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Abstract

Bit-interleaved coded modulation (BICM) is a very popular approach

for spectrally efficient coded transmission. In BICM, the channel encoder

is separated from the modulator by a bit level interleaver. The presence

of a random interleaver in BICM allows the designer a flexibility to inde-

pendently choose the code rate and the modulation order. This allows an

easy adaptation of the transmission rate to the channel conditions. BICM

maximizes the code diversity, and therefore, is a superior alternative to the

conventional trellis coded modulation (TCM) in fading channels. In addi-

tive white Gaussian noise (AWGN) channels, BICM is suboptimal because

it reduces the minimum Euclidean distance. However, its flexibility and

ease of implementation makes it an attractive scheme even for transmission

over non-fading channels. The objective of this thesis is to investigate and

optimize new BICM designs in order to further improve the BICM-based

transceivers. First, we develop an analytical framework for performance

evaluation of a new generalized BICM (referred to as BICM-T) transmis-

sion over AWGN channels that can be used to predict and optimize the error

rate performance of such systems. Second, we investigate the performance

of BICM in non-Gaussian channels due to its practical relevance. Moreover,

because of its various advantages in designing a wireless transceiver, we real-
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Abstract

ize that a BICM-based transceiver will be the natural choice for cooperative

communication systems. Therefore, we present an innovative BICM design

for cooperative communication where various BICM modules can be opti-

mized jointly considering the average signal to noise ratios of the direct and

the two-hop Rayleigh fading channels. The results presented in this thesis

show that by optimizing different system modules of our proposed BICM

designs, significant gains in the bit error rate (BER) performance can be

achieved.
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Chapter 1

Introduction

1.1 Background

Over the past years, the growing demand for high data rate and reliable

services has led to the need for the design of efficient communication systems.

The main hurdle in wireless communication is the time varying nature of

the communication channels which is referred to as fading. In order to

combat this fading effect and to increase the data rate, error control coding

[1] in conjunction with signal modulation scheme is used. In almost any

communication system, the channel encoder is a very important part of

the transmitter. The purpose of the channel encoder is to introduce, in a

controlled manner, some redundant symbols in the information sequence.

This redundant information can be used at the receiver to overcome the

effects of noise and interference encountered during the transmission of the

signal through the channel.

Channel coding and signal modulation were considered separately in the

design of early communication systems. Coded modulation was brought

into focus by the pioneering work of Ungerboeck on TCM [2]. In order to

maximize the minimum Euclidean distance of the code [2] in TCM, trellis

codes are combined with modulation through set partitioning labeling. In
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1992, in his landmark paper, Zehavi showed that the diversity of the code is

improved by decoupling the channel encoder and the modulator resulting in

more reliable communication over fading channels [3]. Zehavi’s idea was to

make the code diversity equal to the smallest number of distinct bits along

any error event which is achieved by using a bit-level interleaver at the

output of the encoder. This coded modulation scheme is known as BICM.

Since BICM separates the channel encoder from the modulator by a bit

level interleaver, it also offers the designer a flexibility to choose the code

rate and signal modulation independently. After its introduction in Zehavi’s

landmark paper [3], BICM has been widely generalized by Caire et. al. in

[4]. Because of this simplicity and flexibility, BICM has become a standard

for many contemporary wireless standards e.g., HSPA [5], IEEE 802.11a/g

[6], IEEE 802.11n [7] and the DVB standards such as DVB-T2 [8].

1.2 Objectives and Contributions

The objective of this thesis is to investigate and optimize new BICM

designs in order to further improve the BICM-based transceivers. First,

we develop an analytical framework for performance evaluation of a new

generalized BICM transmission over AWGN channels that can be used to

predict and optimize the error rate performance of such systems. Second,

we investigate the performance of BICM in non-Gaussian channels due to its

practical relevance. Moreover, because of its various advantages in designing

a wireless transceiver, we realize that a BICM-based transceiver will be

the natural choice for cooperative communication systems. Therefore, we

2
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present an innovative BICM design for cooperative communication where

various BICM modules can be optimized jointly considering the average

signal to noise ratios of the direct and the two-hop Rayleigh fading channels.

In the following, we provide a brief review of the above mentioned objec-

tives. The detailed review of previous research on each topic can be found

in the “Introduction” section of corresponding chapter(s).

1.2.1 Performance Evaluation of BICM Transmission over

AWGN Channels

Recent results [9, 10] have shown that the performance of BICM using

convolutional codes in non-fading channels can be improved significantly

when interleaver is removed from the BICM design. This design is referred

to as BICM trivial (BICM-T) which has been formally analyzed in [9] and is

shown to be asymptotically as good as Ungerboeck’s one dimensional (1D)-

TCM. However, due to the use of equally spaced (ES) signal constellation in

the design, where the distance between neighbouring signal points is equal,

it leads to a suboptimal BICM-T transceiver as the BER performance can

be further improved by providing proper unequal error protection (UEP)

to the coded bits [11, 12]. Moreover, design and analysis of a more general

setup, where the number of outputs from the encoder does not match with

the number of inputs to the modulator, are not considered. For such a

generalized setup, the important question is how to connect the channel

encoder to the modulator in order to minimize the BER performance.

In [12], the performance of BICM transceiver is optimized by using hi-

erarchical constellations, a bit-level multiplexer and multiple interleavers.

3
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Motivated by the results presented in [12], in this thesis we consider an

innovative BICM-T transceiver by using a bit-level multiplexer and hier-

archical constellations. Using the considered more generalized design, the

designer can not only exploit different degrees of freedom to notably im-

prove the BER performance of BICM-T design but also enjoys the same

design flexibility as the traditional BICM to independently choose the code

rate and the modulation order. The performance of the considered BICM-T

transceiver is analyzed. In particular, we develop the union bounds (UBs)

on the BER of the system for AWGN channels, which are then used to

optimize the constellation parameters as well as multiplexer.

1.2.2 Performance Evaluation of BICM Transmission over

non-Gaussian Channels

In many physical channels, such as power line communication channels

[13], the ambient noise is known through experimental measurements to be

non-Gaussian due to the impulsive nature of man-made electromagnetic in-

terference as well as a great deal of natural noise. While the traditional

BICM and the BICM-T systems have been investigated and optimized for

AWGN channels [9–12], the analysis of BICM transmission impaired by

non-Gaussian noise has received relatively little attention [14–16]. In par-

ticular there is a need to investigate the performance of BICM-T system for

Gaussian mixture noise (GMN) channels.

In BICM-T, a number of consecutive coded bits are transmitted using

the same symbol (due to the absence of random interleaver) and the corre-

sponding L-values are mutually dependent. Therefore, a different particu-
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larization (e.g., [9]) is adopted to calculate the L-values at the receiver. In

particular, using a zero-crossing model [9], closed form expressions for the

probability density function (PDF) of L-values are developed in terms of

constellation distance parameters of the hierarchical quadrature amplitude

modulation (HQAM). As in [14] it is assumed that the system employs the

standard Euclidean-distance decoder, which is an instance of mismatched

decoding [17] in the presence of GMN. We develop the UB on BER per-

formance of the BICM-T design for GMN channels which is then used to

optimize different modules of the BICM-T system over such channels.

1.2.3 Optimization of BICM-Based Cooperative

Communication System

Cooperative wireless communication has gained much interest in recent

years as it improves the overall system performance [18–20]. On the other

hand, BICM [3] offers many advantages in designing wireless transceiver

and is a de-facto standard for most of the contemporary wireless systems.

Therefore, BICM-based transceiver will also be the natural choice for coop-

erative communication systems. Significant research has been conducted to-

wards designing BICM-based transceivers for single-hop systems. However,

to date, a little research has been conducted towards designing BICM-based

transceiver for cooperative communication systems. But none of the works

considered the possibility of optimizing interleaver and constellation.

In single-hop communication, in order to optimize the multiplexer and

constellation, the transmitter considers the average signal-to-noise ratio

(SNR) of the point-to-point link only. However, due to the inherent nature

5
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of the cooperative communication system, optimization of the multiplexer

and constellation is different from the single-hop systems. For example,

when the source transmits information to the destination and the selected

relay (which then forwards the detected symbols to the destination), it has

to optimize the multiplexer and constellation jointly considering average

SNRs from the destination and the relay. Also the relay should optimize its

constellation when forwarding the detected symbols to the destination.

In order to exploit the full benefit of BICM in the context of cooperative

communication, with the proposed framework different BICM modules can

be optimized jointly considering the average SNRs of the source-destination

channel and the two-hop relay channels. As such the full benefit of BICM

can be exploited in the context of cooperative communication.

1.3 Summary

This thesis addresses several topics in design and performance analysis of

BICM-based transmission systems. The main contributions are divided into

three chapters. In Chapter 2 we develop an analytical framework for perfor-

mance evaluation of generalized BICM transmission over AWGN channels

that can be used to predict and optimize the performance of such systems.

In Chapter 3, we analyze the performance of BICM-T transceiver over non-

Gaussian channels. In Chapter 4, we proposed a new BICM-based system

for cooperative communication where different BICM modules can be op-

timized jointly considering the average signal to noise ratios of the direct

and the two-hop Rayleigh fading channels. Moreover, in Chapter 5, the

6
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summary of contributions and proposals for further research are offered.
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Chapter 2

Generalized and Optimal

BICM Transceivers for

AWGN Channels1

2.1 Introduction

In traditional BICM [3, 4], the channel encoder is connected to the mod-

ulator via a bit-level interleaver and at the receiver’s side, reliability metrics

for the coded bits (L-values) are calculated by the demapper which are then

de-interleaved and fed to the binary decoder. The presence of a random in-

terleaver in BICM allows the designer a flexibility to independently choose

the code rate and the modulation order. Due to its advantages in fading

channels over other CM schemes e.g., TCM [2] and multilevel coding [21],

BICM is a de-facto standard for many contemporary wireless systems , e.g.,

1A part of this chapter has been accepted for publication. M. T. Malik, Md. J. Hossain
and M.-S. Alouini, “Generalized BICM-T Transceivers: Constellation and Multiplexer
Design”, IEEE Intl. Sym Personal, Indoor and Mobile Radio Commun., Accepted for
Publication, June 2013.
A part of this chapter has also been submitted to a journal. M. T. Malik, Md. J. Hossain
and M.-S. Alouini, “Analysis and design of generalized BICM-T transceivers”, IEEE
Trans. Commun., Submitted July 2013.
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HSPA, IEEE 802.11a/g, IEEE 802.16, and DVB-S2. In non-fading channels,

compared with TCM, BICM gives a smaller minimum Euclidean distance,

and also a smaller constraint capacity [4]. However this capacity loss is small

when a constellation with Gray labelling is used. As such BICM is still con-

sidered as a valid option for CM over non-fading channels. Moreover, due

to the random interleaver, the performance analysis of BICM is simplified.

Recent results [9, 10] have shown that the performance of BICM using

convolutional codes in non-fading channels can be improved significantly

when interleaver is removed from the BICM design. This design is referred

to as BICM-T which has been formally analyzed in [9] and is shown to be

asymptotically as good as Ungerboeck’s one dimensional (1D)-TCM. The

authors in [9] considered the BICM-T design and analysis for a simple case

where a code rate of 1/2 with 16-ary QAM constellation is used. For this ele-

mentary example, the authors showed that the BER performance of BICM-T

can be improved significantly over the traditional BICM design in non-fading

channels. However, due to the use of ES signal constellation in the design,

where the distance between neighbouring signal points is equal, it leads to

a suboptimal BICM-T transceiver as the BER performance can be further

improved by providing proper UEP to the coded bits [11, 12]. Moreover, de-

sign and analysis of a more general setup, where the number of outputs from

the encoder does not match with the number of inputs to the modulator,

are not considered. For such a generalized setup, the important question is

how to connect the channel encoder to the modulator in order to minimize

the BER performance.

In [12], the performance of BICM transceiver is optimized by using hi-

9
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erarchical constellations, a bit-level multiplexer and multiple interleavers.

Motivated by the results presented in [12], in this research we consider2 an

innovative BICM-T transceiver by using a bit-level multiplexer and hier-

archical constellations. Using our considered more generalized design, the

designer can not only exploit different degrees of freedom to notably im-

prove the BER performance of BICM-T design but also enjoys the same

design flexibility as the traditional BICM to independently choose the code

rate and the modulation order. This design flexibility makes the generalized

BICM-T design appealing compared to other CM for easy rate adaptation in

frequency selective multicarrier non-fading channel where different carriers

can have different channel qualities, (see for example [22]) and quasi-static

fading channel where the channel remains constant over the length of a data

frame, and varies independently from frame to frame (see for example [23]).

The performance of the considered BICM-T transceiver is analyzed. In

BICM-T, a number of consecutive coded bits are transmitted using one

symbol (due to the absence of random interleaver) and the corresponding

likelihood values (L-values) are mutually dependent. Therefore, a different

particularization as in [9] is adopted to calculate the L-values at the receiver

in terms of constellation distance parameters. In particular, using a zero-

crossing model introduced in [24], we develop closed form expressions for

the probability density function (PDF) of L-values in terms of constellation

distance parameters of the hierarchical quadrature amplitude modulation

2The presented design combines the well known techniques in [9, 12]. However, to the
best of our knowledge, they have not been analyzed and optimized in this combination
for a generalized scenario and the non-Gaussian noise considered in this thesis.

10



2.2. Proposed BICM-T Transceiver

(HQAM). These PDFs are used to develop the UBs3 on the BER of the

system for additive white Gaussian noise (AWGN) channels, which are then

used to optimize the constellation parameters as well as the multiplexer.

Presented results for 64-ary QAM with rate 1/3 code shows that the con-

sidered design can offer gains up to 2.5 dB over the optimal BICM design

for a target bit error rate (BER) of 10−6.

Notations: All through this chapter, boldface letters bt = [b1,t, . . . , bN,t]

are used to denote row vectors of length N and capital boldface letters

B = [bt
1, . . . , b

t
M ]t to denote a matrix of M rows, where (·)t represents

transposition. The total Hamming weight of a binary matrixB is denoted by

dH(B). Random variables are represented by capital letters B. Probability

is denoted by Pr(·) and the PDF of a random variable Z by pZ(z). The

convolution between two PDFs is represented by pZ1(z)∗pZ2(z) and pZ(z)∗m

represents the m-fold self convolution of the PDF pZ(z). The Gaussian

function with mean µ and variance σ2 is defined as ψ(z;µ, σ) , 1√
2πσ

exp
(
−

(z−µ)2

2σ2

)
, and the Q-function as Q(x) , 1√

2π

∫∞
x exp

(
−u2/2

)
du.

2.2 Proposed BICM-T Transceiver

The model of our considered HQAM-BICM-T system is shown in Fig. 2.1.

Next we describe operation of different blocks of this transmission scheme.

3All the UBs developed in the thesis are approximated UBs because they are developed
using the approximated PDFs o L-values.

11



2.2. Proposed BICM-T Transceiver

2.2.1 Encoder and Multiplexer

The kc vectors of data bits uj = [uj,1, . . . , uj,Nc ] with j = 1, . . . , kc are

encoded by a convolutional encoder (ENC) of rate R = kc/n to yield the

vectors of coded bits ĉl = [ĉl,1, . . . , ĉl,Nc ] with l = 1, . . . , n. A bit level mul-

tiplexing unit (MUX) bijectively maps Ĉ = [ĉt
1, . . . , ĉ

t
n]t from the encoder

output onto C = [ct
1, . . . , c

t
q]

t with ck = [ck,1, . . . , ck,Ns ] and k = 1, . . . , q.

Without losing generality, we suppose that nNc = qNs. The k-th MUX

output is linked to the k-th bit position of a modulator which maps the

multiplexed coded bits ck onto symbols using M -ary HQAM constellations

labelled by the binary reflected Gray code (BRGC) [25], where q = log2M .

In general, the MUX is defined as a one-to-one mapping between the

blocks of nNc and qNs bits, i.e., {0, 1}n×Nc ↔ {0, 1}q×Ns . We define it by

using a n×Nc matrix K̃, as in [12], with k ∈ {1, . . . , q} and t ∈ {1, . . . , Ns},

indicating that the bit ĉl,t′ is assigned to the k-th MUX’s output (i.e., k-

th bit position in the modulator) at time instant t, i.e., ck,t = ĉl,t′ . This

definition of the MUX is completely general but hard to deal with, and

therefore, we only consider MUX configurations that function periodically

over blocks of nJ bits. Hence, we write K̃ as a concatenation of Nc/J

matrices Kτ , each having dimensions n × J and τ = 0, . . . , Nc/J − 1,

i.e., K̃ = [K0, . . . ,KNc/J−1], where J is the period of MUX. The elements of

Kτ are (k, t+ τnJ/q) where t ∈ {1, . . . , nJ/q} and k ∈ {1, . . . , q}. Without

losing generality, we suppose that (Nc mod J) = 0 and that (nJ mod q) = 0.

Consider the following example to clarify these definitions.

Example 2.1. Suppose kc = 1 and J = 3. Consider a 8-ary constellation

12
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Hierarch. 

M-PAM 

Mapper ukc 
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Figure 2.1: System model of the BICM-T transceiver. A channel encoder
is followed by the multiplexer (MUX), hierarchical M -PAM modulator,
AWGN channel, hierarchical M -PAM de-modulator, demultiplexer (DE-
MUX), and decoder at the receiver side.

(q = 3) and rate R = 1/2 (n = 2) encoder. For this case, one possible MUX

configuration can be

Kτ =

 (1, 1 + 2τ) (2, 1 + 2τ) (3, 1 + 2τ)

(3, 2 + 2τ) (2, 2 + 2τ) (1, 2 + 2τ)

 , (2.1)

which results in the following MUX

K̃ =

 (1, 1) (2, 1) (3, 1) (1, 3) (2, 3) (3, 3) . . .

(3, 2) (2, 2) (1, 2) (3, 4) (2, 4) (1, 4) . . .

 .
The one-to-one mapping between Ĉ and C is then

Ĉ =

 ĉ1,1 ĉ1,2 ĉ1,3 ĉ1,4 ĉ1,5 ĉ1,6 . . .

ĉ2,1 ĉ2,2 ĉ2,3 ĉ2,4 ĉ2,5 ĉ2,6 . . .



⇐⇒ C =


c1,1 c2,3 c1,4 c2,6 . . .

c1,2 c2,2 c1,5 c2,5 . . .

c1,3 c2,1 c1,6 c2,4 . . .

 . (2.2)
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2.2. Proposed BICM-T Transceiver

Since Kτ matrix is a permutation of the set {1, . . . , nJ/q} × {1, . . . , q},

one can create (nJ)! different matrices Kτ . However, this number can be

reduced since trivial operations can be applied to Kτ without affecting the

system performance as explained in [12].

We note that while the matrices resulting from trivial operations can be

abandoned, the sole way to find the optimal matrix of the available non-

trivial matrices Kτ , for a given modulation order and code rate, is through

the BER-criterion we develop in Section 2.5. To ease the notation, for the

rest of this chapter we will refer to the matrix Kτ as K.

2.2.2 H-PAM Constellations

We consider HQAM constellations with BRGC labelling presented in

[26]. In such constellations, each symbol can be represented by superpo-

sition of independent real/imaginary parts, so we consider an equivalent

M -ary hierarchical pulse amplitude modulation (HPAM) constellation. The

multiplexed coded bits ck,t from the MUX output at any time instant t are

mapped to a HPAM symbol xt ∈ X = {xt,0, . . . , xt,M−1} using a memoryless

mapping M : {0, 1}q → X.

The HPAM constellations (for example see Fig. 2.2 for 8-HPAM) are

defined by the distances dk with k = 1, . . . , q. In this figure, black circles

represent the M signal constellation points and the triangles/squares are

“virtual” symbols that assist the understanding of HPAM signal constella-

tion. The bit position of the binary labelling is denoted by k = 1, . . . , q,

where k = 1 represents the most significant bit. At first, the bit value for

the position (k = 1) chooses one of the squares in Fig. 2.2. Then the bit

14
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2d2 

2d1 

000 

x0 x1 x2 x3 x4 x5 x6 x7 

2d3 

001 011 010 110 111 101 100 

Figure 2.2: HPAM (M = 8) constellation with BRGC labelling.

value for the position (k = 2) chooses one of the two triangles surrounding

the previously selected square. Finally, given the bit values for first two bit

positions, the bit value for the least significant bit (k = 3) selects one of

the two black symbols surrounding the triangle selected previously which is

then transmitted to the receiver.

We use a vector b(m) = [b1(m), . . . , bq(m)] to represent the binary rep-

resentation of integers 0 ≤ m ≤M − 1, where the most significant bit of m

is b1(m) and the least significant bit is bq(m). Therefore we can write the

HPAM constellation elements xm ∈ X as

xm =

q∑
k=1

(−1)bk(m)−1dk. (2.3)

The normalized signal constellation parameters are defined as

αk ,
dk+1

d1
, (2.4)

with k = 1, . . . , q − 1. The average symbol energy for equiprobable sym-

bol transmission using (2.3) is given by Es = d2
1(1 +

∑q−1
k=1 α

2
k) with αk is

defined by (2.4). All through this thesis, the constellation is considered

to have normalized unity energy, which results in the following expression

15



2.2. Proposed BICM-T Transceiver

d1 = (α2
1 + α2

2 + . . .+ α2
q−1 + 1)

−1/2
. The following extra constraints on the

values of αk must be added to restrict the HPAM constellation to BRGC

[12],

αk ≥
q−1∑
j=k+1

αj ,

q−1∑
k=1

αk ≤ 1, αq−1 ≥ 0, (2.5)

with k = 1, . . . , q − 1.

An inspection of the BRGC for HPAM (Fig. 2.2) shows that, depending

on the bit position, BRGC offers UEP [11] to the transmitted bits. In

particular, the bit at the most significant bit position (k = 1) receives the

highest level of protection whereas the bit at the least significant bit position

(k = q) receives the lowest level of protection. Moreover, a bit labeled by one

for bit position (k = 2) in Fig. 2.2 (inner constellation points) will receive

less protection than the bit labeled by zero transmitted in the same bit

position (outer constellation points). Therefore, for k = 2, the binary-input

soft-output (BISO) channel is asymmetric. To simplify the analysis, we use

a similar approach to “symmetrize” the channel as used in [9]. The bits ck

from the MUX output are randomly inverted before mapping to the HPAM

symbol, i.e., c̃ = c ⊕ s = [c̃1, . . . , c̃Ns ], where the entries of the matrix s =

[st
1, . . . , s

t
Ns

] ∈ {0, 1}q×Ns , with st = [s1,t, . . . , sq,t], are random vectors of bits

and ⊕ is modulo-2 element-wise addition. Such a scrambling symmetrizes

the BISO channel but it does not eliminate the UEP. We introduce this

scrambling to facilitate the analysis, hence, it is not included in the BICM-

T transceiver (in Fig. 2.1) nor used for simulations. We will see in Section 2.5

that the UB developed by using such symmetrization matches perfectly with
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2.2. Proposed BICM-T Transceiver

the numerical simulations.

The real part of the signal received from the source is yt = xt+nt where

nt is an AWGN noise with variance N0/2, xt represents the transmitted

symbol, and xt, yt, nt ∈ <. Since we have unit average transmitted symbol

energy, SNR is given by γ , Es/N0 = 1/N0. The receiver (REC) computes

the L-values using the received signal which for the bit position k, is given

by [9],

l̃k,t = log
pYt(yt|C̃k,t = 1)

pYt(yt|C̃k,t = 0)
, (2.6)

from which we have,

pYt(yt|c̃k,t = u) =
exp(ul̃k,t)

1 + exp(l̃k,t)
, (2.7)

with u ∈ {0, 1}. Since c̃t = ct ⊕ st, we can write

lk,t = (−1)sk,t l̃k,t, (2.8)

i.e., to reverse the scrambling, the sign of the L-values is altered by (−1)sk,t .

These L-values are reorganized by the demultiplexer unit (DEMUX) which

performs the reverse operation done by the MUX. The resulting vectors of

L-values are sent to a soft input Viterbi decoder [27] which estimates the

transmitted information bits from the source.
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2.2. Proposed BICM-T Transceiver

2.2.3 Decoder and the Decoding Errors

The MUX determines the correspondence between the encoder’s output

and the modulator’s input. A binary codeword from the encoder’s output is

converted to an equivalent codeword at the MUX’s output i.e., the modula-

tor’s input. Therefore we define the combination of the ENC and the MUX

as an equivalent encoder (cf. Fig. 2.1). Similarly on the receiver side, the

DEMUX and the DEC make an equivalent decoder (cf. Fig. 2.1). Using the

vector of channel observations y = [y1, . . . , yNs ] at the receiver, the equiv-

alent decoder chooses the most likely sequence c′ of the multiplexed coded

bits c using a bit level metric [9], i.e.,

c′ = argmax
c̄∈Ceq

{
log

Ns∏
t=1

pYt(yt|C1,t = c̄1,t) · · · pYt(yt|Cq,t = c̄q,t)

}
(2.9)

= argmax
c̄∈Ceq

{
Ns∑
t=1

q∑
k=1

log pYt
(yt|Ck,t = c̄k,t)

}
, (2.10)

where Ceq is the equivalent set of binary codes. Using a similar expression

to (2.7), we can write (2.10) as

c′ = argmax
c̄∈Ceq

{
Ns∑
t=1

q∑
k=1

c̄k,tlk,t −
Ns∑
t=1

q∑
k=1

log(1 + exp(lk,t))

}
(2.11)

= argmax
c̄∈Ceq

{
Ns∑
t=1

q∑
k=1

c̄k,tlk,t

}
, (2.12)

where the second term in (2.12) is not relevant to the decoder’s decision

because it is independent of c̄.

The decoder makes a false decision based on (2.12) if, instead of the
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transmitted equivalent codeword c, it detects a codeword c′. The probability

of this event is so called pairwise error probability (PEP) and given by

PEP(c→ c′) , Pr

{
Ns∑
t=1

(c′1,tl1,t + · · ·+ c′q,tlq,t)

≥
Ns∑
t=1

(c1,tl1,t + · · ·+ cq,tlq,t)

}
(2.13)

= Pr

{
Ns∑
t=1

(e1,tl1,t + · · ·+ eq,tlq,t) ≥ 0

}
(2.14)

where we represent elements of the “error” codeword (e = c′ − c) as ek,t.

We note that q consecutive multiplexed coded bits for each time t are

transmitted using same symbol xt over same channel and noise realization.

Therefore, in the PEP expression (2.14), each sequence l1, l2 · · · , lNs con-

tains q dependent L-values. As such, a different approach as used in [9] must

be adopted to calculate the PEP. In the next section, we describe how to

evaluate the performance of our considered BICM-T design.

2.3 Performance Evaluation

As the channel is symmetric due to scrambling, we assume that the

source transmitted a codeword with all zeros. Let E be the set of codewords

corresponding to the paths of the code diverging at time instant t from the

zero-state, and remerging after T stages. These corresponding equivalent

codewords are denoted as e , [et
1, . . . , e

t
T ] where et = [e1,t, . . . , eq,t]. Let

the metric related to the equivalent codeword e is Λe which is a sum of
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independent random variables, i.e.,

Λe , Λ(t) + Λ(t+1) + Λ(t+2) + . . . , (2.15)

where Λ(t) =
∑q

k=1 ek,tlk,t. Therefore, we can write,

Λ(t) ≡ Λ(et, st) =

q∑
k=1

(−1)sk,tek,t l̃k,t. (2.16)

Since l̃k,t are random variables, for the relevant cases in (2.16), we need

(M − 1) PDFs pλπi (λ|Cπi,t) where πi ∈ Π, i = 1, . . . ,M − 1 and Π is the

set containing all possible subsets of bit indices 1, . . . , q. The vector of bits

whose indices belong to πi is given byCπi,t. We note that pλπi (λ|Cπi,t) is not

always conditioned on a single bit as for traditional single interleaver BICM

designs [3, 4]. Infact for different values of πi, pλπi (λ|Cπi,t) is conditioned on

1, 2 . . . or q bits. To clarify these notations, consider the following example.

Example 2.2. Assuming 4-ary constellation (q = 2) and using (2.16), we

can express the metrics as

Λt ≡ Λ(et, st) =



0, if et = [0, 0]

(−1)s1,t l̃1,t, if et = [1, 0]

(−1)s2,t l̃2,t, if et = [0, 1]∑2
k=1(−1)sk,t l̃k,t, if et = [1, 1]

. (2.17)

For this example Π = {1, 2, (1, 2)} and for the cases in (2.17), we need

three PDFs i.e., pλ1(λ|C1), pλ2(λ|C2) and pλ1,2(λ|C1,2). We note that the
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conditional PDF pλ1,2(λ|C1,2) is conditioned on pair of bits C1,2 = [C1, C2]

rather than a single bit.

From (2.15), and due to the independence of each L-value Λ(et, st)

in (2.16), the PEP can be expressed as,4

PEP(e) = PEP(we,Π) =

∫ ∞
0

pΛπ1
(λ|Cπ1 = 0)∗we,π1 . . .

pΛπM−1
(λ|CπM−1 = 0)∗we,πM−1dλ, (2.18)

where, we,πi represent the number of columns in e where the bit positions

with indices belonging to πi have bit value equal to 1. Then, the UB can be

expressed as [9],

UB =
1

kc

∑
wΠ

PEP(wΠ)
∑
e∈CwΠ

dH(ue)

=
1

kc

∑
wΠ

PEP(wΠ)βCwΠ,K
, (2.19)

where CwΠ , {e ∈ E : wπi = we,πi}, dH(ue) is the Hamming weight of the

input sequence ue associated with the equivalent codeword e and βCwΠ,K
=∑

e∈CwΠ
dH(ue) is an equivalent weight distribution spectrum (EWDS) of

the code C. In what follows, we describe this EWDS of the code.

EWDS of the code C considers the generalized weight [wπ1 , . . . , wπM−1 ]

of codewords and MUX configuration matrix K. The correspondence be-

4For notational convenience, we used Cπi = 0, where 0 is a vector of same size as Cπi
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tween the encoder’s output Ĉ and MUX output i.e., modulator’s input C

is determined by the matrix K, and by the instantaneous time at which the

sequence diverge from all-zero state. However, only J time instants must

be considered because of the periodic structure of K̃. Therefore, we can

express the EWDS as

βCwΠ,K
=

1

J

J∑
n=1

β
C(n)
wΠ,K

, (2.20)

where the EWDS is given by β
C(n)
wΠ,K

when the decoder diverges at time t+n

with arbitrary t.

Example 2.3 (EWDS of the code (5, 7)8). Consider the constraint length

K = 3 convolutional code with polynomial generators (5, 7)8. The free

distance of the code is dfree
H = 5, and βC5 = 1, i.e., there is one diver-

gent path at Hamming distance five from the all-zero codeword, and the

input Hamming weight of the path is one. Consider the MUX in Exam-

ple 1 with period J = 3 and 8-ary (q = 3) constellation. For this case

Π = {1, 2, 3, (1, 2), (2, 3), (1, 3), (1, 2, 3)}. The J = 3 possible input sequences

which have the Hamming weight one are u1
(1) = [. . . , 0, 1, 0, 0, 0, 0, . . .],

u1
(2) = [. . . , 0, 0, 1, 0, 0, 0, . . .] and u1

(3) = [. . . , 0, 0, 0, 1, 0, 0, . . .], which re-

sults in the following Ĉ matrices,

Ĉ
(1)

=

. . . 1 0 1 0 0 . . .

. . . 1 1 1 0 0 . . .

 ,
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Ĉ
(2)

=

. . . 0 1 0 1 0 . . .

. . . 0 1 1 1 0 . . .

 ,
Ĉ

(3)
=

. . . 0 0 1 0 1 . . .

. . . 0 0 1 1 1 . . .

 , (2.21)

which by using (1) yield

C(1) =


. . . 1 1 0 0 . . .

. . . 0 1 0 0 . . .

. . . 1 1 0 0 . . .

 ,

C(2) =


. . . 0 1 1 1 . . .

. . . 1 1 0 0 . . .

. . . 0 0 0 0 . . .

 ,

C(3) =


. . . 0 1 0 1 . . .

. . . 0 0 1 1 . . .

. . . 1 0 0 0 . . .

 . (2.22)

If we consider only this error event at minimum Hamming distance, the final

EWDS given by (2.20) is obtained by computing the number of columns of

C(n) with n = 1, 2, 3, where the bit positions with indices belonging to πi,

with i = 1, 2, · · · , 7, have bit value equal to 1, i.e.,

βCwΠ,K
=



1
3 , if wΠ = [0, 0, 0, 0, 0, 1, 1]

1
3 , if wΠ = [0, 1, 2, 1, 0, 0, 0]

1
3 , if wΠ = [1, 1, 1, 1, 0, 0, 0]

.
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2.4. PDF of the L-values

The spectrum βCwΠ,K
can be numerically calculated using a breadth first

search algorithm [28]. Clearly, the spectrum must be truncated so that

only diverging sequences with total Hamming weight w1 + . . .+wq ≤ ŵ are

considered.

2.4 PDF of the L-values

In order to calculate the PEP for BICM-T in (2.18), we need to compute

the conditional PDFs pλπi (λ|Cπi,t) for πi ∈ Π. In this section we develop

the approximations for these PDFs using so called zero crossing model.

We can express the L-values in (2.6) as

l̃k,t(yt|st) = log

∑
x∈Xk,1 pYt(yt|Xt = x)∑
x∈Xk,0 pYt(yt|Xt = x)

, (2.23)

where Xk,b represents the symbols with bit value b at bit position k. This

L-value can be approximated using max-log simplification [27] by

l̃k,t(yt|st) ≈ γ
[

min
x∈Xk,0

(yt − x)2 − min
x∈Xk,1

(yt − x)2

]
. (2.24)

The L-values depend on the transmitted symbol xt, however, since a code-

word with all zeros is transmitted ([c1,t, . . . , cq,t] = [0, . . . , 0]), xt is com-

pletely determined by st, i.e., xt = µ(st). As such, we use l̃k,t(yt|st) to

emphasize that the L-values depend on the received signal yt and the scram-

bling sequence st. For a given transmitted symbol xt, the received signal

yt is a Gaussian random variable with mean xt and variance N0/2. The L-

value in (2.24) is a piece-wise linear function of yt and is therefore piecewise
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Figure 2.3: Piece-wise linear relation between the received signal yt and L-
values Λ(et, st) in (2.16) for hierarchical 4-PAM and for different possible
values of et and st. Figure shows the relation when et = [1, 0] or et = [0, 1].
The symbols transmitted are shown with circles. For et = [1, 0], the notation
st = [0/1, :] is used to represent that the L-values Λ(et, st) are independent
of s2,t.

Gaussian. Hence, each L-value Λ(et, st) in (2.16) is a sum of piece-wise Gaus-

sian functions. The piecewise linear relationships are shown in Figures 2.3

and 2.4 for 4-HPAM. To facilitate the analysis, we use the zero-crossing ap-

proximation [9] of the L-values which replaces all the Gaussian pieces by one
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Figure 2.4: Piece-wise linear relation between the received signal yt and L-
values Λ(et, st) in (2.16) for hierarchical 4-PAM and for different possible
values of et and st. Figure shows the relation when et = [1, 1]. The symbols
transmitted are shown with circles. For et = [1, 0], the notation st = [0/1, :]
is used to represent that the L-values Λ(et, st) are independent of s2,t.

Gaussian function. According to this approximation,

Λ(yt|et, st) ≈ â(et, st)yt + b̂(et, st), (2.25)

where â and b̂ are determined by the linear piece crossing x-axis and closest

to the symbol xt. Using (2.25), we can model the conditional L-values as
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Gaussian random variables whose mean and variance depend on γ, et and

st, i.e.,

pΛ(λ|St = st) = ψ(λ; µ̂(et, st), σ̂
2(et, st)), (2.26)

where the mean value and variance are given by

µ̂(st) = xtâ(et, st) + b̂(et, st) (2.27)

σ̂2(et, st) = [â(et, st)]
2N0

2
. (2.28)

This approximation strategy follows the recommendation of [29], where

it is shown that the behavior of the PDF of L-values around Λ = 0 is

important to accurately calculate the BER. To illustrate that the PDF of

Λ in (2.16) is accurately approximated by the zero-crossing approximation

around Λ = 0, we consider the following example,

Example 2.4. Let et = [1, 0] and st = [0, 0] in Example 2. Then, according

to the zero-crossing approximation,

Λ(yt|et, st) ≈ −
4γ(1− α1)√

1 + α2
1

yt. (2.29)

Using (2.29), we can find the mean and variance in (2.27) and (2.28) re-

spectively. The PDF of the conditional L-values can then be approximated

using (2.26) as,

pΛ(λ|St = [0, 0]) = ψ

(
λ;−4γ(1− α1)2

1 + α2
1

,
8γ(1− α1)2

1 + α2
1

)
, (2.30)
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In Fig. 2.5, we plot the approximated PDF (2.30) as well as the exact PDF

(obtained via simulations). We can note from this figure that around Λ = 0

the approximated PDF matches with the exact PDF.

The closed form expression for PDF of L-values in (2.16) for a general

M -ary signal modulation is difficult to develop. Therefore, the analysis

of the considered BICM-T design is done on case by case basis. Next, we

develop the UB on BER of BICM-T system in terms of constellation distance

parameters and MUX configuration for two particular modulation orders:

H-16QAM and H-64QAM. The UB for other cases can be developed using
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Figure 2.5: The exact and the approximated PDF of Λ given et = [1, 0] and
st = [0, 0].
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the same approach.

2.4.1 H-16QAM

Assume kc = 1, n = 2, J = 2 and q = 2. For this particular case, there

is a single signal constellation parameter, i.e., α1. We need to compute

three PDFs i.e., pΛ1(λ|C1), pΛ2(λ|C2) and pΛ1,2(λ|C1,2), as explained in

Example 2.2, to calculate the PEP in (2.18). In Table 2.1, we present the

values of â(et, st) and b̂(et, st) for this particular case. The means and

variances are presented in Table 2.2 in terms of constellation parameter for

the same cases of Table 2.1.

By averaging (2.26) over the scrambling sequence st, we obtain the un-

conditional PDF of the L-values in (2.16) given by the following equation

pΛ(λ) =



1
2 [ψ(λ;−1+α1

1−α1
ρ, 2ρ) + ψ(λ;−ρ, 2ρ)], if et = [1, 0]

ψ(λ;− α2
1

(1−α1)2 ρ, 2
α2

1
(1−α1)2 ρ), if et = [0, 1]

ψ(λ;− 1
(1−α1)2 ρ, 2

1
(1−α1)2 ρ), if et = [1, 1]

. (2.31)

where for notation simplicity we have defined,

ρ = 4γ
(1− α1)2

1 + α2
1

. (2.32)

Using (2.31), elements in the integration in (2.18) can be written as,
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2.4. PDF of the L-values

pΛ1(λ|C1 = 0)∗w1 =

(
1

2

)w1 w1∑
j=0

(
w1

j

)
ψ

(
λ;− 2α1ρ

1− α1
j + ρw1, 2ρw1

)
(2.33)

pΛ2(λ|C2 = 0)∗w2 = ψ

(
λ;− α2

1ρ

(1− α1)2
w2,

α2
1ρ

(1− α1)2
w2

)
(2.34)

pΛ1,2(λ|C1,2 = 0)∗w1,2 = ψ

(
λ;

−ρ
(1− α1)2

w1,2,
ρ

(1− α1)2
w1,2

)
(2.35)

where we used ψ(λ;µ1, σ
2
1)∗. . .∗ψ(λ;µN , σ

2
N ) = ψ(λ;

∑N
n=1 µn,

∑N
n=1 σ

2
n).

Using the relations (2.33)-(2.35) in (2.18) gives

PEP(w1, w2, w1,2) =

(
1

2

)w1 w1∑
j=0

(
w1

j

)
·∫ ∞

0
ψ(λ;µ1,2,(1,2),j , σ

2
1,2,(1,2))dλ, (2.36)

Table 2.1: Values of â(et, st) and b̂(et, st) for HPAM (M = 4), β =

(1 + α2
1)
−1/2

st = [1, 1] st = [1, 0] st = [0, 0] st = [0, 1]

â(et, st) b̂(et, st) â(et, st) b̂(et, st) â(et, st) b̂(et, st) â(et, st) b̂(et, st)

et = [1, 0] 4γβ(1− α1) 0 4γβ(1− α1) 0 -4γβ(1− α1) 0 -4γβ(1− α1) 0
et = [0, 1] 4γβα1 4γβ2α1 -4γβα1 -4γβ2α1 4γβα1 -4γβ2α1 -4γβα1 4γβ2α1

et = [1, 1] 4γβ 4γβ2α1 4γβ -4γβ2 -4γβ -4γβ2α1 -4γβ 4γβ2

Table 2.2: Values of µ̂(et, st) and σ̂2(et, st) for HPAM (M = 4), β =

(1 + α2
1)
−1/2

st = [1, 1] st = [1, 0] st = [0, 0] st = [0, 1]

µ̂(et, st) σ̂2(et, st) µ̂(et, st) σ̂2(et, st) µ̂(et, st) σ̂2(et, st) µ̂(et, st) σ̂2(et, st)

et = [1, 0] -4γβ2(1− α2
1) 8γβ2(1− α1)2 -4γβ2(1− α1)2 8γβ2(1− α1)2 -4γβ2(1− α1)2 8γβ2(1− α1)2 -4γβ2(1− α2

1) 8γβ2(1− α1)2

et = [0, 1] -4γβ2α2
1 8γβ2α2

1 -4γβ2α2
1 8γβ2α2

1 -4γβ2α2
1 8γβ2α2

1 -4γβ2α2
1 8γβ2α2

1

et = [1, 1] -4γβ2 8γβ2 -4γβ2 8γβ2 -4γβ2 8γβ2 -4γβ2 8γβ2
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where

µ1,2,(1,2),j = −
(
w1 +

α2
1w2

(1− α1)2
+

w1,2

(1− α1)2
+

2α1j

1− α1

)
ρ, (2.37)

σ2
1,2,(1,2) = 2

(
w1 +

α2
1

(1− α1)2
w2 +

1

(1− α1)2
w1,2

)
ρ. (2.38)

Using (2.37)-(2.38) in (2.36), and (2.19), we get the expression for UB as

follows:

UB =
1

kc

∑
w1,w2,w1,2

βCw1,w2,w1,2,K

(
1

2

)w1 w1∑
j=0

(
w1

j

)
·

Q


√√√√√(w1 +

α2
1

(1−α1)2w2 +
w1,2

(1−α1)2 + 2jα1

1−α1
)2

w1 +
α2

1
(1−α1)2w2 + 1

(1−α1)2w1,2

2γ(1− α1)2)

1 + α2
1

 . (2.39)

Note that for α1 = 1/2, (2.39) is identical to the UB expression developed

Table 2.3: Values of â(et, st) and b̂(et, st) for HPAM (M = 8) where % =
1√

1+α2
1+α2

2

et = [1, 0, 0] et = [0, 1, 0] et = [0, 0, 1] et = [1, 1, 0] et = [0, 1, 1] et = [1, 0, 1] et = [1, 1, 1]

st = [1, 1, 1]
â(et, st) −4γ%(1− α1 − α2) −4γ%(α1 − α2) −4γ%α2 −4γ%(1− α2) −4γ%α1 −4γ%(1− α1) −4γ%(1− 2α2)

b̂(et, st) 0 −4γ%2(α1 − α2) −4γ%2α2(1 + α1) −4γ%2α1(1− α2) −4γ%2α1(1 + α2) 4γ%2α2(1− α1) −4γ%2(α1 − α2)

st = [1, 1, 0]
â(et, st) −4γ%(1− α1 − α2) −4γ%(α1 − α2) 4γ%α2 −4γ%(1− α2) −4γ%α1 −4γ%(1− α1) −4γ%

b̂(et, st) 0 −4γ%2(α1 − α2) 4γ%2α2(1 + α1) −4γ%2α1(1− α2) −4γ%2α1(1− α2) −4γ%2α2(1− α1) −4γ%2(α1 − 2α1α2 + α2)

st = [1, 0, 0]
â(et, st) −4γ%(1− α1 − α2) 4γ%(α1 − α2) −4γ%α2 −4γ%(1− α2) 4γ%α1 −4γ%(1− α1) −4γ%(1− 2α2)

b̂(et, st) 0 4γ%2(α1 − α2) −4γ%2α2(1− α1) 4γ%2α1(1− α2) 4γ%2α1(1 + α2) −4γ%2α2(1− α1) 4γ%2(α1 − α2)

st = [1, 0, 1]
â(et, st) −4γ%(1− α1 − α2) 4γ%(α1 − α2) 4γ%α2 −4γ%(1− α2) 4γ%α1 −4γ%(1− α1) −4γ%

b̂(et, st) 0 4γ%2(α1 − α2) 4γ%2α2(1− α1) 4γ%2α1(1− α2) 4γ%2α1(1− α2) 4γ%2α2(1− α1) 4γ%2(α1 − 2α1α2 + α2)

st = [0, 0, 1]
â(et, st) 4γ%(1− α1 − α2) −4γ%(α1 − α2) −4γ%α2 4γ%(1− α2) −4γ%α1 4γ%(1− α1) 4γ%

b̂(et, st) 0 4γ%2(α1 − α2) 4γ%2α2(1− α1) 4γ%2α1(1− α2) 4γ%2α1(1− α2) 4γ%2α2(1− α1) 4γ%2(α1 − 2α1α2 + α2)

st = [0, 0, 0]
â(et, st) 4γ%(1− α1 − α2) −4γ%(α1 − α2) 4γ%α2 4γ%(1− α2) −4γ%α1 4γ%(1− α1) 4γ%(1− 2α2)

b̂(et, st) 0 4γ%2(α1 − α2) −4γ%2α2(1− α1) 4γ%2α1(1− α2) 4γ%2α1(1 + α2) −4γ%2α2(1− α1) 4γ%2(α1 − α2)

st = [0, 1, 0]
â(et, st) 4γ%(1− α1 − α2) 4γ%(α1 − α2) −4γ%α2 4γ%(1− α2) 4γ%α1 4γ%(1− α1) 4γ%

b̂(et, st) 0 −4γ%2(α1 − α2) 4γ%2α2(1 + α1) −4γ%2α1(1− α2) −4γ%2α1(1− α2) −4γ%2α2(1− α1) −4γ%2(α1 − 2α1α2 + α2)

st = [0, 1, 1]
â(et, st) 4γ%(1− α1 − α2) 4γ%(α1 − α2) 4γ%α2 4γ%(1− α2) 4γ%α1 4γ%(1− α1) 4γ%(1− 2α2)

b̂(et, st) 0 −4γ%2(α1 − α2) −4γ%2α2(1 + α1) −4γ%2α1(1− α2) −4γ%2α1(1 + α2) 4γ%2α2(1− α1) −4γ%2(α1 − α2)
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Table 2.4: Values of µ̂(et, st) and σ̂2(et, st) for HPAM (M = 8) where
% = 1√

1+α2
1+α2

2

et = [1, 0, 0] et = [0, 1, 0] et = [0, 0, 1] et = [1, 1, 0] et = [0, 1, 1] et = [1, 0, 1] et = [1, 1, 1]

st = [1, 1, 1]
µ̂(et, st) 4γ%2(1− 2α1α2 − α2

1 − α2
2) 4γ%2(1− α2

2) 4γ%2α2 4γ%2(1− α2
2) 4γ%2α2

1 4γ%2(1 + 2α2 − 2α1α2 − α2
1) 4γ%2(1− 2α1α2 − 2α2

2)

σ̂2(et, st) 8γ%2(1− α1 − α2)2 8γ%2(α1 − α2)2 8γ%2α2 8γ%2(1− α2)2 8γ%2α2
1 8γ%2(1− α1)2 8γ%2(1− 2α2

2)

st = [1, 1, 0]
µ̂(et, st) 4γ%2(1− 2α2 − α2

1 + α2
2) 4γ%2(α2 − α2)2 4γ%2α2 4γ%2(1− α2)2 4γ%2α2

1 4γ%2(1− 2α2 + 2α1α2 − α2
1) 4γ%2(−2α2 + 2α1α2 + α2

1)

σ̂2(et, st) 8γ%2(1− α1 − α2)2 8γ%2(α1 − α2)2 8γ%2α2 8γ%2(1− α2)2 8γ%2α2
1 8γ%2(1− α1)2 8γ%2

st = [1, 0, 0]
µ̂(et, st) 4γ%2(1− 2α1 + α2

1 − α2
2) 4γ%2(α2 − α2)2 4γ%2α2 4γ%2(1− α2

2) 4γ%2α2
1 4γ%2(1− α1)2 4γ%2(1− 2α2 + 2α1α2 − 2α2

2)

σ̂2(et, st) 8γ%2(1− α1 − α2)2 8γ%2(α1 − α2)2 8γ%2α2 8γ%2(1− α2)2 8γ%2α2
1 8γ%2(1− α1)2 8γ%2(1− 2α2

2)

st = [1, 0, 1]
µ̂(et, st) 4γ%2(1− 2α1 − 2α2 + 2α1α2 + α2

1 + α2
2) 4γ%2(1− α2

2) 4γ%2α2 4γ%2(1− α2)2 4γ%2α2
1 4γ%2(1− α1)2 4γ%2(1− 2α1α2)

σ̂2(et, st) 8γ%2(1− α1 − α2)2 8γ%2(α1 − α2)2 8γ%2α2 8γ%2(1− α2)2 8γ%2α2
1 8γ%2(1− α1)2 8γ%2

st = [0, 0, 1]
µ̂(et, st) 4γ%2(1− 2α1 − 2α2 + 2α1α2 + α2

1 + α2
2) 4γ%2(1− α2

2) 4γ%2α2 4γ%2(1− α2)2 4γ%2α2
1 4γ%2(1− α1)2 4γ%2(1− 2α1α2)

σ̂2(et, st) 8γ%2(1− α1 − α2)2 8γ%2(α1 − α2)2 8γ%2α2 8γ%2(1− α2)2 8γ%2α2
1 8γ%2(1− α1)2 8γ%2

st = [0, 0, 0]
µ̂(et, st) 4γ%2(1− 2α1 + α2

1 − α2
2) 4γ%2(α2 − α2)2 4γ%2α2 4γ%2(1− α2

2) 4γ%2α2
1 4γ%2(1− α1)2 4γ%2(1− 2α2 + 2α1α2 − 2α2

2)

σ̂2(et, st) 8γ%2(1− α1 − α2)2 8γ%2(α1 − α2)2 8γ%2α2 8γ%2(1− α2)2 8γ%2α2
1 8γ%2(1− α1)2 8γ%2(1− 2α2

2)

st = [0, 1, 0]
µ̂(et, st) 4γ%2(1− 2α2 − α2

1 + α2
2) 4γ%2(α2 − α2)2 4γ%2α2 4γ%2(1− α2)2 4γ%2α2

1 4γ%2(1− 2α2 + 2α1α2 − α2
1) 4γ%2(−2α2 + 2α1α2 + 1)

σ̂2(et, st) 8γ%2(1− α1 − α2)2 8γ%2(α1 − α2)2 8γ%2α2 8γ%2(1− α2)2 8γ%2α2
1 8γ%2(1− α1)2 8γ%2

st = [0, 1, 1]
µ̂(et, st) 4γ%2(1− 2α1α2 − α2

1 − α2
2) 4γ%2(1− α2

2) 4γ%2α2 4γ%2(1− α2
2) 4γ%2α2

1 4γ%2(1 + 2α2 − 2α1α2 − α2
1) 4γ%2(1− 2α1α2 − 2α2

2)

σ̂2(et, st) 8γ%2(1− α1 − α2)2 8γ%2(α1 − α2)2 8γ%2α2 8γ%2(1− α2)2 8γ%2α2
1 8γ%2(1− α1)2 8γ%2(1− 2α2

2)

in [9] for regular 4-PAM constellation.

2.4.2 H-64QAM

In this example, we consider a 8-ary constellation (q = 3) which together

with a rate R = 1/3 code gives a spectral efficiency of 1 bits/dimension and

with R = 1/2 code gives a spectral efficiency of 1.5 bits/dimension. In this

case there are two constellation parameters i.e., α1 and α2. Because there

are three bit positions, Π = {1, 2, 3, (1, 2), (2, 3), (1, 3), (1, 2, 3)} and we need

to compute seven conditional PDFs i.e., pΛ1(λ|C1), pΛ2(λ|C2), pΛ3(λ|C3),

pΛ1,2(λ|C1,2), pΛ2,3(λ|C2,3), pΛ1,3(λ|C1,3) and pΛ1,2,3(λ|C1,2,3). Since the L-

values Λ(et, st) are piecewise linear, we present the values of slope â(et, st)

and intercept b̂(et, st) in terms of constellation parameters required for the

zero-crossing approximation (2.25) in Table 2.3 for all possible values of et

and st. In Table 2.4 we present the means and variances in (2.27)-(2.28)
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for the same cases presented in Table 2.3. By averaging (2.26) over the

scrambling sequence st, we obtain the unconditional PDF of the L-values

in (2.16) given by the following equation

pΛ(λ) =



1
4

∑4
p=1 ψ(λ;µp,γ,α1,α2 , σ

2
p,γ,α1,α2

), et = [1, 0, 0]

1
2

∑6
p=5 ψ(λ;µp,γ,α1,α2 , σ

2
p,γ,α1,α2

), et = [0, 1, 0]

ψ(λ;µ7,γ,α1,α2 , σ
2
7,γ,α1,α2

), et = [0, 0, 1]

1
2

∑9
p=8 ψ(λ;µp,γ,α1,α2 , σ

2
p,γ,α1,α2

), et = [1, 1, 0]

ψ(λ;µ10,γ,α1,α2 , σ
2
10,γ,α1,α2

), et = [0, 1, 1]

1
4(
∑12

p=11 ψ(λ;µp,γ,α1,α2 , σ
2
p,γ,α1,α2

)

+2ψ(λ;µ13,γ,α1,α2 , σ
2
13,γ,α1,α2

)), et = [1, 0, 1]

1
4

∑17
p=14 ψ(λ;µp,γ,α1,α2 , σ

2
p,γ,α1,α2

), et = [1, 1, 1]

, (2.40)

where means and variances in ψ(λ;µp,γ,α1,α2 , σ
2
p,γ,α1,α2

) for different val-

ues of p are summarized in Table 2.5.

Using (2.40), we can derive the expressions for elements in the integration

defining PEP in (2.18) as,

pΛ1(λ|C1 = 0)∗w1 =

(
1

4

)w1 ∑
∑4
l=1 jl=w1

jl≥0

(
w1

j1 . . . j4

)
· ψ

(
λ;

4∑
i=1

µi,γ,α1,α2 · ji,

σ2
1,γ,α1,α2

· w1

)
(2.41)
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Table 2.5: Values of (µp,γ,α1,α2) and (σ2
p,γ,α1,α2

) in (2.40) for different values
of p

µp,γ,α1,α2 σ2
p,γ,α1,α2

p = 1 4γ%2(1− 2α1α2 − α2
1 − α2

2) 8γ%2(1− α1 − α2)2

p = 2 4γ%2(1− 2α2 − α2
1 + α2

2) 8γ%2(1− α1 − α2)2

p = 3 4γ%2(1− 2α1 + α2
1 − α2

2) 8γ%2(1− α1 − α2)2

p = 4 4γ%2(1− 2α1 − 2α2 + 2α1α2 + α2
1 + α2

2) 8γ%2(1− α1 − α2)2

p = 5 4γ%2(α2
1 − α2

2) 8γ%2(α1 − α2)2

p = 6 4γ%2(α1 − α2)2 8γ%2(α1 − α2)2

p = 7 4γ%2α2
2 8γ%2α2

2

p = 8 4γ%2(1− α2
2) 8γ%2(1− α2)2

p = 9 4γ%2(1− α2)2 8γ%2(1− α2)2

p = 10 4γ%2α2
1 8γ%2α2

1

p = 11 4γ%2(1 + 2α2 − 2α1α2 − α2
1) 8γ%2(1− α1)2

p = 12 4γ%2(1− 2α2 + 2α1α2 − α2
1) 8γ%2(1− α1)2

p = 13 4γ%2(1− α1)2 8γ%2(1− α1)2

p = 14 4γ%2(1− 2α1α2 − 2α2
2) 8γ%2(1− 2α2)2

p = 15 4γ%2(1− 2α2 + 2α1α2) 8γ%2

p = 16 4γ%2(1− 2α2 + 2α1α2 − 2α2
2) 8γ%2(1− 2α2)2

p = 17 4γ%2(1− 2α1α2) 8γ%2

pΛ2(λ|C2 = 0)∗w2 =

(
1

2

)w2 ∑
∑2
l̄=1 j̄l̄=w2

j̄l̄≥0

(
w2

j̄1, j̄2

)
· ψ

(
λ;

6∑
ī=5

µī,γ,α1,α2
· j̄̄i−4,

σ2
5,γ,α1,α2

· w2

)
(2.42)

pΛ3(λ|C3 = 0)∗w3 = ψ
(
λ;µ7,γ,α1,α2,α2 · w3, σ

2
7,γ,α1,α2

· w3

)
(2.43)
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pΛ1,2(λ|C1,2 = 0)∗w1,2 =

(
1

2

)w1,2 ∑
∑2
l̃=1

j̃l̃=w1,2

j̃l̃≥0

(
w1,2

j̃1, j̃2

)
·

ψ

λ;

9∑
ĩ=8

µĩ,γ,α1,α2
· j̃̃i−7, σ

2
8,γ,α1,α2

· w1,2


(2.44)

pΛ2,3(λ|C2,3 = 0)∗w2,3 = ψ
(
λ;µ10,γ,α1,α2,α2 · w2,3, σ

2
10,γ,α1,α2

· w2,3

)
(2.45)

pΛ1,3(λ|C1,3 = 0)∗w1,3 =

(
1

4

)w1,3 ∑
∑3
l̂=1

ĵl̂=w1,3

ĵl̂≥0

(
w1,3

ĵ1 . . . ĵ3

)
·

ψ

(
λ;

12∑
î=11

µî,γ,α1,α2
· ĵ̂i−10 + 2µ13,γ,α1,α2 · ĵ3, σ2

11,γ,α1,α2
· w1,3

)

(2.46)

pΛ1,2,3(λ|C1,2,3 = 0)∗w1,2,3 =

(
1

4

)w1,2,3 ∑
∑4
ľ=1

ǰľ=w1,2,3

ǰľ≥0

(
w1,2,3

ǰ1 . . . ǰ4

)
·

ψ

(
λ;

17∑
ǐ=14

µǐ,γ,α1,α2
· ǰ̌i−13,

15∑
m=14

σ2
m,γ,α1,α2

· (ǰm−13 + ǰm−12)

)
(2.47)

where the multinomial coefficients come from the convolution of the sum

of Gaussian functions in (2.40). Using (2.41)-(2.47) in (2.18), we get the

expressions for PEP and UB presented in (2.48) and (2.49) respectively,
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PEP(wΠ) =

(
1

2

)wT ∑
∑4

l=1 jl=w1

jl≥0

∑
∑2

l̄=1
j̄l̄=w2

j̄l̄≥0

∑
∑2

l̃=1
j̃l̃=w1,2

j̃l̃≥0

∑
∑3

l̂=1
ĵl̂=w1,3

ĵl̂≥0

∑
∑4

ľ=1
ǰľ=w1,2,3

ǰľ≥0(
w1

j1 . . . j4

)(
w2

j̄1, j̄2

)(
w1,2

j̃1, j̃2

)(
w1,3

ĵ1 . . . ĵ3

)(
w1,2,3

ǰ1 . . . ǰ4

)∫ ∞
0

ψ(λ;µwΣ , σ
2
wΣ

)dλ, (2.48)

UB =
∑
wΠ

βC
wΠ

(
1

2

)wT ∑
∑4

l=1 jl=w1

jl≥0

∑
∑2

l̄=1
j̄l̄=w2

j̄l̄≥0

∑
∑2

l̃=1
j̃l̃=w1,2

j̃l̃≥0

∑
∑3

l̂=1
ĵl̂=w1,3

ĵl̂≥0

∑
∑4

ľ=1
ǰľ=w1,2,3

ǰľ≥0(
w1

j1 . . . j4

)(
w2

j̄1, j̄2

)(
w1,2

j̃1, j̃2

)
·
(

w1,3

ĵ1 . . . ĵ3

)(
w1,2,3

ǰ1 . . . ǰ4

)
·Q
(√

µ2
wΣ

σ2
wΣ

)
.

(2.49)

where

wT = 2(w1 + w1,3 + w1,2,3) + w2 + w1,2, (2.50)

µwΣ =

(
4∑
i=1

µi,γ,α1,α2 · ji +

6∑
ī=5

µī,γ,α1,α2
· j̄̄i−4 + µ7,γ,α1,α2 · w3

+

9∑
ĩ=8

µĩ,γ,α1,α2
· j̃̃i−7 +

12∑
î=11

µî,γ,α1,α2
· ĵ̂i−10 + 2µ13,γ,α1,α2 ·

ĵ3

17∑
ǐ=14

µǐ,γ,α1,α2
· ǰ̌i−13

 , (2.51)
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σ2
wΣ

=
(
σ2

1,γ,α1,α2
· w1 + σ2

5,γ,α1,α2
· w2 + σ2

7,γ,α1,α2
· w3 + σ2

8,γ,α1,α2
· w1,2

+σ2
10,γ,α1,α2

· w2,3 + σ2
11,γ,α1,α2

· w1,3 + σ2
14,γ,α1,α2

· (ǰ1 + ǰ3)

+σ2
15,γ,α1,α2

· (ǰ2 + ǰ4)
)
. (2.52)

2.5 Numerical Results

Numerical results are presented in this section to illustrate the gains

that can be obtained by using HQAM-BICM-T design with optimized sys-

tem modules. In particular, the results for two spectral efficiencies: 1

bit/dimension and 1.5 bits/dimension are presented. Convolutional codes

with rate R, constraint length K are used for encoding at the source. A soft-

input Viterbi algorithm without memory truncation is used for decoding at

the receiver.

The UB in general depends on the SNR, the signal constellation pa-

rameter, and the MUX configuration. Therefore, for an optimal design, K

and the signal constellation parameters should be jointly optimized for each

value of SNR. The optimum values are defined as α∗1(γ), . . . α∗q(γ),K∗(γ),

i.e.,

[α∗1(γ), . . . α∗q(γ),K∗(γ)] = argmin
α1(γ),...αq(γ),K

{UB(α1(γ), . . . αq(γ),K)} (2.53)

where UB is a function of the signal constellation defined by the parameters

α1, . . . , αq and the MUX configuration matrixK. The optimization was per-
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formed using an exhaustive search over the allowable range of constellation

parameters which is a feasible method compared to complex optimization

approaches because the UB function is potentially non-convex. Please note

that this optimization can be performed offline and the results can be tab-

ulated for practical values of SNRs. Then those results can be used for the

practical system. All UB computations were carried out considering a trun-

cated spectrum of the code, i.e., wπi ≤ 40 ∀ πi ∈ Π. Using more number of

terms does not affect the UB as it converges.

2.5.1 Spectral Efficiency 1 Bit/Dimension

H-16QAM with Rate R=1/2 Code

In this example, we consider a rate R = 1/2 optimum distance spectrum

(ODS) [30] convolutional code with constraint length K = 3 and generator

polynomials (5, 7)8. This code together with a 4-ary constellation gives a

spectral efficiency of 1 bit/dimension. In this case (n = q = 2), α1 is the

only constellation parameter. A MUX with shortest possible period J = 1

is considered, which results in two different K matrices.

K(1) =

(1, 1)

(2, 1)

 ,K(2) =

(2, 1)

(1, 1)

 . (2.54)

A joint optimization was performed over K and α1. We found that the

optimum MUX is always defined byK∗(γ) = K(2). This MUX configuration

assigns all the coded bits from the first encoder’s output to bit position k = 2

and all the coded bits from the second encoder’s output to bit position k = 1.
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Similar configuration was found to be the “Best” configuration in [9] when

ES 16-QAM constellation was used. It is interesting to note from the Fig. 2.7

that for higher values of SNR, the optimal constellation tends to be non-

uniform. The BER performance of the considered design with optimized

constellation parameters and MUX configuration is presented in Fig. 2.8.

We also present the BER performance of the optimal HQAM-BICM system

of [12], BICM-T (“Best”) system of [9] and traditional single interleaver

BICM system (BICM-S) [4]. When compared to the BICM-T “Best” design

[9] that uses ES 16-QAM, the considered optimized BICM-T design offers

gains up to 0.21 dB for a target BER of 10−6.

64-HQAM with Rate R = 1/3 Code

In this example, we consider a rate R = 1/3 ODS convolutional code

with constraint length K = 3 and generator polynomials (5, 7, 7)8. This

code together with a 8-ary constellation gives a spectral efficiency of 1

bit/dimension. In this case there are two constellation parameters i.e., α1

and α2. We consider MUX configurations with the period, i.e., J = 1, for

which there will be a total of six different MUX configurations as given

below:

K(1) =


(1, 1)

(2, 1)

(3, 1)

 ,K(2) =


(1, 1)

(3, 1)

(2, 1)

 ,K(3) =


(2, 1)

(1, 1)

(3, 1)


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K(4) =


(2, 1)

(3, 1)

(1, 1)

 ,K(4) =


(3, 1)

(1, 1)

(2, 1)

 ,K(6) =


(3, 1)

(2, 1)

(1, 1)

 . (2.55)

For SNR γ [dB] ∈ {6, 7, . . . , 9} (which give a BER below 10−3), we ob-

tained the optimal MUX configuration K∗(γ) and constellation parame-

ters (α∗1(γ), α∗2(γ)) using the developed UB in( 2.49) and an exhaustive

search. The optimal matrix for all γ [dB] ∈ {6, 7, . . . , 9} was found to be

K∗(γ) = K(1). We note that the optimal constellation parameters do not

change significantly for the SNR range of interest. The obtained values of

optimal constellation parameters are

(α∗1(γ), α∗2(γ)) = (0.47, 0.12). (2.56)

The BER performance of the considered design with optimized constellation

parameters and MUX configuration is presented in Fig. 2.9. Here we also

present the BER performance of the optimal HQAM-BICM system of [12],

the traditional single interleaver BICM system [4], and the BICM-T system

that uses an equally spaced signal constellation and no multiplexer. When

compared to the optimal HQAM-BICM design [12], the considered system

offers gains up to 2.5 dB for a target BER of 10−6.

2.5.2 Spectral Efficiency 1.5 Bits/Dimension

In this section, we consider a rate R = 1/2 ODS convolutional code

with constraint length K = 3 and generator polynomials (5, 7)8. This
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code together with a 8-ary constellation gives a spectral efficiency of 1.5

bits/dimension. In this case there are two constellation parameters i.e., α1

and α2. We consider MUX configurations with the period, i.e., J = 3, for

which there will be a total of thirty different MUX configurations [12].

For SNR γ [dB] ∈ {10, 11, . . . , 16} (which give a UB below 10−3), we ob-

tained the optimal MUX configuration K∗(γ) and constellation parameters

(α∗1(γ), α∗2(γ)) using the developed UB in( 2.49) and an exhaustive search.

The optimal MUX for all γ [dB] ∈ {10, 11, . . . , 16} was found to be

K∗(γ) =

(1, 1) (2, 1) (3, 1)

(3, 2) (2, 2) (1, 2)

 . (2.57)

We note that the optimal constellation parameters do not change signifi-

cantly for the SNR range of interest. The obtained values of optimal con-

stellation parameters are

(α∗1(γ), α∗2(γ)) = (0.46, 0.01). (2.58)

The results in (2.58) indicate that the optimal constellation is approximately

a 16-QAM constellation (α2 ≈ 0) with α1 ≈ 0.46 which translates into a sys-

tem where the third output of the MUX is completely eliminated. Another

way of interpreting the results in (2.58) is that for this code, the minimum

BER is obtained when the original rate 1/2 code is punctured to a rate

3/4 code and transmitted with a 16-QAM constellation (with α1 ≈ 0.46).

The BER performance of the considered design with optimized constella-

tion parameters and MUX configuration is presented in Fig. 2.10. Here we
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also present the BER performance of the BICM-T system that uses an ES

16-QAM constellation with punctured rate 1/2 code, the optimal HQAM-

BICM system of [12], and the traditional single interleaver BICM system [4].

When compared to the optimal HQAM-BICM design [12], the considered

system offers gains up to 0.2 dB for a target BER of 10−6. Moreover, the

considered system has less complexity as compared to the optimal HQAM-

BICM design [12] (due to the absence of interleaver/deinterleaver).

2.5.3 Optimal MUX Configuration for Rate R=1/2 ODS

Codes

In this section, we present the MUX configuration K∗ that results in

optimal BER performance for a target BER of 10−6 in Table 2.6 for dif-

ferent rate R = 1/2 ODS codes in [30]. The optimal constellation parame-

ters do not change significantly for the codes presented under consideration.

We present the results for two particular cases of 16-QAM and 64-QAM

which together with rate R = 1/2 codes results in spectral efficiencies of 1

bit/dimension and 1.5 bits/dimension respectively.

The results show that the optimal multiplexer configuration can be dif-

ferent for different codes.

2.6 Conclusion

In this Chapter, we presented an innovative BICM-T design that uses

HQAM signal constellations in conjunction with a bit-level multiplexer. Due

to the use of a bit level multiplexer that connects the channel encoder with
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Table 2.6: Optimal multiplexer configuration for different rate R = 1/2
ODS codes with 16-QAM and 64-QAM for a target BER of 10−6. All
generator polynomials are in octal notation.

K Generators dfree
H K∗(16−QAM) K∗(64−QAM)

3 5, 7 5

(2, 1) (2, 2)

(1, 1) (1, 2)

 (1, 1) (2, 1) (3, 1)

(3, 2) (2, 2) (1, 2)


4 15, 17 6

(1, 1) (1, 2)

(2, 1) (2, 2)

 (1, 1) (1, 2) (2, 2)

(3, 1) (3, 2) (2, 1)


5 23, 35 7

(2, 1) (2, 2)

(1, 1) (1, 2)

 (2, 2) (3, 2) (1, 2)

(1, 1) (3, 1) (2, 1)


6 53, 75 8

(2, 1) (1, 1)

(1, 2) (2, 2)

 (1, 1) (3, 1) (2, 1)

(2, 2) (3, 2) (1, 2)


7 133, 171 10

(2, 1) (2, 2)

(1, 1) (1, 2)

 (2, 1) (1, 1) (3, 1)

(2, 2) (3, 2) (1, 2)


8 247, 371 10

(2, 1) (2, 2)

(1, 1) (1, 2)

 (1, 1) (2, 1) (3, 1)

(3, 2) (2, 2) (1, 2)


9 561, 753 12

(1, 1) (1, 2)

(2, 1) (2, 2)

 (1, 1) (2, 1) (3, 1)

(3, 2) (2, 2) (1, 2)


10 1151, 1753 12

(2, 1) (2, 2)

(1, 1) (1, 2)

 (1, 1) (2, 2) (3, 2)

(3, 1) (2, 1) (1, 2)


the modulator, the considered design gives a design flexibility to indepen-

dently choose the code rate and the modulation order. This can allow easy

rate adaption for frequency selective multicarrier non-fading channels and

quasi static fading channels. We developed a UB on the BER performance

of the considered BICM-T design in terms of signal constellation parameters

as well as the multiplexer configuration. Using the developed UB, different
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transceiver’s modules of the considered BICM-T design can be optimized

for performance improvement of such systems. It is shown by the results in

this chapter that for higher values of SNR, ES signal constellation becomes

non-optimal and to minimize the BER, non-uniform signal constellation and

optimum multiplexer configuration should be used. The gains achieved by

the system considered in this chapter depend on the code rate and modu-

lation order. The selected numerical result for hierarchical 64-QAM and 1

bit/dimension spectral efficiency showed that by optimizing the modules in

our design, gains up to 2.5 dB can be achieved. Moreover these gains are

achieved by reducing the complexity of the BICM system.
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Figure 2.6: Optimal constellation parameter α∗1 for different values of γ [dB]
using H-16QAM.
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Figure 2.7: UB versus constellation parameter α1 for different values of γ
[dB] using H-16QAM.
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Figure 2.8: BER performance for spectral efficiency 1 bit/dimension using
16-HQAM. The simulations are shown by markers and the UB with solid
lines.
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Figure 2.9: BER performance for spectral efficiency 1 bits/dimension using
64-HQAM. The simulations are shown by markers and the UB with solid
lines.
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Figure 2.10: BER performance for spectral efficiency 1.5 bits/dimension
using 64-HQAM. The simulations are shown by markers and the UB with
solid lines.
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Chapter 3

Performance of BICM-T

Transceivers over Gaussian

Mixture Noise Channels5

3.1 Introduction

In many physical channels, such as power line communication channels

[13], the ambient noise is known through experimental measurements to

be non-Gaussian due to the impulsive nature of man-made electromagnetic

interference as well as a great deal of natural noise. While the traditional

BICM-S and the BICM-T systems have been thoroughly investigated and

optimized for the channels with AWGN [9–12, 31], the analysis of BICM

transmission impaired by non-Gaussian noise has received relatively little

attention [14–16]. In particular there is a need to investigate the performance

of BICM-T system for GMN channels.

In BICM-T, a number of consecutive coded bits are transmitted using

5A part of this chapter has been submitted for publication. M. T. Malik, Md. J.
Hossain and M.-S. Alouini, “Analysis and design of generalized BICM-T transceivers”,
IEEE Trans. Commun., Submitted July 2013.
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the same symbol (due to the absence of random interleaver) and the corre-

sponding L-values are mutually dependent. Therefore, a different particu-

larization (e.g., [9]) is adopted to calculate the L-values at the receiver. In

particular, using a zero-crossing model [9], closed form expressions for the

PDF of L-values are developed in terms of constellation distance parame-

ters of the HQAM. As in [14] it is assumed that the system employs the

standard Euclidean-distance decoder, which is an instance of mismatched

decoding [17] in the presence of GMN. UB6 on BER performance of the

design proposed in [31] is then developed for GMN channels by using these

PDFs, which is then used to optimize the constellation parameters as well

as the multiplexer in the BICM-T system over GMN channel. Presented

results for 16QAM show that the BICM-T design can offer gains up to 1.5

dB over the traditional BICM design for a target BER value of 10−6 if the

impulsive components in GMN are below a certain threshold level. However

if the impulsive noise is above a threshold, traditional BICM performs better

than BICM-T.

The rest of this chapter is organized as follows. In Section 3.2, we present

the system model for BICM-T system that uses a bit level multiplexer and

hierarchical constellations. Section 3.3 presents the performance evaluation

of the system model presented in Section 3.2. Numerical results are pre-

sented in Section 3.4. Section 3.5 concludes this chapter.

6The UBs developed in this chapter are approximated UBs because they are developed
using the approximated PDFs of L-values.
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Figure 3.1: System model of the BICM-T transceiver. A channel encoder is
followed by the multiplexer (MUX), hierarchical M -PAM modulator, GMN
channel, hierarchical M -PAM de-modulator, demultiplexer (DEMUX) and
decoder at the receiver side.

3.2 System Model

The system model7 of HQAM-BICM-T system presented in [31] is shown

in Fig. 3.1. The kc vectors of information bits uj = [uj,1, . . . , uj,Nc ] with

j = 1, . . . , kc are encoded by a rate R = kc/n ENC. The coded bits ĉl =

[ĉl,1, . . . , ĉl,Nc ] with l = 1, . . . , n from the encoder are mapped by a multi-

plexer onto ck,t = [ck,1, . . . , ck,Ns ] with k = 1, . . . , q, where nNc = qNs. Each

output of the MUX is connected to the q-th bit position of a modulator

which uses M -ary HQAM constellations labelled by the BRGC [12] to map

the bits onto symbols, where q = log2M . In BRGC constellation, each

symbol can be represented by superposition of independent real/imaginary

parts, so we focus on an equivalent HPAM constellation. The bits ck,t from

the MUX’s output at a time instant t are mapped using a memoryless map-

ping M : {0, 1}q → Xt to a HPAM symbol xt ∈ Xt = {xt,0, . . . , xt,M−1}.

The HPAM constellations (e.g., see Fig. 3.2 for 4-HPAM) are defined

by the distances dk with k = 1, . . . , q. The bit value for the bit position

7This system model is same as that presented in Chapter 2. The only difference is that
here we are considering a different noise model.
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3.2. System Model

(k = 1) selects one of the two squares in Fig. 3.2. For a given value of the

first bit position, the bit value for the bit position (k = 2) selects one of

the two black symbols surrounding the square selected previously which is

then transmitted to the receiver. The constellation parameters are defined

as αk , dk+1/d1, with k = 1, . . . , q − 1. The constellation is normalized

for unity energy and other constraints on αk must be added to restrict the

constellation to BRGC, as in [12].

The real signal received from the source is yt = xt + zt where zt is the

GMN sample at time instant t. We consider that the GMN samples are

uncorrelated over time t. The noise samples are distributed according to

the zero-mean Gaussian mixture distribution [14],

pZ(z) =
N∑
n=1

εn
2πσ2

n

exp

(
−|z|

2

2σ2
n

)
, (3.1)

where,

N∑
n=1

εn = 1, (3.2)

N∑
n=1

εnσ
2
n =

1

2γ
, (3.3)

where γ is the SNR at the receiver. The REC computes the L-values using

the received signal which for the bit position k, is given by [9, 31],

l̃k,t(yt|xt) = log

∑
a∈Xk,1 pyt(yt|xt = a)∑
a∈Xk,0 pyt(yt|xt = a)

, (3.4)

where Xk,b represents the symbols with bit value b at bit position k. Since
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Figure 3.2: HPAM (M = 4) constellation with BRGC labelling.

c̃k,t = ck,t ⊕ sk,t, we can write lk,t = (−1)sk,t l̃k,t, i.e., to reverse the scram-

bling, the sign of the L-values is altered by (−1)sk,t . This L-value can be

approximated using max-log simplification (e.g., see [11]) by,

l̃k,t(yt|xt) ≈ γ
[

min
a∈Xk,0

(yt − a)2 − min
a∈Xk,1

(yt − a)2

]
. (3.5)

Although (3.5) does not give the true L-values in the presence of GMN, the

use of conventional Euclidean distance metric (3.5) is often considered (for

example see [14]) because the optimum maximum likelihood decoding would

require the knowledge of the noise PDF or the active mixture component

and its variance, which is usually not available at the receiver. A DEMUX

then reorders these L-values to invert the MUX’s operation. The resulting

L-values are then fed to a soft input Viterbi decoder which estimates the

transmitted information bits from the source.

3.3 Performance Evaluation

Instead of directly computing the PDFs pλπi (λ|cπi,t) in (2.18) for GMN

channel, we first compute the PDFs conditioned on a given noise compo-
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nent. We introduce an auxiliary random variable ξt which identifies the

noise component n of the PDF (3.1) to which zt belongs. The distribution

of this noise state variable ξt is Pr{ξt = n} = εn. The PDF of a component

noise random variable Zξt is [14]

pZn(z) =
1

2πσ2
n

exp

(
−|z|

2

2σ2
n

)
. (3.6)

The PDFs pλπi (λ|cπi,t) in (2.18) can be considered as a weighted sum of

PDFs pλπi |n(λ|cπi,t) conditioned on the state of GMN ξt = n,

pλπi (λ|cπi,t) =
N∑
n=1

εnpλπi |n(λ|cπi,t). (3.7)

In what follows, we develop an UB on the BER of the BICM-T design

in terms of constellation distance parameters and MUX configuration for

a particular case of rate 1/2 channel encoder and (M = 4) HPAM. For

simplicity of notation and succinct explanation of the procedure to develop

PDF of L-values, we only present the analysis for this particular case [31].

Assume kc = 1, n = 2, J = 2 and q = 2 which results in 4 different K

matrices [12]. For this particular case, there is a single signal constellation

parameter, i.e., α1. In this case Π = {1, 2, (1, 2)}, so we need to compute

three PDFs i.e., pΛ1(λ|c1), pΛ2(λ|c2) and pΛ1,2(λ|c1,2) to calculate the PEP

in (2.18). The L-values in (3.5) depend on the transmitted symbol xt, how-

ever, since all zero codeword is transmitted, xt is totally determined by the

scrambling sequence st. Therefore we can write l̃k,t(yt|st) to show that the

L-values depend on st. For a given transmitted symbol xt and noise com-
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ponent n, the received signal yt is a Gaussian random variable with mean

xt and variance σ2
n. The L-value in (3.5) is a piece-wise linear function of yt

and is therefore piecewise Gaussian. Hence, each L-value Λ(et, st) in (2.16)

pΛ|n(λ) =


1
2 [ψ(λ;−1+α1

1−α1
ρn, 2ρn) + ψ(λ;−ρn, 2ρn)], if et = [1, 0]

ψ(λ;− α2
1

(1−α1)2 ρn, 2
α2

1
(1−α1)2 ρn), if et = [0, 1]

ψ(λ;− 1
(1−α1)2 ρn, 2

1
(1−α1)2 ρn), if et = [1, 1]

.

(3.8)

[pΛ1(λ|c1 = 0)]∗w1 =

[
1

2

N∑
n=1

εn

[
ψ

(
λ;−1 + α1

1− α1
ρn, 2ρn

)
+ ψ (λ;−ρn, 2ρn)

]]∗w1

=
∑

r1∈W2N (w1)

(
w1

r1

)
ψ

(
λ,−

N∑
n=1

(
r1,2n−1

1 + α1

1− α1
+ r1,2n

)
ρn, . . .

. . .
N∑
n=1

2(r1,2n−1 + r1,2n)ρn

)
N∏
n=1

(εn
2

)(r1,2n−1+r1,2n)

[pΛ2(λ|c2 = 0)]∗w2 =

[
N∑
n=1

εnψ

(
λ;− α2

1

(1− α1)2
ρn, 2

α2
1

(1− α1)2
ρn

)]∗w2

=
∑

r2∈WN (w2)

(
w2

r2

)
ψ

(
λ,−

N∑
n=1

r2,n
α2

1

(1− α1)2
ρn,

N∑
n=1

2r2,n
α2

1

(1− α1)2
ρn

)
N∏
n=1

εn
r2,n

[pΛ1,2(λ|c1,2 = 0)]∗w1,2 =

[
N∑
n=1

εnψ

(
λ;− 1

(1− α1)2
ρn, 2

1

(1− α1)2
ρn

)]∗w1,2

=
∑

r1,2∈WN (w1,2)

(
w1,2

r1,2

)
ψ

(
λ,−

N∑
n=1

r(1,2),n
1

(1− α1)2
ρn,

N∑
n=1

2r(1,2),n
1

(1− α1)2
ρn

)

·
N∏
n=1

εn
r(1,2),n .

(3.9)
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is a sum of piece-wise Gaussian functions. The piecewise linear relationships

are shown in Fig. 2.3 and 2.4 for 4-HPAM.

To facilitate the analysis, we use the zero-crossing approximation [9, 31]

of the L-values which replaces all the Gaussian pieces by one Gaussian func-

tion. According to this approximation, Λ(yt|et, st, n) ≈ â(et, st)yt+b̂(et, st),

where â and b̂ are determined by the linear piece crossing x-axis and closest

to the symbol xt. In Table 2.1 we present the values of â(et, st) and b̂(et, st)

for 4-HPAM. Using this approximation, we can model the conditional L-

values as Gaussian random variables whose mean and variance depend on

st, et, and γ, i.e., pΛ|n(λ|st) = ψ(λ; µ̂(et, st), σ̂
2
n(et, st)), where ψ(λ;µ, σ2) is

a Gaussian PDF with mean µ and variance σ2. The means and variances are

presented in Table 2.2 in terms of constellation parameter. Averaging these

conditional Gaussian PDFs over the scrambling sequence st results in (3.8)

UB =
1

kc

∞∑
l=dfree

∑
w1+w2+2w1,2=l

βCw1,w2,w1,2,K

∑
rπ1 ,...,rπ1,2

g(rπ1 , . . . , rπ1,2)

Q(h(rπ1 , . . . , rπ1,2))

where, (3.10)

g(rπ1 , . . . , rπ1,2) =
∏
πi∈Π

(
wπi
rπi

) N∏
n=1

(εn
2

)(r1,2n−1+r1,2n)
N∏
n=1

εn
(r2,n+r(1,2),n)

h(rπ1 , . . . , rπ1,2) =∑N
n=1−

(
r1,2n−1(1− α2

1) + r1,2n(1− α1)2 + r2,nα
2
1 + r(1,2),n

)
ρn[∑N

n=1 2
(

(r1,2n−1 + r1,2n)(1− α1)2 + r2,nα2
1 + r(1,2),n

)
ρn

] 1
2

.

(3.11)
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where for simplicity we have ρn = 2 (1−α1)2

σ2
n(1+α2

1)
. Using (3.7) and (3.8), elements

in the integration in (2.18) can be derived as (3.9) where we define the set

Wi(l) as all the combinations of i nonnegative integers such that the sum of

the elements is l, i.e., Wi(l) , {(w1, . . . , wi) ∈ (Z+)
i

: w1 + . . .+ wi = l}.

Using (3.9) the expression for UB on BER can be derived as (3.10). The

UB is computed considering a truncated weight distribution spectrum of the

equivalent code which is calculated using a well known breadth-first search

algorithm [12].

3.4 Numerical Results

Numerical results are presented in this section to compare the perfor-

mance of the traditional BICM and the BICM-T systems for GMN channels.

Information bits are encoded using a convolutional code with constraint

length K = 3, rate R = 1/2, and polynomial generators (5, 7)8. A soft-

input Viterbi algorithm is used for decoding.

We consider ε-mixture noise which is an important instance of the gen-

eral GMN with two terms, e.g., [32]. The first term represents impulsive

noise due to some ambient phenomenon, such as man-made electromagnetic

interference, while the second term accounts for the background Gaussian

noise. The ε-mixture noise parameters can be expressed as [14],

ε1 = ε, ε2 = 1− ε,

σ1 =

√
κ√

2γ(1 + κε− ε)
, (3.12)
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σ2 =
1√

2γ(1 + κε− ε)
,

where κ = σ2
1/σ

2
2 is a measure for the strength of the impulsive component

compared to the thermal noise. In the following, we specify the parameters

of ε-mixture noise by (ε, κ).

Considering (n = q = 2) results in α1 as the only constellation param-

eter. A MUX with period J = 2 as mentioned in [12] is considered, which

results in four different K matrices. A joint optimization was performed

over K and α1. We found that the optimum MUX is always defined by

K∗γ =

(2, 1) (2, 2)

(1, 1) (1, 2)

 , (3.13)

as found in [9, 31] as well. This MUX configuration assigns all the coded

bits from the first encoder’s output to bit position k = 2 and all the coded

bits from the second encoder’s output to bit position k = 1.

We compare the performance of the BICM-T with the traditional BICM

system for different values of κ and ε = 0.1. In Fig. 3.3, we present the UB

versus κ for a given value of SNR and using uniform signal constellation. It

is interesting to note that depending on the value of κ, BICM-T or BICM-S

can be optimal. The results show that if κ < 35, then the performance of

BICM-T is better as compared to the BICM-S design. In Figs. 3.4 and 3.5

we compare the BER performance of the BICM-T with BICM-S system. In

Fig. 3.4 we use κ = 10 and in Fig. 3.5 we use κ = 100. The Fig 3.4 illustrates

that for κ = 10, the performance of BICM-T using optimal constellation
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and multiplexer is much better as compared to BICM-S. On the other hand

Fig. 3.5 shows that for κ = 100, the performance of the traditional BICM-S

is better as compared to BICM-T.

3.5 Conclusion

In this chapter, we analyzed the performance of a BICM-T system for

non-Gaussian channels. The presented numerical results showed that by

properly designing the signal constellation and multiplexer in the BICM-T

system, gains up to 1.5 dB over the BICM-S system can be achieved if the

strength of impulsive noise components is below a certain threshold level.

On the other hand, BICM-S is optimal if the strength of the impulsive noise

components is above the threshold.
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Figure 3.3: Comparison of UB for BICM-T with BICM-S for different values
κ, ε = 0.1 and γ =8 dB. The simulations are shown by markers and the UB
with solid lines.
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ε = 0.1. The simulations are shown by markers and the UB with solid lines.
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Chapter 4

BICM-Based Cooperative

Communication Systems:

Constellation and Interleaver

Design8

4.1 Introduction

Cooperative communication has gained much interest in recent years as

a way to form virtual antenna array among single antenna terminals9 that

improves the overall system performance in wireless environments [18–20].

A smart relay selection scheme proposed in [33] selects one relay from the

available relays in the network. This relay selection criterion ensures that

the best two-hop relay path is selected between the source and the destina-

8A part of this chapter has been submitted for publication. M. T. Malik, Md. J.
Hossain, and M.-S. Alouini, “BICM-based cooperative communication systems with re-
lay selection: constellation and multiplexer design”, IEEE Wireless Commun. Letters,
Submitted June 2013.

9Due to the hardware constraint we consider that communicating terminals have single
antenna which is a practical assumption. However our design can be extended for terminals
with multiple antennas.
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tion, and provides the diversity gain on the order of the number of relays

with no loss in performance in terms of diversity-multiplexing tradeoff in

orthogonal cooperation. On the other hand, bit-interleaved coded modula-

tion (BICM) [3] offers many advantages in designing a wireless transceiver

and is a standard for many contemporary wireless systems. Therefore, a

BICM-based transceiver will also be the natural choice for cooperative com-

munication systems. Although a significant research has been conducted to-

wards designing BICM-based transceivers for single-hop systems, however,

to date, a little research has been conducted towards designing BICM-based

transceiver for cooperative communication systems. A bandwidth efficient

BICM-based cooperative communication scheme is proposed in [34]. The

performance of BICM-based cooperative communication scheme has also

been analyzed [35–37]. None of these works considered the possibility of

optimizing various modules of BICM.

Motivated by the results presented in [12] for single-hop communication

systems, in this work we propose a new BICM-based cooperative communi-

cation system. In [11, 12], it has been shown that the BER performance can

be improved if the channel offers an unequal error protection (UEP) to the

coded bits and this unequal error protection was achieved by proper design

of the multiplexer and signal constellation. In this single-hop communica-

tion, in order to optimize the multiplexer and constellation, the transmitter

considered the average signal-to-noise ratio (SNR) of the point-to-point link

only. However, due to the inherent nature of the cooperative communication

system, optimization of the multiplexer and constellation is different from

the single-hop systems. For example, when the source transmits information
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Figure 4.1: System model of the HQAM-BICM based cooperative transmis-
sion: A channel encoder followed by the multiplexer (MUX), the interleavers,
the hierarchical M -PAM mapper, detect and forward (DetF) at the selected
relay (ri), and processing blocks at the receiver side.

to the destination and the selected relay (which then forwards the detected

symbols to the destination), it has to optimize the multiplexer and constel-

lation jointly considering average SNRs of the direct and the two-hop relay

links. Also the relay should optimize its constellation when forwarding the

detected symbols to the destination.

In order to exploit the full benefit of BICM in the context of cooperative

communication, with the proposed framework different BICM modules can

be optimized jointly considering the SNRs of the source-destination channel

and the two-hop relay channels. The presented numerical results show that,

when the optimized10 parameters are used in the design, the proposed design

can offer gains up to 1.4 dB over the traditional BICM designs for a target

bit error rate of 10−6. Moreover the results show that the amount of gain

increases with the number of relays available for selection.

10We obtained the optimal constellations and multiplexer configurations via simulation
due to the lack of mathematically tractable probability density functions of L-values for
relay channels with higher order signal modulation.
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4.2 System Model

The model of our proposed BICM-based cooperative communication sys-

tem is shown in Fig. 2.1, where a source (s) transmits information to a

destination (d) in cooperation with N relay nodes (rj), with j = 1, ..., N .

The relay (ri) is selected from this set of N available relays and works using

detect and forward (DetF) strategy. The functionalities of various blocks of

the system model are described as follows.

4.2.1 Source

The information bits um = [um,1, . . . , um,Nc ] with m = 1, . . . , kc are en-

coded by a rate R = kc/n convolutional encoder (ENC). A bit level multi-

plexer (MUX) maps the coded bits c̃l = [c̃l,1, . . . , c̃l,Nc ] with l = 1, . . . , n from

the encoder onto ck = [ck,1, . . . , ck,Ns ] with k = 1, . . . , q, where nNc = qNs.

The MUX defines a mapping rule and is defined using a n×Nc matrix K̃,

as in [12], whose (l, t′)-th entry is a pair (k, t) where k ∈ {1, . . . , q} and

t ∈ {1, . . . , Ns}. The entry (k, t) indicates that the bit c̃l,t′ is assigned to the

k-th MUX’s output at time instant t. We represent K̃ as a concatenation of

Nc/T matrices Kτ , each of dimensions n×T , i.e., K̃ = [K0, . . . ,KNc/T−1],

where T is the period of MUX. The entries of Kτ are (k, t+ τnT/q) where

k ∈ {1, . . . , q} and t ∈ {1, . . . , nT/q}. Without losing generality, (nT mod

q) = 0 and (Nc mod T ) = 0.

The coded bits ck are fed to the q parallel interleavers πk which give inde-

pendent randomly permuted vectors bk = [bk,1, . . . , bk,Ns ], i.e., bk = πk{ck}.

The q-th interleaver output is connected to the q-th bit position of a modula-
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tor which maps the bits onto symbols using hierarchical M -ary quadrature

amplitude modulation (HQAM) constellations labelled by the binary re-

flected Gray code (BRGC) [25], where q = log2M . In such constellations,

each symbol is a superposition of independently modulated real/imaginary

parts, so we focus on an equivalent hierarchical pulse amplitude modula-

tion (HPAM) constellation. At any time instant t, the bits [b1, . . . , bq] are

mapped to a HPAM symbol xs ∈ Xs = {xs,0, . . . , xs,M−1} using a binary

memoryless mapping M : {0, 1}q → Xs.

4.2.2 Relay Selection and DetF

The received signal at the j-th relay is given by

zsrj = asrj · xs + nrj (4.1)

where, for a node w ∈ {rj , d}, nw is a zero-mean AWGN with a variance N0.

The channel fading gains between the nodes v and w i.e., avw = hvw

d
η/2
vw

model

the path loss and fading, where hvw follow a Rayleigh distribution with a unit

average power, η is the path loss exponent and dvw is the distance between

v and w. The average SNR between v and w is given by γvw = 1
dηvwN0

and

the instantaneous SNR γvw = γvw|hvw|2 follows an exponential distribution,

i.e.,

p(γvw) =
1

γ̄vw
exp

(
−γvw

γ̄vw

)
. (4.2)
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The two-hop link of relay (ri) is selected according to the scheme in [33] as,

i = arg max
j∈{1,...,N}

min{γsrj , γrjd}. (4.3)

This relay selection criterion provides the diversity gain on the order of the

number of relays. From the normalized received signal, ysri = {zsri/asri},

selected relay (ri), that works as a detect and forward relay, demodulates the

signal (ysri) to have estimated coded bits, [b̂1, . . . , b̂q], which are then remod-

ulated using HPAM constellation. The remodulated symbols xri ∈ Xri =

{xri,0, . . . , xri,M−1} are forwarded to the destination. The constellation pa-

rameters at the source and the selected relay can be different in general

and are denoted by αs = [α1,s, . . . , α(q−1),s] and αri = [α1,ri , . . . , α(q−1),ri ],

respectively.

4.2.3 Receiver

The destination receives the signal from the source and the selected relay

(ri) as

zsd = asd · xs + nd

zrid = arid · xri + nd (4.4)

and the receiver (REC) computes bit-level reliability metrics using the nor-

malized received signals y = [ysd, yrid] where ysd = {zsd/asd} and yrid =
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{zrid/arid}. The L-value for the k-th bit position is given by,

l̂kΣ = ln

{
Pr(bk = 1|y)

Pr(bk = 0|y)

}
≈ ln

{
p(ysd|bk = 1) · p(yrid|bk = 1)

p(ysd|bk = 0) · p(yrid|bk = 0)

}
= l̂ksd + l̂ki , (4.5)

where

l̂ksd = ln

{
p(ysd|bk = 1)

p(ysd|bk = 0)

}
, (4.6)

We assume that l̂kΣ can be approximated by summation of individual L-

values11.

The L-values for k-th bit position corresponding to selected relay (ri) is

given by,

l̂ki = ln

{
p(yrid|bk = 1)

p(yrid|bk = 0)

}
= ln

{∑1
c=0 p(yrid|b̂k = c) · p(b̂k = c|bk = 1, γsri)∑1
c=0 p(yrid|b̂k = c) · p(b̂k = c|bk = 0, γsri)

}

= ln


∑

xri∈Xri

∑
xs∈Xs,k,1

p(yrid|xri) · p(xri |xs, γsri)∑
xri∈Xri

∑
xs∈Xs,k,0

p(yrid|xri) · p(xri |xs, γsri)

 , (4.7)

where Xk,b represents the symbols with bit value b at bit position k. This

L-value can be approximated using so called max-log simplification (see for

11We have also checked that calculation of L-values jointly considering received sig-
nals from the source and the selected relay (ri) i.e., multidimensional observation has a
negligible impact on the BER performance.
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example [12] [11]) as l̂ki ≈ lki , given by

lki = max
xs∈Xs,k,1

xri∈Xri

{
−γrid

2
(yrid − xri)

2 + ln{p(xri |xs, γsri)}
}

− max
xs∈Xs,k,0

xri∈Xri

{
−γrid

2
(yrid − xri)

2 + ln{p(xri |xs, γsri)}
}
. (4.8)

The combined metrics are then de-interleaved to obtain l̃kΣ = π−1
k {l̂kΣ} where

k = 1, . . . , q. These L-values are reorganized by the demultiplexer unit

(DEMUX) which inverts the operation done by the MUX. The resulting

vectors of L-values are fed to a soft input Viterbi decoder which estimates

the transmitted information bits from the source.

4.3 Simulation Results

In this section, we present numerical results where information bits are

encoded using a rate R = 1/2 convolutional code with constraint length

K = 3 and generator polynomial (5, 7)8. A soft-input Viterbi algorithm is

used for decoding.

For an optimal BER performance, one needs to jointly optimize K, the

constellation parameters at the source i.e., αs, and at the selected relay

i.e., αri , for a given value of γ̄sd and all relay positions (equivalently average

SNRs between the source and the relays as well as average SNRs between

the relays and the destination). The optimum values are defined as α∗s , α∗ri
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and K∗ i.e.,

[α∗s ,α
∗
ri ,K

∗] = argmin
αs,αri ,K

{BER(αs,αr,K)} . (4.9)

The optimization of BER was performed via simulation and an exhaustive

search over the valid range of constellation parameters, with a step size of

0.01 as done in [12] for single-hop channels. Please note that this opti-

mization should be performed at the beginning based on the cooperative

network’s topology i.e., γ̄sd and all cooperating relays’ positions (equiva-

lently average SNRs between the source and the relays as well as average

SNRs between the relays and the destination). Then the results can be used

for the cooperative system under consideration as long as the topology does

not change. This optimization can also be performed offline and the results

can be tabulated to be used for the cooperative system under consideration.

4.3.1 Spectral Efficiency 1 Bit/Dimension

For this case (n = q = 2), the HPAM constellation has one parameter.

Therefore, one constellation parameter at the source α1,s and at the selected

relay node i.e., α1,ri is to be optimized. We consider a MUX with period

T = 2, which results in four different K matrices. A numerical optimization

was performed over K, α1,s and α1,ri , and different positions of the N relays.

We found that the optimum MUX is always given by

K∗ =

(2, 1) (2, 2)

(1, 1) (1, 2)

 . (4.10)
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In order to illustrate how relay position affects the choice of constellation

parameter, we consider a simple topology with one relay where the relay r1

lies on the line between the source and the destination and its position is

determined by δ = dsri/dsd; where dsd = 1. The results of joint optimiza-

tion over α1,s and α1,r1 are presented in Fig. 4.2 and Fig. 4.3, respectively

for three different relay locations. It is interesting to observe that the op-

timum constellation parameters at source and relay nodes not only depend

on the average source-destination SNR (γ̄sd), but also on the location of the

cooperating relay. If the relay is placed close to the source, the optimal

constellation at the source tends to be non-uniform.

For a given number of relays and their positions, a joint optimization

over K, α1,s and α1,ri is performed and the optimal values are then used in

our proposed design. The BER performance of the proposed system with

optimized parameters is presented in Fig. 4.4. In this, we have also plotted

the BER performances of the traditional single interleaver BICM system

(BICM-S) [37]. The results show that the proposed design with joint op-

timization of the MUX and the constellation outperforms the traditional

design. They also indicate that the amount of gain increases with the num-

ber of relays i.e., the diversity order as the fading becomes less severe.

4.3.2 Spectral Efficiency 1.5 Bits/Dimension

Considering 8-ary constellations (q = 3) and rate R = 1/2 code (n = 2)

gives a spectral efficiency of 1.5 bits/dimension. In this case, the HPAM

constellation has two parameters, therefore there are total 4 parameters in-

12We considered a convolutional code with K = 8 and generator polynomials (371, 247)8.
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Table 4.1: Optimal constellation parameters and gains for BER ≈ 10−6

N (dsrj , drjd) α∗s α∗ri K∗ gain [dB]

2
(0.5, 0.5)

(0.7, 0.7)
(0.47, 0.18) (0.46, 0.18)

(2, 1) (3, 2) (3, 1)

(2, 2) (1, 1) (1, 2)

 1.0

3

(0.5, 0.5)

(0.7, 0.7)

(0.4, 0.6)

(0.45, 0.17) (0.46, 0.18)

(2, 1) (3, 2) (3, 1)

(2, 2) (1, 1) (1, 2)

 1.2

5

(0.5, 0.5)

(0.7, 0.7)

(0.4, 0.6)

(0.6, 0.4)

(0.7, 0.7)

(0.45, 0.16) (0.46, 0.16)

(1, 2) (2, 1) (3, 1)

(3, 2) (2, 2) (1, 1)

 1.4

(0.48, 0.22) (0.48, 0.21)

(3, 1) (1, 1) (2, 2)

(1, 2) (3, 2) (2, 1)

 0.912

cluding (α1,s, α2,s) at the source and two constellation parameters at the

selected relay node i.e., (α1,ri , α2,ri) that are to be optimized. We consider

a MUX with period T = 3, which results in thirty different MUX configu-

rations [12].

In Fig. 4.5, we present the BER performance of the proposed system with

the optimal constellation parameters and multiplexer configuration. The re-

sults show that the proposed system outperforms the traditional BICM-S

system [37]. In Table 4.1, we present the optimal constellation parameters,

optimal multiplexer and the amount of gain achieved over the BICM-S sys-

tem for different positions of N relays and for a target BER of 10−6. From

this table, it is interesting to observe that the constellation parameters as

well as the optimum multiplexer depends on the number and the location

of the relays as well as the convolutional code. As shown by the presented

results, the amount of gain increases with the number of relays and is 1.4
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Figure 4.2: Optimal constellation parameter at the source versus average
source-destination SNR (γ̄sd), that gives BER ∈ [10−8, 10−2], for different
relay positions identified by δ = dsr1/dsd.

dB using N = 5 cooperating relays for a target BER of 10−6.
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Figure 4.3: Optimal constellation parameter at the relay versus average
source-destination SNR (γ̄sd), that gives BER ∈ [10−8, 10−2], for different
relay positions identified by δ = dsr1/dsd.
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Figure 4.4: BER performance for spectral efficiency 1 bit/dimension.
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Figure 4.5: BER performance for spectral efficiency 1.5 bits/dimension.

78



Chapter 5

Summary, Conclusion and

Future Works

5.1 Summary and Conclusions

In this thesis, we investigated and optimized new BICM-based transceivers

to improve the reliability of the transmission.

In Chapter 2, we presented a generalized BICM-T design that uses

HQAM signal constellations in conjunction with a bit-level multiplexer. Due

to the use of a bit level multiplexer that connects the channel encoder with

the modulator, our considered design gives a design flexibility to indepen-

dently choose the code rate and the modulation order. This can allow easy

rate adaption for frequency selective multicarrier non-fading channels and

quasi static fading channels. We developed an UB on the BER performance

of our considered BICM-T design in terms of signal constellation param-

eters as well as the multiplexer configuration. Using the developed UB,

different transceiver’s modules of the considered BIMC-T design can be op-

timized for performance improvement of such systems. It is also shown by

the results in the chapter that for higher values of SNR, ES signal constel-
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lation becomes non-optimal and to minimize the BER, non-uniform signal

constellation and optimum multiplexer configuration should be used in the

BICM-T design. The selected numerical result for hierarchical 64-QAM and

1.5 bits/dimension spectral efficiency showed that by optimizing the modules

in the considered design, gains up to 3.4 dB can be achieved with respect to

BICM-S.

In Chapter 3, we investigated the performance of BICM-T in non Gaus-

sian channels due to its practical relevance. The presented numerical results

showed that by properly designing the signal constellation and multiplexer

in the BICM-T system, gains up to 1.5 dB over the BICM-S system can be

achieved if the strength of impulsive noise components is below a certain

threshold level. On the other hand, BICM-S is optimal if the strength of

the impulsive noise components is above the threshold.

In Chapter 4, we presented an innovative BICM design for cooperative

communication where various BICM modules can be optimized depending

on the SNRs of different two-hop relay channels. Our proposed a BICM-

based transmission framework for cooperative communication systems uses

HQAM constellations in conjunction with a deterministic bit-level multi-

plexer and M-interleavers. Presented results showed that the BER per-

formance is improved with our proposed design as compared to the other

designs by optimal selection of the multiplexer and constellation.
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5.2 Future Work

There are various open avenues for future research in the topics related

to BICM transmission. In the following, an extension of the work in this

thesis and a potential research topic is discussed briefly.

5.2.1 Performance Bit-Interleaved Coded Modulation over

Gaussian Mixture Noise Channels with Higher Order

Modulation

In many physical channels the ambient noise is known through exper-

imental measurements to be non-Gaussian due to the impulsive nature of

man-made electromagnetic interference as well as a great deal of natural

noise. In Chapter 3 we analyzed and optimized the performance of BICM-T

over GMN channels and showed that by properly designing the signal con-

stellation and multiplexer in the BICM-T system, gains up to 1.5dB over the

traditional single interleaver BICM systems can be achieved if the strength

of impulsive noise components is below a certain threshold level. But this

design and analysis considered a simple case of 16-ary QAM. The analysis

for a more generalized setup with higher order signal modulation can be

done using the similar approach. For such modulation, it will be interesting

to see how much gain we can achieve by using an optimal BICM-T design

as compared to the traditional BICM-S and under which conditions.
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5.2.2 Performance of Bit-Interleaved Coded Modulation

over Gamma-Gamma Turbulence Channels

Optical wireless communication (OWC) system has gained increasing

attention in recent years because of its ability to offer high speed data trans-

mission over short distances, and to replete the gap between backbone fiber

network infrastructure and end users. The main advantage of OWC system

is its optical-fiber-like performance with easy and cost effective deployment,

being free from spectrum licensing regulation. Atmospheric turbulence in-

duced random irradiance fluctuation is a major source of performance degra-

dation for any outdoor OWC systems. Several fading mitigation techniques

have been proposed for OWC systems. In [38], the authors proposed error

control coding in conjunction with interleaving to mitigate strong turbulence

fading. Due to slow fading nature of OWC channels, such system requires

large interleavers. However, recent developments in hardware and signal

processing have made such interleaving possible (for example see [39]).

It is very interesting to investigate the performance of BICM over op-

tical wireless turbulence channels. The Gamma-Gamma distribution is a

well accepted statistical model for describing turbulence induced irradiance

fluctuation over a wide range of turbulence regimes from weak to strong

turbulence. Developing an analytical framework for this performance evalu-

ation of different BICM designs will be very useful to optimize various BICM

modules to improve the BER performance for such channels.
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