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Abstract

Conditional Source-term Estimation (CSE) is a chemical closure model for the

simulation of turbulent combustion. In this work, CSE has been explored for mod-

elling combustion phenomena in a spark-ignition (SI) engine. In the arbitrarily

complex geometries imposed by industrial design, estimation of conditionally av-

eraged scalars is challenging. The key underlying requirement of CSE is that con-

ditionally averaged scalars be calculated within spatially localized sub-domains.

A domain partitioning algorithm based on space-filling curves has been developed

to construct localized ensembles of points necessary to retain the validity of CSE.

Algorithms have been developed to evenly distribute points to the maximum extent

possible while maintaining spatial locality. A metric has been defined to estimate

relative inter-partition contact as an indicator of communication in parallel com-

puting architectures. Domain partitioning tests conducted on relevant geometries

highlight the performance of the method as an unsupervised and computationally

inexpensive domain partitioning tool.

In addition to involving complex geometries, SI engines pose the challenge of

accurately modelling the transient ignition process. Combustion in a homogeneous-

charge natural gas fuelled SI engine with a relatively simple chamber geometry

has been simulated using an empirical model for ignition. An oxygen based reac-

tion progress variable is employed as the conditioning variable and its stochastic

behaviour is approximated by a presumed probability density function (PDF). A

trajectory generated low-dimensional manifold has been used to tabulate chemistry

in a hyper-dimensional space described by the reaction progress variable, temper-

ature and pressure. The estimates of pressure trace and pollutant emission trends

obtained using CSE accurately match experimental measurements.
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1 | Introduction

Energy has remained vital to the growth of our civilisation for centuries. But

over the past few decades, the rising population and rapid urban development have

caused an acute inflation of energy demand, encouraging a globally pervasive de-

bate on energy policy. A consensus has emerged mandating the alleviation of do-

mestic and industrial carbon footprints on the environment. Amidst the ongoing

polemic on current power generation technologies, the Stern review [1] categori-

cally decries fossil fuel combustion as a source of harmful pollutants and green-

house gases. Today, low-polluting renewable sources of energy form a topic of

significant research. Moreover, a growing conscience for our future generations

has initiated a shift towards sustainable lifestyles.

The ground reality, however, is that building an infrastructure of alternative

energy hinges on existing resources. Burgeoning demands of our society cannot

be fulfilled by renewable energy, particularly with the current pace of develop-

ment. The significance of combustion has been clearly illustrated by Tollefson and

Monastersky [2] among others. While fossil fuel reserves are said to be declining,

new repositories of combustible fuels are being discovered and invented in forms

hitherto unknown. All roads to the immediate future of our civilisation depend

inevitably on combustion – the challenge is to use every drop of fuel judiciously,

with diminishing environmental effects.

Scientific interest in combustion research has been fuelled further by the long

advancing strides of technology with each finding. In contrast to their counterparts

from early twentieth century, combustion systems today are outcomes of prolific

theoretical and experimental research. Contemporary aircraft engines are much

more efficient, cleaner and safer than their immediate precursors. Although ex-

1



1. Introduction

periments have been crucial to these drastic developments in engine design, they

have limited capability to probe the intricate geometries of modern devices. The

advent of high performance computing technology has not only aided experimental

research in this regard, but it has become a necessary predictive tool in the analysis

of alternative fuels. In fact, Moin and Kim [3] describe supercomputers as pow-

erful assets which might uncover the secrets long held behind natural phenomena

that characterise the behaviour of flames.

101 10−1 10−3 10−5 10−7 10−9

10−2 10−4 10−6

Unit: s

Turbulence

Combustion Chemistry

Figure 1.1: Diversity of time scales in a turbulent flame.

In combustion devices of engineering interest, fuel mixtures burn as turbulent

reactive flows. Chaotic properties of turbulence impart a disparity of scales to the

flow physics, while the chemistry in flames comprises an even broader spectrum

of time and length scales. Nitrogen oxides (collectively termed, NOx) are prod-

ucts of gradual transformation at high activation temperatures, whereas myriads

of radicals such as hydroxyl ions (OH−) survive fleeting nanoseconds. As dis-

cussed by Pope [4], small scales and many species are but among the manifold

other formidable challenges that render turbulent combustion to be mathematically

and computationally prohibitive for decades to come. Even the existence of an an-

alytical solution to the non-linear governing equations of turbulent flows is an open

Millenium Prize Problem, formally stated by Fefferman [5].

2



1. Introduction

In the absence of an exact solution, computational fluid dynamics (CFD) has

emerged as an approach to numerically estimate solutions of time sensitive industry

scale problems. Fundamental aspects of flame behaviour, including ignition, ex-

tinction and flame propagation, are modelled based on experimental knowledge,

asymptotic analysis, theoretical insight and often, scientific faith. Combustion

modelling seeks to resolve the interaction between chemistry and turbulence at

small scales; this is infamously known as the chemical closure problem. When

the fuel and oxidiser are mixed prior to combustion, the chemical reactions and

turbulent flow exhibit a stronger coupling, particularly at the high turbulence in-

tensity observed in engines. Premixed flames, however, can propagate in lean fuel

mixtures and demand relatively low ignition temperatures. These conditions pro-

vide an unsuitable environment for the emission of pollutants such as unburned

hydrocarbons, carbon monoxide (CO) and NOx. As modern engines increasingly

exploit a greater fraction of the premixed burn of fuel, there is an urgent need for

developing precise modelling tools.

Conditional source-term estimation (CSE) is a combustion model formulated

by Bushe and Steiner [6] in 1999 at the Center for Turbulence Research, Stan-

ford. In contrast to previously developed models for chemical closure, CSE is not

restricted to any specific regime of flame behaviour. CSE is poised to accurately

describe turbulence-chemistry interactions at high turbulence intensities due to the

lack of common binding assumptions. During the past decade, this model has been

successful in calculating quantities of practical interest for canonical non-premixed

flame problems; the application to premixed flame simulations has been relatively

recent. The subject of this thesis is to extend the applicability of CSE to problems

of industrial context. The work has been presented as a part on the theoretical

development of CSE and another on its application to problems in contemporary

natural gas engines.

3



2 | Background

Accurate modelling of turbulent reactive flows hinges on a sound understanding

of the complex constitutive processes. Knowing the fluid mechanical properties

and their variation with the temperatures exhibited by a combustion system is ab-

solutely essential for describing transport phenomena and other mechanisms such

as heat transfer, molecular diffusion and convective turbulent transport [7]. Upon

mixing, reacting species undergo chemical transformations that follow non-linear,

inter-dependent mechanisms. Pollutant formation and fuel consumption are gov-

erned by these mechanisms; in particular, nitrogen undergoes transformations to

produce environmentally dangerous oxides, NOx [8]. Even methane, the simplest

of simplest of hydrocarbons, may undergo over 340 elementary reactions involv-

ing up to 50 intermediate species upon combustion in the presence of air [9]. De-

tailed mechanisms are often simplified and tabulated prior to simulation in order

to improve computational efficiency [10]. Tabulation of reaction constants and

chemical reaction mechanisms has not been accomplished for higher hydrocar-

bons [11, 12]. In gas phase combustion, the energy released from reactions affects

the transport properties of the system and enhances turbulent micro-mixing, whilst

the increased micro-mixing helps escalate reaction rates by bringing reactants to-

gether faster. Resolution of these non-linear turbulence-chemistry interactions is a

persistent challenge in gas-phase combustion. This chapter provides a conceptual

background of mathematical investigative tools necessary for developing models

to resolve this coupling.

4



2. Background

2.1 Turbulence

Turbulent flows present a non-linear, multi-scale problem described in complete

detail by the inherently coupled system of Navier-Stokes equations. Originally

written as integral conservation laws by White [13], these differential equations

define conservation of mass and momentum assuming the continuum hypothesis,

wherein flow variables may be represented as smooth functions in space and time

[14]. Conservation of mass principle (continuity equation) is written as

∂ρ

∂ t
+

∂ρu j

∂x j

= 0 (2.1)

where ρ is the density of the fluid and u j is the velocity in the jth principal direction.

Conservation of momentum is described by the following transport equation

∂ρui

∂ t
+

∂ρuiu j

∂x j

=− ∂ p

∂xi

+
∂τi j

∂x j

+Fi. (2.2)

where τi j represents the stress tensor and p, the pressure at each point in the fluid,

while Fi accounts for external forces. For the constant-property Newtonian fluids,

this can be written as

τi j =−pδi j +µ

(
∂ui

∂x j

+
∂u j

∂xi

)
(2.3)

wherein δi j is the Kronecker delta and µ is the viscosity of considered fluid whereas

−p is the normal static pressure observed at any point. In addition with an equa-

tion for energy used in one of its various forms, the system is closed using an

appropriate equation of state [15].

Although this system of equations is readily solved for laminar flows, no known

analytical solutions exist for turbulent flows even in physical simple domains such

as pipes. Features that characterise turbulent flows have been known for centuries,

such as high rates of diffusivity, 3-dimensional irregularities and vorticity, but the

transition to turbulence has not been well described [16]. In the absence of such

critical knowledge, turbulence research relies on physical observations and numer-

ical analysis for valuable insight into this ubiquitous phenomenon. As established

5



2. Background

ℓ∼ ℓ0 ∼Lℓ0≫ ℓ≫ ηℓ∼ η

Universal equilibrium range Energy containing range

Figure 2.1: Kolmogorov’s energy cascade hypothesis.

by Reynolds [17], turbulent flows are characterized by a single non-dimensional

parameter based on the characteristic velocity (U ) and length scales (L ) of the

flow, defined as

Reynolds number, Re≡U ·L /ν (2.4)

where ν is the kinematic viscosity of the fluid. At high Reynolds numbers, typical

for most turbulent flows, a disparity of scales is observed [14]. The energy cascade

hypothesis illustrated in Fig. 2.1 describes the transfer of kinetic energy (k) from

the largest scales (ℓ0), which are determined by the scale of the domain geometry

(L ), to the smallest scales where all the energy dissipates by viscous action. Kol-

mogorov hypothesised that in a turbulent flow with high enough Reynolds number,

the statistics of motion at the smallest scales are isotropic and are universal to all

turbulent flows. The smallest scales can be determined solely by ν and the dis-

sipation rate, ε , and thus all information of geometry is lost at these scales. The

unique scaling of various parameters at play results in a universal form for the ratio

of largest scales, ℓ0, and the smallest, Kolmogorov scales defined by

η ≡ (ν3/ε)
1/4

(2.5a)

for the length scales, and by

τη ≡ (ν/ε)1/2 (2.5b)
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for the time scales [16, 18]. The relative magnitude of the smallest length and time

scales, η and τη respectively, referred to as the Kolmogorov scales [14], compared

to the largest scales, l0 and τ0, is also approximated in a simple form by using

Kolmogorov’s hypotheses as

η/ℓ0 ∼ Re−3/4 (2.6a)

τη/τ0 ∼ Re−1/2 (2.6b)

where τ0 and ℓ0 represent integral time and length scales respectively. An ex-

act numerical solution of Navier-Stokes equations is necessary to obtain the flow

variables, such as velocity and pressure, as known functions of space and time.

The computational cost of a numerical simulation are determined by the resolution

requirements – the solution domain must be large enough to contain the energy-

containing motions, and the grid spacing ∆x must be small enough to resolve the

dissipative scales [14]. However, it is evident from Eq. 2.6 that the instantaneous

range of scales in a turbulent flow increases rapidly with the Reynolds number.

Majority of engineering problems have too wide a range of scales to be directly

computed – given the necessary grid spacing, the number of grid points required

vary as Ng ∼ Re9/4 [14], which when combined with the time resolution require-

ments lends the alarming result given by

Computational effort ∼ Re11/4. (2.7)

It is evident that resolving all scales of motion using Direct Numerical Simu-

lation (DNS) for practical flows is infeasible [19]. The vast information obtained

using DNS of a practical combustion device often has little value since quantities

such as mean pollutant formation rates, average power, and average fuel consump-

tion are of greater interest to the industry. Significant progress has been made

towards a faster estimate of these parameters by describing the flow as a chaotic

process using random variables. Simpler descriptions seek to reduce computational

expense: instead of solving for the instantaneous flow-field, a statistical time evo-

lution of the flow is sought. Not only are the computational abilities inadequate,

knowledge of initial conditions is seldom precise, accurate or sufficient. Be it ex-
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perimental measurements or numerical estimates of initial and boundary values, the

difference between realisation and intention is often disparate. The mathematical

treatment of turbulent flows using random variables is a useful exercise that helps

achieve reasonably accurate predictions. However, these methods suffer from the

drawback of introducing terms which cannot be obtained from the governing equa-

tions and thus require modelling.

2.1.1 Reynolds and Favre Averaging

The starting point of statistical analysis of turbulent flows is the decomposition of

each quantity into a mean and a fluctuating component as follows:

Q = Q+Q′, (2.8a)

where the components follow the basic moment rules:

Q = Q, Q′ = 0. (2.8b)

Reynolds Averaged Navier Stokes (RANS) equations describe the transport of av-

eraged quantities through the Navier-Stokes equations using this decomposition.

The immense computational expense involved in DNS is, therefore, avoided by

calculating only the mean flow field. In compressible flows such as turbulent reac-

tive flows, the terms are instead Favre-averaged by considering a density weighted

average to simplify the resulting equations while still including the effect of density

fluctuations. Decomposition into Favre-terms is written as

Q = Q̃+Q′′ (2.9a)

where the Favre-average is defined by the principles

Q̃≡ ρQ

ρ
, and Q̃′′ =

ρ
(

Q− Q̃
)

ρ
= 0. (2.9b)

No simple relation exists between Favre and Reynolds averages – a mean-

ingful relation depends on density fluctuation correlations ρ ′Q′ which are im-
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plicit in the Favre-average. More importantly, since experimental techniques de-

termine Reynolds averaged data, comparing experimental results with Favre av-

eraged quantities obtained using numerical simulations might not be obvious [7].

The main reason for Favre-averaging is compactness of resulting equations. The

Favre-averaged momentum equations are derived as

ρ

(
∂ ũi

∂ t
+ ũ j

∂ ũi

∂x j

)
=− ∂ p

∂xi

+
∂

∂x j

(τ̃i j−ρ ũ′′i u′′j ). (2.10)

wherein ũ′′i u′′j is not closed within the governing equation system. The RANS or

FANS decompositions thus result in the creation of non-linear terms which are

unresolved in the equation system. In general, this term describing the average

exchange of turbulent momentum across the boundary of each finite volume is

described by a simple and inaccurate relation

ũ′′i u′′j −
2

3
kδi j = νT

(
∂ui

∂x j

+
∂u j

∂xi

)
(2.11)

Turbulence modelling then reduces to the art of estimating turbulent viscosity, νT .

An overwhelming majority of such models calculate this quantity using empirical

and scaling laws. Typically, turbulent energy spectrum parameters such as the dis-

sipation rate ε and turbulent kinetic energy k are used. The most popular technique

is to use the scaling

νt =Cµρ
k̃2

ε̃
(2.12)

to obtain a rough estimate. The value of Cµ depends on the flow and hence, this

modelling technique is not complete in the sense that it requires to be tuned to suit

a particular problem. A similar approach solves a separate transport equation for

the turbulent frequency ω = k/ε and is substantially more accurate in near-wall

layers [20]. As a unique strategy, [21] developed a transport equation for turbulent

viscosity which is a popular choice in external flow applications such as aircraft

simulations. In the recent past, several models have aimed to calculate Reynolds

stress using transport equations. Although this method can resolve the stress tensor

with greater accuracy it is not robust for industrial application.

In general, the RANS concept must be used with discretion and care. The
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approach is constrained by time and spatial resolution requirements dictated by

the numerical solution procedure. A RANS simulation is, however, a fast means

to obtain basic insight into the flow field. The low computational expense and

simplicity makes RANS the most popular approach in industry.

2.1.2 Filtering and Spatial Averaging

The objective of Large Eddy Simulation (LES) is to calculate the largest struc-

tures of the flow exactly and model the small-scale behaviour. LES resolves the

velocity field obtained by applying a low-pass filter of characteristic width ∆ to

the underlying turbulent velocity field, ui(~x, t). Large-scale behaviour of turbulent

flows is known to be governed by the domain geometry and motion at small-scales

is believed to have universal properties. In turbulent flows and turbulent reactive

flows, critical features including instabilities and unsteady mixing are governed by

the large structures which can be computed exactly by LES. The general filtering

operation is defined by

〈ui(~x, t)〉=
∫

V
G(~r,~x)ui(~x−~r, t)d~r (2.13a)

where the specified filter function G satisfies the normalization condition

∫
G(~r,~x)d~r = 1 (2.13b)

and integration is over the entire flow domain [14]. Standard filters include i) a

cut-off filter in spectral space which preserves length scales greater than 2∆, ii)

box filter in physical space which corresponds to a spatial averaging of Q over a

box with size ∆, and iii) a Gaussian filter. Unlike Reynolds averaging, the filtering

operations do not follow the moment relations, i.e.:

˜̃
Q 6= Q̃, Q̃′ 6= 0. (2.14)

However, unresolved stresses defined as follows in LES have a similar expres-

sion as in RANS and require sub-grid scale modelling:

τR
i j ≡ ũiu j− ũiũ j. (2.15)
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Filtered balance equations coupled with appropriate sub-grid models can be

used to numerically solve the behaviour of filtered fields. Although LES lacks the

accuracy level of DNS, a drastically more detailed picture of the turbulent flow

is obtained in contrast RANS. LES has advanced further as a powerful tool for

the simulation of turbulent flows in the past decade [22]. However, application to

turbulent reactive flows of even canonical industrial problems are challenging par-

ticularly due to the complex geometry that demands finer mesh resolution thereby

increasing computational expense [23, 24]. Pope [25] highlights the manifold chal-

lenges including completeness and tractability of LES as a precise mathematical

modelling tool; most industrial problems remain beyond the scope LES .

2.1.3 Probability Density Function Methods

An averaged quantity, computed using RANS, represents the first moment of the

field. However, given the one-point, one-time joint Cumulative Density Function

(CDF) of velocity in a turbulent flow-field

F(~u;~x, t)≡ P{ui(~x, t)<Vi, i = 1,2,3}, (2.16a)

the joint probability density function (PDF) can be computed as

f (~u;~x, t) =
∂ 3F(~u,~x, t)

∂ui∂u j∂uk

. (2.16b)

At each point in in space, the PDF characterizes the random velocity vector

without holding any joint information for two or more points in space or time

[14]. PDF methods solve a transport equation for these PDFs using stochastic La-

grangian methods. At high Reynolds numbers, molecular diffusion has a negligible

contribution to spatial transport and convection dominates the transport of momen-

tum, chemical species and enthalpy. Despite the accurate treatment of convective

terms in the Lagrangian PDF method, however, the computational cost involved in

Monte Carlo simulations render these methods infeasible for industrial application.

At one end of the spectrum of approaches for the simulation of turbulent flows,

DNS provides complete detail at an extremely high computational cost and, hence,

a limited range of applicability [19]. RANS-based models such as the k−ε method
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lie at the other end; these offer a diverse range of applicability but with poor accu-

racy and limited insight [26]. LES and PDF methods form the middle range and

are gaining popularity with the rapidly developing high performance computing

technology.

2.2 Turbulent Combustion

Turbulent combustion has been a topic of intense scientific inquiry for several

decades [27–30]. Several questions remain open due to the formidable complexity

of problems involved in a turbulent reactive flow particularly due to heat release

and differential diffusion [4, 31].

There are two principal modes of combustion based on whether fuel and oxi-

diser are mixed prior to combustion (premixed combustion) or not (non-premixed

combustion). In reality, most reactive flows exhibit a hybrid behaviour and are

categorised under partially-premixed combustion. Premixing provides for effec-

tive control of stoichiometry of flames – this allows lean-burning and reduction of

unburned hydrocarbons while providing an unsuitable environment for NOx forma-

tion mechanisms as understood today. Due to these reasons premixed combustion

is being employed in gas turbines, and is being theoretically investigated in or-

der to develop efficient automobile engines and industrial furnaces. On the other

hand, premixed fuel storage is a known safety hazard. Moreover, premixed flames

are susceptible to convectively and acoustically coupled instabilities. From a the-

oretical standpoint, the motion of turbulent premixed flames is a superposition of

flame propagation and turbulent fluid convection. This renders their mathemat-

ical modelling significantly more challenging than that of non-premixed flames.

Greater understanding of premixed flames and development of accurate predictive

techniques is, therefore, absolutely necessary. Since the non-reactive aspects in a

turbulent reactive flow have been already discussed, the following sub-sections fo-

cus on the two main processes that chemical species undergo – transformation and

transport.
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2.2.1 Combustion Chemistry

In hydrocarbon combustion, 50–7000 reacting species may be actually involved in

a complete mechanism describing the transformation of the fuel-air mixture into

products. However, known chemical mechanisms for most fuels used with CFD

analysis comprise 150–250 [4]. Solving transport equations for even the decreased

number of species is a computationally daunting task. Therefore, reduced mech-

anisms that represent the chemistry in terms of few key species and scalars are

sought as a chemistry model for most applications of practical concern.

Species Transport

The generalised conservation equation of chemical species is written as

∂

∂ t
ρYk +

∂

∂x j

(ρu jYk) =−
∂

∂x j

J j,k + ω̇k, (2.17)

where J j,k is the molecular diffusion term and ω̇k is the production rate of the kth

species. Species molecular diffusion is generally described using Fick’s law:

J j,k =−ρDk

Yk

x j

(2.18)

where Dk is the coefficient of molecular diffusion for the kth chemical species.

Premixed flames are adequately and inexpensively defined by a reaction progress

variable (c) in low-Mach number flows under adiabatic conditions and unity Lewis

number [32]. Typically, this may be defined using a product species as

c =
YP

YP,eq

, (2.19a)

or alternatively, using reactant concentrations as

c =
YR−YR,i

YR,eq−YR,i
. (2.19b)

where YR,i and YR/P,eq are the initial and equilibrium concentrations of appropri-

ately chosen reactant, R or product, P. In general, the reaction progress variable
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must transform monotonically across a flame, and preferably its gradient is evenly

distributed across the reaction. For such a progress variable, the Favre-averaged

species conservation equation can be written as

∂ρ c̃

∂ t
+

∂ρ ũ j c̃

∂x j

=
∂

∂x j

(
ρDc

∂c

∂x j

)
−

∂ρu′′j c
′′

∂x j

+ ω̇c (2.20)

where ω̇c describes the averaged transformation rate of the progress variable. The

density weighted averaged chemical diffusivity remains roughly constant; thus, the

following simplification is achieved

ρDc

∂c

∂x j

≈ ρDc

∂ c̃

∂x j

. (2.21)

Chemical transport equations in turbulent combustion using RANS decompo-

sition, therefore, results in yet another closure problem – resolving averaged tur-

bulent chemical transport and averaged chemical source-terms. Species turbulent

transport is typically modelled using a gradient diffusion assumption

ρu′′j c
′′ =−ρDT

∂ c̃

∂x j

(2.22)

where DT is an effective turbulent molecular diffusivity of the species associated

with the progress variable, c. Although this model for species turbulent transport is

widely debated due to the known existence of counter-gradient diffusion regimes,

the aforementioned model provides an inexpensive closure. It is, thus, widely used,

particularly in the context of RANS.

Chemical Transformation

The forward reaction rate of a generic chemical transformation of S species via M

reactions represented concisely as

S

∑
s=1

νr
m,s [A]s

k f−→
S

∑
s=1

ν p
m,s [A]s with m = 1, . . . ,M, (2.23)
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is a non-linear function of the concentration of the participating reacting species

([A]s). The production rate of the kth reacting species is expressed as

ω̇k =
M

∑
m=1

km

(
ν p

m,k−νr
m,k

) S

∏
s=1

[Ys]
ν r

m,s (2.24)

wherein km is the reaction rate coefficient and Ys denotes the concentration of the

sth species. To aggravate the non-linearity of the calculations, rate coefficients

of chemical reactions bear a strong non-linear dependence on temperature, which

governs activation energy of the reaction. The relation can be expressed in the

Arrhenius form [32] as

km = A ·T α · exp

(
− Ea

RT

)
(2.25)

where the constant A is termed the pre-exponential factor and α is the non-linearity

constant of temperature. The activation energy Ea, quantifies an energy barrier that

must be overcome for the reaction to proceed in the forward direction.

It is evident that averaged chemical reaction rates are non-linear functions of

scalar fields. These cannot be closed using other quantities solved for in the tur-

bulent combustion system, i.e. the averaged source-term for kth species or the

corresponding progress variable cannot be described by the averaged flow scalars

from the chemistry model.

ω̇c(ρ ,Yk,T ) 6= ω̇c(ρ,Yk,T ), (2.26)

2.2.2 Regimes of Combustion

Given the complex, non-linear law describing the burning rate ω̇c, a physical ap-

proach is often sought to derive models for turbulent combustion. Physical analy-

sis of chemical source-terms relies on a knowledge of the chemical and turbulent

scales involved in a turbulent reactive flow. Representation of flame behaviour and

its descriptive turbulence-chemistry interactions is the subject of the Borghi dia-

gram [33, 34]. The objective is to analyse premixed turbulent combustion using

characteristic length and time scales corresponding to chemistry and turbulence.
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Figure 2.2: Classical turbulent premixed combustion regime diagram.

Fig. 2.2 shows the diagram wherein the oncoming turbulence intensity normalized

by the laminar burning velocity u′/SL is plotted against the largest turbulent eddy

length scale normalized by the laminar flame thickness ℓ0/δ . The turbulent flow is

characterised by the turbulent Reynolds number

ReT ≡
u′ℓ0

ν
(2.27)

where u′ is the turbulent velocity fluctuation which is related to turbulent kinetic

energy as u′ ∼
√

k, ℓ0 is the turbulence integral length scale and ν is the kinematic

viscosity of the fluid. When the turbulent Reynolds number is smaller than one,

laminar combustion is observed. The remaining portion of the diagram represents

turbulent combustion which is well scoped by two other dimensionless ratios.

The regime diagram in Fig. 2.2, illustrates the approximate placement of tur-

bulent premixed flames observed in two common combustion systems – aircraft
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Figure 2.3: Turbulence-chemistry interaction in premixed flames.

and automobile engines. The Damköhler number compares macroscopic turbulent

time scales (τt ) and chemical reaction time scales (τc) as

Da≡ τt

τc

. (2.28)

For large values of the Damköhler number (Da≫1), the flame front is thin and

its inner structure is not affected by turbulence motions at small scales. Large scale

turbulent structures wrinkle the flame surface imparting strain in different regions

of the flame-sheet. At each point on this sheet, the flame may be described as a

one-dimensional laminar flame element called flamelet. Exceedingly low Damköh-

ler numbers (Da≪ 1), on the other hand, correspond to slow chemical reactions

wherein mixing always occurs prior to reaction as regime termed perfectly stirred

reactor. A transition away from the flamelet regime occurs when the smallest

turbulence scales have a time scale (τk) smaller than (τc). The Karlovitz number

defines the Klimov-Williams criterion corresponding the value of the ratio

Karlovitz number, Ka≡ τc

τk

. (2.29)

being equal to unity. This criterion helps delineate the flamelet regime from the dis-

tributed reaction zones regime where the inner flame structure is strongly affected

by turbulent motions.
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Fig. 2.3 illustrates the structure of turbulent premixed flames in a high turbulence-

intensity flow wherein Kolmogorov scale turbulent motion may occur within the

flame. It is noteworthy that in any given turbulent flow system, a wide range of

dissipation occurs – therefore, a turbulent premixed flame is most generally rep-

resented by a zone that may comprise smaller turbulent structures within. The

true structure of turbulence-chemistry interactions forms a topic of significant de-

bate [4]. Qualitative analyses of turbulent premixed combustion provide a starting

point for several quantitative chemical reaction rate modelling techniques. The di-

mensionless parameters that characterise the location of a premixed flame on the

diagram can guide the choice of the most appropriate modelling strategy.

2.2.3 Chemical Closure Methods

Closure of the chemical source-term can be addressed using one of several combus-

tion models; other than basic algebraic correlations, chemical closure techniques

comprise three classes: flamelet models, CMC methods and PDF methods.

Algebraic Models

The chemical source-term can be described as a function of easily acquired quan-

tities such as turbulent mixing. However, such models neglect local stochastic

behaviour and must be tuned to match the turbulent premixed flame problem con-

sidered. Although these descriptions are commonly used in the context of RANS

[35], more accurate models have been sought for LES [7]. An important class of

models, termed the eddy break-up model (EBU), for example, assumes that chem-

istry is fast. It is then, the mixing of reactants that is the rate determining process

of average reaction rate. If the time scale of mixing is taken to be the of the order

of turbulence time scale, the following model is obtained

ω̇ =C · ε
k

ρc′′2 (2.30)

wherein the progress variable is used as a measure of scalar fluctuation magnitude

[32]. The EBU and other similar models are widely used because of their simplic-

ity. Although such models can be implemented in LES contexts, the incorporation

of chemistry effects is difficult besides the fact that these are entirely ad hoc and
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may result in non-physical solutions [32].

Flamelet Models

The flamelet assumption forms the basis for geometrical analyses of turbulent pre-

mixed flames. The flamelet method, conceptualized by [36], resolves turbulence-

chemistry interactions by describing the turbulent flame locally with characteristics

of a steady, one-dimensional laminar flame. In the context of LES, two widely used

techniques comprise flamelet-based chemical closure [23]: the flame surface den-

sity approach (FSD) and the G-equation model. In the (FSD) approach, the flame

is identified as a surface which can be convected, diffused, curved and strained by

the turbulent velocity field [37]. The mean chemical source-term is calculated from

the total reaction rate and the flame surface density

ω̇k = Ω̇kΣ (2.31)

where Ω̇k is the integrated reaction rate of the surface of the flame and Σ, the mean

flame surface density. A similar approach introduces a flame wrinkling description

using the ratio of flame surface and its projection in the direction of projection

[38]. However, the accurate closure of the turbulent flux and propagation velocity

of the flame surface, and the effects of curvature and strain rate on the flame surface

remains a challenge [15, 23, 32].

In contrast, the G-equation model borrows from the description of a laminar

flame surface using a level set [23, 39]. This concept eliminates the need for re-

solving the flame-front structure, but consistency with LES filtering has only been

achieved recently by [40]. Further, the lack of resolution of the flame-front struc-

ture challenges the accuracy of chemical closure when the flame structure is ade-

quately affected by turbulence. The thickened flame model was proposed by [41]

as a method to resolve the flame structure on the mesh. However, the empirical

parameters used to thicken the flame are cannot be applied to arbitrary flame spec-

ifications.

As a less restrictive alternative to the geometric analysis of flame-fronts, the

statistical behaviour of a turbulent reactive flow is represented using a PDF. In

premixed laminar flames, the statistics of scalars are well characterized by the re-
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Figure 2.4: Conditional averaging of a scalar in a turbulent reactive flow.

action progress variable defined such that c = 0 in fresh gases and c = 1 in burnt

gas. One line of approach then is to presume the PDF of the progress variable and

obtain chemical closure using conditional statistics (as shown in Fig. 2.4) based

on the solution of a laminar flame. The Bray-Moss-Libby model combines such

an approach, using a bimodal distribution, with a physical analysis which accounts

for differences in fresh and burnt gases. Variations of the flamelet/progress variable

method have been applied to LES using a presumed PDF [42–44]. As mentioned

earlier, and illustrated in Fig. 2.3, these flamelet models are only accurate in high

Damköhler regimes, but are insufficient for modelling high turbulence-intensity

turbulent premixed flames [45].

Conditional Moment Closure

Formulated by two researchers, Klimenko [46] and Bilger [47] independently, Con-

ditional Moment Closure (CMC) is a well established chemical closure tool for

the simulation of non-premixed combustion [15, 32]. It has been used success-

fully for industrial applications including spray combustion in diesel engines [48].

CMC offers a promising closure tool for simulating premixed combustion since it
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is devoid of the assumption of a prevailing combustion regime. Recently, Amzin

et al. [49] simulated stoichiometric pilot-stabilized Bunsen flames using the RANS-

CMC method. Further, an algorithm was recently proposed for the application of

CMC for LES of premixed flames [50].

The CMC method is based on the concept that small fluctuations are experi-

enced from the average within an ensemble of realizations which comply with a

given condition [47]. Fig. 2.4 illustrates that the deviation about an average across

all possible conditions is seldom accurate. Whereas, for at each given condition,

fluctuations about the average of the ensemble of realisations is minimal. Condi-

tional averages of scalars are defined as

Q(ζ ,~x, t)≡ 〈Y (~x, t)|ξ (~x, t) = ζ 〉 ≡ 〈Y |ζ 〉 (2.32)

where the angle brackets denote an ensemble average over an ensemble of realiza-

tions of the flow and the vertical bar indicates that this average is conditional on

the condition, ξ (~x, t) = ζ that is, only those members of the whole ensemble that

meet this condition are included in the average [47].

Now, instead of presuming the reaction rate that is conditionally averaged on

the reaction progress variable, as in conventional flamelet based statistical ap-

proaches, CMC calculates this term from the hypothesis

ω̇k|ζ ≈ ω̇k(T |ζ , Yk|ζ , ρ |ζ ), (2.33)

assuming small fluctuations of reaction rate about its conditional average. Trans-

port equations are solved for conditionally averaged scalars required to estimate

the conditioned reaction rate. This adds to the dimensionality of the problem and

makes CMC computationally expensive. The conditionally averaged reaction rate

obtained can be integrated by writing

ω̇k(~x, t) =
∫ 1

0
ω̇k|c∗(c∗)P(~x, t;c∗)dc∗ (2.34)

where ω̇k|c∗(c∗) is estimated here through the CMC hypothesis and the presumed

PDF, P(~x, t;c∗) for any point in the domain is estimated using the first two mo-
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ments of the conditioning variable. As opposed to the flamelet method, CMC has

the capability of accurately modelling the chemical source-term for flames beyond

the flamelet regime [33]. However, transport equations typically solved for con-

ditionally averaged scalars consist of various unclosed terms which are not well

understood and are modelled inaccurately [31].

Transported PDF models

Various other statistical methods have been developed such as the linear-eddy

model (LEM) and the one-dimensional turbulence (ODT) model by [51, 52] and

the broad class of transported PDF models developed for turbulent reactive flows

by Pope [53]. In this formulation, the chemical source-terms are closed exactly,

whereas turbulent transport and molecular mixing must be modelled. The rela-

tively recent multiple mapping conditioning (MMC) method combines features of

CMC, PDF methods and mapping closure models [54, 55]. Although these meth-

ods provide excellent chemical closure, the computational expense of Monte Carlo

solution discourages application to industry-scale problems.

Conditional Source-term Estimation

Conditional Source-term Estimation (CSE) was formulated by Bushe and Steiner

[6], Steiner and Bushe [56] as a chemical closure model for the LES of turbulent

non-premixed combustion. The general concept of CSE follows from the CMC

method wherein the conditionally averaged source-term is approximated by condi-

tionally averaged scalars relevant to the chemistry model from the CMC hypothesis

(Eq. 2.33). Similar to CMC, the averaged chemical source-term is calculated by in-

tegrating the corresponding conditionally averaged source-term with the presumed

PDF at the given spatial coordinate with respect to the conditioning variable.

However, while conventional CMC models solve transport equations for the

conditionally averaged scalars, CSE employs an integral equation similar to Eq. 2.34.

Each Favre-averaged scalar (φ ) necessary for calculating the conditionally aver-

aged reaction rate can be written in terms of the corresponding conditionally aver-

aged scalar as

φ̃k(~x) =
∫ 1

0
φk|c∗(~x,c∗) P̃(~x,c∗)dc∗, (2.35)
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for the corresponding spatial coordinate (~x) in the physical domain where the

P̃(~x,c∗) represents the PDF at that point. This integral equation can be averaged

over an ensemble of discrete points (A) in the domain (where the conditional scalar

is constant) to yield an inverse problem for the calculation of the conditional scalar.

Formally, clusters of points that preserve the statistical homogeneity of condition-

ally averaged scalars are chosen as ensembles. The ensemble averaged conditional

scalar is then independent of the spatial coordinate and the integral equation is

written as

φ̃k(~x j) =
∫ 1

0
φk|c∗(c∗) P̃(~x j,c

∗)dc∗, j ∈ A (2.36)

for each point j within the ensemble. Conditionally averaged scalars have been

observed to exhibit statistical homogeneity over spatially localized ensembles of

points [56]. Fig. 2.5 highlights a chosen ensemble of localized points in the com-

putational domain of turbulent jet flame. With the conditionally averaged scalar

now invariant of the jth spatial coordinate (~x j) in these ensembles, the previous

equation can be treated as the well-known Fredholm integral equation of the first

kind [57], written in the discrete form as

~b = A~α, A ji =
∫ c2

c1

P̃(c∗;~x j)dc∗, (2.37)

where P̃(~x j,c
∗) is the kernel,~b is the known array of scalar averages in the entire

ensemble and ~α represents the conditionally averaged scalar. Integrations of the
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presumed PDF required for calculating A ji are done a priori and tabulated for m

bins using lower (c1) and upper (c2) limits for the ith bin of conditioning variable.

The Tikhonov method is implemented for regularising the solution of the integral

equation using an L-curve approach for the choice of an optimal regularisation

parameter as discussed by Salehi et al. [58].

The application of CSE to the simulation of turbulent premixed flames was

accomplished by Salehi [59]. As such, CSE has only ever been used for sim-

ple canonical reference flames, both in the context of non-premixed and premixed

flames. The following work focuses on advancing CSE for application to prob-

lems of industrial relevance. Such problems generally involve transient phenom-

ena which have not been modelled using CSE before. Moreover, industrial com-

bustion chambers have complex geometries and bounding walls which make the

accurate implementation of CSE more challenging. In the next chapter, a robust

method is developed to extend the applicability of localized CSE inversions to the

complex geometries generally encountered in an industrial problem. The follow-

ing chapter employs CSE for the simulation of a homogeneous-charge natural gas

spark-ignition engine.
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Algorithm

3.1 Introduction

Data classification is a frequently encountered solution approach in a wide range

of scientific disciplines. Spatial partitioning is a classification technique that is

critical for obtaining accurate solutions of physical problems wherein constitutive

local phenomena demand segregated treatment. In complicated domain geome-

tries, solutions can be achieved conveniently by partitioning the problem space

into localized sub-domains. Moreover, with the advent of parallel processing tech-

nology, mesh partitioning has become an essential tool to address large-scale prob-

lems by dividing computational load across the available computing resources. In

this context, size governs load balance whereas locality designates communication

between processors. The choice between load and communication is particularly

difficult to make for problems with multiple requirements.

The partitioning technique presented in the current work is motivated by a strin-

gent demand posed by a relatively recent model, termed Conditional Source-term

Estimation (CSE), applied for the computational fluid dynamics (CFD) simula-

tion of turbulent reacting flows [6, 58, 60, 61]. The key underlying assumption is

that conditionally averaged scalars requisite for the CFD solution are statistically

homogeneous in localized ensembles of points. In simple geometries, equi-sized

slices of the domain along its major axis have sufficed [56, 62]. However, auto-

mated construction of ensembles is absolutely necessary for applying the model

Preprint to be submitted to Journal of Computational Physics.
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to the arbitrarily complex geometries that have industrial relevance. Also, spa-

tial proximity must be maintained within each cluster to retain the validity of the

underlying assumption. In addition, parallel implementation of this large-scale

problem demands that a measure of load balance be considered in the partitioning

procedure. Finally, frequent mesh changes enforced by industrial demands or by

adaptive mesh refinement (AMR) impose a limit on the computational expense of

partitioning.

What makes this problem particularly challenging is that locality is not merely

desirable from a standpoint of computational efficiency, but is critical for calcu-

lating a valid solution. Load balance has relatively less significance, and as such,

were there to be a trade-off between load balance and strict locality, strict locality

must be preferred.

3.1.1 Relevant Background

The problem of clustering N objects into M groups of objects with similar prop-

erties is a persistent challenge in several academic fields. Frequent applications

are found in computer vision, pattern recognition, geographical information sys-

tems, large-scale database management, cache performance and many other fields

[63, 64]. Statistical classification, such as the cognitive mapping developed by

Jenks [65], seeks to reduce the variance within classes and maximize the vari-

ance between classes. Hartigan [66] discusses the relevant statistical theory for

clustering, whereas Davé and Krishnapuram [67] present a unified view of robust

clustering methods. These age old methods are efficient for applications with few

dimensions, but it is recognized that the curse of high-dimensionality pervades the

problem of clustering nearest point neighbours [68].

In CFD problems, partitioning corresponds to clustering regions of mesh based

elements such as nodes, finite elements or finite control volumes (also called cells).

For a multi-block finite volume mesh, popularly used in AMR implementations,

blocks of cells can be divided into clusters assigned to different processors in the

computing architecture. Such computational mesh partitioning has been the focus

of extensive research [69–72]. The choice of adopted strategy depends on known

geometric information and the trade-off between partition quality and computa-
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tional expense that best suits the problem. Dynamic problems are addressed using

fast methods, whereas relatively slower but highly customized procedures are for-

mulated to match specific criteria such as those imposed by the turbulent reactive

flow model.

Over the last few decades, a variety of mesh partitioning techniques have been

developed, majority of which fall into two broad classes. Geometric algorithms

including recursive bisection techniques and the SFC approach need only the lo-

cal geometric information, such as block-centre coordinates. As an example, the

recursive coordinate bisection (RCB) developed by Berger and Bokhari [73] is

widely accepted due to its simplicity and the wide range of its applicability. The

unbalanced recursive bisection strategy provides an advantageous modification of

the RCB method [74] and Gilbert et al. [75] investigate yet another geometric

method of dividing an irregular mesh into equal-sized pieces with few intercon-

necting faces. In general, geometric partitioning is conceptually simple, so the

corresponding algorithms are fast and easy to implement. Additionally, the space-

filling curve (SFC) approach, discussed at greater length in section 3.1.2, provides

a unified and scalable data structure relevant for a wide range of CFD operations

[76, 77].

The other broad class of partitioning, graph partitioning, has been reviewed by

Schloegel et al. [78]. In this method, nodes of a computational graph represent

tasks that can be executed concurrently and edges represent the communication

required between tasks from one iteration to the next. Domain partitioning using

such graphs is challenging and is recognized as an NP-hard problem [79]. The

greedy algorithm developed by Farhat and Lesoinne [80], builds each partition by

starting with a vertex and adding adjacent vertices until the target size or expected

computational load has been reached. A relatively advanced technique, termed

recursive spectral bisection (RSB), was developed by Simon [69]. It provides ex-

cellent quality partitions at exceedingly high computational costs. Many standard

graph-based partitioning packages have been developed to employ efficient global

and local graph-based methods for domain partitioning. Teresco et al. [81] provide

an extensive review of partitioning algorithms.

As mentioned earlier, the choice of adopted strategy depends on known in-

formation and the expense-quality trade-off that best suits the problem. The SFC
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(a) Hilbert-Peano curve

(b) Morton order curve

Figure 3.1: Contiguity of linear mapping within partitions using the (a)
Hilbert curve, and the (b) Morton order curve. Leaps between consecutive
points can be significantly larger in the Morton order curve.

approach not only provides a cheap clustering technique, but also an efficient data

structure for performing CFD operations faster. In this work, we employ an SFC

for to partition a multi-block finite volume mesh.

3.1.2 Space-filling Curves

An SFC is a continuous mapping of a d-dimensional space onto a one-dimensional

discrete parametrized curve. The objective of this mapping is to retain spatial prox-

imity of points in the linear space, i.e. neighbouring points in the physical domain

remain close on the SFC. The central operation involved in the SFC partitioning

approach is the reordering of mesh elements based on a locality index assigned

uniquely in each SFC. The ordered curve can then be partitioned into equal sec-

tions wherein spatial locality relies on the accuracy of the original mapping func-
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tion. The clustering properties of SFCs inherently ensure a reasonable shape and

locality of clusters [82]. Also, in contrast to iterative or recursive partitioning al-

gorithms, an SFC directly obtains a mapping for a given mesh. Additionally, the

linear mapping provides a method to access mesh elements for performing SFC

operations quickly. Due to these favourable properties, SFC have become an in-

creasingly popular strategy for mesh partitioning.

Among the various, well-documented SFCs, the Hilbert curve and the Morton

order curve are standard choices in CFD applications [77, 83]. While the Hilbert

curve is known for its excellent proximity preserving behaviour [84], the Morton

order curve is widely accepted for its simplicity and adaptability [85, 86]. Fig. 3.1

illustrates the differences between the two mappings shown for grids with progres-

sively increasing refinements. A partition of the entire domain is generally not

accessed completely by a contiguous part of the Morton order curve. The leaps

characteristic to this curve occasionally span the entire physical domain. On the

other hand, the Hilbert curve retains measurable and bounded cluster locality [87],

subjectively observable in the illustration. However, construction of Hilbert curves

is challenging, particularly for higher dimensional problems [88–90]. Moreover,

Hilbert curves also contain leaps when used in arbitrary geometries. In the present

work, we employ the Morton order curve although the partitioning algorithm de-

veloped may be used in conjunction with any SFC.

The Morton order curve is widely known for its compact construction rule [91].

A locality index, called Z-value, is generated for every coordinate by interleaving

the bits in corresponding binary representations [91]. The Z-value of a coordinate

in a 2-dimensional space is, hence, calculated as

Z(xi,yi) = x1
i y1

i x2
i y2

i . . .x
m
i ym

i (3.1)

where x
j
i and y

j
i represents the jth significant bit of x and y coordinates of the ith

point in its m bit representation. The interleaving concept can be extended to d-

dimensions in general, at the expense of an increased frequency and size of the

characteristic leaps between adjacent points [92]. In addition, unstructured grids

can be mapped, but bit-interleaving of the representative floating-point coordinates

is challenging. Connor and Kumar [93] introduced a Morton order curve construc-
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tion mechanism for floating-point coordinates which avoids assigning the Z-value

by sorting points based on their relative ordering. The algorithm is extendible to

multiple dimensions and easily implemented, but the ordering has been observed

to be sensitive to coordinate values. We adopt the floating-point Morton ordering

algorithm after translating block-centre coordinates to avoid negative values. The

spatial partitioning algorithm presented uses properties of the generated curve to

obtain highly localized partitions.

(a) Mesh geometry. (b) Morton order
curve.

(c) Obtained clusters.

Figure 3.2: Equi-sized partitioning of complex or refined mesh structures
results in poor spatial locality within clusters. Regions of similar shading are
assigned the same cluster.

3.2 Theory

SFC-based partitioning algorithms generally divide an SFC into equi-sized sections

which represent point-clusters in physical space. In Fig. 3.2, an irregularly refined

grid (Fig. 3.2(a)) is used to illustrate partitions obtained for complex geometry or

a refined mesh by dividing the Morton order curve (Fig. 3.2(b)) into sections of

equal size (Fig. 3.2(c)). Since two adjacent points on the Morton order curve may

not be spatially local, equi-sized partitioning may allocate these points to a single

partition regardless of the size of the leap (distance in the spatial domain) between

the points. Such losses in partition quality may be acceptable for problems wherein

spatial locality is not essential to the solution. However, in the context of our re-

active flow problem, this would imply that statistical homogeneity of conditionally

averaged scalars is not retained within a cluster containing a leap. Hence, the focus
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Algorithm 3.1: Spatial partitioning algorithm for multi-block meshes.

Require: Morton ordered d-dimensional point set P of size nb.
Ensure: C contains k sequential cluster sizes c j in point set P.

1: function CLUSTER(set P, int k)
2: R←{ri}|ri ≡ |~pi−~pi+1|∀ i ∈ {0,1, . . . ,nb−2}
3: j← 1; c0← 1; c j← 0∀ j ∈ {1,2, . . . ,k−1}
4: rth← THRESHOLD(R,k) ⊲ using Algorithm 3.2
5: for all i = 0→ nb−1 do

6: if ri/rmax < rth then

7: c j← c j +1
8: else

9: j← j+1; nc← j

10: end if

11: end for

12: C← BALANCE(C,R)
13: C← PARTITION(C,k)
14: return C
15: end function

16: function PARTITION(set C, int k)
17: while nc < k do

18: nc← nc +1; j0← j |A j = MAX(A)
19: for all j = nc→ j0 +1 do

20: c j+1← c j; j← j−1
21: end for

22: c j, c j+1← c j/2 ⊲ halve largest cluster
23: end while

24: return C
25: end function

of our spatial partitioning algorithm is to avoid such locality losses by intelligently

partitioning an SFC .

The guiding principle of our partitioning heuristic is to partition the SFC be-

tween points located across a leap. As presented in Algorithm 3.1, a normalization

scheme is employed to identify leaps between consecutive points on a Morton or-

der curve. The distance (ri,i+1) between the ith point and its next adjacent point

is normalized by the maximum distance (rmax) between consecutive points on the
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Algorithm 3.2: Threshold consecutive point distance for partitioning.

Require: Array R of consecutive point distances in Morton ordered set.
Ensure: rth is maximum threshold distance that generates nc < k.

1: function THRESHOLD(set R, int k)
2: rmin← MIN(R), rmax← MAX(R); rstep← rmin/(2× rmax)
3: nc← 1; rth← 1
4: while nc < k do

5: for all i = 0→ n−2 do

6: if ri/rmax > rth then

7: nc← nc +1
8: end if

9: end for

10: rth← rth− rstep

11: end while

12: return rth + rstep ⊲ generate nc < k

13: end function

curve as

r̂i =
ri,i+1

rmax

. (3.2)

The largest leaps are identified first and the curve is partitioned at those lo-

cations. Using the step size defined in Eq. 3.3, progressively smaller leaps are

identified, creating more partitions. The Morton order curve has several identically

spaced consecutive points throughout the mapping due to its repetitive Z-like pat-

tern. Therefore, partitioning the curve at all leaps which are larger than a certain

threshold distance (rth) results in more clusters than the required number (k). Since

this would add an additional challenging task of merging neighbouring clusters,

Algorithm 3.2 provides a method to obtain the maximum possible threshold dis-

tance which results in fewer clusters than required. The exact number of divisions

can then easily be produced by halving the largest clusters.

rstep =
rmin

2 · rmax

(3.3)

The partitioning algorithm has been illustrated in Fig. 3.3 for a Morton order curve

that has been constructed for a geometry identical to Fig. 3.2. The difference in
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(a) Morton order
curve.

(b) Partition at leaps. (c) Obtained clusters.

Figure 3.3: Partitioning of the Morton order curve between points located
across leaps increases cluster locality at the expense of losing cluster size
balance.

spatial locality of obtained clusters is obvious. A quantitative analysis of a Morton

order curve constructed for a simple geometry is performed in Section 3.4. A

range of point-clouds representing relevant geometries (described in the following

section) were partitioned using the algorithm.

Normalization of distances between adjacent points serves to maintain gener-

ality of the algorithm. However, a strict adherence to this metric for the identi-

fication of leaps ignores the size of clusters obtained. Often such a partitioning

algorithm produces exceedingly wide range of cluster sizes, particularly for irreg-

ularly spaced points, resulting in a severe load imbalance. As a method to limit

cluster size imbalance, Algorithm 3.3 merges clusters smaller than a threshold size

(cth) with their neighbouring clusters. A cluster is merged with its closest adjacent

cluster only if the inter-cluster distance is smaller than a pre-defined value.

Discrete SFCs are not uniquely defined. In general, additional criteria are re-

quired to specify the curve that best preserves locality. Appropriately defined mea-

sures of spatial locality allow the construction of curves that minimize the metric

in each cluster. Additionally, this provides a tool for meaningful comparison be-

tween two SFCs. The measures defined by Perez et al. [94] and by Gotsman and

Lindenbaum [87] calculate the weighted sum of distances within a cluster, where

the weights are inversely proportional to the spatial distance between the points.

Another formal analytical measure for parallel domain decomposition using SFCs

has been established for Hilbert curves by Tirthapura et al. [95]. A universal metric
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Algorithm 3.3: Cluster coarsening for reviving computational load balance.

Require: Cluster size set C with nc elements. Point-to-point distance set.
Ensure: C is devoid of small clusters that skew load balance.

1: function BALANCE(set C, set R, int k)
2: i← c0; cth← np/(2× k)
3: rmax← MAX(R) rco← rmax/2
4: for all j = 1→ nc−1 do

5: i← i+C j

6: if c j < cth then

7: if ri/rmax < rco or ri−C j
/rmax < rco then

8: jco←{ri < ri−C j
? j : j−1}

9: C jco←C jco +C jco+1

10: for all k = jco +1→ nc do

11: Ck←Ck+1

12: end for

13: nc← nc−1; j← j+1
14: end if

15: end if

16: end for

17: return C

18: end function

for the Morton order curve is more challenging because of the irregular frequency

and length of leaps, particularly in unstructured meshes.

We define a simple metric to quantify the locality preserved within clusters

obtained using our spatial partitioning algorithm. Within a cluster of points, the

root-mean-square distance (rrms) from the centroid (~rc) is a common method of

represent the locality preserved for a given number of points. The maximum dis-

tance (rmax) between any points within the cluster is an estimate of the skewness.

We define an index for each cluster as the ratio

LR =
rmax

rrms

, (3.4a)
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with the RMS distance written as

rrms =

√√√√√
nb

∑
i=1
|~ri−~rc|

nb

, (3.4b)

where vectors~ri represent block-centre coordinates and nb is the number of blocks

in the cluster. The ratio LR quantifies how skewed a given cluster is from the ideal

spherical distribution of points considering the number of points in the cluster.

In our locality analysis, we use LR to compare the performance of partitioning

methods. A similar ratio (LR,c) is applied to quantify inter-cluster locality using the

coordinates of cluster centroids instead of block-centres.

3.3 Test Geometries

The partitioning algorithm has been tested on three different geometries pertinent

to turbulent reactive flow simulations. The experimentally studied cases comprise a

Bunsen burner [96] and a bluff-body burner [97]. The third case is the combustion

chamber in a Ricardo Hydra internal combustion engine, including a relatively

simple piston [98]. Details of each geometry including prominent geometrical

features have been listed in Table 3.1.

Specification Dimensions (m)
Case Type ℓx ℓy ℓz Geometry Feature

Gulder Burner 5 ·10−2 5 ·10−2 0.1 -
Cambridge Burner 8 ·10−2 0.15 0.25 bluff-body

Ricardo Hydra SI-Engine 8 ·10−2 4 ·10−3 0.21 piston-bowl

Table 3.1: Specification and characteristic dimensions of test cases.

Computational meshes for the two burner cases were constructed using an in-

house multi-block meshing code. An axi-symmetric mesh representing the Ricardo

Hydra engine geometry (at 330◦ crank angle) was constructed using blockMesh

utility of OpenFOAM [99]. Details of all three meshes have been summarised in

Table 3.2. These meshes form a broad range of point distributions suitable for

a rigorous testing of the partitioning algorithm. All tests were performed on a
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desktop computer with 64-bit Intel R©Xeon R©CPU E31225 with 3.10GHz× 4 cores

and 8GB memory.

3.4 Results

We analyse the performance of our spatial partitioning algorithm primarily in the

context of load and locality. Qualitative illustrations have been used to highlight

the inaccuracy involved in equal sized partitions along with an assessment of com-

putational expense. Finally, validation using an a priori case has been reported.

As an illustration of the partitioning mechanism employed, properties of the

Morton order mapping have been plotted in Fig. 3.4 and Fig. 3.5 for various stages

of Algorithm 3.1. A simple cylindrical mesh geometry with 3200 blocks repre-

senting Bunsen burner is being partitioned here to obtain 128 localized clusters.

Fig. 3.4(a) graphs the normalized distance between consecutive points (which rep-

resent blocks in this geometry) on the Morton order curve. The conspicuous peaks

denote leaps between adjacent points – the largest leaps have unity normalized

length by definition. 125 point-clusters are obtained on partitioning the curve at all

locations where the consecutive block distance is greater than the threshold (rth).

In Fig. 3.4(b) the inter-cluster separations (which are the lengths of corresponding

leaps) have been plotted or each cluster. Whereas equi-sized partitions would con-

tain 25 blocks each, partitioning at leap positions produces some clusters (groups

of closely placed points in Fig. 3.4(b)) with fewer than 10 blocks. Fig. 3.5(a)

shows the result of the coarsening procedure implemented using Algorithm 3.3.

Closely placed clusters below a threshold distance are merged together, decreasing

the number of clusters to 101. Finally, k = 128 clusters are obtained by halving

the largest clusters. In Fig. 3.5(b), the troughs represent regions where halving was

Mesh Type Mesh Specifications
Case Geometry Case Blocks Cells

Bunsen cylindrical block-based 3,200 1.63 ·106

Bluff-body cylindrical block-based 588 4.7 ·105

Ricardo Hydra axi-symmetric cell-based 1 2.1 ·103

Table 3.2: Mesh type and features for different test geometries.
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(a) Separations between adjacent blocks on the Morton
order curve.
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(b) Separations between adjacent clusters of blocks on
the Morton order curve.

Figure 3.4: Distances between consecutive points (block-centres) on the Mor-
ton order curve displayed for the first two steps of the partitioning algorithm.
The normalized distance between points (r̂i ≡ ri/rmax) has been employed for
the case with nb = 3200, and k = 128.
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(a) Separations between adjacent clusters after the
merging procedure.
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(b) Resultant adjacent cluster separations after halving
the largest clusters.

Figure 3.5: Distances between consecutive points (block-centres) on the Mor-
ton order curve displayed for final steps of the partitioning algorithm. The
normalized distance between points (r̂i ≡ ri/rmax) has been employed for the
case with nb = 3200, and k = 128.
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done – clusters that are halved generally have high spatial locality within them re-

sulting in very small inter-cluster distance between the halved partitions. Based on

the strictness of spatial-locality desired, the threshold size of cluster can be changed

which is expected to affect coarsening results and hence, the cluster-size balance.

Load balance is assessed by comparing resulting cluster sizes (ci) with sizes

obtained from equal partitions (ceq,i). The ratio

ĉi ≡
ci

ceq,i
(3.5)

then provides a relative workload comparison for problems where each point con-

tributes equally to the computational load. The locality metric (LR) defined in

Section 3.2 has been used to quantify preserved spatial locality within each cluster.

A similar locality metric (LR,c) estimates the packing of clusters within a geometry.

Through Fig. 3.6 and Fig. 3.7, a comparison of the load balance and spatial

locality within clusters has been made between equi-sized partitioning and our

partitioning algorithm for the simple Bunsen burner geometry. In addition, the

comparison is extended to manually partitioned axial slices obtain for the cylindri-

cal mesh in Fig. 3.8(a). Relative cluster sizes obtained by the partitioning algorithm

are roughly bounded between 0.5 and 2 with the exception of a few partitions con-

structed for the sparse case, k = 32. Alongside, the packing of clusters has been

graphed in Fig. 3.8(b) using the inter-cluster locality metric. Equi-sized partition-

ing results in a number of poor quality partitions particularly for k = 128.

To visualize the poor quality of partitions often obtained from equi-sized SFC

partitioning, a section of a such partitioned Bunsen burner mesh has been shown

in Fig. 3.9. Although several partitions may be mapped by a single contiguous part

of the curve, Fig. 3.9(c) and Fig. 3.9(d) clearly illustrate that several partitions con-

tain leaps. Such clusters are unfavourable in terms of minimizing communication

since they comprise of two (or sometimes more) sub-clusters of blocks. A parallel

computation (with each processor assigned a cluster) would, therefore, have higher

communication overhead for these clusters when compared to the cluster such as

Fig. 3.9(b). More importantly, for the model implemented in our turbulent reactive

flow simulations, these clusters would be entirely unacceptable since conditional

averages of reactive scalars (such as temperature, for example) are expected to be
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(a) Cluster sizes from strictly equal partitioning of the
Morton order curve.
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(b) Spatial locality of equi-sized clusters on the Mor-
ton order curve.

Figure 3.6: Degree of computational load balance for the Bunsen burner ge-
ometry gauged using relative cluster (ĉi) for strictly equal partitioning. Inter-
processor communication is indicated by the locality metric (LR,c).
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(a) Cluster sizes obtained from the spatial partitioning
algorithm.
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(b) Spatial locality of corresponding clusters on the
Morton order curve.

Figure 3.7: Degree of computational load balance for the Bunsen burner ge-
ometry gauged using relative cluster (ĉi) for leap-based partitioning. Inter-
processor communication is indicated by the locality metric (LR,c).
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(a) Spatial locality within each cluster.
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(b) Inter-cluster spatial distribution.

Figure 3.8: Comparison of intra-cluster (LR) and inter-cluster (LR,c) locality
measures for manual partitioning (MP), equi-sized partitioning (EP) and us-
ing the spatial partitioning algorithm (SPA) on the Morton order curve in the
Bunsen burner geometry for k = 128 divisions.
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(a) Clusters obtained from equal par-
titions of Morton order curve.

(b) Cluster with no leaps.

(c) Pathological cluster with leap. (d) Pathological cluster with leap.

Figure 3.9: Clusters produced from the equi-sized partitioning of Morton or-
der curve often contain leaps that reduce spatial locality within. Even for a
simple cylindrical Bunsen burner geometry, leaps occur at frequent and irreg-
ular intervals.

completely different in the individually localized, but separated, sub-clusters. Es-

sentially, for these two pathological cases, the underlying assumption made in the

formulation of the combustion model would be violated.

Results of leap-based partitioning have been illustrated using sections of par-

titioned geometries in Fig. 3.10 for the Bunsen burner, and in Fig. 3.13 for the

relatively complex geometries accompanied with respective sectional views. Spa-

43



3. Spatial Partitioning Algorithm

(a) Cross-section view. (b) Perspective view.

(c) Section of clusters obtain from
equi-sized partitioning.

(d) Clusters as obtained from the spa-
tial partitioning algorithm.

Figure 3.10: A qualitative picture of the difference between regular equi-
sized partitioning and our spatial partitioning algorithm applied to Bunsen
burner geometry shown above.

tial locality is well preserved in the axi-symmetric mesh despite a low number of

cells. This emphasises the weakness of space-filling curves, especially the Mor-

ton order curve, in accurately preserving locality in 3-dimensional domains. In the

geometries used in our study, points on the Morton order curve designate centres

of blocks. Due to the varying shape and size of each block, an SFC mapping is

expected to have lower quality for these cases than cell-based construction.

Fig. 3.11 and Fig. 3.12 assess the performance of the partitioning algorithm for
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(a) Cluster sizes obtained for the bluff-body burner ge-
ometry.
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(b) Spatial locality of corresponding clusters on the
Morton order curve.

Figure 3.11: Computational load balance measures (ĉi and Lrms,c) estimated
for the bluff-body burner for different cluster divisions, k = 32,64 and 128.
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(a) Cluster sizes obtained for the Ricard Hydra engine
geometry.
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(b) Spatial locality of corresponding clusters on the
Morton order curve.

Figure 3.12: Computational load balance measures (ĉi and Lrms,c) estimated
for the Ricardo Hydra engine for cluster divisions, k = 32,64 and 128.
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(a) Cambridge bluff-body burner. (b) Section of burner showing clus-
ters obtained from algorithm.

(c) Ricardo Hydra engine. (d) Perspective of engine showing
clusters obtained from algorithm.

Figure 3.13: Sections of complex geometries clustered using the spatial par-
titioning algorithm along with appropriate sectional views.

the two relatively complex geometries, the bluff-body burner and the Ricardo Hy-

dra engine combustion chamber. It is observed that on average, clustering quality

decreases with progressively more challenging geometrical features in the domain.

Computational load is, however, maintained within the [0.5,2] bounds barring a

few exceptions. This is expected since, the floating-point Morton order algorithm

is sensitive to domain irregularities. Moreover, it is observed that, an optimum

number of partitions, k = kopt provide the best load balance for a given geome-

try. Often in large-scale parallel computing, one is constrained to use a number

of processors that is a power of 2 to take maximal advantage of the available re-
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Sensitivity Parameters (m) Computational Expense (ms)
Case rmax rmin k = 32 k = 64 k = 128

Bunsen 0.03 0.0008 72.54 41.6 35.8
Bluff-body 0.25 0.0019 7.1 7.2 7.61

Ricardo Hydra 0.04 0.0002 33.9 28.9 27.9

Table 3.3: Performance of spatial partitioning algorithm in different geome-
tries and inter-point distance parameters defining the corresponding Morton
order curve.

sources. As such, the distribution of cluster-sizes for each case considered here has

been graphed for 32, 64 and 128 clusters. For serial processing architectures, any

desirable number of partitions (preferably, k ≈ kopt ) may be constructed for serial

calculations.

The space-filling curve partitioning approach is sensitive to the coordinate val-

ues provided since inter-point distances can significantly affect the algorithm. Sev-

eral parameters such as the maximum and minimum inter-point distances have been

tabulated in Table 3.3. In addition the run-times have been tabulated for different

cluster numbers. A consistent correlation of execution time with mesh parameters

such as cell numbers and inter-point distances is not be observed. However, the

overall execution time is negligible, particularly for an operation that is expected

to be done only once on a simulation with no moving mesh and without any mesh

adaptation. On simulations with moving mesh or mesh adaptation, while this com-

putational cost would also be negligible, it is likely that there would be considerable

redistribution of data among nodes on a parallel machine; nevertheless, the com-

putational overhead of recalculating the distribution would be very small and the

redistribution is almost certain to be needed regardless of locality considerations,

simply to maintain load balance. In comparison to graph-partitioning methods, the

computational expense is low and encourages the use of SFCs for low to medium

end parallel processing architectures.
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3.5 Conclusions

A new algorithm for partitioning mesh for arbitrarily complex geometries has been

proposed that favours maximizing locality at the possible expense of increased

load imbalance. The method is based on the floating-point Morton order algo-

rithm, which provides a computationally inexpensive alternative for the dynamic

mesh partitioning in arbitrary geometries. Careful translation of negative coordi-

nates is required prior to the mapping in order to avoid inconsistencies. Also, the

lack of a unique Morton order curve for a given domain lends unwanted geometric

sensitivity to the partitioning algorithm. Our spatial partitioning algorithm can be

used in conjunction with the floating-point Morton ordering algorithm or with any

existing SFC-based domain decomposition. Cluster locality is improved against

strictly equal partitioning based on the Morton order curve. The technique can

be applied to geometries relevant to industrial problems. An acceptable degree of

computational load balance is achieved for large-scale parallel processing environ-

ments. The LR locality metric quantifies spatial locality within clusters and roughly

indicates inter-processor communication time.
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4.1 Introduction

Lean premixed combustion is increasingly employed by modern engines in order

to reduce fuel consumption and NOx emissions. Design and development of ro-

bust premixed combustion systems hinge on predictive computational tools that not

only reduce dependence on experiments but may offer additional information. The

choice of computational approach is a product of the trade-off between solution

accuracy and the associated computational time. In this regard, LES is gradually

becoming a computationally feasible approach for understanding cyclic variations

in spark-ignition engines. In the meantime, RANS continues to offer an inexpen-

sive alternative and provide acceptable design solutions in a time-frame suitable to

the industry.

Closure issues arise inevitably from both these solution strategies; in particu-

lar, the closure of species turbulent fluxes (ρu′′i u′′j ) and chemical source-terms (ω̇k)

is the objective of combustion modelling. Few models account for the complexi-

ties involved in turbulent chemical transport such as counter-gradient transport in

reactive flows [100]. Although models based on the gradient transport hypothesis

are relevant only for specific premixed combustion regimes, these are widely used

due to their simplicity. Estimation of chemical source-terms has received greater

interest due to its contribution to the overall accuracy of the solution [15, 32].

Preprint to be submitted to Combustion Science and Technology.
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4.1.1 Relevant Background

Chemical closure for RANS can be broadly divided into three different approaches

that respectively address the non-linear chemical source-term using an algebraic,

a geometrical or a statistical analysis. Algebraic models represent the source-term

as a function of easily acquired quantities such as turbulent mixing. Such models

involve inaccuracies and must be tuned for the behaviour of turbulent premixed

flame in context. These models have been hitherto commonly preferred in the

context of RANS [35]. However, more accurate models have been developed and

gaining popularity in recent years.

Geometrical analyses of turbulent premixed flames are based on the flamelet

assumption conceptualized by [36]. Turbulence-chemistry interactions are resolved

by describing the turbulent flame as an ensemble of locally steady, one-dimensional

laminar flames. Two widely used techniques comprise flamelet-based chemical

closure: the Flame Surface Density (FSD) approach and the G-equation model. In

the FSD approach, the flame is identified as a surface which can be convected, dif-

fused, curved and strained by the turbulent velocity field [37]. A similar approach

introduces a flame wrinkling description using the ratio of flame surface and its

projection in the direction of projection [38]. In an experimental investigation by

Veynante et al. [101], the closures generally used for the flame surface density

equation have been debated due to their inaccurate representation of propagation

and curvature terms. The accurate closure of the turbulent flux and propagation ve-

locity of the flame surface and the effects of curvature and strain rate on the flame

surface continues to be a persistent challenge [15, 32].

In contrast, the G-equation model borrows from the description of a laminar

flame surface using a level set [39]. This concept eliminates the need for resolv-

ing the flame-front structure, but the lack of resolution of the flame-front structure

disrupts the accuracy of chemical closure when the flame structure is adequately af-

fected by turbulence. The thickened flame model was proposed by [41] as a method

to resolve the flame structure on the mesh. However, the empirical parameters used

to thicken the flame are cannot be applied to arbitrary flame specifications. As an

advancement, a three-zone coherent flame model based on a flame surface density

equation and a conditional averaging technique that allows precise reconstruction
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of local properties has been used with success in gasoline engines [102].

As a less restrictive alternative to the geometric analysis of flame-fronts, the

statistical behaviour of a turbulent reactive flow is represented using a PDF of a

single variable that characterizes the one-point, one-time state of a turbulent re-

active flow. In premixed flames, the reaction progress variable defined as c = 0

in fresh gases and c = 1 in burnt gas is employed. One line of approach then is to

presume the PDF of the progress variable and obtain the averaged chemical source-

term by integrating the source-term conditionally averaged on the progress variable

with its local PDF as

ω̇k(~x, t) =
∫ 1

0
ω̇k,lam(c∗)P(~x, t;c∗)dc∗ (4.1)

where P(~x, t;c∗) is the PDF and ω̇k,lam(c
∗) is the presumed conditional moment

(PCM) written as a function of c∗, the statistical random variable associated with

the reaction progress variable. The Bray-Moss-Libby (BML) model combines such

an approach using a bimodal distribution with a physical analysis that accounts for

differences in fresh and burnt gases. Veynante et al. [101] observe that the BML

model has good overall trends but lacks precise closure of the flame wrinkling

length scale.

Although variations of the progress variable approach exist, most such mod-

els describe constant pressure premixed combustion; advancements to accurately

represent varying pressure conditions have been relatively recent [103]. Recently,

a model has been proposed for simulating turbulent premixed flames in the cor-

rugated flamelet regime by combining the BML approach in a PDF framework

with elements of the FSD equation using a reaction progress variable [104]. Also,

the Eulerian particle flamelet model has been applied to the simulation of non-

premixed combustion in diesel engines [105] and bluff-body flames [106]. This

approach includes unsteady effects in stretched laminar flamelet models by intro-

ducing marker particles that correspond to flamelet histories associated with the

path of the particle in the turbulent flow field. The range of flamelet PDFs required

for simulating a particular combustion process may differ from the ensemble cho-

sen manually, thereby demanding an a priori knowledge of the solution. Experi-

mental observations of [45] highlight that the flamelet assumption is unwarranted
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for high turbulence intensity turbulent premixed flames.

Various other statistical methods have been developed such as the broad class

of transported PDF models developed for turbulent reactive flows by Pope [53].

In these models, the complete statistical description of the state of the flow is pro-

vided through a velocity-composition joint-PDF. A transport equation is written

for the joint-PDF and solved using Monte Carlo methods. The relatively recent,

Multiple-mapping Conditioning (MMC) method combines features of CMC meth-

ods, PDF methods and mapping closure models [54, 55]. These methods provide

excellent chemical closure; but, the associated computational expense discourages

their application to industry-scale problems.

Originally formulated by Klimenko [46] and Bilger [47], CMC has been well

established as a chemical closure tool for the simulation of non-premixed combus-

tion [15, 32]. It has been used successfully for industrial applications including

spray combustion in diesel engines [48]. CMC offers a promising closure tool for

simulating premixed combustion since it is devoid of the assumption of a prevail-

ing combustion regime. Instead of presuming the reaction rate that is conditionally

averaged on the reaction progress variable, as in conventional flamelet based sta-

tistical approaches, CMC calculates this term for the kth filtered species transport

equation from the hypothesis

ω̇k|ζ ≈ ω̇k(T |ζ , Yk|ζ , ρ |ζ ), (4.2)

assuming small fluctuations of scalars about their conditional averages. The con-

ditionally averaged reaction rate obtained is integrated in a similar fashion to the

PCM approach by writing

ω̇k(~x, t) =

∫ 1

0
ω̇k|c∗(c∗)P(~x, t;c∗)dc∗ (4.3)

where ω̇k|c∗(c∗) is estimated here through the CMC hypothesis. As opposed to

the flamelet method, CMC has the capability of accurately modelling the chemical

source-term for flames beyond the flamelet regime [33]. However, transport equa-

tions typically solved for conditionally averaged scalars consist of various unclosed

terms which are not well understood and are modelled inaccurately [31].
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CSE is a novel CMC-based chemical closure model. In CSE, an inverse prob-

lem is solved over spatially localized ensembles of finite volumes to obtain con-

ditionally averaged scalars. Therefore, CSE is devoid of the closure issues asso-

ciated with conventional CMC methods. Recent advances have allowed CSE to

be applied to RANS simulations of premixed combustion in a Bunsen burner [58].

However, CSE has never been applied to practical problems which are governed

by transient phenomena and characterised by complex geometries. The following

sections present the theory and results for application of CSE to natural gas fuelled

spark-ignition engines.

4.2 Theory

4.2.1 Conditional Source-term Estimation

The general concept of CSE follows from the CMC method wherein the condi-

tionally averaged source-term is approximated by conditionally averaged scalars

relevant to the chemistry model from the CMC hypothesis (Eq. 4.2). The averaged

chemical source-term is calculated by integrating the corresponding conditionally

averaged source-term with the presumed PDF at the given spatial coordinate with

respect to the conditioning variable as follows

ω̇k =

∫ 1

0
ω̇k|c∗P(c∗)dc∗, (4.4)

where c∗ is the statistical random variable associated with the conditioning vari-

able. The presumed PDF for any point in the domain can be estimated with rea-

sonable accuracy using the first two moments of the conditioning variable. As

described in the following section, a normalized oxygen based reaction progress

variable has been used in this work with the presumed PDF shape chosen as the β

function. While conventional CMC models solve transport equations for the condi-

tionally averaged scalars that are necessary for obtaining the conditionally averaged

reaction rates using the CMC hypothesis [31], CSE employs an integral equation

similar to Eq. 4.3. Each Favre-averaged scalar (φ ) necessary for calculating the

conditionally averaged reaction rate can be written in terms of the corresponding
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conditionally averaged scalar as

φ̃k(~x) =

∫ 1

0
φk|c∗(~x,c∗) P̃(~x,c∗)dc∗, (4.5)

for the corresponding spatial coordinate (~x) in the physical domain. The condition-

ally averaged scalar can then be averaged over an ensemble of discrete points (A)

in the domain. If the ensemble of discrete points is chosen in a way to preserve sta-

tistical homogeneity of conditionally averaged scalars, then the ensemble average

is independent of the spatial coordinate and the integral equation is written as

φ̃k(~x j) =
∫ 1

0
φk|c∗(c∗) P̃(~x j,c

∗)dc∗, j ∈ A (4.6)

for each point j within the ensemble. Typically, conditionally averaged scalars

are statistically homogeneous over spatially localized ensembles of points [56].

In this work, however, the entire computational domain is considered as a single

ensemble of points where the above equation is assumed to be accurate. With the

conditionally averaged scalar now invariant of the jth spatial coordinate (~x j) in these

ensembles, the previous equation can be treated as a Fredholm integral equation of

the first kind with P̃(~x j,c
∗) as the kernel. The conditionally averaged scalar can be

obtained for the ensemble from the deconvolution of this integral equation. Using

m bins for the conditioning variable, the integral equation is written in the discrete

form as
~b = A~α, A ji =

∫ c2

c1

P̃(c∗;~x j)dc∗, (4.7)

where b j = φ̃k(~x j) and αi = φk|c∗i is the conditional average in the ith bin. Inte-

grations of the presumed PDF required for calculating A ji are done a priori and

tabulated for m bins using lower (c1) and upper (c2) limits for the ith bin of condi-

tioning variable. As in the work of Salehi et al. [58], the Tikhonov method is im-

plemented for regularising the solution of the integral equation using an unstrained

1-dimensional laminar flame solution appropriate for the mixture properties and

initial conditions. Fig. 4.1 shows different conditionally averaged temperatures

obtained from laminar solutions of mixtures with varying relative air-fuel ratio (λ )

used as regularisation solutions. An L-curve approach is employed for the choice
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Figure 4.1: Laminar flame solutions of mixtures with varying relative air-fuel
ratio (λ = 1,1.1, . . . ,1.5) used for the regularisation of CSE solutions.

of an optimal regularisation parameter as discussed by Salehi et al. [58]. In this

work, the entire physical domain is treated as a single ensemble of points for the

inversion procedure.

4.2.2 Presumed Probability Density Function

The PDF is central to the accuracy of CSE related integral inversions and the choice

of conditioning variable is important for the overall description of the solution.

Swaminathan and Bilger [107] have discussed various choices appropriate for tur-

bulent premixed flames. It is critical for the progress variable to vary linearly across

the turbulent flame so that the computational description is accurate. In this work, a

reaction progress variable defined using O2 mass fraction is used due to the roughly

linear transformation of oxygen across an ignition process. The reaction progress

variable is defined as

c =
Y 0

R −YR

Y 0
R −Y ∞

R

(4.8)

where O2 is the chosen reactant (R), Y∞
R is its equilibrium mass fraction, and Y0

R

is the initial mass fraction of oxygen in the premixed mixture. The β function
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Figure 4.2: The β -PDF has been tabulated a priori for different means and
variances. A sample distribution of the two presumed PDFs employed has
also been illustrated.
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has been used as the presumed shape of the PDF despite its failure in reproducing

the true shape of the PDF for premixed flames as discussed by Jin et al. [61]. As

a first implementation of the CSE framework in an industrial context, the β -PDF

offers an acceptable ad hoc solution and recovers the extreme properties expected

of the true PDF such as having δ functions appear at 0 and 1 for maximal variance

or a single δ appear at the mean for zero variance. In practice, the cumulative

distribution function is used instead of a PDF because of its monotonic properties

which allows better numerical accuracy.

Given the reaction progress variable, its mean and variance characterise the

presumed PDF in an approximate sense. Therefore, the one-time, one-point PDF

is calculated as

P(c∗;~x, t)≈ P(c∗; c̃, c̃′′2) (4.9)

where c∗ is the statistical random variable associated with the progress variable c̃

and c̃′′2 are the mean and variance of the progress variable. In the a priori tabulation

process, the binning is performed as

(Pdc)1 =

∫ ∆c/2

0
Pdc ; (Pdc)m =

∫ 1

1−∆c/2
Pdc (4.10a)

for the first and last bins, and as

(Pdc)i =
∫ ci+∆c/2

ci−∆c/2
Pdc (4.10b)

for the general ith bin. Careful tabulation of the first and last bins is done using

half-bins in order to preserve the precise placement of the δ functions at 0 and/or

1. Fig. 4.2 shows the mean-variance map for which the β -PDF is tabulated prior to

simulations; several sample distributions of the β -PDF have been shown alongside

to demonstrate the range of behaviour described by β -PDF.

4.2.3 Chemistry Reduction

The conditionally averaged reaction rate is calculated using Eq. 4.2 from the knowl-

edge of conditionally averaged scalars obtained via the inversions discussed previ-

ously. In general, it is possible to consider the entire state space of the turbulent

58



4. Engine Simulations

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

Progress variable, c∗

C
on

di
ti

on
al

re
ac

ti
on

ra
te

,ω̇
c
|c∗

(s
−

1
)

10 bar
30 bar
25 bar

Interpolated

Figure 4.3: Conditional reaction rates at 25 bar obtained directly compared
with an interpolation between tabulated values at 10 bar and 30 bar.

reactive flow involving detailed chemistry into the chemistry model necessary for

the CMC hypothesis. In such a case, CSE can be used to calculate all required

conditionally averaged scalars which can then be used to obtain the conditionally

averaged reaction rate. However, in practice the chemistry model is simplified by

reducing the chemistry space in order to decrease computational expense. Further,

based on the gradients involved in the reaction rate dependence with a scalar, the

exact number of bins may be varied. In this work, the Trajectory Generated Low-

dimensional Manifold (TGLDM) proposed by Wang et al. [62] is implemented to

tabulate a modified GRI-Mech chemistry developed by Huang et al. [108] using

temperature, reaction progress variable and pressure. Due to the near-linear depen-

dence of reaction rate on average pressure at any given point, only 3 manifolds of

pressure (10, 30 and 60 bar) were tabulated; any conditional reaction rate is well

approximated from an interpolation between the available manifolds as illustrated

in Fig. 4.3. Therefore, conditionally averaged reaction rate is expressed as

ω̇k|c∗(c∗)≈ ω̇k(P, T |c∗(c∗)) (4.11)
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where P is the average pressure and T |c∗ is the conditionally averaged temperature

obtained via the CSE model. While 51 bins of the reaction progress variable are

used (including the first and last half-bins), 100 bins of temperature have been used

due to the sensitivity of reaction rate to temperature. Since the tabulation is done

using the reaction progress variable, the conditioning variable is known for each

bin. As a result, the only unknown parameter required for closure of chemical

reaction source is the conditional average of temperature. This is in contrast to the

work of Salehi et al. [58] wherein a Bunsen burner flame was simulated using CO2

and H2O mass fractions to tabulate the chemistry with normalized CO2 fraction

used as the conditioning variable.

4.2.4 Governing Equations

As discussed earlier, the CSE method employs a presumed shape for the PDF of the

conditioning variable. Construction of the simple β -PDF relies on the knowledge

of mean and variance of the conditioning variable at the given point and time.

These quantities can be obtained using transport equations: since the conditioning

variable is normalized oxygen mass fraction, the equation is identical to that written

for any species mass fraction:

∂ ρ̄ c̃

∂ t
+

∂ ρ̄ ũic̃

∂xi

=−∂ ρ̄ ũ′′i c′′

∂xi

+
∂

∂xi

(
ρ̄Dc

∂ c̃

∂xi

)
+ ω̇c, (4.12)

where Dc is the Fick’s coefficient of molecular diffusivity for the species related to

the progress variable. Two unclosed terms exist in the equation mentioned above:

i) the turbulent scalar flux, ũ′′i c′′ and ii) the chemical source-term ω̇c which is es-

timated using CSE. The widely applied method of modelling the turbulent scalar

flux using gradient transport hypothesis has been employed in this work. This is

applicable for flows where counter-gradient diffusion is not dominant [100]. A

transport equation for the variance of progress variable is also solved:

∂ ρ̄ c̃′′2

∂ t
+

∂ ρ̄ ũic̃
′′2

∂xi

=
∂

∂xi

(
ρ̄

νT

Sc1

∂ c̃′′2

∂xi

)
+2ρ̄

νT

Sc2

∂ c̃

∂xi

∂ c̃

∂xi

−2ρDc

∂c′′

∂xi

∂c′′

∂xi

+2c′′ω̇c
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where νT is turbulent viscosity. Similar to the work of Salehi et al. [58], all Schmidt

numbers are set to 0.7 based on the work of Yimer et al. [109]. The two unclosed

terms in the equation namely, the correlation between source term and fluctuations

of the conditioning variable (c′′ω̇c) and the Favre-averaged scalar dissipation rate(
ρD ∂c′′

∂xi

∂c′′
∂xi

)
have been modelled in an identical fashion as used for the RANS

simulation of Bunsen burners by Salehi et al. [58]. Vervisch et al. [110] explain

these models at great length; the discussion is beyond the scope of this work.

In comparison to a steady state Bunsen burner flame, an SI engine consists of

walls on the domain boundaries. Heat transfer from these walls contributes signif-

icantly to the governing enthalpy equation and dictates the decay of flame speed

near the wall. In this work, walls have been maintained at constant temperature

(T = 500K). The overall wall heat transfer is calculated using an effective turbu-

lent thermal diffusivity and the surface normal gradient of enthalpy. However, the

isothermal assumption disrupts the validity of conditional averages calculated over

a single domain-wide ensemble of points. Even though the chemical composi-

tion may change and result in temperature fluctuations, the assumption suppresses

any such deviations close to the wall. A more accurate method of calculation of

the scalar conditional averages would be to construct ensembles of points that are

equi-distant from the wall. This method is avoided here since in an axi-symmetric

case, with few finite volumes, this method inevitably results in a rank-deficient ker-

nel for the inverse problem; a fine mesh simulation in a 3D domain is appropriate

for such ensemble construction methods.

A summary of the structure of CSE-TGLDM model has been illustrated in

Figure 4.4. The structure shows the flow of control in the CFD solver which origi-

nally provides the mean and variance of conditioning variable through the solution

of transport equations. Once the β -PDF is constructed for all points in the mesh

from the corresponding mean and variance values, the kernel containing all PDFs

is passed along with necessary scalars (Favre-averaged temperature and pressure)

calculated in the previous time step to the CSE routine. The desired regularisation

procedure is employed to perform inversions in the CSE routine to calculate the

conditional averages of scalars. Since the conditioning variable is an oxygen based

reaction progress variable, also used in the TGLDM tabulation, the conditional av-

erages of this species are already known. All requisite conditional averages are then
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Figure 4.4: Iterative algorithm of the CSE-TGLDM chemical closure model.

used to retrieve conditionally averaged reaction rates from the TGLDM chemistry

tabulation; this vector of values is integrated with the PDF at each point to obtain

the average reaction rate in the corresponding cell.

4.2.5 Spark-Ignition Model

For a mixture with given relative air-fuel ratio (λ ), the experimentally observed

initial conditions are matched by using the reported pressure at intake valve clos-

ing IVC. Another variable important for matching combustion relevant conditions

is the timing of spark-ignition. A realistic high-temperature charge plasma is chal-

lenging to implement in the context of numerical simulations because placing a

tiny zone of extremely high temperature is constrained by mesh resolution and tab-

ulation of chemical kinetic constants and species chemistry at the corresponding

scale of temperature. Thiele et al. [111] have noted that due to the fast expansion

of the plasma channel, a complicated flow-field is developed after the emission of

a shock wave. Development of a propagating flame after the initiation of the flame

kernel is dominated by reactive and diffusive processes [111, 112].

Pischinger and Heywood [113] derive a first-law-based model for the growth

of spark-generated flame kernel. They focus on the effect of heat losses on the rate

of flame kernel development and observe significant cycle-by-cycle variations. Tan

and Reitz [114] explain that the commonly used method of increasing internal en-
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ergy in specified ignition cells during ignition by a factor each time step is very

sensitive to the computational mesh size. Instead, they derive an equation to calcu-

late spark-ignited kernel growth rate by considering the effects of the spark ignition

discharge energy and flow turbulence on the ignition kernel growth. In a more re-

cent study, Enaux et al. [115] advance an Arc and Kernel Tracking Ignition Model

(AKTIM) using a three phase progress variable tracking procedure for simulat-

ing the kernel development. Another detailed physical model developed by Yaşar

[116] accurately describes the momentum and energy exchange between the gas

and plasma.

A simpler approach referred by Mastorakos [117] and explained in detail in

many texts including that by Law [118] is adopted for this first implementation of

CSE in an industrial context. Typically, ignition is forced in the uniform mixture

by a sudden insertion of a layer of burnt gas. In this work, instead of initiating a

spark at the ignition timing, we place a developed progress variable profile (Σ̃c) in a

small volume (typically, ∼ 2.5% of the chamber volume) around the region of spark

plug. This developing kernel is made highly reactive by setting the mean (c̃ = 0.5),

variance (c̃′′2 = 0.25) and temperature (T ≈ 0.5Tad) to appropriate conditions. The

radius of the flame kernel is then calculated from

2πR3
kernel

3
= Ξ×VΞ (4.13)

where Ξ is the fraction of chamber volume occupied. Special care must be taken in

choosing Ξ since a small kernel may not be able to withstand the turbulent strain

induced in the engine at the corresponding timing and may, therefore, lead to ex-

tinction of the kernel. The timing of kernel placement is decided by the displace-

ment required to achieve 5% fuel mass fraction burned (MFB) at the same timing

as reported in the experimental study of Reynolds [98].
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Figure 4.5: Bowl-in piston geometry of the Ricardo Hydra engine.

4.3 Problem Specifications

4.3.1 Experimental Validation Case

The engine used for experimental validation is a Ricardo Hydra single-cylinder re-

search engine rebuilt for natural gas fuelling. The piston geometry is a modified

form of the standard Ford Festiva bowl-in piston with dimensions as specified in

Fig. 4.5. Other important specifications of the engine geometry have been listed in

Table 4.1. Measurements have been provided with varying relative air-fuel ratios

(λ = 1,1.1, . . . ,1.5) of the premixed homogeneous natural gas-air mixture. The

tests were reported for different engine speeds, but we have made comparisons at

2500 rpm, in particular for a lean mixture with λ = 1.5. The natural gas compo-

sition reported in the experimental study was scaled to provide a fuel composition

that matched the chemistry tabulation employed.

In the experimental work, heat release measurements calculated from the in-

cylinder pressure trace measured using a pizeo-electric pressure transducer were

64



4. Engine Simulations

Serial Geometrical Feature Value Unit

1 Number of cylinders 1 –
2 Bore 81.12 mm
3 Stroke 88.90 mm
4 Connecting rod length 158.01 mm
5 Swept volume 459.46 cm3

6 Clearance volume 41.988 cm3

7 Compression ratio 11.94:1 –
12 Inlet closes 56 ◦ABDC
13 Exhaust opens 56 ◦BBDC

Table 4.1: Specifications of the Ricardo Hydra research engine.

used to estimate combustion duration and the fuel Mass Fraction Burned (MFB) as

a function of crank angle. No turbo-charger is employed in the experiments; how-

ever, reported pressures have large values in the low-pressure zones away from the

Top Dead Center (TDC). These have been attributed to the inaccuracies involved in

measuring low pressures using a piezoelectric sensor. A corrected intake manifold

pressure (PIVC = 2.32 bar) has been used in our calculations in order to match the

early pre-combustion pressure trace.

The primary emissions examined in the experimental study were the brake spe-

cific exhaust emissions of NOx, tHC and CO; in our work, NOx emissions have

been reported. Experimentally observed emissions were reported as the mass flow

rate of exhaust emissions normalized with the brake power produced by the engine:

NOx(g/kW ·hr) =
NOx(g/h)

Pb(kW )
(4.14)

where Pb is the brake specific power generated. In our study, the emission mass

output has been normalized with the Gross Indicated Work (GIW) generated.

4.3.2 Numerical Solver

Simulations have been performed on a 2-dimensional axi-symmetric mesh shown

in Fig. 4.6 generated using the blockMesh utility of the OpenFOAM CFD software

[99]. The cell sizes have a gradient to provide a fine mesh structure near the spark
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ignition region and the entire mesh was refined at various pre-specified intervals

(crank angle, CA = 330,390,420) to avoid cell skewness as much as possible. A

maximum Courant number, Cmax = 0.25 was used with adjustable time step starting

with an initial value of 0.05 s. Solution was written at unity intervals of crank angle.

Limited Gauss linear schemes were used for the solution of Laplacian and di-

vergence operators in transport equations of species, enthalpy and momentum. The

Gauss upwind scheme was used for the solution of transport equations relevant to

the k− ε turbulence model used from the OpenFOAM library.

Figure 4.6: Axi-symmetric mesh constructed at 270◦ crank angle.

4.4 Results

The following section describes our results; flame kernel development has been

highlighted and the pressure map obtained has been used to calculate heat release

rates and fuel mass fraction burned. Further, trends of major pollutants, NOx and

CO have been discussed for mixtures of varying λ .
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Figure 4.7: Development of flame kernel shown as the degree of MFB until
5% MFB and corresponding conditionally averaged temperatures obtained for
a lean mixture with λ = 1.5 at 2500 rpm.
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(a) Mean of progress variable, c̃

(b) Variance of progress variable, c̃′′2

Figure 4.8: Mean and variance contours of progress variable at 5% MFB for
a mixture with λ = 1.5 at 2500 rpm.

4.4.1 Flame Kernel Development

Upon the imposition of the impulsive high reactivity field on the turbulent reactive

flow, quantities averaged over the geometry, such as the MFB, exhibit sensitivity

towards the size of the initial kernel. Fig. 4.7(a) shows the increase in MFB from

initiation of the flame kernel until 5% fuel MFB (t5%MFB) is attained in the com-

bustion chamber for different initial volumes (as a fraction of chamber volume) of

the kernel. This characterises the growth of the flame kernel and has different pro-
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files for varying mixture fractions. The profile of MFB growth has been used as a

marker for judging whether the kernel will propagate as a flame. A tiny kernel does

not provide enough energy sufficient for successful propagation [117] and is often

extinguished by turbulent strain induced by the flow as outlined by Eichenberger

and Roberts [119]. In contrast, a large kernel may be characterised by rapid ker-

nel growth and may require that the kernel be placed too close to t5%MFB thereby

allowing little time for the evolution of kernel properties and conditional averages.

For the case studied in Fig. 4.7(a), the experimentally observed displacement be-

tween the spark and 5% MFB was approximately 31◦. The effects of the spark on

the turbulent flow field from the initial discharge to the timing of kernel placement

cannot be adequately modelled within the 2◦ displacement permitted by our empir-

ical progress variable approach. Therefore, several measurable parameters in the

study such as the timings of peak pressure and the associated crank angle cannot

be accurately estimated.

Fig. 4.7(b) shows the variation of conditionally averaged temperature obtained

in the flame kernel development phase between initiation and t5%MFB. Significant

variations are noted from the steady laminar flamelet behaviour highlighting the

effects of turbulence on the flame. It is evident that the CSE model captures such

deviations from flamelet behaviour of the flame which might be characterised by

the distributed reaction zone regime. In Fig. 4.8, contours of reaction progress

variable variance highlight the regions that roughly characterise the flame surface.

Flame progress is observed to be slower close the engine walls as expected due to

heat transfer away from the flame and possibly due to flame quenching.

Kernel placement timings have been compared for a range of natural gas-air

mixtures (varying λ ). These have been graphed along with the respective timings

of 5% MFB and of spark ignition. Fig. 4.9(b) compares the combustion duration

(defined as the displacement between 5% and 95% fuel (MFB) trends observed ex-

perimentally and using simulations. In addition to decreasing fuel content, the size

of reactive flame kernel zones is also expected to affect the duration of combustion.

Although a slight increase in the combustion duration is noted for leaner mixtures,

the expected values are generally overestimated. To some extent, the errors may be

attributed to the initial uniform progress variable profile of the flame kernel and its

timing which collectively result in an incorrect estimate of the initial kernel growth
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Figure 4.9: Initiation timing of high-reactivity flame kernel with ∼ 2.5%
chamber volume for varying λ and their combustion durations.
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Figure 4.10: Pressure map for a lean mixture (λ = 1.5) at 2500 rpm.

rate. Moreover, the profile of progress variable and temperature in the initiated

kernel does not model the flame-generated turbulence within the kernel leading to

an inaccurate growth rate estimate.

4.4.2 Pressure Trace

The pressure trace has been obtained from intake valve opening (IVC) at 270◦ to

exhaust valve opening (EVO) at 484◦ crank angle (CA). Fig. 4.10 shows the com-

parison of pressure profile with values obtained experimentally. The piezoelectric

pressure transducer used in the experiment by Reynolds [98] is susceptible to er-

ror at low pressures. Therefore, the intake manifold pressure observed by [98] has

been used as the initial pressure at 270◦ CA instead in order to achieve accurate

matching of the pressure profile prior to combustion. Despite kernel placement

at the appropriate timing as discussed previously, calculated pressures are slightly

higher until close to TDC. Severe fluctuations in the pressure map are observed

post TDC; these fluctuations are attributed to the skewness of moving mesh cells

at TDC.
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Figure 4.11: Heat release rate for a lean mixture (λ = 1.5) at 2500 rpm.

Heat release rates (HRR) have been calculated using the pressure profile by

employing the following relation obtained using the first law of thermodynamics

and assuming uniform and identical properties of reactants and products:

dQ

dθ
=

1

γ−1

(
V

dP

dθ
+ γP

dV

dθ

)
(4.15)

where γ is the ratio of specific heats for natural gas. The HRR profile obtained from

both the experimental and simulation pressure trace were filtered using a low-pass

filter in MATLAB followed by a smoothing function. Significant negative heat

release is observed for the experimental profile in Fig. 4.11; this may be attributed

to incorrect pressure values read by the transducer at earlier crank angles. Due to

the fluctuations of pressure near the TDC, calculation of heat release is prone to

extreme error in this region.

The technique used here for computing the mass fraction burned (MFB) is

based on the method developed by Rassweiler and Withrow [120]: the pressure

rise due to combustion is estimated from the total pressure rise for small crank

angle intervals as

∆P = ∆Pv +∆Pc (4.16)
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Figure 4.12: Variation of MFB for a lean mixture (λ = 1.5) at 2500 rpm.

where ∆Pv and ∆Pc are the change in pressure due to volume change and combus-

tion respectively. MFB can then be calculated as a fraction of the pressure change

due to combustion up to a given crank angle with respect to the entire range from

the Intake Valve Closes (IVC) to Exhaust Valve Opens (EVO):

MFB =
∑θ

θi
∆Pc

∑
θEOC

θi
∆Pc

(4.17)

where θi is the initial crank angle (270◦) chosen to be close to IVC. Assuming

polytropic compression in each small interval of crank angle change, the pressure

rise attributed to combustion can be calculated for the ith interval as

∆Pc,i = Pi−Pi−1

(
Vi−1

Vi

)n

(4.18)

where n is the polytropic index. The mass fraction burned for a lean mixture with

λ = 1.5 is shown in Fig. 4.12. It is to be expected that the profile is non-smooth

because the pressure oscillates severely in the region of TDC.

In addition to the pressure profile, the peak pressure and corresponding crank
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(b) Crank angle of maximum average pressure.

Figure 4.13: Peak pressure and associated crank angle for varying λ .
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angles are calculated and have been compared with the experimental estimates

in Fig. 4.13. Although the pressure maxima show a decreasing trend similar to

experiments, the exact values are overestimated by the CFD calculation. On the

other hand, the crank angle of peak pressure does not show a consistent trend as in

experiments perhaps due to small mismatches in the 5% MFB timing.

A sensitivity test was performed to gauge the effect of intake manifold pressure

on the simulated peak pressures and corresponding crank angles. Fig. 4.14 shows

the different maximum pressure values obtained for slightly different intake pres-

sures. Matching the exact values from experimentally obtained pressure profiles

means using erroneous results as opposed to noting the corrected intake manifold

pressure that is measured with higher precision in experiments. Similarly, crank

angle of maximum pressure shows reasonably large variations with the choice of

intake manifold pressure. The mismatch between experimentally observed pres-

sures at IVC and the pressure used for simulations (P= 2.32 bar) causes significant

deviations in estimated combustion duration and MFB among other parameters.

4.4.3 Emissions

NOx pollutant emissions have been calculated using the chemistry mechanism pro-

posed by Hanson and Salimian [121]. A transport equation for NO is solved and the

chemical source-term is closed using the CSE method, an approach similar to that

used by Wang et al. [62]. Fig. 4.15 shows that CSE predicts the general decreas-

ing trend of NOx calculated at EVO with decreasing fuel content in the homoge-

neous charge. For an appropriate comparison with the experimental measurement

of NO2, a scaling factor (44/30, based on the molecular masses of the two com-

pounds) is applied to the NO estimates calculated by the numerical solver. These

calculations have been normalized with the gross indicated work (GIW) estimated

from the pressure obtained via simulations, whereas the experimental data consists

of calculations made in the exhaust flow normalized with the brake power. The

values of normalized emissions are only expected to increase (thereby, matching

with experimental results better) if we were to account for friction in the GIW. Ex-

perimental error in NOx mass measurement and exhaust flow rate are considered

– error in brake power (Pb) measurement is not considered in the graphed error
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Figure 4.14: Sensitivity of maximum cylinder pressure and the corresponding
crank angle to the pressure at IVC in the simulations.
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Figure 4.15: Pollutant emission trends with varying λ . Numerical estimates
have been scaled appropriately.

bars. Given that a simplified chemistry mechanism is used in a RANS cotnext,

the CSE trends show promising agreement with experiments despite considerable

underestimation.

4.4.4 Discussion

Accurate calculation of conditionally averaged temperature plays a significant role

in chemical closure using CSE. In a moving-mesh scenario in complex geometries,

the statistical homogeneity of conditional averages might be sacrificed near TDC

due to the skewness of finite volume cells. In addition, the application of β -PDF to

describe the stochastic behaviour of reaction progress variable in premixed flames

is known to be erroneous and is expected to affect the CSE solution.

4.5 Conclusions

CSE has been established as a combustion model for simulating industry relevant

turbulent reactive flow problems. In view of its first application to simulating com-

bustion in a spark-ignition engine, the obtained results are promising and accept-
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able in the context of RANS. The Pressure profile, through which heat release and

combustion duration is calculated, is an important quantity of interest along with

emissions. The pressure profile is matched to a fair extent, particularly for leaner

mixtures where more accurate matching is possible for the initial flame kernel evo-

lution. CSE has predicted identical trends for NOx emissions despite the use of a

simplified chemistry. In conclusion, this work validates the consistency of CSE for

transient turbulent combustion phenomena in an industrial setting. Further work

on precise ignition modelling and the implementation of a robust regularisation

parameter choice method will be needed to improve the predictive accuracy.
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5.1 Inverse Problem Implementation

A novel methodology has been developed to partition finite volume meshes of ar-

bitrarily complex geometries into spatially localized clusters of points.

• In the context of parallel processing architectures, spatial locality of parti-

tions is chosen over computational load balance in order to maintain the va-

lidity of CSE inversion within the partitions treated as ensembles. Although

the distribution of mesh elements is not equal, appreciable gains are made in

inter-processor communication by preserving locality.

• The spatial partitioning method relies on the Morton order space-filling curve

generated based on a floating-point algorithm which is applicable to unstruc-

tured finite volume meshes. In conjunction with the mapping algorithm, the

developed algorithm automates the process of localized ensemble construc-

tion by finding locality destructive leaps.

• While cluster locality is improved against equi-sized partitioning of the Mor-

ton order curve, computational load balance is sacrificed to some degree

despite algorithms in place to maintain equal distribution of finite volumes

across partitions. The degree of computational load balance achieved is ac-

ceptable for large-scale parallel processing environments and is expected to

improve with mesh refinement.

Therefore, a robust technique has been developed that can be applied for inexpen-

sive and unsupervised partitioning of industrial geometries.
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5.2 Industrial Modelling Application

CSE has been established as a combustion model for simulating industry relevant

turbulent premixed combustion problems.

• As a first application of CSE to combustion simulations in spark-ignition en-

gines, the pressure trace has been reasonably well predicted. Other quantities

of interest such as heat release rate are derived from the pressure trace and

their inaccuracies are attributed to the deviations from experimentally mea-

sured pressure traces. In particular, the severe oscillations of the pressure

profile close to TDC are expected to result in extreme errors in the calcula-

tion of heat release rates.

• The NOx pollutant emissions calculated have shown a good agreement with

the experimentally observed trends for varying mixture fractions. Consider-

ing the simplified chemical mechanism employed, emission predictions are

of an acceptable standard.

• Accurate calculation of conditionally averaged temperature plays a signifi-

cant role in chemical closure using CSE. The inversions are affected by the

wall; in the case of using a single domain-wide ensemble, the underlying

assumptions are, in fact, invalidated. Moreover, the application of β PDF to

describe the stochastic behaviour of reaction progress variable in turbulent

premixed flames is known to be erroneous and is expected to affect the CSE

solution.

• Ignition modelling is critical to the simulation of combustion in a homogeneous-

charge SI engine. While matching the initial kernel growth rate is challeng-

ing with the simplified empirical model in place, it nevertheless gives rea-

sonable estimates of key variables.

This investigation validates the applicability of CSE for transient turbulent com-

bustion phenomena in an industrial setting.
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5.3 Future Directions

• Simulation of turbulent combustion in complex industrial geometries with

swirl motion may be investigated as the next step. With the development of

the spatial partitioning algorithm, an appropriate choice of ensembles can be

made to retain the validity of CSE in industrial burner domains. In particular,

specific attention could be given to wall effects such as heat transfer that oth-

erwise sacrifice the accuracy of CSE with a single domain-wide ensemble.

• The stochastic behaviour of the conditioning variable significantly affects the

accuracy of CSE and, hence, the precision with which transient phenomena

such as spark-ignition can be modelled. For premixed flames, better descrip-

tions of the presumed PDF shape are available. While the β -PDF captures

the placement of delta functions, the probability distribution is matched bet-

ter by models that account for the flame reactivity and turbulence. The im-

plementation of such improved PDFs could lead to sizeable improvements

in the predictive accuracy in SI engines.

• The regularisation of CSE solutions done using the Tikhonov method is

prone to error due to the L-curve method of optimum regularisation param-

eter choice. A variety of parameter choice methods are available and can be

explored to lend robustness to the computational implementation of CSE.

• In the context of SI engines, a more detailed physical representation of the

plasma charge could replace the employed simplistic model. If the evolution

of the flame kernel is matched better, critical parameters such as maximum

pressure and the corresponding crank angle timing can be predicted with

greater accuracy. Moreover, to improve predictions of emissions, a transport

equation is necessary for CO, whereas an improved chemical mechanism

must be implemented for NOx chemistry.

• The CSE approach could be implemented for non-premixed combustion sim-

ulations in diesel engines. Modelling of sprays and their ignition would be

the next challenging leap of this promising chemical closure technique.

81



References

[1] N. Stern. Review on the economics of climate change. London HM

Treasury, 2006.

[2] J. Tollefson and R. Monastersky. The global energy challenge: awash with
carbon. Nature, 491:654–655, 2012.

[3] P. Moin and J. Kim. Tackling turbulence with supercomputers. Scientific

American, 1997.

[4] S. B. Pope. Small scales, many species and the manifold challenges of
turbulent combustion. Proceedings of the Combustion Institute, 2012.

[5] C. L. Fefferman. Existence and smoothness of the navier-stokes equation.
The millennium prize problems, pages 57–67, 2000.

[6] W. Kendal Bushe and Helfried Steiner. Conditional moment closure for
large eddy simulation of nonpremixed turbulent reacting flows. Physics of

Fluids, 11:1896, 1999.

[7] D. Veynante. Turbulent combustion modeling. Progress in Energy and

Combustion Science, 28, 2002.

[8] J. A. Miller and C. T. Bowman. Mechanism and modeling of nitrogen
chemistry in combustion. Progress in Energy and Combustion Science, 15
(4):287–338, 1989.

[9] D. B. Olson and W. C. Gardiner Jr. An evaluation of methane combustion
mechanisms. The Journal of Physical Chemistry, 81(25):2514–2519, 1977.

[10] U. Warnatz, J.and Maas and Robert W. Dibble. Combustion: physical and

chemical fundamentals, modeling and simulation, experiments, pollutant

formation. Springer, 2006.

82



References

[11] C. K. Westbrook and F. L. Dryer. Chemical kinetic modeling of
hydrocarbon combustion. Progress in Energy and Combustion Science, 10
(1):1–57, 1984.

[12] W. C. Gardiner. Gas-phase Combustion Chemistry. Springer, 2000.

[13] F. M. White. Fluid mechanics. 5th. Boston: McGraw-Hill Book Company,
2003.

[14] S. B. Pope. Turbulent flows. Cambridge University Press, 2000.

[15] T. Poinsot and D. Veynante. Theoretical and Numerical Combustion. RT
Edwards Inc., 2011.

[16] G. K. Batchelor. The theory of homogeneous turbulence. Cambridge
university press, 1982.

[17] O. Reynolds. On the dynamical theory of incompressible viscous fluids and
the determination of the criterion. Philosophical Transactions of the Royal

Society of London. A, 186:123–164, 1895.

[18] A. A. Townsend. On the fine-scale structure of turbulence. Proceedings of

the Royal Society of London. Series A. Mathematical and Physical

Sciences, 208(1095):534–542, 1951.

[19] P. Moin and K. Mahesh. Direct numerical simulation: A tool in turbulence
research. Annual Review of Fluid Mechanics, 30(1):539–578, 1998.

[20] F. R. Menter, M. Kuntz, and R. Langtry. Ten years of industrial experience
with the sst turbulence model. Turbulence, heat and mass transfer, 4:
625–632, 2003.

[21] P. R. Spalart. Strategies for turbulence modelling and simulations.
International Journal of Heat and Fluid Flow, 21(3):252 – 263, 2000.

[22] R. Bouffanais. Advances and challenges of applied large-eddy simulation.
Computers & Fluids, 39(5):735–738, 2010.

[23] H. Pitsch. Large-Eddy Simulation of Turbulent Combustion. Annual

Review of Fluid Mechanics, 38(1):453–482, January 2006.

[24] T. Poinsot and D. Veynante. Theoretical and numerical combustion. RT
Edwards Incorporated, 2005.

83



References

[25] S. B. Pope. Ten questions concerning the large-eddy simulation of
turbulent flows. New Journal of Physics, 6(1):35, 2004.

[26] B. E. Launder and D. B. Spalding. The numerical computation of turbulent
flows. Computer Methods in Applied Mechanics and Engineering, 3(2):269
– 289, 1974.

[27] F. J. Weinberg. The first half-million years of combustion research and
today’s burning problems. Symposium (International) on Combustion, 15
(1):1 – 17, 1975.

[28] F. A. Williams. The role of theory in combustion science. Symposium

(International) on Combustion, 24(1):1 – 17, 1992.

[29] K. N. C. Bray. The challenge of turbulent combustion. Symposium

(International) on Combustion, 26(1):1 – 26, 1996.

[30] N. Peters. Multiscale combustion and turbulence. Proceedings of the

Combustion Institute, 32(1):1 – 25, 2009.

[31] R. W. Bilger, S. B. Pope, K. N. C. Bray, and J. F. Driscoll. Paradigms in
turbulent combustion research. Proceedings of the Combustion Institute, 30
(1):21–42, January 2005.

[32] T. Echekki and E. Mastorakos. Turbulent combustion modeling: Advances,

new trends and perspectives, volume 95. Springer Science, 2011.

[33] R. Borghi. On the structure and morphology of turbulent premixed flames.
In C. Casci and C. Bruno, editors, Recent Advances in the Aerospace

Sciences, pages 117–138. Springer US, 1985.

[34] T. Poinsot and D. Veynante. Theoretical and Numerical Combustion. RT
Edwards Inc., 2001.

[35] D. B. Spalding. Mixing and chemical reaction in steady confined turbulent
flames. Symposium (International) on Combustion, 13(1):649 – 657, 1971.

[36] N. Peters. Laminar diffusion flamelet models in non-premixed turbulent
combustion. Progress in Energy and Combustion Science, 10(3):319–339,
1984.

[37] E. R. Hawkes and R. S. Cant. A flame surface density approach to
large-eddy simulation of premixed turbulent combustion. Proceedings of

the Combustion Institute, 28(1):51–58, 2000.

84



References

[38] H. G. Weller, G. Tabor, A. D. Gosman, and C. Fureby. Application of a
flame-wrinkling les combustion model to a turbulent mixing layer. In
Symposium (International) on Combustion, volume 27, pages 899–907.
Elsevier, 1998.

[39] W. Kim, S. Menon, and H. C. Mongia. Large-eddy simulation of a gas
turbine combustor flow. Combustion Science and Technology, 143(1-6):
25–62, 1999.

[40] H. Pitsch. A consistent level set formulation for large-eddy simulation of
premixed turbulent combustion. Combustion and Flame, 143(4):587–598,
2005.

[41] O. Colin, F. Ducros, D. Veynante, and T. Poinsot. A thickened flame model
for large eddy simulations of turbulent premixed combustion. Physics of

Fluids, 12:1843, 2000.

[42] J. A. van Oijen and L. P. H. de Goey. Modelling of premixed laminar
flames using flamelet-generated manifolds. Combustion science and

technology, 161(1):113–137, 2000.

[43] M. Ihme and H. Pitsch. Prediction of extinction and reignition in
nonpremixed turbulent flames using a flamelet/progress variable model:
Part 2. application in LES of sandia flames d and e. Combustion and

Flame, 155(1–2):90 – 107, 2008.

[44] M. Ihme and H. Pitsch. Prediction of extinction and reignition in
non-premixed turbulent flames using a flamelet/progress variable model.
part 1: A priori study and presumed PDF closure. Combustion and Flame,
155(1–2):70 – 89, 2008.

[45] F. T. C. Yuen and Ö. L. Gülder. Turbulent premixed flame front dynamics
and implications for limits of flamelet hypothesis. Proceedings of the

Combustion Institute, 34(1):1393 – 1400, 2013.

[46] A. Y. Klimenko. Multicomponent diffusion of various admixtures in
turbulent flow. Fluid Dynamics, 25(3):327–334, 1990.

[47] R. W. Bilger. Conditional moment closure for turbulent reacting flow.
Physics of Fluids A: Fluid Dynamics, 1993.

[48] G. De Paola, E. Mastorakos, Y. M. Wright, and K. Boulouchos. Diesel
engine simulations with multi-dimensional conditional moment closure.
Combustion Science and Technology, 180(5):883–899, 2008.

85



References

[49] S. Amzin, N. Swaminathan, J. W. Rogerson, and J. H. Kent. Conditional
moment closure for turbulent premixed flames. Combustion Science and

Technology, 184(10-11):1743–1767, 2012.

[50] B. Thornber, R. W. Bilger, A. R. Masri, and E. R. Hawkes. An algorithm
for LES of premixed compressible flows using the conditional moment
closure model. Journal of Computational Physics, 230(20):7687 – 7705,
2011.

[51] A. R. Kerstein. One-dimensional turbulence: model formulation and
application to homogeneous turbulence, shear flows, and buoyant stratified
flows. Journal of Fluid Mechanics, 392(1):277–334, 1999.

[52] A. R. Kerstein. A linear- eddy model of turbulent scalar transport and
mixing. Combustion Science and Technology, 60(4–6):391–421, 1988.

[53] S. B. Pope. PDF methods for turbulent reactive flows. Progress in Energy

and Combustion Science, 11(2):119 – 192, 1985.

[54] A. Y. Klimenko and S. B. Pope. The modeling of turbulent reactive flows
based on multiple mapping conditioning. Physics of Fluids, 15:1907, 2003.

[55] M. J. Cleary and A. Y. Klimenko. A generalised multiple mapping
conditioning approach for turbulent combustion. Flow, turbulence and

combustion, 82(4):477–491, 2009.

[56] H. Steiner and W. K. Bushe. Large eddy simulation of a turbulent reacting
jet with conditional source-term estimation. Physics of Fluids, 13(3):754,
2001.

[57] P. C. Hansen. Numerical tools for analysis and solution of Fredholm
integral equations of the first kind. Inverse problems, 849, 1992.

[58] M. M. Salehi, W. K. Bushe, and K. J. Daun. Application of the conditional
source-term estimation model for turbulence-chemistry interactions in a
premixed flame. Combustion Theory and Modelling, 16(2):301–320, April
2012.

[59] M. M. Salehi. Numerical Simulation of Turbulent Premixed Flames with

Conditional Source-Term Estimation. PhD thesis, 2012.

[60] W. K. Bushe and H. Steiner. Laminar flamelet decomposition for
conditional source-term estimation. Physics of Fluids, 15(6):1564, 2003.

86



References

[61] B. Jin, R. Grout, and W. K. Bushe. Conditional source-term estimation as a
method for chemical closure in premixed turbulent reacting flow. Flow,

turbulence and combustion, 81(4):563–582, 2008.

[62] M. Wang, J. Huang, and W. K. Bushe. Simulation of a turbulent
non-premixed flame using conditional source-term estimation with
trajectory generated low-dimensional manifold. Proceedings of the

Combustion Institute, 31(2):1701–1709, 2007.

[63] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM

computing surveys (CSUR), 31(3):264–323, 1999.

[64] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition

Letters, 31(8):651–666, 2010.

[65] G. F. Jenks. The data model concept in statistical mapping. In Konrad
Frenzel, editor, International Yearbook of Cartography, volume 7, pages
186+, USA, 1967. ICA, Rand McNally & Co.

[66] J. A Hartigan. Statistical theory in clustering. Journal of Classification, 2
(1):63–76, 1985.

[67] R. N. Davé and R. Krishnapuram. Robust clustering methods: a unified
view. Fuzzy Systems, IEEE Transactions on, 5(2):270–293, 1997.

[68] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth

annual ACM symposium on Theory of computing, STOC ’98, pages
604–613, New York, NY, USA, 1998. ACM.

[69] H. D. Simon. Partitioning of unstructured problems for parallel processing.
Computing Systems in Engineering, 2(2–3):135 – 148, 1991.

[70] B. Hendrickson and K. Devine. Dynamic load balancing in computational
mechanics. Computer Methods in Applied Mechanics and Engineering,
184(2):485–500, 2000.

[71] B. Smith, P. Bjorstad, and W. Gropp. Domain decomposition. Cambridge
University Press, 2004.

[72] M. Wittmann, T. Zeiser, G. Hager, and G. Wellein. Domain decomposition
and locality optimization for large-scale lattice boltzmann simulations.
Computers and Fluids, 80(0):283 – 289, 2013.

87



References

[73] M. J. Berger and S. H. Bokhari. A partitioning strategy for nonuniform
problems on multiprocessors. Computers, IEEE Transactions on, C–36(5):
570–580, 1987.

[74] M. T. Jones and P. E. Plassmann. Computational results for parallel
unstructured mesh computations. Computing Systems in Engineering, 5
(4–6):297 – 309, 1994.

[75] J. R Gilbert, G. L Miller, and S. Teng. Geometric mesh partitioning:
Implementation and experiments. SIAM Journal on Scientific Computing,
19(6):2091–2110, 1998.

[76] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space filling
curves and their use in the design of geometric data structures. In
LATIN’95: Theoretical Informatics, pages 36–48. Springer, 1995.

[77] M. J. Aftosmis and M. J. Berger. Applications of space-filling curves to
Cartesian methods for CFD, 2004.

[78] K. Schloegel, G. Karypis, and V. Kumar. Sourcebook of parallel
computing. chapter Graph partitioning for high-performance scientific
simulations, pages 491–541. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[79] T. N. Bui and C. Jones. Finding good approximate vertex and edge
partitions is np-hard. Information Processing Letters, 42(3):153 – 159,
1992.

[80] C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes
for the parallel solution of problems in computational mechanics.
International Journal for Numerical Methods in Engineering, 36(5):
745–764, 1993.

[81] J. D. Teresco, K. D. Devine, and J. E. Flaherty. Partitioning and dynamic
load balancing for the numerical solution of partial differential equations.
In A. Bruaset and A. Tveito, editors, Numerical Solution of Partial

Differential Equations on Parallel Computers, volume 51 of Lecture Notes

in Computational Science and Engineering, pages 55–88. Springer Berlin
Heidelberg, 2006.

[82] G. Zumbusch. On the quality of space-filling curve induced partitions. Z.

Angew. Math. Mech, 81:25–28, 2000.

88



References

[83] M. Bader. Space-Filling Curves: An Introduction with Applications in

Scientific Computing, volume 9. Springer, 2012.

[84] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the
clustering properties of the hilbert space-filling curve. Knowledge and

Data Engineering, IEEE Transactions on, 13(1):124–141, 2001.

[85] M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid
hierarchies. In System Sciences, 1996., Proceedings of the Twenty-Ninth

Hawaii International Conference on,, volume 1, pages 604–613, 1996.

[86] J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform
structured workloads with spacefilling curves. Parallel and Distributed

Systems, IEEE Transactions on, 7(3):288–300, 1996.

[87] C. Gotsman and M. Lindenbaum. On the metric properties of discrete
space-filling curves. Image Processing, IEEE Transactions on, 5(5):
794–797, 1996.

[88] X. Liu and G. F. Schrack. An algorithm for encoding and decoding the 3-D
Hilbert order. IEEE transactions on image processing: a publication of the

IEEE Signal Processing Society, 6(9):1333–7, 1997.

[89] X. Liu. Four alternative patterns of the hilbert curve. Applied Mathematics

and Computation, 147(3):741–752, 2004.

[90] J. K. Lawder and P. J. H. King. Querying multi-dimensional data indexed
using the hilbert space-filling curve. ACM Sigmod Record, 30(1):19–24,
2001.

[91] H. Sagan. Space-Filling Curves. Springer-Verlag, New York, 1994.

[92] P. M. Campbell, K. D. Devine, J. E. Flaherty, L. G. Gervasio, and J. D.
Teresco. Dynamic octree load balancing using space-filling curves.
Williams College Department of Computer Science, Tech. Rep. CS-03-01,
2003.

[93] M. Connor and P. Kumar. Fast construction of k-nearest neighbor graphs
for point clouds. Visualization and Computer Graphics, IEEE Transactions

on, 16(4):599–608, 2010.

[94] A. Perez, S. Kamata, and E. Kawaguchi. Peano scanning of arbitrary size
images. In Pattern Recognition, 1992. Vol.III. Conference C: Image,

Speech and Signal Analysis, Proceedings., 11th IAPR International

Conference on, pages 565–568, 1992.

89



References

[95] S. Tirthapura, S. Seal, and S. Aluru. A formal analysis of space filling
curves for parallel domain decomposition. International Conference on

Parallel Processing, pages 505–512, 2006.

[96] F. T. C. Yuen and Ö. L. Gülder. Dynamics of Lean-Premixed Turbulent
Combustion at High Turbulence Intensities. Combustion Science and

Technology, 182(4–6):544–558, 2010.

[97] J. Kariuki, J. R. Dawson, and E. Mastorakos. Measurements in turbulent
premixed bluff body flames close to blow-off. Combustion and Flame, 159
(8):2589 – 2607, 2012.

[98] C. Reynolds. Performance of a partially stratified-charge natural gas

engine. PhD thesis, University of British Columbia, 2001.

[99] OpenCFD. Openfoam software, 2013. URL http://www.openfoam.org/.

[100] N. Chakraborty and R. S. Cant. Effects of Lewis number on scalar transport
in turbulent premixed flames. Physics of Fluids, 21(3):035110, 2009.

[101] D. Veynante, J. M. Duclos, and J. Piana. Experimental analysis of flamelet
models for premixed turbulent combustion. In Symposium (International)

on Combustion, volume 25, pages 1249–1256. Elsevier, 1994.

[102] O. Colin and A. Benkenida. The 3-zones extended coherent flame model
(ECFM3Z) for computing premixed/diffusion combustion. Oil & gas

science and technology, 59(6):593–609, 2004.

[103] V. Mittal and H. Pitsch. A flamelet model for premixed combustion under
variable pressure conditions. Proceedings of the Combustion Institute, 34
(2):2995–3003, 2013.

[104] Benjamin T. Zoller, M. L. Hack, and P. Jenny. A PDF combustion model
for turbulent premixed flames. Proceedings of the Combustion Institute, 34
(1):1421–1428, 2013.

[105] H. Barths, C. Hasse, G. Bikas, and N. Peters. Simulation of combustion in
direct injection diesel engines using a eulerian particle flamelet model.
Proceedings of the Combustion Institute, 28(1):1161 – 1168, 2000.

[106] A. Odedra and W. Malalasekera. Eulerian particle flamelet modeling of a
bluff-body CH4/H2 flame. Combustion and Flame, 151(3):512–531, 2007.

90

http://www.openfoam.org/


References

[107] N. Swaminathan and R. W. Bilger. Analyses of conditional moment
closure for turbulent premixed flames. Combustion Theory and Modelling,
5(2):241–260, 2001.

[108] J. Huang, P.G. Hill, W.K. Bushe, and S.R. Munshi. Shock-tube study of
methane ignition under engine-relevant conditions: experiments and
modeling. Combustion and Flame, 136(1–2):25 – 42, 2004.

[109] I. Yimer, I. Campbell, and L.-Y. Jiang. Estimation of the turbulent schmidt
number from experimental profiles of axial velocity and concentration for
high-reynolds-number jet flows. Canadian Aeronautics and Space Journal,
48(3):195–200, 2002.

[110] L. Vervisch, R. Hauguel, P. Domingo, and M. Rullaud. Three facets of
turbulent combustion modelling: DNS of premixed v-flame, LES of lifted
non-premixed flame and RANS of jet-flame. Journal of Turbulence, 5:
1–36, 2004.

[111] M. Thiele, S. Selle, U. Riedel, J. Warnatz, and U. Maas. Numerical
simulation of spark ignition including ionization. Proceedings of the

combustion institute, 28(1):1177–1185, 2000.

[112] T. Kravchik and E. Sher. Numerical modeling of spark ignition and flame
initiation in a quiescent methane-air mixture. Combustion and flame, 99(3):
635–643, 1994.

[113] S. Pischinger and J. B. Heywood. A model for flame kernel development in
a spark-ignition engine. In Symposium (International) on Combustion,
volume 23, pages 1033–1040. Elsevier, 1991.

[114] Z. Tan and R. D. Reitz. An ignition and combustion model based on the
level-set method for spark ignition engine multidimensional modeling.
Combustion and flame, 145(1):1–15, 2006.

[115] B. Enaux, V. Granet, O. Vermorel, C. Lacour, C. Pera, C. Angelberger, and
T. Poinsot. LES study of cycle-to-cycle variations in a spark ignition
engine. Proceedings of the Combustion Institute, 33(2):3115–3122, 2011.
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