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 Abstract 

The manner in which we judge multiple hypotheses and consider multiple items 

of evidence is fundamental to diverse aspects of behaviour. One goal of the studies 

reported here was to identify cognitive biases in this process. A probabilistic reasoning 

paradigm involving objectively quantifiable evidence allowed the manipulation of factors 

biasing hypothesis judgment while mathematically normative responses were kept 

constant. This revealed two cognitive biases. The first was a tendency to overestimate the 

strength of gradually accumulated evidence. The second was a tendency to judge a self-

selected hypothesis as being more probable than an externally selected one, despite 

equivalent supporting evidence. This selection bias was exacerbated in delusional 

schizophrenia patients.  

Our second goal was to describe brain networks involved in hypothesis judgment. 

To this purpose, we collected functional magnetic resonance imaging (fMRI) data during 

performance of a probabilistic reasoning task. Functionally connected brain networks 

were identified using constrained principal component analysis (CPCA). The fMRI 

results showed task-related activity in a network including the dorsal anterior cingulate 

cortex (dACC) and bilateral parietal cortex. The activity of this dACC-based network 

was strongest when the evidence was consistent with the hypothesis being judged 

(evidence-hypothesis matches). This result is discussed in terms of functional 

connectivity between the dACC and other brain regions as a possible mechanism for 

coherence between components of a mental representation. Both our behavioural results 
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and our neuroimaging results show evidence of processing unique to situations involving 

cognitive coherence between the hypothesis being judged and the relevant evidence. 

.   
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 Preface 

With the exception of the introduction and discussion (Chapters 1 and 7), all 

chapters of this thesis stem from published manuscripts in peer-reviewed journals. A 

reference list, by chapter, has been provided below. In all of the work in Chapter 2 

through to Chapter 6, my role involved generating the empirical questions addressed in 

each experiment, finding much of the cited literature, designing and programming the 

cognitive paradigms, supervising and aiding research assistants in collecting the data, 

analyzing all of the data, and writing (as first author) the manuscripts reporting the results 

(or the review, in the case of Chapter 6). In the analysis of functional Magnetic 

Resonance Imaging (fMRI) data using a multivariate statistical method known as 

constrained principal component analysis (CPCA), I played a collaborative role in the 

development of the fMRI-CPCA Matlab-based software used. I collaboratively 

developed novel applications of CPCA in Chapter 5. This involved adjusting the fMRI-

CPCA technique to independently assess the time courses of activity in different regions 

of a functionally connected brain network.  

While all of the work represents collaboration between Dr. Todd Woodward and 

me, Chapters 4, 5, and 6 involved other collaborators. In Chapter 4, Susan Kuo organized 

and analyzed several measures of cognitive function (IQ and education), clinical 

symptom severity, and demographics. She also played a role in the application of 

exclusion criteria to the dataset. Dr. Mahesh Menon made an intellectual contribution to 

the discussion of Kapur’s aberrant salience hypothesis of schizophrenia. In Chapter 5, 

Paul Metzak and Katie Lavigne made intellectual contributions to the discussion of the 
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role of the dorsal anterior cingulate cortex (dACC) in changing a mental set. In Chapter 

6, Lawrence Ward brought to my attention a substantial portion of the literature cited.  

All research was approved by the UBC Behavioural Research Ethics Board 

(Certificate Number: H08-00187), the UBC Clinical Research Ethics Board (Certificate 

Number: H07-02409), and the VCHA Clinical Trials Administration Office (Vancouver 

Coastal Health Authority Research Study #V08-0014).  
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1 An Introduction to Hypothesis Judgment 

Judging the validity of a given hypothesis is fundamental to such diverse situations as 

interpreting social behaviour, making financial choices, and making perceptual decisions. In 

order to choose the most likely hypothesis, we often assess the strengths of multiple sources 

of evidence and then compare them. This process is affected not only by objectively 

quantifiable evidence strengths, but also by cognitive factors such as salience, coherence, and 

tendencies to give more weight to certain types of evidence. Understanding how hypotheses 

are judged requires isolating the different factors involved and identifying those that bias 

judgments. It also requires identifying how those factors interact. These requirements can be 

met partly through behavioural studies, and partly through neuroimaging studies of the brain 

networks underlying hypothesis comparison.  

1.1 Probabilistic reasoning and the beads task 

We used a probabilistic reasoning paradigm to investigate cognitive factors involved 

in hypothesis judgment. This allowed us to objectively quantify the strength of the evidence 

considered. There are two approaches a researcher can take when applying such paradigms in 

behavioural studies. The first is to compare individuals’ behaviour to mathematical norms, 

investigating whether judgments change more or less quickly than those norms in response to 

a given change in evidence strength. This was done extensively in early work on probabilistic 

reasoning (Beach, 1968; Ducharme, 1970; Fischhoff & Beythmarom, 1983; Peterson, 

Ducharme, & Edwards, 1968; Peterson, Schneider, & Miller, 1965). The second is to keep 

evidence strength constant, thus keeping mathematically normative responses constant, while 

manipulating other factors. These can be factors suspected to influence hypothesis judgment 
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despite being irrelevant to a mathematically ideal reasoner. The cognitive biases reported in 

Chapters 2 to 4 of this thesis were identified using this second approach.  

One paradigm used extensively in studies of probabilistic reasoning is known as the 

‘beads from a jar task’ (Beach, 1968; Ducharme & Peterson, 1969; Freeman, Pugh, & 

Garety, 2008; Hemsley & Garety, 1986; Lopes, 1985; Moritz, Woodward, & Lambert, 2007; 

Shanteau, 1970, 1975; Speechley, Whitman, & Woodward, 2010). Typically, the participant 

is presented with a series of beads, one at a time, and is told that the entire series is drawn 

with replacement from one of two jars, referred to hereafter as jar A and jar B. The 

participant must rate the probability that the entire series came from jar A rather than jar B. If 

jar A contained 80% red beads and 20% blue beads and jar B contained 30% red beads and 

70% blue beads, and the series of draws contained mostly red beads, jar A would be the most 

likely origin of the series. For a series of two draws, D1 and D2, the odds that the entire 

series came from jar A rather than jar B are derived from Bayes’ Theorem 

 

)()|1()|2(

)()|1()|2(

)2&1|(

)2&1|(

BpBDpBDp

ApADpADp
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      (1) 

 

As there are two jars (with equal numbers of beads), the probability of a bead being sampled 

from jar A, p(A), and the probability of a bead being sampled from jar B, p(B), are both 0.5. 

If the first draw, D1, was a red bead, and the second draw, D2, was a blue bead, then  

p(D1|A) = 0.8, p(D2|A) = 0.2, p(D1|B) = 0.3, and p(D2|B) = 0.7. This equation can also be 

rearranged to express the probability that the series came from jar A rather than jar B: 
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As more beads in a series are drawn, healthy individuals have been shown to be conservative 

in increasing ratings of the probability that the series came from the most likely lake, relative 

to the Bayesian norm (Beach, 1968; Ducharme, 1970; Peterson et al., 1968; Peterson et al., 

1965). Another variant of the task involves asking participants to decide from which jar the 

series of beads is being drawn once they feel enough information has been accumulated. In 

this version of the task, delusional schizophrenia patients decide on a jar earlier than healthy 

controls and non-delusional patients - in other words, they jump to conclusions (Averbeck, 

Evans, Chouhan, Bristow, & Shergill, 2011; Moritz et al., 2007; Moritz & Woodward, 2005; 

Woodward, Munz, LeClerc, & Lecomte, 2009). If probability judgments are required after 

each draw, then one can also test whether delusional individuals’ probability ratings increase 

faster than those of healthy participants.  

A cause for concern with the beads-from-a-jar paradigm is that participants do not 

always understand that the entire series came from the same jar. Specifically, they might 

mistakenly see it as possible for the first bead to come from jar A and for the second bead to 

come from jar B (Balzan, Delfabbro, Galletly, & Woodward, 2012; Speechley et al., 2010). 

Such misunderstandings call into question previous findings regarding conservatism or 

jumping to conclusions. However, the beads paradigm remains useful because, even before 

any Bayesian updating is necessary, the cognitive processes involved when only a single 

bead is drawn are fundamental to hypothesis judgment and not yet adequately understood. 

One recent improvement to the task involves a scenario in which fish are drawn from one of 
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two lakes. The instructions tend to be more easily understood by participants in the more 

naturalistic lakes scenario, although it is otherwise equivalent to the traditional beads-from-a-

jar scenario in terms of cognitive processing required and mathematical norms (Speechley et 

al., 2010).  

1.2 Cognitive components of probabilistic reasoning elucidated by the beads task / 

fish task 

Several cognitive processes contribute to performance on the beads task (or fish task) 

described above. In a basic, single-draw version of this paradigm, one must assess the 

strength of evidence supporting each hypothesis before those evidence strengths can be 

compared. Thus, hypothesis judgments could be affected either during evidence assessment 

or during comparison. We explored this distinction between biased assessment and biased 

comparison when investigating each cognitive factor affecting hypothesis judgments in the 

beads / fish task.  

One cognitive factor sometimes involved in the beads / fish task is the choice of a 

preferred hypothesis. Participants may consider and accumulate evidence until it is sufficient 

to choose one hypothesis, as they are assumed to do in the variant of the task used to study 

jumping to conclusions (Moritz et al., 2007; Moritz & Woodward, 2005; Woodward et al., 

2009). They may also erroneously reverse that order of operations, allowing prior choices to 

affect how they consider and accumulate further evidence. Mathematically normative 

performance requires that the choice of preferred hypothesis be determined by previously 

presented evidence. That choice should not affect the interpretation of subsequently 

presented evidence. However, previous reports of confirmation bias (Klayman & Ha, 1987; 
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Wason, 1960) and bias against disconfirmatory evidence (Buchy, Woodward, & Liotti, 2007; 

Moritz & Woodward, 2006; Woodward, Buchy, Moritz, & Liotti, 2007) suggest that the 

choice of a preferred hypothesis can bias the evaluation of later evidence. However, this has 

yet to be tested in a paradigm manipulating whether a preferred hypothesis is chosen (self-

selected) while controlling for the strength of the evidence presented.  

The sequence of events described above highlights yet another important factor to 

consider; the gradual accumulation of evidence. Many reported biases in reasoning, such as 

confirmation bias (Adsit & London, 1997; Gale & Ball, 2006; Klayman & Ha, 1987; 

Sanbonmatsu, Posavac, Kardes, & Mantel, 1998; Wason, 1960), conservatism in probability 

revision (Beach, 1968; Ducharme, 1970; Ducharme & Peterson, 1969), and bias against 

disconfirmatory evidence (Buchy et al., 2007; Moritz & Woodward, 2006; Woodward et al., 

2007; Woodward, Moritz, & Chen, 2006; Woodward, Moritz, Cuttler, & Whitman, 2006) 

involve the gradual presentation of evidence in sequential portions. However, it remains 

unknown whether the gradual presentation itself affects hypothesis judgments. If a given 

amount of evidence were presented in several sequential portions, would it be evaluated 

differently than if the same evidence were all presented instantaneously? If so, would the 

gradual presentation affect the assessment of evidence strength, the comparison between 

hypotheses, or both?  

One final factor considered in the current studies is whether the evidence supports the 

hypothesis being judged, referred to hereafter as the focal hypothesis. If evidence strongly 

supports the focal hypothesis, we can say that the evidence and hypothesis form a coherent 

mental representation, or gestalt. Coherence is thought to make mental representations more 

stable and salient (Köhler, 1929; Metzger, 2006). In the current studies, we explore how this 
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cognitive coherence affects biases identified in behavioural data. We also investigate how 

cognitive coherence affects the operation of functional brain networks, as is described in 

more detail in the next section.  

1.3 Functional connectivity in brain networks involved in hypothesis comparison 

In order to investigate the functional brain networks involved in hypothesis 

comparison, we used a single-draw version of the beads task. This allowed us to investigate 

the functional brain activity underlying hypothesis comparison, as well as that underlying an 

evidence assessment task. The evidence assessment task served as a control condition for the 

hypothesis comparison task. It was equated to the hypothesis comparison task in terms of 

visual stimuli presented and the motor activity involved in responding. Thus, the tasks 

differed only in whether they required a comparison of evidence strengths between two 

hypotheses. Within the hypothesis comparison task, we manipulated whether the evidence 

was coherent with the hypothesis being judged, referred to hereafter as the focal hypothesis. 

Our goals in the neuroimaging studies were (1) to identify brain networks involved in the 

comparison of evidence strengths for competing hypotheses, (2) to identify how activity in 

those networks varied as a function of evidence strength, and (3) to identify how activity in 

those networks varied as a function of whether the available evidence was coherent with the 

focal hypothesis - in other words, whether it supported accepting or refuting it.    

As hypothesis comparison is a complex cognitive task, we expected it to involve 

multiple cognitive processes and multiple brain regions working in concert. Optimizing our 

analysis for characterizing the activity of distributed brain networks underlying hypothesis 

comparison required accurate description of how those networks were distributed across 
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brain regions. We met these requirements by analyzing fMRI data using Constrained 

Principal Component Analysis, or CPCA (Hunter & Takane, 1998, 2002). CPCA can be used 

to identify functional brain networks exhibiting task-related changes in activity (Woodward, 

Cairo, et al., 2006). A detailed mathematical description of CPCA is provided in Chapter 5. 

Here, we provide a brief overview. The first stage of CPCA uses regression to split the 

variance in the full dataset into variance attributable to the task being performed, and residual 

variance unrelated to the task. This regression is important in separating the small amount of 

variance related to the experimental manipulations of interest from the large amount of 

variance reflecting neural activity unrelated to the task being performed and any artifacts in 

the signal not perfectly corrected for.   

Once the analysis had been constrained to the (usually relatively small) proportion of 

variance related to the experimental manipulations of interest, we used principal component 

analysis to identify functional brain networks evident within that portion of the signal. Each 

component has a unique time course of activity (the component scores) and a unique spatial 

network of loadings across brain regions. The loadings for a given component can be 

overlaid on a brain image, and thresholded to indicate the regions that are most strongly 

involved in that network. For each component, we also obtain descriptions of the time course 

of activity (in each condition and subject separately) following the start of a trial.  

In fMRI data, each time course should resemble a hemodynamic response (HDR) 

function. CPCA provides a separate estimate of the post-stimulus time course for each brain 

network, participant, and experimental condition. These are referred to as the predictor 

weights, and are calculated from computations involving the component scores and the 

model. The model is composed of the task-timing-based predictors that were used in the 



  8 

 

regression stage described above. Each predictor weight time course involved one HDR 

estimate every 2 seconds following the start of a trial.  

1.4 Research goals and expected findings 

The general goal of our investigations of hypothesis judgment was to identify 

cognitive factors affecting judgments, and to characterize their interactions. In behavioural 

studies, this involved identifying factors which affected judgments even though 

mathematically normative models would predict no effect. In neuroimaging studies, factors 

affecting judgments in a mathematically normative manner were also of interest, provided 

that they corresponded to differences in the activity of underlying brain networks. Identifying 

several factors affecting hypothesis judgments (or the brain networks underlying those 

judgments) and characterizing their interactions laid the groundwork for a general theoretical 

framework describing the roles of cognitive coherence and salience in hypothesis 

comparison.  

In the behavioural studies we focused on two factors expected to bias hypothesis 

judgments. First, as is reported in Chapter 2, we manipulated whether evidence was gradually 

accumulated. We expected that a given amount of evidence would affect judgments more 

strongly if it were presented in sequential portions than if it were presented all at once. If 

each portion of evidence was consistent with the others in terms of which hypothesis was 

indicated to be most probable, a gradual evidence effect could arise from anchoring to the 

first judgment made. If this were the case, we would expect to see a primacy effect, whereby 

final judgments were more strongly affected by the first portion of evidence presented than 

by the final portion. Another way of describing such an anchoring effect would be to say that 
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cognitive coherence between an initial judgment and subsequently presented evidence 

augmented the effects of that evidence. If there were a bias in favour of gradually 

accumulated evidence driven by cognitive coherence, we might also expect that bias to be 

strongest when the evidence was most coherent with, or provided the strongest support for, 

the focal hypothesis.  

Alternately, we might find a gradual evidence effect independent of both (1) the order 

of evidence presentation and (2) the level of coherence between the evidence and the focal 

hypothesis. This would be more analogous to packing effects (Bonini & Gonzalez, 2005; 

Rottenstreich & Tversky, 1997; Tversky & Koehler, 1994), whereby a given possibility (i.e., 

that someone will die of natural causes rather than accidental death) seems more probable if 

unpacked into constituent possibilities (i.e., the probability that someone will either die of a 

heart attack or cancer or a viral infection). A packing effect for evidence would cause that 

evidence to seem more convincing, regardless of which hypothesis it supported, if it were 

presented in separate portions than if the same evidence were presented as one portion.  

The second factor expected to bias hypothesis judgments in behavioural studies was 

whether a preferred hypothesis was explicitly chosen. The novel aspect of this investigation 

was the use of a paradigm, namely the beads / fish probabilistic reasoning task, in which the 

objective strength of the evidence considered could be matched between self-selected 

hypotheses and those selected by an external source. We expected participants to judge self-

selected hypotheses as more probable than externally selected ones despite equivalent 

supporting evidence. This would be consistent with the findings of previous investigations 

not controlling for evidence strength (Sieck & Arkes, 2005; Sieck, Merkle, & Van Zandt, 

2007; Sieck & Yates, 1997).  
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This investigation of self-selected hypotheses was also extended to a population 

prone to biased probabilistic reasoning – namely, schizophrenia patients, many of whom 

experience delusions. Delusions are defined as fixed false beliefs that (i) are maintained 

despite counter-evidence and rational counter-argument; (ii) would be dismissed by members 

of the same social-cultural environment; and (iii) are held with great conviction  (American 

Psychiatric Association, 2000). For a belief to be considered delusional, it is not sufficient 

that the belief be unsupported by available evidence. It is also required that it deviate from 

cultural norms, since many culturally normative beliefs are not adequately supported by 

evidence (Mullen, 1979). Thus, for a belief to be a delusion, it must be a self-generated or 

self-selected hypothesis. For this reason, we predicted an exacerbated bias in favour of self-

selected hypotheses in delusional patients.  

Another prediction was that a bias in favour of self-selected hypotheses would 

interact with an effect of gradual evidence. If there were a gradual evidence effect resulting 

from cognitive coherence between the initial judgment and the subsequently presented 

evidence (an anchoring effect), we might expect it to be affected by the subjective salience of 

the hypothesis that was most probable at the time of the initial judgment. Given that self-

selected focal hypotheses were more salient than externally selected ones, we would expect 

the evaluation of evidence presented late in a trial to be more strongly anchored to a self-

selected focal hypothesis. If the gradual evidence effect were the result of anchoring, we 

would then expect the gradual evidence effect to be stronger if the focal hypothesis were self-

selected. However, it could be that the gradual evidence effect resulted not from coherence 

effects, but rather from unpacked evidence being more salient. In that case, we would expect 
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the effect of gradual evidence accumulation to be independent of any bias in favour of self-

selected hypotheses.  

We also investigated the effects of cognitive coherence on brain networks involved in 

hypothesis judgment. We used a more basic, single-draw version of the beads / fish task. 

Participants were required to judge the relative probability that a fish had been drawn from 

one lake (the focal hypothesis), rather than another lake (the alternative hypothesis). The 

focal hypothesis being judged was never self-selected, and the relevant evidence was always 

all presented instantaneously (rather than gradually). When the focal hypothesis and the 

relevant evidence are cognitively coherent, gestalt psychology (Köhler, 1929; Metzger, 2006) 

would predict the formation of a stable, salient mental representation of that hypothesis 

together with the supporting evidence. We expected this salience and cognitive coherence to 

involve an augmented signal from the functionally connected brain networks involved in the 

hypothesis judgment task. We also expected that strength of the network signal would reflect 

the strength of the evidence being considered, since the strongest evidence would be most 

salient.  

Provided that our neuroimaging data showed (1) an effect of whether the evidence 

supported or refuted the focal hypothesis, and (2) an effect of evidence strength, we would 

also wish to know whether those effects interacted or were independent. If they were 

independent, we might expect them to involve distinct brain networks with distinct time 

courses. This could be detected in our neuroimaging data because of the high spatial and 

temporal resolution afforded by our multimodal analysis. If the effects were not independent, 

there should be at least one network in which the activity level was sensitive to the 

interaction of evidence strength with coherence.    
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To summarize the above predictions, we expected to observe the following effects in 

our behavioural data:   

(1) A bias towards treating gradually accumulated evidence as stronger than the same 

evidence presented instantaneously.  

(2) An anchoring effect underlying the bias in favour of gradually accumulated 

evidence.  

(3) A stronger effect of gradual evidence accumulation when the evidence most 

strongly supported the focal hypothesis.  

(4) A bias towards judging self-selected hypotheses to be more probable than 

externally selected ones supported by equivalent evidence. 

(5) A stronger selection bias when the evidence most strongly supported the focal 

hypothesis. 

(6) A stronger effect of gradual evidence accumulation when the focal hypothesis 

was self-selected. 

(7) An exacerbated selection bias in delusional schizophrenia patients. 

In our neuroimaging data, we expected to observe the following:  

(1) A stronger signal from task-relevant functionally connected brain networks during 

hypothesis comparison than during an evidence assessment control task. 

(2) A stronger signal from those networks when the available evidence was coherent 

with the focal hypothesis being judged (in other words, on trials with evidence-

hypothesis matches). 

(3) At least one brain network sensitive to an interaction between evidence strength 

and whether the evidence supported the focal hypothesis.  
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If the above predictions were correct, the results would be consistent with a 

theoretical framework specifying a role for cognitive coherence in evidence evaluation and 

hypothesis judgment. In this framework, not only is there a mathematically normative effect 

of evidence on judgments, there is also a bias in which those judgments affect the perceived 

strength of subsequent evidence. Specifically, when evidence is initially presented and 

judged, a bias in favour of that judgment is formed. Then, new evidence is presented, or else 

the initially presented evidence is re-considered. The evaluation of the new (or else re-

considered) evidence is biased to agree with the initial judgment. Thus, evidence coherent 

with the initial judgment is perceived to be strongest.  

Considering this order of cognitive events highlights two distinct possibilities fitting 

within the general framework of cognitive coherence. One possibility is that the degree to 

which the initially presented evidence supports the focal hypothesis (the degree of 

objectively quantifiable coherence), would predict the strength of the bias later observed. 

Alternately, the presence or absence of a bias may depend on a binary distinction, namely 

whether the initially presented evidence supports or refutes the focal hypothesis. In other 

words, this second possibility pertains to the presence or absence of coherence, rather than 

the level of coherence. This proposed binary processing holds some validity for the many 

real-life judgment and decision-making situations in which evidence strength cannot be 

quantified, and there is no objectively quantifiable level of coherence. In either case, once the 

initially presented evidence had been evaluated, the judge would subsequently be in favour of 

evidence coherent with that evaluation because coherent mental representations form a 

stable, salient gestalt.  
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2 Evidence Affects Hypothesis Judgments More if Accumulated Gradually than 

if Presented Instantaneously 

 

As was stated in Chapter 1, when we judge the probability of a hypothesis, the 

evidence for that hypothesis is often gradually accumulated, rather than becoming 

available instantaneously. If a given amount of evidence is presented in sequential 

portions (gradually accumulated), this distributed presentation might increase the extent 

to which that evidence is processed. That increase in processing could increase the 

salience or fluency of the corresponding mental representation, in turn increasing its 

perceived strength. Consequently, gradual accumulation would cause evidence consistent 

with a given hypothesis to be seen to support it more strongly, and evidence inconsistent 

with a given hypothesis to be seen to refute it more strongly. In the current studies, we 

assessed the perceived strength of gradually accumulated versus instantaneously 

accumulated evidence by measuring how strongly it affected comparative judgments 

made between a focal hypothesis and its alternative.  

An alternative possibility is that of anchoring effects, which are dependent not 

only on the gradual presentation of evidence, as in the first possibility described above, 

but also on the order in which evidence is presented. Anchoring would cause the 

subjective evaluation of evidence presented late in a trial to be biased towards being 

consistent with the judgment of evidence presented at the beginning of a trial. We tested 

for the possibility of anchoring effects in the current study by testing whether a final 



    15 

 

judgment meant to incorporate three sequential portions of evidence was more strongly 

affected by the first portion than by the second portion. Incidentally, this design also 

allowed us to test for recency effects by testing whether final judgments were more 

strongly affected by the final (third) portion of evidence than by the second portion.  

While an extensive body of research has employed paradigms in which 

objectively quantifiable evidence is gradually accumulated, (e.g. Beach, 1968; Usher & 

McClelland, 2001; Woodward et al., 2009), those studies confounded gradual versus 

instantaneous evidence accumulation with the overall strength of evidence. For example, 

in previous variations of the beads task, the strength of evidence changed with each bead 

drawn. In contrast, the purpose of the current research was to manipulate those factors 

independently. In order to do so in the current study, we precisely matched our gradual 

and instantaneous evidence conditions in terms of the total strength of evidence 

supporting each hypothesis. Specifically, the evidence visible on the final event of a 

given gradual evidence accumulation trial was equivalent, in terms of support for the 

focal hypothesis and support for its alternative, to the evidence visible on the 

corresponding instantaneous-evidence control trial. Thus, if there were no bias caused by 

the gradual accumulation of evidence, we would expect the final judgments made on 

gradual evidence accumulation trials to equal those made on the corresponding control 

trials.  

We also wished to be able to compare subjective probability judgments to an 

objective mathematical norm. To that purpose, we used a paradigm with objectively 

quantifiable evidence strength. This was a modified version of the well-known beads-

from-a-jar task (Beach, 1968; Fischhoff & Beythmarom, 1983; Moritz et al., 2007; 
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Moritz & Woodward, 2005; Speechley et al., 2010; Woodward et al., 2009). In the 

traditional version, participants judge the most likely origin of a short sequence of red 

and blue beads drawn with replacement from one of two jars, each containing a different 

proportion of the two colours. The mathematical norm for that task involves Bayesian 

updating (Beach, 1968; Fischhoff & Beythmarom, 1983; Lopes, 1985), where the 

probability of hypothesis A rather than B, given two observed data, p(A~B | D1,D2 ), is 

 

)1|()|2()1|()|2(

)1|()|2(

DBpBDpDApADp

DApADp


.                                       (3) 

 

It should be noted that the Bayesian norm specifies the same relative probabilities 

regardless of whether D1 and D2 are observed sequentially, or at the same time. We 

modified the task to involve several types of evidence, corresponding to several bead 

colours. In addition, instead of using jars as containers and beads as the objects in those 

jars, we used lakes containing fish. Three fish, each of a different colour and known to 

have been drawn from one of two lakes, were visible throughout each trial. Each of the 

two lakes (corresponding to the focal hypothesis and its alternative) contained fish of four 

different colours. Three of the four colours, referred to hereafter as the relevant colours, 

corresponded to the three fish that had originated from one of the lakes. The fourth colour 

in the two lakes was a filler colour, used to ensure that the total number of fish in each 

lake was the same. On gradual evidence trials, the fish within the lakes became visible 

one colour at a time. On control trials, all of the fish within each lake, regardless of 

colour, became visible instantaneously. The Bayesian model predicts that responses 
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would be the same whether evidence was gradually accumulated or all presented 

instantaneously. However, as will be discussed below and is tested in two experiments in 

the current study, behavioral responses differ between the instantaneous and gradual 

evidence conditions. 

In the current studies, we expected that gradual (rather than instantaneous) 

presentation would increase the extent to which each item of evidence was processed, 

which would in turn increase the salience of the corresponding mental representations. As 

a result of that increased salience, we expected a given amount evidence to seem 

subjectively stronger when gradually accumulated than when presented instantaneously. 

It follows that gradual evidence more consistent with the focal hypothesis than with its 

alternative would be seen to support it more strongly, and would lead to a greater increase 

in ratings of the relative probability of the focal hypothesis. It also follows that gradual 

evidence less consistent with the focal hypothesis than with its alternative would be seen 

to refute it more strongly, and would lead to a greater decrease in ratings of the relative 

probability of the focal hypothesis.  

2.1 Experiment 1 

2.1.1 Methods 

2.1.1.1 Participants 

Sixty-eight volunteers (fifty females, eighteen males) with a mean age of 27.7 

years (SD=7.9) participated in this experiment. Participants were recruited via posters on 

the University of British Columbia campus and in community centers in the greater 
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Vancouver area, and also via postings on electronic bulletin boards. All participants were 

reimbursed $10 per hour for their time plus parking and transportation expenses. 

2.1.1.2 Materials and Procedure 

On each trial of the task, participants were presented with a scene depicting three 

lakes, two of which were upstream from the third (see Figure 2.1 and Figure 2.2). 

Throughout each trial, three fish were presented in the bottom lake. The participants were 

told that any fish appearing in the downstream lake originated in either the left-hand 

upstream lake or the right-hand upstream lake. Each of the upstream lakes contained 120 

fish on every trial. Although this consistency was obvious due to the visual displays, the 

exact number of fish was not explicitly mentioned to participants. They were discouraged 

from explicitly counting all of the fish in each lake, as that would slow task performance 

too much. The positions of fish within each upstream lake were randomized over trials, 

so that any two trials with identical ratios of fish of each colour would not be identical in 

appearance.  
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Figure 2.1. An example of the general format of the display used throughout the 

experiment.  

 

 



    20 

 

Figure 2.2. The sequence of events during a gradual evidence accumulation trial, with the 

relevant colours being white, gold, and black.  
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The four fish colours used were red, gold, black, and white.  The three fish visible 

in the downstream lake were each of a different colour. We will refer to these as the 

relevant colours, and to the fourth colour as the filler colour. If an upstream lake 

contained a high percentage of fish of the relevant colours and a low percentage of fish of 

the filler colour, then there was a high probability that it was the origin of the fish in the 

downstream lake. The assignment of the four fish colours to the relevant and filler 

colours was randomized across trials. 

 

Table 2.1. Experiment 1: Numbers of Fish of the Three Relevant Colours for each of 

Four Levels of Support for a Given Hypothesis. 

Relevant 

Colour #1 

Relevant 

Colour #2 

Relevant 

Colour #3 

Total # Fish of 

Relevant 

Colours 

Total as a 

Percentage of 

the 120 Fish in 

the Lake 

8 8 8 24 20 % 

8 8 24 40 33 % 

8 24 24 56 47 % 

24 24 24 72 60 % 

Note. In the overall experiment, there were four possible levels of support for the focal 

hypothesis and four possible levels of support for its alternative. The above table outlines 

those four levels for just one hypothesis. The numbering of the three relevant colours 

above is arbitrary and does not refer to presentation order. On any given trial, the three 

relevant colours used for the three fish in the downstream lake were randomly selected 

from four possibilities: red, white, gold, and black. 

 

Half of the trials had three events (gradually accumulated evidence), with a new 

relevant colour becoming visible in the upstream lakes on each event. The other half of 

the trials had one event (instantaneously presented evidence). There were four levels of 

evidence strength for each lake, corresponding to different total numbers of fish of the 
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relevant colours. The rest of the fish in each lake were of the filler colour. Of the 120 fish 

in each upstream lake, the total number of fish of the relevant colours would be either 24 

(20%), 40 (33%), 56 (47%), or 72 (60%). As shown in Table 2.1, these numbers were 

based on the fact that the number of fish of each individual relevant colour could be 

either 8 or 24. Thus, there were 32 cells in the experimental design: 4 levels for the focal 

lake × 4 levels for the alternative lake × 2 types of evidence presentation (gradual versus 

instantaneous evidence). In each of these cells there were 4 trials, so each participant 

completed 128 trials in total. The assignment of the left-hand and right-hand upstream 

lakes to the focal and alternative hypotheses was randomized across trials. 

On each event, the participant rated the probability that the three fish in the 

downstream lake all came from one upstream lake (the focal hypothesis) rather than the 

other upstream lake (the alternative hypothesis). Ratings were made on a vertical scale, 

with the labels "definitely true" at the top end and "impossible" at the bottom end. To the 

right of the rating scale was a phrase telling participants which lake was the focal lake on 

the current trial (e.g., "fish in the bottom lake came from left-hand lake rather than right-

hand lake"). Participants used a mouse to move the slider smoothly up and down the 

scale and clicked the left mouse button when it was in the desired location. At the 

beginning of each trial, the slider was set at the mid-point of the response scale. On the 

second and third events of gradual evidence accumulation trials, it was set at the location 

corresponding to the rating made on the previous event.  



    23 

 

 Table 2.2. Experiment 1: Ratings of the Probability that the Focal Hypothesis, Rather 

than its Alternative, is Correct. 

   Rating of Relative Probability 

Strength of 

Evidence 

Supporting 

the Focal 

Hypothesis 

Strength of 

Evidence 

Supporting 

the 

Alternative 

Hypothesis 

Rating 

Predicted 

by 

Bayesian 

Norm 

Instantaneous 

Evidence 

 

Gradual 

Evidence 

M SE  M SE 

20 20 50.0 51.2 1.2  50.1   1.4 

20 33 25.0 41.8  1.4  41.3   1.4 

20 47 10.0 37.0  1.7  32.5   1.9 

20 60 3.6 31.4  2.3  31.3   2.9 

33 20 75.0 58.6  1.5  61.9   1.7 

33 33 50.0 51.0  0.8  50.9   0.6 

33 47 25.0 43.3  1.1  42.4   1.2 

33 60 10.0 36.8  1.7  36.8   1.7 

47 20 90.0 65.5  1.9  68.3   1.9 

47 33 75.0 61.0  1.1  59.5   1.2 

47 47 50.0 51.8  0.6  50.3   0.6 

47 60 25.0 44.4  1.4  43.1   1.6 

60 20 96.4 66.9  2.7  73.0   2.3 

60 33 90.0 65.0 1.7  68.5   1.8 

60 47 75.0 59.0  1.4  61.6   1.5 

60 60 50.0 50.6  1.4  51.0   1.4 

Note. Strength of evidence for each hypothesis is expressed as a percentage of the fish in 

the corresponding lake that are of the relevant colours. Ratings are expressed as a 

percentage of the height of the response scale. 

 

 

2.1.2 Results and Discussion 

The dependent variable reported in all of the analyses here is the final rating of 

relative probability made after all of the evidence becomes available. This is reported for 

each cell in the experimental design in Table 2.2 in columns labeled Instantaneous 

Evidence and Gradual Evidence.  
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2.1.2.1 Evidence of Competent Task Performance 

There were significant main effects of the strength of evidence in the focal lake, 

F(3,201)=97.23, p < .001, and of the strength of evidence in the alternative lake, 

F(3,201)=82.64, p < .001. These both reflect competent performance of the task, with 

ratings of the relative probability of the focal hypothesis increasing as evidence strength 

in the focal lake increased, and decreasing as evidence strength in the alternative lake 

decreased. Additional evidence of competent task performance is shown by a significant 

interaction of evidence strength in the focal lake with evidence strength in the alternative 

lake, F(9,603)=5.15, p < .001. The mathematically correct answer on each trial is a ratio 

of evidence supporting the focal hypothesis to evidence summed across both hypotheses. 

Therefore, the effect of evidence supporting the focal hypothesis would be greatest when 

evidence supporting its alternative was low. Thus, responding in a mathematically 

normative manner would lead to an interaction of support for the focal hypothesis with 

support for its alternative. 

2.1.2.2 Primacy and Recency Effects  

We tested for effects of the order in which evidence was presented. In testing for a 

primacy effect, we tested whether the first item of evidence had a stronger effect on the 

final rating than the second item of evidence. This would lead to an interaction of Event 

(first versus second) with Evidence Strength (the extent to which the evidence presented 

on a given event favoured the focal hypothesis over its alternative). On each event there 

were three levels of Evidence Strength, corresponding to evidence favoring the focal 

hypothesis, evidence supporting both hypotheses equally, and evidence favoring the 
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alternate hypothesis. We found no significant interaction of Event (first versus second) 

with Evidence Strength, F(2,134)=0.91, p=.41. This shows that the final ratings on each 

trial gave equal weight to the evidence presented on the first event and the evidence 

presented on the second event. 

 If there were a recency effect, the third item of evidence to be presented would 

have a stronger effect on the final rating than the second item of evidence to be presented. 

This would lead to an interaction of Event (second versus third) with Evidence Strength 

(favoring the focal hypothesis, equally supporting both hypotheses, or favoring the 

alternate hypothesis). There was no significant interaction of Event with Evidence 

Strength, F(12,134)=0.57 p=.57, showing that final probability judgments gave equal 

weight to the evidence presented on the third event and the evidence presented on the 

second event.  

2.1.2.3 Effects of Gradual Evidence Accumulation 

In order to test whether the effect of evidence strength on ratings of relative 

probability depended on gradual versus instantaneous evidence presentation, we ran a 4 × 

4 × 2 ANOVA, with factors of Support-for-Focal (strength of evidence supporting the 

focal hypothesis; 4 levels), Support-for-Alternative (strength of the evidence supporting 

the alternative hypothesis; 4 levels), and Evidence Presentation (whether the relevant 

evidence was gradually accumulated or all presented instantaneously). There was a 

significant Support-for-Focal × Evidence Presentation interaction, F(3,201)=6.54, p < 

.001. This reflected stronger effects of strength of evidence supporting the focal 

hypothesis in the gradually accumulated evidence condition, F(3,201)=93.60, p < .001, η2 
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= .58, than in the instantaneous evidence control condition, F(3,201)=75.08, p < .001, η2 

= .53, as shown in Figure 2.3.   

 

Figure 2.3. Experiment 1: Effect of evidence supporting the focal hypothesis on ratings of 

relative probability. Error bars represent the standard error of the mean.  
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Figure 2.4. Experiment 1: Effect of evidence supporting the alternative hypothesis on 

ratings of relative probability. Error bars represent the standard error of the mean.  

 

 
  

 

There was also a significant Support-for-Alternative × Evidence Presentation interaction, 

F(3,201)=4.96, p < .01. This reflected the fact that ratings of the relative probability of 

the focal hypothesis decreased more strongly as a function of strength of evidence 

supporting the alternative hypothesis  in the gradually accumulated evidence condition, 

F(3,201)=79.11, p < .001, η2 = .54, than in the instantaneous evidence control condition, 

F(3,201)=67.03, p < .001, η2 = .50 as shown in Figure 2.4. Each of the two interactions 

reported above indicate that the gradual accumulation of evidence would cause that 

evidence to be weighted more heavily than in the control condition. A limitation of this 
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study is that the effects of gradual evidence accumulation were confounded with the 

effects of making multiple revised ratings. Experiment 2 was designed to dissociate these 

effects. 

2.2 Experiment 2 

The goals of Experiment 2 were (1) to replicate the findings of Experiment 1 and 

(2) to dissociate the effects of gradual evidence accumulation from the effects of making 

multiple revised ratings. 

2.2.1 Methods 

The methods of Experiment 2 were the same as those in Experiment 1 with the 

following exceptions. 

2.2.1.1 Participants  

Sixty-five volunteers (forty females, twenty-five males) with a mean age of 25.5 

years (SD=7.0) participated in this experiment.  

2.2.1.2 Materials and Procedure 

In order to minimize the overall duration of the experiment we reduced the 

number of levels of evidence strength for each hypothesis from 4 to 3. Once all of the 

evidence was visible, each lake contained either 20%, 40%, or 60% fish of the relevant 

colours. The numbers of fish corresponding to each level of evidence strength are 

outlined in Table 2.3. There were 36 cells in the experimental design: 3 levels for the 

focal lake × 3 levels for the alternative lake × 4 types of evidence presentation (three 
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types of gradual evidence and one type of instantaneous evidence). In each of these cells 

there were 4 trials, so each participant completed 144 trials in total.  

 

Table 2.3. Experiment 2: Numbers of Fish of the Three Relevant Colours for each of 

Three Levels of Support for a Given Hypothesis. 

Relevant colour 

#1 

Relevant colour 

#2 

Relevant colour 

#3 

Total # Fish of 

Relevant 

colours 

Total as a 

Percentage of 

the 120 Fish in 

the Lake 

4 16 4 24 20 % 

4 16 28 48 40 % 

28 16 28 72 60 % 

Note. In the overall experiment, there were three possible levels of support for the focal 

hypothesis and three possible levels of support for its alternative. The above table 

outlines those three levels for just one hypothesis. The numbering of the three relevant 

colours above is arbitrary and does not refer to presentation order. On any given trial, the 

three relevant colours used for the three fish in the downstream lake were randomly 

selected from four possibilities: red, white, gold, and black. 

 

We changed the sequence of events within a gradual evidence trial as follows: the 

display alternated between periods when the fish in the upstream lakes were visible and 

periods in which the cursor on the rating scale could be moved (see Figure 2.5). After 

viewing the fish in the upstream lakes, participants clicked the left mouse button to make 

the rating scale cursor movable, which also made the upstream fish disappear. On some 

gradual evidence trials, this caused the rating scale cursor to become movable on all three 

events. On others, it caused it to be movable only on the second and third events, or only  

 



    30 

 

 

Figure 2.5 Experiment 2: The sequence of events in the gradual evidence accumulation 

condition in which a rating is required.  
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on the third event. Participants never knew ahead of time what type of gradual evidence 

trial they were on, and thus couldn't predict on any given event whether or not they would 

be required to make a rating after clicking the left mouse button. This ensured that 

participants always attended to the contents of the upstream lakes before clicking the 

mouse to advance through the trial. Otherwise, on gradual evidence trials requiring 

ratings only on the last event participants might have simply clicked the mouse quickly to 

advance to the end of the trial without even looking at the contents of the upstream lakes. 

Such a strategy would have effectively transformed a gradual evidence trial into an 

instantaneous evidence trial. Instead, we designed the experiment so that participants 

were required to attend to the contents of the upstream lakes on each event, and to 

prepare an accurate response in case they were required to make a rating.  

As the instructions for Experiment 2 were somewhat more complex than those for 

Experiment 1, we started each testing session with a practice session. This involved four 

blocks of four trials each, with verbal instructions given before each block. Each block 

contained only one of the four response conditions. The first was the instantaneous 

evidence condition, which was followed by the gradual evidence condition with a rating 

made on each event, then the gradual evidence condition with a rating made on the last 

two events, then the gradual evidence condition with a rating made on the last event only. 

Once participants completed this practice session, they were informed that the four 

conditions would be randomly intermixed in the main experiment. 
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2.2.2 Results and Discussion 

The dependent variable reported in all of the analyses here is the final rating made 

after all of the evidence becomes available. This is reported for each cell in the 

experimental design in Table 2.4.   

2.2.2.1 Replication of Experiment 1 

In order to test for replication of the results reported in Experiment 1, we 

submitted the data from the gradual evidence condition with ratings on each event and the 

data from the instantaneous evidence condition to a 3 × 3 × 2 ANOVA. This had factors 

of Support-for-Focal (strength of evidence supporting the focal hypothesis; 3 levels), 

Support-for-Alternative (strength of the evidence supporting the alternative hypothesis; 3 

levels), and Evidence Presentation (whether the relevant evidence was gradually 

accumulated or all presented instantaneously). As in Experiment 1, there was a 

significant Support-for-Focal × Evidence Presentation interaction, F(2,128)=51.07, p < 

.001. This reflected the fact that ratings of the relative probability of the focal hypothesis 

increased more strongly as a function of strength of evidence supporting the focal 

hypothesis in the gradually accumulated evidence condition, F(2,128)=616.06, p < .001, 

η2 = .91, than in the instantaneous evidence control condition, F(2,128)=394.93, p < .001, 

η2 = .86 (see Figure 2.6 and Figure 2.7).  There was also, as in Experiment 1, a significant 

Support-for-Alternative × Evidence Presentation interaction, F(2,128)=35.74, p<.001. 

This reflected the stronger decrease in ratings of the relative probability of the focal 

hypothesis as a function of support for the alternative in the gradually accumulated 

evidence condition, F(2,128)=567.10, p < .001, η2 = .90,  than in the instantaneous
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Table 2.4 Experiment 2: Ratings of the Probability that the Focal Hypothesis, Rather than it Alternative, is Correct. 

Strength of 

Evidence 

Supporting 

the Focal 

Hypothesis 

Strength of 

Evidence 

Supporting 

the 

Alternative 

Hypothesis 

Rating 

Predicted 

by 

Bayesian 

Norm 

Rating of Relative Probability 

Instantaneous 

Evidence  

Gradual 

Evidence, Rate 

on All Three 

Events  

Gradual 

Evidence, Rate 

on Second and 

Third Events  

Gradual 

Evidence, Rate 

on Third Event 

Only 

M SE  M SE  M SE  M SE 

20 20 50.0 49.6  0.4  49.8  0.4  49.5  0.5  49.8 0.5 

20 40 12.5 33.3 1.1  29.4  1.1  29.0   1.1  29.0  1.1 

20 60  2.0 26.9 1.2  18.9  1.2  20.2   1.2  21.4  1.2 

40 20 87.5 67.1 1.3  71.9  1.4  71.8  1.2  70.1   1.6 

40 40 50.0 49.7  0.4  49.8  0.4  49.7   0.5  49.9  0.4 

40 60 12.5 31.1  1.1  28.8  1.2  31.7   1.0  30.8   1.1 

60 20 98.0 75.4 1.4  81.6  1.4  78.1   1.8  79.5   1.2 

60 40 87.5 67.7 1.2  71.9  1.2  69.4   1.2  71.5   1.2 

60 60 50.0 49.8 0.4  50.3  0.5  49.7   0.6  50.1   0.5 

Note. Strength of evidence for each hypothesis is expressed as a percentage the fish in the corresponding lake that are of the relevant 

colours. Ratings are expressed as a percentage of the height of the response scale.  
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evidence control condition, F(2,128)=400.88, p < .001, η2 = .86 (see Figure 2.6 and 

Figure 2.7).   

 

Figure 2.6. Experiment 2: Effect of evidence supporting the focal hypothesis on ratings of 

relative probability. Error bars represent the standard error of the mean.  
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Figure 2.7. Experiment 2: Effect of evidence supporting the alternative hypothesis on 

ratings of relative probability. Error bars represent the standard error of the mean. 

 

 

 

2.2.2.2 Effects of Gradual Evidence Accumulation Controlling for Number of 

Ratings 

In Experiment 2, we included a condition in which evidence was gradually 

accumulated but only a single rating was made, rather than a rating after each of the three 

portions of evidence, as in the above analysis. This allowed us to test for an effect of 

gradual evidence accumulation when the number of ratings made was held constant. This 

involved a 3 × 3 × 2 ANOVA, with factors of Support-for-Focal (3 levels), Support-for-

Alternative (3 levels), and Evidence Presentation (gradual versus instantaneous).  
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As in all analyses presented above for Experiments 1 and 2, we found a 

significant Support-for-Focal × Evidence Presentation interaction, F(2,128)=29.41, p < 

.001. This reflected the fact that ratings of the relative probability of the focal hypothesis 

increased more strongly as a function of support for the focal hypothesis in the gradually 

accumulated evidence condition, F(2,128)=490.47, p < .001, η2 = .89, than in the 

instantaneous evidence control condition, F(2,128)=394.93, p < .001, η2 = .86 (see Figure 

2.6).  Second, as in all analyses presented above for Experiments 1 and 2, we found a 

significant Support-for-Alternative × Evidence Presentation interaction, F(2,128)=17.31, 

p<.001. This reflected the fact that ratings of the relative probability of the focal 

hypothesis decreased more strongly as a function of  strength of the evidence supporting 

the alternative hypothesis in the gradually accumulated evidence condition, 

F(2,128)=548.96, p < .001, η2 = 90, than in the instantaneous evidence control condition, 

F(2,128)=400.88, p < .001, η2 = .86 (see Figure 2.7).  This analysis confirms that 

evidence affects ratings of relative probability more when gradually accumulated than 

when presented instantaneously, even if the total number of ratings made is controlled 

for. Thus, we can conclude that the effect is due to gradual evidence accumulation rather 

than to the act of making successive ratings.  

 

2.3 General discussion 

The main goal of the current research was to determine how gradual evidence 

accumulation affects comparative judgments. Those judgments were assessed via ratings 

of the relative probability that a focal hypothesis, rather than its alternative, was true. In 
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two studies, we found a given amount of evidence to affect ratings of relative probability 

more if gradually accumulated (presented in three sequential portions) than if presented 

instantaneously. Our investigation diverged from previous studies with objectively 

quantifiable evidence in that we kept the strength of evidence constant while 

manipulating whether it was accumulated gradually or all presented instantaneously. 

Thus, the key contribution of this work is that it dissociates the effects of gradual 

evidence accumulation from the effects of changing evidence strength. 

Another goal of this study was to investigate whether successive ratings made in 

response to gradually accumulated evidence were subject to either a primacy effect 

(involving anchoring to the first rating made), or a recency effect. We found neither. 

Thus, the order in which portions of evidence are gradually accumulated does not affect 

comparative judgments made in this paradigm. However, as primacy and recency effects 

are normally seen in short-term memory retention tasks (Deese & Kaufman, 1957; 

Murdock, 1962; Sederberg, Howard, & Kahana, 2008), we would expect to see primacy 

and recency effects if we required participants to retain evidence in short-term memory. 

While some previous experiments (Hogarth & Einhorn, 1992) manipulated 

whether evidence was gradually accumulated versus presented instantaneously, they 

produced inconsistent results, reporting an effect of gradual versus instantaneous 

evidence in some experiments but not others. Given that evidence strength in those 

experiments could not be objectively quantified and that the gradual versus instantaneous 

manipulation was between-subjects, their gradual versus instantaneous manipulation was 

necessarily confounded with individual differences in subjective evidence strength. In 

addition, that work did not manipulate gradual evidence presentation independently from 
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making multiple successive ratings. Thus, our work is the first to report a replicable effect 

whereby gradual accumulation of objectively quantifiable evidence increases subjective 

strength. It is also the first to show that this effect is not due to making successively 

revised ratings.  

A secondary finding evident in our data is that participant’s responses were 

conservative relative to the Bayesian norm, as has been reported previously in the beads 

task (Anderson, 1981; Juslin, Nilsson, & Winman, 2009; Lopes, 1985; Shanteau, 1975). 

Such conservatism has been attributed to misaggregation of evidence over time, with the 

combined value of several sequential samples being a weighted average of their 

individual scale values (Anderson, 1981; Lopes, 1985; Shanteau, 1975) . If conservatism 

resulted from such misaggregation, one would predict more conservatism in response to 

gradually accumulated evidence than in response to the same evidence presented 

instantaneously. Interestingly, our results showed the opposite, indicating a need to revisit 

this theoretical account attributing conservatism to misaggregation of evidence over time.  

In our data, the effect of gradual evidence accumulation was present regardless of 

whether the evidence favored the focal hypothesis or favored its alternative. If gradually 

accumulated, evidence supporting the focal hypothesis was seen to support it more 

strongly, while evidence supporting the alternative was seen to refute the focal hypothesis 

more strongly. These results are consistent with our prediction that processing evidence 

to a greater extent would lead to more salient mental representations, and consequently 

greater subjective strength. This tendency to give increased weight to evidence divided 

into three gradually accumulated portions can be thought of as a new type of packing 

effect. This is analogous to the effect observed with packed versus unpacked hypotheses, 
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(e.g. Bonini & Gonzalez, 2005; Rottenstreich & Tversky, 1997; Tversky & Koehler, 

1994). A packed hypothesis (e.g., that someone will die of natural causes) is rated as less 

probable than its unpacked alternative (e.g., that they will die of either cancer, a heart 

attack, a stroke, or some other natural cause). One explanation for the tendency to rate 

unpacked hypotheses as more probable than packed ones is that explicitly mentioning one 

of the unpacked components of a hypothesis increases its salience, thereby increasing its 

perceived support (Rottenstreich & Tversky, 1997). Similarly, we found in the current 

studies that unpacked evidence (evidence presented in three portions) seemed to be 

subjectively more salient than packed evidence (the same evidence presented in a single 

portion), possibly as a result of being processed more extensively.  

A secondary finding evident in Table 2.2 and Table 2.4 is that participant’s 

responses deviated substantially from those predicted by the Bayesian norm. An 

alternative model, which we will call the sum-across-features model, would involve 

participants calculating the total number of fish of the relevant colours in each lake 

(summing across three colours). They would then compare the number of fish of relevant 

colours in the focal lake to the total number of fish of relevant colours summed across 

both upstream lakes, as in Luce’s choice axiom (Luce, 1977). Figure 2.8 and Figure 2.9 

demonstrate that participants’ responses are much more closely aligned to this sum-

across-features model than to the Bayesian one. However, the Bayesian model and 

participants' responses both follow a bow-shaped pattern, while the sum-across-features 

model does not. Neither model accounts for the difference in ratings between the gradual 

and instantaneous evidence conditions. The development of a cognitive model that does 

account for this effect remains a direction for future research.  
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Figure 2.8. Experiment 1: Comparison of actual ratings made to those predicted by the 

Bayesian norm and the sum-across-features model.  
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Figure 2.9. Experiment 2: Comparison of actual ratings made to those predicted by the 

Bayesian norm and the sum-across-features model.  

 

 

 

Another interesting direction for future research would be a parallel investigation 

requiring participants to remember evidence in long-term memory. Such an investigation 

would allow application of these results to a wider range of everyday situations. For 

example, a political party's campaign could involve revealing all of the points in their 

platform at the same time, or else gradually revealing them over a period of days or 

weeks. Based on the results reported here, one would predict that revealing each point of 

a political platform in sequence would elicit more political support than presenting all of 

those points instantaneously.  

While the gradual evidence effect found in this Chapter was predicted, we found 
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none of the interactions predicted in Chapter 1. We found no anchoring effect underlying 

the bias in favour of gradually accumulated evidence. Furthermore, the strength of the 

bias did not depend on whether evidence supported the focal hypothesis or the 

alternative. Thus, there is no evidence of the bias in favour of gradually accumulated 

evidence being driven by cognitive coherence. Rather, it appears to be simply a packing 

effect.  
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3 Self-Selection Bias in Hypothesis Comparison 

 

When attempting to understand a situation, we often generate or select our own 

preferred hypothesis, and consider it alongside those provided by an external source such 

as a news report, an advertisement, or someone else's opinion. Forming our own opinion 

often involves assessing our level of agreement with all candidate hypotheses. The main 

goal of the series of experiments presented in this chapter was to investigate whether 

judgments can be biased in favor of self-selected hypotheses, relative to judgments of 

hypotheses specified by external sources, given equivalent supporting evidence. The 

secondary goals were to test whether or not this effect was moderated by other factors 

relating to hypothesis selection difficulty and the rate of evidence accumulation. 

Previous investigations involving comparison of self-selected to other-selected 

material have required participants to choose from a range of options and rate their 

confidence that they chose correctly. This is compared to confidence that other-selected 

material was chosen correctly (Koehler, 1994; Ronis & Yates, 1987; Sieck, 2003; Sieck 

et al., 2007; Sieck & Yates, 2001; Sniezek, Paese, & Switzer, 1990). In the general 

knowledge and learning paradigms used in those studies, self-selection and confidence 

ratings are very likely to have been affected by familiarity with the subject matter, 

fluency in memory retrieval, or completeness of memory retrieval (Sieck, 2003; Sieck et 

al., 2007; Sieck & Yates, 2001). For example, participants learning to classify 

hypothetical patients with particular symptom patterns into disease categories often based 
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their judgments on the first category exemplar they could retrieve from memory (Sieck & 

Yates, 2001). As the experimenter has no control over these processes, it is difficult (or 

impossible) to equate them between the self-selected and other-selected conditions. 

Furthermore, in such an experimental setup, the assignment of a given question to the 

self-selected versus other-selected conditions was necessarily manipulated between-

subjects. Consequently, the evidence considered for that question very likely would have 

differed between the individual making the ratings in the self-selected condition and the 

individual making the ratings in the other-selected condition. Various aspects of 

familiarity, personal experience, fluency, and completeness of memory retrieval for a 

question may differ between the individual who chooses one answer before rating it and 

the other individual who rates their level of agreement with that choice, making it 

difficult to isolate the factors causing ratings to differ between the self-selected and other-

selected conditions.  

In the current research, we wished to precisely match supporting evidence across 

the self-selected and other-selected conditions and avoid any differences in familiarity, 

past personal experience, or retrieval. To this purpose, we used a variation of the beads-

from-a-jar probabilistic reasoning task (Beach, 1968; Freeman et al., 2008; Moritz et al., 

2007; Peterson et al., 1965; Speechley et al., 2010). As was stated in Chapter 1, this task 

involves judging the likelihood that a series of beads is drawn from jar A and not jar B, 

based on the colours of the beads in jars A and B, and on the colours in the series of 

beads being drawn. Given that jars A and B differ only in their relative proportions of 

bead colours, the process of self-selecting can be based on a very restricted set of 

parameters, presumably almost entirely probability estimates. This paradigm allows us to 
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equate evidence within-subjects between the self-selected and other-selected conditions. 

The probability ratings following self- or other-selection of hypotheses can then be 

compared. 

The version of the task used in the current study involved judging the probability 

that a single fish was drawn from one of three lakes. Specifically, participants judged the 

probability that the fish was drawn from a given self- or other-selected lake rather than 

being drawn from either of two alternatives. The self- or other-selected lake is referred to 

as the focal hypothesis. On all trials, the participant was required to indicate the 

likelihood of the focal hypothesis (rather than the other two alternatives) being true. We 

predicted a self-selection bias whereby ratings of the relative probability of the focal 

hypothesis would be higher if it were self-selected than if it were externally selected. Our 

secondary goal was to explore possible moderators of any self-selection bias, such as 

increased cognitive effort inherent to the selection process, or repeated activation of the 

mental representation of the self-selected focal hypothesis.  

3.1 Experiment 1 

The purpose of Experiment 1 was to assess whether self-selected hypotheses were 

judged to be more probable than externally selected ones, despite their being matched in 

terms of the mathematically normative probability rating. Our task was designed so that 

any such bias could not be attributable to either differences in the number of alternatives 

considered or differences in memory retrieval.  
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3.1.1 Method 

3.1.1.1 Participants 

Twenty-six volunteers (fourteen females and twelve males) with a mean age of 

29.3 years (SD = 9.2) participated in this experiment. Participants were recruited via 

posters on the University of British Columbia campus and in community centers in the 

greater Vancouver area, and also via postings on electronic bulletin boards. All 

participants were reimbursed $10 per hour for their time plus parking and transportation 

expenses. 

3.1.1.2 Materials & Procedure 

Each trial of our probabilistic reasoning task involved a scene depicting four blue 

lakes (see Figure 3.1), three of which were upstream from the fourth. At the start of each 

trial, a single black or white fish was seen to jump from the downstream lake. The colour 

of this jumping fish, referred to hereafter as the relevant colour, was randomized across 

trials. Subsequently, the contents of each of the three upstream lakes became visible. 

Each contained a mixture of black and white fish (40 fish in total per lake), which 

remained in view until a rating had been made. Participants were told that the fish in the 

downstream lake originated from one of the upstream lakes. Thus, each upstream lake 

corresponded to a hypothesis about the origin of the jumping fish. The upstream lake 

with the most fish of the relevant colour was the most likely origin of the fish in the 

downstream lake. Subsequently, if the trial was one in which the focal hypothesis 
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Figure 3.1. Sequence of events within a trial of either Experiment 1, 2, or 3 in which the 

focal hypothesis is self-selected.   

a.

b.

c.
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was to be self-selected, participants indicated the lake they deemed to be the most likely 

origin of the jumping fish by moving the mouse cursor (a red square) over their preferred 

lake and clicking with the left mouse button. This lake, referred to hereafter as the focal 

lake, then turned green. On trials with externally selected focal hypotheses, the focal lake 

was selected randomly from the three choices by the computer, and turned green 

immediately after the fish in the bottom lake jumped, at the same time as the fish in the 

upstream lakes became visible. 

Once the focal lake was selected, participants then rated the relative probability 

that the focal hypothesis, rather than its alternative, was true. Ratings were made on a 

vertical scale, with the labels "definitely true" at the top end and "impossible" at the 

bottom end. Participants used a mouse to move the slider smoothly up and down the scale 

and clicked the left mouse button when it was in the desired location. The vertical 

position of the cursor, in pixels, was then recorded. In the results section, ratings are 

reported as a percentage of the total height of the response scale. At the beginning of each 

trial, the slider was set at the mid-point of the response scale. Trials with self-selected and 

externally selected focal hypotheses occurred in separate blocks. In total there were 

eighteen blocks of nine trials each, alternating between blocks in which the focal 

hypothesis was self-selected and blocks in which it was externally selected. The first 

block always consisted of trials in which the focal hypothesis was externally selected (by 

the computer). 

In order to vary the strength of support for the focal hypothesis, as well as the 

strength of support for its alternatives, we manipulated the percentage of fish of the  
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Table 3.1. Experiment 1: Ratings of the Relative Probability that the Focal Hypothesis, Rather than its Alternatives, is True, as a 

Function of the Strength of the Evidence Supporting the Focal Hypothesis and of that Supporting each Alternative 

 Strength of Evidence Supporting each Hypothesis  

(% Fish in that Lake of Relevant Colour) 

 

 

 

Mathematical Norm 

100 * F/(F+A1+A2) 

Rating (Percentage of 

Response Scale Height) 

 

Self-

Selection 

Bias 

(Self - Ext) 

Focal Hypothesis  

(F) 

Alternative #1  

(A1) 

Alternative # 2  

(A2) 

Self- 

Selected Focal 

Externally  

Selected Focal 

75 75 75 33.33 53.95 48.68 5.27 

75 50 75 37.50 58.82 52.98 5.84 

75 50 50 42.86 57.81 57.22 0.59 

75 25 75 42.86 63.11 57.83 5.27 

75 25 50 50.00 61.82 61.53 0.29 

75 25 25 60.00 68.31 66.04 2.27 

50 50 50 33.33 50.62 45.79 4.83 

50 25 50 40.00 54.38 49.94 4.44 

50 25 25 50.00 57.40 55.32 2.08 

25 25 25 33.33 42.52 42.48 0.04 

Note. Each hypothesis corresponds to an upstream lake which is the possible origin of a fish seen in a downstream lake. The strength 

of evidence supporting each corresponds to the percentage of fish in that lake matching the colour of the downstream fish.  
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relevant colour in each lake. Specifically, each of the three lakes contained either 25%, 

50%, or 75% fish of the relevant colour. Any trials on which the participant made an 

error in selecting the most probable hypothesis as the focal hypothesis were rejected from 

the analysis. Note that this prevented us from employing a 3x3x3 design (3 levels of 

support for each lake), because support for the focal hypothesis had to match or exceed 

support for each alternative. Thus, within a given type of focal hypothesis (self-selected 

or externally selected), we used a design with 10 cells, as displayed in Table 3.1.  

3.1.2 Results & Discussion 

In order to ensure that participants clearly understood the instructions, we 

excluded their data if their accuracy in selecting the most probable hypothesis as the focal 

hypothesis was less than 80%. As a result, six participants were excluded from the 

analysis. For the remaining twenty participants, we excluded any trials in which the focal 

hypothesis was less probable than one of its alternatives, whether that focal hypothesis 

was selected by the participant or computer-selected. We excluded an average of 3.3 % 

(SD=3.9 %) of trials with self-selected focal hypotheses. As the computer was randomly 

selecting focal hypotheses, and as 19 of the 30 choices outlined in the first three columns 

of Table 3.1 are correct choices, the computer's accuracy in this experiment was 63.3%. 

Consequently, we excluded 36.7% of the trials with computer-selected focal hypotheses. 

Mean ratings for each condition are displayed in Table 3.1.  

A t-test comparing the average rating of self-selected focal hypotheses to the 

average rating of externally selected ones revealed a significant self-selection bias,  t(19) 

= 4.32, p < .001, η2 = .50,  involving higher mean probability ratings for self-selected 
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focal hypotheses (M = 59.4) than for externally selected ones (M=56.2). In order to adjust 

for moderate skew in the data, we also applied a rank transformation (Conover & Iman, 

1981). Specifically, the entire set of scores (both dependent variables together) was rank-

transformed, then the t-test was applied to the rank-transformed scores. When these data 

were transformed to rank scores, the effect remained significant. The ratings of self-

selected focal hypotheses were higher for sixteen of the twenty participants. Unlike in 

previous paradigms involving judgments of one's own hypothesis (Koehler, 1994; Ronis 

& Yates, 1987; Sieck, 2003; Sieck et al., 2007; Sieck & Yates, 2001; Sniezek et al., 

1990), the bias reported here cannot be attributed to differences in familiarity, personal 

experience, or memory retrieval, and is consistent with the notion that the cognitive 

operations involved in selecting one's own preferred focal hypothesis increase its 

perceived probability.  

As can be seen in Table 3.1, the average rating, across conditions, is higher than 

the normative average. This may involve neglect of the fact that the base rate was 1/3, 

which would be consistent with previous reports of base rate neglect (Tversky & 

Kahneman, 1974). It may also be a bias induced by the demand characteristics of the 

experiment, because at the start of each trial the cursor was at the midpoint of the rating 

scale, rather than 1/3 of the way from the bottom. Regardless, both the base rate and the 

starting position of the mouse cursor on the rating scale are equated between the self-

selected and externally selected conditions. Consequently, this overall tendency to make 

ratings higher than the norm is irrelevant to the main theme of this paper, namely the 

selection bias. 
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3.2 Experiment 2 

One possible explanation for the results of Experiment 1 was that participants 

correctly noted that the computer was sometimes selecting something other than the most 

probable hypothesis to be the focal hypothesis, and thus considered the computer’s 

choices to be random or inaccurate. The purpose of Experiment 2 was to replicate results 

of Experiment 1 while explicitly matching the computer's choices to the participant's. 

This would ensure that the self-selection bias was not just the result of the participant 

generally assigning low ratings to the computer-selected focal hypotheses due to a 

perception that the computer is unreliable in selecting the focal hypothesis correctly.  

3.2.1 Method  

3.2.1.1 Participants  

Forty-one volunteers (twenty-one females and twenty males) with a mean age of 

27.7 years (SD = 8.5) participated in this experiment. Participants were recruited via 

posters on the University of British Columbia campus and in community centers in the 

greater Vancouver area, and also via postings on electronic bulletin boards. All 

participants were reimbursed $10 per hour for their time plus parking and transportation 

expenses. 

3.2.1.2 Materials & Procedure 

The methods of Experiment 2 were identical to those of Experiment 1 with the 

following exceptions. The first block always consisted of trials in which the focal 

hypothesis was self-selected. Each trial with an externally selected focal hypothesis was 
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Table 3.2. Experiment 2: Ratings of the Relative Probability that the Focal Hypothesis, Rather than its Alternatives, is True, as a 

Function of the Strength of the Evidence Supporting the Focal Hypothesis and of that Supporting each Alternative 

Strength of Evidence Supporting each Hypothesis 

(% Fish in that Lake of Relevant Colour) 

 

 

 

Mathematical Norm 

100 * F/(F+A1+A2) 

Rating (Percentage of 

Response Scale Height) 

 

Self-

Selection 

Bias       

(Self - Ext) 

Focal Hypothesis  

(F) 

Alternative #1  

(A1) 

Alternative # 2  

(A2) 

Self- 

Selected Focal 

Externally  

Selected Focal 

75 75 75 33.33 42.15 41.94 0.21 

75 50 75 37.50 51.90 49.18 2.72 

75 50 50 42.86 58.33 54.25 4.08 

75 25 75 42.86 55.10 51.93 3.17 

75 25 50 50.00 62.60 60.72 1.88 

75 25 25 60.00 68.50 67.93 0.57 

50 50 50 33.33 43.50 40.81 2.69 

50 25 50 40.00 51.37 48.66 2.71 

50 25 25 50.00 58.46 55.23 3.23 

25 25 25 33.33 39.88 40.30 -0.42 
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essentially a repeat of a corresponding trial involving a self-selected focal hypothesis in 

the preceding block. Specifically, the choice of focal lake (focal hypothesis) made by the 

computer always matched a choice made by the participant on the corresponding trial in 

the preceding block. Thus, the computer's accuracy in selecting the most probable 

hypothesis was identical to the participant's accuracy. Within a matched pair of trials, the   

proportions of fish of each colour within each lake were kept constant. However, the 

positions of individual fish within those lakes varied randomly.  

3.2.2 Results & Discussion 

In order to ensure that participants clearly understood the instructions, we 

excluded their data if their accuracy in selecting the most probable hypothesis as the focal 

hypothesis was less than 80%. As a result, two participants were excluded from the 

analysis. For the remaining thirty-nine participants, we excluded any trials with selection 

errors (trials in which the self-selected focal hypothesis was less probable than one of its 

alternatives), whether that selection was made by the participant or by the computer. We 

excluded an average of 2.8% (SD=3.5%) of trials with self-selected focal hypotheses. 

The percentages were the same for trials with externally selected focal hypotheses, as 

accuracy was matched between the self and external conditions. Mean ratings for each 

condition are displayed in Table 3.2. A t-test comparing the average rating of self-

selected focal hypotheses to the average rating of externally selected ones revealed a 

significant self-selection bias,  t(38) = 3.75, p < .001, η2 = .27,  involving higher mean 

probability ratings for self-selected focal hypotheses (M = 53.3) than for externally 

selected ones (M = 51.6). As in Experiment 1, the effect remained significant when the 
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data were transformed to rank scores. The ratings of self-selected focal hypotheses were 

higher for thirty of the thirty-nine participants.  Thus, the results of Experiment 2 

replicated those of Experiment 1 and showed that the self-selection bias could not be 

attributed to overall differences in accuracy, between the participant and the computer, in 

selecting the most probable focal hypothesis. The smaller effect size in Experiment 2 (η2 

= .50) than Experiment 1 (η2 = .27) is consistent with our concerns that perceptions of the 

computer's accuracy contributed in part to the selection bias in Experiment 1, although 

the magnitude of the bias did not differ significantly between experiments, F(1,58) = 

1.57, ns. Still, the trend towards a smaller effect size, highlights the importance of the 

self-to-external accuracy matching implemented here and in our subsequent experiments.  

3.3 Experiment 3 

The process of selecting a focal hypothesis and then rating its probability (relative 

to its alternatives) might involve more total cognitive effort than merely judging the 

probability of an externally selected focal hypothesis. Thus, selecting a focal hypothesis 

might cause the salience of its mental representation to be greater than that of an 

externally selected focal hypothesis via more effortful processing. If so, then we would 

expect the strength of the self-selection bias to depend on the amount of cognitive effort 

involved in selecting the focal hypothesis. The goals of Experiment 3 were to replicate 

the self-selection bias found in Experiments 1 and 2, and to determine whether that bias 

depended on increased cognitive effort involved in focal hypothesis selection.  

The process of selecting a preferred focal hypothesis with consistent accuracy 

necessarily involves comparisons between evidence supporting competing hypotheses. 
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Comparisons made between similar numbers are more difficult than comparisons made 

between dissimilar ones (Pinel, Dehaene, Riviere, & LeBihan, 2001). Thus, selecting the 

most probable hypothesis as the focal hypothesis will be most difficult if the strength of 

its supporting evidence is similar to the strength of the evidence supporting its 

alternatives. In the current experiment, we manipulated the degree of similarity between 

support for the focal hypothesis and support for its alternatives. The strength of support 

for the strongest alternative was either identical to that for the focal hypothesis, close 

(slightly lower), distant, or very distant. The support for the other alternative was varied 

in the same manner. If self-selection bias were the result of increased cognitive effort, we 

would expect it to be largest when support for the alternatives was most similar to 

support for the focal hypothesis. 

3.3.1 Method 

3.3.1.1 Participants 

Seventy-nine volunteers (fifty-three females and twenty-six males) with a mean 

age of 27.7 years (SD = 7.9) participated in this experiment. Participants were recruited 

via posters on the University of British Columbia campus and in community centers in 

the greater Vancouver area, and also via postings on electronic bulletin boards. All 

participants were reimbursed $10 per hour for their time plus parking and transportation 

expenses. 
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3.3.1.2 Materials & Procedure 

The methods were identical to those of Experiment 2 with the following 

exceptions. In total there were twelve blocks of ten trials each, alternating between blocks 

in which the focal hypothesis was self-selected and blocks in which it was externally 

selected. The focal lake contained either: 85%, 55%, or 25% fish of the relevant colour. 

Support for each alternative hypothesis was either identical to the support for the focal 

hypothesis, close (10% lower), distant (40% lower), or very distant (70% lower). Thus, 

each alternative lake contained either 85%, 75%, 55%, 45%, 25%, or 15% fish of the 

relevant colour. These manipulations are outlined in Table 3.3, which shows a complete 

list of the conditions used in this experiment. They allowed us to test whether the 

magnitude of any self-selection bias varied as a function of the difficulty of selecting the 

most probable hypothesis; in other words, the degree to which the focal and alternative 

hypotheses had similar levels of support. 
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Table 3.3. Experiment 3: Ratings of the Relative Probability that the Focal Hypothesis, 

Rather than its Alternatives, is True, as a Function of the Strength of the Evidence 

Supporting the Focal Hypothesis and of that Supporting each Alternative 

Strength of Evidence Math. 

 

Norm 

Rating Self-Selection 

Bias 

(Self - Ext) Focal Alt. 1 Alt. 2 Self External 

85 85 85 33.33 44.86 42.89 1.97 

85 85 75 34.69 48.44 45.88 2.56 

85 75 75 36.17 50.12 48.10 2.02 

85 85 45 39.53 54.69 52.88 1.81 

85 85 15 45.95 56.91 56.37 0.54 

85 75 45 41.46 55.51 53.49 2.02 

85 75 15 48.57 59.99 58.64 1.35 

85 45 45 48.57 62.39 60.47 1.92 

85 45 15 58.62 65.85 65.64 0.21 

85 15 15 73.91 75.21 74.28 0.93 

55 55 55 33.33 45.12 44.17 0.95 

55 55 45 35.48 45.60 44.78 0.82 

55 45 45 37.93 46.36 45.94 0.42 

55 55 15 44.00 53.30 53.52 -0.22 

55 45 15 47.83 54.76 52.59 2.17 

55 15 15 64.71 63.79 63.23 0.56 

25 25 25 33.33 42.06 43.03 -0.97 

25 25 15 38.46 45.34 45.68 -0.34 

25 15 15 45.45 48.13 49.14 -1.01 
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Table 3.4. Experiment 3: Time Taken to Self-Select a Focal Hypothesis and to Make 

Ratings of the Relative Probability that the Focal Hypothesis, Rather than its 

Alternatives, is True, as a Function of the Strength of the Evidence Supporting the Focal 

Hypothesis and of that Supporting each Alternative 

Strength of Evidence 
Time Spent Self-

Selecting Focal 

Hypothesis (ms) 

Rating RT (ms) 

 
Self - Ext Rating 

RT Difference (ms) Focal Alt. 1 Alt. 2 Self     External 

85 85 85 6038.10 3225.43 7313.88 -4088.45 

85 85 75 5543.75 3930.27 7494.03 -3563.76 

85 75 75 4408.51 3585.57 7539.13 -3953.57 

85 85 45 5329.80 3685.35 7706.17 -4020.82 

85 85 15 5228.03 3781.71 7452.07 -3670.36 

85 75 45 3917.59 4002.34 8085.35 -4083.01 

85 75 15 3628.33 3835.74 7245.88 -3410.13 

85 45 45 3373.96 4366.54 7705.75 -3339.21 

85 45 15 3172.42 3763.80 6904.92 -3141.13 

85 15 15 3205.72 3620.58 6829.95 -3209.37 

55 55 55 6116.67 3082.15 8288.22 -5206.07 

55 55 45 6220.15 3033.42 8657.94 -5624.52 

55 45 45 5401.87 2933.10 7710.29 -4777.19 

55 55 15 4931.23 3626.64 7979.03 -4352.40 

55 45 15 4585.96 3723.67 8064.45 -4340.77 

55 15 15 3529.96 4293.59 7473.59 -3179.99 

25 25 25 6785.00 3273.57 8779.65 -5506.09 

25 25 15 5421.04 3766.64 8669.46 -4902.82 

25 15 15 4732.58 4234.24 7730.85 -3496.62 
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3.3.2 Results & Discussion 

Unlike in Experiments 1 and 2, all of the participants in Experiment 3 had 

accuracy levels above 80% in selecting the most probable hypothesis as the focal 

hypothesis. Thus, all of the participants appeared to understand the instructions clearly, 

and none were excluded. We excluded any trials in which the focal hypothesis was less 

probable than one of its alternatives, whether it was selected by the participant or by the 

computer. We excluded an average of 2.1% (SD=3.5%) of trials with self-selected focal 

hypotheses. The percentages were the same for trials with externally selected focal 

hypotheses, as accuracy was matched between the self and external conditions. Mean 

ratings for each condition are displayed in Table 3.3. 

3.3.2.1 Replication of Self-selection Bias 

We first tested for a self-selection bias as a main effect across all conditions. A t-

test comparing the average rating of self-selected focal hypotheses to the average rating 

of externally selected ones revealed a significant self-selection bias, t(78) = 2.82, p < .01, 

η2 = .09.  As in Experiments 1 and 2, this involved higher ratings for self-selected focal 

hypotheses (M = 53.6%) than for externally selected ones (M = 52.7%). The ratings of 

self-selected focal hypotheses were higher for forty-seven of the seventy-nine 

participants. As in Experiments 1 and 2, the effect remained significant when the data 

were transformed to rank scores. 

 



     61 

 

3.3.2.2 Similarity of Focal Hypothesis to Alternatives 

Next, we tested the prediction that self-selection bias would be strongest when it 

was most difficult to select the focal hypothesis because its alternatives had similar levels 

of support. We computed the magnitude of the self-selection bias separately for each 

participant and each combination of support for the focal hypothesis and support for the 

alternatives. This was used as the dependent variable in a one-way ANOVA. In order to 

investigate a wide range of Closeness-of-Alternatives, we constrained this analysis to the 

two highest levels of Support-for-the-Focal-Hypothesis (85% and 55% fish of the 

relevant colour in the green lake). There were six levels of Closeness-of-Alternatives. In 

terms of how the percentage of fish of the relevant colour in each alternate lake differed 

from that in the focal lake, the six levels of Closeness-of-Alternatives were (1) both 

identical to the focal lake, (2) one identical and one 10% lower, (3) both 10% lower, (4) 

one identical and one 40% lower, (5) one 10% lower and one 40% lower, and (6) both 

40% lower. As a manipulation check, we assessed whether the time taken to select the 

focal hypothesis was longest for the conditions that were presumably most difficult, when 

the alternatives had almost as much support as the focal hypothesis. We found that 

selection speed did increase as Closeness-of-Alternatives increased, F(5,390) = 18.85, p 

< .001, η2 = .20, as can be seen in Table 3.4.  However, in the probability ratings there 

was no significant effect of Closeness-of-Alternatives on the magnitude of the self-

selection bias, F(5,390) = 0.47, p = .80. This did not support the notion that self-selection 

bias depended on cognitive effort.  
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3.4 Experiment 4 

When the focal hypothesis is self-selected, evidence consistent with it is 

processed twice: first during focal hypothesis selection, and again when making a 

judgment of relative probability. In contrast, that evidence is processed only once if the 

focal hypothesis was externally selected. Repeated processing of supporting evidence 

might cause the mental representation of the focal hypothesis to be more salient as a 

consequence of repeated activation. In this experiment we investigated this possibility 

using a manipulation that we developed in previous work with the same paradigm. 

In Chapter 2, we identified a bias towards giving more weight to evidence if it 

was accumulated gradually than if the same evidence was all presented instantaneously. 

Our account of this effect was that processing evidence to a greater extent would lead to 

more salient mental representations, and consequently greater subjective strength. The 

relevance of this to the current study was that this might share a common mechanism 

with the self-selection bias, relating to repeated activation of the mental representation of 

the focal hypothesis as a result of repeated processing of supporting evidence. If so, we 

would expect the selection bias and the overweighting of gradually accumulated evidence 

to be correlated across participants. In Experiment 4, we tested whether these two effects 

were correlated. We also considered the possibility that the selection bias might depend 

on whether evidence was gradually accumulated versus all presented instantaneously. In 

order to be able to test the above possibilities, we orthogonally manipulated (1) whether 

the focal hypothesis was self-selected or externally selected and (2) whether evidence 

was gradually accumulated versus instantaneously presented.  
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Our design included gradual evidence accumulation trials, in which only part of 

the evidence relevant to each hypothesis was presented on the first of two events. After 

an initial rating of relative probability was made, the remainder of the evidence relevant 

to each hypothesis was presented and a final revised rating was made. The gradual 

evidence accumulation trials were compared to instantaneous evidence control trials 

involving a single event on which all of the evidence relevant to each hypothesis was 

presented. On gradual evidence accumulation trials, the evidence obtained on the second 

event either increased the relative probability of the focal hypothesis, decreased it, or left 

it unchanged (the neutral condition).  

3.4.1 Method 

3.4.1.1 Participants  

Forty-two volunteers (twenty-six females and sixteen males) with a mean age of 

25.0 years (SD = 7.6) participated in this experiment. Participants were recruited via 

posters on the University of British Columbia campus and in community centers in the 

greater Vancouver area, and also via postings on electronic bulletin boards. All 

participants were reimbursed $10 per hour for their time plus parking and transportation 

expenses. 

3.4.1.2 Materials & Procedure 

As in Experiments 1 to 3, the experiment alternated between blocks in which the 

focal hypothesis was self-selected and blocks in which it was externally selected (by the 

computer). The first block always consisted of trials in which the focal hypothesis was 
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self-selected. In total, there were eight blocks of twelve trials each (four blocks in which 

the focal hypothesis was always self-selected, and four blocks in which it was externally 

selected). 

The scene depicted on each trial of Experiment 4 was similar to that used in 

Experiments 1 to 3, except that the contents of each upstream lake were sometimes 

obscured near the outer edges, as shown in Figure 3.2. Specifically, twenty-five of the 

forty fish within each upstream lake were obscured on the first event of each trial with 

gradually accumulated evidence. On the second event of each of these trials, the entire 

contents of each lake became visible. On trials with instantaneously presented evidence, 

there was only one event, and the entire contents of each upstream lake were visible. 

The sequence of events within a trial with gradually accumulated evidence and a 

self-selected focal hypothesis was as follows. First, a single black or white fish would be 

seen to jump from the downstream lake. Subsequently, the partially obscured contents of 

each of the three blue upstream lakes became visible. The participant indicated the lake 

most likely to be the origin of the downstream fish by moving the red mouse cursor over  
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Figure 3.2 Sequence of events within a trial of Experiment 4 in which the focal 

hypothesis is self-selected.  

 

a.

b.

c.

d.
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that lake and clicking on it. That lake then turned green. Subsequently, the participant 

rated the relative probability that the jumping fish came from the green upstream lake, 

rather than one of the blue upstream lakes, on the vertical rating scale. After that, the full 

contents of each upstream lake became visible, and the participant revised her or his 

rating by shifting the cursor on the response scale from the position corresponding to the 

previous rating to the position corresponding to the new rating. Within a trial with 

instantaneously presented evidence, the entire contents of each upstream lake became 

visible instantaneously after the downstream fish had jumped. Once the focal lake had 

been selected, a single rating of relative probability was made. For each of the above two 

types of trials with self-selected focal hypotheses (gradually presented evidence and 

instantaneous evidence), there were matching trials with externally selected focal 

hypotheses. 

Within the four main trial types described above, there were four conditions 

defined by the proportions of fish in the upstream lakes. These are most easily described 

in terms of the sequence of events on trials with gradually accumulated evidence. On the 

first trial of each event, one of the three partially obscured upstream lakes would appear 

to contain 80% fish of the relevant colour (12 of the 15 visible fish), another would 

appear to contain 40% fish of the relevant colour (6 of the 15 visible fish), and the third 

lake would appear to contain 20% fish of the relevant colour (3 of the 15 visible fish). 

The lake with 80% fish of the relevant colour was thus the obvious choice for the most 

probable location of the jumping fish (the focal hypothesis).  
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The evidence presented on the second event then either confirmed the previous 

choice of focal hypothesis, disconfirmed it, or was neutral. In the Confirmatory Evidence 

condition, the percentage of fish of the relevant colour in the focal lake increased from 

80% to 90%. The percentage in one alternate lake decreased from 40% to 15%. In the 

other it decreased from 20% to 10%. In the Disconfirmatory Evidence condition, the 

percentage of fish of the relevant colour in the focal lake decreased from 80% to 70%. 

The percentage of fish in one alternate lake increased from 40% to 77.5%. In the other it 

increased from 20% to 47.5%. Recall from the previous three experiments that the 

relative probability of the focal hypothesis is defined as the strength of evidence 

supporting the focal hypothesis divided by the sum of the evidence supporting all three 

hypotheses. The correct rating, as a percentage of the response scale height, is simply that 

probability multiplied by 100. In the Confirmatory Evidence condition, this increased 

from 57% to 90/(90+15+10) = 78%. In the Disconfirmatory Evidence condition, it 

decreased from 57% to 70/(70+77.5+47.5) = 36%. Thus, the relative probability of the 

focal hypothesis either increased or decreased by 21 percentage points.  

There were also two types of neutral evidence condition. The relative probability 

of the focal hypothesis stayed constant at 57% in both of these conditions. In the Neutral-

Up condition, the percentage of fish of the relevant colour in the focal lake increased 

from 80% to 90%, while the percentage in one alternate lake increased from 40% to 45% 

and the percentage in the other alternate lake increased from 20% to 22.5%. The relative 

probability of the focal hypothesis on the second event was thus 90/(90+45+22.5) = 57%. 

In the Neutral-Down condition, the percentage of fish of the relevant colour in the focal 

lake decreased from 80% to 70%, while the percentage in one alternate lake decreased 
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from 40% to 35% and the percentage in the other alternate lake decreased from 20% to 

17.5%. The relative probability of the focal hypothesis on the second event was thus 

70/(70+35+17.5) = 57%. 

For each of the four conditions in which evidence was gradually accumulated 

(two events per trial), there was a corresponding condition in which it was all presented 

instantaneously (one event per trial). The evidence presented on an instantaneous-

evidence trial was identical to the evidence on the second event of the corresponding 

gradually-accumulated-evidence trial. For example, for each confirmatory-evidence trial 

in the gradual evidence condition, there was a corresponding confirmatory-evidence-

control trial in the instantaneous evidence condition. The evidence visible on the control 

trial was the same as the evidence visible on the final event of the gradual evidence trial. 

If, hypothetically, there were no biases caused by the gradual accumulation of evidence 

and behavior was instead mathematically normative, we would expect the rating made on 

the second event of a gradually-accumulated-evidence trial, when the complete contents 

of the lakes are visible, to be identical to the rating made on the corresponding 

instantaneous evidence control trial. In other words, a difference between these ratings 

would be evidence of a bias.  

Data from the instantaneous-evidence control trials for the Disconfirmatory 

condition were excluded from the analysis. This was done because it was the only 

condition in which the correct choice of focal hypothesis was inconsistent between the 

instantaneous-evidence trials and the gradual-evidence trials. Thus, it was not possible to 

produce an instantaneous-evidence control condition that was equivalent to the  
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Table 3.5. Experiment 4: Ratings of the Relative Probability that the Focal Hypothesis, Rather than its Alternatives, is True, as a 

Function of the Strength of the Evidence Supporting the Focal Hypothesis and of that Supporting each Alternative 

 Strength of Evidence  

Supporting Each Hypothesis 

(% Fish in that Lake of Relevant 

Colour) 

Predicted 

Mathematically 

Normative 

Rating 

 

 

Rating 

Self-

Selection 

Bias       

(Self - Ext) 

 

Focal Alt. 1 Alt. 2 Self External 

Confirmatory Evidence 

Last Rating, Gradual 90 15 10 78.3 83.15 80.71 2.44 

Only Rating, Instantaneous 90 15 10 78.3 80.95 80.33 0.62 

Disconfirmatory Evidence 

Last Rating, Gradual 70 77.5 47.5 35.9 50.37 49.08 1.29 

Only Rating, Instantaneous n/a n/a n/a 35.9 n/a n/a n/a 

Neutral Up 

Last Rating, Gradual 90 45 22.5 57.1 71.40 70.62 0.78 

Only Rating, Instantaneous 90 45 22.5 57.1 69.63 68.89 0.74 

Neutral Down 

Last Rating, Gradual 70 35 17.5 57.1 68.33 67.02 1.31 

Only Rating, Instantaneous 70 35 17.5 57.1 64.51 64.11 0.40 

Note. In the disconfirmatory evidence condition, the balance of the evidence at the end of the trial refuted the focal hypothesis, so that 

support for the focal hypothesis (70%) was lower than support for its strongest alternative (77.5%). For this condition, it was not 

possible to include an instantaneous-evidence control condition with equivalent levels of support in which the focal hypothesis was 

self-selected, because it would be an error for a participant to select the lake with 70% fish of the relevant colour as the focal 

hypothesis. 
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gradual-evidence condition in terms of Support-for-the-Focal-Hypothesis and for each of 

its alternatives. 

3.4.2 Results & Discussion  

All of the participants run were more than 80% accurate in selecting the most 

probable hypothesis to be the focal hypothesis. None of them were excluded from our 

analysis. We excluded any trials in which the focal hypothesis was less probable than one 

of its alternatives, whether it was selected by the participant or by the computer. We 

excluded an average of 3.8% (SD=1.9%) of trials with self-selected focal hypotheses. The 

percentages were the same for trials with externally selected focal hypotheses, as 

accuracy was matched between the self and external conditions. We performed a 2 X 2 

ANOVA to check for an interaction of Gradual Evidence Accumulation (whether 

evidence was gradually accumulated versus all presented instantaneously) with Selection 

Type (self-selected versus externally selected focal hypothesis). For gradually-

accumulated-evidence trials, only the rating made at the end of the trial, once all of the 

evidence had become visible, was included in this analysis. This was compared to the one 

rating made on the corresponding instantaneous-evidence trial. As in Experiments 1 to 3, 

all statistical tests were repeated on rank transformed scores. All effects reported below to 

be significant in the original data were also significant in the rank transformed data. The 

data averaged across the Confirmatory and Neutral conditions are portrayed in Figure 3.3. 

They are reported separately for each type of evidence in Table 3.5.  

The ANOVA revealed a significant main effect of Gradual Evidence 

Accumulation, F(1,41) = 27.95, p < .001, η2 = .41, involving a tendency to rate the focal 
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hypothesis as more probable if evidence was gradually accumulated (M = 37.7), than if it 

was instantaneously presented (M = 34.2). This is consistent with the findings of Chapter 

2, in which evidence supporting a given focal hypothesis was seen to support it more 

strongly if gradually accumulated than if all presented instantaneously. There was also a 

significant self-selection bias in favor of self-selected focal hypotheses, F(1,41) = 5.95, p 

< .05, η2 = .13, as in Experiments 1-3, with higher ratings for self-selected focal 

hypotheses (M = 36.8) than for externally selected ones (M = 35.1). The ratings of self-

selected focal hypotheses were higher for twenty-nine of the forty-two participants.  

 

Figure 3.3. Experiment 4: Ratings of the relative probability that the focal hypothesis, 

rather than either of its alternatives, is true.  
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However, the interaction of Selection Type with Gradual Evidence Accumulation was not 

significant, F(1,41) = 2.69, p = .11. Finally, we found that self-selection bias and the 

effect of Gradual Evidence Accumulation were not correlated across participants, r(42) = 

0.12, p = .42. These results do not support the notion that the two effects share a common 

underlying mechanism, such as repeated activation of mental representations. 

3.5 General discussion 

In four experiments, we found evidence for a self-selection bias whereby self-

selected focal hypotheses were rated as being more probable than externally selected 

ones. This occurred despite the fact that (1) the two types of focal hypothesis were 

matched in terms of mathematically normative probabilities, and (2) the overall accuracy 

of the computer in selecting the most probable hypothesis was matched, within-subjects, 

to the participant’s accuracy in doing so. These results suggest that the cognitive 

operations involved in selecting a hypothesis lead to assignment of higher probability to 

that hypothesis. 

Our secondary goal was to explore possible mechanisms by which the cognitive 

processes involved in selecting a focal hypothesis might lead to higher probability 

ratings. One of these was that the self-selection bias occurred because extra cognitive 

effort involved in focal hypothesis selection caused its mental representation to be more 

salient as a result of increased processing. We examined this possibility in Experiment 3 

by manipulating the difficulty of identifying the most probable hypothesis. The results 

showed that the amount of cognitive effort required to select the focal hypothesis had no 

significant effect on the magnitude of self-selection bias. Another possible mechanism 
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was that the self-selection bias occurred because of repeated activation of mental 

representations, leading to stronger subjective probabilities (a potential mechanism for 

the effects of gradual evidence presentation which was discussed in Chapter 2). In 

Experiment 4, we manipulated whether evidence was gradually accumulated, so that 

evidence supporting the focal hypothesis was processed repeatedly, or was 

instantaneously presented. We found no correlation between the effect of gradual versus 

instantaneous evidence and self-selection bias, and thus found no evidence of a common 

underlying mechanism. 

The results present two replicable judgment biases. These are: (1) a tendency to 

judge a self-selected hypothesis as more probable than one selected by an external source 

(self-selection bias) and (2) a tendency to weight gradually accumulated evidence more 

strongly than instantaneously presented evidence. This second bias replicates the results 

of Chapter 2. Although both appear to be examples of repeated processing effects, 

whereby repeated processing of information consistent with a given hypothesis causes it 

to seem more salient and plausible, Experiment 4 suggests that if this is so, the 

underlying cognitive operations do not overlap.  

One alternative interpretation stems from reports that the perceived value of 

information can be distorted prior to a decision (Bond, Carlson, Meloy, Russo, & Tanner, 

2007; Brownstein, 2003; Dekay, Stone, & Miller, 2011; Russo, Carlson, & Meloy, 2006; 

Russo, Carlson, Meloy, & Yong, 2008), apparently in order to maximize consistency 

with the initially preferred option (Russo et al., 2008; Simon & Holyoak, 2002; Simon, 

Krawczyk, Bleicher, & Holyoak, 2008; Simon, Krawczyk, & Holyoak, 2004; Simon, 

Snow, & Read, 2004). In terms of our paradigm, this means that the perceived strength of 



     74 

 

evidence for the preferred hypothesis may have increased prior to focal hypothesis 

selection. Another potential interpretation is that the self-selection bias is a manifestation 

of the self-affirmation effect studied in social psychology (Brownstein, 2003; Steele, 

1988; Steele, Spencer, & Lynch, 1993), whereby dissonance leads individuals to rate an 

option as being more desirable after choosing it than beforehand. Of course, pre-decision 

and post-decision biases are not mutually exclusive. They might even result from a 

common underlying mechanism, with the drive to maximize consistency being an 

inherent property of the cognitive system (Russo et al., 2008; Simon & Holyoak, 2002; 

Simon et al., 2008; Simon, Krawczyk, et al., 2004; Simon, Snow, et al., 2004).  

Finally, an alternative to repeated processing and cognitive consistency 

explanations is that the type of repeated processing that is involved in self-selection is 

qualitatively different than that involved in straight-forward repetition. When a preferred 

hypothesis is self-selected, the choice is a self-generated cognitive event (even though the 

hypothesis is not self-generated). It is clear that self-generated cognitive events are 

tagged with cognitive qualities that distinguish them from other-generated events 

(Johnson, Hashtroudi, & Lindsay, 1993). These qualities may lead to assignment of 

higher probability ratings.  

Regardless of which of the above possible interpretations might contribute to 

selection bias (which will be an interesting direction for future research), the main 

contribution of the current work is that we demonstrated a selection effect in a paradigm 

with objectively quantifiable evidence. This was not the case with previous studies of 

self-selected material (Glockner, Betsch, & Schindler, 2010; Ronis & Yates, 1987; Sieck 

et al., 2007; Sniezek et al., 1990), consumer choice (Glockner & Betsch, 2008; Glockner 
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et al., 2010; Russo et al., 2006; Russo et al., 2008) and legal decision-making (Simon & 

Holyoak, 2002; Simon et al., 2008; Simon, Krawczyk, et al., 2004; Simon, Snow, et al., 

2004). One other recent set of studies has investigated the effect of choice in a paradigm 

with objectively quantifiable evidence. However, that set of studies involved monetary 

gambles (Dekay et al., 2011). The current set of studies demonstrates that selection bias 

is not the result of confounds with individuals differences in personal experience, 

motivational leanings towards reward seeking and risk avoidance, or ease of memory 

retrieval. Rather, we demonstrate that some fundamental cognitive mechanism inherent to 

selecting a preferred focal hypothesis increases its perceived probability.  

The direction of our self-selection bias is opposite to some previous experiments 

(Ronis & Yates, 1987; Sieck et al., 2007; Sniezek et al., 1990), which reported higher 

confidence in the correctness of other-selected material. However, as mentioned above as 

the motivation for this study, a number of variables confound the comparison of self-to–

other selected trials, such as familiarity with the subject matter, fluency in memory 

retrieval, or completeness of memory retrieval. Moreover, the ratings made in previous 

studies were of confidence that the chosen answer had been correct, not probability 

comparisons as were carried out in the present study. These two processes (i.e., post-hoc 

confidence ratings versus probability comparisons) would seem to involve different 

cognitive operations, possibly contributing to the different self-selection effects. Finally, 

even when comparing our results to those of studies involving probability estimates 

rather than confidence estimates, we must consider that making a rating by moving a 

slider on a scale with the labels “definitely true” and “impossible” is not necessarily 

equivalent to making a numerical estimate of probability. 
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The findings of selection bias and of overweighting of gradually accumulated 

evidence in a paradigm requiring no long-term memory retrieval indicates the need to 

expand existing models of how choice affects confidence. These models describe how 

confidence ratings depend on fluency of retrieval from semantic and episodic memory 

(Ratcliff & Starns, 2009; Sieck, 2003; Sieck & Yates, 2001; Thomas, Dougherty, 

Sprenger, & Harbison, 2008). While there is no retrieval from long-term memory in our 

paradigm, there seem to be differences in the fluency of visual scene analysis between the 

self-selected and externally selected conditions. During the rating stage, the visual scene 

is analyzed more quickly in the self-selected condition than in the externally selected 

condition. This is presumably because some visual scene analysis was performed during 

the selection stage. The scene analysis performed during the rating stage is then faster / 

more fluent because it can build on information persisting in visual short-term memory 

from the previous scene analysis during the selection stage. Consequently, it may be that 

the selection bias is the result of more fluent visual scene analysis in the rating stage. An 

interesting direction for future research would involve adjustment of existing models to 

account for how the fluency of visual scene analysis is affected by choosing from one of 

multiple options (as opposed to the yes/no choices made in more basic, speeded 

perceptual discrimination tasks (Pleskac & Busemeyer, 2010). 

A limitation of this study is that, although exclusion of semantic information and 

memory retrieval processes from our paradigm had the advantage of allowing us to 

reduce the cognitive confounds when comparing self- to other-selected trials, it may limit 

the generalizability of our findings, as semantic information and memory retrieval 

processes are typically involved in opinion formation. Even when interpreting unfamiliar 
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situations, individuals often make metaphorical comparisons to previous experiences or 

to semantic knowledge. For the sake of real-world validity, it will be necessary for future 

research to explore how the biases reported here, and the memory-retrieval effects found 

in previous research, either compete or interact with each other in everyday 

belief/opinion formation. Similarly, while the removal of motivational factors involving 

risks and rewards allows us to establish that selection bias can occur in the absence of 

those factors, this limits generalizability to real-world situations involving risky decision-

making. Future research will be required to establish how selection bias is affected by 

such motivational factors. 

The current studies suggest that the cognitive operations involved in self-selecting 

a hypothesis lead to assignment of higher probability to that hypothesis, and that this 

effect is independent of hypothesis selection difficulty and the rate of evidence 

accumulation. In the case of belief formation, self-selection bias could lead to a tendency 

to overvalue evidence confirming self-selected hypotheses. This could be a possible 

mechanism contributing to the holding of beliefs with weak supporting evidence, such as 

in horoscopes. This implies that difficulty accepting evidence that disconfirms beliefs 

may be partly due to the nature of the self-selection processes, which plays a role in 

elevating a hypothesis to belief status. 
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4 Bias in Favour of Self-Selected Hypotheses is Exacerbated in Delusional 

Schizophrenia Patients 

 

Delusions in schizophrenia are typically characterized by self-generated, idiosyncratic 

explanations used to interpret events, as opposed to the culturally normative interpretation 

(Mullen, 1979). Cognitive accounts of delusions in schizophrenia (reviewed in Bell, 

Halligan, & Ellis, 2006; Garety & Freeman, 1999) have focused on probabilistic reasoning 

biases (Garety, Hemsley, & Wessely, 1991; Moritz & Woodward, 2005), theory of mind 

deficits (Frith, 1994), attributional biases (Bentall, 1994), and incorrect attribution of salience 

to benign external stimuli and internal percepts (Kapur, 2003; McKenna, 1991; van Os, 

2009). However, despite its face validity, whether a cognitive bias towards self-generated 

hypotheses may be associated with delusions in schizophrenia has not been empirically tested 

to our knowledge. 

In past work on healthy participants it has been noted that a bias toward over-rating 

the plausibility of one’s own hypotheses, relative to those suggested by others, is a 

characteristic of healthy human cognition (Koehler, 1994; Ronis & Yates, 1987; Sieck, 2003; 

Sieck & Yates, 2001; Sniezek et al., 1990). These early studies confounded self-selection 

with a variety of other material-based cognitive variables (e.g., familiarity of subject matter, 

fluency in memory retrieval, completeness of memory retrieval), but the results of Chapter 3, 

obtained using a probabilistic reasoning paradigm, demonstrated that even if self- and 

externally-selected hypotheses are exactly equated in terms of objectively quantifiable 



  79 

 

supporting evidence, self-selected focal hypotheses were judged to be more probable than 

externally-selected ones. In the current study we extend this work by administering this task 

to a sample of schizophrenia patients, and comparing their performance to psychiatric and 

healthy control groups. 

The probabilistic reasoning paradigm used here is a variation of the beads-from-a-jar 

probabilistic reasoning task (Huq, Garety, & Helmsley, 1988; Moritz & Woodward, 2005). 

The traditional probabilistic reasoning task involves judging the likelihood that a series of 

beads is drawn from jar A rather than jar B, based on the colours of the beads in jars A and 

B, and on the colours in the series of beads being drawn. We have developed versions of this 

task involving a fisherman fishing from one of two lakes (Speechley et al., 2010; Woodward 

et al., 2009) or downstream jumping fish originating from one of two or more upstream lakes 

as in Chapters 2 and 3. The version of the task used here involved judging the probability that 

a single jumping fish originated from one of three lakes, as in Chapter 3. Specifically, 

participants judged the probability that the fish originated from a given self- or externally-

selected lake rather than being drawn from either of the two alternatives. The self- or 

externally-selected lake is referred to as the focal hypothesis, while the other two lakes are 

referred to as alternative hypotheses. On all trials, participants were required to indicate the 

likelihood that the focal hypothesis (rather than the two alternatives) was true. The self-

selected hypotheses were tracked, and computer-selected hypotheses were produced that 

exactly matched the self-selected hypotheses in terms of supporting evidence.  

Based on the results of Chapter 3, we predicted a self-selection bias for all 

participants, whereby probability ratings of the focal hypothesis would be higher if it was 

self-selected than if it was externally selected. Based on the self-generated nature of 
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delusions and the centrality of the delusional state to schizophrenia, we expected this bias to 

be exacerbated in schizophrenia patients relative to healthy and psychiatric controls, and to 

be correlated with the severity of delusions in the schizophrenia sample. 

4.1 Methods 

4.1.1 Participants 

Thirty-six participants with schizophrenia and 16 psychiatric controls (diagnosed with 

bipolar disorder) were recruited from psychiatric hospitals and community health agencies in 

and around Greater Vancouver, British Columbia, Canada. All diagnoses were based on 

DSM-IV-R criteria American Psychiatric Association (2000). Diagnoses were confirmed 

with the Mini-International Neuropsychiatric Interview (MINI; Sheehan et al., 1998), which 

was administered on the date of testing. Psychopathology was assessed using the Signs and 

Symptoms of Psychotic Illness scale (SSPI; Liddle, Ngan, Duffield, Kho, & Warren, 2002), a 

schedule gauging symptom severity using 20 symptom items scored 0–4. Item 7 from the 

SSPI was used to quantify the severity of delusions. The possible values on this item are: 0 

(absent), 1 (vague idea which might be delusional; peculiar ideas which do not conflict with 

evidence in a clear-cut manner), 2 (belief contrary to evidence, but patient has partial insight 

in the unrealistic nature of the belief), 3 (definite delusions, but the delusional beliefs do not 

have a pervasive influence on thinking or behaviour), and 4 (definite delusions which have 

pervasive influence on thinking and/or influence observable behaviour). Any or all of 

delusions of guilt, grandiose delusions, paranoid delusions, delusions of reference, or 

Schneiderian delusions can be rated on this item. All bipolar patients had SSPI delusions 

scores of 0. 
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Table 4.1. Psychopathological and socio-demographic characteristics of the participants. 

 Group; mean (standard deviation)* 

Characteristic 
Healthy 

n = 33 

Bipolar 

n = 16 

Schizophrenia 

n = 36 

Age, yrs 29.70 (9.44) 35.31 (12.14) 34.36 (9.66) 

     Range 19-51 19-52 19-53 

Sex, male:female 18:15 7:9 21:15 

Education, yrs 15.90 (1.74) 14.19 (2.04)‡ 13.49 (2.63)§ 

Parental Socioeconomic status 65.88 (20.69) 70.13 (24.91) 80.94 (25.00) ∫ 

Quick Test IQ score 98.00 (13.18) 99.00 (9.90) 97.61 (10.15) 

K-BIT IQ score    

     Vocabulary 102.42 (13.72) 98.93 (11.10) 100.56 (13.54) 

     Matrices 110.55 (12.09) 104.00 (13.98) 104.80 (14.74) 

     Composite 107.45 (9.62) 101.80 (11.77) 103.06 (14.37) 

Illness duration, yrs N/A 6.79 (4.63) 11.83 (8.55)† 

Delusions N/A 0.0 (0.0) 1.94 (1.49)¶ 

     Guilt or worthlessness N/A 0.0 (0.0) 0.36 (0.83)† 

     Grandiose N/A 0.0 (0.0) 0.75 (1.18)¶ 

     Paranoid N/A 0.0 (0.0) 1.46 (1.56)¶ 

     Schneiderian N/A 0.0 (0.0) 1.06 (1.41)¶ 

Hallucinations N/A 0.0 (0.0) 1.77 (1.82) ¶ 

Thought disorder N/A 0.0 (0.0) 0.31 (0.79) † 

Underactivity N/A 0.88 (0.81) 1.19 (1.06) 

Poverty of speech N/A 0.0 (0.0) 0.42 (0.81)√ 

Flattened Affect N/A 0.50 (0.89) 1.19 (0.92) † 

*Unless otherwise indicated, symptom scores are derived from the Signs and Symptoms of Psychotic Illness rating scale. 
‡healthy v. bipolar p = .01, §healthy v. schizophrenia p < .001, ∫healthy v. schizophrenia p = .01,  
¶bipolar v. schizophrenia p < .001, √bipolar v. schizophrenia p < .01, †bipolar v. schizophrenia p < .05.     
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Participants were excluded if they reported a head injury resulting in a loss of 

consciousness for 10 minutes or more, and for current and past substance abuse and 

alcoholism. Substance abuse was assessed by chart review and by interview, and participants 

were excluded if they met the DSM IV-R criteria for an Axis I diagnosis of a substance-

related disorder (e.g., polysubstance dependence). With the exception of two patients, all 

patients with schizophrenia were stabilized with antipsychotic medications, with 27 on 

atypical antipsychotics and 9 on typical antipsychotics. Of the 16 patients in the bipolar 

group, 7 were on antidepressants only, 7 were on antidepressants and atypical antipsychotics, 

1 was on antidepressants and typical antipsychotics, and 1 was on typical antipsychotics 

only. All schizophrenia patients were either currently experiencing delusions, or had in the 

past. 8/16 bipolar patients had some history of psychotic features. 

Thirty-three healthy control participants were recruited via posters on the University 

of British Columbia campus and in community centers in the greater Vancouver area, and 

also via postings on electronic bulletin boards. All participants were reimbursed $10 per hour 

for their time plus parking and transportation expenses. The healthy control group had no 

history of psychiatric illness as determined by a medical questionnaire. Additional exclusion 

criteria were the same as those employed for the patient groups. 

All participants were fluent in English. Intelligence estimates were made using the 

Kaufman Brief Intelligence Test (K-BIT; Kaufman & Kaufman, 1997) for verbal and non-

verbal intelligence, and the Ammons Quick Test (QUICK; Ammons & Ammons, 1962) for 

an assessment of current intelligence quotient (IQ).  Socioeconomic status was estimated 

using the Amherst Modification of the Hollingshead-Redlich Two-Factor Index of 
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Socioeconomic Status (Hollingshead & Redlich, 1958; Watt, 1976) using highest parental 

occupation and education level. 

The probabilistic reasoning task used in this study allows exclusion of data that is 

characteristic of poor performance, or a lack of understanding of task instructions. Namely, 

the lake that is chosen as a self-selected hypothesis should be the mathematically most likely 

origin of the downstream jumping fish. In accordance with our methodology on healthy 

participants (see Chapter 3), in order to ensure that participants clearly understood the 

instructions, we excluded their data if their accuracy in selecting the most probable 

hypothesis as the focal hypothesis was less than 81% (more than 5 errors out of 27 selection 

trials). As a result, the groups described above consisted of the participants remaining after 

fourteen of the original ninety-nine participants (one healthy control, two bipolar patients, 

and eleven schizophrenia patients) were excluded due to evidence that they did not 

understand the task. In our experience, comprehension in probabilistic reasoning tasks is very 

important for reducing noise in the dataset (Balzan, Delfabbro, Galletly & Woodward, 2012; 

Speechley et al., 2010; Moritz and Woodward, 2005), and for interpretation of the measures 

of interest (in this case the self-selection bias). If a participant is not meeting the basic 

reasoning requirements, the measured cognitive processes cannot be known. 

4.1.2 Materials & Procedure 

The probabilistic reasoning task employed here was identical to Experiment 2 of 

Chapter 3, except that participants completed only one third as many experimental blocks in 

the current study. Each trial of the task involved a scene depicting four blue lakes (see Figure 

4.1), three of which were upstream from the fourth. On all trials participants were required to 
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rate the relative probability that the focal hypothesis, rather than its alternatives, was true. For 

the self-selected focal hypothesis trials, participants were required to select the lake that they 

preferred prior to making the probability rating. In contrast, for the externally-selected trials, 

the to-be-rated focal hypothesis was selected by the computer. Unknown to the participant, 

the computer-selected lakes were matched precisely to the self-selected lakes by 

computerized yoking based on the participants’ pattern of responding. A more detailed 

description of the methodology follows.  

At the start of each trial, a single black or white fish was seen to jump in the 

downstream lake. The colour of this jumping fish, referred to hereafter as the relevant colour, 

was randomized across trials. Next, the contents of each of the three upstream lakes became 

visible. Each contained a mixture of black and white fish (40 fish in total per lake), which 

remained in view until a rating had been made. Participants were told that the fish in the 

downstream lake originated from one of the upstream lakes. Thus, each upstream lake 

corresponded to a hypothesis about the origin of the jumping fish. The upstream lake with the 

most fish of the relevant colour was the most likely origin of the fish in the downstream lake.  

Next, if the trial was in the self-selected condition, participants indicated the lake they 

deemed to be the most likely origin of the jumping fish by moving the mouse cursor (a red 

square) over their preferred lake and clicking with the left mouse button. This lake, referred 

to hereafter as the focal lake, then turned green. If the trial was in the computer-selected 

condition, the focal lake was selected by the computer to match the choice made by the 

participant on an equivalent trial in a preceding block with self-selected focal hypotheses.  
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Figure 4.1. Display presented during a typical trial of this experiment. At the start of each 

trial, a single black or white fish was shown to jump in the downstream lake. If the trial 

involved a self-selected focal hypothesis, the participant indicated the upstream lake from 

which the jumping fish was most likely to have migrated, which then turned green. 

Otherwise, the green lake was selected by the computer. Next, the participant rated the 

probability of that fish having migrated downstream from the green lake (the focal 

hypothesis) rather than either of the blue upstream lakes (the alternative hypotheses). 
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The focal lake turned green immediately after the fish in the bottom lake jumped, at the same 

time as the fish in the upstream lakes became visible.  

Once the focal lake was selected (self- or computer-selected), participants were 

required to rate the relative probability that the focal hypothesis, rather than its alternatives, 

was true. Ratings were made on a vertical scale, with the labels "definitely true" at the top 

end and "impossible" at the bottom end. Participants used a mouse to move the slider 

smoothly up and down the scale and clicked the left mouse button when it was in the desired 

location. The vertical position of the slider, in pixels, was then recorded. In the results 

section, ratings are reported as a percentage of the total height of the response scale. At the 

beginning of each trial, the slider was set at the mid-point of the response scale. Trials with 

self-selected and externally selected focal hypotheses occurred in separate blocks. In total 

there were six blocks of nine trials each, alternating between blocks in which the focal 

hypothesis was self-selected and blocks in which it was externally selected. The first block 

always consisted of trials in which the focal hypothesis was self-selected.  

Strength of support for the focal hypothesis was manipulated, as was the strength of 

support for its alternatives, by manipulating the percentage of fish of the relevant colour in 

each lake, as in Chapter 3. As the self-selection bias found in healthy individuals does not 

vary as a function of support for the focal hypothesis or the two alternatives, all analyses in 

the current paper were collapsed across these factors. We simply assessed the magnitude of 

the self-selection bias for each group of participants, and assessed whether the bias correlated 

with the severity of delusions in the schizophrenia group.  
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4.1.3 Strategy of Data Analysis  

We excluded from data analysis any error trials (i.e., trials on which the selected 

“focal hypothesis” was actually less probable than one of its alternatives). Self-selection bias 

scores were calculated as the difference between the mean probability rating for self-selected 

focal hypotheses and the mean rating for externally (i.e., computer) selected ones. Note that, 

as the objective probabilities were identical in these two conditions, an ideal mathematically 

normative rater would have a self-selection bias score of zero. Based the findings of Chapter 

3, we expected the self-selection bias score to be positive for all groups. For the current 

study, we hypothesized that the schizophrenia group would show an increased self-selection 

bias relative to the bipolar group and the healthy control group, and that the selection bias 

would correlate positively with the present severity of delusions in the schizophrenia group. 

Each of the statistical tests reported below was also repeated with rank-transformed scores, in 

order to adjust for potential skew in the data often inherent to ratings made on a probability 

scale (Conover & Iman, 1981). The rank transformation did not change the significance of 

any of the reported effects, so is not reported here.  

4.2 Results 

4.2.1 Patient Demographics 

The socio-demographic and psychopathological characteristics of the sample are 

summarized in Table 4.1.  Fisher’s exact tests indicated no significant differences for gender 

between groups. A t-test comparing the two patient groups also revealed a significantly 

longer illness duration, t(47) = 2.08, p < .05, in the schizophrenia group (M = 35 years) than 

in the bipolar control group (M = 14 years). Univariate analyses of variance (ANOVAs) 
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comparing groups on demographic and IQ measures indicated significant differences 

between groups on years of education, F(2, 82) = 10.45, MSE=51.23, p < .001 and 

socioeconomic status, F(2, 78) = 3.56, MSE=1936.86, p < .05.  Post-hoc t-tests based on 

Fisher’s least-significant difference (LSD) correction were conducted to determine which 

groups differed significantly from each other and are reported in Table 4.1. Where 

adjustments were required for unequal variances on t-tests, the conclusions were unchanged.  

4.2.2 Hypothesis Comparison Task  

Contrary to one of our predictions, the ANOVA on the self-selection bias showed no 

significant effect of Group, F(2, 82) = 0.02, MSE=0.87, with the bias being present for 

schizophrenia and bipolar patients and in healthy controls equally (means = 3.64, 3.88 and 

3.48, respectively). However, within the group of schizophrenia patients, self-selection bias 

was correlated significantly with delusion severity as assessed by the SSPI, r(35) = 0.42, p = 

0.01. The associated scatter pot is displayed in Figure 4.2. The self-selection bias was not 

correlated with any other SSPI symptom rating scores (all ps > .09), with the exception of 

auditory hallucinations, for which a strong correlation was also observed, r(35) = 0.52, p < 

0.01. To assess the possible impact of confounding variables on this correlation, we inspected 

the correlations between the self-selection bias measure, the delusions item on the SSPI, and 

each of the characteristics in Table 4.1.  None of the correlations were significant, so could 

not be confounding the relationship between the self-selection bias and delusions (the same 

was observed when the delusions item was replaced by the hallucinations item). 

We also performed an analysis in which the schizophrenia patients were split into a 

severely delusional group (N=7), with an SSPI delusions score greater than 3, and a less 
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delusional group (N=29). The severely delusional group had a selection bias that was 

significantly stronger than that of the less delusional group, t(34) = 3.25, p < .01, or the 

healthy control group, t(38) = 2.93, p < .01, and marginally stronger than that of the bipolar 

control group, t(21) = 1.74, p =.09. This pattern is consistent with the selection bias being 

largest for the severely delusional group (SSPI=4) in Figure 4.2.  

 

Figure 4.2. Self-selection bias as a function of delusion severity within the group of 

schizophrenia patients. 
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4.3 Discussion 

Delusions are typically characterized by idiosyncratic, self-generated explanations 

used to interpret events, as opposed to the culturally normative interpretations. In past work 

on healthy participants, it has been noted that a bias toward over-rating the plausibility of 

one’s own hypotheses, relative to those suggested by others, is a characteristic of healthy 

human cognition. In the current study we test whether or not such a bias is exaggerated in 

schizophrenia patients compared to bipolar patients and healthy controls, and related to 

delusions. To achieve this, we employed a probabilistic reasoning task for which self- and 

externally-selected hypotheses were equivalent in terms of objectively quantifiable 

supporting evidence. On each trial, participants rated their acceptance of a focal hypothesis 

relative to two alternatives, with the most probable focal hypothesis selected either by the 

participant, or by the stimulus presentation software. All groups showed an equivalent self-

selection bias, but within the schizophrenia group, this bias was correlated with the current 

severity of delusions. An increased self-selection bias likely contributes to the delusional 

state in schizophrenia, as delusions are typically based on an individual’s own interpretations 

of events as opposed to culturally normative interpretations. 

Although an overall difference between the groups was not present, within the 

schizophrenia group severity of delusions and hallucinations correlated with the magnitude 

of the self-selection biases, suggesting that this bias is a state, rather than a trait aspect of the 

illness. This apparent discrepancy arose because the asymptomatic schizophrenia patients 

scored lower than the control groups on the self-selection bias, although this bias increased in 

a linear manner with symptom severity (M = .96, 1.18, 2.69, 3.11, 10.25; M = .60, .96, 1.70, 

5.68, 8.44; for SSPI scores of 0, 1, 2, 3, and 4 on delusions and hallucinations items, 
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respectively). The sample sizes are small, hampering efforts to carry out analysis of these 

subsets of patients with specific levels of symptom severity, and future research would be 

required to determine whether the decreases and increases in the self-selection bias at 

specific levels of severity are reliable. In the current study, the linear “dose-response” 

relationship between the self-selection bias and levels of symptoms reached significance, but 

evidence for a trait-related group difference was absent. 

A relatively large number of participants did not understand the task instructions, as 

they did not select the most plausible lake in the self-selection condition at a rate 

substantially higher than chance. This rendered the study of a self-selection bias impossible 

for these participants, as the reasons for why they performed this way can be based on 

speculation only, but likely reflects some form of reasoning impairment that is not related to 

the self-selection bias. Exclusion was no more frequent in schizophrenia (23% excluded) 

than in bipolar disorder (26% excluded), although healthy controls had better comprehension 

(13% excluded). The excluded and retained subjects for each group did not differ 

significantly on any demographic variable including IQ. This task may be suboptimal for a 

general tool for investigation of schizophrenia due to task difficulty, but when the self-

selection bias is to be measured, the ability to check for accuracy is important. However, it is 

possible that the participants who were 'left' in the analyses are unique in some way, and that 

their results may not generalize to the population at large. 

The correlation reported here with auditory hallucinations as well as delusions is not 

unexpected. Although hallucinations and delusions are clearly different, they are known to 

co-occur (Liddle, 1987; van der Gaag et al., 2006), so likely share underlying cognitive 

processes. Examples of what these might be include a greater weighting of self-generated 
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concepts and percepts, hypersalience of EVH (evidence-hypothesis) matches, an impairment 

in integrating new evidence, and a BADE, Hallucinations are partially caused by 

hyperactivity in voice-selective regions of the cortex (Allen et al., 2012; Rapin et al., 2012), 

but also by a number of more clearly top-down influences, one of which could be 

hypersalience of a match between evidence (vivid thoughts) and a self-selected hypothesis (I 

will hear voices). In addition, both delusions and hallucinations are affected by other top-

down personalizing factors which must interact with hypersalience, such as expectations, 

hypervigilance, imagination/fantasy, and memories/trauma (Waters et al., 2012). Thus, an 

increased self-selection bias could contribute to hallucinations in a top-down fashion; 

namely, hypersalience of a match between evidence (vivid thoughts) and a self-selected 

hypothesis (“I will hear voices”). 

A potential limitation of this study is that group differences were present on a number 

of variables such as general cognitive ability and length of illness. However, overall group 

differences were absent on the self-selection bias measure, suggesting that these confounds 

did not affect the results. Moreover, in a check for confounds of the association between the 

self-selection bias and the severity of delusions produced no potential confound for the 

relationship between self-selection bias and delusions (or hallucinations).  

The self-selection bias reported here, and possibly a number of other measurable 

cognitive biases (e.g., hypersalience of EVH matches, BADE), may contribute to delusion 

formation and maintenance. This study provides further confirmation that the cognitive 

biases in delusions extend beyond material congruent with an individual’s specific delusions 

to neutral, unrelated content, and as such, may reflect a pervasive reasoning deficit 

predisposing individuals with schizophrenia towards the formation and maintenance of 
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delusional ideation. Such increased understanding of the cognitive biases underlying 

delusions is important in light of the clinical applications of this work, where it has been 

demonstrated that sharing information with patients about the cognitive biases underlying 

delusions leads to reduction of the severity and impact of these symptoms (Moritz & 

Woodward, 2007a; Moritz et al., 2011; Moritz & Woodward, 2007b).  
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5 Functional Connectivity in a Frontoparietal Network Involving the Dorsal 

Anterior Cingulate Cortex Underlies Decisions to Accept a Hypothesis 

 

As was stated in Chapter 1, effectively judging the validity of a hypothesis is 

fundamental to success in many aspects of life, such as social interaction, economic 

decision making, and voter choice. Hypothesis judgment is also essential to more basic 

cognitive functions, such as memory recognition or interpreting a visual scene. 

Effectively judging a hypothesis often requires comparing it to at least one alternative. In 

order to decide whether the hypothesis being judged (the focal hypothesis) is more 

probable than an alternative, one must assess the strength of evidence supporting each 

hypothesis, compare those strengths, and decide which hypothesis to accept. In the 

current study, we used functional magnetic resonance imaging (fMRI) to establish a 

biological basis for these fundamental aspects of hypothesis judgment.  

In order to investigate the functional brain networks involved in judging 

hypotheses, we used a probabilistic reasoning task with objectively quantifiable evidence 

(Beach, 1968; Moritz et al., 2007; Ross, Freeman, Dunn, & Garety, 2011; Speechley et 

al., 2010; Waller, Freeman, Jolley, Dunn, & Garety, 2011). In a typical version of this 

paradigm, the participant is presented with an item of a given colour (the relevant colour) 

drawn from one of two lakes. The participant rates the probability that it was drawn from 

one particular lake (the focal hypothesis) rather than a second lake (the alternative 

hypothesis). The lake with the most items of the relevant colour is the most probable 
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origin of the item drawn. An advantage of this paradigm is that it allows precise control 

over the strength of supporting or refuting evidence.  

Judging the validity of a hypothesis ultimately involves a decision to accept a 

focal hypothesis which is considered more coherent with the available evidence than its 

alternative (provided that decisions are made accurately). When cognitive representations 

of evidence-hypothesis information form a coherent mental construct, that construct is 

considered stable and salient (Köhler, 1929; Metzger, 2006), which may translate to a 

stronger and more stable pattern of activity in the underlying neural network. In the 

context of our hypothesis comparison task, such coherence and stability might result in a 

stronger fMRI signal for the network underlying mental representations of evidence-

hypothesis matches.  

The decision to accept a focal hypothesis due to sufficient coherence with the 

evidence could be considered a type of “Aha!” moment. To the extent that this is true, the 

dorsal anterior cingulate cortex (dACC) could be expected to be active under these 

circumstances. During insightful problem solving and difficult perceptual recognition 

tasks, the dACC is shown to be active in response to “Aha!” moments, that is to say, 

when information relevant to interpreting a problem is reorganized into a gestalt, or 

coherent mental construct, of the solution. Other brain regions involved include the 

frontal eye fields (FEF), the dorsolateral prefrontal cortex (DLPFC) and parietal regions 

including the intraparietal sulcus (IPS) and superior and inferior parietal lobules (Aziz-

Zadeh, Kaplan, & Iacoboni, 2009; Kounios & Beeman, 2009; Luo, Niki, & Phillips, 

2004; Ploran et al., 2007). In the current study, we assessed functional connectivity 
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between the dACC and these other brain regions triggered by recognition of a match 

between the evidence and the focal hypothesis.  

We made two predictions regarding the expected functionally connected 

frontoparietal network involving the dACC. First, based on our view of the dACC and 

other functionally connected frontal and parietal regions being involved in recognizing 

coherence between aspects of an emerging mental construct in an “Aha!” moment, we 

predicted stronger activity in the underlying neural network when the focal hypothesis 

was accepted (because it was coherent with the evidence) than when it was rejected. 

Second, we expected this network to be more strongly activated in the hypothesis 

comparison task than the less cognitively complex evidence assessment control task, as 

dACC-based brain networks are known to be responsive to cognitive demands (Duncan 

& Owen, 2000). 

5.1 Material and methods 

5.1.1 Participants 

Forty-six volunteers (26 females, 20 males) with a mean age of 25.0 years (SD = 

5.2) participated in the experiment. They received $10 per hour and were reimbursed for 

transportation expenses. All participants were right-handed. Participants were recruited 

via posters on the UBC campus and in community centres in the greater Vancouver area, 

and via postings on online bulletin boards. Ethical approval was provided by the UBC 

Clinical Research Ethics Board. Participants were excluded from participating if they 

could not safely undergo an MRI scan, if they had experienced any head injuries resulting 

in loss of consciousness for more than 20 minutes, if they suffered from epilepsy, 

encephalitis, or meningitis, or if they or an immediate family member who suffered from 
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a psychotic illness (e.g. schizophrenia or bipolar disorder). 

5.1.2 Procedure 

On each trial of the task, participants were presented with a scene depicting three 

lakes, two of which were upstream from the third (as depicted below in Figure 5.1 and 

Figure 5.2). At the beginning of each trial, an animated series of images was displayed, 

depicting a single fish, either black or white, breaking the surface, jumping along an 

inverted U-shaped path  

 

Figure 5.1. The displays presented while ratings were made during the hypothesis 

comparison task.  
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Figure 5.2. The display presented while ratings were made during the evidence 

assessment task. 
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(parabolic) for 140 ms, then disappearing again below the surface. We will refer to the 

colour of this jumping fish as the relevant colour. The colour of this fish was also 

specified throughout the remaining duration of the trial within the question adjacent to the 

rating scale. This ensured that participants would be aware of the current relevant colour 

even if they had not seen the fish jump. The populations of 100 fish in each of the two 

upstream lakes then became visible. Aside from the jumping fish, no other fish were ever 

visible in the downstream lake. The positions of the black and white fish within each lake 

were randomized over trials, so that any two trials with identical ratios of black to white 

fish would not be identical in appearance. On hypothesis comparison trials, participants 

were told that any fish appearing in the downstream lake originated in either the left-hand 

upstream lake or the right-hand upstream lake. They were required to rate the probability 

that the jumping fish came from one particular lake (the focal lake) rather than the 

alternative lake. The assignment of the left-hand and right-hand lakes as focal and 

alternative hypotheses was randomized across trials. On the evidence assessment trials, 

participants reported the percentage of fish of the relevant colour in both lakes together.  

Each trial allowed 6 seconds for the participant to make a rating. All responses 

were made by moving a slider up or down a vertical response scale using button presses 

on a LUMItouch fiber-optic response device (Lightwave Medical, Vancouver, British 

Columbia, Canada). The entire scale was 160 pixels in length. All responses were made 

with the dominant (right) hand. The two outer response buttons served to move the cursor 

either up or down ten pixels (the index finger moved the cursor down), while the two 

inner response buttons served to move the cursor either up or down two pixels (the 

middle finger moved the cursor down).  
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The Evidence Assessment and Hypothesis Comparison tasks were performed in 

alternating blocks of 14 trials each, with 4 blocks per functional run. There were 7 

conditions within the Hypothesis Comparison task, corresponding to different 

percentages of fish of the relevant colour in the focal and alternative lakes. If the 

percentage was 20% in the focal lake, it was either 20% or 50% in the alternative lake. If 

it was 50% in the focal lake, it was 20%, 50%, or 80% in the alternative lake. If it was 

80% in the focal lake, it was either 50% or 80% in the alternative lake. Thus, the 7 

conditions matched the structure of a Likert scale: the evidence strongly favoured 

accepting the focal hypothesis (50% focal versus 20% alternative), weakly favoured it 

(80% focal versus 50% alternative), was neutral (80% versus 80%, 50% versus 50%, or 

20% versus 20%), weakly favoured rejecting the focal hypothesis (50% focal versus 80% 

alternative), or strongly favoured rejecting the focal hypothesis (20% focal versus 50% 

alternative). There were also 7 conditions in the Evidence Assessment task that used the 

same visual displays, but these required the participants to rate the percentage of fish of 

the relevant colour in both lakes combined. For each of those 14 conditions, there were 2 

trials per run with an inter-trial interval (ITI) of 2 seconds and 2 trials per run with an ITI 

of 8 seconds. During the ITI, three empty lakes were displayed, i.e. without fish or a 

response scale. Halfway through each experimental run, a 30-second rest break occurred, 

during which the words "Take a 30 second break" were displayed on a dark grey screen. 

The total duration of each run was 740 seconds (370 scans). 

5.1.3 Image Acquisition  

Imaging was performed at the University of British Columbia's MRI Research 

Centre on a Philips Achieva 3.0 Tesla scanner with Quasar Dual gradients (with peak 
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strength of 80mT/m and maximum slew rate of 200T/m/s). The participant's head was 

firmly secured using a custom head holder. Functional image volumes were collected 

with T2*-weighted gradient echo spin pulse sequences (TR = 2000ms, TE = 30ms, flip 

angle 90o, 36 slices, 3 mm thick, 1 mm gap, sense factor 2, matrix is 80 × 80 

reconstructed at 128, FOV = 240 mm × 240 mm × 143 mm, measured voxel is 3mm × 

3mm × 3mm, actual bandwidth per pixel is 53.6 Hz) effectively covering the whole brain 

(143 mm axial extent). Each participant completed one structural scan and two functional 

runs of 370 scans each.  

5.1.4 Image Preprocessing  

Functional images were reconstructed offline, and the scan series was realigned 

and motion corrected using the method implemented in SPM5. Translation and rotation 

corrections did not exceed 2 mm or 2.5o for any of the participants. Parameters for spatial 

normalization into the modified MNI space used in SPM5 were determined using mean 

functional images constructed from the realigned images of each participant and scan 

series. The normalized functional images were smoothed with an 8 mm full width at half 

maximum Gaussian filter. Data were normalized to the EPI template using an affine 

transformation and voxels of 4 × 4 × 4 mm3. Any artifacts resulting from head movement 

were removed via regression, with the regressors being the six head movement 

parameters output by SPM5 during image realignment. 

5.1.5 Functional Connectivity Analysis 

To characterize how the activity of functionally connected networks differed 

between experimental conditions, we used a multivariate analysis technique that 
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identifies brain regions showing temporally correlated activation (i.e., functional 

networks). Constrained Principal Component Analysis for fMRI (fMRI-CPCA) combines 

multivariate regression analysis and principal component analysis to derive networks 

from the portion of the BOLD signal that is explained by the timing of task events. CPCA 

differs from other approaches to examining correlations in activation among regions in 

that it (1) identifies functional networks that are based on task related 

covariance/correlation in blood-oxygen level dependent (BOLD) signal, as opposed to 

being based on any source of covariance/correlation in the time course, (2) estimates the 

hemodynamic response (HDR) for each network, and (3) quantifies the effect of 

experimental manipulations on each functional network.  

The details of the fMRI-CPCA method are presented elsewhere (Metzak, 

Feredoes, et al., 2011; Metzak, Riley, et al., 2011; Woodward, Cairo, et al., 2006). 

Briefly, after variance in the BOLD signal attributable to the task has been separated from 

that not attributable to the task, the dominant patterns of inter-correlation between voxels 

over time are used to derive functional networks. For the comprehensive CPCA theory 

and proofs please see previously published work (Hunter & Takane, 2002; Takane & 

Shibayama, 1991; Takane & Hunter, 2001). The fMRI-CPCA application is available on-

line, free of charge (www.nitrc.org/projects/fmricpca). We now briefly present matrix 

equations for the current application of fMRI-CPCA. This application of CPCA involved 

preparation of two matrices: Z and G.  

5.1.6 Preparation of Z 

The first matrix, Z, contained the BOLD time series of each voxel, with one 

column per voxel and one row per scan. Each column contained normalized and 

http://www.nitrc.org/frs/?group_id=203
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smoothed activations over all scans, at first for each subject separately, but then vertically 

concatenated to form a final Z matrix comprised of stacked individual Z matrices. Prior to 

concatenation, linear and quadratic trends over the functional runs were removed from 

the BOLD signal (to correct for scanner drift) using multivariate multiple regression, as 

was variance related to head movement parameters. 

5.1.7 Preparation of G  

The second matrix, G, or the design matrix, contained finite impulse response 

(FIR) models of the expected BOLD response to the timing of stimulus presentations. 

Since the model of the BOLD response is applied to scans, the number of rows in G is 

equivalent to the number of rows in Z. FIR models estimate the increase in BOLD signal 

at specific post-stimulus scans relative to all other scans. The value 1 is placed in rows of 

G for which BOLD signal amplitude is to be estimated, and the value 0 in all other rows 

(“mini boxcar” functions). The time points for which a basis function was specified in the 

current study were the 1st to 10th scans following stimulus presentation. Since the 

repetition time (TR) for these data was 2 s, this resulted in estimating BOLD signal over a 

20 s window, with the start of the first time point corresponding to encoding stimulus 

onset. We chose to model a 20 s window because the full HRF can occasionally last up to 

20 s in some individuals and some brain regions, although the main peak occurs mostly 

within the first 10 s post-stimulus (Muthukumaraswamy, Evans, Edden, Wise, & Singh, 

2012; Wager, Keller, Lacey, & Jonides, 2005). We wished to be able to clearly describe 

the entire HRF time-course. Given that we used a FIR model rather than a modeled 

canonical HRF, the analysis did not force the detection of an HRF lasting a full 20 s. 
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Rather, the shape of the time-course identified in our FIR regression analysis was data-

driven.  

In this analysis we created a G matrix that would allow us to estimate subject-and-

condition specific effects by inserting a separate FIR basis set for each condition and for 

each individual subject. The columns in this subject-and-condition based G matrix code 

10 post-stimulus time points, 14 experimental conditions (7 conditions within the 

hypothesis comparison task and 7 matched conditions within the evidence assessment 

control task), and 46 participants, resulting in 6440 columns (10 × 14 × 46 = 6440). In the 

results, the difference between accepting or rejecting the focal hypothesis did not vary as 

a function of whether the evidence was strong or weak, so all results are collapsed across 

the strong and weak levels of evidence. Trials on which the evidence for the focal and 

alternative hypotheses was equated were also excluded from the ANOVAs in the results 

section. These trials were excluded because they required button pressing in the two 

thirds of evidence assessment trials but not in the evidence comparison trials, and 

therefore would have confounded contrasts between the comparison and assessment 

conditions with motor activity.  

5.1.8 Matrix Equations  

The matrices of the BOLD time series and experimental design are taken as input, 

with BOLD in Z being predicted from the FIR model in G. In order to achieve this, 

multivariate least-squares linear regression was carried out, whereby the BOLD time 

series (Z) was regressed onto the design matrix (G): 

 

Z = GC + E                                                          (4) 
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where ZGGGC  1)( using least squares regression. This analysis yielded condition-

specific regression weights in the C matrix (i.e., regression weights specific to the 

experimental conditions as defined by the design matrix). The condition-specific 

regression weights are often referred to (in conventional fMRI analyses) as beta images. 

GC contains variability in Z that was predictable from the timing of stimulus 

presentations. For the analysis presented here, the G matrix was standardized for each run 

separately.  

The next step involved applying singular value decomposition to extract 

components representing functional networks from GC: 

 

            GCVUD                                                               (5) 

 

where U is the matrix of left singular vectors; D is the diagonal matrix of singular values; 

V is the matrix of right singular vectors. Each column of V can be overlaid on a structural 

brain image to allow visualization of the neural regions involved in each functional 

network. In the current application of CPCA, we orthogonally rotated (Metzak, Feredoes, 

et al., 2011) and rescaled the V matrix prior to display, so that a rotated loading matrix is 

displayed.  

5.1.9 Predictor Weights  

To interpret the components with respect to the conditions represented in G, we 

produced predictor weights (Hunter & Takane, 2002) in matrix P. These are the weights 

that would be applied to each column of the matrix of predictor variables (G) to create U 
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(U=G×P). The values in P indicate the importance of each column in the G matrix to the 

network(s) represented by the component(s), so are essential for relating the resultant 

components to the experimental conditions of interest represented in G. This approach 

estimates a HDR shape for each individual and each condition separately.  

5.1.10 Statistical Test of Component Reliability and Impact of Experimental 

Manipulations  

As is explained above, predictor weights are produced for each combination of 

post-stimulus time point, condition, and participant. These weights can be used to 

statistically test whether the network-based BOLD response differed from zero during 

post-stimulus time, and to confirm that these values are reflecting a HDR shape (Metzak, 

Feredoes, et al., 2011; Metzak, Riley, et al., 2011). The impact of the experimental 

conditions on the network-based estimated HDR can also be tested statistically. 

Specifically, in this experiment, we sought to test: (1) whether the amplitude of the HDR 

differed as a function of whether the focal hypothesis was accepted or rejected, and (2) 

whether it differed between the hypothesis comparison task and the evidence assessment 

control task. In the first case, this would be reflected by a significant interaction between 

Time Point (post-stimulus time) and Decision (Accept Focal versus Reject Focal) for the 

estimated network-based HDR measure (i.e., the predictor weights). Omitting the 

predictor weight representing the first point of post-stimulus time (which was adjusted to 

zero in all conditions for the purposes of display and data analysis), this analysis was 

carried out as a 9 × 2 within-subjects ANOVA for each component, with the factors of 

Time Point and Decision as within-subject factors. Selecting “repeated” contrasts for the 

within-subjects factor of Time Point allowed significance tests to be restricted to adjacent 
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time points, such that complex 9 × 2 interactions (e.g., between Time Point and Decision) 

were broken down into 8 different 2 × 2 interactions involving adjacent levels of the 

Time Point. Inspection of the relative size of the p-values for these 8 different 2 × 2 

interactions can pinpoint the time points responsible for the 9 × 2 interactions (e.g., the 

Accept versus Reject pairwise comparison increases significantly from the 5 s to 7 s post-

stimulus time points). Tests of sphericity were carried out for all ANOVAs. Greenhouse-

Geisser adjusted degrees of freedom are reported where violations of sphericity affected 

the interpretation of results; otherwise, the original degrees of freedom are reported. 

Since our significance testing is carried out at the level of subject-specific HDR 

estimates, use of bootstrapping to produce Z-map images is not required; therefore, point 

estimates (from orthogonally rotating and rescaling the V matrix of component loadings) 

are overlaid on structural brain images for depiction of the spatial arrangement of the 

functional networks.  

5.1.11 Follow-up Analysis of Contributions by Individual Clusters to a Network 

Time Course  

In one functionally connected network for which the strength of the HDR differed 

between experimental conditions, we performed a follow-up analysis to examine how 

different regions of the network contributed to that effect. This clarified whether the 

difference between conditions in that network was simply due to a higher overall level of 

activation within any single region of the network (e.g., the dACC), or reflected a 

stronger signal for the functionally connected network as a whole. This involved 

exploring whether each region of the network showed stronger signal during one 

condition than during another. It was achieved as follows. The following steps were 
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restricted to voxels with the most dominant 20% of component loadings (the values 

overlaid on the brain images, rotated V in Equation 5). For each cluster visible in the 

network, we multiplied those component loadings for voxels within the cluster of interest 

by the corresponding predicted scores (GC in Equation 4) to create cluster-specific 

component scores (one score per functional scan, analogous to rotated U in Equation 5). 

These were then correlated with the model (G in Equation 4) to estimate cluster-specific 

predictor weights. ANOVAs performed on these predictor weights provided a post-hoc 

description of the significant effects identified in the full-network analysis.  

5.1.12 Follow-up Analysis of Contributions by Peak and Off-Peak Voxels to a 

Network Time Course  

In addition to exploring how individual clusters within a network contributed to 

the network time course, we also assessed the contributions of peak and off-peak voxels. 

In this analysis, we included voxels from every cluster within the network, but adjusted 

the percentage cut-off for the most dominant loadings. We first estimated predictor 

weights including the top 20% of component loadings for each cluster. The percentage 

for this cut-off was then lowered in increments of 5% to include more voxels, with the 

analysis being repeated at each cut-off, until a cut-off was reached for which the effect 

was statistically significant. Note that the initial analysis on full-network predictor 

weights, described in the sections above, reflects a percentage cut-off of 100% (i.e., all 

brain voxels were included, and the contribution of each voxel was weighted by how 

strongly it loaded onto the component of interest).  
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Table 5.1.  Ratings of the relative probability that the focal hypothesis rather than its alternative is true, expressed as a percentage of 

the total height of the rating scale. 

Percentage of Fish of the 

Relevant Colour  Hypothesis Comparison Task  Evidence Assessment (Control) Task 

Focal  

Lake (f) 

Alternative  

Lake (a) 

 Probability Rating:  

Mean (SD) 

Mathematical Norm: 

100 × f / (f + a) 

 Percentage Estimate:  

Mean (SD) 

Mathematical Norm: 

(f + a) / 2 

20 20            48.2   (4.2)         50.0  19.7 (10.7) 20.0 

20 50            34.8 (10.5) * 28.6  34.1   (6.0) 35.0 

50 20            63.8   (9.3) * 71.4  34.2   (6.4) 35.0 

50 50            50.5   (3.4) 50.0  51.0   (6.0) 50.0 

50 80            39.1 (11.1) 38.5  66.0   (8.2) 65.0 

80 50            65.4 (11.0) 61.5  66.5   (6.4) 65.0 

80 80            51.8 (3.38) 50.0  79.8   (6.2) 80.0 

* indicates a rating deviating significantly from the mathematical norm at p < .001, which remains significant after a Bonferroni 

correction for multiple comparisons.  
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5.2 Results 

Behavioral responses are displayed in Table 5.1. Most of the ratings in the 

hypothesis comparison task and percentage estimates in the evidence assessment control 

task were quite close to the mathematically normative ratings. The exceptions were the 

ratings made when the focal and alternative lakes contained 20% and 50% fish of the 

relevant colour, or vice versa. These ratings were significantly closer to the mid-point of 

the rating scale than were the mathematically normative ratings. The magnitude of the 

deviation from the mathematically normative rating did not depend, t(45)=1.58, ns, on 

whether the evidence favoured the focal hypothesis, t(45)=5.58, p < .001, or its 

alternative t(45)=4.04, p < .001. Participants were simply more cautious than necessary 

when presented with strong evidence, regardless of which hypothesis that evidence 

favoured. As mentioned above, for all analyses of fMRI data, only trials on which the 

participants moved the cursor on the response scale were included. This allowed us to 

match the hypothesis comparison and evidence assessment tasks in terms of motor 

activity.  
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Figure 5.3. Functional networks identified by CPCA, with the strongest 20% of 

component loadings shown. Note that predictor weight time courses are based on a 

whole-brain network, although only the strongest 20% of loadings are displayed here. (a) 

Component 1. (b) Component 2. Note that predictor weights can be interpreted as 

correlations, so a strongly positive predictor weight in the time course for Component 2 

indicates that the pattern of deactivations in regions of the default mode network is more 

intense for that post-stimulus time point and experimental condition.   
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The scree plot of singular values sorted by magnitude suggested extraction of two 

components (corresponding to two functional networks). The predictor weights 

associated with each component followed a time course reflecting an HDR shape. 

Correspondingly, a significant main effect of Time Point was present for each 

component. The percentages of task-related variance accounted for by the first and 

second rotated components were 19.3% and 9.8%, respectively. The brain regions 

comprising each functional network are portrayed in Figure 5.3 and the tables in 

Appendix 1. Note that only the strongest 20% of loadings are displayed in Figure 5.3, for 

the sake of clearly displaying the dominant features of the spatial pattern of each 

component. The strongest 5% of loadings for these components are displayed in 

Appendix 2. However, all of the predictor weights analyzed below represent a weighted 

aggregate of activity across 100% of brain voxels, with the only exception being the 

paragraph describing our follow-up analysis. Component 1 involved activation in a 

network involving the dACC and bilateral parietal and lateral occipital regions. 

Component 2 involved deactivation in the precuneus, ventromedial prefrontal cortex, and 

bilateral middle temporal gyri; areas which overlap substantially with the default mode 

network (Buckner, Andrews-Hanna, & Schacter, 2008; Fox et al., 2005), as well as 

activation in lateral occipital clusters. Note that, as Component 2 is dominated by 

negative loadings, a strongly positive predictor weight for it mostly reflects activation 

reductions. Specifically, it reflects an aggregate of deactivations in the large number of 

voxels with negative loadings and concurrent activations in the small number of voxels 

with positive loadings. Thus, a strongly positive predictor weight for a given condition 
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and post-stimulus time point reflects strong activation reduction in the default mode 

network.  

5.2.1 Accept Focal versus Reject Focal 

In order to investigate how each component varied as a function of acceptance or 

rejection of the focal hypothesis, we performed 2 × 9 ANOVAs with factors of Decision 

(Accept Focal versus Reject Focal) and Time Point. A Decision × Time Point ANOVA 

carried out on the Component 1 predictor weights revealed no main effect of Decision, 

F(1,45) = 0.15, ns, a significant main effect of Time Point, F(8,360) = 96.27, p < .001, 

and a significant Decision × Time Point interaction, F(8,360) = 3.23, p = .001. The post-

hoc analysis examining this significant interaction using only adjacent time points 

indicated that the pair-wise contrast of Accept > Reject increased substantially from 5 to 

7 s post-stimulus (p=.01), reflecting a higher HDR peak in the Accept Focal condition 

relative to the Reject Focal condition. We also tested whether this effect of Decision on 

the Component 1 predictor weights interacted with Evidence Strength, but found no 

significant interaction, F(1,45) = 2.54, ns.  

A Decision × Time Point ANOVA carried out on the Component 2 predictor 

weights revealed no main effect of Decision, F(1,45)=0.02, ns, a significant main effect 

of Time Point, F(8,360) = 89.37, p < .001, and a significant Decision × Time Point  

interaction F(8,360)=2.50, p < .05. The follow-up analysis examining this significant 

interaction using only adjacent time points indicated that the pair-wise contrast of Accept 

> Reject increased substantially from 11 to 13 s post-stimulus (p=.05), reflecting a 

slightly right-shifted HDR peak in the Accept Focal condition relative to the Reject Focal 

condition.  
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When Components 1 and 2 were entered into a combined analysis, there was a 

significant Decision × Component interaction, F(1,45)=4.24, p < .05, reflecting the fact 

that the mean difference in predictor weights between the Accept Focal and Reject Focal 

conditions was greater for Component 1 (M=.017) than for Component 2 (M=.001). As 

can be seen in Figure 5.3, the predictor weight time course for Component 1 (the dACC-

based network) reached higher amplitude in the Accept Focal (evidence-hypothesis 

match) condition than in the Reject Focal (evidence-hypothesis mismatch) condition. In 

contrast, for Component 2 (the default-mode network) there was no clear amplitude 

difference, but there was a slightly right-shifted HDR peak in the Accept Focal condition.   

A follow-up analysis was carried out to clarify whether the difference between 

focal hypothesis acceptance and rejection in the dACC-based network was simply due to 

a higher overall level of activation within any single region of the network (e.g., the 

dACC), or reflected a stronger signal for the functionally connected network as a whole. 

This involved exploring whether each region of the dACC-based network showed 

stronger signal during focal hypothesis acceptance than rejection. Cluster-specific 

predictor weights were estimated as described in the methods section. We first performed 

this analysis including only voxels corresponding to the top 20% of component loadings, 

as are displayed in Figure 5.3, for each individual cluster. The Decision × Time Point 

interaction was not significant for any individual cluster, including the dACC, indicating 

that the significant interaction reported above is not specific to any one particular brain 

region within the network. We also performed this analysis at the 20% cut-off for all 

displayed clusters simultaneously and found no significant interaction. We then carried 

out this analysis including all voxels that passed a threshold increasing by 5% increments 
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(i.e.., 20%, 25%, 30%, etc.) of the dominant loadings. The Decision × Time Point 

interaction reached significance, F(8,360) = 2.42, p = .05, once the threshold was set at 

the dominant 45% of loadings. No new clusters emerged at this threshold; rather, the 

newly included voxels formed concentric rings around the existing clusters. It was not 

possible to create cluster-specific predictor weights at the 45% cut-off because as the 

clusters grew in size their edges met, resulting in one contiguous cluster identified per 

cerebral hemisphere.  

The above results suggest that a pattern spanning much of the brain, not just the 

peaks displayed in Figure 5.3, is important to representing the difference between 

conditions. It should be noted that the spatial patterns of positive and negative peaks were 

the same for the two components. The difference between them lay in the off-peak 

voxels. In Component 1 (the dACC-based network), 95.76% of voxels had positive 

loadings. In Component 2 (the default mode network), 80.23% of voxels had negative 

loadings. In sum, the off-peak voxels accounted for both the differences in spatial pattern 

between brain networks and also for the differences in cognitive processing. These 

analyses are congruent with an account holding that the stronger signal during focal 

hypothesis acceptance reflects coordinated activity across a network of brain regions, and 

emphasizes the importance of the contribution of non-peak brain regions to this effect 

(i.e., the shape of the cluster as well as the peak amplitude and location).  

5.2.2 Hypothesis Comparison versus Evidence Assessment 

In order to compare component activity in the Hypothesis Comparison task to that 

in the Evidence Assessment task, we used 2 × 9 ANOVAs with factors of Task 

(Hypothesis Comparison versus Evidence Assessment) and Time Point (9 time points 
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displaying how the BOLD response progressed over 2-20 seconds after stimulus 

presentation). An ANOVA carried out on the Component 1 predictor weights revealed no 

main effect of Task, F(1,45) = 0.01, ns, a significant main effect of Time Point, F(8,360) 

= 122.93, p < .001, and no significant Task × Time Point interaction, 

F(3.71,167.14)=2.08, ns. A Task × Time Point ANOVA carried out on the Component 2 

predictor weights revealed no main effect of Task, F(1,45) = 0.51, ns,  a significant main 

effect of Time Point, F(8,360) = 119.09, p < .001, and no Task × Time Point interaction, 

F(8,360)=1.16, ns. As can be seen in Figure 5.3, the time courses of the two tasks overlap 

very closely on Components 1 and 2.  

5.2.3 Follow-up Analysis Testing for Lateralization Effects 

The tasks used in this study involved randomization designed to ensure that the 

left and right lakes corresponded to the focal hypothesis equally often. However, we felt 

it prudent to confirm empirically that no left/right imbalances occurred. To this purpose, 

we compared the cluster-specific predictor weights between left and right hemisphere 

parietal-occipital clusters. There were no main effects of hemisphere and no interactions 

of hemisphere with any other factors of interest in either the Hypothesis Comparison task 

or the Evidence Assessment control task.  

5.3 Discussion 

In order to understand the neural basis of comparing evidence for conflicting 

hypotheses, we used a probabilistic reasoning paradigm to investigate functional brain 

networks engaged in deciding which hypothesis to accept. As these decisions are 

comparable to “Aha!” moments, when coherence between the correct interpretation and 
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the available evidence is recognized, we expected a dACC-based network to be involved. 

As predicted, we found more activity within a dACC-based network when the focal 

hypothesis was accepted (an evidence-hypothesis match) than when it was rejected (an 

evidence-hypothesis mismatch). This is consistent with a role for the dACC and its 

associated functional network in recognizing a coherent mental construct, or triggering 

recognition of a match between the evidence and the focal hypothesis. However, the 

results emphasize that the entire dACC-based network is associated with this effect, not 

only any individual region. There was also a delayed BOLD response in the default-mode 

network for hypothesis acceptance, but no overall difference in amplitude.  

The CPCA method was optimal for identifying the above pattern of increased 

activity in the dACC-based network during focal hypothesis acceptance. This is primarily 

because fMRI-CPCA is designed to identify responses to experimental manipulations of 

task conditions, rather than identifying spontaneous activity. It is the initial regression 

phase of CPCA that sets it apart from other component extraction methods and makes it 

advantageous for identifying task-related functional network changes. This regression 

constrains the analysis to the small portion variance in brain activity attributable to task 

performance. This ensures that the results of the subsequent component extraction step 

are dominated by task-related activity rather than spontaneous activity. This order of 

operations is particularly important in cases where the spatial configuration of a network 

changes in response to cognitive demands. While CPCA uses regression to predict brain 

activity (the criterion) from task timing (the predictor), PLS treats both of these as 

criterion variables and searches for common factors (Metzak, Feredoes, et al., 2011). An 

advantage of CPCA over seed-based connectivity methods is that the lack of a 
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requirement to select a seed region makes the analysis more data-driven. Furthermore, 

PCA identifies the dominant pattern of inter-correlations in a dataset in a more efficient 

manner than performing a large number of pairwise correlation analyses. In sum, the 

results of this study demonstrate the efficacy of constraining an analysis to variance 

attributable to manipulations of interest prior to employing component analysis. 

Although we focus here on the role of the dACC in our task, the role of the other 

regions in the network merits some discussion. The dACC-based network also included 

bilateral activity in the precentral gyrus. This was stronger in the left hemisphere, which 

is consistent with the use of the right hand to respond. We also found strong activity in 

bilateral parietal and lateral occipital clusters, which is consistent with the use of large 

visual displays in our paradigm. Finally, we found weak right-lateralized DLPFC activity. 

As other reports of the role of the DLPFC in perceptual decision-making indicate that the 

left DLPFC plays the dominant role (Heekeren, Marrett, & Ungerleider, 2008; 

Philiastides, Auksztulewicz, Heekeren, & Blankenburg, 2011; Rahnev, Lau, & de Lange, 

2011), our DLPFC activity is unlikely to reflect the same function. As can be seen in 

Figure 5.3, it also exhibits noticeably weaker loadings than the dACC or other clusters in 

Component 1. The network formed by all of these regions represents a variant of the 

‘Task-Positive Network’ widely reported to be involved in spatial attention, working 

memory, and a wide variety of other tasks (Fox, Zhang, Snyder, & Raichle, 2009). In the 

current study we focus on the role of the dACC in this network because it exhibits the 

strongest loadings outside of visual and motor areas. 

Our follow-up analyses suggested that the stronger signal from the dACC-based 

network in response to evidence-hypothesis matches (Accept Focal) depended on an 
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interconnected network-wide pattern. In other words, it depended on more cortical 

regions than only the peak locations and their amplitude. These analyses indicate that the 

stronger signal during focal hypothesis acceptance reflects coordinated activity across a 

network of brain regions, rather than increased activity within any individual cluster peak 

or subset of clusters peaks. They also suggest that activity throughout each network 

cluster (i.e., cluster shape), rather than only at the peaks, underlies the stronger signal in 

response to evidence-hypothesis matches. This demonstrates the importance of a 

functional connectivity approach to fMRI data analysis based on identifying network 

patterns, in that it may be able to detect condition differences that could be missed with 

univariate analyses.  

A secondary goal was to investigate activity in the hypothesis comparison task 

over and above that in the evidence assessment control task. As the hypothesis 

comparison task involves more cognitive steps than the evidence assessment control task, 

we expected it to recruit the dACC-based network more strongly, given that the dACC-

based network is known to be responsive to cognitive demands (Duncan & Owen, 2000). 

Contrary to our predictions, we found no between-condition differences in network 

activity. Assuming that a number of cognitive operations do differ between these 

conditions, we can conclude that our methods were not sensitive to them. That is not to 

say that differences in brain activity do not exist, as certain cognitive operations clearly 

present in the experimental condition are absent in the tightly matched control condition. 

One possibility is that the BOLD signal may simply be too temporally coarse to detect 

these differences. The hemodynamic response to any single cognitive event takes several 

seconds to reach its peak (Boynton, Engel, Glover, & Heeger, 1996; Friston et al., 1998). 
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Therefore the responses to adjacent rapid cognitive events involved in complex cognitive 

processes, such as those differing between evidence assessment and comparison, may be 

merged in the measured BOLD signal. Consequently, the fMRI modality may not be 

sensitive to subtle differences between two series of complex cognitive events, such as 

those involved in evidence assessment and comparison here. A neuroimaging method 

with higher temporal resolution might detect those differences more effectively. 

Interactions between the decision (i.e. to accept versus reject the focal hypothesis) and 

evidence strength might also become apparent if a method with higher temporal 

resolution were used.  

This study is subject to a number of limitations. As the results are dependent on 

the analysis of functional networks, they may not replicate across other non-connectivity-

based analysis methods. Moreover, it may be that other functional brain networks 

accounting for smaller portions of variance in the BOLD signal also play a role in 

hypothesis comparison, but were not detected here. Furthermore, the results depict a 

correlational relationship between differences in network activity and the experimental 

manipulations of interest, leaving the question of causality open. Finally, the data are 

limited by the low temporal resolution of fMRI and slow time course of the BOLD 

response, and other modalities sensitive to more precise time scales (such as MEG) may 

be beneficial in this regard.   

The results of the current experiment help to clarify the precise role of a dACC-

based network in the recognition of the “Aha!” moment, or in triggering recognition of a 

match between the evidence and the focal hypothesis. A number of other roles have been 

attributed to the dACC, such as monitoring the environment for conditions that may 
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require adjustments in control over the course of action (Behrens, Woolrich, Walton, & 

Rushworth, 2007; Paus, 2001; Woodward, Metzak, Meier, & Holroyd, 2008), detection 

of conflict  (Walsh, Buonocore, Carter, & Mangun, 2011), detection of errors (Carter et 

al., 1998), or detection of surprise (Egner, 2011; Egner & Hirsch, 2005). The moment a 

decision is made (i.e., an insightful “Aha!” moment), a given pattern of coherence 

between aspects of a mental representation is recognized. Thus, these data support a 

general role for a dACC-based network in recognition that a change in mental set is 

required (Woodward et al., 2008).  

Optimally interpreting our situations and experiences frequently requires 

comparing the evidence supporting conflicting hypotheses and deciding which to accept, 

with the final decision stage being comparable to an “Aha!” moment reached during 

insightful problem solving. The results suggested that this involves a stronger signal for a 

dACC-based network as a whole, and that functional connectivity between the dACC and 

other brain regions is a possible mechanism for coherence between components of a 

mental representation. This helps clarify the role of the dACC in the wide variety of tasks 

which involve judging and comparing hypotheses, such as social interaction, economic 

decision making, voter choice, perceptual decisions, and evaluating scientific research. 
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6 Patterns of Cortical Oscillations Organize Neural Activity into Whole-Brain 

Functional Networks Evident in the fMRI BOLD Signal 

In Chapter 5, we found an effect of whether the evidence supported accepting or 

rejecting the focal hypothesis. Here, we discuss the neural activity that might underlie that 

effect by reviewing the neural activity underlying the BOLD signal and patterns of functional 

connectivity observed in fMRI. It is understood that whereas fMRI can effectively describe 

the spatial activation patterns of whole-brain networks, it is limited to measuring the delayed 

hemodynamic response observed in the BOLD signal. This delay limits its ability to describe 

rapid changes in neural activity underlying the sequential processing stages inherent to any 

cognitive task. We can obtain much higher temporal resolution from EEG, MEG, or ECoG 

data. However, due to limitations on the number and location of feasible electrode 

placements and to difficulties in measuring signals from sub-cortical regions, these methods 

do not provide complete whole-brain neural activity measures with a spatial precision 

equivalent to that of fMRI. The above temporal and spatial limitations can be addressed 

through studies combining fMRI data with simultaneously recorded EEG data, or with co-

registered MEG or ECoG data recorded in separate sessions. To best interpret the results of 

such multimodal studies, one must understand the relationship between the BOLD signal, 

neuronal activity, and the rapid oscillatory activity measurable with EEG, MEG, and ECoG. 

Here, we describe how cortical oscillations organize post-synaptic potentials and neuronal 

firing, functionally connecting activity in disparate regions to form the widespread cortical 

networks observed in the BOLD signal.  
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6.1 Neuronal ensembles and local metabolic demand: Co-ordinated neural activity 

and oscillations 

At the local level, several studies have used invasive techniques to simultaneously 

record action potentials (APs), BOLD signal strength, and cortical oscillations. It should be 

noted that the BOLD signal might be expected to correspond less closely to APs measured 

via single-cell recordings than to local field potentials (LFPs), which reflect post-synaptic 

potentials summed across large numbers of neurons, because a single fMRI voxel typically 

contains more than a million neurons (Arthurs & Boniface, 2002). Indeed, the BOLD signal 

is reported to correlate more closely with LFPs than with APs (Arthurs & Boniface, 2002; 

Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Mukamel et al., 2005; Niessing et 

al., 2005). More specifically, the BOLD signal tends to correspond closely to LFPs 

oscillating in the high gamma range (approximately 50 to 100 Hz) although the precise range 

can vary across studies (Arthurs & Boniface, 2002; Logothetis et al., 2001; Mukamel et al., 

2005; Niessing et al., 2005; Nir et al., 2007). However, the BOLD signal is coupled to 

neuronal firing when the firing rates of neighbouring neurons (smoothed across periods of a 

few hundred milliseconds) are most highly correlated. This coupling between firing and 

BOLD can depend on whether the type of visual stimulus being presented is an optimal 

driver of the neurons (Lippert, Steudel, Ohl, Logothetis, & Kayser, 2010). These periods also 

involve strong coupling between neuronal firing and gamma frequency oscillatory power 

(Nir et al., 2007). This suggests that, at the local level, the BOLD signal may reflect the 

coordination of neuronal firing mediated by gamma-frequency oscillations in post-synaptic 

potentials. These oscillations could facilitate communication between neurons by ensuring 

that spikes arrive at the moment of peak excitability (Fries, 2005).  
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Gamma-frequency oscillations in the post-synaptic potentials summed across many 

neurons are believed to integrate activity between spatially disparate neuronal ensembles. 

Phase-locking of gamma oscillations is reported to coordinate activity between visual cortical 

neurons responding to different parts of the same moving object (Gray, Konig, Engel, & 

Singer, 1989; Gray & Singer, 1989). Distinct sub-frequencies of gamma oscillations are 

thought to coordinate activity across distinct sets of regions in the hippocampus and 

parahippocampal cortices. Medium-frequency gamma (~60 Hz) appears to coordinate 

activity between CA1 hippocampal neurons (deep layer) and medial entorhinal cortex. Low-

frequency gamma (~ 40 Hz) appears to coordinate activity between CA1 hippocampal 

neurons (superficial layer) and CA3 hippocampal neurons (Belluscio, Mizuseki, Schmidt, 

Kempter, & Buzsaki, 2012; Colgin et al., 2009). While these gamma oscillations coordinate 

activity between nearby regions, they also play a role in segregating neuronal ensembles 

involving different layers of CA1. Further evidence of the role of gamma oscillations in 

segregation involves ‘inhibitory sculpting’ constraining activity to within individual cortical 

columns (Contreras & Llinas, 2001). In sum, these findings suggest that gamma oscillations 

dynamically combine local elements into neuronal ensembles while keeping the ensembles 

distinct from each other.  

6.2 Orchestration: Networks formed from multiple frequencies of oscillations 

While gamma oscillations are effective in combining activity at the local level, it has 

been suggested that slower oscillations would be more optimal for co-ordinating activity 

across longer distances between hemispheres or between frontal and posterior regions, which 

can involve longer, poly-synaptic conduction delays of dozens of milliseconds (Varela, 



  125 

 

Lachaux, Rodriguez, & Martinerie, 2001; von Stein & Sarnthein, 2000). Whereas this is 

consistent with findings of local synchronization in the gamma band, more long-range task-

induced synchronization of slower alpha (~10Hz) oscillations between occipital and parietal 

regions, and frontoparietal synchronization in the theta band (Colgin et al., 2009; Doesburg, 

Green, McDonald, & Ward, 2009a; Gray et al., 1989; Gray & Singer, 1989; von Stein & 

Sarnthein, 2000), there are also reports of long-distance EEG gamma-band synchronization 

between electrodes over frontal and parietal/occipital cortices (Doesburg, Roggeveen, Kitajo, 

& Ward, 2008). Furthermore, gamma-frequency LFPs are reported to correlate with BOLD 

signal in distant cortical regions (Schӧlvinck, Maier, Frank, Duyn, & Leopold, 2010). Thus, 

spatial co-ordination cannot be simplified to a linear relationship between oscillatory 

frequency and the distance over which information is organized.  

The short-range and long-range organization of neural activity by oscillations of 

different frequencies depends upon the ways in which those oscillations work in concert. One 

means by which oscillations are widely reported to work in concert involves the gamma and 

theta frequency ranges. The amplitude of gamma oscillations can be modulated by the phase 

of a theta oscillation (Canolty et al., 2006; Doesburg, Green, McDonald, & Ward, 2009b; 

Jensen & Colgin, 2007). The amplitude of broadband high gamma activity (80 to 150 Hz) is 

maximal at the trough of 5 Hz theta oscillations in ECoG data collected from a wide region 

of cortex (Canolty et al., 2006).  

This pattern of theta-modulated gamma appears to play an important role in cognitive 

processing. During binocular rivalry, it connects a frontoparietal network involved in 

perceptual switching. Immediately prior to a perceptual switch and concomitant response, it 

dynamically connects inferior temporal and motor cortices to the network (Doesburg et al., 
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2009b). It has been postulated that the timing of gamma oscillations within a given theta 

cycle plays an organizational role, with each 40 Hz gamma cycle within a 7 Hz theta cycle 

corresponding to the neuronal ensemble for one item in a set maintained in working memory 

(Jensen & Colgin, 2007; Lisman & Idiart, 1995). While empirical data remain inconclusive 

regarding that particular model of working memory, there is evidence that theta phase 

distinguishes between neuronal ensembles oscillating at different gamma frequencies. In rats 

exploring a maze, medium-frequency (50-90 Hz) gamma oscillations in the hippocampus 

occur at a slightly earlier phase of the theta cycle than slower (30-50 Hz) gamma oscillations 

(Belluscio et al., 2012). As these different gamma frequencies correspond to different 

neuronal ensembles, as described in the previous section, this demonstrates how phase-

amplitude modulation serves to distinguish between ensembles in neighbouring regions.  

In addition to modulating gamma amplitude, theta phase can also modulate gamma 

phase. Cross-frequency theta-gamma phase-phase coupling occurs in the hippocampus and 

parahippocampal cortex in the medium (50-90 Hz) and slow (30-50 Hz) gamma ranges 

(Belluscio et al., 2012). Theta phase can also alter synchrony between gamma oscillations 

originating in disparate regions. Prior to a change in percept in a binocular rivalry paradigm, 

both intra-regional gamma band synchronization and inter-regional synchronization between 

frontal and posterior regions increased. Both types of synchronization were also modulated at 

the theta frequency (Doesburg et al., 2009b). Thus, gamma oscillations can be phase-locked 

over long distances, but slower oscillations tend to be the mechanism by which local 

ensembles oscillating within the gamma range are organized into networks and sub-networks.  
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6.3 Correspondence between oscillatory networks and fMRI networks 

The precise mechanism by which oscillations form functional networks varies with 

task demands and with the specific cortical regions involved in a given network. If we 

consider the regions of the dorsal and ventral attention networks often reported in the fMRI 

literature (Corbetta, Patel, & Shulman, 2008; Fox et al., 2005), we can find corresponding 

patterns of oscillatory connectivity at a range of frequencies. Alpha (~10 Hz) oscillations are 

phase-locked between the superior parietal lobule (SPL) and inferior occipital gyrus (IOG) 

contralateral to attended locations (Doesburg et al., 2009a). Beta (~20 Hz) oscillations are 

reported to synchronize activity between the frontal eye fields (FEF), the intraparietal sulcus 

(IPS), and occipitotemporal cortices (Hipp, Engel, & Siegel, 2011). Theta and gamma 

oscillations are reported to synchronize frontal regions such as the dorsolateral prefrontal 

cortex (DLPFC) and superior frontal gyrus (SFG) to the precentral gyrus and precuneus 

(Doesburg et al., 2009b). Slower oscillations (slow cortical potentials or “up/down” states) in 

EEG / MEG / ECoG data occur at a rate comparable to the spontaneous resting-state 

oscillations measurable in the BOLD signal (He & Raichle, 2009; He, Snyder, Zempel, 

Smyth, & Raichle, 2008). In sum, power in no single frequency band can be said to be the 

signal driving the BOLD response. Instead, several different frequencies of oscillation will 

likely work in concert to connect the regions belonging to a given fMRI network, particularly 

if that network involves many regions.  This view would be consistent with recent findings 

that the amplitude and time-course of the hemodynamic response are dependent not only on 

gamma-frequency power (although gamma power is the strongest predictor of BOLD signal 

amplitude) but also alpha and beta power (Magri, Schridde, Murayama, Panzeri, & 

Logothetis, 2012). It is also consistent with recent findings that coherent low-frequency 
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oscillations were the predominant contributors to inter-regional correlations in BOLD signal 

in a thalamo-cortical visual network. These slow oscillations modulated local high-frequency 

(gamma) activity via cross-frequency coupling (Wang, Saalmann, Pinsk, Arcaro, & Kastner, 

2012). 

The involvement of different oscillatory frequencies in a cortical network varies as a 

function of cognitive state (Brookes et al., 2011; Doesburg et al., 2009a, 2009b; Doesburg et 

al., 2008; von Stein & Sarnthein, 2000), and those states often last only a few hundred 

milliseconds. Given that the hemodynamic response is delayed by several seconds, fMRI 

cannot distinguish between the neural responses to brief sequential cognitive states. Thus, a 

given fMRI network configuration might reflect the sum of several oscillatory network 

configurations, each of which had a brief duration. When interpreting the results of 

multimodal studies, researchers should expect that each network identified in their fMRI data 

is likely to decompose into multiple oscillatory network configurations. In addition, they 

should expect fMRI data reflecting early sensory processing to correspond most closely to 

evoked responses in EEG/MEG/ECoG data, as much of signal contributing to the event-

related averages in these data involves oscillations phase-locked to the onset of sensory 

stimuli. In contrast, fMRI data reflecting high-level cognitive processing involving cognitive 

stages with more variable timing should correspond more closely to induced responses in 

EEG/MEG/ECoG data, as these reflect oscillations not precisely phase-locked to the onset of 

sensory stimuli. It should be noted that both evoked and induced responses may derive from 

frequency-dependent changes in phase alignment (Burgess, 2012).  
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6.4 Directions for future research 

Much of the work remaining for future research involves describing cognitive 

processes in terms of the activities of their underlying brain networks, identifiable both in 

BOLD signals and in patterns of electrophysiological activity. The combined high spatial and 

temporal resolution of such multimodal analyses, as well as the potential for identifying 

complex multi-frequency oscillatory patterns, represents an opportunity for extensive 

discovery by cognitive neuroscientists. A promising approach to combining the spatial 

resolution of fMRI with the temporal resolution of EEG or MEG involves identifying 

oscillatory networks with high spatial correspondence to fMRI networks. The time-course of 

oscillatory activity can then be described with high temporal resolution, while the fMRI data 

provide high confidence in the locations of the generators of the oscillatory signals. 

There is also a need for more basic research on the generating mechanisms of 

neuronal oscillations (Burns, Xing, & Shapley, 2011), extending our understanding beyond 

the hippocampus to a diversity of neocortical and sub-cortical regions. One interesting 

finding in this area involves patterns of oscillatory connectivity between neocortical layers. 

Oscillatory activity in V1 appears to be compartmentalized within either infragranular layers, 

which project largely to thalamic regions, or granular and supragranular layers, which project 

mainly to other cortical regions (Maier, Adams, Aura, & Leopold, 2010). It would be 

interesting to investigate whether communication between those compartments was 

accomplished via the cross-frequency coupling underlying connectivity in thalamo-cortical 

visual networks (Wang et al., 2012). Finally, understanding how the brain networks evident 

in multimodal studies are affected by genetic variants and neurotransmitter levels will be 

integral to understanding clinical etiology and advancing treatment.  
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6.5 Conclusion 

If multimodal studies attempt to identify the electrophysiological metric that best 

predicts the BOLD signal, they will produce findings of limited generalizability. There is no 

single oscillatory frequency range, and no single measure of neuronal oscillation or 

synchronization, that can be said to be the best predictor. Rather, the pattern of 

correspondence between electrophysiology and hemodynamics will depend upon whether 

one compares spatial patterns of network activity or network time courses. It will also depend 

upon whether one compares signal strength at a local level or at a whole-brain level. Finally, 

it will depend upon whether data are recorded at rest or during performance of a cognitive 

task, and upon the specific cognitive demands of said task. Converging results obtained using 

diverse measurements suggest that the BOLD signal strength corresponds well with high 

frequency oscillatory power at the local level, and that functional connectivity in the BOLD 

signal across greater distances corresponds well with lower frequency oscillations. It would 

be more fruitful, however, for researchers to explore how these different oscillatory 

frequencies work in concert. A particular pattern representing a combination of low and high 

frequencies (such as when high-frequency amplitude depends upon low-frequency phase) 

may organize activity at a local level by integrating some signals while segregating others, 

and simultaneously co-ordinate multiple organized local patterns across much greater 

distances. These multi-frequency patterns provide an optimal explanation for the mechanisms 

of cognitive processing because they dynamically change at the same pace as cognition. 
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7 General Discussion 

The general goal of our investigations was to identify cognitive factors affecting 

hypothesis judgments and underlying brain networks. Specifically, we predicted that 

judgments would be sensitive to cognitive coherence, as would the activity of underlying 

functional brain networks. This could be coherence between the initially presented evidence 

and subsequently presented or re-considered evidence, between the focal hypothesis being 

judged and the available evidence, or between a self-selected, preferred hypothesis and 

subsequently presented or re-considered evidence. This bias would result from the 

corresponding mental representations of the evidence and hypothesis forming a stable, salient 

gestalt.  

7.1 Discussion of behavioural results 

Our behavioural investigations identified two cognitive factors affecting hypothesis 

judgments, despite no effect being predicted by mathematically normative models. The first 

of these involved a bias towards giving more weight to gradually accumulated evidence than 

to the same evidence presented instantaneously, as we had expected. Contrary to our 

predictions, the bias in favour of gradual evidence was not driven by an anchoring effect, was 

independent of whether the evidence supported or refuted the focal hypothesis, and was 

independent of the strength of the evidence. Thus, the bias in favour of gradual evidence does 

not appear to be an effect of cognitive coherence between the evidence and focal hypothesis. 

Rather, it involves a tendency for the overall salience of unpacked evidence to be greater than 

that of packed evidence.   
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The second cognitive bias identified involved judging self-selected focal hypotheses 

to be more probable than externally selected ones with equivalent supporting evidence. Like 

the gradual evidence effect, the selection bias effect was not dependent on evidence strength. 

The bias depended on a categorical choice of hypothesis rather than on the extent to which 

the relevant evidence was coherent with the preferred hypothesis. While selection bias does 

not result from coherence, it might be said to cause a coherence effect, in that selecting a 

preferred hypothesis resulted in a subsequent overestimation of evidence supporting 

(coherent with) that hypothesis.  

As predicted, selection bias was exacerbated in delusional schizophrenia patients. An 

interesting direction for future research would be to investigate whether this correlated with 

another effect in that population, in which ‘evidence-hypothesis matches’ were found to be 

hypersalient while mismatches were not (Speechley et al., 2010). In that case, there was no 

explicit choice of preferred hypothesis before probability ratings were made. Instead, 

evidence in favour of an externally selected focal hypothesis was judged to be stronger than 

objectively equivalent evidence in favour of an alternative hypothesis. In other words, 

coherence between a hypothesis and the available evidence biases judgments in 

schizophrenia. It would be interesting to examine whether that bias was related to selection 

bias.  

A limitation of using a probabilistic reasoning paradigm to study selection bias is that 

it has limited real-world validity, as many hypotheses are not merely self-selected, but rather 

self-generated. A limitation of paradigms involving self-generated hypotheses is that they 

would not allow us to control for the strength of the evidence considered. However, the 

generation (rather than selection) of a preferred hypothesis involves cognitive processes not 
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included in our probabilistic reasoning paradigm. For this reason, a task involving self-

generated hypotheses may have utility for future studies of delusional schizophrenia patients 

as a result of greater real-world validity.  

7.2 Discussion of neuroimaging results 

In the neuroimaging study reported here, we found a difference in network activity 

between evidence-hypothesis matches and non-matches. This was in a network involving the 

dACC, bilateral parietal cortex, and bilateral occipital cortex. Our results were consistent 

with the prediction that evidence-hypothesis matches would result in a coherent, stable, 

salient mental representation (or gestalt) and a correspondingly stronger signal from the brain 

network underlying that mental representation. Contrary to our expectations, we found no 

effect of evidence strength on network activity. One possible explanation for that is the poor 

temporal resolution afforded by fMRI. As we noted in Chapter 6, this could cause the signals 

associated with subsequent cognitive processes to merge. Future research using the high 

temporal resolution of EEG or MEG to dissociate between the patterns of activity associated 

with sequential processes might reveal effects of evidence strength.  

One methodological limitation of the neuroimaging study reported here is that the use 

of a Likert scale for making probability judgments required multiple button presses on the 

response box. This meant that any direct comparisons between high and low levels of 

evidence strength would be confounded with the amount of motor activity – specifically, the 

number of button presses made. If there had been an effect of evidence strength or certainty 

that did not depend on whether the evidence supported the focal hypothesis that effect would 

have been confounded with the amount of motor activity (the number of button presses 
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made). Such confounds could be avoided in future studies via an MRI-compatible trackball 

mouse. However, the distance traveled by the mouse would still vary as a function of 

certainty, so confounds with motor activity would only be minimized, not completely 

eliminated. An alternative would be using the button box to elicit categorical ratings of 

‘strongly agree’, ‘agree’, ‘disagree’, and ‘strongly disagree’. However, this would eliminate 

the option of recording behavioural biases in probability ratings and correlating those with 

brain activity.  

7.3 Conclusions 

Before conducting these studies, we predicted one of two distinct effects fitting 

within the general framework of cognitive coherence. One possibility was that the degree to 

which the initially presented evidence supported the focal hypothesis would determine the 

strength of a bias in subsequent judgments. Another way of phrasing this is to say that the 

magnitude of bias would depend on the magnitude of objectively quantifiable coherence 

between the evidence and the focal hypothesis. The other possibility was that the presence or 

absence of a bias would depend on a binary distinction, namely whether the initially 

presented evidence supported or refuted the focal hypothesis. In this case, the strength of a 

measured bias would not depend on the level of objectively quantifiable coherence. Instead, a 

bias would be observed if the evidence supported the focal hypothesis, and absent if the 

evidence refuted it. This second possibility was most consistent with our results.  

Behavioural studies of hypothesis comparison showed that making an initial choice 

between two or more hypotheses biased later judgments, regardless of whether those later 

judgements involved new evidence or re-evaluation of the initially presented evidence. 
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Choosing a preferred focal hypothesis biased later judgements of relevant evidence in 

Chapters 3 and 4. In contrast, an initial judgment of the relative probability of the focal 

hypothesis, made on a Likert scale, did not bias subsequent judgments. This was seen in the 

absence of either an anchoring effect or an effect of repeated judgments in Chapter 2.  

We also found that choice affected the activity of a dACC-based functional brain 

network in our fMRI study. However, that network was not affected by evidence strength. 

Thus, behavioural and neuroimaging results both indicate some unique processing involved 

in choosing to accept a hypothesis. Behaviourally, we observed a bias in favour of evidence 

coherent with a hypothesis the participant had previously accepted. That effect was specific 

to situations in which a choice was made – situations in which the initial evidence was 

processed in a binary or categorical manner rather than as a continuous variable. This is 

relevant to many real-world judgment and decision-making situations in which evidence 

strength is not objectively quantifiable, and categorical processing, such as that involved in a 

pro-con list, is the only option. This may be why the cognitive processes underlying 

hypothesis judgment lack the precision inherent to the mathematically normative judgments. 

If quantifiable evidence is often unavailable, defaulting to associative processing based on 

cognitive coherence may be the optimal strategy for avoiding indecision.  



  136 

 

 

References 

Adsit, D. J., & London, M. (1997). Effects of hypothesis generation on hypothesis testing in 

rule-discovery tasks. Journal of General Psychology, 124(1), 19-34.  

Allen, P., Modinos, G., Hubl, D., Shields, G., Cachia, A., Jardri, R., . . . Hoffman, R. (2012). 

Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to 

neurochemistry and beyond. Schizophrenia Bulletin. doi: doi:10.1093/schbul/sbs066 

American Psychiatric Association, . (2000). Diagnostic and Statistical Manual of Mental 

Disorders (A. P. Association Ed. Text Revised, 4th ed.). Washington, DC: American 

Psychiatric Association. 

Ammons, R. B., & Ammons, C. H. (1962). The Quick Test (QT). Missoula (MT): 

Psychological Test Specialists. 

Anderson, N. H. (1981). Foundations of Information Integration Theory. New York: 

Academic Press. 

Arthurs, O. J., & Boniface, S. (2002). How well do we understand the neural origins of the 

fMRI BOLD signal? . Trends in Neurosciences, 25(1), 27-31.  

Averbeck, B. B., Evans, S., Chouhan, V., Bristow, E., & Shergill, S. S. (2011). Probabilistic 

learning and inference in schizophrenia. Schizophrenia Research, 127, 115-122.  

Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). "Aha!": The neural correlates of verbal 

insight solutions. Human Brain Mapping, 30(3), 908-916. doi: Doi 

10.1002/Hbm.20554 



  137 

 

Balzan, R. P., Delfabbro, P. H., Galletly, C. A. , & Woodward, T. S. (2012). Over-adjustment 

or miscomprehension? A re-examination of the jumping to conclusions bias. 

Australian and New Zealand Journal of Psychiatry, 46, 532-540. doi: DOI: 

10.1177/0004867411435291 

Beach, L. R. (1968). Probability magnitudes and conservative revision of subjective 

probabilities. Journal of Experimental Psychology, 77(1), 57-63.  

Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F. S. (2007). Learning 

the value of information in an uncertain world. Nature Neuroscience, 10(9), 1214-

1221. doi: Doi 10.1038/Nn1954 

Bell, V., Halligan, P. W., & Ellis, H. D. (2006). Explaining delusions: a cognitive 

perspective. Trends in Cognitive Sciences, 10(5), 219-226.  

Belluscio, M. A., Mizuseki, K., Schmidt, R., Kempter, R., & Buzsaki, G. (2012). Cross-

frequency phase-phase coupling between theta and gamma oscillations in the 

hippocampus. Journal of Neuroscience, 32(2), 423-435. doi: 

10.1523/JNEUROSCI.4122-11.2012 

Bentall, R P. (1994). Cognitive biases and abnormal beliefs: Towards a model of persecutory 

delusions. In A. S. David & J. C. Cutting (Eds.), The neuropsychology of 

schizophrenia (pp. 337-361). Hillside, NJ: Erlbaum. 

Bond, S. D., Carlson, K. A., Meloy, M. G., Russo, J. E., & Tanner, R. J. (2007). Information 

distortion in the evaluation of a single option. Organizational Behavior and Human 

Decision Processes, 102(2), 240-254. doi: DOI 10.1016/j.obhdp.2006.04.009 



  138 

 

Bonini, N., & Gonzalez, M. (2005). Inconsistent probability estimates of a hypothesis - The 

role of contrasting support. Experimental Psychology, 52(1), 55-66. doi: Doi 

10.1027/1618-3169.52.1.55 

Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis 

of functional magnetic resonance imaging in human V1. Journal of Neuroscience, 

16(13), 4207-4221.  

Brookes, M. J., Wood, J. R., Stevenson, C. M., Zumer, J. M., White, T. P., Liddle, P. F., & 

Morris, P. G. (2011). Changes in brain network activity during working memory 

tasks: a magnetoencephalography study. Neuroimage, 55(4), 1804-1815. doi: 

10.1016/j.neuroimage.2010.10.074 

Brownstein, A. L. (2003). Biased predecision processing. Psychological Bulletin, 129(4), 

545-568. doi: Doi 10.1037/0033-2909.129.4.545 

Buchy, L., Woodward, T. S., & Liotti, M. (2007). A cognitive bias against disconfirmatory 

evidence (BADE) is associated with schizotypy. Schizophrenia Research, 90(1-3), 

334-337. doi: DOI 10.1016/j.schres.2006.11.012 

Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network 

- Anatomy, function, and relevance to disease. Annals of the New York Academy of 

Sciences, 1124, 1-38. doi: DOI 10.1196/annals.1440.011 

Burgess, A. P. . (2012). Towards a unified understanding of event-related changes in the 

EEG: the Firefly model of synchronization through cross-frequency phase 

modulation. PLoS One, 7(9), e45630.  



  139 

 

Burns, S., Xing, D, & Shapley, R. M. . (2011). Is gamma-band activity in the local field 

potential of V1 cortex a "clock" or filtered noise? Journal of Neuroscience, 31, 9658-

9664.  

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., . . . 

Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in 

human neocortex. Science, 313(5793), 1626-1628. doi: 10.1126/science.1128115 

Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). 

Anterior cingulate cortex, error detection, and the online monitoring of performance. 

Science, 280(5364), 747-749.  

Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., . . . Moser, E. I. 

(2009). Frequency of gamma oscillations routes flow of information in the 

hippocampus. Nature, 462(7271), 353-U119. doi: 10.1038/Nature08573 

Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric 

and nonparametric statistics. American Statistician, 35(3), 124-129.  

Contreras, D., & Llinas, R. (2001). Voltage-sensitive dye imaging of neocortical 

spatiotemporal dynamics to afferent activation frequency. Journal of Neuroscience, 

21(23), 9403-9413.  

Corbetta, M., Patel, G., & Shulman, G. L. . (2008). The reorienting system of the human 

brain: From environment to theory of mind. Neuron, 58, 306-324.  

Deese, J., & Kaufman, R. A. (1957). Serial Effects in Recall of Unorganized and 

Sequentially Organized Verbal Material. Journal of Experimental Psychology, 54(3), 

180-187.  



  140 

 

Dekay, M. L., Stone, E. R., & Miller, S. A. (2011). Leader-driven distortion of probability 

and payoff information affects choices between risky prospects. Journal of 

Behavioral Decision Making, 24(4), 394-411. doi: Doi 10.1002/Bdm.699 

Doesburg, S. M., Green, J. J., McDonald, J. J., & Ward, L. M. (2009a). From local inhibition 

to long-range integration: A functional dissociation of alpha-band synchronization 

across cortical scales in visuospatial attention. Brain Research, 1303, 97-110. doi: 

10.1016/j.brainres.2009.09.069 

Doesburg, S. M., Green, J. J., McDonald, J. J., & Ward, L. M. (2009b). Rhythms of 

Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network 

Dynamics Mediating Visual Perception. PLoS One, 4(7), 1 - 14. doi: 

10.1371/Journal.Pone.0006142 

Doesburg, S. M., Roggeveen, A. B., Kitajo, K., & Ward, L. M. (2008). Large-scale gamma-

band phase synchronization and selective attention. Cerebral Cortex, 18(2), 386-396. 

doi: 10.1093/cercor/bhm073 

Ducharme, W. M. (1970). Response bias explanation of conservative human inference. 

Journal of Experimental Psychology, 85(1), 66-&.  

Ducharme, W. M., & Peterson, C. R. (1969). Proportion estimation as a function of 

proportion and sample size. Journal of Experimental Psychology, 81(3), 536-&.  

Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by 

diverse cognitive demands. Trends in Neurosciences, 23(10), 475-483.  

Egner, T. (2011). Surprise! A unifying model of dorsal anterior cingulate function? Nature 

Neuroscience, 14(10), 1219-1220. doi: Doi 10.1038/Nn.2932 



  141 

 

Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through 

cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 

1784-1790. doi: Doi 10.1038/Nn1594 

Fischhoff, B., & Beythmarom, R. (1983). Hypothesis evaluation from a bayesian perspective. 

Psychological Review, 90(3), 239-260.  

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. 

(2005). The human brain is intrinsically organized into dynamic, anticorrelated 

functional networks. Proceedings of the National Academy of Sciences, 102(27), 

9673-9678. doi: 10.1073/pnas.0504136102 

Fox, M. D., Zhang, D. Y., Snyder, A. Z., & Raichle, M. E. (2009). The Global Signal and 

Observed Anticorrelated Resting State Brain Networks. Journal of Neurophysiology, 

101(6), 3270-3283. doi: DOI 10.1152/jn.90777.2008 

Freeman, D., Pugh, K., & Garety, P. (2008). Jumping to conclusions and paranoid ideation in 

the general population. Schizophrenia Research, 102(1-3), 254-260. doi: S0920-

9964(08)00162-X [pii] 10.1016/j.schres.2008.03.020 

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through 

neuronal coherence. Trends in Cognitive Sciences, 9(10), 474-480. doi: DOI 

10.1016/j.tics.2005.08.011 

Friston, K. J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. D., & Turner, R. (1998). 

Event-related fMRI: Characterizing differential responses. Neuroimage, 7(1), 30-40.  

Frith, C. (1994). Theory of mind in schizophrenia. In A. S. David & J. C. Cutting (Eds.), The 

neuropsychology of schizophrenia (pp. 147-161). Hillside, NJ: Erlbaum. 



  142 

 

Gale, M., & Ball, L. J. (2006). Dual-goal facilitation in Wason's 2-4-6 task: What mediates 

successful rule discovery? Quarterly Journal of Experimental Psychology, 59(5), 

873-885. doi: Doi 10.1080/02724980543000051 

Garety, P. A., & Freeman, D. (1999). Cognitive approaches to delusions: A critical review of 

the evidence. British Journal of Clinical Psychology, 38, 113-154.  

Garety, P. A., Hemsley, D. R., & Wessely, S. (1991). Reasoning in deluded schizophrenic 

and paranoid patients: Biases in performance on a probabilistic inference task. 

Journal of Nervous and Mental Disease, 179(4), 194-201.  

Glockner, A., & Betsch, T. (2008). Multiple-reason decision making based on automatic 

processing. Journal of Experimental Psychology-Learning Memory and Cognition, 

34(5), 1055-1075. doi: Doi 10.1037/0278-7393.34.5.1055 

Glockner, A., Betsch, T., & Schindler, N. (2010). Coherence shifts in probabilistic inference 

tasks. Journal of Behavioral Decision Making, 23(5), 439-462. doi: Doi 

10.1002/Bdm.668 

Gray, C. M., Konig, P., Engel, A. K., & Singer, W. (1989). Oscillatory Responses in Cat 

Visual-Cortex Exhibit Inter-Columnar Synchronization Which Reflects Global 

Stimulus Properties. Nature, 338(6213), 334-337.  

Gray, C. M., & Singer, W. (1989). Stimulus-Specific Neuronal Oscillations in Orientation 

Columns of Cat Visual-Cortex. Proceedings of the National Academy of Sciences, 

86(5), 1698-1702.  

He, B. J., & Raichle, M. E. (2009). The fMRI signal, slow cortical potential and 

consciousness. Trends in Cognitive Sciences, 13(7), 302-309.  



  143 

 

He, B. J., Snyder, A. Z., Zempel, J. M., Smyth, M. D., & Raichle, M. E. (2008). 

Electrophysiological correlates of the brain’s intrinsic large-scale functional 

architecture. Proceedings of the National Academy of Sciences, 105(41), 16039-

16044.  

Heekeren, H. R., Marrett, S., & Ungerleider, L. G. (2008). The neural systems that mediate 

human perceptual decision making. Nature Reviews Neuroscience, 9(6), 467-479. 

doi: Doi 10.1038/Nrn2374 

Hemsley, D. R., & Garety, P. A. (1986). The formation of maintenance of delusions - a 

Bayesian analysis. British Journal of Psychiatry, 149, 51-56.  

Hipp, J. F., Engel, A. K., & Siegel, M. . (2011). Oscillatory synchronization in large-scale 

cortical networks predicts perception. Neuron, 69, 387-396.  

Hogarth, R. M., & Einhorn, H. J. (1992). Order Effects in Belief Updating - the Belief-

Adjustment Model. Cognitive Psychology, 24(1), 1-55.  

Hollingshead, August B., & Redlich, Frederick C. (1958). Social Class and Mental Illness. 

New York: John Wiley and Sons. 

Hunter, M. A., & Takane, Y. (1998). CPCA: A program for principal component analysis 

with external information on subjects and variables. Behavior Research Methods 

Instruments & Computers, 30(3), 506-516.  

Hunter, M. A., & Takane, Y. (2002). Constrained principal component analysis: Various 

applications. Journal of Educational and Behavioral Statistics, 27(2), 105-145.  

Huq, S.F., Garety, P.A., & Helmsley, D.R. (1988). Probabalistic judgments in deluded and 

non-deluded subjects. Quarterly Journal of Experimental Psychology, 40, 801-812.  



  144 

 

Jensen, O., & Colgin, L. L. (2007). Cross-frequency coupling between neuronal oscillations. 

Trends in Cognitive Sciences, 11(7), 267-269. doi: 10.1016/j.tics.2007.05.003 

Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological 

Bulletin, 114(1), 3-28.  

Juslin, P., Nilsson, H., & Winman, A. (2009). Probability theory, not the very guide of life. 

Psychological Review, 116(4), 856-874. doi: Doi 10.1037/A0016979 

Kapur, S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, 

phenomenology, and pharmacology in schizophrenia. American Journal of 

Psychiatry, 160(1), 13-23.  

Kaufman, A. S. , & Kaufman, N. L. (1997). Kaufman Brief Intelligence Test Second Edition 

(KBIT 2) Manual. Minneapolis, MN: NCS Pearson, Inc. 

Klayman, J., & Ha, Y. W. (1987). Confirmation, Disconfirmation, and Information in 

Hypothesis-Testing. Psychological Review, 94(2), 211-228.  

Koehler, D. J. (1994). Hypothesis generation and confidence in judgment. Journal of 

Experimental Psychology: Learning Memory and Cognition, 20(2), 461-469.  
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 Appendix 1: Clusters and Peak Locations for Networks Identified in fMRI Data 

Table A1. Cluster volumes for most extreme 20% of Component 1 loadings, with anatomical 

descriptions, MNI coordinates, and Brodmann’s area for the peaks within each cluster. Only 

clusters > 25 mm3 are presented here. All of the loadings for this component were positive. 

Cortical Regions  Cluster 

Volume  

(mm3) 

Brodmann’s 

Area for peak 

locations 

MNI 

Coordinate  

(X Y Z) for 

peak locations 

 

Cluster 1 (Bilateral):  

Superior Parietal 

Middle Occipital 

Fusiform Gyrus 

Superior Parietal Lobe 

Precuneus 

Inferior Occipital Gyrus 

Cingulate Gyrus / dACC /   

     Supplementary Motor Area 

Lingual Gyrus 

Middle Occipital Gyrus 

Middle Frontal Gyrus 

Fusiform Gyrus 

Cerebellum (Right) 

Lateral Occipital 

Superior Parietal Lobule 

Lateral Occipital Gyrus 

Lateral Occipital Gyrus 

Cerebellum (Left) 

Supramarginal Gyrus 

Precentral Gyrus 

Precentral Gyrus 

Superior Frontal Gyrus /  

     Supplementary Motor Cortex 

 

Cluster 2: 

Right Precentral Gyrus 

 

Cluster 3: 

Right Superior Frontal Gyrus /  

Frontal Pole 

 

Cluster 4: 

Right Thalamus 

 

308032 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7168 

 

 

5632 

 

 

 

960 

 

 

 

 7 

18 

18 

7 

7 

18 

32 

 

17 

19 

6 

19 

n/a 

19 

40 

19 

37 

n/a 

40 

9 

4 

6 

 

 

 

44 

 

 

46 

 

 

 

n/a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 

-32 

-28 

-24 

28 

32 

4 

 

-12 

36 

32 

-44 

28 

32 

-36  

-28 

48 

36 

52 

-52 

-36 

-4 

 

 

 

56 

 

 

40 

 

 

 

12 

 

 

-60 

-96 

-88 

-68 

-72 

-92 

16 

 

-100 

-88 

0 

-76 

-68 

-80 

-48 

-80 

-64 

-56 

-36 

8 

-20 

0 

 

 

 

12 

 

 

44 

 

 

 

-16 

 

 

52 

0 

-16 

52 

44 

-12 

48 

 

-8 

12 

60 

-16 

-20 

28 

48 

28 

-16 

-28 

48 

32 

64 

72 

 

 

 

32 

 

 

28 

 

 

 

8 
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Cortical Regions  Cluster 

Volume  

(mm3) 

Brodmann’s 

Area for peak 

locations 

MNI 

Coordinate  

(X Y Z) for 

peak locations 

 

Cluster 5: 

Left Middle Frontal Gyrus 

 

Cluster 6: 

Right Insula /  

Orbitofrontal Cortex 

 

Cluster 7: 

Right Cerebellum 

 

Cluster 8: 

Left Temporal Pole 

 

Cluster 9: 

Right Thalamus 

 

768 

 

 

320 

 

 

 

256 

 

 

64 

 

 

64 

 

 

9 

 

 

47 

 

 

 

n/a 

 

 

22 

 

 

n/a 

 

 

-44 

 

 

32 

 

 

 

24 

 

 

-52 

 

 

12 

 

 

28 

 

 

20 

 

 

 

-40 

 

 

12 

 

 

-4 

 

 

28 

 

 

0 

 

 

 

-48 

 

 

-8 

 

 

12 
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Table A2. Cluster volumes for most extreme 20% of Component 2 loadings, with anatomical 

descriptions, MNI coordinates, and Brodmann’s area for the peaks within each cluster. Only 

clusters > 25 mm3 are presented here. Positive and negative loadings are presented in the top 

and bottom sections of the table, respectively. 

Cortical Regions  Cluster 

Volume  

(mm3) 

Brodmann’s Area 

for peak locations 

MNI Coordinate  

(X Y Z) for peak 

locations 

Positive Loadings 

 

Cluster 1:  

Left Occipital Pole 

 

Cluster 2: 

Right Occipital Pole 

 

Cluster 3: 

Superior Parietal Lobule 

 

Cluster 4: 

Left Superior  

& Inferior Parietal Lobules 

 

Cluster 5: 

Left Superior  

& Inferior Parietal Lobules 

 

Cluster 6: 

Left Middle & Superior Frontal 

Gyri 

 

 

7808 

 

 

 

 7680 

 

  2624 

 

 

768 

 

 

 

704 

 

 

 

64 

 

 

17 

 

 

 

18 

 

7 

 

 

40 

 

 

 

7 

 

 

 

6 

  

 

-28 

 

 

 

28 

 

28 

 

 

-44 

 

 

 

-24 

 

 

 

-28 

 

 

-100 

 

 

 

-96 

 

-64 

 

 

-40 

 

 

 

-68 

 

 

 

-4 

 

 

0 

 

 

 

0 

 

48 

 

 

44 

 

 

 

48 

 

 

 

52 

Negative Loadings 

 

Cluster 1 (Bilateral): 

Ventromedial Prefrontal Cortex 

Ventromedial Prefrontal Cortex 

Paracingulate Gyrus 

Middle & Superior Frontal Gyri 

Middle & Superior Frontal Gyri 

Superior Frontal Gyrus 

Superior Frontal Gyrus 

 

Cluster 2 (Right Hemisphere): 

Superior Temporal Gyrus 

Middle Temporal Gyrus 

 

94784 

 

 

 

 

 

 

 

 

77696 

 

 

 

 

11 

32 

10 

32 

9 

8 

44 

 

 

22 

21 

  

 

0 

-4 

0 

-24 

-20 

-4 

-40 

 

 

56 

60 

 

 

52 

48 

52 

28 

36 

40 

16 

 

 

-60 

-8 

 

 

-12 

0 

4 

44 

44 

52 

48 

 

 

16 

-24 
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Cortical Regions  Cluster 

Volume  

(mm3) 

Brodmann’s Area 

for peak locations 

MNI Coordinate  

(X Y Z) for peak 

locations 

Orbitofrontal Cortex /  

    Inferior Frontal Gyrus 

Orbitofrontal Cortex /  

    Inferior Frontal Gyrus 

Superior Temporal Gyrus 

Temporal Pole 

Temporal Pole 

Temporal Pole 

Parietal Operculum 

Parahippocampal Gyrus 

Hippocampus 

 

Cluster 3 (Left Hemisphere): 

Middle Temporal Gyrus & 

    Lateral Occipital Cortex 

Postcentral Gyrus 

Orbitofrontal Cortex 

Inferior Temporal Gyrus 

Orbitofrontal Cortex 

Temporal Pole 

Inferior Frontal Gyrus 

Inferior Frontal Gyrus 

Parahippocampal Gyrus 

 

Cluster 4 (Bilateral): 

Precuneus / Posterior Cingulate 

 

Cluster 5: 

Right Postcentral Gyrus 

 

Cluster 6: 

Right Cerebellum 

 

Cluster 7: 

Left Parahippocampal Gyrus 

Left Hippocampus 

Left Parahippocampal Gyrus & 

    Left Hippocampus 

 

Cluster 8: 

Left Cerebellum 

 

 

 

 

 

 

 

 

 

 

 

 

 

58048 

 

 

 

 

 

 

 

 

 

 

 

53056 

 

 

8152 

 

 

4928 

 

 

3200 

 

 

 

 

 

3136 

 

 

47 

 

45 

 

48 

38 

20 

36 

48 

20 

36 

 

 

39 

 

20 

47 

37 

38 

21 

45 

47 

38 

 

 

23 

 

 

4 

 

 

n/a 

 

 

37 

30 

36 

 

 

 

n/a 

 

32 

 

52 

 

60 

36 

36 

32 

48 

28 

28 

 

 

-48 

 

-60 

-28 

-64 

-48 

-48 

-52 

-28 

-32 

 

 

-4 

 

 

40 

 

 

24 

 

 

-32 

-24 

-20 

 

 

 

-24 

 

32 

 

32 

 

-4 

24 

16 

4 

-32 

-20 

-8 

 

 

-76 

 

-12 

32 

-52 

24 

8 

24 

12 

4 

 

 

-48 

 

 

-24 

 

 

-84 

 

 

-32 

-20 

-8 

 

 

 

-84 

 

-20 

 

-4 

 

-4 

-28 

-44 

-24 

20 

-24 

-24 

 

 

32 

 

-20 

-16 

-8 

-12 

-36 

12 

-24 

-20 

 

 

32 

 

 

60 

 

 

-36 

 

 

-20 

-20 

-28 

 

 

 

-36 
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Cortical Regions  Cluster 

Volume  

(mm3) 

Brodmann’s Area 

for peak locations 

MNI Coordinate  

(X Y Z) for peak 

locations 

Cluster 9: 

Right Subcallosal Cortex 

 

Cluster 10: 

Left Insula 

 

Cluster 11: 

Right Precentral Gyrus 

 

Cluster 12: 

Right Precentral Gyrus 

768 

 

 

128 

 

 

128 

 

 

64 

 

 

25 

 

 

20 

 

 

6 

 

 

4 

 

4 

 

 

-40 

 

 

12 

 

 

1 

 

12 

 

 

-12 

 

 

-20 

 

 

-24 

 

-12 

 

 

-12 

 

 

76 

 

 

68 
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 Appendix 2: The Most Extreme 5% of Loadings for  

 Components 1 and 2 of Chapter 5 

 

 


