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Abstract

This thesis studies buoyant displacement flows with two miscible fluids in
pipes and 2D channels that are inclined at an angle β measured from vertical
changing from 0◦ to 90◦. The focus is on inclination angles away from
nearly horizontal since these flows are previously studied in full details in the
literature. Detailed experimental, analytical and computational approaches
are employed in an integrated fashion.

Both density stable (light fluid displacing heavy one) and density unsta-
ble (heavy fluid displacing light fluid) displacements are studied. For density
stable flows the study is purely experimental in the limit of iso-viscous New-
tonian fluids. The density stable configuration has been found to produce
highly efficient displacements, with the bulk of the interface moving steadily
at the mean velocity. The streamwise length of the stretched interface in-
creases with the mean flow velocity, viscosity and inclination β from vertical,
and decreases with density difference.

The rest of the thesis deals with density unstable configuration. From
experimental point of view, the pipe displacement flows are studied for iso-
viscous Newtonian and also viscoplastic fluids. In the Newtonian limit, com-
pletely different regimes than nearly-horizontal case are observed. As a first
order approximation, different regimes are classified in a two-dimensional
(Fr; Re cos β/Fr plane) providing leading order correlations to transitions
to different regimes. Similar regimes are found for channel geometry through
numerical simulations of PELICANS code. For non-Newtonian fluids we
have focused on industrially interesting cases of large yield stress fluids in
the pipe. The two distinct flow regimes namely central-type and slump-type
first observed in nearly horizontal angles were found to also persist over other
inclinations. Completely new and exotic behaviors were also observed due
to the effect of inclination angle and instabilities.

From mathematical and modeling point of view a two-layer weighted
residual model for generalized Newtonian fluids has been developed. The
model works for channel geometry and can be used to predict the displace-
ment interface height, the front velocity and more importantly, the flow
stability.
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Preface

In this preface, we briefly explain the contents of the papers that are pub-
lished or submitted for publications from this thesis. We also mention the
relative contributions of collaborators and co-authors in the papers.

• K. Alba, S.M. Taghavi, and I.A. Frigaard. Miscible density stable
displacement flows in inclined tube. Phys. Fluids 24, 123102-11
(2012).
This work deals with the displacement of two miscible iso-viscous flu-
ids of different densities in a tilted pipe with the two fluids initially in a
gravitationally stable configuration i.e. light fluid displacing a heavier
one downwards. In this experimental work we first observe that the
displacement efficiency is highest in density stable configuration and
that the length of the stretched interface between the two fluids re-
mains constant over time. This stretch length was found to depend on
imposed velocity, inclination, density difference and the common vis-
cosity of the two fluids. After quantifying this dependency we are able
to represent the scaled stretch length as a function of a simple param-
eter which represents the ratio of the buoyancy and viscous stresses.
I wrote the paper with I.A. Frigaard. S.M. Taghavi provided useful
comments. The experiments were conducted by me. I also supervised
co-op students, Messrs E. Stuart, H. Abou Jaoude and G. Hatzikiri-
akos in running the experiments who are also acknowledged in the
paper. S.M. Taghavi assisted in the experiments too by consulting
about the range of experimental parameters to be used in the study.
This research was supervised by I.A. Frigaard.

• K. Alba, S.M. Taghavi, and I.A. Frigaard. Miscible density unstable
displacement flows in inclined tube. Accepted for publication in

Phys. Fluids.

This work deals with the displacement of two miscible iso-viscous flu-
ids of different densities in a tilted pipe with the two fluids initially
in a gravitationally unstable configuration i.e. heavy fluid displacing
a lighter one downwards. In this experimental work we first observe
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Preface

that the displacement efficiency is less than density stable configura-
tion and that different flow regimes may appear at different inclination
angles e.g. viscous, inertial, diffusive etc. In a phenomenological study
approximation, these regimes are classified in a two-dimensional di-
mensionless planes providing leading order correlations to transitions
to different regimes. The effect of the imposed flow on front velocity
and macroscopic diffusion is also investigated for different flows. The
stabilizing and/or de-stabilizng effects of the mean flow on buoyant
exchange flows are finally given for broad range of dimensionless pa-
rameters. I wrote the paper with I.A. Frigaard. S.M. Taghavi provided
very useful comments. The experiments were conducted by me. I also
supervised co-op students, Messrs E. Stuart, H. Abou Jaoude and G.
Hatzikiriakos in running the experiments who are also acknowledged
in the paper. S.M. Taghavi assisted in the experiments by lengthy dis-
cussions about the results and making the connection with the nearly-
horizontal studies of his carried out before. This research was super-
vised by I.A. Frigaard.

• K. Alba, S.M. Taghavi, and I.A. Frigaard. Weighted residual method
for two-layer non-Newtonian channel flows. Submitted for publi-

cation.

In this work we have developed a two-layer model based on weighted
residual approach for generalized Newtonian fluids. The improvement
over the previous lubrication model is that it takes into account the
presence of weakly inertial terms as well as viscous stresses. The model
developed can be used for simulating the co-extrusion and displace-
ment flows although the latter is of our interest. We give predictions
of interface shape and front velocity over a broad range of geometrical
and rheological parameters. Through a linear stability analysis carried
in this work we have shown the stability diagrams of the two layer flows
in different planes of governing parameters. The paper was written by
I.A. Frigaard and I. S.M. Taghavi read the paper and provided useful
comments. In a close collaboration with I.A. Frigaard, I developed the
mathematical model and carried out the numerical solutions for the
model. S.M. Taghavi assisted in writing the intense code developed
for solving the weighted-residual model numerically. I developed the
stability analysis section codes/results assisted by I.A. Frigaard. This
research was supervised by I.A. Frigaard.

• K. Alba, S.M. Taghavi, J.R. de Bruyn and I.A. Frigaard. Incomplete
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fluid-fluid displacement of yield stress fluids in inclined pipes. Sub-

mitted for publication.

The experimental paper studies the displacement of a yield stress fluid
from an inclined pipe in the situation that the yield stress is strong
relative to typical viscous forces. In fact this work is the extension
of our previous work on nearly-horizontal displacement flows to other
inclination angles. We interestingly observed that the center-type and
slump-type displacements found in nearly horizontal regime also exist
at higher angles with the same value of Archimedes number for tran-
sition between the regimes. As we move away from horizontal angles
to vertical we observe completely new and exhotic flows within the
category of the slump-type displacements which are studied in detail.
The flows were also studied from instantaneous and non-instantaneous
point of view. I wrote the paper with I.A. Frigaard. The other authors
read the draft and provided comments. The experiments and rheolo-
gies were conducted by me. I also supervised co-op students, Messrs
H. Abou Jaoude and G. Hatzikiriakos in running the experiments who
are also acknowledged in the paper. S.M. Taghavi also assisted in the
experiments by discussing about the range of experimental parame-
ters to choose for the study since the work was tightly related with
nearly horizontal regime we had explored before. J.R. de Bruyn gave
detailed comments on how to present the results and assisted in better
studying the highly-unstable flows discussed earlier. This research was
supervised by I.A. Frigaard.

Although the focus of the thesis is on displacement flows away from
nearly-horizontal angles, a good amount of time was spent with Mr. S.M.
Taghavi, former Ph.D. student in our group studying the displacement flows
in nearly-horizontal angles to gain the sufficient modeling/experimental skills
before moving to the main project. Therefore the publications related to
these studies are also outlined here since they are inevitably closely related
to the findings in this thesis. The contribution that set the ground for de-
veloping the weighted-residual model for two-layer flow system in this thesis
(chapter 6) is also mentioned first.

• K. Alba, P. Laure and R.E. Khayat. Transient two-layer thin-film
flow inside a channel. Phys. Rev. E 84, 026320-14 (2011).
This work set the basis of deriving the two-layer weighted-residual
model for channel flows in this thesis. In this paper the two-layer flow
of two Newtonian fluids in a channel (co-extrusion flow) is studied
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analytically. The developed model is then solved numerically for a
range of governing parameters e.g. viscosity ratio, flow rate ratio etc.
I used a finite difference scheme to solve the equations numerically
with two types of boundary conditions at the inflow: a Dirac-type
pulse and periodic forcing. The perturbation takes the form of a wave
packet which may or may not be amplified as it moves downstream,
depending on the values of the parameters involved in problem. Both
the model presented and the results can be used to avoid non-uniform
extruded products by choosing processing parameters appropriately.
The calculations for developing the model and the computations were
carried out by me with insightful discussions with the rest of the au-
thors. The manuscript were first written by me and then corrected by
P. Laure and R.E. Khayat for final submission. The work was super-
vised by Professor R. E. Khayat in University of Western Ontario and
co-supervised by Professor P. Laure in Universit de Nice.

• S.M. Taghavi, K. Alba and I.A. Frigaard. Buoyant miscible displace-
ment flows at moderate viscosity ratios and low Atwood numbers in
near-horizontal ducts. Chem. Eng. Sci. 69, 404-418 (2012).
In this work, results from a study of buoyant miscible displacements
flows at moderate viscosity ratios in near-horizontal pipes and plane
channels were presented. We show that small viscosity ratios lead to
more efficient displacements, as is intuitive. In each geometry we find
a mix of viscous and inertial flows, in broadly the same pattern as for
the iso-viscous displacements studied before. Predictive models are
proposed for the viscous regime, in the case of the plane channel, and
for the inertial exchange flow regime, in both geometries. The displace-
ment flows with shear-thinning fluids were also studied, over a more
restrictive range of parameters. We show that with an appropriate def-
inition of the effective viscosity the scaled front velocities fit well with
the results from the Newtonian displacements, in both pipe and plane
channel geometries. S.M. Taghavi and I.A. Frigaard wrote this paper
together and I read the draft and provided comments. S.M. Taghavi
conducted the experiments and simulations and developed the analy-
ses. I assisted with the rheology of shear-thinning fluids, running the
experiments and designing them in a few cases. I also co-supervised S.
Gharib (undergraduate co-op student in the lab) with S.M. Taghavi
in running the experiments. I.A. Frigaard supervised the research.

• S.M. Taghavi, K. Alba, M. Moyers-Gonzalez and I.A. Frigaard. In-
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complete fluid-fluid displacement of yield stress fluids in near-horizontal
pipes: experiments and theory. J. non-Newton. Fluid Mech. 167-

168, 59-74 (2012).
The paper is a primarily experimental study of displacement of a yield
stress fluid from an inclined pipe in the situation that the yield stress
is strong relative to typical viscous forces. This results in an interest-
ing balance between inertia and buoyancy in yielding the fluid. The
main finding is that the type of displacement front observed can be
one of two types (central or slump) and that this division depends pri-
marily on the ratio of Reynolds number to densimetric Froude num-
ber (also known as the Archimedes number). It is notable that this
particular group does not depend on the mean displacement veloc-
ity. S.M. Taghavi and I.A. Frigaard wrote this paper together; M.
Moyers-Gonzalez and I read the draft and provided comments. M.
Moyers-Gonzalez collaborated through code development of the finite
element method used in this paper; S.M. Taghavi ran the code and
produced the results. S.M. Taghavi conducted the experiments and
was assisted by me in developing fluid preparation criterion, rheology
and running the actual experiments. I also co-supervised S. Gharib
(undergraduate co-op student in the lab) with S.M. Taghavi in run-
ning the experiments. I.A. Frigaard developed the simple analytical
model, which S.M. Taghavi solved numerically; he also supervised the
entire research.

• S.M. Taghavi, K. Alba, T. Seon, K. Wielage-Burchard, D.M. Mar-
tinez and I.A. Frigaard. Miscible displacements flows in near-horizontal
ducts at low Atwood number. J. Fluid Mech. 696, 175-214 (2012).
In this extensive study buoyant displacement flows were considered
with two miscible fluids of equal viscosity in the regime of low At-
wood number and in ducts that are inclined close to horizontal. It was
shown that three dimensionless groups largely describe these flows: Fr
(densimetric Froude number), Re (Reynolds number) and β (duct in-
clination). The flow regimes were shown to in fact collapse into regions
in a two-dimensional (Fr; Re cos β/Fr)-plane. S.M. Taghavi and I.A.
Frigaard wrote this paper together; the other authors read the draft
and provided comments and corrections. S.M. Taghavi conducted the
experiments and simulations and developed the analytical lubrication
model in collaboration with I.A. Frigaard. T. Seon supervised the ex-
periments and K. Wielage-Burchard helped with code development. I
assisted S.M. Taghavi in developing the weighted residual model ap-
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proach presented in this paper as an improvement to the lubrication
model. The model was used to capture the displacement interface
shape and predict the flow stability. I.A. Frigaard and D.M. Martinez
supervised the research.

• M. Moyers-Gonzalez, K. Alba, S.M. Taghavi and I.A. Frigaard. A
semi-analytical closure approximation for pipe flows of two Herschel-
Bulkley fluids with a stratified interface. J. Non-Newton. Fluid
Mech. 193, 49-67 (2012).
We propose a semi-analytical closure approximation to the stratified
flow of two Herschel-Bulkley fluids flowing along a circular pipe. The
closure model proposed appears to approximate the volumetric fluxes
within 10-15% over a broad range of interface heights and rheolog-
ical parameters. We demonstrate that the closure is able to give a
good prediction of viscous regime displacement front velocities, com-
paring well with experimental values, and can be used for approximat-
ing other design features of a displacement process, for example the
maximal static wall layer when yield stress fluid are concerned. The
other design feature can be estimating the minimal flow rate to prevent
back flow. M. Moyers-Gonzalez and I.A. Frigaard wrote this paper to-
gether; S.M. Taghavi and I read the draft and provided comments. M.
Moyers-Gonzalez developed the closure model in collaboration with
I.A. Frigaard. The model results were compared against experimental
data obtained by S.M. Taghavi and me. Using the closure model, I
also assisted in predicting the onset of back flow over a wide range of
rheological parameters. I.A. Frigaard supervised the entire research.

Conference presentations and proceedings

• K. Alba, S.M. Taghavi, S. Gharib, T. Seon, D.M. Martinez and I.A.
Frigaard. Displacement flows in conduits: front velocity regimes and
shear-thinning effects. Annual European Rheology Conference
(AERC), Gothenburg, Sweden (2010).

• K. Alba, S.M. Taghavi, S. Gharib, T. Seon, D.M. Martinez and I.A.
Frigaard. Miscible two-fluid displacement flows in a near-horizontal
pipe. Canadian Society for Mechanical Engineers (CSME)
Forum , Victoria, Canada (2010).
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• K. Alba, S.M. Taghavi, S. Gharib, T. Seon, D.M. Martinez and I.A.
Frigaard. Displacement flow of shear thinning fluids in tube: The ef-
fect of density and viscosity ratio. ASME International Mechan-
ical Engineering Congress and Exposition , Vancouver, Canada
(2010).

• K. Alba, S.M. Taghavi and I.A. Frigaard. A weighted residual method
for two-layer non-Newtonian fluids. International Congress on
Industrial and Applied Mathematics (ICIAM), Vancouver, Canada
(2011).

• K. Alba, P. Laure and R.E. Khayat. Transient Two-Layer Channel
Flow. Canadian Congress of Applied Mechanics (CANCAM),
Vancouver, Canada (2011).

• S.M. Taghavi, K. Alba and I.A. Frigaard. Weakly inertial buoyant
displacement flows in nearly horizontal channels. Canadian Congress
of Applied Mechanics (CANCAM), Vancouver, Canada (2011).

• S.M. Taghavi, K. Alba and I.A. Frigaard. A Weighted Residual
Method for 2-Layer Flows with Yield Stress Fluids. 4th Workshop
on Viscoplastic Fluids: From Theory to Application , Rio de
Janeiro, Brazil (2011).

• K. Alba, S.M. Taghavi and I.A. Frigaard. Displacement of yield stress
fluids in inclined pipes. 6th European Congress on Computa-
tional Methods in Applied Sciences and Engineering (EC-
COMAS), Vienna, Austria (2012).

ix



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem of study . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Primary cementing background . . . . . . . . . . . . . . . . . 6
2.2 Associated fundamental problems . . . . . . . . . . . . . . . 9

2.2.1 Flow stability . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Exchange flows . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Boycott effect . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Displacement flows in nearly horizontal ducts . . . . 21
2.2.5 Structured displacement flows . . . . . . . . . . . . . 24
2.2.6 Averaged inertial models . . . . . . . . . . . . . . . . 26
2.2.7 Axial dispersion . . . . . . . . . . . . . . . . . . . . . 29
2.2.8 Conclusions and research objectives . . . . . . . . . . 33

3 Miscible density stable displacement flows in an inclined

pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1 Experiments and parameters range . . . . . . . . . . . . . . 39

x



Table of Contents

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 The transition from density unstable to density stable 41
3.2.2 Characteristics of density stable displacements . . . . 43
3.2.3 Parametric variation in the fully developed stretch

length . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Discussion points . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Miscible density unstable displacement flows in an inclined

pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1 Experiments and parameters range . . . . . . . . . . . . . . 57
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Exchange flows . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Displacement flows: main qualitative features . . . . 60
4.2.3 Front velocity measurement and characteristics . . . . 64
4.2.4 Macroscopic diffusion . . . . . . . . . . . . . . . . . . 72

4.3 Regime classification and leading order approximations . . . 80
4.4 Discussion points . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Miscible density unstable displacement flows in inclined chan-

nels: Numerical simulations . . . . . . . . . . . . . . . . . . . 90
5.0.1 Parameter range . . . . . . . . . . . . . . . . . . . . . 91
5.0.2 Simulation overview . . . . . . . . . . . . . . . . . . . 92

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.1 Displacement flows: main qualitative features . . . . 95
5.1.2 Front velocity measurement and characteristics . . . . 101
5.1.3 Instantaneous and non-instantaneous displacements . 106
5.1.4 Displacing front phenomena . . . . . . . . . . . . . . 112
5.1.5 Macroscopic diffusion . . . . . . . . . . . . . . . . . . 121
5.1.6 Overall regime classification . . . . . . . . . . . . . . 128

5.2 Discussion points . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Weighted residual method for two-layer non-Newtonian chan-

nel flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.1 Displacement flow in channel . . . . . . . . . . . . . . . . . . 135

6.1.1 Constitutive equations considered . . . . . . . . . . . 136
6.1.2 Parallel flow solution . . . . . . . . . . . . . . . . . . 137
6.1.3 Long-thin flows . . . . . . . . . . . . . . . . . . . . . 140
6.1.4 Standard thin-film approach . . . . . . . . . . . . . . 142

6.2 Weighted residual approximation . . . . . . . . . . . . . . . . 143
6.2.1 Velocity closure . . . . . . . . . . . . . . . . . . . . . 145

xi



Table of Contents

6.2.2 Weighted residual equation . . . . . . . . . . . . . . . 146
6.2.3 Calculating the weight functions and terms in the resid-

ual equation (6.55) . . . . . . . . . . . . . . . . . . . 148
6.3 Results: displacement flows . . . . . . . . . . . . . . . . . . . 153
6.4 Stability of 2-layer flows . . . . . . . . . . . . . . . . . . . . . 158

6.4.1 Weighted residual method stability of a parallel flow . 159
6.4.2 Orr-Sommerfeld analysis . . . . . . . . . . . . . . . . 161
6.4.3 Comparisons with the Orr-Sommerfeld analysis . . . 164
6.4.4 Stability results . . . . . . . . . . . . . . . . . . . . . 164

6.5 Discussion points . . . . . . . . . . . . . . . . . . . . . . . . 175

7 Incomplete fluid-fluid displacement of yield stress fluids in

inclined pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.1 Experiments and parameters range . . . . . . . . . . . . . . 178
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.2.1 Slump regime . . . . . . . . . . . . . . . . . . . . . . 183
7.2.2 Central regime . . . . . . . . . . . . . . . . . . . . . . 192
7.2.3 Turbulent-mixed displacements . . . . . . . . . . . . 196
7.2.4 Exchange flows . . . . . . . . . . . . . . . . . . . . . . 199
7.2.5 Dimensionless flow classification . . . . . . . . . . . . 203

7.3 Discussion points . . . . . . . . . . . . . . . . . . . . . . . . 207

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.1 Contributions to fluid dynamics understanding . . . . . . . . 208

8.1.1 Newtonian iso-viscous displacement flows . . . . . . . 208
8.1.2 Yield stress fluids displacement . . . . . . . . . . . . 211
8.1.3 Modeling and stability of the displacement flows . . . 212

8.2 Industrial implications and recommendations . . . . . . . . . 213
8.3 Limitations of the present study and future work . . . . . . . 217

8.3.1 Main limitations of the current study . . . . . . . . . 217
8.3.2 Experimental perspectives . . . . . . . . . . . . . . . 220
8.3.3 Numerical simulation perspectives . . . . . . . . . . . 222
8.3.4 Mathematical modeling perspectives . . . . . . . . . . 222

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Appendices

A Research methodology . . . . . . . . . . . . . . . . . . . . . . . 238

xii



Table of Contents

A.1 Experimental technique . . . . . . . . . . . . . . . . . . . . . 238
A.1.1 Fluid preparation and delivery . . . . . . . . . . . . . 241
A.1.2 Valves . . . . . . . . . . . . . . . . . . . . . . . . . . 247
A.1.3 Velocity measurements . . . . . . . . . . . . . . . . . 249
A.1.4 Image Processing and Visualization Technique . . . . 250
A.1.5 Fluid rheology . . . . . . . . . . . . . . . . . . . . . . 256
A.1.6 Experimental results validation . . . . . . . . . . . . 258

A.2 Numerical technique . . . . . . . . . . . . . . . . . . . . . . . 259
A.2.1 Code benchmarking . . . . . . . . . . . . . . . . . . . 263

B Weight functions and residual equation . . . . . . . . . . . . 265
B.1 Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . . . 265
B.2 General specification of the weight functions . . . . . . . . . 266
B.3 Calculating the terms in the residual equation (6.55) . . . . 267
B.4 Terms in the residual equation: acceleration terms . . . . . . 269
B.5 Terms in the residual equation:

convective terms . . . . . . . . . . . . . . . . . . . . . . . . . 269
B.5.1 Buoyancy term and flux function . . . . . . . . . . . 271

C The functions Ik,p and Jk,p . . . . . . . . . . . . . . . . . . . . 272
C.1 Heavy fluid layer . . . . . . . . . . . . . . . . . . . . . . . . . 272

C.1.1 IH,p and JH,p . . . . . . . . . . . . . . . . . . . . . . . 272
C.1.2 Integrals of IH,p and JH,p . . . . . . . . . . . . . . . . 272
C.1.3 Integrals of quadratic products of IH,p and JH,p . . . 273
C.1.4 Integrals of selected cubic products of IH,p and JH,p . 273

C.2 Light fluid layer . . . . . . . . . . . . . . . . . . . . . . . . . 275
C.2.1 IL,p and JL,p . . . . . . . . . . . . . . . . . . . . . . . 275
C.2.2 Integrals of IL,p and JL,p . . . . . . . . . . . . . . . . 275
C.2.3 Integrals of quadratic products of IL,p and JL,p . . . . 275
C.2.4 Integrals of selected cubic products of IL,p and JL,p . 276

D Long-wave limit of the Orr-Sommerfeld problem . . . . . . 278
D.1 Solution of the leading order problem . . . . . . . . . . . . . 278
D.2 Solution of the first order problem . . . . . . . . . . . . . . . 279

xiii



List of Tables

3.1 Parameter range of density stable experiments . . . . . . . . 40

4.1 Parameter range of Newtonian density unstable experiments . 58

5.1 Parameter range of our numerical study . . . . . . . . . . . . 92

7.1 Parameter ranges of viscoplastic experiments . . . . . . . . . 181

xiv



List of Figures

1.1 Schematic of the problem of study . . . . . . . . . . . . . . . 2

2.1 Deepwater Horizon accident in the Gulf of Mexico . . . . . . 7
2.2 Simplified schematic of primary cementing process . . . . . . 8
2.3 Development of Kelvin-Helmholtz instability . . . . . . . . . 11
2.4 Development of Rayleigh-Taylor instability . . . . . . . . . . 12
2.5 Two-dimensional concentration field at dimensionless time

t = 2 for Rayleigh-Taylor flow numerical simulations given
in [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Snapshots of the exchange flow concentration field obtained
at different tilt angles using laser-induced-florescence (LIF) . 17

2.7 Boycott effect in the sedimentation of a suspension of particles
in a tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 A sequence of snapshots from nearly horizontal displacement
flow experiments for β = 83 ◦, At = 0.01 and ν̂ = 1 (mm2/s) . 23

2.9 Different flow types observed in displacing layer in downward
miscible displacement of two fluids in a vertical pipe . . . . . 24

2.10 Experimental results of a full depth lock-exchange with Ben-
jamin’s potential flow solution (dashed line) [15] . . . . . . . 27

2.11 Pulses recorded at x̂ = 15 (cm) and x̂ = 468 (cm) showing
the dispersion of brine in turbulent pipe flow . . . . . . . . . 31

2.12 Concentration c(x, z) at dimensionless time t = 0.3 for dis-
placement flow of two Newtonian fluids in a vertical channel . 34

3.1 Density unstable and density stable displacements at β = 70 ◦

and ν̂ = 1 (mm2/s) . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Spatiotemporal diagrams obtained for the same experiments

as Figs. 3.1a and 3.1b . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Experimental profiles of normalized h(x̂, t̂) and the evolution

of stretch length value for the same experiments as Figs. 3.1b
and 3.2b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xv



List of Figures

3.4 The dependency of the dimensionless time taken to reach fully
developed flow, tFD, on χ and Fr . . . . . . . . . . . . . . . . 47

3.5 Front velocity values, V̂f , plotted against the mean flow ve-

locity, V̂0, for different density stable experiments . . . . . . . 48
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Chapter 1

Synopsis

1.1 Problem of study

This thesis studies the miscible displacement flow of two fluids of differing
densities in an inclined duct, in the downward direction. Both density-stable
(light fluid displacing heavy fluid) and density-unstable (heavy fluid displac-
ing light fluid) configurations are studied. The focus is more on density-
unstable configuration. Buoyancy is a significant driving force for all flows
we study. However there is also a net imposed flow in the downward direc-
tion, along the duct. We study the effects of constant imposed flow rates
(with mean velocity1 V̂0), small density differences (quantified by the At-
wood number, At), inclination angles (β), viscosity ratios between the two
fluids (m), and the rheology of the fluids.

The diameter or width of the duct, denoted by D̂, is small compared to its
length (L̂). The inclination angle β can change from horizontal (β = 90◦) to
vertical (β = 0◦) where we expect to find more mixing. The focus however
is on inclination angles away from horizontal since these fluids have been
studied in detail for both Newtonian and non-Newtonian fluids in [123].
The fluids used in this study are generalized Newtonian fluids which include
Newtonian fluids, shear thinning fluids with a power-law index n and shear
thinning fluids with a yield stress τ̂Y . Figure 1.1 shows a schematic view of
our problem geometry.

There are many industrial processes in which it is necessary to remove a
gelled material or soft-solid from a duct. Examples include bio-medical ap-
plications (mucus [73], biofilms [145]), cleaning of equipment, food process-
ing [28], oil well cementing [89] and waxy crude oil pipeline restarts [144].
Although such displacement problems have applications in oceanography,
hydrology, petroleum or chemical engineering, our main motivation comes
from complex displacement flows that exist in many processes related to the
oil and gas industry. These processes are either concerned with well con-

1In this thesis, we adopt the convention of denoting dimensional quantities with ˆ
symbol (e.g. the pipe diameter is D̂) and dimensionless quantities without.
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1.1. Problem of study

Figure 1.1: Schematic of the problem of study. The displacing and displaced
fluids are initially separated. The duct has the transverse dimension D̂. The
mean imposed velocity is V̂0 depicted by the arrow.

struction (drilling, cementing, fracturing) or production (pipelining). The
well cementing process can also be used in CO2 sequestration, where the
excess Carbon dioxide has to be pumped into the ground through a well
for storage. After drilling an oil well, the metal casing with circular cross
section is placed into the well. The drilling mud inside the pipe has to be
displaced by pumping cement slurry. The mud then leaves the system from
the very bottom of the pipe through the gap between the casing and rock
wall. The question might be why not pump an immense amount of cement
slurry to finally displace the whole mud inside the pipe. This is not feasi-
ble due to either disposal issues or cost of the fluids. In fact it is desirable
to fully displace the in-situ drilling mud with more or less a single “duct
volume” of cement slurry. Also it was found that in some ranges of viscos-
ity ratios, density differences and inclination angles, the displaced fluid can
not be displaced properly no matter how much displacing fluid is pumped
[130]. These are called stationary residual layers. Also we have other is-
sues related to displacement that are as important. In our study we aim
to understand the underlying mechanisms of displacement flows in depth to
finally be able to design the displacement process as efficient as possible.
From a fluid mechanics perspective, the final goal of a displacement flow
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1.1. Problem of study

process is to remove (displace) as much drilling mud as possible by pumping
as little cement slurry as needed.

Usually the pipe aspect ratio, defined as the ratio of the pipe diameter to
its length, is small and the pipe can be inclined at different angles depending
on the depthwise location. Nearly horizontal wells can be more productive
due to the increased contact area with the reservoir. However these wells are
also first drilled in a strictly vertical condition and then adopt the desired
curvature as depth increases. Laminar flows often occur in these processes,
due to either high viscosities or other process constraints. Fluids with non-
Newtonian characteristics are always used in the well cementing process
depending on the related stage.

This thesis is related to a previous Ph.D. thesis in Complex Fluids Lab-
oratory of The University of British Columbia titled ”From Displacement to
Mixing in a Slightly Inclined Duct” [123], but is also significantly different
in scope. Whereas [123] focuses on understanding the displacement flows in
nearly horizontal ducts, here we study the full range of inclinations rang-
ing from vertical to near-horizontal. The main novelty in doing this is that
the flow phenomena observed at these inclinations are markedly different
to those in [123]. The overlap between the two theses is in using a simi-
lar experimental apparatus and some computational tools, although both
are modified and new analyses are introduced. The main questions to be
addressed in this thesis are the same as those in [123] for nearly-horizontal
displacement flows, as the underlying objectives are the same. These ques-
tions are:

(i) to what degree do the displacing and displaced fluids mix across the
duct;

(ii) what is the longitudinal extent of the mixed region in the duct? By
mixed region we mean the region in which the average concentration
across the duct is different than the concentration of either displacing
or displaced fluids.

In the limit of nearly horizontal ducts the displacement flows are more
structured [123], typically stratifying into 2 streams with minimal mixing at
the interface. For these structured flows the velocity of the displacing front
is the most important quantity to be measured since it reveals how successful
the displacement has been [128]. As the duct inclination angle increases the
flows naturally become more inertial and unstable due to the larger buoyancy
forces along the streamwise direction. In the case of fully mixed flows the
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longitudinal extent of the mixed region can be defined by finding the speed
at which the mixed region spreads, typically via diffusion/dispersion.

Turbulent displacing regimes are typically more effective, but the prob-
lem is they are not always possible due to process constraints on the maxi-
mum flow rates. Once removed, the displaced fluid leaves the pipe through
the very bottom of the drilled section. It then comes back up to the ground
by passing through the annulus-like region between the casing and rock wall.
It is most important that in the annulus region the displaced fluid be lighter
than the displacing one to ensure a stable displacement flow. The displac-
ing fluid (the cement slurry) finally is left to rest in the annulus region and
solidify over time. This density configuration (heavy displacing and light
displaced fluids) will create a buoyant flow inside the pipe section. Most
of the analyses and results presented in this thesis focus on unstable den-
sity configuration. However in some stages of the process it is possible that
the displacing fluid inside the casing is less dense. Therefore, flows with
a stable density configuration are also studied as a chapter in this thesis.
The density differences used in the current project are fairly small and are
defined through a single dimensionless parameter called Atwood number
(At = ρ̂1−ρ̂2

ρ̂1+ρ̂2
) where ρ̂1 and ρ̂2 are displacing and displaced fluids densities

respectively. Although the Atwood numbers used are small the resulting
buoyancy forces are significant. In the case of density-stable flows the At-
wood number is negative and for density-unstable cases it is positive. It is
found that there is a striking difference between the flows in these two den-
sity configurations. In the density stable configuration the efficiency of the
displacement is increased a lot. The extent of the mixed-region along the
pipe for these flows is much reduced compared to the case of density-unstable
displacement.

The closest research works in literature to displacement flows in inclined
ducts are those in [87, 124–130] for nearly horizontal angles and in [111–115]
for the lock exchange flow of buoyant flows in titled geometries. By the lock
exchange flow we mean that the two ends of the duct are closed and the
fluids interpenetrate one another due to the buoyancy. So in summary our
aim is to see how the imposed flow changes the lock exchange flow and how
the steeper inclination angles affect the displacement flows.

The approaches taken to understand the displacement flows in this thesis
are experimental, numerical and analytical. The major part of the results
are obtained by experiments carried out in lab scale apparatus explained
in detail in the appendix A. Computational fluid dynamics (CFD) is also
used to numerically solve the governing equations and further understand
these flows. Due to the complexity of the pipe flows, the geometry used
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in numerical simulations is a plane channel, as opposed to the pipe used
in the experiments. Based on the experimental observations and numeri-
cal simulations appropriate mathematical models are developed to predict
the quality of the displacement and estimate their stability. The final aim
through these integrated studies is to better understand the physics behind
the displacement flows, give quantitative measures of the design parame-
ters where feasible and to improve the whole process. This can be done by
looking for regimes where the fluids contamination is minimized and the ef-
ficiency of the displacement is maximized. The eventual aim is that our new
knowledge will be used to improve real displacement flow process designs,
thus helping to reduce environmental impact and increase productivity.

1.2 Outline of the thesis

The outline of this thesis is as follows. The next chapter looks into the in-
dustrial background of the problem and the associated fundamental studies
of displacement flows. The research methodology adopted including ex-
perimental procedures, devices and computational technique is explained in
appendix A. The experimental approach taken will be discussed in detail ex-
plaining the modifications applied to the previous apparatus in [123] along
with the improvements in imaging and postprocessing the data. The numer-
ical methodology followed will also be discussed in the same appendix. In
chapter 3 we present experimental results on density-stable displacement of
Newtonian iso-viscous fluids. Chapter 4 experimentally looks into the New-
tonian iso-viscous displacement flows but when the configuration is density-
unstable i.e. heavy fluid displacing the light fluid. Chapter 5 is closely
related to chapter 4 with solely a numerical approach and in channel geom-
etry. The mathematical study in this thesis which can be used for modeling
displacement flows and predicting their stability is laid out in chapter 6.
The method follows the weighted residual approach for thin-film flows. In
chapter 7 the displacement flow of a viscoplastic fluid by a Newtonian one
is investigated experimentally. The thesis is wrapped up in chapter 8 by
highlighting the novel contributions of the thesis, some concluding remarks,
industrial recommendations and future perspectives.
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Chapter 2

Background

This chapter reviews both the engineering background of the problem con-
sidered in this thesis (the primary cementing process, which has been our
main motivation) and associated fundamental problems that are closely re-
lated (in §2.2). The chapter wraps up with a summary of the most relevant
existing literature and outlines the research objectives.

2.1 Primary cementing background

Much of the motivation for our study comes from common operations present
in the construction and completion of oil wells, (e.g. primary cementing [89],
drilling, gravel-packing, hydraulic fracturing). Over the past many years
oil prices have increased significantly as a result of a diminishing supply
of oil and gas from easily accessible reservoirs coupled with an increased
demand due to population and consumption growth. This has led to a
growth in the number of techniques used in oil extraction. On the one
hand, one of the possible alternatives (for Canada) comes from oil sand
exploitation, which has various environmental issues associated with it. For
more conventional extraction, we have seen a tendency towards deeper wells
offshore and towards more challenging wells onshore, e.g. moving into the
foothills in Alberta. Many oil and gas wells are long (5 − 10 (km)) and
are inclined anywhere from vertical to fully horizontal. This range of wells
brings new challenges, a wider range of fluids used in the processes and
additional higher risks as operational failures can become highly expensive
and catastrophic (as seen recently in the gulf of Mexico; see Fig. 2.1).

These processes often involve displacing one fluid with another or with
a sequence of different fluids. The geometries are typically pipe, annular
or duct-like, all with long-thin aspect ratios. Depending on the depth-wise
location in an oil well, the pipe’s inclination angle at which the displace-
ment occurs can range from vertical to horizontal. Usually large volumes
are pumped so that the fluids may be considered separated, i.e. we have
a two-fluid non-Newtonian displacement. A very wide range of fluids are
used. Density differences of up to 500 (kg/m3) can occur, shear-thinning

6



2.1. Primary cementing background

Figure 2.1: Deepwater Horizon accident in the Gulf of Mexico happened on
April 20, 2010. Eleven people were killed and nearly 5 million barrels of
oil were released into the ocean [30]. Photo courtesy of US Environmental
Protection Agency (EPA).

and yield stress rheological behaviors are widely found and are often the
dominant non-Newtonian effects, (more exotic non-Newtonian effects may
also be present). In this thesis we focus on primary cementing, although the
results may be more widely useful.

In primary cementing we aim to provide a continuous hydraulic seal of
the annular space between a steel casing and the reservoir. This is done by
placing a cement slurry into this space, which is accessed from the bottom of
the well. The fluids therefore travel downwards inside the steel casing to the
bottom of the well. Depending on the precise process, different sequences
of cement slurry, wash, or spacer can be pumped into the casing, which is
initially filled with drilling mud. Several potential problems of this operation
have been classified by Sabins [105]. Many questions of a more fundamental
physical nature remain without proper scientific understanding and may
strongly affect the process. A schematic geometry of the described industrial
problem can be seen in Fig. 2.2, which shows an inclined pipe filled with
series of fluids of different densities. Figure 2.2a shows that the in-situ
drilling mud is being displaced by pumping a series of fluids (wash, spacer
and cement slurry). The fluids exit from the very bottom section of the
pipe and come back up to the ground. Figure 2.2b shows the well once the
cementing job is complete. Ideally there should be pure cement slurry in
the annulus area, to be left at rest to solidify and seal the well. Note that
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the fluid inside the pipe at the end of the operation is drilling mud, placed
to balance the hydrostatic pressure along the pipe during the solidification
process.

a) b)

Spacer fluid

wash

drilling mud

previous

casing

cement slurry

casing
cement slurry 

left to solidify

Figure 2.2: Simplified schematic of primary cementing process showing dif-
ferent stages of mud removal a) the drilling mud inside the system is being
displaced by pumping wash, spacer and cement slurry fluids b) the pumped
cement is left at rest to solidify over time and support the casing. Note that
the fluid inside the pipe at this stage is the extracted drilling mud to ensure
the pressure balance in pipe during the cement solidification process.

In general, primary cementing and other similar operations deal with
buoyancy-driven miscible displacement and/or mixing of non-Newtonian
fluid flows with or without an imposed flow, in confined configurations. The
problem complexities are the effects of a large number of flow parameters,
as well as different configurations and non-Newtonian behaviors. Depending
on contributions of these parameters, different types of displacement and/or
mixing flow can occur, and depending on balances between competing ef-
fects, different flow regimes (e.g. inertial, viscous) are possible. Thus, it is
hard to predict the degree of mixing between two fluids traveling in a pipe.
Consequently, it is difficult to accurately design fluid volumes needed, rhe-
ological properties and flow rates. Our aim is to understand the underlying
mechanisms of displacement flows inside the pipe section in order to finally
optimize design of the primary cementing process.
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2.2. Associated fundamental problems

2.2 Associated fundamental problems

The phenomena of gravity driven flow of a heavy fluid displacing a lighter
fluid widely occurs both in nature and in industry, particularly in chemical
and petroleum engineering applications [15]. Although gravity (buoyancy)
is a main driving force, these flows are affected by many other physical
parameters, including viscosity, density, geometric configuration, mean flow
and the types of fluids used. In addition, the inclination angle of the pipe
seems to also play an important role in the flow movement [114]. In this
section, a number of different fundamental flow problems related to this
thesis are discussed, to help later to understand the underlying phenomena
observed.

2.2.1 Flow stability

Throughout the experiments run in this study and the numerical simula-
tions carried out, we found many unstable flows. These instabilities usually
appear in the form of waves at the interface of the two fluids which can
cause rapid and efficient mixing. Possibly some of the instabilities observed
originate from the high speed of the mean flow, from the viscosity ratio,
the density difference etc. [13, 41]. Studying the stability of these displace-
ment flows is one of the goals of the thesis since it can affect many design
factors. Below we list some of the underlying instability mechanisms that
could possibly affect the flow.

Transition to turbulence

Given the fact that the displacing flow in our case has a mean imposed
speed, makes us question up to how large a flow rate does the imposed flow
itself stay stable. In fact, one of the most relevant instabilities to the current
study is transition from laminar flow to turbulent flow. This instability was
first studied by O. Reynolds [100]. He carried a series of experiments on
Poiseuille flow in a pipe and found that the flow transitions from laminar to
turbulent at Re & 2000 where Re = ρ̂V̂0D̂/µ̂ is called the Reynolds number,
which describes the relative importance of inertial to viscous forces. Above
this value, the flow is unstable to perturbations of sufficiently large ampli-
tude. These perturbations can be practically introduced into the flow at
the inlet or by pipe wall irregularity. The perturbations rapidly grow to an
extent that nonlinearity becomes strong and large eddies and/or turbulent
structures start to form. At higher Reynolds numbers, the threshold am-
plitude of perturbations needed to trigger the instability decreases. In this
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case, turbulence occurs due to the unavoidable presence of perturbations of
very small amplitude. Above transition the flow becomes strongly three-
dimensional, chaotic, non-axisymmetric and strongly nonlinear everywhere
in domain [41]. The precise range of values of Re for transition has been
widely studied. It depends to a great extent on how well the flow perturba-
tion level is controlled in any given setup. Therefore, a nominal transition
value Re ≈ 2300 is often used for engineering purposes.

Kelvin-Helmholtz instability

In the displacement flow experiments reported in this thesis we have ob-
served instabilities caused close to the interface that appear to be caused
by the relative motion of the fluid layers with respect to one another. Simi-
lar instabilities were observed in nearly horizontal pipes displacement flows,
[126], and in exchange flows [111–115]. Some of these instabilities are shown
in Figs. 2.6 and 2.8. It is believed that these instabilities are mostly related
to the well-known Kelvin-Helmholtz instability [41] due to their very similar
nature, although there are also other closely related instabilities.

Through a linear stability analysis, the stability of stratified layers of
fluids with different densities which are in relative motion can be predicted.
Let us consider the basic flow of two incompressible inviscid fluids in hori-
zontal parallel infinite streams in two-dimensional plane of x̂, ŷ; see Fig. 2.3.
The fluids have different velocities, V̂H and V̂L, and densities, ρ̂H and ρ̂L.
The subscripts H and L correspond to heavy and light respectively. The
light stream is above the other heavy one. By studying the linear stability
of two incompressible inviscid fluid layers, it is not too difficult to obtain
necessary and sufficient conditions for linear instability of the given flow; see
e.g. [41]:

√

k̂2 + l̂2 ĝ(ρ̂2H − ρ̂2L) < k̂2ρ̂H ρ̂L(V̂H − V̂L)
2, (2.1)

where k̂, l̂ are the wavenumbers in x̂ and ẑ (axis perpendicular to the pa-
per) directions respectively. Given V̂H 6= V̂L the flow is always unstable to
short wave modes which have sufficiently large k̂. Also note that for non-
zero density difference (light fluid on top of heavy fluid), condition 2.1 for
Kelvin-Helmholtz instability reveals a competition between the destabilizing
effect of inertia and the stabilizing effect of buoyancy. Note that the simple
model of analysing Kelvin-Helmholtz instability explained here is only a first
attempt at understanding the basics behind this instability.

Note that the relative motion of the fluids in the case of exchange or
displacement flows is largely driven by the buoyancy force due to the density

10



2.2. Associated fundamental problems

x̂

ŷ

HV̂

LV̂
ĝ

perturbed interfaceunperturbed interface

Figure 2.3: Development of Kelvin-Helmholtz instability for fluid layers of
different densities moving with different velocities. A small perturbation at
the interface is amplified once condition 2.1 is satisfied.

difference. In fact once the heavy layer slumps underneath the light layer,
streamwise buoyancy force acts to push the light layer upstream causing a
backward velocity component. This will eventually cause a reverse velocity
gradient within the flow which makes the flow potentially unstable.

Experiments on the Kelvin-Helmholtz instability were mentioned by
O. Reynolds [100]. Those experiments were later advanced by A. Thorpe
[136–139] in detail. He showed that in an angled stratified flow setting, the
two fluids begin to accelerate in different directions. In this stage the fluids
are perfectly separated giving the highest density gradient at the interface.
The velocity gradient increases more and more until it destabilizes the inter-
face and the characteristic waves of the Kelvin-Helmholtz instability appear.
The induced waves cause transverse mixing between the two fluids which in
turn decreases transverse concentration gradients. The decreased density
and velocity gradients may finally take the system to a stable state avoiding
the appearance of further Kelvin-Helmholtz instabilities.

Note that although increasing the density contrast can increase the longi-
tudinal pressure and velocity gradients consequently triggering the Kelvin-
Helmholtz instabilities, it can also promote transverse pressure gradients
which in turn help to stabilize the stratified flow. This is a dual effect of
buoyancy [126]. This mechanism was very often observed throughout our
experimental study, at least in density unstable Newtonian displacement
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flows.

Rayleigh-Taylor instability

Due to the industrial motivation, most of the flows studied in this thesis
are in a density unstable configuration, i.e. heavy fluid displacing light fluid.
Since the duct is tilted at an angle, initially the heavy displacing fluid is
above the light displaced layer. This configuration is inherently unstable
[13, 41]. The instability associated with this configuration is called Rayleigh-
Taylor instability. A review of studies of Rayleigh-Taylor instability is given
by D. Sharp in [116]. Understanding this type of instability is of importance
as it can be the underlying mechanism in many of the unstable displacement
flow cases observed. Figure 2.4 shows schematically how a perturbation of
the interface can cause a non-homogeneous hydrostatic pressure distribution
that destabilizes the flow. As shown in the figure, the interface shape means
the static pressure is lower below the high points and higher above the lower
points, and this pressure imbalance drives the flow in the directions indicated
by the arrows.

x̂

ŷ

H
ˆ

L
ˆ

ĝ

perturbed interface

Unperturbed

interface

H L
ˆ ˆ

Figure 2.4: Development of Rayleigh-Taylor instability for fluid layers of dif-
ferent densities (heavy fluid on top of the light fluid). A small perturbation
at the interface is amplified unboundedly with time in the inviscid limit [41].

A linear stability analysis can be carried out for inviscid incompress-
ible flow of two fluids with differing density showing that the heavy-light
configuration is unconditionally unstable. The small disturbances grow ex-
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ponentially in time as exp γ̂ t̂ where γ̂ =

√

Atĝk̂ is the temporal growth

rate with At being the Atwood number and k̂ being the spatial wavenum-
ber in the x̂ direction [41]. If the viscosity of the fluids is also taken into
account there is a threshold beyond which small perturbation can grow in
time. As the instability develops, outward-moving irregularities known as
dimples are quickly magnified. They then turn into sets of inter-penetrating
RayleighTaylor fingers. The less dense fluid that moves upward is shaped
into mushroom-like caps and makes the downward figures take similar shape;
see Fig. 2.5. Several studies have been performed to explore the underlying
mechanisms of the Rayleigh-Taylor instability through either experiments
[31, 35] and/or numerical simulations [29, 36].

Figure 2.5: Two-dimensional concentration field at dimensionless time t = 2
for Rayleigh-Taylor flow numerical simulations taken from [31]. The figure
shows the formation of the fingers and mushrooms over time due to the flow
instability.

Regarding the two-fluid system that we study, it is worth noting that, as
the duct is tilted more towards the horizontal, the Rayleigh-Taylor instabil-
ity effect is expected to decrease. In fact this instability is most important
when the duct is tilted close to the vertical. Considering the experimental
observations for exchange flows in titled pipes (see [111–115]), after open-
ing the gate valve the heavy fluid will tend to slump underneath the light
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layer, thus weakening the chance for Rayleigh-Taylor instabilities to grow.
In other words if the fluids are separated towards upper and lower walls
of the duct then the base flow needed for Rayleigh-Taylor instabilities to
develop is further from the configuration that we have. Further discussions
are given in chapters 4 and 5 for iso-viscous Newtonian displacement flows
in pipe and channel respectively.

Multi-layer flow instability

Based on previous experimental findings in nearly-horizontal displacement
flows [123] and in lock exchange flows [110], it is expected that when the
flows are buoyant the density difference will act to segregate the displacing
and displaced layers towards lower and upper walls. In other words the fluids
initially adopt a slumping pattern. When the pipe is inclined close to hori-
zontal, there is higher chance that this two-layer slumping pattern remains
stable as it develops. As we move away from nearly horizontal to higher in-
clinations the fluids are observed to mix more, and thus the observed flows
are further from a structured two-layer system; see e.g. Fig. 2.6 for an il-
lustration. However, we should not forget that the mixed complex-looking
flows observed at higher inclination angles evolve from a more structured
two-layer slumping flow that does not remain stable. Therefore, a natural
direction to take in modeling the displacement flows is to assume an estab-
lished two-layer or multi-layer flow and then assess if that flow is stable or
not. Once the flow stability is known we can find out the transition between
the stable viscous and unstable mixed fluids. There are many works in the
literature on modeling and stability of two-layer flows. These works usu-
ally consider the combined effects of density gradient, velocity gradient and
viscosity difference, some of which are explained earlier.

From the theoretical point of view, the occurrence of such interfacial
instabilities has been analyzed by looking at the temporal linear stability
of the two-layer plane Poiseuille flow. Earlier studies focused on Newtonian
fluids both theoretically [25, 66, 99, 142, 143, 152, 153] and experimentally
[24, 77]. Joseph et al. [76] carried out a linear stability analysis for the flow
of two immiscible fluids of different viscosities and equal density in a pipe.
They showed that the volume ratio, related to the fluid thicknesses, is a
crucial factor determining the interface stability. The Couette flow of two
superposed viscous fluids in an infinite region was studied by Hooper and
Boyd [69]. They showed that the flow is always unstable to short wavelength
instabilities. Hooper [68] also showed that introducing a thin layer of viscous
fluid next to the channel walls would have a destabilizing effect. Thereafter,

14



2.2. Associated fundamental problems

the instability of two co-current superposed viscous fluids in a channel was
examined by Hooper and Grimshaw [70]. They found that the interface may
or may not be stable.

A number of authors have considered the linear stability of a two-layer
power law fluid channel flow, using the Orr-Sommerfeld equation, e.g. [78,
94, 122]. The results of our long wavelength Orr-Sommerfeld analysis com-
pare qualitatively well with these studies. If one or more of the fluids has
a yield stress, the linear stability problem can only be posed in layers for
which the fluid is yielded; see e.g. [52, 53]. If such a layer is bounded by an
unyielded plug layer within the fluid layer then the unyielded plug layer is
not accelerated by the flow. Sahu et al. [107], look at the linear stability
analysis of a similar two-layer system (with upper layer being a Newtonian
fluid and the lower layer being a Herschel-Bulkley fluid). The main assump-
tion in their work is that the yield-stress layer is always yielded (i.e. low
Bingham number). Whereas these authors find regimes of linear instability,
if the interface is occupied by a yield stress fluid that is unyielded, linear sta-
bilities are suppressed; see e.g. [50]. This same effects extends to nonlinear
analysis [88] and is observable experimentally [74]

A simplified approach to modelling thin-film flows is the weighted residual
methodology first proposed by [103, 104]. Extensions of the approach to two
layer thin film flow models in channels and pipes are fairly recent, by [8, 85].
These have been developed with the idea that the simplified models will
have similar stability characteristics to the analogous two-layer flows. The
results do show good agreement with Orr-Sommerfeld predictions ([152] for
channel flow and [67] for a pipe geometry), in the long wavelength limit.

2.2.2 Exchange flows

In the absence of an imposed flow, e.g. if the end of the pipe is closed, the
flow is called an exchange flow. This type of flow is less directly relevant
to primary cementing, except perhaps at the end of the operation, but does
occur in plug cementing. In this process, when cement plugs are positioned
above the bottom of the well, we have a heavy fluid (cement or viscous pill)
lying above a lighter fluid (viscous pill or drilling mud). Therefore, these
studies have direct industrial relevance. They are also relevant as the limit
of a low imposed flow rate for the more general displacement flow that we
study.
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Experimental studies

In an exchange flow the only driving force is buoyancy. Debacq et al.
[33, 34] and later on Seon et al. [111–115] experimentally investigated the
exchange flow of two miscible Newtonian fluids in vertical and inclined pipes
respectively. Depending on the flow parameters, diffusive, transitionary and
viscous flows can appear. The transition between diffusive/non-diffusive
regimes in vertical pipe was found to be a function of density difference in
a vertical pipe [33]. Debacq et al. [33] showed that when the flows are dif-
fusive a macroscopic diffusion coefficient, D̂M , can be defined, as a global
flow characteristic, and this can be up to 105 times bigger than the molec-
ular diffusion. They characterized the macroscopic diffusion coefficient and
the velocity of the penetrating exchange flow fronts (front velocity, V̂f ) as a
function of density contrast, fluid viscosities and pipe diameter; see [34].

Following the same approach to [34], but adding the pipe inclination
angle to the parameters, Seon et al. [111] found the boundary between
diffusive/non-diffusive flows and investigated the dependency of the macro-
scopic diffusion coefficient on other parameters. They showed that the tran-
sition between diffusive/non-diffusive flows is a function of the tilt angle
measured from vertical, β, that increases with density contrast and de-
creases with fluid viscosities. Increasing the fluid viscosities coarsens the
mixing zones within the flow. This in turn, increases local density con-
trast and buoyancy forces, which finally leads to a higher front velocity, V̂f
and less mixing; see e.g. [34]. Later on, Seon et al. [112] focused on the
front dynamics of the exchange flows in tilted geometries by analyzing the
front velocity measurements. They observed three different regimes: start-
ing from vertical, front velocity was found to first increase with tilt angle, β,
then reach a plateau at intermediate β, and then decrease again as β → 90◦.
In the first regime, the interplay between fluid layers segregation and mix-
ing dictates the value of V̂f . Segregation and mixing effects increase and

decrease respectively, with β. For the plateau regime, V̂f is not dependent

on the fluid viscosity and is instead proportional to V̂t, an inertial velocity

scale obtained by the balance between inertia and buoyancy (V̂t =

√

AtĝD̂

where At is the Atwood number and ĝ and D̂ are gravitational acceleration
and pipe diameter respectively). In the third regime, the inclination angle is
close to horizontal, the fluid layers separate into two counter currents which
are almost parallel to one another. This regime is controlled by viscosity
and is called the viscous regime. The relevant velocity scale in this case
is V̂ν = AtĝD̂2/ν̂ obtained from the balance between buoyant and viscous
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forces (note that ν̂ is the kinematic viscosity obtained from the common
viscosity and average density of the fluids).

Due to the interesting nature of the plateau regime described earlier,
Seon et al. [113] decided to run experiments using a high resolution imaging
technique called laser-induced-florescence (LIF). By applying a laser sheet,
this technique allowed these researchers to look more precisely at the point-
wise concentration of the penetrating fronts inside the pipe instead of a
depth-averaged value. Figure 2.6 shows the exchange flow of two buoyant
flows at different inclination angles taken from [113]. The figure clearly
shows the segregation effect at nearly horizontal angles and increased mixing
at higher inclinations.

Figure 2.6: Snapshots of the concentration field obtained at different tilt
angles using laser-induced-florescence (LIF). The configuration is exchange
flow of two buoyant flows in a pipe. Field of view is 20 × 300 (mm2). The
color bar for the normalized concentration is shown at the top right of the
figure. The picture is taken from [113].

Interestingly, it was found that the front velocity in the plateau regime
is a function of the front concentration in the form of V̂f ∝ C0.5 where C is
the concentration varying between 0 and 1, of the upper fluid at the front
(also measured via the LIF technique). Focusing only on diffusive exchange
flows, Seon et al. [114] studied the macroscopic diffusion coefficients, D̂M

and front velocity, V̂f , using scaling arguments to interpret their results
They found that mixing can have two different mechanisms depending on
the value of Ret, (a Reynolds number defined based on the inertial velocity,
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V̂t: Ret = V̂tD̂/ν̂). For Ret < 1000, the parameter D̂M/V̂tD̂ decreased as

Re
−3/2
t whereas for Ret > 1000 it decreased as Re

−1/2
t . In fact this difference

was found to be related to the quality of the transverse mixing in different
ranges of Ret. Seon et al. [114] recommended a detailed local-scale analysis
of the dynamics of the mixing process to understand and model the mixing
behavior in different regimes. The exchange flow experiments and analyses
carried out by Seon et al. [111–114] were mostly concerned with long-time
behavior after the initial transients. They studied the transient behavior
of the exchange flows in [115] for nearly-horizontal pipes. It was found
that the front is initially controlled by inertia but later limited by viscous
effects. This yields to a high front velocity value that decays to a steady
state with time proportional with sinα where α is the angle of inclination
measured from horizontal (α = π/2− β). The transition from viscous flows
to inertial flows, occurring at V̂f ≈ 0.7V̂t, was also studied. They found
that the transition is a function of inclination angle α. This critical angle,
αc, measured from horizontal decreases when the density contrast increases.
In the case of viscous flows a conceptual model was developed which could
capture the interface evolution and predict the front velocity. It was shown
that the velocity of the front follows a shock-wave type dynamics, a fact
that later on was also confirmed by Taghavi et al. [128] for displacement
flows based on lubrication model.

When the pipe is strictly vertical, the buoyant exchange flow essentially
resembles the famous Rayleigh-Taylor configuration (explained in §2.2.1)
in a long-thin aspect-ratio geometry. Dalziel et al. [32] studied this flow
confirming the fact that the turbulence generated by RayleighTaylor insta-
bility and the resulting mixing are much stronger than those driven by other
mechanisms. Although the flow is initially dominated by inertia and then by
viscous effects, the efficiency of the mixing seems to stay constant during the
experiment. Throughout the initial growth the vertical transport happens
through turbulent diffusion with the diffusivity decreasing with time. As the
density difference becomes smaller and the strength of the driving buoyancy
force decreases, inertia begins to play a less important role and the molecu-
lar viscosity takes the control of the flow dynamics. More recently Znaien et
al. [156] studied qualitative flow structure and momentum transport mech-
anism for buoyancy driven exchange flows at different tilt angles. Three
different regimes were observed namely laminar, intermittent and turbulent,
depending on the tilt angle and density difference. For laminar regime, three
parallel stable layers with different densities were observed. In the turbulent
regime, the density was found to vary slowly across the pipe in the core of
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the flow because of the dominance of the transverse turbulent momentum
transfer. As density difference decreases and tilt angle β measured from
vertical increases, the core flow density gradient and the resulting buoyancy
forces become larger, which result in higher velocity maximum and a less
efficient mixing. Although the mean concentration in the turbulent regime
varies with time, the mean velocity stays constant. Finally the experimental
results of velocities and density profiles were compared against a conceptual
model developed in their paper [156].

Numerical studies

Apart from the experimental exchange flow studies, Hallez et al. looked into
exchange flows in channels [63] and pipes [62, 64] using direct numerical
simulations. They discovered that there are essential differences in 2D and
3D flows which arise from different dynamic vorticity fields. From this per-
spective the strong coherent vortices found in channel flows enable them
to cut through the layers of pure fluid that feed the advancing fronts, in
a periodic manner. In contrast, vortical motions in 3D are such that they
promote segregation effect and thus avoid cutting the pure fluid layers [62].
Another interesting finding from the pipe exchange flow simulations in [64]
was that for turbulent flows, non-zero radial and azimuthal components of
velocity were found that govern the mixing mechanism. These secondary
motions are induced by a combined effect of the lateral wall and turbulent
velocity fluctuations. Although the current study has mean flow compo-
nent added to the exchange flow problem, the underlying mechanism for
the diffusive regimes to be shown later should be very similar to the finding
of Hallez et al. [64]. They found that the lateral wall plays a key role in
the anisotropic nature of the secondary flows, even though no geometrical
anisotropy exists in the pipe geometry in contrast to the plane channel. The
other important element which is also relevant to the buoyant displacement
problem in hand is the existence of the non-axisymmetric mean shear in the
flow which originates from the heavy-light configuration. In other words the
density difference in each layer modifies the mean pressure gradient driving
the flow. The turbulent fluctuation produced along the streamwise direc-
tion can then be unevenly distributed along the other two directions; see
also [65, 131, 132] for similar mechanisms in homogeneous shear flows.
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2.2.3 Boycott effect

As discussed earlier, Seon et al. [112] found three different regimes for pipe
exchange flows, namely where front velocity first increases with tilt angle, β,
reaches a plateau and then decreases again. This trend can also be looked at
in a different way. In fact the underlying mechanism of the exchange flows
is very similar to the Boycott effect [61]. When a suspension of particles is
agitated in a geometry and left to sediment, it is not difficult to check that
the sedimentation happens faster if the geometry is tilted; see Fig. 2.7. The
reason behind this is that particles move in a random way in suspension. If
the suspension is left in a vertical pipe due to the interaction of particles
and fluid, it takes longer for particles to reach down the pipe. Whereas if
the pipe is tilted, the heavier elements that are particles accumulate close
to the lower walls and the lighter ones are pushed towards the upper walls.
This finally results to a faster sedimentation.

Figure 2.7: Boycott effect in the sedimentation of a suspension of particles
in a tube. The left tube is vertical and the right one is inclined at 30◦ with
respect to the vertical. The photos are taken after the same period of time
after agitation the suspension homogeneously. Photos are taken from [61].

In the case of exchange flows, when the pipe is titled close to the horizon-
tal, the fluids are well separated but on the other hand the buoyant driving
force for moving the layers is very weak (small front velocity). As the pipe
is more inclined, the driving component of buoyancy force in streamwise
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direction increases so the front velocity increases as well. Theoretically the
driving buoyancy force is maximum when the pipe is tilted at vertical. How-
ever due to the growing instability as the inclination is becomes ore vertical,
the fluid layers mix together and the chaotic behavior induced from their
mixing slows down the front, essentially a Boycott effect. This is why the
front velocity experiences three different phases with inclination angle. It
is worth noting that the same mechanism exists for the displacement flow
of two buoyant flows in a duct. In fact similar qualitative trends are ob-
served for these flows that will be discussed in more details in the following
chapters.

2.2.4 Displacement flows in nearly horizontal ducts

As explained before, exchange flows are well studied for a broad range of
inclination angles, viscosities and density differences at least in the New-
tonian limit. The effect of imposing a mean flow on the exchange flow of
two miscible fluids is studied by Taghavi et al. [124–130] in full detail for
nearly-horizontal ducts; see also [87]. The first study was based on an an-
alytical model in the lubrication limit [128]. Basically a closure model was
developed for interface height and lower layer flow rate flux to predict the
shape of the interface, front velocity and finally the displacement efficiency
(the volume of the displaced to displacing fluid in a given control volume).
Later on, they carried out experiments for iso-viscous Newtonian fluids in a
nearly-horizontal pipe [129]. The main finding was that three flow regimes
may appear depending on the strength of the mean flow speed, V̂0. When
the mean flow is low, the flow resembles the exchange flow [112] (regime 1).
As mean flow is increased the front velocity V̂f was found to vary linearly

with V̂0 (regime 2). When the mean speed is further increased we enter
turbulent regime where V̂f = V̂0 (regime 3). They also found that the mean
flow can counter-intuitively stabilize the flow (in regime 1) through increas-
ing the local gradient Richardson number, Ri, [129]. In this case the back
flow is reduced and the flow becomes stabilized. Figure 2.8 shows the three
regimes, discussed using experimental snapshots taken from [126]. It can be
seen that in the exchange-dominated regime 1 there are inherent waves at
the interface due to the strong back flow. The flow is stabilized by the mean
flow in regime 2. further increasing the mean velocity will make the flow
turbulent which finally causes mixing across the pipe.

In this thesis we will investigate whether the stabilizing effect of the
mean flow is valid for other inclination angles or not. Taghavi et al. [130]
later on studied the trailing front behavior and clarified the boundary be-
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tween instantaneous and non-instantaneous displacements using the control
parameters, χ = 2Re cos β/Fr2. By instantaneous displacement we mean
that the displaced fluid does not go upstream of the gate valve once the
simulation/experiment starts. If the displacement is non-instantaneous we
have inevitably had some back flow of the displaced fluid layer up above
the gate valve. The dimensionless parameter χ governs the dynamics of the
viscous flows at long time and represents the competition between buoy-
ancy stresses in the axial direction and viscous stresses due to the mean
flow. More recently Taghavi et al. [126] looked at iso-viscous Newtonian
displacement flows in nearly horizontal ducts from three perspectives: exper-
iments, numerical simulations and analytical modeling. For the experiments
the dimensionless maps were given classifying different viscous/inertial and
instantaneous/non-instantaneous regimes. The numerical simulation were
carried out for a channel geometry using the code PELICANS developed at
IRSN (French Nuclear Safety Research Institute). The lubrication model
first presented in [128] was further improved in [126] to take into account
the effect of weak inertia through the weighted residual approach.

Through a semi-analytical approach, the lubrication model can also be
applied to pipe geometry when the fluids are generalized non-Newtonian
[87]. The effect of viscosity ratio and shear-thinning was then studied in
[124] giving predictions of the front velocity as a function of χ and viscosity
ratio, m. For shear-thinning fluids, it was shown that with an appropriate
definition of the effective viscosity the scaled front velocities fit well with the
results from the Newtonian displacements, in both pipe and plane channel
geometries. The effect of yield stress on the displacement flow at nearly
horizontal angles was investigated in [125]. The slumping pattern observed
in all previous Newtonian experiments was found to be not the only existing
pattern. In fact depending on the density difference the displacing fluid
can either slump or advance along the middle of the displaced fluid. It is
worth noting that the slumping effect is also reduced when the geometry is
a channel, compared to the pipe; see [126]. Based on the experiments and
numerical simulations carried in [124–126, 128–130], Taghavi and Frigaard
gave estimates of the longitudinal extent of the interface and the degree of
mixing for nearly horizontal angles [127]. This last study was motivated
from the industrial point of view: to estimate the volume of displacing fluid
required to pump the displaced fluid out of the confined geometry in hand.
Note that both Newtonian and non-Newtonian fluids were considered.
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Figure 2.8: A sequence of snapshots from experiments with in-
creased imposed flow rate for β = 83 ◦, At = 0.01 and ν̂ =
1 (mm2/s). From top to bottom images are shown for for V̂0 =
9, 19, 31, 44, 56, 57, 72, 108, 257, 474, 841 (mm/s). The figure shows a
1325 (mm) long section of the pipe a few centimeters below the gate valve.
The picture is extracted from [126].
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2.2.5 Structured displacement flows

There are also quite a few studies on displacement flows similar to the cur-
rent study but concerning regimes where the flow is more structured. These
are mostly in viscous regimes, in the low Reynolds number range or include
symmetric pipe or channel flow features, e.g. [96]. One example is the study
of interface instabilities in a vertical pipe during displacements of two misci-
ble fluids, by Scoffioni et al. [109]. The focus of their study lies in studying
the effect of viscosity ratio and flow rate on flow stability as observed in
downward, strictly vertical displacement of miscible and Newtonian fluids.
Three flow types were found depending on the flow rate and viscosity ratio
value namely a stable finger, axisymmetric and Corkscrew modes. Figure
2.9 shows these three regimes observed in a vertical pipe.

Figure 2.9: Different flow types observed in displacing layer in downward
miscible displacement of two fluids in a vertical pipe: a) stable finger b)
axisymmetric mode c) corkscrew mode. The lighter displacing layer is water
and the heavier displaced fluid (not shown) is mixture of water and glycerin
solution. Photos are taken from [109].

The degree of molecular diffusive transport compared to advective trans-
port is governed by the Péclet number. The high Péclet regime inevitably
approaches the zero surface tension immiscible limit, provided the displace-
ment flow remains stable, as has been shown computationally by Chen and
Meiburg [27], and experimentally by Petitjeans and Maxworthy [93]. Misci-
ble displacements have been studied experimentally by a number of authors,
considering both density differences and viscosity differences between the
fluids, in Hele-Shaw cells [45, 75] in regimes where the Péclet number is sig-
nificantly larger than the ratio of length to diameter. In general for upwards
displacements, a more effective displacement is achieved by a displacing fluid
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that is both heavier and more viscous. Where density differences are present
there is a large body of work targeted at viscosity effects in vertical geome-
tries, and much of the published work is focused at onset of fingering/spike
type instabilities.

The upward displacement of miscible non-Newtonian fluids inside a ver-
tical pipe was studied experimentally and numerically by Gabard and Hulin
[56]. Both shear-thinning and viscoplastic fluids were considered for the
displaced layer. The fluids were iso-density. The influence of rheology
on the displacement of a viscous fluid by a less viscous, Newtonian one
was studied as a function of the mean flow rate. For shear-thinning fluids
(mostly xanthan-water solutions), the residual film thickness was found to
be 28 − 30 % of the pipe radius. For viscoplastic fluids, (Carbopol-water
solutions), the thickness further decreases down to 24− 25 % of the radius.
Importantly however, the shear-thinning fluids experienced instabilities over
longer timescales. Another study on the instability of the interface between
two fluids in vertical displacement flow in pipe is that carried out by Bal-
asubramaniam et al. [11]. This paper focused on the experimental study
of both upward and downward displacement of Newtonian fluids, with the
displaced fluid being less viscous. Kuang et al. [80] investigated the displace-
ment problem in vertical pipes experimentally. Both upward and downward
configurations were considered when displaced fluid is denser and more vis-
cous than displacing fluid. Taking miscible Newtonian fluids, Particle Image
Velocimetry (PIV) measurements were used to get the velocity distribution
and finger tip shape.

The downward displacement flow in a vertical Hele-Shaw cell was studied
experimentally and theoretically by Lajeunesse and co-workers [81]. Fluids
were chosen to be miscible and Newtonian. Neglecting diffusive effects,
the dependence of the flow stability on viscosity ratio and flow rate value
was investigated. In the limit of Stokes flow, Goyal et al. [58] carried out
a computational study for downward displacement for the same geometry
(vertical Hele-Shaw cell). Fluids were taken to be miscible and Newtonian
to compare the results with those in [81]. It was found that both the growth
rate and the dominant wave-number depend only weakly on Péclet number
and also moderately stable density stratification can stabilize a viscously
unstable displacement. More recently Kuang et al. [79] studied miscible
displacement of silicone oils in capillary tubes experimentally focusing on
the viscous fingering effect observed and measuring the fractional volume of
more viscous fluid left on tube wall after passing the finger front.
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2.2.6 Averaged inertial models

In an attempt to mathematically model the buoyant flows of two fluids,
there have been different approaches. Among these approaches, the control-
volume based methods have obtained increased popularity due to their sim-
plicity and while having reasonable accuracy in predicting the large scale
features of the flow. The computational cost of this prediction is also not
high at all, compared to full CFD simulations. Benjamin [15] studied grav-
ity currents following an energy-conservation approach. He looked at three
geometries, namely 2D plane channel, liquid emptying from a horizontal
pipe and very-deep layer geometry. Whether there were energy losses in the
system or not, he gave predictions of the interface height. For instance he
found that in the absence of energy losses the interface between the heavy
and light fluid layers stays in the middle of the channel. He assumed that
the flow far upstream and downstream of the front is hydrostatic and inside
the gravity current no relative flow exists i.e. no internal flow. This is a fair
assumption where viscous effects are minimal, e.g. velocity measurements in
an intrusion revealed that the internal velocities are typically around 10%
of the current speed [83]. More complicated interface heights can arise if en-
ergy loss is to be taken into account. Following a force balance approach, he
obtained the shape of the interface and the angle of the trailing front for the
case when heavy liquid leaves the pipe and lighter fluid occupies its space.
For the case when the depth of the liquid upstream is considered to be very
much greater than the mean depth of the cavity (caused by gravity current),
Benjamin [15] pointed out that a net hydrostatic force acting horizontally
has to be balanced by momentum loss in the receding flow. This require-
ment apparently cannot be met when there is no dissipation and with a flat
free surface (the hydrodynamic drag force on a smooth “half-body” is zero
[95]). When the interface is wavy he investigated whether the momentum
loss can cause wave breakage or not.

Thorpe [136] considered a horizontal channel with closed ends contain-
ing two stratified fluids at rest in a stable way. The whole system was then
tilted, resulting in a continuously accelerated stratified shear flow in the
central part of the channel, that remained until it was affected by the end
walls. Assuming an inviscid flow, he developed a unidirectional model for
the stratified shear flow which was in good agreement with experimental
observations up to the onset of shear-driven Kelvin-Helmholtz instabilities
(see §2.2.1). Later, he studied these instabilities further experimentally and
theoretically in [138]. Several other authors followed similar modeling ap-
proaches to Benjamin’s [15] and tackled gravity current problems in different
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regimes and/or geometries. For instance Allen [4] looked at mixing at tur-
bidity current fronts by expressing the inflow rate of the ambient medium
into the front region. Fluid motions behind the head of a gravity current
advancing over horizontal and inclined surfaces were studied in [21, 119] and
[14, 20] respectively, through experiments and averaged-type models.

As mentioned earlier, Benjamin’s study [15] suggested that the dynam-
ics of gravity currents are strongly influenced by dissipation coming from
turbulence and mixing between the current and the surrounding environ-
ment. Later on, Shin et al. [117] looked into improving the lock-exchange
flow control volume style of model and showed that dissipation is not im-
portant when the Reynolds number is sufficiently high. Although mixing is
present, the amount of energy dissipated is relatively small, which reduces
the current speed by only a few percent from its energy-conserving value.
Their theoretical model was compared against new experiments and showed
good agreement. Shin et al. [117] experimentally verified that Benjamin’s
potential flow theory [15] can approximate the lock-exchange interface shape
fairly accurately despite the mixing and dissipation between the two fluids;
see Fig. 2.10. This shows that the front propagation speed in this case can
be determined by finding the equilibrium of pressure at the front, taking ad-
vantage of inviscid flow theory and assuming negligible dissipation of energy
downstream.

Figure 2.10: Experimental results of a full depth lock-exchange with Ben-
jamin’s potential flow solution (dashed line) [15]. This image is taken from
[117].

Lowe et al. [84] developed a two-layer hydraulic theory to model their ex-
periments on non-Boussinesq lock-exchange problem. The experiments were
run in a rectangular channel using water-based solutions that would give
density ratios of 0.61 to 1. Upon comparison of their model against experi-
ment and numerical simulations they found out that a model in which the
two gravity currents are connected by a simple expansion wave (without an
internal bore) represents the high density difference lock exchange flows ap-
propriately. Birman et al. [16] compared their simulations on lock-exchange
flows in sloping channels with the more conceptual model of Thorpe [136]
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and found good agreement. The simulations showed that a two-layer strat-
ification model is suitable for the early stages of the flow but for the later
stages a three-layer stratification model is required. This is due to the in-
tense mixing at the interface in the central part of the cross-section of the
channel. The two and three-layer stratification models were then employed
to estimate the time after which the velocities of the current fronts were
affected by the accelerating stratified layers.

In the category of modeling gravity flows on inclined surfaces, Webber
et al. [147] and Tickle [141] derived similarity solutions to the shallow-water
equations and proposed wedge models for three-dimensional gravity cur-
rents on slopes due to the release of heavy fluid into light ambient. Ross et
al. [101] then performed the corresponding experiments and extended the
wedge models to include entrainment effects. They however emphasized that
these simplified models do not capture all the significant features of the flow
although they predict front densities fairly well. More recently Neophytou
et al. [90] looked at buoyant displacement of fire smoke in a confined and
semi-confined tunnel at different inclination angles. The experimental and
theoretical results were compared along with CFD simulations to determine
the smoke concentration profiles. The integral model presented in their work
solves for fire smoke concentration and net pollutant volume flux. The qual-
itative flow structure and momentum transport mechanism for buoyancy
driven exchange flows at different tilt angles was studied by Znaien et al.
[156]. They observed three regimes namely laminar, intermittent and turbu-
lent, depending on the tilt angle and density difference. A conceptual model
was developed in integral form to predict the layer velocities and density
profiles which showed good agreement with the experimental results.

In summary, the control-volume approaches present in the literature are
mostly targeted on exchange flows and not on displacement flows, and also
largely neglect viscous effects. A good addition to these studies would be
to include the effect of imposed flow on the buoyant gravity currents. The
above mentioned conceptual models then could be a very effortless (and
useful) tool for predicting global characteristics of the buoyant displacement
flows such as the velocity of the propagating front, average interface height
in the case of slumping displacements, etc.

In chapter 6 we consider a two-layer channel flow model for our dis-
placement problem. The usual approach is to apply scaling arguments to
eliminate extensional stress terms and simplify the transverse momentum
balance. If inertial terms are also small this leads to a conventional thin-
film/lubrication model. Retaining the inertial terms produces the boundary
layer equations which are still simpler than the full Navier-Stokes system and
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faster to solve numerically, but have the same dimensionality. On assuming
a particular form for the streamwise velocity profile, integrating the momen-
tum equations across the fluid layer(s) leads to a system of one-dimensional
(1D) equations, e.g. [118].

More recently, [103, 104] have proposed a methodology that is intermedi-
ate between the boundary layer approach and the integral approach of [118].
In place of an assumed form of velocity profile, a more general series approx-
imation is postulated. Instead of satisfying the axial/streamwise momentum
equation pointwise they multiply by a weight function and integrate across
the fluid layer, setting the residual to zero. On assuming different degrees
for terminating the series (reducing the degrees of freedom) different orders
of approximation ensue. This weighted residual methodology has been ex-
tended to two layer thin film flows in channels and pipes by [8, 85] and
used to study channel co-extrusion flows by [1]. In [126] we have used the
derivation of [8] in working with iso-viscous Newtonian fluid displacements.

Some authors have worked on non-Newtonian flow problems of this
genre. N. Balmforth [12] develop an integral approach for thin film flows
of Herschel-Bulkley fluids, focusing on evolution of the interface and the
yielded layer thickness. Amaouche et al. [7] derive a Shkadov-type model
for a power law fluid thin film flow. Very recently the weighted residual ap-
proach has been extended to thin film flows of shear-thinning fluids [6, 102].
In both cases the authors propose special treatment of the low shear rate
limit close to the interface in order to avoid the singularity in the viscosity
at a free surface.

2.2.7 Axial dispersion

In the displacement problem, we have two fluids in contact with each other.
Since our fluids are miscible they inevitably mix over time. However the
mechanism of mixing can be different depending on the regime we are at
(laminar or turbulent). The diffusion that causes transverse mixing is also
responsible for spreading the mixed fluids axially along the pipe. The pres-
ence of a velocity field however facilitates this process by advecting the
mixed volumes in the axial direction. This mechanism through which the
fluids spread axially while diffusing transversely is called dispersion. Disper-
sion is important when the ratio of the timescale for diffusion across the pipe
to advection along the pipe is very small, in other words V̂0R̂

2/L̂D̂l ≪ 1.
Here V̂0 is mean flow speed, L̂ is the length of the pipe, R̂ = D̂/2 is the
pipe’s radius and D̂l is a representative local diffusivity. For laminar flow
the local diffusivity is nothing but the molecular diffusion coefficient, which
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is typically very small D̂l = D̂m. Thus the requirement for dispersion re-
duces to Pem/L ≪ 1 where Pem is the molecular Péclet number (typically
very large in our experiments and industrial situations) and L = L̂/D̂. In
general this condition is not feasible to be satisfied in primary cementing
with laminar flows, nor in our experiments.

In contrast, when the flow is turbulent, the local diffusion is nothing
but the eddy diffusivity which scales with V̂0R̂

√

ff where ff is the fric-
tion factor. In this case the dispersion requirement reduces to L

√

ff ≫ 1
which only needs a moderately long pipe. When the flow is turbulent, the
principal phenomenon which spreads the transversely mixed fluids axially
along the pipe, is dispersion. Turbulence might be induced through different
mechanisms, e.g. buoyancy, mean flow, etc.

The basic study that investigated the axial spreading of the mixed fluids
was first developed by G.I. Taylor in [133, 135] for laminar flows and in [134]
for turbulent flows. Figure 2.11 shows Taylor’s experiment for dispersion of a
soluble matter (brine in this case) in turbulent pipe flow. He recorded signals
using conduction. This signals were related to the brine concentration in
the mixed solution. It was shown that the soluble matter in turbulent flow
disperses axially in the following form:

C = 1/2 − 1/2erf(
(x̂− V̂0t̂)

√

K̂

2
√
t̂

), (2.2)

where C is the concentration of the matter in mixed solution varying between
0 (pure soluble matter) and 1 (pure solvent), erf the error function, K̂ the
virtual diffusion coefficient, V̂0 the mean flow speed and x̂, t̂ are streamwise
location and time, respectively. The relation (2.2) shows that as time goes
by the concentration of the soluble matter in the flow decreases downstream
of the pipe which results in an increase to the longitudinal extent of the
mixed zone (Fig. 2.11). Note that relation (2.2) is nothing but the solution
of the diffusion equation:

∂C/∂t̂ = K̂∂2C/∂x̂21,

in an infinite domain, setting x̂1 = x̂− V̂0t̂.
The total dispersion in the system is the combination of the Taylor dis-

persion (caused by the convective nature of the flow) and the eddy diffusion
for turbulent flow. Aris [9] extended Taylor’s study on laminar flows [135]
for a broader range of parameters and geometries other than pipe. The ge-
ometry of the duct can have significant influence on dispersion coefficient.
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Figure 2.11: Pulses recorded at x̂ = 15 (cm) and x̂ = 468 (cm) showing the
dispersion of brine in turbulent pipe flow. The brine concentration in the
flow decreases downstream of the pipe resulting in an increase to the extent
of the mixed zone. The picture is taken from [134].

For instance Aris [9] showed that the dispersion in a pipe is less than an ellip-
tical pipe of the same area. Tichacek et al. [140] looked into the problem of
axial mixing in a straight pipe and modified Taylor’s analysis to include the
effect of both Schmidt and Reynolds numbers in turbulent-flow range. They
showed that the axial spreading increases rapidly as the flow approaches the
laminar limit. The pipe roughness was found to increase axial mixing by
a small amount and the effect of the turbulent eddy diffusion axially was
shown to be negligible. The simplification made in their study was that
the kinematic viscosity of the mixture solution was assumed not to change
greatly with concentration. Later, Elder [43] extended Taylor’s study to
turbulent open channel flow geometry and compared the model predictions
against experiments showing agreement. A broad overview of techniques
for experimentally measuring fluid dispersion was given in [17] by Bischoff
and Levenspiel. They also reviewed and generalized existing mathematical
models for finding dispersion coefficients in [18]. Taylor’s studies were lim-
ited to the where there is no density difference. The effect of buoyancy on
axial dispersion of fluids was investigated by several authors [44, 92, 97, 98].
Reejhsinghani et al. [98] experimentally showed that in a horizontal pipe,
natural convection can both enhance and weaken the laminar flow disper-
sion, even when the density differences are extremely small. Erdogan and
Chatwin [44] in a similar study found that buoyancy should not have a
noticeable effect on the longitudinal dispersion for Péclet numbers near a
certain value at which the horizontal spreading due to gravity balances the
effect of lateral mixing caused by secondary flow. They also showed that for
all common liquids and most gases the curvature in the pipe decreases the
diffusivity. However, the limit, based on which, they derived their equation
was sufficiently large curvatures. Later on, Nunge and Gill [92] investigated
miscible displacement and dispersion in porous media consisting of different
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microstructure models. They also explained the mechanism through which
a favorable density difference can smooth out the displacement front in such
media. The dispersion in porous media was studied in more details later by
Brenner [19] based on the concepts of Brownian motion theory.

When the pipe is vertical Reejhsinghani et al. [97] developed an approx-
imate theory for transient dispersion when free and forced convection are
both present. They also tested their predictions experimentally finding a
reasonably good agreement. Dispersion was found to be enhanced signif-
icantly when lighter fluid on the bottom displaces a heavier one. In the
vertical tank situation and when the fluid densities are different (heavy on
top of light in particular), mixing and dispersion is inevitably complcated
by Rayleigh-Taylor instabilities. Youngs studied such flows through 2D di-
rect numerical simulations and experiments [154]. The viscous dissipation
within the flow field was treated as a source of turbulence kinetic energy
which was then used to define a turbulent diffusion coefficient (see also [32]
for Rayleigh-Taylor experiments in a long-thin aspect ratio pipe). The axial
mixing in turbulent flows was studied in concentric annuli by Smith and
Perona [120] both theoretically and experimentally. When the hydraulic
diameter is used as the length parameter the axial dispersion coefficient of
annuli and pipes are the same. The predicted dispersion numbers turned
to be about 60 to 70% of the measured experimental values. Dispersion in
rectangular conduits was also studied by several authors later on [26, 40].
Focusing on the transitional regime (300 < Re < 10000) for gas systems,
Flint and Eisenklam [47] studied longitudinal dispersion in a straight pipe
experimentally. Results in the laminar regime diverged from Taylor’s theory
at a Reynolds numbers lower than the onset of turbulence.

The study of dispersion for non-Newtonian fluids was initiated by Wasan
and Dayan [146] for turbulent pipe flows. This theoretical study focused on
power law fluids and revealed that the dispersion increases with power law in-
dex, at constant Schmidt and Reynolds numbers. Atesmen et al. solved the
mass conservation equation for dispersion numerically in [10] with practical
interest in pipe and natural streams flow metering and in pollution control;
see also [121] for simplified models of contaminant dispersion prediction and
[46] for a complete review of turbulent mixing studies on stratified flows.
Freitas et al. [48] presented a model for predicting the contaminated mix-
ing volume in pipelines, that takes into account time-dependent flow rate
and concentration-dependent axial dispersion coefficients. The governing
equations of the model were solved via a finite element method. Field test
data showed reasonable agreement with those of the proposed method over
a wide range of concentrations. A similar numerical study for turbulent and
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transitional regions in axial mixing of pipe flows was carried out by Ekam-
bara and Joshi [42]. The flow based on low Reynolds number k − ǫ CFD
model was solved using a control-volume type approach for the range of
2500 < Re < 10000. Zhang and Frigaard [155] calculated the Taylor disper-
sion coefficient for laminar generalized Newtonian fluids of Herschel-Bulkley
type. They also looked into miscible displacement flows of two fluids with
different viscosities in channel following a perturbation-based model called
Total Flow Equilibrium (TFE). The study was limited to the dispersive
regime of small ǫPe, where ǫ, the duct aspect ratio is very small (ǫ ≪ 1).
Figure 2.12 shows different dispersive displacement flow regimes found by
numerical study of Zhang and Frigaard [155] for Newtonian displacement
flow of two Newtonian fluids in a vertical channel. As shown in the figure
for very low values of ǫPe, the flow is very well mixed across the channel, giv-
ing a uniform concentration profile in depthwise direction. As ǫPe increases
(molecular diffusion coefficient decreases) the variation in the concentration
profile across the channel also increases due to less dispersion in the axial
direction.

Most recently Taghavi and Frigaard [127] presented a methodological
framework for estimating the degree of mixing between miscible fluids pumped
in a near-horizontal pipe. The fluids can be non-Newtonian, of Herschel-
Bulkley type. Due to the industrial motivation the idea was to minimize
mixing. In laminar regimes the mixing length estimates are based on front
velocity of the leading displacement front. In turbulent regime however,
the spreading mechanism is dispersion. In this case the basis for the mix-
ing length prediction is an extension of the Taylor dispersion methodology.
They used a method for deriving the dispersion coefficients, similar to that
in [155]. Dispersion can have complicated effects on the flow stability too.
Mishra et al. [86] studied the pressure-driven miscible displacement flow in
a channel computationally based on finite-volume approach. The displacing
fluid is more viscous than the displaced which is a classically stable system.
However, double diffusive effects cause instability at the interface. Double
diffusive effects can appear when the fluid is made of a solvent containing
two solutes and both influence the viscosity of the mixed solution and diffuse
at different rates.

2.2.8 Conclusions and research objectives

Due to the nature of the flow that we study, the displacement flow prob-
lem is interesting from both fundamental and engineering aspects. In fact,
two-fluid systems with buoyancy forces have attract scientists from many
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Figure 2.12: Concentration c(x, z) at dimensionless time t = 0.3 for dis-
placement flow of two Newtonian fluids in a vertical channel. The flow is
from left to right and the displacing fluid is 100 times more viscous than the
displaced one. a) ǫPe = 0.01 b) ǫPe = 0.1 c) ǫPe = 1 d) ǫPe = 10. The
pictures are taken from the numerical study in [155].
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different areas. From the fundamental point of view, the interest comes
from many areas of study.

One of these areas is gravity currents. Gravity currents have been studied
in detail experimentally, numerically and analytically. The exchange flow of
two buoyant flows is the another very fundamental study close to our work.
These flows have been studied extensively, at least in the Newtonian limit.
Adding a mean flow component to the exchange flow and studying its effects
is one of the main objectives of this work.

Displacement flows have also been studied in the literature, from ex-
perimental, numerical and analytical aspects. However, these studies are
limited to specific ranges of parameters. In fact the flows looked into are
mostly structured in a way that an understandable model or physical trend
is able to be extracted. These studies of structured flows are far from the
range of phenomena that are likely to be observed when it comes to the
industrial application we are interested in, at least in highly inclined ge-
ometries. In this thesis we have tried to include a sufficiently broad range
of parameters to cover the range of flow patterns that are likely to appear.
Note that displacement flows in similar range of parameters are studied in
[123], but for nearly horizontal ducts assuming both Newtonian and non-
Newtonian fluids. Another contribution of this thesis is studying the effect
of higher inclination angles on these flows. It is expected a priori that we
will find fluid segregation to be the usual case in near horizontal configura-
tion and mixing to occur usually as the pipe or channel is inclined closer to
vertical.

A limit of our work is when turbulent flows occur. When the imposed
flow is turbulent, the mixing is inevitably very efficient across the duct. In
fact the fluids mix and disperse along the duct. This dispersive regime is
well explained by Taylor dispersion theory for turbulent flows [134]. There
is less motivation in our work to study the turbulent flows in this regime.
Firstly, this regime is known to be the most efficient displacement regime and
therefore there is not much potential for improving efficiency in these flows.
Secondly the mixing zone spreading times and lengths can be estimated
reasonably well from Taylor dispersion [134]. Lastly, due to laboratory and
computational limitations detailed study of turbulent flows is not feasible.
Therefore, we mostly study the flows with laminar imposed flow. Note
that once the fluids are mixed, the flow can become turbulent but this is
also induced by other mechanisms e.g. buoyancy, rather than, only by the
imposed flow. Where we do find fully mixed/diffusive flows, our aim is
to quantify the virtual (macroscopic) diffusion coefficient for predicting the
mixing zone spread, rather than on detailed study of the flow structure.
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From the modeling perspective, there is large body of work on averaged-
type models, as discussed earlier. However the models introduced fail to
give the quantities we are after, e.g. front velocity, interface height etc., with
acceptable accuracy. In some limits, certain dynamic forces are neglected in
the existing models, e.g. inertia, viscosity etc. Due to the complex nature of
the flow, a unique model capable of capturing different regimes is not feasible
to develop. There has to be assumptions made in order to be able to come
up with a working model. This is also the case in the modeling approach
we have taken in this thesis. We have tried to develop a weighted residual
model that can simulate the displacement flow of two stratified flows with
weak inertia in the presence of buoyancy force. The model mostly applies
to the viscous flows where mixing at the interface in negligible, i.e. we aim
to predict that onset. However a big advantage of the model is in predicting
the instability of these viscous flows in an economical way.

Throughout the course of experiments run for this thesis, many types
of instability were observed. Fortunately the literature is so rich in the
area of stability analysis of similar flows that we have many examples to
help us understand more complex flows better. These instabilities are either
caused by the high imposed flow velocity, velocity gradients within the flow,
by viscosity and/or density differences. Since the fluids we consider are
miscible we do not need to deal with the instabilities affected by surface
tension between the fluids. Another objective of this thesis is to better
understand the combined effect of the different physical effects and pave
the way for broader predictions. One of the main motivations of developing
the weighted residual model in chapter 6 is to predict the onset of instability
given an interface shape (height) in the displacement zone. It is believed that
even when the flows exhibit mixing and instabilities at higher inclination
angles, there is initially a clean interface between the fluids that has gone
unstable due to perturbation. A natural attempt to understand the mixed
flows then is to predict the onset of the mixing/instability.

In summary, through an extensive literature survey we have found that
relatively few studies have been carried out in the following areas:

• Displacement flows in inclined geometry.

• Imposed-flow dominated displacement flows.

• Non-Newtonian displacement flows.

• Useful mathematical models for displacement flows.

The thesis aims to contribute selectively to improving this situation.
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The technical/scientific aim of the current project is to provide reliable
knowledge to be used for oil and gas well construction processes, by study-
ing mixing/displacement flows using analytical, experimental, and compu-
tational methods. In particular we focus on primary cementing. The plan
is to understand displacement/mixing flows in a pipe of two miscible gen-
eralized Newtonian fluids. Dimensional analysis reveals that there are at
least 11 non-dimensional parameters governing and formulating the dis-
placement/mixing flows. A key objective is to quantify the effect of each
parameter on displacement/mixing flows and possibly on displacement effi-
ciency. This starts from examining the effects of pumping speed, tilt angle,
density difference, viscosity ratio, and rheological parameters. It seems im-
possible to cover a wide range for each of these parameters. However, it is
aimed to have as wide coverage as possible based on time and resources. We
have tried to advance our knowledge of displacement/mixing flows through
3 main activities:

• We have conducted scaled laboratory displacement flow experiments
in a circular pipe with orientations away from horizontal. We consider
a range of fluid properties and flow parameters. We have determined
the effects of each parameter on displacement efficiency as well as
displacement/mixing flow regimes, and provide flow regime diagrams
to identify the principal flow types.

• We have computed high quality flow simulations, in a 2D channel.
We compare these results with the experimental results and study the
key displacement flow mechanisms in a more controlled way. In fact,
through the numerical simulations, we can gain very useful information
from the velocity field at each instant of time and location, something
that is not possible to be studied in our experiments.

• In a simplified mathematical study, we have focused on a limiting
parameter regime that appears to be tractable (semi)analytically and
which also has practical relevance. Through this, we have investigated
the onset of instability/mixing.

This thesis study was intended to deliver a significant amount of high
quality experimental and computational data, which is largely lacking in
literature. This then allows the development and calibration of simpler 1D
models that are suitable for engineering design of oilfield displacement flow
processes.
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Chapter 3

Miscible density stable
displacement flows in an
inclined pipe

In this chapter2 we study density stable laminar miscible displacement flow
of two iso-viscous Newtonian fluids in an inclined pipe (of diameter D̂). By
density stable we mean that the less dense fluid displaces the heavier fluid
in the downwards direction. Although the real well cementing industrial
configuration is density unstable, at some stages of the process the displacing
fluid can be lighter than the displaced. This is usually the case with wash
or spacer fluids before pumping the cement slurry to directly remove the
drilling mud.

We present a wide range of experimental results from displacement flow
experiments performed in the setup explained in appendix A. Although the
pipe is long we are in regimes where the Péclet number is significantly larger
than the ratio of length to diameter, meaning we are far from the laminar
dispersive regimes.

The significant novelty of the results presented in this chapter is as fol-
lows. Firstly, we know of no other experimental or numerical study of mis-
cible displacement flow that covers a broad range of pipe inclinations in
the density stable configuration. Secondly, we illustrate the very interesting
transition that occurs as the density difference (dimensionlessly represented
by the Atwood numberAt) passes through zero. For identical fluids (At = 0)
the velocity adopts a Poiseuille profile, the centre of which moves at twice
the mean speed. For density unstable displacements (At > 0) a buoyancy
driven slumping interface was found in [126, 129, 130], with front speed
around 26 ± 5% higher than the mean speed. Intuition suggests that the
density stable displacement flow (At < 0) should displace at approximately

2A version of this chapter has been published as: K. Alba, S.M. Taghavi and I.A.
Frigaard. Miscible density stable displacement flows in inclined tube. Phys. Fluids 24

123102 (2012).
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the mean speed, as we indeed find. In a long pipe, the displacement effi-
ciency is given by the ratio of mean speed to front velocity and it is curious
to observe non-monotone variation of the displacement efficiency with At.

The third novel contribution of this chapter is in finding a simple dimen-
sionless relation that captures the spreading of the interface in the density
stable configuration. By interface we mean a point or points at a streamwise
location where the concentration gradient transversely is high and the two
fluids meet and interact. Since our fluids are miscible we always have a diffu-
sive interface with concentration varying between that of the displaced and
displacing fluids. However due to the large Péclet number limit we consider
throughout this thesis, we can assume that the interface between the two
fluids stay sharp at least when there is not a strong mixing present. In the
case of viscous flows detecting the interface between the fluids is much easier
than the case where mixing and instabilities are strong. The density stable
configuration has been found to produce highly efficient displacements, with
the bulk of the interface moving steadily at the mean velocity. The stream-
wise length of the stretched interface, we have called the stretch length L̂,
and have measured over a wide range of parameters. The stretch length
increases with the mean flow velocity, increases with inclination β from ver-
tical, decreases with density difference and increases with viscosity. We find
that our data can be represented by a dimensionless expression relating L̂/D̂
to a function of the inclination β and the parameter χ which is the ratio of
buoyancy and viscous stresses.

3.1 Experiments and parameters range

Our experiments are conducted in the flow loop explained in appendix A.
Basically we have an inclined acrylic pipe (4 (m) long, D̂ = 19 (mm))
capable of being tilted to any angle β measured from vertical. A gate valve
separates the upper 80 cm of the pipe from the lower 320 (cm). Two fish
tanks surround the pipes to reduce refraction effects and obtain high quality
images. The gate valve is initially closed, separating displacing and displaced
fluid. The fluids are pumped from two transparent tanks that are pressurized
(to ∼ 70 (kPa) gauge) by compressed air. By adjusting a needle valve located
before the drain we can control the flow rate accurately, for low-to-moderate
Reynolds numbers.

The dimensional parameter ranges we have considered for our experi-
ments are given in Table 3.1. We also carried a series of experiment for
β = 85 ◦, over similar ranges of parameters. The data for this set are not
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3.2. Results

Parameter Range

At −0.0035, − 0.01

V̂0 0− 130 (mm/s)
ν̂ 1, 5.6, 18.6 (mm2/s)
β 0, 20, 45, 60, 70 (deg)
Re 0− 2500
Fr 0− 4.8

Table 3.1: Parameter range of density stable experiments.

included here as the stretch length (to be defined later in §3.2.2) was mostly
not fully developed during the time of the experiment and within the length
of the apparatus. As β → 90 ◦ we approach a singular case in which the
interface between the two fluids in the pipe extends to infinity, given a suf-
ficiently long pipe/experiment.

A dimensional analysis of this type of flow is given in [126]. We denote
the density of the displacing fluid by ρ̂L and that of the displaced fluid
by ρ̂H . The Atwood number is defined as At = (ρ̂L − ρ̂H)/(ρ̂L + ρ̂H),
representing a dimensionless density difference. Note that for this study
At < 0 since ρ̂L < ρ̂H . Our experiments are all performed at small |At|, the
significance of which is that a Boussinesq approximation is valid. This means
that density differences affect the buoyancy force significantly through the

densimetric Froude number, Fr = V̂0/

√

|At|ĝD̂, but not the acceleration of

individual fluids. Here V̂0 is the mean flow velocity and ĝ the gravitational
acceleration. Since we also study a high Péclet number range (as is most
relevant industrially), the flow is governed only by 3 dimensionless groups:
β, Fr and the Reynolds number Re = V̂0D̂/ν̂, where ν̂ is defined using the
mean density ρ̂ = (ρ̂L+ ρ̂H)/2 and the common viscosity of the two fluids, µ̂.
The range of dimensionless parameters is also shown in Table 3.1, from which
we can see that significant buoyancy forces and inertial effects are present
in our experimental range, as well as a broad set of pipe inclinations.

3.2 Results

We present our results in 3 main sections below. First we examine the
interesting transition from density unstable to density stable flows as At
decreases through zero (§3.2.1). The remainder of the results concern only
density stable flows. In §3.2.2 we characterise the main features of the
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density stable displacements, describing the evolution to a steady stretch
length. Parametric variations in stretch length are described in §3.2.3.

3.2.1 The transition from density unstable to density stable

In density unstable displacement the heavier displacing layer slumps beneath
the lighter displaced layer. In the absence of significant inertial mixing, we
are able to identify two displacement fronts: the leading front advances
more rapidly along the bottom of the pipe, whereas the trailing front lags
behind so that the interface is progressively extended between the two fronts.
If buoyancy forces are strong, the trailing front may propagate backwards
against the mean imposed flow. After an initial transient the speed of the
leading front settles to a steady value, V̂f , which may be calculated from
image analysis; see [126, 129, 130]. In a very long pipe at time t̂ the leading
front has advanced an approximate distance V̂f t̂. At the same instant in

time, only a volume V̂0t̂ of the pipe (behind the leading front) is occupied
by displaced fluid. The displacement efficiency is therefore approximately
equal to V̂0/V̂f < 1. This ratio is very important in the design of fluid
displacements. Our previous studies of density unstable displacement flows
in near-horizontal pipes yielded front speeds typically in the range 26± 5%
faster than V̂0.

Figure 3.1 compares a sequence of images for density unstable and den-
sity stable displacement flows at the same |At|, for β = 70 ◦, ν̂ = 1 (mm2/s)
and with very similar V̂0. The slumping interface in the density unstable
case (Fig. 3.1a) is qualitatively similar to our previous work (at larger β).
This particular displacement appears to be in in inertial regime. The den-
sity stable displacement (Fig. 3.1b) also shows two fronts advancing. Two
key differences are that: (i) after an initial phase in which the interface is
extended, the trailing front moves steadily at approximately the same speed
as the leading front; (ii) the lighter displacing fluid layer now advances on
top of the heavier displaced fluid. These two differences are common to all
our density stable experiments.

Figures 3.2a & b show the spatiotemporal diagram of the same experi-
ments as in Fig. 3.1. From these plots we are able to compute the velocity of
the leading displacement front, V̂f . For the density unstable displacement,

V̂f = 38.9 (mm/s) > V̂0 = 20.3 (mm/s), so that the interface elongates as

the displacement evolves, whereas for Fig. 3.1b we have V̂f ≈ V̂0, meaning
a significantly more efficient displacement. This transition in displacement
efficiency (V̂0/V̂f apparently increases) as we change At from positive to
negative appears intuitive. However, it is also remarkable what happens at
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10.90.80.70.60.50.40.30.20.10
a) b)

Figure 3.1: Density unstable and density stable displacements at β = 70 ◦

and ν̂ = 1 (mm2/s). a) At = 0.0035 (dark fluid is less dense than the lighter
coloured fluid) and mean velocity V̂0 = 20.3 (mm/s); the sequence starts
16.25 (s) after opening the gate valve and the time interval between images
is 2.5 (s). b)At = −0.0035 (dark fluid is more dense than the lighter coloured
fluid) and V̂0 = 20.9 (mm/s); the sequence starts 21.5 (s) after opening the
gate valve and the time interval between images is 3.25 (s). The field of
view is 430 × 19 (mm2), taken 800 (mm) below the gate valve. The last
image at the bottom of figure a shows the grayscale for the concentration
values, which can also be used for figure b. The arrows indicate the flow
direction and the left end of the pipe is higher than the right (the fluid flows
downhill).

42



3.2. Results

the transition.
First of all, we comment that the density differences involved in our

experiments are relatively small (At = ±0.0035 corresponds to a density
difference of ≈ 0.7%), which suggests that the transition occurs very close
to At = 0. Secondly, the change in V̂0/V̂f is not monotone! For At = 0
the iso-viscous displacement flow is simply that of a passive tracer advected
by a Poiseuille flow. The centerline advects at twice the mean flow and
the entire front elongates progressively as the displacement continues. The
spatiotemporal plot for an experiment at At = 0 is illustrated in Fig. 3.2c.
We have marked on this plot the line V̂f = 2V̂0 (as a guide to the eye).
This leading front is much less sharp than either of those with a density
difference. We observe significant dispersion, but note that we are still far
from the diffusive Taylor regime.

The leading front speed at At = 0 is significantly faster than those for
small positive or negative At. There is no monotone increase in efficiency
as At decreases through zero. Indeed, it seems that as At → 0 from above,
V̂0/V̂f decreases towards a value of 0.5, but then increases rapidly to 1 for
At < 0. Experimentally, we can not determine if the transition in efficiency
is discontinuous or simply rapid at At = 0. This feature is at least note-
worthy. As we will later see in chapter 4 for density unstable Newtonian
displacements (At > 0), the instability and mixing increases at higher in-
clination angles compared to the stratified stable flows in nearly horizonal
pipes. The higher degree of instability and mixing results in a value of V̂f
which is much closer to V̂0. In other words the displacement efficiency be-
comes closer to 100 %. The non-monotone behavior discussed above is only
valid for nearly-horizontal cases. The displacement efficiency behavior with
At differs at different inclination angles. In any case, At = 0 (iso-density
displacement) seems to cause a non-monotonicity in displacement efficiency
change with density difference.

3.2.2 Characteristics of density stable displacements

We turn now to exploring density stable displacements in more detail. The
experiment of Figs. 3.1b and 3.2b is quite typical in that, after an initial
transient the leading and trailing fronts move together. In order to capture
this development we plot the averaged concentration profiles at successive
times, as an equivalent interface height, ĥ(x̂, t̂). Figure 3.3a shows the ex-
perimental ĥ(x̂, t̂)/D̂ at t̂ = 62, 68, .., 128, 134 (s) for the same experiment
as in Figs. 3.1b and 3.2b. At these times the flow has become fully devel-
oped and we can see that the distance between successive interfaces remains
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Figure 3.2: a,b) Spatiotemporal diagrams obtained for the same experiments
as Figs. 3.1a and 3.1b. Figure 3.2c shows the spatiotemporal diagram of an
iso-density experiment (At = 0) for V̂0 = 16.2 (mm/s). The dashed-line is
an eye guide representing V̂f = 2V̂0. Note that x̂ is the streamwise distance
measured from the gate valve and t̂ is the time spent after the start of the
experiment. The colour bar in Fig. 3.2a refers to all figures and indicates
depth-averaged concentration values with 0 indicating pure displaced fluid
and 1 indicating pure displacing liquid.

constant in the central part of the pipe (marked by the two broken lines).
Where either ĥ/D̂ < 0.15 or ĥ/D̂ > 0.85 (approximately) the layers of

displacing or displaced fluid become thin and visualisation from the side is
through the top or bottom of the pipe where curvature is maximal. These
wall regions are consequently those most affected by noise in measurement
of the averaged concentrations. Even though the behaviour in these wall re-
gions is hard to visualize, it is clear that the bulk of the interface is unaffected
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Figure 3.3: a) Experimental profiles of normalized h(x̂, t̂) for t̂ =
68, 74.5, .., 126.5, 133 (s) for the same experiments as Figs. 3.1b and 3.2b.
The dotted lines show ĥ/D̂ = 0.85 and 0.15. The horizontal solid line in-
dicates ĥ/D̂ = 0.5 and the inclined bold dashed line (eye guide) shows the
slope of the collapsed curves which stays the same for different profiles. b)
collapse of the normalized profiles ĥ/D̂ with x̂/t̂ for the same experiment
as part a. c) The evolution of stretch length value, L̂, with time for the
same experiment as part a. The fully developed stretch length is attained
for approximately t̂ > 40 (s). The inset in part c shows the dependency of
the scaled stretch length for different choices of lower and upper bounds of
ĥ/D̂ (0.15 − 0.85, 0.1 − 0.9 and 0.2− 0.8).

by the wall regions. Indeed the slope of the evolution profiles in the center
of the pipe remains constant as they advance. Interestingly, the evolution
profiles change curvature at an inflection point around ĥ/D̂ = 0.5, which is
the pipe center. The self-similar evolution profiles shown in Fig. 3.3a suggest
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that these profiles might collapse onto one curve with an appropriate scaling.
Figure 3.3b shows the evolution profiles ĥ/D̂ plotted against x̂/t̂. We can
see that the profiles converge to a value x̂/t̂ ≈ 22.8 (mm/s) at large times,
(the very left curves in Fig. 3.3b). This value is very close to the mean flow
speed, V̂0 = 20.9 (mm/s), suggesting that the interface between displacing
and displaced fluids moves at a speed very close to that of the mean flow.
Later on we will discuss this and its effect on displacement efficiency in more
detail.

We call the streamwise distance between the leading and trailing fronts
the stretch length, L̂. In order to obtain the stretch length in a robust and
consistent way from our experiments, we neglect the part of the interface
below 15% and above 85% of the pipe’s diameter. Figure 3.3c shows the
evolution of L̂ with time for the same experiment. We can distinguish an
initial elongation phase, when the gate valve is opened at the start of the
experiment. During this period the mean flow itself accelerates from zero
to the set flow rate and we can also expect strong buoyancy effects as the
initial interface is perpendicular to the pipe. In the second phase we see a
slower relaxation towards a constant length, in this case after about 40 (s).
A dimensionless stretch length is defined by scaling L̂ with (0.85 − 0.15)D̂.
The inset in Fig. 3.3c shows the dependency of the scaled stretch length for
different choices of lower and upper bounds of ĥ/D̂ (0.15−0.85, 0.1−0.9 and
0.2 − 0.8). Note that for scaling each stretch length, L̂, the corresponding
percentage of the diameter, D̂, in each case is naturally used. We see that
although the stretch length values are dependent on the choice of diameter
filter percentage at short times, they converge into a constant value over
longer times when the flow is developed. Basically this is due to the constant
slope over the central part of the pipe (Fig. 3.3a). This in turn confirms that
the scaled stretch length measurements are not greatly sensitive to the choice
of diameter filter percentage, and we stay with 15% and 85% as filter values.
From here onward when we use the expression stretch length, we mean the
longitudinal distance L̂ between displacing and displaced fluids measured at
any time after opening the gate valve, and will refer to the constant value
obtained at long times as the fully developed stretch length.

Figure 3.4a plots the range of development times, t̂FD, required for the
stretch length to become fully developed. We have scaled t̂FD with D̂/V̂0
which is the mean travel time for one diameter. Thus, the vertical axis
measures the number of pipe diameters from the gate valve until the flow
is fully developed. The length of pipe below the gate valve is roughly 170
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Figure 3.4: The dependency of the dimensionless time taken to reach fully
developed flow, tFD, on a) χ and b) Fr. The data in parts a and b cor-
respond to: β = 20 ◦, ν̂ = 1 (mm2/s) (�), β = 45 ◦, ν̂ = 1 (mm2/s)
(◮), β = 60 ◦, ν̂ = 1 (mm2/s) (∗), β = 70 ◦, ν̂ = 1 (mm2/s) (N),
β = 60 ◦, ν̂ = 0.99 (mm2/s) (H), β = 20 ◦, ν̂ = 5.6 (mm2/s) (•).

diameters. The horizontal axis in Fig. 3.4a is the parameter:

χ =
2Atĝ cosβD̂2

ν̂V̂0
, (3.1)

which captures the ratio of buoyant forces to viscous forces. We can see that
as the magnitude of buoyancy force decreases with respect to the viscous
forces (|χ| → 0), development times increase. Also note that when the ratio
of inertial to buoyant forces increases (Fr increases), the dimensional time
for a fully developed stretch length increases as well; see Fig. 3.4b. Note
that the increasing trend of required time to reach fully developed flow with
χ and Fr can be observed for approximately each experimental set shown
in Figs. 3.4a and b using different symbols.

In all cases when the stretch length is fully developed we have a leading
front velocity that is close to the imposed velocity. Figure 3.5 shows the
range of V̂f vs V̂0 from our experiments. The broken line is the linear fit

V̂f = 1.04V̂0. In this case an average displacement efficiency for all our

density stable experiments is 1/1.04 ≈ 96%. The discrepancy from V̂f = V̂0
is quite small. Partly this may be attributed to measurement errors (e.g. V̂f
comes from flow visualisation and V̂0 from the flow meter). Partly there
may be imperfect displacement in the upper and lower wall regions (thin
film effects) and partly we must consider that there is some dispersion.

With regard to dispersion, it is worth reflecting on the consequences
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Figure 3.5: Front velocity values, V̂f , plotted against the mean flow velocity,

V̂0 for different experiments as in Fig. 3.4. The dash-dotted line is the
linear fit V̂f = 1.04V̂0. In this case an average displacement efficiency for all
density stable experiments is 1/1.04 ∼ 96%. The solid line represents the
ideal displacement case with V̂f = V̂0.

of steadily advancing leading and trailing fronts with V̂f ≈ V̂0 and steady
stretch length. Both far upstream and downstream of the front, the flows
adopts a Poiseuille profile but the frontal region advances uniformly. Glob-
ally speaking, this means that the centreline fluid behind the front must
decelerate and move towards the walls. In advance of the front, the fluid
close to the walls is pushed towards the centreline and accelerates forward.
Thus, there is a net counter-current flow in the radial direction for any
steadily moving front. For large Péclet number miscible displacements, sig-
nificant diffusion only occurs close to sharp gradients in fluid concentration.
However, now we have significant secondary flows on both sides of the front
that can advect diffused mixture away from the frontal region. One conse-
quence is that although the averaged concentration profiles can propagate
apparently steadily (e.g. Fig. 3.3a) the fluid concentration in the frontal
region can become diffuse (e.g. Fig. 3.1b).

A second consequence of the secondary flows described above is that
there must exist recirculatory zones in the streamlines, as considered in a
moving frame of reference. Thus, although the flow may become parallel far
from the frontal region, close to the front it is multi-dimensional and the
secondary flow velocity scale is evidently V̂0. This means that inertial effects
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Figure 3.6: Experimental profiles of ĥ(x̂, t̂)/D̂ at different times but at
around the same position in the pipe for β = 60 ◦ and ν̂ = 1 (mm2/s);
a) At = −0.0035 different V̂0; b) similar V̂0 and different At < 0. All exper-
iments are density stable.

are always present in the frontal region, whenever Re > 1, which is for all
our experiments.

3.2.3 Parametric variation in the fully developed stretch
length

We now explore the sensitivity of the fully developed stretch length to our
experimental variables: At, β, V̂0 and ν̂. Figure 3.6a shows the profiles
of normalized ĥ/D̂ for density stable displacements at different V̂0, with
fixed β = 60 ◦, ν̂ = 1 (mm2/s) and At = −0.0035. An increase in density
difference decreases the fully developed stretch length. Figure 3.6b shows
the effect of the density difference (At) on the length of the interface for two
otherwise similar cases (V̂0 values are also very close together). While the
second of these is perhaps intuitive, the effect of increasing mean velocity
is less obvious. One explanation, that we reinforce later below, is that
the stretch length is controlled by the ratio of axial buoyancy forces to
viscous stresses, |χ|. As we increase the flow rate (V̂0) this ratio is reduced
allowing the interface to spread more. Note too that we have seen that the
development times t̂FD also increase as |χ| decreases.

We note in Fig. 3.6 that the profiles ĥ/D̂ are measured when the stretch
length is fully developed. There is a degree of asymmetry that appears to
increase with both V̂0 and |At|. Partly this may be due to asymmetry in
the wall regions at top and bottom, i.e. the top is an advancing film and
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Figure 3.7: a) Variations in dimensional stretch length L̂, for different β
and V̂0. The solid symbols are for At = −0.0035 and the open symbols for
At = −0.01. Note that ν̂ = 1 (mm2/s). b) Dimensional stretch length L̂
versus V0 for two different dynamic viscosities at fixed At = −0.0035 and
β = 20 ◦.

the bottom is a draining film. This may also be related to the pattern of
secondary flows and dispersion being non-uniform across the pipe depth.
It is hard to develop simplistic models that will give an interface shape
prediction (e.g. by assuming a Poiseuille flow), since in the interfacial region
the velocity field is far from a Poiseuille flow.

Figures 3.7a and b show the effects of inclination angle, mean flow speed,
density difference and fluid viscosities on the fully developed stretch length.
Figure 3.7a shows results for At = −0.0035 and At = −0.01. As we approach
a horizontal configuration the stretch length increases. The trend shown
in this figure suggests that as we move towards strictly vertical pipe the
stretch length should become very small, which is also observed. Figure
3.8 shows snapshots of the flows for a series of strictly vertical experiments.
The parameters used are β = 0 ◦, ν̂ = 1 (mm2/s), At = −0.0035 and
V̂0 = 18.2, 48.1 and 70.6 (mm/s). Due to the symmetric Poiseuille profile,
advective velocity effects act to disperse the light displacing fluid ahead
of the mean flow in the pipe centre. This dispersive effect is balanced by
the stabilizing density difference between the fluids, preventing the interface
from elongating noticeably: the stretch length remains very small (close
to zero). We see that the interface between the fluids flattens out with a
small cap region advancing in front of the pure displacing fluid. This cap
region could either be due to fluid mixing or could be a visual effect due
to a film of displaced fluid remaining on the wall. In any case the length
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of cap region reduces as the mean flow is increased, suggesting that the
residual film is more likely. Ahead of the cap and quite faint in these figures
is dispersed spike-like region of mixed fluid (mostly displaced fluid), which
we have outlined for clarity. These regions are formed during the initial
phase of mixing after opening the gate valve, but they may also be “fed”
by a small amount of diffusion/dispersion, from the tip of the front as the
flow progresses. This diffuse mixed region disperses further ahead of the
cap region with increasing mean flow, as is expected. These effects are
interesting in their own right, but this has not been the focus of our study.
The main practical conclusion is that the fully developed stretch length is
small for vertical pipes. More details on vertical displacement flows in ducts
can be found in [27, 81, 93, 109]. Where experiments have been performed
they have typically been performed with more viscous fluids and at lower
Reynolds numbers than here.

To investigate the effect of viscosity (note we are still interested in iso-
viscous displacements) we have run comparison experiments at higher vis-
cosity, obtained with a 54 weight-percent glycerine-water solution with ν̂ ∼
5.6 (mm2/s). Figure 3.7b shows that when the fluids become more viscous
the stretch length also increases. A few experiments were run with an even
higher glycerine concentration (72 percent (wt/wt)) with ν̂ ∼ 18.6 (mm2/s).
It was observed that the stretch length was much longer than the length of
our apparatus (results are not presented here). In these experiments the
trailing front did not appear to move at all from the gate valve over the
duration of the experiment.

The increase in viscosity exposed a difference in qualitative behaviour of
the displacement front near the top and bottom of the pipe. The leading
front displaces immediately and keeps moving, stretching the interface. We
postulate that the trailing front requires a critical stretching L̂ before it
begins to move. Presumably the angle of the interface contributes to a force
balance in which buoyancy forces are opposed by viscous forces (hence the
elongation with increased viscosity). Once the trailing front is moving it
does so at approximately the same speed as the imposed flow, and we may
measure V̂f ≈ V̂0 from spatiotemporal plots such as Fig. 3.2b. In this case
the displacement is very efficient (close to 100 percent); see Fig. 3.5. Note
that although this suggests a viscous:buoyancy balance, if we were to develop
a lubrication model such as in [128], this would predict that the interface
is continually stretched: advancing at the upper wall while pinned at the
lower wall.

Our results suggested that the fully developed stretch length is governed
primarily by a balance between axial buoyancy forces and viscous stresses
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Figure 3.8: Snapshots of the vertical displacement flow experiment, β = 0 ◦,
carried for ν̂ = 1 (mm2/s), At = −0.0035 and a) V̂0 = 18.2 (mm/s) b)
V̂0 = 48.1 (mm/s) and c) V̂0 = 70.6 (mm/s). The sequence for part a starts
30.75 (s) after opening the gate valve and the time interval between images
is 5 (s). For parts b and c the sequences start 80.75 (s) and 19.5 (s) after
opening the gate valve and the time intervals between images are 2 (s) and
1.25 (s) respectively. The arrow indicates the flow direction and the left end
of the pipe is higher than the right (the fluid flows vertically downhill). The
field of view is 700× 19 (mm2), taken 1550 (mm) below the gate valve. The
last image at the bottom of Fig. a is the colourbar of the concentration values
and can be used for Figs. b and c too. The white dashed lines in Figs. a-c are
eye-guide and indicate the boundaries of the mixed region moving upfront.

(originating from the mean flow). This balance is captured in the parameter
χ = 2Atĝ cos βD̂2/(ν̂V̂0). Since our stretch length values are calculated
between ĥ/D̂ = 0.15 and ĥ/D̂ = 0.85 we subtract off the hydrostatic stretch
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Figure 3.9: a) Experimental dimensionless stretch length values L, plotted
against χ. The solid line is L− tan β = −3680/χ; b) the same data plotted
in log-log scale. The data in parts a and b correspond to: β = 20 ◦, ν̂ =
1 (mm2/s) (�), β = 45 ◦, ν̂ = 1 (mm2/s) (◮), β = 60 ◦, ν̂ = 1 (mm2/s) (∗),
β = 70 ◦, ν̂ = 1 (mm2/s) (N), β = 60 ◦, ν̂ = 0.99 (mm2/s) (H), β = 20 ◦, ν̂ =
5.6 (mm2/s) (•).

length (0.7D̂ tan β) from L̂ and normalize with 0.7D̂. Figure 3.9 plots the
normalized fully developed stretch length against χ for our data, in linear
and log scales. It appears that the data collapse well onto a single curve
regardless of β, At and ν̂. Horizontal error bars for χ are shown. Vertical
error bars are negligible. A model curve is fitted to the experimental data
of the form

L− tan β = −3680/χ. (3.2)

This in itself is interesting since our flows are performed at a range of non-
trivial Re and the occurrence of secondary flows about a steadily advancing
frontal region means that inertial effects are always present close to the
advancing front. Note that only the data for β ≥ 20◦ has been used to fit
(3.2). As discussed above, the stretch length in a vertical pipe is observed to
be of the order of the diameter and consequently negligible. The expression
(3.2) at β = 0 ◦ is not singular, but indicates a stretch length larger than
that observed and one that is strongly dependent on χ. This represents an
extrapolation of (3.2) outside the range of the data used to make the curve
fit. It is unclear how far below β = 20◦ this expression will be valid.

By choosing 0.7D̂ as the scale for dimensional stretch length values, L̂,
one can now re-scale L − tan β = −3680/χ with the full diameter value,
D̂, and calculate a predicted stretch length value over the whole pipe (not
only over 70% of the pipe). In rescaling (3.2) in this way we effectively
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assume that the interface evolution profiles (e.g. Fig. 3.3) extend linearly
up to the point where they intersect with the pipe walls. This gives a closer
prediction of the stretch length in the pipe. It is also worth noting that
for the 72 percent (wt/wt) glycerine-water experiments in which the stretch
length could not be measured within our apparatus, χ ≈ −14, for which the
fitted model predicts a stretch length on the order of 5 (m), exceeding the
length of our apparatus. This is precisely what we observed.

3.3 Discussion points

Laminar displacement flow of two miscible iso-viscous Newtonian fluids in
an inclined pipe has been investigated experimentally in the case where the
displacing fluid is less dense than the displaced fluid (i.e. density stable).
Our experiments have covered a broad range of the governing dimensionless
parameter space (β,Re, Fr).

The practical importance of our study is in predicting the displacement
efficiency, which is quantified by the ratio V̂0/V̂f . We have demonstrated

that there is an interesting transition in V̂0/V̂f as the At changes from pos-
itive (density unstable) to negative (density stable). For At > 0 previous
work shows that efficiencies are significantly < 1. As At decreases towards
zero V̂0/V̂f reduces further, bounded below by the theoretical V̂0/V̂f = 0.5

of passive scalar advection. However, for At < 0 the efficiency V̂0/V̂f in-
creases sharply to a value close to 1. Remarkably, this transition shows
order 1 changes in V̂0/V̂f over a very small range of At (corresponding to
0.7% density difference).

In the density stable range of our experiments (At < 0), our data is
approximated well by the linear fit: V̂f = 1.04V̂0, suggesting an efficiency
of around 96%. We expect that the displacement is never 100% efficient
due to a very thin residual lower layer of the displaced fluid, and possible
dispersion of diffused mixture in the frontal region.

At the start of a typical density stable experiment the trailing front
remains stationary while the leading front advances, stretching the interface.
On attaining a critical length the trailing front also moves, at approximately
the same speed as the mean flow. The length of the interface along the pipe
has been called the stretch length, L̂. We have characterised the time taken
for the stretch length to become constant in time, and portrayed this in
terms of a development length. This development time increases with the
mean imposed velocity and decreases with the axial buoyancy force.

The fully developed stretch length increases with the mean flow velocity,
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decreases with the density difference, increases with inclination from verti-
cal and increases with fluid viscosity. Our data is well represented by the
scaled expression L − tan β = −3680/χ, where χ = 2AtĝD̂2 cos β/(ν̂V̂0).
This implies that stretch length is primarily due to a balance between axial
buoyancy forces and viscous stresses from the mean flow. This in itself is
interesting since our flows are performed at a range of non-trivial Re and
the occurrence of secondary flows about a steadily advancing frontal region
means that inertial effects are always present close to the advancing front.

Future experimental work on density stable displacement flows should
focus on the effects of a viscosity ratio between two Newtonian fluids and on
examining shear-thinning effects in these flows. It would also be of interest
to derive a simple predictive model that produces the observed dominant
dependence of the stretch length on χ, but apparent insensitivity to inertial
effects.
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Chapter 4

Miscible density unstable
displacement flows in an
inclined pipe

In the previous chapter the experimental results of density stable laminar
miscible displacement flow of two iso-viscous Newtonian fluids in an inclined
pipe were presented. In this chapter3 everything stays the same except
that we are now interested to see how the displacement flow is affected
if the displacing fluid switched to the heavier fluid i.e. density unstable
configuration. By density unstable we mean that the denser fluid displaces
the lighter fluid as the fluids are pumped in the downwards direction.

Our experiments are performed in a long pipe (approximately 200 diam-
eters), but at flow rates for which the Péclet number is significantly larger
than the ratio of length to diameter. In this regime, although the fluids are
miscible, they do not have time to mix over experimental timescales in the
absence of hydrodynamic effects, (which are present here). Our study repre-
sents a continuation of our previous work on density unstable displacement
flows; see [126, 128–130], which has been primarily focused at flows in ducts
that are close to horizontal (β ≈ 90◦). At large inclinations stratified vis-
cous regimes are a dominant flow feature, but at lower inclinations inertial
effects become increasingly significant, eventually resulting in instability and
effective transverse mixing. Thus, inertial transitionary and fully diffusive
regimes occur.

It was shown in chapter 3 that the density stable configuration produces
highly efficient displacements, with the bulk of the interface moving steadily
at the mean velocity. As mentioned earlier in chapter 3, by interface we mean
a point or points at a streamwise location where the concentration gradient
transversely is high and the two fluids meet and interact. Since we are in

3A version of this chapter has been accepted for publication in Phys. Fluids: K. Alba,
S.M. Taghavi and I.A. Frigaard. Miscible density unstable displacement flows in inclined

tube.
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large Péclet number regime we can assume that the interface between the
two fluids stays sharp at least when there is not a strong mixing present.
The streamwise length of the stretched interface, L̂, was measured over a
wide range of parameters. As will be seen in the current chapter there is
no such steadily moving interface in the case of density unstable flows. In
fact the dominant flow pattern is slumping in this case which is completely
different than the beaviour observed in density stable flows.

The significant novel contributions of this chapter are as follows. Firstly,
we know of no other experimental or numerical study of miscible displace-
ment flow in pipes (non-zero imposed mean flow velocity, V̂0) that covers
a broad range of pipe inclinations in the density unstable configuration.
Secondly, we classify the different flow regimes observed in terms of mea-
surements of the advancing front velocity and the degree of diffusive mixing.
Thirdly, we develop simple dimensionless relations that approximate two im-
portant flow characteristics: namely the front velocity and the macroscopic
diffusion coefficient.

For a brief outline of this chapter, below in §4.1 we introduce the exper-
imental setup. In presenting our results we first benchmark against existing
exchange flow results for V̂0 = 0 (§4.2.1) and then (§4.2.2) discuss the main
qualitative features of the displacement flows; i.e. V̂0 > 0. Front velocities
and macroscopic diffusion are studied in §4.2.3 and §4.2.4, respectively. We
give a quantitative characterisation of the different flow regimes in §4.3 and
the chapter closes with a brief summary (§4.4).

4.1 Experiments and parameters range

Our experiments have been carried out in a 4-meter two-fluid flow loop
capable of being tilted at any angle between horizontal and vertical via
ball-screw jack; see appendix A for details. The flow loop consists of a a
transparent acrylic pipe (diameter D̂ = 19.05 (mm)) mounted within two
fish tanks to reduce the refraction errors and improve image quality. The
pipe is divided into two parts, separated initially by an automated gate
valve: 80 (cm) in the upper part and 320 (cm) in the lower part.

In an experiment the two fluids (both water) are initially filled above and
below the gate valve. We add black dye (ink) to the displaced fluid in order
to measure concentration via optical absorption. At the start of the exper-
iment the gate valve is opened and the flow is driven by an over-pressure
(≈ 70 (kPa) gauge pressure) applied by compressed air to a pressurized tank
containing the displacing fluid. This ensures a smooth steady inflow. The
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Parameter Range

V̂0 0− 130 (mm/s)
ν̂ 1 (mm2/s)
At 0.001, 0.0035, 0.004, 0.01, 0.08
β 0, 10, 20, 30, 45, 60, 70, 85 (deg)
Re 0− 2400
Fr 0− 9

Table 4.1: Parameter range of Newtonian density unstable experiments.
Note that most of the experiments were run for At = 0.001, 0.0035 and
0.01.

flow rate, Q̂ = πD̂2V̂0/4, is regulated by adjusting a needle valve located
before the drain.

A dimensional analysis of the flow suggests that 5 dimensional parame-
ters may govern the flow; see [126]. We denote the density of the displacing
fluid by ρ̂H and that of the displaced fluid by ρ̂L. The Atwood number is
defined as At = (ρ̂H − ρ̂L)/(ρ̂H + ρ̂L), representing a dimensionless density
difference. For this study At > 0 since ρ̂H > ρ̂L. Our experiments are all
performed for small At, the significance of which is that a Boussinesq ap-
proximation is valid. Briefly, this means that density differences can signifi-
cantly affect buoyancy forces, captured by the densimetric Froude number,

Fr = V̂0/

√

AtĝD̂, but not the acceleration of individual fluids. Here ĝ is

the gravitational acceleration and V̂0 is the mean imposed velocity. A third
dimensionless parameter is the pipe inclination, β, measured from vertical.
A fourth dimensionless parameter is the Reynolds number Re = V̂0D̂/ν̂,
where ν̂ is defined using the mean density ρ̂ = (ρ̂L+ ρ̂H)/2 and the common
viscosity of the two fluids, µ̂. Finally, since our fluids are miscible there is
the potential for the Péclet number Pe = V̂0D̂/D̂m to influence the flow
(here D̂m is the molecular diffusivity). Typically, for the range of flow rates
in our pipe we have Pe≫ 1. This suggests that on the timescale of interest,
molecular diffusivity does not play a major role in the flows studied. In a
typical experimental sequence we would fix the pipe inclination and Atwood
number and then run a number of experiments at increasing fixed flow rates.
The range of dimensionless and dimensional parameters is shown in Table
4.1. The 3 most relevant dimensionless parameters are β, Re and Fr, (pro-
viding At≪ 1 and Pe≫ 1). We see that we are able to cover a wide range
of β, Re and Fr with our experiments.
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4.2 Results

We now present our experimental results. First, in §4.2.1 we benchmark
against existing exchange flow results (V̂0 = 0). We then give a broad
phenomenological description of the main features we have observed in our
displacement flow experiments (V̂0 > 0); see §4.2.2. We study variations
in measured front velocity in §4.2.3. For those experiments dominated by
strong transverse mixing we analyse the effective bulk axial diffusivity (or
dispersivity), from measured concentration profiles (§4.2.4). In §4.3 we clas-
sify the flow regimes observed, approximating the boundaries in terms of
(Re,Fr, β). We also give leading order approximations to the front velocity
and bulk axial diffusivity.

4.2.1 Exchange flows

Seon et al. [113] used a LIF technique to visualize exchange flow patterns.
They found the fluid layers well stratified with some slight mixing at the
interface due to Kelvin-Helmholtz instabilities for near-horizontal angles.
For near-vertical pipes the strong buoyancy component in the axial direction
induces a back-flow which in turn yields to a mix of Rayleigh-Taylor and
Kelvin-Helmholtz type instabilities, resulting in effective transverse mixing.
These two regimes are separated at intermediate angles (and At) by flow
patterns somewhere between strongly segregated and fully mixed, in which
there is significant interfacial mixing, but also unbroken streams of pure
fluid remain. In [112], Seon et al. characterized their results and analysis in
terms of two dimensional velocities:

V̂ν =
AtĝD̂2

ν̂
, V̂t =

√

AtĝD̂, (4.1)

representing velocity scales for which viscous and inertial stresses balance
buoyancy, respectively. Seon et al. measured the front velocity V̂f in the
different regimes and found that for an intermediate range of inclination
angles the dimensionless ratio V̂f/V̂t attained a constant plateau, V̂f/V̂t =
0.7. The front velocity deviates from this line at high inclinations, where
viscous effects dominate, and at small inclinations where the flow becomes
fully diffusive.

Figure 4.1 shows the dimensionless experimental front velocity measured
in our experiments (with V̂0 = 0) scaled with V̂ν cos β, plotted against
V̂ν cos β/V̂t; c.f. Fig. 4 in [112]. The solid line in the figure is V̂f/V̂t = 0.7.
We have also plotted data from [112] for the same At. The agreement be-
tween the two studies is clear. The data coincide both in terms of attaining
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Figure 4.1: Comparison of the experimental front velocity values for the
exchange flow (solid data) with the data reported by Seon et al. [112] (open
data). The solid line shows V̂f/V̂t = 0.7 [112]. Squares correspond to At =
0.001 and circles to At = 0.01. Inclination angle, β varies between 20◦ and
70◦ in the experiments shown. The dashed lines show the limit of V̂ν cos β/V̂t
above which the exchange front velocity values deviate from V̂f/V̂t = 0.7,

for corresponding At (V̂ν cos β/V̂t ≈ 230, 500 for At = 0.001 and At = 0.01
respectively).

the plateau values and in terms of the point of deviation from the plateau
(transition to fully mixed regime). This occurs at V̂ν cos β/V̂t ≈ 230 for
At = 0.001 and at V̂ν cos β/V̂t ≈ 500 for At = 0.01.

4.2.2 Displacement flows: main qualitative features

We first address the most basic question: namely is the global qualitative
behaviour observed for exchange flows (V̂0 = 0) significantly affected by in-
troducing the mean flow (V̂0 > 0). Figure 4.2 shows typical results from our
experiments, primarily illustrating the effect of inclination angle β on the
flow pattern. The snapshots of the experiments shown in Fig. 4.2 are cali-
brated so that the color varies between 0 (displaced fluid) and 1 (displacing
fluid), thus illustrating the concentration of displaced fluid. The data shown
are obtained for At = 0.0035 and kinematic viscosity ν̂ = 1 (mm2/s), all
with a mean imposed velocity in the range V̂0 ∈ [29, 47] (mm/s). This figure
suggests that the same overall behaviour is observed as for the exchange
flows. For a given mean flow (V̂0) the degree of mixing and disorder in the
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Figure 4.2: Change in iso-viscous displacement mixing with β for At =
0.0035 and kinematic viscosity ν̂ = 1 (mm2/s). Mean flow speed is V̂0 ∈
[29, 47] (mm/s) (see Fig. 4.3). The field of view is 1330× 19 (mm2) located
1740 (mm) downstream of the gate valve. The color bar at the top left of
the figure shows the corresponding concentration value, C, with 0 referring
to the pure displaced fluid and 1 to the pure displacing fluid.

system increases as we move towards the vertical (β → 0◦). The flow pattern
for more horizontal inclinations than shown remains qualitatively similar to
that for β = 85◦, i.e. viscous flow of two separated layers; see [126].

Figure 4.3 shows the spatiotemporal diagrams of the depth-averaged
concentration fields for the same experiments as shown in Fig. 4.2. The
depth-averaged concentration value C(x, t) is simply the mean value of the
fluid concentration averaged across the pipe at location x̂ and time t̂ and
can be used to estimate the degree of mixing inside the pipe. As can be
seen in Figs. 4.3a-f the flow stability increases as we move toward nearly
horizontal inclinations. In principle we could extract statistical data on the
wavelengths and growth rates of the instabilities from this data, but this
is not the aim of the present study. When the degree of mixing is high it
is difficult to distinguish the front between two fluids (Figs. 4.3a and b).
However, when the fluids become more separated the location of advancing
displacement front can be recognized clearly (Figs. 4.3c-f). The inverse slope
of the line bounding the black region in the spatiotemporal diagram is minus
the front velocity (see the dashed line in Fig. 4.3f). This boundary can be
obtained through standard image processing methods when the boundary
is clear (e.g. Fig. 4.3f), but when the boundary between displacing and
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displaced fluid concentrations is unclear in the spatiotemporal diagram, the
front velocity needs to be measured more carefully (as we discuss later in
§4.2.3).

To gain additional insight into the flow dynamics we measured the ve-
locity profile 150 (cm) downstream of the gate valve using an ultrasonic
Doppler velocimeter DOP2000 (model 2125, Signal Processing SA). For the
tracer, we used polyamid seeding particles with a mean particle diameter of
50 µm with volumetric concentration equal to 0.2 g/l in the both fluids. The
UDV technique suits our experimental needs well since it does not require a
transparent medium. The measuring volume has a cylindrical shape, with
axial resolution in our fluids of about 0.375 (mm) and the lateral resolution
is equal to the transducer diameter (5 (mm)), slightly varying with depth.
The UDV probe was mounted at an angle ≈ 76◦ relative to the axis of the
pipe, selected to balance a good signal to noise ratio with a small ultra-
sonic signal reflections; see [22]. The method is non-intrusive as the probe
is mounted outside the pipe, with the ultrasonic beam entering the fluid by
passing through a 3.175 (mm)-thick plexiglass pipe wall. The method mea-
sures the flow velocity projection on the ultrasound beam: essentially giving
the axial velocity. Reflection effects at the lower wall of the pipe make it
hard to measure a zero velocity at the lower wall. Figure 4.4 shows char-
acteristic velocities for the three different flow patterns we have observed.
First, Fig. 4.4a shows the velocity profile across the channel at different
times for a flow that mixes fully across the pipe. After mixing initially, the
measured velocity profile appears to be close to a Poiseuille profile, which
may be because the two fluids become a mixture with a density very close
to the average density of the two fluids. The second regime is where there is
significant mixing at the interface but it is not strong enough to completely
break/mix the pure fluid layers. Some of the characteristic of such flows
are puffs and waves appearing at the interface that get convected towards
downstream/upstream depending on how strong the mean flow force is with
respect to the buoyancy.

Figure 4.4b shows the UDV profile of such a flow obtained at β = 60◦.
Positive high speed velocity regions adjacent to the lower wall are accom-
panied by strong negative velocity regions towards the upper layer (due to
incompressibility). The third regime is where interfacial instabilities are
weak in the system and the flow layers are basically separated at the inter-
face by buoyancy forces. A typical velocity profile for this regime is given
in Fig. 4.4c for β = 85◦. It is common to observe negative values of the
velocity close to the top wall (back flow) where the lighter fluid exists and
positive values close to the lower part of the pipe where the heavier fluid
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Figure 4.3: Spatiotemporal diagrams of depth-averaged concentration field,
for the same experiments as shown in Fig. 4.2: a) β = 0◦, V̂0 = 32 (mm/s);
b) β = 30◦, V̂0 = 29 (mm/s); c) β = 45◦, V̂0 = 32 (mm/s); d) β = 60◦,
V̂0 = 47 (mm/s); e) β = 70◦, V̂0 = 43 (mm/s); f) β = 85◦, V̂0 = 43 (mm/s).
The dashed line line in part f indicates the position of the displacing front
and its slope is −1/V̂f . The spatiotemporal diagram gives a front speed

V̂f = 64 (mm/s).
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ŷ
(m

m
)

 

 

20 40 60 80

0

5

10

15

−50

0

50

100

b)

β=85°

t̂ (s)

D̂
−

ŷ
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Figure 4.4: Ultrasound Doppler Velocimetry (UDV) measurements obtained
for At = 0.004, ν̂ = 1 (mm2/s) and a) β = 0◦, V̂0 = 44 (mm/s) b) β = 60◦,
V̂0 = 20 (mm/s) and c) β = 85◦, V̂0 = 46 (mm/s).

flows. Note that the current UDV results only depict the streamwise velocity
components.

4.2.3 Front velocity measurement and characteristics

In a long pipe, the ratio of the mean flow speed to the leading front ve-
locity, V̂0/V̂f , indicates the proportion of the pipe displaced in an experi-
ment, i.e. the displacement efficiency. Consequently, it becomes important
to measure V̂f in a consistent and repeatable way, regardless of the degree
of mixing. Whereas edge detection and calculation of the slope from the
spatiotemporal diagram has proven effective in our previous work, at pipe
inclinations close to horizontal (see [126]), strong transverse mixing such as
in Fig. 4.2 (Figs. 4.3a & b) makes this method less reliable. Figure 4.5a
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Figure 4.5: a) Evolution of the depth-averaged concentration field, C, with
time, t̂ = [2, 7, 12, ..., 32] (s), and streamwise location, x̂, measured form the
gate valve for the same experiment as in Figs. 4.2 (β = 30◦) and 4.3b. The
dashed line shows C = 0.1 which is used for measuring the displacing front
velocity, V̂f , consistently. b) Evolution of the front velocity value, V̂f , with
time for the same experiment. The inset shows the constant value of the
front velocity when the flow is fully developed (V̂f = 31.3 (mm/s) in this
case with 2% standard deviation).

shows the concentration profiles at instants of time along a section of the
pipe for the same experiment as shown in Fig. 4.3b. Note that the profiles
of concentration shown in Fig. 4.5a and the spatiotemporal diagram data in
Fig. 4.3b are interchangeable. To avoid very diffuse concentrations and noise
in the data close to the lower wall of the pipe, we estimate the speed of the
displacement front by the velocity of the concentration level C = 0.1 (see
the dashed line in Fig. 4.5a). Evidently, selection of a threshold value is a
trade-off between robustness and proximity to C = 0. Figure 4.5b shows the
variation of the front velocity, V̂f with time, which is quite typical of most
of our experiments. In those cases that instability and mixing causes slow
oscillation and noise in the profile of front velocity with time, an average
value is adopted over long times so that the flow is well developed.

Initially the front velocity accelerates as the gate valve is opened and the
flow initiates. There is some development timescale during which instability
and mixing initiates, slowing the front propagation. As the flow becomes
fully-developed the front velocity reaches an almost constant value (Fig. 4.5b
inset). We use this thresholded front velocity, taken at long times in the
experiment, as our measured V̂f . The transient and short-time behavior of
the front in the limit of exchange flows in nearly-horizontal pipes was well
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studied by Seon et al. [115]. It was also found that the front is initially
controlled by inertia but later limited by viscous effects. This yields to
a high front velocity value that decays to a steady state with time. A
similar effect is observed in almost all our displacement flow experiments.
Due to the fluid separation by gate valve the buoyancy force at the very
beginning of the experiment is dominant over all other forces. This results
to a fast acceleration of the displacing fluid along the pipe. Similar results
are reported for gravity currents forming from the release of a heavy fluid
into a light fluid [23]. In the case of density stable displacements (light
fluid displacing heavy fluid), we also found a similar accelerating behavior
at the start of the experiment [2]. Although studying transient/short-time
effects in displacement flows is not studied much in the literature, and can
be interesting, it is beyond the scope of our study.

We can compare our measured V̂f with that obtained directly from the
spatiotemporal plot via edge detection. For near-horizontal displacement
flows, where the latter method is effective, typical relative errors in front
velocity measurement are less than 2 %. For example, for the experiment in
Fig. 4.3f the threshold method gives V̂f = 63 (mm/s) and the edge detection

method from the spatiotemporal diagram gives V̂f = 64 (mm/s). By its
nature, the threshold method tends to under-predict front velocity. The
threshold method proves quite repeatable. Figure 4.6 shows the results
of measuring V̂f in repeated experimental sequences (for increased V̂0) at
two different Atwood numbers and at β = 30◦. Although there are some
differences, good general agreement is found over a wide range of mean flow
speed, V̂0. Note that at β = 30◦ most of these experiments exhibit significant
mixing. Taghavi et al. [129] found that when the mean flow is high enough to
be away from the exchange-dominated regime, the front velocity, V̂f varies

linearly with V̂0, in nearly horizontal angles. Upon comparison with Fig. 4.6
we can see that this might not be the case when the inclination angles
is decreased towards vertical. The main reason is that inertial forces are
becoming more and more important. The non-linear effect can be better seen
for higher Atwood number experiments in Fig. 4.6b where the instabilities
and mixing are higher.

We now explore the main characteristics of front velocity measurements
across our experimental range, where we have varied inclination angles, β,
density differences, At, and mean flow speeds V̂0. Figures 4.7a-c show V̂f for
experiments conducted with At = 0.001, At = 0.0035 and At = 0.01, respec-
tively. In each experimental sequence, at fixed At and β, the experiment is
repeated at successively higher V̂0, starting from exchange flows (V̂0 = 0).
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Figure 4.6: Dependency of the displacing front velocity, V̂f , versus the im-

posed flow velocity, V̂0, showing the experiment repeatability at a typical
inclination angle, β = 30◦, for ν̂ = 1 (mm2/s) and a) At = 0.001 and b)
At = 0.01. The symbols show two sets of experiments for increasing imposed
mean flows.

The data for nearly horizontal experiments from [126] are also added for
completeness. The first thing to note is that the values of the front velocity
naturally increase with mean flow speed V̂0. The second observation is that
the front velocity seems to be highest for β between 60◦ and 70◦ roughly.
This might be due to the fact that in this range the counter-current flow
is strong enough to increase V̂f but not strong enough to promote Kelvin-

Helmholtz instabilities (which in turn tend to decrease V̂f ). Qualitatively,

at each V̂0, the front velocity variation with β is similar to that reported by
Seon et al. [112, 113] for V̂0 = 0, although a constant plateau is not clearly
distinguished in all our experiments.

In order to better see the effect of the mean flow relative to the underlying
buoyancy driven exchange flow, we subtract the mean flow (V̂0) and exchange
flow front velocity (V̂Exchange) from the measured front velocity values V̂f ;
see Fig. 4.8. For the smallest density difference, At = 0.001, Fig. 4.8a shows
that most of values of V̂f − V̂Exchange − V̂0 are still positive. Imposing a
displacement velocity to these (relatively weak) exchange flows does not
change the structure in inclined pipes. In fact the flow remains mostly
stratified and the front moves with a relatively high velocity, augmented
by the imposed flow. As we move to higher Atwood numbers (Figs. 4.8a-
c) we observe more negative values of V̂f − V̂Exchange − V̂0 indicating that
simple superposition of physical effects becomes meaningless. For these flows
significant instability and transverse mixing is induced by the combination
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Figure 4.7: Change in displacing front velocity, V̂f with tilt angle, β, and

imposed velocity, V̂0 for ν̂ = 1 (mm2/s) and a) At = 0.001, b) At = 0.0035
and c) At = 0.01. Different markers represent V̂0 = 0 (mm/s) (⊲), 10 (◭),
20 (N), 40 (∗), 60 (•), 80 (H) and 100 (mm/s) (�). The dashed lines are
guide to the eye plotted at V̂f = 10, 20, 30, ... (mm/s).

of mean imposed flow and strong buoyancy, modifying the flow structure.
The front velocity is significantly lower than that which would be predicted
by methods such as the lubrication/thin-film approach we have developed
in [128], as the physical assumptions underlying these models are invalid. A
new characterization is needed.

We now proceed with a dimensionless analysis of the results, focusing
on the normalized front velocity Vf = V̂f/V̂0. In our previous study of
near-horizontal displacements [126], we were able to classify all flows in the
(Fr,Re cos β/Fr) plane, and therefore start with this description. Figure
4.9a shows the normalized front velocity Vf = V̂f/V̂0, plotted against Fr and
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Figure 4.8: Change in V̂f − V̂Exchange − V̂0 with tilt angle, β, and imposed

velocity, V̂0 for the same experiments as shown in Fig. 4.7 a) At = 0.001,
b)At = 0.0035 and c)At = 0.01. Different markers represent V̂0 = 10 (mm/s)
(◭), 20 (N), 40 (∗), 60 (•), 80 (H) and 100 (mm/s) (�). The dashed lines
show V̂f − V̂Exchange − V̂0 = 0 (mm/s).

Re cos β/Fr, for all experiments conducted in this study. The parameter
regime studied by Taghavi et al. [126] is marked by the rectangle: 0 <
Re cos β/Fr < 120 and 0 < Fr < 6. It can be seen that the present study
covers a much wider parameter range (primarily due to variations in β).

Our first observation is that over nearly the entire range of Re cos β/Fr
studied Vf increases as Fr decreases. The parameter Re cos β/Fr is inde-

pendent of V̂0, so that as Fr → 0 we approach the exchange flow limit. For
small Fr we observe a number of flows for which Vf > 2. We refer to these as
exchange flow dominated and note that since we have scaled with the mean
flow velocity, large Vf > 2 strongly suggests that some part of the velocity
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Figure 4.9: a) Presentation of our results for the full range of experiments:
normalized front velocity V̂f/V̂0, plotted against Fr and Re cos β/Fr. The
rectangular area (0 < Re cos β/Fr < 120, 0 < Fr < 6) indicated by dashed
lines, locates the range of nearly horizontal experiments and is studied in full
details in [126] b) Instantaneous displacement flows marked by the super-
posed circles plotted against Fr and Re cos β/Fr. The heavy line represents
the prediction of the lubrication model for the stationary interface. The
dashed lines Re cos β/Fr = 650 and Fr = 2 roughly indicate the boundary
between instantaneous and non-instantaneous displacement. Normalized
front velocity scale is limited to 2 in part b to better show the variations of
the front velocity in the plane of Fr and Re cos β/Fr.

field is moving backwards against the mean flow, driven by buoyancy. The
data is replotted in Fig. 4.9b with scale adjusted to emphasize those experi-
ments for which Vf > 2. Back flows also can occur for lower values of Vf > 2.
Figure 4.9b identifies those parameters for which back flows are observed and
those that displace instantaneously. Exchange dominated flows generally lie
within the limits 50 < Re cos β/Fr < 650 and 0 < Fr < 2, although this
is not precise. Similar flows were identified in Taghavi et al. [126] in the
range 50 < Re cos β/Fr < 120 and 0 < Fr < 0.9, but the upper limit on
Re cos β/Fr was simply due to the extent of experiments performed. The
lower limit is an extension of the exchange flow studies of Seon et al. [112]
into the range of positive imposed flow: Seon et al. identified the transition
from viscous to inertial exchange flows at Re cos β/Fr ≈ 50. Thus, the lower
range of our results coincides with those of [112, 126]. The main finding is
therefore that the upper limit for exchange dominated inertial flows extends
up to approximately Re cos β/Fr = 650.

In considering practical aspects of displacement, one important parame-
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ter is the displacement efficiency 1/Vf , based on the behaviour of the leading
displacement front. A second important consideration is knowing whether
the trailing front advances along the pipe in the direction of flow or upstream
against the flow, driven by buoyancy (a back flow). In the former case, if it is
possible to wait long enough the pipe will be fully displaced, but in the latter
case residual fluid will remain. In [130], the criterion Re cos β/Fr / 58Fr
was developed to predict the onset of back flows. The methodology used
involved a thin-film/lubrication model of viscous regime displacements. In
such models a single parameter, χ = 2Re cos β/Fr2 governs the dynamics at
long times: χ represents the competition between buoyancy stresses in the
axial direction and viscous stresses due to the mean flow. The critical value
χc = 116.32 was found to be the limit above which there is always a back
flow. It is interesting to see how this value compares with our experiments,
where mixing and instability are inevitably present. Figure 4.9b shows the
experimental data in the (Fr,Re cos β/Fr) plane. We have marked those
displacements that proceed instantaneously, i.e. with no evidence of a back
flow, and have included the prediction of the lubrication model (χc = 116.32)
for comparison. Interestingly we observe that all the data points falling be-
low χ = χc line are found to be displacing instantaneously after opening
the gate valve, i.e. χ < χc appears to be a sufficient condition to avoid
back flows, However, we see that many flows in the regime χ > χc also
displace instantaneously. Phenomenologically, these flows are inertial and
well-mixed, and thus not well represented by the assumptions underlying
the model behind χ = χc.

On examining Fig. 4.9 closely we observe that within the exchange dom-
inated regime, there are interesting variations in Vf with Re cos β/Fr. Let
us consider a fixed Fr in the range 0 < Fr < 0.9 and start with a low
value of Re cos β/Fr. Firstly, for Re cos β/Fr / 58Fr (χ < χc) the flows
are viscous dominated at long times and do not have a sufficiently strong
buoyancy component to promote a back flow. For 58Fr / Re cos β/Fr / 50
the flows are exchange dominated but still viscous, i.e. with counter-current
buoyancy driven well-defined stable laminar layers advancing downstream
and upstream back against the flow. These regimes are studied at length in
[126, 130]. Increasing Re cos β/Fr > 50 we enter the inertial regime. Al-
though counter-current streams persist we begin to observe instability and
mixing close to the interface. On further increasing Re cos β/Fr buoyancy
forces increase, driving both lighter fluid upwards and denser fluid down-
wards, hence increasing Vf . However, the degree of instability and mixing
also increases progressively as Re cos β/Fr is increased. As transverse mix-
ing comes to dominate, the streams of pure fluid are no longer able to remain
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intact while flowing counter-currently and a fully diffusive regime is entered
as Vf decreases towards unity.

The competition between buoyancy-driven advection and transverse mix-
ing leads to a maximum in Vf at an intermediate value of Re cos β/Fr. This
competition is captured physically in the parameter Re cos β/Fr, which is
defined as:

Re cos β

Fr
=
V̂0D̂

ν̂
cos β

√

AtĝD̂

V̂0
=

cos β√
2

[

(ρ̂H + ρ̂L)(ρ̂H − ρ̂L)ĝD̂
3

2µ̂2

]1/2

.

(4.2)
The parameter in the square brackets above is the Archimedes number. An
interpretation of this expression is as the relative strengths of buoyancy
stresses (ρ̂H − ρ̂L)ĝD̂, and viscous stresses, µ̂V̂t/D̂. Note that here the
velocity scale used for the viscous stresses is V̂t, which is itself driven by
buoyancy. It is this feature of self-reinforcement that tends to promote the
onset of (buoyancy driven) instability, i.e. if the viscous stresses induced by
the buoyant motion are unable to balance the buoyant stresses.

4.2.4 Macroscopic diffusion

In this section we focus on those experiments where the degree of transverse
mixing is high. In such cases we expect that advective transport due to
the mean flow will be supplemented by diffusive spreading along the pipe.
Debacq et al. [33, 34] used a similarity scaling for exchange flows in vertical
pipes to collapse profiles of the cross-sectionally averaged concentration C,
measured at each location x̂ and time t̂, onto a master curve defined with
respect to x̂/

√
t̂. On fitting the master curve to an error function form, esti-

mates were derived for the macroscopic diffusion of the mean concentration
along the pipe. Seon et al. [114] followed the same approach for inclined
pipes and we adopt an analogous approach here.

In the presence of a mean flow (V̂0), when the flows fully mix transversely
it is logical to assume a core of the mixture traveling with the speed V̂0
and therefore use (x̂ − V̂0t̂)/

√
t̂ as a similarity scaling. Figure 4.10 shows

two examples of this for β = 45◦, At = 0.08, ν̂ = 1 (mm2/s). We can
see that all the concentration evolution profiles have collapsed onto one

curve. The solid line shows a curve fit of the form C = 0.5erfc( x̂−V̂0 t̂

2
√
D̂M t̂

),

motivated by the analytical solution to the linear diffusion equation. In
Fig. 4.10a we find D̂M = 0.0052 (m2/s) and in Fig. 4.10b we find D̂M =
0.006 (m2/s). Here D̂M is the macroscopic diffusion coefficient. Although
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Figure 4.10: Collapse of depth-averaged concentration profiles with (x̂ −
V̂0t̂)/

√
t̂ for β = 45◦, At = 0.08, ν̂ = 1 (mm2/s) and a) V̂0 = 14 (mm/s) b)

V̂0 = 113 (mm/s). The solid lines show the complementary error-function
fit obtained for D̂M = 0.0052 (m2/s) and D̂M = 0.006 (m2/s) for parts a
and b respectively.

the quality of the data collapse appears similar in both Figs. 4.10a & b, it
can be observed that the curves C in Fig. 4.10a do not extend up to C = 1.
In this experiment the mean flow is relatively weak (V̂0 = 14 (mm/s)) and
during the experimental time there is still displaced fluid present in the field
of view, due to a strong back flow. In Fig. 4.10b the parameters are the same
except for a higher mean flow (V̂0 = 113 (mm/s)) and over the timescales
considered the concentration C reaches to the value 1.

Note that to determine D̂M we only analyze the concentration in the
lower section of the experimental apparatus and at later times in the exper-
iment, so that the flow is as fully developed as our experiment allows. The
initial stages of every experiment are complex, as there is an initial accel-
eration phase, followed by an inertia-buoyancy balance, then development
of either instabilities and mixing, or advective transport (as considered ear-
lier). While physically interesting, these initial phenomena are not the focus
of our study.

Seon et al. [114] fitted their measured D̂M , for the case V̂0 = 0, to an
expression of form:

D̂M,Exchange = 5× 103(V̂tD̂)(1 + 3.6 tan β)2

(

V̂t

V̂ν

)3/2

(4.3)

Note that the range of applicability of 4.3 in [114] is for Re/Fr . 1000,
which covers the range of our exchange flow experiments. In order to check
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Figure 4.11: Variation of the dimensionless diffusion coefficient versus tilt
angle. The circles are based on current measurements and the crosses are
added from Seon et al. [114] experiments. The curve fit is also taken from
Seon et al. [114]; see equation (4.3).

the consistency of our macroscopic diffusion coefficient measurements, the
data are compared with (4.3) in Fig. 4.11, for those of our experiments run
at V̂0 = 0 that were fully mixed. The agreement is good, with a similar
deviation as for the data in [114].

Although for most experiments with a high degree of mixing the sim-
ilarity scaling provides an excellent fit to the data (e.g. Fig. 4.10), as we
examine a wider set of our experimental data this scaling fails in variety of
different ways. Firstly, this error-function fit assumes that the area behind
and ahead of the mixed core (moving with speed V̂0) should be symmetric.
This is not always true since the mixing quality can be slightly different
behind and ahead of the mixing core. Unlike the exchange flow, adding a
mean flow can break the symmetry. Figure 4.12a shows one example of this:
for negative (x̂− V̂0t̂)/

√
t̂ the measured profiles fall slightly below the curve

which suggest that the mixing is happening over a slower time scale behind
the mixing core. Assuming a symmetric error function fit to the collapsed
concentration profiles is still a reasonable leading order approximation, but
some aspects of the physical phenomena present are not captured. Sec-
ondly, we have experiments which are highly inertial, exhibiting instability
and mixing, but for which transverse mixing is incomplete and which are not
fully diffusive. For example, see Fig. 4.2 at β = 45◦ and 60◦. Figures 4.12b
and c show the similarity scaling for these two experiments, confirming that
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the concentration evolution should not be categorized as fully diffusive. The
fluctuations in the profiles shown relate to the large scale instabilities that
appear intermittently at the interface. A final limit where we do not have
diffusive flows is where the layers remain well segregated at the interface,
i.e. viscous flows. Figure 4.12d shows again that the averaged concentra-
tion profiles do not collapse onto a master curve using the similarity scaling
(x̂− V̂0t̂)/

√
t̂. These flows are essentially advective and the profiles collapse

instead under a similarity scaling x̂/t̂ (see [128]) as is illustrated in the inset
of Fig. 4.12d.

We now focus only on those experiments for which we have been able
to reliably collapse the data at long times, using the similarity scaling (x̂−
V̂0t̂)/

√
t̂, and have been able to estimate a macroscopic diffusion coefficient

from the master curve. We call these flows fully diffusive. Figure 4.13
plots the measured macroscopic diffusion coefficients for displacement flows
at different inclination angles and two Atwood numbers: At = 0.0035 and
At = 0.01. Two clear conclusions are that, within the range of fully diffusive
experiments, D̂M increases with both inclination angle, β, and mean flow
speed, V̂0.

None of the above trends are surprising, but they are interesting in sug-
gesting two independent factors contributing to D̂M . The relatively large
values of D̂M confirm that the diffusive transport cannot be molecular in
origin, but is due to advection, i.e. this is largely dispersion. The flows are
disordered and well-mixed transversely, to all appearances locally turbu-
lent. In such cases we may expect a scaling of the dispersivity with length
and velocity scales that are relevant to the eddy structure. This is evi-
dently complex in general, but we might guess that the relevant velocity
will scale approximately with either the inertial velocity or the mean flow,
depending on the relative strengths of buoyancy or the mean flow in driv-
ing the mixing. To explore this, we plot D̂M/(V̂tD̂) and D̂M/(V̂0D̂) in the
(Fr,Re cos β/Fr)-plane (see Fig. 4.14), the axes reflecting the competition
between inertia from the mean flow and buoyancy (Fr) and between buoy-
ancy driven motion and viscous dissipation of that motion (Re cos β/Fr),
respectively.

A first observation is that our experimental data for fully diffusive exper-
iments closely corresponds to the region of the (Fr,Re cos β/Fr)-plane in
which the front velocities V̂f are very close to the mean flow V̂0, e.g. compare
with the region in Fig. 4.9b where Vf ≈ 1. Secondly, we can see that scaling

of D̂M suggest that both mechanisms are responsible for the mixing in differ-
ent limits. For small Fr, at large (Re cos β/Fr) as we transition out of the
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Figure 4.12: Collapse of depth-averaged concentration profiles with (x̂ −
V̂0t̂)/

√
t̂ for At = 0.0035, ν̂ = 1 (mm2/s) and a) β = 20◦, V̂0 = 44 (mm/s)

b) β = 45◦, V̂0 = 32 (mm/s) c) β = 60◦, V̂0 = 47 (mm/s) and d) β = 85◦,
V̂0 = 43 (mm/s). Note that the mean flow speed in experiments are chosen
to be close to each other to make a qualitatively meaningful comparison
available (average mean flow speed is V̂0 ≈ 42 (mm/s)). The solid line in
Fig. 4.12a shows the error-function fit with D̂M = 0.002 (m2/s). The upper
right insets show the qualitative flow pattern in each case. In part d the
lower left inset shows the collapse of the concentration profiles when x̂/t̂ is

used instead of (x̂− V̂0t̂)/
√
t̂.

76



4.2. Results

0 50 100 150
0

1

2

3

4
x 10

−3

V̂0 (mm/s)

D̂
M

(m
2
/
s)

 

 

β = 0◦

β = 10◦

β = 20◦

β = 30◦

a)

0 20 40 60 80 100 120
0

1

2

3

4

5
x 10

−3

V̂0 (mm/s)

D̂
M

(m
2
/
s)

 

 
β = 0◦

β = 10◦

β = 20◦

β = 30◦

β = 45◦

b)

Figure 4.13: Variation of the diffusion coefficient, D̂M versus mean imposed
flow velocity, V̂0 for ν̂ = 1 (mm2/s) and a) At = 0.0035 and b) At = 0.01.
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Figure 4.14: Contours of the normalized diffusion coefficient a) D̂M/(V̂tD̂)
and b) D̂M/(V̂0D̂) versus Fr and Re cos β/Fr.
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Figure 4.15: Reynolds number, Re, plotted against Fr and Re cos β/Fr.
The illustrative curves correspond to different inclination angles, β, and are
show Re = Recr = 2100. Flows marked by the superposed triangles and/or
squares satisfy the criterion Re > 2100. The symbols used are for β = 70◦

(△), β = 60◦ (▽), β = 45◦ (⊲), β = 30◦ (⊳) and β = 0◦ (�).

exchange dominated regime see that D̂M/(V̂tD̂) appears to become indepen-
dent of Fr, suggesting buoyancy driven mixing. At the other extreme, for
modest (Re cos β/Fr) and as we increase Fr we find D̂M/(V̂0D̂) ≈ constant,
suggesting mixing driven by the mean flow. The pattern of D̂M/(V̂0D̂) in
Fig. 4.14b is suggestive of lines of constant Re, and note that in fully turbu-
lent shear flows the turbulent dispersivity (when scaled with V̂0D̂) has only
slow variation with Re. Figure 4.15 shows all our fully diffusive experiments
and plots with the colour-scale the Re corresponding to each experiment.
Lines of constant Re (keeping all other parameters fixed) would appear as
hyperbolae in this plane, and we have included the line Re = 2100 for dif-
ferent inclination angles, as a nominal transitional value in the absence of
buoyancy effects. Those data points that exceed Re = 2100 are highlighted
by the superposed symbols. We observe that although some of our data
satisfy this criterion, many of the experiments have Re far below 2100, al-
though the mixing behaviour appears fully turbulent. This suggests that
buoyancy has a significant role in at least instigating this regime, even for
those regimes where the mean flow dominates. It is worth noting that our
study has not explored very high Reynolds numbers.

We evaluate the Taylor dispersion coefficient for turbulent pipe flow:
D̂T = 1.785V̂0D̂

√

ff , for simplicity using the Nikuradze formula for the
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Figure 4.16: Comparison of the experimental macroscopic diffusion coef-
ficient, D̂M , versus Taylor dispersion coefficient, D̂T , for all diffusive ex-
periments shown in Fig. 4.15. The contour values show Reynolds num-
ber, Re. The dashed line represents D̂M = D̂T . The symbols used are
for β = 70◦ (△), β = 60◦ (▽), β = 45◦ (⊲), β = 30◦ (⊳), β = 20◦

(O), β = 10◦ (♦) and β = 0◦ (�). The Taylor diffusion coefficient is
D̂T = 1.785V̂0D̂

√

ff for a Newtonian fluid using Nikuradze formula for

friction factor, ff = 0.266/Re1/4 .

friction factor, ff = 0.266/Re1/4. Figure 4.16 plots for each fully diffusive

experiment the measured D̂M against the calculated D̂T . The colour scale
plots again the Reynolds number. We can see that D̂M exceeds D̂T by
up to an order of magnitude, over the full range of experiments. This is
purely comparative of course and no exact agreement is to be expected,
due to the relatively low Re. It is well known that the actual dispersion
increases rapidly as the turbulence weakens and the viscous wall layers grow
thicker; see [42, 47, 140]. Here, although apparently turbulent even at lower
Re, the driving force is at least partly buoyancy and we can not expect a
classical turbulent velocity profile to drive dispersion. Although we have
some velocity data, the UDV system is not ideal for capturing turbulent
characteristics of the flow and we feel that making further inference could be
beyond the range of reliability of our data. At very high Reynolds numbers,
say Re > 10000, since all our experiments are at low At we might expect
to recover the classical results for turbulent dispersion. However, this is
beyond the scope of this study and would be difficult to study in our present
apparatus.
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4.3 Regime classification and leading order

approximations

In the previous section we presented our results in terms of the velocity of the
leading displacement front, and in terms of bulk axial diffusivity in the case
of fully diffusive flows. We now give a leading order quantitative description
of the different flow regimes observed at long times in our experiments, in
terms of the 3 dimensionless parameters: (Fr,Re, β). Much of the para-
metric variation appears to be captured in the (Fr,Re cos β/Fr)-plane, as
was the case for nearly horizontal displacements studied in [126]. Figure 4.17
shows the experimental points from our study, characterised in terms of flow
type. We distinguish flows according to the following criteria: (i) instanta-
neous displacement (if there is no displaced fluid observed above the gate
valve); (ii) fully diffusive (if we are able to collapse the data at long times

via similarity solution of form, C = 0.5erfc( x̂−V̂0t̂

2
√
D̂M t̂

); (iii) for non-diffusive

flows we classify as either, viscous flows if there is no instability evident in
the spatiotemporal image behind the leading displacement front, and iner-
tial otherwise. It can be seen that this classification, although not perfect,
does appear to separate the data within the (Fr,Re cos β/Fr)-plane.

Two lines are plotted in Fig. 4.17. Firstly, the solid line is the pre-
diction of instantaneous displacements by the lubrication model in [130]
(χ = χc = 116.32), as discussed earlier. Below this line only instantaneous
displacements may occur, in the viscous limit. The broken line in Fig. 4.17
is given by:

Re cos β

Fr
= 500− 50Fr. (4.4)

For χ > χc this line represents the approximate position of the boundary
between fully diffusive and non-diffusive flows. The two lines intersect at
Fr ≈ 4.62 and Re cos β/Fr ≈ 270.

For χ < χc and sufficiently small flow rates we find viscous dominated
flows, characteristically laminar with well defined interfaces separating dis-
tinct fluid streams. These flows are an extension of the viscous instanta-
neous displacements studied in [126, 130], but here we have a higher range
of Fr and Re cos β/Fr; see Fig. 4.9a. In this regime the viscous stresses
generated by the mean flow appear to dominate any destabilizing effects of
buoyancy. Using the lubrication/thin-film displacement model in [126, 130]
we can compute an approximation to the front velocity, that depends only
on the parameter χ = 2Re cos β/Fr2. Figure 4.18 compares the scaled front
velocity values obtained from the current experiments with the predictions
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Figure 4.17: Classification of our results for the full range of experiments,
presented in the (Fr,Re cos β/Fr)-plane: (i) instantaneous displacement
flows are colored in blue and non-instantaneous flows in red; (ii) fully dif-
fusive flows have no superposed symbol; (iii) non-diffusive flows are marked
as viscous (superposed circles) or inertial (superposed squares). The heavy
line represents the prediction of viscous back flows, from the lubrication
model in [130], (χ = χc = 116.32). The thick broken line represents
Re cos β/Fr = −50Fr + 500. The point of intersection of the two lines
is Fr ≈ 4.62 and Re cos β/Fr ≈ 270.
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Figure 4.18: Comparison of the front velocity values obtained from experi-
ments classified as viscous with the predictions Vf (χ) from the lubrication
model in [126, 130] (thick solid line). Colour values indicate Re cos β/Fr for
each experiment. The data with the solid boundary are for near-horizontal
β, taken from [126]. The thick white circle indicates the theoretical tran-
sition (χ = χc ≈ 116.32). The thin solid line shows V̂f = V̂0 below which
leading front velocities are not possible due to conservation of mass.

Vf (χ), of the lubrication model. Data from [126], belonging to viscous flows
in nearly horizontal experiments, is also included. The lubrication model
appears to be effective in predicting the front velocity for our data, i.e. at
significantly larger Re cos β/Fr than was previously studied.

On increasing the flow rate (here Fr) the flow transitions from viscous
laminar layers to fully diffusive turbulent flow. As we have seen earlier,
the fully diffusive regime is driven by a combination of buoyancy and mean
flow effects. For χ < χc, we expect that the mean flow effects will be
dominant as buoyancy decreases. Although (4.4) appears to capture the
transition reasonably well close to the point of interception of the two curves
in Fig. 4.17, this relationship cannot be valid as Re cos β/Fr → 0, (e.g. this
gives Fr = 10 for a horizontal pipe). Instead, we expect a more classical
criterion for transition to be valid, primarily based on a Re threshold. We
have seen in Fig. 4.15 that the fully diffusive flows observed in this range
do have Re > 1500, which tends to support our viewpoint. Although not
high enough for fully shear driven turbulence, flows at these Re are highly
inertial and it is quite conceivable that the transition could be triggered.
Firstly, it could be that in the initial stages of the experiment when buoyancy
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effects are large, these trigger instability. Secondly, we must admit that our
apparatus was not designed for a classical study of shear flow transition,
but for observing displacement flows. At high Re, geometric imperfections
(e.g. near the gate valve) or entry conditions may play a role in triggering
instability. Furthermore, if we consider a long smooth pipe, the viscous
flows observed at lower flow rates tend to have an elongating interfacial
region that essentially stratifies. The effect of density on the base flow and
on the (linear) stability problem is felt only through χ, which decreases like
1/V̂0 (i.e. as Re−1 increases with flow rate). Thus, the limit of large Re and
small χ recovers the single fluid flow. From these perspectives (and in the
absence of viscosity differences), we feel that in the regime χ < χc, a better
criterion to use as a sufficient condition for transition to the fully-diffusive
regime is Re & Recr = 2100. Finally, we might reflect on why (4.4) appears
to capture this transition so well in the range studied. The main point here
is that our experiments are performed using a single pipe diameter and hence
Fr simply reflects an increase in V̂0, which is also the main control parameter
in varying Re. To distinguish Re and Fr effects would require experiments
with a different (identical) viscosity and/or changes in pipe diameter. Here
the main focus has been on changing β.

For χ > χc the flows have a significant inertial component, driven by
buoyancy, as well as a contribution from the mean flow. For parameters
below the curve (4.4) we have classified these flows as non-diffusive and
inertial, but in reality a wide range of behaviours is observed within our
data. Firstly, we have seen that for Fr < 2 in this range many of the flows
have strong back flows and are dominated by buoyancy. We have termed
these exchange flow dominated. As Re cos β/Fr is decreased these flows
persist down to Re cos β/Fr ≈ 50, which is outside the range of our data
here but covered by the data in [126]. For Re cos β/Fr . 50 (and χ > χc)
the flows remain exchange dominated but are now viscous exchange flows;
see [126, 130].

Within the exchange dominated range at lower Re cos β/Fr the fluid
streams remain fairly distinct and structured, say roughly for 50 / Re cos β/Fr /
270. Interfacial instabilities occur, but mixing between the streams is rel-
atively minor. As the flow rate is increased, for Fr > 2, buoyancy effects
reduce and the countercurrent flow is progressively eliminated as we pass
into the regime of instantaneous displacements. These flows laminarise as
we cross χ = χc, leading to the counterintuitive observation that increases
in flow rate can stabilize the flow; see [129]. The novel result of this study
is in determining that stabilisation of exchange dominated inertial flows by
the mean flow extends up to Re cos β/Fr ≈ 270. For Re cos β/Fr ' 270 ex-
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change dominated flows persist. Increasing Re cos β/Fr further destabilises
these flows. We progressively observe more intermittency and instability,
leading to a greater degree of transverse mixing. Eventually we cross (4.4)
into the regime of fully diffusive flows. Equally we traverse (4.4) on in-
creasing Fr, again becoming progressively unstable (i.e. in contrast to the
stabilisation by the mean flow observed for Re cos β/Fr ≈ 270).

For engineering design purposes it is of value to have an approximation
to V̂f governing the flows in the triangular region of Fig. 4.17, that we have
classified as non-diffusive inertial flows. In the range of low Re cos β/Fr
our study coincides with that of Taghavi et al., who studied near-horizontal
pipes and fitted the expression:

V̂f/V̂t = 0.7 + 0.595Fr + 0.362Fr2, (4.5)

to the available data in these regimes; see [126]. The rationale for the form of
expression is that V̂t is the appropriate velocity scale for inertial/bouyancy-
driven flows. The first coefficient coincides with that from extensive ex-
change flow studies; see [112], and the next coefficients are logical for an
expansion in terms of small V̂0/V̂t (= Fr). Figure 4.19a plots our experimen-
tal front velocity values scaled by inertial velocity (V̂f/V̂t), plotted against
Fr, and compared with (4.5). We have included data belonging to nearly-
horizontal experiments of [126]. The colour scale indicates the value of
Re cos β/Fr in each experiment.

Although reasonable, a discernible trend is the deviation from (4.5) at
larger values of Re cos β/Fr, as well as for higher Fr. The deviation from
(4.5) at higher Fr is inevitable since we are moving away from exchange
flow dominated regimes. Equally in our near-horizontal flow experiments
[126] we were restricted to Re cos β/Fr < 120. The leading coefficient 0.7 in
(4.5) comes from the exchange flow studies conducted over the approximate
range 50 < Re cos β/Fr < 200; see [112]. We hypothesize that the relation-
ship (4.5) should have a significant dependency on Re cos β/Fr, and have
developed the following curve fit:

V̂f/V̂t = Fr+(
Re cos β

Fr
+50Fr−500)(−0.002337+0.002283Fr−0.002401Fr2),

(4.6)
as an improved model. The form of the model is chosen to ensure that
V̂f/V̂t = Fr on (4.4), i.e. V̂f = V̂0. Figure 4.19b plots experimental V̂f/V̂t
values against V̂f/V̂t predicted from (4.6), showing close agreement uni-
formly with Re cos β/Fr.

Turning now to the fully diffusive flows, these occur primarily in the
region of the (Fr,Re cos β/Fr)-plane lying above (4.4). We first note that
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Figure 4.19: a) Scaled front velocity values, V̂f/V̂t, for intermittent flows
shown by squares in Fig. 4.17 plotted versus Fr. The dashed line shows the
curve fit (4.5) from [126]. The data with solid line around, belong to nearly
horizontal regimes and are taken from [126] b) comparison of experimental
and predicted values of V̂f/V̂t, with the predictions following (4.6). The

dashed line in part b indicates V̂f/V̂t (experiment) = V̂f/V̂t (curvefit). The
contour values in both figures show the corresponding Re cos β/Fr to each
experiment.

there are a good number of data points in Fig. 4.17 that are fully diffusive but
not instantaneous displacements. These are found above (4.4) for Fr < 2
and Re cos β/Fr extending up to around 800. These are an extension of
the exchange dominated flows into the fully diffusive regime. This differs
significantly from pure exchange flow studies, driven only by buoyancy. For
example, in the data of Debacq et al. [33] we can see the onset of fully
diffusive flows at Re cos β/Fr & 1000, for exchange flows in vertical pipes.
However, the difference is not surprising as classification of such flows de-
pends partly on the experimental timescale. Our classification scheme here
simply means that there is displaced fluid present above the gate valve at
the end of our experiment. Given that transverse mixing is very effective
for these flows it is unlikely that displaced fluid would persist here over very
long timescales, eventually being mixed and washed away.

We have seen earlier that our fully diffusive data (at V̂0 = 0) match well
with that from Seon et al. data [114], leading to the expression (4.3) for the
diffusivity D̂M,Exchange. In developing an approximation to the bulk diffu-

sivity D̂M we have seen in Fig. 4.14b that D̂M ∼ D̂V̂0 for larger Fr. As we
expect that the buoyant component is largely predicted by D̂M,Exchange,

we examine the difference D̂M − D̂M,Exchange, plotted against D̂V̂0; see
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Figure 4.20: a) Variation of the diffusion coefficient D̂M − D̂M,Exchange with

D̂V̂0. Meanings of the symbols are the same as in Fig. 4.13. b) Variation of
c1 in the expression D̂M = D̂M,Exchange + D̂V̂0(c0 + c1(β)/

√
Fr), fitted to

our data averaged over each inclination angle, β. Note that c0 = 0.6618 is
determined from our high Reynolds number experiments Re > 2100.

Fig. 4.20a. We see that the data for each pipe inclination β appears to
follow an individual curve. Variation with β should correspond to a buoy-
ancy effect, rather than simply a mean flow effect. To incorporate this, we
have looked for a relationship of form:

D̂M = D̂M,Exchange + D̂V̂0(c0 + c1(β)/
√
Fr) (4.7)

At high Re we expect D̂M ∼ D̂V̂0 from the Taylor dispersion analysis, where
Re dependency through the friction factor is weak. We have therefore used
our data for high Reynolds number experiments Re > 2100, to fit c0 =
0.6618, and then have used the average data values over each inclination, to
fit c1(β) = 0.9054 − 1.838 tan β. This fit is illustrated in Fig. 4.20b.

The effectiveness of the expression in (4.7) in approximating D̂M is il-
lustrated in Fig. 4.21. Although reasonable as a prediction, there is some
spread in the data. We believe this variability is at least partly due to
variability in the measurement procedure, leading to fitting of D̂M . In each
experiment we wait for long times to fit D̂M . However, as these are (mostly)
instantaneous displacements the time of sampling of each experiment is re-
lated to the transit time along the pipe (an advective timescale), i.e. if you
wait too long the data has left the pipe. If the flow development is diffusively
controlled, ideally one should sample at times that are equally significant
diffusively.

Finally, we consider the appropriate front velocity for the diffusive regime.
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Figure 4.21: Comparison of the experimental macroscopic diffusion diffusion
coefficient, D̂M,exp, against the prediction of (4.7). The broken line shows

D̂M,experiment = D̂M,prediction. Meanings of the symbols are the same as in
Fig. 4.13.

We have used (x̂− V̂0t̂)/
√
t̂ as a similarity scaling for the concentration pro-

files in fitting D̂M . This implicitly assumes a speed V̂0 for the advective
transport. We can also however proceed in the reverse direction for any
given D̂M , to find the front velocity. Our procedure for finding the front
velocity relies on tracking the concentration profiles at later times in our
experiment. However, for fully diffusive flows part of the evolution of the
concentration is driven by axial diffusion. For given D̂M we therefore use the
assumed erfc form of solution to compute the speed of the front at C = 0.1,
purely due to diffusion as the mean front is about to exit the pipe, say V̂f,D.

We subtract this effect from the measured V̂f of fully diffusive experiments

to recover the advective component of V̂f . This is plotted against V̂0 in

Fig. 4.22. For V̂f,D we have used both D̂M and an estimate of the effects
of the initial transients in each experiment, also expressed as a diffusivity.
We can see that the advective component of V̂f is very close to the mean
velocity.
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Figure 4.22: Front velocity values, V̂f − V̂f,D, plotted against the mean flow

velocity, V̂0 for all fully diffusive experiments shown in Fig. 4.17. The colour
values show the corresponding Re cos β/Fr. The solid line is the linear fit
V̂f − V̂f,D = 1.024V̂0. The broken line represents V̂f − V̂f,D = V̂0.

4.4 Discussion points

Displacement flow of two miscible iso-viscous Newtonian fluids in an inclined
pipe has been investigated experimentally in the case where the displacing
fluid is denser than the displaced fluid (i.e. density unstable). Our experi-
ments have covered a broad range of the governing dimensionless parameter
space (β,Re, Fr), not covered before in any experimental study.

We have classified flows as fully diffusive, instantaneous, inertial and
viscous. For each classification we have provided a qualitative description
of each and delineated where each flow can be found in the dimensionless
plane of Fr and Re cos β/Fr. It was also found that due to strong mixing
at inclinations close to vertical, instantaneous displacements can still exist
at values of χ higher than the predictions of the lubrication model (χc =
116.32). For low Re cos β/Fr our results form a natural extension of those
of [126], but the range of phenomena observed is significantly different here,
as the pipe inclination is changed.

For each type of flow we have produced a closure approximation to the
front velocity V̂f and to the bulk axial diffusivity D̂M , that can be used for
engineering calculations. When the flow is viscous the lubrication model
[128] can be an effective tool to predict V̂f . In this case no bulk diffusion
coefficient can be defined for the flow. On the other hand when the flow is
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fully diffusive, the front velocity is very close to the mean imposed veloc-
ity V̂f ≈ V̂0. It was also found that among the diffusive flows D̂M exceeds

the Taylor dispersion coefficient, D̂T , by up to an order of magnitude, over
the full range of experiments. However, we must consider that buoyancy is
largely responsible for enhancing the mixing, which evolves in such a way
as to spread density gradients axially along the pipe. The experimental ap-
paratus used in this study is limited in length and therefore transit time.
In an oil well and over significantly longer times than possible in our ex-
periments, one might expect that the dispersing mixture would eventually
spread to such an extent that either the flow might re-laminarize or (if tur-
bulent) would approach the turbulent Taylor dispersion coefficient from a
single phase flow. Therefore, it is important to cautiously consider Taylor
dispersion as a lower limit for the axial spreading.

Another important contribution of this work is in broadening our knowl-
edge of the stabilizing/de-stabilizing effect of the mean flow on the well-
studied exchange flows [111–115]. The effect of the mean flow is investigated
over all inclination angles. Interestingly we have found that the imposed ve-
locity can have quite different effects (stabilizing and/or de-stabilizing) on
the flow, all controlled by the parameter Re cos β/Fr. In particular we
found that the stabilizing effect of the mean flow found in [129] is valid up
to Re cos β/Fr ≈ 270. Above this limit the imposed flow was found to pro-
gressively destabilize the flow up to Re cos β/Fr ≈ 500. Above this limit the
imposed flow has a neutral effect on the flow since the degree of mixing is
already sufficiently high for the exchange-dominated regime to become fully
diffusive.
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Chapter 5

Miscible density unstable
displacement flows in
inclined channels: Numerical
simulations

In the previous chapter we looked into the iso-viscous density unstable dis-
placement fluids in pipe through an experimental approach. Here, as a
second displacement flow geometry we consider a plane channel instead of
the pipe, but keeping all the rest of the dimensionless parameters in a sim-
ilar range same. This allows us to understand better whether the results
we have derived experimentally are at least qualitatively universal across a
range of different duct geometries. Carrying out a detailed computational
study of the type of pipe flows that we have observed would necessarily re-
quire three-dimensional computations, which are prohibitively slow if one is
to study wide parametric variations. The plane channel computations are
two-dimensional, which has distinct advantages in terms of computational
speed. Furthermore, the simpler geometry allows room for both data anal-
ysis and development of modeling approaches (see chapter 6) that would be
too complex in the pipe geometry. Therefore, one can either consider the
plane channel as an independent study or as one which allows new perspec-
tives on the pipe displacement flow.

Figure 5.1 shows the geometry and notation used in the current chapter.
The fluids have the same viscosity but different densities. The displacing
fluid is denser than the displaced fluid. Three dimensionless groups largely
describe these flows: densimetric Froude number Fr, Reynolds number Re
and duct inclination β. Following the approach in [123], we are motivated
to classify the different observed regimes phenomenologically in the two-
dimensional (Fr,Re cos β/Fr)-plane. We also aim to provide leading order
approximations for the transitions between different regimes. The effect
of the imposed flow on macroscopic diffusion is also investigated for flows
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that mix significantly. Finally, stabilizing and/or de-stabilizing effects of
the mean flow on buoyant exchange flows are given for a broad range of
dimensionless parameters.

Figure 5.1: Schematic view of the numerical domain used.

Before presenting our results, we note that some caution is needed in
making inferences regarding the pipe flow from the channel flow results.
For example [62] studied pure exchange flows in pipes and channels in the
inertially dominated regime, when the fluids mix, and have shown distinct
differences in the flow structures observed. Therefore, direct comparisons are
only like to be valid in regimes where viscous forces dominate in balancing
buoyant and imposed pressure drops. In other cases, we emphasize that we
are studying two-dimensional mixing and instability processes.

5.0.1 Parameter range

Approximately 180 simulations have been carried out covering the parameter
ranges indicated in Table 5.1. We have selected a range of dimensional
parameters that is similar in scope to those of our pipe flow experiments.
However, one restriction is that we have not explored very high Re (typically
Re ≤ 500 for our simulations). At larger Re we would expect to enter a fully
mixed turbulent regime, for which we have not explored the performance
of our code. It is worth noting that in a few cases we did push up to
Re = 800 in order to cover a wider range in dimensionless planes and better
understand the flow dynamics. However most of the simulations were carried
for Re ≤ 500.

Our numerical study is complementary to that in chapter 4 in studying
pipe inclinations that are far from horizontal. The dimensionless parameters
governing the flow are defined exactly as for those presented in the previ-
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Parameter Range

At 0.001, 0.0035, 0.01

V̂0 0− 27 (mm/s)
ν̂ 1 (mm2/s)
β [0, 10, ..., 80, 90] (deg)
Re 50− 500
Fr 0− 1.92

Table 5.1: Parameter range of our numerical study.

ous chapter for pipe flow except that D̂ now denotes the channel thickness
instead of the pipe diameter. The 3 principal parameters are the Atwood
number, At, the Froude number, Fr, inclination angle, β, the Reynolds num-
ber, Re and the Péclet number, Pe. Again we have At > 0 since ρ̂H > ρ̂L
(heavy fluid displacing the light fluid in the downwards direction). Our
simulations are all run for small At, where the Boussinesq approximation
is valid. Finally, since our fluids are miscible there is the potential for the
Péclet number Pe = V̂0D̂/D̂m to influence the flow (here D̂m is the molec-
ular diffusivity). Typically, for the range of flow rates in our channel and
the working fluids in reality we have Pe≫ 1. This suggests that molecular
diffusivity does not play a major role in flows studied. The range of di-
mensionless parameters is also shown in Table 5.1. The three most relevant
dimensionless parameters are β, Re and Fr, (assuming that At ≪ 1 and
Pe≫ 1, as for the experimental study).

5.0.2 Simulation overview

The computations that we have carried out are fully inertial, solving the
full 2D Navier-Stokes equations with liquid species modeled via a scalar
concentration, c. Details of the computational methodology and the gov-
erning system of equations are given in appendix A, as well as a discus-
sion of calibration and convergence studies for the particular code we have
used. In summary, the momentum and diffusion coefficients have been dis-
cretised using a mixed finite element/finite volume method. In order to
check the accuracy of the code, various simple test problems have been im-
plemented. These include quantitative comparisons with the computational
work of Sahu et al. [106] for displacement flows, and with Hallez & Mag-
naudet [62] for exchange flows in 2D channels. The same code has been
used extensively in [71] for miscible core-annular Newtonian flows of differ-
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ing viscosities in which pearl and mushroom shaped instabilities develop.
The results therein have been benchmarked against the recent experiments
of [37, 38].

As explained in appendix A in our computational work we are mostly
interested in predicting global features of the displacement flow such as the
flow instability, instantaneous/non-instantaneous displacements, etc., (see
chapter 4 for more details). For the meshes in most of the computations we
used 28 cells across the channel, refined slightly towards the walls, and 400
cells along the length of the channel. The meshes used are relatively coarse
for quantitatively studying small scale features of the displacement flows, but
here we want to see if the large scale features of the flow depend significantly
on the mesh size. Figures 5.2a,b show the dependency of (1 − C̄(t̂))/(1 −
C̄(0)) and the position of the displacing front, x̂front, on different mesh

sizes respectively.4 The parameters used are β = 40◦, At = 0.0035, V̂0 =
2.6 (mm/s) and ν̂ = 1 (mm2/s). The term C̄(t̂) is the average concentration
over the entire computational domain at time t̂. Naturally at t̂ = 0 (s) the
quantity (1−C̄(t̂))/(1−C̄(0)) approaches 1 and decreases with time as more
displacing fluid (with C = 1) is introduced into the computational domain.
The importance of this large scale measurement is that it shows how fast
and efficient the displacement is i.e. how successfully the displaced fluid is
being removed front the domain by the displacing liquid. The faster that
(1 − C̄(t̂))/(1 − C̄(0)) → 0 with time, the better the displacement is. In
Fig. 5.2a it is shown this large scale feature of the flow does not depend on
the mesh size significantly.

The position of the displacing front x̂front with time is given in Fig. 5.2b
for the same range of mesh sizes. First of all we can see that for this
particular simulation, the rate of increase of the front position experiences
a different behaviour at t̂ ≈ 6.5 (s) (indicated by red vertical dashed-line).
Initially, mixing is controlled by inertia due to the very strong buoyancy
forces. This is the reason why the front accelerates faster at the beginning.
Over time, viscous forces come into balance with inertia and buoyancy and
the movement of the front becomes more steady. See also [115] and [23] for
transient behaviour of similar gravity currents. Secondly, we can see that
the position of the front from which the front velocity can be calculated does
vary slightly with the mesh size. This is because, the mixing flows would be
better resolved in fine mesh sizes than the rough ones. The relative error in
final front velocity value is estimated to be of order 6 %.

4The mesh size 28 × 400 for instance means 28 cells are used across the channel and
400 cells are used along it.
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Figure 5.2: a) Evolution of (1 − C̄(t̂))/(1 − C̄(0)) with time for different
mesh sizes for β = 40◦, At = 0.0035, V̂0 = 2.6 (mm/s) and ν̂ = 1 (mm2/s).
Note that C̄(t̂) is the average concentration over the whole computational
domain computed at time t̂. b) The evolution of the displacing front posi-
tion, x̂front, with time for different mesh sizes for the same parameters as
part a. The red dashed line shows the transition between different phases
of the displacement.

In the results that follow we have mostly used mesh size 28×400, in order
to generate a broad data set of simulations covering the key parameters.
This resolution is also consistent with a previous study (see [125]), enabling
direct comparison but for a fuller range of channel inclinations. To directly
study particular features of interest, e.g. the formation of the Rayleigh-
Taylor mushrooms at higher inclinations, we have used a finer mesh to ensure
accuracy. It was however found that although the fine mesh simulations for
these flows were different from the rough mesh ones from the quantitative
point of the view, the large scale and qualitative features remained the same.

5.1 Results

We now present the computational results. We first give a broad phenomeno-
logical description of the main regimes we have observed in our displacement
flow simulations (V̂0 > 0) in §5.1.1 and 5.1.2. These flow regimes are stud-
ied through numerous tools e.g. spatiotemporal plots, velocity fields, time
dependent interface evolution profiles etc. This leads to a delineation of
the observed flows into a number of regimes, the boundaries of which we
are able to identify in terms of the main dimensionless groups (Re,Fr, β).
In the case of transversely mixed flows we analyze the effective axial dif-
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fusivity (or dispersivity), from measured concentration profiles in §5.1.5.
Finally in §5.1.6, we locate different flow regimes on the non-dimensional
(Fr,Re cos β/Fr)-plane, as an effective way of comparing channel and pipe
flows. This enables us to better understand the essential physical mecha-
nisms governing displacement flows over a wide range of parameters.

5.1.1 Displacement flows: main qualitative features

We first address the most basic question: namely is the global qualitative
behaviour observed for pipe displacement flows (V̂0 > 0), as shown in the
previous chapter, significantly affected by introducing the new geometry.
Figure 5.3 shows typical results from our simulations, primarily illustrating
the effect of inclination angle β on the flow pattern. The concentration values
in the numerical simulations shown in Fig. 5.3 are calibrated so that they
vary between 0 (displaced fluid) and 1 (displacing fluid). The data shown are
obtained for At = 0.0035 and kinematic viscosity ν̂ = 1 (mm2/s), all with a
mean imposed velocity V̂0 = 15.7 (mm/s). Upon comparing with Fig. 4.2 in
the previous chapter, this suggests that the channel flow displacement seems
to destabilize more than the pipe flows. The degree of mixing even in close
to horizontal ducts seems to be much higher in channels than in analogous
pipe flows.

Another key difference between channel and pipe flow displacements is
that the slumping pattern is more pronounced in the latter. In fact we
always observe a two-layer flow in our experiments whereas in channel flow
simulations the two-layer structure is not observed as frequently. In fact
the channel flows computed are more similar to a three-layer structure than
to a slumping two-layer flow. This can be purely due to the geometry
effects. Possibly in pipe flows, as the displacing liquid moves downstream,
it squeezes the displaced layer around the pipe. This in turn helps the
displaced layer to direct the displacing fluid down towards the lower pipe
walls (strengthening the slumping effect). However, in channel geometry
there is no such geometrical limitation that generates azimuthal motions,
i.e. the flow is 2D and thus the displacing liquid can not squeeze the displaced
layer towards the upper wall in the same way as in pipe. It is also worth
noting that similar to the pipe exchange flows of [113], the degree of mixing
and disorder in the system increases as we move towards the vertical (β →
0◦). The flow pattern for more horizontal inclinations remains qualitatively
similar to viscous flows of two separated layers; see β = 90◦ in Fig. 5.3.
Note that in the case of viscous flows detecting an interface between the
fluids is much easier than the case where mixing and instabilities are strong.
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Figure 5.3: Change in iso-viscous displacement flows with β for At =
0.0035 and kinematic viscosity ν̂ = 1 (mm2/s). Mean flow speed is
V̂0 = 15.7 (mm/s). The field of view is 1428 × 19.05 (mm2) with the white
dashed lines indicating the position of the imaginary gate valve. The color
bar at the top left of the figure shows the corresponding concentration value,
C, with 0 referring to the pure displaced fluid and 1 to the pure displacing
fluid. The snapshots are taken at t̂ = 25 (s).

By interface we mean a point or points at a streamwise location where
the concentration gradient transversely is high and the two fluids meet and
interact. As discussed previously, since our fluids are miscible we always
have a diffusive interface with concentration varying between that of the
displaced and displacing fluids. However due to the large Péclet number
limit we consider throughout this thesis, we can assume that the interface
between the two fluids stay sharp at least when there is not a strong mixing
present.

Similar to the previous chapter for pipe displacement we now try to
investigate the physical features of the flows shown in Fig. 5.3 from different
aspects. Figure 5.4 shows the spatiotemporal diagrams constructed from
concentration fields for the same simulations as shown in Fig. 5.3. The
depth-averaged concentration value C(x, t) is simply the mean value of the
fluid concentration averaged across the pipe at location x̂ and time t̂, which
can be used to estimate the degree of mixing inside the pipe. As can be
seen in Figs. 5.4a-d the flow stability increases as we move toward nearly
horizontal inclinations. In principle we could extract statistical data on the
wavelengths and growth rates of the instabilities from this data, but this is
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not the aim of the present study.
In contrast to the experimental spatiotemporal diagrams shown previ-

ously, when the degree of mixing is high it is not very difficult to distinguish
the front between two fluids in simulations. Of course, when the fluids be-
come more separated the location of the advancing displacement front can
be recognized clearly (Fig. 5.4d). The inverse slope of the line bounding the
blue region in the spatiotemporal diagram is minus the front velocity (see
the dashed line in Fig. 5.4d). This boundary can be either obtained through
standard image processing methods or through the concentration evolutions
profiles discussed later in Fig. 5.8. Another difference with the pipe exper-
iments is that there is hardly any noticeable change in the spatiotemporal
diagrams when the channel is inclined away from horizontal (Fig. 5.4a-c), in
the sense that most of the flows shown are unstable and the mixing patterns
seem to be almost the same at different inclinations.

To gain additional insight into the flow dynamics, the characteristic con-
tours of streamwise velocity profile in the midst of computational domain
(x̂ = 476 (mm) measured from the gate valve) are plotted in Fig. 5.5. the lo-
cation is chosen such that the flow has had enough time to develop over time
and can give information about long time behaviors which we are interested
in. This way of presenting the velocity profiles mimics using an ultrasonic
Doppler velocimeter (UDV) probe in the experiments (see chapter 4 for UDV
measurements) and can give us better insight to the flow dynamics and its
development after the start of the displacement. In all cases shown, the
flow seems to develop the same over time before the displacing front reaches
the probe position in the channel (see the results for 0 s < t̂ . 15 (s) for
instance). Before the displacing front reaches the measurement point the
flow has mostly developed to a Poiseuille-like profile.

Once the front passes the middle of the channel different patterns can
form depending on the inclination angle. for instance Figs. 5.5a-c show the
velocity profile across the channel for a type of flow that mixes fairly strongly
across the channel. Note the positive and negative regions of velocity in these
figures. The negative regions suggest that the flow is backward in those areas
i.e. we have local back flows. Figure 5.5d in return confirms a slumping-
type flow pattern by showing the separated positive and negative (or close-
to-zero) regions of velocity. These positive and negative (or close-to-zero)
regions correspond to the displacing and displaced layers respectively (see
also Fig. 5.3 for β = 90◦). In contrast to the experiments, even though the
mixing is significant, (see Fig. 5.3 for β = 0◦ for instance), the velocity profile
is still not Poiseuille-like, as would be expected if the transverse mixing was
complete.
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Figure 5.4: spatiotemporal diagrams of the depth-averaged concentration
field obtained for the same simulations as shown in Fig. 5.3 for a) β = 0◦,
b) β = 30◦, c) β = 60◦ and d) β = 90◦. The dashed line in part d indicates
the position of the displacing front and its slope is −1/V̂f . In this case

the spatiotemporal diagram gives V̂f = 22.7 (mm/s) and the method to be

explained later in Fig. 5.8 predicts V̂f = 22.5 (mm/s).
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Figure 5.5: The variation of the streamwise scaled velocity component in the
midst of computational domain x̂ = 476 (mm) with time t̂ and depthwise
location ŷ for the same simulations as shown in Figs. 5.3 and 5.4 a) β = 0◦,
b) β = 30◦, c) β = 60◦ and d) β = 90◦.

99



5.1. Results

0.2 0.3 0.4 0.5 0.6
0

5

10

15

C̄x̂

ŷ
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Figure 5.6: The averaged concentration, C̄x̂, along the length of the com-
putational domain plotted at different times t̂ = [0, 5, ..25] (s) for the same
simulations as shown in Figs. 5.3 and 5.4 a) β = 0◦, b) β = 30◦, c) β = 60◦

and d) β = 90◦.

The snapshots of the simulations and the velocity profiles shown in
Figs. 5.3 (β = 0, 30, 60◦) and 5.5a-c did not reveal much difference between
the flows at different inclination angles. In the spatiotemporal diagrams the
concentration values were averaged across the pipe and at each streamwise
location. If we instead average the concentration values along the channel
at each depthwise location, a different quantity can be obtained called C̄x̂
which can give useful insight to the displacement flows. Figure shows the
averaged concentration values along the channel for the same simulations
shown in Fig. 5.3 at different times. It can be seen that from a-d the value
of the C̄x̂ increases towards the lower wall ŷ = 0 (mm) suggesting increased
slumping as the channel becomes more horizontal. When the mixing is
highest in Fig. 5.1.1a, the profiles of C̄x̂ become nearly symmetric across the
channel, which means the mixing has acted efficiently.
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Figure 5.7: Evolution of (1− C̄(t̂))/(1 − C̄(0)) with time for the same sim-
ulation as in Fig. 5.3 (β = 90◦). At t̂ ≈ 68 (s), indicated by red dashed line,
the displacing front reaches the end of the computational domain.

Now that we have observed the typical behaviours of the concentration
values, when averaged both along the channel and across it, the next step
is to consider the concentration averaged over the entire domain to obtain
C̄. As shown earlier in Fig. 5.2a, we usually translate this into a residual
fraction (1 − C̄(t̂))/(1 − C̄(0)). Figure 5.7 shows the residual fraction of
displaced fluid for the same simulation shown in Fig. 5.3 for β = 90◦. It
can be seen that the slope of the average concentration quantity changes
at some critical time (here t̂ ≈ 68 (s)), called the breakthrough time. This
change in slope happens when the displacing front reaches the end of the
computational domain. After the breakthrough time the only mechanisms
through which the displaced layer is removed from the channel are by the
action of the displacing fluid on the displaced fluid. In the viscous regime
this is by dragging the residual layers along the wall, through a combination
of viscous and pressure gradient effects. In the case of unstable flows this is
augmented by mixing effects.

5.1.2 Front velocity measurement and characteristics

In a long channel, the ratio of the mean flow speed to the leading front
velocity, V̂0/V̂f , indicates the proportion of the channel displaced in an ex-
periment or a simulation, i.e. the displacement efficiency. Consequently, it
becomes important to measure V̂f in a consistent and repeatable way, re-
gardless of the degree of mixing. Whereas edge detection and calculation
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of the slope from the spatiotemporal diagram has proven effective in incli-
nations close to horizontal (see [126]), strong transverse mixing such as in
Fig. 5.3 for β = 0◦ (Fig. 5.4a) makes this method less reliable. Figure 5.8a
shows the concentration profiles at instants of time along channel length for
the same simulation as shown in Fig. 5.4c. Note that the profiles of concen-
tration shown in Fig. 5.8a and the spatiotemporal diagram data in Fig. 5.4c
are interchangeable. In contrast to the experiments where there was noise
in the measured concentrations close to the lower wall of the pipe, we do
not have such problem in the numerical solutions. However, to avoid very
diffuse concentrations, we estimate the speed of the displacement front by
the velocity of the concentration level set C = 0.01, (see the dashed line in
Fig. 5.8a). Note that this value was chosen to be C = 0.1 in the experiments
of the previous chapter due to image processing noise close to the lower wall
of the pipe (Fig. 4.5).

Figure 5.8b shows the variation of the front velocity, V̂f with time, which
is quite typical of most of our simulations. Similar to the experiments,
initially the front velocity accelerates as the flow initiates due to the existing
large buoyancy forces. As time passes by the viscous and inertial forces
start to balance the buoyant forces. This figure also shows that the choice
of concentration threshold used to compute V̂f does not influence the front
velocity significantly.

In those cases that instability and mixing causes slow oscillation and
noise in the profile of front velocity with time, or the front velocity slightly
decreases or increases with time, an average value is adopted taken over
long times so that the flow is well developed. Figures 5.9a,b show examples
where the front velocity slightly increases and decreases with time, respec-
tively. In such cases a long time average value is calculated, with the idea
that in quantifying the front velocity, we want to compute a global value
representative of the long term behaviour of system, e.g. after initial tran-
sients related to rapid mixing, buoyancy, etc have developed. We will use
the measured front velocity value to understand the large scale features of
the flow and the dominant dynamical trends in the system, as will be seen
later.

We now explore the main characteristics of front velocity measurements
across our numerical range, where we have varied inclination angles, β, den-
sity differences, At, and mean flow speeds V̂0. Figures 5.10a-c show V̂f for
simulations conducted with At = 0.001, At = 0.0035 and At = 0.01, re-
spectively. Note that the front velocities are always higher than V̂0, due to
mass conservation. For inclinations close to the horizontal, the front veloc-
ity seems to increase with β at lower V̂0. This effect is amplified by At.
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Figure 5.8: a) Evolution of the depth-averaged concentration field, C̄ŷ with
time, t̂ = [0, 5, ..., 30] (s), and streamwise location, x̂, measured from the
gate valve for the same simulation as in Figs. 5.3 (β = 60◦, At = 0.0035,
V̂0 = 15.7 (mm/s)) and 5.4c. The dashed line shows C̄ŷ = 0.01 which is used

for measuring the displacing front velocity, V̂f . The inset shows the same
figure but focuses on the region 0 < C̄ŷ < 0.02 where the interface evolution
profiles intersecting with C̄ŷ = 0.01 can be better seen. b) The evolution of

the front velocity value, V̂f , with time for the same simulation as part a for
two different choices of intersection values namely C̄ŷ = 0.01 and C̄ŷ = 0.02.

The measured front velocity value is V̂f = 26.8 (mm/s) in this case.
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Figure 5.9: The evolution of the front velocity value, V̂f , with time for a)

β = 70◦, At = 0.0035, V̂0 = 26.2 (mm/s) and b) β = 20◦, At = 0.01, V̂0 =
10.5 (mm/s) showing increase and decrease in V̂f with time respectively.
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Due to higher density difference of the fluids in this case, the displaced layer
is pushed backwards but because of the strong stabilizing (and separating)
component of the buoyancy at the interface the fluids do not mix signifi-
cantly (i.e. viscous flows) and we get an overall high front velocity value.
In contrast, for the larger V̂0 we see a slight decrease in front velocity as
the channel becomes progressively horizontal. Although these trends are
evident, the variations in front velocity with β are relatively modest and for
β < 45◦ the front velocity appears to be essentially constant.
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Figure 5.10: Change in displacing front velocity, V̂f with inclination angle,

β, and imposed velocity, V̂0 for ν̂ = 1 (mm2/s) and a) At = 0.001, b)
At = 0.0035 and c) At = 0.01. Different markers represent V̂0 = 2.6 (mm/s)
(◭), 5.2 (N), 10.5 (∗), 15.7 (•), 21 (H) and 26.2 (mm/s) (�). Thin broken
lines indicate V̂0.

As mentioned earlier, the channel displacement flows show more insta-
bility and mixing compared to those in the pipe geometry. In the case of
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the pipe displacement when the mixing is efficient, the front velocity value
is very close to that of the mean flow i.e. V̂f ≈ V̂0. However this seems to
be quite different for channel flow. In fact when the fluids mix significantly,
the displacing front still advances close to the channel center; see Fig. 5.3
for example. One then expects to have V̂f ≈ 1.5V̂0 (by analogy with the

Poiseuille flow). We have subtracted the front velocity values by 1.5V̂0 and
plotted the results in Fig. 5.11. At small At and lower V̂0 the plateau values
for lower β agree well. As a side note, if we were to run the simulations
over longer channel length and at larger times, the mixing could have been
stronger and more complete transversely. In that case the front velocity
value would be much closer to the mean flow speed V̂f ≈ V̂0 similar to the
pipe flow experiments (chapter 4).

We now proceed with a dimensionless analysis of the results, focusing
on the normalized front velocity Vf = V̂f/V̂0. In our previous study of
near-horizontal displacements [126], we were able to classify all flows in the
(Fr,Re cos β/Fr)-plane, and therefore start with this description. Figure
5.12 shows the normalized front velocity Vf = V̂f/V̂0, plotted against Fr
and Re cos β/Fr, for all simulations run in this study. The scale is adjusted
up to Vf = 2. The parameter regime studied by Taghavi et al. [126] is
marked by the broken line: 0 < Re cos β/Fr < 80 and 0 < Fr < 2. It
can be seen that the present study covers a much wider parameter range
(primarily due to variations in β).

The parameter Re cos β/Fr is independent of V̂0, so that as Fr → 0 we
approach the exchange flow limit. For small Fr we observe a number of flows
for which Vf > 2. We refer to these as exchange flow dominated similar to
the pipe flow experiments and note that since we have scaled with the mean
flow velocity, large Vf > 2 strongly suggests that some part of the velocity
field is moving backwards against the mean flow, driven by buoyancy.

Another interesting comparison that can be made against the pipe ex-
periments concerns fully mixed regions. Experimentally, it was found that
V̂f ≈ V̂0 for the unstable and diffusive flows. These flows usually appeared
at high Re cos β/Fr or Fr values. We can see that for similar ranges of
Re cos β/Fr or Fr in channel flow the front velocity is not close to V̂0 be-
cause of the different nature of the displacing front in the channel (the
displacing front moves close to the channel centerline even in the cases that
mixing is high).
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Figure 5.11: Change in V̂f−1.5V̂0 with tilt angle, β, and imposed velocity, V̂0
for the same simulations as shown in Fig. 5.10 a) At = 0.001, b)At = 0.0035
and c)At = 0.01. Different markers represent V̂0 = 2.6 (mm/s) (◭), 5.2
(N), 10.5 (∗), 15.7 (•), 21 (H) and 26.2 (mm/s) (�). The dashed lines show
V̂f − 1.5V̂0 = 0 (mm/s).

5.1.3 Instantaneous and non-instantaneous displacements

An important large scale feature of the displacement flows is whether they
are instantaneous or not. By instantaneous displacement we mean that the
displaced fluid does not travel upstream of the gate valve once the simula-
tion/experiment starts. If the displacement is non-instantaneous we have
inevitably had a back-flow of the displaced fluid layer. From the industrial
point of view this characteristic is very important if it is sustained, as it
implies a residual of displaced fluid. Ideally we want to always displace in-
stantaneously and avoid back flow. Taghavi et al. [130] looked into flows
with back flow in detail, for nearly horizontal channels. It was found that
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Figure 5.12: Presentation of our results for the full range of simulations:
normalized front velocity V̂f/V̂0, plotted against Fr and Re cos β/Fr. The
rectangular area (0 < Re cos β/Fr < 80, 0 < Fr < 2) indicated by dashed
lines, locates the range of nearly horizontal simulations and is studied in full
details in [126] (also see Fig. 5.14a).

the trailing front can show different behaviours as the imposed velocity was
varied. The trailing front is the one that moves close to the upper wall of
the channel and is slower than the leading front, which is close to the lower
wall. The possible movements of the trailing front can yield to instantaneous
displacements, stationary layers, temporary and sustained back flows. By
slowly increasing the mean flow from 0 different patterns can arise. For very
low values of imposed velocity the trailing front keeps moving upstream of
the gate valve due to the strong buoyancy force relative to that of the im-
posed flow. If the imposed flow is further increased the trailing front moves
upstream of the gate valve but then stops at some location x̂. The trailing
front may remain stationary, at a critical V̂0, but for slightly larger V̂0 the
trailing front returns back downstream after some time t̂. Finally, if the
mean flow is sufficiently high, the trailing front is displaced instantly by not
flowing backwards, upstream of the gate valve at all.

Channel displacement flows at higher inclinations have not been stud-
ied from the perspective of the trailing front so far. Here we aim to see if
stationary layers also exist at larger inclinations where the degree of mixing
and instability is higher. Figures 5.13a-c show respectively snapshots, spa-
tiotemporal diagram and the velocity field of a simulation with parameters
β = 60◦, At = 0.0035, ν̂ = 1 (mm2/s) and V̂0 = 15.7 (mm/s). Parts a and
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b show that the trailing front moves upstream of the gate valve and stays
at a location x̂ ≈ −90 (mm) for relatively long times, up to t̂ = 80 (s).
The broken line in Fig. 5.13b shows where the trailing front stops over time.
Figure 5.13c shows the corresponding velocity fields to the snapshots shown
in part a focusing on the above-the-gate-valve area. in the last velocity field
shown, the average position of the interface between the two fluids is added,
from Fig. 5.13a h ≈ 0.6 showing the counter-current motion within the dis-
placed layer. In fact although the interface has a positive speed towards
downstream of the flow, the displaced layer has negative speed (back flow)
in some parts to balance the mass flow rate to zero and ensure a stationary
layer. Note that for this simulation shown a fine mesh size 56 × 1000 is
used. The very same simulation is also run for usual 28 × 400 mesh size
and no qualitative difference was observed. In contrast to the pipe flow ex-
periments, we do see a significant degree of mixing in the stationary upper
layer.

We now classify our displacement flows in terms of being instantaneous
or non-instantaneous, over the range of parameters computed. Figure 5.14
shows such a classification in the dimensionless plane of Fr and Re cos β/Fr.
Figure 5.14a is taken from [126] and focuses only on nearly horizontal sim-
ulations. In this figure the different trailing front behaviours (sustained
back flow, stationary interface, temporary back and instantaneous displace-
ment) are all classified. Figure 5.14b on the other hand shows the results
for higher inclination angles and we adopt a simpler classification: the blue
data in this figure indicate instantaneous displacement and all others are
non-instantaneous flows. Note that non-instantaneous displacement flows
can exist sustained back flow, stationary layer and the temporary back flow
as sub-categories. The prediction from the lubrication model of [128] is also
added as a line to the graph.

First note that the lubrication model wrongly predicts some flows to
displace instantaneously (Re cos β/Fr = 0 and Fr . 0.6). in fact these
flows are temporary back flows as better shown in Fig. 5.14a. Due to the
wider range of parameters in the current study we can not have the same
data resolution as in Fig. 5.14a. Secondly, the pattern shown in Fig. 5.14 is
qualitatively similar to that of the experimental study presented in the pre-
vious chapter. As Fr increases the flows transition from non-instantaneous
to instantaneous. The required Froude number for this transition decreases
with Re cos β/Fr at least when away from nearly horizontal displacements
(small Re cos β/Fr ). This is because although the inclination angle is get-
ting closer to the vertical (enhancing counter-current flow tendencies), the
increased instability and transverse mixing in the system does not allow the
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Figure 5.13: a) Snapshots of the numerical simulations at times t̂ =
[0, 16, ..., 64] (s) run for β = 60◦, At = 0.0035, ν̂ = 1 (mm2/s) and
V̂0 = 15.7 (mm/s). The last image at the bottom of the figure is the
colourbar of the concentration values. The size of the domain shown is
19 × 400 (mm2). The dashed lines in figure a shows the position of the
imaginary gate valve b) Spatiotemporal diagram of the depth-averaged con-
centration field for the same simulation as part a. The white dotted line
indicates the location at which the trailing front stops c) Vectors of velocity
field with time for the same snapshots shown in part a for the area above
gate valve. The dashed line in figure c shows the average position of the
interface h ≈ 0.6 taken from part a. We clearly see the counter-current
motion within the displaced layer.

displaced layer to travel upwards.
One exotic behavior that was not observed before for nearly horizontal

simulations is having back flows that repeat more than once. Figure 5.15
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Figure 5.14: a) Classification of the results for the full range of simula-
tions with laminar imposed flows taken from nearly horizontal data of [126]:
sustained back flow (�, �), stationary interface (◮), temporary back flow
(◭, ⊳) and instantaneous displacement (•, ◦). Data point with filled sym-
bols are viscous and with hollow symbols are inertial. The horizontal bold
line shows the first order approximation to the inertial-viscous transition
(Re cos β/Fr = 25, from [112] or [126]). The angled heavy line repre-
sents the prediction of the stationary interface from the two-layer lubrication
model: χ = χc = 69.94. The vertical dashed-line is V̂0/V̂t = 0.7 and the
dotted-line is V̂0/V̂t = 1. Regions marked with vj and ij (j=1, 2, 3) are
viscous and inertial, respectively, with j=1, 2, 3 corresponding respectively
to sustained back flow, temporary and instantaneous displacement flows.
b) Classification of our results for the full range of simulations plotted in
the plane of Fr and Re cos β/Fr. The instantaneous displacement flows
are colored in blue and non-instantaneous ones in red. The heavy line rep-
resents the prediction of the lubrication model for the stationary interface
(χc = 2Re cos β/Fr2 = 69.94).
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Figure 5.15: Snapshots of the numerical simulation at times t̂ =
[0, 2, ..., 14] (s) run for β = 10◦, At = 0.01, ν̂ = 1 (mm2/s) and V̂0 =
15.7 (mm/s). The last image at the bottom of the figure is the colourbar of
the concentration values. The size of the domain shown is 19× 260 (mm2).
The dashed lines show the imaginary position of the gate valve in both fig-
ures. Initially there is a strong back flow that disappears around t̂ ≈ 4 (s)
and then reforms for t̂ > 4 (s) due to the strong back flow.

shows snapshots of a simulation for β = 10◦, At = 0.01, ν̂ = 1 (mm2/s)
and V̂0 = 15.7 (mm/s) in which the trailing front first goes upstream of
the gate valve, gets displaced later (t̂ ≈ 4 (s)) and then comes back up
again (t̂ > 4 (s)). For temporary back flows observed before we had the
trailing front going up the gate valve first and then being displaced towards
downstream. In the current case it seems as if the initial buoyancy force
in the streamwise direction is so large that causes a backwards burst of
the displaced liquid initially. Once the flow develops over time, viscous
forces can dominate the initial buoyant force and drag the displaced fluid
downstream, at least temporarily. The counter current motion within the
light displaced layer again starts to strengthen and thus pushes the displaced
layer upstream above the initial position of the interface. Note that the mesh
size used in Fig. 5.15 is 56× 1000, for better resolution of the phenomenon.
The simulation was also run for 28 × 400, where no significant qualitative
difference was observed.
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5.1.4 Displacing front phenomena

In the case of iso-viscous Newtonian displacement flow in pipe (chapter 4),
the leading displacement front remained connected to the bulk of the dis-
placing fluid. Even in the case of mixing and instability, although waves
appeared at the interface between the fluids there was no cutting of the
stream between the displacement front and the rest of the displacing liq-
uid. In the case of channel displacements, we have observed a number of
different phenomena at different inclination angles and/or flow rates. In
this section we describe these phenomena and specify their location in the
(Fr,Re cos β/Fr)-plane.

Front detachment

One of the most common behaviors observed throughout the numerical sim-
ulation results was that the displacement front seemed to be cut from the
rest of the displacing layer. Figure 5.16 shows an example of this for β = 20◦,
At = 0.001, ν̂ = 1 (mm2/s) and V̂0 = 26.2 (mm/s). Figure 5.16a shows the
snapshots of the concentration field at different times. As shown in the
figure the front initially is attached to the larger body of displacing fluid,
but over time as instabilities start to form, it is cut off from the rest of the
displacing layer. Evidently, as well as the instability mechanism to cut the
displacing fluid stream the detached front appears to move faster than the
bulk, being analogous to a falling droplet.

Figure 5.16b shows the velocity vectors corresponding to the same snap-
shots as in part a. Although there is an apparent change in concentration
close to the frontal region, evident from the snapshots, the velocity field
seems to be vary smoothly in that region. Also note the unstable nature
of the velocity field in this case. Figure 5.16b shows that due to the in-
stabilities the depthwise component of the velocity changes sign over time
at a location, (observe e.g. the highlighted box in this figure). Although
the front is separated from the bulk of the displacing fluid initially, it mixes
with the displaced fluid over longer times and finally diminishes (Fig. 5.16a).
In order to better understand the formation and diminishing processes, the
concentration values are averaged across the channel at each location and
are plotted in Fig. 5.16a. These profiles correspond to the same instants of
time as in parts a and b. It can be seen that there is an obvious change in
concentration close to the frontal region as the displacing front is cut by the
instabilities.

The type of instabilities observed in Figs. 5.3 and 5.16a are quite com-
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Figure 5.16: a) Snapshots of the numerical simulation at times t̂ =
[5, 13, ..., 29] (s) run for β = 20◦, At = 0.001, ν̂ = 1 (mm2/s) and
V̂0 = 26.2 (mm/s) showing the detachment of the front from the displacing
fluid layer. The last image at the bottom of the figure is the colourbar of
the concentration values. The size of the domain shown is 19× 1210 (mm2)
starting from gate valve position x̂ = 0 (mm). b) Vectors of velocity field
with time for the same simulations shown in part a. The dashed red boxes
added show the oscillating behavior of the flow better. c) Evolution of the
depth-averaged concentration field, C̄ŷ, with time and streamwise location
for the same simulation as in parts a and b. The arrows point the position
of the detached front that disappears over time.

mon in channel displacement flows. Due to this we have decided to take
a closer look at these instabilities and extract more physical information
from the available data. Figure 5.17 shows a representative case from the
same numerical simulation as Fig. 5.16 except at time t̂ = 29 (s). Figure
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5.17a is basically the last snapshot in Fig. 5.16a plotted on a larger scale for

convenience. Figure 5.17b shows the contour of the speed V̂ =
√

V̂ 2
x + V̂ 2

y

(here V̂x and V̂y are the dimensional streamwise and depthwise velocity com-
ponents respectively). We can see that although the velocity is far from a
Poiseuille profile, the high speed regions remain towards the centre of the
channel, with unstable oscillations mimicking those in the concentration.

Figure 5.17c shows the vorticity contours, ω̂, for the same snapshot as
in part a:

ω̂ =
∂V̂y
∂x̂

− ∂V̂x
∂ŷ

.

We see that positive vorticity is mostly located on the upper half of the
channel whereas the negative vorticity is in the lower half, as would be
expected for a channel flow. However, on close inspection we see that there
are also positive values of ω̂ close to the lower wall and negative values close
to the top wall, which is not expected. This indicates the existence of tiny
rotational regions of current causing local back flow and mixing. The main
cause of these local back flows must be the instabilities close to the interface
and within the fluid layers. To see this interesting effect better we have
plotted in Fig. 5.17d the velocity vectors focusing on this back-flow area
highlighted in Fig. 5.17c. The figure clearly shows the velocity reversal close
to the lower wall of the channel causing positive vorticity. Just an additional
comment is to note that the type of instabilities and the related mechanisms
are very similar when either fine or rough meshes are used.

Leaking front

Another interesting phenomenon observed in a few simulations was the for-
mation of a second displacing front from within the displacing fluid re-
gion. Figure 5.18 shows an example of this for β = 80◦, At = 0.0035,
ν̂ = 1 (mm2/s) and V̂0 = 15.7 (mm/s). Figure 5.18a shows the snapshot
of the simulations at successive times. At time t̂ ≈ 22.5 (s) an extra tip
region starts to form at the displacing front. We call this a leaking front, as
displacing fluid appears to leak from the main front into this region. Figure
5.18b shows the interface evolution profiles for the same snapshots as in part
a. The figure clearly shows that a jump in the averaged concentration value
starts to form close to the front. In contrast to the detached front discussed
earlier, the leaking front seems to strengthen and enlarge over time but does
not detach and appears to also dissipate via diffusive mixing.

Again the results presented in Fig. 5.18 are for a finer mesh of size
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Figure 5.17: a) Snapshot of the numerical simulation at time t̂ = 29 (s) run
for the same parameters as in Fig. 5.16. The field of view in parts a)-c) is
19× 2000 (mm2) and the broken vertical line shows the imaginary position

of the gate valve x̂ = 0 (mm). b) contours of the speed V̂ =
√

V̂ 2
x + V̂ 2

y

in mm/s. c) contours of vorticity in 1/s defined as ω̂ = ∂V̂y/∂x̂ − ∂V̂x/∂ŷ.
The solid box shows the region magnified below in part d. d) Vectors of the
velocity field for the boxed-region shown in part c showing back flow close
to the lower wall.

56×1000. However, qualitative similar results were obtained for the coarser
usual mesh size of 28× 400.

Dispersive spike formation

In the case when the channel was inclined strictly horizontally, another
interesting displacement front pattern was observed. Figure 5.19 shows the
existence of a dispersive spike-like region at the frontal region. Figure 5.19a
shows snapshots of a typical simulation carried out for β = 90◦, At = 0.001,
ν̂ = 1 (mm2/s) and V̂0 = 10.5 (mm/s). At time t̂ ≈ 36 (s) the spike starts
to form and extends progressively. Always about the interface we have
secondary flows that tend to disperse fluid that diffuses. Here the front is
slumped towards the bottom of the channel, but the secondary flow forms a
dispersive tip above and slightly ahead of the advancing front. The profiles
of depth-averaged concentration are given in Fig. 5.19b, and appear as a
small spike, just ahead of the main front. The inset in Fig. 5.19b focuses
on the range 0 < C̄ŷ < 0.01 to show the formation of the spike better. It
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Figure 5.18: a) Snapshots of the numerical simulation at times t̂ =
[0, 7.5, ..., 52.5] (s) run for β = 80◦, At = 0.0035, ν̂ = 1 (mm2/s) and
V̂0 = 15.7 (mm/s) showing the acceleration of the tip of the displacement
front and finally its separation from the displacing layer. The last image at
the bottom of the figure is the colourbar of the concentration values. The
size of the domain shown is 19 × 2000 (mm2). The broken lines indicate
the position of the imaginary gate valve x̂ = 0 (mm). b) Evolution of the
depth-averaged concentration field, C̄ŷ, with time and streamwise location
for the same simulation as in parts a. the acceleration and tip separation
effect is also evident from the evolution profiles.
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Figure 5.19: a) Snapshots of the numerical simulation at times t̂ =
[12, 36, 60, 84] (s) run for β = 90◦, At = 0.001, ν̂ = 1 (mm2/s) and
V̂0 = 10.5 (mm/s) showing the appearance of spike at the displacement tip.
The last image at the bottom of the figure is the colourbar of the concentra-
tion values. The size of the domain shown is 19× 1307 (mm2) starting from
the gate valve on the left x̂ = 0 (mm). b) Evolution of the depth-averaged
concentration field, C̄ŷ, with time and streamwise location for the same sim-
ulation as in parts a. The inset focuss on the region 0 < C̄ŷ < 0.01 to show
the spike effect better.

is worth noting that the spike formation at the displacement front was not
observed in density unstable pipe experiments. A similar dispersive spike
phenomenon was observed in density stable iso-viscous Newtonian flows at
strictly vertical inclination angles, as discussed in chapter 3. Note that the
results presented in Fig. 5.19 were obtained for a fine mesh size: 56× 1000.
Qualitatively similar results were observed in simulations run for the usual
mesh size of 28× 400.

Overall displacing front classification

In the previous section different phenomena related to the displacement front
were explained namely the front detachment, leaking front and dispersive
spikes. Now let us see where these flows are located on the dimensionless
plane of Fr and Re cos β/Fr. Figure 5.20 shows this classification. The
first thing to note is that in a large number of simulations front detachment
has been observed. There are only a few cases with leaking front and the
dispersive spike-like fronts appear only for Re cos β/Fr = 0, meaning strictly
horizontal displacements. It seems as if these flows can be septated from the
rest of the flows (in which no particular pattern is observed at the front) by
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Figure 5.20: Classification of our results for the full range of simulations
plotted in the plane of Fr and Re cos β/Fr. The flows in which front de-
tachment occurs are marked by (△). Data with accelerating fronts that form
a dispersive spike are marked by (⊲) and flows with leaking front are shown
by (⊳). The heavy dashed lines, Fr = 0.45 and Re cos β/Fr = 200, roughly
separate these flows from the rest.

the lines Fr = 0.45 and Re cos β/Fr = 200. It is also interesting to note
that the leaking front flows lie between dispersive spike and detached-front
flows. The area in which none of these frontal phenomena are observed
(Fr < 0.45 and Re cos β/Fr > 200) seems to include mostly the exchange
dominated flows; compare with Fig. 5.14. We usually have high degree of
mixing in this flows.

The Rayleigh-Taylor limit

Given the fact that the displacement configuration in our study is density
unstable i.e. heavy fluid on top of the light, we expect to observe flows that
are phenomenologically similar to Rayleigh-Taylor type instabilities in some
limits of our parameter space. These are characterised by the formation of
mushroom-like plumes within the heavy upper layer; see e.g. [13]. Figure
5.21a shows snapshots of a displacement flow in a strictly vertical channel
(β = 0◦) for At = 0.001, ν̂ = 1 (mm2/s) and V̂0 = 2.6 (mm/s). The figure
clearly shows the formation of Rayleigh-Taylor mushroom structure as time
evolves. This is for a relatively low imposed flow rate. Due to both mixing
and the imposed flow, the mushroom-like structure is not sustained over
longer times. Figure 5.21b shows the corresponding velocity fields to the
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snapshots depicted in part a. It is interesting to note the backward velocity
vectors close to the gate valve where the mushroom initially forms.

The mushroom patterns shown in Fig. 5.21a & b were obtained for a
strictly vertical channel. It is interesting to see if the same effect is observed
at small inclinations away from the vertical. Figure 5.21c shows snapshots
of simulations obtained for the same parameters as in Fig. 5.21a except for
β = 10◦. We see that due to the effects of slumping the Rayleigh-Taylor
mushroom pattern does not form anymore, i.e. symmetry is broken in the
initial onset of flow, even though β is very small. Figure 5.21d shows the
corresponding velocity vectors, with an upstream component to the velocity
when close to the gate valve. Note that the simulations shown in Fig. 5.21
were obtained for a mesh size 56×1000. The same qualitative patterns were
observed for the usual mesh size of 28× 400.

Cutting of the fluid streams

As mentioned earlier, channel flow displacements in the current study were
run over a range of imposed velocities V̂0 ∈ [0 − 27] (mm/s). For small
imposed velocities we inevitably recover results close to the exchange flow
of two fluids; see [111–115] and [62–64] for exchange flow experiments and
numerical simulations, respectively. Hallez et al. looked into the exchange
flows in both channel [63] and pipe [62, 64], using direct numerical simu-
lations. They discovered that there are essential differences in 2D and 3D
flows which arise from different dynamic vorticity fields. From this perspec-
tive, strong and coherent vortices found in channel flows enables the vortices
to cut the layers of pure fluid that feeds the fronts in a periodic manner. In
contrast the vortical motions in 3D are such that they promote segregation
effect and thus avoid completely cutting the pure fluid layers; see [62]. In
our numerical simulation for channel displacement flows we also observed
this type of oscillatory behavior in the leading front velocity. Figure 5.22
shows a representative case obtained for β = 20◦, At = 0.01, ν̂ = 1 (mm2/s)
and V̂0 = 2.6 (mm/s). Figure 5.22a shows the snapshots of the simula-
tions where the mixing is fairly strong. Due to the low imposed velocity
in this case (V̂0 = 2.6 (mm/s)), it is very likely that we are in exchange
dominated regime. The flow instability and back flow are common features
of such flows a least at higher inclination angles. Figure 5.22b shows the
corresponding spatiotemporal diagram of the same simulations. The figure
shows unevenness in the boundaries of the two displacement front, due to
oscillation. Note that the image contrast is adjusted here to show the slight
variation and unevenness in concentration values better. The uneven os-
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Figure 5.21: a) Snapshots of the numerical simulation at times t̂ =
[0, 6.5, ..., 26] (s) run for β = 0◦, At = 0.001, ν̂ = 1 (mm2/s) and
V̂0 = 2.6 (mm/s) showing the formation of Rayleigh-Taylor instability. The
last image at the bottom of the figure is the colourbar of the concentration
values. The size of the domain shown is 19×260 (mm2). b) Velocity vector-
field with time for the same simulations shown in part a. The dashed lines
show the imaginary position of the gate valve in both figures. Figures c and
d are run for the exact same parameters as to a and b except β = 10◦.
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cillations in the depth-averaged concentration shown in Fig. 5.22b reflect
the oscillations present in the front velocity due to the vortical structures.
Figures 5.22c,d show the leading and trailing front velocities, which exhibit
clear oscillations. As shown in Fig. 5.22c, at longer the value of the leading
front velocity fluctuates around an almost-constant value (V̂f ≈ 5 (mm/s))
as time passes by. The oscillations observed repetitively cut the pure fluid
layers feeding the fronts. This cut-off in the feeding layers can accelerate
and/or decelerate the front (see [62] for similar effects in exchange flows).
Figure 5.22d shows a similar phenomenon at the trailing front, where also
the pure fluid layers are cut. Note that here we have a small imposed veloc-
ity that breaks the symmetry of the two fronts. As before, the simulations
in Fig. 5.22 were obtained for a mesh size 56×1000, but with a qualitatively
similar oscillatory pattern in front velocity observed for coarser mesh size of
28× 400.

It is now interesting to understand to what extent the oscillatory pattern
in front velocity persists as the imposed velocity, V̂0, increases. Figure 5.23
shows that these flows can be observed over almost all values of Re cos β/Fr
(or equivalently inclination angles). Secondly, we can see that the oscillation
in front velocity stops for Fr & 0.3. In fact there can be drawn an almost
clear boundary between oscillatory and non-oscillatory flows in dimension-
less plane of Fr and Re cos β/Fr. It is interesting to note that most of the
flows that were not marked as detached fronts, leaking fronts or dispersive
spikes in Fig. 5.20 fall in the oscillating flow boundaries in Fig. 5.23.

5.1.5 Macroscopic diffusion

Similar to the previous chapter for pipe displacement flows, in this section
we focus on those simulations where the degree of transverse mixing is high.
In such cases we expect that advective transport due to the mean flow will be
supplemented by diffusive spreading along the pipe. Debacq et al. [33, 34]
used a similarity scaling for exchange flows in vertical pipes to collapse
profiles of the cross-sectionally averaged concentration C, measured at each
location x̂ and time t̂, onto a master curve defined with respect to x̂/

√
t̂. On

fitting the master curve to an error function form, estimates were derived for
the macroscopic diffusion of the mean concentration along the pipe. Seon
et al. [114] followed the same approach for inclined pipes (as have we in
the previous chapter) and we adopt an analogous approach here for channel
flows.

In the presence of a mean flow (V̂0), when the flows fully mix transversely
it is logical to assume a core of the mixture traveling with the speed V̂0
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Figure 5.22: a) Snapshots of the numerical simulation at times t̂ =
[0, 10, ..., 40] (s) run for β = 20◦, At = 0.01, ν̂ = 1 (mm2/s) and
V̂0 = 2.6 (mm/s). The last image at the bottom of the figure is the colourbar
of the concentration values. The size of the domain shown is 19×600 (mm2).
b) Spatiotemporal diagram of the averaged concentration values, C̄ŷ for the
same simulation as part a. Note that the image contrast is adjusted to show
the slight variation and unevenness in concentration values better. c, d) The
evolution of the leading and trailing front velocity values respectively with
time for the same simulation as part a showing oscillation with time.
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Figure 5.23: Classification of our results for the full range of simulations
plotted in the plane of Fr and Re cos β/Fr. The flows with oscillatory be-
havior in the front velocity are marked with superposed triangles. The heavy
dashed line, Fr = 0.3 roughly indicates the boundary between oscillatory
and non-oscillatory flows.

and therefore use (x̂ − V̂0t̂)/
√
t̂ as a similarity scaling. Figure 5.24 shows

two examples of this for β = 20◦, At = 0.01 and ν̂ = 1 (mm2/s). In
Fig. 5.24a,b the mean flow speeds are V̂0 = 5.3, 10.5 (mm/s) respectively.
We can see that all the concentration evolution profiles have collapsed onto

one curve. The solid line shows a curve fit of the form C = 0.5erfc( x̂−V̂0 t̂

2
√
D̂M t̂

),

motivated by the analytical solution to the linear diffusion equation. In
Fig. 5.24a we find D̂M = 1.09 × 10−4 (m2/s) and in Fig. 5.24b we find
D̂M = 1.97×10−4 (m2/s). Here D̂M is the macroscopic diffusion coefficient.
Note that similar to the pipe flow experimental findings in chapter 4, the
macroscopic diffusion coefficient for channel flow also seems to increases with
mean flow speed, as shown in Figs. 5.24a and b. Again it is worth noting
that for quantitative measurement of the macroscopic diffusion coefficient a
much finer mesh is advisable. However, here we are looking only for the main
qualitative for trends: the large scale features and a physical interpretation
of the results.
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Figure 5.24: Collapse of depth-averaged concentration profiles with (x̂ −
V̂0t̂)/

√
t̂ for β = 20◦, At = 0.01, ν̂ = 1 (mm2/s) and a) V̂0 = 5.3 (mm/s) b)

V̂0 = 10.5 (mm/s). The solid lines show the error-function fit obtained for
D̂M = 1.09 × 10−4 (m2/s) and D̂M = 1.97 × 10−4 (m2/s) for parts a and b
respectively.

We now consider the variation in diffusive regime with different inclina-
tion angles. Figures 5.25a-d show the collapse of depth-averaged concentra-
tion profiles with (x̂− V̂0t̂)/

√
t̂ for the same simulations as shown in Figs. 5.3

and 5.4. Snapshots are also added to the figures as inset for better under-
standing the flows. It can be seen that when the mixing is very strong and
efficient (β = 0◦ in Fig. 5.25), the collapsed profiles fall into an almost exact
error-function shape. Waves and slight deviations from the fitted curve are
due to short time behavior and the initial stages of mixing which we have
seen can be quite structured. At longer times we perhaps will observe a
smoother fit for diffusive flows. As we move away from the strictly vertical
channel (weaker mixing, more slumping) the collapsed profiles start to de-
viate from the diffusive flow fit function. This deviation appears mostly in
the form of a drop in concentration values for (x̂ − V̂0t̂)/

√
t̂ < 0, meaning

the region upstream the mixing core (see Figs. 5.25b,c). The deviation from
the symmetric error function fit means that the mixing downstream and
upstream of the mixing core has different qualities. In fact in most of the
diffusive simulations observed, the downstream zone of the mixing core was
found to be more diffusive than the upstream region. In other words, mixing
close to the leading front is stronger than that close to the trailing front (see
Fig. 5.3 for β = 30◦ or β = 60◦ for instance). For the (nearly) horizontal
cases where the flow is more segregated at the interface and the mixing is
not as strong, the profiles do not collapse well onto the error function fit
at all, but are more advective; see Fig. 5.25d. In this case a more sensible
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scaling parameter to use is x̂/t̂ rather than (x̂ − V̂0t̂)/
√
t̂, as shown in the

inset to Fig. 5.25d.
We now focus only on those simulations for which we have been able

to reliably collapse the data at long times, using the similarity scaling (x̂−
V̂0t̂)/

√
t̂, and have been able to estimate a macroscopic diffusion coefficient

from the master curve. We call these flows fully diffusive. Figure 5.26 plots
the measured macroscopic diffusion coefficients for displacement flows at
different inclination angles and for the three Atwood numbers: At = 0.001,
At = 0.0035 and At = 0.01. Two clear conclusions can be made, similar
to the experimental study for pipe flow displacements: within the range of
fully diffusive experiments, D̂M increases with both inclination angle, β, and
mean flow speed, V̂0. Also note that due to the more unstable nature of the
flow in channel displacement over the pipe, fully diffusive flows can also be
found for smaller At number. In the case of pipe flow, the fully diffusive
flows were only found for At > 0.0035 keeping all the other parameters the
same, Fig. 4.13.

The trends shown in Figs. 5.26a-c are interesting in suggesting two in-
dependent factors contributing to D̂M . The relatively large values of D̂M

confirms that the diffusive transport cannot be molecular in origin, but is
due to advection, i.e. this is largely dispersion. The flows are disordered
and relatively well-mixed transversely, to all appearances locally turbulent.
In such cases a scaling of the dispersivity with length and velocity scales is
expected that are relevant to the eddy structure. This is evidently complex
in general, but we might guess that the relevant velocity will scale approxi-
mately with either the inertial velocity or the mean flow, depending on the
relative strengths of buoyancy or the mean flow in driving the mixing. To ex-
plore this, we plot D̂M/(V̂tD̂) and D̂M/(V̂0D̂) in the (Fr,Re cos β/Fr)-plane
(see Fig. 5.27), the two axes reflecting the competition between inertia from
the mean flow and buoyancy (Fr) and between buoyancy driven motion and
viscous dissipation of that motion (Re cos β/Fr), respectively. Note that V̂t
is a velocity scale obtained by the balance between inertia and buoyancy

(V̂t =

√

AtĝD̂).
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ŷ

b)

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

(x̂ − V̂0 t̂)/
√

t̂ (m/s
1

2 )

C̄
ŷ
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Figure 5.25: Collapse of depth-averaged concentration profiles with (x̂ −
V̂0t̂)/

√
t̂ for the same simulations as shown in Figs. 5.3 and 5.4 a) β = 0◦,

b) β = 30◦, c) β = 60◦ and d) β = 90◦. The solid line in Figs. 5.25a and
b show the error-function fits with D̂M = 4.6 × 10−4 (m2/s) and D̂M =
3.7 × 10−4 (m2/s) respectively. The upper right insets show the qualitative
flow pattern in each case already shown in Fig. 5.3. In part d the lower
left inset shows the collapse of the concentration profiles when x̂/t̂ is used

instead of (x̂− V̂0t̂)/
√
t̂.
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Figure 5.26: Change in macroscopic diffusion coefficient, D̂M with mean
imposed velocity V̂0 and tilt angle, β, for ν̂ = 1 (mm2/s) and a) At = 0.001,
b) At = 0.0035 and c) At = 0.01.
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Figure 5.27: Contours of the normalized diffusion coefficient a) D̂M/(V̂tD̂)
and b) D̂M/(V̂0D̂) versus Fr and Re cos β/Fr.
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We can see that scaling of D̂M suggest that both mechanisms are respon-
sible for the mixing in different limits. For small Fr, at large (Re cos β/Fr)
as we transition out of the exchange dominated regime see that D̂M/(V̂tD̂)
appears to become independent of Fr, suggesting buoyancy driven mixing.
At the other extreme, for modest (Re cos β/Fr) and as we increase Fr we
find D̂M/(V̂0D̂) ≈ constant, suggesting mixing driven by the mean flow.

5.1.6 Overall regime classification

In the previous sections we presented our results in terms of the velocity of
the leading displacement front, and in terms of bulk axial diffusivity in the
case of fully diffusive flows. We now try to give a qualitative description
of the different flow regimes observed at long times in our simulations, in
terms of the 3 dimensionless parameters: (Fr,Re, β). Much of the paramet-
ric variation appears to be captured in the (Fr,Re cos β/Fr)-plane, as was
the case for displacement flow experiments in pipe (chapter 4). Figure 5.28
shows the numerical points from our study, characterised in terms of flow
type. We distinguish flows according to the following criteria: (i) instanta-
neous displacement (if there is no displaced fluid observed above the gate
valve); (ii) fully diffusive (if we are able to collapse the data at long times

via similarity solution of form, C = 0.5erfc( x̂−V̂0t̂

2
√
D̂M t̂

); (iii) for non-diffusive

flows we classify as either, viscous flows if there is no instability evident in
the spatiotemporal image behind the leading displacement front, and iner-
tial otherwise. It can be seen that this classification, although not perfect,
does appear to separate the data within the (Fr,Re cos β/Fr)-plane.
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Figure 5.28: Classification of our results for the full range of simulations
plotted in the plane of Fr and Re cos β/Fr. The instantaneous displacement
flows are colored in blue and non-instantaneous ones in red. The heavy
line represents the prediction of the lubrication model for the stationary
interface. The thick dashed lines show the boundary between diffusive and
non-diffusive flows. The horizontal dashed lines are drawn at Re cos β/Fr =
350 and Re cos β/Fr = 180 and the vertical dashed line is at Fr = 1.1. Non-
diffusive flows are marked by either the superposed circles (viscous flows)
or squares (intermittent flows). The transition between viscous and inertial
regimes is re-confirmed to occur at Re cos β/Fr = 25 (see also [126]).

The first thing to note is that compared to the pipe displacement flow
results in chapter 4, viscous flows in the channel are found over a rather
narrow range Re cos β/Fr . 25. The boundary between the diffusive and
non-diffusive flows can be drawn using Re cos β/Fr = 350, Re cos β/Fr =
180 and Fr = 1.1 line (Fig. 5.28). In contrast to pipe displacement flows
where the imposed flow had a significant influence on the stability of the
flows, in the channel geometry it seems not to be as influential. For instance,
the viscous flows found seem to remain viscous on increasing Fr number (or
increasing V̂0 equivalently). The inertial non-diffusive flows within the range
25 . Re cos β/Fr . 180 also stay unaffected by the imposed flow. For data
with Re cos β/Fr & 350 the flows are already diffusive for even small Fr
numbers (or small V̂0 values). Increasing Fr in this range does not change
the qualitative characteristics of the flow.

The only range of Re cos β/Fr in which the imposed flow seem to have
an effect on the flow stability is 180 . Re cos β/Fr . 350. In this range the
inertial non-diffusive flows transform into fully diffusive flows at Fr ≈ 1.1.
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5.2. Discussion points

Note that although the influence of the imposed flow on flow stability is
not very pronounced in the case of the channel flows studied, it still has
a large impact on making displacement flows transition to instantaneous
from non-instantaneous. Note the non-instantaneous (red) data points that
transform to instantaneous flows (blue) under the influence of increasing
Fr. Compared to the pipe flow experiments, the range of dimensionless
parameters studied is a bit limited as we have restricted the range of Re.

5.2 Discussion points

Displacement flow of two miscible iso-viscous Newtonian fluids in an inclined
channel has been investigated numerically in the case where the displacing
fluid is denser than the displaced fluid (i.e. density unstable). Our simula-
tions have covered a broad range of the governing dimensionless parameter
space (β,Re, Fr), not covered before in any numerical study. The qualitative
features of the flow at different inclination angles were investigated through
the concentration field snapshots, spatiotemporal diagrams of the averaged
concentration and also the contours of the velocity field. As we move on
closer to vertical and higher inclination angles the mixing and instability
increase within the flow.

Similar to the pipe flow experiments, the two important quantities to
measure in channel flow simulations are front velocity and macroscopic dif-
fusion coefficient. Note that the latter was measured only for fully diffusive
flows. similar to the experimental study for pipe flow displacements D̂M

increases with both inclination angle, β, and mean flow speed, V̂0. In the
case of the pipe displacement when the mixing is efficient, the front velocity
value was found to be very close to that of the mean flow i.e. V̂f ≈ V̂0.
However, for channel flow even when the fluids mix significantly the displac-
ing front still advances close to the channel center; resulting in V̂f ≈ 1.5V̂0
(by analogy with the Poiseuille flow). Note that if the simulations were run
over a longer channel length and at larger times, the mixing could have been
stronger and more complete transversely (V̂f ≈ V̂0).

Different interesting patterns were observed at the tip of the displacing
front, namely front detachment, leaking and dispersive spike fronts. These
phenomena were explained physically and then have been located on dimen-
sionless flow regime maps. Similarly, we took a similar approach with ex-
change dominated flows that exhibited some oscillatory-type pattern in the
front velocity. These flows were found over the whole range of Re cos β/Fr
and for Fr < 0.3.
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The Rayleigh-Taylor mushroom structure was found for strictly vertical
case for relatively low imposed flow rate and density difference. Due to both
mixing and the imposed flow, the mushroom-like structure is not sustained
over longer times. For inclinations slightly away from the vertical, the mush-
room pattern was not observed due to the effects of slumping, i.e. symmetry
is broken in the initial onset of flow, even though β is very small.

Finally, we have classified flows as fully diffusive, instantaneous, iner-
tial and viscous, providing a qualitative description of each and delineat-
ing where each flow can be found in the dimensionless planes of Fr and
Re cos β/Fr. Viscous flows in the channel were found over a rather narrow
range Re cos β/Fr . 25. The boundary between the diffusive and non-
diffusive flows was drawn using Re cos β/Fr = 350, Re cos β/Fr = 180 and
Fr = 1.1 line. In contrast to pipe displacement flows where the imposed flow
had a significant influence on the stability of the flows, in the channel geom-
etry it seems not to be as influential.For low Re cos β/Fr our results form a
natural extension of those of [126], but the range of phenomena observed is
significantly different here, as the channel inclination is changed.
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Chapter 6

Weighted residual method
for two-layer non-Newtonian
channel flows

In this chapter5 we study buoyant displacement flows in a plane channel
with two stratified fluid layers, in the long wavelength limit and including
the effects of weak inertia. The motivation for this comes from the results
of chapters 4 & 5 as well as from the earlier studies of [126]. Broadly speak-
ing, in the flows we have studied we have observed flows that range from
structured viscous streams, through instability and partial mixing to flows
that are fully mixed in the transverse direction and diffuse/disperse axially.
Although we have developed semi-empirical expressions that to some extent
describe our results and approximate bulk flow quantities (e.g. front veloc-
ity), we do not have any predictive methodology for these flow transitions,
nor a methodology that generalizes to other fluid combinations than we have
studied. The aim of this chapter is to develop such a methodology.

We have characterized our observed flows in the (Fr,Re cos β/Fr)-plane.
Broadly speaking, instabilities and inertial flows have been observed in three
main regimes: (i) beyond a critical ratio of axial buoyancy stress to viscous
stress (χ); (ii) beyond a critical ratio of inertial (V̂t) to viscous (V̂ν) velocity
scales (at lower mean displacement velocities V̂0); (iii) due to shear-flow tur-
bulent transition at high Reynolds numbers, possibly aided by buoyancy. As
β is decreased the axial component of the buoyancy force increases and the
stabilizing transverse component decreases. Although we associate reduced
inclination β with inertial instability, it must be noted that this depends
strongly on the buoyancy and viscous forces present. Of all these transi-
tions, the one most amenable to any form of analysis is the loss of stability
of the viscous stratified flows.

5A version of this chapter has been submitted for publication: K. Alba, S.M. Taghavi
and I.A. Frigaard. Weighted residual method for two-layer non-Newtonian channel flows:

steady state results and their stability.
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Chapter 6. Weighted residual method for two-layer non-Newtonian channel flows

Although we have studied only Newtonian iso-viscous flows so far in the
thesis, the range of industrial fluids used in primary cementing (and other
processes) will typically have viscosity differences and also non-Newtonian
rheologies. In particular we are interested in non-Newtonian fluids described
by the Herschel-Bulkley fluid model. These fluids have a yield stress, below
which the rate of strain is zero, and also exhibit shear-thinning behaviour.
Once this wider range of fluids is studied, we might also expect to add a 4th
instability mechanism to (i)-(iii) above, namely due to viscosity/rheology
difference at the interface. Although there will undoubtedly be further dif-
ferences when we come to study non-Newtonian displacement flows, some
of our previous studies (e.g. [125]) suggest that there are also qualitative
similarities, e.g. we also expect a transition from viscous to inertial regimes.

Rather than consider stratified pipe geometries, for simplicity we con-
sider only a two-layer channel flow. Although this channel flow configuration
does not relate directly to the pipe flow experiments presented in chapter
4, the results might still be used to draw qualitative conclusions about the
effect of different physical parameters. The pipe geometry introduces com-
plexities in any form of simplified modeling, as soon as non-Newtonian fluids
are considered, necessitating simplifying approximations if progress is to be
made, e.g. [87], whereas the two-layer channel flow is tractable analytically,
although also complex.

On the other hand, computational results presented in chapter 5 for
a channel geometry commonly showed that the displacing fluid layer ad-
vances along the middle of the channel, through the displaced layer rather
than slumping underneath it, unless the inclination is very close to horizon-
tal. Thus, in selecting a two-layer channel flow configuration our focus is
mainly on developing qualitative understanding for both pipe and channel
geometries. A common situation is that the interface elongates during the
displacement, due to both the mean flow and buoyancy. We are interested in
exploiting this long-thin aspect ratio of the flow to reduce the dimensionality
of the problem. Two-layer thin film/lubrication models have already been
developed in [126, 128] and used to predict the front velocity in displacement
flows for both pipes and channels. However, inertial effects are absent at
leading order in these models and must be included in any realistic analysis
of instability.

In general our interest lies in miscible flows for which the (molecular)
Péclet number is very large, which occur widely in the applications con-
sidered. In these flows the fluids do not mix significantly on the timescale
of the flow, unless there is some form of flow instability to drive the mix-
ing. Thus, we describe the flow as having a distinct interface. We take
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Chapter 6. Weighted residual method for two-layer non-Newtonian channel flows

account of weak inertial effects by developing a weighted residual method.
This method is developed to give a first order accurate approximation to
the interface height and flux functions in each layer. As the fluids are shear-
thinning and have a yield stress, to retain a formulation that can be resolved
analytically requires the development of a system of special functions for the
weight functions and various integral expressions. This formulation is a large
part of the contribution of this chapter.

Secondly, we study the stability of these systems via both a linear tempo-
ral analysis and a numerical spatiotemporal method. These results are com-
pared with an analysis of the Orr-Sommerfeld equations, for two generalized
non-Newtonian fluids following Herschel-Bulkley. Analytical expressions for
the growth rate and wave speed are obtained in the long wavelength limit.
The predictions of linear analysis based on weighted residual method shows
excellent agreement with the Orr-Sommerfeld approach for Newtonian and
non-Newtonian fluids. For displacement flows in unstable parameter ranges
we do observe growth of interfacial waves that saturate nonlinearly and dis-
perse. The observed waves have qualitatively similar characteristics to those
observed experimentally in pipe flow displacements.

Asymptotic methods and simplified modeling approaches have a long
history of application. In environmental and geophysical flow contexts, two
main strands of research are relevant. Firstly coming from the inviscid di-
rection, the shallow water equations have been used extensively in studying
wave dynamics. Here viscous effects typically enter only in the specification
of a drag law and in modeling the axial dissipation. As we consider non-
Newtonian fluids the precise nature of the viscous terms is of importance.
Secondly, researchers have taken classical thin-film/lubrication theory mod-
els and attempted to extend them to (weakly) inertial flows. It is this latter
approach that we adopt.

The spirit of our derivation follows that of [8] in that our weighted resid-
ual approach is aimed at a first order accurate prediction of the interface
height and fluxes in the two fluid layers (see §6.2). Unlike Newtonian fluids
the base flows are generally not polynomials given in terms of the transverse
coordinate y, slaved to the interface height h. Thus, the more elaborate
expansions to higher order found in e.g. [8], are hard to write down in sim-
ple terms. In any case, there are considerable complications at an algebraic
level to overcome. As we shall see below, this can be achieved but involves
developing a systematic calculus for the integral functions that must be eval-
uated. Development of this algebraic framework is the objective of the first
part of this chapter. In the second part we consider the stability of these
flows, first comparing against long wavelength Orr-Sommerfeld results for
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6.1. Displacement flow in channel

parallel flows and then examining displacement flows numerically (see §6.4).
Note again that although our interest is in studying displacement flows, the
formulation developed in this chapter can be easily used for similar two-layer
flows e.g. co-extrusion flows.

6.1 Displacement flow in channel

Figure 6.1: Schematic of displacement geometry. Note that dimensional
notations are used in the figure and the interface shape is illustrative only.

The starting point for the model is a fully 2D plane channel miscible
displacement flow in the immiscible large Péclet number limit. In general
it will be assumed that the displacing fluid (fluid H) is heavier than the
displaced (fluid L), so that the configuration is density unstable (see figure
6.1). The Navier-Stokes equations are made dimensionless using the channel
height D̂ as length-scale and the mean displacement velocity V̂0 as velocity
scale. The model equations are:

[1±At] [ut + u · ∇u] = −∇p+ 1

Re
∇ · τ ± 1

Fr2
eg,

(6.1)

∇ · u = 0, (6.2)

ht + u · ∇(h− y) = 0. (6.3)

Here eg = (cos β,− sin β) in directions (x, y) and the± refers to the heavy/light
fluid layers, respectively. The mean static pressure gradient has been sub-
tracted from the pressure before scaling. The interface height is denoted by
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6.1. Displacement flow in channel

y = h(x, t). For t > 0, no slip boundary conditions are satisfied at the solid
walls and outflow conditions imposed at the channel exit. At the inflow,
pure heavy fluid is pumped at mean velocity V̂0. Apart from the angle of
inclination β and Atwood number, At = (ρ̂H − ρ̂L)/(ρ̂H + ρ̂L), two other
dimensionless parameters appearing in (6.1) are the Reynolds number, Re,
and the (densimetric) Froude number, Fr:

Re ≡ V̂0D̂

ν̂
, Fr ≡ V̂0

√

AtĝD̂

. (6.4)

Here ν̂ is defined using the mean density ρ̂ = (ρ̂H+ρ̂L)/2 and a viscosity scale
that will be derived from the rheological properties of the pure displacing
fluid (fluid H). We see that for small At the flow is essentially governed by
the 3 parameters β, Re & Fr. A dimensionless combination of these that
arises naturally in thin layer flows is

χ =
2Re cos β

Fr2
, (6.5)

which represents the balance of axial buoyancy stresses and viscous stresses
due to the imposed flow.

6.1.1 Constitutive equations considered

The fluids are assumed to be Herschel-Bulkley fluids, which incorporates also
the simpler Bingham, power law and Newtonian models. Herschel-Bulkley
fluids are described by 3 (dimensional) parameters: a fluid consistency κ̂, a
yield stress τ̂Y and a power law index, n. Dimensionless constitutive laws
for pure fluid k are:

γ̇(u) = 0 ⇐⇒ τk(u) ≤ Bk, (6.6)

τk,ij(u) =

[

κkγ̇
nk−1(u) +

Bk
γ̇(u)

]

γ̇ij(u) ⇐⇒ τk(u) > Bk (6.7)

where the strain rate tensor has components:

γ̇ij(u) =
∂ui
∂xj

+
∂uj
∂xi

, (6.8)

and the norms of these tensors, γ̇(u) and τk(u), are defined by:

γ̇(u) =





1

2

2
∑

i,j=1

[γ̇ij(u)]
2





1/2

, τk(u) =





1

2

2
∑

i,j=1

[τk,ij(u)]
2





1/2

. (6.9)
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6.1. Displacement flow in channel

Here, subscripts k = H,L are used to distinguish the fluids. The parameter
κH = 1 and κL is the viscosity ratio m, equal to:

m ≡ µ̂L
µ̂H

=
κ̂L[V̂0/D̂]nL−1

κ̂H [V̂0/D̂]nH−1
, (6.10)

where µ̂L is a viscosity scale for fluid 2 (the less dense fluid). Note that
in the case of 2 Newtonian fluids, µ̂k = κ̂k. The Bingham numbers Bk are
defined as:

Bk ≡
τ̂k,Y

κ̂H [V̂0/D̂]nH

. (6.11)

For each fluid we shall work with two viscosity functions ηk and ηk,t,
defined as:

ηk =

[

κkγ̇
nk−1(u) +

Bk
γ̇(u)

]

, (6.12)

ηk,t = ηk + γ̇
∂ηk
∂γ̇

= nkκkγ̇
nk−1(u). (6.13)

The first of these is the effective viscosity (often called the apparent viscos-
ity). The second of these is referred to as the tangent viscosity. Both vis-
cosity functions are used practically in interpreting flow curves (rheograms)
of viscometric flows; see e.g. [108]. Simply put, the flow curve τ = γ̇ηk(γ̇),
defines ηk for generalised Newtonian fluids, while ηk,t =

dτ
dγ̇ is the viscosity

measured as the tangent to the flow curve. The tangent viscosity also arises
naturally in problems involving perturbations of shear flows of generalised
Newtonian fluids: it is the difference between effective and tangent viscosi-
ties that gives a measure of the shear-induced anisotropy present in linear
stability problems; see [91]. For shear thinning fluids the tangent viscosity
is always less than the effective viscosity. These viscosity functions arise
naturally in the analysis below.

6.1.2 Parallel flow solution

For any h ∈ [0, 1] we are able to find a parallel two-layer solution of (6.1)-
(6.3): u = (Up(y), 0), p = Pp(x, y), from the following system

d

dy
τH,xy = −fp, y ∈ (0, h), (6.14)

d

dy
τL,xy = χ− fp, y ∈ (h, 1), (6.15)
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6.1. Displacement flow in channel

with boundary and interface conditions:

Up(0) = 0, Up(h
−) = Up(h

+), τH,xy(h
−) = τL,xy(h

−), Up(1) = 0, (6.16)

and flow constraint
∫ 1

0
Up(y) dy = 1. (6.17)

The pressure field Pp is defined by the modified pressure gradient fp via:

Pp(x, y) =















1

Re

[

−fpx+
χ

2
x− χ tan β

2
y

]

, 0 ≤ y ≤ h,

1

Re

[

−fpx+
χ

2
x− χ tan β

2
(2h− y)

]

, h < y ≤ 1,

(6.18)
up to an arbitrary additive constant.

For any of the fluids that are not Newtonian, the problem (6.14)-(6.17),
is nonlinear. Since there is a single non-zero component of the strain rate
and deviatoric stress, the constitutive laws are given in terms of simple
algebraic relations. The approach taken to solve these equations in [128]
is to define the shear stresses τH,xy & τL,xy in each layer, in terms of fp
and the interfacial stress τi. A single monotone equation is then derived
for the interfacial velocity, by integrating outwards from each wall, and this
equation is solved iteratively to give τi. In an outer iteration, we find the
modified pressure gradient fp, such that (6.17) is satisfied, (the flow rate
increases monotonically with fp).

Although iterative, this procedure is relatively quick and convergence
to any given tolerance can be guaranteed. Note that the solution com-
puted in this way includes fp. We consider the rheological parameters
(m,nH , nL, BH , BL) as fixed for any such computation. The main para-
metric dependency therefore is on (h, χ), and we write:

Up(y) = Up(y;h, χ), fp = fp(h, χ). (6.19)

Figure 6.2a shows some examples of the base multi-layer velocity solution
for (h, χ) = (0.8, 10). The lower fluid is Newtonian and the upper fluid
is a Bingham fluid. For increasing BL we observe that the upper layer
velocity decreases progressively until eventually the layer becomes static,
held by the yield stress of fluid L. Figure 6.2b shows further examples for
(h, χ) = (0.5, 0). The lower fluid is Newtonian and the upper fluid is a
power-law fluid. For decreasing nL we observe that the upper layer velocity
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Figure 6.2: Change in the base flow velocity profile, Up(y), with a) upper
layer Bingham number, BL, for BH = 0, m = 1, nL = 1, nH = 1 and
χ = 10, b) upper layer power-law index, nL, for BL = 0, BH = 0, m = 0.2,
nH = 1 and χ = 0. The broken lines in figures a and b indicate the position
of the interface, h = 0.8 and h = 0.5 respectively.

increases, at the expense of that in the lower layer. This is a due to shear-
thinning. The light fluid velocity profile also becomes increasingly plug-like,
although there is in fact always a single maximum.

We now introduce some notational shorthand that will become useful
for the algebraic manipulations later in the paper. Let us suppose that we
have iterated to find τi and fp for a parallel flow solution that is defined by
parameters (h, χ). The shear stresses vary linearly across each fluid layer
and can be defined most simply by the values at the ends of each layer:

τH,xy(y) = τH

(

1− y

h

)

+ τi
y

h
, y ∈ (0, h), (6.20)

τL,xy(y) = τL
h− y

h− 1
+ τi

1− y

1− h
, y ∈ (h, 1), (6.21)

where τH = τi + fph and τL = τi + (1 − h)(χ − fp). To make the algebra
more compact, we will denote the positive part of a function v(x) by the
notation (v(x))+, i.e.

(v(x))+ = max{0, v(x)}.

Note that the strain rate of the parallel flow solution, say γ̇0 is given in fluid
k by:

γ̇0(y) =

∣

∣

∣

∣

∂Up
∂y

(y)

∣

∣

∣

∣

=
(|τk,xy|(y)−Bk)

mk
+

κmk

k

, (6.22)
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and the velocity gradient in fluid k is:

∂Up
∂y

(y) = sgn(τk,xy)
(|τk,xy|(y)− Bk)

mk
+

κmk
k

, (6.23)

where mk = 1/nk. To construct the solution (and various other quantities
of importance) we need to integrate this type of quantity across the fluid
layers. To deal with these expressions in a systematic fashion we define the
following integral expressions:

IH,p(y) = mH

∫ y

0

(|τH,xy|(ỹ)−BH)
p
+

κmH

H

dỹ, (6.24)

JH,p(y) = mH

∫ y

0
sgn(τH,xy)

(|τH,xy|(ỹ)− BH)
p
+

κmH
H

dỹ, (6.25)

IL,p(y) = mL

∫ 1

y

(|τL,xy|(ỹ)−BL)
p
+

κmL

L

dỹ, (6.26)

JL,p(y) = mL

∫ 1

y
sgn(τL,xy)

(|τL,xy|(ỹ)− BL)
p
+

κmL
L

dỹ. (6.27)

These functions can be evaluated directly for p > −1. The basic method
involves change of the independent variable from y to τk,xy after which the
integrals become tractable. This methodology is commonly used in cal-
culating hydraulics quantities for generalized Newtonian fluids. Later we
shall also integrate these functions and various products of these functions
over the intervals [0, h] & [h, 1]. Algebraic expressions for the Ik,p and Jk,p
functions are described fully in appendix C.

With the aid of the above functions, the velocity in each fluid layer is
given simply by:

Up(y) =

∫ y

0

∂Up
∂y

(ỹ) dỹ =
JH,mH

(y)

mH
, y ∈ [0,h], (6.28)

Up(y) =

∫ y

1

∂Up
∂y

(ỹ) dỹ = −JL,mL
(y)

mL
, y ∈ (h, 1]. (6.29)

and note that the parameters τi and fp have been computed in such a way
that the velocity is continuous at the interface: mLJH,mH

(h) = −mHJL,mL
(h).

6.1.3 Long-thin flows

Our paper focuses wholly on flows that have a long-thin aspect ratio. Ac-
cordingly, it is assumed that after an initial time the flow develops axially
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6.1. Displacement flow in channel

over a length-scale δ−1 ≫ 1. For example, the heavier fluid slumps towards
the lower side of the channel and elongates axially with the two fluids sep-
arated by a single interface, y = h(x, t). For now we simply regard δ as an
arbitrary small aspect ratio, assume that the channel is effectively infinite
and adopt a lubrication/thin-film type rescaling:

δ(x− x0) = ξ, δt = T, δp = P, u = U, v = δV,

where the initial interface is centred at x = x0. The overall aim is to derive
a perturbation approximation. We start with a general expansion:

(U, V, P ) = (U0, V0, P0) + δ(U1, V1, P1) + δ2(U2, V2, P2) + ....

which we insert in the equations of motion and expand to order δ. We
do not include h in this expansion as we shall anyway assume that the
interface position is accurate to first order in δ. We follow the usual thin-
film/lubrication practice of eliminating the pressure by integrating the y-
momentum equations:

P0 + δP1 =















χ

2
ξ −

∫ ξ

0
f0(ξ̃) + δf1(ξ̃) dξ̃ −

yδ

2
χ tan β, y ∈ [0, h]

χ

2
ξ −

∫ ξ

0
f0(ξ̃) + δf1(ξ̃) dξ̃ −

(2h− y)δ

2
χ tan β, y ∈ [h, 1]

(6.30)
where f0(ξ, T )+δf1(ξ, T ) is the modified pressure gradient along the bottom
wall of the channel. Insertion into the x-momentum equations gives the
following equations valid to first order in δ:

δRe [1 +At]

[

∂U0

∂T
+ U0

∂U0

∂ξ
+ V0

∂U0

∂y

]

= f0 +
∂

∂y

[

ηH(γ̇0)
∂U0

∂y

]

+ δf1

+δ
∂

∂y

[

ηH,t(γ̇0)
∂U1

∂y

]

, (6.31)

within the heavy layer, y ∈ (0, h). Within the light fluid layer, for y ∈ (h, 1)
we have

δRe [1−At]

[

∂U0

∂T
+ U0

∂U0

∂ξ
+ V0

∂U0

∂y

]

= f0 − χ+
∂

∂y

[

ηL(γ̇0)
∂U0

∂y

]

+δf1 + δ
∂

∂y

[

ηL,t(γ̇0)
∂U1

∂y

]

+ δχ tan β
∂h

∂ξ
. (6.32)

Note that the effects of buoyancy are felt in the two terms involving χ. The
first of these (χ) is the effect of the axial buoyancy force whereas the second
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6.1. Displacement flow in channel

models the transverse buoyancy force, which manifests through the slope of
the interface. This second term may be of the same order as the first. For
example, we might assume that spreading of the interface, relative to the
mean flow, is driven by buoyant stresses which have size: (ρ̂H− ρ̂L)ĝ sin βD̂,
which act via the slope of the interface D̂/L̂, and that these are balanced
by viscous stresses, leading to:

δ−1 =
L̂

D̂
=

(ρ̂H − ρ̂L)ĝ sin βD̂
2

µ̂V̂0
= χ tan β, (6.33)

see e.g. [128]. This situation is most likely in strongly inclined channels.
Both fluids are incompressible and the interface is advected via a kine-

matic condition:

∂U0

∂ξ
+
∂V0
∂y

+ δ

[

∂U1

∂ξ
+
∂V1
∂y

]

= 0, (6.34)

∂h

∂T
+ (U0 + δU1)

∂h

∂ξ
= V0 + δV1. (6.35)

No slip conditions are satisfied at each wall and the net flux of fluid along
the channel is equal to unity, due to scaling with the mean flow:

1 =

∫ 1

0
U dy ⇒ 1 =

∫ 1

0
U0 dy, 0 =

∫ 1

0
U1 dy. (6.36)

Combining the incompressibility condition with the kinematic condition, we
arrive at the standard thin-film equation:

∂h

∂T
+

∂

∂ξ
q = 0, q =

∫ h

0
U0 + δU1 dy. (6.37)

6.1.4 Standard thin-film approach

The standard thin-film approach now considers the formal limit Re fixed as
δ → 0 in which both inertial and first order viscous and pressure gradient
perturbations vanish. The term involving the slope of the interface may
be retained at leading order (usually according to the inclination of the
channel), as discussed above. We note that in this formal limit, (6.31) and
(6.32) reduce considerably. The leading order velocity is defined by a system
analogous to that of the parallel flow solution in §6.1.2. In the notation of
§6.1.2, we have

U0(y) = Up(y, h, χ − δχ tan β
∂h

∂ξ
), f0 = fp(h, χ− δχ tan β

∂h

∂ξ
).
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6.2. Weighted residual approximation

The flux function q is given simply by:

q = q(h, χ− δχ tan β
∂h

∂ξ
) =

∫ h

0
Up(y, h, χ− δχ tan β

∂h

∂ξ
) dy (6.38)

In general, from (6.28) we can evaluate:

q =

∫ h

0

JH,mH
(y)

mH
dy =

hIH,mH+1(h)

mH(mH + 1)(τi − τH)
− h2(|τH | −BH)

mH+1
+

(mH + 1)κmH

H (τi − τH)

(6.39)

Algebraic expressions evaluating the terms above are described fully in ap-
pendices B and C. We see that the standard thin-film approach yields the
evolution equation (6.37), with q given semi-analytically. This equation has
been studied extensively by [128].

6.2 Weighted residual approximation

We wish to develop simplified equations for our zero-th order perturbation
in such a way that it approximates certain flow quantities to first order.
It is clear that achieving a first order approximation to local quantities is
unlikely with the zero-th order terms alone. Instead we aim to approximate
certain integral quantities to first order: namely the interface height and
the volumetric fluxes of the individual fluid layers. Consistent with this
objective, we have not expanded h in terms of δ, as only leading order terms
occur. Now we see that if the leading order solution U0 is to give a first order
accurate approximation to h via the evolution equation (6.37), we require
that:

q =

∫ h

0
U0 dy + O(δ2) ⇒

∫ h

0
U1 dy = 0. (6.40)

Equally, since the net flux of U1 is zero we have also the constraint that

∫ 1

h
U1 dy = 0. (6.41)

The motivation for studying (6.31) and (6.32) is that they contain the
leading order effects of inertia, at first order in δ, but are far simpler than a
fully 2D Navier-Stokes system. The challenge is to retain this leading order
inertial effect without the additional complexity of computing the first order
perturbation solution, i.e. (U1, V1) and f1. The idea of the weighted residual
method is to determine weight functions, gH(y) and gL(y), such that when
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6.2. Weighted residual approximation

we multiply (6.31) by gH(y) and (6.32) by gL(y), then integrate across the 2
intervals and sum, the first order terms that involve (U1, f1) should vanish,
leaving behind terms that represent evolution of the leading order inertial
terms.

Determining which terms should vanish is not decided by the size of the
terms (e.g. formally the inertial terms are also first order), but is determined
by the criterion of closure and solvability of the residual equations. For
example, the term (δχ tan β ∂h∂ξ ) depends only on zero-th order variables and
there is consequently no need for this to vanish. Equally, we have seen that
this term may in some circumstances be of zero-th order, in strongly inclined
channels.

The above requirements help to define the weight functions. Explicitly
we require:

0 =

∫ h

0
gH

[

∂

∂y

[

ηH,t(γ̇0)
∂U1

∂y

]

+ f1

]

dy

+

∫ 1

h
gL

[

∂

∂y

[

ηL,t(γ̇0)
∂U1

∂y

]

+ f1

]

dy.

(6.42)

Note that f1 does not vary with y. On integrating by parts we have:

0 =

∫ h

0
U1

∂

∂y

[

ηH,t(γ̇0)
∂gH
∂y

]

dy +

∫ 1

h
U1

∂

∂y

[

ηL,t(γ̇0)
∂gL
∂y

]

dy

+

[

gHηH,t(γ̇0)
∂U1

∂y
− U1ηH,t(γ̇0)

∂gH
∂y

]h

0

+

[

gLηL,t(γ̇0)
∂U1

∂y
− U1ηL,t(γ̇0)

∂gL
∂y

]1

h

+ f1

(
∫ h

0
gH dy +

∫ 1

h
gL dy

)

(6.43)

From the perturbation expansion of the usual conditions of continuity of
velocity and stress at the interface, we may expect that the first order per-
turbation satisfies:

U1(ξ, h
−, T ) = U1(ξ, h

+, T ), ηH,t(γ̇0)
∂U1

∂y
(ξ, h−, T ) = ηL,t(γ̇0)

∂U1

∂y
(ξ, h+, T )

(6.44)
as well as U1 vanishing at the 2 solid walls. For the weight functions gH(y)
and gL(y) we impose equivalent conditions:

gH(0) = 0, (6.45)
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6.2. Weighted residual approximation

gH(h) = gL(h), (6.46)

ηH,t(γ̇0)
∂gH
∂y

(h) = ηL,t(γ̇0)
∂gL
∂y

(h), (6.47)

gL(1) = 0, (6.48)

which ensure that the boundary terms in (6.43) vanish. To complete the
specification, we define gH(y) and gL(y) as the solutions of the following
boundary value problem:

∂

∂y

[

ηH,t(γ̇0)
∂gH
∂y

]

= −a, y ∈ (0, h) (6.49)

∂

∂y

[

ηL,t(γ̇0)
∂gL
∂y

]

= 1− a, y ∈ (h, 1) (6.50)

with boundary and jump conditions (6.45) - (6.48). The constant a ∈ [0, 1]
is again uniquely determined by the condition that:

∫ h

0
gH dy +

∫ 1

h
gL dy = 0. (6.51)

Observe that the first two terms in (6.43) now vanish due to the definition of
gH(y) and gL(y) in the above boundary value problem, combined with the
individual flux conditions, (6.40) & (6.41). The final pressure gradient term
also vanishes due to (6.51). The choice of constants −a and 1 − a, on the
right-hand sides of (6.49) & (6.50), firstly normalizes the weight functions
and secondly (via (6.51)) ensures that the flux of gH is positive and that of
gL is negative. We shall deal below in §6.2.3 with solution of (6.45)-(6.51).

6.2.1 Velocity closure

To progress with (6.31) and (6.32), we must assume a functional form for
the leading order velocity, U0. To this end we assume that the leading order
shear stress in each fluid layer varies at most linearly with y at each (ξ, T ).
Thus, we assume that the two-layer flow satisfies the equations:

∂

∂y

[

ηH(γ̇0)
∂U0

∂y

]

=
d

dy
τH,xy,0 = −f(ξ, T ), y ∈ [0, h), (6.52)

∂

∂y

[

ηL(γ̇0)
∂U0

∂y

]

=
d

dy
τL,xy,0 = b(ξ, T )− f(ξ, T ), y ∈ (h, 1],(6.53)

plus no-slip conditions at the walls and continuity of velocity and shear
stress at y = h. Note that this is not very different in form from the multi-
layer weighted residual approach of [8], who assume a quadratic form for the
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6.2. Weighted residual approximation

velocity, i.e. solving for the base flow from (6.52) & (6.53) for 2 Newtonian
fluids would also lead to quadratic expressions in y. Once the boundary and
interface conditions are implemented in [8] there is also only a single free
variable, equivalent to b(ξ, T ). The point is that for the more complex fluids
considered here, parallel shear flow velocities are not typically polynomial
in y and it would be incorrect to use a polynomial expression as the first
term in an approximation to the velocity. Instead the form of closure (6.52)
& (6.53) corresponds to that of the parallel flow solutions in §6.1.2.

Just as in the standard thin-film approach of §6.1.4, where the leading
order velocity is slaved to the interface height h, in the weighted residual
approach the leading order velocity is slaved to both h and a second primary
variable. The choice of primary variables that has been made for Newtonian
fluid combinations is (h, q), e.g. [1, 8, 126]. There is nothing wrong with
that choice here, but it is more natural to work with (h, b) as our primary
variables, i.e. due to the velocity closure (6.52) & (6.53). In the appendix
of [128] it is shown that q increases monotonically with b, so that (h, b)
is formally equivalent to (h, q). Use of (h, q) is possible, but would entail
the additional (computational) evaluation of the mapping b 7→ q which is
time consuming in numerical implementation. For Newtonian problems this
mapping would be linear and there is essentially no computational penalty
of working with (h, q).

Therefore as velocity closure, for any value of (h, b) we formally com-
pute the parallel flow solution described in §6.1.2; U0 and f are uniquely
determined as:

f = fp(h, b), U0(y) = Up(y;h, b).

Note that in this way f is also slaved to (h, b) and has the physical meaning
of a leading order modified pressure gradient, although it is not necessary
that f = f0. However, if we wish to resolve the limit Re → 0 consistently
in our approximation, we need to base our velocity closure on the form of
the solution found in the thin-film limit. Consistency as Re → 0 is found
provided that

b = χ− δχ tan β
∂h

∂ξ
, f = fp(h, χ− δχ tan β

∂h

∂ξ
) = f0, as Re→ 0.

This solution has been discussed in §6.1.4.

6.2.2 Weighted residual equation

An evolution equation for b(ξ, T ) is needed, to couple to (6.37) for h(ξ, T ).
We multiply (6.31) by gH(y) and (6.32) by gL(y), integrate across the 2
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6.2. Weighted residual approximation

intervals and sum the expressions. Due to the chosen form of weight func-
tions, the terms involving (U1, f1) vanish. Substituting (6.52) & (6.53) for
the leading order shear stresses leads to a term (f0 − f) in each of (6.31)
and (6.32), which also vanishes due to (6.51). The remaining expressions in
the residual equation are:

0 = δRe [1 +At]

∫ h

0

∂U0

∂T
gH dy + δRe [1−At]

∫ 1

h

∂U0

∂T
gL dy

+δRe [1 +At]

∫ h

0

∂U0

∂ξ

[

U0gH −
∫ h

0

∂U0

∂y
gH dỹ +

∫ y

0

∂U0

∂y
gH dỹ

]

dy

+δRe [1−At]

∫ 1

h

∂U0

∂ξ

[

U0gL +

∫ 1

h

∂U0

∂y
gL dỹ−

∫ 1

y

∂U0

∂y
gL dỹ

]

dy

+

[(

χ− δχ tan β
∂h

∂ξ

)

− b(ξ, T )

]
∫ 1

h
gL(y) dy (6.54)

Note that we have used integration by parts and the continuity equation
to eliminate V0. Since U0 is uniquely determined by (h, b), (6.54) can be
regarded an evolution equation for b(ξ, T ), of the form:

0 = Ah
∂h

∂T
+Ab

∂b

∂T
+ Ch

∂h

∂ξ
+ Cb

∂b

∂ξ
+

[(

χ− δχ tan β
∂h

∂ξ

)

− b

]

S (6.55)

where

Ah(h, b) = δRe [1 +At]

∫

h

0

∂U0

∂h
gH dy + δRe [1−At]

∫ 1

h

∂U0

∂h
gL dy (6.56)

Ab(h, b) = δRe [1 +At]

∫

h

0

∂U0

∂b
gH dy + δRe [1−At]

∫ 1

h

∂U0

∂b
gL dy (6.57)

Ch(h, b) = δRe [1 +At]

∫

h

0

∂U0

∂h

[

U0gH −
∫

h

0

∂U0

∂y
gH dỹ +

∫ y

0

∂U0

∂y
gH dỹ

]

dy

+ δRe [1−At]

∫ 1

h

∂U0

∂h

[

U0gL +

∫ 1

h

∂U0

∂y
gL dỹ −

∫ 1

y

∂U0

∂y
gL dỹ

]

dy

(6.58)

Cb(h, b) = δRe [1 +At]

∫ h

0

∂U0

∂b

[

U0gH −
∫ h

0

∂U0

∂y
gH dỹ +

∫ y

0

∂U0

∂y
gH dỹ

]

dy

+ δRe [1−At]

∫ 1

h

∂U0

∂b

[

U0gL +

∫ 1

h

∂U0

∂y
gL dỹ −

∫ 1

y

∂U0

∂y
gL dỹ

]

dy

(6.59)

S(h, b) =

∫ 1

h

gL(y) dy (6.60)
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6.2. Weighted residual approximation

6.2.3 Calculating the weight functions and terms in the
residual equation (6.55)

The weight functions are defined by the problem (6.45) - (6.51). Unlike the
Newtonian problem, the tangent viscosity functions that appear in (6.49)
& (6.50) depend on the local rate of strain γ̇0. This means that the weight
functions will depend on b as well as h. At first glance the problem (6.45)
- (6.51) appears to be just as formidable as computing U0(y). However, in
fact the weight functions can be determined analytically from the zeroth
order solution U0(y), because the problem is linear in gk(y).

First, let’s observe that the problem (6.45) - (6.51) for the weight func-
tions is an exchange flow problem for two fluids, with y-varying viscosities
given by the tangent viscosities in each layer. Considering (6.47) we denote
by τw,i the common value of the weight function shear stress at the interface,
i.e.

τw,i = ηH,t(γ̇0)
∂gH
∂y

(h) = ηL,t(γ̇0)
∂gL
∂y

(h),

and now integrate (6.49) & (6.50) out from y = h:

ηH,t(γ̇0)
∂gH
∂y

= τw,i − a(y − h), y ∈ (0, h), (6.61)

ηL,t(γ̇0)
∂gL
∂y

= τw,i + (1− a)(y − h), y ∈ (h, 1). (6.62)

The right hand sides of (6.61) & (6.62) are linear in y, but ηk,t(γ̇0) ∝ γ̇nk−1
0 ,

which is not a linear function of y. However, γ̇nk

0 is a linear function of y,
and it therefore appears that the derivatives of gk must mimic the behaviour
of γ̇0 in order to satisfy (6.61) & (6.62). In any yielded region of flow, γ̇nk

0

is proportional to the shear stress, minus the yield stress. This strongly
suggests that for k = H, L the quantity

ηk,t(γ̇0)
∂gk
∂y

must be a linear function of the shear stress τk,xy(y), in layer k. By compar-
ing with (6.61) & (6.62) these linear relations are easily determined, leading
to:

∂gH
∂y

=

a

f
[τH,xy(y)− τi] + τw,i

ηH,t(γ̇0)
, y ∈ (0, h), (6.63)

∂gL
∂y

=

1− a

b− f
[τL,xy(y)− τi] + τw,i

ηL,t(γ̇0)
, y ∈ (h, 1). (6.64)
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6.2. Weighted residual approximation

Note that f and τi are already determined as part of the velocity closure,
slaved to (h, b). We therefore have two unknown constants to determine:
τw,i and a. These are effectively an interfacial stress and modified pres-
sure gradient for the weight function problem. These two constants will be
determined via (6.46) and (6.51), respectively.

First we integrate (6.63) from the lower wall, where we impose (6.45).
After some algebra we find:

gH(y) =
a

f
JH,mH

(y) +

[

τw,i −
a

f
τi

]

IH,mH−1(y) +
aBH
f

JH,mH−1(y),

= ah[IH,mH−1(y)− LH,mH
(y)] + τw,iIH,mH−1(y), (6.65)

where we define:

Lk,mk
=
Jk,mk

(y) +BkJk,mk−1(y)− τkIk,mk−1(y)

τi − τk
, k = H,L. (6.66)

The advantage of using the function Lk,mk
is that this combination of the

functions Jk,mk
, Jk,mk−1 and Ik,mk−1 does not become singular as τi → τk.

Similarly, we integrate (6.64) out from the upper wall, where we impose
(6.48) and find:

gL(y) = −(1− a)

(b− f)
JL,mL

(y)−
[

τw,i −
(1− a)

(b− f)
τi

]

IL,mL−1(y)

− (1− a)BL
(b− f)

JL,mL−1(y). (6.67)

Equating the two weight functions at the interface, i.e. imposing (6.46), gives
one linear equation relating τw,i and a:

τw,i =
ah[LH,mH−1(h)− IH,mH

(h)] + (1− a)(1− h)[LL,mL
(h) − IL,mL−1(h)]

[IH,mH−1(h) + IL,mL−1(h)]
.

(6.68)
Note that [IH,mH−1(h) + IL,mL−1(h)] > 0. We determine a by satisfying
(6.51). For this we need to compute the fluxes of the weight functions.
Algebraic expressions for the integrals of the functions Ik,p, Jk,p and Lk,p
are given in appendix C. Having eliminated τw,i, this results in single linear
equation for a. The complete solution is given in appendix B.

Figure 6.3 shows examples of the weight functions gH(y) and gL(y) for
the same base flow solutions as in Fig. 6.2. In Fig. 6.3a as BL is increased
we have seen in Fig. 6.2a that U(y) → 0 in the upper layer. In this limit
we find also that gL(y) → 0, and since the net flux is zero, we also have
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Figure 6.3: a) Examples of heavy and light fluid weight functions, gH(y)
and gL(y), varying with BL for BH = 0, m = 1, nL = 1, nH = 1 and b = 10.
The broken line indicates the position of the interface (h = 0.8). b) Change
in gH(y) and gL(y), with nL. The parameters used are BL = 0, BH = 0,
m = 0.2, nH = 1 and b = 0. The broken line indicates the position of the
interface (h = 0.5).

gH(y) → 0. This flow, when the upper layer is stationary is simply that of a
single fluid in a channel of reduced constant width. In this situation, neither
h nor b evolves and q = 1, since all the fluid passes in the lower layer.

In Fig. 6.3b we see a progressively plug-like profile for gL as nL decreases,
due to the progressively singular tangent viscosity of the base flow. Undu-
lations are evident in gL(y) for nL = 0.75 and nL = 0.5, but are also there
for nL = 0.25 if one zooms in. These are physical and can be explained as
follows. First we have from (6.62) that:

∂gL
∂y

=
τw,i + (1− a)(y − h)

ηL,t(γ̇0)
,

Since the net flux of the weight functions is zero, we may expect a maximum
in gH(y) and a minimum in gL(y). The minimum in gL(y) is where τw,i +
(1− a)(y − h) = 0. If fluid L is shear-thinning (nL < 1) we may also have a
maximum in U0(y) (see Fig. 6.2b), at which we have ηL,t(γ̇0) → 0. We see
that the maximum in U0(y) implies a second stationary point of gL(y). At
the second stationary point, ∂gL

∂y → 0, but does not generally change sign,
which results in an inflection point.

Calculation of the various terms in the residual equation (6.55) is de-
scribed fully in appendix B. In outline the procedure is as follows. We
first develop expressions for the partial derivatives of U0 with respect to h
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6.2. Weighted residual approximation

and b. These expressions are linear combinations of the functions Ik,p and
Jk,p, in each fluid k layer. The terms contributing to Ah and Ab are conse-
quently comprised of linear combinations of integrals across each fluid layer
of quadratic products of the Ik,p and Jk,p functions. For the terms contribut-
ing to Ch and Cb there are additional products with U0 and derivatives of
U0. These can also be expressed as linear combinations of the Ik,p and Jk,p
functions. Consequently, the terms contributing to Ch and Cb are comprised
of linear combinations of integrals across each fluid layer of cubic products
of the Ik,p and Jk,p functions. Algebraic expressions for the integrals of
quadratic and cubic products of the Ik,p and Jk,p functions is described fully
in appendix C. Aside from lengthy algebra (which can be largely automated
in computation) there is no essential difficulty in resolving these expressions
algebraically.

Examples of the inertial coefficients are shown in Fig. 6.4, plotted against
(h, b). For two identical Newtonian fluids we see in Fig. 6.4 that the contours
of these functions exhibit strong symmetry. This symmetry is no longer
present when one of the fluids is rheologically different from the other. In
each case, all the coefficients Ah, Ab, Ch and Cb vanish near the walls of the
channel, returning the problem to a single fluid problem.
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Figure 6.4: Contours of the inertial coefficients, Ah, Ab, Ch, Cb, S and q, in
(b,h)-plane. Parameters used are BL = 0, BH = 0, m = 1, nL = 1, nH = 1,
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Figure 6.5: a) Dependency of the interface evolution on mesh size. The
parameters used are BH = 0, BL = 0, m = 1, nH = 1, nL = 1, χ = 0,
δRe = 0 and the solutions are compared at T = 10. b) Evolution of the
interface height with time (T = [0, 1, 2, .., 10]) for the parameters as in part
a.

6.3 Results: displacement flows

Our reduced model consists of (6.37) and (6.55), which determine the evo-
lution of (h, b), providing a first order accurate approximation to h and the
volumetric fluxes in each layer. When furnished with appropriate initial and
boundary conditions these equations can model the long-time dynamics of
a slumping displacement flow in the weakly inertial regime.

For numerical solution of these equations, we suppose fully developed
flows of pure fluid H as ξ → −∞ and of fluid L as ξ → ∞. As initial
condition we take a linear profile (h(ξ, 0) = 0.5 − ξ) separating fluid H
and fluid L. The kinematic condition (6.37) is discretized in conservative
form, second-order in space and first-order explicitly in time. It is integrated
using a Van Leer flux limiter scheme (see e.g. [151]) for shock capturing.
For the depth-averaged momentum equation (6.55) the same flux limiter
scheme has been used. However, (6.37) and (6.55) are solved sequentially
and we have used updated values for h in the solution of (6.55), making the
scheme semi-implicit. Iterations continue up to the desired end time of the
computation.

To explore the performance of the numerical procedure we examine con-
vergence with varying spatial mesh step dξ, in Fig. 6.5a. The results are in
full agreement with those presented in [128] as δRe→ 0. Computations per-
formed for the rest of the paper use dξ = 0.05. A typical displacement flow
computation is shown in Fig. 6.5b, for the same parameters as in Fig. 6.5a.
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The interface evolution observed in Fig. 6.5b for δRe = 0 results in
a steadily advancing displacement front, stretching out other parts of the
interface. At longer times the interface profiles collapse onto a single curve
when rescaled with ξ/T , as shown in Fig. 6.6a. When inertia is introduced
we still find the interface evolving to a similarity solution (see Fig. 6.6b), but
it can be seen that both the final shape of the scaled interface is different and
that inertia delays convergence of the interface to the self-similar profile. It
is not only the interface height that approaches a similarity shape. All the
process variables appear to follow the convergence of the interface. As an
example, we plot the volumetric flux q(h, b) in Fig. 6.7, for the same flows
as in Fig. 6.6.

Although convergence to the similarity solution is slower with inertia
than without, we have found that the converged solution is well approxi-
mated by the solution at T = 10 in all cases examined. Therefore, in order
to examine the effects of the different parameters on the similarity shape
of the interface, we have simply plotted h(ξ, T ) at T = 10 as a function of
ξ/T . An alternative to this procedure would be to reformulate (6.37) and
(6.55) in terms of h(ξ/T ) and b(ξ/T ) and try to compute directly. However,
this procedure is rather complex. In the self-similar profiles presented in
e.g. Fig. 6.6b, note that a vertical segment of h(ξ/T ) simply indicates a part
of the interface advancing at constant speed and not a shock. In the thin-
film/lubrication limit of δRe = 0 shocks only arise for the pure advective
case, where the slope of the interface is negelected. Normally, in the frontal
region of the propagating interface the diffusive term hξξ (due to gravita-
tional spreading) is active in smoothing the interface; see the discussion in
[128]. We suspect that there is similar gravitational spreading here, when
inertia is present.

Figure 6.8 presents general effects on displacement for a range of para-
metric variations, all for fluids with no yield stress (BH = 0, BL = 0).
Inertia is usually found to result in marginally faster interface speeds of the
leading displacement front (of the order of a few percent); see Fig. 6.8a. In
[126] we have shown that an inertialess lubrication/thin film model under-
predicts the front velocity measured in our experiments by a similarly small
amount. Together with the faster frontal speed, the front height is lower and
h(ξ/T ) generally appears more rounded with inertial effects than without.
Note that the small difference in h(ξ/T ), evident above, are amplified in the
h(ξ, T ) representation, so that it is incorrect to assume that e.g. inertial
effects are negligible.

The effects of viscosity ratio are shown in Figs. 6.8b & d. If the displaced
fluid L is less viscousm < 1 we observe that the front height is higher and the
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Figure 6.8: Effects of various parameters on similarity shape of the interface,
h(ξ, T ) at T = 10 as a function of ξ/T : a) δRe varying for m = 1, nH = 1,
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Figure 6.9: Effects of varying inertia (δRe) on similarity shape of the inter-
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front speed is slower, meaning that the displacement is more effective. On
the other hand, for m > 1 the front moves more rapidly through fluid L and
displacement efficiency is reduced. The effects of buoyancy manifest through
χ (Fig. 6.8c). For a positive value of χ buoyancy pushes fluid L backwards
against the mean flow. A negative value of χ would correspond to displacing
uphill, where buoyancy forces act to push fluid L in the same direction as the
mean flow. Perhaps intuitively, front height increases and the displacement
becomes more effective as χ is decreased. Figure 6.8d shows the effects of
positive χ with viscosity ratio. Here for m = 0.08 we observe two frontal
regions. At low viscosities the buoyancy is becoming increasingly effective
at retarding the light fluid layer, which competes against the positive effects
of the viscosity ratio.

Figures 6.8e & f show the effects of varying the two power law indices.
The effects are fairly intuitive and can be understood as a viscous effect.
Smaller nk shear-thins fluid k, which reduces the effective viscosity. Param-
eters that reduce the viscosity of the displacing fluid with respect to the
displaced fluid also result in faster and lower fronts, reducing the displace-
ment efficiency, e.g. reducing nH . Reducing nL improves the displacement
efficiency.

Further examination of the effects of varying inertia (δRe) is presented
in Fig. 6.9 for two Newtonian fluids of different viscosity ratio. In the ab-
sence of buoyancy (Figs. 6.9a & b) we see faster interface speeds of the
leading displacement front, lower frontal heights and less efficient displace-
ment. However, there are ranges of parameters at larger χ for which inertia
apparently can reduce the speed of the leading displacement front, albeit
marginally, as illustrated in Figs. 6.9c & d.

6.4 Stability of 2-layer flows

One of the main motivations for using the weighted residual approach is that
it has proven effective in predicting long wavelength instabilities for weakly
inertial thin film flows ([104]) and multi-layer flows ([8]). Here we explore
whether this effectiveness carries over to multi-layer non-Newtonian fluid
flows. First we make a comparison between a linear stability analysis of the
weighted residual approach for a uniform layer and that for a parallel two-
layer shear flow, leading to an Orr-Sommerfeld formulation. Secondly, we
use the weighted residual approach to study the stability of various scenarios,
including those that result during displacements.
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6.4.1 Weighted residual method stability of a parallel flow

The governing equations of the weighted residual method are (6.37) and
(6.55), which model evolution of (h, b). To compare with a more classical
Orr-Sommerfeld approach we carry out a linear stability analysis of a uni-
form steady solution: (h0, b0) = constant. A constant uniform solution of
(6.37) and (6.55) is also a two-layer parallel solution of the full Navier-Stokes
system, as has been described in §6.1.2. Any h0 ∈ [0, 1] may be considered,
but steady constant b0 must satisfy:

b0 = χ. (6.69)

Recall that χ gives the ratio of viscous forces to buoyancy forces (along
the channel). The base velocity U0 and modified pressure gradient f0 then
coincide exactly with the parallel flow solution, i.e.

U0(y) = Up(y;h0, χ), f = f0 = fp(h0, b0), (6.70)

with P0(x, y) = Pp(x, y;h0, χ) defined from (6.18). The same base solution
is used for the Orr-Sommerfeld analysis to follow.

In order to be able to compare directly with the results of the Orr-
Sommerfeld analysis, we need to adopt the same length- and timescales,
which necessitates a re-scaling of both time T and axial distance ξ with δ.
Using the Leibnitz integral rule we transform the kinematic condition (6.37)
into

∂h

∂t
+ U0

∂h

∂x
+
∂h

∂x

∫ h

0

∂U0

∂h
dy +

∂b

∂x

∫ h

0

∂U0

∂b
dy = 0. (6.71)

Note that ∂U0/∂h and ∂U0/∂b have been computed in evaluating the terms
in (6.55). The re-scaled residual equation takes the form:

0 = Ah(h, b)
∂h

∂t
+Ab(h, b)

∂b

∂t
+ Ch(h, b)

∂h

∂x
+ Cb(h, b)

∂b

∂x

+δS(h, b)

(

χ(1− tan β
∂h

∂x
)− b

)

. (6.72)

Note that the coefficients Ak & Ck are linear in δ, so that (6.72) is indepen-
dent of δ.

As is usual, we suppose a linear perturbation:

h = h0 + h′, b = b0 + b′, (6.73)
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and substitute (6.73) into (6.71) and (6.72), retaining only linear terms:

∂h′

∂t
+

(

U0 +

∫ h0

0

∂U0

∂h
dy

)

∂h′

∂x
+

(
∫ h0

0

∂U0

∂b
dy

)

∂b′

∂x
= 0,(6.74)

Ah
∂h′

∂t
+Ab

∂b′

∂t
+ Ch

∂h′

∂x
+ Cb

∂b′

∂x
− δSχ tan β

∂h′

∂x
− δSb′ = 0,(6.75)

Note that all algebraic functions above are evaluated at the steady (h, b) =
(h0, b0). We now assume a modal form for the linear perturbations, periodic
in x, so that:

h′ = heiα(x−ct), b′ = beiα(x−ct), (6.76)

where h and b are constants. Substituting (6.76) into (6.74) and (6.75) leads
to a dispersion relation that is quadratic in c:

∣

∣

∣

∣

∣

∣

∣

(

U0 +

∫ h0

0

∂U0

∂h
dy

)

− c

(
∫ h0

0

∂U0

∂b
dy

)

iα(Ch − cAh − Sχ tan β) iα(Cb − cAb)− S

∣

∣

∣

∣

∣

∣

∣

= 0 (6.77)

If the imaginary part of c is positive, the flow is linearly unstable. Although
we can find c for any wave number α, for the values we have tested the sign
of the imaginary part of c is determined by the long wavelength limit, and
in any case we wish to benchmark the solution against the log-wavelength
Orr-Sommerfeld solution. The long wavelength analysis (α → 0) is made by
expanding c, h and b with respect to α≪ 1:

c = c0 + αc1 + ..., h = h0 + αh1 + ..., b = b0 + αb1 + ...

This gives at leading order b0 = 0 and:

c0 = U0 +

∫ h0

0

∂U0

∂h
dy, (6.78)

=
JH,mH

(h0)

mH
+
∂τH
∂h

∫ h0

0
IH,mH−1(y) dy− h

∂f

∂h

∫ h0

0
LH,mH

(y) dy.

(6.79)

We note that c0 is real. At first order we find that c1 = c1,R+ ic1,I is purely
imaginary, determined by:

c1,I =
(Ch − c0A

h − δSχ tan β)

δS

∫ h0

0

∂U0

∂b
dy. (6.80)

Note again that this quantity is independent of δ since the coefficients Ak

& Ck are linear in δ.
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6.4.2 Orr-Sommerfeld analysis

We consider two-dimensional linear perturbations to the two-layer base flow
discussed at the start of §6.4.1 above. Perturbed solutions are assumed to
have form: u = (U0(y), 0) + ǫ(ũ, ṽ), p = P0(x, y) + ǫp̃, h = h0 + ǫh̃ and
we retain only terms linear in ǫ. The two-dimensional velocity field can be
represented by means of a stream function, i.e. (ũ, ṽ) = (Ψy,−Ψx). We cross
differentiate the linearised momentum equations to eliminate the pressure,
and assume the following modal form for the linear perturbation:

Ψ = ψ(y)eiα(x−ct) , h̃ = h̄eiα(x−ct).

In any layer in which the base flow is yielded we have the following linear
stability problem:

iαc∆ψ = Lψ. (6.81)

The linear operator L has the following form in fluid k:

Lψ ≡ iαU0(D
2 − α2)ψ − iαD2U0ψ +

4α2

Rek
D[ηkDψ]

− 1

Rek
(D2 + α2)[ηk,t(D

2 + α2)ψ],

where D ≡ d
dy and Rek = Re(1±At) in heavy and light fluids, respectively.

Apart from the base velocity, the other functions appearing above are the
effective viscosity ηk(γ̇) and the tangent viscosity ηk,t(γ̇); see (6.12) & (6.13).
These are both evaluated using the strain rate of the base flow: γ̇ = |DU0|.

Boundary and interface conditions

The boundary conditions for ψ may depend on the nature of the fluid and
base flow. The simplest case is when both fluid layers are fully yielded
(e.g. two power-law fluids). The boundary conditions on the walls are:

ψ = Dψ = 0, y = 0, 1. (6.82)

The fluids are both yielded at the interface, which may itself deform. Inter-
face evolution is governed by the following kinematic equation:

ch̄ = U0h̄+ ψ, y = h0, (6.83)

which contributes directly to the eigenvalue problem. Coupling between the
fluid layers is governed by the linearised conditions of continuity of velocity
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and stress:

0 = ψ|h
−
0

h+0
(6.84)

0 = (Dψ + h̄DU0)|h
−
0

h+0
(6.85)

0 = [ηk,t(D
2 + α2)ψ]|h

−
0

h+0
− h̄χ, (6.86)

0 =
(

iαRek[(c−U0)Dψ + ψDU0]− 4α2ηkDψ +D[ηk,t(D
2 + α2)ψ]

)
∣

∣

h−0
h+0

−iαh̄χ tan β. (6.87)

Note that we neglect surface tension. Assuming that h̄ 6= 0, we may elimi-
nate h̄ from the above. However, doing this leads to c appearing quadrat-
ically in (6.87). Alternatively, setting h̄ = 0 allows us to study the shear
modes directly.

If one or more of the fluids has a yield stress, the linear stability problem
can only be posed in layers for which the fluid is yielded; see e.g. [52, 53].
If such a layer is bounded by an unyielded plug layer within the fluid layer
then the unyielded plug layer is not accelerated by the flow. If the yield
surface is at y = yy the boundary conditions are

ψ = Dψ = 0, y = yy. (6.88)

It may also happen that at least one fluid is unyielded at the interface.
Neglecting borderline cases, this implies that the boundary of that layer
cannot deform. If one of the fluids is unyielded at the interface (6.83)-(6.87)
are replaced in that fluid layer by:

ψ = Dψ = 0, y = h0. (6.89)

In all cases where we have a layer bounded by unyielded fluid, the stability
problem in that layer is completely decoupled from the behaviour of other
fluid layers. As our main purpose in developing the Orr-Sommerfeld analysis
is validation of the weighted residual approach, we do not investigate these
more complicated scenarios.

Long-wave limit, α −→ 0

We shall assume the two fluid layers are yielded everywhere and consider
a perturbation with wavelength much larger than the channel width. We
develop a regular perturbation expansion in powers of α for ψ, h̄ and c:

(ψ, h̄, c) = (ψ0, h̄0, c0) + α(ψ1, h̄1, c1) +O(α2). (6.90)
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On inserting this expansion into (6.81) and into conditions (6.82)-(6.87), on
separating powers of α we find:

Leading order:

0 = D2(ηk,tD
2ψ0), (6.91)

ψ0 = Dψ0 = 0, y = 0, 1, (6.92)

0 = ψ0|HL y = h0, (6.93)

0 = (Dψ0 + h̄0DU)|HL y = h0, (6.94)

ηH,tD
2ψ0 = ηL,tD

2ψ0 + h̄0χ, y = h0, (6.95)

D[ηH,tD
2ψ0] = D[ηL,tD

2ψ0], y = h0, (6.96)

c0h̄0 = Uh̄0 + ψ0, y = h0. (6.97)

First order:

0 = D2(ηk,tD
2ψ1) + iRek[(c0 −U)D2ψ0 +D2Uψ0], (6.98)

ψ1 = Dψ1 = 0, y = 0, 1 (6.99)

0 = ψ1|HL y = h0, (6.100)

0 = (Dψ1 + h̄1DU)|HL y = h0, (6.101)

ηH,tD
2ψ1 = ηL,tD

2ψ1 + h̄1χ, y = h0, (6.102)

iχ tan βh̄0 =
(

iReH[(c0 −U)Dψ0 + ψ0DU] + D[ηH,tD
2ψ1]

)

−
(

iReL[(c0 −U)Dψ0 + ψ0DU] + D[ηL,tD
2ψ1]

)

, y = h0,

(6.103)

c1h̄0 = −c0h̄1 + Uh̄1 + ψ1, y = h0, (6.104)

Both leading and first order problems can be solved (formally at least) in
terms of integral expressions involving the functions Ik,p & Jk,p. The details
of the solution are given in appendix D. Equation (6.97) gives the leading
order eigenvalue:

c0 =
JH,mH

(h0)

mH
+Ap

∫ h0

0
JH,mH

(y) dy + ApBH

∫ h0

0
JH,mH−1(y) dy

+

[

1

2

(

χ−Ap
χ

χ− f
τi

)

+ τpi

]
∫ h0

0
IH,mH−1(y) dy, (6.105)

where Ap and τpi are two real constants determined from two linear equa-
tions. We see that c0 is always real, as is (ψ0/h̄0). The first order problem
has a similar structure to the leading order problem and is also solved for-
mally in appendix D. The main observation is that c1 = c1,R+ic1,I is purely
imaginary.
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6.4.3 Comparisons with the Orr-Sommerfeld analysis

We have computed solutions of both the long wavelength Orr-Sommerfeld
problem and the weighted residual stability equations. We have bench-
marked our results against those of [107], who look at the linear stabil-
ity analysis of a two-layer system (with upper layer being Newtonian fluid
and lower layer being a Herschel-Bulkley fluid). The main assumption in
their work is that the yield-stress layer is always yielded (i.e. low Bingham
number). Figure 6.10a shows typical agreement obtained for a Newtonian-
Newtonian case between weighted residual method, Orr-Sommerfeld analy-
sis and Sahu et al ’s results. Evidently the results are indiscernible, apart
from a small numerical error. A number of authors have considered the
linear stability of a two-layer power law fluid channel flow, using the Orr-
Sommerfeld equation, e.g. [78, 94, 122]. The results of our long wavelength
Orr-Sommerfeld analysis compare qualitatively well with these studies. Un-
fortunately however, no tabulated values are given in [78], who considers the
long wavelength problem. We have tried to compare quantitatively with the
tabulated values in [94, 122], who benchmark their numerical codes against
results from the long wavelength analysis of [78]. However, the comparison
is impossible to make from the parameters given in these papers as the au-
thors have used a mix of dimensional and dimensionless parameters, as well
as having different scaling than in [78].

With these benchmarks lacking, we have resolved the Orr-Sommerfeld
problem directly in the long wavelength limit and made comparisons directly
between Orr-Sommerfeld and weighted residual predictions. We have found
that the prediction of the leading order c0 is the same for both the Orr-
Sommerfeld and the weighted residual approach for all model parameters
that we have tested. The stability of the flow is governed by the sign of
c1/i (positive meaning unstable flow). Here also we have found excellent
agreement between long wavelength Orr-Sommerfeld and weighted residual
analyses. Examples are shown in Figs. 6.10b-d, for variations in nH , BH
and χ.

6.4.4 Stability results

One form of analysis that allows for nonlinear evolution is to nonlinearly
perturb both the kinematic condition (6.37) and depth-averaged momen-
tum equation (6.55) about a uniform steady solution (h0, b0), but track the
evolution of the instability by solving (6.37) and (6.55) numerically. This
approach has been used in [1, 126], and a similar approach is adopted here.
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Figure 6.10: Comparison of the leading order growth rate c0 and the imagi-
nary part of the first order growth rate, c1/i, in the long-wave limit: weighted
residual and Orr-Sommerfeld analysis (ReH = ReL = 1). a) BH = 0 with
m varying (BL = 0, nH = 1, nL = 1, h0 = 0.5 and χ = 0); b) nL = 1 with
nH varying (BL = 0, BH = 0, m = 1, h0 = 0.5 and χ = 0); c) m = 0.5 with
BH varying (BL = 0, nH = 1, nL = 1, h0 = 0.8, χ = 10 and β = 60◦); d)
nH = 0.5, nL = 0.7 with χ varying (BH = BL = 0, m = 1, h0 = 0.5 and
β = 60◦).
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As initial condition we assume

h(ξ, 0) =

{

h0, ξ 6∈ [0, 2],
h0 +A∗ sinπξ, ξ ∈ [0, 2],

(6.106)

typically for an amplitude A∗ = 0.05. We integrate (6.37) and (6.55) until
T = 10 and compare the amplitude of the perturbation with the initial
amplitude to determine instability or otherwise.

An example of this is shown in Fig. 6.11 for iso-viscous Newtonian fluids
at two different values of χ, at h0 = 0.8. In both cases the initial waveform
disperses axially as it propagates. For χ = 0 (Fig. 6.11a) the amplitude
decays, whereas for χ = 40 (Fig. 6.11b) the amplitude grows. Larger χ
promotes a backflow, which we have observed experimentally is generally
destabilizing; see [126, 130]. A backflow implies an inflection point in the
velocity profile, often associated with inviscid inertial instability. A precise
explanation for our experimental observations is still lacking.

Figures 6.11c & d show the corresponding spatiotemporal diagrams of
Figs. 6.11a & b respectively. In these the height of the interface perturbation
is translated into a greyscale line, which evolves with time. This captures
together both spatial and temporal aspects of the evolution. We see that
the wave propagates at a speed that is approximately given by c0 from
the linear stability analysis (evaluated at h0). The speed of propagation of
disturbances is given by the inverse of the slopes in the spatiotemporal plot,
and we have marked the speed corresponding to c0 with the broken white
line. Note that the propagation speed is typically different from the velocity
at the unperturbed interface.

Results of the linear stability analysis for iso-viscous Newtonian fluids
are shown in Fig. 6.12a as marginal stability curves for different h0. These
results agree with those in [126] (Fig. 20a), which have been computed us-
ing the (h, q)-formulation of the weighted residual method for Newtonian
fluids, whereas Fig. 6.12a uses the (h, b)-formulation developed here. The
spatiotemporal stability computation outlined earlier can be repeated suc-
cessively over broad parameter ranges and compared with the linear stability
results. This has been done in Fig. 6.12b and we see that spatiotemporally
stable flows are found where the linear analysis predicts.

A large part of our motivation in studying these flows comes from dis-
placement flows. As we have seen in §6.3, at long times a typical displace-
ment consists of an advancing leading front potentially followed by trailing
front(s). The advancing fronts maintain constant height and speed, and
all other interface heights are progressively stretched as the displacement
continues, eventually aligning with the channel. Therefore, there is a range
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Figure 6.11: Evolution of the perturbation interface height, h−h0, at times
T = 0, 2, 4, ..., 10, and location, ξ for h0 = 0.8, BH = BL = 0, nH =
nL = 1, m = 1, δRe = 10 and a) χ = 0 showing stable flow b) χ = 40
showing unstable flow. Figures c & d show the corresponding spatiotemporal
diagrams of Figs. a & b, respectively. The slope of the broken white line
indicates 1/c0, as calculated from the linear stability analysis performed at
h0.
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Figure 6.12: a) Marginal stability curves for the long-wave limit of the
weighted residual model, for the indicated values of h0. b) Stability dia-
gram indicating stable flows (�) and unstable flows (•) resulting from our
spatiotemporal computations at h0 = 0.8. The superimposed line indicates
the marginal stability curve for the long wave length limit. Other parameters
are: BH = BL = 0, nH = nL = 1 and m = 1.

of h for which the stability analysis is likely to be increasingly relevant as
the displacement progresses. The effect of inertia is quite subtle here. If
we compare Figs. 6.5a & b, we see that the rounding of the front shape
with increasing inertia (δRe) results in a wider range of h that are stretched
along the channel and vulnerable to instability, even though the effect on
the leading front velocity may be small.

Figure 6.13 shows the results of an inertial displacement flow of two iso-
viscous Newtonian fluids at δRe = 10, plotted as a spatiotemporal diagram.
For this, we represent the interface height h(ξ, T ) at each T as a grey-scale
vector, which is then plotted at successive T . In Fig. 6.13a (χ = 20) there is
no evidence of instability: the elongation of the interface takes place mostly
for h > 0.6 for which Fig. 6.12a suggests stability. In contrast for χ = 60,
Fig. 6.12a suggests instability at all interface heights. In Fig. 6.13b we
observe the evolution of streak-like wavy patterns during the displacement
over a range of larger h, also reflecting those heights for which the interface
is elongated.

It is worth noting that in the computation of Fig. 6.13 no artificial initial
perturbation is introduced. In considering this as a parallel flow instability,
the source of initial perturbation comes from a combination of: (a) the slope
of the evolving interface; (b) numerical error. While (a) is clearly physical,
(b) is spurious. Nevertheless, once instigated the propagation and growth of
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Figure 6.13: Spatiotemporal diagram of the interface height values, h (il-
lustrated by contours of intensity) obtained from solving the displacement
problem for the parameters used in Fig. 6.12 for δRe = 10 and a) χ = 20 b)
χ = 60. The figure confirms that the stability analysis can indeed predict
when the displacement flow goes unstable.

the perturbation waves to saturation amplitudes is physical. Allied to this,
we have found that construction of plots such as Fig. 6.12b are not particu-
larly sensitive to the perturbation amplitude A∗. We are simply triggering a
linear instability, which is then propagated nonlinear via the numerical so-
lution. We have seen in Fig. 6.11 that the wavespeeds are well represented
by the celerity c0, computed from the linear analysis. There is full agree-
ment in c0 computed from either the weighted residual or Orr-Sommerfeld
approaches. We expect that the saturation amplitudes are controlled by the
nonlinear aspects of the weighted residual model, which account for inertia
in an averaged sense. Thus, the weighted residual computations have the po-
tential to accurately represent instabilities of the underlying Navier-Stokes
system. Having said this, as with all thin-film/lubrication methods, it is
necessary to verify a posteriori that the model conditions are not violated.
For example, unstable growth of a perturbation can lead to a solution with
large interfacial gradients, which come to violate the model assumptions in
reaching size δ−1. Whether or not this happens depends partly on dispersion
effects and the saturation amplitude of the perturbation.

Newtonian fluids with a viscosity ratio

In Fig. 6.14 we explore the effects of viscosity ratio on marginal stability of
inertial Newtonian-Newtonian flows, at a fixed h0 = 0.5. We observe that
the viscosity contrast progressively destabilizes, reducing the value of δRe
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Figure 6.14: Marginal stability curves for the long-wave limit for h0 = 0.5 for
a) m ≤ 1 and b) m ≥ 1. Labels U and S represent unstable and stable flows
respectively. The rest of parameters are BH = BL = 0 and nH = nL = 1.

required for instability at each χ. Effects are more evident at low χ. Fig. 6.15
contours in the (δRe,m)-plane the critical values of χ above which linear
instability arises. We can observe that for a significant range of viscosity
ratios the critical χ values are negative. Also observe in Fig. 6.15 that many
contours become parallel at large δRe. This is linked to the asymptotic
behaviour of the marginal stability curves as δRe = ∞. We have seen both
here and in Fig. 6.12 that for fixed h0 there can be a critical value, say
χs, at which the marginal stability curves asymptote to δRe = ∞, i.e. for
χ < χs the flow is linearly stable for all δRe. This critical value of χs can
be computed directly for Newtonian fluids, although algebraically complex
(see equation (4.18) in [126] for m = 1).

Shear-thinning effects

We are also able to use the weighted residual stability analysis for non-
Newtonian multi-layer flows. Figure 6.16 shows marginal stability curves
for increasing degree of shear-thinning in either fluid H or L, while the
other fluid is Newtonian. This figure is produced at m = 1 and for h0 = 0.5,
with marginal curves plotted in the (χ, δRe)-plane. Recall that increasing χ
induces backflow in the upper layer (fluid L), but that we also have a unit
mean flow in the positive direction.

Two interesting features of our displacement flow experiments reported
in [124, 129] are that in different situations an increase in the mean flow ve-
locity can result in either stabilization or destabilization. These dual effects
are illustrated in two sequences of experiments illustrated in Fig. 6 of [124],
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which showed the results of water-xanthan displacement flows. Although a
geometrically different situation is studied here, we can produce qualitatively
similar effects with our weighted residual model. An example is shown in
Fig. 6.17. Physically, as we increase V̂0 we vary both δRe and χ (increasing
and decreasing respectively). If one of the fluids is shear-thinning, then we
might also see a change in effective viscosity which (via the viscosity scales
adopted) can further affect m, χ and Re. Here we assume only fluid H to
be mildly shear-thinning (nH = 0.85), freeze m and examine only the main
effects on δRe and χ.

Figures 6.17a & b illustrate an approximately threefold increase in V̂0,
at m = 1. For low V̂0 the value of χ is large enough to induce a backflow
in the base flow, and we observe instability in Fig. 6.17a. As the imposed
flow rate is increased the backflow is reduced and finally eliminated: the
flow stabilizes. This phenomenon was first observed in [129] and is more
thoroughly discussed in [124, 130]. The sequence in Figs. 6.17c & d at
m = 10 shows the opposite effect, i.e. increasing V̂0 leads to interfacial
instability due to the viscosity contrast and at sufficiently large δRe. Here
the reduction in χ is stabilizing but competes against increasing δRe.

Bingham fluids

In dealing with Bingham fluids, we should note that although the weighted
residual and Orr-Sommerfeld analyses agree in their predictions of both c0
and c1, we are restricted to base flows for which there is a single yielded
layer. In the Orr-Sommerfeld context multiple yielded layers are dealt with
successively, while assuming that the plugs remain rigid. For the weighted
residual approach, the weight functions adapt to unyielded regions, so it may
be that the underlying evolution model is still valid. Thus, the likely cause of
any failure of this model is related to the stability analysis, which simply has
not been developed for these situations. Examples of computed marginal
stability boundaries are given in Fig. 6.18, plotted in the (χ, δRe)-plane
for Newtonian-Bingham multi-layer flows. In Fig. 6.18b we observe some
strange profiles in the marginal stability curves at large χ. These are related
to strong buoyancy forces inducing backflow in the base velocity profile.
Fig. 6.19 shows a selection of base velocity profiles for BL = 0.5, h0 = 0.5
and χ = 40, 55 and 70. As χ increases, first a stationary residual wall layer
is developed (somewhere just above χ = 40), followed by a progressively
strong backflow. The backflow is associated with the non-monotone profiles
in the marginal stability curve.

The parameters χ ≤ 40 and BL = 0.5 lie in the range of validity of our
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Figure 6.17: Spatiotemporal diagram of the displacement interface height,
h, for nH = 0.85, nL = 1, BH = BL = 0 and a) m = 1, χ = 24, δRe = 5.6 b)
m = 1, χ = 15.5, δRe = 15.8 c) m = 10, χ = 24, δRe = 5.6 and d) m = 10,
χ = 15.5, δRe = 15.8. The imposed flow increases from figure 6.17a to 6.17b
and from 6.17c to 6.17d.
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Figure 6.20: Spatiotemporal diagram of the interface height values, h (il-
lustrated by contours of intensity) obtained from solving the displacement
problem for the parameters used in Fig. 6.18b for BL = 0.5, δRe = 3 and
a) χ = 10 b) χ = 40. The insets in figures show the interface height, h, at
T = 7.5. The white line added to Fig. 6.20b corresponds to h = 0.8. For
the heights greater than this value the static layer is about to form due to
the decrease in shear rate within light layer.

model and stability analysis. The results of two displacement computations
are given in Fig. 6.20 for δRe = 3 and two values of χ. For small χ we observe
a clean stable displacement. The inset of Fig. 6.20a shows the interface
profile at T = 7.5. In Fig. 6.20b (at χ = 40) we see slight instabilities
close to the propagating front. The marginal stability curve in Fig. 6.18b
indicates linear instability at h0 = 0.5.

6.5 Discussion points

In this chapter we have developed a semi-analytical framework for applying
the weighted residual method to two-layer channel flows of Herschel-Bulkley
fluids, giving a first order accurate approximation to the interface thickness
and volume fluxes in each layer. This has necessitated the construction of
special functions to evaluate the various integral expressions that arise (ap-
pendices B and C). The base variables that it proves convenient to formulate
the equations in terms of are the interface height h and a buoyancy param-
eter b. There is a one-to-one correspondence between b and the volumetric
flux in the lower layer q.

We have developed a stability analysis for our weighted residual evolution
equations and compared with the corresponding Orr-Sommerfeld results, in
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the long wave limit. The celerity is predicted accurately by the weighted
residual method for all parameters, as is the growth rate for Newtonian and
non-Newtonian fluid layers. A restriction in the present stability analysis
concerns yield stress fluids in the case where we have an unyielded plug.
The Orr-Sommerfeld approach here considers only the yielded fluid layers,
whereas the weighted residual averages over the entire layer. It is likely that
this deficiency could be corrected but for simplicity and brevity we have
postponed this.

We have used the weighted residual model to examine instabilities in
displacement flows. As the displacement front progresses and the interface
elongates between fronts moving at different speeds, we observe the growth
of dispersive waves at the stretched interface over ranges of heights that
the linear analysis predicts to be unstable. These waves move with a range
of speeds given approximately by the celerity. The form of the observed
instabilities computed numerically from our model are qualitatively similar
to those we have observed experimentally, although of course quantitatively
different due to the different geometries. This lends confidence to a further
study of the onset and propagation of instabilities using this type of model.

As mentioned earlier, note that this channel flow configuration does not
relate directly to the pipe flow experiments presented in chapter 4 for in-
stance. However they can still be used to draw qualitative conclusions about
the effect of different parameters. Upon simplifying the problem geometry
from pipe to channel we have been able to investigate the effect of different
parameters on displacement flow interface shape and/or its stability. The
outcome findings and trends are likely to stay the same for pipe geometry
at least in a qualitative manner.

Future directions in this work include the extension of the stability anal-
ysis to Bingham fluid flows with unyielded plug regions, closer examination
of power law regimes with singular tangent viscosity and extension to core-
annular geometries. In the latter case the type of analysis developed here
may be effective in studying instabilities such as the inverse bamboo insta-
bilities of [55, 56] and the pearl and mushroom instabilities of [37–39].

176



Chapter 7

Incomplete fluid-fluid
displacement of yield stress
fluids in inclined pipes

Chapters 3 and 4 presented experimental results of iso-viscous Newtonian
displacement flows. In this chapter6 we aim to study displacement flows
when the displaced fluid is non-Newtonian and in particular when it has a
yield stress. The focus is on density unstable configuration and on miscible
fluids. For simplicity we take the displacing fluid to be Newtonian. We
also concentrate on the industrially interesting case where the yield stress is
significantly larger than a typical viscous stress in the displacing fluid, but
where buoyancy forces may be significant.

There are many industrial processes in which it is necessary to remove
a gelled material or soft solid from a duct. Examples include biomedical
applications (mucus [73], biofilms [145]), cleaning of equipment and food
processing [28], oil well cementing [89] and waxy crude oil pipeline restarts
[144]. A wide range of material models are used to describe residual deposits
in these situations. Some of these flows are turbulent, but equally often
process limitations dictate that the flows be laminar, and it is the latter
that we study here. Our main motivation comes from a number of problems
relevant to the oil industry: mud removal, plug cementing, and waxy crude
oil pipeline restarts.

The aim of the study presented in this chapter is to understand how the
different observable flow regimes depend on the dimensionless parameters
governing the flow. One way of looking at this chapter is by comparison to
the Newtonian displacement flows (chapter 4) except that we have added
a yield stress to the displaced fluid. A large number of parameters can
influence the displacement of a yield-stress (visco-plastic) fluid along a pipe

6A version of this chapter has been submitted for publication: K. Alba, S.M. Taghavi,
J.R. de Bruyn and I.A. Frigaard. Incomplete fluid-fluid displacement of yield-stress fluids.

Part 2: Highly inclined pipes.
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or duct, which makes comprehensive study impractical. This explains the
decision to focus on specific regimes, which we make more precise in §7.1.

This chapter is also a sequel to [125], which used the same apparatus and
similar fluids, but involved experiments at pipe inclinations that were close
to the horizontal (83◦ < β < 90◦). Here we study the effects of pipe inclina-
tion on the displacement of a yield-stress fluid (here Carbopol) by a Newto-
nian fluid of higher density. The pipe is inclined at an angle β to the vertical
direction and the flows proceed downwards. The main observation made in
[125] was that displacements fell into one of two main categories, referred
to as centre-type displacements and slump-type displacements. Briefly, in
centre-type displacements the displacing fluid advanced through the centre
of the pipe, leaving an approximately uniform layer of Carbopol on the wall.
The slump-type displacement involved the displacing fluid slumping under-
neath the lighter Carbopol. A more detailed description of these flows is
given later in the chapter. The transition between these two flow regimes
was found to be governed by the single dimensionless group Re/Fr, where
Re is the Reynolds number based on the displacing fluid properties and
Fr is the densimetric Froude number. This parameter reflects the balance
between inertial stresses (promoted by buoyancy) and viscous stresses. In
this study we investigate the effect on this picture of a wider range of pipe
inclinations, such as commonly occur in oilfield cementing applications.

An outline of the chapter is as follows. In §7.1 we briefly review the
experimental methodology and define the parameter space. The results
follow in §7.2. We first give a primary classification of the observed flow
regimes and investigate their location in our dimensionless parameter space.
We then describe some of the interesting secondary flows that are found
in the slump flow regime. Finally, we study flows in which there is no
imposed velocity (i.e. exchange flows) and consider these flows in the context
of previous studies of the stability of cement plugs (§7.2.4). The chapter
concludes with a brief summary.

7.1 Experiments and parameters range

Our experimental study was performed in the same flow loop explained in
appendix A. Briefly the 4-meter long pipe was mounted on a frame which
could be tilted to any angle. Initially, the lower part of the pipe is filled with
a less dense fluid (fluid 2) coloured with a small amount of ink. The upper
part of the pipe, above the gate valve, is filled with the more dense fluid
1. In our experiments, the displacing fluid 1 was a Newtonian salt-water
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solution and fluid 2 was a yield-stress fluid — a solution of Carbopol EZ-2
polymer (Noveon Inc). Carbopol is widely used as a thickener, stabilizer
and suspending agent. The rheology of Carbopol is largely controlled by
the concentration and pH of the solution. When initially mixed with wa-
ter, Carbopol makes an acidic solution with no yield stress. A yield stress
develops at intermediate pH when the solution is neutralized by addition
of a base, which in our case was NaOH. The neutralized solution is fairly
transparent and has the same density as water for low polymer concentra-
tions. More details on making Carbopol solution and its rheology are given
in appendix A. The only difference here with the Newtonian fluids experi-
ments is that we added two first-surface mirrors above the pipe so that both
top-view and side-view images of the flow could be recorded by each camera
simultaneously. We have used the mirror data in viscoplastic displacement
experiments only where asymmetry is a prevalent feature across the pipe.
In fact more information than the facial view was required to understand
the static layers across the pipe.

It was shown in chapter 4 that that the general qualitative and quantita-
tive features of displacement flows are reproducible for repeated experiments
on iso-viscous Newtonian displacements [3]. The same is true for the vis-
coplastic displacements studied here. Due to the chaotic nature of the flow
in many cases, the fine details might not be exactly the same in two different
experiments with the same governing parameters. Nonetheless, the general
features and patterns remain the same for experiments performed under the
same conditions.

As in [125], our intention was to investigate displacement flows for which
some of the displaced yield-stress fluid could be left behind in the pipe.
This corresponds to situations in which it might be considered “difficult”
to displace the yield-stress fluid. This puts a number of constraints on our
parameter space. First, we must assume that the viscous stresses τ̂v are
small relative to the yield stress τ̂Y , i.e.

µ̂V̂0/D̂ = τ̂v ≪ τ̂Y , (7.1)

where µ̂ is the viscosity of the Newtonian fluid, V̂0 is the mean velocity and
D̂ is the diameter of the pipe. We may reformulate this as

BN ≫ 1, BN =
τ̂Y D̂

µ̂V̂0
. (7.2)

Here BN is a form of Bingham number, but with the viscous stress scale
coming from the Newtonian fluid.
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Secondly, since the flow close to the displacement front will be three-
dimensional, we must consider inertial as well as viscous stresses. The iner-
tial stress scale is τ̂t = ρ̂V̂ 2

0 , where ρ̂ = (ρ̂H + ρ̂L)/2. If we were to consider

flows for which τ̂t ∼ τ̂v, meaning that Re = ρ̂V̂0D̂
µ̂ would be ∼ O(1), then Eq.

(7.2) would imply that τ̂t ≪ τ̂Y . It would then be unlikely that we would
see much variation in our results as V̂0 was varied. We have therefore tar-
geted our study on the range Re > 1, for which inertial effects are expected
to be dominant close the displacement front. Since we also wanted to see
how changes in flow rate might affect the type of displacement observed, we
selected flow parameters such that

ρ̂V̂ 2
0 = τ̂t . τ̂Y . (7.3)

Note that if τ̂t > τ̂Y , then inertial stresses alone might be sufficient to yield
and fully displace the yield-stress fluid; hence the inequality in Eq. (7.3,
which is equivalent to Re/BN . 1.

Thirdly, our study considers a range of pipe inclinations over which the
buoyancy force will vary from being aligned with the flow to being transverse
to the flow. The magnitude of the buoyant stresses are approximated by
τ̂b = ∆ρ̂ĝD̂, where ∆ρ̂ is the difference in density between the fluids. In
order to observe significant buoyancy on yielding in this type of displacement
flow, we require

∆ρ̂ĝD̂ = τ̂b ∼ τ̂Y . (7.4)

The three conditions given by Eqs. (7.2)-(7.4) define the parameter space
of our experiments. Apart from the dimensionless groups introduced above,
the density difference is characterized by the dimensionless Atwood number,

At = ρ̂H−ρ̂L
ρ̂H+ρ̂L

. The densimetric Froude number is defined as Fr = V̂0√
AtĝD̂

.

The quantity Fr2 is the ratio of inertial and buoyancy forces. The parameter
ranges covered by our experiments are given in Table 7.1.

Finally, the parameter that delineated the qualitatively different types
of displacement flows observed in [125] is the ratio Re/Fr. This parameter
is given by

Re

Fr
=
ρ̂H

(

[ρ̂H − ρ̂L]ĝD̂
3
)1/2

[ρ̂H + ρ̂L]1/2µ̂
, (7.5)

and is a natural parameter to represent a buoyancy-driven transition. The
destabilizing buoyant stresses [ρ̂H − ρ̂L]ĝD̂ may be balanced locally by any
combination of yield, viscous or inertial stresses. In balancing with inertia,
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Parameter Range

β 0− 85 (deg)

V̂0 0− 120 (mm/s)
τ̂Y 3.8− 26 (Pa)
At 0.001-0.016
BN 650-∞
Re 0-2300
Fr 0.1-6

Re/Fr 260-1080

Table 7.1: Parameter ranges of viscoplastic experiments.

an appropriate velocity scale for buoyancy driven motion is V̂t = [AtĝD̂]1/2.
We see that for small At,

2
Re

Fr
≈ [ρ̂H − ρ̂L]ĝD̂

[µ̂V̂t/D̂]
. (7.6)

An interpretation of this expression is as the relative strengths of buoyant
stress, (ρ̂H − ρ̂L)ĝD̂, and viscous stress, µ̂V̂t/D̂. Note, however, that since
the velocity scale used in the viscous stress is V̂t, which is itself driven by
buoyancy, this represents a self-reinforcement. If the viscous stresses induced
by buoyancy-driven motion are unable to balance the buoyant stresses, then
the balance must involve other stresses. in [125], it was observed that above
some threshold in Re/Fr the displaced fluid yielded in a way that promoted
stratification (i.e. slumping). This had the effect of reducing the local
buoyant stresses.

7.2 Results

in [125], we presented the results of experiments on displacement flows in
which the pipe was close to horizontal. As here, the focus in [125] was on
the industrially interesting case that τ̂Y ≫ τ̂v, but with significant buoyancy
forces. Two distinct flow regimes were identified: centre-type displacements
and slump-type displacements. In centre-type flows, static residual layers
with a slowly-varying non-uniform thickness were found all around the pipe
wall. In slump-type displacements, two propagating displacement fronts
were generally observed: a fast front which propagated in a thin layer near
the bottom of the pipe and a much slower front behind it which displaced
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a thicker portion of the viscoplastic fluid. This second front sometimes
stopped altogether. The thinness of the layer of displacing fluid flowing
behind the first front amplifies the mean velocity in this layer, resulting in
effective Reynolds numbers that can be as large as 1000-2000. This region
of the flow is therefore highly inertial and the displacing fluid was often
found to channel through the yield-stress fluid in an erratic fashion. The
conditions under which the central and slump flow regimes were observed
were determined by the value of Re/Fr [125].

In the present work, we study a full range of pipe inclinations. The range
of Fr and Re spanned by our experiments is increased over that covered
in [125] due to our wider range of V̂0, but we achieve similar maximum
values of Re/Fr. Perhaps not surprisingly, the vast majority of our present
results were also categorized as either central or slump-type flows. The
slump-type displacements exhibited a rich variation of behaviour, which
we explore in detail in §7.2.1. The central-type displacements were quite
similar to those found previously, and we give a brief overview below in
§7.2.2. A third type of displacement was also found, wherein the two fluids
mixed fully in an apparently turbulent flow region. Only a limited number
of experiments were performed in this regime; they are discussed in §7.2.3.
Our results for exchange flows, in which the mean flow velocity V̂0 = 0
and the displacement is driven solely by gravity, are discussed in §7.2.4.
We consider these exchange flows in the context of previous studies of the
stability of cement plugs [49, 51, 54]. Finally, we discuss a more general
dimensionless classification for the whole range of observed flows in §7.2.5.

Perhaps the most interesting result of the present work is that the ap-
pearance of the slump and centre flow types still appears to be dictated
exclusively by the value of Re/Fr, despite the increased importance of buoy-
ant forces at high inclinations. This is illustrated in Fig. 7.1a, in which data
from [125] are also shown for comparison. The critical value of Re/Fr
above which the flow changes from central to slump-type is in the range
600 < Re/Fr < 800, in agreement with the results of [125], over all pipe in-
clinations. In fact the occurrence of these two regimes is primarily governed
by approximately the same ratio of Reynolds number to densimetric Froude
number, Re/Fr, as in near-horizontal case, meaning that the inclination
angle does not directly contribute to the determining the flow regime. How-
ever, we do observe a range of exotic behaviour at higher inclinations within
the slump regime that we discuss below in §7.2.1. In a single experiment
with a very low Fr, a slump-type displacements was observed at a lower
value of Re/Fr.

Figure 7.1b plots the observed flow types in terms of BN and Re/BN .
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Figure 7.1: Primary classification of the observed flows into slump (squares)
or central (circles) displacements. Experimental results for near-horizontal
pipes [125] are indicated by black borders around the data symbols.

The first of these is the ratio of yield stress to viscous stress, as described
by Eq. (7.2). The parameter Re/BN captures the balance expressed in Eq.
(7.3), i.e. the ratio of inertial stress to yield stress. This figure illustrates
the extended range of parameters covered in the present work compared to
that of [125], and also shows that these two parameters are not responsible
for the determining the slump-centre transition, i.e. both flow types are
observed over the full range of these parameters.

7.2.1 Slump regime

In this section we look at the slump-type displacements in detail. As in
our previous study [125] it was found that the slump-type flows were as-
sociated with an initial displacing front moving under the viscoplastic fluid
at relatively high speed (see Fig. 7.2a below). In all slump-type displace-
ments, whether for nearly-horizontal or more inclined situations, we ob-
served a breakage of the viscoplastic layer due to this fast-moving front. For
nearly horizontal displacements the breakage is weaker than in the more
inclined cases, and it happens at later times and further downstream since
the streamwise component of buoyancy is smaller. In §7.2.1 we will de-
scribe what we refer to as “ripped” slump-type displacements and study the
underlying mechanisms of gel layer breakage. In §7.2.1 some more exotic
flows that were not observed in the nearly horizontal experiments will be
presented and discussed.
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Ripped-type displacement

Many of the slump regime displacements observed were qualitatively similar
to those reported by Taghavi et al. [125] An example is shown in Fig. 7.2a.
In this and similar figures, the displacing fluid is light in color, while the
Carbopol appears dark. The left-hand end of the pipe is higher than the
right-hand end, and the mean flow is to the right. The intensity scale, shown
below the last image, is normalized so that intensity can be interpreted as
a measure of concentration, averaged through the thickness of the pipe. In
Fig. 7.2a, a thin layer of the displacing fluid can be seen to advance rapidly
along the bottom of the pipe, under the Carbopol and ahead of the main
front. A spatiotemporal diagram of the same flow is shown in Fig. 7.2b.
Some loose pieces of Carbopol that have become detached from the main
body and are being advected by the flow can be seen in the snapshots of
Fig. 7.2a and in the form of black dots in the spatiotemporal diagram. The
broken lines in Fig. 7.2b highlight the positions of the first and second fronts;
their different slopes indicate that the two fronts move at different speeds.

The flow velocities measured with the UDV in the same experiment are
shown in Fig. 7.2c. The fast front reaches the position of the UDV probe at
t̂ ≈ 6 (s). For t̂ & 6 (s), a thin region of high velocity develops close to the
bottom of the pipe, while there is a fairly thick static layer at the top. This
asymmetry in the velocity profile is the most obvious difference between the
slump and central displacements (as can be seen, for example, by comparing
Fig. 7.2c with Fig. 7.10c below).

As noted above, in all the slump-type flows the viscoplastic layer is cut
by the fast moving front of displacing fluid. The formation of a ripped dis-
placement is shown in Fig. 7.3. Figure 7.3a shows a time sequence of images
recorded by the upstream camera. The first front of the displacing fluid ini-
tially channels under the viscoplastic Carbopol. The thin lower layer then
rises towards the top of the pipe in unsteady bursts. Towards the end of the
sequence, the displacing fluid breaks the upper layer, isolating a large piece
of Carbopol. Figure 7.3b tracks the progression of the displacement into the
field of view of the downstream camera; the first frame of Fig. 7.3b follows
the last frame of Fig. 7.3a in time. The unsteady bursts continue, fragment-
ing the Carbopol into a number of chunks. Some of the larger segments are
advected downstream by the flow, but stationary residual deposits of Car-
bopol are also seen in the intermediate frames of Fig. 7.3b. In the last six
images in this sequence, the remains of the large isolated segment of Car-
bopol that formed in Fig. 7.3a are pushed through the downstream part of
the pipe by the slower second displacement front. The spatiotemporal plot
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Figure 7.2: Slump-type displacement for β = 45◦, At = 0.01, τ̂Y = 7.9
(Pa), V̂0 = 81.5 (mm/s). a) Images of the displacement at t̂ = 12, 13,
. . . , 26, 27 (s) after opening the gate valve. The flow is from left to right.
The field of view is 1367 (mm) by 19 (mm), taken 1716 (mm) below the
gate valve. The white arrows indicate the position of the fast leading front.
The white dashed lines in the fourth snapshot show the shape of the dis-
placing layer qualitatively. The bottommost image is a colourbar showing
the concentration C, with 0 referring to the displaced Carbopol and 1 the
displacing fluid. b) Spatiotemporal image of the same displacement. x̂ is
the streamwise distance measured from the gate valve. The dash-dotted
and dashed lines indicate the position of the fast slow displacement fronts,
respectively. c) Plot of the velocity profile measured with the UDV for the
same experiment. The UDV probe is located at x̂ = 1560 (mm).

corresponding to Fig. 7.3b is shown in Fig. 7.3c. The banded appearance
in this diagram reflects the motion of several different pieces of Carbopol,
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each moving downstream at a different speed. The flow velocities recorded
by the UDV are shown in Fig. 7.3d and illustrate the unsteady nature of
the flow. They also show periods of negative velocity close to the top of the
pipe, indicating a back flow due to fluid being pushed upstream under the
action of buoyancy. The detached pieces of Carbopol appear to decrease in
size following the initial break-up. The decrease in size cannot be due to
interfacial tension effects, as the two fluids are miscible (i.e. Carbopol is
soluble in water). It could be due to viscosity gradients, adverse pressure
gradients driven by axial buoyancy, or shear in the pipe, each of which could
have a destabilizing effect.

A closer look at the unsteady bursting of the thin displacing layer re-
ferred to above is provided by Fig. 7.4 for a different set of experimental
parameters. The time sequence shown in Fig. 7.4a captures the evolution of
the advancing front to a burst that extends across the whole pipe. Fig. 7.4b
shows the depth averaged concentration C corresponding to the images in
Fig. 7.4a. C = 0 corresponds to 100% Carbopol, and C = 1 to 100%
salt-water solution. The burst does not displace all of the Carbopol over its
length, probably leaving residual Carbopol on the wall. It clearly extends
across almost the full diameter of the pipe, however. The change in concen-
tration due to the burst develops into a square-shaped pulse which grows in
length as it propagates downstream, fed by the thin lower layer. The way
in which the Carbopol layer breaks up is very similar to that described here
for most of the slump-type displacements we observed for nearly-horizontal
inclinations.

Once the initial ripping of the gel layer has occurred, it can break up in
non-uniform manner, leading to unpredictable flow patterns. An example
is shown in Fig. 7.5. Again the first front propagating rapidly below the
Carbopol develops into an unsteady burst, as seen in the first few side-
view images of Fig. 7.5a. In the example shown in Fig. 7.4, the bursting is
intermittent and leaves large segments of Carbopol intact. In the example
of Fig. 7.5, however, it develops into a larger region of very unsteady flow.
Figures 7.5b shows the spatiotemporal plot corresponding to the side view
images of Fig. 7.5a, and Fig. 7.5c shows the corresponding top view images.
The images show that although the initial penetration of the displacing
fluid into the Carbopol region is slump-like, there is little difference between
top and side view once the gel layer becomes ripped: the distribution of
residual Carbopol around the walls is fairly symmetric and appears more
akin to that seen in central-type displacements. Both the snapshots and the
spatiotemporal plot indicate that some pieces of Carbopol remain stationary,
fixed to the pipe wall, while others are advected by the flow. The blue
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ŷ
(m

m
)

 

 

20 40 60 80 100 120 140

0

5

10

15 0

50

100

150

d)

Figure 7.3: Ripped-type displacement for β = 45◦, At = 0.016, τ̂Y = 16.4
(Pa), V̂0 = 61.3 (mm/s). a) Images of the displacement at t̂ = 2, 2.5,. . . , 9.5,
10 (s) after opening the gate valve. The flow is from left to right. The field
of view is 1373 (mm) by 19 (mm), taken 102 (mm) below the gate valve.
b) Images of the displacement at t̂ = 10.75, 16.75, . . . , 106.75, 112.75 (s)
after opening the gate valve. The field of view is 1357 (mm) by 19 (mm),
taken 1723 (mm) below the gate valve. The last images at the bottom a
and b are the concentration colourbar. c) Spatiotemporal image of the same
displacement shown in b. d) Plot of the velocity profile measured with the
UDV for the same experiment. The UDV probe is located at x̂ = 1560
(mm).
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Figure 7.4: Formation of a ripped-type displacement for β = 75◦, At =
0.016, τ̂Y = 4.3 (Pa), V̂0 = 48.1 (mm/s). a) Images of the displacement at
t̂ = 15, 17, . . . , 25, 27 (s) after opening the gate valve. The field of view is
1411 (mm) by 19 (mm), taken 1663 (mm) below the gate valve. b) Evolution
of the depth-averaged concentration with time and streamwise location for
the same snapshots as in part a). At t̂ ≈ 21 (s) the unstable leading front
breaks off the gel layer, resulting in a jump in the concentration profile.

boxes in the last snapshot of Figs. 7.5a and c highlight stationary features,
captured from different views. Careful inspection of these images shows that
these portions of the gel layer are predominantly located at the sides of the
pipe rather than its top, again emphasizing that the flow pattern is no longer
purely slump-like. Although the displacing layer initially slumps beneath
the viscoplastic layer, its motion becomes highly three-dimensional once the
layer becomes unstable. This largely restores the up-down symmetry of the
flow. The behaviour shown in Fig. 7.5 was not common, being observed in
only a few of our experiments.

Detachment of Carbopol layers and corkscrews

An interesting and exotic flow pattern that was not observed in nearly-
horizontal displacements is the formation of helical pieces of displaced Car-
bopol. We show an example of this in Fig. 7.6. Figures 7.6a and b show
the image sequences and spatiotemporal diagram respectively, recorded with
the downstream camera. The helical corkscrew structure is formed behind
the leading displacement front. As it enters the images shown in the fig-
ure, the fluid immediately ahead of the helix is at least partially displaced.
Our first thought on seeing these structures was that they might reflect an
unstable mode developing from a Rayleigh-Taylor mechanism. However, we
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Figure 7.5: Ripped-type displacement for β = 60◦, At = 0.016, τ̂Y = 14.9
(Pa), V̂0 = 26.8 (mm/s). a) Images of the displacement at t̂ = 22.5, 25, . . . ,
62.5, 65 (s) after opening the gate valve. The field of view is 1195 (mm) by
19 (mm), taken 1809 (mm) below the gate valve. b) Spatiotemporal image
of the same displacement. c) Top view images from the same experiment.
The blue boxes in the last snapshots of a and c highlight static fragments of
the Carbopol layer on the wall.

observed these helical structures over a broad range of pipe inclinations (up
to β = 60◦), and the initial stage of the displacement was always slump-like.
We also considered the possibility that corkscrews were related to a helical
mode of a core-annular shear instability [109], but this also proved incorrect.

The formation of the helices is instead associated with the removal of
large pieces of Carbopol gel from the upper wall of the pipe, after the pas-
sage of the initial front and the breakup of the Carbopol into segments via
the bursting behaviour described above. It appears that resistance to flow in
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Figure 7.6: Corkscrew-type displacement for β = 15◦, At = 0.016, τ̂Y = 19.7
(Pa), V̂0 = 61.3 (mm/s). a) Images of the displacement at t̂ = 7, 10, . . . ,
48, 52 (s) after opening the gate valve. The field of view is 962 (mm) by 19
(mm), taken 1723 (mm) below the gate valve. b) Spatiotemporal image of
the same displacement. c) Initial formation of the corkscrew structure. The
field of view is 706 (mm) by 19 (mm), approximately 90 (mm) downstream
of the gate valve. The images were recorded at t̂ = 1, 2, . . . , 11, 12 (s)
after the start of the experiment. The Newtonian displacing layer is pushed
azimuthally around the dark viscoplastic layer, detaching it from the pipe
wall.

the axial direction, due to partial blockage of the pipe by the gel, promotes
azimuthal pressure gradients that push fluid around the wall, removing the
Carbopol layer in the process. This process is less energetic than the initial
unsteady bursting and so leaves the removed Carbopol intact. The pene-
trating film starts close to the upstream end of each segment and propagates
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Figure 7.7: a) Front and b) top view images of the helical structure formed
in the experiment shown in Fig. 7.6. The field of view is 115 (mm) by 19
(mm), approximately 1800 (mm) downstream of the gate valve. The images
are taken at t̂ = 44.5, 45, . . . , 50.5, 51 (s) after the start of the experiment.
The contrast of these images has been enhanced to show the structure more
clearly. The average wavelength of the helix is about 1.9 times the diameter
of the pipe.

downstream as the layer is lifted from the wall. This process may involve an
instability with an axial wavelength. As the layer is lifted from the wall into
the main stream it is deformed axially into the helical form. The entire seg-
ment eventually lifts from the wall and propagates downstream. Figure 7.6c
shows the early stages of the formation of a helix. An additional example is
shown below in §7.2.4.

To better understand the behaviour of helical pieces of Carbopol within
the surrounding displacing fluid, we focus on the motion of a single helix
observed from both side and top views. Figures 7.7a and b show close-
up images from the experiments. The helical shape does not appear to
deform much over the period shown, which is approximately 6.5 (s), but
it rotates about its axis and moves in three dimensions as it propagates.
The wavelength λ̂ of the helix is on the order of the pipe diameter; in this
particular case we find λ̂/D̂ ≈ 1.9. The wavelength is probably determined
by the formation mechanism discussed above, as the pipe diameter limits
the lateral motion of the Carbopol layer as it is removed from the wall.

We also observed what we term “blockage-type” displacements, which
appear to be closely related to the corkscrew-type displacements discussed
above. Here the deformation of the viscoplastic layer itself helps displace the
rest of its bulk in the pipe by forming a small plug which blocks the pipe.
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Figure 7.8 shows results from an experiment showing such a blockage. The
sequence of images in Fig. 7.8a shows that the initial displacement behaviour
is characteristic of slumping. The viscoplastic layer becomes cut off by
displacing liquid. One ripped segment of the dark gel layer then separates
from the wall and becomes rolled up in such a way that it blocks the whole
cross section of the pipe. Once formed, the blockage is pushed downstream
by the flow and acts to remove the displaced fluid remaining inside the pipe.
The moving blockage can be clearly seen in the spatiotemporal diagram,
shown in Fig. 7.8b. The velocities measured with the UDV are plotted in
Fig. 7.8c. Before the passage of the blockage, i.e. for t̂ < 10 (s), the velocity
profile away from the wall of the pipe is quite flat. This plug flow profile is
due to the yield stress of the fluid in the pipe. A similar plug flow region is
seen at early times in Fig. 7.8d. Once the blockage of Carbopol gel passes
the location of the UDV probe t̂ ≈ 15 (s), the velocity profile evolves into
a parabolic profile characteristic of Poiseuille flow. This indicates that the
fluid behind the blockage has no yield stress, i.e. the passing blockage has
pushed the yield-stress fluid out ahead of it. For t̂ between 10 and 20 (s),
the passage of the blockage of viscoplastic gel causes some oscillation in the
UDV profiles. Figure 7.8d illustrates the change from plug flow to Poiseuille
flow by showing velocity profiles across the pipe before and after the passage
of the plug. The effect of the gel blockage can also be seen from the fact
that the depth-averaged concentration C, calculated from the images in Fig.
7.8a increases from 0.45 before the its passage to 0.69 after.

A closer look at the way the blockage forms is given by Fig. 7.9. As
with the corkscrews described above, the upstream end of the viscoplastic
layer is removed from the wall and pushed towards the bottom of the pipe,
making it roll up to the point that it blocks the pipe. The resulting plug
and the Carbopol segment downstream are then pushed along the pipe by
the displacing fluid. This motion can continue until the blockage exits the
pipe, as in Fig. 7.8a, or until it becomes “unrolled” by the surrounding fluid,
thus opening a passage for the displacing fluid. This latter behaviour can
be seen in Fig. 7.3a.

7.2.2 Central regime

The central-type displacements observed in our experiments are similar to
those described in [125]. We show just one example in Fig. 7.10. Figures
7.10a and b show time sequences of simultaneous side- and top-view images,
respectively. Comparison of these images confirms that the displacing front
travels approximately centrally through the pipe, leaving a (darker) residual
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Figure 7.8: Blockage-type displacement for β = 30◦, At = 0.0143, τ̂Y = 6.9
(Pa), V̂0 = 113.2 (mm/s). a) Images of the displacement at t̂ = 9, 10, . . . ,
23, 24 (s) after opening the gate valve. The field of view is 1392 (mm) by
19 (mm), 1685 (mm) below the gate valve. b) Spatiotemporal image of the
same displacement. c) The velocity profile measured with the UDV for the
same experiment. The UDV probe is placed at x̂ = 1560 (mm). d) Profiles
of the streamwise velocity obtained from the UDV at t̂ = 6 (s), showing a
plug flow profile and 24 (s), when the profile is more closely parabolic. The
dotted red line is an extension of the measured velocity profile intended as
a guide to the eye; the UDV does not give 0 velocity at the lower wall due
to refraction errors.
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Figure 7.9: Slump-type displacement for the same parameters as used in
Fig. 7.3 showing the formation of a blockage. The field of view is 192 (mm)
by 19 (mm), 380 (mm) downstream of the gate valve. The images are taken
at t̂ = 63, 63.25, . . . , 64.25, 64.5 (s) after the start of the experiment. In this
case the blockage did not persist for very long and instead unfolded back to
a layer configuration.

layer of Carbopol all around the pipe. These residual layers are nonuniform
with irregular, slow spatial variations in thickness, as was also the case in
[125]. The images also show tendrils of the lighter-colored displacing fluid
ahead of the main displacement front. These are due to initial mixing of the
fluids that takes place when the gate valve is opened to start the experiment.

Figure 7.10c shows the flow velocities measured with the UDV, which
was located 156 (cm) downstream from the gate valve. Before the displacing
front reaches the position of the UDV probe, the velocity profile is plug-like,
with a flat central region. After the front passes at t̂ ≈ 16 (s) a static layer
forms at the pipe wall and the velocity profile in the center of the pipe
becomes much closer to parabolic. As the front motion is approximately
steady, Fig. 7.10c can also be translated into a spatial map of the velocity
distribution, (i.e. by multiplying the time axis by the mean front velocity).
A similar transition from a fully mobile fluid to a situation with static resid-
ual layers during the steady passage of a displacement front was identified
computationally by Allouche et al. [5] for plane channel displacements of
two Bingham fluids, but to our knowledge this is the first time that such
a transition has been visualized experimentally. It is interesting that the
axial extent of the transition region inferred from Fig. 7.10c is very long.
We observe the transition to take place over a period of roughly 10 (s), from
t̂ ≈ 10 (s) to t̂ ≈ 20 (s). The mean speed in this experiment is V̂0 = 73.3
(mm/s), with the front velocity being significantly larger. This suggests a
transition length of approximately 1 (m), equivalent to about 50D̂. This
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Figure 7.10: Central displacement for β = 30◦, At = 0.0035, τ̂Y = 26.3,
V̂0 = 73.3 (mm/s). a) Side view images of the displacement at t̂ = 20,
20.5, . . . , 25, 25.5 (s) after opening the gate valve. The field of view is 560
(mm) by 19 (mm), 2438 (mm) below the gate valve. b) Top view images
of the displacement taken at the same times as in a. c) The velocity profile
measured with the UDV for the same experiment. The UDV probe is 1560
(mm) downstream from the gate valve.

is significantly longer than anything observed in the computational studies
[5, 149], in which the length of the transition region was typically a few chan-
nel widths. Although results for pipe and channel flows may not be directly
comparable, this is nonetheless a large difference. It may be a result of the
fact that BN ≫ 1 in our experiments; the large ratio of the yield stress of
the displaced fluid to the viscous stress of the displacing fluid makes the
former more resistant to being washed away by the latter. This resistance
may result in a larger transition region. It may also be because our flows are
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more inertial than those in the computations, perhaps causing the uneven
residual wall layer to excite spatial frequencies behind the front.

7.2.3 Turbulent-mixed displacements

In some of our experiments at elevated flow rates, the flow of the displacing
fluid becomes turbulent. Figures 7.11a-d show results for one such case; for
this experiment Re = 1890. Strong transverse mixing makes the concentra-
tion profile uniform across the pipe, as is evident in the images of Fig. 7.11a.
Instead of a sharp displacement front, we observe a discernible gradient in
the mean concentration along the flow direction. Figure 7.11b shows the
depth-averaged concentration as a function of axial position along the pipe
and suggests that the concentration gradient broadens as the displacement
progresses. Figure 7.11c shows the spatiotemporal diagram for the same ex-
periment. There is no clear boundary between the displacing and displaced
liquids, and again the extent of the mixing zone increases as time progresses.
Sufficiently far ahead of the mixing front we would expect the Carbopol to
be in laminar regime. Figure 7.11d shows the UDV data for the same ex-
periment. At early times (t̂ < 10 s) the velocity profile at the UDV probe
is plug-like and laminar, but it becomes spatially and temporally unsteady
as the displacing fluid passes. The duration of the periods of high and low
velocity visible in the core of the flow for t̂ & 15 (s) imply lengths ranging
0.1 to 1 (m), indicating relatively long, streak-like structures characteristic
of low Re turbulence. The slight up-down asymmetry of the streamwise
velocity data shown in Fig. 7.11d may be due to UDV refraction errors close
to the lower wall, or it may indicate that a slight slumping effect is still
present despite the strong mixing across the pipe.

To characterize the spreading of the diffuse mixing region, we applied a
similarity transform, ξ̂ = (x̂ − V̂0t̂)/

√
t̂, to the mean concentration profiles

plotted in Fig. 7.11b. The results are plotted in Fig. 7.12. The scaled concen-
tration profiles collapse very well onto a single curve. The solid curve plotted
in Fig. 7.12 is a fit to the data of the usual analytic solution to the one-

dimensional linear diffusion equation, C = 0.5 erfc
(

(x̂− V̂0t̂)/
(

2
√

D̂M t̂
))

,

with D̂M = 2.5 × 10−4 m2/s. The reasonably good fit to the data coupled
with the high value of the diffusion coefficient D̂M strongly suggests that
the observed axial spreading is due to turbulent diffusion. The value of
D̂M obtained here is approximately as order of magnitude lower than those
obtained for iso-viscous Newtonian displacements in the same apparatus in
[3], which suggests that the yield stress and high viscosity of the Carbopol
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Figure 7.11: Displacement flow for β = 0◦, At = 0.016, τ̂Y = 11.7 (Pa),
V̂0 = 97.6 (mm/s). a) Images of the displacement at t̂ = 14, 15, . . . , 26,
27 (s) after opening the gate valve. The field of view is 1364 (mm) by 19
(mm), 1702 (mm) below the gate valve. b) Evolution of the depth-averaged
concentration with time and streamwise position for the images in a. c)
Spatiotemporal image of the same displacement. d) The velocity measured
with the UDV for the same experiment. The UDV probe is located at
x̂ = 1560 (mm).
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Figure 7.12: Collapse of the depth-averaged concentration profiles shown
in Fig. 7.11b when plotted against (x̂ − V̂0t̂)/

√
t̂. The collapse suggests

that the spreading of the front is diffusive. The solid line is a fit to the

form C = 0.5erfc
(

(x̂− V̂0t̂)/
(

2
√

D̂M t̂
))

with the axial diffusion coefficient

D̂M = 2.5× 10−4 m2/s.

limits dispersion along the pipe.
Our experiments were designed to be below the nominal transitional

Reynolds number for pipe flow, Recr ≈ 2300, and this type of flow occurred
mostly for small values of β, i.e. for inclinations close to vertical, and high
Atwood number (At = 0.016). It was observed for Reynolds numbers as low
as Re = 870, suggesting that the onset of turbulence involves buoyancy as
well as shear. The unevenness of residual deposits of Carbopol along the
walls may also contribute to the unsteadiness of the flow. The majority
of our experiments were done at lower Re, and we have insufficient data to
determine the onset of this regime precisely. Although it would be interesting
to study this regime in more detail, our apparatus and the UDV technique
are not ideal for doing this.

In recent work we studied density unstable Newtonian-Newtonian dis-
placement flows, using the same apparatus and over a similar range of pipe
inclinations [3]. The images in Fig. 7.11a and the spatiotemporal plot in
Fig. 7.11b are quite similar to those observed in [3]. In that work we also
found fully diffusive turbulent displacements at Re much lower than ex-
pected, but with significant axial buoyancy contributions. It appears that
once turbulence starts and the mixing becomes very efficient across the pipe,
the rheology of the displaced fluid becomes immaterial.
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7.2.4 Exchange flows

We also carried out a number of experiments with no imposed mean flow.
In these experiments, the drain valve at the end of the flow loop remained
closed throughout the experiment and only the gate valve is opened at t̂ = 0
(s). The balance between yield stress and buoyant forces determines whether
an exchange flow occurs. In most of our experiments, and in particular in
nearly-horizontal experiments in which the axial component of the buoyant
force was weak, there was no motion after the gate valve was opened because
of the yield stress of the Carbopol. Motion did occur in a significant number
of experiments, however. In all cases the displacement flow was of the slump
type, and we observed intact, ripped, and corkscrew behavior.

Figure 7.13 shows images from four exchange flows for At = 0.016 and
different inclination angles. The field of view straddles the position of the
gate valve, and the location of the valve is indicated on the images. Figure
7.13a shows snapshots from a close-to-horizontal exchange flow experiment
in which the displacing layer has slumped beneath the gel layer, which re-
mains intact. Figures 7.13b and c are from more steeply inclined experi-
ments, β = 45◦ and 15◦ respectively. In almost all of the exchange flows
observed, a relatively thin layer of displacing fluid initially slumps beneath
the displaced layer, as in the slump flow displacements for V̂0 > 0 discussed
above. This can be seen in Figs. 7.13a-c. In Fig. 7.13b the flow is of ripped
type. As there is no imposed flow in this case, isolated segments of Carbopol
are driven only by buoyancy and float upstream in the displacing fluid after
they detach.

Figures 7.13c and d show an interesting example of a corkscrew-type
exchange flow. As above, the displacing fluid again forms a thin layer along
the bottom of the pipe, but then begins to push upwards azimuthally. Pre-
sumably the axial pressure gradient is insufficient to sustain the simple ex-
change configuration against the yield stress, and instead the displacing fluid
is squeezed around the walls. Figure 7.13d shows that the azimuthal pene-
tration of the clear fluid through the Carbopol becomes spatially uneven as
it develops; this appears to be associated with the formation of the helical
structure and its propagation upwards into the clear fluid.

These results are most interesting in the context of previous theoretical
studies by Frigaard and coworkers on buoyancy-driven exchange flows with
two yield-stress fluids [49, 51, 54]. The approach taken in [49, 54] was to
study an intact slump type configuration, in which the interface remains
stratified in the cross-section of the pipe, as it elongates, assuming a lu-
brication theory-type of scaling. For such configurations there is a balance
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Figure 7.13: Snapshots of the exchange flow experiments carried out for
At = 0.016 and a) β = 75◦, τ̂Y = 4.3 Pa at t̂ = 40, 49, . . . , 121, 130 s;
b) β = 45◦, τ̂Y = 22.6 Pa at t̂ = 30, 32.5, . . . , 52.5, 55 s; and c) β = 15◦,
τ̂Y = 19.6 Pa at t̂ = 11, 13.5, . . . , 36, 38.5 (s). The field of view is 1370
(mm) by 19 (mm). The center of the gate valve in each image is indicated
by a white dotted line; the valve body blocks the view of the fluids on either
side of this line. The white arrows in b and c show the position of the fast
displacing front. In a it has already passed through the field of view by the
time of the first snapshot. The left end of the pipe is higher than the right;
the black arrow at the bottom of each figure points downhill. d) Images from
the same experiment as in c for t̂ = 13.5, 18.5, . . . , 33.5, 38.5 (s) focused on
the area below the gate valve to better show the formation of a corkscrew
structure within the dark gel region. In all images the contrast has been
enhanced to show the structures more clearly.
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between axial buoyancy and yield stress, and for sufficiently high yield stress
flow is not possible. A plane channel was considered in [49] and a pipe in
[54]. For a pipe with a single yield-stress fluid the condition needed for a
long thin slump flow to occur is

τ̂Y

∆ρ̂ĝD̂ cos β
< 0.3043. (7.7)

in [51] this approach was extended to configurations in which the interface
is perpendicular to the axis of the pipe. For a horizontal pipe half filled with
a yield-stress fluid and with both fluids initially stationary, motion will not
be instigated if

τ̂Y

∆ρ̂ĝD̂
> 0.25. (7.8)

This estimate was combined with Eq. (7.7) to give an approximation for
the yield stress required for a stationary flow at all inclinations β [51]. The
expression in [51] is too complicated to repeat here, but the numerical re-
sults above are indicative of the value of τ̂Y /∆ρ̂ĝD̂ required to prevent mo-
tion. Reference [51] also reports a sequence of experiments that confirmed
the bounds based on Eqs. (7.7) and (7.8), and indeed suggests that they
are somewhat conservative. In contrast, for the exchange flow experiments
reported here in which motion was observed, τ̂Y /∆ρ̂ĝD̂ is in the range 0.69-
20.13, much larger than required to prevent flow according to the predictions
of [51].

There are many possible reasons for this apparent discrepancy. First of
all, the experiments in [51] differ from those reported here. In [51], exper-
iments were performed in a sealed pipe initially filled with two fluids in a
gravitationally stable configuration (i.e. light over heavy) that was turned
rapidly and placed against an inclined plane in the unstable configuration.
This process adds inertia to the system, but not specifically to the interfacial
region. In contrast, opening the gate valve in our experiments undoubtedly
shears and mobilizes the fluid locally.

Given this difference, the comparison with stability criteria based on
static or slow flow configurations may not be valid. In the static con-
figuration, dimensional analysis shows that τ̂Y /∆ρ̂ĝD̂ and β are the only
important parameters [51]. In lubrication/thin-film flows an additional pa-
rameter relating viscosity and buoyancy comes into play. In terms of our
parameters, this is roughly the combination Re cos β/Fr2 . Where inertia is
present, however, self-reinforcement of the inertia-buoyancy balance is crit-
ical. This is captured in the parameter Re/Fr. This effect is not included
in the analysis of [49, 54].
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It is nevertheless interesting to consider the propagation mechanism more
closely. The only possible driving force is the buoyant stress, which has a
magnitude of order ∆ρ̂ĝD̂. If τ̂Y is much larger than this, it is hard to
see how the flow can progress. It is conceivable that significant extensional
stresses are generated in the intact slump configurations, in which the lay-
ering is observed to be quite uneven. This may account for some flows for
which τ̂Y /∆ρ̂ĝD̂ ∼ 1. It is interesting, however, that in Figs. 7.13b and c
the yield-stress fluid only propagates upstream when it is separated from
the wall, i.e. it is a solid body floating.

This suggests that the yield-stress fluid prevents exchange flows through
continuity and contact with the wall. More specifically, in the absence of
sufficient stresses, there is no deformation. If in addition the yield-stress
fluid is in contact with the wall, then it simply does not flow. This in turn
means that the net flux of the other fluid is zero. If, on the other hand, the
yield-stress fluid is detached from the wall, it can move in an undeformed
state and does not constrain the motion of the other fluid. As another
example, a concentric core-annular system is analyzed in [54]. It is shown
that if the yield-stress fluid is in a layer adjacent to the wall, a sufficiently
high yield stress prevents motion, while if the yield stress is small or if the
fluid on the wall is Newtonian and the yield-stress fluid is in the centre then
motion cannot be stopped. All of this reinforces the idea that the flows of
Carbopol observed above the gate valve are associated with detachment of
the viscoplastic fluid from the wall.

Other possible explanations for the unexpected flows propagation invoke
the effects of mixing or possible slip at the wall. The former does not appear
substantial in our experiments and in any case would mitigate buoyancy
effects. For the latter, we have no evidence of slip in any of our other
experiments and see no reason for it to suddenly manifest here.

Whatever the explanation, these results are interesting from an industrial
perspective. One motivation for the studies in [49, 51, 54] was the industrial
process of plug cementing used to seal oil wells at abandonment, among other
things. The placement of cement plugs is typically inertial: the cement and
other fluids are pumped down the well through a narrow pipe. In this sense
the practical conditions are closer to those in our experiments than to those
of the experiments in [51]. The observed tendency for the yield-stress fluid
to detach from the wall — either in segments or in a more complex pattern
— raises concerns about the efficacy of the plug cementing process in cases
where one of the fluids involved has no yield stress. Further study in this
area would thus be beneficial.
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7.2.5 Dimensionless flow classification

We have observed a rich range of phenomenology in slump-type displacement
flows. On re-examination of the data from [125], we also found some of the
same phenomena in their slump flow experiments, particularly later in some
of their displacements. Although we have tried to classify each type of flow
observed, some occur at different stages in the same experiment. Any such
classification is therefore not exclusive. It therefore appears possible that
there is a continuum of possible behaviour. We summarize the main trends
observed.

First, as the pipe is inclined away from horizontal the effects of the axial
buoyancy force start to become important. At low imposed flow rates we
frequently observe detached pieces of the displaced fluid traveling upwards,
driven against the imposed flow by buoyancy. Adopting terminology from
[130], we classify experiments as “displacing instantaneously” if no displaced
fluid is observed above the gate valve during an experiment. If the displace-
ment is not instantaneous, there is back flow. This may be in the form of
a sustained flow up the pipe or a transient flow that is eventually washed
downstream, although this distinction may not be fundamentally relevant
since the experiments are of finite duration.

Figure 7.14 shows the experimental data plotted in the Fr-Re cos β/Fr
plane. The data points from experiments with back flow are labeled with
an ×, while those which are instantaneous are unlabeled. The heavy line
in Fig. 7.14 is the predicted boundary between instantaneous displacements
and back flows, assuming two iso-viscous Newtonian fluids; see [130]. Flows
below this line are theoretically predicted to displace instantaneously [130].
A similar figure is given in [3] for iso-viscous Newtonian fluid displacements.
In that case, back flows were found only in the approximate range 0 . Fr .
3 and 0 . Re cos β/Fr . 800. Figure 7.14 shows that when the displaced
fluid has a yield stress, the maximum value of Fr for which back flows are
found shrinks to 1.3, while the maximum value of Re cos β/Fr increases to
1100. The presence of the yield stress seems to change the region in which
back flow occurs, but not by much. From the industrial point of view, it is
beneficial to have instantaneous displacement of the displaced fluid.

The second main trend we have seen is a progression of mechanisms for
the break up and removal of the yield-stress fluid layer. For slump-type
displacements, the initial behaviour in all cases is very similar: a rapidly
moving front flows along the lower side of the pipe. At lower Re/Fr the
displaced yield-stress fluid remains largely intact. As Re/Fr increases, the
focusing of the flow into a narrow layer increases the inertia [125] and we
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Figure 7.14: Presentation of our experimental results in the Fr–Re cos β/Fr
plane. The line represents the prediction of the lubrication model of [130]
for the stationary interface between two iso-viscous Newtonian fluids. Red
squares indicate conditions for which slump-type displacements were ob-
served. Blue circles indicate central-type displacements. Points marked ×
indicate displacement flows that are not instantaneous, i.e. that involved
back flows. Experimental points for near-horizontal pipes from [125] are in-
dicated by black borders around the symbols. The inset enlarges the region
close to the origin to better display the non-instantaneous displacements
observed for nearly-horizontal experiments.
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begin to observe unsteady bursts that locally break the Carbopol layer. As
the inclination angle β is decreased the axial component of the buoyancy
force increases. The flows remain segregated but the unsteady bursts rip
the Carbopol layer into pieces, some of which can move backwards against
the flow. At large Re/Fr the degree of instability increases further, and
structures such as corkscrews and blockages form in the Carbopol as it is
removed from the pipe wall. At similar Re/Fr but larger Re we observe the
onset of the turbulent mixed regime.

Figure 7.15 shows the experimental data points with their secondary
classification indicated. All of the slump flows are of the “ripped” type, but
within this class, corkscrew and plug structures are observed for Re/Fr &
950. Turbulent/mixed flows appear in a similar range of Re/Fr. As a guide
to the reader we have plotted a nominal transition curve for the onset of
turbulence at Re = 2300 in Fig. 7.15a. Figure 7.15b presents the same data,
but plotted with Re cos β/Fr on the y-axis. This quantity is a measure
of the influence of the axial buoyancy force in promoting instability com-
pared to viscous effects. We see that the unstable flow structures appear at
pipe inclinations that are far from the horizontal, suggesting that they are
associated with an increase in the effect of buoyancy.
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Figure 7.15: a) Experimental results plotted in the Fr–Re/Fr plane. The
curve corresponds to Re ≈ 2300. The horizontal line segment corresponds to
Re/Fr = 950. The highly unsteady flow behaviour described in the text was
observed above this line. ⊳: turbulent-mixed displacements; ⊲: corkscrew
and blockage-type displacements; red squares: slump-type displacement;
blue circles: central-type displacement. Data from [125] for near-horizontal
pipes are indicated by black borders around the symbols. The inset enlarges
the region above Re/Fr = 950 and shows that there are some experiments
in which none of the mixing, corkscrew and/or blockage type flows were
observed. b) The same data plotted in the Fr–Re cos β/Fr plane. The figure
shows that the highly unsteady flows (mixing, corkscrew and blockage-type)
appear for Re cos β/Fr & 500.
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7.3 Discussion points

We have presented experimental results in which a heavy Newtonian fluid
displaces a lighter yield-stress fluid in the downwards direction. We have
focused on the industrially interesting case where the yield stress is sig-
nificantly larger than the viscous stress in the displacing fluid, but where
buoyancy may be significant. We have described a number of distinct flow
regimes and exotic behaviours that arise in the presence of a large yield
stress of the displaced fluid.

As found previously for nearly horizontal pipes [125], the displacement
flows were either slump or centre-type. The transition between the two flow
regimes occurred in the range 600 < Re/Fr < 800, as in [125]. This implies
that the inclination angle does not directly determine the flow regime, al-
though it did contribute to the range of secondary flow behaviour observed
at higher inclinations.

In addition to the slump and centre-type displacement flows, we also
observed a turbulent/mixed regime either when the flow rate was high (in
which case the imposed flow is turbulent) or when the buoyancy parameter,
Re cos β/Fr, was large enough to cause instability and mixing. In all of
the slump flows, the gel layer was broken up over time by a range of differ-
ent mechanisms, including the formation of corkscrew structures and plugs
which blocked the pipe.

Newtonian-viscoplastic fluid exchange flows were also studied over a
range of inclination angles. The more dense Newtonian fluid was found
always to slump beneath the gel layer, while the lighter viscoplastic layer
showed a range of different behavior. The onset of exchange flow was char-
acterized using the ratio between the yield stress of the displaced fluid to
buoyant stress caused by the density difference.

Finally, the experimental data were characterized according to whether
the displacement flows happen instantaneously or there exists a back flow.
This is important for industrial applications, in which back flow is generally
undesirable. The results were compared with those for iso-viscous Newto-
nian fluid displacements [3].
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Chapter 8

Conclusions

In this chapter the main scientific conclusions and contributions of this thesis
are summarized. This is followed by giving industrial recommendations
based on the results. We conclude by looking into ways of improving the
results and at future work that could undertaken to extend the results of
this thesis.

8.1 Contributions to fluid dynamics

understanding

In this section the key findings of the thesis are categorized into three groups
namely, Newtonian iso-viscous displacement flows, yield stress fluid displace-
ment flows and modeling/flow stability prediction.

8.1.1 Newtonian iso-viscous displacement flows

The majority of the results presented in this thesis focus on Newtonian iso-
viscous displacement. This includes density stable and/or unstable experi-
ments and both pipe/channel geometries. For pipe geometry the approach
is wholly experimental and for 2D channel geometry the approach has been
mostly numerical, but partly analytical.

It was found that the density difference (although very small) has a
huge effect on the observed flow. When the configuration is density unsta-
ble the flow becomes quickly stratified and can potentially go unstable at
inclinations away from horizontal. In this case the displacement efficiency
is always less than 100% since the displaced layer has the tendency to flow
back against the mean displacement flow. If there is no density difference,
the two fluids are essentially the same and the flow pattern mimics that of
a Poiseuille flow. By further changing the density difference to a stable con-
figuration the flow again undergoes a major change and takes the form of a
quasi-steady interface moving at a constant speed and washing the displaced
fluid almost completely. Note that the displacement efficiency is very close
to 1 in this case.
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Although inertia plays an important rule in the case of density unsta-
ble flows, it barely seems to be important when the configuration is density
stable. The governing force balance influencing the interface length appears
to depends mostly on buoyancy and viscous forces. In density stable dis-
placements the longitudinal extent of the interface (that we have called the
stretch length) was measured for a wide range of parameters. It was found
that the stretch length increases with mean flow speed and pipe inclination
angle (β, measured from vertical) and increases with the common viscosity
of the two fluids. While the former effects are somehow intuitive the latter
is not intuitive at all. The stretch length also decreases when the density
difference increases. Interestingly it is predicted that in the presence of the
mean flow speed, the stretch length approaches the hydrostatic value only
when the density difference is infinity.

Through use of a scaling argument, all the experimental data collapsed
into a single curve giving the dimensionless value of the stretch length as a
function of χ = 2Re cos β/Fr2. The curve suggests the form L = tan β −
3680/χ. The formula is valid for all inclination angles except β = 0◦, i.e. a
strictly vertical pipe. In fact an almost zero value was found for the stretch
length in this case, but due to a completely different flow pattern than
that found at other inclination angles. A spike-like region was found at the
displacing front which is typical of symmetric displacements [27, 81, 93, 109].

When the configuration is density unstable we have studied the iso-
viscous displacement flows in both pipe (experimentally) and 2D channel
(numerically). For both methodologies the types of flow were first described
qualitatively at different inclination angles, β, through snapshots of the ex-
periment/simulation, spatiotemporal diagrams of the depth-averaged con-
centration and from the velocity distribution. From images of the flow we
have extracted the speed of the displacing front V̂f , which is closely asso-
ciated with the displacement efficiency. For those cases when instability is
present and the fluids are well mixed (called diffusive flows), another im-
portant quantity that can be extracted from the data is the macroscopic
diffusion coefficient D̂M . Both the front velocity and the macroscopic diffu-
sion coefficient were measured over a wide range of parameters.

The most important contribution of the density unstable displacement
study was defining different flow regimes in the dimensionless Re cos β/Fr
and Fr plane. It was found that separate regimes for instantaneous and
non-instantaneous, viscous/inertial and diffusive/non-diffusive displacement
flows can identified in this plane. The related values of Re cos β/Fr and/or
Fr were given along the boundaries of these different flow regimes. It was
also found that due to the strong mixing at inclinations close to vertical
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instantaneous displacements can still exist at values of χ higher than the
predictions of the lubrication model (χc = 116.32) from [130]. This is simi-
lar to the Boycott effect [61] discussed earlier in chapter 2. Once the regime
classifications were made, appropriate predictions of the front velocity and
macroscopic diffusion coefficients (where applicable) were given. In partic-
ular, it was found that when the flow is viscous the lubrication model (see
[128]) can be an effective tool to predict V̂f , across all inclinations. In this
case no bulk diffusion coefficient can be defined for the flow. On the other
hand when the flow is fully diffusive, the front velocity is very close to the
mean imposed velocity, V̂f ≈ V̂0 in the case of pipe. The front velocity is

approximately 1.5 times larger than the mean imposed velocity V̂f ≈ 1.5V̂0
in the case of channel.

The key difference is that the mixing patterns are different in pipe and
channel geometries. In particular, the slumping effect is less observed in
the channel geometry than in the pipe. In fact the displacing layer tends
to advance along the middle of the channel even if the density difference
promotes a slump-type behavior. One reason for this is that 3D flows in
a pipe, where the displacing layer is more dense, can tend to squeeze the
displaced fluid layers azimuthally along the wall and towards upper side of
the pipe. There is no such preference in a strictly 2D channel geometry and
the displacing layer can thus travel in the middle of the channel.

It was found that for both channel and pipe geometries an imposed flow
can increase the macroscopic diffusion coefficient (and thus the dispersion
length), by comparison to an exchange flow. When the flows are inertial
but not fully diffusive we have derived formulae to predict the front velocity,
based on dimensionless analysis and curve fitting of the available data. The
other essential difference found between channel and pipe displacement is
that the former is much more unstable than the latter. In fact, viscous flows
can not be found for Re cos β/Fr > 25 [123] whereas in the pipe geometry
we can still have viscous flows up to Re cos β/Fr = 270 at least for some
ranges of Fr, (see chapter 4).

Another important contribution of this work was in broadening our
knowledge about the stabilizing/de-stabilizing effects of the mean flow on
the well-studied exchange flows of [111–115]. Taghavi et al. [129] found
that the mean flow has a stabilizing effect on buoyant lock exchange flows
when the pipe is angled close to horizontal. In this thesis the effect of
mean flow was investigated over all other inclination angles. Interestingly
we have found that the imposed velocity can have quite different effects on
the flow (both stabilizing and/or de-stabilizing) all controlled by the pa-
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rameter Re cos β/Fr. In particular we found that the stabilizing effect of
the mean flow found in [129] is valid up to Re cos β/Fr ≈ 270. Above this
limit the imposed flow was found to progressively destabilize the flow up to
Re cos β/Fr ≈ 500. Above this limit the imposed flow has a neutral effect
on the flow since the degree of mixing is already very high for exchange-
dominated regimes and the nature of the system is diffusive. Further details
in this regard can be found in chapter 4.

8.1.2 Yield stress fluids displacement

The displacement flow of yield stress fluids is also studied in the thesis.
Although the analytical model developed in chapter 6 is for a general case
of two Herschel-Bulkley fluids, the experimental results in chapter 7 are only
for the case that the displaced layer has a yield stress. This has mostly an
industrial motivation. We have used Carbopol solutions to mimic industrial
shear-thinning yield stress fluids. The study has been focused at the regime
where the yield stress is much larger than the characteristic viscous stress
and the Reynolds numbers (although still laminar) are significant. The
results are basically the continuation of the former study by Taghavi et al.
[125] for viscoplastic displacement in nearly horizontal pipes.

The main finding of the current study is that the slump-type and center-
type regimes first observed in nearly horizontal angles also persist at incli-
nations away from horizontal. Interestingly the transition between these
regimes occurs at approximately the same value of Re/Fr obtained before
600 . Re/Fr . 800. The results suggest that the inclination angle does
not play a major rule in the leading order features of the flow (slump/center
types). This is because of the dominance of the yield stresses over buoyant
and viscous ones.

However, under the category of slump-type displacements, some new and
exotic flows were observed as we move towards vertical pipe inclinations,
due to the increasingly strong buoyancy force acting against the mean flow.
These regimes are studied in detail through a phenomenological approach
using the snapshots of the experiments, spatiotemporal diagram of the aver-
aged concentration along the pipe and finally Ultrasound Doppler Velocime-
try (UDV). The installment of first-surface mirrors around the pipes allowed
us to not only obtain information from the facial view but also from the top
view of our experiments. This in turn enabled us to better understand the
3D nature of different flow regimes.

Exchange flows of the same fluids were studied experimentally showing
different patterns at different inclination angles. When there is yield stress
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in the displaced layer it was found that the chance of displacing instanta-
neously is much higher. The main point is that the yield stress resists the
buoyancy force pushing the fluid backwards against the mean flow. Instan-
taneous and non-instantaneous displacement flows are located on the plane
of Re cos β/Fr and Fr and were compared to their iso-viscous Newtonian
counterparts in chapter 4. Although the results and regime classifications
developed are based on experiments with Carbopol, which has both shear-
thinning and yield stress, we believe that the contribution of the shear-
thinning viscosity contributes less than the yield stress towards the range of
flows observed.

8.1.3 Modeling and stability of the displacement flows

During the 4-year course of this Ph.D. thesis 405 experiments were con-
ducted in the flow loop built in complex fluids laboratory of the University
of British Columbia. Despite the large number, only a narrow range of flow
parameters were covered. For instance although almost all range of incli-
nation angles were covered, the fluids used were limited to only iso-viscous
Newtonian and (some) Herschel-Bulkley fluids. It is basically inevitable
that one has to use a mathematical model in order to predict the important
features of the displacement flows over a wider range of parameters.

In an attempt to mathematically model some of the displacement flows,
in chapter 6 we developed an effective two-equation model following the
weighted residual approach in [8]. This weighted residual model can be used
for two generalized Newtonian fluids. Although the general formulation can
be used for any weakly inertial two layer system such as co-extrusion and
displacement flows, the focus of the study has been on the latter. The as-
sumptions made are that the fluids are immiscible but with zero interfacial
tension (equivalently miscible fluids with infinite Péclet number). Note that
the interfacial tension effect can be easily added to the current formulation.
The model equations are solved as an evolution problem using a shock cap-
turing numerical scheme. The scheme in turn can solve for the displacement
flow interface hight, h, and for a buoyancy parameter, b which can be di-
rectly related to the lower layer flow rate, q. Some key findings from the
weighted residual model study are as follows.

It was found that inertia can change the shape of the interface by mak-
ing the sharp and shock-like displacement front smoother. This can cause
a slight increase in the displacement front velocity V̂f or could decrease it,
in the case where we have a strong back flow. Although the modifications
of the interface shape and the increase or decrease in front velocity can be
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minor, the more important effect can be on the stability of the interface and
the whole flow. In fact when inertia increases, it smoothens the shock-like
displacement interface. By this shape modification, a wider range of inter-
face height values, h, become prone to instability and this is one mechanism
through which the flow becomes unstable. The model developed is not nec-
essarily reliable once an instability starts to grow (as some of the scaling
arguments may become invalid), but it can be used to predict the onset of
instability. The shape of the interface height and their corresponding front
velocities were explored for a wide range of parameters. For instance it was
found that for the case of Newtonian fluids when the displacing fluid is more
viscous than the displaced fluid, the front velocity is lower, and therefore the
displacement efficiency is higher. In the case of shear-thinning fluids, the
mechanism is quite similar, meaning that a more shear-thinning displacing
fluid can produce a less efficient displacement because its effective viscosity
decreases in the presence of shear.

An important section of the weighted residual model study is devoted
to a stability analysis of two-layer flows, which can be directly used for
displacement flows. Note that the lubrication model developed in [128] can
not be used to assess the stability of the flow since the inertial terms are
neglected in that model. Assuming that the interface between the two fluids
is stretched sufficiently over time to approach a locally constant value, a
linear stability analysis of the weighted residual model was carried out in
the long wavelength limit. In the pipe flow experiments it was observed that
instabilities originated at the interface of the two fluids. Even in the cases
where mixing is very high and the flow has a diffusive nature, we believe
that there has initially been an unstable interface. This unstable interface
grows in time and causes mixing of the fluids. Although in later stages
these flows are far from a two-layer system, initially they have been similar.
Linear stability analysis results are given over a wide range of parameters
and rheological constants. The model results were also compared against
the classical Orr-Sommerfeld equation predictions (in the long wave limit),
showing complete agreement in the case of Newtonian and non-Newtonian
fluids.

8.2 Industrial implications and recommendations

The underlying motivation in studying the displacement flows in this thesis
comes from the process of well cementing. The objectives in this regard are
to be able to predict the efficiency of the displacement of one fluid by another,
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when traveling downwards within the well casing (= a pipe). In an ideal
situation, one might hope for a perfect displacement, but in practice other
constraints on the process mean that one cannot select all fluid properties
and flow rates - hence the more modest objectives outlined. In this regard
the following findings of the thesis are helpful.

• From the density stable experiments of this thesis, it was found that
this configuration (light fluid displacing the heavy one) produces the
most efficient displacement, as is intuitive. In fact the stable density
configuration ensures that the displaced layer is washed steadily down
the well with small amount of residual stuck to the pipe wall after
the process. In the case of density stable iso-viscous Newtonian fluids
we have obtained a curve-fit based formula L = tan β − 3680/χ for
predicting the longitudinal extent of the interface between the two
fluids.

From the industrial perspective, the stability of the interface is antic-
ipated, but usual industrial recommendations (see e.g. in [89]) would
suggest that a density difference of around 10% be used. Here we
have seen stable displacements with significantly lower density differ-
ences, suggesting conservatism in the industrial practice. This could
be investigated further.

Specifically concerning primary cementing, a usual sequence of flu-
ids might consist of: drilling mud, wash, spacer, lead slurry, main
slurry, tail slurry, drilling mud. Physical plugs/darts often separate
the cement slurries from the other fluids. The last interface (tail
slurry:drilling mud) is typically density stable. Our results indicate
that from the fluid displacement perspective, the second plug/dart
may be largely unnecessary. This plug could perhaps be more effec-
tively employed between the first drilling mud stage and the wash/spacer,
which are density unstable.

• In the case of density unstable displacement flows we have identified
three main flow regimes namely viscous, inertial non-diffusive and fully
diffusive. In each regime we have been able to develop a simple pre-
dictive model for the dimensionless front velocity (V̂f/V̂0). The front
velocity also gives a measure of the displacement efficiency (see [123]),
which is simply V̂0/V̂f .

Where possible, our recommendation to displace density unstable sit-
uations in the fully diffusive regime, for which the displacement effi-
ciency is maximum. This regime is obtained for values of Re cos β/Fr
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larger than −500 + 50Fr, in the case of iso-viscous Newtonian fluids.
Note that it is always useful to have an initial estimate of the flow
regime assuming iso-viscous Newtonian fluids and build upon that.

• In the case of fully diffusive displacement flows a leading order model of
the flow consists of a mixing region between the fluids that travels with
speed V̂0 and which spreads dispersively in the axial direction. The ex-
tent of the mixed regions can be estimated obtained if the macroscopic
diffusion coefficient is known.

We have developed a simple predictive model of the diffusion coef-
ficient, in the case of iso-viscous Newtonian fluids, based on the ex-
perimental data. The concentration evolution can be found from the
system

∂C

∂t̂
+ V̂0

∂C

∂x̂
= D̂M

∂2C

∂x̂2
, (8.1)

where D̂M is the macroscopic diffusion coefficient predicted from D̂M =
D̂M,Exchange + D̂V̂0(c0 + c1(β)/

√
Fr). The coefficients are explained

in detail in chapter 4.

• As a rule of thumb, we have found that the macroscopic diffusion co-
efficient in a pipe for the case of fully diffusive flows was found to be
of the order 10 times bigger than that of turbulent Taylor dispersion
[134]. On the other hand, we must recognize that buoyancy is largely
responsible for enhancing the mixing, which evolves in such a way as
to spread density gradients axially along the pipe. Our experimen-
tal apparatus is limited in length (and hence transit time). In an oil
well and/or over significantly longer times than possible in our exper-
iments, we might expect that the dispersing mixture would eventually
spread to such an extent that either the flow might re-laminarize or (if
turbulent) would approach the turbulent Taylor dispersion coefficient
from a single phase flow. Therefore, it might be prudent to consider
Taylor dispersion as a lower limit for the axial spreading.

• An important aspect of the displacement flows is in determining whether
there would be a back flow or not. In practice we would like to avoid
back flow since it decreases the displacement efficiency by increasing
the displacing front velocity. Taghavi et al. [130] found that the lu-
brication model can be a useful tool in predicting the onset of back
flow for iso-viscous Newtonian fluids (χc = 2Re cos β/Fr2 ≈ 116.32).
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This prediction was used mainly for nearly horizontal pipes. We fur-
ther discovered that for higher inclination angles this criterion can still
be used as a first guess. In fact all the experiments conducted with
χ < χc were found to be instantaneous displacement.

Even for χ > χc some flows can still be instantaneous at inclination an-
gles away from the horizontal, due to the strong mixing that dominates
counter current motion and back flow. In the case of Newtonian fluids,
back flows were found only in the approximate range 0 . Fr . 3 and
0 . Re cos β/Fr . 800. When the displaced fluid has a yield stress,
the maximum value of Fr for which back flows are found shrinks to
1.3, while the maximum value of Re cos β/Fr increases to 1100. The
presence of the yield stress seems to change the region in which back
flow occurs, but not by much. From the industrial point of view, it
is beneficial to have instantaneous displacement of the displaced fluid
(see chapters 4 and 7 for Newtonian and viscoplastic instantaneous
displacements respectively). Our results suggest that the Newtonian
iso-viscous predictions of an instantaneous displacement should prove
conservative for other fluid types.

• In the case of displacing a yield stress fluid by a Newtonian fluid it
was shown in [125] that two main regimes can appear depending on
the ratio Re/Fr for nearly horizontal pipes. These regimes are called
slump and center type displacements. The transition between the two
regimes occurs at 600 . Re/Fr . 800 when the yield stress is far larger
than the characteristic viscous stress. In this thesis it was interestingly
found that the same flow classification exists for inclinations away
from horizontal. This suggests that yield stress effect can completely
dominate the effect of buoyancy and viscosity.

However as we decrease β some unstable and exotic flows form un-
der the category of slump-type displacements that were not observed
in the nearly horizontal situation. Among these are some flow struc-
tures that appear to help displace the yield stress fluid, e.g. the he-
lical/corkscrew type displacements discussed in chapter 7. Although
helpful to displacement, it is probably premature to make any recom-
mendation based on these flows.

• When the displaced layer has a yield stress and in the limit of exchange
flows (zero mean flow) it was also found that in some cases the gel layer
moved upstream of the gate valve. This is associated with detachment
of the viscoplastic fluid from the wall. These results are interesting in
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the context of industrial process of plug cementing used to seal oil wells
at abandonment. The placement of cement plugs is typically inertial:
the cement and other fluids are pumped down the well through a
narrow pipe. The observed tendency for the yield-stress fluid to detach
from the wall, either in segments or in a more complex pattern, raises
concerns about the efficacy of the plug cementing process in cases
where one of the fluids involved has no yield stress. Further study in
this area would thus be beneficial.

8.3 Limitations of the present study and future
work

Although many aspects of displacement flows have been studied in this thesis
(experimentally, numerically and analytically) there are certainly also limi-
tations in what we have been able to study. These limitations are discussed
here. We then consider possible future work in this area.

8.3.1 Main limitations of the current study

The main experimental limitations can be listed as the cost, the time that
each experiment take, the length of the apparatus, the pipe diameter used
and the working fluids. In more detail these are as follows.

• Throughout this thesis, only a single pipe diameter 19.05 (mm) was
used. Two key dimensionless parameters that define different flow
regimes are Re and Fr. Upon changing the mean flow rate, both Re
and Fr increase linearly, obscuring an independent assessment of the
effects of either parameter. If we were able to vary the pipe diameter

D̂, the Froude number decreases with D̂ (Fr = V̂0/

√

AtĝD̂) whereas

Re = ρ̂V̂0D̂/µ̂ increases with D̂. This makes for an easier assessment
of individual Re and Fr effects. Thus, in order to better understand
the physical mechanisms behind different regimes observed i.e. viscous,
inertial non-diffusive and fully diffusive flows, it would be advisable to
run some experiments with pipes of differing diameter.

• Another experimental limitation was regarding the working fluids. In
our series of experiments we did not degas our water-based solutions
prior to each run. It is suggested to degas the solutions with vacuum
pump in sealed tanks in order to reduce the effects associated with
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dissolved air into the solutions. During the preparation of the solu-
tions and mixing the powders, ink, salt, UDV particels etc., the air
can be dissolved more into the liquid solution. The existence of gas
bubbles in the liquid can then affect the characteristics of the fluid for
instance its viscosity (although by not a lot) which in turn can affect
the displacement flow results.

We have mostly used water as the base fluid, but it could be of interest
to work with more viscous fluids and particularly with a significant
viscosity ratio. Further, in dealing with non-Newtonian fluids, there
are some limits to the number of suitable laboratory fluids available
for use.

• When the flows are fully diffusive i.e. mixing is high, the main deriving
mechanism of mixing is through dispersion due to the advective veloc-
ity field. In order to better observe these flows a longer pipe should
be used (a 4 (m) long pipe was used in the current experiments). This
will allow us to quantify the macroscopic diffusion coefficient and the
long time mixing pattern with much higher accuracy. Note that an
alternative to this might be using a pipe of smaller diameter but in
that case our range of Re and Fr might become more limited.

• Although the Newtonian iso-viscous density stable experiments are
run over a wide range of parameters with high accuracy, little atten-
tion has been paid to the velocity field (specially close to the fronts
and along the interface). We believe that there is strong circulatory
motion of inertial nature within these regions although the main flow
is still controlled by buoyancy and viscosity only. A closer look at the
velocity field either through Ultrasound Doppler Velocimetry (UDV)
or Particle Image Velocimetry (PIV) could greatly enhance our knowl-
edge about these flows. More broadly, our experimental studies have
been limited in their analysis and scope to the examination of bulk
flow characteristics (front velocity, axial dispersivity, etc). This leaves
a lot of interesting detail largely unstudied.

• A very important phase in the displacement flows is the initial phase
in which inertial forces are very strong after opening the gate valve.
During this phase many instabilities might form and affect the long
time pattern. The focus in the current study is on long time behavior
where the flow is well developed. Although the short time effects are
studied fairly well in the numerical simulation chapter (chapter 5), we
have not paid much attention to these effects in the experiments.
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• In the case of viscoplastic fluids, the transition between slump-type
and center-type displacements (600 . Re/Fr . 800) is not well stud-
ied. It is recommended that some experiments are designed to cover
this range and better see how the center-type displacements become
slump type displacements within this range of Re/Fr. The amount of
residual layer stuck to the pipe wall after pumping the displacing fluid
has not been quantified properly. This can be done through trans-
lating the average concentration value to the volume of the displaced
fluid left on the wall. The other analysis lacking in the viscoplastic
displacement study is investigating the front velocity. There are inher-
ent challenges in these experiments due to the instability of the flows
and noise produced from the ripped pieces of Carbopol layer. However
some useful information could certainly be extracted upon analysis of
the front velocity and its short time behavior.

For the numerical simulations we have carried out, although the general
qualitative features studied will remain the same after refining the mesh, a
much finer mesh is needed to capture all the small scale effects in the flows,
especially when the flow becomes unstable and mixing starts. The reasons
why this has not been done in the framework of the thesis are first: we
wanted a base set of results covering a wide parameter range and computed
at the same mesh resolution used in the former Ph.D. thesis by S.M. Taghavi
[123], on nearly horizontal displacements. Secondly, due to the intensive
computational time cost of fine-resolution simulations, it was not feasible to
run/analyse all simulations using both the regular mesh and the fine mesh.
Upon comparison with very fine-mesh results, it was found that many im-
portant general features of the flow are not significantly affected by mesh
refinement. These features are instantaneous/non-instantaneous classifica-
tion, periodic front velocity characteristic, front detachment, spike-like tip,
repetitive temporary back flow, viscous/inertial transitions, diffusive/non-
diffusive classifications etc. However, it was found that the error in front
velocity can be of order 5−12% and the macroscopic diffusion coefficient can
be affected too. We recommend choosing a much finer mesh size along with
a much longer channel geometry to better assess the channel displacement
flows.

From the mathematical modeling point of view the current weighted
residual model also has some limitations. For instance the assumption that
the streamwise velocities should be much larger than those in depthwise di-
rection u≫ v will not be valid at the very tip of the displacement front where
shock-like gradients normally appear. The reasonable agreement obtained
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from comparison of the front velocities and interface height profiles in the
presence of inertia suggests that the frontal shock-like region does not affect
the global features of the flow dramatically. Secondly, in our linear stability
analysis of the equations we have assumed the long wavelength limit (also
implicit in the derivation). We are not sure if short-wavelength perturba-
tions might affect the flow stability in some situations. A more comprehen-
sive study could be conducted considering the effect of short wavelength by
comparing both Orr-Sommerfeld and weighted residual approaches.

8.3.2 Experimental perspectives

Considering the work in this thesis and the previous thesis on nearly hori-
zontal displacement flows, [123], approximately 1000 displacement flow ex-
periments have been run using this experimental apparatus. Although con-
siderable, the reality is that when we consider the full range of industrial
fluids and flows, a large number of dimensionless parameters govern the flow
physics: 1000 experiments still leaves a lot of unanswered questions. To be-
gin to redress the gaps in our knowledge, the following studies would be
useful.

• Newtonian density stable displacements in the presence of a viscosity
ratio. It would be very interesting to see how the viscosity ratio m can
modify the stretch length predictive formula (L = tan β−3680/χ) ob-
tained previously for the iso-viscous case. The density stable displace-
ments were found to be the least challenging to analyze and meanwhile
the most robust experiments to run due to the simple form that the
interface takes over time. More generally, the majority of our data
to date concerns density unstable displacements and it would be of
interest to extend the density stable data set in any direction.

• Newtonian density unstable displacements in the presence of viscos-
ity ratio. In the industrial applications iso-viscous displacements do
not occur and it is of interest to understand viscosity ratio effects on
the front velocity, displacement efficiency and on the stabilizing/de-
stabilizing effect of the mean flow, as well as the eventual transition
to mixed regimes. In near-horizontal displacements, some viscosity
ratio experiments have been performed, as described in [124], but for
a wider range of pipe inclinations we still have no insights as to the
effects.

• Shear-thinning displacement flows in density stable/unstable config-
urations. Whereas we have studied viscoplastic fluid displacements
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in the extreme case of a very large yield stress, the majority of non-
Newtonian fluids pumped in oil well cementing also have shear-thinning
rheologies and are pumped down the casing at flow rates for which yield
stress effects are not dominant. The effects of shear-thinning rheolo-
gies at different pipe inclinations are essentially unknown. A limited
number of experiments were performed using Xanthan-water solutions
in [124], but these were focused at near-horizontal pipe inclinations.

• Using Particle Image Velocimetry (PIV), Laser Induced Florescence
(LIF) and 3D Ultrasound Doppler Velocimetry (UDV) to enhance the
quality of the experimental data. In this thesis we have taken advan-
tage of back-lit images of the flow field with high speed cameras and
have also used 1D Ultrasound Doppler Velocimetry (UDV). The back-
lit technique implies a form of averaging is carried out when we study
the local concentrations of the mixed fluids, i.e. through the thickness
of the pipe. Our image processing has also been largely focused at
describing bulk properties of the displacement flows.

It is clear that a lot of detailed data describing the flow physics could
be measured and analysed from this style of experiment. In order
to study the concentration field with a higher resolution, the use of
LIF is advised. A similar study where this has been done is [113].
It is worth noting that in the course of the thesis we also ran some
test experiments using a LASERGLOW 532 nm Diode-pumped solid-
state (DPSS) laser of 300 mW power and by adding fluoroscein to the
solutions. The preliminary results were satisfactory but could not be
further analyzed due to the time constraints of the thesis study. We
recommend to to improve the LIF technique and establish this as a
main measurement technique, while also developing a PIV technique
for high resolution velocity field data. Our displacement velocities are
mostly modest.

As mentioned before, in our experiments to date we have used a 1D
UDV technique, with a single ultrasound probe. This gives only the
streamwise velocity component. In order to get 3D velocity compo-
nents, 2 more probes have to be added to the system. Note that the
advantage of PIV over the UDV technique is that the former is able
to get velocity field data in a sheet across the pipe (covering a wider
streamwise and depthwise distance) whereas the UDV gives only local
velocity measurements within a volume at a given streamwise position.
In practice both techniques should be developed and targeted at flow
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features where significant 3D effects are seen.

8.3.3 Numerical simulation perspectives

About 180 simulations were run using the code PELICANS. This study
only covered iso-viscous Newtonian displacements. The code PELICANS
is able to simulate the displacement of two generalized Newtonian fluids of
Herschel-Bulkley type. As discussed earlier for any future study we suggest
a much longer computational domain to capture the long time dynamics (or
potentially a moving domain of limited length) and a finer mesh to capture
small scale flow features associated with instability and mixing.

There are many potential studies that could usefully be carried, ap-
proximately covering a similar range of flows as proposed above for future
experimental studies. For example: density stable displacements, Newto-
nian viscosity ratio displacements and shear-thinning fluid displacements
(all with density unstable configurations) would all make sense. It would
also be of interest to study displacement of yield stress fluids, to see if some
of the complex and exotic flows we have observed experimentally could be
found computationally.

In parallel with the suggestion to perform more detailed 3D experimental
analyses of these flows, it would be of interest to develop 3D numerical
simulations of pipe (and channel) flow displacements, to run on large parallel
computational machines. Certainly, within the non-Newtonian fluid context
these studies would be unique.

8.3.4 Mathematical modeling perspectives

Simplified mathematical models can be extremely useful in both process de-
sign and also in directing the experimental/numerical programs, as well as
interpreting results. Ideally, such models should give reasonable predictions
of bulk flow quantities (e.g. interface height, front velocity, bulk axial diffu-
sivity, etc.) at a much lower computational/experimental cost. Some areas
where further analytical work could be useful include the following.

• A simple mathematical model to estimate the stretch length in the
case of density stable flows would be useful. The curious fact is that
although our experimental data suggests that primarily the balance
of viscous and buoyancy forces act to govern the stretch length, the
lubrication model in [128] (which is based on this force balance) fails
to predict a constant stretch length. Perhaps further velocity field

222



8.3. Limitations of the present study and future work

measurements from the experiments and/or numerical simulations can
suggest alternative ways of modeling this flow.

• The weighted residual model that we have developed could be ex-
tended in a number of ways. Firstly, in the presence of a yield stress
the linear stability analysis is only valid if the yield stress fluid layer is
fully yielded. This restriction could be removed. Secondly, the same
method could easily be developed for core-annular pipe (displacement)
flows. These flows exhibit a number of interesting instabilities that
have been studied recently, e.g. [39, 56]. Thirdly, if we wished to com-
pare more directly against our numerical results from PELICANS it
would be useful to extend the two-layer channel geometry formula-
tion to a three-layer system, mimicking the tendency of the displacing
fluid to advance along the channel centre. Note that the stability
analysis carried in chapter 6 is only valid in linear limit (very small
perturbation). It is not clear that non-linear analysis would add to
our understanding. However, we have looked at non-linear perturba-
tions numerically. Extending the weighted residual model from 2D to
3D can be quite challenging but will also be useful if carried out, spe-
cially when it comes to interpreting the two and/or three dimensional
instability patterns.

• With respect to the results on unstable displacements that we have
presented in the (Fr,Re cos β/Fr)-plane, we have identified 3 domains:
viscous, inertial and fully mixed. The weighted residual method is
targeted at understanding the transition from a structured viscous flow
to an inertial flow, at the inset of instability. We have however very
little modeling work targeted at the inertial regime itself. Here we have
largely relied on experimental correlations, motivated by dimensional
analysis, fitted to our experimental results.

Firstly, it would be interesting to try to develop a more predictive
model of the inertial regime. A starting point could be Benjamin’s
classical study [15] of gravity currents, extended to include a mean flow
and two (possibly counter-current) fluid streams. Hopefully this could
result in predictions of the front velocities in the inertial non-diffusive
regimes where the weak mean flow is mostly affected by the exchange
component. Secondly, it would be interesting to see if this type of
theory could be analysed to predict conditions for the transition to the
fully mixed regime. Thirdly, it would be of value to understand how
these theories are modified by weak viscous effects. If these (largely
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inertial) flows are independent of fluid rheology, then from a practical
perspective process design is greatly simplified.
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Appendix A

Research methodology

As stated earlier, in order to better understand the displacement flows we
have taken three different approaches in this thesis, namely experimental,
numerical and analytical. One of the most important parts of this study
is through conducting dimensionally similar experiments in a small-scale
laboratory apparatus. In the following section we will go over the details
of the apparatus used and the experimental approach taken to obtain high-
quality data. The experiments run have been analyzed in chapters 3, 4
and 7. The experimental techniques section will be followed by explaining
the numerical technique used as a second approach to the problem. The
numerical simulations were studied in detail in chapter 5. The data from the
experimental and numerical approaches is analyzed and combined with the
analysis of simpler mathematical models. The methodology of the modeling
approach is explained later in chapter 6 where the model is developed from
scratch.

A.1 Experimental technique

The apparatus used in the current study is based on the same principle as
the one used by S.M. Taghavi [123] for nearly-horizontal experiments. How-
ever due to the higher inclination angles, several modifications were required.
These include the way the fluids are transported to the pipe, how some of
the valves involved in the flow loop are operated, and the imaging technique
used. Three main criteria considered for design and modification were per-
formance, safety and economic factors. Figure A.1 shows the schematic of
the experimental setup used. As can be seen a 4 (m) long pipe is set-up on
an aluminum frame which can be tilted at any angle using a ball-screw jack.
In order to accurately tilt the whole system at an angle β, a digital angle
meter was adopted from SmartTool company capable of measuring to 0.1◦

accuracy. Two fish tanks were used to reduce light refraction errors. In-
side the fish tanks a 19.05 (mm) diameter, transparent acrylic pipe is placed
which is the main section of the apparatus. The space between fish tank and
pipe walls is simply filled with water that has approximately the same light
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A.1. Experimental technique

refraction index as that of acrylic. The gate valve is located 80 (cm) from
the top end. Two high-speed digital cameras (with 4096 gray-scale levels,
Basler Scout scA1600 and scA1400) were employed to capture the images
of the flow field in each fish tank. The fish tanks were back-lit using Light
Emitting Diode (LED) stripes. An Ultrasound Doppler Velocimeter (UDV)
probe was placed at the end of the first fish tank where access to the bare
pipe was easier. Two first-surface mirrors were also added to the system,
angled such that the top view images can also be recorded. For pumping
the fluids into the flow loop, two acrylic pressurized tanks were built (see
details later in §A.1.1). Before discharging the fluids to the drain the flow
rate is recorded using a rotameter and a magnetic flow meter.

 Gate valve  

Flowmeter 

First surface mirror 

UDV 

Fish tank 

Displacing fluid 

4 m 

Displaced fluid 

Digital camera 

Figure A.1: Simplified schematic of the experimental apparatus used show-
ing different parts and sections.

Figure A.2 shows an picture of the actual experimental setup used, with
different parts marked on it for better understanding.
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Jack

UDV

Rotameter

UDV probe

Gate valve

Pressurized tanks

Flowmeter

to drain

LED strips

Fish tanks

Figure A.2: The experimental setup used in the current project for run-
ning lab-scale experiments. The whole pipe system shown is tilted at an
intermediate inclination angle. The length of the tilted pipe is 4 (m).
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A.1.1 Fluid preparation and delivery

In this section we are going to explain how the solutions (either displacing
or displaced fluids) were made and how they were transported into the flow
loop. Most of the liquids used in the current thesis are water-based solutions.

For Newtonian fluids we simply used water and/or water-Glycerine so-
lutions. In order to adjust the density difference and obtain the desired
Atwood number, salt (NaCl) was added to the displacing liquid in the case
of density unstable displacement, and to the displaced fluid in the case of
density stable displacement. Within the range of salt concentrations added
to the solutions the densities can change quite a bit while the viscosity of
the solution remains largely unaffected; see [110]. To obtain higher viscosity
(but still with a Newtonian fluid), glycerol solutions were prepared by di-
luting pure glycerol with water. We also added low concentrations of black
non-waterproof ink to the displaced fluid in order to distinguish it from the
displacing fluid. The low concentration of ink added did not significantly
change either the density or viscosity of the fluid. The weight of the solutions
and the amount of salt and ink to be added to them had to be measured
carefully. For this we had to use three different scales with differing accu-
racies and maximum capacities. Figure A.3a shows the most accurate scale
used in our experiments (Ohaus Corporation, Adventure Pro model) with
accuracy of 0.001 (g) and maximum capacity of 51 (g). This scale was used
for making small scale samples of solutions (usually with Carbopol powder)
before deciding on the fluid to be used for the large scale experiment. In
some cases the sodium hydroxide NaOH needed for adding to the Carbopol
solution was also measured with this scale. The second scale that was widely
used for measuring the weight of the salt, ink and UDV particles in our ex-
periments is shown in Fig. A.3b with readability of 0.1 (g) and capacity of
2400 (g) (from Acculab). The third scale used in the experimental study
was for large scale solutions to be pumped into the flow loop and is shown
in Fig. A.3c. The scale has readability of 1 (g) and the maximum capacity
of 60 (kg) (from Sartorius).

Once the fluids, ink, salt etc. were weighted carefully they were mixed
in a 40 L Polyvinyl Chloride (PVC) container using a mixer. The mixer
and blade system used is shown in figure A.4. The mixer model used was
EUROSTAR POWER made by IKA Werke company. For mixing the ink,
salt, glycerine and UDV particles into the water-based solutions the mixer
was set between 100 − 400 (rpm) rotating for half an hour. In the case of
yield stress fluid the procedure is a bit different and will be explained later
in this section.
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a) b) c) 

Figure A.3: The scales used in the experimental study a) 0.001 (g) readabil-
ity and 51 (g) capacity b) 0.1 (g) readability and 2400 (g) capacity and c) 1
(g) readability and 60 (kg) capacity.

Figure A.4: The mixer-blade system used in the experimental study to
prepare the displacing and displaced fluids solutions.
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a) b) c) 

Figure A.5: a) The density meter b) thermometer and c) pH meter used in
the experiments.

Once the solutions were mixed and just before transporting them into
the acrylic pressurized tanks the density, temperature and pH of the fluids
(in the case of viscoplastic fluids) were measured using digital density meter,
thermometer and pH meter shown in figures A.5a-c respectively. The density
meter used (Anton Paar, DMA 35N) had a resolution of 0.0001 (g/cm3). The
fluids densities were adjusted up to a point that the desired density difference
(or Atwood number) was reached. The thermometer was an Omega mini
thermocouple with resolution ±0.1◦C. We recorded the temperature of the
fluids in order to do the rheometry at the same condition later on, because
the temperature can significantly affect the viscosity of the working fluids.
The waterproof pH meter (pHTestr 30 model from Eutech instruments) can
measure the pH range from 0 to 14 with an accuracy of ±0.01 pH.

For our viscoplastic fluids, Carbopol EZ-2 polymer (Noveon Inc) was
used. Carbopol is widely used as a thickener, suspending agent and stabi-
lizer. It is utilized in a broad range of personal care products, pharmaceu-
tical products and cleaners. Carbopol polymers are made of high molecular
weight acrylic acid chains, usually cross-linked, and are available in the form
of powder or liquid. The rheology of Carbopol is largely controlled by the
concentration and pH of the solution. When we first mix Carbopol with
water, it makes an acidic solution that has no yield stress. The yield stress
is developed at intermediate pH upon neutralizing with a base agent, in our
case NaOH. The neutralized solution is fairly transparent and has the same
density as water (for low concentrations as is the case in this thesis).

In order to consistently make the Carbopol solutions, we followed the
same procedure given below. According to the desired concentration and/or
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yield stress, we first weighted Carbopol powder and then gradually added
it to water while the blade was rotating and stirring the whole mixture.
Carbopol molecules do not tend to accumulate in water thus making it easier
to mix. Since the Carbopol concentration needed in our experiments was
not too high, blade shape, its rotating speed and the mixing time was found
to have negligible effect on rheometry. Note that in the case of Glycerine-
water solutions the blade shape mixing speed and the mixing time did not
have significant impact on the outcome viscosity either. The Carbopol-water
solution is acidic (e.g. pH = 4 for a concentration 0.14 % (wt/wt)) and does
not have any yield-stress. In order to make the gel we add Sodium-hydroxide,
NaOH to neutralize the acidic solution. For a given Carbopol solution, the
neutralization takes place over a narrow range of NaOH concentration. In
other words, the weight-to-weight ratio of Carbopol to Sodium-hydroxide,
at which the neutralisation occurs, is almost a constant and in our case was
around 3.5. If too much and/or too little NaOH is added to the Carbopol
then the solution changes to liquid phase again. When neutralized, the gel
has a pH of 6 − 8 which is safe for human-related applications (e.g. hair
gel). When adding NaOH to Carbopol-water solution one should be very
cautious about mixing and particularly the blade speed, to avoid entraining
air bubbles into the gel-like solution. If the air bubbles become trapped
within the solution, even with vacuum pumps it is very difficult to take
them out because of the high viscosity of the yield-stress fluid.

We mixed Carbopol powder with water for 30 minutes at 400 (rpm).
Then the Sodium-hydroxide was added with the mixer still rotating deep
inside the solution. We then mixed the Sodium-hydroxide and Carbopol
solution for 5 minutes at 500 (rpm). The ink was afterwards added and
it was mixed for 5 minutes at 500 (rpm). Through a circulating loop we
finally mixed the whole solution using a pump (which will be explained
later) for 3 − 4 minutes to ensure homogeneity of the gel everywhere in
the bucket. Once the mixing was finished, the mixer was then turned off
and samples were taken for rheometry purposes. The Carbopol solution
is slightly thixotropic meaning that the rheological properties change with
time. Therefore we had to carry out the rheometry on the same day the
solutions were made right after each experiment. Once prepared the gel
solution follows a Herschel-Bulkley rheological model:

τ̂ = τ̂Y + κ̂ˆ̇γ
n
. (A.1)

This model includes the simpler Bingham, power law and Newtonian models
and is defined by three parameters: a power law index n, a fluid consistency
index κ̂ and a yield stress τ̂Y .
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Once the solutions were made in the PVC buckets and the corresponding
Atwood number and viscosities were satisfactory, they were sent into two
acrylic tanks. These acrylic tanks (that will be explained in more detail)
can be pressurized by compressed air and were used to drive the fluids to
inside the flow loop. The pumps used to make this delivery from PVC
buckets to acrylic tanks are shown in figure A.6. As shown in the picture
we have used two pumps, one for the displacing liquid and the other for the
displaced fluid. The pumps are of centrifugal type with constant rpm of
1725 and power of 0.5 (HP) (Moyno Inc.). Note that in the case of highly
viscous fluids e.g. high concentration of Carbopol solutions the compressed
air pressure was not enough to fill the pipe with the displaced liquid, thus
the fluid was pumped directly into the loop from the PVC bucket.

Displaced fluid pump

Displacing fluid pump

Figure A.6: The centrifugal pumps used in the experiments for transporting
the fluids from buckets to acrylic pressurized tanks.

In the nearly horizontal flow experiments described in [123], the fluids
were driven into the main pipe using gravity i.e. by raising the reservoir
of fluids to an elevation higher than that of the pipe. In theory, the same
method would still work for nearly vertical pipe, as flow at higher alti-
tude with more potential energy will always flow down into beneath section.
However, the top of the pipe, in a nearly vertical pipe experiment would be
approximately 5 meters above ground, which means that the tank used to
fill the upper fluid will have to be mounted higher up than that. As a result,
this would be much less practical in terms of ease of assembling, accessibility
for maintenance and safety. Hence, alternative methods have been explored.
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A possible option is to simply pump fluid into the pipe using a regular fluid
pump. Nevertheless, this is not the most suitable one as the pulsation in the
pump will disturb the flow and thus affect the quality of the flow behavior
observed. The method chosen is to use tanks pressurized by compressed air
to send fluids up into the pipe. The advantage of this method is that it is
possible to stably transport fluid and that all components of the tanks can
be secured on the ground, allowing for ease of operation and maintenance.

The tanks, as shown schematically in figure A.7a and after being built
in figure A.7b, are made from acrylic, which enable the operator to see
what goes on inside the tanks, in case there is residual fluid or other con-
tamination inside, thus minimizing errors incurred from them. Although
acrylic is generally not the best material to be used under pressure due to
its brittle property, the pressure used in running the experiments is below
15 (psi) (≈ 103.4 (kPa)), a relatively low value compared to pressurized
tanks in general. Preliminary calculation has confirmed that the acrylic
under the design dimensions can withstand even higher pressure which is
though not recommended. The tanks dimensions are 152.4 (cm) height,
19.05 (cm) inner diameter and 0.635 (cm) thickness which are chosen for
the main part of the tanks as it is the most economical size that is at the
same time feasible for operation and assembly. Engineering drawings were
created using Unigraphics NX, for tank components. The flanges are joined
to the main pipe section using weld-on acrylic glue which ensures that the
glued part are at least as strong as the material, if not stronger. Just like
in any engineering designs, safety is the number one priority. Long steel
bolts, polycarbonate shields and pressure relief valves have been added to
the system for additional safety factor. The pictures of the assembled tank
system are shown in figure A.7b. There are 4 inlets to each tank, three of
which are located on the lid and the last one on the bottom (figure A.7a).
The three inlets/outlets at the top are for compressed air, bleed valve and
pressure relief valve, while the one on the bottom is used for filling the tank
and as outlet to the main pipe. As demonstrated in the figure, the bottom
of the tank has been designed and machined into conical shape for easy
drainage purposes, since some fluids used in the experiment are going to be
gel-like. The completed tanks are secured on aluminum extrusion frame on
wheels for easy transportation. Looking closely into figure A.7b one can see
the sheets of polycarbonate surrounding three sides of the whole structure
for enhanced safety. Once side is left uncovered to have access for mechan-
ical/repair concerns. This side always faces the lab wall where there is no
operator working. Note that the regulators for the pressurized tanks were
set at 10 (psi) (≈ 70 (kPa)) for most experiments and at slightly higher
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1.5 m

a)

1.5 m

b)

Figure A.7: a) Schematic of the acrylic pressurized tanks used for driving
the fluids into the system. The tanks dimensions are 152.4 (cm) high ×
19.05 (cm) inner diameter × 0.635 (cm) thickness. b) Actual picture of the
acrylic pressurized tanks.

pressure for highly viscous cases.

A.1.2 Valves

There are several valves involved in controlling the fluid flow in our experi-
mental setup. In the nearly horizontal experiments of [123], it was possible
to manually operate all the valves as they were all in an accessible loca-
tions. Once the pipe is inclined at a higher angle, the gate valve and the
valves for the upper fluid will not be within reachable distance of the oper-
ator. In this case operating the valves manually would be impossible to do
and also dangerous. Instead of hand-operated PVC globe valves, solenoid
valves were adopted in the current setup that can be activated using on/off
switches from the ground. This in turn shortens the time taken for each
experiment and enhances the quality of the experiment by operating the
openning/closing steps quicker. Figure A.8 shows a section of the flow loop
up the gate valve where three solenoid valves (from ASCO) are adopted.
Each valve has a different task which becomes important in different stages
of the experiment e.g. filling the pipe, washing the remaining fluids etc.
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Also some valves were placed to let the air leave during the fill-up part of
the experiments with the working fluids i.e. they acted as bleed valves.

Solenoid

valves

Figure A.8: The solenoid valves used in upper section of the flow loop.
This area was not easy to access during the experiment due to the hight or
structural constraints.

In addition to these valves, the most critical component of this set up
is the gate valve that provides boundary between two fluids before they be-
gin to mix. The gate valve was controlled using a simple manual push-pull
handle during the nearly horizontal experiments of [123]. Several alterna-
tives had been considered, including the use of electric and pneumatic gate
valve. Commercially available valves as such are available only for larger
pipe sizes and are quite costly. Although using pipe adapters would allow
for the use of these valves for smaller diameter pipe like the one used in the
experiment, the valve blades are so thick that they would largely disturb
the flow during the opening and closing. In the end, it was decided that a
customized valve would be constructed using the same principle as normal
gate valve: a system that has a blade whose movement separates or allows
two fluids to mix. The compressed air line that is made available for the
pressurized tank makes it possible to also use a pneumatic system for this
custom-made valve. The design is to use a pneumatic slider with stoppers
on each end to accurately move the blade, with a hole across the pipe. The
hole aligns with the pipe when the slider is at one end and the pipe is closed
when it is at the other end. The slider is controlled using an A-B pneumatic
solenoid valve, which is connected to a double pole double throw (DPDT)
switch. Depending on the location of the switch, the valve is either open or
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a)

Valve opens Pipe

Compressed air (70 kPa)

Line to air source

DPDT switch

Blade

Fish tank
Pipe

Rodless air slide

25 cm

b)

Figure A.9: a) The schematic of the pneumatic air slide used as gate valve.
b) Picture taken from the actual gate valve in place.

closed; see figure A.9a for details. The compressed air pressure required at
the gate valve was around 60 (psi) (≈ 413 (kPa)) for most experiments.

The advantage of creating a customized gate valve, in addition to ease
of operation, is that the blade can be designed to be as thin as possible (in
this case approximately 1.6 (mm) thick) to minimize the flow disturbance
during the experiment. Figure A.9b below shows the actual gate valve that
has been installed into the setup.

A.1.3 Velocity measurements

As with the nearly horizontal experiments in [123], we have also used Ul-
trasound Doppler Velocimetry (UDV) to give a quantitative understanding
of fluid velocity variations. Because the UDV probe needed to be as close
as possible to the flow section, we mounted the UDV on a bare section of
the pipe, in order to capture the velocity vectors through the central cross-
sectional plane of the pipe. The probe was located at the end of the first fish
tank (approximately 150 (cm) below the gate valve) where the flow is mostly
fully developed. The velocity profile observed in that section of the pipe can
be qualitatively representative velocity distributions elsewhere. The UDV
used is DOP2000 (model 2125, Signal Processing SA) with 8 (MHz), 5 (mm)
(TR0805LS) transducers with a duration of 0.5 (µs). This velocimetry tech-
nique does not require any transparent medium which is very suitable. Since
the probe was mounted outside the pipe, our measurement technique was
completely non-intrusive. The volume within which the measurement is
carried out has a cylindrical shape and gives an axial resolution for our flu-
ids and flows of around 0.375 (mm). The lateral resolution is equal to the
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transducer diameter (5 mm) but varies slightly with depth due to diver-
gence. The slightly diverging ultrasonic beam enters the fluids by first going
through a 3.175 mm-thick plexiglass pipe wall. The UDV technique is based
on sending the sound pulse and receiving its echo and allows measurement
of the flow velocity projection on the ultrasound beam, in real time [59].
This projection therefore gives only the streamwise component of velocity.
Thus it is important to know exactly the relative angle between the probe
and the pipe axis. The instrument sends a series of 4-cycles of short bursts
and records the echoes back scattered from the particles suspended in flu-
ids. For the tracing particles, we have used polyamid seeding particles with
a mean particle diameter of 50 (µm) and a volumetric concentration equal
to 0.2 (g/l) in both fluids. Through the time elapsed between the pulse
and the received echo, the distance of the particles from the transducers is
computed; meanwhile the associated increased/decreased Doppler frequency
shift gives the value of the velocity at each distance. Reflection effects at
the lower wall of the pipe affect the velocity measurement locally and makes
it hard to measure a zero velocity at the lower wall.

For a typical acquisition time of the velocity profiles, 120 (ms) per profile
was set while no real time filtration of signals was applied during the record-
ing process. However, when presenting the results we average the profiles
over a few seconds (usually 3 (s)) to reduce the noise in the data. The probe
was mounted at an angle in the range 60 − 80 ◦ relative to the axis of the
pipe considering the compromise between a good signal-to-noise ratio and
small ultrasonic signal reflections [22]. It is also assumed that the density
difference of the fluids used in our experiment is sufficiently small to neglect
the differences in the speed of sound in the fluids.

A.1.4 Image Processing and Visualization Technique

In the nearly horizontal experiments described in [123], the pipe was back-
lit, with the cameras taking pictures from the received light, through the
liquid medium. However, due to refraction errors, the data recorded at a
particular depth of the pipe for instance, do not necessarily belong to that
same depth in reality, although it must be mentioned that the principal
measurement made in [123] was a computation of front velocity rather than
concentration/interface height.

In order to reduce light refraction errors, for the experiments in this
thesis a fish tank structure was added to the pipe section below the gate
valve to obtain higher-quality images. The fish tank was filled with water,
which has approximately the same refractive index as plexiglass. This in turn
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minimizes the distortion in the image captured and leads to more accurate
image processing. The fish tank enclosed pipe used in the experiments is
illustrated in Fig. A.10.

Pipe

Fish tank

Water

Figure A.10: The fish tank pipe system used in the experimental apparatus
to reduce the light refraction error. The fluid filled in the space between the
square box and the pipe is water.

We also improved the illumination system in this thesis, replacing the
fluorescent light-box system in [123] by a series of Light-Emitting-Diode
(LED) stripes behind a light diffuser. This technique results in much more
homogeneous lighting both along and across the pipe. Figure A.11 shows
how the lighting system was implemented. The figure shows the fish tank
pipe setup, behind which the LED stripes and the diffusing layers are placed.
The plastic light diffusers help disperse light beams in different directions
thus giving homogeneous illumination rather than bright/dark spots. One
should note that the distance between LED stripes and light diffuser must
be adjusted to get the most homogeneous results.

A first-surface mirror set is also used in the apparatus to get images
other than the frontal view. The term first-surface means that the reflecting
coating is applied to the surface of the mirror rather than its back. The cost
is higher than the usual mirrors since higher precision is required in the
process of making these mirrors. The quality of the reflected image though
is much higher in first-surface mirrors since the light beams do not break or
change in angle within the thickness of the glass (ghosting effect). Note that
we could equally add cameras into other views to capture those images too,
though it is much more expensive and uses up more space than otherwise
needed. An advantage of the mirror system is that images from different
viewpoints are synchronized. For the current study, the mirror is placed
such that it can show the top view (perpendicular to the frontal view) in
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LED
stripes for 

facial view
Light diffuser

LED stripes for mirror view

1.5 m

Figure A.11: The light-emitting-diode (LED) system used for illuminating
the pipe from behind. The diffusive layers are also added to get homogeneous
lighting within the field of view.

the same camera field of view. Figure A.12 shows the first-surface mirror
system used for capturing the top view images. In this example the pipe is
filled with black fluid and the reflection is apparent in the mirror. We have
used this mirror data only in the viscoplastic fluid displacement experiments,
where asymmetry is a more prevalent feature across the pipe. In fact more
information than available from the frontal view was required to understand
the static layers occurring across the pipe. Similar to the frontal view where
LED strips and a light diffuser were required for camera images, for the
top view images a similar system was adopted. Figure A.11 shows the LED
stripes used for the mirror images and their corresponding diffusive layers
as well.

Once the images are recorded, concentration values are calculated out of
the light intensities in each pixel. The calibration was done based on cor-
relating the concentration value of known fluids to the gray scale (0 being
the displaced fluid and 1 the displacing fluid). On completion, the concen-
tration of the fluids in mixing region can be inferred from the gray scale
value. The second calibration is for the positioning of the images. The first
step is to ensure that camera and the mirrors are able to capture all the
views of the pipe. Changes can be made through repositioning of camera
and mirrors. Once completed, the size of the captured image and that of
the real object are matched, so that later on in the experiment the actual
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First-surface mirror

1.5 m

Figure A.12: The first-surface mirror used in the experimental apparatus to
obtain images from top view (perpendicular to frontal view).
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size of fluids volumes, especially at the interface, can be calculated. The
calibration process is one of the most important steps in the project be-
cause errors that occur here will be greatly magnified when results from the
experiments are analyzed in the later stages. As we have 4096 gray-scale
levels in our cameras the minimum error in measured concentration value
would be approximately 0.02 %. As will be seen in experimental results later
(chapters 3, 4 and 7 for instance) the concentration values will be used to
obtain two other major quantities namely the displacing front velocity and
the macroscopic diffusion coefficient of the displacement flow. It is shown
that the measurement errors for these quantities are approximately 3 % in
our study.

The light calibration procedure is basically similar to that used in [123]
for nearly horizontal experiments, except that it was repeated with the
new lighting system (fish tanks, LED lighting etc.). The idea is basically
to convert the light intensity absorbed by the cameras to a concentration
value varying from 0 to 1. The amount of ink present is determined by as-
suming an exponential dependency of the light intensity on concentration:
I(C) = Ψ expαC , where I and C are light intensity and fluid concentration
respectively and Ψ and α are physical constants, (see [123] for more details).
In our case the maximum concentration of ink that could be added was found
to be 300 mg/l as shown in Fig. A.13. Above this concentration we begin
to deviate from the exponential law and thus can not use the pure black
and light fluids intensity to find the constants Ψ and α. In other words for
values above 300 mg/l of ink, the pixels with displaced fluids in their view
would start to become saturated and thus mixed fluids might still appear as
pure displaced fluid.

Once the light calibration is performed, images from the actual flow
field of an experiment can be taken with the light intensities translated into
concentration values. Figure A.14 shows an example of a density unstable
experiment carried out for iso-viscous Newtonian water-based solutions, for
ν̂ = 1 (mm2/s), β = 30◦, At = 0.0035 and V̂0 = 70 (mm/s). Note that ν̂ is
the kinematic viscosity defined as the ratio of the common viscosity of the
fluids to the average density. As can be seen from the figure, the concentra-
tion values very between 0 and 1 corresponding to the black displaced and
the white displacing fluids respectively. We will discuss the results in more
depth in the following chapters. The figure only shows an example of how
the image processing is done for a typical experiment.

If we now take the average concentration of the images shown in Fig. A.14
across the pipe diameter, we will have a concentration value C that is only a
function of streamwise distance x̂ and time t̂. As later on will be seen, very
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Figure A.13: Average light intensity within the second fish tank varying as
a function of ink added for a domain of size 19×1500 (mm2) located almost
1600 (mm) down the gate valve. After ink concentration of 300 (mg/l)
we see deviation from the exponential dependency of the light intensity on
concentration.

1  0.90.80.70.60.50.40.30.20.10  

Figure A.14: Sample snapshots of a density unstable displacement at β =
30 ◦, ν̂ = 1 (mm2/s), At = 0.0035 and mean velocity V̂0 = 70 (mm/s).
Dark fluid is less dense than the light fluid. The images are taken at t̂ =
14, 19.5, .., 36 (s). The field of view is 1330 × 19 (mm2), taken 1740 (mm)
below the gate valve. The last image at the bottom of the figure shows
the grayscale for the concentration values. The arrow indicates the flow
direction. The left end of the pipe is higher than the right (the fluid flows
downhill).
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Figure A.15: a) Evolution profiles of the averaged concentration across the
pipe with time t̂ = 14, 19.5, .., 36 (s) and streamwise location for the same
experiment as shown in figure A.14. b) The spatiotemporal diagram of the
same experiment in the plane of x̂ and t̂.

useful information can be extracted from this depth-averaged concentration
field, for instance the velocity of the displacing front, displacement efficiency
etc. Figure A.15a shows the concentration evolution profiles of the same
images shown in Fig. A.14. If we record the averaged concentration values
across the pipe at each time and streamwise location we can then plot the
spatiotemporal diagram of the averaged concentration field. Figure A.15b
shows the spatiotemporal diagram of averaged concentration field for the
same experiment as in Figs. A.14 and A.15a. Note that the data plotted
in figures such as Figs. A.15a and b is interchangeable. As later on will be
seen, the concentration evolution and the spatiotemporal diagrams will be
used very often to investigate the quality of mixing, displacement efficiency
and more dynamical characteristics of the flow.

A.1.5 Fluid rheology

Our rheological measurements were performed using a Bohlin Gemini (HR
Nano) digital controlled shear stress, shear rate rheometer. The rheometer
was used to measure the viscosity of the water-Glycerine solutions and also
Carbopol gels. For Newtonian solutions we used a simple controlled strain
rate ramp over the range 0.001 − 100 1/s. In order to ensure that the
viscoplastic gels will be yielded in our tests, a controlled-shear rate method
is used usually in the range of 0.001− 10 1/s of shear rate with logarithmic
progression in time to have enough data points at low shear rates where
yielding occurs. Each rheometry measurement took about 200 seconds to
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Parallel plate 

geometry

a) b)

Figure A.16: a) The rheometer used for measuring the viscosity of the fluids
b) The thermal unit attached to the rheometer for adjusting the temperature
of the samples.

ensure the steady variations of shear rate within samples. We also note
that samples did not evaporate during the course of rheometry. A smooth
parallel plate geometry of 40 (mm) diameter and 1 (mm) gap, was used
for rheometry. Fluid samples were first placed on the bottom plate. The
top plate was then lowered by the rheometer to the desired gap height of
1 (mm) by squeezing the extra paste out from between the plates. The
excess fluid at the plate edges was carefully trimmed with cotton sticks.
Identical procedures were followed in all the tests. Temperature was also
controlled by a Peltier heater/cooler (Bohlin instruments) based on water
circulation under the rheometer’s plate and according to the temperature
of the fluids recorded before experiments. For yield stress measurements,
we also had to add a tiny layer of sand paper (with 400 grit roughness) to
both plates to be able to read the yield stress value and avoid slip. Figures
A.16a,b show the rheometer used for measuring the viscosity of the fluids
and the thermal unit attached to it for adjusting the temperature of the
samples respectively.

We measured the flow curve using a controlled shear rate incremented
logarithmically. Parallel plates 40 (mm) in diameter with a 1 (mm) gap
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were used for the measurements. 400 grit sandpaper was glued to the plates
to prevent wall slip. The sample temperature was controlled at the desired
temperature using a Peltier device. We took the yield stress τ̂Y to be the
stress at a shear rate of 0.1 s−1. The uncertainty in τ̂Y is estimated to
be in the range 2-5%. Afterwards, we subtracted the yield stress value
from the remaining shear stress data and then we found the best fit to a
power law curve using log-log plot of the effective viscosity versus strain
rate. The standard deviation in determining the yield stress value of the
Carbopol solution in this way is estimated to be in the range 2− 5 %. The
errors in the consistency (κ̂) and the power law index (n) were below 12 %
and 5 % respectively. In fact, our displacement flow experiments revealed
that the results were not particularly dependent on the value of the yield
stress, since the yield stress was always much larger the viscous stresses
in the displacing fluid, as discussed in chapter 7. Figure A.17 shows the
dependency of the shear stress on shear rate for a typical Carbopol solution
used in this study. Note that the very low shear-rate data shown in the figure
are not reliable from the quantitative point of view since a much longer time
than the approximate time of 1 s per data point should be spent to reach
a steady state measurement. The longer measurement time could in turn
result in evaporation of the solution during the rheometry. Note that the
related errors to the steady-state measurement time also fall in the same
range of 2 − 5 %. More details on the rheology and structure of Carbopol
solution can be found in [60].

A.1.6 Experimental results validation

We first calibrated our apparatus against exchange flow results of Seon et
al. [112, 115] for At = 0.01 at β = 60 ◦ and β = 70 ◦. The errors in mea-
sured front velocity were always below 3% for the cases studied and the
experiments had a high degree of repeatability. The dimensionless macro-
scopic diffusion coefficients were also compared against the results of Seon
et al. [114] for different Atwood numbers and the error was found to be
less than 2%. Another natural comparison was with the displacement flow
results in nearly-horizontal pipes in [123]. The error in measured front ve-
locity values were also in the same range reported for exchange flows. More
comparisons with literature, on displacing front velocities and other relevant
quantities will be given in the following chapters when appropriate.
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Figure A.17: Example flow curve for a viscoplastic solution with
Carbopol=0.14% (wt/wt) and NaOH=0.04% (wt/wt) solution. The solid
line shows the Herschel-Bulkley model curve fit τ̂ = τ̂Y + κ̂ˆ̇γ

n
with parame-

ters τ̂Y = 19.7 (Pa), κ̂ = 4.3 (Pa.sn) and n = 0.56.

A.2 Numerical technique

Besides the experimental approach, we have carried out a number of nu-
merical simulations of 2D displacements in an inclined plane channel. The
geometry and notation are represented in figure A.18. The computations
are fully inertial, solving the full 2D Navier-Stokes equations with change of
fluid modelled via a scalar concentration, c. The system of equations solved
and the numerical technique is explained in detail in [123] related to the
nearly horizontal simulations. However we briefly outline these again for
completeness. The code, meshes, time stepping etc. are all kept the same
for the more inclined simulations presented in the current thesis. When
the degree of mixing is higher a finer resolution is adopted to ensure that
we capture all important effects. The system for two Newtonian fluids of
equal viscosity is given below as this is the only regime we have studied
numerically in the current thesis:
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Figure A.18: Schematic view of the numerical domain used.

[1 + φAt] [ut + u · ∇u] = −∇p+ 1

Re
∇2u+

φ

Fr2
eg, (A.2)

∇ · u = 0, (A.3)

ct + u · ∇c =
1

Pe
∇2c. (A.4)

Here eg = (cos β,− sin β) and the function φ(c) = 2c − 1 interpolates
linearly between −1 and 1 for c ∈ [0, 1]. The 4 dimensionless parameters
appearing in (A.2) are the angle of inclination from vertical, β, the At-
wood number, At, the Reynolds number, Re, and the (densimetric) Froude
number, Fr. These are defined as follows:

At ≡ ρ̂1 − ρ̂2
ρ̂1 + ρ̂2

, Re ≡ V̂0D̂

ν̂
, Fr ≡ V̂0

√

AtĝD̂
. (A.5)

Here ν̂ is defined using the mean density ρ̂ = (ρ̂1 + ρ̂2)/2 and the common
viscosity µ̂ of the fluids. In (A.4) appears a 5th dimensionless group, the
Péclet number, Pe, defined by:

Pe ≡ V̂0D̂

D̂m

, (A.6)
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with D̂m the molecular diffusivity (generally assumed constant for simplicity
in our work). In our computations, the effect of molecular diffusion is ne-
glected, due to the large Péclet number that corresponds to our experimental
flows, where we have a well defined interface.

Equations (A.2)-(A.4) are discretised using a mixed finite element, finite
volume method. The Navier-Stokes equations are solved using Galerkin
finite element method. The divergence-free condition is enforced by an aug-
mented Lagrangian technique [57]. A fixed time step is used for the Navier-
Stokes equations, advancing from time step N to N + 1. The convective
velocity is approximated at time step N while the linear spatial derivatives
of the velocity are approximated implicitly at time step N+1. The pressure
is approximated at time step N + 1 (semi-implicit method regarding the
nonlinear terms).

A structured rectangular mesh is considered, with linear elements (Q1)
for the velocity and constant elements (P0) for the pressure discretisation.
The concentration equation (A.4) uses a finite volume method. The con-
centration is approximated at the center of each regular mesh cell. The
advective terms are dealt with via a MUSCL scheme (Monotone Upstream-
centered Schemes for Conservation Laws). These are essentially slope-limiter
methods for reducing oscillations close to discontinuities; see e.g. [148] and
[82] for more description. On each (Navier-Stokes) time step a splitting
method is used to advance the concentration equation over a number of
smaller sub-timesteps. This time advance is explicit and a CFL (Courant-
Friedrichs-Lewy) condition is implemented for the sub-timesteps to ensure
numerical stability.

The numerical algorithm is implemented in C++ as an application of
PELICANS. PELICANS is an object oriented platform developed at IRSN
(the French Nuclear Safety Research Institute), to provide a general frame-
work of software components for the implementation of partial differen-
tial equation solvers. PELICANS is distributed under the CeCILL license
agreement (http:// www.cecill.info/ licences/ Licence CeCILL V2-en.html).
PELICANS can be downloaded from https:// gforge.irsn.fr/ gf/ project/
pelicans/. Although the equations could have been implemented in a com-
mercial CFD (Computational Fluid Dynamics) code, these codes are often
over-stabilised and give little access to the detailed implementation.

As boundary conditions for our simulations, we impose no-slip and zero
flux of c at the solid walls. A plane Poiseuille flow is imposed at the inflow,
along with c = 0. Outflow conditions are imposed at the channel exit. The
initial interface starts within the channel, with c = 1 upstream and c = 0
downstream. The initial velocity is u = 0. Usually a range of dimensional
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parameters is selected that is similar in scope to those of our pipe flow
experiments.

Typically we choose the channel thickness equal to the pipe diameter
in our experiments (D̂ = 19.05 mm). The channel length is typically L̂ =
100× D̂ with gate vale positioned L̂/4 above the midst of the channel. This
is because of having an imposed flow where most of the information would be
obtained downstream of the channel rather than upstream. However, some
important features of the flow for instance displacing instantaneously/non-
instantaneously are revealed from the information obtained in the upper L̂/4
length of the computational domain (above the gate valve). For the meshes
in most of the computations we used 28 cells across the channel, refined
slightly towards the walls, and 400 cells along the length of the channel.
However, we have conducted a number of simulations with (e.g. up to twice
as much or even higher) finer mesh resolution, but producing only a little
difference in the measured front velocities, within the limits of our desired
accuracy. We acknowledge that the meshes used are relatively coarse, but
note that the principal information being extracted from the simulations
is bulk information, e.g. spatiotemporal plots, front speeds, having a back
flow etc. These features appear to be less sensitive to refinement than local
features, (as checked with much finer meshes than 28×400 in the chapter 5).
It would of course be advisable to choose a finer mesh if e.g. flow instabilities
and mixing were to be directly studied.

Note that there is numerical diffusion present in solution of (A.2)-(A.4).
For the mesh sizes used however, it was found that for Péclet number values
larger than about 105 there was no noticeable difference in results, with or
without the diffusive terms. In other words the numerical diffusion is domi-
nant. In our experiments the range of Péclet used is easily above than 105.
the fact that in most of our simulations (specially the more inclined cases)
substantial mixing is observed reveals that the primary cause is dispersion
via secondary flows and instability.

After running each simulation, snapshots of the concentration filed can
be extracted along with the concentration evolution profiles and the spa-
tiotemporal diagrams of c ca be constructed. In other words we can mimic
all the information obtainable from the experiments (as seen in figures A.14
and A.15) in our simulations. The advantage in simulations over the ex-
periments is that we can have the full time-varying velocity field at each
location within the domain whereas we only know the streamwise velocity
components at a fixed position along the pipe. Figure A.19 shows compu-
tational concentration field evolution obtained for a typical simulation with
parameters β = 20 ◦, At = 0.001, ν̂ = 1 (mm2/s), V̂0 = 21 (mm/s), (equally
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Re = 400). In figure A.19a the sequence of images at different instants of
times are shown. Figure A.19b shows the corresponding velocity field to
each graph in part a over the whole domain. Similar to the experimental
analysis, once the snapshots of the concentration are recorded we can find
the quantitative value of the depth-averaged concentration at each time,
t̂, and the streamwise location, x̂. Figure A.19c in turn shows the evolu-
tion of the depth-averaged concentration values for the same instants shown
in parts a-b. Equally we can plot these concentration values at all times
and locations in a spatiotemporal diagram, an example of which is shown
in Fig. A.19d. In chapter 5 we discuss the analysis of the computational
results in more details.

A.2.1 Code benchmarking

Numerous validations and benchmarking tests for the code PELICANS in
the displacement flow and similar setups have been mentioned in [123],
showing good quantitative comparisons. These include comparisons with
computational work of Sahu et al. [106] for displacement flows and Hallez
& Magnaudet [62] for exchange flows in 2D channels. Apart from these
comparisons, the same code has been used extensively in [71] for misci-
ble core-annular Newtonian flows of differing viscosities in which pearl and
mushroom shaped instabilities develop. The results have been benchmarked
against the recent experiments of [37, 38].

To summarize, our code has produced similar results compared to the ex-
isting computational and experimental studies in the literature. It is worth
noting that the flows at hand are complex, such that only few precise an-
alytical solutions to them exist. It is also acknowledged that there are nu-
merically more sophisticated codes in current usage, e.g. [16, 62, 63] that
may have higher resolution and be capable of capturing a broader range of
modes of instabilities. If inertial and unstable regimes were to be studied
in detail, the usage of such codes would be advisable. Here however, our
principal aim is to extract bulk flow features such as spatiotemporal plots,
front speeds, having back flow etc. over a range of parameters for which
our code is adequate. Our particular code is also being extended to non-
Newtonian multi-fluid flows, which is the eventual aim of the study of these
flows [71, 72, 150].
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Figure A.19: a) Snapshots of the numerical simulation at times t̂ =
[0, 8.5, ..., 34] (s) run for β = 20◦, At = 0.001, ν̂ = 1 (mm2/s) and
V̂0 = 21 (mm/s). The last image at the bottom of the figure is the
colourbar of the concentration values. The size of the domain shown is
19×2000 (mm2). b) Vectors of velocity field with time for the same simula-
tions shown in part a. The dashed lines in parts a and b show the position
of the gate valve. c) Evolution of the depth-averaged concentration field,
C, with time and streamwise location for the same simulation as in parts a
and b. d) Spatiotemporal diagram of the depth-averaged concentration field
obtained for the same simulation as parts a-c.
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Appendix B

Weight functions and
residual equation

Here we give various details related to algebraic calculation of the weight
functions and the terms in the residual equation in chapter 6. Many of
the expressions derived require the expressions in appendix C to evaluate
them. Apart from the general expressions, we give below the solution for 2
Newtonian fluids, which can be used as a test case to check implementation
of the more general formulae.

B.1 Newtonian fluids

For 2 Newtonian fluids, both effective and tangent viscosities are constant
and equal, κH = 1, κL = m. After some algebra, f is given in terms of (h, b)
by:

f =
[(1− h)4 +mh(1 − h)2(4− h)]b+ 12m(1− h+mh)

(1− h)4 + 2mh(1− h)(2 − h+ h2) +m2h4
. (B.1)

The velocity in the two layers is given in terms of (h, b) by:

U0(y) = − y(1− h)2

2(1− h+ hm)
b+

1− y + h(m− 1)(h− y)

2(1− h+ hm)
fy, y ∈ [0, h],

(B.2)

U0(y) = −(1− y)[(1− h)(y − h) +mh(1 + y − 2h)]

2m(1− h+ hm)
b

+
(1− y)[(1− h)(y − h) +mh(1 + y − h)]

2m(1 − h+ hm)
f, y ∈ [h, 1].(B.3)

The flux in the lower layer can be calculated directly and is given in terms
of (h, b) by:

q =
1

3

[

b[h3(1− h)3(1− h+mh)] + 3mh2[(1− h)(3 + h) +mh2]

(1− h)4 + 2mh(1 − h)(2 − h+ h2) +m2h4

]

. (B.4)
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We can see that there is a 1-to-1 correspondence between using b as the
second variable, or using q, as is done in e.g. [8].

We can see that the weight functions are quadratic in y. After some
algebra the parameter a and the functions gH(y) and gL(y) are given by:

a =
(1− h)4 +mh(1− h)2(4− h)

(1− h)4 + 2mh(1 − h)(2− h+ h2) +m2h4
, (B.5)

gH(y) = −y
2

2

[

(1− h)4 +mh(1− h)2(4− h)

(1− h)4 + 2mh(1 − h)(2− h+ h2) +m2h4

]

+y

[

h(1 − h)4 +mh2(1− h)2(2− h)

(1− h)4 + 2mh(1− h)(2 − h+ h2) +m2h4

]

, (B.6)

gL(y) =
(1− y)2

2

[

h2[mh2 + (1− h)(3 + h)]

(1− h)4 + 2mh(1− h)(2 − h+ h2) +m2h4

]

−(1− y)

[

h2(1− h)[1 + h2(m− 1)]

(1− h)4 + 2mh(1 − h)(2− h+ h2) +m2h4

]

.

(B.7)

The terms in the residual equation (6.55) can then be evaluated straightfor-
wardly using a symbolic algebra code, but are too long to list.

B.2 General specification of the weight functions

For more general fluids, we have seen that the weight functions are given
by:

gH(y) = ah[IH,mH−1(y)− LH,mH
(y)] + τw,iIH,mH−1(y), (B.8)

gL(y) = (1− a)(1 − h)[LL,mL
(y)− IL,mL−1(y)]− τw,iIL,mL−1(y)

(B.9)

where τw,i and a are unknown constants. Imposing (6.46), gives one linear
equation relating τw,i and a:

τw,i =
ah[LH,mH−1(h)− IH,mH

(h)] + (1− a)(1− h)[LL,mL
(h) − IL,mL−1(h)]

[IH,mH−1(h) + IL,mL−1(h)]
.

(B.10)
We determine a by satisfying (6.51). This is a linear equation for a, with
solution:

a =
Aw
Bw

(B.11)
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Aw = (1 − h)

([∫ 1

h

IL,mL−1 dy −

∫ 1

h
LL,mL

dy

]

[IL,mL−1(h) + IH,mH−1(h)]

+

[∫ 1

h

IL,mL−1 dy −

∫ h

0
IH,mH−1 dy

]

[LL,mL
(h)− IL,mL−1(h)]

)

Bw =

[

h

(∫ h

0
IH,mH−1 dy −

∫ h

0
LH,mH

dy

)

+ (1− h)

(∫ 1

h

IL,mL−1 dy −

∫ 1

h
LL,mL

dy

)]

×[IL,mL−1(h) + IH,mH−1(h)] +

[∫ h

0
IH,mH−1 dy −

∫ 1

h
IL,mL−1 dy

]

×[h(LH,mH
(h)− IH,mH−1(h)) − (1− h)(LL,mL

(h)− IL,mL−1(h))]

We use the expressions given in appendix C to evaluate the various integrals
of the functions Ik,p, Jk,p and Lk,p.

B.3 Calculating the terms in the residual
equation (6.55)

To calculate the terms in (6.55) we first evaluate the partial derivatives of
(f, τi) with respect to (h, b). As discussed in §6.1.2 the velocity closure, in-
cluding (f, τi), can be computed robustly to any given tolerance. Therefore,
it is straightforward to compute these derivatives numerically. This enables
us to compute partial derivatives of the wall shear stresses τH = τi+ fh and
τL = τi + (1− h)(b − f). Within the heavy fluid layer, we construct:

∂τH
∂h

=
∂τi
∂h

+ h
∂f

∂h
+ f, (B.12)

∂τH
∂b

=
∂τi
∂b

+ h
∂f

∂b
, (B.13)

and within the light fluid layer:

∂τL
∂h

=
∂τi
∂h

− (1− h)
∂f

∂h
− b+ f, (B.14)

∂τL
∂b

=
∂τi
∂b

+ (1− h)

(

1− ∂f

∂b

)

. (B.15)

Let us consider the first terms in (6.54), within the heavy fluid layer:

∫ h

0

∂U0

∂T
gH dy =

∫ h

0

[

∂U0

∂h
hT +

∂U0

∂b
bT

]

gH dy = AH,hhT +AH,bbT,

(B.16)
∫ 1

h

∂U0

∂T
gL dy =

∫ 1

h

[

∂U0

∂h
hT +

∂U0

∂b
bT

]

gL dy = AL,hhT +AL,bbT,

(B.17)
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where we have denoted the different contributions to the acceleration terms
as follows:

AH,h =

∫ h

0

∂U0

∂h
(y)gH(y) dy, AH,b =

∫ h

0

∂U0

∂b
(y)gH(y) dy,

AL,h =

∫ 1

h

∂U0

∂h
(y)gL(y) dy, AL,b =

∫ 1

h

∂U0

∂b
(y)gL(y) dy.

The weight functions are expressed as linear functions of the functions Ik,p
and Jk,p; see (6.65) & (6.67). Now we develop similar expressions for the
partial derivatives of U0 in each layer. Within the heavy fluid layer, using
(6.28)

∂U0

∂h
=

1

mH

∂

∂h
JH,mH

(y) = mH

∫ y

0

(|τH,xy| −BH )
mH−1
+

κ
mH
H

∂

∂h
τH,xy dỹ

= mH

∫ y

0

(|τH,xy| − BH )
mH−1
+

κ
mH
H







∂τH

∂h
+ (τH,xy − τH )







∂τi

∂h
−
∂τH

∂h
τi − τH

−
1

h












dỹ

This last expression can be evaluated in terms of the functions IH,mH−1(y)
and LH,mH

(y). We then treat the partial derivative with respect to b analo-
gously and those in the light fluid layer. This leads to the following expres-
sions:

∂U0

∂h
=

∂τH
∂h

IH,mH−1(y)− h
∂f

∂h
LH,mH

(y), (B.18)

∂U0

∂b
=

∂τH
∂b

IH,mH−1(y)− h
∂f

∂b
LH,mH

(y), (B.19)

∂U0

∂h
= −∂τL

∂h
IL,mL−1(y)− (1− h)

∂f

∂h
LL,mL

(y), (B.20)

∂U0

∂b
= −∂τL

∂b
IL,mL−1(y)− (1− h)

[

∂f

∂b
− 1

]

LL,mL
(y), (B.21)

We recall that the weight functions are also linear combinations of the
functions Ik,mk−1 and Lk,mk

; see (B.8)-(B.9). It follows that each of the
terms contributing to the linear acceleration in (6.54) can be expressed as
integrals of quadratic products of the functions Ik,mk−1 and Lk,mk

. Having
evaluated these terms (explained below) we proceed to construct the terms
Ah(h, b) and Ab(h, b) in (6.54):

Ah(h, b) = δRe [1 +At]AH,h + δRe [1−At]AL,h (B.22)

Ab(h, b) = δRe [1 +At]AH,b + δRe [1−At]AL,b (B.23)
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B.4. Terms in the residual equation: acceleration terms

For the terms leading to Ch(h, b) and Cb(h, b) we follow a similar path, but
the algebraic complexity increases. Basically we have an expression that
involves linear, quadratic and cubic products of the functions Ik,p, Jk,p and
Lk,p, each of which can be evaluated algebraically. These expressions are
then integrated across the respective fluid layers.

Ch(h, b) = δRe [1 +At]CH,h + δRe [1−At]CL,h (B.24)

Cb(h, b) = δRe [1 +At]CH,b + δRe [1−At]CL,b (B.25)

We now deal with the specific terms in heavy and light fluid layers.

B.4 Terms in the residual equation: acceleration

terms

We have seen that the weight functions and each partial derivative of U0

can be expressed as a linear combination of Ik,mk−1 and Lk,mk
, i.e.

gk(y) = gc1Ik,mk−1(y)+gc2Lk,mk
(y),

∂U0

∂h
(y) = uc1Ik,mk−1(y)+uc2Lk,mk

(y),

where the constants are specified above (and we have a similar expression
for the b-derivatives). In general therefore, we have:

Ak,h =

∫

[uc1Ik,mk−1(y) + uc2Lk,mk
(y)][gc1Ik,mk−1(y) + gc2Lk,mk

(y)] dy,

(B.26)
where the integral is over [0, h] or [h, 1], for heavy and light fluid layers
respectively. Expressions for the integrals of the quadratic products above
are given in appendix C.

B.5 Terms in the residual equation:
convective terms

We start with the heavy layer and the terms contributing to C(h)(h, b), which
are:

∫ h

0

∂U0

∂h

[

U0gH −

∫ h

0

∂U0

∂y
gH dỹ +

∫ y

0

∂U0

∂y
gH dỹ

]

dy = CH,h,1 + CH,h,2 + CH,h,3.

For the first term: CH,h,1 we recall that U0(y) is given in terms of JH,mH
(y)

and therefore,

CH,h,1 = nH

∫ h

0
JH,mH

[uc1IH,mH−1(y) + uc2LH,mH
(y)][gc1IH,mH−1(y) + gc2LH,mH

(y)] dy.

(B.27)
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B.5. Terms in the residual equation:convective terms

For the next two terms, we first to evaluate the integral expression:

∫ y

0

∂U0

∂y
gH dỹ = hgc1

IH,2mH
(y)− sgn(τH)(|τH| − BH)

mH
+ JH,mH

(y)

mHκ
mH
H

(τi − τH )

+hgc2
LH,2mH+1(y) +

(|τH |−BH )
mH+1

+
JH,mH

(y)−JH,2mH+1(y)

(mH+1)(τi−τH)

mHκ
mH

H
(τi − τH )

.

(B.28)

When arranged as above, the singularities as τi → τH are removed on ex-
panding the individual terms about τH . Since we have

∂U0

∂h
= uc1IH,mH−1(y) + uc2LH,mH

(y),

we see that CH,h,2 is evaluated as integrals of quadratic products of the
special functions. Equally, CH,h,3 is the quadratic product of integrals of
the special functions. To evaluate C(b)(h, b). the approach and expressions
are identical, except that the constants uc1 and uc2 are different.

Turning to the light layer, we have that:

∫ 1

h

∂U0

∂h

[

U0gL +

∫ 1

h

∂U0

∂y
gL dỹ −

∫ 1

y

∂U0

∂y
gL dỹ

]

dy = CL,h,1 +CL,h,2 +CL,h,3.

with an analogous expression for the contributions to C(b)(h, b). In the light
fluid layer the velocity is −nLJL,mL

(y) and therefore:

CL,h,1 = −nL

∫ 1

h

JL,mL
[uc1IL,mL−1(y) + uc2LL,mL

(y)][gc1IL,mL−1(y) + gc2LL,mL
(y)] dy.

(B.29)

For the next two terms, we evaluate the integral expression:

∫ 1

y

∂U0

∂y
gL dỹ = (1− h)gc1

IL,2mL
(y) − sgn(τL)(|τL| − BL)

mL
+ JL,mL

(y)

mLκ
mL
L

(τi − τL)

+(1− h)gc2
LL,2mL+1(y) +

(|τL|−BL)
mL+1

+
JL,mL

(y)−JL,2mL+1(y)

(mL+1)(τi−τL)

mLκ
mL
L

(τi − τL)
.

and then combine with

∂U0

∂h
= uc1IL,mL−1(y) + uc2LL,mL

(y).

Therefore, CL,h,2 is evaluated as integrals of quadratic products of the special
functions and CL,h,3 is the quadratic product of integrals of the special
functions. To evaluate C(b)(h, b). the approach and expressions are identical,
except that the constants uc1 and uc2 are different.
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B.5. Terms in the residual equation:convective terms

B.5.1 Buoyancy term and flux function

The buoyancy term S(h, b) is simply:

∫ 1

h
gL(y) dy = gc1

∫ 1

h
IL,mL−1(y) dy + gc2

∫ 1

h
LL,mL

(y) dy. (B.30)

The flux function is simply:

q =

∫ h

0

JH,mH
(y)

mH
dy. (B.31)

Expressions for the integrals of the special functions are given in appendix
C.
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Appendix C

The functions Ik,p and Jk,p

Here we give those expressions that are useful in evaluating the functions
Ik,p and Jk,p, as well as the various integrals that contribute to the weight
functions and residual terms, all related to the contents in chapter 6. In
each case we give expressions that are valid for τi 6= τH (or τi 6= τL). To
resolve the limiting behaviour as τi → τH (or τi → τL) is not particularly
difficult, but involves a series expansion about the wall shear stress, which
removes any singular behaviour. This detail is omitted for brevity. We start
with the heavy fluid layer.

C.1 Heavy fluid layer

We start with the heavy fluid layer.

C.1.1 IH,p and JH,p

IH,p(y) =
hmH [sgn(τH,ξy(y))(|τH,ξy |(y) − BH)p+1

+ − sgn(τH)(|τH| − BH)p+1
+ ]

(p + 1)κ
mH
H

(τi − τH )
(C.1)

JH,p(y) =
hmH [(|τH,ξy|(y) −BH )p+1

+ − (|τH | − BH )p+1
+ ]

(p + 1)κ
mH
H

(τi − τH )
(C.2)

The function LH,p is evaluated as a linear combination of the above.

C.1.2 Integrals of IH,p and JH,p

∫ h

0
IH,p(y) dy =

hJH,p+1(h)

(p+ 1)(τi − τH)
− h2mHsgn(τH)(|τH| − BH)

p+1
+

(p+ 1)κmH

H (τi − τH)

(C.3)
∫ h

0
JH,p(y) dy =

hIH,p+1(h)

(p+ 1)(τi − τH)
− h2mH(|τH | −BH)

p+1
+

(p+ 1)κmH

H (τi − τH)

(C.4)
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C.1. Heavy fluid layer

The integral of LH,p is evaluated as a linear combination of the above.

C.1.3 Integrals of quadratic products of IH,p and JH,p

∫
h

0

IH,p(y)IH,q(y) dy =
h2mHIH,p+q+2(h)

(p + 1)(q + 1)κ
mH
H

(τi − τH)2
+

h3m2
H (|τH | − BH)

p+q+2
+

(p + 1)(q + 1)κ
2mH
H

(τi − τH)2

−
h2mH sgn(τH)(|τH| − BH)

p+1
+

JH,q+1(h)

(p + 1)(q + 1)κ
mH
H

(τi − τH)2
,

−
h2mH sgn(τH)(|τH| − BH)

q+1
+

JH,p+1(h)

(p + 1)(q + 1)κ
mH
H

(τi − τH)2
, (C.5)

∫
h

0

IH,p(y)JH,q(y) dy =
h2mH [JH,p+q+2(h) − (|τH | − BH )

p+1
+

JH,q+1(h)]

(p + 1)(q + 1)κ
mH
H

(τi − τH)2

−
h2mH sgn(τH)(|τH| − BH)

q+1
+

IH,p+1(h)

(p + 1)(q + 1)κ
mH
H

(τi − τH )2

+
h3m2

H sgn(τH)(|τH| − BH)
p+q+2
+

(p + 1)(q + 1)κ
2mH
H

(τi − τH )2
, (C.6)

∫
h

0

JH,p(y)JH,q(y) dy =
h2mHIH,p+q+2(h)

(p + 1)(q + 1)κ
mH
H

(τi − τH)2
+

h3m2
H (|τH | − BH)

p+q+2

+

(p + 1)(q + 1)κ
2mH
H

(τi − τH)2

−
h2mH [(|τH | − BH )

p+1

+
IH,q+1(h) + (|τH | − BH)

q+1

+
IH,p+1(h)]

(p + 1)(q + 1)κ
mH
H

(τi − τH)2
.

(C.7)

C.1.4 Integrals of selected cubic products of IH,p and JH,p

∫ h

0
JH,pJH,qJH,r dy =

h3m2
H

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,p+q+r+3(h)

− h3m2
H(|τH | −BH)

p+1
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,q+r+2(h)

− h3m2
H(|τH | −BH)

q+1
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,p+r+2(h)

− h3m2
H(|τH | −BH)

r+1
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,p+q+2(h)

+
h3m2

H(|τH | −BH)
p+q+2
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,r+1(h)

+
h3m2

H(|τH | −BH)
p+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,q+1(h)
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C.1. Heavy fluid layer

+
h3m2

H(|τH | −BH)
q+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,p+1(h)

− h4m3
H(|τH | −BH)

p+q+r+3
+

(p+ 1)(q + 1)(r + 1)κ3mH

H (τi − τH)3
, ,

∫ h

0
JH,pJH,qIH,r dy =

h3m2
H

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
JH,p+q+r+3(h)

− h3m2
H(|τH | −BH)

p+1
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
JH,q+r+2(h)

− h3m2
H(|τH | −BH)

q+1
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
JH,p+r+2(h)

− h3m2
Hsgn(τH)(|τH| − BH)

r+1
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,p+q+2(h)

+
h3m2

H(|τH | −BH)
p+q+2
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
JH,r+1(h)

+
h3m2

Hsgn(τH)(|τH| − BH)
p+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,q+1(h)

+
h3m2

Hsgn(τH)(|τH| − BH)
q+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,p+1(h)

− h4m3
Hsgn(τH)(|τH| − BH)

p+q+r+3
+

(p+ 1)(q + 1)(r + 1)κ3mH

H (τi − τH)3
,

∫ h

0
JH,pIH,qIH,r dy =

h3m2
H

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,p+q+r+3(h)

− h3m2
H(|τH | −BH)

p+1
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,q+r+2(h)

− h3m2
Hsgn(τH)(|τH| − BH)

q+1
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
JH,p+r+2(h)

− h3m2
Hsgn(τH)(|τH| − BH)

r+1
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
JH,p+q+2(h)

+
h3m2

Hsgn(τH)(|τH| − BH)
p+q+2
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
JH,r+1(h)
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C.2. Light fluid layer

+
h3m2

Hsgn(τH)(|τH| − BH)
p+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
JH,q+1(h)

+
h3m2

H(|τH | −BH)
q+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mH

H (τi − τH)3
IH,p+1(h)

− h4m3
H(|τH | −BH)

p+q+r+3
+

(p+ 1)(q + 1)(r + 1)κ3mH

H (τi − τH)3
.

C.2 Light fluid layer

For the light fluid layer the expressions are similar.

C.2.1 IL,p and JL,p

IL,p(y) =
(1− h)mL[sgn(τL,ξy(y))(|τL,ξy |(y)− BL)

p+1
+ − sgn(τL)(|τL| − BL)

p+1
+ ]

(p + 1)κ
mL

L
(τi − τL)

(C.8)

JL,p(y) =
(1− h)mL[(|τL,ξy |(y)− BL)

p+1
+ − (|τL| − BL)

p+1
+ ]

(p + 1)κ
mL
L

(τi − τL)
(C.9)

The function LL,p is evaluated as a linear combination of the above.

C.2.2 Integrals of IL,p and JL,p

∫ 1

h
IL,p(y) dy =

(1− h)JL,p+1(h)

(p+ 1)(τi − τL)
− (1− h)2mLsgn(τL)(|τL| − BL)

p+1
+

(p+ 1)κmL

L (τi − τL)

(C.10)
∫ 1

h
JL,p(y) dy =

(1− h)IL,p+1(h)

(p+ 1)(τi − τL)
− (1− h)2mL(|τL| −BL)

p+1
+

(p+ 1)κmL

L (τi − τL)

(C.11)

The integral of LL,p is evaluated as a linear combination of the above.

C.2.3 Integrals of quadratic products of IL,p and JL,p

∫
1

h

IL,p(y)IL,q(y) dy =
(1 − h)2mLIL,p+q+2(h)

(p + 1)(q + 1)κ
mL
L

(τi − τL)2
+

(1 − h)3m2
L(|τL| − BL)

p+q+2
+

(p + 1)(q + 1)κ
2mL
L

(τi − τL)2
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C.2. Light fluid layer

−
(1 − h)2mLsgn(τL)(|τL| − BL)

p+1
+

JL,q+1(h)

(p + 1)(q + 1)κ
mL
L

(τi − τL)2
,

−
(1 − h)2mLsgn(τL)(|τL| − BL)

q+1
+

JL,p+1(h)

(p + 1)(q + 1)κ
mL
L

(τi − τL)2
, (C.12)

∫
1

h

IL,p(y)JL,q(y) dy =
(1 − h)2mL[JL,p+q+2(h) − (|τL| − BL)

p+1

+
JL,q+1(h)]

(p + 1)(q + 1)κ
mL
L

(τi − τL)2

−
(1 − h)2mLsgn(τL)(|τL| − BL)

q+1

+
IL,p+1(h)

(p + 1)(q + 1)κ
mL
L

(τi − τL)2

+
(1 − h)3m2

Lsgn(τL)(|τL| − BL)
p+q+2
+

(p + 1)(q + 1)κ
2mL
L

(τi − τL)2
, (C.13)

∫
1

h

JL,p(y)JL,q(y) dy =
(1 − h)2mLIL,p+q+2(h)

(p + 1)(q + 1)κ
mL
L

(τi − τL)2
+

(1 − h)3m2
L(|τL| − BL)

p+q+2
+

(p + 1)(q + 1)κ
2mL
L

(τi − τL)2

−
(1 − h)2mL[(|τL| − BL)

p+1
+

IL,q+1(h) + (|τL| − BL)
q+1
+

IL,p+1(h)]

(p + 1)(q + 1)κ
mL
L

(τi − τL)2
.

(C.14)

C.2.4 Integrals of selected cubic products of IL,p and JL,p

∫ 1

h
JL,pJL,qJL,r dy =

(1− h)3m2
L

(p + 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,p+q+r+3(h)

− (1− h)3m2
L(|τL| −BL)

p+1
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,q+r+2(h)

− (1− h)3m2
L(|τL| −BL)

q+1
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,p+r+2(h)

− (1− h)3m2
L(|τL| −BL)

r+1
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,p+q+2(h)

+
(1− h)3m2

L(|τL| −BL)
p+q+2
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,r+1(h)

+
(1− h)3m2

L(|τL| −BL)
p+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,q+1(h)

+
(1− h)3m2

L(|τL| −BL)
q+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,p+1(h)

− (1− h)3m3
L(|τL| −BL)

p+q+r+3
+

(p+ 1)(q + 1)(r + 1)κ3mL

L (τi − τL)3
,

∫ 1

h
JL,pJL,qIL,r dy =

(1− h)3m2
L

(p + 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
JL,p+q+r+3(h)
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C.2. Light fluid layer

− (1− h)3m2
L(|τL| −BL)

p+1
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
JL,q+r+2(h)

− (1− h)3m2
L(|τL| −BL)

q+1
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
JL,p+r+2(h)

− (1− h)3m2
Lsgn(τL)(|τL| − BL)

r+1
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,p+q+2(h)

+
(1− h)3m2

L(|τL| −BL)
p+q+2
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
JL,r+1(h)

+
(1− h)3m2

Lsgn(τL)(|τL| − BL)
p+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,q+1(h)

+
(1− h)3m2

Lsgn(τL)(|τL| − BL)
q+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,p+1(h)

−(1− h)3m3
Lsgn(τL)(|τL| − BL)

p+q+r+3
+

(p+ 1)(q + 1)(r + 1)κ3mL

L (τi − τL)3
,

∫ 1

h
JL,pIL,qIL,r dy =

(1− h)3m2
L

(p + 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,p+q+r+3(h)

− (1− h)3m2
L(|τL| −BL)

p+1
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,q+r+2(h)

− (1− h)3m2
Lsgn(τL)(|τL| − BL)

q+1
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
JL,p+r+2(h)

− (1− h)3m2
Lsgn(τL)(|τL| − BL)

r+1
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
JL,p+q+2(h)

+
(1− h)3m2

Lsgn(τL)(|τL| − BL)
p+q+2
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
JL,r+1(h)

+
(1− h)3m2

Lsgn(τL)(|τL| − BL)
p+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
JL,q+1(h)

+
(1− h)3m2

L(|τL| −BL)
q+r+2
+

(p+ 1)(q + 1)(r + 1)κ2mL

L (τi − τL)3
IL,p+1(h)

− (1− h)3m3
L(|τL| −BL)

p+q+r+3
+

(p+ 1)(q + 1)(r + 1)κ3mL

L (τi − τL)3
.
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Appendix D

Long-wave limit of the
Orr-Sommerfeld problem

Here we outline the steps needed in semi-analytical solution of the long-wave
limit of the Orr-Sommerfeld problem, α −→ 0 discussed in §6.4.2 of chapter
6.

D.1 Solution of the leading order problem

We assume that h̄0 6= 0 and divide through by h̄0, as we can see that only
(ψ0/h̄0) is determined by the system (6.91)-(6.96). There is a similarity
between the leading order problem and the earlier derivation of the weight
functions, in §6.2.3. Since ηk,t ∼ γ̇nk−1, it seems that D2(ψ0/h̄0) must mimic
the behaviour of the strain rate, in each layer. This prompts definition of
ηk,tD

2(ψ0/h̄0) as a linear function of the shear stress of the base flow in each
layer. We find that (6.91) and (6.95)-(6.96) are satisfied by:

ηH,tD
2

(

ψ0

h̄0

)

= ApτH,ξy(y) + τpi +
1

2

(

χ−Ap
χ

χ− f
τi

)

, (D.1)

ηL,tD
2

(

ψ0

h̄0

)

= − f

χ− f
ApτL,ξy(y) + τpi −

1

2

(

χ−Ap
χ

χ− f
τi

)

.(D.2)

where Ap and τpi are arbitrary constants to be determined. The other pa-
rameters are defined via the base flow. These expressions may be rearranged
and integrated, via the functions Ik,p(y) and Jk,p(y), defined earlier. The
perturbed axial velocity is given by:

D

(

ψ0

h̄0

)

= ApJH,mH
(y) + ApBHJH,mH−1(y) +

[

1

2

(

χ− Ap
χ

χ− f
τi

)

+ τpi

]

IH,mH−1(y), y ∈ [0, h0), (D.3)

D

(

ψ0

h̄0

)

=
f

χ− f
ApJL,mL

(y) +
f

χ− f
ApBLJL,mL−1(y) +

[

1

2

(

χ− Ap
χ

χ− f
τi

)

− τpi

]

IL,mL−1(y), y ∈ (h0, 1]. (D.4)
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D.2. Solution of the first order problem

Note that we have also satisfied (6.92) in deriving the above.
We now determine the constants Ap and τpi. Using (6.94) we have:

DU |
h
−

0

h
+
0

=
f

χ− f
ApJL,mL

(h0) +
f

χ− f
ApBLJL,mL−1(h0)− ApJH,mH

(h0)

−ApBHJH,mH−1(h0) +

[

1

2

(

χ− Ap
χ

χ− f
τi

)

− τpi

]

IL,mL−1(h0)−

[

1

2

(

χ− Ap
χ

χ− f
τi

)

+ τpi

]

IH,mH−1(h0). (D.5)

A second equation for Ap and τpi is obtained by integrating (D.3) and (D.4)
across their respective layers and applying the continuity condition (6.93):

0 = Ap

∫ h0

0
JH,mH

(y) dy + ApBH

∫ h0

0
JH,mH−1(y) dy +

Apf

χ− f

∫ 1

h0

JL,mL
(y) dy +

ApBLf

χ− f

∫ 1

h0

JL,mL−1(y) dy +

[

1

2

(

χ− Ap
χ

χ− f
τi

)

+ τpi

] ∫ h0

0
IH,mH−1(y) dy

+

[

1

2

(

χ−Ap
χ

χ− f
τi

)

− τpi

] ∫ 1

h0

IL,mL−1(y) dy. (D.6)

Algebraic expressions for the integrals above are given in appendix C. Having
solved the two linear equations for Ap and τpi, equation (6.97) gives the
leading order eigenvalue:

c0 =
JH,mH

(h0)

mH
+Ap

∫ h0

0
JH,mH

(y) dy + ApBH

∫ h0

0
JH,mH−1(y) dy

+

[

1

2

(

χ−Ap
χ

χ− f
τi

)

+ τpi

]
∫ h0

0
IH,mH−1(y) dy (D.7)

We see that c0 is always real, as is (ψ0/h̄0).

D.2 Solution of the first order problem

The first order problem has a similar structure to the leading order problem.
Using linearity and superposition, we can see that

ψ1

h̄0
=
h̄1
h̄0

ψ0

h̄0
+ iφ,

where φ(y) is real and satisfies the following problem:

D2(ηk,tD
2φ) +Rek[(c0 − U)D2(ψ0/h̄0) + (ψ0/h̄0)D

2U ] = 0 (D.8)
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D.2. Solution of the first order problem

with boundary and interface conditions:

φ = Dφ = 0, y = 0, 1 (D.9)

0 = φ|HL y = h0, (D.10)

0 = Dφ|HL y = h0, (D.11)

ηH,tD
2φ = ηL,tD

2φ, y = h0, (D.12)

χ tanβ =
(

ReH [(c0 − U)D(ψ0/h̄0) + (ψ0/h̄0)DU ] +D[ηH,tD
2φ]

)

(D.13)

−
(

ReL[(c0 − U)D(ψ0/h̄0) + (ψ0/h̄0)DU ] +D[ηL,tD
2φ]

)

, y = h0,

The stability of the system is found from

c1 = iφ(y = h0).

Let Fk(y) be defined by:

FH(y) = −ReH [(c0 + U)(ψ0/h̄0)− 2

∫ y

0
UD(ψ0/h̄0) ds],

FL(y) = −ReL[(c0 + U)(ψ0/h̄0)− 2

∫ y

1
UD(ψ0/h̄0) ds],

so that [ηk,tD
2φ−Fk(y)] is linear in each layer. We find that:

ηH,tD
2φ = FH (y) +AHτH,ξy +DH , (D.14)

ηL,tD
2φ = FL(y)−

(

f

χ− f
AH +

χ

χ− f
tan β

)

τL,ξy +DH + FH (h0)− FL(h0)

+
χτi

χ− f
(AH + tan β), (D.15)

for constants AH and DH . These expressions already satisfy (D.12) &
(D.13). The constants AH and DH are determined by integrating twice
with respect to y, away from each wall, using (D.9), and then applying
(D.9) & (D.10). The relevant expressions are as follows.

Dφ(h−0 ) =

∫ h0

0

FH

ηH,t

dy + AHJH,mH
(h0) + AHBHJH,mH−1(h0) + DHIH,mH−1(h0),

(D.16)

Dφ(h+0 ) = −

∫ 1

h0

FL

ηL,t

dy +

(

f

χ− f
AH +

χ

χ− f
tan β

)

[JL,mL
(h0) + BLJL,mL−1(h0)]

−

[

DH + FH (h0) −FL(h0) +
χτi

χ− f
(AH + tanβ)

]

IL,mL−1(h0). (D.17)

φ(h−0 ) =

∫ h0

0
(h0 − y)

FH

ηH,t

dy + AH

∫ h0

0
JH,mH

(y) ds + AHBH

∫ h0

0
JH,mH−1(y) ds +

DH

∫ h0

0
IH,mH−1(y) ds (D.18)
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D.2. Solution of the first order problem

φ(h+0 ) =

∫ 1

h0

(y − h0)
FL

ηL,t

dy −

(

f

χ− f
AH +

χ

χ− f
tan β

)∫ 1

h0

JL,mL
(y) dy

−

(

f

χ− f
AH +

χ

χ− f
tanβ

)

BL

∫ 1

h0

JL,mL−1(y) dy +

+

[

DH + FH (h0)−FL(h0) +
χτi

χ− f
(AH + tan β)

] ∫ 1

h0

IL,mL−1(y) dy. (D.19)
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