.,C,+s < C/Cy, and therefore that therejis such thaé logc, — u.; seee.qg.[88]
or [12]. The subadditivityl(4]1) does not holdyif> 0.

As a result of the failure of (411), little is knownjf > 0. For example, the re-
sults about the (weakly or strictly) self-avoiding walk in dimension five antédrig
obtained with the lace expansion do not easily extend to small0. The unique
exception is a result by Ueltschi [109] who studies a model of the strictly self
avoiding walk with additional small self-attraction, in dimension five and higher,
but relies on very particular exponentially decaying step weights (insteazhoest
neighbor steps). The special step distribution helps in the analysis,dorma by
makingc, submultiplicative, but is an undesirable feature otherwise.

Although superadditivity oH fails for y > 0, it has been observed [110] that
the attractive force can be written as

DU L =2d Y (L2 + Y LL(ALY),

X yly~x

=20 Y (L) - 5 3 (VL) (4.2)

101



4.2. Logarithmic corrections to scaling behavior

so that

HAY (L) = (8 - 2dy) Zx: L2 + g Zx:(VL)i > HA=2dv.0(1) (4.3)

In terms of the renormalization group approach sketched in Séction 1.4 rthe te
(VL)?isirrelevant This is the basis for our work in preparation, with Brydges and
Slade, in which we extend the result [38] to small> 0, thus showing that the
two-point function is asymptotic to a multiple fix|~(¢=2) in dimensiond > 4.

4.2 Logarithmic corrections to scaling behavior

A long-term goal of the renormalization group program for four dimerediarak-
ly self-avoiding walks is to prove the conjecture (1.13) for the weakly @atiding
walk, or more generally that, for any> 0,
1
(EFwilP)” ~ cpti(logt)E  (t — co). (4.4)

A step towards this goal, interesting in itself, is to establish that the so-called sus
ceptibility x (x) = X, G, (x) has a related logarithmic correction,

(e +T7Y) ~cT(logT)? (T = o) (4.5)

wherepu, is the smallest real number such thgiu) < o for u > u.. In work in
preparation with Brydges and Slade, we utilize results from Chapters@yether
with [10, 34--37], to establish (4.5).

4.2.1 End-to-end distance and Laplace transforms

A heuristicargument (a version of Fisher’s scaling relation for the critical expo-
nents that applies in the critical dimension, see ¢.g. [15, 88]) predicts that if

EX|w,|? ~ ct(logt)? (t — o), (4.6)
x(u+e) ~eH(-loge)” (£10), (4.7)
G, (X) ~ X" (log [x) 7 (IX| — o0), (4.8)

then the exponents of the logarithms should be related by
y=2v-n. (4.9)

It has been proved that = 0 [38] and we can prove that = %. Then [4.9) leads
to the prediction = % as in [4.4).
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4.2. Logarithmic corrections to scaling behavior

Let us give some indication in which wdy (4.5) is a natural step in the direction
of proving (4.4). The left-hand side df (4.4) is

HW p 1%: Zsz(X)|X|p)1%
&) = (2o ) #10

It would sufice to establish the more general claim that

g Hel Z c(X)[x|P ~ cpt%(logt)%+% (t = ). (4.11)
This would in particular include
D6 (x) ~ cet!(logt) i (t — ). (4.12)

An approach to provind (4.11) is given by proving related asymptotic\behaf
its Laplace transform, which is given in terms of the two-point function (1bi6)

fom [; c,(x)|x|PJ e Ml dt = Z‘ G, (X)X (4.13)

The asymptotics (4.11) are related to the asymptotics of the Laplace tramstarm
its the critical pointu.. For example, equatioh (4)11) implies that

1\ 15
28y OIXI” ~ 6 (T(ogTH) % (T = e0). (4.14)

Forp = 0, this is the same as (4.5). Equatibn (4.14) follows from (4.11) by a direct
calculation: indeed, with = ST,

T (e By p _ * s o ttesT p
e T ¢ (X)X dt_Tf e ‘e cer (X)|X|P | ds,
fo (Z () ] : [Z (%) ]

(4.15)
and, using[(4.11), it is possible to conclude that
e T 3 G (M)IXIP ~ ¢, T2s% (logT)i*5 (T - o). (4.16)
This implies [(4.14) witfc;, given by
¢, =¢p fo e’sz ds=c,I'(1+5). (4.17)
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4.2. Logarithmic corrections to scaling behavior

The converse, thdt (4.114) impliés (4.11), is not true in general. HowExeberian
theory[59, Chapter XIII] shows that(4.14) implies that (4.11) holds asymptotically
in Cesaro meani.e.,

T
%f g He! [Zc,(x)le’] dt~c,TZ(logT)i*% (T > o).  (4.18)
0 X

To conclude[(4.11) rather than the averaged versionl(4.18), furtfemia-
tion is needed such as, e.g., eventual monotonicity of the integrand_in (4r18),
related asymptotics as= % — 0 for zin a region of the complex plane. The lat-
ter approach presumably requires major extensions to the argument Wibigk s
(4.5), but in the simpler case of weakly self-avoiding walks on a four diroaas
hierarchicallattice, this was successfully carried by Brydges and Imbrie [28].

4.2.2 The renormalization group approach

The renormalization group method can be used to establish that the longedistan
behavior of the weakly self-avoiding walk i) a suitable senserelated to that

of a free field. Thecritical model,u = u., is described by anasslessree field,

m? = 0, and subcritical modelg, > ., are related tanassivdree fields,m? > 0.

For example, we can show that there is a funcjioa x(m?) such that

() ~ = (0 1 0), (4.19)

i.e., the susceptibility of the weakly self-avoiding walk with parameter u(m?)

is similar to that of the free field with mass®. It turns out important to establish
the relation betweep andn? in the non-critical case. We can show that the right-
inversem?(u) = inf{m? > 0 : u(m?) = u} satisfies

M2(ue + &) ~ ce(~loge)™3 (e | 0). (4.20)

These two properties allow to conclude {4.5).

To exemplify in which ways the results of Chaptels 2 ahd 3 enter the proof of
(4.20), let us mention that the déieients 8; of Appendix[4, in particular[(A.B),
given in terms of the decomposition of the Green function with> 0, satisfy

i B; ~c(~logm?) (m? | 0). (4.21)
j=0

Using this, it can be shown thaf = g, asj — oo with go, ~ c(—logm?)~! as
n? | 0. This is origin of the logarithm ir_(4.20). The pow#tis a consequence of
the explicit structure of th@-equation of the recursiof (A.8).
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Appendix A

Perturbation theory and
coordinates of the
renormalization group

In this appendix, the second-order part of the renormalization groupfondpe
weakly self-avoiding walk model is considered, i.e., the mpayf Sectiod 1.4.5.

The mapy is defined in terms of a map, that arises from formal perturbation
theory, but does not satisfy the condition {3.1) imposed on thegr@Chaptef 3
itself. The remedy to this issue is an (explicit) coordinate change, exhibitedin th
appendix, that transformg, into a mapy to which Chaptelr!3 can be applied. The
maps are defined in terms of the decomposition of the Green function of CRapte

This provides an explicit connection between Chapters 2 and 3.

A.1 Flow of coupling constants

LetC =C; + C, + - - - be a positive definite decomposition of the Green function,
and use the convenient short-hand notation, \yifilked,
J
C=Cj, w=w;=)>GC. (A1)
=1

By translation-invariance, we can identi@/andw with functions of one variable,
for exampleC, = Cp,. Let

V, = ng + VTy + ZTA (A.2)

be the (local) interaction polynomial for the weakly self-avoiding walk modedr (
the definitions ofr andr,, seel(1.43) and (1.50).) In [10], a new local interaction
polynomialVjy . is defined, in terms o¥, C, andw, describing the fect of (for-
mal) second-order perturbation theory. The details of the specificativp afe
not important for the current discussion, so we only state the régulis essen-
tially of the same form as (AL2) with céiecientsgpt, vpt. Zot given by polynomials
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A.2. Bounds on the cdBcients

of degree two irg, v, z. To express the céiécients of the polynomials, it is con-
venient to introduce the following abbreviations: for a functibr= f (v, w), set

o[f] = f(v+2Cog,w+C) — f(v,w). (A.3)
Moreover, for a functior : Z¢ — R, set
Ady =3 > (Gue -, (A4)
ecZ4:|e|1=1
VaZ=3 D, (G -a)% (A.5)

ecZd:|e|1=1

and
a™ = > qi. (A.6)

All functions q below arise in terms of the covariance decomposition, g.g.v,
and satisfy:

quxizo, quxixj:q(**)éij @i,j=1,...,d). (A.7)
Then the cofficients are given by:
gpt = & — 8g°6[w®] — 4go[ywV],

vpt = v + 2Cog — 4g%(5[w®] = 3wPCo) — 2g(v + 2Cog)[w?)]

A.8
= §[v®wW] + 2g(z + y)s[(wAw) D] + 8gvw DTy, (A-8)

Zpt = 2 — 2g%5[(w3) ] = 602w 9] - 2z8[yw ).

A.2 Bounds on the cofficients

From now on, assume that the covariance decompo:ﬁtienz;?‘;l C; is given by

[C%]x =

lL d
[TewE  d-v
s (A.9)

dt .
IRCEC R
LIt
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A.2. Bounds on the cdBcients

where¢; is as given in Example 2.1.3. In particular, (A.9) implies the finite range
property .
[Cil: =0 ifd(x,0)> 1L/ (A.10)

and the bounds
|[V0C]]x| < O(L_(d_2+|a|l)(.f_1))_ (All)

Natural estimates on the dfieients in [A.8) are given in terms of the variable
p = L%y instead ofv andupt = L20* Dy Let ppi(g, Z, 1) = (pts Zots Hpt)-

Proposition A.2.1. The cogficients of the polynomialg, are bounded by Q(1 +
m?L%)~k) for any ke R and continuous in fe [0, §) for somes > O.

Proof. The proof uses (A.10)=(A.11) and is given in reference [10]. mi

The previous result is similar to Assumption (A2) of Chapter 3. (We will show
below thatO((1 + m?L2/)~*) can be bounded b®(x,).) However, the magp of
Chapte( 8 is assumed to tr@ngular which ¢y is not This is will be addressed in
the next subsection. In addition, for the applicability of the result of Téved3.1.4,

a positive lower bound on the cieient of theg?-term in theg-equation is crucial
to satisfy assumption (Al). This is a consequence of LemmalA.2.2 below, imwhic
we verify that the sequence of diieients has a positive limit ifn® = 0.

LemmaA.2.2. Let d = 4, m? = 0. Then there i3 > 0such that
B; = 85;[w®] = B, + O(L™). (A.12)
RemarkA.2.3. The constanf., can be determined exactly:

_ log(L)

2

Boo (A.13)

Proof of Lemm&A.2l2Denote the covariance decomposition®y(x), x € Z%.
By (2.36), there ixg € C.(R*) such that withc; (x) = L=% co(L/x),

C;(X) = ¢j(x) + O(L™¥). (A.14)

Let us first verify .
(Cj.Cji1) = (G0, Gy =O(L /L) (A.15)

where we use the notatiofF(G) = Y.z« F(X)G(X) wheneverF,G : Z* — R
and(f,g) = [., fg dxfor f,g: R* - R. LetR; = C; — ¢;. Then:

(C;,Cjv1) = (cj, Cjv) + (Cj, Rivt) + (G4, Ry) + (Ry, Riva). (A.16)
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A.2. Bounds on the cdBcients

Riemann sum approximation shows

(6 6) = o) =LY ) - [ et

yelL—izd

= O(L™)IV(cq)llL= = O(L™# ). (A.17)

The remaining terms are easily bounded ussuppC;)|, [sSuppR;)| = O(L¥):

(S, Rit1) < O(LY) G0 z) IR 411l o zey < O(LT/L™H), (A.18)
(Gt R) < O(LY)ICj 1t oo 2y IR I Lo (zey < O(L™/L™), (A.19)
(Ri, Rj+1) < O(LYM) IRl (z4) IRt [l ooy < O(L™H L™, (A.20)

and [A.15) follows. From this we can now deduce:
D (Ck,Cja) = Z(Co, Cir1k) + Z O(L~kL=20-k))
k=1

= Z(co c) +O(L™), (A.21)

(Cj+1,Cjs1) = (Co, Co) + O(L ™), (A.22)

and thus, usingcy, ;) = (Cp, C_x),

](3-)1 W_E'Z) =2w;,Cjs1) + (Cj41,Cj11) (A.23)
;
= > (e, Ge) + O(L ). (A.24)
K=—j

Note that with||c_g Iz~ < L%|collz~ and supp¢_x) € Bep—«,

Z (o, G}l = Z (Co, €1 < licollLe Z LZkf Ico(x)] dx

k=j+1 k=j+1 k=j+1
2 N —2k -2j
< llcollf Y| O(L™*) <O(L™%). (A.25)
k=j+1
Thus, with., = 837 __{Co, Ck), we have obtained
8w —w?) = B + O(L). (A.26)

That 8., > 0 can be seen from the fact that = 0 and Plancherel's theorem. o
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A.2. Bounds on the cdBcients

Proof of Remark’A.213By (A.21), it follows that

Boo = 8(Co,v) withv = Z Ck. (A.27)
keZ

The Fourier transforms afandv are

1 [£] 1
e = — d D = — .
6a(6) = | IRCLARORS (A.28)

wherep is a non-negative function wity’uooo pdt = 1. Observe that the claim for
v follows from the claim forc! the latter claim is verified at the end of the proof.
(A.28) implies, by Plancherel’s theorem, radial symmetry, and Fubini’s theore

:L _4( 1£1 d) q
(©.v) = Ga fR4 €1 fL—1|§| p(t) dt| d&
w3 0 " dr
“oi, (0w T

w o Lt
([ s o

wherews = 272 is the surface measure of the 3-spherer(*). The inner integral
in the last equation is equal to Idg). Thus, withfooo pdt=1,

8ws _ log(L)

BOO = W IOg(L) 7{2 (ABO)
as claimed. To verify (A.28), use that by (2.36)—(2.37), thelle 3s0 such that
g1 (x) = (t/K) "D (kxt) + Ot~ (A.31)
where, denoting the Fourier transformdoby ¢, see[(2.118)[(2.78),
~ «© dt *© dt
i@ = [ eeten E [T a3

In particular, the functior in (A.14)) is more explicitly given by

1
. 1fz ) (|§|t) dat 1 f'f'
C() = to|=—| —=— t) dt A.33
© =2 ), .\ %) TR e (A33)
as claimed wherg is given by

0= (5 o(3)1

This completes the proof. O
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A.3. Transformation

A.3 Transformation

As discussed, the maph(g, z, 1) = (gpt» Zpt» 1pt) does not have the right form to
apply the result of Chaptér 3. In Proposition Al3.1, we show that the ouatas
can be brought to the form expected in Chapter 3 by a simple transformation.

Proposition A.3.1. Defineg : R® — R3 by (g,Z i) = ¢(g,2z u) with i =
L20+Dy, u= L%y, and

g =g — 8g%5[w)], (A.35)

Z=z- 2g%[(w®) "], (A.36)

v'= v +2Co,08 ~ 4g°(8[w®] ~ 3wDCo,0 + Co,08[w )
— 2gvs[wP] + 2gz5[(wAw)Y]. (A.37)
Then the cogicients of the polynomialg are bounded by Q1 + m?L%)~k) for

an arbitrary k and m € [0, §). Define T: R® — R3 by T(g, z, 1) = (g7, zr, ur),
with u = L%y, ur = L% v, where

gr = g +4gyw®), (A.38)
zr = z+ 2zvw® 4 %vzw(**), (A.39)
vi = v+ v2wd. (A.40)

Then V) =V + O(JV[?). Let T, = T;;1. There exists a ball B R® independent
of j and nt € [0, ) such that, on B,

T, ogpoT =9+ pp (A.41)

wherepp is an analytic function on B witppi(g, , 1) = O((1 + m?L%) ¥ (|g| +
1z| + |u))®) uniformly in j and nf € [0, 6), for any k.

RemarkA.3.2. The transformatiol is simple and explicit, but we believe that

its existence may have a deeper origin that we have not unravelled. Fqrinea]ly
without consideration of the formal third-order errorfdrent covariance decom-
positions induce dynamical systems like (1.92) whose three-dimensiotsicpar

be of slightly diterent form. Some of the monomials that appear in the polynomi-
alsg; are essentially independent of the decomposition. On the other hand, some
decompositions of the Green function have the special property that

2[C/1 =0 (A42)
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A.3. Transformation

which is not true for the finite range decomposition discussed in Chaptecan |
be seen that the terms in (1143) involving? would thus vanish with such a de-
composition. Is it possible that the existence of such a transformationssegsran
invariance property of the dynamical system under coordinates indhyaditferent
covariance decompositions?

Note that the map has the form assumed fegrin Chaptef B. The next corol-
lary illustrates how the result of Chapfér 3 is used in the study of the wedlkly se
avoiding walk, except that in the real application, the error coordinatenignivial.

Corollary A.3.3. Fix anyQ > 1. The maps then satisfy Assumptions (A1-A2) of
Chapter 3. Moreover, Assumption (A3) can be satisfied withppt andy = 0.

Sketch of proof (i) Setj,, = [log, m]. We first show that for ang < logL/x?,
there isn < oo such that the number gf < j,, with 8; < cis bounded byn,
uniformly in m? € [0, §). To prove this, we first note thdt (A.13) implies that, if
m? = 0, for everyc + ¢ < logL/x?, there isng such that the number gfsuch that
Bj < ¢+ ¢ is bounded byy. We now prove the claim fam? > 0. It can be shown
using Examplé 2.113 that there are constahndq independent of such that

(mP)| < ¢’LILY, (A.43)

0
’W,Bj
but we omit the proof. This implies that for< j,, — q — p, with p large enough,
18;(0) — B;(MP)| < C’LIL¥mP < c'L™P <. (A.44)

It follows that the number of < j,, suchthaiB; < ¢ can be bounded by, +p+q.
(i) We now verify Assumptions (A1)—(A2) of Chapter 3 for LetQ > 1,

jo=inflk >0:18;1 <Q UMl forall j}, andy; =Q U-/2) (A45)
Let k be such that.%* > Q. Then
(1 + mPL%)* < LU m)e < Q= U=dm)s, (A.46)
(i) implies that|| 8]|c > ¢ > O uniformly inm? e (0, §). By Proposition A.3.11 and
(A.46), there is a constaft such that
1B < CcQ U-im) < %Q_('i_jm)+||,3||oo < Q—(.i—jﬂ)+||13||oo (A.47)

with jo < jm +logg C — logg c. In particular, the number gf < jo with 8; < ¢
is bounded byng = n + log,, C — log, ¢ wheren is as in (i), uniformly inm? e
[0, 8). This proves Assumption (A1) and Assumption (A2) is then a conseguenc
of Propositio A.3.1L with (& m?L%)~% = O(y;). O
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A.3. Transformation

Sketch of proof of Propositian A.3.The bounds on the céiients of the maps

@, given in [A.35)-[A.36), follow from Propositidn A.2.1 amd™*) = O(L%) and

w) = O(L%¥). The last two bounds are a straightforward with the properties of
the covariance decomposition th&;| < O(L=%) andC;(x) = O for x > cL/.
Indeed,

J J
with = > MGl = ) O(L*) = O(L¥), (A-48)
=1 x =1
J J
Wi = 30 D IXPIC. = Y O(L*) = O(LY). (A.49)
=1 x =1

These bounds similarly imply = id + O((|g| + |z| + |x[)?) uniformly in j.
Letw, =w + C andv, = v + 2Cpg. Then [A.8) can be written as

gpt + 4gv+w£rl) =(g+ 4ng(1)) - 826[w(2)]g2, (A.50)

Vpt + vfwﬁrl) = (v + 2w + 2Co.0(g + 4gywd)
— 4g%(5[w®)] - 3wCy o)
— 2g(v + 2Cog)6[w)]
+2g(z+ y)S[(wAw) Y], (A.51)

Zpt + 2zv,w™ + 1200 = (24 220w 4 120 — 225 () 9]
(A52)

Expressing’ andvp asv = L% g andvp = L=20+D 1, the right- and left-hand

sides of [A.50)-A.52) equab o T(g, z, u) + O((lg| + 12| + |ul)®) respectively
T, o ¢(g, z, 1) + O((Ig] + 1z| + |ul)®), with both bounds uniform ifj. This and
T.((g,z n) +1) =T(g, z, w) + O(r) imply the claim. O
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