
StrongHold: A Secure Data Platform for Smart Homes

by

Jaques Clapauch

B.A.Sc., The University of British Columbia, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

July 2013

© Jaques Clapauch, 2013

 ii

Abstract

Security is an important concern in day to day life, far augmented when related to

sensitive data, such as private information. As such, it is paramount to protect

environments and devices wherein the greater amount of information is private, such

as in a home, and its encompassing devices; especially so, as the level of privacy

desired in a home is much greater than other private mediums. The issue is further

exacerbated in a smart home scenario, where applications are ubiquitous and are

constantly communicating with the outside world: this impending technological

innovation results in previously private data suddenly becoming accessible through

non-physical means, allowing potential breaches in privacy. The accessibility to

previously unreachable means brings forth new threats that must be tackled to

ensure proper confidentiality is kept. Furthermore, proper accessibility of the

physical devices must be engaged, due to their newfound non-physically accessibly

nature. We survey the security threats existent in smart home environments, along

with possible solutions to mitigate the threats. We use methods ranging from human

computer interaction, storage optimization, and behavioral learning to better ensure

proper functionality. We integrate the solutions in a cohesive form to be applied to

any smart home environment that wishes to best keep high confidentiality,

availability and integrity. We test the system to ensure the secure data messaging

platform provides sufficient throughput for high definition media storage in real time,

as potentially necessary in a smart home

 We supplement our study by creating a system capable of functioning on top

of the smart server, which unobtrusively automates the daily task of recipe selection,

via meal advocation through past meal selection; we do so unobtrusively in an

attempt to prevent deviation from conventional home environments. We present a

method which possesses higher granularity than the present meal recommendation

technologies, and yet, requires less interaction than the web equivalents. Finally, we

interface the algorithm to a real smart home server, evaluate the application on real

users, and assess their reaction to the technology.

 iii

 Table of Contents

Abstract .. ii

Table of Contents .. iii

List of Figures ... vi

Acknowledgements ... vii

Dedication ... viii

Chapter 1: Introduction .. 1

1.1 Smart Home .. 1

1.2 Smart Devices .. 2

1.3 Contribution of the Thesis ... 3

1.3.1 Primary Contributions ... 4

1.3.2 Smart Home Server.. 5

1.3.3 Meal Recommendation .. 5

1.4 Organization ... 6

Chapter 2: StrongHold: A Secure Data Messaging Platform for the Smart

Home ... 7

2.1 Introduction ... 7

2.2 Background and Motivation .. 8

2.3 Threats.. 10

2.3.1 Ownership Threats ... 10

2.3.2 Availability Threats ... 11

2.3.3 Locality Threats .. 12

2.3.4 Data Leaks ... 13

2.3.5 Other Attacks ... 14

2.4 StrongHold .. 15

2.4.1 Approach .. 15

2.4.1.1 Authentication and Management ... 15

2.4.1.2 Communication and Encryption ... 16

2.4.1.3 Storage and Usability ... 18

2.4.1.4 Accessibility ... 19

 iv

2.4.2 Implementation ... 19

2.4.2.1 Application Programming Interface (API) 20

2.4.2.2 Storage Optimization ... 20

2.4.2.3 Learning Algorithm ... 22

2.5 Evaluation ... 24

2.5.1 Experimental Setup .. 25

2.5.2 Sequential Transmission Results ... 27

2.5.2.1 MP3 ... 27

2.5.2.2 PDF ... 29

2.5.2.3 Photos ... 30

2.5.2.4 Text .. 31

2.5.2.5 Frames .. 32

2.5.2.6 Film .. 32

2.5.2.7 Discussion ... 33

2.5.3 Individual Transmission Results ... 34

2.5.4 Retrieval Results .. 35

2.5.5 Discussion .. 36

2.6 Related Work .. 37

2.6.1 Device Ownership .. 37

2.6.2 On the Prevention of Data leaks .. 43

2.6.3 Location Awareness ... 44

2.6.4 Device Authentication ... 45

2.6.5 Availability .. 46

2.6.6 Guest Access Control ... 47

2.6.7 Central Smart Home Servers ... 48

2.7 Future Work .. 49

2.8 Further Discussion and Conclusion .. 50

Chapter 3: MASHA: Meal Advocation for Smart Home Automation 52

3.1 Introduction ... 52

3.2 Background and Related Work ... 53

3.2.1 Filtering Methods .. 53

 v

3.2.2 General Recommendation Systems ... 56

3.2.3 Recipe Recommendation Systems .. 58

3.3 Methodology ... 60

3.3.1 Refrigerator Model.. 60

3.3.2 Device Communication .. 61

3.3.3 MASHA Server ... 63

3.3.3.1 Collaborative Filtering Module ... 63

3.3.3.2 Content-Based Filtering Module .. 65

3.3.3.3 Recommendations ... 66

3.4 Evaluation ... 67

3.4.1 Installation Results ... 67

3.4.2 Usability Results ... 68

3.4.3 Recipe Recommendation Results .. 68

3.4.4 Discussion .. 71

3.5 Future Work .. 71

3.6 Conclusion .. 71

Chapter 4: Conclusion .. 73

4.1 Introduction ... 73

4.2 Contributions ... 74

4.3 Future Work .. 76

Bibliography ... 77

Appendices .. 85

Appendix A Application Programming Interface ... 85

A.1 The home Resource .. 85

A.2 The web resource .. 88

A.3 The password Resource .. 90

A.4 The time Resource .. 91

A.5 The storage Resource ... 91

 vi

 List of Figures

Figure 2.1 Illustrated Optimization Method ... 22

Figure 2.2 Sequential MP3 Transmission ... 28

Figure 2.3 Unencrypted Sequential PDF Transmission .. 30

Figure 2.4 Encrypted Sequential PDF Transmission .. 30

Figure 2.5 Sequential Photos Transmission ... 31

Figure 2.6 Sequential Text Transmission .. 32

Figure 2.7 Sequential Frames Transmission .. 32

Figure 2.8 MP3 Sequential vs. Individual Storage .. 35

Figure 2.9 PDF Sequential vs. Individual Storage... 35

Figure 2.10 Photos Sequential vs. Individual Storage ... 35

Figure 2.11 Text Sequential vs. Individual Storage ... 35

Figure 2.12 Frames Sequential vs. Individual Storage .. 35

Figure 2.13 1 MB File Retrieval .. 36

Figure 2.14 150 KB File Retrieval ... 36

Figure 3.1 Device Interconnection in the Smart Home .. 63

Figure 3.2 Non-Normalized Collaborative Filtering Matrix Example 65

Figure 3.3 Non-Normalized Content-Based Filtering Matrix Example 66

Figure 3.4 Ranking Results ... 69

 vii

 Acknowledgements

I would like to extend my gratitude to those without whom this work would not have

been completed. First and foremost, I would like to thank Dr. Sathish

Gopalakrishnan for the idea, support, and instruction, without which this thesis would

be no more than a mere concept. He has taken me in, and introduced me to the

fascinating world of research, which has since become an integral part of my life. His

passion for teaching and research, and his expertise in a vast number of areas have

been a paragon of excellence which I hold as one of my greatest aspirations.

 I would also like to extend my gratitude to Dr. Karthik Pattabiraman – who

repeatedly aided me in my pursuit to extend my knowledge in engineering and

beyond, and supported me every step of the way. Dr. Pattabiraman’s support has

been instrumental for me: his knowledge, direction, and advice have been

invaluable; and Dr. Kostantin Beznosov who inspired me to pursue the field of

computer security, and sparked the inception of the security aspect of this thesis.

 I would like to acknowledge the support of Ildar Muslukhov, Yazan Boshmaf,

Anna Thomas, Shane Wang, Bader Alahmad and Theepan Moorthy, in terms of

constructive discussions and ideas for furthering this work. Furthermore, I would like

to thank my friends Augustine Wong, Bar Perry, Danial Tkach, Daniel Gilmour and

Elan Polo for their tremendous support and help, and Elliot Barer for his continuous

technical assistance. I would also like to thank Avi Jacobus, Amy Goodman,

Salomon Saade, Sarah Barmazel, Tamara and Shiri Stern, Vadim, Yulia, and Yaniv

Bronshtein, and Yoni Dayan, for being there. I am also indebted to my late mentor

Reuben, and my mentor and friend Shamir for setting me in the path of science.

 Finally, and most importantly, I would like to thank those whose unending

encouragement and care have allowed me to be successful in my endeavors: my

mother, my father, my aunt Marisa and uncle Roberto, my grandparents, my cousin

Bruna, my aunt Ruth, my uncle Edward, and my girlfriend Maayan.

 viii

Dedication

To my role models: my parents, José Henrique Clapauch and Silvia Hoirisch

Clapauch, my grandmother Regina Léa Clapauch, my grandfather Luiz Clapauch,

and my late grandmother Frida Hoirisch.

 1

Chapter 1: Introduction

1.1 Smart Home

The concept of smart environments and ubiquitous systems has been in existence

for considerable time in literature [1], seldom making a substantial transition to real

environments, beyond those transitions to positional goods [2, 3, 4, 5]. The lack of

an all-encompassing infrastructure, allowing for collaboration between different

manufacturers, as well as little emphasis on security efforts has hampered progress

in this area. These topics nonetheless embody some of the most sensitive issues

apposite to smart home environments: a smart home necessitates collaboration

amongst devices, and unless the user only buys from one manufacturer, he will

experience significant difficulty (if not outright impossibility) establishing inter-

communication between devices of different manufacturers [6]; moreover, the

sensitivity inherent in private home information brings about a number of security

issues that must be tackled before the environment is allowed to be translated to

conventional living quarters [6, 7, 9, 10, 11].

 Home environments may ultimately be the most private of environments, and

as such, much that occurs within it may be thought of as sensitive, and undesirable

to be leaked to anyone outside. Further issues arise when determining which users

are considered to be outsiders, and which ones should be granted access

regardless of their residence or lack thereof [9, 12]: for instance, what should house

guests, or even doctors and policemen be granted access to, and for how long? It is

also of importance to understand what to protect: as much as one would not desire

for their computer to be made public, lights or a toaster may not require considerable

protection. Lastly, the means of access is also an important issue that must be

addressed: how can technologically unskilled users securely access all these

devices, without resorting to obtrusive techniques [9]?

 Additional issues arise when attempting to protect the devices rather than the

user. Ubiquitous devices may not all be trustworthy, and as such, malicious behavior

must be prevented, particularly considering that embedded devices generally are

lacking in resources, or rely on battery power [6, 13]. Furthermore, devices warrant

 2

their own communication methods, differing considerably than those required by

users, further adding to the complexity of the system.

 Though challenging at the time of inception, recent upsurges in technology

(such as the proliferation of resources like smart phones and powerful computers)

have appropriated sufficient resources to more easily turn the idea of smart

environments into reality [8]. As those devices rise in popularity, a demand for more

interconnected environments rises concurrently [7]; furthermore architectures must

be devised to meet those demands, while maintaining usability and security

equivalent, if not superior to non-smart environments. These architectures must

allow for easy interactions by the computer illiterate, while still managing challenging

tasks, such as priority regulation and escalation, device installation, secure

communication, and interfacing. The abstraction of this distinct set of characteristics

alone presents a significant challenge. Meanwhile the integration of the smart home

would additionally require simple, comprehensive interfacing methods for the

devices connected, as well as unobtrusive operation. As a further obstacle, this

entire process should not require more than commodity equipment currently present

in the home.

1.2 Smart Devices

Perhaps of the more interesting new applications of smart devices possessing

sensors within the home is that of recommendations. Though recommendation

systems have recently experienced incredible progress [14, 15, 16, 17, 18, 19, 20]

they have by and large still required considerable amount of user interaction to

extract viable information pertaining to recommendations. Furthermore, this

information has been sporadic in nature, rather than continuous, likely missing

valuable data points [16, 17, 18]. Smart devices located in the home have the

potential to overcome that deficiency by automatically extracting the data as well as

removing the burden of data input from the user.

 Beyond improved data collection capabilities, smart devices have the capacity

to increase immersion, allowing for direct communication with devices capable of

acting on the recommendations, rather than requiring interactions with a less

 3

accessible website. Furthermore, the presence of recommendations may lead to

better features stemming from the inter-communication characteristic inherent in

ubiquitous systems; that is to say, the recommendation system intrinsic in one

device may allow for better functionality in a coupled device: for instance, a

refrigerator may recommend a recipe which the stove may cook for the user prior to

arrival.

 In comparison to other literature, such as video, music, or document

recommendation, little work has been done in terms of recipe recommendations [21,

22, 23, 24, 25, 26, 27, 28]. Effort has been expended more-so to translate

collaborative-filtering into the medium than to concentrate on the content-based

nature of food recommendations; perhaps missing a very effective method of

discerning and grouping food items for recommendation.

1.3 Contribution of the Thesis

In this thesis we address the two aforementioned topics. Firstly we suggest possible

solutions to security, inter-communication, and usability issues born out of smart

environments. Though a number of works have aimed at solving single issues

related to all of these topics, an integrated solution was lacking; we present said

solution here, adding to it further inter-communication and security features

engendered by needs pertinent to producing a viable smart home, as yet unavailable

in the literature. Features added include secure storage by devices and access by

both devices and users, allowing for web-based interfaces for easy communication,

as well as optimization features and a learning algorithm to allow for simple

interfacing by users. Finally, we build the aforementioned system and test it against

select benchmarks to prove viability.

 Beyond the smart home server, we also tackle the creation of a smart device

capable of recommending dishes intrinsically based on past dish preferences. We

use a high level of granularity via a translation of the document advocation model to

a meal advocation environment, and postulate more effective methods of meal

advocation than those currently present. We further allow for an automated retrieval

of food items, decreasing the burden on the user, while increasing granularity of

 4

input values. Ultimately, we test various methods of meal recommendation against

each other to ascertain which technique is the most effective.

 Lastly we test the smart device within the smart home server environment

previously devised and determine the viability of the server in terms of storage,

communication, and usability.

1.3.1 Primary Contributions

Through this thesis we create a usable platform, capable of encapsulating all needs

pertaining to a practical smart home. The platform spans storage, security, and

usability methods, facilitating full integration of devices, regardless of manufacturer;

the methods advanced are, to our knowledge entirely novel for the field. We

introduce a new, automated privilege escalation method, which removes from the

home owner both the burden of set-up and escalation, greatly facilitating guest

access control, as well as conventional access control by computer-illiterate users,

such as those likely present in eHealth Homes. The method is further protected from

attacks by timed escalations and de-escalations, and the burden of access is

transferred to manufacturers. As a separate outcome we also introduce an

Application Programming Interface (API) which abstracts the storage and

communication modules in the home, and is accessible via any network-capable

language.

 We engineer a meal recommendation method embedded into a refrigerator

which, unlike current equivalents, borrows from the document recommendation

model and explores items more in depth, allowing more proficient retrieval. This

method makes use of item weight as a metric for tag construction, leveraging much

greater granularity than present methods, a yet unexplored option. The meal

recommendation method moreover is made so as to follow the previously mentioned

principle of ease of use, allowing no detraction from usability compared to normal

fridges, while providing suitable recommendations to users; in contrast, present

methods require considerable data entry effort to achieve lesser results. Finally we

combine the two previously mentioned modules allowing for a more in depth

exploration of smart home environments than is available in literature currently:

coupling platform and application.

 5

1.3.2 Smart Home Server

With the aim of producing a viable middleware to manage security and

communication within the home, we survey relevant literature to establish extant

challenges. We make use of solutions presented in surveyed works, and further

determine areas necessitating improvement from literature and posit on how to do

so. Following that, we suggest and implement methods to make the presented

options usable by laities, as well as provide methods to improve operating speeds.

We thus create a system capable of operating not only in test and laboratory

environments like its predecessors, but also unlike the precursors, in real world

environments. The method provided follows RESTful architecture [29], permitting

easier interfacing for device manufacturers, and allowing freedom of programming

language selection.

 The server presented is devised to support a vast number of features (such

as the choice of push or pull communication, different security levels, and storage

methods), creating an adaptable experience. Ultimately, it is our belief that the

elastic nature of the features and abilities presented by the server, should make it

more desirable, attracting different manufacturers to a universal solution. We also

advance that by automating most communication methods on the user-side, and

removing burdens such as priority settings or escalations and guest set-ups, we

enable the system to be used by a vaster group, allowing it to be finally appropriate

for use in real home environments. Of foremost importance, we achieve these goals

while maintaining or improving security techniques presented in the literature;

especially more-so considering that since security features are automated, users

cannot forgo them due to implementation difficulty or usability issues. Lastly, we

demonstrate that the postulated system is practical for a real home environment,

presenting suitable performance on outdated hardware to further establish the

system’s practicality.

1.3.3 Meal Recommendation

Determining the optimal method of recommendation for a home environment proves

significantly trickier for a number or reasons: though the literature is vast for the

 6

general recommendation solution, few works translate it to the food model;

moreover, the few translations presented only take into account either collaborative

filtering or a very broad representation of content-based filtering, disregarding

individual ingredient importance; lastly, no solution presented targets an intrinsic

smart home environment where data retrieval is to be collected automatically, rather

than manually, and continuously rather than sporadically. We undertake these

challenges, and provide different methods to supply the given recommendations,

making use of collaborative filtering, a more inclusive content-based filtering, and

hybrid methods; some of which are directly translated from news advocation [17,18],

and document advocation techniques [18, 30, 31, 32]. These methods are modified

to satisfy the needs pertinent to the smart home environment, and more intrinsic

data collection. We further interface the meal recommendation device (developed to

be housed within a refrigerator) with the previously introduced smart home server to

demonstrate functionality and ease of implementation. The algorithms are then

tested by users, and the best recommendation method is determined via user

rankings. Finally the inferences drawn out of these rankings are not only intended to

advance the specific field of food recommendation, but also introduce a better base

upon which future methods relative to meal advocation (as well as other similar

advocation methods) may build upon to produce better, more reliable

recommendations.

1.4 Organization

The remainder of the thesis is organized as follows: We introduce the StrongHold

data messaging platform in Chapter 2; in this chapter we present our

implementation, elucidate on the logic behind implementation choices, and

showcase StrongHold capabilities through select benchmarks. In Chapter 3 we

introduce the Meal Advocation for the Smart Home Algorithm (MASHA) and present

results from user trials, concluding on its capabilities. Chapter 4 concludes the

thesis, through a summary of our contributions and possible future work.

 7

Chapter 2: StrongHold: A Secure Data Messaging Platform for the

Smart Home

2.1 Introduction

Given recent advances in technology [8], the use of internet connected smart

devices is on the rise, leading to a logical rethinking of the appliance paradigm.

Along with technological advances, the idea of a connected home is rather an

appealing concept to Americans according to a recent survey [7]. Furthermore, the

notion of delegating challenging activities to smart appliances, from cooking to taking

care of the elderly, seems rather an appealing development. Due to those factors,

one would expect that a smart home would before long turn from a distant dream to

a present commodity.

 Owing to the large amount of data aggregation and transmission necessary

for the proper operation of the smart home, developers must also concern

themselves with both an optimal means of aggregation, as well as with the security

risks involved: the vast number of real-time embedded applications incumbent in the

proper operation of the Smart Environment, mostly necessitating ready information

for seamless operation brings forth a challenge of easy aggregation and effortless

communication with users often lacking knowledge of computer systems;

furthermore, those users communicating with the devices would prefer their private

data is not made public; nor would they like attackers to take control of their devices.

With the advent of smart homes and appliances, one must then concern themselves

with accommodating for these problems (and due to the mostly theoretical nature of

smart homes, as they are yet to be widely deployed) and the devising of possible

threat scenarios, coupled with solutions to these.

 Smart homes, unlike office environments are not expected to feature skilled

administrators, but rather average, often technologically unskilled, people. As such,

the designers cannot expect the user to spend much time learning complex

interfaces or learning how to perform or delegate security tasks [9]. Owing to this,

controls and security settings should be simple and unobtrusive, as well as secure.

 8

 In order to address the previously stated concerns, we present StrongHold: A

service aimed at secure storage, aggregation, and retrieval of data within the smart

home. We present with StrongHold, the RESTful [29] API used to communicate with

this server from both client and user perspectives, and elaborate on our choices. We

also present the optimized algorithm which allows data aggregation and retrieval to

remain rapid given a range of accessing devices. We expound on the means which

allows the server to be usable by computer illiterate users through the advancing of

a learning algorithm capable of escalation and de-escalation of rights dependent on

server use. Lastly, we evaluate the functionality of StrongHold in real world

circumstances. In doing so, we hope to conceive the first fully functional secure data

messaging platform for both experimental and practical smart home environments.

2.2 Background and Motivation

The smart house template adopted for this work consists of several devices

interconnected to one or more central stations. Each device may serve the purpose

of a sensor, a hotspot or a servant [10]. A sensor would comprise a device that

merely accumulates data, whereas a hotspot would be a device used for inter-

communication between devices, and servants are the devices used to compute

results.

 Devices within the smart house need not be fixed to the house, but may be

able to be removed from the smart home environment and used in a mobile manner

(for example a mobile phone or a health monitoring device, such as a heart rate

monitor) [10]. Devices in the smart home, much like devices in our own present

homes should exhibit features of ownership, such that an unauthorized user should

not be able to access a device he does not have the rights to use (such as one’s

own personal computer, or even the door lock mechanism) [9]. Continuing on the

previous point, devices should be enabled to be used by more than one user if

necessary. It is further necessary to allow external administrators and other outside

users (such as policemen, repairmen, firemen, or simply network administrators)

access to certain devices even when the users are not present [9].

 9

 It is also important to note that devices should be ultimately cost effective. As

such, any device included in the house should not have any security feature

severely impact its monetary cost [11]. Continuing in the cost paradigm, it is also

assumed that not all devices can deal with high levels of computation (such as

advanced encryptions) due to their embedded status, owing to primitive resources

and battery-powered condition [6].

 From current trends in the industry it can be foreseen that not all devices in

the house will be from the same manufacturer, and thus some devices may possess

similar protocols for communications (such as a standard), but we cannot assume

that all devices will do so [6].

 Under the same previously stated assumption that we cannot presume users

are technologically skilled, we must also allow for simple interfaces with pre-defined

customization abilities not only for security reasons, but for normal use as well

[9].We should also assume that in such a template house, all electrical devices

capable of exhibiting “smart” behavior will do so, and communications need not be

solely within the house, but data may be transmitted outside (i.e.: not simply within

devices). Lastly, though connections such as ZigBee and Wi-Fi are the norm in the

smart home environment [33], other connections, such as wired connections or

Bluetooth can be present [34].

 In this work, we devise a server capable of encompassing all the concepts

mentioned in this section, while able to protect from all threats mentioned in the

Related Work section. As such we attempt to formulate a central device able to

manage the home’s communications and data, as well as properly protect them from

both external and internal attacks, while maintaining a simple to use interface for

devices and users, ultimately allowing for standardized access by devices

(regardless of manufacturer) as well as easy access and setup to technologically

inept users. In order to allow for full protection from attacks, many concepts

mentioned in the papers presented in the Related Work section are combined and

new concepts absent in the literature are presented: the importance of this step lies

in that although many papers exist in the smart home literature, little effort is

employed in constructing a fully working smart home server; at most a work will

 10

present and implement a few ideas, and very few attempt a conjoined, fully

implemented smart home server which tackles all concerns. Finally, it is our aim to

provide fast access to stored data within the server, thereby eliminating any

bottlenecks, even assuming high device or data load.

2.3 Threats

2.3.1 Ownership Threats

Of the most characteristic features inherent in the smart home is that of the

enhancement of beneficial application attributes (for instance, having a stove cook

by itself, or a wardrobe sort itself, or temperature to adjust itself) without any

detrimental aspects being added. Of those, one of the most important aspects is to

keep proper ownership; that is to say, the disallowance of non-permitted users from

using things that do not belong to them. Some unknown attacker, as such, should

not be able to control your stove from outside the house. This is indeed a problem in

a smart house: an environment where communication with external networks is

abundant and devices are made to provide external connections [6, 7, 9, 10, 11].

 Another important point to consider is that of data ownership: Within the smart

house (especially those specializing in eHealth) data is continuously recorded, be it

by means of a camera (for security or eHealth purposes), or credit card information

(employed when the user utilizes an online store feature of a device), among other

things. Data recorded through those devices could technically be extracted by a

skilled adversary if proper protection is not instilled. This category of data can be

used to execute a number of malicious dealings, such as directly stealing user

funds, mining user data, or even determining user presence [6, 11].

 Data ownership threats also arise between house residents, rather than

merely pertaining to outside attackers: in many cases, a resident of a smart-home

will wish his actions to remain private from other residents in lieu of constant

monitoring. The threat prominently arises in environments where film data is

pervasive, and not merely processed in real time; for such environments, a specific

resident would not want his house-mate covertly leaving a smart camera on in the

room, and later querying and easily obtaining the other resident’s actions. One’s

 11

ownership of data should only extend as far as the data that is pertinent to him, and

no more [35].

 A further key threat is the possibility of malicious devices being introduced to

the system. A malicious device could issue commands to hotspots demanding and

propagating data the user may not wish to disclose. Furthermore, malicious devices

may convert their non-malicious counterparts through several means, and thus

monitor a non-consenting user [6, 13].

 An ownership problem also arises upon third parties attempting to access

private, though relevant, information: A doctor may, for instance require access to

patient data that the smart house possesses, which on its own is a harmless

procedure. A dilemma arises, however, when the doctor does access the information

database; in such a case, he should only have access to pertinent information and

no more [36, 37]. That is to say, we do not wish a caregiver to know more

information than that which is necessary to care for the patient. The smart home

environment is after all, very different from that of the hospital, as the hospital is not

a private location; in the patient’s home, the patient may engage his environment

differently, and may not wish the caretaker to have access to all of the information

pertaining to his actions.

2.3.2 Availability Threats

An important possible threat that should be addressed is that of denial of service: in

many instances of smart houses, such as those related to eHealth, it is of the utmost

importance that service is not halted, lest the patient being monitored be in danger.

As such, any instance that disallows the service to the user should be meticulously

protected against1 [10, 11].

 Correspondingly, since all existing items in the house are electronic, power or

system failure poses serious safety threats to the user, as a user may be locked in

or out, without access to any supplies (such as water, food or facilities) [38].

1
 It should be noted, however, that this is on a case by case basis: while it is important to protect

against denial of service in an eHealth environment, it is not as important to protect one’s toaster from
being halted in producing toasted bread, for instance.

 12

 On the same note, resource limitation on devices, leads to vulnerabilities to

threats such as “sleep deprivation attacks,” that is to say, continuous superfluous

communication with the devices solely for the purpose of exhausting device battery

[39, 40].

 Furthermore, though less common, it is also possible to target the wireless

networks through jamming attacks, where radio frequencies in use may be super-

saturated. In environments such as a smart house, where communication is key for

any device access, a well-targeted jamming attack can be catastrophic, completely

crippling the entire infrastructure [40].

 Similarly, the fact that many wireless protocols used by ubiquitous devices do

not require re-authentication can be attacked via intermittent service failures, leading

to man in the middle attacks [39]. A different, though relevant exploit was shown to

target Vonage VoIP phones, where a short injection caused the service to shut

down, and upon reset, the VoIP device was fooled into reconnecting to an attacker

rather than the service provider [41].

2.3.3 Locality Threats

The nature of the smart home environment, especially in regards to its pervasive

characteristic, opens the smart home to a variety of location information leaks: Due

to constant monitoring within the house, the user’s presence in specific locations can

be determined with ease, be it through access to sensitive information (such as

videos, or logs), or simply electrical monitoring of specific locations in the house [35,

42, 43]. An attacker can further determine a user’s current interactions with specific

devices from snooping the wireless connection, which though encrypted, can still

leak source and destination information with an accuracy of up to 90% [44].

 Additionally due to mobile monitoring, users may be followed and tracked

through the clever placements of a number of devices meant to snoop a

communicating mobile sensor [45]. Attacks such as these are already in existence,

and have been proven to work: an example of such an attack is that of locating a

runner using the Nike+iPod Sports Kit, which communicates with a user’s iPod to

provide the user with their running information. The device does not, however,

 13

encrypt its unique ID, and therefore, an attacker using properly placed sensors, can

easily determine a target’s location [45]. The problem of leaked ID information is

further exacerbated with the eventual prevalence of large smart environments, with

much farther reaches than those of houses. Smart work-places, and even smart

cities are the logical consequent of the smart environment evolution, and with their

progression, the use of monitoring equipment, as well as the use of wirelessly

controlled personal identification will become more prevalent. Therefore, whereas

currently an attacker might only be able to accurately locate a person within a house,

in the future, it may be possible to accurately locate a person within a city [35, 37].

This is problematic even in cases where an ID is not actively coupled with a name or

other identifiers, as an attacker can de-anonymize the ID by simply searching for the

most prevalent ID in a target’s house [37]. 2

2.3.4 Data Leaks

With the increase of wireless communication, data can be more easily snooped.

Though one would think current efficient encryption mechanisms would prove

sufficient to halt this threat, it is not always the case. In one specific situation, it was

proven that with a prior database of films and 10 minute traces of wireless data, one

could determine with 73% certainty which film was being watched streaming through

the Slingbox hardware, even though the transmission was encrypted. Given a 40

minute trace, the certainty rose to 89%, with some specific movies performing as

well as 100% certainty [45]. The same paper that discusses this attack also notes

that this threat does not simply lie with television information leakage, but rather that

“one can infer the origins of encrypted web traffic or infer application protocol

behaviors from encrypted data.” Therefore, due to the high number of devices

communicating wirelessly in a smart home, one can conclude that a larger number

of data should be leaked, even given encryption.

 In a similar attack as the one presented above, Enev et al. determine that

power supplies in modern television sets produce discernible signatures when it

2
 Due to the small reach of the StrongHold, this last array of threats are not undertaken; Since the

StrongHold (with some exceptions) is meant to operate solely from within a house rather than
environment, it should not be an issue which would affect it, and is therefore out of the scope of this
work.

 14

comes to electromagnetic interference, allowing for the determination of content

being viewed [46]. Through the analysis of electromagnetic interference using a prior

database of films and 15 minute traces, a cross correlation of same content of

upwards of 98% was yielded, even in the presence of considerable noise. The

authors of this work further hypothesize that comparable attacks may be conducted

to determine similar information in regards to computers, DVD players, printers,

game consoles and washing machines. This attack is quite likely in a smart house

that saves and propagates electrical information due to smart-grids.

 Another similar attack shows the possibility of revealing the language spoken

in a VoIP conversation from encrypted wireless data [47], further implying that as

long as devices communicate wirelessly, even with encryption present, some private

data is not safe.

2.3.5 Other Attacks

Following is a list of attacks that do not exactly fall into exactly one of the previous

extensive categories (though they may be a combination of several categories of

threats), yet are still important and should be tackled.

1. Through online or physical means, an adversary may impersonate a user,

and with the user’s credentials he may gain access to unauthorized

appliances [6].

2. On the same track as the previous point, an adversary might create false

credentials to respond to a patient alert in an eHealth smart home. Not only

should this grant him access to the user’s abode, but the user will likely not be

rescued, because the system processed the fact as having already occurred

[10].

3. Continuing on the same point, a user who may control appliances from a

distance may pose physical danger to the user.

4. Appliances might be compromised, and used as zombie machines [6].

5. Appliances might be compromised, and their trusted status may be used to

issue an attack on the user’s personal computer on the same network [6].

 15

6. Compromised machines may misdirect their output, thus executing possible

phishing attacks to the user [6].

7. Cameras and other recording devices may be compromised, and may be

used for wiretapping purposes [6].

8. On the topic of confidentiality, and not as much an attack, the lack of

credentials may lend a friend of a user (i.e.: one with physical access, but

perhaps not direct permission from the user) the ability to see data he

normally should not be able to3 [9].

9. A trusted device may be manufactured with malicious code, thus

compromising the entire house [6].

2.4 StrongHold

2.4.1 Approach

StrongHold was devised with the aim of providing a secure, easy to use,

configurable, and ultimately ubiquitous main hotspot for the smart home. The

general architecture of the application was inspired by the central password system

presented by Naqvi et al. in their Infosphere paradigm [39]. However, unlike the

Infosphere model, control of encryption is set by the device manufacturer to remove

the burden of configuration from the users. This is specifically significant as it should

be the manufacturer that better understands whether their device can handle

specific forms of encryption, rather than a layman-user.

2.4.1.1 Authentication and Management

Initial set-up is carried out through a simple handshaking protocol initiated by the

user, wherein manual control is necessitated [6, 11, 12, 13]. The set-up simply

requires that the user manually type the device name, location (the latter designating

where the device should be installed, e.g.: kitchen, living room, among others), and

the encryption level designated by the device onto the server, at which point the

server will yield a 128 bit key (or 16 characters in ASCII representation) and an IP

3
 Another interesting point to note (albeit not entirely related to security), some users further find it

embarrassing to reveal to their friends or acquaintances that they are not allowed access in specific
devices, so credentials should desirably be as unnoticeable as possible [9]

 16

address to input onto the device. Once the user reproduces this information to the

device, the exchange is finished and the devices may begin communicating; no

further user interaction is required beyond this point; however, users are able to

configure specific elements of the system if they wish to and happen to have

physical access to the server. Such configurations include the ability to setup super-

users, or manually escalate user privileges; this specific capability consequently

allows emergency super-user account activations, wherein master passwords may

be set prior to device installation, and sent to necessary law enforcement devices for

access during emergency situations, or set temporarily for doctors performing

periodic visits [9].

 The presence of device location information within the server exists as an

extension of the zones paradigm presented by Manish [34], wherein it is elaborated

that a device should know its area and thus may modify policies based on the

selected area (for instance, if a device is placed in an area deemed “living room”,

maybe it could be more liberal in terms of guest access than its area was named

“office”). This specific feature is left to the device manufacturer to implement; the

process is simply a matter of scanning a dictionary of viable location names and

modifying its policy accordingly.

2.4.1.2 Communication and Encryption

Communication between StrongHold and its client devices is encrypted using the

Advanced Encryption Standard (more specifically, AES-128) [48], and the key

utilized is resettable at any given moment through the Simple Password Encrypted

Key Exchange (SPEKE) protocol [49]. AES-128 was chosen since it is simple

enough for a diverse set of devices to use, ranging from 8-bit smart cards to high

performance machines [50], both of which may be encountered within smart homes.

 Tests employing an Arduino Uno coupled with a Wi-Fi Shield, and utilizing

AESLib [51] (an open source AES encryption and decryption library), yielded

promising results, including a set-up time of roughly 0.3ms, encryption time of 0.6ms

per block, and decryption time of 0.7ms per block. This throughput allows for

communication speeds ranging from 20-27KB/s, which should be more than

 17

sufficient for most communications. Obtaining an effective throughput in Arduino is

fairly significant, as it is one of the most popular platforms for embedded systems as

of recently [52].

 Stemming from the variability of devices ever-present in the embedded

systems world, the server apportions vast configurability, allowing different devices

different communication methods and forms of protection dependent on their

capabilities: devices may choose to forgo encrypted communication altogether (via

setting its communication level at 0), allow it (via a choice of communication level of

1), or allow encryption coupled with a nonce (communication level 2) in order to

prevent relay attacks. Furthermore, users may use SPEKE to reset the device

password whenever required (from a reset at every message exchange, to never).

SPEKE was chosen as the password reset mechanism, as it is achievable by older,

weaker devices (it was devised in 1996, with devices from that epoch in mind), and

has presented no known flaws since its conception [53]. The ability of the devices to

continuously change their password (as per Argwal et al.) through SPEKE should

prevent threats such as those which affected the Nike+iPod platform [45]. This same

method can be said to prevent issues concerning the determination of film content

streamed through an encrypted wireless medium, via a database, referred to in the

same paper. Lastly, devices may opt for pull communication between it and the

users, using the server as a middle-man. Through this method, the device may issue

pull requests whenever it wishes, from a queue located on the server, thus

protecting it from sleep-deprivation attacks.

 StrongHold allows transient devices, as it functions solely via push

communication from the devices. This methodology allows other devices to be

transient while StrongHold remains fixed. Communication by users and devices is

available within the house by simply joining the local area network it is placed on;

External communication with users and devices placed outside the home (or too

distant to participate in the Local Area Network) should be accessible, though for

server placement behind a router, Network Address Translation (NAT) set-up in the

router should be necessary. However, as accesses within the house should be

normally protected by the router’s own encryption methods (WEP, WPA, among

 18

others), it is believed that keeping devices and users within the house would

ultimately be more secure.

2.4.1.3 Storage and Usability

 A device may store two types of data within the StrongHold: device data, and user

data. Device data designates data which is closely tied to device function; for

instance, a fridge may store its contents as device data, whereas a camera might

store photos. Conversely, user data designates both raw data accessible to the user

as well as web-pages with which the user may interact to access the device and its

contents; via HTML and JavaScript, a device may create a page which allows the

user to directly communicate with the device without using the StrongHold as a

proxy if necessitated. The pages may also load the raw data stored within the Server

to better serve the users. Both device data and user data are stored and retrieved in

the manner described in Appendix A.

 Though customization from a user’s standpoint is available, StrongHold was

designed with technologically unskilled users in mind, and as such, a user should

need no more than a web enabled device to communicate with the smart home

devices. Access from the user simply requires that the user type the StrongHold IP

address in a browser followed by his preferred username, delimited by a forward

slash. This access directs the user with a splash screen which designates which

devices the user has access to. Initial access of the server by a user also registers

the user with the server, binding the user’s IP address with his username. Ultimately

this disallows rogue users from accessing devices while pretending to be another

user, as manual access to the user-accessing device is necessary, following the “Big

Stick principle” [37, 54]. The automatic setup is in agreement with Jonson and

Stajano [12] wherein it is argued that a guest shouldn’t have to be registered to

facilitate both the burden on the guest and on the home owner [9]. Through proper

accesses of the previously mentioned web-pages, the user’s access privileges

automatically escalate in the manner described in Section 4.2.3 of this chapter,

pertaining to the learning algorithm [11, 55, 56]; conversely, improper access

decreases the user’s privileges.

 19

2.4.1.4 Accessibility

For the sake of commodity, guests to the home are not required to have a password

and their communications are not encrypted; only upon extended residence will a

user be prompted to get his or her password from the server, at which point, they

must interact with the home resident in order to acquire access to further features.

The manual acquisition serves two purposes:

1. It disallows snooping from the network

2. It ensures the user is trusted enough by the home owner to be allowed to

interact with the devices in a protected manner.

 Once the guest communicates with the owner, he must install an application

(if on a computer) or app (if on a mobile device) to handle communications and

decrypt replies from the server. Prior to escalation, a guest only really needs a

browser and a mobile phone or computing device.

 Ultimately, user access to specific features of the device is left up to the

device manufacturer. The device manufacturer as such is able to set up to 5 levels

of access, ranging from Guest to Trusted Guest, to Resident, to Power Resident, to

System Administrator. At each level the device manufacturer can instantiate different

rules through different web pages. Furthermore, access can be granted solely to

specific people through the customizable user controls, and for instance, a specific

doctor may be granted access to only one specific device. Lastly, all user accesses

are logged in the system, coupling a username and IP address with all issued

commands. As such, any anomalous behavior may be easily investigated, and the

presence of extraneous devices in locations where they should not be can thus be

easily detected and prevented.

2.4.2 Implementation

StrongHold was implemented using Java, and has been tested and works in

Windows, Mac, and Linux Operating Systems. The server was coded using the

HTTPServer and the Java-JSON libraries. As such, no outside software is

necessary to run the application, and the code is standalone. The process of coding

from the ground up further alleviates the user’s inconvenience, as they need not

 20

concern themselves with third party software, such as proprietary databases or

server applications.

2.4.2.1 Application Programming Interface (API)

StrongHold hopes to set a standard so devices from various manufacturers may

inter-communicate, following Pishva and Takeda’s view [6]. It does not discriminate

by manufacturer, and, assuming non-malicious manufacturers, should allow proper,

easy to use storage and interfacing options.

 The Application Programming Interface follows RESTful design principles,

wherein each additional URL layer in the URI signifies a resource, with each

additional layer further specifying resources. Each URI further follows the Create,

Read, Update, Delete (CRUD) principle inherent in RESTful APIs. Additionally,

parameters and attributes of each state are placed behind a question mark,

signifying further options to the query [57]. Appendix A illustrates the functionality of

the Application Programming Interface for StrongHold.

2.4.2.2 Storage Optimization

As the usage of the StrongHold increases it is important to devise a method to

leverage data storage and retrieval under load. Sample use cases are those

involving various media devices necessitating the storage and retrieval of megabyte

or greater media files. Particularly considering the fact that data retrieved from the

server may comprise of more than one data point per iteration (such as for video

streaming), it is important that expedient retrieval of sequential items be possible.

Digital cameras at the moment, especially those using RAW formatting have long

surpassed the single megabyte range, and stored videos and audio may also be

large in size. As such, retrieval of specific entries would take excessive time to

navigate through all the entries in disk to locate the desired item4. At worst case, a

search would incur a runtime of O(n), where n represents the number of entries.

With a large number of entries consisting of megabytes each, this search would be

rather time consuming. Owing to this issue, we have devised an optimization method

4
 The usage of disk storage here rather than memory is explainable by the same process as search

latency: as the number of large files increase, their placement in memory would be problematic, and
would affect performance for other devices and other programs running in the server machine.

 21

which decreases the disk runtime to constant time (specifically a worst case of 24

items), and incurs O(log(n)) worst case run time onto memory.

 Inspired by the work of Rozier et al. [58] regarding the placement of slices of

disk in memory when necessary, we have allowed for a file system, with a file size

limit of 24 entries. The entries are placed in order in each file, and each file is named

for the first entry’s ID, appended with the number of items within the file. If the

addition of an item to a file would set its size to greater than 24, the file is split into

two files of 12 items each, the first file’s order preceding the second, and each file

still possessing all files in order. Deletion of an item might lead to one of four

consequences:

1. The item is the only item in the file, at which point the file is deleted.

2. The item is the first item in the file. The item is deleted, the file name is

modified to reflect the new first item, and the number of items within the

file name is also updated.

3. The item is at a non-initial position in the file. The item is deleted, and the

number of items in the file name is updated.

4. The item does not exist, and an error statement is returned to the device.

 If an entry is to be placed and it is the first and only item in a folder, a file is

created to accommodate it. All file names are then stored in memory in a Red Black

Tree, keeping the IDs in order, and allowing for search, insertion and deletion worst

case runtimes of O(log(n)). Each Red Black Tree representing files within a folder

may be found through a hash of the folder address. Through this implementation,

the search for a specific ID translates to a constant time hash, a logarithmic time

search through a Red Black Tree, and finally, a constant time search through a file

on disk. This is a large improvement from the linear search in disk. Figure 1 further

illustrates the concept. This placement in memory occurs at item instantiation or item

search, since it is plausible the server might shut off at a point due to power failure

or other purpose, and it is burdensome to re-load the entire file structure to memory

at set-up.

 22

 The file limit of 24 entries was elaborated as it allows for the industry-standard

frame per second requirement for film streaming [59, 60]. As this optimization was

developed with sequential retrieval in mind, the large limit5 of 24 was chosen to

match one of the more speed-essential applications of storage: that is, streaming

film, wherein each data point consists of a single frame. For non-sequential storage

and retrieval, StrongHold offers the option of individual storage through the path

feature, as exemplified in Appendix A.

Figure 2.1 Illustrated Optimization Method

2.4.2.3 Learning Algorithm

In order to ensure user policies not need taxing interaction by laypeople, an adaptive

policy was devised, allowing for minimal setup or user interaction. The

modularization of groups, thereby initiating policy groups was inspired by Kim et al.

[9], however, unlike their work, the policy groups may be either automatically set by

the server or manually set by administrators, allowing for a level of granularity: if

users are laypeople they can rely on the server’s algorithm alongside the device

policies; conversely, if they have technological prowess they may set it manually.

5
 We consider 24 a large limit, as any increase in this value will substantially increase file storage and

retrieval (at each increase in limit the cost of storage increases by N at worst case). We must,
therefore, be careful in selecting a suitable value, precisely following the Goldilocks Principle: that is
to say, we must determine the best possible value, as going too low might be too cold, and too high
might be too hot.

 23

 Further inspiration came from Hoque et al. [11] and Seigneur et al.’s [56]

methods for privilege escalation. The method for escalation is set as follows: A

user’s initial GET request to the web resource will set up the user by linking the

user’s IP with the selected username (i.e.: the string the user appends to the URI),

thereby inserting a soul into the device as per the resurrected duckling protocol. With

the initial identification, the server will store a timestamp and set the user’s

experience points value to zero. Accesses so far are unencrypted and require only

an ordinary web browser for communications. Every access by a user which does

not yield an error will escalate the user’s level by incrementing his experience points

by 1 [55], assuming one circumstance: that the user’s experience points not have

been incremented within the past 30 minutes.

 If the user’s experience points have been incremented in the past 30 minutes,

he is not deemed ready and as such, his experience is not evolved. Accesses which

yield errors, however, such as trying to access devices which the user is not allowed

to, devices or areas which do not exist, or web or data files which do not exist will

result in experience points being decremented by 1.

 Access to disallowed devices are deemed inappropriate, since a normal user

should not reach that request through the splash page, and as such is likely

attempting to knowingly access a device it should not. Likewise, access to devices

or web files which do not exist may be an attempt to map the server, and as such

are deemed improper. The only error statement inducing request which does not

decrement a user’s level is an access from a user’s username with an improper IP

address – This does not decrease a user’s experience as it is unfair to users who

had their names hijacked, and could be used as a denial of service method from

malicious users to ordinary users. The time value for decrements is much stricter,

consisting of five minutes intervals, unlike the lenient 30 minutes given to

increments. The 5 minute value was chosen to discourage attackers from trying to

do too much too fast. Likewise, the 30 minute granularity was chosen to discourage

users from trying to access devices by escalating their privileges via an automated

accessor [61]; the amount of time a user requires to escalate himself (often days or

months) should allow sufficient time to notice something amiss in the logs.

 24

 Finally, when a user reaches the level of Resident, he is prompted to

communicate with the administrator to retrieve his password from the server. This

necessitates that a resident approve of the transition from guest to resident, thus

disallowing rogue users from accessing sensitive information. At this point, the user

must install some form of decrypting application to communicate with the server6.

This follows the paradigm wherein a guest need not be burdened with set ups,

meanwhile, a resident may incur light burdens.

2.5 Evaluation

In an endeavor to quantify the proficiency of select server features, and showcase

suitable usability, several use-cases were created to which StrongHold has been

subjected. This specific exposition ventures to demonstrate StrongHold abilities, and

to prove its feasibility in a home environment. In running the experiments we strive to

establish the following:

• StrongHold is capable of multi-platform communication.

• StrongHold performs satisfactorily when affected by computers and

networks under heavy load.

• StrongHold can handle files in real time.

• StrongHold can handle files pertaining to real world scenarios.

• The security measures introduced onto the StrongHold system yield

negligible delay, especially when compared to other inherent delays, and

even considering larger files.

We also wish to elucidate the following issues:

• What features should be selected given differing file sizes and structures?

• How much of the impact in transmission performance is due to system

specific functions and features (such as storage and encryption) as

opposed to natural network delays?

6
 The creation of this application is outside the scope of this paper as it deviates from the personal

computer platform (requiring coding in iOS, Android, or Windows mobile), however it should require
no more than simple encryption and decryption algorithms and network communications.

 25

• What is the expectant throughput in terms of storage and retrieval for

differing file sizes?

 To answer the posited questions, we decide to set a number of benchmarks

pertaining to likely data to be transmitted within a smart environment. Rather than

comparing equivalent storage technology speeds, we strive to simply determine

whether we achieve throughput necessary for the feasibility of high definition

streaming: though achieving faster results than any competing technology is not

undesirable, it should not be a necessity for proper operation of the smart home, as

such we rather simply determine whether we provide enough throughput for suitable

usage. Though all data is streamed through a wireless G router, we do not focus on

Wi-Fi streaming issues, as they are orthogonal to this work.

2.5.1 Experimental Setup

Unless otherwise stated, all experiments have been performed using a Windows 7

laptop with a 2GHz Intel i7-2630QM processor and 8GB of memory to house

StrongHold, and an OSX 10.6.8 iMac with a 2.8GHz Core 2 Duo processor and 2GB

of memory to house the client7. Files transferred to the computer are grouped as

follows:

1. MP3 – The MP3 collection consists of 12 files, with sizes ranging between

2.53 MBs and 12.43 MB, with a mean of 8.89 MBs, and a standard deviation

of 3.22 MBs. As can be seen form these values, the sizes lean towards files

greater than 8 MBs. The total benchmark size is 106 MB.

2. PDF – The PDF collection consists of 35 files, ranging from 37.7 KBs to 40.15

MBs, with a mean of 3.05 MBs, and a standard deviation of 8.31 MBs. The

PDF files were chosen specifically due to the inherent large deviation,

allowing for an analysis of StrongHold behavior due to large variance in input

files. Though the file sizes lean towards those of less than one MB, three file

sizes greatly exceed the 10 MB range, including one file of 17.82MBs, one file

7
 The choice of such an outdated computer as a client (the iMac is as of now over 5 years old), was

reasoned as a means to demonstrate the usability of the client computer as feasible even in outdated
technology. It should be further noted that even current generation cellphones now surpass the
performance of this computer [62].

 26

of 25.54 MBs, and one file of 40.15 MBs. The total collection size is also 106

MB.

3. Photos – The photos collection consists of 110 JPEG files, ranging between

11.69KBs, and 6.39 MBs, with a mean of 3.65 MBs, and a standard deviation

of 1.21 MBs. The files present in this collection are tailed more-so towards the

larger files, with most of the collection ranging between 3 and 6 MBs, with

less than 20 files possessing less than 3 MBs. Disregarding 10 of the pictures

(the smallest ones), all other pictures were taken with a 12 Megapixel camera.

The total collection size is 402 MB.

4. Text – Text files were files generated using a PERL script to create 150

random files consisting of web-safe (UTF-8 compliant) text. All files consist of

1MB exactly. Web-safe files are necessary as StrongHold yields an error

when presented with non-ASCII data to prevent buffer overflows, and files

otherwise must have non-ASCII characters replaced with their ASCII

representation via filtering.

5. Frames – Frames were likewise generated by a PERL script to generate 150

random files equal to the necessary size for transmission of one 1/24th of a

second video frame, considering a 180MB, 720p video, which runs for 23

minutes. All files consist of 150KBs exactly.

6. Film – Film consists of one 180 MB, 720p video which runs for 23 minutes.

 Before files are sent, a number of transformations must first be performed,

dependent on client configuration: unencrypted communication must be UTF-8

encoded before transmission in order to be web-safe; encrypted communication

requires filtering8, followed by either AES encryption or AES encryption and a nonce

request and transmission; since all files are initially stored in the hard disk, we also

account for time to load the file from hard disk to memory.

8
 Though AES encryption already makes the file UTF-8 compliant, the underlying file may still have

unsafe characters used by the server (such as +, /, &, =, ? and \n), which must be transformed to
UTF-8 format. Since this process is not as strenuous as a full UTF-8 conversion, it is deemed filtering,
rather than encoding.

 27

 In order to simulate the performance of a real home network, the computer

housing StrongHold continuously played a DVD while executing, and an HD film was

streamed through Netflix though the network to a tertiary computer.

2.5.2 Sequential Transmission Results

Sequential transmission consisted of first clearing all storage space in StrongHold,

then transmitting all files to that space in mode 0 (unencrypted), mode 1 (encrypted)

and mode 2 (encrypted with nonce), without any extraneous options. All leading

times were then recorded, and portrayed through graphs. Time to nonce has been

consistent throughout, and rather than including it in every iteration of the graphs, in

order to save space it is declared to be on average 0.04 seconds per request.

2.5.2.1 MP3

The MP3 collection allows for a representation of the transmission of consistently

large files to the server. They furthermore allow for an exploration of the feasibility of

the transmission of actual MP3 files to StrongHold. Since MP3 files contain web-

unsafe characters, they needed to be converted when sent unencrypted, and filtered

otherwise. UTF-8 encoding incurred a file size increase of 147% on average; filtering

increased the file size by 4.4%, and AES encryption increased the file size by a

further 33.4% on average, for a total increase of 39.25% file size increase when

transmitting encrypted files. The significant bloating due to UTF-8 is due to the

number of web-unsafe characters produced by MP3 encryption, since it contains a

vast variety of characters outside the printable ASCII range. Ultimately, owing to the

large increase due to UTF-8 encoding, encrypted transmissions outperformed the

unencrypted counterpart, even though they necessitated both encryption and

decryption on top of transmission and storage.

 Figure 2.2.a demonstrates the performance of unencrypted MP3 transmission

over the wireless network. “To String” represents the time to load the file from the

hard disk into a string in memory; “Conversion Time” represents the time to encode

the string into its UTF-8 representation; “Time in Server” represents the time the file

took to store in the server; and finally “Time in Transit” is the total time taken to

transmit the file from the client to the server through the network. As can be

observed, each transmission transaction is mostly dominated by network latencies,

 28

with the server storage time only being significant for files 9, 10, and 11, which are

smaller files. This is due to the fact that the storage algorithm re-orders files for more

expedient retrieval: since these files were preceded by files as much as 5 times

larger, they are subject to relatively longer delays as their storage time is

overshadowed by the re-ordering of larger files; if all files are of the same size, or if

the number of files exceed 24, there is a noticeable improvement to the algorithm

after every 24th file, as seen in the later benchmarks. The mean throughput of the

transmission is 0.467 MB/s, and conveys the transmission time accounting only for

the initial file sizes (before UTF-8 encoding).

 Conversely, figure 2.2.b shows the performance of encrypted MP3

transmission over the wireless network. This graph introduces two further metrics,

non-existant in the first graph: “To UTF-8 Time” represents the time to filter, and

“Encryption Time” represents the time to AES encode the string. The only significant

difference between the transmission of encrypted and unencrypted MP3 files is the

final file size of transmitted files; due to the size discrepancy, transmission time for

files is greatly inflated for the unencrypted version, and server storage time is also

magnified. Encryption time makes up an insignificant amount of the total time, and

the only major effect it has on transmission time is due to the 33.4% file size growth.

The mean throughput of the transmission is 0.76 MB/s, once again conveying the

transmission time accounting only for the initial file sizes. Due to the reduced file size,

throughput is greatly improved for this group.

 (a) Unencrypted (b) Encrypted

Figure 2.2 Sequential MP3 Transmission

 29

2.5.2.2 PDF

The PDF collection allows for a demonstration of the effects of transmission of files

constituting of highly variable sizes. Moreover, they explore the practicality of PDF

file storage in StrongHold. Like MP3 files, PDF files are not web-safe, and require

encoding when unencrypted, and filtering otherwise. UTF-8 encoding incurred a file

size increase of 146% on average; filtering increased the file size by 4.7%, and AES

encryption increased the file size by a further 33.2% on average, for a total increase

of 39.65% file size increase when transmitting encrypted files. Like its MP3

counterpart, encrypted transmissions considerably outperformed the unencrypted in

terms of throughput.

 Figure 2.3 displays the unencrypted transmission of PDF files. While the

larger file transmissions are dominated by transfer times, smaller files suffer more-so

by the burden of the re-organization: since a vast amount of them was preceded by

the large 40MB file, their server time is greatly augmented, leading to a significantly

reduced throughput. The throughput is somewhat improved after the 24 file mark,

but that is not enough to reduce the full weight of the previous lowered throughput.

The mean throughput of this varied, unencrypted file size benchmark is 0.082MB/s.

Figure 2.4 shows the encrypted transmission of PDF files. In this instance, smaller

files are less-so affected by the initial large ones (though they are still affected),

simply because the sizes are greatly reduced. Nonetheless, storage still proves

costly, yielding a mean throughput of 0.27 MB/s. It should be further noted that the

40MB file could not be transmitted in mode 2, as the timed nonce expired before

transmission was complete, illustrating that this particular mode does not allow such

large file transmissions. The 25 MB and 17 MB files however, completed

successfully.

 30

Figure 2.3 Unencrypted Sequential PDF Transmission

Figure 2.4 Encrypted Sequential PDF Transmission

2.5.2.3 Photos

The photos benchmark illustrates storage of a large array of medium sized files with

little deviation. Like PDF and MP3, Photos are not inherently web-safe and must be

UTF-8 encoded. Encoding and Encryption size increases resemble those of PDF

and MP3 and as such will not be reiterated. Also like PDF and MP3 encrypted

transmissions outperform the unencrypted counterparts.

 Figure 2.5 displays the unencrypted transmission of Photo files. Though

transmission time is still a large factor, the medium file sizes comprising this

benchmark leads to a decreased transmission time, with storage time consisting of a

greater amount of total time (though still not consisting of the majority). The server

 31

time ramp up followed by a drop repeated throughout transmission is a

characterization of the file split pertaining to the optimization algorithm. The average

throughput of this transmission is 0.39 MB/s.

 Encrypted transmissions fare much better, achieving a throughput of 0.72

MB/s, due to the smaller file sizes.

 (a) Unencrypted (b) Encrypted

Figure 2.5 Sequential Photos Transmission

2.5.2.4 Text

Text allows for an analysis of the transmission of files of medium size which are of

equal (or at least very similar) size, and are web-safe. As such, unencrypted

transmission incurs no encoding penalties, be it in terms of time or size. Conversely,

encrypted transmission increases file sizes by exactly 33.3%.

 Unencrypted text’s time in server shares the position of bottleneck more

closely with the time in transit than the previous benchmarks. The average

throughput yielded by these transmissions is 1.05MB/s, more closely resembling

speeds necessary for effective real time storage. Conversely, encrypted

transmissions underperform compared to the unencrypted equivalents due to their

increased file size, yielding a mean throughput of 0.79MB/s.

 32

 (a) Unencrypted (b) Encrypted

Figure 2.6 Sequential Text Transmission

2.5.2.5 Frames

Frames allows for an analysis of the transmission of web-safe video frames of small,

equal size. Encrypted transmission increases file sizes by exactly 30% in this

instance.

 Unencrypted transmission yields a mean throughput of 0.97 MB/s, with server

time sharing a much more significant proportion of the transmission bottleneck.

Conversely, the encrypted transmission yields a mean throughput of 0.76MB/s.

 (a) Unencrypted (b) Encrypted

Figure 2.7 Sequential Frames Transmission

2.5.2.6 Film

Unlike the previous benchmarks, transmitting a high definition film file without any

segmentation proved challenging: UTF-8 encoding the 180 MB file ultimately

required more memory than the unmodified JVM allowed9. Though StrongHold may

9
 The limit imposed is of 1GB of memory. After encoding, the file consisted of nearly 500 MB. For

optimization purposes two copies of the file are required at the time to speed up server storage times.

 33

be launched with an option set to allow more memory, this is a contradiction of the

initial objective of a plug-and-play server for a smart home, as its execution requires

significant technological prowess. As such, we simply attempted to transmit the film

through the encrypted channel, allowing for less memory utilization. Furthermore,

due to the sluggishness of the client in this transmission, we utilized another Widows

7 laptop with an i5 processor and 6GB of memory in its stead 10 . The total

transmission time for this specific file was 526.152 seconds, of which 2.8 seconds

were spent converting to string, 26 seconds were spent filtering, 36.8 seconds were

spent encrypting, and 210 seconds were spent in the server. As such, this

transmission allowed for a throughput of 0.34 MB/s. It should further be noted that

since the 720p video ran for 23 minutes, and total transmission time was less than 9

minutes, the feasibility of transmission of real-time HD film is then confirmed for this

platform.

2.5.2.7 Discussion

A number of insights may be grasped from the above experimentations. Perhaps

most important of which, is that the server is capable of storing data in a sufficiently

expedient speed, in most circumstances, disregarding those requiring storage of

incredibly diverse information in terms of data size For such instances, the server

possesses a simple feature which allows the storing of different files in different

folders 11 , which can transform such a widely varied benchmark as the PDF

benchmark into two less varied benchmarks, resembling the MP3 and Frames

benchmarks respectively. Since files of similar sizes benefit most from the storage

algorithm, it is advisable that the aforementioned option of aggregating files by size

on each path be utilized when there is vast divergence in file sizes.

 The storage of significantly large files also adversely affects the storage

mechanism, and as such it is advised that the storage of such files be avoided, or at

the very least that the files be split before storage. Furthermore, it is important to

10

 We believe that if a machine is to transmit such a large file, it likely will possess considerable
resources to begin with, since simply creating a file of this magnitude, and keeping it in memory
requires substantial means.
11

 See in Appendix A, the path option, and Section 4.3 of this chapter for experimentation on this
option.

 34

note that if time is of the essence, and the data is not integrally web-safe, it is

advantageous that the encryption option be used, lest excessive time may be spent.

 Lastly, the transfer could be sufficiently sped-up if the data was already in

memory and web-safe to begin with, since no time would be spent to encode or load

the data.

2.5.3 Individual Transmission Results

In order to explore the separate file storage option mentioned in Section 5.2.7 of this

chapter, we investigate the individual storage feature available through the path

option. We store all files individually, rather than sequentially, as in Section 5.2 of

this chapter. It should be noted however, that though storage will achieve a higher

throughput, sequential file reading speed for small files deteriorates considerably, as

presented in Section 5.4 of this chapter.

 Figures 2.8-2.11 present a contrast of storage times for all benchmarks;

transit time, encryption and encoding times are disregarded in this comparison as

they should remain constant for each transmission. As conveyed in the figures,

individual storage outperforms sequential storage: for the MP3 benchmark,

individual unencrypted storage outperforms the sequential counterpart by a factor of

4.27 on average, and individual encrypted storage outperforms sequential by a

factor of 2.57.

 Since MP3 transmission time is dominated by time in transit, this modification

does not increase throughput by more than 10 KB/s on average. PDF individual

unencrypted transmission outperforms its sequential counterpart by a factor of 9.12

on average, and encrypted transmissions outperform by a factor of 6.35. Photos

individual unencrypted file performance overtakes the sequential counterpart by a

factor of 11.5 on average, and encrypted by a factor of 5. Text individual

unencrypted transmission outperforms sequential by a factor of 9.3, and encrypted

by a factor of 5.5. Frames individual unencrypted transmission achieve a throughput

3.6 times better, and encrypted achieves a throughput 3.22 times better.

 It should be noted, however that disregarding small files such as those in the

Frames benchmark, server storage time seldom comprises a large fraction of the

transmission time, and as such, little throughput is generally gained by separating

 35

file storage, especially considering that at its worst each storage value will only be

affected by 24 other files at most.

Figure 2.8 MP3 Sequential vs. Individual Storage

Figure 2.9 PDF Sequential vs. Individual Storage Figure 2.10 Photos Sequential vs. Individual Storage

Figure 2.11 Text Sequential vs. Individual Storage Figure 2.12 Frames Sequential vs. Individual Storage

2.5.4 Retrieval Results

Fast file retrieval may be an utmost necessity depending on the application. As such,

we perform a simple benchmark to determine retrieval speeds for different file sizes,

 36

and different retrieval methods. Since sequential storage accumulated a maximum

of 24 data points per file, we use 24 data points as the metric for retrieval. We divide

retrievals into four cases: 24 data points retrieved sequentially, spread across two

files (12 points in each file), 24 data points retrieved sequentially from one file, 24

data points retrieved separately from one file, and 24 data points retrieved

individually from 24 paths. The files retrieved are divided into two categories: 24 files

of exactly 1 MB each, and 24 files of exactly 150 KB each. Each of the files is

retrieved through mode 0 (unencrypted) and mode 1 (encrypted). Mode 2 is

unexplored, as retrieval does not require a nonce. The results for the retrievals are

displayed in figures 2.13 and 2.14.

 Files retrieved individually and sequentially throughout one file and two files

perform almost equally for medium-sized files for the 1 MB benchmark. Conversely,

the one file and two files retrievals are the clear winners for retrieval for 150 KB,

indicating that retrieval in the form of frames (i.e.: small files retrieved sequentially) is

best achieved through sequential storage, if retrieval time is more critical than

storage time. Retrieval in this method achieves a 1.8 MB/s throughput for one file

retrieval and 1.7 MB/s for two files, and 1.1 MB/s for individual files for the 150 KB

benchmark. For 1MB, retrieval for one file is 1.75 MB/s, for two files is 1.7 MB/s, and

for individual files is 1.77 MB/s.

 Figure 2.13 1 MB File Retrieval Figure 1.14 150 KB File Retrieval

2.5.5 Discussion

The allowance of varied workloads on StrongHold necessitates that a number of

different features be available to accommodate all possible use cases. As no one

feature can be elastic enough to appropriate all possible loads, the next best solution

was to allow the choice of storage befall the client, rather than force a paradigm,

 37

which will encompass fewer cases. The plethora of elements available to StrongHold

should as previously presented, allow for this accommodation. In cases where

storage speed is paramount, the path option may be selected, and if large file sizes

are considered, little will be lost in terms of retrieval. Encryption should be

considered if files require considerable encoding to be web-safe, especially if

storage speed is of importance, particularly considering encryption time is trivial.

Sequential storage of smaller files is the clear winner if files must be retrieved more

than one at a time and the files are sufficiently small. If an application produces

sufficiently varied file sizes, the path option is the most advantageous choice, as it

allows less perturbance on storage and retrieval. Large file sizes (those surpassing

the 40 MB threshold) should be avoided, or at least split before transmission, as

their transmission will ultimately be slower than if partitioned (as can be seen from

the Text benchmark, where a total of 150 MB were transmitted in just under 150

seconds, as opposed to the Film benchmark, where 180 MB were transmitted in

over 800 seconds). Finally, as long as these options are followed, the server should

allow for sufficiently expedient retrieval for real time high definition storage and

retrieval.

2.6 Related Work

2.6.1 Device Ownership

One of the first resolutions regarding the ownership threat dilemmas in ubiquitous

computing was introduced by Stajano and Anderson in the form of “The Resurrected

Duckling Security Policy Model” [40, 63]. Within this model, we are told to approach

the problem analogously, identifying devices as a family of ducks: a master device is

deemed a mother duck, whereas a slave device is a duckling. A duckling may be

either imprinted or imprintable: an imprintable duckling may be granted a soul by the

mother. A soul in this sense is a shared secret that binds the slave device to the

master device. So long as the duckling is imprinted with this soul, he will obey the

mother duckling and no other devices. A soul is extracted upon completion, with the

death of the duckling, at which time, the duckling is imprintable again, and may be

resurrected by another potential mother duckling. Any number of mother ducks may

 38

simultaneously instill souls into ducklings, meaning a slave device may be controlled

by more than one master at a time.

 The granting of the soul is recommended to be done physically via a non-

wireless channel, or at the very least through “a channel whose confidentiality and

integrity are axiomatically guaranteed”[37]. This is done in accordance to “the Big

Stick Principle,” which states that “whoever has physical control of the device is

allowed to take it over” [37, 54]. This is appropriate as it corresponds to the manner

through which we access devices outside of a smart home environment, that is to

say, through physical presence.

 Initially, the concept allowed ducklings to interact among themselves, but

disallowed devices issuing orders to other devices they do not control; however, in a

later paper, Stajano expands on the concept, allowing mother ducks to instill policies

to ducklings through the same secure channel. These policies would define what

actions are allowed and by whom, yielding, if necessary, full control of the duckling

to any other devices [63].

 A centralized equivalent is presented by Naqvi and Riguidel, where ownership

of data is dealt with by an “Infosphere”, and a “Security Domain” remains in charge

of protection and control [39]. The authors further propose that encryptions be set by

the user, allowing her to choose between performance and security for specific

devices. Additionally, their implementation makes use of virtualization to disallow

applications located within a servant device to interfere with one another. Another

decentralized solution is provided by Lee et al. [13], where each device must be

authenticated through a “Security Manager,” but their access control data is

managed by a “Smart Portal Server.” Though lacking virtualization of applications

within a servant, the remainder of this solution is quite similar to Naqvi and

Riguidel’s.

 After the Resurrected Duckling Model, a number of methods for distributed

access control were defined for this medium, many expanding on the model, and

others, taking tangential paths. Such means presented tend to have in common their

necessity of a mobile method of authentication. Such methods for authentication

range from biometrics to passwords, to devices (such as smartphones or pocket

 39

watches) to RFID tags [9, 10, 12, 38, 64]. Though the device which achieves

authentication deviates, the elementary notion is always constant: the device is

mobile and constantly placed alongside a user, be he a resident or guest, and

achieves (through methods described in Section 6.3 of this chapter) bounding of

user location in relation to the device to be connected to12.

 Conwell et al. provide an additional methodology that falls within the

resurrected duckling model, wherein users use their smartphone devices to

authenticate, configure and update access control lists [38]. The ubiquitous quality of

smartphones and their ever-presence beside the user further allows the evolution of

the model to easily permit reactive access control permissions; that is to say, the

device may allow a user to respond to access grant requests from other users. Thus

access list population may occur ad hoc, and rather than having to type out lengthy

and complex lists, the population of the list is simply reduced to a modest prompt.

 Also following up on the Resurrecting Duckling Model, Argyroudis and

O’Mahony develop AETHER, whereupon they establish more detailed connection

methods and interactions [64]. In AETHER, devices would come pre-installed with

asymmetric key pairs, and have their own policy lists, wherein rights are directly

associated with actions. It is lightly hinted that one may use auto-configuration to

evolve policy sets over time, but this approach is not given much attention. The

binding of devices is specified as a key exchange through a secure location-limited

channel (such as touch or infrared link); following such an exchange, policies are

passed through a secure channel, and refreshed given a short time period. The

refreshing method is used in lieu of certificate revocation lists. If a device is to come

out of range and for longer than the validity period, the binding expires, and the

devices must reconnect via the same secure location-limited channel.

 In regards to policies, AETHER allows both positive and negative policies,

establishing what is specifically allowed and disallowed. The policies further allow

conditions, which specify restrictions related to time, location, and other factors. The

concept of conditions seems to be quite common among other models [13, 39].

12

 That is to say, it helps the device being connected to identify that a user connecting to it through an
authentication device is physically present.

 40

Moreover, AETHER allows a policy-maker to specify further policy-makers for

devices, as well as their delegation depth; that is to say, to what extent the new

policy making users may specify new policies.

 Solutions such as these and other policy setting schemes similar to the

Resurrected Duckling Model, though allowing decentralized management of devices

and data, suffer from the requirement of onerous creation of policies, which is

neither an easy feat for technologically untrained users, nor a much desired feat for

those who are technologically able, due to the repetitiveness and laboriousness of

the task.

 Kim et al. suggest a mechanism where access control policies are pre-set into

groups, capturing most, if not all home owners and visitors [9]. Through this method,

whenever a visitor or another newly introduced resident is within the home, a

resident or administrator may place him within one of the pre-set groups (Full

Control, Restricted Control, Partial Control, and Minimal Control). Any access made

outside of the policies groups would have to be manually granted by a resident or

administrator. It is also suggested that on top of that all accesses be logged to be

audited to account for discrepancies.

 Hoque et al. tackle the problem in a tangential manner, rather than allowing

for easy configuration, they attempt to create a self-configurable system, arguing

that some elderly patients located within the e-health environments would find even

simple policy creation unmanageable [11]. They further argue that common current

policy configurations fail to account for intuitive intricacies of trust, merely focusing

on an implicit, inaccurate view. In their approach, all devices possess a list mapping

trust values for each service requested by a given neighboring device. Upon an

interaction request, a device estimates and sets a trust level for the requesting

device, based on the security level of the requested service, as well as a user’s

disposition value. Through proper use, trust values are increased, and more access

is granted. Improper use leads to a decrease of trust, coupled with a decrease of

access. This however, can be exploited with mimicry attacks such as those used to

target on Intrusion Detection Systems, whereupon a malicious device can escalate

its privileges by following the dictated set of rule, only to later attack undetected [61].

 41

 Likewise, Seigneur et al. endeavor to mimic the process of human trust in an

attempt to automate trust policy configurations [56]. They argue that the ease we

achieve through Plug and Play technology should be attempted for later

management. Within this auto-configuration arrangement, devices may recommend

trust levels to other appliances. The installation of appliances within the home would

be propagated to other appliances, and dependent on the installer, a level of trust

would be assigned to this appliance by others. For instance, were the house owner

to install a new door lock, other devices would assign that device a higher trust than

if it were installed by a lesser source. Furthermore, dependent on the risk associated

with the corruption of the already installed devices (which can be preset by the

manufacturer), they will choose to follow the recommendations given by this new

device differently. In the previous example, given that an owner installs a door lock,

a television set will likely easily follow the door’s recommendations, whereas more

sensitive devices such as a safe or another door might not.

 Temporal coexistence further augments trust between appliances, such that if

two devices coexist within the home for extended periods of time, their trust levels

towards each other rise. The authors further state that biometrics could further ease

this classification of trust, allowing a process to place low trust users (such as

guests) detected to interact with higher trust users (such as residents) at an

escalated level of trust. Continuing on the previous example, a guest might enter the

house through a key provided by a resident. As such, the house door would identify

this user as trusted, as he possesses a house key, independent of the fact that he

does not possess an owner’s equivalent biometric equivalence. This trust level is

propagated throughout the house, and as such, the guest is allowed to use minor

devices, such as the television. However, the guest has no access to other rooms or

the kitchen, since they are considered to be more sensitive locations. The guest then

might proceed to watch television for some time, thus building trust with the

television set. Since the television set has, over time built trust with the kitchen, and

since the user has escalated his trust level with the television over use, he is now

granted access to the kitchen. Additionally, were the guest to engage in a phone

conversation with a resident, a biometric on the phone might recognize the

 42

resident’s voice and further escalate the guests privilege due to the interactions with

the user.

 The approach of auto-configuration, however, fails to overcome a number of

Section 3’s previously established vulnerabilities: One of the more severe threats

this configuration fails to circumvent is that of malicious devices being integrated

within the smart house. This specific class of threat is previously mentioned in

Section 3.5 of this chapter, and concerns either the existence of devices

manufactured with malicious code, or compromised devices. The compromising of a

number of trusted devices may lead to further corruption of appliances, at which

point an adversary might gain control of trust assignments within the house, even

though he may lack control of the majority of appliances. Such methods may give an

adversary access to the house, or even in some cases may lock a legitimate user

out. Falsification is another method through which an adversary might take

advantage of this configuration: through the recording of specific biometrics, an

adversary might escalate his trust, such as the replaying of a legitimate resident’s

voice [65, 66], or the use of masks or photos with the user’s likeness [66, 67].

 A similar approach is taken by Azman et al. for automatic trust calculation

[55]. Like Seigneur at al, trust escalates with interactions (be it with a house owner,

or other devices), however, unlike Seigneur et al., this method also uses routing

selections alongside temporal measurements to determine the trustworthiness of a

user: In this approach, a user who detours from a normally traversed path, or

presents temporal anomalies (that is to say, the user exceeds a temporal threshold

in a location or activity), will be deemed suspicious and have his trust level decline.

 Solutions such as IBM’s SPARCLE, conversely, attempt to rather facilitate the

entry of access control policy data, by creating a more human-readable interfacing

language [68]. In such cases, one can grant access to people and devices by writing

the rules in simple English, such as “guests may access the television,” or “police

may open the door.” Though such entries might be time consuming, it is more likely

that laymen may be able to enter and understand the policies. Furthermore, unlike

automated and pre-fabricated access control lists, the resulting actions will more

accurately follow the exact desired outcome.

 43

2.6.2 On the Prevention of Data leaks

Kim, Beresford and Stajano propose that to limit availability to sensitive data, only

summaries of present data are stored in any pervasive storage device [36]. As such,

real time measurements can only give access to data occurring at that time window

and no prior data, to disallow more sensitive data to purvey unwanted inferences

(For instance a caregiver who monitors a patient’s detailed heart rate might be able

to imply details about a patient’s more intimate encounters). In such cases, a

summary of all data will be just as useful for the caregiver, and as such more minute

details could be foregone. It is also suggested that any further data necessary that

cannot be acquired through the summary necessitate the patient’s consent.

 It is additionally stated that any caretaker may only have access to data

stored specifically in a temporary repository, out of which it cannot be transferred.

 In regards to wireless information leaks through encryption, Agarwal et al.

propose that constant rate data production might prevent an attacker from

determining the movie being streamed [45]. However, the authors also argue that

solutions such as the one presented may significantly affect bandwidth consumption,

and would not prevent an attacker from still determining when and for how long the

user watches movies. In their paper regarding language leaks related to VoIP

conversations, Ballard et al. present possible padding of packets to greater packet

sizes [47]. Dependent on the amount of padding, the discernibility of language

decreases from beyond 66% (with no padding) to 27% with 192 or 256 bits, and 6%

with 512 bits. However, in the case of 192 or 256 bits padding this dimension of

determinism is still quite above that of random guessing and is, as such, still

undesirable. Furthermore, this solution still introduces a large overhead in terms of

bandwidth, leading to nearly 42% overhead for padding to 512 bits. Libertore and

Levine reach a similar conclusion in their paper of inferring the source of encrypted

HTTP connections, wherein padding also dramatically decreases accuracy, but at a

high cost to performance [44].

 Canny and Duan attempt to impede an attacker from gaining access to

sensor data recorded in their absence [35]. To do so, they propose a scheme where

all data pertaining to a user’s presence (such as recordings and localization data) be

 44

encrypted with a randomly generated secret key, which in its turn is encrypted by the

public keys of all users present during the recordings. Each different encryption is

placed within a different tabular position, which is calculated via a hashing function

that takes as input the user’s public key. This function allows the location and

placement of the encrypted secret key. All other empty locations are filled with

random numbers. To allow access to privileged parties (such as policemen,

repairmen, firemen, or network administrators), a master key is also saved, only

decryptable by a matching private key in possession of the privileged parties.

 An authentication device is a mobile device used to store a user’s public key

which interfaces with a smart location to grant access during physical presence;

therefore, a user lacking his authentication device will not have access to data as a

fail-safe default. This system also allows the exclusion of access control lists, and

can thusly function without knowledge of the user’s identity in situations where the

user must interact with an untrusted smart environment. The authors further

recommend that each smart location be equipped with a display which presents the

current number of occupants within the room; if this number does not match the

visible number of residents, it can be concluded that something is amiss and a rogue

authentication device may be present.

2.6.3 Location Awareness

In order to circumvent outside users from using technology which they should not,

Manish suggests that specific zones within the home should be created, and

different features be enabled for each appliance within each zone. For instance,

though you may check the temperature of a stove from a distance, you may not set it

except when within the room. Locality can be established by using extra sensors,

and for the more dangerous appliances, communications can only occur via shorter

range signals (such as infrared, as opposed to Wi-Fi) [34]. It is, however not an

infallible technique to use communication range to represent physical locality, as

Capkun et al. [69] have shown; in their paper, they present a method of amplifying,

and thus relaying signals from a keyless entry key onto an automobile, thus opening

its doors and turning its engine on, when they key really is not physically present. It

is feasible that such attacks could be adapted to the smart-home model, thus

 45

rendering locality establishment moot. As suggested in the paper, one must take

immense care to ensure the distance bounding protocols are safe from relay, which

according to the authors, can be achieved with a verifiable multilateration protocol.

 The problem of locality does not only befall unto the device process of

ascertaining the presence of a user, but also encompasses the charge of

maintaining a user’s location unknown in an environment where his presence is

constantly checked. In their paper, Al-Muhtadi et al. present the novel idea of mist

routing to circumvent locality threats [42]. In their model, sensors are able to detect

the presence of users, but lack the ability to identify the users. Furthermore, this is

combined with a novel routing protocol to further protect the user’s location.

 In their study of the Nike+iPod [45], Agarwal et al. argue that communicating

mobile devices can be a threat to one’s locality, as a leak of its persistent unique ID

may allow an attacker to track a user’s precise location through sniffing. As such, the

authors maintain that strong encryption such as AES, using randomized IDs,

recomputed at each idle moment, should be sufficient to circumvent the attack,

however it may prove to be difficult due to the limited performance and battery life

available to mobile devices.

2.6.4 Device Authentication

Authentication for devices is a necessity, as the configuration is meant to be elastic

(that is to say, devices should be able to be added or removed at will), and in order

for trust to exist, authentication methods are necessary. In one of the more

interesting methods, items are connected via the physical interaction of checking the

device for a physical code, and manually inputting it on a hotspot device, and vice

versa. Furthermore, this method of authentication allows for different encryption for

data transfer between all devices, as they each use their code as a key [6, 10, 11,

13].

 Han et al. present a more detailed view of the method of authentication [13],

wherein a user must register a device through a hotspot, which will issue a portal run

by the device manufacturer a request to confirm the validity of a certificate issued by

the device. Following such a check, a manual exchange of codes will be required by

the user, to identify that the device being registered is indeed the one owned by the

 46

user. Following this step, the hotspot will manufacture a set of private and public

keys and will exchange them with the device through an encrypted channel.

 As per Pishva and Takeda, one of the greatest concerns in regards to device

authentication and communication within a smart home is that of creation of

standards [6]. Heterogeneity as it stands in regards to smart devices is quite

prevalent 13 , and if that quality carries on towards communications and

authentications, it would present quite a problematic challenge in regards to security

in an environment where collaborative communication is vital.

 Lastly, as stated by Naqvi and Riguidel, common cryptography can be easily

translated into this field to prevent eavesdropping, and protect authentications, and

for all intents and purposes as it stands is enough for this problem, and should be

utilized mostly unchanged [39].

2.6.5 Availability

In regards to circumventing sleep deprivation attacks, Stajano and Anderson

propose data communication directed at devices with limited resources be directed

through a reservation mechanism, which would prioritize actions and only enable

them if their priority passes a threshold [40]. This could then be used for preventing

communication from being flooded between devices, by only forwarding high priority

messages, and sending a summary of other messages in a timely manner

otherwise.

 The authors also target jamming attacks by ascertaining that in their

occurrence, devices may commence spread spectrum communications or frequency

hopping to prevent them from achieving a denial of service. They however argue

that in the commercial world, such attacks may be dealt with in a more physical

manner, such as complaining to the authorities, and having the operator of the

jamming station arrested.

 Attacks such as those that target ubiquitous devices which do not require re-

authentication and fall victim to man in the middle attacks, can be thwarted through

periodical (though infrequent, due to limited resources) re-authentication [39].

13

 As can be seen quite predominantly in the smartphone market in terms of iPhone vs. Android vs.
Blackberry vs. Windows Phone, etc.

 47

Furthermore, devices can be kept from failing due to vulnerability exploits due to

more extensive fuzz testing, and communications can be kept from being hijacked

through encryption, such as SSL, TLS and SRTP [41].

2.6.6 Guest Access Control

A newfound issue apposite to the smart home is that of guest access control.

Alongside the common problem of device utilization by habitual users, further

dilemmas arise, such as that noted on Section 3.5 of this chapter: not only does a

user wish to disallow a guest from a number of actions; he does not wish the guest

to know he is deemed untrusted. Unless given some tool to properly circumvent

such a social taboo, the user will tend to set looser policies of access controls to

keep from disclosing his distrust [9].

 Moreover, Johnson and Stajano argue that guests should not have to be

given accounts [12], nor should they be dealt with as strangers would: Specifically, a

guest should be able to access the television set, but he should not need to have to

be registered as a permanent occupant to do so. They further maintain that in

preserving past customs we should perhaps imitate the non-smart-environment

instance wherein a guest is given possession of the house keys until they leave, by

having certain rights granted upon entry and revoked upon exit.

 Johnson and Stajano go on to provide a guest-specific14 temporary access

control scheme wherein a guest is authenticated manually rather than automatically,

and without need of prior policy creations. Using this scheme, a guest would be

required to press a physical button on the device to access it, which would in turn

cause the device to produce a nonce, which the user would input on his

authentication device to complete the pairing15. The authors continue, contending

that the burden of guest access control policies be placed on the manufacturers.

Such classes of actions to be provided by the manufacturers are subdivided,

providing actions that any one physically present may perform, actions requiring

physical presence and resident authorization once, actions requiring resident

14

 As opposed to the schemes provided on Section 6.1 of this chapter, which could be used for both
users and guests.
15

 The observant reader will find some similarities shared between this method and that used in
Bluetooth device pairings.

 48

authentication at each access, and actions that may never be performed by non-

residents. Lastly, if a guest is to reside for extended periods within the house, the

guest will be given control of areas where he resides through a temporary account.

Namely, if a guest is residing within a room, control of all devices within the room

should be given to the user, however, the house owner will maintain administrative

control over all devices, allowing him to remove the guest’s access control

capabilities, but not vice–versa.

2.6.7 Central Smart Home Servers

Though we consider our work to be novel in terms of a secure central smart home

server - containing all necessary aspects to properly protect against privacy and

security threats in the literature - other work is present in terms of smart home

servers, which do not concerns themselves with security aspects. The most

complete example of these is perhaps HomeOS, as introduced in conjunction by

Microsoft and IBM research:

 Dixon et al. [84] create a central hotspot akin to StrongHold in terms of ease

of use and elasticity of features. The method provided allows for significant

abstraction, transforming the central server into an operating system with the

possibility of abstracting network devices as applications atop it with the use of a

language specific API; this solution is proven in their work to be significantly simple

to use and code. However, unlike StrongHold, no focus is given to security and

privacy issues or sensor-like data storage. Moreover, access rights are given

manually rather than escalated automatically, allowing for a possibly more granular

outcome than the learned algorithm (however, it is equal to the manual methods

provided as system administrator tools of StrongHold); it is nonetheless far more

challenging to allocate than simple plug and play, and falls prey to problems

concerning guest access control (as noted in the third footnote of this chapter). It

should additionally prove difficult to coordinate in eHealth homes or homes

containing computer illiterate users. Lastly, it is tested using an Intel Xeon server

allowing for functionality in costly environments, but perhaps providing more difficulty

in conventional homes.

 49

2.7 Future Work

The addition of further functionality and heavy stress testing are among future work

for StrongHold, however, perhaps a more pertinent area to focus on the future is that

of user and security experimentation: whereas this work has been more-so an

exploratory attempt at solidifying, implementing, and proving the feasibility of

assorted ideas, it focuses very loosely on ease of use evaluation and security

experimentation. Ultimately it is a means to give form to the theory present in the few

existing works surrounding this area. Given this server as a test-bed, it is assumed

that a variety of tests may be implemented to ensure proper functionality, and even

more importantly, implement user studies for the functionality and feasibility of a real

smart environment.

 Before release of the server onto the public, however, more effort is

necessitated in terms of Human Computer Interactions (HCI) and design, because

as much as the server presents various aspects of plug-and-play functionality, and is

easy to use, that does not equate desirability. That is to say, that although the server

is simple to use, that does not mean that users will want to use it, and as such,

better graphical user interfaces still may be implemented. Human Computer

Interactions, nonetheless are outside of the scope of this work, and as such are left

for future work. User interactions must also be better studied to determine the best

numerical values selected for each manufacturer’s threshold values, as the

threshold numbers designated so far have been more-so a approximate estimation

rather than an exact collection.

 The implementation of a user application tasked with encrypting and

decrypting data was also not realized, as it diverges from the server side of the

application, and would involve coding for several platforms. Due to time constraints,

it was then left for future iterations.

 Also in regards with user interactions, improper accesses are met with

negative reinforcement in the form of lost experience, however, no attempt has been

made towards direct punishment for destructive attacks. This is one aspect of the

application which might be studied, wherein if an IP address is the source of multiple

attack-like interactions, it can have its access blocked, or even issue a direct alarm

 50

to a resident or system administrator. Such issues were not tackled in this work, but

can be engaged in the future.

 Lastly, though we did not observe any resolution to safety apposite to power

and system failures conundrum in the literature, we advise that in order to protect

the user, the system should default to relinquish use of essential devices in such

circumstances. Namely, devices constituting survival necessity, such as water, food,

restroom facilities, doors allowing access to these areas and exits (such as those

from a room, or from a house to the outside), should default to function for anyone.

Conversely, entries other than those leading to facilities or kitchen area should

remain closed, unless they lead to an area known to contain a user16. This area has

not been elaborated upon, as it delves into usability territory, and as such falls

outside of the scope of this paper.

2.8 Further Discussion and Conclusion

In our exploration of the world of smart home security, we have encountered a

number of interesting solutions to tackle the problems this new medium carries.

Although there are many challenges, few solutions exist due to the novelty of the

field17. Very few areas of this vast topic have been fully explored, and though

theoretical solutions exist, they are rarely implemented outside of a testing

environment: though we will find select smart devices in the open, such as

smartphones, smart TVs, VoIP enabled phones, among others; fully interconnected

homes are rather rare outside of experimental settings.

 We believe that we are reaching an era where pervasive computing is

becoming a prevalent paradigm, and as such, this topic will likely soon undergo an

upsurge of the likes of those experienced as of late by the fields of mobile phone

technology and portable media players. In order to reach that level, we must first

establish proper security and usability pertinent to a field of this sensitivity; after all,

one should not build a car when they don’t know how to achieve stoppage. As can

be seen by the literature, we seem to be reaching a point where the usability of this

16

 This instance is presented in case children, or incapacitated users reside in a specific area, and
cannot exit on their own.
17

 Though the notion of electrified and automated homes have existed far prior, the idea of
interconnected ubiquitous computers within the house was only first publically proposed by Mark
Weiser in 1991 [1].

 51

technology is accessible to non-experts, and the security is nearing a stage sufficient

for the integration with living environments. In such a manner, it is best to

incorporate dispersed concepts into a single model, to finally achieve a level of

integration able to combat all possible vulnerabilities present in the current model of

smart environments.

 In light of the fact that no single solution managed to solve all problems

presented prior, coupled with the necessitation for an all-encompassing solution

presently, we immersed ourselves in a means of implementing a comprehensive

solution, feasible for experimental and non-experimental settings. Furthermore, we

try to bring with our server a standardized methodology wherein a device from any

manufacturer may utilize our server alongside devices produced by a number of

different manufacturers.

 Our method uses current industry standards of RESTful APIs, and JSON, as

well as AES encoded communications, and SPEKE methods for password resets.

Concurrently we also introduce new concepts, such as a learning method to allow

users to relinquish the burden of set-up and maintainability of policy, an optimized

algorithm to maintain practical response times, and a standardization of

communication between devices and users within a smart home. Parallel to those

we implement a plethora of security methods which are invisible to the user, and yet

allow for private and secure communications; methods which although exist in the

literature separately, were never before conjoined. It is through these

implementations that we hope to aim for a secure, easy to use, and intrinsic smart

home.

 As a last argument, it should be noted that it is paramount that these threats

and their associated solutions presented as well as new threats be rethought and

resynthesized occasionally, respectively. Only by frequently questioning our

assumptions, can smart home security remain always one step ahead of attackers.

 52

Chapter 3: MASHA: Meal Advocation for Smart Home Automation

3.1 Introduction

Since the turn of the century, recommendation systems have gained considerable

popularity: systems such as the Amazon Recommendation Engine [14, 15], the

Youtube Recommendation System [16], Google News [17, 18], and Netflix

recommendations [19, 20] have become an ubiquitous commodity, and parallels can

be often found across the web. Recent efforts have focused on porting the

recommendation engines to different domains, such as song recommendations [70],

and recipe recommendations [22, 23, 24, 25, 26, 27, 28].

 In the field of recipe recommendations, the aim so far has been to port the

mutually liked aspect of ordinary recommendation systems in order to suggest future

meal choices, given a previously established database [21]. Further effort has been

employed in determining healthy choices given a user’s diet plan [22, 23, 24, 25].

However, little has been done to determine which recipe to recommend given a pool

of recipes pertaining only to participating users. Furthermore, recipe

recommendation algorithms so far, tend to require user input of exact like values

through a Likert Scale, which is known to suffer from considerable bias [71]. Lastly,

no effort has been employed in porting this class of recommendation systems to a

home environment, where excessive levels of user interaction are considered

intrusive due to their explicit nature, and as such, undesirable; it is, nonetheless, an

environment where such a system should be most useful: where else should a

person need recipe recommendations but in the kitchen where such

recommendations may be employed?

 Focusing on the above concerns, we create MASHA, a recipe

recommendation system designed for the smart home. We create a system of finer

granularity than those present in literature by foregoing the Likert Scale, and instead

directly tracking the frequency with which recipes are prepared. We allow for day-to-

day use by simplifying the system so user interaction is minimal and implicit, and we

couple the system with a smart home server to showcase usability. Moreover, the

system takes recipe ingredients into account by using recipe weight as an analogue

 53

to tag frequency, allowing for further means of determining item similarity for

recommendations with greater granularity than tag methods currently present in

literature. Lastly, we evaluate the system, ascertaining its usability, and the success

level of its recommendations; by determining the success level of each

recommendation method employed (recipe ingredient similarity, recipe like similarity,

and a combination of the two), we may determine which specific system yields the

best results, thus determining which method achieves best results when concerning

recipe recommendations.

3.2 Background and Related Work

The field of recommendations currently comprises of several methodologies:

content-based filtering [14, 21, 72, 73], collaborative filtering [14, 21, 72, 73],

demographic models [74, 75], and cluster models [22, 72, 73]. Moreover, related

work pertinent to the field of recommendations is incredibly vast, owing to the variety

of systems to which recommendations may be applied. Systems related only to

recipe composition, however, are nowhere near as extensive, and can be explored

in their entirety with ease. As such, in terms of general recommendations, only key

systems will be mentioned, whereas systems associated with meal advocation and

composition will be thoroughly expounded upon.

3.2.1 Filtering Methods

Content-based filtering [76] comprises of determining similarities intrinsic in items

contained in the recommendation system. This method warrants a comparison of

previously selected items with other available, though previously unselected options.

A simple example of this system taken in the context of document recommendations

would look for important words in a user’s previously read literature, and examine

documents which contain those words, or similar words, and output to the user the

documents which most resemble the previously read works. Though content-based

filtering can be applied to various fields, such as film or music recommendations, it is

most widely used in fields containing a dense library of descriptive, extractable

content. That is to say, fields where the automatization of tag retrieval is difficult

without user interaction (such as in movies, where it is difficult to extract the theme

 54

or crew of a movie without user intervention), tend to focus less on

recommendations via this method.

 Collaborative-filtering tends to focus on the relationship between users and

items rather than the relationship between items alone: the aim of collaborative

filtering is to eventually couple like-minded preferences of users. Extending the

previously established document example, this means that rather than matching

documents via similarity, the system would recommend a document to a user that

another user with a similar reading history has enjoyed. This model is far more

popular to systems where tagging is prohibitive, such as those musical or film

related, and has gained much popularity recently due to its application and victory

over other methods in the Netflix Prize competition [19, 20, 21]. The model, as such,

generally consists of an N by M matrix, where N signifies the number of distinct

users, and M the number of distinct items; each M, N position on the matrix relates

to the numerical correlation between a specific user N, and an item M, with the result

signifying the likelihood the user has enjoyed the item, with positive values relating a

positive experience, and negative values relating a negative one [77]. In specific

cases deemed One Class Collaborative Filtering [77], only positive examples are

taken into account, and negative values are ignored. Collaborative filtering is further

forked into two categories: item based, and user based [72]. Item based approaches

tend to couple users and items, thus recommending items that tend to be enjoyed if

a user has liked a previous array of items. Conversely, user based models couple

like-minded users, recommending to one user items which a similar user has liked.

 Ratings apposite to these two previous methods can proceed in two manners:

implicitly and explicitly [16, 18, 72, 78]. Explicit ratings necessitate greater amounts

of user interaction, often requiring a user to directly rate products in manners

resembling the Likert Scale. On the other hand, implicit ratings are acquired without

deviation from the user’s normal interaction; that is to say, little to no interaction is

necessary beyond the normal usability to acquire ratings.

 For the methodologies of content-based and collaborative-filtering, similarities

are often calculated through a matrix similarity formula, the most popular of which is

 55

the Pearson Correlation Coefficient (PCC) [14, 15, 19, 20, 72, 73]. PCC allows the

system to measure the proximity between two selected vectors, returning a value

between -1 and 1, relating how similar (or dissimilar) the two vectors are [79]. The

formula for PCC is as follows:

∑ ̅ ̅

 Furthermore, in order to ensure lesser known items are not discarded in lieu

of widely used items, normalization techniques are often employed [14], such as the

Term Frequency – Inverse Document Frequency (TF-IDF). This statistic quantifies a

term’s importance in a document, in relation to the corpus: documents which appear

often in the corpus get weighed less heavily, whereas lower occurrences in the

corpus yield higher values, since the inclusion of a rare term should be given higher

importance. The formula for TF-IDF is as follows [30, 31, 32]:

where N represents the full count of values pertaining to the specific area (corpus or

document), and n represents the number of occurrences of the item in the area. For

instance, if we are examining the word “dog” in a document that possesses 1,000

words, 25 of which are dog; and in a corpus of 1,000,000 documents, where dog

appears in 125,000 of those, the equation will fill out as follows:

 As the name implies, cluster models attempt to cluster like-minded users [14].

This method of recommendation relies on very specific user similarity, creating

groups of users of selected sizes and determining recommendations solely from

these clusters. Due to its nature, optimal clustering is impractical for sets of large

sizes, and greedy algorithms must be used in place of the optimal equivalent.

Though clustering may achieve faster results than the previous methods (especially

through the use of the greedy approach, coupled with offline computations), the

 56

recommendations produced from this system are fairly poor due to the inherent

lower granularity [80], and as such no more detail on this method will be elaborated.

 Lastly, demographic methods entail the grouping of users of like-

characteristics [74]. This method relies on user profiles to couple users with similar

demographic features (such as locations). Demographic methods, however, suffer

from low granularity (since only a few factors tend to be available on profiles) and

lack of adaptability (since no attention is directed at learning from user interests

beyond basic profile characteristics) [75]. Due to those pitfalls, like cluster models,

we will not elaborate further on this topic.

3.2.2 General Recommendation Systems

One of the earliest notable adopters of collaborative filtering systems was

GroupLens, a news recommendation algorithm [79]. In their paper, Resnick et al.,

present Grouplens as a Usenet program, which allows users to read and rate news

articles, providing suitable recommendations based on ratings. The rating system

uses collaborative filtering to determine similarities between users (via the Pearson

Correlation Coefficient), and through that data, the algorithm determines articles of

interest to the user.

 Systems like GroupLens, however, were not geared to handle the large user

bases later systems possess. As such, as time progressed, new solutions were

engineered to allow for better performance and recommendation quality. Among the

more recent collaborative filtering systems, one of the more successful and largely

public implementations is the Amazon Recommendation Engine [14, 15]: In their

paper, Linden et al. introduce item-to-item collaborative filtering, a collaborative

method focusing on item similarity rather than customer similarity. The authors argue

that traditional collaborative filtering methods incur sizeable overhead for large

sample sizes, necessitating a different solution to scale to Amazon’s significant user-

base. Items as such are coupled with items which are often purchased together, and

recommended to users who have bought those other items.

 Alongside e-commerce and news recommendation, frameworks like the

Youtube Video Recommendation System emerged, aimed at media

recommendation [16]. Media recommendation algorithms like Youtube present

 57

considerable challenge due to the intricacy of obtaining relevant item information

solely through automation: whereas text may be tagged, video themes are not as

easily obtained without human interaction. Further challenges arise due to short and

noisy channels associated with the medium; that is to say, the clicking of a short

video, unlike the buying of an item at Amazon, fails to be a very clear declaration of

intent, and as such, fails to be a very clear indicator of like or dislike. Youtube takes

a unique approach to tackling these challenges: they factor co-visitation counts,

which determine how often two videos have been co-watched within sessions.

These values are normalized before being used to retrieve a recommendation, to

ensure less popular videos are not discarded in lieu of more popular ones.

Furthermore, videos before a certain time threshold are disregarded, since they are

deemed irrelevant for being too far in the past. Finally, in selecting actual

recommendations, view counts and ratings of candidate videos are taken into

account, alongside with actual similarities between the user’s previously viewed

videos and the candidates. Lastly, to increase the diversity of recommended videos,

videos which share too many similarities are discarded.

 Google News features as another prominent recommendation framework

which has garnered significant popularity. Google News recommendations manage

a similar system as GroupLens, however, unlike GroupLens, they rely solely on

implicit user clicks, rather than explicit ratings. In their initial iteration [17], Google

News, relied on both clustering algorithms and co-visitation scores, recommending

stories which had a high correlation of visitation with a user’s past history (also

expiring values which precede a certain date threshold), present in a familiar cluster.

In a newer iteration of the system [18], this method is further coupled with content-

based recommendation, relying on a multiplication of both methods to produce the

recommended article.

 Lastly, the mention of Netflix should not be foregone of any list declaring

recent developments in collaborative filtering, especially considering the attention it

has garnered following the Netflix Prize competition [81]. The BellKor Pragmatic

Chaos Solution [19, 20] allowed Netflix a new, more accurate means of

recommending films to its large user base. The Netflix recommendation system,

 58

much like Youtube or GroupLens operates in the basis of ratings, and much like the

other systems in this section, disregards ratings preceding a certain threshold of

time in the past. In their collaborative filtering model they further include baseline

predictors to better the rating output, by overcoming rating bias.

3.2.3 Recipe Recommendation Systems

Recommendation Systems in the recipe medium take many forms. One of the more

popular applications of recipe recommendations comes in the fashion of health

advocation: frameworks which allow for recommendations of diets that fit a specific

user’s health paradigm. Phanich et al. create a system capable of recommending

recipes tailored to fit a diabetic’s diet [22]. Their system uses clustering alongside a

neural network, to respectively group like nutrient groups, and normalize their

weights. This method allows for the system to allocate both a varied and nutritional

regime that fits the diabetic user’s current nutritional needs. The system,

nevertheless, necessitates an excessive level of user interaction, as nutritionists

need to populate the database of nutrients by hand, leading to a fairly large

overhead.

 Freyne et al. cite obesity as motivation for the development of a recipe

recommendation system [23, 24], maintaining that an engaging diet

recommendation system should be more advantageous to recommend suitable

substitutes to unhealthy meals. The paper proceeds to compare various

recommendation systems suitable for recipe recommendations. The evaluated

algorithms include combinations of clustering algorithms (through ratings in the

Likert scale) and ingredient similarity measurements, as well as machine learned

algorithms. Advantage was ultimately awarded to the machine learned algorithms,

though little granularity is given to the ingredient weights, since they are being

ranked in binary values, and little experimentation is done in terms of collaborative

filtering beyond clustering models.

 Wagner et al. present a system aimed at improving a user’s cooking

experience as well as incentivizing the preparation of healthy foods [25]. Though

their paper does little beyond recommending the existing system be coupled with a

recommender system, they devise noteworthy methods of extracting data relevant to

 59

recipe recommendation based on skill level: by installing sensors on kitchen utensils,

the system may gauge the skill level of users, such as speed of preparation, allowing

for a better perception and may notice the development of user skills.

 Sobecki et al. attempt to group users by their demographic attributes [74].

Through data extracted from user profiles, specific users are grouped, and recipes

which are well liked by many members of that specific group are propagated to other

members of the same group. Furthermore, rather than the system determining

similarities on its own, this system was fully programmed with over 170 hand written

rules to extract similarity data. The system is ultimately not evaluated, giving little

information as to the efficacy of its recommendations.

 Forbes and Zhu create a system for food recommendation relying solely on

standard collaborative filtering [21]. The system employs both recipe-like correlations

as well as content-based filtering, in terms of ingredients. The system, however,

treats ingredient co-occurrence as a binary value, giving no weight to ingredients

which constitute a greater portion of the recipe. Furthermore, the recipe-like

correlation relies on the Likert scale, which as previously mentioned, suffers from

considerable bias.

 Kuo et al. devise a menu recommendation algorithm, in which recipe

recommendations are translated into a graphing problem to create rather than one

relevant recipe, a number of recipes constituting a menu [26]. Similar values are

coupled via content-based filtering, and placed in a graph; a minimum spanning tree

of the graph is then generated to determine viable recipe combinations, considering

a user’s previously consumed recipes.

 Li et al. propose a distributed peer-to-peer system to recommend recipes

based on flavor [27]. In their systems, users have a reputation score based on their

trustworthiness, and exchange recipes only if their profiles are sufficiently similar.

Recipes are chosen based on their similarity, factoring in specific flavors (such as

salty, sour, sweet, bitter, and umami) as similarity features.

 Finally Teng et al. use data from allrecipes.com to obtain recipe

recommendations [28]. In their paper, they obtain user ratings from the allrecipes

database, and couple recipes through co-similarity scores of recipes, as well as co-

 60

occurrence scores of ingredients. Ingredient granularity, as for previous works, is

binary.

 Although the aforementioned studies make important contributions towards

the recommendation literature, they are limited in their detail for both item similarity,

and collaborative filtering metrics: item similarity when computed is calculated

through binary valued ingredients, rather than taking into account more prominent

values in recipes; this detail comes in useful in instances where recipes like

hamburger and veggie burgers are taken into consideration: both recipes feature

very similar ingredients, though the most prominent ingredient (that is, the patty) is

not relevant enough in the binary model, perhaps leading to some discontent among

vegetarian users. Also, in the aforementioned models, collaborative filtering requires

manual entry of items through the Likert scale, a requirement which will not only lead

to bias, but will suffer from the fact that a number of users will prefer not to interface

with the applications in this manner, leading to a limited dataset.

3.3 Methodology

3.3.1 Refrigerator Model

The smart refrigerator is essentially a refrigerator archetype, embodying all of the

usual features of a refrigerator, coupled with the capability to recommend dishes

based on its use. In order to allow for recommendations, the refrigerator further

possesses storage features, which keep track of food items contained within, as well

as previously consumed recipes. For the purpose of collecting these values, we

have created a simple web-page which interfaces with both Smart Server and the

smart refrigerator to consume this data. The smart refrigerator client then simply

comprises of a refrigerator coupled with a simple embedded computer, capable of

Wi-Fi connectivity, and simple processing capabilities. It should nonetheless be

noted that the capability of implicit data acquisition is a very feasible possibility, and

it has only not been pursued due to insufficient knowledge in the area of electronics.

However, the system could contain a camera to extract information from shopping

receipts [82], and as such determine the food being input into the system.

 Furthermore a scale could be introduced to the system to track food item

weights: in this manner, assuming two items with differing weights, the system can

 61

conclude when one item was removed in lieu of another by calculating the amount of

weight removed from the refrigerator. This method also allows for a user to remove

an item, subtract a portion of that item, and return it to the fridge; this allows for a

fridge to track recipes, as the removal of portions of items may represent part of a

recipe. A full recipe can be represented as all removed ingredients from the time the

fridge door is opened until it is closed.

3.3.2 Device Communication

The smart refrigerator client communicates with two external servers: Smart Server

and the MASHA server. Both forms of communication follow RESTful paradigms

[29]. Communications with the Smart Server comprise the storage of webpages

used to interface with the client, the storage of past recipes for easy retrieval, and

the storage of commands issued by users, to be pulled by the client.

Communications with the MASHA server comprise the following:

1. Creation of a user account for the specific refrigerator.

2. Storage of past recipes for the purpose of computation of

recommendations.

3. Storage of recipe ingredients.

4. Recommendation of recipes.

 Unlike Smart Server, there is no direct retrieval of stored data, and the

storage of data on that server serves merely as metrics to calculate viable

recommendations.

 In order to communicate with the Smart Server, an encryption and decryption

application has been devised to allow smartphone users to access the protected

websites as if they were in a real smart home. All code for the MASHA server, client,

and the encryption and decryption application have been written in the Java

programming language.

 A typical recommendation use case, then, considering the mentioned devices

would be as follows:

1. A user accesses the client webpage via the Smart Server hotspot, using

his smart phone. Dependent on the user’s privileges, he may interact with

the refrigerator differently:

 62

a. A trusted guest will only have access to refrigerator contents, with

solely the ability to add or remove items from the fridge. These

communications are unencrypted.

b. Resident level users and above may add or create recipes to the user’s

recipe set, as well as get recommendations for future recipes. These

communications are encrypted.

2. The user removes items from the fridge, updating the fridge client’s

ingredients as he does so, via the webpage; this is done via a direct,

unencrypted communication 18 with the refrigerator through webpage

requests.

3. The user uses the removed ingredients to make a recipe, utilizing the

webpage to add the new recipe to the Smart Server through encrypted

communication. This specific step may only be employed by residents.

4. The fridge client retrieves commands from the Smart Server periodically

and encounters a new recipe.

5. The fridge client proceeds to update the MASHA server database with the

new ingredient.

6. The fridge client asks the MASHA server for a recommendation for the

user given the new update.

7. The fridge client updates the webpages within Smart Server to contain the

new recommendations, to be consumed to resident level users.

18

 Recipe input commands make use of encrypted communications since perturbation from malicious
sources may cause destructive consequences to the MASHA database. Conversely, the worst effect
a perturbation to ingredient input and removal from the fridge may have is a temporary alteration to
fridge contents. Furthermore, the disclosure of past recipes consumed may be undesirable for users,
whereas the disclosure of simple ingredient interchange may present no discomfort.

 63

 The model for communication among devices and servers mentioned above

is illustrated in Figure 3.1.

Figure 2.1 Device Interconnection in the Smart Home

3.3.3 MASHA Server

As mentioned in Section 3.2 of this chapter, the MASHA server features four main

functions, all of which collectively serve one main purpose: recipe recommendation

to the client. In order to issue the recommendations, different steps are employed,

yielding ultimately 5 dishes to the client for recommended consumption. The entire

process can be divided into two aspects: collaborative filtering and content-based

filtering.

3.3.3.1 Collaborative Filtering Module

The collaborative filtering module utilizes data apposite to past meal consumptions.

This module collects data in regards to recipe co-selection, acquired from standard

fridge operation. Unlike conventional co-occurrence mechanisms, MASHA

assembles the co-occurrence score through the sum of the minimum number of

times each user has prepared both recipes, rather than simply the numbers of users

which have had this co-occurrence arise. For instance, if one user has prepared

recipe A once and recipe B fifteen times, the non-normalized co-occurrence score is

one for that user. Formally, the non-normalized co-occurrence formula is as follows:

 ∑

 Where CAB signifies the co-occurrence of items A and B, O signifies the

occurrence of an item (A or B) for a specific user (u), and U signifies the total

collection of users.

 The method of calculation associated with this algorithm allows for a finer

assessment of a user’s contentment or discontent with a specific item, without

 64

necessitating a user’s direct interaction or the use of any rating scale. A low score

often signifies that a user who enjoys one of the items might not enjoy the other, and

vice-versa. In order to produce a better interpretation given the body of data,

however, this formula must be modified: this simple score alone gives no reference

to the system as a whole. That is to say, we cannot determine if the value is

significant by itself. Intrinsically, the normalized co-occurrence score was produced:

√

where
 signifies the normalized co-occurrence of items A and B, and O signifies

total occurrence between all users, rather than a single user’s occurrence of an item.

This final equation was derived from a modification of the co-occurrence equations

present in both the Youtube (represented as a relatedness score) [16] and Amazon

(represented as a commonality index) [15] recommendation systems. Each of these

values is finally stored in an N by N matrix, containing normalized pairings for all co-

occurrences.

 Finally, the similarity score is calculated via Pearson Correlation Coefficient

between an item’s co-occurrence vector and a user’s equivalent. The user’s

equivalent to a co-occurrence vector simply keeps track of the number of times each

recipe has been eaten. Since Pearson yields results between -1 and 1, and the

hybrid ranking aspect of the recommendation engine requires only positive scores,

one is added to each result. If a specific recipe has been paired with other recipes in

a similar manner to a user’s pairings, it is deemed that the user should enjoy this

specific recipe. For instance, if recipe A has been paired most often with recipes C

and D, and recipe B has been paired most often with recipes E and F, and user U1

has mostly eaten recipes C and D, and user U2 has most often eaten recipes E and

F, we assume U1 should enjoy A, and U2 should enjoy B.

 Figure 3.2 exemplifies the non-normalized User-Recipe matrix and the

Recipe-Recipe matrix, respectively.

 65

[

] [

]

(a) User-Recipe (b) Recipe-Recipe

Figure 3.2 Non-Normalized Collaborative Filtering Matrix Example. (a) An example

representation of each user’s past recipe preparation dataset (i.e.: User 1 has prepared recipe 1,

twice, recipe 2, once, recipe 3, once, and never has prepared recipe 4). (b) An example

representation of the non-normalized co-occurrence matrix between recipes (i.e.: recipe 1 has co-

occurred thrice with recipe 2, five times with recipe 3, and once with recipe 1).

3.3.3.2 Content-Based Filtering Module

For the content-based filtering module we attempt to model the food

recommendation system in an analogous manner to document systems, correlating

an ingredient to a tag, and its physical weight to the virtual weight of the tag. That is

to say, if the recipe for French Fries contains 5 grams of salt, 30 grams of vegetable

oil, and 1 kilogram of potatoes, the tags will be salt, vegetable oil, and potatoes, with

respective weights of 5, 30, and 1000. These values are normalized using Term

Frequency-Inverse Document Frequency, and input into a Recipe-Item matrix.

 Finally, to determine the similarity scores, the Pearson Correlation Coefficient

between each recipe in the database and all of a user’s tried recipes is calculated.

Like the content based filtering module, each value is added to 1, to ensure positive

results are returned. This score is further multiplied by the number of times each of

the user’s recipe has been prepared by the user, in order to properly weigh each

item: the reasoning behind this final weighing is to grant greater significance to

similarities to items which the user enjoys more. This value is finally divided by the

total number of recipes prepared by the user. The formula for this final normalization

is as follows:

∑

∑

where SAU signifies the similarity score for item A for user U, PCC(A, i) signifies the

Pearson Correlation Coefficient between item A and current item i, I represents the

complete list of items, and
 signifies the occurrence of item i for user U.

 66

[

]

Figure 3.3 Non-Normalized Content-Based Filtering Matrix Example. In this specific example,

recipe one contains 500 grams of item 1, 30 grams of item 2, and 5 grams of item 4.

3.3.3.3 Recommendations

Final recommendation is determined by several factors, based on the two

aforementioned filtering methods. However, prior to final ranking, further filtering is

performed: any recipes which have been selected previously or recipes which

contain items that are not present in the fridge are discarded. Finally, ranking is

divided into four sub-categories: hybrid ranking, collaborative filtering ranking,

content-based filtering ranking, and serendipitous ranking [72, 73].

 Hybrid ranking results comprise of the top two scored results of the

multiplication of each item’s collaborative filtering score with its equivalent content-

based filtering score. The reasoning for the previously mentioned addition of 1 to

each Pearson Coefficient calculation for the collaborative filtering and content-based

filtering modules lies in dealing with values where both results are negative, yielding

positive results incorrectly. This hybrid method of computation has been inspired by

the Google News recommendation engine [18], where a similar multiplication takes

place to yield a more through recommendation result, allowing the recommendation

to factor for more items.

 Collaborative filtering ranking consists of the top result of all collaborative

filtering scores, excluding the results selected from the hybrid ranking. This selection

allows for retrieval of items which are well liked by users with similar past choices,

albeit not necessarily similar in ingredients. Content-based filtering ranking produces

the top result of all content-based filtering scores, omitting items selected by the two

previous rankings. This ranking allows for recommendation of items which are

similar in terms of ingredients, but are not necessarily well liked by users with similar

past gastronomic experiences.

 Lastly, serendipitous ranking retrieves an item at the midpoint of the list of

hybrid recommendation scores. Serendipity allows a user to experience items

outside of his comfort zone, lest he only experience very similar items. This allows

 67

for exploration of items which the user might not normally experience due to the fact

the recommendation system factors only similarity for selections. Ultimately, this

permits expansion of a user’s range of gastronomic experiences.

3.4 Evaluation

In this section, we evaluate the efficacy of the recommendation system, alongside

the ease of use of the fridge client, coupled with the Smart Server. For the purpose

of evaluation, we query 20 different users with a choice of their ten favorite dishes,

as well as the frequency with which these dishes would normally be prepared. The

users are then given instructions as to how to install the system, as well as to

populate the MASHA database through the fridge client. The users then assess the

level of difficulty for the installation and use of the system. Finally, the users appraise

the efficacy of the system through a quantitative ranking of results, as well as

qualitative evaluation of their satisfaction with each dish.

 The dishes presented to the users consist of the dish name and the dish

ingredients and weights, and the five modules presented to each user consist of: two

hybrid recommendations, one collaborative filtering recommendation, one content-

based filtering recommendation, and one serendipitous recommendation; these

results are not labeled to the users, and are meant to represent the exact choices

given to the user when the system is fully functional: that is to say, the final

functional MASHA should provide the user with all selections rather than simply the

best one; they should however be presented to the user in order from best to worst,

to allow better usability. This representation is finally meant to gage the proficiency

of the system in terms of recommendation, as well as determine which method of

recommendation prevails in this field.

3.4.1 Installation Results

Users were tasked with following a simple README file, consisting of six short lines.

The necessary steps consisted of simply double clicking, switching windows, typing

a short command consisting of 3 words and a number (“setd refrigerator kitchen 1”),

and manually copying the resulting passkey from one window to another. The

authors attempted to make the process as similar as possible to future manuals

which would be included in products such as a smart refrigerator. The ease of use

 68

was finally evaluated through the Likert scale, where a value of 1 signified very

difficult, and a value of 5 signified very easy; we understand the irony of utilizing the

Likert scale after denouncing it for being ineffective, however it should be noted that

it is sufficiently effective for simpler topics, as is the case in this specific instance of

experimentation. Due to distance impediments, only 10 out of the 20 users were

queried as to the difficulty of installation, as the tester’s physical presence was

necessary to evaluate the installation completion.

 Ultimately, users were content with the ease of use of the applications, some

of them expressing surprise at the ease of installation of a server. Difficulties were

met by some users who were unfamiliar with command-line environments; however,

all users were ultimately able to install StrongHold and the fridge client without

difficulties, all in less than two minutes. The Likert scale ranking averaged at 4.2,

with 4 users rating the installation at very easy (5), 4 users rating it as easy (4), and

2 users rating it as moderate (3). It was generally recommended that a graphical

user interface be implemented rather than command line to further simplify matters.

3.4.2 Usability Results

After the installation, each of the ten users was tasked with populating one recipe in

the MASHA server19. To do so, the users had to open a web-page with the server ip,

concatenated with their user-name, and navigate through it to get to the recipes

page, and then populate a simple form. All users found this process straightforward,

awarding the ease of the process a 5 in the Likert scale. The users further generally

expressed that the method illustrated in this chapter’s Section 3.1, of automating

recipe construction would be incredibly more convenient, though the method in place

is not undesirable on its own.

3.4.3 Recipe Recommendation Results

In order to populate the recipe database, users were asked to present their favourite

dishes, coupled with the frequency with which these dishes were consumed. After all

recipes were populated, users were given the recommendations as exemplified in

19

 The reasoning for the population of a sole recipe rather than all ten is that only one recipe is
necessary to gauge the ease of use. Anything beyond is solely repetition and can be accomplished
by the authors without taking time from the users in this specific instance. Especially so as in normal
use cases, a user should not have to populate more than one recipe at a time (i.e.: during meal
preparation).

 69

Section 3.3.3 of this chapter. In order to evaluate user response to recipes, we

qualitatively compare the first four results with the serendipitous result, treating it

analogously to a random recommendation20. Logically, if the first four results surpass

the random equivalent, they at least suggest some tendency of satisfaction.

Moreover, through the ranking we can determine the best method to establish

recommendations. Finally, users were asked to qualitatively evaluate each of the

results, and whether they manage to represent their tastes.

 The non-random results were generally met with positive reviews, with the

first hybrid recommendation frequently taking first place in the rankings, and the

second hybrid recommendation recurrently taking second. The random

recommendation never attained first rank, consistently placing in the latter half of the

rankings (though it did rank second, once), maintaining the claim that the

recommendations yielded by MASHA express some tendency of like. The

quantitative results are displayed in figure 3.4.

Figure 3.4 Ranking Results. The above histogram represents the number of users who have

preferred each of the recommendation methods in each distinct ranking. For instance, 8 users have

placed the first Hybrid Ranking result as their number one preference, 2 as their second preference, 4

as their third preference, 4 as their fourth preference, and two as their last preference. In this specific

ranking, the lower the preference, the less effective the recommendation.

 Of the two filtering methods, content-based filtering more frequently was

regarded as producing good recommendation by users both quantitatively and

20

 We understand that the serendipitous result is by no means truly random, and typically should
suggest some tendency of like due to its placement in the middle of a ranked preference list. Its
nature however - especially in this small sample size - should represent a value which does not
frequently agree with content or collaborative correlation, representing a somewhat random result.

 70

qualitatively. The reasoning behind this result may be the granularity of both

calculations, with collaborative filtering relying on data from 20 users, whereas

content-based filtering relied on 96 distinct recipes with 156 distinct ingredients.

Users were nonetheless content with the efficacy of both methods, most times.

Content-based filtering and hybrid filtering further managed to weed out meat from

recommendations to vegetarian users, as well as managing to recommend dishes

falling within other users’ dietary restrictions, since dishes containing familiar

ingredients were given more weight than those with dissimilar contents. Conversely,

collaborative filtering results were unable to filter for these users, though they

generally were able to introduce users to desired dishes that did not befall their

previously selected norm.

 Most users were content with their overall recommendations, at times simply

disliking the serendipitous result. In other cases, the serendipitous result proved

useful, as users recognized they had forgotten about a specific favourite dish which

the serendipitous result presented; often, this result deviated significantly from the

user’s selected dish choices, allowing for further variety. In a small number of cases,

users were unhappy with their non-random recommendation choices, with

collaborative filtering being the most common, with four dissatisfying results (three of

which were due to dietary reasons). The second hybrid recommendation came in

second, with three dissatisfying results (one of which consisted a dish a user had not

tried, and as such did not think would be appreciated), and the first hybrid result, in

third, with one dissatisfying result.

 Assuming a numerical sum, wherein a first rank awards a recommendation

method 5 points, a second rank awards 4 points, and so on, the recommendations

rank as follows: The first Hybrid Recommendation and Content-Based

Recommendation tie with a score of 70, the second Hybrid Recommendation follows

closely with a score of 68, Collaborative Recommendation comes next with a score

of 62, and Serendipitous Recommendation comes last with a score of 45. This

ranking method however, is simply provided to allow better perception of the overall

quality of ranking across all methods, and unlike the quantitative equivalent should

be taken with a grain of salt: the hybrid methods place sufficiently well in the first and

 71

second ranking respectively, with the content-based method contending solely

because it is effective across all rankings (i.e.: it is almost equally likely to be chosen

within the first three preferences), though it is not guaranteed to rank highest at all

times like the hybrid methods. This ranking process however, allows seeing just how

far the difference lies between recommended values and the random equivalent,

with the serendipitous method lying at less than 65% efficacy of the best ranking

methods.

3.4.4 Discussion

Ultimately, the recommendation system proved successful, with many users

remarking the need of such a device in their home. All results proved significant, with

the hybrid results ranking highest, followed by content-based filtering, and

collaborative filtering. Collaborative filtering would probably prove most useful, given

a much larger user-base which we were unable to provide for these preliminary

tests. Lastly, not all recommendations are easily accomplished, since an

appropriation for immeasurable variables such as involuntary memory brought by

dishes, such as those famously referenced by Proust [83], must be adopted.

3.5 Future Work

As mentioned prior, a number of items can be further explored in this study: a future

iteration with a greater user-base would be a welcome addition, allowing for a better

understanding of the different recommendations when the number of dishes and

ingredients grows sufficiently large. The user interface of the client and server can

be greatly improved upon to allow easier interaction with the user, and the

refrigerator client can be greatly improved through the scale module, allowing for

easier use. Most importantly, MASHA has only been tested in a laboratory

environment, and would gain from a home environment study, wherein recipes are

entered as dishes are consumed, rather than through a questionnaire. Moreover, it

would be important to explore the possible limitation of the use of MASHA for an

entire family rather than for one user, where dishes would be prepared by one user

for an entire family, and rather than only for her; in such a situation, dishes

recommended would pertain to an average of all users, perhaps appeasing no one.

3.6 Conclusion

 72

The determination of preference from a pre-existing dataset is a challenging

endeavor, pertaining to a field where one solution might not be directly translatable

to other challenges. We design and implement a method capable of automatically

determining culinary preferences based on past eating habits, translated and

combined from current leading recommendation engines from different fields, and

test it on a group of 20 people. From the results we determine both the usability and

efficacy of the method, and show the algorithm allows for satisfactory

recommendations, while requiring minimal effort from the user. We further prove the

facility of interfacing with StrongHold, to further establish the simplicity of installation

and implementation of a smart home.

 73

Chapter 4: Conclusion

4.1 Introduction

This thesis was introduced with two topics in mind, and in a manner each was

crafted to support the other. After all, it is paramount to have a foundation before a

building is erected; or in this specific case, it is important that a communication and

storage method be devised before a system is ready for home use. In finding a lack

of systems that fit our various specific criteria in the literature, we chose to devise

our own. We hoped that such a system could ultimately be utilized in standard home

environments, and further expanded to fit future needs. With that aim in mind, we

resolved a number of challenges:

 The creation of a viable smart home server, capable of protecting a user’s

privacy, confidentiality, all the while maintaining availability.

 The amalgamation of numerous isolated techniques existing in the literature

onto one system.

 The allowance of utilization no more challenging than that pertaining to a

conventional home though a learning algorithm devised for automatic

privilege modification based on the manner of server access.

 A devising of a system with sufficient elasticity necessary to permit

generalization for the use by a variety of devices from differing manufacturers.

 The development of a method to allow fast storage and retrieval to

appropriate for the needs of a smart environment.

 The fabrication of a smart home server presently deployable outside of a

testing environment.

 The creation of an unobtrusive meal recommendation system for the smart

home.

 The advancing of the field of recommendations; specifically an increase in

granularity in the sub-field of recipe recommendations.

 The positing a new more granular method of tag extraction through direct

gram to weight ratio of ingredients rather than previously advanced method of

binary measurements.

 74

 The determination of the most suitable filtering methods to employ in the sub-

field of recipe recommendations.

 Moreover, we provide with the meal recommendation application both a

realistic utilization to the storage infrastructure and a benchmark pertaining to that

infrastructure. Intrinsically, with the devising of the application, we prove the

feasibility of the storage infrastructure. The coupling further provides a container for

the meal recommendation system, allowing a fully symbiotic relationship for both

components.

 We furthermore answered questions as to the usability of the system, and the

speed and functions available by testing the system on realistic benchmarks, and

implementing the system for a representative function: that of a smart refrigerator.

Our conclusive goal was to determine what steps would be necessary to produce a

smart home environment usable by the public, which disallowed any detrimental

actions non-existent in unconnected environments. In doing so we chose and

expounded on possible methods, and presented their practicalities and capabilities.

4.2 Contributions

For the StrongHold portion of the work, we suggest a modification of the resurrected

duckling protocol, with an emphasis on ease of use brought by automated policies,

pre-set by device manufacturers. The logical assumption being that the least amount

of burden left to the home users the better, as a shorter learning curve both

expedites a transition and ensures fewer detractors. Web-page access rather than

separate application access for each device is chosen to lessen saturation, and its

inherent confusion; ease of use is also a powerful motive, since web technologies

are more familiar than standalone applications. Installation is made seamless as to

require minimal user interaction to allow for easier transition from traditional homes.

All communication within the home is secured by AES, and key resets are

obtainable via the so far unbreakable SPEKE; the elasticity of these features allow

manufacturers the ability to establish the use or disuse of AES, as well as the option

to use SPEKE sporadically or continuously. Security is further maintained via the big

stick principle, wherein a home resident must be physically present to grant access

to a new user, and augmented via an automatic escalation process based on the

 75

principle of behavioral learning; that is to say, proper use is rewarded, and improper

use punished. Finally, an optimization algorithm is devised to appropriate sufficient

performance for real time media storage and retrieval. A means of general access

through the use of RESTful APIs is chosen to allow effortless interfacing through any

programming language capable of network communications.

 To ensure the viability of StrongHold in a real home environment, rather than

a laboratory equivalent, a number of tests are devised, including user tests to

determine ease of use. It is ultimately determined that StrongHold is sufficiently

robust to handle high definition streaming in real time, given that a number of

guidelines are followed dependent on file size and type stored. Moreover, it is

concluded that the server is sufficiently easy to install and operate, requiring an

unobtrusively small number of interactions. It is further determined that the

encryption mechanisms put in place have little to no detrimental effects on data

throughput, especially contrasted to transit time in the wireless network; this effect is

further substantiated due to tests being performed in older computers. Through

these results and implementations, we introduce – to our knowledge – the first fully

integrated and generalizable laboratory- and home-ready service aimed at secure

storage, aggregation, and retrieval of data within the smart home.

 Owing to the small amount of research extant on the subject of meal

recommendations, we choose to expand it, as it is a significant issue possibly

allowing for better health-minded dietary recommendations in the future: in doing so,

our focus is to expand the field beyond sole collaborative-filtering, and include a high

level of content-based filtering. We translate filtering and normalization methods

from the document paradigm, and exhibit the effectiveness of the inclusion of a high-

level content-based filtering algorithm on meal recommendation by assessing user

preferences. We also adapt the mechanism to function in a smart environment in

which interactions deviating from the current norm may be burdensome. Finally we

prove the efficacy of the filtering system by demonstrating its effectiveness against a

random equivalent, and rank filtering methods presenting that a hybrid approach,

combining both collaborative- and content-based filtering, is the best option for

effective recommendations.

 76

4.3 Future Work

Though the results presented and solutions postulated are significant, the fields

researched are novel, and as such tests that are truly representative of the

environment in which they should be utilized can by no means be all-encompassing.

As the fields evolve and more data is present, better means of validation and gaging

of viability may be deemed necessary. Nonetheless, as it stands, user studies and

test with a greater number of participants, and in real environments, rather than

laboratory environments should greatly improve the work.

 More robust security experimentation to ensure proper functionality of

StrongHold within such a sensitive realm as one’s home would greatly aid in the

study. As further threats arise, additional effort should be spent to continually secure

StrongHold, since the field of security by no means stands still. Human Computer

Interactions (HCI) is another area in need of improvement, as this work utilized only

command shell interactions; a better means of user interface should greatly

contribute to the work, since ease of use is paramount in the field. A more extensive

learning algorithm for user escalation should also be considered for future versions,

including a means of devices to share trust levels between each other. Lastly,

emergency situations should be further explored to appropriate better resolutions in

situations which necessitate interactions which significantly differ from the norm.

MASHA, currently, is merely a software tool, and lacks the hardware necessary to

be truly unobtrusively incorporated into a smart home. As is, it still requires

excessive interactions for a smart home; a refrigerator which could keep track of

food items inserted and retrieved, and their weights, as presented in chapter 3,

would suffice, though significant hardware effort is necessary to bring it to fruition.

Finally an integration of the meal recommendation service with a dietary-plan

recommendation service should prove a valuable addition to the system, hopefully

aiding in combatting health issues from dietary sources.

 77

Bibliography

[1] M. Weiser. “The computer for the 21st century.” SIGMOBILE Mob. Comput.

Commun. Rev. 3, pp. 3-11, Jul. 1999.

[2] M. Honan. “No One Uses Smart TV Internet Because It Sucks.” Wired.

http://www.wired.com/gadgetlab/2012/12/internet-tv-sucks/, Dec. 27, 2012.

[3] A. Nusca. “Are consumers really asking for smart TVs?” ZDNet.

http://www.zdnet.com/are-consumers-really-asking-for-smart-tvs-7000009479/,

Jan. 7, 2013.

[4] PC Authority, “Whatever Happened to: the Internet-Connected Fridge.”

http://www.pcauthority.com.au/News/152906,whatever-happened-to-the-

internet-connected-fridge.aspx, Aug. 14, 2009.

[5] Sydney Morning Herald, “Failure to Launch.” http://www.smh.com.au/digital-

life/digital-life-news/failure-to-launch-20100120-mk8g.html, Jan. 25, 2010.

[6] D. Pishva and K. Takeda. “A Product Based Security Model for Smart Home

Appliances.” Carnahan Conferences Security Technology, Proceedings 2006

40th Annual IEEE International, pp.234-242, Oct. 2006.

[7] M. Dawson. “Smart Kitchens Could Cook Up a Strong Future.” Realty Times.

http://realtytimes.com/rtpages/20050222_smartkitchens.htm, Feb. 2005.

[8] M. Shiels. “Cisco Predicts Internet Device Boom.” BBC.

http://www.bbc.co.uk/news/technology-13613536, Jun. 2011.

[9] T. H. Kim, L. Bauer, J. Newsome, A. Perrig and J. Walker. “Challenges in access

right assignment for secure home networks.” Usenix HotSec '10, 2010.

[10] L. Compagna, P. El-Khoury, F. Massacci, and A. Saidane. “A dynamic security

framework for ambient intelligent systems: a smart-home based eHealth

application.” In Transactions on computational science X, Marina L. Gavrilova,

C. J. Kenneth Tan, and Edward David Moreno (Eds.). Springer-Verlag, Berlin,

Heidelberg, pp. 1-24, 2010.

[11] M. Hoque, M. Rahman, S. Ahamed and L. Liu. “Trust based security auto-

configuration for smart assisted living environments.” In Proceedings of the 2nd

ACM workshop on Assurable and usable security configuration (SafeConfig '09).

ACM, New York, NY, USA, pp. 7-12, 2009.

http://www.wired.com/gadgetlab/2012/12/internet-tv-sucks/
http://www.zdnet.com/are-consumers-really-asking-for-smart-tvs-7000009479/
http://www.pcauthority.com.au/News/152906,whatever-happened-to-the-internet-connected-fridge.aspx
http://www.pcauthority.com.au/News/152906,whatever-happened-to-the-internet-connected-fridge.aspx
http://www.smh.com.au/digital-life/digital-life-news/failure-to-launch-20100120-mk8g.html
http://www.smh.com.au/digital-life/digital-life-news/failure-to-launch-20100120-mk8g.html
http://realtytimes.com/rtpages/20050222_smartkitchens.htm
http://www.bbc.co.uk/news/technology-13613536

 78

[12] M. Johnson and F. Stajano. “Usability of Security Management: Defining the

Permissions of Guests.” In Proceedings of Security Protocols Workshop, 2006.

[13] D. Lee, G. Kim, J. Han, Y. Jeong, D. Park. “Smart Environment Authentication:

Multi-domain Authentication, Authorization, Security Policy for Pervasive

Network.” In Ubiquitous Multimedia Computing. UMC '08. International

Symposium on, pp.99-104, 2008.

[14] G. Linden, B. Smith and J. York. "Amazon.com recommendations: item-to-item

collaborative filtering." Internet Computing, IEEE , vol.7, no.1, pp.76-80,

Jan./Feb. 2003.

[15] G. Linden, J. Jacobi and E. Benson. “Collaborative Recommendations Using

Item to Item Similarity Mappings.” United States of America. US 6,266,649 B1,

Jul. 24, 2001.

[16] J. Davidson. B. Liebald, J. Lie, P. Nandy and T. Vleet. “The YouTube Video

Recommendation System.” ACM conference on Recommender systems

(RecSys '10), pp. 293-296, Sept. 2010.

[17] A. Das, M. Datar, A. Garg and S. Rajaram. “Google News Personalization:

Scalable Online Collaborative Filtering.” International conference on World Wide

Web (WWW '07), pp. 271-280, May 2007.

[18] J. Liu, P. Dolan and E. Pedersen. “Personalized News Recommendation Based

on Click Behavior.” International conference on Intelligent user interfaces (IUI

'10), pp. 31-40, Feb. 2010.

[19] Y. Koren. “The BellKor solution to the Netflix Grand Prize.” 2009.

[20] A. Toscher and M. Jahrer. “The BigChaos Solution to the Netflix Grand Prize.”

Sept. 2009.

[21] P. Forbes and M. Zhu, M. “Content-Boosted Matrix Factorization for

Recommender Systems: Experiments with Recipe Recommendation.” ACM

Conference on Recommender Systems (RecSys '11), pp. 261-264. Oct. 2011.

[22] M. Phanich, P. Pholkul and S. Phimoltares. "Food Recommendation System

Using Clustering Analysis for Diabetic Patients." Information Science and

Applications (ICISA), 2010 International Conference on, pp.1,8, 21-23 April 2010

 79

[23] J. Freyne and S. Berkovsky. “Intelligent Food Planning: Personalized Recipe

Recommendation.” Conference on Intelligent user interfaces (IUI '10). ACM,

New York, NY, USA, pp. 321-324, Feb. 2010.

[24] J. Freyne, S. Berkovsky and G. Smith. “Recipe Recommendation: Accuracy and

Reasoning.” Conference on User Modeling, Adaption, and Personalization

(UMAP'11). Springer-Verlag, Berlin, Heidelberg, pp. 99-110, 2011.

[25] J. Wagner, G. Geleijnse and A. Halteren. “Guidance and Support for Healthy

Food Preparation in an Augmented Kitchen.” Workshop on Context-awareness

in Retrieval and Recommendation (CaRR '11). ACM, New York, NY, USA, pp.

47-50, Feb. 2011.

[26] F. Kuo, C. Li, M. Shan and S. Lee. “Intelligent Menu Planning: Recommending

Set of Recipes by Ingredients.” Workshop on Multimedia for Cooking and Eating

Activities (CEA '12). ACM, New York, NY, USA, pp. 1-6, Nov. 2012.

[27] Q. Li, W. Chen and L. Yu. “Community-Based Recipe Recommendation and

Adaptation in Peer-To-Peer Networks.” Conference on Ubiquitous Information

Management and Communication (ICUIMC '10). ACM, New York, NY, USA,

Article 18, 6 pages, Jan. 2010.

[28] C. Teng, Y. Lin and L. Adamic.” Recipe Recommendation Using Ingredient

Networks.” Web Science Conference (WebSci '12). ACM, New York, NY, USA,

pp. 298-307, June 2012.

[29] R. Fielding. “Architectural Styles and The Design of Network-Based Software

Architectures.” Ph.D. dissertation, Dept. Inf. And Comp. Sci., Univ. California,

Irvine, CA, 2000.

[30] K. S. Jones. "A Statistical Interpretation of Term Specificity and Its Application in

Retrieval," Journal of Documentation, 28 (1). 1972.

[31] G. Salton, E. Fox and W. Wu. "Extended Boolean Information Retrieval."

Communications of the ACM, 26 (11), 1983.

[32] H. Wu, R. Luk, K. Wong and K. Kwok. "Interpreting TF-IDF Term Weights As

Making Relevance Decisions." ACM Transactions on Information Systems, 26

(3), 2008.

 80

[33] Y. Yan, Y. Qian, H. Sharif. “A Secure Data Aggregation and Dispatch Scheme

for Home Area Networks in Smart Grid.” Global Telecommunications

Conference (GLOBECOM 2011), IEEE. pp.1-6, 5-9, Dec. 2011

[34] T. Manish. “A Location Based Security Implementation in Smart Home.” In Proc.

10th IEEE International Conference on High Performance Computing and

Communications (HPCC '08), IEEE Computer Society, Washington, DC, USA,

pp. 1007-1011, Sept. 2008.

[35] Y. Duan, and J. Canny. “Protecting user data in ubiquitous computing

environments: Towards trustworthy environments.” In Workshop on Privacy

Enhancing Technology, pp. 167-185, 2004.

[36] J. Kim, A. Beresford and F. Stajano. “Towards a security policy for ubiquitous

healthcare systems.” In Proc. of the 1st international conference on Ubiquitous

convergence technology (ICUCT'06), Frank Stajano, Hyoung Joong Kim, Jong-

Suk Chae, and Seong-Dong Kim (Eds.). Springer-Verlag, Berlin, Heidelberg, pp.

263-272, 2006.

[37] F. Stajano. “Security Issues in Ubiquitous Computing.” H. Nakashima, H.

Aghajan, J. C. Augusto (Eds.). Handbook of Ambient Intelligence and Smart

Environments, Springer, 2010.

[38] J. Cornwell, I. Fette, G. Hsieh, M. Prabaker, J. Rao, K. Tang, K. Vaniea, L.

Bauer, L. Cranor, J. Hong, B. McLaren, M. Reiter and N. Sadeh. “User-

Controllable Security and Privacy for Pervasive Computing.” In Proc. of the

Eighth IEEE Workshop on Mobile Computing Systems and Applications

(HOTMOBILE '07). IEEE Computer Society, Washington, DC, USA, pp. 14-19,

2007.

[39] S. Naqvi and M. Riguidel. “Security and trust assurances for smart

environments. In Mobile Adhoc and Sensor Systems Conference.” IEEE

International Conference on, pp.8, pp.234, 7-7, Nov. 2005.

[40] F. Stajano and R. Anderson. “The Resurrecting Duckling: Security Issues for

Ad-hoc Wireless Networks.” In Proc. of the 7th International Workshop on

Security Protocols, Bruce Christianson, Bruno Crispo, James A. Malcolm, and

Michael Roe (Eds.). Springer-Verlag, London, UK, 172-194, 1999.

 81

[41] R. Zhang, X. Wang, R. Farley, X. Yang and X. Jiang. “On the feasibility of

launching the man-in-the-middle attacks on VoIP from remote attackers.” In

Proc. of the 4th International Symposium on Information, Computer, and

Communications Security (ASIACCS ’09). ACM, New York, NY, USA, pp.61-69,

2009.

[42] J. Al-Muhtadi, R. Campbell, A. Kapadia, D. Mickunas and S. Yi. “Routing

Through the Mist: Privacy Preserving Communication in Ubiquitous Computing

Environments.” Distributed Computing Systems, 2002. Proc. 22nd International

Conference on, pp.74,83, 2002.

[43] M. Spreitzer and M. Theimer. “Providing location information in a ubiquitous

computing environment.” In Proceedings of the fourteenth ACM symposium on

Operating systems principles. ACM, New York, NY, USA, pp.270-283, 1993.

[44] M. Liberatore and B. Levine. “Inferring the source of encrypted HTTP

connections.” In Proc. of the 13th ACM conference on Computer and

communications security. ACM, New York, NY, USA, pp.255-263, 2006.

[45] T. Saponas, J. Lester, C. Hartung, S. Agarwal and T. Kohno. “Devices that tell

on you: privacy trends in consumer ubiquitous computing.” In Proc. of 16th

USENIX Security Symposium on USENIX Security Symposium, 2007.

[46] M. Enev, S. Gupta, T. Kohno and S. Patel. “Televisions, video privacy, and

Powerline electromagnetic interference.” In Proc. of the 18th ACM conference

on Computer and communications security. ACM, New York, NY, USA, pp. 537-

550, 2011.

[47] C. Wright, L. Ballard, F. Monrose and G. Masson. “Language identification of

encrypted VoIP traffic: Alejandra y Roberto or Alice and Bob?” In Proc. of 16th

USENIX Security Symposium on USENIX Security Symposium, Niels Provos

(Ed.). USENIX Association, Berkeley, CA, USA, Article 4, pp.1-12, 2007.

[48] Specifications for the Advanced Encryption Standard, Federal Information

Processing Standards Publication 197, October 2, 2012.

[49] D. Jablon. “Strong Password-Only Authenticated Key Exchange.” Computer

Communication Review 26 (5): pp.5–26

 82

[50] J. Daemen and V. Rijmen. “The block cipher Rijndael, Smart Card research and

Applications.” LNCS 1820, Springer-Verlag, pp. 288-296.

[51] D. Landman. “AES Library.” https://github.com/DavyLandman/AESLib, 2013.

[52] J. Lahart. “Taking an Open Source Approach to Hardware.” The Wall Street

Journal.

http://online.wsj.com/article/SB100014240527487034994045745599602714680

66.html, Nov, 2009.

[53] P. MacKenzie. “On the Security of the SPEKE Password-Authenticated Key

Exchange Protocol.” Cryptology ePrint Archive, Report 2001/57, pp. 1-19, 2001.

[54] F. Stajano. “Security for Ubiquitous Computing.” John Wiley & Sons, Ltd, 2002.

[55] S. Nasution, P. Hartel, N. Suryana, N. Azman and S. Sahib. “Trust Level and

Routing Selection for Mobile Agents in a Smart Home.” In Proc. of the 2010

Second International Conference on Computer Modeling and Simulation, Vol. 3.

IEEE Computer Society, Washington, DC, USA, pp. 445-450, 2010.

[56] J. Marc Seigneur, C.D. Jensen, S. Farrell, E. Gray and Y. Chen. “Towards

Security Auto-Configuration for Smart Appliances.” In Proc. of the Smart Objects

Conference, 2003.

[57] APIGEE. “Teach a Dog to REST.”

http://blog.apigee.com/detail/restful_api_design, 2011.

[58] E. Rozier, W. Sanders, P. Zhou, N. Mandagere, S. Uttamchandani and M.

Yakushev. “Modeling the Fault Tolerance Consequences of Deduplication.” In

Proc. of the 2011 IEEE 30th International Symposium on Reliable Distributed

Systems. IEEE Computer Society, Washington, DC, USA, pp.75-84, 2011.

[59] P. Read and M. Meyer. “Restoration of motion picture film. Conservation and

Museology.” Butterworth-Heinemann. pp. 24–26, 2000.

[60] K. Brownlow. “Silent Films: What Was the Right Speed?” Sight & Sound 49 (3):

pp. 164–167, 1980.

[61] D. Wagner and P. Soto. “Mimicry attacks on host-based intrusion detection

systems.” In Proc. of the 9th ACM Conference on Computer and

Communications Security. V. Atluri, Ed. ACM, New York, NY, pp. 255-264, Nov.

2002.

https://github.com/DavyLandman/AESLib
http://online.wsj.com/article/SB10001424052748703499404574559960271468066.html
http://online.wsj.com/article/SB10001424052748703499404574559960271468066.html
http://blog.apigee.com/detail/restful_api_design

 83

[62] GSM Arena. “Samsung Galaxy S4 Technical Specifications.”

http://www.gsmarena.com/samsung_i9505_galaxy_s4-5371.php, 2013.

[63] F. Stajano. “The Resurrecting Duckling - What Next?” In Revised Papers from

the 8th International Workshop on Security Protocols, Bruce Christianson, Bruno

Crispo, and Michael Roe (Eds.). Springer-Verlag, London, UK, pp. 204-214,

2000.

[64] P. Argyroudis and D. O’Mahony. “Securing communications in the smart home.”

in Proc. of International Conference on Embedded and Ubiquitous Computing,

pp. 891-902, 2004.

[65] J. Lindberg and M. Blomberg. “Vulnerability in speaker verification - a study of

technical impostor techniques.” In Proc. of the European Conference on Speech

Communication and Technology, vol. 3, pp. 1211-1214, 1999.

[66] M. Faundez-Zanuy. “On the vulnerability of biometric security systems.” In

Aerospace and Electronic Systems Magazine, IEEE, vol.19, no.6, pp. 3-8, 2004.

[67] Z. Akhtar, G. Fumera, G. Marcialis and F. Roli. “Robustness analysis of

likelihood ratio score fusion rule for multimodal biometric systems under spoof

attacks.” In Security Technology, 2011 IEEE International Carnahan Conference

on, pp.1-8, 18-21, 2011.

[68] C. Brodie, C. Karat and J. Karat. “An Empirical Study of Natural Language

Parsing of Privacy Policy Rules Using the SPARCLE Policy Workbench.” In

Proc. of the Usable Privacy and Security, 2006.

[69] A. Francillon, B. Danev and S. Capkun. “Relay attacks on passive keyless entry

and start systems in modern cars.” In Proc. of NDSS, 2010.

[70] Pandora Internet Radio, www.pandora.com.

[71] W. Hill, L. Stead, M. Rosenstein and G. Furnas. “Recommending and

Evaluating Choices in a Virtual Community of Use,” ACM CHI’95 Conference on

Human Factors in Computing Systems, pp. 194–201, 1995.

[72] L. Cao and M. Guo. "Consistent Music Recommendation in Heterogeneous

Pervasive Environment," Parallel and Distributed Processing with Applications,

pp.495, 501, 10-12, Dec. 2008.

http://www.gsmarena.com/samsung_i9505_galaxy_s4-5371.php
http://www.pandora.com/

 84

[73] J. Herlocker, J. Konstan, L. Terveen and J. Riedl. “Evaluating Collaborative

Filtering Recommender Systems,” ACM Trans. Inf. Syst, pp. 5-53, Jan.2004.

[74] J. Sobecki, E. Babiak, M. Słanina. “Application of Hybrid Recommendation in

Web-Based Cooking Assistant,” International conference on Knowledge-Based

Intelligent Information and Engineering Systems, vol. 3, B. Gabrys, R. Howlett,

L. Jain (Eds.), Berlin, Heidelberg: Springer-Verlag, pp. 797-804, 2006.

[75] M. Montaner, B. Lopez and J. De La Rosa. “A Taxonomy of Recommender

Agents on the Internet,” Artificial Intelligence Review, pp. 285-330, 2003.

[76] K. Iwahama, Y. Hijikata and S. Nishida. "Content-based filtering system for

music data," Applications and the Internet Workshops, pp.480, 487, 26-30, Jan.

2004.

[77] R. Pan, Y. Zhou, B. Cao, N.N. Liu, R. Lukose, M. Scholz and Q. Yang. "One-

Class Collaborative Filtering," ICDM '08. Eighth IEEE International Conference

on, pp.502, 511, 15-19, Dec. 2008.

[78] Y. Koren and R. Bell. “Advances in Collaborative Filtering,” in Recommender

Systems Handbook, 1st ed., vol. 1. F. Ricci, L. Rokach, B. Shapira, P. Kantor,

Eds. United States: Springer, pp.145-186, 2011.

[79] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom and J. Riedl. “Grouplens: An

Open Architecture for Collaborative Filtering Of Netnews,” ACM conference on

Computer Supported Cooperative Work, pp., 175-186, 1994.

[80] J. Schafer, J. Konstan and J. Riedl, J. “E-Commerce Recommendation

Applications,” Data Min. Knowl. Discov., pp. 5, 1-2, 115-153, Jan. 2001.

[81] The Netflix Prize, http://www.netflixprize.com/.

[82] I. Liu, I. Chen and M. Chen. “Le Festin: Shop Sign Recognition Assisted Food

Recommendation System,” Wearable Computers, 2010 International

Symposium on, pp., 1, 8, 10-13, Oct.2010.

[83] M. Proust, “Remembrance of Things Past”, (Transl.: C. K. Scott Moncrieff,

Terence Kilmartin, and Andreas Mayor (Vol. 7). New York: Random House,

1981).

[84] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and P. Bahl, “An

Operating System for the Home,” in NSDI, USENIX, Apr. 2012.

http://www.netflixprize.com/

 85

Appendices

Appendix A Application Programming Interface

This appendix section serves the purpose of expounding on the construct of the

Application Programming Interface of StrongHold, and will be subdivided into the top

level resources, with each subsection further divided into each of the CRUD states.

A.1 The home Resource

Accesses to the sub-URI labeled “home” are accessible by devices to store, retrieve,

create, or delete device data. Device data does not require very rigorous formatting,

and follows two simple rules:

1. Each device data entry should be preceded by an entry ID. This is not a strict

necessity; however, failure to follow this rule will significantly slow down

storage and retrieval times for reasons illustrated in Section 4.2.2 of chapter

2. The ID may consist of any number of alphanumeric characters.

2. Values within an entry are delimited by a plus sign. All entry values may

consist of any number of alphanumeric characters, with no limit to length.

A.1.1 Create

Prior to utilizing the data storage mechanism, folders may be set up to organize data

from the device. A folder is created by POSTing to the home resource. The

secondary resource must contain the location the device is placed within, followed

by the device name. All this data is unencrypted. All queries following the question

mark however, are encrypted if the device’s encryption level is higher than 0. The

reasoning behind this implementation is so that the communications not fall prey to

the same threats WEP fell prey to [51]. Since repeated values in a formatting can aid

an attacker in guessing the encryption of an exchange, we try to keep repeated or

guessable values to a minimum. Due to the fact that a device’s name and location

can be guessed from the originating IP, these values were left unencrypted.

Furthermore, it should be of no real use to the attacker to know which device is

communicating; the data within should be the only value of importance. The data

encryption also serves the secondary purpose of identification: only a device which

knows its key should be able to encrypt the option name. That is to say, only a

 86

device in possession of its own key can properly encrypt “?path=x” in a POST query.

This is verifiable by the server attempting to decrypt the message.

 There exists only one possible query to this method of the resource, and that

query is “path=”. Following “path=” the device is expected to enter the new folder

name to be created. It is recommended that this name be randomized, as it is to be

repeated, assumingly repetitively in home GET queries. As such, if randomization

does not occur, an attacker can more easily guess the encryption key.

 An example of a viable URI for a toaster residing in the kitchen would be:

server_ip:8080/home/kitchen/toaster/?path=new_path

A.1.2 Update

In order to send device data to the server, a device must send an update request in

the form of a PUT. PUT requests are formatted similarly to POST requests, with the

device location following the resource name, and the device name following the

location. Encryption for PUT also functions in the same manner as POST. The only

difference in formatting lies in the options; the possible queries to PUT are as

follows, and are delimited by an ampersand sign:

 path – path represents the folder the data will be placed within. Attempting to

place to non-existent folders results in an error sent back to the device. If a

path is not specified, the data is placed in the top folder for the device.

 data – data represents the data to be stored in the server. As previously

mentioned, it must be delimited by the plus sign, and a preceding ID is

recommended.

 time – if a device is set at level 2 (encryption + nonce), the time option must

be set. This option disallows relay attacks, as current time (with a variability of

30 seconds) must be encrypted somewhere within the message to the server.

Time value is in Unix Time. Section A.4 describes how to acquire current

system time.

 87

 An example of a viable URI for a toaster residing in the kitchen would be:

server_ip:8080/home/kitchen/toaster/?path=path1&data=123+456+1

0111213141516171181920&time=1359446309

A.1.3 Read

To retrieve data stored within the server a device must issue a read request in the

form of a GET. GET requests to home follow the same pattern as create and update

requests, with the options being the only divergent variables. The acceptable queries

for GET are:

 path – the path variable, as in previous instances specifies the folder from

which the data will be retrieved.

 id – the id variable specifies the specific ID (or IDs) to be retrieved. In order to

diminish load to less powerful devices, ID will only return the first ID match. If

the device wishes to return more than one instance of an ID, the ID must be

placed twice within this option, delimited by a plus sign. If the device wishes

to return a span of IDs, the start ID must precede the end ID, and should be

delimited by space. An id value of “*” returns all matches.

 match – the match variable allows one more degree of configuration to the

user, allowing for a match anywhere within the line. If the entry matches the

match variable, that entry will be returned.

 limiting – limiting specifies the maximum number of entries which will be

returned by this query. If unspecified in the query, limiting is set as 1. A

limiting value of 0 returns all matching values.

 offset – offset specifies the displacement from which the retrieval should

begin. For instance, if offset is set to 3, offset will return from the third entry

which matches the query. If unspecified, offset is set to 0.

 An example of a viable URI for a toaster residing in the kitchen would be:

server_ip:8080/home/kitchen/toaster/?path=path1&id=123&match=4

56&limiting=1&offset=0

 Queries to get are returned as JSON objects for easy retrieval of information.

 88

A.1.4 Delete

If a device wishes to delete a specific entry, it may send a DELETE request to the

server. The formatting once more does not change in comparison to create, update

or read except in terms of options. Acceptable queries are as follows:

 path – the path variable, as in previous instances specifies the folder from

which the data will be deleted from.

 id – id follows the same logic in here as in read, and returns id matches.

 match – match follows the same logic here as in read, and returns entries

which match the match variable.

 An example of a viable URI for a toaster residing in the kitchen would be:

server_ip:8080/home/kitchen/toaster/?path=path1&id=123&match=4

56

A.2 The web resource

The “web” resource exists as a means of managing and retrieving web pages and

user data for users. It is through this resource that devices and users may

communicate. Devices may assume the identity of a “user-device” if they wish to

communicate with other devices. That is to say, they must assume their own

username, and may access GET requests if they wish to use the server to inter

communicate. However, through these accesses, they are susceptible to the same

restrictions users follow, including access levels.

A.2.1Create

POST queries in the web resource create the usage policy of a device. Through

sending a POST request, a device may specify what the threshold is for each user

level for the specific device. User levels range from Guest, to Trusted Guest, to

Resident, to Power Resident, to System Administrator. The POST hierarchy is

similar to all home hierarchies, with the device location and device name directly

following “web”. The queries available to web are as follows:

 threshold –threshold dictates the minimum experience threshold to access

this level of the resource. Threshold values should be delimited by + signs,

and if left blank are set to default to 0+75+1500+7500+15000. This value sets

 89

a user as a guest at 0 hours of non-stop access, a trusted guest at 1.5 days,

a resident at 30 days, a power resident at 150 days, and a system

administrator at 300 days. As normal users do not access devices 24/7, the

time to escalation is expected to be much greater than these values in reality.

 level – The level couples threshold with the user level. For instance,

level=0+1&treshold=0+75 makes guest access be at 0 points and trusted

guest at 75 points. If left blank, the coupling defaults to in order coupling,

meaning that each value in threshold will pair with its placement. For

instance, if threshold is set to 0+50+60, level 0 is set to 0, level 1 is set to 50

and level 2 is set to 60.

 An example of a viable URI for a toaster residing in the kitchen would be:

server_ip:8080/web/kitchen/toaster/?level=0+2+4&threshold=0+10

0+5000

A.2.2 Update

Update requests allow devices to set web pages and user data on the server. Those

are achieved via PUT requests. Though the URI is formatted just like the create

method, queries are formatted differently. Also, unlike other resources, delimiting of

options requires three ampersands (i.e.:&&&), and equal signs are likewise tripled

(i.e.: ===) to not conflict with ampersands and equalities extant in JavaScript code.

Following are the available options for update requests:

 level – level specifies which level the user must be to see access this data.

Level ranges from 0 to 4.

 filename – filename specifies the name of the file to be accessed.

 datatype – datatype may be set to data or web. Web files are html files

visible to the user directly by accessing the device. Data files house other

necessary resources, such as images or data which may populate the web

page.

 data – data represents the data which is to be input onto the server. If the

datatype is web, data is expected to contain HTML, JavaScript, and CSS

 90

code. Any instance of “$user$” is replaced with the username when retrieved

by a user.

 An example of a viable URI for a toaster residing in the kitchen would be:

server_ip:8080/web/kitchen/toaster/?level===0&&&filename===hom

e.html&&&datatype===web&&&data===<html><title>hello</title><bo

dy><p>hello world</p></body></html>

A.2.3 Read

Read requests correspond to retrieval of user specific data. URI formatting differs

here from other instances, where the hierarchy is as follows:

/web/username/location/device, where username corresponds to the user’s

username, location corresponds to device location, and device corresponds to

device name. A user may simply access this resource by typing web followed by his

username, whereupon an HTML splash page will direct him to available locations

and devices at his current level. Devices not within the user’s current level will not be

accessible by him and will return an error. Requests are not encrypted, but data

returned form the server is. Options are as follows:

 filename – filename refers to the file to be accessed. A blank filename will

retrieve home.html

 datatype – datatype refers to the datatype to be retrieved. This value can be

data or web.

 An example of a viable URI for a toaster residing in the kitchen accessed by

newuser would be:

server_ip:8080/web/newuser/kitchen/toaster/?filename=home.html

&datatype=web

A.3 The password Resource

The “password” resource exists to reset the user’s password via SPEKE. Only a

PUT request option exists for this resource. To reset a password, the familiar URI

consisting of the resource name followed by device location, followed by device

name is used. The only available option is speke_b, and that must be encrypted.

The encryption of this variable simply exists to ensure the device is who it says it is,

 91

as only the device should be able to encrypt the words speke_b, followed by the

SPEKE B variable, correctly. The SPEKE A variable is returned by the server. The

new key is calculates as follows:

K = (g
a
 mod p)

b
 mod p

Where K is the new key, a is SPEKE A, B is SPEKE B, p is a large prime integer,

and g is calculated as follows:

G = hash(previous key)2 mod p

Where hash represents the addition of each of the characters within the password

multiplied by 256i, where i is the character location within the string.

 An example of a viable URI for a toaster residing in the kitchen would be:

server_ip:8080/password/kitchen/toaster/?speke_b=13579

A.4 The time Resource

A “time” resource request retrieves the current system time at the server. The time

resource only consists of a GET request. If the device or user wishes for this request

to be returned encrypted by the device or user key, they merely require appending

the location followed by the device name or the user name, respectively, in the URI,

delimited by a forward slash.

 An example of a viable URI for a toaster residing in the kitchen would be:

server_ip:8080/time/kitchen/toaster

A.5 The storage Resource

The “storage” resource allows users of resident level or above to send commands to

devices, using StrongHold as temporary storage for the commands until pulled by

the device. This method disallows sleep deprivation attacks on devices. The

reasoning behind allowing only password enabled users (resident level and above)

to use this resource is so rogue users may not flood StrongHold with requests, and

thus flood the disk, denying service to normal users. Storage, from a user

perspective, should only logically be accessed via a device-written webpage on the

web resource, as it is too complex for a user to access manually.

A.5.1 Read

In order to pull requests from users, a device may issue a GET request from

StrongHold. Commands are returned in JSON format, and deleted from the server

 92

upon retrieval. Both request and options are encrypted by the device’s key. The URI

formatting mirrors all URI formats from the home resource, and the options are as

follows:

 limiting – limiting selects the number of requests to retrieve. If limiting is not

set, all commands are retrieved.

 level – level specifies to retrieve commands only from the selected user level.

Commands are returned from highest level to lowest level in order. If level is

not specified, all levels are returned.

 An example of a viable URI for a toaster residing in the kitchen would be:

server_ip:8080/storage/ kitchen/toaster/?limiting=1&level=3

A.5.2 Update

A user may push requests onto the server for a device by issuing a PUT request to

the server. The URI is formatted like the read request for the web resource,

however, options in this instance are encrypted, and differ as follows:

 data – data represents the commands to be stored.

 time – the time variable here is similar to the time variable for the PUT

request in the home resource. It serves as a nonce to avoid relay attacks, and

time must be within 30 seconds of server time. Furthermore, time disallows

duplicate requests, so that a duplicate request with the same data sent from

the same time is rejected.

 An example of a viable URI for a toaster residing in the kitchen accessed by

user newuser would be:

server_ip:8080/storage/newuser/kitchen/toaster/?data=toast+bre

ad+medium&time=1359446309

