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Abstract  

 In this dissertation I examined whether three exposures associated with the physical 

and social residential environment − specifically, ambient air pollution, radon and 

neighborhood socioeconomic status (SES) − are risk factors for the development of lung 

cancer in Canada. Throughout this dissertation I used the National Enhanced Cancer 

Surveillance System (NECSS), a large population-based case-control study conducted in eight 

Canadian provinces, including 3,280 incident lung cancer cases and 5,073 population controls.  

 In the first section of this dissertation, I developed methods to estimate ambient air 

pollution, both nationally and retrospectively, and applied these to 20 years of residential 

histories in the NECSS study. Epidemiological analyses showed that the odds of lung cancer 

incidence associated with a 10-unit increase in PM2.5 (µg/m3), NO2 (ppb) and O3 (ppb) were 

1.29 (95% CI = 0.95-1.76), 1.11 (1.00-1.24), and 1.09 (0.85-1.39) respectively, indicating that 

ambient air pollution exposure is associated with lung cancer development in Canada.  

 In the second section, I used maps of radon concentration and potential in combination 

with the NECSS residential histories to estimate ecological radon exposures. A 50 Bq/m3 

increase in average health region radon concentration was associated with a 7% (-6-21%) 

increase in the odds of lung cancer and for every 10 years that individuals lived in high radon 

geological potential zones, the odds of lung cancer increased by 11% (1-23%). This study also 

indicated that risk mapping may be used to target population health prevention efforts for 

radon. 

 In the third section, I developed methods to estimate long-term exposure to 

neighborhood SES and applied these to the residential histories of the NECSS study. The odds 

of lung cancer cases residing in the most versus least deprived long-term neighborhood SES 

quintiles were significantly elevated and in the city sub-analysis remained significant (OR: 
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1.38 (1.01-1.88)) after adjusting for smoking and other lung cancer risk factors. Smoking 

behavior was the predominant partial-mediating pathway of the neighborhood effect.   

 Collectively, this dissertation contributes to the methodological literature on spatial 

exposure assessment and spatial epidemiology, as well as to the etiological evidence linking 

air pollution, radon and neighborhood SES to lung cancer risk.  
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Preface 

 This dissertation is composed of five research chapters (Chapters 2-6), each of which 

has been written as a stand-alone manuscript for publication in peer-reviewed journals. Three 

have been published (Chapters 2-4) and two have been submitted for publication (Chapters 5, 

6). I developed the overall research plan for this dissertation, conducted all data analyses and 

prepared all manuscripts with the guidance of my committee and co-authors. This research 

was approved by the UBC Behavioral Research Ethics Board (certificate #H09-00772). 

 A large number of data sources and methodologies were used throughout this research; 

as such there are contributions from a large number of co-authors. Below are summaries of my 

contributions to each research chapter and those of each co-author.  

 

CHAPTER 2: Creating National Air Pollution Models for Population Exposure 

Assessment in Canada 

 Hystad P., Setton E., Cervantes A., Poplawski K., Deschenes S., Brauer M., Martin, R., 

van Donkelarr, A., Lamsal, L., Jerrett, M., Demers, P. (2011). Creating National Air Pollution 

Models for Population Exposure Assessment in Canada. Environmental Health 

Perspectives.119:1123-1129.  

 I initiated this study, developed the modeling approach, conducted analyses and 

prepared the manuscript (contribution > 85%). This research was conducted as a component of 

Carex Canada, and Eleanor Setton, the lead of the environmental portion of the project, was 

involved in the conceptualization of modeling approaches and data formatting. Alejandro 

Cervantes, Karla Poplawski and Steeve Deschenes were research assistants for Carex Canada 

and compiled and formatted a number of the predictor variables that were used in the final 

national models. Michael Brauer and Paul Demers were involved in the conceptualization of 
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the modeling approaches and edited drafts of the final manuscript. Aaron van Donkelaar 

developed the satellite based fine particulate matter (PM2.5) surface for Canada and Lok 

Lamsal developed the satellite based nitrogen dioxide (NO2) surface. Randall Martin 

contributed to the development of both the PM2.5 and NO2 satellite estimates and edited drafts 

of the final manuscript. Michael Jerrett collected the Toronto land use regression data used in 

the national model evaluation and also edited drafts of the final manuscript. 

 

CHAPTER 3: Spatiotemporal Air Pollution Exposure Assessment for a Canadian 

Population-Based Lung Cancer Case-Control Study 

 Hystad, P., Demers, P., Johnson, K.C., Brook, J., van Donkelaar, A., Lamsal., L., 

Martin, R., Brauer, M. (2012). Spatiotemporal air pollution exposure assessment for a 

Canadian population-based lung cancer case-control study. Environmental Health. 11:22.  

 I initiated this study, developed the modeling approach, conducted analyses and 

prepared the manuscript (contribution > 90%). Paul Demers and Michael Brauer were 

involved in the conceptualization of the historical modeling approach and edited drafts of the 

final manuscript. Jeff Brook provided the national Ozone surface and edited drafts of the final 

manuscript and Aaron van Donkelaar, Lok Lamsal, and Randall Martin provided the PM2.5 and 

NO2 Satellite derived surfaces and edited drafts of the final manuscript. Kenneth Johnson 

implemented the NECSS case-control study and edited drafts of the final manuscript. 

 

CHAPTER 4: Long-Term Residential Exposure to Air Pollution and Lung Cancer Risk 

 Hystad, P., Demers, P.A, Johnson, K.C., Carpiano, R.M., Brauer, M.  Long-Term 

Residential Exposure to Air Pollution and Lung Cancer Risk. Epidemiology. Accepted January 

25th 2013.  
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prepared the manuscript (contribution > 90%). Paul Demers, Richard Carpiano, and Michael 

Brauer were involved in the conceptualization of the project and edited drafts of the final 

manuscript. Kenneth Johnson implemented the NECSS case-control study and edited drafts of 

the final manuscript. 
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Canada: Results from a Population-Based Lung Cancer Case-Control Study 
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Poplawski, K., Whitehead, A., McFarlane, A., Nicol, A.M. Spatial Variation in Radon and 
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Control Study. Submitted for Publication.  

 I initiated this study, developed the modeling approach, conducted analyses and 

prepared the manuscript (contribution > 85%). Michael Brauer, Paul Demers, and Anne-Marie 

Nicol were involved in the conceptualization of the project and edited drafts of the final 

manuscript. Kenneth Johnson implemented the NECSS case-control study and edited drafts of 

the final manuscript. Eleanor Setton, Alejandro Cervantes and Karla Poplawski helped format 

the national radon survey and edited drafts of the final manuscript. Allan Whitehead and 

Alana McFarlane created the national radon potential map and edited drafts of the final 

manuscript. 
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Chapter 1 

Introduction 
 

 Worldwide, lung cancer is one of the most commonly diagnosed cancers with 

approximately 1.4 million deaths annually, corresponding to 18% of all cancer deaths (Jemal 

et al., 2011). In Canada, there are approximately 25,600 new lung cancer cases and 20,200 

lung cancer deaths annually, representing 14% of new cancers and 27% of all cancer deaths 

(CCS, 2012). The five year survival rate for lung cancer patients in Canada remains low at 

13% for males and 19% of females (CCS, 2012).  

 The majority of lung cancer cases (between 80-90%) can be attributed to cigarette 

smoking (Danaei et al., 2005; Doll and Peto, 1981; Parkin et al., 2005). Lung cancer risk 

increases with both the intensity and duration  of smoking, with latency periods of 20-40 years 

(Parkin et al., 2005; Tyczynski et al., 2003). Average and heavy smokers, respectively, have a 

ten-fold and twenty-fold increase in the risk of developing lung cancer compared with never-

smokers (IARC, 2004). Second hand smoke (SHS) exposure is also a risk factor for lung 

cancer, with excess risks estimated at 15% and 25% for exposure to SHS at home and work, 

corresponding to population attributable fractions (PAF) for non-smokers of 4.2% and 9.7%, 

respectively (Sisti and Boffetta, 2012). 

 Lung cancer is a multi-factorial disease, and in addition to tobacco smoke there are a 

number of known and suspected lung cancer risk factors for both smokers and non-smokers. 

Lung cancer in never smokers is rising in Canada and now ranks as the tenth most common 

cause of cancer death (CCS, 2012). Major non-tobacco related  risk factors include: cooking 

and heating smoke from indoor biomass combustion (Lim and Seow, 2012); a wide-range of 

occupational carcinogens, such as asbestos, arsenic, chromate and silica (Siemiatycki et al., 
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2004); ionizing radiation (Boice JD, 1990); diets low in fruits and vegetables and high is meat 

consumption (Donaldson, 2004; Sandhu et al., 2001); low physical activity (Mao et al., 2003); 

arsenic in drinking water (Celik et al., 2008); residential radon exposure (Krewski et al., 

2005); and ambient air pollution exposure (Chen et al., 2008). Importantly, despite the large 

number of known or suspected lung cancer risk factors besides tobacco smoke, only a small 

proportion of lung cancer cases can be explained in non-smokers, highlighting the need for 

further research in this area (Sisti and Boffetta, 2012).  

 Two of the most prominent environmental risk factors for lung cancer are ambient air 

pollution and radon exposure. The International Agency for Research on Cancer (IARC) 

recently classified diesel exhaust, a component of outdoor air pollution, as a group 1 human 

carcinogen (IARC, 2012a) and is evaluating ambient air pollution (as a mixture) in the 

upcoming volume 109 monograph (IARC, 2012b). It has been estimated that fine particulate 

matter (PM2.5) air pollution may cause approximately 5% of the global mortality from lung 

cancer (Cohen et al., 2005). Radon is also a recognized group 1 human carcinogen (IARC, 

2012c) and is a leading cause of lung cancer after tobacco smoking (Samet et al., 2009). For 

both of these risk factors, very little research has been conducted to-date in Canada.  

 In addition to environmental risks, large socioeconomic status (SES) gradients exist for 

lung cancer incidence in Canada (and worldwide), even after accounting for smoking 

behaviors (Mao et al., 2001). The environmental risk factors mentioned previously may 

contribute to this remaining SES gradient, or additional contextual SES conditions may 

influence an individual's lung cancer risk. Modern epidemiology tends to focus on individual-

level risk factors in isolation from contextual factors (Diez-Roux, 2003) − and the study of 

lung cancer is an illustrative example. On the other hand, laws prohibiting SHS in public 

places have recently been effectively applied at a population level in many developed 
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countries to reduce smoking rates. While there has been an increase in interest surrounding 

residential social conditions as important upstream health determinants for many chronic 

health conditions and behaviors (Yen et al., 2009), little research has examined neighborhood 

SES and lung cancer risk. Advancing our understanding of the complex linkages between 

neighborhood SES and lung cancer risk may offer new opportunities for upstream 

interventions to both address the SES disparities seen for lung cancer and reduce the overall 

burden of lung cancer.  

 The purpose of this dissertation is to examine whether these three exposures associated 

with the physical and social residential environment − ambient air pollution, radon and 

neighborhood SES − are risk factors for lung cancer development in Canada. Throughout this 

dissertation, a population-based case-control study is used for epidemiological analyses, which 

includes 3,280 histologically-confirmed lung cancer cases and 5,073 population controls 

collected between 1994 and 1997 in eight Canadian provinces. This case-control study 

focused on assessing environmental risk factors for cancer and therefore collected 

comprehensive information on individual characteristics, including residential histories that 

form the basis of the spatiotemporal exposure assessments conducted for each risk factor. A 

major gap in the existing literatures on these potential risk factors is exposure misclassification 

and a substantial portion of this dissertation is therefore dedicated to conducting 

comprehensive, long-term exposure assessments that include residential histories and temporal 

and spatial exposure variability. This dissertation builds upon methods employed in previous 

studies by developing comprehensive prediction models to estimate long-term exposures to 

ambient air pollution, radon and neighborhood SES, and by estimating associations within a 

large population-based lung cancer case-control study after controlling for each environmental 

risk factor as well as a broad set of potential individual and geographic confounding factors.  
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 The following is a brief review of the pertinent literature on lung cancer and air 

pollution, radon and neighborhood SES exposures. The state of evidence linking each risk 

factor to lung cancer is reviewed, along with mechanisms and limitations of the literature. 

Subsequent research chapters provide further literature reviews and rationale for each specific 

study.  

1.1. Air Pollution and Lung Cancer 

 Ambient air pollution consists of a mixture of gases and particles that arise from 

multiple sources and is typically classified into common and hazardous air contaminants. 

Common air contaminates include fine and inhalable particulate matter (PM2.5 and PM10), 

nitrogen dioxide (NO2), ozone (O3), and sulphur dioxides (SO2), while hazardous air 

pollutants include a wide-range of substances, such as heavy metals, volatile organic 

compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Many hazardous air 

pollutants are known or suspected human carcinogens (IARC, 2012c).  

 The overall health burden associated with air pollution is large. Globally, it is 

estimated that ambient (outdoor) PM2.5 air pollution accounts for 3.2 million deaths and 3.1% 

of disability-adjusted life-years (Lim et al., 2012). In terms of lung cancer specifically, it is 

estimated that PM2.5 causes approximately 5% of the global mortality from lung cancer (Cohen 

et al., 2005). Canada has relatively low ambient air pollution concentrations compared to the 

rest of the world; however, health effects associated with air pollution are seen even at very 

low concentrations and no safe level of air pollution has been identified (Pope et al., 2011).  

1.1.1. Summary of the literature 

 There is growing evidence for a causal association between air pollution exposure and 

lung cancer development. IARC recently classified diesel exhaust, a component of outdoor air 
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pollution, as a group 1 carcinogen (carcinogenic to humans) (IARC, 2012b) and is now 

evaluating ambient air pollution (as a mixture) in the upcoming volume 109 monograph 

(IARC, 2012c). A meta-analysis of air pollution and epidemiologic studies of lung cancer  

published up to 2006 reported pooled RR estimates per 10 µg/m3 increases  in PM2.5, NO2 and 

SO2 of 1.21 (1.10-1.32),1.11 (0.99-1.24), and 1.12 (0.98-1.29), respectively (Chen et al., 

2008). In terms of O3, four studies were identified that examined lung cancer mortality and 

two studies that examined incidence, although not enough information was available to 

calculate a pooled estimate (due primarily to the small sample sizes of existing studies).  

 Since this systematic review, evidence has continued to accumulate to support an 

association between lung cancer and exposure to ambient air pollution. An analysis of never-

smokers in the American Cancer Society Cancer Prevention Study II cohort, based on 26 years 

of follow-up, reported a RR of 1.19 (0.97-1.47) per 10 µg/m3 increase of PM2.5 (Turner et al., 

2011b). Similarly, extended follow-ups of the Harvard Six Cities Study from 1974-1998 

(Laden et al., 2006) and from 1974-2009 (Lepeule et al., 2012) observed a RR of 1.27 (0.9-

1.69) and 1.37 (1.07-1.75) per 10 µg/m3 increase of PM2.5, respectively. In a large cohort of 

men in the U.S. trucking industry, RR's for PM2.5, PM10, NO2 and SO2 of 1.07 (0.97-1.17), 

1.05 (0.95-1.25), 1.09 (0.95-1.25) and 1.07 (0.96-1.20) per inter-quartile range increase in 

estimated residential exposure (excluding long-haul drivers) were observed (Hart et al., 2011). 

The Danish Diet, Cancer and Health cohort specifically examined traffic-related pollution and 

observed a RR for the highest compared with the lowest quartile of nitrogen oxides (NOx) 

exposure of 1.30 (1.05-1.61) and a RR for living within 50m of a major road (>10,000 

vehicles/day) of 1.21 (0.95–1.55) (Raaschou-Nielsen et al., 2011). Alternatively, a Dutch 

cohort did not observe associations with black smoke exposure (RR: 1.03 (0.88-1.20) per 10 

µg/m3) or with NO2 and PM2.5 (Beelen et al., 2008). One of the few Asian cohort studies 
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conducted was in Japan, and reported RR's associated with a 10-unit increase (µg/m3) in area-

level PM2.5, SO2 and NO2 of 1.24 (1.12–1.37), 1.10 (1.05–1.14), and 1.09 (1.05–1.14), 

respectively (Katanoda et al., 2011). There have been two case-control studies conducted since 

the Chen et al. (2008) systematic review. A hospital-based case-control study in Northern 

Spain compared individuals living near industry to those that did not and reported an OR of 

1.49 (0.93-2.39) for all lung cancer subtypes combined and a statistically significant 

association for small cell carcinomas (López-Cima et al., 2011). A case-control study was also 

conducted in the city of Windsor, Ontario that reported an OR for men exposed to NO2 

concentrations >28.5 µg/m3 compared to < 21 µg/m3 of 5.49 (1.04-29.0); however, this 

included only 9 cases and 5 controls. For women an OR of 1.33 (0.26-5.64) was observed 

based on 9 cases and 12 controls. Lower NO2 concentration classes had more statistical power 

and also showed increased though non-significant associations (Band et al., 2011).  

1.1.2. Biological mechanisms 

 The associations observed between ambient air pollution and lung cancer are supported 

by several biological mechanisms. For particles, there is a general consensus that once 

deposited in the lungs, particles generate reactive oxygen/nitrogen species that trigger an 

inflammation-related response that damages cellular proteins, lipids, membranes, and DNA, 

which can then lead to lung cancer development (Donaldson and Stone, 2003; Ghio et al., 

2000). This process can be related to the surface composition and structure of particles or to 

their overall shape, size and composition (Knaapen et al., 2004). Gaseous air pollutants (e.g. 

O3 and NO2) are also potent oxidants, either through direct effects on lipids and proteins or 

indirectly through the activation of intracellular oxidant signaling pathways (Rahman and 

MacNee, 2000). Generally, the influence of NO2 on oxidant pathways is thought to be less 
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potent than O3 (Brunekreef and Holgate, 2002); however, it is important to note that the use of 

NO2  in epidemiological studies may be acting as a marker for other traffic-related pollutions, 

many of which are known carcinogens.  

1.1.3. Limitation of existing research 

 Evidence has continued to accumulate to support an association between lung cancer 

and exposure to ambient air pollution, yet several uncertainties remain. A wide-range of risk 

estimates has been reported for air pollution exposure and lung cancer risk, especially for 

pollutants other than PM2.5. Chen et al. (2008) identified significant heterogeneity in estimates 

from existing studies of NO2 and O3, due partially to a lack of statistical power as few studies 

had been conducted. A growing interest in the literature has also emerged examining intra-

urban gradients in air pollution (Health Effects Institute, 2010), primarily from traffic-related 

emissions; however, relatively few studies have been conducted that examine traffic emissions 

and lung cancer risk (Beelen et al., 2008; Raaschou-Nielsen et al., 2011, 2010). Other common 

air pollutants, particularly O3, also remain of interest although only limited studies have been 

conducted (Beeson et al., 1998; Jerrett et al., 2005; Pope et al., 2002). 

 Potential confounding remains an important issue for air pollution and lung cancer 

studies, due to the possible association between air pollution exposure and SES − and the large 

number of lung cancer risk factors that are associated with SES (Sidorchuk et al., 2009). The 

spatial association between within-city air pollution exposures and SES is especially 

problematic as a number of studies have demonstrated that neighborhoods of low SES have 

higher levels of ambient air pollution (Buzzelli and Jerrett, 2004; Gunier et al., 2003; 

Neumann et al., 1998; Perlin et al., 2001). This spatial association requires epidemiological 

studies of lung cancer to include covariates on individual SES and detailed smoking histories. 
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In addition, covariates should also be included for other potential confounding factors, 

including second hand smoke exposure, diet, physical activity, and occupational exposures to 

lung carcinogens as these are risk factors for lung cancer that may also be associated with SES 

and hence air pollution exposures. 

 Recent literature has also strengthened the evidence that lung cancer is a heterogeneous 

cancer such that different histological subtypes have different etiological factors (Pesch et al., 

2012). The few studies that have examined air pollution exposure and lung cancer risk by 

histological subtypes have reported no clear associations (Barbone et al., 1995; Chen et al., 

2009; Katsouyanni et al., 1991; Liaw et al., 2010) but it is probable that risks associated with 

air pollution exposure may vary by histological subtype, given the differences seen in the risks 

from smoking (smoking is most strongly related to squamous cell carcinoma, followed by 

small cell carcinoma, with adenocarcinoma the most common subtype in never smokers 

(Pesch et al., 2012)). In addition, evidence from occupational (Villeneuve et al., 2011b) and 

animal studies (Nagy et al., 2005) also suggest that it is probable that risks associated with air 

pollution exposure may vary by histological subtype. 

 An overarching uncertainty in the lung cancer and air pollution literature is exposure 

misclassification and the effects this may have on epidemiological findings. Exposure 

misclassification is a particular concern for lung cancer epidemiology because of the long 

latency periods associated with lung cancer development and the potential for changes in air 

pollution levels as well as residential mobility during this time. Residential mobility data are 

therefore required to conduct long-term air pollution exposure assessments, but due to the 

difficulties in obtaining this information, residential location at study entry or at time of 

diagnosis remains the most common method for estimating air pollution exposure. To fully 

capitalize on residential histories, corresponding air pollution concentration estimates are also 
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required over the spatiotemporal study domain. To date, the association between air pollution 

and lung cancer has been examined using a variety of study periods and exposure assessment 

approaches − the most common being aggregating air pollution monitoring levels within cities 

or defined areas at time of study-entry (Dockery et al., 1993; Katanoda et al., 2011; Laden et 

al., 2006; Pope et al., 2002). While more robust methods are now being developed for 

estimating both between and within city air pollution concentrations over large geographical 

areas (for use in large multicity studies) as well as historical concentrations (Beelen et al., 

2007; Paciorek et al., 2009; Hart et al., 2009; Yanosky et al., 2008), much more work is 

needed in this area. 

1.2. Radon and Lung Cancer 

 Radon is a colorless, odorless, naturally occurring radioactive gas released from the 

breakdown of Uranium in soils. Uranium is present throughout the earth’s crust and radon 

exposure can therefore be widespread in areas with certain geological characteristics. 

Exposure to high levels of radon occurs when it enters buildings (primarily through cracks in 

the foundation) and accumulates due to poor air exchange. Radon is recognized as a human 

carcinogen by the International Agency for Research on Cancer (IARC, 2012c), greatly 

increases the risk of lung cancer in smokers due to synergistic effects (Lantz et al., 2013) and 

is a major cause of lung cancer for individuals who have never smoked (Darby, 2005; IARC, 

2012c; Krewski et al., 2005; Samet et al., 2009). Globally, it is estimated that approximately 

100,000 lung cancer deaths are associated with radon exposure annually (Lim et al., 2012). 

1.2.1. Summary of the literature 

 The initial evidence that radon may be associated with lung cancer came from studies 

of miners. In a pooled analysis of eleven miner studies, including 65,000 male miners and 
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2,700 lung cancer deaths, it was found that approximately 40% of all lung cancer deaths may 

be attributable to radon exposure, with 70% of lung cancer deaths in never-smokers, and 39% 

of lung cancer deaths in smokers (Lubin et al., 1995). This evidence led to the concern that 

residential radon exposure may be a risk factor for lung cancer in the general population. 

 To date, there have been 22 case-control studies of residential radon and lung cancer 

risk conducted, including nine studies in North America (of which one was in Canada), 13 in 

Europe, and two in China. These studies have generally reported positive associations between 

lung cancer risk and residential radon exposure, but some have reported results indicating no 

association. Due to the small sample sizes of these individual case-control studies, three 

pooled analyses have been conducted of the North America, European and Chinese data. The 

North American pooled analysis of seven studies reported an 11% (0-28%) increase in lung 

cancer risk per 100 Bq/m3 increase in residential radon concentrations (Krewski et al., 2005). 

For subjects who had resided in only one or two houses in the 5–30 year exposure window and 

who had residential radon measurements for at least 20 years, there was an 18% (2-43%) 

increase in lung cancer risk per 100 Bq/m3. The meta-analysis of 13 European studies found 

an 8.4% (3.0-15.8%) increase in lung cancer risk per 100 Bq/m3 increase in measured radon 

(Darby et al., 2005). After correction for the dilution caused by uncertainties measuring and 

extrapolating radon concentrations, the increase in risk was estimated to be 16% (5-31%) per 

100 Bq/m3 increase in radon exposure. The pooled results of the two Chinese studies showed 

similar outcomes with an increased lung cancer risk of 13.3% (1-36%) per 100 Bq/m3 of 

measured radon and 32% (7-91%) per 100 Bq/m3 for subjects residing in the current home for 

30 years or more (Lubin et al., 2004). For these existing studies, the US Environmental 

Protection Agency estimates that, at a radon level of 148 Bq/m3 the lifetime risk of radon 

induced lung cancer death for never-smokers is 7 per 1000, compared with 62 per 1000 for 
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ever-smokers (EPA, 2012). 

 Only one residential radon study has been conducted in Canada and was limited in 

geographic scope. This case-control study was conducted in Winnipeg from 1983-1990 and 

included 738 individuals with histologically confirmed lung cancer and 738 controls. Radon 

dosimeters were placed in all residences in which the study subjects had reported living within 

the Winnipeg metropolitan area for at least 1 year. After adjusting for cigarette smoking and 

education, no increases in the odds of lung cancer or any of the histological subtypes of lung 

cancer were observed with increasing radon measurements (Létourneau et al., 1994). 

 An alternative exposure assessment approach which has the goal of increasing study 

population size and scope has recently been used by two epidemiological studies conducted in 

the US and Denmark that used maps and spatial prediction models to estimate long-term 

residential radon concentrations in larger population samples. Within the Cancer Prevention 

Study-II cohort, average radon measurements were assigned to 811,961 participants (3,493 

lung cancer deaths) based on their zip code at study entry and average county-level radon 

concentrations (n=2,754) (Turner et al., 2011a). Both short-term and long-term indoor radon 

monitoring data were used along with a variety of geological, soil, meteorological, and 

housing data to predict county-level mean residential radon concentrations. In the fully 

adjusted model, a 100 Bq/m3 increase in radon was associated with a 15% (1-31%) increase in 

lung cancer mortality and participants with mean radon concentrations above the EPA 

guideline value (148 Bq/m3) experienced a 34% (7-68%) increase in risk (Turner et al., 

2011a). In the Danish Diet, Cancer and Health cohort, 57,053 persons were recruited during 

1993-1997 and followed until 2006, resulting in 589 lung cancer cases. Residential addresses 

from 1971-2006 were used with predictive radon models to estimate long-term radon 

exposure. The predictive radon model included nine explanatory variables (geographic 
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location, soil type, residential type, floor level, basement and building materials) and was able 

to predict 40% of measured radon concentrations in model evaluation (Andersen et al., 2007). 

An incidence rate ratio of 1.04 (0.69–1.56) per 100 Bq/m3 increase in radon was reported, and 

1.67 (0.69–4.04) among non-smokers (Bräuner et al., 2012).  

1.2.2. Biological mechanisms 

 The specific mechanisms by which radon influences lung cancer development are well 

characterized. The decay of radon results in polonium-218 and polonium-214 that emit alpha 

radiation. Alpha radiation is classified as high linear energy radiation, which has low 

penetration distance but transfers high energy resulting in a large number of ionizing events 

(Sethi et al., 2012). Radon decay products may attach to particulates or aerosols in the air and 

get inhaled into the lungs, and subsequently cause DNA damage when radiation is released, 

either by a direct hit to DNA or by the creation of reactive oxygen species (Narayanan et al., 

1997). The radiation damage by alpha particles is also seen to extend beyond the directly 

irradiated cells to surrounding cells, resulting in damage and contributing to tumor genesis 

(Azzam and Little, 2004). These mechanisms of radon carcinogenesis have been clearly 

demonstrated in experimental studies on animals (IARC, 2012c). 

1.2.3. Limitations of existing research 

 While there have been numerous case-control studies conducted on residential radon 

and lung cancer risk, the majority of these studies suffer from limited statistical power arising 

from small sample sizes, small geographic coverage, and exposure misclassification from 

extrapolating short-term residential measurements to estimate long-term exposures, potentially 

for different households. Numerous ecological studies have been conducted, but causal 

inference is severely limited when individual-level data on confounding factors are not 
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available (Stidley and Samet, 1994). Only two studies, reviewed previously, have used 

alternative exposure methods to estimate ecological radon measures within an epidemiological 

study of individual data (Bräuner et al., 2012; Turner et al., 2011a).  

 In Canada, there is also a need for more studies on residential radon exposure and 

associated lung cancer risks. While there is good evidence that radon is causally associated 

with lung cancer, national-level studies are important to estimate attributable disease burden 

and to develop population health policy. In Canada, less than 30% of the population is able to 

describe radon as a health hazard, and only 5% of individuals have tested their homes for 

radon (Statistics Canada, 2010). Currently, there are no official radon maps for Canada, 

despite most developed countries having published radon risk maps that indicate high/low 

areas based on radon measurements or radon potential information (Tollefsen et al., 2011). 

Geographical targeting of population prevention initiatives could increase the awareness of 

radon as a health hazard and also increase the cost-effectiveness of radon prevention options, 

which are often criticized for being too costly (Gray et al., 2009). 

1.3. Neighborhood Socioeconomic Status and Lung Cancer 

 Over the last decade, there has been a resurgence of interest in the role that place-based 

social conditions, in particular residential neighborhoods, have in shaping individual health 

outcomes. This resurgence has been driven by several interrelated trends within population 

health, public health and epidemiology, including: the realization that solely-individual 

determinants of health are insufficient; a growing interest in explaining health inequalities; and 

the need to consider prevention that targets contextual environments rather than only the 

individual (Diez Roux and Mair, 2010). Given the large socioeconomic status (SES) gradients 

in lung cancer incidence in Canada (and worldwide), even after accounting for smoking 
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behaviors (Mao et al., 2001), a better understanding of the complex linkages between 

neighborhood SES and lung cancer risk may offer new opportunities for upstream 

interventions to address the smoking and non-smoking related SES disparities seen for lung 

cancer as well as for reducing the overall burden of lung cancer. 

1.3.1. Summary of the literature 

 Neighborhood SES is used to capture inequality in area-level SES contextual 

conditions over and above residents SES (e.g. disadvantaged neighborhoods have fewer 

resources and present residents few opportunities) (Ross and Mirowsky, 2008) and is one of 

the most common neighborhood social context measures used throughout the literature. SES is 

a complex multidimensional construct comprising diverse socioeconomic factors capturing 

economic resources, power, and/or prestige (Braveman, 2005); however, neighborhood SES is 

often measured using single or composite measures from readily available census data (e.g. 

education, income, employment, and ethnicity characteristics) that are aggregated to census 

administrative boundaries (which likely do not correspond to actual neighborhood 

boundaries).   

 Despite the use of often crude indicators of neighborhood SES, there is now growing 

recognition of the independent influence of neighborhood SES on a broad range of health 

outcomes (e.g. Bird et al., 2010; Major et al., 2010; Diez-Roux et al., 2001; Wight et al., 

2009). A systematic review and meta-analysis of neighborhood effects on individual mortality 

found that significantly higher mortality was present among individuals living in areas with 

low SES, after accounting for individual SES measures (Meijer et al., 2012b). The specific 

outcomes included in this analysis were all-cause mortality (26 studies), mortality from 

cardiovascular/ischemic heart diseases (13 studies), and mortality from all cancers or cause-
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specific cancer mortality (11 studies). Importantly, only three studies were identified that 

examined cancer incidence. Given the importance of cancer to the total chronic disease 

burden, the influence of neighborhood SES on cancer risk represents a large and important gap 

in the neighborhood context literature. Here, I review the literature examining neighborhood 

context and lung cancer risk, and also include other cancer-sites due to the small number of 

lung cancer studies available. 

 A total of four studies were found that examined the influence of neighborhood SES on 

lung cancer risk after accounting for important individual-level characteristics (at least income 

or education, and smoking behavior). Analysis of a Swedish cohort study reported no 

association between neighborhood median income and lung cancer incidence, although dose-

response gradients were seen for population density (Chaix et al., 2006). In Denmark, a 

population-based cohort study found that lung cancer incidence was significantly decreased in 

areas with the lowest unemployment (HR: 0.88; 95% CI: 0.84-0.92) (Meijer et al., 2012a). A 

similar registry-based cohort study in Helsinki, Finland, found no associations between 

neighborhood SES characteristics and lung cancer risk for men 25-64 years of age; however, 

men over 64 years and living in neighborhoods with the highest percent of manual workers 

compared to the lowest had a RR of 1.32 (0.99-1.75) (Martikainen et al., 2003). In Canada, a 

case-control study in Montreal examined SES and lung cancer risk using 1,203 lung cancer 

cases and 1,513 controls with neighborhood context derived from census data for residences at 

the time of study entry (Matukala et al., 2012). Strong associations were observed between 

neighborhood income and lung cancer incidence after controlling for a number of individual-

level variables; however, once comprehensive adjustment for smoking was included (i.e. 

smoking status, smoking pack-years and years since cessation) the association between the 

lowest versus the highest categories of neighborhood mean income disappeared (OR: 0.97; 
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95% CI: 0.51-1.86), suggesting that smoking was a key mediator of the neighborhood SES 

and lung cancer association.  

Additional literature also exists supporting associations between neighborhood SES 

and other cancer sites, although many of these studies examine mortality rather than incidence 

(e.g. Major et al., 2010; Reitzel et al., 2012; Sundquist et al., 2012; Waitzman and Smith, 

1998). It is important to examine cancer incidence, rather than mortality, as even for lung 

cancer (with low survival rates), there are differences in health care treatment by 

neighborhood SES (Earle et al., 2000).  

The small number of non-lung cancer studies identified show associations between 

neighborhood SES and cancer incidence; although directions of the effect vary by cancer site. 

Generally prostate cancer incidence was found to be higher in lower SES areas (Meijer et al., 

2012a; Sanderson et al., 2006), while breast cancer incidence was higher in higher SES areas 

(Robert et al., 2004; Webster et al., 2008). These results, however, were not always consistent, 

as a large Danish cohort study found no association between neighborhood unemployment and 

breast cancer (Meijer et al., 2012a). One study examined colorectal cancer incidence and 

observed higher risks (RR: 1.19; 95% CI: 1.08-1.32) for those living in the most deprived 

neighborhood SES quintile compared to the least (Doubeni et al., 2012). In the Health and 

Retirement Study, neighborhood features for adults aged 55 years or older were examined 

against all cancers, and after adjustment for a number of individual characteristics living in 

higher-crime areas was associated with greater chances of developing cancer for both men 

(OR: 1.31; 95% CI: 1.10-1.56) and women (OR: 1.25; 95% CI: 1.04-1.52) (Freedman et al., 

2011). While these studies were conducted for cancer sites with very different etiology than 

lung cancer, they suggest that neighborhood SES may play a role in the development of 

cancer. 
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1.3.2. Pathways linking neighborhood socioeconomic status and lung cancer 

 Unlike ambient air pollution and radon exposures, which are well defined and 

relatively well measured exposures, neighborhood SES is used to represent a latent 

neighborhood construct that may influence lung cancer risk through a number of different 

pathways. A recent review of these pathways highlights that most research has focused on 

neighborhood influences on behaviors and psychosocial processes (Diez-Roux and Mair, 

2010); however, environmental (and occupational) exposures may also play a role in the 

neighborhood SES effect. While a comprehensive review of these pathways is outside the 

scope of this literature review, I provide an overview of the pathways that could potentially 

link neighborhood SES to lung cancer risk. 

1.3.2.1. Health behaviors 

 Neighborhood SES may influence lung cancer risk through a number of health 

behaviors. In particular, the effects of neighborhood SES may be mediated through smoking 

behaviors, due to the large risk posed by smoking to lung cancer (Pesch et al., 2012), and the 

fact that smoking, as well as smoking cessation, has been associated with neighborhood SES 

(e.g., Duncan et al., 1999; Giskes et al., 2006; Miles, 2006; Pickett and Pearl, 2001). For 

example, in a longitudinal study in Brisbane, Australia, after adjustment for individual-level 

socioeconomic factors, the probability of quitting smoking was lower for residents of 

disadvantaged neighborhoods (9.0–12.8%) compared to advantaged neighborhoods (20.7–

22.5%) (Turrell et al., 2012). In a review of the pathways linking neighborhood context and 

smoking, two general categories were identified: place-based practices (including social 

capital, contagion, crime, disorder and related stressors) and place-based regulations 

(including smoking cessation policies, tobacco retailing and availability, tobacco advertising, 
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and urban renewal) (Pearce et al., 2012). Second hand smoke exposure may also play a 

mediating role in neighborhood influence, but has not been examined to date.  

 More broadly, neighborhood SES may influence all health-behaviors (including 

smoking, diet, and physical activity) through: (1) differential resources and opportunity 

structures within neighborhoods, such as the availability of healthy food retailers, or physical 

activity opportunities (e.g., Black et al., 2011; Boone-Heinonen et al., 2011; Frohlich et al., 

2002); (2) prevalent norms and attitudes within neighborhoods regarding health-behaviors 

(e.g., Annear et al., 2009; Curry et al., 1993; Karasek et al., 2012); (3) local social networks 

and community belonging that support or hinder health-behaviors (e.g., Carpiano, 2007, 2008) 

as well as health-behaviour change (Hystad and Carpiano, 2012); and (4) disordered and 

stressful neighborhood environments that may lead to unhealthy coping behaviors (e.g., 

alcohol consumption) and worse general health (e.g., Ellaway & Macintyre, 2009; Weden et 

al., 2008). 

1.3.2.2. Psychosocial influences and stress 

 Disordered and stressful neighborhood environments may also be associated with 

chronic psychosocial stress leading to allostatic load. Specifically, the persistent activation of 

the hypothalamic-pituitary-adrenal (HPA) axis in the chronic stress response has been shown 

to impair the immune response and may contribute to the development and progression of 

some types of cancer (Reiche et al., 2004). Applications of the social stress model generally 

treat SES as an attribute of the individual; however, neighborhood SES is also important to an 

individuals' health (Matheson et al., 2006). At the neighborhood level, individuals are 

differentially exposed to stressors, and equipped with different resources to combat these 

stressors as a function of their SES. The combination of greater exposure to stressors and 
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fewer resources to cope (the differential vulnerability hypothesis) may result in a deterioration 

of mental and physical health statuses (Elliott, 2000). Biomarkers of allostatic load have been 

found to be increased among residents of lower SES neighborhoods (Bird et al., 2010; Finch et 

al., 2010) and there is a growing interest among researchers in the role played by 

neighborhood SES in the stress process and resulting implications to health (Elliott, 2000). 

1.3.2.3. Environmental and occupational exposures 

There is an increasing need to disentangle physical environmental influences (e.g. air 

pollution, radon, noise, etc.) on health from other spatially clustered health determinants (e.g. 

stress, physical activity, smoking, etc.), as well as in assessing their possible interactions 

(Clougherty and Kubzansky, 2010; Gee and Payne-Sturges, 2004; Morello-Frosch and 

Jesdale, 2006; O’Neill et al., 2007, 2003). The potential for confounding, effect modification 

and mediation from spatially clustered physical and social contextual characteristics is an 

important area of research and has not yet received adequate attention. Air pollution is most 

advanced in this regard, due to potential clustering of high air pollution with low SES 

(Clougherty and Kubzansky, 2009); however, even for radon health effects there may be 

important socioeconomic gradients due to the synergistic effects with smoking and higher 

smoking rates in low socioeconomic groups.  

The environmental justice paradigm has been developed for some time and presents a 

framework to examine how neighborhood SES may increase lung cancer risk through 

increased exposure to environmental hazards (e.g., Havard et al., 2009; Jerrett et al., 2001). 

This framework suggests that population subgroups of lower SES may be exposed to higher 

levels of environmental hazards as well as be more susceptible to associated health effects. A 

large number of ecological studies have demonstrated that low SES neighborhoods have 
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higher levels of ambient air pollution, primarily from traffic and industrial emissions (Buzzelli 

and Jerrett, 2004; Gunier et al., 2003; Neumann et al., 1998; Perlin et al., 2001), but the 

association is highly dependent on the scale of analysis and cannot be generalized to all 

situations (Havard et al. 2009). In addition to ambient air pollution, it is also hypothesized that 

individuals residing in low SES neighborhoods are disproportionately exposed to lower 

quality housing and therefore are exposed to more diverse environmental hazards 

(Adamkiewicz et al., 2011).  

How occupational exposures may contribute to the neighborhood SES effect has 

received little attention, despite occupation being a major determinant of health and a measure 

itself of neighborhood SES. In the European Prospective Investigation into Cancer and 

Nutrition (EPIC study), occupational exposures explained 14% of the individual 

socioeconomic inequalities in lung cancer incidence after adjustment for smoking and fruits 

and vegetables consumption (Menvielle et al., 2010). This study highlights the potential 

importance of occupational exposures to socioeconomic gradients in lung cancer; however, 

whether such a relationship applies to neighborhood SES has yet to be examined. For 

example, living in low SES neighborhoods may shape occupational opportunities towards 

working class or “blue collar” jobs that are associated more frequently with exposure to cancer 

causing substances (Evans and Kantrowitz, 2002). While Martikainen et al. (2003) 

demonstrated the important connection between neighborhood context, occupational 

composition (i.e. proportion of manual labor workers) and lung cancer risk, much more 

research is needed to understand the relationship between individual and neighborhood SES, 

occupations and lung cancer risk. 
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1.3.3. Limitations of existing research 

The influence of neighborhood SES on lung cancer risk (and cancer risk in general) 

represents a large and important gap in the neighborhood context literature. This gap may be 

due to two important methodological challenges that face neighborhood context and cancer 

research: (1) neighborhood exposure assessment methods; and (2) the challenge of testing the 

numerous pathways through which neighborhood SES may influence cancer risk. 

 First, latency periods of 20-50 years are associated with lung cancer development and 

measures of long-term neighborhood SES context are therefore needed to examine their 

influence on lung cancer. A review of neighborhood studies of older adults found that ten of 

the thirty-three identified studies accounted for respondents’ length of residence in a 

neighborhood, and only one study accounted for changes in neighborhood environments (Yen 

et al., 2009). Several studies (primarily conducted in Scandinavia) have examined contextual 

effects over the life-course using linked administrative databases and reported mixed findings 

(Carson et al., 2007; Clarke et al., 2013; Curtis et al., 2004; Leyland and Næss, 2009; Ohlsson 

and Merlo, 2011); however, these studies tended to use larger geographic areas than 

neighborhoods. For example, Ohlsson and Merlo (2011) examined the amount of variance that 

was present for four health outcomes (one being all cancer mortality) at the district level over 

a 35 year period in Scania, Sweden. Overall, only a small proportion of the variance (<6.5%) 

for all health outcomes was explained at the district level. Alternatively, Naess et al. (2008) 

examined area effects in Oslo Norway using 1960, 1970, 1980, and 1990 election area 

measures and found evidence for a cumulative effect for cardiovascular disease. Other studies 

have included neighborhood context at multiple time points and observed lagged effects, but 

much of this research has examined only early life exposures and outcomes (Lloyd et al., 

2010; Sampson et al., 2008; Wheaton and Clarke, 2003). The inclusion of longitudinal 
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measurements of neighborhood context has therefore been identified by scholars as an 

important next step for furthering research on neighborhood context and health effects (Clarke 

et al., 2013; Kawachi and Subramanian, 2007; Murray et al., 2010; Sampson et al., 2002), 

which is especially relevant for cancer. 

 The second major challenge facing neighborhood studies of cancer are the difficulties 

in identifying pathways through which neighborhood SES may influence cancer risk. Though 

studies have found that neighborhood SES is associated with the onset of cancer after 

controlling for individual-level socioeconomic characteristics (e.g. Freedman et al., 2011; 

Meijer, Bloomfield, et al., 2012; Webster et al., 2008), there have been few studies that 

examine whether such associations remain after accounting for a comprehensive set of 

individual risk factors and whether these factors are mediators of the neighborhood SES effect 

on cancer risk. The NIH-AARP diet and Health Study found that 26.4% of the excess 

incidence of colorectal cancer incidence in low SES neighborhoods was mediated by higher 

prevalence's of behavioral risk factors (Doubeni et al., 2012). Similarly, Kim et al., (2010) 

found that neighborhood SES was not associated with colon cancer among higher educated 

woman, with mediation by red meat intakes and body mass index. Rectal cancer in all women 

was inversely related to higher neighborhood SES, and mediation was observed by 

multivitamin use and body mass index. These finding correspond to the literature on 

neighborhood context and health in general, which shows that there is no one neighborhood 

effect mechanism, but rather a multitude of potential pathways linking neighborhood context 

to individual health outcomes (Diez-Roux, 2003).  

 Overall, no studies were found that examine long-term exposure to neighborhood SES 

and its influence on lung cancer risk. Similarly, very little is known surrounding the potential 
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pathways by which long-term neighborhood SES may operate, including its influence on 

smoking, other health-behaviors and occupational and environmental exposure pathways.   

1.4. Data Sources and Study Population 

 Throughout this dissertation, I used the lung cancer component of the National 

Enhanced Cancer Surveillance System (NECSS), a population based case-control study that 

was a collaborative project between Health Canada and the provincial cancer registries. This 

project was specifically focused on assessing environmental cancer risk factors and Johnson et 

al. (1998) describe the purpose and overall study design of the NECSS. Here, I use the lung 

cancer component of the NECSS, which includes 3,280 lung cancer cases and 5,073 

population controls collected in eight Canadian provinces (British Columbia, Alberta, 

Saskatchewan, Manitoba, Ontario, Prince Edward Island, Nova Scotia and Newfoundland). 

Briefly, between 1994 and 1997 all lung cases were identified by provincial cancer registries 

within 1-3 months of initial diagnosis and randomly sampled for inclusion into the study. 

Population controls were selected from a random sample of individuals within each province, 

frequency matched on sex and five-year age categories to the overall collection of NECSS 

cancer cases (~20,000 cases including 19 types of cancer). Recruitment methods for controls 

depended on data availability and accessibility by province and included provincial health 

insurance plans in five provinces, random digit dialing in two, and property assessment data in 

one. A research questionnaire was mailed to selected cases and controls and active follow-up 

was conducted. The response rate for contacted lung cancer cases was 61.7% and for 

population controls was 67.4%. The research questionnaire collected comprehensive 

information regarding individual characteristics, lifetime occupational exposures and 

residential histories. Residential histories were geo-coded to 6-digit postal codes and are the 
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basis of the spatiotemporal exposure assessments conducted throughout this thesis.  Figure 1 

illustrates the location of the residential histories reported for population controls and lung 

cancer cases, and while not all provinces participated in the NECSS, due to residential 

mobility national exposure assessments were required.  

 

Figure 1.  Locations reported in the residential histories for 1975-1994 for population controls 

and lung cancer cases within the National Enhanced Cancer Surveillance System. 

 

1.5. Dissertation Objectives 

 The objective of this dissertation was to examine whether three exposures associated 

with the physical and social residential environment − specifically, ambient air pollution, 

radon and neighborhood SES − are risk factors for developing lung cancer in Canada. These 

exposures cover the broad spectrum of important risk factors associated with place; with air 

pollution and radon being traditional environmental hazards, while neighborhood SES 

represents a measure of social contextual conditions that may be important upstream health 

determinants. For air pollution, no large study of lung cancer incidence has been conducted 

that conducts comprehensive historical exposure assessments using residential histories, 
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examines multiple pollutants and exposure sources, controls for a wide-range of potential 

individual-level confounding factors, examines risk by histological subtypes. For radon, there 

is a need for epidemiological studies linking residential radon exposure to lung cancer risk in 

Canada, which will help estimate the importance of residential radon exposures, raise 

awareness of the risk posed by radon exposure (which is very low in Canada) and help guide 

population prevention efforts. In terms of neighborhood SES, no studies have been completed 

that examine the influence of long-term neighborhood SES on lung cancer risk, as well as the 

potential pathways by which long-term neighborhood SES may operate. 

The specific objectives of the dissertation are: 

1. To create national and retrospective air pollution exposure assessment methods for 

ambient air pollution. 

2. To apply air pollution exposure assessment methods to a population-based lung cancer 

case-control study and estimate the associations between ambient air pollution 

exposure and lung cancer risk in Canada. 

3. To create and apply maps of radon concentration and potential to a population-based 

lung cancer case-control study and estimate the associations between ecological radon 

exposure and lung cancer risk in Canada. 

4. To create methods to estimate long-term neighborhood socioeconomic status and apply 

these to a population-based lung cancer case-control study and estimate the 

associations between exposure to long-term neighborhood SES and lung cancer risk in 

Canada. 
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1.6. Dissertation Structure 

 This dissertation follows a manuscript format and subsequent research chapters have 

been published or submitted for publication in peer reviewed journals. Figure 2 illustrates the 

framework for this dissertation and the corresponding research objectives. Due to the 

complexity of national and retrospective air pollution exposure assessment methods, two 

independent exposure papers are presented. The first focuses on creating national (spatial) 

land use regression (LUR) models for Canada and estimating current population exposures 

(Chapter 2), and the second extends these national models and methods using spatiotemporal 

techniques to estimate historical air pollution concentrations (Chapter 3). These air pollution 

models are then used in Chapter 4, which presents the epidemiological analyses of ambient air 

pollution and lung cancer incidence using the NECSS case-control study. Next, the radon 

analysis is presented in Chapter 5, including radon risk and potential mapping methods and 

epidemiological results from the NECSS study. Finally, Chapter 6 includes the exposure 

assessment methods for neighborhood SES as well as epidemiological results from applying 

these to the NECSS case-control study. All epidemiologic analyses mutually adjust for each of 

the physical and social environmental risk factors examined in this dissertation. Conclusions 

are then presented in Chapter 7, including a summary of the dissertation findings and their 

implications, limitations of the research, and recommendations for further research directions.   
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Figure 2. Dissertation framework and corresponding research chapters and objectives. 
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Chapter 2 

 

Creating National Air Pollution Models for Population 

Exposure Assessment in Canada 

 

Hystad P, Setton E, Cervantes A, Poplawski K, Deschenes S, Brauer M, et al. 2011. Creating 

National Air Pollution Models for Population Exposure Assessment in Canada. Environmental  

Health Perspectives.119:1123-1129.  

 

Abstract 

Background:  Population exposure assessment methods that capture local-scale pollutant 

variability are needed for large-scale epidemiological studies and surveillance, policy, and 

regulatory purposes. Currently, such exposure methods are limited. 

Methods:  We created 2006 national pollutant models for fine particulate matter [PM with 

aerodynamic diameter ≤ 2.5 µm (PM2.5)], nitrogen dioxide (NO2), benzene, ethylbenzene, and 

1,3-butadiene from routinely collected fixed-site monitoring data in Canada. In multiple 

regression models, we incorporated satellite estimates and geographic predictor variables to 

capture background and regional pollutant variation and used deterministic gradients to 

capture local-scale variation. The national NO2 and benzene models are evaluated with 

independent measurements from previous land use regression models that were conducted in 

seven Canadian cities. National models are applied to census block-face points, each of which 
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represents the location of approximately 89 individuals, to produce estimates of current 

population exposure. 

Results:  The national NO2 model explained 73% of the variability in fixed-site monitor 

concentrations, PM2.5 46%, benzene 62%, ethylbenzene 67%, and 1,3-butadiene 68%. The 

NO2 model predicted, on average, 43% of the within-city variability in the independent NO2 

data compared with 18% when using inverse distance weighting of fixed-site monitoring data. 

Benzene models performed poorly in predicting within-city benzene variability. Based on our 

national models, we estimated Canadian ambient annual average population-weighted 

exposures (in micrograms per cubic meter) of 8.39 for PM2.5, 23.37 for NO2, 1.04 for benzene, 

0.63 for ethylbenzene, and 0.09 for 1,3-butadiene. 

Conclusions:  The national pollutant models created here improve exposure assessment 

compared with traditional monitor-based approaches by capturing both regional and local-

scale pollution variation. Applying national models to routinely collected population location 

data can extend land use modeling techniques to population exposure assessment and to 

informing surveillance, policy, and regulation. 
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2.1. Introduction 

Predicting air pollution concentrations at resolutions capable of capturing local-scale 

pollutant gradients over large geographical areas is becoming increasingly important for multi-

city and national health studies, in population exposure assessment, and in support of policy, 

surveillance and regulatory initiatives. Currently, fixed-site government monitors are the 

foundation of these activities; however, such monitors may fail to fully capture local-scale 

pollutant variability due to siting criteria. In addition, the number of monitors and their spatial 

distribution may be limited, as is the case in Canada. At present, few methodologies are 

available to adequately capture local-scale pollutant variability at a national scale when 

monitor density, distribution and/or siting is sub-optimal. 

A number of approaches may be used to model air pollution over large areas, including 

interpolation of fixed-site government monitoring data, dispersion modeling, satellite remote 

sensing, land use regression (LUR), and proximity and deterministic methods; each approach, 

however, has inherent limitations that restrict its use for producing local-scale pollution 

estimates. Interpolation of fixed site air pollution monitoring data has typically been used to 

predict pollution concentrations across large areas (Beelen et al. 2009), with recent interest 

directed towards kriging methods and spatial smoothing with geographic covariates (Beelen et 

al. 2009; Hart et al. 2009; Yanosky et al. 2008). Fixed site monitors may not capture entire 

populations and measurements typically represent regional and between-city pollution 

differences due to monitor siting criteria, which prevent monitors from being placed in close 

proximity to major roads and other pollution sources. Dispersion models also exist for large 

geographical areas and have been incorporated into regulatory and epidemiological studies of 

air pollution (Cyrys et al. 2005; Nafstad et al. 2003). Importantly, the resolutions of pollutant 
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estimates from dispersion models over large geographical areas are typically restricted, for 

example, to one or three square kilometres (Jerrett et al. 2005). Satellite remote sensing is a 

new methodology available to predict air pollution concentrations over large geographic areas 

and a number of studies have evaluated different remotely sensed concentrations of PM2.5 (e.g. 

van Donkelaar et al. 2010) and gaseous pollutants (Martin, 2008) and found moderate to good 

associations with ground level monitoring data. Currently, the resolution of satellite data limits 

their use to representing regional pollution concentrations but indicators of local air pollution 

may be used in concert to improve the spatial resolution of predictions (Liu et al. 2009). LUR 

approaches have been extensively used to predict within-city pollutant concentrations of NO2 

and PM2.5  (see Hoek et al. 2008 for a review), but to a lesser extent for volatile organic 

compounds (VOC's), although the approach is well-suited to modeling pollutants which 

exhibit significant spatial variation, especially traffic-related VOCs (Atari and Luginaah 2009; 

Mukerjee et al. 2009; Smith et al. 2006; Su 2010; Wheeler et al. 2008). The city-by-city 

approach in which LUR models are created is costly and integration and interpretation across 

multiple city models is difficult. Simple proximity and deterministic approaches have also 

been widely used as surrogates for exposure to vehicle and industrial sources, specifically in 

epidemiological studies; yet, such measures in isolation are often poor surrogates for exposure. 

To-date, few population exposure assessment approaches have incorporated multiple sources 

of data, specifically satellite pollutant estimates, LUR modeling of geographic characteristics 

and information on proximity and pollution gradients, to estimate local-scale air pollution 

concentrations at a national scale.  

Here we report a modeling initiative to produce 2006 national fine particulate matter 

(PM2.5), nitrogen dioxide (NO2), benzene, ethylbenzene and 1,3-butadiene models for Canada 

that capture local-scale pollutant variability and apply these models to routinely collected 
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population location data to calculate population exposures. This research is part of Carex 

Canada, a national surveillance initiative estimating the number of Canadians potentially 

exposed to known or suspected environmental and occupational carcinogens (Carex Canada, 

2011). This research adds to the literature on air pollution modeling and exposure assessment 

by: (1) creating national LUR models from fixed site monitoring data; (2) incorporating 

various predictor datasets and methods to capture the different scales of pollution sources; and 

(3) extending LUR modeling techniques to population exposure assessment and to informing 

surveillance, policy and regulation.  

2.2. Methods 

Pollutant Modeling Approach 

Models were developed in two stages using different predictor variables and 

methodology to capture background, regional and local-scale pollution variation. First, for 

each national air pollution surveillance (NAPS) fixed-site monitoring station we derived 

satellite-based estimates (PM2.5 and NO2 only) and geographic variables (e.g. road length, 

population density, proximity to large emitters, etc.) using a geographic information system 

(GIS). We developed LUR models using forward stepwise regression and retained variables 

that corresponded to hypothesized effect directions and maximized the sums of squares 

explained and Akaike’s information criterion, and evaluated spatial autocorrelation using the 

Moran’s I statistic. We sought to develop parsimonious models rather than traditional 

predictive models that maximize prediction but make interpretation of individual variable 

contributions difficult. Only variables significant at the p<0.05 level were included in the final 

models. As expected, NAPS monitoring locations in Canada did not display sufficient 

variability to estimate model coefficients for important local-scale parameters, such as 
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proximity to major roadways, due to monitor siting. Local-scale predictors were therefore 

under-powered in the LUR modeling approach. 

In the second stage, we conducted comprehensive literature reviews to identify 

deterministic factors to represent local-scale gradients in pollutant concentrations associated 

with specific sources (i.e. highways, major roads, gas stations). For each pollutant, we 

identified concentrations near these selected sources in relation to local background levels, and 

developed deterministic multipliers with distance decay rates (together referred to as gradients 

in this paper) to apply to the background and regional concentrations predicted by our LUR 

models. All statistical analyses were conducted using SAS 9.1 (SAS Institute Inc., Cary, North 

Carolina).    

Air Quality Data  

Annual average concentrations of PM2.5 (177 monitoring stations), NO2 (134 monitors), 

and benzene, ethylbenzene and 1,3-butadiene (53 monitors) were calculated using data from 

unique NAPS monitoring sites operating during 2006 (see Figure 3). Continuous monitoring 

data from a given monitor were included if at least 50% of hourly observations were available 

for a 24hr period and at least 50% of days were available in a month. Monthly averages from 

filter based PM2.5 measurements required a minimum of 3 out of 5 valid measurements per 

month. 2006 annual averages were not calculated for individual monitors unless there were at 

least six months of complete data with one valid month per quarter.  
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Figure 3. Location of NAPS monitors used to create national PM2.5, NO2, benzene, 

ethylbenzene and 1,3-butadiene models. 

 

NAPS includes different monitor types for PM2.5, including tapered element oscillating 

microbalances (TEOM), Dichotomous samplers, Partisols, and beta-attenuation mass (BAM) 

monitors. Multiple monitors are often present at one location, and our comparative analysis 

found differences in levels measured by TEOMS (TEOMS are known to under-predict PM2.5 

due to nitrate evaporation (T. Dann, personal communication)). We therefore selected other 

monitor types when they were available at the same location. Those stations with only TEOMs 

available were adjusted based on yearly calibration between collocated Dichotomous and 

TEOM monitors during 2006 (n=14, Dich=1.640+1.089*(TEOM), R2=0.89, p<0.001). NO2, 

benzene, ethylbenzene and 1,3-butadiene were measured using standard methods (NAPS, 

2004). 
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Predictor Variables  

PM2.5 and NO2 Satellite Data 

Canada-wide concentrations of PM2.5 and NO2 were estimated using satellite 

atmospheric composition data combined with local, coincident scaling factors from a chemical 

transport model (GEOS-Chem, 2011). Ground-level PM2.5 estimates were derived from 

aerosol optical depth (AOD) data from the Terra satellite, in combination with output from 

GEOS-Chem simulations to estimate the relationship between aerosol optical depth over the 

atmospheric column and ground-level PM2.5 (van Donkelaar et al. 2010). Ground-level NO2 

concentrations were estimated from tropospheric NO2 columns retrieved from the Ozone 

Monitoring Instrument (OMI) and also used GEOS-Chem to calculate the relationship 

between the NO2 column and ground-level concentration (Lamsal et al. 2008). Both PM2.5 and 

NO2 were estimated at a 0.1x0.1 degree resolution (~10x10km). Estimates for PM2.5 are from 

2001 to 2006 data to ensure sufficient observations. NO2 estimates used data from 2005 and 

2006 since OMI measurements began in late 2004.     

Geographic Data 

We modeled regional pollutant variation using geographic predictor variables potentially 

relevant to pollutant sources, emissions and dispersion. To capture varying spatial influences 

of predictors, all variables were calculated in a GIS for circular buffer distances ranging from 

fifty meters to fifty kilometres. Classes of variables included: population density derived from 

census street block points; 1km land use classifications for LandSat; DMTI Spatial high 

resolution (30m) land use classifications (DMTI, 2011); large industrial emissions sources 

from the Canadian National Pollutant Release inventory (NPRI, 2010); small point source 

locations extracted from the Dun and Bradstreet Selectory database of businesses in Canada 

(D&B, 2011); length of, and distance to, specific road classifications using the DMTI Spatial 
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road network (DMTI, 2011) (freeway, highway, major road, minor road); length and density 

of railroads; elevation; and meteorological variables (precipitation and temperature). Any 

geographic variables with over 30% zero values (i.e., with no predictive features in proximity 

to a monitor) were re-coded as binary (i.e. present/absent). In total, 10 variable classes and 270 

buffer-specific variables were explored in the LUR models. 

Deterministic Gradients 

Gradients were developed focusing on mobile sources and gas stations. We conducted a 

comprehensive literature review of published studies to identify: (a) the distance from sources 

at which pollutant concentrations typically return to background levels; and (b) an expected 

ratio of near source pollutant levels compared to background pollutant levels for each source 

and pollutant. We searched PubMed, Web of Science and Google Scholar using a range of 

keywords to identify studies with measurements of pollutant gradients. Studies varied widely 

in terms of location, date, methods used, duration of measures, number of samples, and 

definition of near source and background. We developed linear gradients using the steepest 

portion of the exponential decay curves typically found in the literature, as the tails of the 

decay functions were very sensitive to local parameters. Gradients were also selected to 

represent Canadian conditions. Table 1 summarizes the gradients developed for Canada and 

applied to the LUR models.  

 We used a GIS to identify the distance of each NAPS monitor from the nearest 

highway, major road, local urban road, and gas station, using DMTI road network data and 

Dun and Bradstreet commercial data for point sources. If a monitor was close enough to one 

of these features for the source to influence pollutant levels, we modified the corresponding 

LUR model results (not including point source industrial variables) to account for the 

deterministic gradients. For example, based on our review of the literature, we assumed that 
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NO2 concentrations at the side of a highway would be 1.65 times higher than LUR-based 

background concentrations but consistent with background levels 300m from the highway, 

resulting in a distance decay rate of 0.33% per meter that was applied to estimate NO2 levels 

within the 300m gradient buffer.  

 

Table 1. PM2.5, NO2, benzene, ethylbenzene and 1,3-butadiene gradients determined from the 

literature and incorporated with national LUR model predictions. 

Substance Source Increase at 
Source 

Gradient 
Distance 

PM2.5 
Highway 1.25a 75mc 
Major roads  1.1a 75mc 

NO2 
Highway 1.65a 300mb 
Major roads 1.2a 100mb 

Benzene 

Gas stations 6.5d 100md 
Highways/ 
Major roads 3.25e 50mf 

Local road 1.5e 50mf 

Ethyl-
benzene 

Highway 3.7g 300mh 
Major road 2.2g 300mh 
Local road 1.4g 300mh 

1,3-
Butadiene Highway 4i 75mi 

Key References: aSmargiassi et al (2005); bSu et al (2009), Gilbert 
et al (2003), Gilbert et al (2007), Beckerman et al (2008), Roord 
Knape et al (1998); cRoorda-Knape et al (1998), Tiitta et al (2002), 
Beckerman et al (2008), Hitchens et al (2000); dKarakitsios et al 
(2007); eThorsson and Eliasson (2006), Hellen et al (2005), 
Vardoulakis et al (2002), Parra et al (2009); fThorsson and 
Eliasson (2006), Beckerman et al (2008), Venkatram et al (2009); 
gWang and Zhao (2008), Roukos et al (2009), Parra et al (2009); 
hWang and Zhao (2008); iVenkatram et al (2009) 

 
 
Model Evaluation  

We use three approaches for model evaluation. Due to the small number of NAPS 

monitoring stations for PM2.5, NO2, benzene, ethylbenzene and 1,3-butadience, we did not 

leave out a percentage for independent post-model evaluation as we wanted to capture the 

greatest range of model predictors possible. Therefore, we first evaluated all LUR models 

using a bootstrap approach to determine the sensitivity of model prediction and parameter 
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estimates to monitor sampling. Random selection of monitors was conducted, with 

replacement, and variable coefficients and model R2 values were recorded from the new full 

sample. This was repeated for ten thousand iterations to estimate the 95% confidence interval 

for overall model prediction and individual variable coefficients. Next, we conducted a leave-

one-out analysis where each LUR model was repeatedly parameterized on N - 1 data points 

and then used to predict the excluded monitor measurement. The mean differences between 

the predicted and measured values were used to estimate model error. 

Finally, we evaluated the NO2 and benzene LUR models, with and without gradients, 

against independent data (35 – 201 monitoring sites per city) previously collected for LUR 

models in seven Canadian cities (for a full description of data collection and modeling see: 

Allen et al. 2010; Atari and Luginaah 2009; Crouse et al. 2009; Henderson et al. 2007; Jerrett 

et al. 2007; Su et al. 2010). Briefly, in each city monitoring occurred for two-week periods and 

data from fixed site monitors, monitoring during yearly average concentration periods, or 

multiple measurement periods, were used to estimate yearly averages (see Appendix 1, Table 

1 for the city-specific data used for model evaluation). These pollution measurements were 

collected at much higher spatial densities than NAPS and from monitors that were located to 

specifically capture spatial pollutant gradients. Consequently, these data were reasonable for 

use as a “gold standard” to determine how well the two national NO2 and benzene models (the 

LUR models and the LUR models with gradients) predicted within-city variation. In addition, 

we compared the city-specific data to estimates based on inverse distance weighting (IDW) of 

annual average NO2 and benzene concentrations measured at NAPS monitors (with and 

without deterministic gradients). Due to NAPS monitor density in Canada kriging could not be 

applied. 
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Population Exposure Assessment 

The national pollutant models were applied to each of the 478,831 Statistics Canada 

street block centroid locations in 2006 to estimate population exposures. First, we applied the 

LUR models to each block point to derive a unique predicted pollutant concentration for each 

point – representing the average exposure level for 89 (+/-158) individuals. We used a GIS to 

identify the distance of each block centroid to the nearest highway, major road, local urban 

road, and gas stations, and adjusted the corresponding LUR model estimate when the street 

block point was located within an associated gradient. We then estimated population weighted 

exposures to PM2.5, NO2, benzene, ethylbenzene and 1,3-butadiene in the Canadian population 

as a whole, and estimated uncertainty using the 95% confidence limits for LUR model 

predictions and assumed that concentrations at each pollutant source were within +/- 50% of 

the gradient values shown in Table 1. Fifty percent was selected for all gradients as there was 

insufficient literature to examine uncertainty for specific gradients and sources. 

2.3. Results 

National LUR Model Results  

Table 2 summarizes the national LUR model results. The PM2.5 model predicted 46% of 

PM2.5 variation and was dominated by satellite predictions, which alone explained 41% of 

PM2.5 variation. The NO2 model predicted 73% of NO2 variation and length of all roads within 

10km was the dominant predictor, explaining 55% of NO2 variation. This variable was only 

moderately correlated (r=0.56) to NO2 predictions from satellite data, which further explained 

4% of NO2 variation in the final model. The models for benzene, ethylbenzene and 1,3-

butadiene had similar predictive results, explaining 62%, 67% and 68% of pollutant variability 

respectively. Data from one monitor was removed as an outlier from the benzene and 

ethylbenzene models (St. John Baptiste, located in Montreal east city) and from the 1,3-



 
40 

 

butadiene model (Sarnia, located in southern Ontario near the Detroit-Windsor border), which 

were associated with the highest pollutant concentration for each substance.  

 

Table 2. National LUR model results for PM2.5, NO2, benzene, ethylbenzene,  

and 1,3-butadiene. 

Variable Distancea Value  SE p 
PM2.5 Model [R2=0.46, RMSE=1.529] 
Intercept - 2.802 0.497 <.0001 
Satellite PM2.5 (ln µg/m3)  - 2.392 0.263 <.0001 
NPRI emissions (tonnes)  5km 1.63e-3 5.95e-4 0.007 
Industrial landuse (m2)  1km 1.03e-6 4.18e-7 0.014 
NO2 Model [R2=0.73, RMSE=5.470] 
Intercept - 13.179 1.374 <.0001 
Satellite NO2 (ppb) - 1.4903 0.355 <.0001 
Industrial landuse (m2)  2km 3.21e-6 5.73e-7 <.0001 
Road length (m)  10km 7.42e-6 9.04e-7 <.0001 
Summer rainfall (mm) - -0.010 0.002 <.0001 
Benzene Modelb [R2=0.62, RMSE=0.298] 
Intercept - 0.346 0.069 <0.001 
Major road length (m) 10km 1.18e-6 2.56e-7 <0.001 
NPRI emissions (present) 10km 0.526 0.089 <0.001 
Ethylbenzene Modelc [R2=0.67, RMSE=0.193] 
Intercept - 0.152 0.039 <0.001 
Population (count) 10km 6.74e-7 7.25e-8 <0.001 
NPRI emissions (present) 2km 0.272 0.071 <0.001 
1,3-Butadiene Modeld [R2=0.68, RMSE=0.034] 
Intercept - 0.011 0.009 0.208 
Road length (m) 750m 3.89e-6 7.93e-7 <0.001 
Highway (present) 500m 0.041 0.012 0.002 
Commercial landuse (m2)  10km 1.60e-9 5.97e-10 0.010 
a Circular buffer distance variables derived from. 
b One outlier removed with benzene concentration of 3.55µg/m3. 
c One outlier removed with ethylbenzene concentration of 2.57µg/m3. 
b One outlier removed with 1,3-butadiene concentration of 0.82µg/m3. 
*Variable descriptions: Satellite PM2.5 / NO2=Satellite derived estimates of PM2.5 (ln 
µg/m3) and NO2 (ppb). Landuse=Area (in meters squared) of specific land use types 
(industrial, commercial) within the associated buffer distance. Road length=Length 
(in meters) of different road classifications (all, major, highways) within the 
associated buffer distance. Summer rainfall=millimetres of summer (May-Sept.) 
rainfall recorded at nearest meteorological station. NPRI Emissions (tonnes)=amount 
of annual emissions (in tonnes) of model substance released from industries 
reporting to the National Pollutant Release Inventory (NPRI). NPRI Emissions 
(present)=Presence of NPRI facilities releasing model substance to air. 
Population(count)= Number of individuals residing within associated buffer distance. 
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Spatial Autocorrelation of National LUR Models 

Spatial autocorrelation of the LUR model residuals was examined using Moran's I in 

ArcGIS. Spatial autocorrelation was present in the PM2.5 LUR model residuals (Moran’s I = 

0.33, p<0.001), indicating a moderate amount of spatial autocorrelation remained that was not 

explained by the PM2.5 model predictors. Clustering of positive residuals (model under 

predicting by an average of 2.57 µg/m3) occurred in the rural interior of British Columbia. An 

indicator variable for British Columbia substantially reduced the spatial autocorrelation 

(Moran's I=0.03 p=0.04). Sensitivity analysis using a summer only PM2.5 model indicated no 

spatial autocorrelation (Moran's I=0.04 p=0.01), supporting our hypothesis of wood burning as 

the primary source of model under prediction in this region. No significant spatial 

autocorrelation existed in LUR model residuals for NO2 (Moran’s I = 0.03, p=0.44), benzene 

(Moran’s I = -0.20, p=0.13), ethylbenzene (Moran’s I = -0.00, p=0.87) and 1,3-butadiene 

(Moran’s I = 0.09, p=0.32). 

Incorporating Gradients with National LUR Models 

Deterministic gradients were added to LUR models as we could not estimate the effects 

of local-scale pollution sources from NAPS data alone. Figure 4a illustrates the final PM2.5 

model (LUR plus gradients) for Canada as a whole, and for southern Ontario and the city of 

Toronto (city locations represent locations of LUR data used for evaluation). Figure 4b 

illustrates the final national NO2 model (LUR plus gradients) for Canada as a whole, and for 

south-western British Columbia and the city of Vancouver. These maps illustrate the spatial 

resolution of the final national pollutant models; however, for population exposure assessment 

the LUR model results and deterministic gradients were applied to street block point locations, 

as shown in Figure 5, which illustrates the final national benzene model (LUR plus gradients) 

calculated at the block point level. 
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Figure 4. National annual average models for PM2.5 (2a) and NO2 (2b) incorporating satellite-

derived pollutant estimates, geographic land use variables and deterministic gradients.  
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Figure 5. National benzene land use regression model plus gradients (illustrating the city of 

Toronto) calculated for each street block point in Canada (n=478,831). 

 

Evaluation of National Pollutant Models 

Evaluation of LUR Models using Bootstrap and Leave-One-Out Analyses 

 The distribution of all model coefficients for each pollutant resulting from bootstrap 

analysis showed normal distributions. The NO2 model was the least sensitive to monitor 

selection with a bootstrap R2 95% CI of 65%-81%. Models for PM2.5, benzene, ethylbenzene, 

and 1,3-butadiene demonstrated larger uncertainty to monitor selection with R2 95% CI of 

33%-59%, 44%-80%, 49%-85%, and 53%-82% respectively. Variable coefficients for 

industrial NPRI proximity variables were extremely sensitive to monitor selection. The leave-
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one-out analyses indicated no significant bias in any LUR model, as demonstrated by the 

mean (+/-SD) error: 1.07e-3 (5.61) for NO2; -6.35e-3 (1.59) for PM2.5; -0.04 (0.32) for benzene; 

-0.01 (0.04) for 1,3-butadiene; and -0.04 (0.22) for ethylbenzene. 

Evaluation of NO2 and Benzene Models Using City-Specific Data 

 On average the national NO2 LUR plus gradient model predicted 43% of the within-city 

NO2 variation (based on the city-specific data evaluation), compared with 22% predicted 

based on IDW of NAPS monitors plus gradients (Table 3). National LUR, LUR plus 

gradients, IDW, and IDW plus gradients models over-predicted the city-specific NO2 

measurements, with average city-specific intercepts of 4.56, 7.45, 8.51 and 11.56 µg/m3 

respectively. City-specific scatter-plots of measured and modeled NO2 concentrations are 

illustrated in the Appendix 1, Figure 1. 

 For benzene, all modeling methods performed poorly in explaining within-city benzene 

variation. The LUR plus gradients model explained on average only 16% of within-city 

variability in benzene concentrations compared with 11% based on IDW plus gradients (Table 

3). In the evaluation using the Montreal city-specific benzene concentrations 4 outliers were 

removed (all concentrations >2µg/m3), and one outlier (4.10 µg/m3) was removed in the 

Toronto evaluation. Benzene models also over predicted city-specific concentrations, based on 

city-specific intercepts of modeled versus measured concentrations: see Appendix 1, Figure 2.  

Sarnia, a high density industrial community with 46 NPRI emitters, had poor NO2 and 

benzene model evaluations. 
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Table 3. Evaluation of national NO2 and benzene models, as well as inverse-distance weighted 

(IDW) estimates from fixed-site monitors, against independent city-specific measurement 

data. 

Substance na 
R2 (RMSE) 

LURb LUR+Gc IDWd IDW+Ge 
NO2      
Edmonton 50 0.60 (3.67) 0.41 (4.59) 0.10 (5.52) 0.01 (5.92) 
Montreal 135 0.41 (4.28) 0.48 (4.04) 0.31 (4.63) 0.41 (4.29) 
Sarnia 34 0.42 (4.21) 0.49 (4.04) 0.12 (5.15) 0.19 (5.12) 
Toronto 196 0.18 (7.69) 0.36 (6.78) 0.13 (7.93) 0.32 (6.99) 
Victoria 40 0.19 (3.95) 0.37 (3.70) 0.23 (3.86) 0.26 (3.98) 
Vancouver 114 0.31 (6.41) 0.42 (5.93) 0.31 (6.43) 0.36 (6.24) 
Winnipeg 49 0.54 (3.65) 0.51 (3.86) 0.08 (5.17) 0.02 (5.43) 
Average 618 0.39 (4.84) 0.43 (4.71) 0.18 (5.53) 0.22 (5.42) 
Benzene      
Montrealf 131 0.33 (0.24) 0.26 (0.25) 0.11 (0.28) 0.05 (0.29) 
Sarnia 37 0.02 (0.57) 0.04 (0.56) 0.00 (0.57) 0.03 (0.56) 
Torontog 44 0.03 (0.19) 0.22 (0.17) 0.00 (0.19) 0.34 (0.16) 
Winnipeg 94 0.08 (0.25) 0.10 (0.25) 0.00 (0.26) 0.01 (0.26) 
Average 306 0.12 (0.31) 0.16 (0.31) 0.03 (0.33) 0.11 (0.32) 
a Number of within-city measurement locations. 
b National land use regression model. 
c National land use regression model plus gradients. 
d Inverse distance weighting interpolation of NAPS fixed site monitoring data. 
e Inverse distance weighting interpolation of NAPS fixed site monitoring data plus gradients. 
f 4 outliers removed with highest city concentrations (>2µg/m3). 
g 1 outlier removed with highest city concentration (4.10µg/m3). 

 

Canadian Population Exposure Assessment 

The final LUR models and gradients were applied to all 478,831 street block centroid 

locations to conduct population exposure assessments. Estimated mean (95%CI) population 

exposures (µg/m3) to ambient PM2.5, NO2, benzene, ethylbenzene and 1,3-butadiene in Canada 

based on the LUR models were 8.10 (5.84-10.43), 22.40 (13.14-33.51), 0.94 (0.57-1.31), 0.38 

(0.25-0.52) and 0.086 (0.035-0.138) respectively. Estimates for the same pollutants based on 

the national LUR plus gradients models were 8.39 (6.00-11.13), 23.37 (14.01-35.73), 1.04 

(0.59-1.49), 0.63 (0.35-1.10) and 0.089 (0.036-0.146) respectively. Wide ranges of exposure 
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levels were estimated in Canada for all substances; see Appendix 1, Figure 3 for population 

exposure distributions.  

2.4. Discussion 

We created national pollutant models from fixed-site monitoring data that incorporate 

satellite, geographic and deterministic components and demonstrated that these models can 

improve exposure assessment over large geographic areas compared to approaches based 

solely on interpolation of fixed site monitoring data. We also demonstrated how these models 

can be used to calculate current population exposure assessment. 

The national LUR models explained 73% of pollution variation in NAPS measurements 

for NO2, and lesser degrees for PM2.5 (46%), Benzene (62%), ethylbenzene (67%) and 1,3-

butadiene (68%). The NO2 and PM2.5 models were least sensitive to monitor selection, while 

models for VOC’s were more sensitive – likely due to the smaller number of monitors on 

which LUR estimates were based (n=53). The predictive performance of the PM2.5 model 

(R2=0.46, RMSE=1.53µg/m3) was consistent with other large-scale modeling studies based on 

different monitoring methodologies and data inputs (Beelen et al. 2009; Hart et al. 2009; Liao 

et al. 2006; Ross et al. 2007).  

The national LUR models generally captured regional patterns in pollutant 

concentrations, corresponding to NAPS monitor siting criteria, but were less effective at 

identifying small scale geographic predictor variables. For example, only 35 NAPS monitors 

were located within 500 meters of a major road and only seven monitors were within 500 

meters of a major industrial emission source. Such small sample sizes greatly reduce the 

models' power to capture these specific pollutant sources. Some city-specific LUR methods 

have used location-allocation methods to more fully represent the true spatial variation in 
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pollution levels and to capture the range of predictor variables (Jerrett et al. 2005). Models 

based on fixed site monitor data may therefore need additional approaches to represent local-

scale pollutant variability not captured by fixed site monitors. This was indeed the case with 

the Canadian NAPS network, but larger regulatory networks, such as those in the United 

States, may better represent the range of predictor variables needed to build local-scale LUR 

models.  

To address the lack of local-scale geographic variability in the NAPS data we 

incorporated deterministic gradients based on proximity to specific sources (i.e. vehicles and 

gas stations). The final NO2 LUR plus gradient model improved prediction of within-city 

pollutant variation considerably compared to the LUR model alone and interpolation methods 

– on average the final model predicted 43% of within-city NO2 variation compared to 18% 

using IDW. Both the national benzene model and IDW predicted within-city benzene poorly, 

which may be due to the small number of NAPS monitors on which the model was based, the 

relatively small variation in within-city benzene levels, or the inability of gradients to capture 

local benzene concentrations. Similar to the NO2 model, the evaluation of the benzene model 

with Sarnia data was poor, reflecting the difficulty in capturing unique high-density industrial 

conditions in a national model.  

Gradients were based on literature reviews and a clear limitation was the lack of 

methodological consistency among published data of pollutant level increases near specific 

sources and the distance required for pollutant levels to return to background. To improve 

reliability of gradients we used linear functions to represent the decreases in pollutant levels 

found in the initial portions of the exponential decay curves found in the literature. The 

methodology used here could be augmented as new gradients become available or with other 

modeled data, for example, with results from EPA's near-road research program (EPA, 2011).  
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Population exposure assessment was conducted using the national models and census 

street block points. The population weighted average exposures to PM2.5, NO2, benzene, 

ethylbenzene and 1,3-butadiene were 8.39, 23.37, 1.04, 0.63 and 0.089 (µg/m3) respectively. 

The uncertainty of population exposure estimates were driven primarily by LUR model 

uncertainty. While the national LUR models' results are similar to city-specific LUR models in 

their predictive capacity and error, we are unaware of any LUR models that have been applied 

to estimate exposure uncertainty. While these exposures are low compared to other countries, 

there are particular locations in Canada where exposures are relatively high; for example, the 

90th percentiles of exposures (in µg/m3) are 9.78 for PM2.5, 34.81 for NO2, 1.61 for benzene, 

1.01 for ethylbenzene, and 0.14 for 1,3-butadiene. The ability of the national models to 

capture local-scale pollutant variability allows for more realistic exposure assessments and 

assessments that can potentially identify high-risk populations. Future work will refine 

approaches for using the national models to calculate population exposure assessments, 

incorporate socioeconomic information from census to examine environment injustice issues, 

and integrate national models into a risk assessment framework that incorporates exposures 

from other sources and micro-environments. 

This study faced a number of challenges and limitations to creating national pollutant 

models from fixed site monitors and applying these models to estimate Canadian population 

exposures. Firstly, the NAPS monitors in Canada are centered in large metropolitan areas and 

modeled relationships will therefore be weighted towards these areas. This is appropriate for 

population exposure assessment, as these locations represent the majority of Canadians, but in 

rural areas the models could be adjusted or a background concentration used. This is 

particularly relevant to the benzene, ethylbenzene and 1,3-butadiene models, which were 

based on data from monitors located almost exclusively in large urban areas or sited near large 
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industrial sources. Secondly, we had limited data on pollutant sources and source strengths 

such as traffic volumes. In addition, we did not model emissions from wood burning stoves 

and forest fires, which may have caused us to under predict PM2.5 concentrations in the interior 

of British Columbia. Thirdly, parsimonious LUR models were created since the specificity of 

model variables may be important for informing surveillance and regulation. This, however, 

leads to models that do not capture the complex interactions between geographic 

characteristics and pollutant sources and even the simplest LUR predictors (e.g. major roads or 

NPRI within 10km) capture complex mixes of geographic variables and pollutant sources. 

Fourthly, we compared model estimates to city-specific measurements for NO2 and benzene 

collected in different years and using a variety of different methodologies. Nevertheless, these 

measurements represent the best data on within-city pollutant variability available. Fifthly, 

applying LUR model results to approximately half a million block points is currently 

extremely computationally and time intensive. Lastly, the geographic accuracy of street block 

centroids may introduce errors into the gradient portions of the models, and therefore the 

exposure assessment, particularly between rural and urban areas. These errors, however, are 

likely spatially random within rural and urban areas across Canada.  

2.5. Conclusion 

National exposure models were required by Carex Canada to produce population 

exposure assessments that captured both between and within-city pollution variability. We 

created national PM2.5, NO2, benzene, ethylbenzene, and 1,3-butadiene models from fixed site 

monitoring data and found that a combination of data sources and methods to capture 

background, regional and local-scale pollution variation improved exposure assessment over 

traditional IDW interpolation approaches. The national pollutant models were applied to street 
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block points representing the locations of the Canadian population to determine population 

exposure estimates. Estimates of average population exposure levels in Canada are PM2.5 8.39, 

NO2 23.37, benzene 1.04, ethylbenzene 0.63 and 1,3-butadiene 0.09 (µg/m3). The modeling 

approach developed here uses readily available data and could be reproduced over time, for 

example, every five years with the Canadian census. This would provide updated population 

exposure assessments and a long-term surveillance capacity for monitoring trends in 

population exposures, for identifying potential susceptible populations and geographic 

locations with elevated exposures, and for evaluating the impacts of policies and regulatory 

changes on exposure levels. 

 These models can also be used for current national-level epidemiological studies; 

however, due to the detailed predictor variables present in the models further work needs to 

examine how these types of models can be modified to estimate historical exposures (due to 

the lack of detailed GIS data available). 
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Chapter 3 

 

 

Spatiotemporal Air Pollution Exposure Assessment for a 

Canadian Population-Based Lung Cancer Case- 

Control Study 
 

 

Hystad, P., Demers, P., Johnson, K.C., Brook, J., van Donkelaar, A., Lamsal., L., Martin, R., 

Brauer, M. (2012). Spatiotemporal air pollution exposure assessment for a Canadian 

population-based lung cancer case-control study. Environmental Health. 11:22. 

 

Abstract 

Background:  Few epidemiological studies of air pollution have used residential histories to 

develop long-term retrospective exposure estimates for multiple ambient air pollutants and 

vehicle and industrial emissions. We present such an exposure assessment for a Canadian 

population-based lung cancer case–control study of 8353 individuals using self-reported 

residential histories from 1975 to 1994. We also examine the implications of disregarding 

and/or improperly accounting for residential mobility in long-term exposure assessments. 

Methods:  National spatial surfaces of ambient air pollution were compiled from recent 

satellite-based estimates (for PM2.5 and NO2) and a chemical transport model (for O3). The 

surfaces were adjusted with historical annual air pollution monitoring data, using either 

spatiotemporal interpolation or linear regression. Model evaluation was conducted using an 

independent ten percent subset of monitoring data per year. Proximity to major roads, 

incorporating a temporal weighting factor based on Canadian mobile-source emission 
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estimates, was used to estimate exposure to vehicle emissions. A comprehensive inventory of 

geocoded industries was used to estimate proximity to major and minor industrial emissions. 

Results:  Calibration of the national PM2.5 surface using annual spatiotemporal interpolation 

predicted historical PM2.5 measurement data best (R2
 = 0.51), while linear regression 

incorporating the national surfaces, a time-trend and population density best predicted 

historical concentrations of NO2 (R
2
 = 0.38) and O3 (R

2
 = 0.56). Applying the models to study 

participants residential histories between 1975 and 1994 resulted in mean PM2.5, NO2 and O3 

exposures of 11.3 µg/m3 (SD = 2.6), 17.7 ppb (4.1), and 26.4 ppb (3.4) respectively. On 

average, individuals lived within 300 m of a highway for 2.9 years (15% of exposure-years) 

and within 3 km of a major industrial emitter for 6.4 years (32% of exposure-years). 

Approximately 50% of individuals were classified into a different PM2.5, NO2 and O3 exposure 

quintile when using study entry postal codes and spatial pollution surface, in comparison to 

exposures derived from residential histories and spatiotemporal air pollution models. Recall 

bias was also present for self-reported residential histories prior to 1975, with cases recalling 

older residences more often than controls. 

Conclusions:  We demonstrate a flexible exposure assessment approach for estimating 

historical air pollution concentrations over large geographical areas and time-periods. In 

addition, we highlight the importance of including residential histories in long-term exposure 

assessments. 
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3.1. Introduction 

 Exposure to ambient air pollution is a suspected risk factor for lung cancer (Beelen et 

al. 2008b; Katanoda et al. 2011; Laden et al. 2006; Nafstad et al. 2003; Pope III et al. 2002; 

Raaschou-Nielsen et al. 2011). Due to the long latency periods associated with lung cancer, 

epidemiological analyses are particularly challenging, especially for air pollution where spatial 

and temporal variation in both residential mobility and air pollution concentrations may 

produce significant exposure misclassification if not properly incorporated into the exposure 

assessment approach.   

 Residential mobility data are required for accurate long-term air pollution exposure 

assessments, but due to the difficulties in obtaining this information, residential location at 

study entry or at time of diagnosis is often used to estimate lifetime or long-term exposure 

estimates in epidemiological studies. Given that approximately half of all individuals move 

within a five year period (Canadian Census 2006) and that residential mobility varies 

depending on socio-economic factors (Hurley et al. 2005; Kan 2007; Oishi 2010; Urayama et 

al. 2009), there is potential for exposure misclassification and bias in studies that ignore or 

improperly account for residential mobility. While there is growing recognition of the need for 

spatiotemporal epidemiology approaches and life-time residential histories in exposure 

assessment (Meliker and Sloan 2011), mainly in cancer epidemiology (Behren et al. 2008; 

Gallagher et al. 2010), little is known regarding the potential exposure misclassification and 

bias resulting from self-reported residential histories, the most common form of attaining 

residential histories in epidemiological studies (Boscoe 2011), and from the assumption of 

residential stationarity in air pollution epidemiology.  
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 Incorporating residential histories into air pollution exposure assessments requires 

corresponding air pollution concentration estimates that cover the spatiotemporal domain of 

the study period. To date, the association between air pollution and lung cancer has been 

examined using a variety of study periods and exposure assessment approaches. The most 

common approaches have aggregated air pollution monitoring levels within cities or defined 

areas (Dockery et al. 1993; Katanoda et al. 2011; Laden et al. 2006; Pope III et al. 2002), 

estimated ambient air pollution levels at residential addresses using fixed-site monitoring data 

or dispersion models (Beelen et al. 2008b; Beeson et al. 1998; Bellander et al. 2001; Nafstad 

et al. 2003; Raaschou-Nielsen et al. 2011), or used proximity to roads and industrial sources as 

exposure surrogates (Beelen et al. 2008a; Vineis et al. 2006). In terms of national retrospective 

exposure assessment studies, few are available that examine multiple pollutants and exposure 

sources (Beelen et al. 2007; Hart et al. 2009). 

 Here we develop a comprehensive spatiotemporal exposure assessment approach for 

Canada and apply it to a population-based case-control study of 8353 individuals who 

provided lifetime self-reported residential histories. This approach expands from the national 

spatial-only exposure assessment methods presented in Chapter 2. For the exposure period 

1975 to 1994, we assign fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone 

(O3) air pollution exposures, as well as exposures to vehicle and industrial emissions. The 

implications of disregarding and/or improperly accounting for residential histories in long-

term exposure assessments are also examined. The exposure assessment methods developed 

produce annual spatiotemporal exposure estimates and will allow subsequent epidemiologic 

analyses to examine latency periods, to include both urban and rural populations, and to study 

the contributions of multiple ambient pollutants and local vehicle and industrial emissions to 

lung cancer risk in Canada. 
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3.2. Methods 

The Lung Cancer Case-Control Study 

We utilize the lung cancer component of the National Enhanced Cancer Surveillance 

System (NECSS), which includes 3280 histological-confirmed lung cancer cases and 5073 

population controls collected between 1994 and 1997 in the provinces of British Columbia, 

Alberta, Saskatchewan, Manitoba, Ontario, Prince Edward Island, Nova Scotia and 

Newfoundland. Due to residential mobility, study participants are located in all provinces of 

Canada requiring national-level exposure assessment. Johnson et al. (1998) describe the 

overall recruitment methodology for the NECSS. Briefly, cases were identified through 

provincial cancer registries and mailed a research questionnaire. The response rate for 

contacted lung cancer cases was 61.7%. Population controls were selected from a random 

sample of individuals within each province, with an age/sex distribution similar to that of all 

cancer cases (strategies for recruiting population controls varied by province depending on 

data availability and accessibility). Provincial cancer registries collected information from 

sampled controls using the same protocol as for the cases. The response rate for contacted 

population controls was 67.4%.  

Residential histories at the 6-digit postal code level are the basis of the air pollution 

exposure assessment reported here. In urban areas a 6-digit postal code typically incorporates 

one side of a city block, but represents substantially larger areas in rural locations (e.g. greater 

than 100km2 in remote locations of Canada). Residential histories were converted to postal 

codes by the Public Health Agency of Canada and geocoded using DMTI Inc. 1996 postal 

codes. While lifetime residential histories were collected, the exposure period was restricted to 

1975 to the start of study enrolment (1994), due to the presence of recall bias in earlier 

reported histories (explained in more detail in the discussion section) as well as the lack of 
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information on postal code locations, air pollution monitoring data and geographic information 

prior to 1975.  

Air Pollution Exposure Assessment Approach 

 A multi-staged approach was required to assign ambient air pollution concentrations to 

residential histories from 1975 to 1994. The spatiotemporal exposure assessment included 

three steps. First, national spatial surfaces were created from recent satellite-based estimates 

(for PM2.5 and NO2) and a chemical transport model (for O3). Second, all National Air 

Pollution Surveillance (NAPS) monitoring data were compiled and formatted for the study 

period, including 120 NO2 stations and 1030 measurement-years, 187 O3 stations and 1440 

measurement-years, 177 TSP stations and 1826 measurement-years, and 25 PM2.5 stations and 

141 measurement-years. Due to the small number of PM2.5 measurements available, and no 

measurements made prior to 1984, a random effect model was used to estimate PM2.5 based on 

TSP measurements and metropolitan indicator variables. Finally, the spatial pollutant surfaces 

were calibrated yearly to estimate average annual concentrations between 1975 and 1994. Two 

approaches were used for calibration: the first estimated historical annual averages using 

smoothed inverse distance weighting (IDW) interpolation of the ratios of spatial co-located 

historical NAPS and surface estimates, while the second used linear regression models. 

Exposure to vehicle emissions was estimated using proximity to highways and major 

roads, adjusted based on historical vehicle emissions in Canada. Exposures to industrial 

emissions were calculated based on proximity to major and minor industrial sources extracted 

from a comprehensive database of industrial facilities in Canada operating during the study 

exposure period. Estimates for different vehicle and industrial emission sources were not 

converted into concentrations and added to ambient concentration estimates as we want to 

examine each source and distance threshold separately in subsequent epidemiological 
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analyses. Specific components of the exposure assessment approach are described in detail 

below. 

National Spatial Pollutant Surfaces 

 Spatial models of ambient PM2.5, NO2 and O3 concentrations were developed to 

represent current spatial pollution patterns across Canada. A PM2.5 surface was derived from 

Aerosol Optical Depth (AOD), using data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Multiangle Imaging Sectroradiometer (MISR) satellite 

instruments, and was combined with a chemical transport model (GEOS-Chem; www.geos-

chem.org) to estimate the relationship between aerosol optical depth and surface PM2.5 (for full 

details see (van Donkelaar et al. 2010)). Estimates for PM2.5 represented a composite estimate 

developed from 2001 to 2006 and included locations with greater than 100 valid 

measurements to ensure estimate representativeness. The NO2 surface was estimated from 

tropospheric NO2 columns retrieved from the Ozone Monitoring Instrument (OMI) and also 

used GEOS-Chem to calculate the relationship between the NO2 column and surface NO2 

(Lamsal et al. 2008). NO2 estimates used data from 2005 to 2007 as OMI measurements began 

in late 2004. Both PM2.5 and NO2 were estimated at a 0.1x0.1 degree resolution (~10x10km). 

The O3 surface was created from the Canadian Regional and Hemispheric O3 and NOx System 

(CHRONOS) (Environment Canada 2011). This model is reinitialized every 24 hours with 

meteorology and is fused with the O3 observations across Canada and the U.S. on an hourly 

basis using an optimal interpolation approach based upon a least square combination of the 

CHRONOS and measured O3 data that minimized the error variance. This surface was created 

at a 21km resolution and represents average summer (May through September) concentrations 

from 2004 to 2006. Figure 6 illustrates the PM2.5, NO2 and O3 pollutant surfaces used to 

represent current spatial concentrations across Canada. Next, these surfaces were calibrated 
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with NAPS monitoring data to estimate historical annual spatial exposure surfaces.  

 

 

 

 

 

 

 

Figure 6. National pollutant surfaces created from recent satellite estimates (for PM2.5 and 

NO2) and a dispersion model (for O3). Insets represent higher population density locations in 

Canada (south western BC and southern Ontario and Quebec). 

 

Air Pollution Monitoring Data 

The NAPS monitoring network began measurements of TSP in 1970, NO2 and O3 in 

1975 and PM2.5 and PM10 in 1984. Figure 7 illustrates the location of all NAPS monitors in 

Canada, 1975 TSP monitoring stations with 50km buffers (for reference of historical monitor 

spatial coverage) and all study participant residential postal codes between 1975 and 1994. 
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Figure 7. Location of all national air pollution surveillance monitors in Canada and study 

participant residential postal codes between 1975 and 1994. Insets represent higher population 

density locations in Canada (south western BC and southern Ontario and Quebec). 

 

NAPS monitoring data were first formatted into monthly averages for all pollutants. 

Continuous monitoring data were included if at least 50% of daily hourly observations were 

available and at least 50% of days were available in a month. Monthly averages from 

dichotomous samplers (PM2.5) required a minimum of 3 of 5 valid monthly measurements. 

Yearly averages were not calculated unless there were at least six months of complete data 

with one month per season, and summer O3 averages unless there were 3 months of data 

available. Appendix 2, Figure 1 illustrates historical annual average pollutant concentrations 

from available NAPS monitoring stations that were in operation for all years. Temporal trends 

show a large decrease in TSP concentration during the study period (51% from 1970 to 1994), 
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a decrease in NO2 (28% from 1975 to 1994) and PM2.5 (32% from 1984 to 1994), and an 

increase in O3 (19% from 1975 to 1994). Importantly, the changes in pollutant concentrations 

were not uniform across geographic areas in Canada.  

Modeling Historical PM2.5 Concentrations from TSP 

 Due to the lack of historical spatial and temporal PM2.5 measurement coverage, we 

used collocated PM2.5 and TSP measurements between 1984 and 2000 to create predictive 

models of historical PM2.5 concentrations. The overall approach to estimating PM2.5 is similar 

to that used by Lall et al. (Lall et al. 2004) to estimate metropolitan area specific PM2.5 and 

PM10 relationships with TSP across the U.S. We used random effect models (GLIMMIX 

procedure in SAS 9.3) to account for the clustering of annual measurements over time at each 

NAPS station. Table 4 summarizes the final PM2.5 model incorporating TSP concentrations 

(µg/m3) and census metropolitan area (CMA) indicator variables. The R2 and RMSE for the 

PM2.5 model was 0.67 and 2.31. Figure 8 illustrates the measured and predicted PM2.5 

concentrations. The resulting PM2.5 model was applied to all valid TSP monitoring stations; 

the nearest CMA core within 100km was used to determine the CMA model coefficient for the 

PM2.5 model, otherwise no CMA variable was included in the model. Figure 2 in the Appendix 

2 maps the CMA's used in the model and areas covered by the 100km buffers.  
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Table 4. Model used to predict historical PM2.5 using TSP measurements and census 

metropolitan area indicator variables. 

Variables Estimate SE p 

PM2.5 Model [R2=0.671, RMSE=2.311] 
Intercept 1.93 2.30 0.42 
TSP 

0.13 1.78e-2 
<0.001

* 
CMA Indicator 

Calgary 0.44 2.63 0.87 
Edmonton -1.82 2.69 0.50 
Halifax  7.71 3.02 0.01* 
Hamilton 4.76 3.02 0.12 
Montreal  6.01 2.42 0.01* 
Ottawa 4.86 2.94 0.10 
Quebec 3.17 2.60 0.23 
St. Johns 5.72 3.81 0.13 
Saint John 3.28 30.7 0.29 
Toronto  5.63 2.60 0.03* 
Vancouver  6.50 2.47 0.01* 
Victoria 2.48  2.73 0.36 
Windsor 5.63 2.56 0.03* 
Winnipeg 1.00 - - 

1R2 and RMSE estimated by regressing the predictions from 
the fixed-effects terms against measured values. 
*Significant at p<0.05. 

 

 

Figure 8. Predicted PM2.5 concentrations using TSP concentrations and metropolitan indicator 

variables against NAPS PM2.5 measurements. 
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Calibrating Spatial Pollutant Surfaces Using Historical Data 

 Two approaches were used to extrapolate current PM2.5, NO2 and O3 surfaces to 

estimate annual concentrations between 1975 and 1994. Both approaches were developed 

using 90% of the monitoring data available for each year, while retaining 10% for model 

evaluation. Model performance was assessed using adjusted R2 and root-mean-square error 

(RMSE).  

 The first approach calibrates the current spatial surfaces using annual NAPS 

monitoring data and smoothed inverse distance weighting (IDW) interpolation of the ratio's of 

spatial co-located historical NAPS and surface estimates. The yearly calibrations were 

performed using the following equation: 
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Where for each year between 1975 and 1994 the annual historical surface for pollutant j is 

equal to the current spatial surface of pollutant j (Surfacex,y) at coordinates x,y multiplied by 

the IDW interpolation of the ratio's of spatial co-located historical NAPS and surface 

estimates. dx,y,k is the distance (km) from NAPS monitoring station k to location x,y. 

678�9: and Surfacek are coincidently sampled pollutant concentrations of j at station k. A 

smooth interpolation option (smooth factor=0.2) was included in the IDW interpolation (not 

shown in equation 1 for simplicity), which uses three ellipses in the interpolation method: 

points that fall outside the smaller ellipse but inside the largest ellipse are weighted using a 

sigmoid function (ESRI 2012). The smoothed IDW function was used to reduce abrupt 
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changes in the yearly calibration surfaces as these do not reflect spatial patterns of pollution 

change.  

  The second approach uses linear regression to model annual concentrations. Predictor 

variables include the spatial pollutant surfaces, a time-trend and historical population density 

data (no other detailed land use variables are available historically). Population location data 

were derived from the 1971, 1976, 1981, 1986, 1991, and 1996 Canadian census; between 

census years were assigned the nearest census. The annual population density variables were 

calculated in a GIS for various buffer distances (1km to 50km's) around each NAPS monitor. 

Roads and industry were not included in the models as we want to separately evaluate 

exposure to these sources and lung cancer risk. We used random effect models (GLIMMIX 

procedure in SAS 9.3) to account for the clustering of annual measurements over time at each 

NAPS station and selected predictor variables that maximized model fit. We estimated R2 and 

RMSE statistics by predicting the measurement data with the fixed-effect coefficients using 

ordinary least squares regression.   

Exposure to Vehicle Emissions 

 Exposures to vehicle emissions were estimated using proximity measures to highways 

(freeways and major highways) and major roads (freeways, highways, and arterial and 

collector roads). The 1996 DMTI Inc. road network was used to derive proximity measures for 

all case and control residential years, due to the lack of historical national road networks. The 

average distance to each road class was calculated separately as well as the number of years 

residing within 50, 100 and 300m of a highway and/or major road. These proximity distances 

were selected as vehicle related pollutant gradients, such as for NO2 and volatile organic 

compounds, are highest within 50 and 100m of a major road but remain significantly elevated 

to 300m (Zhou and Levy 2007). 
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 Emissions from vehicles have changed significantly over time due to increases in 

vehicle kilometres travelled and improved vehicle emission controls (Kahn 1996; Sawyer et 

al. 2000). Exposure indicators for years residing near highways and major roads were 

therefore weighted to account for these changes. Appendix 2, Figure 3 shows the decrease in 

the total NOx emissions from on-road mobile sources in Canada (used here to represent 

primary vehicle emissions), including heavy and light duty diesel and gasoline vehicles, from 

1980 to 2007 and extrapolated levels to 1970. NOx emissions estimates were compiled by 

Environment Canada using the latest emission estimation methodologies and statistics 

available as of March 2008. Emission factors were developed using MOBILE6.2C and the 

number of vehicle kilometres travelled. MOBILE6.2C is a vehicle emissions modeling 

software specific to Canada and accounts for the vehicle fleet profile, vehicle emission 

standards, and fuel characteristics (NPRI 2011). Given the NOx emissions trends documented 

in the United States from 1970 to 1980 (EPA 2005), linear extrapolation was used to estimate 

NOx emissions from 1980 to 1970. The ratio of resulting 1994 and 1975 NOx emission 

estimates suggest that living near a major road in 1975 is equivalent to 1.26 "1994" years due 

to changes in vehicle emissions (the ratio also accounts for changes in vehicle numbers). A 

weighting factor (1+0.013*(1994-proximity exposure year)) was therefore used to adjust 

proximity-based vehicle exposures to account for decreases in the magnitude of vehicle 

emissions over the study period. 

Exposure to Industrial Emissions 

A comprehensive inventory of industrial emissions sources was compiled as part of the 

NECSS within the Environmental Quality Database (EQDB) (Argo 1998; Argo 2007; Johnson 

et al. 1998). Locations of industrial manufacturing facilities and activities in approximately 

fifty standard industrial classifications (SIC) from 1970 to 1994 are included in the database 
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along with operational time periods. Approximately 7800 sources with a 4 digit SIC are 

included and 8200 municipal waste facilities. Major industries, including metal smelters, pulp 

and paper mills, petroleum product companies, foundry and steel plants, aluminum smelters, 

non-hydro power plants, and petrochemical companies, contain pollutant discharge estimates 

while minor industrial sources have no emission records. The distance between an industrial 

source and a subjects' postal code has been validated to +/-150m in urban locations (Argo 

2007). The EQDB has been used in conjunction with the NECSS to examine leukemia and 

chlorination by-products (Kasim et al. 2006) and residential proximity to industrial plants and 

Non-Hodgkin’s Lymphoma (Johnson et al. 2003). We calculate exposure to major industrial 

emissions and to minor sources within 1, 2 and 3km buffers from residential postal codes. 

These distances were selected to ensure specificity of proximity based exposure assessments 

for multiple industries and substances. Similar distance thresholds have been used previously 

in small area health studies (Aylin et al. 1999; Ramis et al. 2009). To be considered exposed, 

and to calculate the number of years exposed to each proximity category, at least 1 industrial 

facility had to be operating within the associated buffer distance. 

3.3. Results 

Residential Histories 

The NECSS questionnaire asked participants to list each place in Canada that they had 

lived for at least one year. A total of 8176 individuals (98%) reported at least one full 6-digit 

postal code and 6918 individuals (83%) reported at least 15 years of residential histories from 

1975 to 1994. On average, individuals reported 2.3 (SD=1.6) different residences from 1975 to 

1994; 1617 individuals lived only in rural areas and 4222 individuals lived only in urban areas 

of Canada. Urban areas were defined using Statistics Canada community size classifications 
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(urban core, urban fringe, urban areas outside of CMA, rural fringe, and rural areas outside of 

CMA). In total, 77% of the studies exposure-years occurred in urban areas.  

Importantly, while no significant difference (p=0.54) was found in the number of 

geocoded residential-years between cases and controls for the 1975 to 1994 exposure period, 

cases tended to report older addresses more often than controls. Recall bias was especially 

evident for residential histories prior to 1975, as shown in Figure 9. 

 

 

Figure 9. Percent of cases and controls reporting addresses at the 6-digit postal code level from 

1994 (start of case-control study enrollment) and 1944. 

Ambient Exposure Assessments 

 The first approach to calibrating current pollution surfaces used IDW interpolation to 

create annual surfaces between 1975 and 1994. Figure 10 illustrates the resulting PM2.5 

exposure surfaces for 1975, 1980, 1985, 1990 and 1994, PM2.5 measurement locations with 

50km buffers, the average PM2.5 exposure surface between 1975 and 1994, and the location of 

the case-control study subjects. Twenty annual exposure surfaces were created from1975 to 
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1994, but only five are shown here. The study population residential years indicates the 

locations of all yearly residential histories during the twenty year exposure period summed 

within a 50km grid. The temporally adjusted surfaces for NO2 and O3 are provided in Figures 

4 and 5 of the Appendix 2.  

 

Figure 10. Example of annual PM2.5 exposure surfaces created using the IDW interpolation 

calibration approach for all years between 1975 and 1994. The study population residential 

years represents all residential locations during the study period summed within a 50km grid. 

 

 The performance of the linear regression models was moderate for all three pollutants 

(PM2.5 R
2=0.33, NO2 R

2=0.36 and O3 R
2=0.47) as described in Table 5. Population density 

within 10km of monitoring stations was most strongly associated with PM2.5, while population 
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density with 5km was most strongly associated with NO2 (positively associated) and O3 

(negatively associated). A linear time-trend did not improve the O3 model and was therefore 

not included in the final model.  

 

Table 5. Results of historical PM2.5, NO2 and O3 linear regression models. 

Model Distance Value  SE p 
PM2.5 Model [R

2
=0.33, RMSE=3.57] 

Intercept - 1.18 1.16 0.31 
Satellite PM2.5  - 0.46 0.11 <0.001 
Population Density  10km 3.94e-6 2.89e-7 <0.001 
Years <1994  - 0.29 9.28e-3 <0.001 
NO2 Model [R

2
=0.36, RMSE=7.00] 

Intercept - 10.88 1.07 <0.001 
Satellite NO2  - 1.67 0.46 <0.001 
Population Density  5km 2.6e-5 5.11e-6 <0.001 
Years <1994 - 0.28 0.028 <0.001 
O3 Model [R

2
=0.47, RMSE=5.13] 

Intercept - 6.85 1.66 <0.001 
O3 Dispersion Model  - 0.73 0.06 <0.001 
Population Density 5km -2.0e-5 2.5e-6 <0.001 

 

 Evaluation of the two historical calibration approaches are shown in Table 6, which 

summarizes the R2 and RMSE of model evaluations using the 10% sample of monitoring data 

withheld each year. The fused IDW interpolation of PM2.5 had the best performance (R2=0.51), 

while the NO2 and O3 linear models had the best performance (R2=0.38 and R2=0.56). Model 

performance tended to decrease for older measurements, but not substantially. Appendix 2, 

Figure 6 presents the scatter plots for each model evaluation.  

 Table 7 presents the exposure assessment results using both historical calibration 

methods and air pollution exposures derived from NAPS monitoring data within 50km of 

residential postal codes. To ensure accurate exposure assessment, results are presented for 

individuals with at least 15 complete exposure-years between 1975 and 1994. Exposures for 
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different time-periods (e.g. 1975-1980, 1975-1985, and 1975-1990) were also calculated to 

examine different latency periods (data not shown). 

 

Table 6. Evaluation of IDW interpolation and linear regression models to predict annual 

historical air pollution. 

    IDW Interpolation Linear Models 

 Year Stations N R
2 RMSE R

2 RMSE 

NO2 All 120 1030 0.22 6.66 0.38  5.92 
 1994-1990 94 349 0.30 5.66 0.36 5.42 
 1989-1985 88 300 0.20 6.61 0.44 5.54 
 1984-1980 62 226 0.13 6.72 0.40 5.62 
 1979-1975 52 155 0.17 8.75 0.29 8.07 
PM2.5 All 177 1826 0.51  2.96 0.30  3.53 
 1994-1990 106 446 0.64  1.96 0.32  2.70 
 1989-1985 113 480 0.57  2.30 0.36  2.81 
 1984-1980 124 476 0.34  3.79 0.12  4.36 
 1979-1975 123 424 0.43  3.32 0.26  3.77 
O3 All 187 1440 0.39  5.29 0.56  4.48 
 1994-1990 158 582 0.53  4.92 0.65  4.25 
 1989-1985 125 409 0.36  5.41 0.54  4.57 
 1984-1980 80 286 0.25  4.67 0.28  4.57 
 1979-1975 48 163 0.22  6.33 0.60  4.50 

 
 

Table 7. Ambient exposure estimates derived from NAPS monitors within 50km of residential 

postal codes and spatiotemporal exposure models. 

Pollutant N* Mean SD Min IQR Max 
NAPS Measurements ≤50km 
TSP (µg/m3) 4027 60.0 16.9 22.3 21.4 114.1 
Modeled PM2.5 (µg/m3)a 4027 17.0 2.5 11.9 3.4 25.7 
NO2 (ppb) 3649 23.4 6.0 6.0 7.6 37.8 
O3

 (ppb)b 4382 21.0 3.9 7.0 5.3 32.6 
Spatiotemporal IDW Interpolation 
PM2.5 (µg/m3) 6833 11.3 2.6 3.6 3.9 19.0 
NO2 (ppb) 6919 15.3 8.8 1.1 14.5 43.4 
O3

b(ppb) 6919 23.2 3.7 12.9 4.6 35.4 
Linear Regression Models 
PM2.5 (µg/m3) 6833 9.1 1.9 4.7 2.2 16.1 
NO2 (ppb) 6919 17.7 4.1 13.1 5.0 35.1 
O3

b (ppb) 6919 26.4 3.4 18.1 4.7 37.2 
*Number of individuals with ≥15 complete exposure-years. 
a Modeled using TSP and CMA indicator variables as described previously in Table 5. 
b Summer (May through September) O3. 
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Exposure to Vehicle and Industrial Emissions 

 Proximity measures used to represent exposure to vehicle emissions are summarized in 

Table 8. Individuals lived within 50, 100 and 300m of a highway for a mean of 0.5 (SD=2.9), 

1.1 (SD=4.0) and 2.9 (SD=6.3) years, respectively. Exposure years increased slightly when 

weighted by temporal emission changes. The average mean distance from study participants’ 

postal codes to the nearest highway was 3.9km. When residential histories were restricted to 

urban areas (where proximity is a more accurate measure of exposure than in rural areas), the 

distance to highways and major roads decreased substantially. Over half of the study 

population was exposed to emissions from a major road at some point during the study period 

(i.e. had lived at least one year within 300m of a major road). 

 
Table 8.  Proximity measures to highways and major roads. 

Proximity 

Measure 
# of People 
Exposed

a 
# of Years Exposed 

(Mean ±SD) 
# of Weighted

b
 Years 

Exposed
 
(Mean ±SD) 

Highways    
≤ 50m 341 0.5 (2.9) 0.7 (3.9) 
≤ 100m 647 1.1 (4.0) 1.5 (5.4) 
≤ 300m 1640 2.9 (6.3) 4.0 (8.5) 
Major Roads    
≤ 50m 1438 2.3 (5.5) 3.2 (7.6) 
≤ 100m 2283 4.0 (6.9) 5.5 (9.5) 
≤ 300m 4517 10.1 (8.8) 13.8 (12.1) 
a Number of individuals living >1 year within 50/100/300m of a highway or major road. 
b Weighted to account for temporal changes in vehicle emissions.  

 

The number of years study participants lived within 1, 2 and 3km of a major and minor 

industry are summarized in Table 9, as are aggregated emission estimates for major industrial 

sources. Proximity to specific emission sources (e.g. oil refineries, smelters, and pulp and 

paper mills) were also calculated (data not shown). Individuals lived within 1, 2 and 3km of a 

major industrial source for a mean of 1.6 (SD=5.3), 4.3 (8.3) and 6.4 (9.5) years respectively. 
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Over half of the study population (n=5942) lived within 3km of a minor industrial source for 

at least one year between 1975 and 1994. 

Table 9.  Proximity measures to major and minor industrial sources. 

Proximity 

Measure 
# of People 
Exposed

a 

# of Years 

Exposed 

(Mean ±SD) 

# of Facilities 
(Mean ±SD) 

Emissions
b
 

(tonnes) 

(Mean ±SD) 
Major Industries     
≤ 1km 838 1.6 (5.3) 6.2 (5.5) 4.5e5 (3.6e7) 
≤ 2km 1995 4.3 (8.2) 13.3 (11.6) 4.5e5 (3.5e7) 
≤ 3km 2743 6.4 (9.5) 21.3 (18.6) 1.9e3 (1.6e4) 
Minor Industries     
≤ 1km 4137 11.4 (11.2) 32.6 (59.3) - 
≤ 2km 5515 16.7 (10.0) 115.7 (163.2) - 
≤ 3km 5942 18.9 (9.0) 218.0 (303.8) - 
a Number of individuals living >1 year within 1/2/3km of a major or minor industrial source. 
b Summary of facility emissions > 0 tonnes. Only available for major industries. 

 

Disregarding Residential Histories and Exposure Error 

 A total of 3305 study participants (40%) lived at their study entry address for the entire 

twenty year exposure period, while 622 (7.6%) participants lived for 15-19 years, 970 (11.9%) 

for 10-14 years, 1433 (17.5%) for 5-9 years, and 1756 (23%) for less than 5 years. Correlation 

between ambient air pollution exposures derived from study entry residential addresses only, 

in place of exposures derived from residential histories and spatiotemporal air pollution 

models, were relatively high for PM2.5 r=0.70, NO2 r=0.76 and O3 r=0.72. However, when 

examining exposure misclassification based on incorrectly assigned exposure quintiles, 50%, 

49% and 46% of individuals where classified into a different PM2.5, NO2 and O3 quintile. 

When temporal variation is removed from the exposure assessment (i.e. historical exposures 

are derived from residential histories applied to the current spatial pollution surfaces) 17%, 

15% and 14% of individuals where classified into a different PM2.5, NO2 and O3 exposure 

quintile. Similar results were found for proximity based exposures, for example, 30% of 
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individuals classified as not exposed to highway emissions based on their address at study 

entry were actually exposed when residential histories were used for exposure assessment.  

3.4. Discussion 

 Incorporating residential mobility in chronic air pollution studies is fundamental to 

accurate exposure estimates. Boscoe (2011) presents a review of environmental health studies 

that have incorporated residential histories. In our study, only 40% of participants lived at their 

study entry residence for the entire 20 year exposure period; on average, 2.3 (SD=1.6) 

different residences per subject were reported. Recall bias was present for self-reported 

residential histories prior to 1975, with cases recalling older residences more often than 

controls. This has important implications for environmental epidemiology using self-reported 

residential histories as many environmental exposures have decreased substantially over time. 

Consequently, exposure assessment based on a greater proportion of older residential histories 

in cases compared to controls will result in an upward bias, rather than non-differential bias 

typically assumed from exposure misclassification. Studies that incorporate self-reported 

residential histories, particularity long-term residential histories - in this case over twenty 

years, may need to account for reporting bias in epidemiological analysis. 

 This study also demonstrated the importance of estimating air pollution exposures 

from residential histories, both in terms of including different residential locations as well as 

the corresponding spatiotemporal air pollution concentration estimates. Exposure quintiles 

based on residential addresses at study entry had approximately 50% correspondence to 

exposure quintiles developed from residential histories and spatiotemporal air pollution 

surface. These results address one of the research opportunities suggested by Meliker and 

Sloan (Meliker and Sloan 2011): "indentifying circumstances under which it is worthwhile to 
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compile and incorporate extensive space–time data histories of mobility or environmental 

contaminants". Epidemiological studies of diseases with long latency periods (in this case lung 

cancer) and/or that examine spatially and temporally varying exposures (in this case ambient 

air pollution) are clearly such circumstances.  

 Despite the fact that the Canadian NAPS monitoring network is one of the longest-

standing national air pollution monitoring programs worldwide and now covers the majority of 

urban centers in Canada, its limited spatiotemporal coverage necessitated the creation of 

national models that capture both urban and rural populations. We were able to use NAPS data 

within 50km of residential postal codes to assign exposures to 63%, 70% and 54% of 

exposure-years for TSP, O3 and NO2. Very limited spatial and temporal PM2.5 monitoring data 

were available (only 40% of exposure-years between 1984 and 1994 could be assigned) and 

we therefore estimated historical PM2.5 using TSP and metropolitan area indicator variables. 

The resulting models predicted PM2.5 variability well; the ratio for modelled PM2.5/TSP (0.32, 

SD=0.12) is very similar to that found in US metropolitan areas (PM2.5/TSP=0.30, SD=0.11) 

(Lall et al. 2004).  

 National spatial pollutant surfaces were compiled and calibrated with historical NAPS 

data to assign ambient pollutant concentrations to all study participants' residential postal 

codes between 1975 and 1994. The two approaches used to calibrate spatial pollutant surfaces 

differ in their approach to account for temporal and spatial change; IDW interpolation 

accounted for the heterogeneity in pollution level changes across Canada during the exposure 

period, while linear regression models incorporated a linear time-trend and population density 

as a spatial predictor. The interpolation approached better represented historical PM2.5 

concentrations, potentially due to the larger spatial scale of PM2.5, while the linear regression 
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models better represented historical NO2 and O3 concentration, which have finer spatial 

resolutions.  

 The creation of national spatiotemporal models allowed for the inclusion of all study 

participants, regardless of geographic location and NAPS monitor coverage. This was 

important as 42884 (23%) of exposure-years occurred in rural areas. The mean PM2.5, NO2 

and O3 exposure estimates derived from the spatiotemporal models were 11.3µg/m3 (SD=2.6), 

17.7ppb (4.1), and 26.4ppb (3.4) respectively. The magnitude of these exposures are less than 

those used in other studies, for example, the widely cited ACS study (PM2.5: 17.7µg/m3 (3.0), 

NO2 21.4ppb (7.1); and O3 45.5ppb (7.3)) (Pope III et al. 2002). This is likely due to the 

inclusion of rural study participants as well as lower ambient pollution levels in Canada. The 

ability to incorporate rural areas in the exposure assessment added to the variability in the 

studies exposure estimates, particularly for NO2 and O3, as the majority of historical NAPS 

measurements in Canada represent pollutant concentration in large urban areas.  

 The results of the retrospective air pollution modeling approach conducted here are 

comparable to other such studies; however, the majority of retrospective air pollution exposure 

assessments have been conducted solely for urban areas. For example, Bellander et al. 

(Bellander et al. 2001) used emission data, dispersion models, and geographic information 

systems (GIS) to assess exposure to NO2, NOx and SO2 ambient air pollution during 1960, 

1970 and 1980 in Stockholm, Sweden. Model evaluation using historical data was not 

possible, but the model was found to have high correlation (r=0.96) with aggregated 1994-

1997 data from 16 monitors. In terms of national models, Hart et al. (Hart et al. 2009) 

developed U.S. nationwide models of annual exposure to PM10 and NO2 from 1985 to 2000. 

Generalized additive models were used to predict spatial surfaces from monitoring data and 

GIS–derived covariates (e.g. distance to road, elevation, proportion of low-intensity 
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residential, high-intensity residential, and industrial, commercial land use). Model 

performance (R2) for PM10 and NO2 was 0.49 and 0.88 respectively. Another national 

retrospective study was conducted as part of the Netherlands Cohort Study on Diet and Cancer 

(Beelen et al. 2007). Ambient air pollution exposures were estimated using regional (IDW 

monitor interpolation), urban (regression modelling), and local (road proximity) components. 

This approach explained 84%, 44%, 59% and 56% of the variability in averaged monitor data 

between 1976 and 1997 for NO2, NO, BS and SO2, respectively. The density of monitors in 

the Netherlands and the use of aggregated monitoring data may explain the higher model 

performance than seen in this study. 

 The exposure assessment approach presented here capitalizes on study participants’ 

lifetime residential histories and incorporates comprehensive modelling approaches to 

estimate exposures to ambient air pollution and to vehicle and industrial emissions. 

Nevertheless, there are several limitations to this approach that may lead to exposure 

misclassification. Due to privacy concerns, residential addresses were coded using a standard 

geographic reference of 6-digit postal codes. Using a set geographic reference reduced error 

from changing postal codes over time; however, the spatial accuracy of postal codes varies 

substantially between urban and rural areas of Canada. Proximity analyses for exposures to 

vehicle and industrial emissions will therefore be more accurate in urban areas. The ambient 

air pollution exposure assessment relies on the accuracy of NAPS monitoring data, and 

historical monitor locations, especially in rural areas, may have been sited to capture local 

pollution problems. Unfortunately, no historical data were available to evaluate the 

representativeness of NAPS monitoring data. Due to sparse temporal and spatial PM2.5 monitor 

coverage, we created historical models based on TSP monitoring data and CMA indicator 

variables. While the model had good prediction, it was created from a limited number of 
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monitoring stations from 1984 to 2000. Nevertheless, several studies have estimated PM2.5 

successfully from TSP (Katanoda et al. 2011; Lall et al. 2004). The accuracy of the final 

spatiotemporal PM2.5, NO2 and O3 surfaces is also determined from the initial concentration 

surface as well as fusion with historical NAPS monitoring data or predictions incorporating a 

linear time-trend and population density. Some anomalies exist in the current spatial surfaces, 

for example, high PM2.5 concentrations in mountainous regions and PM2.5 and NO2 in certain 

locations in the Prairies; however, few study participants lived in these locations and exposure 

misclassification is therefore limited. All historical monitors were used to adjust annual spatial 

pollution surfaces, which resulted in urban monitor ratios extrapolated to rural areas. Few rural 

monitors exist and it was not possible to restrict to rural monitors when adjusting the spatial 

pollution surfaces in rural areas. Exposure to vehicle emissions was based on proximity 

measures to a national 1996 road network and a clear limitation was the lack of historical road 

databases. Industrial emissions were based on a comprehensive database on industrial 

locations from 1970 to 1994; however, emission estimates were only available for major 

industries, which restricted the examination of specific industrial chemicals when minor 

industries were included. 

3.5. Conclusions 

 We conducted a comprehensive air pollution exposure assessment for a population 

based lung cancer case-control study of 8353 individuals using self-reported residential 

histories between 1975 and 1994. Incorporating residential histories was an important 

component of the exposure assessment approach, and necessitated the creation of national 

spatiotemporal air pollution models. Due to the lack of historical air pollution measurements, 

as well as differences in data availability between urban and rural areas, a number of 
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modelling approaches were used to assign annual ambient PM2.5, NO2 and O3 concentrations, 

as well as proximity measures for vehicle and industrial emissions, to study participants' 

residential addresses. The exposure assessment methods developed here will allow subsequent 

epidemiological analyses to examine latency periods associated with lung cancer, include both 

urban and rural populations, and study the contributions of multiple ambient pollutants and 

local vehicle and industrial emissions to lung cancer risk in Canada. In addition, this exposure 

assessment has demonstrated the importance of including residential histories in long-term 

exposure assessments, as well as the need to carefully examine self-reported residential 

histories for recall bias.
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Chapter 4 

 

Long-Term Residential Exposure to Air Pollution and 

Lung Cancer Risk 

 

 
Hystad, P., Demers, P.A, Johnson, K.C., Carpiano, R.M., Brauer, M.  Long-Term Residential 

Exposure to Air Pollution and Lung Cancer Risk. Epidemiology. Accepted January 25th 2013.  

 

Abstract 

Background: There is accumulating evidence that air pollution causes lung cancer. Still, 

questions remain about exposure misclassification, the components of air pollution 

responsible, and the histological subtypes of lung cancer that might be produced. 

Methods: We investigated lung cancer incidence in relation to long-term exposure to three 

ambient air pollutants and proximity to major roads, using a Canadian population-based case-

control study. We compared 2,390 incident, histologically-confirmed lung cancer cases with 

3,507 population controls in eight Canadian provinces from 1994-1997. We developed 

spatiotemporal models for the whole country to estimate annual residential exposure to fine 

particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) over a 20-year exposure 

period. We carried out a sub-analysis in urban centers, using exposures derived from fixed-site 

air pollution monitors, and also considered traffic-proximity measures. Hierarchical logistic 

regression models incorporated a comprehensive set of individual and geographic covariates. 
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Results:  The increase in lung cancer incidence (expressed as fully adjusted odds ratios (OR)) 

was 1.29 (95% confidence interval=0.95-1.76) with a 10-unit increase in PM2.5 (µg/m3), 1.11 

(1.00-1.24) with a 10-unit increase in NO2 (ppb), and 1.09 (0.85-1.39) with a 10-unit increase 

in O3 (ppb). The urban monitor-based sub-analyses generally supported the national results, 

with larger associations for NO2 (OR =1.34; 1.07-1.69) per 10 ppb increase. No dose-response 

trends were observed, and no clear relationships were found for specific histological cancer 

subtypes. There was the suggestion of increased risk among those living within 100 m of 

highways, but not among those living near major roads. 

Conclusions: Lung cancer incidence in this Canadian study was increased most strongly with 

NO2 and PM2.5 exposure. Further investigation is needed into possible effects of O3 on the 

development of lung cancer. 
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4.1. Introduction 

Evidence is accumulating for a causal association between exposure to ambient air 

pollution and lung cancer (Chen et al. 2008; Katanoda et al. 2011; Pope et al. 2011; Raaschou-

Nielsen et al. 2011; Lepeule et al. 2012); however, several uncertainties remain. Air pollution 

exposure misclassification is a particular concern, due to the long latency period for lung 

cancer, temporal changes in air pollution levels, and the likelihood of substantial residential 

mobility during biologically relevant exposure periods. To date, few studies of lung cancer 

have incorporated historical exposure assessments (Beeson et al. 1998; Nafstad et al. 2003; 

Nyberg et al. 2000; Raaschou-Nielsen et al. 2011; Vineis et al. 2006) or examined different air 

pollutants and emission sources (Beeson et al. 1998; Nafstad et al. 2003; Nyberg et al. 2000; 

Vineis et al. 2006), especially beyond urban settings (Vineis et al. 2006; Beelen et al. 2008). In 

addition, little research has examined air pollution exposure and lung cancer risk by 

histological subtypes (Barbone et al. 1995; Chen et al. 2009; Katsouyanni et al. 1991; Liaw et 

al. 2010), due to the need for large sample sizes. Given the variation in risks associated with 

cigarette smoking and lung cancer histology (Pesch et al. 2012), as well as evidence from 

occupational (Villeneuve et al. 2011) and animal studies (Nagy et al. 2005), it is probable that 

risks associated with air pollution also vary by histological subtype. 

The present study builds upon prior work to partially address these uncertainties by 

identifying associations between three ambient air pollutants and proximity to traffic 

emissions, and lung cancer incidence. Specifically, we use a Canadian population-based case-

control study that includes comprehensive individual and geographic information on potential 

confounding factors such as cigarette smoking, second-hand smoke exposure, occupational 

hazards, and residential radon exposures, as well as complete 20-year residential histories 
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from 1975-1994. Spatiotemporal models were developed and applied to annual residential 

histories in both urban and rural locations to estimate long-term exposures to fine particulate 

matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) (Hystad et al. 2012). An urban sub-

analysis was also conducted using exposures derived from the nearest fixed-site air pollution 

monitors within 50 km, as well as proximity measures to highways and major roads.  

4.2. Method 

Study Design 

The National Enhanced Cancer Surveillance System is a population-based, multi-cancer-

site case-control study that includes 3,280 histologically confirmed lung cancer cases, and 

5,073 population controls collected between 1994 and 1997 in eight of Canada’s ten 

provinces. Johnson et al. (1998) describe the recruitment methodology and study design of the 

overall National Enhanced Cancer Surveillance System project. Between 1994 and 1997 cases 

were identified and randomly sampled for inclusion in the study by provincial cancer registries 

within 1-3 months of initial diagnosis. Population controls were selected from a random 

sample of people within each province, frequency matched on sex and five-year age categories 

to the overall collection of National Enhanced Cancer Surveillance System cancer cases 

(~20,000 cases including 19 types of cancer). Recruitment methods for controls depended on 

data availability and accessibility by province, and included provincial health insurance plans 

in five provinces, random digit dialing in two, and property assessment data in one. A research 

questionnaire was mailed to selected cases and controls and active follow-up was conducted. 

The response rate was 62% for contacted lung cancer cases and 67% for population controls. 

The research questionnaire collected comprehensive information regarding personal 

characteristics, lifetime occupational exposures, and residential histories. Residential histories 
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were geo-coded to 6-digit postal codes and are the basis of the air pollution exposure 

assessment. Due to residential mobility, postal codes were located in all provinces of Canada, 

requiring national-level exposure assessment. 

National Air Pollution Exposure Assessment 

Long-term exposures to ambient PM2.5, NO2, and O3, and proximity to highways and 

major roads, were estimated from residential histories from 1975-1994. Residential histories 

were available prior to 1975; however, few air pollution measurements and geographic data 

were available for these years, and recall bias was present for residential histories prior to 

1975 (cases tended to report more residences than controls (Hystad et al. 2012)). To ensure 

reliable exposure assessment, only persons with complete twenty-year residential histories in 

Canada during this period were included in the final analysis, which reduced the study to 

2,390 cases and 3,507 controls. Various exposure periods were examined (e.g. 1975-

1980/85/90), but ambient pollution exposures for all periods were highly correlated with the 

1975-1994 period (r ≥ 0.96).  

The spatiotemporal air pollution exposure assessment approach is described in detail 

elsewhere (Hystad et al. 2012). Briefly, a multi-staged approach was used to assign annual 

concentrations of PM2.5 and NO2, and summer (May to September) O3, to residential histories. 

First, national spatial surface estimates of each pollutant were created from recent satellite-

based estimates at a 10x10 km resolution (for PM2.5 (van Donkelaar et al. 2010) and NO2 

(Lamsal et al. 2008)) and from a 21x21 km resolution chemical transport model (for O3 

(Environmental Canada, 2011). Next, all fixed-site National Air Pollution Surveillance 

monitoring data were formatted to annual averages for the study period. Since PM2.5 

measurements were not available prior to 1984, a random-effects linear regression model was 
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used to estimate pre-1986 PM2.5 based on total suspended particulate (TSP) measurements (as 

these were measured beginning in 1974) and metropolitan variables (Model R2=0.67, root 

mean square error=2.31 µg/m3). This approach is similar to others studies that have estimated 

PM2.5 from TSP (Katanoda et al. 2011; Lall et al. 2004). Finally, yearly calibration of the 

national spatial pollutant surfaces was conducted by calculating a ratio of measured to surface 

estimates at each National Air Pollution Surveillance monitoring station. Smoothed inverse-

distance-weighted interpolation was conducted using the ratios, and the resulting surface 

applied to adjust the spatial pollutant surface for each year in the 1975-1994 study period.  

Figure 11 illustrates the average spatiotemporal pollutant surfaces from 1975-1994 and 

the location of study participants' residential histories (sum of residential postal-code locations 

within a 50-km grid). These maps represent pollution concentrations that would be assigned if 

there were no residential mobility; in practice, the exposure assessment was conducted using 

yearly pollutant concentrations and residential histories. 

Urban Fixed-Site Monitor Exposure Assessment 

An urban sub-analysis was conducted using air pollution exposures derived solely from 

fixed-site National Air Pollution Surveillance measurements. As mentioned, the spatial and 

temporal coverage of PM2.5 monitors is limited prior to 1986 and TSP measurements and 

modeled PM2.5 are thus examined in the urban analysis. Annual average pollutant 

concentrations were calculated for postal codes using the nearest National Air Pollution 

Surveillance monitor (within 50 km) with at least six months of complete measurements and 

one month per season for TSP and NO2, and at least three summer months for O3. Cumulative 

averages were calculated for people with at least 18 years of complete monitor coverage from 

1975-1994.  
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Figure 11. Location of study participant residential histories (a), and average PM2.5 (µg/m3) 

(b), NO2 (ppb) (c), and O3 (ppb) (d) concentrations for the period 1975 to 1994. 

 

Proximity Measures to Highways and Major Roads 

Proximity measures to major roads were used to estimate exposure to vehicle emissions. 

The 1996 (DMTI Spatial, Inc.) road network was applied to derive proximity measures for all 

residential years, due to the lack of historical national road networks. We calculated the 
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number of years residing within 50, 100 and 300 m of a highway or major road. Since 

emissions from vehicles have decreased significantly over the study period, proximity 

indicators were weighted to account for these changes using annual motor vehicle emission 

estimates (Hystad et al. 2012). Analyses of proximity to highways and major roads were also 

restricted to participants residing in urban areas (defined as >30,000 residents) due to large 

spatial errors associated with rural postal-code locations. 

Outcomes 

Histologically confirmed lung cancer incidence is the primary outcome variable of this 

study. We also examined specific histological subtypes, which for the 2,390 lung cancer cases 

with complete residential histories included: 669 (28%) squamous cell carcinoma; 756 (32%) 

adenocarcinoma; 363 (15%) small cell carcinoma; 213 (9%) large cell carcinoma; and 389 

(16%) other or unspecified carcinomas (which are not included in subsequent analyses due to 

the heterogeneity of this category). 

Covariates 

We include a comprehensive set of individual and geographic-level variables in the 

multivariate models. Individual-level covariates include age, sex, educational attainment, 

average household income during the five years prior to study interview, smoking pack-years, 

years since quitting smoking, person-years of residential and occupational second-hand smoke 

exposure (defined by the number of smokers in the home multiplied by number of residential 

years and the number of smokers in the immediate work environment multiplied by number of 

occupational years), average alcohol and meat consumption per week, years working with 

daily or weekly exposure to dust, odors and hazardous substances, and exposure to specific 

occupational lung hazards (arsenic, asbestos, asphalt, benzene, mustard gas, welding, and 

wood dust). Geographic covariates included study province (to account for the study design), 
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ecological radon risk (defined using mean residential radon concentrations by Health Regions 

(Health Canada, 2013)), and neighborhood contextual deprivation variables (described in 

Appendix 3). Coding for all individual and geographic variables is provided in Appendix 3, 

Table 1. 

Statistical Analyses 

 Analyses were conducted using two-level random-intercept logistic regression models 

(GLIMMIX, SAS version 9.3; SAS Institute, INC, Cary, NC). The random intercept was 

defined from Statistics Canada 1986 census division boundaries (n=188), representing 

regional areas in Canada, and assigned to each person’s longest residential location to account 

for residual geographic patterns. We report ORs and 95% confidence intervals (95% CI) for 

10-unit increases in ambient pollutant concentrations and for exposure quintiles. Only the 

national models were stratified by major lung cancer histological subtypes, given the reduced 

sample sizes for the urban subset analysis. National models were also stratified to examine 

pollutant interactions by a priori variables (smoking status, education and sex) that may 

modify the relationship between air pollution and lung cancer (Pope et al. 2002; Yorifuji et al. 

2010; Beelen et al. 2008; Raaschou-Nielsen et al. 2011). Variance inflation factors were also 

used to quantify the severity of multicollinearity in the regression modes.  

4.3. Results 

 Characteristics of Case and Control Subjects  

 Table 10 provides descriptive statistics and ORs (adjusted for age, sex and study 

province) for selected subject characteristics (descriptive statistics for all individual and 

geographic variables are shown in Appendix 3, Table 1).  
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Table 10. Descriptive statistics and odds ratios (ORs) for the association between lung cancer 

incidence and select subject characteristics 

Variable 
Cases 

(n=2390) 
No. (%) 

Controls 

(n=3507) 

No. (%) 
OR

a 
(95% CI) 

Age; Mean (SD) 63.5 (8.2) 59.0 (12.6) NEb 
Sex   

Female 1152 (48) 1719 (49) NEb 
Male 1238 (52) 1788 (51) NEb 

Smoking Pack Years   
Non Smoker 130 (6) 1337 (38) 1.00 

1 - 19 319 (14) 1169 (34) 3.3 (2.6-4.2) 
20 -29 467 (20) 392 (11) 15.1 (12.0-19.1) 
30 - 39 519 (22) 247 (7) 27.9 (21.7-35.7) 
40 - 49 446 (19) 149 (4) 39.3 (28.9-51.8) 
50 - 59 205 (9) 69 (2) 40.6 (28.8-57.4) 
≥ 60 235 (10) 79 (2) 44.4 (31.9-61.8) 

Years Since Cessation 

of Smoking  
 

Non Smoker  130 (6) 1337 (38) 1.00 
>35  29 (1) 177 (5) 1.3 (0.8-2.0) 
26-35  70 (3) 312 (9) 2.0 (1.4-2.7) 
16-25  158 (7) 383 (11) 4.4 (3.3-5.7) 
11-15  168 (7) 223 (6) 7.5 (5.7-10.0) 
6-10  268 (11) 208 (6) 13.6 (10.4-17.8) 
2-5  276 (12) 143 (4) 23.1 (17.4-30.8) 
Current Smoker  1273 (54) 715 (20) 22.6 (18.3-28.0) 

Median Household 

Income  
 

> $100,000 47 (2) 137 (4) 1.00 
$50,000 - $99,999 283 (12) 630 (18) 1.3 (0.0-1.9) 
$30,000 - 49,000 474 (20) 840 (24) 1.4 (1.0-2.1) 
$20,000 - 29,999 398 (17) 548 (16) 1.7 (1.2-2.4) 
$10,000 - 19,999 366 (15) 363 (10) 2.6 (1.6-3.3) 
< $10,000 133 (6) 100 (3) 3.2 (2.1-5.0) 
Prefer not to Report 689 (29) 889 (25) 1.8 (1.2-2.5) 

Education   
> High school 590 (25) 1373 (39) 1.00 
High school 406 (17) 607 (17) 1.5 (1.3-1.8) 
< High school 1379 (58) 1514 (43) 1.8 (1.6-2.1) 

a 
OR adjusted for age, sex and study province. 

b Not estimated, frequency matched to all cancer cases in NECSS study 
 
 
 Study subjects were approximately evenly divided by sex, and lung cancer cases were 

slightly older than population controls. Cases had a higher number of smoking pack-years, less 

education, lower income, higher alcohol and meat consumption, higher residential and 
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occupational second-hand smoke exposures, and more occupational exposures to dust, odors, 

and hazardous substances. Only 130 (6%) of lung cancer cases were never-smokers compared 

with 1,337 (38%) of population controls. Cases lived in regions with higher average indoor 

radon measurements and resided longer in the most socioeconomic deprived neighborhoods. 

Table 11 summarizes study-participant air pollution exposures from the national 

spatiotemporal models and correlations between pollutants  

 
Table 11. Distribution of ambient air pollution exposures and pollutant exposure correlations. 

 
     Spearman Correlation 

Pollutant Mean (SD) Median IQR Range PM2.5 NO2 O3 
PM2.5 (µg/m3) 11.9 (3.0) 12.1 4.5 3.8-19.6 1.00 - - 
NO2 (ppb) 15.4 (9.0) 13.8 14.3 1.1-44.9 0.73 1.00 - 
O3 (ppb) 20.3 (4.9) 21.2 6.2 6.6-33.8 0.25 0.11 1.00 
 
  
 National Analyses 

 Table 12 summarizes lung cancer odds ratio with exposure to PM2.5, NO2, and O3 

derived from the national spatiotemporal models. Adjusted for all individual and geographic 

variables, the OR for a 10 µg/m3 increase in PM2.5 was 1.29 (95% CI: 0.95-1.76), and for a 10 

ppb increase in NO2 and O3 was 1.11 (1.00-1.24) and 1.09 (0.85-1.39), respectively. For NO2, 

all exposure quintiles were elevated relative to the lowest (<7.1 ppb) but there was no dose-

response relationship. Although variance inflation factors for all three pollutant exposures 

were less than 2.5, the high positive correlation between PM2.5 and NO2 exposures (r=0.73) 

and the complex spatial patterns of these pollutant relationships limit the interpretation of joint 

models. We did, however, examine joint models for NO2 and O3 to explore the independent 

associations between each pollutant and lung cancer incidence, since O3 is typically decreased 

in high NO2 locations. In the joint national model, the NO2 OR was slightly increased to 1.14 

(1.02-1.28) and the O3 OR doubled to 1.20 (0.92-1.56). 
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Table 12. Odds Ratios (ORs) for the association between lung cancer incidence and PM2.5, 

NO2 and O3 exposures, as derived from national spatiotemporal models. 

Pollutant Cases
a Cont.

a Unadjusted
b 

Individual 

Covariates
c 

Individual + 

Geographic 

Covariates
d 

PM2.5         
All lung (per 10 µg/m3) 2154 3264 0.82 (0.66-1.02) 1.24 (0.92-1.67) 1.29 (0.95-1.76) 
Q1 [<9.0] 378 718 1.00 1.00 1.00 
Q2 [9.0 -10.9] 470 598 1.25 (1.05-1.50) 1.26 (1.00-1.59) 1.26 (0.99-1.59) 
Q3 [11.0 - 12.8] 462 619 1.13 (0.94-1.35) 1.32 (1.04-1.67) 1.35 (1.06-1.71) 
Q4 [12.9-14.7] 445 646 1.05 (0.87-1.26) 1.35 (1.05-1.72) 1.39 (1.08-1.79) 
Q5 [>14.7] 399 683 0.86 (0.70-1.05) 1.14 (0.87-1.49) 1.19 (0.90-1.57) 

Histology (per 10 µg/m3)     
Squamous cell 643 3264 0.64 (0.46-0.89) 1.24 (0.91-1.68) 1.09 (0.70-1.70) 
Adenocarcinoma 816 3264 0.91 (0.67-1.24) 1.22 (0.81-1.83) 1.27 (0.84-1.90) 
Small cell 383 3264 0.98 (0.64-1.51) 1.56 (0.87-2.81) 1.70 (0.92-3.13) 
Large cell 226 3264 0.89 (0.52-1.51) 1.08 (0.48-2.44) 1.11 (0.48-2.54) 

NO2      
All lung (10 ppb) 2154 3264 0.97 (0.92-1.02) 1.09 (0.99-1.21) 1.11 (1.00-1.24) 
Q1 [<7.1] 373 720 1.00 1.00 1.00 
Q2 [7.1-11.4] 454 604 1.36 (1.12-1.65) 1.57 (1.22-2.01) 1.64 (1.28-2.11) 
Q3 [11.4-16.0] 455 631 1.20 (1.00-1.48) 1.54 (1.19-2.00) 1.63 (1.26-2.12) 
Q4 [16.0-25.5] 452 649 1.11 (0.91-1.35) 1.66 (1.27-2.15) 1.79 (1.37-2.36) 
Q5 [>25.5] 420 660 1.06 (0.87-1.30) 1.49 (1.13-1.97) 1.59 (1.19-2.13) 

Histology (per 10 ppb)      
Squamous cell 653 3264 0.88 (0.78-0.98) 1.00 (0.87-1.15) 0.99 (0.85-1.16) 
Adenocarcinoma 828 3264 1.03 (0.94-1.14) 1.13 (0.99-1.30) 1.17 (1.01-1.35) 
Small cell 390 3264 0.98 (0.84-1.14) 1.07 (0.88-1.3) 1.10 (0.89-1.37) 
Large cell 230 3264 0.96 (0.80-1.15) 1.03 (0.77-1.37) 1.08 (0.79-1.46) 

O3      
All lung (per 10 ppb) 2154 3264 1.15 (0.96-1.37) 1.09 (0.86-1.38) 1.09 (0.85-1.39) 
Q1 [<15.3] 455 615 1 1 1.00 
Q2 [15.3-20.2] 421 659 1.19 (0.98-1.46) 1.13 (0.86-1.47) 1.10 (0.84-1.45) 
Q3 [20.3-22.0] 417 686 0.99 (0.77-1.26) 0.93 (0.68-1.29) 0.90 (0.65-1.25) 
Q4 [22.0-24.4] 427 660 1.07 (0.83-1.38) 1.00 (0.72-1.40) 0.97 (0.69-1.37) 
Q5 [>24.4 ] 434 644 1.10 (0.85-1.43) 1.15 (0.81-1.62) 1.13 (0.79-1.61) 

Histology (per 10 ppb)      
Squamous cell 653 3264 1.21 (0.91-1.62) 1.13 (0.80-1.62) 1.19 (0.82-1.71) 
Adenocarcinoma 828 3264 1.03 (0.79-1.34) 1.07 (0.77-1.48) 1.04 (0.74-1.44) 
Small cell 390 3264 1.14 (0.80-1.63) 1.07 (0.68-1.71) 1.07 (0.65-1.75) 
Large cell 230 3264 1.09 (0.70-1.7) 0.92 (0.49-1.71) 0.89 (0.57-1.38) 

a Case and control numbers are for the final models including all individual and geographic characteristics.  
b Unadjusted model includes age, sex and study province. 
c Unconditional logistic regression model with random effect for census division lived in the longes, adjusted for age, sex, 
cigarette smoking pack years, years since quite smoking, educational attainment, household income, average weekly alcohol 
and meat consumption, residential and occupational second hand smoke exposure, years working in occupations with dust or 
odors from industry, and years working with potential lung hazards. 
d Unconditional logistic regression model with random effect for census division lived in the longest, adjusted for all individual 
variables, study province (to account for study design), ecological radon exposure, and years living in the lowest quintile of 
neighborhood median household income, percent without a high school diploma percent of households >30 years old dwellings. 
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 We also examined the influence of urban residence using a community-size category 

based on the longest residence during the exposure period. A community-size variable was not 

included in the national models due to high correlation with NO2 (r=0.73) and to a lesser 

degree with PM2.5 (r=0.55). When the urban-size category was included in the national 

models, the fully adjusted OR per 10 unit increase in NO2 was 1.14 (0.99-1.31) and for PM2.5 

was 1.26 (0.90-1.77). No change was seen when average population density within 5 and 10 

km of residential postal codes (over the 20-year exposure period) was added. There were weak 

associations between population density within 5 and 10 km and lung cancer incidence [ORs 

of 1.06 (0.83-1.15) and 1.10 (0.86-1.40) for the highest versus lowest population density 

categories].  

 Table 13 presents stratified models for smoking status, smoking pack-years, 

educational attainment, and sex. No consistent patterns were observed for any of the national 

PM2.5, NO2 and O3 exposures. For example, compared with current smokers, larger ORs for 

lung cancer were seen among former smokers for PM2.5 and O3, but smaller ORs for NO2. The 

small number of never-smokers in this study makes interpretation of these models difficult. 

For all three pollutants, higher ORs were seen in men.  
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Table 13. Stratification of lung cancer and national pollutant models by smoking status, 

education and sex. 

Stratification 

Variable 
Cases 

No. 
Controls 

No. 
National Exposure Odds Ratios

a 
PM2.5 NO2 O3 

Smoking Status     
Never smoker 120 1261 0.95 (0.38-2.34) 0.98 (0.72-1.34) 1.24 (0.59-2.59) 
Former 885 1351 1.45 (0.96-2.19) 1.11 (0.96-1.28) 1.10 (0.79-1.52) 
Current 1149 652 1.17 (0.75-1.84) 1.20 (1.03-1.39) 0.85 (0.59-1.23) 
Smoking Pack-Years     
Never smoker 120 1261 0.95 (0.38-2.34) 0.98 (0.72-1.34) 1.24 (0.59-2.59) 
1-20 296 1121 1.53 (0.85-2.76) 1.33 (1.09-1.63) 0.91 (0.55-1.50) 
20-40 928 599 1.24 (0.76-2.01) 1.07 (0.91-1.27) 1.23 (0.84-1.80) 
>40 810 283 1.66 (0.84-3.28) 1.11 (0.87-1.41) 1.06 (0.63-1.80) 

Education       
<High school 1223 1388 1.49 (0.96-2.31) 1.04 (0.89-1.22) 1.30 (0.91-1.85) 
High school 381 567 1.97 (0.86-4.51) 1.66 (1.28-2.16) 0.77 (0.40-1.49) 
>High school 550 1309 0.99 (0.54-1.83) 1.07 (0.86-1.32) 1.00 (0.62-1.63) 

Sex       
Male 1117 1654 1.59 (1.05-2.40) 1.22 (1.06-1.40) 1.12 (0.80-1.58) 
Female 1037 1610 1.12 (0.69-1.81) 1.02 (0.87-1.21) 1.08 (0.73-1.60) 

a Adjusted for all individual variables and geographic variables (age, sex, cigarette smoking pack years, years since 
quite smoking, educational attainment, household income, average weekly alcohol and meat consumption, residential 
and occupational second hand smoke exposure, years working in occupations with dust or odors from industry, years 
working with potential lung hazards, study province, ecological radon exposure, and years living in the lowest quintile 
of neighborhood median household income, percent without a high school diploma and percent of households >30 years 
old dwellings. 

 
 

Urban Fixed-Site Monitor Sub-Analyses 

 The urban analyses, based on exposures derived from the closest monitor within 50 

km, are summarized in Table 14. In the fully adjusted model, a 10 µg/m3 increase in TSP was 

associated with an OR of 1.04 (0.95-1.13). The largest difference from the national analysis 

was seen for NO2: a 10 ppb increase in the monitor-based analysis was associated with an OR 

of 1.34 (1.07-1.69). It is likely that NO2 exposures derived for the urban monitors are also 

capturing a component of PM2.5, due to the correlation between the two pollutants. Appendix 

3, Figure 1 illustrations the relationship between exposures derived from measured NO2 and 

TSP (as PM2.5 measurements were available only after 1984 and had poor spatial coverage). 
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Table 14. Odds ratios for the association between lung cancer incidence and PM2.5, TSP, NO2 

and O3 exposure as derived from national air pollution surveillance monitors within 50 km of 

residential postal codes. 

Pollutant 
Cases

a 

No. 
Controls

a  

 No. 
Unadjusted

b 
Individual 
Covariates

c 

Individual + 

Geographic 

Covariates
d 

PM25 (Measured & 

Modelled) 
       

All lung (10 µg/m3) 1200 1862 1.10 (0.88-1.39) 1.29 (0.80-2.07) 1.33 (0.82-2.15) 

Q1 [<12.6] 219 385 1 1 1 
Q2 [12.6 -14.2] 246 370 1.06 (0.85-1.34) 1.28 (0.93-1.76) 1.17 (0.80-1.72) 
Q3 [14.2- 15.0] 247 366 1.09 (0.85-1.39) 1.00 (0.71-1.41) 0.96 (0.66-1.39) 
Q4 [15.0-15.8] 254 356 0.85 (0.66-1.10) 0.92 (0.64-1.31) 1.03 (0.72-1.46) 
Q5 [>15.8] 234 385 0.95 (0.74-1.24) 1.17 (0.81-1.71) 1.29 (0.94-1.78) 

TSP  
 

 
  

All lung (10 µg/m3) 1196 1859 1.06 (0.99-1.12) 1.05 (0.97-1.14) 1.04 (0.95-1.13) 
Q1 [<43] 268 346 1 1 1 
Q2 [43-52.8] 208 407 1.07 (0.81-1.42) 0.96 (0.64-1.42) 0.98 (0.65-1.47) 
Q3 [52.8-61.4] 258 362 1.39 (1.01-1.91) 1.21 (0.78-1.87) 1.23 (0.79-1.90) 
Q4 [61.4-67.3] 245 355 1.05 (0.75-1.46) 0.95 (0.60-1.49) 0.98 (0.62-1.55) 
Q5 [>67.3] 217 389 1.37 (1.00-1.89) 1.33 (0.86-2.06) 1.29 (0.83-2.02) 

NO2  
 

   
 

All lung (10 ppb) 983 1550 1.05 (0.89-1.24) 1.34 (1.08-1.67) 1.34 (1.07-1.69) 
Q1 [<19.1] 209 295 1 1 1 
Q2 [19.1-22.8] 194 321 1.18 (0.89-1.56) 1.41 (0.92-2.14) 1.45 (0.95-2.22) 
Q3 [22.8-24.6] 189 344 0.91 (0.65-1.27) 1.31 (0.87-1.99) 1.37 (0.90-2.08) 
Q4 [24.6-28.8] 207 284 1.03 (0.76-1.39) 1.34 (0.87-2.05) 1.40 (0.91-2.16) 
Q5 [>28.8] 184 306 1.04 (0.76-1.41) 1.63 (1.04-2.56) 1.60 (1.01-2.54) 

O3  
 

   
 All lung (10 ppb) 1015 1478 1.15 (0.9-1.48) 1.11 (0.80-1.55) 1.11 (0.79-1.54) 

Q1 [<17.8] 219 283 1 1 1 
Q2 [17.8-19.4] 168 322 1.30 (0.99-1.71) 1.34 (0.94-1.90) 1.27 (0.89-1.81) 
Q3 [19.4-21.8] 211 294 1.22 (0.91-1.63) 1.26 (0.87-1.83) 1.22 (0.84-1.78) 
Q4 [21.8-23.8] 221 278 1.02 (0.75-1.39) 0.89 (0.59-1.34) 0.88 (0.58-1.33) 
Q5 [>23.8 ] 196 301 1.33 (0.99-1.80) 1.36 (0.92-2.01) 1.33 (0.90-1.98) 

a Case and control numbers are for the final models including all individual and geographic characteristics.  
b Unadjusted model includes age, sex and study province. 
c Unconditional logistic regression model with random effect for census division lived in the longest, adjusted for age, sex, 
cigarette smoking pack years, years since quite smoking, educational attainment, household income, average weekly alcohol 
and meat consumption, residential and occupational second hand smoke exposure, years working in occupations with dust or 
odors from industry, and years working with potential lung hazards. 
d Unconditional logistic regression model with random effect for census division lived in the longest, adjusted for all individual 
variables, study province (to account for study design), ecological radon exposure, and years living in the lowest quintile of 
neighborhood median household income, percent without a high school diploma percent of households >30 years old 
dwellings. 
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Proximity to Vehicle Emissions 

 Table 15 summarizes ORs per 10 years living in proximity (50, 100 or 300 m) to a 

highway or major road, as well as weighted-proximity measures that capture the decrease in 

vehicle emissions over the exposure period. Few study participants lived within 50 m of 

highways, but increased ORs were observed for these participants, as well those living within 

100 m of highways. No associations were seen for those residing near major roads.  

 
Table 15. Adjusted ORs per 10 years living in proximity to a highway or major road for study 

participants residing in urban areas of Canada.  

Exposure Measure Exposed Individual
b Individual + 

Geographic
c 

+ Ambient 

Pollutants
d Cases

a Controls
a 

Highways      
Years ≤50m 59 58 1.21 (0.76-1.94) 1.19 (0.74-1.91) 1.23 (0.76-1.98) 
Years ≤50m (w)e 59 58 1.12 (0.80-1.58) 1.11 (0.78-1.56) 1.13 (0.80-1.60) 
Years ≤100m 123 137 1.08 (0.82-1.43) 1.07 (0.81-1.42) 1.10 (0.83-1.46) 
Years ≤100m (w)e 123 137 1.05 (0.86-1.29) 1.04 (0.85-1.28) 1.06 (0.87-1.31) 
Years ≤300m 320 416 0.97 (0.83-1.13) 0.94 (0.81-1.10) 0.95 (0.82-1.12) 
Years ≤300m (w)e 320 416 0.97 (0.87-1.09) 0.96 (0.86-1.07) 0.97 (0.86-1.08) 

Major Roads      
Years ≤50m 331 427 1.05 (0.90-1.23) 1.00 (0.85-1.18) 1.00 (0.85-1.17) 
Years ≤50m (w)e 331 427 1.04 (0.92-1.16) 1.00 (0.89-1.13) 1.00 (0.89-1.12) 
Years ≤100m 507 717 1.02 (0.90-1.16) 0.99 (0.87-1.12) 0.98 (0.87-1.12) 
Years ≤100m (w)e 507 717 1.01 (0.93-1.11) 0.99 (0.90-1.08) 0.99 (0.90-1.08) 
Years ≤300m 1040 1485 0.99 (0.90-1.10) 0.96 (0.87-1.07) 0.96 (0.86-1.07) 
Years ≤300m (w)e 1040 1485 0.99 (0.47-2.12) 0.97 (0.90-1.05) 0.97 (0.90-1.05) 

a All analyses included 1265 cases and 1868 controls.  
b Unconditional logistic regression model, adjusted for age, sex, cigarette smoking pack years, years since quite smoking, 
educational attainment, household income, average weekly alcohol and meat consumption, residential and occupational 
second hand smoke exposure, years working in occupations with dust or odors from industry, and years working with 
potential lung hazards. 
c Unconditional logistic regression model with random effect for census division lived in the longest, adjusted for all 
individual variables, study province (to account for study design), ecological radon exposure, and years living in the 
lowest quintile of neighborhood median household income, percent without a high school diploma percent of households 
>30 years old dwellings.b Adjusted for all individual and geographic variables. 
d Unconditional logistic regression model with random effect for census division lived in the longest, adjusted for all 
individual and geographic variables, and PM2.5, NO2 and O3 exposures. 
e Weighted be vehicle emissions to account for emission changes from 1975-1994. 
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4.4. Discussion 

 The present study aimed to enhance current understanding of the risks posed by air 

pollution to lung cancer incidence. We attempted to reduce exposure misclassification by 

conducting extensive spatiotemporal air pollution exposure assessments that incorporate long-

term residential histories, and we examined associations with various pollutants and sources of 

exposure. We were also able to control for a comprehensive set of potential individual and 

geographic confounding factors. 

 Overall, our results support previous literature showing that ambient PM2.5 air pollution 

is associated with increased lung cancer risk. In our national analysis, we found that a 10 

µg/m3 increase in PM2.5 was associated with an OR of 1.29 (0.95-1.76). This estimate is 

similar to the effect size reported in a 2008 meta-analysis, with a pooled RR of 1.21 (1.10-

1.32) per 10 µg/m3 increase in PM2.5 (Chen et al. 2008). An extended follow-up of the Harvard 

six cities study from 1974 to 2009 also found a 37% (7-75%) increase (Lepeule et al. 2012), 

and a recent analysis of  never-smokers in the ACS cohort based on 26 years of follow-up 

found a RR of 1.19 (0.97-1.47) (all for a 10 µg/m3 increase in PM2.5) (Turner et al. 2011). 

 Unlike the relatively robust literature on PM2.5 and lung cancer, there are fewer studies 

on the associations of the gaseous pollutants NO2 and O3 with lung cancer. We found an OR 

for a 10-unit increase in NO2 of 1.11 (1.00-1.24) in the national analysis, and a substantially 

larger OR [1.34 (1.07-1.69)] in the urban monitor-based analysis. This higher estimate may be 

due to restricting the study to large urban areas, more accurate exposure assessment, or 

exposure assessment that captured both NO2 and PM2.5 influences (due to the high correlation 

between PM2.5 and NO2 and the lack of PM2.5 monitoring data prior to 1984). Studies of NO2 

and lung cancer risk generally show positive associations ranging from 5-30% increases in 
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risk per 10 ppb increases in NO2 (Katanoda et al. 2011;,Nyberg et al. 2000;,Vineis et al. 

2006;,Yorifuji et al. 2010); however, negative associations have also been observed [RR 0.86 

(0.70-1.07) per 30 µg/m3] (Beelen et al. 2008). 

 In addition to NO2, a number of studies have examined NOx air pollution (primarily as a 

marker of traffic air pollution) with most reporting positive associations with lung cancer 

(Beelen et al. 2008; Nafstad et al. 2003; Raaschou-Nielsen et al. 2011; Raaschou-Nielsen et al. 

2010; Nyberg et al. 2000). When we considered proximity to highways and major roads as a 

surrogate for traffic air pollution exposure, we found elevated risk of lung cancer incidence 

associated with living within 100 m of highways [OR 1.10 (0.83-1.46) per 10 year-residence], 

but not for major roads. Our results are similar to those from a Danish cohort [incidence rate 

ratio of 1.21 (0.95-1.55) for lung cancer associated with living within 50 m of a major road (> 

10,000 vehicles per day)] (Raaschou-Nielsen et al. 2011) as well as those from a Dutch cohort 

[RR of 1.10 (0.74-1.62) for living within 100 m of a motorway or 50 m of a road with > 

10,000 vehicles/day] (Beelen et al. 2008). Major roads in urban locations of Canada have 

similar traffic volumes; however, we did not see any associations between living near major 

roads and lung cancer incidence.  

 We found a trend of increasing lung cancer incidence with increasing O3 concentrations 

[OR 1.09 (0.85-1.39) for a 10 ppb increase in the national models] with similar results in the 

urban analysis. In multi-pollutant models incorporating NO2 and O3, the O3 OR increased 

substantially to 1.20 (0.92-1.56), suggesting that accounting for areas with low O3 but high 

NO2 may be important to further understand the association between long-term O3 exposure 

and lung cancer risk. There are no other large studies we are aware of to compare with these 

findings. 



 
96 

 

 Lastly, we did not observe clear patterns between air pollution exposures and specific 

histological subtypes. Generally, PM2.5 exposure was most strongly associated with small cell 

and adenocarcinoma; NO2 with adenocarcinoma; and O3 with squamous cell carcinoma. The 

most persuasive association was for NO2 and adenocarcinoma [OR 1.17 (1.01-1.35)]. 

Adenocarcinoma is the most common histological subtype among never smokers, but there is 

no consensus in the literature as to whether air pollution is associated more strongly with 

adenocarcinoma or other histological subtypes. Some studies have found air pollution to be 

more strongly associated with adenocarcinoma (Liaw et al. 2010;, López-Cima et al. 2011;  

Chen et al. 2009), while others have found the strongest associations with other histological 

subtypes (Barbone et al. 1995; Katsouyanni et al. 1991; Raaschou-Nielsen et al. 2010).  

 This study relies on the accuracy of historical exposure assessments. A number of 

sensitivity analyses were conducted to examine how the ORs change with different historical 

exposure assessment methods (summarized in Figure 12). These methods included the 

spatiotemporal models (used in national models and described in methods); spatiotemporal 

models developed with a national ratio of historical pollutant concentrations to current levels 

(for PM2.5 only); historical regression models that use satellite data, population density, and a 

time trend to predict historical concentrations (Hystad et al. 2012); the satellite or chemical 

transport model spatial surfaces without temporal adjustments; and exposures estimated only 

from fixed-site monitoring data within 50 km. Figure 12 demonstrates a relatively small 

degree of variability in the PM2.5 and O3 OR estimates, while the NO2 urban monitor exposure 

assessment has a higher OR than the two national NO2 models incorporating spatial and 

temporal variability. For all pollutant models, the a priori national spatiotemporal exposure 

assessments had the smallest standard errors.  



 

Figure 12. Sensitivity analyses using different air po

 

 This study has a number of strengths that address important limitations in the current 

air pollution and lung cancer literature. First, we estimated 

levels at six-digit residential postal codes. To reduce exposure misclassification,

were derived from twenty years of residential histories. This time

prior to 1975, cases tended to report more addresses than population controls, which would 

have incorporated bias into the study

with complete twenty-year residential histories wer

able to examine the influence of residential

study subjects with missing residential histories resulted in substantial attenuation of the OR 

estimates. For example, including subjects with 18 years (90%) of complete exposures in the 

national models resulted in ORs per 10 unit incr

1.11 (1.00-1.22) and 1.05 (0.83

Sensitivity analyses using different air pollution exposure assessment approaches.

This study has a number of strengths that address important limitations in the current 

air pollution and lung cancer literature. First, we estimated long-term historical air pollution 

l postal codes. To reduce exposure misclassification,

were derived from twenty years of residential histories. This time-period was selected because, 

prior to 1975, cases tended to report more addresses than population controls, which would 

incorporated bias into the study (Hystad et al. 2012). To further reduce bias,

year residential histories were included in the final analyses

able to examine the influence of residential-history completeness, and found that including 

study subjects with missing residential histories resulted in substantial attenuation of the OR 

estimates. For example, including subjects with 18 years (90%) of complete exposures in the 

national models resulted in ORs per 10 unit increase in PM2.5, NO2 and O3 of 1.23 (0.92

1.22) and 1.05 (0.83-1.33). Attenuation was greater when subjects with 15 years 
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llution exposure assessment approaches. 

This study has a number of strengths that address important limitations in the current 
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of 1.23 (0.92-1.65), 

when subjects with 15 years 



 
98 

 

(75%) of complete exposures were included. Unlike other studies that assume participants 

have lived at their home residence for a certain amount of time, missing data in this study 

likely represents substantial exposure error as study participants self-reported their addresses 

and missing periods represent addresses they could not recall or residential locations outside 

of Canada.  

            Second, unlike most studies, which are restricted to single pollutants and city locations, 

we developed national models for multiple pollutants and were able to include participants in 

all areas of Canada. This type of exposure assessment has also been used in a recent national 

Canadian cohort analysis of PM2.5 and non-accidental and cardiovascular mortality (Crouse et 

al. 2012). Third, unlike many prior studies, we had a large sample size (n=2,390 incident lung 

cancer cases and 3,507 population controls), which allowed us to examine the associations 

between air pollution and lung cancer histology. Fourth, a comprehensive set of individual and 

geographic level information was available for modeling important confounding variables. 

The inclusion of smoking information in particular had a large influence on study results. 

Smoking variables in the adjusted models substantially increased ORs, due to the small 

negative spatial association between smoking prevalence and air pollution exposures 

(Villeneuve et al. 2011) The inclusion of ecological radon exposures was also important, 

specifically in the NO2 and PM2.5 models, as high radon concentrations in Canada are located 

in areas that generally have lower NO2 and PM2.5 concentrations.  

 A number of study limitations also need to be considered. First, while this study has a 

relatively high response rate for cases (62%) and population controls (67%), response and 

recall bias cannot be ruled out. No difference in the completeness of self-reported residential 

histories was present between cases and controls when restricted to the 1975-1994 exposure 

period. Second, it is essential to note that populations are not distributed evenly across 
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geographic communities, and thus, a random sample of the population may not be a random 

sample of all places. The national enhanced cancer surveillance system was designed so each 

provincial cancer agency would sample and recruit study participants. A province variable was 

therefore included in the fully adjusted models to capture any differences between sampling 

strategies (health insurance plans were used in five provinces, random digit dialing in two, and 

property assessment data in one). This is not ideal, in that the province variable likely captured 

a portion of the air pollution variance. The province variable also had a large influence on 

histology results, suggesting possible classification or recruitment differences by province. In 

addition, a large portion of our study population was located in and around Toronto, Ontario, 

(see Figure 11a), which had the highest PM2.5 exposures. Any response bias or exposure 

assessment error in this geographic area would have a large influence on our study results. A 

sensitivity analysis including all provinces but Ontario (1,399 cases and 2,050 controls) 

indicated that results changed only slightly for NO2 [OR 1.12 (0.97-1.31) per 10 ppb increase] 

and O3 [OR 1.12 (0.80-1.56) per 10 ppb increase], but were reduced for PM2.5 [OR 1.15 (0.77-

1.72) per 10 µg/m3 increase]. The reduction for PM2.5 is presumably due to the exclusion of 

the highest exposed (those living in Southern Ontario), which greatly reduced exposure 

variation in the analysis. The sensitivity to geographic variables is not as pronounced for NO2 

since those with the highest NO2 exposure quintile lived in various large cities across Canada, 

rather than clustered in one region. We also included a random effect based on the census 

division of longest residence to account for unmeasured spatial structure in the data.  

               Third, the models were sensitive to sub-analyses, as seen with the monitor-based 

exposure-assessment results, which were substantially higher than the national NO2 results. 

The difference in NO2 results may be due to the various exposure assessment approaches, with 

the national models capturing inter- and intra-urban variation and the urban monitor-based 
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assessment capturing predominantly intraurban differences. NO2 exposures derived from 

urban monitors may also be capturing a component of PM2.5, since monitoring data for PM2.5 

were not available prior to 1984. Fourth, the OR estimates, primarily for PM2.5, changed 

slightly with various coding schemes for smoking variables. For example, when a continuous 

smoking-pack-years-squared variable was included in the national model to account for non-

linear associations between smoking and lung cancer, the OR associated with a 10 unit 

increase in PM2.5 decreased to 1.23 (0.91-1.67). Fifth, all model results did not show dose-

response gradients. This may have been due to the relatively small sample size and range of 

exposures for study participants, particularly in the urban monitor-based analyses. Sixth, due 

to privacy concerns, residential history locations were limited to six-digit postal codes, which 

are accurate in urban areas but can cover much larger regions in rural areas. Proximity 

analyses were therefore restricted to urban areas of Canada. Lastly, while we were able to 

estimate exposure from residential history, no information was available for other important 

micro-environments such as work locations.  

4.5. Conclusions 

 In sum, we found increased risks of lung cancer incidence with residential exposures to 

ambient PM2.5, NO2, and O3, as well as living within 100 m of highways. Results were most 

robust for NO2 and PM2.5. More research is needed to establish whether O3 exposure is an 

independent risk factor for lung cancer. 
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Chapter 5 

 

Geographic Variation in Radon and Associated Lung 

Cancer Risk in Canada: A Population-Based  

Case-Control Study 

 
 

Submitted for publication: Hystad, P., Demers, P., Johnson, K., Brauer, M., Setton, E., 

Cervantes, A., Poplawski, K., McFarlane A., Whitehead, A., Nicole, A.M. Geographic 

Variation in Radon and Associated Lung Cancer Risk in Canada: A Population-Based Case-

Control Study.  

 

Abstract 

Background:  Radon is an important risk factor for lung cancer. Here we present radon 

concentration and potential maps and conduct the first national-level analysis of residential 

radon exposure and lung cancer risk in Canada.  

Methods:  We used 2,390 lung cancer cases and 3,507 population controls collected from 

1994-1997 in eight Canadian provinces through the National Enhanced Cancer Surveillance 

System. Residential histories over a twenty year period were used to estimate ecological radon 

exposures from two geospatial mapping methods. The first uses a recent Health Canada survey 

of 14,000 residential radon measurements sampled by 121 Health Regions (HRs) across 

Canada. The second was based on radon potential areas estimated from geology, sediment 

geochemistry and aerial gamma-ray spectrometry measurements. Hierarchical logistic 
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regression analyses were used to estimate odds ratios for lung cancer incidence, after adjusting 

for a comprehensive set of individual and geographic covariates. 

Results:  Significant variation in average residential radon concentrations were found across 

HRs in Canada (range: 16-386 Bq/m3). In multivariate models, a 50 Bq/m3 increase in average 

HR radon concentration was associated with a 7% (95% CI:-6-21%) increase in the odds of 

lung cancer and exposure quartiles demonstrated a dose-response relationship. For every ten 

years that individuals lived in high radon potential zones, the odds of lung cancer incidence 

increased by 11% (95% CI:1-23%).  

Conclusions:  These results strengthen the evidence for radon exposure as a risk factor for 

lung cancer. The significant geographic variation in radon concentrations across Canada also 

supports the use of radon risk mapping to target population health prevention efforts. 
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5.1. Introduction 

 Radon is a colorless, odorless, naturally occurring gas released from the breakdown of 

Uranium in soils. Exposure to radon occurs primarily indoors, where levels can accumulate to 

high concentrations. The majority of lung cancer cases are due to tobacco smoke; however, 

radon increases the risk of lung cancer in smokers and is a major cause of lung cancer for 

individuals who have never smoked (Darby, 2005; IARC, 2012c; Krewski et al., 2005; Samet 

et al., 2009). In Canada, approximately 16% of lung cancers (3,261 cases annually) are 

estimated to be attributable to residential radon exposure (Chen et al., 2012). 

 While radon is recognized as being causally associated with lung cancer, national-level 

studies are important to estimate attributable disease burden and to develop population health 

policy. To date, only one residential radon epidemiological study has been conducted in 

Canada. This study was conducted in Winnipeg and reported no associations between 

residential radon concentrations and lung cancer (Létourneau et al., 1994). Similar to most 

epidemiological studies of residential radon, exposure was assessed using indoor residential 

measurements. These types of studies have limited statistical power arising from small sample 

sizes and exposure misclassification from extrapolating short-term measurements to estimate 

long-term exposures and the difficulty in accounting for residential mobility. Alternatively, 

two recent epidemiological studies conducted in the US and Denmark have used maps and 

spatial prediction models to estimate long-term residential radon concentrations in larger 

population samples, the approach we follow in this analysis. For the Cancer Prevention Study 

II cohort in the US, average radon measurements by zip codes were used to estimate 

individual radon exposure, and a 100 Bq/m3 increase in radon was associated with a 15% 

(95% CI: 1-31%) increase in lung cancer mortality (Turner et al., 2011a). In the Danish Diet, 
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Cancer and Health cohort, information on geology and housing characteristics were used to 

predict radon concentrations at residential locations for 57,053 subjects (589 lung cancer 

cases) and an incidence rate ratio of 1.04 (95% CI: 0.69–1.56) per 100 Bq/m3 increase in 

radon, and 1.67 (95% CI: 0.69–4.04) among non-smokers, was found (Bräuner et al., 2012). 

 Here we present national radon concentration and potential maps for Canada and apply 

these to a population based case-control study of 2,390 histological confirmed lung cancer 

incidence cases and 3,507 population controls from eight Canadian provinces to estimate lung 

cancer risk associated with ecological residential radon exposure.  

5.2. Methods 

Radon Mapping 

 Two distinct approaches were used to create radon concentration and potential maps 

for Canada. The first (Figure 13a) used a recently completed residential radon survey of three-

month radon measurements collected from approximately 14,000 households across Canada 

(Health Canada, 2012). The sampling frame for this survey provides representative measures 

of residential radon concentrations by Health Regions in Canada. Participants were asked to 

place detectors on the lowest lived-in level of the home in which they spend a minimum of 

four hours per day, and we used these measurements without adjustment (i.e. we did not 

standardize to basement or first floor concentrations). The second approach (Figure 13b) used 

a map of geologic radon potential provided by Radon Environmental Management Corp. 

(REMC), created from geologic surveys, aerial gamma ray spectrometry measurements, and 

stream and lake sediment geochemistry (Radon Environmental, 2012).  
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Figure 13. Results of the cross-Canada residential radon survey presented as average Health 

Region radon concentrations (a); and radon potential areas (b) developed from geology, soil 

uranium geochemistry and aerial gamma ray spectrometry measurements.  
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 The geological units used in Figure 13b were grouped into one of three zones 

according to a set of rules that defined how the various predictor measurements contributed to 

the radon potential ranking. The rank classes were selected so that each of the three classes 

contained approximately equal portions of the Canadian landmass. These measurements were 

prioritized by data quality and type, where direct measurements were given higher weighting 

than extrapolated data. The US Geological Survey's data used to create the US geological 

radon potential map (USGS, 2012) were also used to calibrate predictor datasets.  

Population-Based Lung Cancer Case-Control Study 

We used data from the lung cancer component of the National Enhanced Cancer 

Surveillance System (NECSS) (Johnson et al., 1998), a multi-site population based case-

control study that collected 3,280 lung cancer cases, with histological classification, and 5,073 

population controls from 1994-1997. Provincial cancer registries identified and sampled cases 

within 1-3 months of diagnosis and population controls were selected from a random sample 

of individuals within each province, frequency matched on sex and five-year age categories to 

the overall collection of NECSS cancer cases. Recruitment methods for controls depended on 

data availability and accessibility by province and included provincial health insurance plans 

in five provinces (British Columbia, Saskatchewan, Manitoba, Prince Edward Island, and 

Nova Scotia), random digit dialing in two (Alberta and Newfoundland), and property 

assessment data in one (Ontario). A research questionnaire was mailed to selected cases and 

controls and active follow-up was conducted. The response rate for contacted lung cancer 

cases was 61.7% and for population controls was 67.4%. The research questionnaire collected 

a comprehensive set of information on individual characteristics and lifetime occupational 

exposures and residential histories. Only study participants with 20 years of geocoded 
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residential histories in Canada from 1975-1994 were included in the final analysis. The time-

period and exclusion criteria are meant to reduce exposure assessment error and bias that may 

result from incomplete self-reported residential histories. These exclusion criteria reduced the 

study sample to 2,390 incident histologically-confirmed lung cancer cases and 3,507 

population controls. No significant differences in demographic, socioeconomic, or smoking 

characteristics were found between excluded and retained lung cancer cases and population 

controls.  

Radon Exposure Assessment 

 Residential histories of study subjects were geo-coded to 6-digit postal codes and are 

the basis of the estimation of radon exposure. Figure 14 illustrates kernel density maps of the 

residential locations of lung cancer cases and population controls between 1975 and 1994. As 

expected from a population-based study, the geographic distribution of population controls 

mirrors the geographic distribution of the population in the study provinces, while slight 

differences can be seen in the geographic distribution of lung cancer cases. 

 

Figure 14. Kernel density maps (radius=25km's) of residential locations between 1975- 1994 

for population controls and lung cancer cases. 
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 Ecological measures of radon exposure were developed using the two radon maps. It 

was assumed that geographic variation in radon concentration and potential were constant 

during the 20 year exposure period. For the first exposure assessment approach we assigned 

average health region radon measurements (Figure 13a) to all postal codes located in each 

health region. We then calculated mean health region radon measures over the 20 year 

exposure period for each individual. For the second approach we assigned the radon potential 

zone (Figure 13b) that each residential postal code was located in and for each individual 

calculated the number of years living in high, moderate and guarded radon potential zones for 

the 20 year exposure period. 

Covariates 

A comprehensive set of individual and geographic variables were available for 

inclusion in the multivariate models and covariates that may be potential confounding factors 

were identified a priori. Individual variables included in the final analyses were age, sex, 

educational attainment, household income, smoking pack-years, years since quit smoking, 

residential second hand smoke exposure (defined by the number of smokers in the home 

multiplied by number of residential years), occupational second hand smoke exposure (defined 

by the number of smokers in the immediate work environment multiplied by number of 

occupational years), average weekly alcohol serving, average weekly meat servings, years 

working with dust and odors in the immediate work environment, and years working with 

hazardous substances. Geographic variables included were study province, long-term fine 

particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) air pollution exposure 

estimates (Hystad et al., 2012), an urban population size category based on where individuals 

had lived the longest during the exposure period, and neighborhood contextual deprivation 
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indicators (based on census tract and census sub-division data), including the number of years 

residing in the most deprived quintile of median household income, percent residence without 

a high school diploma, and percent rental dwellings.  

Statistical Analyses 

We conducted analyses using hierarchical logistic regression (GLIMMIX, SAS version 

9.3; SAS Institute, INC, Cary, NC). Random intercepts were defined from Statistics Canada 

census division (CD) boundaries, representing regional areas in Canada, and assigned to 

individuals’ longest residential location to account for residual geographic patterns. 

Individuals with missing covariates (cases=236, controls=243) were excluded from the final 

multivariate models. We report ORs and 95% confidence intervals (95% CI) for 50 Bq/m3 

increases in ecological radon concentrations as well as for exposure quartiles. For the radon 

potential zone exposure model, we report ORs for ten-year increases in residing within high 

radon potential zones as well as categorized residential years. Models were also stratified by 

major lung cancer histological subtypes. 

5.3. Results 

 Selected descriptive statistics for study participants are provided in Table 16 (for a full 

description see Appendix 3 Table 1). Within lung cancer cases, only six percent were never 

smokers compared to 38% in the population control group. Lung cancer cases also had much 

higher smoking pack-years than controls and quite smoking more recently. There were also 

several differences between socioeconomic and individual health-behaviors as well as 

occupational exposures. No differences were found for years living in an urban area or 

ambient air pollution exposures in unadjusted analyses. Cases had higher ecological radon 

exposures for all measures: the mean (±SD) health region radon concentration for cases was 
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81.3 (40.8) Bq/m3 compared to 78.6 (39.5) Bq/m3 for controls, and lung cancer cases lived an 

average of 9.0 years in high radon potential zones compared to 7.9 years for controls. 

 
Table 16.  Descriptive statistics of lung cancer cases and population controls. 

Variable 
Cases

a
 

(n=2390) 
Controls

a
 

(n=3507)  
Age; Mean (SD) 63.5 (8.2) 59.0 (12.6) 
Sex  

Female 1152 (48%) 1719 (49%) 
Male 1238 (52%) 1788 (51%) 

Median Household Income  
> $100,000 47 (2%) 137 (4%) 
$50,000 - $99,999 283 (12%) 630 (18%) 
$30,000 - 49,000 474 (20%) 840 (24%) 
$20,000 - 29,999 398 (17%) 548 (16%) 
$10,000 - 19,999 366 (15%) 363 (10%) 
< $10,000 133 (6%) 100 (3%) 
Prefer not to Report 689 (29%) 889 (25%) 

Education  
> High school 590 (25%) 1373 (39%) 
High school 406 (17%) 607 (17%) 
< High school 1379 (58%) 1514 (43%) 

Smoking Status  
Never-smoker 130 (6%) 1337 (38%) 
Former Smoker 969 (41%) 1446 (41%) 
Current Smoker 1288 (54%) 718 (2%) 

Smoking Pack Years; mean (SD) 34.9 (21.0) 12.7 (17.5) 
Years Since Quit Smoking; mean (SD) 6.2 (8.9) 10.3 (13.2) 
Residential SHS exposure; mean (SD)  56.7 (44.1) 36.1 (37.9) 
Occupational SHS exposure; mean (SD)  74.0 (83.2) 56.7 (74.2) 
Years working with industrial dust/odors; 
mean (SD) 12.9 (16.8) 10.3 (15.4) 

Years working with hazardous 
substances; mean (SD) 12.2 (27.8) 9.4 (26.0) 

PM2.5 (µg/m3); mean (SD) 11.9 (2.9) 11.9 (3.1) 
NO2 (ppb); mean (SD) 15.6 (8.9) 15.3 (9.1) 
O3 (ppb); mean (SD) 20.2 (5.0) 20.3 (4.9) 
Average HR Radon Measurements 
(Bq/m3); mean SD 81.3 (40.8) 78.6 (39.5) 

Years in High Radon Potential Area; 
mean (SD) 9.0 (9.5) 7.9 (9.5) 
a Descriptive statistics for lung cancer cases and population controls with 20 years of 
complete residential histories. 
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 Table 17 presents crude ORs (95% CI) as well as individual and individual+geographic 

adjusted ORs for lung cancer incidence using both radon exposure measures. In the fully-

adjusted (individual+geographic) model a 50 Bq/m3 increase in health region average radon 

was associated with a non-significant increase in the odds of all lung cancer incidence (OR 

1.07, 95% CI: 0.94-1.21), and a dose-response trend was present in the exposure quartiles. A 

significant increase in the odds of adenocarcinoma (OR 1.23, 95% CI: 1.04-1.45) was found. 

For every ten years residing in a high radon potential zone, the odds of all lung cancer 

increased by 11% (95% CI: 1-23%). In the radon potential zone model, the largest risks were 

observed for large cell and squamous cell carcinoma. No statistically significant interaction 

was seen by any smoking variables and Health Region radon levels and radon potential areas. 
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Table 17. Association between ecological radon exposures and lung cancer incidence, by histological subtype. 

Exposures Cases Controls Unadjusted
a Individual Covariates

b 
Individual + 

Geographic 

Covariates
c 

Average Health Region 

Radon Measurements 
All lung cancer (per 50 Bq/m3) 2154 3264 1.12 (1.03-1.22) 1.05 (0.94-1.17) 1.07 (0.94-1.21) 
Categorized Bq/m3 (Quartiles)    

Q1 (< 51) 496 808 1 1 1 
Q2 (51-75) 525 894 1.06 (0.88-1.27) 1.08 (0.86-1.37) 1.04 (0.81-1.34) 
Q3 (76-102) 567 792 1.23 (1.01-1.49) 1.09 (0.85-1.41) 1.11 (0.84-1.45) 
Q4 (>102) 566 770 1.26 (1.03-1.54) 1.19 (0.92-1.54) 1.18 (0.89-1.56) 

Histological Subtype(per 50 Bq/m3)    
Squamous cell  605 3264 1.07 (0.93-1.22) 0.96 (0.81-1.15) 0.92 (0.76-1.11) 
Adenocarcinoma 756 3264 1.15 (1.02-1.30) 1.14 (0.75-1.74) 1.23 (1.04-1.45) 
Small cell  358 3264 1.17 (1.00-1.37) 1.08 (0.88-1.33) 1.09 (0.85-1.41) 
Large cell 213 3264 1.06 (0.87-1.29) 1.05 (0.82-1.35) 1.08 (0.77-1.51) 

Residing in High Radon 

Potential Zone 
All lung cancer (per 10 years) 2154 3264 1.10 (1.03-1.18) 1.12 (1.02-1.22) 1.11 (1.01-1.23) 
Categorized Years      

0  1025 1743 1 1 1 
1-9 135 209 1.18 (0.93-1.49) 1.18 (0.88-1.59) 1.20 (0.89-1.55) 
10-19 134 184 1.32 (1.04-1.68) 1.27 (0.93-1.73) 1.30 (0.95-1.78) 
20 860 1128 1.24 (1.07-1.44) 1.27 (1.05-1.53) 1.25 (1.01-1.62) 

Histological Subtype(per 10 years)    
Squamous cell 605 3264 1.14 (1.02-1.27) 1.16 (1.01-1.34) 1.14 (0.97-1.34) 
Adenocarcinoma 756 3264 1.07 (0.97-1.18) 1.05 (0.93-1.18) 1.05 (0.91-1.21) 
Small cell 358 3264 1.07 (0.93-1.23) 1.11 (0.93-1.33) 1.13 (0.92-1.40) 
Large cell 213 3264 1.18 (0.99-1.40) 1.21 (0.99-1.49) 1.21 (0.94-1.56) 

a  Adjusted for age, sex and study province(to account for study design).  
b Adjusted for age, sex, study province, cigarette smoking pack years, years since quit smoking, educational attainment, household income, average weekly alcohol and meat 
consumption, residential and occupational second hand smoke exposure, years working in occupations with dust or odors from industry, years working with lung hazards. 
c Adjusted for all individual variables as well as ambient PM2.5, NO2, and O3 air pollution exposures, urban size category of longest residences, and years living in the lowest 
quintile of median household income, percent residence without a high school diploma, and percent rental dwellings. 
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5.4. Discussion 

Epidemiological Results 

 We found associations between two separate measures of radon exposure and lung 

cancer incidence in this population-based case-control study that correspond closely to the 

existing literature on residential radon exposure and lung cancer risk. Combined analysis 

including seven North America studies found an 11% (95% CI: 0-28%) increase in lung 

cancer risk per 100 Bq/m3 increase in residential radon concentrations, while for subjects who 

had resided in only one or two houses in the 5–30 year exposure window and who had 

residential radon measurements for at least 20 yr of this 25-yr period, there was an 18% (95% 

CI: 2-43%) increase in lung cancer risk per 100 Bq/m3 (Krewski et al., 2005). The analysis of 

13 European studies found an 8.4% (95% CI: 3-15.8%) increase in risk per 100 Bq/m3 

increase (Darby, 2005). After correction for the dilution caused by random uncertainties in 

measuring radon concentrations the increase in risk was estimated at 16% (95% CI: 5%-31%) 

per 100 Bq/m3 increase in radon exposure. In our study, a 100 Bq/m3 increase in average 

health region level radon concentrations was associated with a 13% (95% CI: -12%-46%) 

increase in lung cancer incidence. While not statistically significant, exposure quartiles 

demonstrated a dose-response relationship and the lack of statistical significance is not 

unexpected given the error associated with assigning individual radon exposures from 

aggregated data. While interaction between smoking and radon exposure is established, with 

higher radon risks for smokers (Darby, 2005; Krewski et al., 2005), we did not see significant 

effect modification by any smoking-related variable, which may be related to radon exposure 

assessment error. This is similar to a number of other residential radon studies (Turner et al., 

2011a; Wilcox et al., 2008).  
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Spatial Variation in Radon and Population Health Prevention 

 We used radon concentration and potential maps to examine the spatial variation in 

radon across Canada and to determine the associated lung cancer risks. It is hoped that this 

new evidence can be used to enhance radon prevention.  

 In Canada, less than thirty percent of the population is able to describe radon as a 

health hazard, and only 5% of individuals have tested their homes for radon.(Statistics Canada, 

2010) The geographic variation in radon risk across Canada (Figure 13) has important 

population health implications, although it is important to differentiate the individual and 

population-level utility of the radon maps presented here. The radon maps illustrate large 

variations in mean radon concentrations by health regions (range of 16-370 Bq/m3); however, 

all areas of Canada had homes with high radon concentrations (even in the health region with 

the lowest mean radon concentration there were still homes that tested over the Health Canada 

guideline of 200 Bq/m3). This supports Health Canada's policy that all individuals should get 

their homes tested for radon (Health Canada, 2012). However, from a population health 

perspective, areas of Canada that have much greater radon risk could be the target of focused 

radon prevention programs. Currently, there are no official radon maps for Canada, despite 

most developed countries having published radon risk maps that indicate high/low areas based 

on radon measurements or radon potential information (Tollefsen et al., 2011). Geographical 

targeting would also increase the cost-effectiveness of radon prevention options, which are 

often criticized for being too costly (Gray et al., 2009). The health region measurement map is 

recommended for informing population health prevention, as it incorporates actual indoor 

radon measurements and corresponds to the administrative boundaries in which public health 

activities are developed and implemented at the regional level. The radon potential map, 

however, could also be used for radon public awareness. Importantly, targeted prevention 
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efforts are only one component of a comprehensive radon strategy, as prevention measures in 

all new buildings is one of the most effective ways to reduce radon-related lung cancers 

(Bochicchio, 2011). 

Limitations 

 The principal limitation of this study is the use of ecological radon measures to 

estimate individual-level radon exposures. Random error in exposure assessment is surely 

present, due to large variability in radon concentrations between homes in the same health 

region, which likely attenuated the ORs towards the null (Heid et al., 2004). Nevertheless, 

there is substantial radon variability between HRs in Canada that was captured by the 

residential radon survey. We also conducted a sensitivity analysis to examine how results 

changed if radon exposure was assigned based on average town/city measurements (if >5 

measurements existed). Results showed slightly reduced ORs, with a 100 Bq/m3 increase in 

town/city radon associated with an 8% (95% CI: -10% - 30%) increase in lung cancer 

incidence. This exposure approach uses a small sample of radon measurements to represent 

average city measurements even though the data are not representative at this scale 

(representing a trade-off between spatial scale and data representativeness). Conducting the 

epidemiological analysis by health regions also validates the health region radon map in terms 

of demonstrating an association with lung cancer incidence in this national case-control study. 

Radon potential was also used as an independent exposure method that was thought to have 

increased specificity. There were differences between the radon potential and health region 

measurement results, particularly for histological subtype analyses, but the overall conclusions 

from the two approaches are consistent. This is likely due to both methods capturing the very 

high radon locations in Canada; however, the correlation between individual assigned health 
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region measurements and radon potential exposures was only 0.24. This low correlation is not 

surprising given the known difficulties in predicting individual residential radon 

concentrations (Hauri et al., 2012), which depend predominantly on individual housing 

characteristics. While we were able to estimate exposure from long-term residential locations, 

no information was available for housing characteristics that may influence radon exposures. 

 A number of limitations related to the case-control study design also need to be 

highlighted. First, while this study has a relatively high response rates for cases (61.7%) and 

population controls (67.4%), response and recall bias cannot be ruled out. Second, different 

recruitment methods for population controls were conducted in each province that could 

incorporate bias into the study; however, it is unlikely that any recruitment differences would 

be related to radon exposures and stratified analyses by the three recruitment methods 

produced similar results. Third, no information was available for other environments, such as 

work locations, were radon exposure many occur. 

5.5. Conclusions 

 We used radon concentration and potential maps to examine the spatial variation in 

radon across Canada and used these maps to examine associations with lung cancer incidence 

in a population-based case-control study conducted in eight provinces. In this study, increased 

odds of lung cancer were found for all radon exposure measures and effect sizes correspond 

closely with those reported in recent meta-analyses. These epidemiological results, along with 

the national radon concentration and potential maps, could be used as one component of a 

comprehensive radon strategy to geographically target prevention efforts to high risk areas of 

Canada. 
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Chapter 6 

 

Neighborhood Socioeconomic Status and Individual Lung 

Cancer Risk: Evaluating Long-Term Exposure Measures 

and Mediating Mechanisms 

 
  

Submitted for publication: Hystad, P., Carpiano, R., Demers, P., Johnson, K., Brauer, M. 

Neighborhood Socioeconomic Status and Individual Lung Cancer Risk: Evaluating Long-

Term Exposure Measures and Mediating Mechanisms 

 

Abstract 

Background:  Neighborhood socioeconomic status (SES) has been associated with a number 

of chronic diseases, but little information is available on the association between long-term 

neighborhood SES and lung cancer incidence.  

Methods:  Using data from a large Canadian population-based lung cancer case-control study, 

we: (1) investigate whether there is an association between lung cancer incidence and long-

term neighborhood SES, derived from 20 years of residential histories and five national 

censuses; (2) compare long-term neighborhood estimates to single-point-in-time neighborhood 

SES measures; and (3) examine the extent to which the association between long-term 

neighborhood SES and lung cancer is mediated by a range of individual-level behaviors, and 

environmental and occupational exposures.  

Results:  The odds of lung cancer cases residing in the most versus least deprived long-term 

neighborhood SES quintiles were significantly elevated in analyses of national (OR: 1.36; 
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95% CI: 1.14-1.62) and city (OR: 1.46; 95% CI: 1.13-1.89) samples after adjustment for 

individual SES, and remained significant (OR: 1.38; 95% CI: 1.01-1.88) in the city sample 

after adjusting for smoking and other known and suspected lung cancer risk factors. No-dose 

response relationship was observed and the influence of neighborhood SES on lung cancer 

risk was completely restricted to the most socioeconomically deprived neighborhoods. 

Important differences were observed between long-term and single-point-in-time 

neighborhood SES measures, with the latter attenuating effect estimates by over 50 percent. 

Smoking behavior was the predominant mediating pathway of long-term neighborhood SES in 

both analyses, while occupational exposure to industrial dusts and odors was also a mediator 

in the national analysis.  

Conclusions:  We found associations between long-term neighborhood SES measures and 

lung cancer incidence after accounting for individual SES and smoking behaviour. More 

research is needed to further examine specific, modifiable pathways by which neighborhood 

context may influence lung cancer risk. 
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6.1. Introduction 

 Lung cancer represents approximately 18% of all cancer deaths worldwide (Jemal et 

al., 2011). In Canada, there are approximately 25,600 new lung cancer cases and 20,200 lung 

cancer deaths annually, representing 14% of new cancers and 27% of all cancer deaths (CCS, 

2012). Strong social (and spatial) gradients in lung cancer are present in Canada and many 

other countries, with significantly higher incidence rates among disadvantaged populations as 

well as places (Sidorchuk et al., 2009). These differences remain after accounting for 

individual smoking behaviour as well as other established lung cancer risk factors (Mao et al., 

2001; Sidorchuk et al., 2009).   

 Neighborhood context, especially socioeconomic status (SES), has an independent 

association with a number of health outcomes, including all-cause mortality (Meijer et al., 

2012b) and cardiovascular disease (Kawakami, Li, & Sundquist, 2011; Major et al., 2010; 

Diez-Roux et al., 2001); however, the role of neighborhood SES in shaping lung cancer risk 

(and gradients) has not been adequately examined to date. Neighborhood influences on cancer 

incidence in general have only recently been examined in a relatively small number of studies 

(Freedman et al., 2011; Major et al., 2010; Meijer et al., 2012; Matukala Nkosi et al., 2012; 

Webster et al., 2008). 

 Overall, the lack of research on neighborhood SES and cancer may be due to two 

particular methodological challenges. First, long latency periods are typically associated with 

cancer development and properly examining these latency periods requires information on 

study participants’ residential histories in which to link corresponding measures of 

neighborhood context over multiple time points − information that is not commonly available 

or collected. Studies have highlighted differential residential mobility patterns based on socio-
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economic factors (Hurley et al. 2005) as well as important individual health-behaviours 

(Pearce & Dorling, 2010), which could bias neighborhood studies that do account for 

residential mobility. A review of neighborhood studies of older adults found that 10 of the 33 

identified studies accounted for respondents’ length of residence in a neighborhood, but only 

one study accounted for changes in neighborhood environments (Yen et al., 2009). Several 

studies have also examined area-level influences over the life course (Carson et al. 2007; 

Clarke et al. 2013; Curtis et al. 2004; Leyland & Næss 2009; Naess et al. 2008; Ohlsson & 

Merlo 2011) as well as neighborhood context at multiple time points (Lloyd et al., 2010; 

Sampson et al., 2008; Wheaton and Clarke, 2003), but findings are mixed and the majority of 

this literature has not examined cancer.   

 Second, is the challenge of testing numerous direct and mediating pathways through 

which neighborhood SES may influence cancer risk. Though studies have found that 

neighborhood SES is associated with the onset of cancer after controlling for individual-level 

socioeconomic characteristics (e.g. Freedman et al., 2011; Meijer, Bloomfield, et al., 2012; 

Webster et al., 2008) there have been few studies that examine whether such associations 

remain after accounting for a comprehensive set of individual risk factors and whether these 

factors are mediators of the neighborhood SES effect on cancer risk. In terms of lung cancer, 

the effects of long-term neighborhood SES may be particularly mediated through smoking 

behaviours, due to the large risk posed by smoking to lung cancer (Pesch et al., 2012), and the 

fact that smoking, as well as smoking cessation, has been associated with neighborhood SES 

(Duncan et al. 1999; Giskes et al. 2006). In addition to smoking, neighborhood SES may be 

associated with lung cancer risk through a number of other mediating pathways of known or 

suspected lung cancer risk factors, including: exposure to second hand smoke; alcohol, diet 
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and physical inactivity; occupational exposures; and exposure to environmental hazards such 

as ambient air pollution (Alberg et al., 2007).  

 A number of mechanisms may underlie how these behavioral, occupational and 

physical environmental factors affect the neighborhood SES and lung cancer association. In 

terms of individual health-behaviours, these may include: (1) differential resources and 

opportunity structures within neighborhoods, such as smoking outlets, availability of healthy 

food retailers, or physical activity opportunities (e.g., Black et al., 2011; Boone-Heinonen et 

al., 2011); (2) prevalent norms and attitudes within neighborhoods regarding health-

behaviours (e.g., Annear et al., 2009; Karasek et al., 2012); (3) local social networks and 

community belonging that support or hinder health-behaviour (e.g., Carpiano, 2008; Hystad & 

Carpiano, 2012); and (4) disordered and stressful neighborhood environments that may lead to 

unhealthy coping behaviors, such as smoking and alcohol consumption, and worse general 

health (e.g., Ellaway & Macintyre, 2009). With regard to stressful neighborhood 

environments, neighborhood SES may shape exposure to chronic psychosocial stress leading 

to allostatic load. Allostatic load may contribute to the development and progression of some 

types of cancer (Reiche et al., 2004) and biomarkers of allostatic load have been found to be 

increased among residents of lower SES neighborhoods (Bird et al., 2010; Finch et al., 2010). 

In terms of physical environmental factors, an extensive body of literature demonstrates low 

SES neighborhoods may be disproportionately exposed to environmental hazards, particularly 

industrial and vehicle air pollution (Mohai et al., 2009). Little research has examined 

occupational exposures as a mediating pathway of neighborhood effects; however, living in 

low SES neighborhoods may shape occupational opportunities towards working class or “blue 

collar” jobs that are associated more frequently with exposure to cancer causing substances 

(Evans & Kantrowitz, 2002).   
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 The present study aims to address these two important challenges and build upon prior 

research to better understand the nature of the neighborhood SES association with lung cancer 

incidence. Specifically, we examine the relationship between long-term neighborhood SES 

and lung cancer incidence by using data from a large Canadian population-based lung cancer 

case-control study and deriving long-term neighborhood SES measures from 20 years of 

residential histories and five censuses. The goals of this study are to: (1) investigate whether 

there is an association between long-term neighborhood SES and lung cancer incidence; (2) 

compare long-term neighborhood estimates to commonly used single point-in-time 

neighborhood measures; and (3) examine the extent to which the association between long-

term neighborhood SES and lung cancer is mediated by a range of behavioral, environmental 

and occupational factors. 

6.2. Methods 

Study Population  

 We used the lung cancer component of the National Enhanced Cancer Surveillance 

System (NECSS), which includes 3,340 lung cancer cases and 5,039 population controls 

collected in eight Canadian provinces (Newfoundland, Nova Scotia, Prince Edward Island, 

Ontario, Manitoba, Saskatchewan, Alberta and British Columbia) between 1994 and 1997 

(Johnson et al. 1998). Briefly, cases were identified and sampled by Provincial Cancer 

Registries with newly diagnosed histological confirmed primary lung cancer, and after 

obtaining physician consent, were mailed questionnaires and telephone follow up conducted if 

needed. The response rate for contacted lung cancer cases was 61.7%. Population controls 

without cancer were selected from a random sample of individuals within each province, with 

an age/sex distribution similar to that of all cancer cases collected in the NECSS. Recruitment 
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methods for controls depended on data availability and accessibility by province and included 

provincial health insurance plans in five provinces, random digit dialing in two, and property 

assessment data in one. Provincial Cancer Registries collected information from controls using 

the same protocol as for the cases. The response rate for contacted population controls was 

67.4%.  

Assessment of Long-Term Neighborhood Socioeconomic Status 

 Neighborhood SES characteristics were estimated from participants’ residential postal 

codes between 1975 and 1994. Residential histories were collected prior to 1975, but limited 

census data were available for these years and recall bias was present for residential histories 

prior to 1975 (cases tended to report more residences than controls [Hystad et al., 2012]). To 

reduce exposure assessment error, the study was therefore limited to participants that had 

neighborhood census data for ≥18 residential years between 1975 and 1994. This reduced the 

sample size to 2,568 lung cancer cases and 3,821 population controls for subsequent analyses. 

Differences between excluded and retained lung cancer cases and population controls were 

examined and no significant differences in demographic, socioeconomic, or smoking 

characteristics were found. 

 Neighborhood SES characteristics were derived from 1971, 1981, 1986, 1991 and 

1996 census data. Census tract (CT) geography was used to represent neighborhoods in 

Census Metropolitan Areas (CMA's) (hereafter referred to as cities), while census sub-division 

(CSD) geography was used in non-CMA locations, as CTs are only available for large cities in 

Canada. Statistics Canada defines neighborhoods using CTs, which encompass 2,500 to 8,000 

individuals and are created from recognizable boundaries that maximize homogenous 

populations in terms of socioeconomic characteristics (Statistics Canada, 2012a). CSDs 

generally represent municipalities and represent much larger geographic areas than CTs. 
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Residential postal codes were linked to the geographic boundaries of the closest census year 

(e.g. 1978 residences received 1981 census data) using Geographic Information Systems (GIS) 

and Statistics Canada postal code conversion file (PCCF) software (Statistics Canada, 2012b).  

Long-Term Neighborhood Socioeconomic Status Measures 

 Measuring neighborhood SES conditions across both the study time-period and 

geographic areas of Canada entailed a three step process. First, long-term neighborhood SES 

was measured using five census variables: household income, percent of adults' unemployed, 

percent of adults without a high school diploma, percent rental dwellings, and percent of 

residents that moved in the last five years. These variables were selected because they were 

measured in a comparable fashion in all census years and capture important constructs of 

neighborhood SES. We standardized the variables by creating z-scores for each census 

variable by census year as well as by city (for CT neighborhoods) and by province (for CSD 

neighborhoods). This method standardizes the large temporal changes in census data, 

particularly for household income and high school education. The z-scores also reflect the 

regional deviation of the neighborhood census value for each city or province within each 

census year, due to the large geographical differences in Canada. These Z-scores were each 

coded such that positive values represent increasingly improved neighborhood SES conditions 

while negative values indicate increasing neighborhood SES deprivation.  

 Second, we calculated a neighborhood SES index by computing the mean of all five 

neighborhood characteristic z-scores for each census year. If individuals were assigned CT 

measures, then these measures were used to represent neighborhood characteristics, and if CT 

measures were not available then CSD measures were used.  

 Lastly, the long term neighborhood SES index score for each participant was obtained 

by averaging annual z-scores over the twenty year exposure period. The Cronbach's alpha for 
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the five individual neighborhood census variables in the final national sample was 0.62 and in 

the city sample was 0.80. Quintiles were created from the final twenty year average z-scores 

and used in the subsequent analyses.  

Individual-level Covariates 

 An extensive amount of individual-level information was collected by questionnaire 

for each study participant. The covariates included in our analyses are important socio-

demographic characteristics and known or suspected risk factors for lung cancer: 

1. Socio-demographic variables include age, sex, educational attainment, and 

household income during the five years prior to study interview.  

2. Smoking-related variables include lifetime cigarette smoking pack-years, years since 

quit smoking, and person-years of residential second hand smoke exposure 

(computed as the number of smokers in the home multiplied by the number of years 

living in that home).  

3. Other health behaviours include average alcohol drinks per week, average serving of 

meat and vegetables per week, and average moderate and rigorous physical activity 

per month.  

4. Occupational exposures include person-years of occupational second hand smoke 

exposure (defined by the number of smokers in the immediate work environment 

multiplied by the number of years at the job), years working with daily or weekly 

exposure to industrial dusts or odors, and years working with occupational lung 

hazards (including arsenic, asbestos, cadmium, chromium, asphalt, welding, and 

wood dust).  
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5. Environmental exposures include individual estimates of exposure to a common 

traffic pollution, nitrogen dioxide (NO2) (Hystad et al., 2012), the number of years 

residing within 100 meters of a major road, and average ecological-level radon 

exposures estimates (radon is a known lung cancer risk factor resulting from 

naturally occurring gas released from the breakdown of Uranium in soils) (Hystad et 

al., 2012). All environmental exposures were derived from residential histories over 

a twenty year period.   

Statistical Methods and Analytic Procedures 

 Due to the differences in neighborhood definitions between city and non-city areas, 

two analyses were conducted for all models. The first is the national analysis, which includes 

all study participants and neighborhood SES estimates from both CTs (cities) and CSDs (non-

cities), which has a sample size of 2,300 cases and 3,548 controls. The second is a subset of 

individuals living in cities with neighborhood measures derived only from CTs, which has a 

reduced sample of 1,116 cases and 1,682 controls.  

 Analyses of long-term neighborhood SES and lung cancer incidence were conducted 

using two-level random intercept logistic regression models (GLIMMIX, SAS version 9.3; 

SAS Institute, INC, Cary, NC). To account for residual geographic patterns, the two-level 

models used a random intercept defined from Statistics Canada 1986 census division (CD) 

boundaries (n=188) that represent regional areas in Canada, and assigned to individuals’ 

longest residential location. Hierarchical models were not created to account for within-

neighborhood correlation (i.e. by CTs or CSDs) as there were small census-year intra-class 

correlations (~0 for CTs and CSDs), reflecting the small number of individuals within each 

neighborhood. On average, participants reported 2.3 (SD=1.6) residences during the exposure 

period, therefore also reducing the effect of within-neighborhood clustering on parameter 
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estimates. This model was also estimated with different single point-in-time neighborhood 

SES measures to compare with the long-term neighborhood measure. 

To assess mediation of the long-term neighborhood SES and lung cancer effect, we 

first assessed the direct association between long-term neighborhood SES and lung cancer 

incidence. Next, we introduced the health behaviours and occupational and environmental 

factors in incremental models to assess the degree to which the relationship between long-term 

neighborhood SES and lung cancer incidence changed. For continuous mediator variables, 

ORs are calculated for an inter-quartile range (IQR) increase. Finally, we assessed the 

association between the significant health behavior, occupational, and environmental factors 

and long-term neighborhood SES using linear and ordinal regression. 

6.3. Results 

Descriptive Statistics of Study Population and Neighborhood Measures 

  Descriptive characteristics of the national study participants are summarized in Table 

18 as well as characteristics for individuals within the most and least deprived neighborhood 

SES quintiles. Study participants were approximately evenly distributed between men and 

women, and lung cancer cases were slightly older than population controls, due to frequency 

matching on all cancer cases in the NECSS. As expected, lung cancer cases had considerably 

higher smoking pack-years. In addition, cases had less education, lower income, higher 

weekly alcohol and meat consumption, lower vegetable consumption, lower moderate and 

physical activity levels, higher residential and occupational second hand smoke exposures, and 

higher occupational exposures to dust/odors and hazardous substances. Characteristics 

between individuals in the most and least deprived neighborhood SES quintiles also differed 

for both lung cancer cases and population controls, with detrimental health behaviors and 
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occupation and environmental exposures (expected for NO2 air pollution exposures) clustering 

in low SES neighborhoods. Differences between the national and urban study participants 

were also seen for many individual health behaviours, and occupational and environmental 

exposures (data not shown). In terms of long-term neighborhood SES, lung cancer cases had 

significantly lower average long-term neighborhood SES index scores than population 

controls. Significant differences were also found for all of the specific neighborhood 

characteristics except for five year residential mobility and percent rental dwellings in the 

national analysis and five year residential mobility in the urban analysis (Table 19).  
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Table 18.  Descriptive statistics for the national sample of lung cancer cases and population controls stratified by the most and least 

deprived quintile of long-term neighborhood SES. 

Characteristics
1
 

All Participants in National 

Analysis 

Participants in Least 

Deprived Neighborhood 

Index Quintile 

Participants in Most 

Deprived Neighborhood 

Index Quintile 

Cases  

(n=2,568) 

Controls  

(n=3,821) 

Cases  

(n=469) 

Controls  

(n=808) 

Cases  

(n=599) 

Controls  

(n=678) 

Age; mean (±SD) 63.5 (8.2) 60.0 (12.6) 63.9 (7.7) 58.9 (12.5) 63.4 (8.1) 59.1 (12.3) 
Men; n (%) 1329 (51.8%) 1934 (50.6%) 250 (52.3%) 416 (51.5%) 307 (51.3%) 340 (50.2%) 
Median Household income     

<$10,000 143 (5.6%) 114 (3.0%) 15 (3.3%) 8 (1.0%) 47 (8.2%) 30 (4.6%) 
$10,000-19,999 395 (15.4%) 401 (10.5%) 43 (9.5%) 43 (5.5%) 110 (19.1%) 86 (13.1%) 
$20,000-29,999 420 (16.4%) 587 (15.4%) 64 (14.1%) 84 (10.7%) 99 (17.2%) 117 (17.8%) 
$30,000-49,999 510 (19.9%) 913 (23.9%) 105 (23.1%) 177 (22.6%) 107 (18.6%) 160 (24.3%) 
$50,000-$99,999 309 (12.0%) 705 (18.5%) 92 (20.3%) 233 (29.7%) 62 (10.8%) 90 (13.7%) 
>$100,000 50 (2.0%) 158 (4.1%) 22 (4.9%) 69 (8.8%) 4 (0.7%) 17 (2.6%) 
Preferred not to report 608 (23.7%) 824 (21.6%) 113 (24.9%) 170 (21.7%) 147 (25.5%) 159 (24.1%) 

Years of education; mean (±SD) 10.7 (3.1) 11.9 (3.6) 11.7 (3.2) 13.1 (3.5) 10.2 (3.1) 11.2 (3.5) 
Smoking pack years; mean (±SD) 35.0 (21.1) 12.5 (17.3) 34.1 (21.1) 11.3 (16.5) 37.3 (22.6) 13.7 (19.3) 
Years since quit smoking; mean (±SD) 6.1 (8.9) 10.1 (13.1) 6.8 (9.9) 10.5 (13.5) 5.5 (8.3) 10.2 (13.6) 
Alcohol servings/week; mean (±SD) 7.0 (12.4) 4.8 (9.1) 7.7 (11.6) 5.5 (8.7) 7.9 (14.4) 4.8 (9.1) 
Meat servings/week; mean (±SD)  10.0 (8.6) 8.6 (8.9) 9.6 (6.5) 8.1 (6.8) 9.9 (8.6) 8.7 (14.5) 
Vegetable servings/week; mean (±SD) 20.2 (14.2) 20.7 (14.4) 20.2 (10.8) 20.4 (10.9) 19.2 (11.5) 21.6 (22.9) 
Moderate physical activity hrs/month; mean (±SD) 9.3 (13.6) 9.7 (13.5) 9.1 (13.7) 9.3 (13.3) 6.8 (12.4) 6.6 (11.6) 
Rigorous physical activity hrs/month; mean (±SD) 1.6 (5.8) 2.5 (7.3) 1.5 (5.2) 2.3 (6.5) 1.1 (4.8) 1.8 (7.3) 
Residential SHS exposure; mean (±SD)  55.8 (44.8) 35.7(37.5) 51.1 (42.9) 31.3 (33.7) 54.8 (44.4) 37.2 (37.8) 
Occupational SHS exposure; mean (±SD)  73.3 (82.2) 55.9 (73.4) 71.3 (80.2) 60.0 (75.2) 73.9 (85.7) 55.3 (73.4) 
Years working with industrial dust/odors; mean (±SD) 12.8 (16.6) 10.1 (15.1) 10.9 (15.7) 9.7 (15.3) 14.2 (17.4) 11.3 (16.0) 
Years working with hazardous substances; mean (±SD) 12.2 (30.0) 9.2 (25.6) 11.0 (24.8) 8.9 (25.6) 11.5 (26.2) 9.8 (33.5) 
Average HR Radon Measurements (Bq/m3); mean ±SD 80.7 (40.4) 78.3 (39.5) 79.9 (39.7) 75.1 (36.8) 78.1 (37.9) 72.7 (33.6) 
NO2 (ppb); mean ±SD 15.7 (8.9) 15.3 (9.1) 18.4 (8.6) 18.5 (8.5) 16.9 (9.6) 16.9 (10.0) 
Years living within 100m of Major Roads; mean ±SD 3.1 (6.5) 2.9 (6.3) 2.2 (5.7) 2.1 (5.4) 3.2 (6.6) 3.1 (6.6) 
1 Descriptive statistics for study participants with ≥18 years of residential histories from 1975-1994.  
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Table 19. Long-term neighborhood SES z-scores derived from residential histories between 

1975 and 1994 for lung cancer cases and population controls. 

Variable 
Lung Cancer 

Cases 

Population 

Controls 
p value 

National Analysis N=2,467 N=3,675  

SES Index -0.00 (0.47) 0.05 (0.46) <0.01 
Average household Income 0.08 (0.72) 0.17 (0.72) <0.01 
Percent residents who moved over last 5 years -0.08 (0.73) -0.08 (0.74) 0.78 
Percent rental dwellings -0.21 (0.94) -0.18 (0.94) 0.26 
Percent no high school diploma 0.11 (0.78) 0.20 (0.76) <0.01 
Percent unemployed 0.08 (0.58) 0.15 (0.54) <0.01 

City Analysis N=1,224 N=1,802  
SES Index 0.03 (0.57) 0.13 (0.55) <0.01 

Average household Income -0.01 (0.80) 0.15 (0.80) <0.01 
Percent residents who moved over last 5 years 0.12 (0.70) 0.16 (0.67) 0.09 
Percent rental dwellings 0.04 (0.79) 0.15 (0.75) <0.01 
Percent no high school diploma -0.03 (0.85) 0.08 (0.82) <0.01 
Percent unemployed 0.03 (0.67) 0.13 (0.63) <0.01 

 
Evaluating the Association between Long-term Neighborhood SES and Lung Cancer 

Risk 

First, we examined the association between neighborhood SES and lung cancer 

incidence. Table 20 shows results from a series of models using the long-term and 1994 study-

entry neighborhood SES measures.  

In the unadjusted models, the OR for lung cancer among individuals with the most 

versus least deprived quintile of long-term neighborhood SES were 1.63 (95% CI: 1.38-1.92) 

in the national analysis and 1.66 (95% CI: 1.31-2.09) in the city analysis. These ORs were 

attenuated when individual income and education were added to the model, and further 

reduced in the fully-adjusted model that included all behavioral, occupational, and 

environmental covariates shown in Table 18. In the national analysis, the OR was no longer 

statistically significant (OR 1.18; 95% CI: 0.95-1.46), while in the city model analysis, the 

long-term neighborhood SES measure remained elevated and statistically significant for the 

most versus least deprived quintile (OR 1.38; 95% CI: 1.01-1.88). In neither the national nor 

urban analyses was a dose-response relationship observed and associations were completely 

restricted to the most deprived quintile of the neighborhood SES index. 
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Comparing Neighborhood SES Measures    

How do these long-term neighborhood SES results differ from results using single 

point-in-time neighborhood SES measures − the most common approach in neighborhood 

health effects research? Table 20 shows that, overall, the unadjusted ORs for study-entry 

neighborhood SES were slightly lower than the long-term OR estimate and similar in the city 

analysis. Large differences, however, occurred in the fully adjusted models, in which case the 

study-entry measures were severely attenuated (greater than 50% compared to the long-term 

measures) and no longer statistically significant, while the long-term neighborhood measures 

remained elevated and statistically significant in the urban analysis. In the national analysis, 

the correlation between the long-term neighborhood SES index and point-in-time 1994 index 

was 0.78. In the city analysis, this correlation was 0.81. These results indicate relatively high 

correlations, but also that substantial differences in the neighborhood SES measures exist and 

that study-entry measures are not fully capturing long-term neighborhood SES. We also 

examined different latency periods, including 1975 and 1975-1985 derived neighborhood 

measures and found similar patterns of reduced OR estimates in all models compared to long-

term neighborhood SES (data not shown).  
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Table 20. Odds ratios for lung cancer incidence by quintiles of the neighborhood SES index derived from long-term and study-entry 
residences. 

 

 

 Long-Term (1975-1994) Neighborhood SES Study Entry (1994) Neighborhood SES 

National Analysis Unadjusted
a
 SES-Adjusted

b
 Fully-Adjusted

c
 Unadjusted

a
 SES-Adjusted

b
 Fully-Adjusted

c
 

Q1 [most deprived] 1.63 (1.38-1.92)* 1.36 (1.14-1.62)* 1.18 (0.95-1.46) 1.47 (1.24-1.73)* 1.28 (1.07-1.53)* 1.05 (0.85-1.31) 
Q2 1.12 (0.94-1.32) 0.94 (0.78-1.12) 0.91 (0.73-1.13) 1.22 (1.04-1.44)* 1.06 (0.89-1.27) 0.94 (0.76-1.17) 
Q3 1.19 (1.01-1.41)* 1.02 (0.86-1.22) 0.91 (0.74-1.13) 1.20 (1.02-1.43)* 1.13 (0.94-1.35) 1.01 (0.82-1.26) 
Q4 1.21 (1.03-1.43)* 1.05 (0.88-1.25) 1.06 (0.86-1.31) 1.03 (0.87-1.22) 0.95 (0.80-1.14) 0.87 (0.71-1.08) 
Q5 [least deprived] 1.00 1.00 1.00 1.00 1.00 1.00 

City Analysis       
Q1 [most deprived] 1.66 (1.31-2.09)* 1.46 (1.13-1.89)* 1.38 (1.01-1.88)* 1.60 (1.26-2.03)* 1.44 (1.11-1.87)* 1.18 (0.86-1.61) 
Q2 1.21 (0.96-1.54) 1.05 (0.81-1.35) 0.92 (0.67-1.25) 1.35 (1.06-1.72)* 1.21 (0.94-1.56) 1.08 (0.80-1.49) 
Q3 1.10 (0.87-1.40) 1.00 (0.78-1.29) 1.00 (0.74-1.36) 1.16 (0.91-1.48) 1.09 (0.85-1.41) 1.01 (0.74-1.37) 
Q4 0.92 (0.72-1.17) 0.83 (0.64-1.07) 0.85 (0.63-1.16) 0.88 (0.69-1.12) 0.83 (0.64-1.07) 0.73 (0.54-1.00) 
Q5 [least deprived] 1.00 1.00 1.00 1.00 1.00 1.00 

* p< .05 
a Controls for age, sex, study province. 
b Controls for age, sex, study province, education, and household income. 
c Controls for  age, sex, study province, education, household income and all other variables listed in Table 18. 
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Assessing Mediators between Long-Term Neighborhood SES and Lung Cancer Risk 

To what degree is the association between long-term neighborhood SES and lung 

cancer risk mediated by health behaviours, and occupational and environmental exposures? 

Tables 21 and 22 summarize results for long-term neighborhood SES when several 

hypothesized mediating factors are controlled: smoking, health behaviors, and occupational 

and environmental exposures − for the national and urban analyses, respectively.  

For Table 21 (the national analysis), model 1 shows results for a baseline model for 

long-term neighborhood SES adjusted for individual-level income and education and 

sociodemographics. Model 2 (including smoking variables) further attenuated the 

neighborhood effect by 53%, to 1.20 (95% CI: 0.97-1.48). Models 3 (other health-behaviours), 

4 (occupational exposures) and 5 (environmental exposures) had small influence on the 

neighborhood SES and lung cancer association, even though most individual-health 

behaviours and occupational exposures were significantly associated with lung cancer 

incidence and corresponded to hypothesized effect directions. In model 6 (fully adjusted 

model), smoking pack years, years since cessation, residential second hand smoke exposure, 

meat consumption, and occupational exposure to industrial dusts and odors are significant.  

In terms of the city analysis (Table 22), including income and education (model 1) 

attenuated the unadjusted neighborhood OR to 1.46 (95% CI: 1.13-1.89). Inclusion of smoking 

variables again attenuated the neighborhood effect observed in model 2 (although only by 

19.5%), but the OR for the most versus least deprived neighborhood SES quintiles remained 

statistically significant (OR: 1.37; 95% CI: 1.01-1.87). Including the other individual health-

behaviours (model 3), occupational exposures (model 4) and environmental exposures (model 

5) had little influence on the neighborhood effect. In the fully adjusted model (model 6), all 

smoking variables and meat consumption were statistically significant.
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Table 21. Odds ratios for lung cancer incidence in the national incremental models. 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Neighborhood SES Index            
Q1 [most deprived] 1.36 (1.14-1.62)* 1.20 (0.97-1.48) 1.34 (1.12-1.60)* 1.33 (1.11-1.59)* 1.36 (1.14-1.63)* 1.18 (0.95-1.46) 
Q2 0.94 (0.78-1.12) 0.90 (0.73-1.11) 0.92 (0.77-1.11) 0.93 (0.78-1.11) 0.95 (0.79-1.14) 0.91 (0.73-1.13) 
Q3 1.02 (0.86-1.22) 0.91 (0.74-1.13) 1.00 (0.84-1.20) 0.98 (0.82-1.18) 1.04 (0.87-1.24) 0.91 (0.74-1.13) 
Q4 1.05 (0.88-1.25) 1.06 (0.86-1.31) 1.06 (0.89-1.27) 1.03 (0.87-1.23) 1.07 (0.90-1.27) 1.06 (0.86-1.31) 
Q5 [least deprived] 1 1 1 1 1 1 

Smoking            
Smoking pack years  3.24 (2.74-3.84)*       3.15 (2.65-3.75)* 
Residential SHS exposure  1.12 (1.02-1.24)*       1.12 (1.01-1.24)* 
Yrs since quit smoking       

Never Smoker   1    1 
>25 years  1.25 (0.92-1.69)    1.23 (0.91-1.67) 
11-25 years   2.58 (1.99-3.34)*    2.62 (2.02-3.41)* 
6-10 years   4.78 (3.54-6.45)*    4.82 (3.56-6.05)* 
2-5 years   7.25 (5.24-10.0)*    7.32 (5.28-10.1)* 
Current Smoker   6.68 (5.14-8.68)*    6.48 (4.98-8.44)* 

Health-Behaviours           
Moderate PA (hrs/month)    0.82 (0.74-0.91) 

  
0.98 (0.86-1.10) 

Rigorous PA (hrs/month)    0.92 (0.89-0.95) 
  

0.97 (0.93-1.01) 
Vegetable servings/wk    0.89 (0.84-0.94)     0.95 (0.89-1.01) 
Meat servings/week    1.20 (1.13-1.26)*     1.11 (1.04-1.18)* 
Alcohol servings/wk    1.16 (1.11-1.20)*     1.03 (0.98-1.07) 
Occupational Exposures           
Occupational SHS      1.28 (1.18-1.39)* 

 
1.00 (0.91-1.10) 

Years working with 
industrial dust/odors 

     
1.14 (1.05-1.24)* 

 
1.10 (1.00-1.22)* 

Years working with  
 hazardous substances 

     
1.01 (1.00-1.03)* 

 
1.01 (0.99-1.02) 

Environmental Exposures        
  

Average HR Radon (Bq/m3)        1.05 (0.94-1.16) 1.06 (0.95-1.19) 
NO2 (ppb)        1.10 (0.96-1.27) 1.13 (0.97-1.31) 
Residing 100m of Major Rd        0.99 (0.91-1.07) 0.99 (0.91-1.07) 
* p<.05. NOTE: All models control for age, sex, study province, education, and household income. For continuous variables, ORs are calculated for one 
IQR increase. 
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Table 22. Odds ratios for lung cancer incidence in the city incremental models. 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Neighborhood SES Index            
Q1 [most deprived] 1.46 (1.13-1.89)* 1.37 (1.01-1.87)* 1.44 (1.11-1.88)* 1.45 (1.12-1.87)* 1.45 (1.12-1.88)* 1.38 (1.01-1.88)* 
Q2 1.05 (0.81-1.35) 0.90 (0.67-1.23) 1.03 (0.80-1.34) 1.05 (0.81-1.36) 1.06 (0.82-1.36) 0.92 (0.67-1.25) 
Q3 1.00 (0.78-1.29) 0.99 (0.73-1.34) 1.01 (0.78-1.31) 0.99 (0.77-1.28) 1.01 (0.78-1.30) 1.00 (0.74-1.36) 
Q4 0.83 (0.64-1.07) 0.84 (0.62-1.13) 0.84 (0.65-1.09) 0.84 (0.65-1.08) 0.83 (0.65-1.07) 0.85 (0.63-1.16) 
Q5 [least deprived] 1 1 1 1 1 1 

Smoking       
Smoking pack years  2.72 (2.15-3.43)*    2.66 (2.09-3.38)* 
Residential SHS exposure  1.10 (0.82-1.46)    1.09 (0.95-1.26) 
Yrs since quit smoking       

Never Smoker   1    1 
>25 years  1.13 (0.74-1.72)    1.19 (0.77-1.80) 
11-25 years   2.80 (1.95-4.02)*    2.83 (1.97-4.07)* 
6-10 years   5.26 (3.45-8.03)*    5.33 (3.48-8.16)* 
2-5 years   7.55 (4.78-11.9)*    7.63 (4.81-12.1)* 
Current Smoker   7.46 (5.17-10.7)*    7.18 (4.96-10.3)* 

Health-Behaviours       
Moderate PA (hrs/month)   0.73 (0.62-0.85)   0.91 (0.75-1.09) 
Rigorous PA (hrs/month)   0.92 (0.88-0.97)   0.98 (0.92-1.04) 
Vegetable servings/wk   0.84 (0.77-0.92)   0.92 (0.82-1.03) 
Meat servings/week   1.28 (1.18-1.40)*   1.17 (1.06-1.29)* 
Alcohol servings/wk   1.17 (1.11-1.24)*  1.04  (0.97-1.11) 
Occupational Exposures       
Occupational SHS    1.31 (1.16-1.49)* 

 
1.00 (0.85-1.16) 

Years working with 
industrial dust/odors 

   
1.03 (0.91-1.16) 

 
1.01 (0.87-1.17) 

Years working with  
 hazardous substances 

   
1.00 (0.99-1.01) 

 
1.00 (0.98-1.01) 

Environmental Exposures       
Average HR Radon (Bq/m3)     1.23 (0.98-1.55) 1.28 (0.96-1.58) 
NO2 (ppb)     1.02 (0.83-1.24) 1.09 (0.87-1.37) 
Residing 100m of Major Rd     1.05 (0.88-1.26) 1.00 (0.80-1.24) 
* p<.05. NOTE: All models control for age, sex, study province, education, and household income. For continuous variables, ORs are calculated for one 
IQR increase. 
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 To further examine potential mediation, Table 23 models the individual mediating 

factors found to be statistically significant in the previous fully-adjusted models shown in 

Tables 21 and 22 with the long-term neighborhood SES exposures. In the national analysis, 

individuals in the most deprived neighborhood SES quintile had significantly higher smoking 

pack years (2.01 years) and were more likely to be current smokers or to have quit smoking 

more recently than individuals in least deprived neighborhoods after controlling for individual 

SES and other behavioural, occupational and environmental factors. Individuals in the more 

deprived neighborhood SES quintile were also more likely to work with industrial dusts and 

odors (1.65 additional years). Individual meat consumption and second hand smoke exposures 

were not statistically significant, suggesting they are not mediators of the neighborhood-lung 

cancer association. For the city analysis, individuals in the most deprived neighborhood SES 

quintile had higher, although not statistically significant, smoking pack years (1.17 years). 

Neighborhood SES was only significantly related to years since quit smoking, with similar 

associations as the national analysis. 
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Table 23. Predicting mediating variables based on individual's long-term neighborhood SES 

index. 

 
Smoking 

Pack Years
a
 

Years Since Quit 

Smoking
b
 

Residential 

SHS 

Exposure
a
 

Meat 

Consumption
a
 

Working 

with 

Industrial 

Dust/Odors
a
 

National Analysis      
Long-term Neighborhood 
SESa 

         

Q1 [most deprived] 2.01 (0.82)* 1.40 (1.15-1.71)* 2.11 (1.70) -0.08 (0.33) 1.65 (0.58)* 

Q2 0.81 (0.83) 1.26 (1.01-1.59)* 1.82 (1.71) -0.21 (0.33) 0.43 (0.58) 

Q3 0.33 (0.83) 1.25 (1.01-1.56)* 2.16 (1.69) -0.12 (0.33) 0.56 (0.58) 

Q4 -0.67 (0.81) 1.09 (0.89-1.33) 2.80 (1.67) 0.16 (0.32) 0.78 (0.57) 

Q5 [least deprived] 1 1 1 1 1 

Urban Analysis      
Long-term Neighborhood 
SESa 

     

Q1 [most deprived] 1.17 (1.26) 1.37 (1.09-1.71)* -- -0.56 (0.45) -- 
Q2 0.84 (1.23) 1.24 (1.00-1.54)* -- 0.02 (0.43) -- 
Q3 0.02 (1.21) 1.13 (0.91-1.40) -- -0.31 (0.43) -- 
Q4 -0.26 (1.20) 1.00 (0.80-1.23) -- -0.68 (0.43) -- 
Q5 [least deprived] 1 1 -- 1 -- 
*P<.05; each model controls for age, sex, study province and all independent vars. reported in Tables 4 and 5.  
a Linear regression model; estimates shown are variable coefficients. 
b Ordinal logistic regression model; estimates shown are odds ratios for being current smoker. 

6.4. Discussion 

 We used a large population-based lung cancer case-control study to: (1) investigate 

whether there is an association between long-term neighborhood SES, derived from 20 years 

of residential histories and five censuses, and lung cancer incidence; (2) compare long-term 

neighborhood estimates to common single-point-in-time neighborhood SES measures; and (3) 

examine the extent to which the association between long-term neighborhood SES and lung 

cancer is mediated by a range of behavioral, environmental and occupational factors. 

For our first aim, we examined the association between long-term neighborhood SES 

and lung cancer incidence. Given that lung cancer incidence rates follow SES gradients 

(Sidorchuk et al., 2009), it was not surprising that we observed the odds of lung cancer 

elevated by sixty percent in the most deprived SES neighborhoods, suggesting that individual 
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SES inequalities are reflected in neighborhood environments. After controlling for all 

individual and geographic lung cancer risk factors, positive associations remained between 

long-term neighborhood SES and lung cancer incidence, with significant associations in the 

city analyses (OR: 1.38; 95% CI: 1.01-1.88). We hypothesize that the "left over" association 

may be due to chronic stressors associated with neighborhood socioeconomic deprivation; 

however, no measures of individual-level stress were available. In addition, we did not 

observe dose-response gradients and associations were primarily limited to the most deprived 

quintile of neighborhood SES, suggesting that the influence of neighborhood SES on lung 

cancer risk may be restricted to the most socioeconomically deprived neighborhoods. Our 

finding is similar to a study in Denmark that found lung cancer incidence was lower in areas 

with the lowest unemployment rate compared to the highest (HR: 0.88; 95% CI 0.84- 0.92) 

(Meijer et al., 2012a); however, other studies have not observed differences in  lung cancer 

mortality and neighborhood SES after accounting for individual characteristics (Chaix et al., 

2006; Martikainen et al., 2003). More research is therefore needed to examine whether the 

remaining association between neighborhood SES and cancer risk is due to chronic stress, 

unmeasured risk factors, or residual confounding from important etiological factors. 

For our second aim, we examined the impact of using long-term neighborhood 

measures compared to common single-point-in-time measures of neighborhood SES in 

studying lung cancer risk. Despite high correlation between different measures, we found that 

a single point-in-time measure substantially attenuated effect estimates of neighborhood SES 

on lung cancer risk. For example, the effect sizes in the fully-adjusted models for study-entry 

versus long-term neighborhood SES measures were reduced by 72% and 53% in the national 

and city analyses. In addition, we found that the study-entry versus long-term neighborhood 

SES measure may be capturing different constructs. Including individual smoking, physical 



 
139 

 

activity, and diet and alcohol consumption eliminated most of the study-entry neighborhood 

SES association, while the long-term measure remained elevated and statistically significant in 

the city analysis. Similar results were found in a case-control study in Montreal, Canada, 

where the influence of neighborhood income (at time of study-entry) on lung cancer incidence 

was completely removed in the fully-adjusted model (Nkosi et al., 2012). Conceptually, long-

term exposure to neighborhood SES would be required to influence lung cancer risk, due to 

the long latency period associated with lung cancer development. These finding highlight the 

importance of incorporating long-term measures of neighborhood context, especially in 

studies examining chronic diseases with long latency periods, and supports prior findings that 

single point-in-time neighborhood SES measures underestimate the impact of contextual 

conditions on health (Clarke et al., 2013; Lloyd et al., 2010; Murray et al., 2010; Wheaton & 

Clarke, 2003). 

Our third aim was to examine mediation of the relationship between long-term 

neighborhood SES and lung cancer risk. A number of health behaviours, and occupational and 

environmental exposures were significantly associated with lung cancer incidence in this case-

control study; however, the major mediating pathway identified was individual smoking 

behaviour, and to a smaller degree occupational exposures to industrial dusts/odors. The 

incremental models shown in Tables 21 and 22 highlighted the importance of smoking 

behaviour as a mediating factor and this finding is supported by the robust literature linking 

neighborhood SES to smoking, as well as smoking cessation, after accounting for individual 

factors (Pearce et al., 2012). In a review of the pathways linking neighborhood context and 

smoking, two general categories were identified: place-based practices (including social 

capital, social practices, contagion, and crime, disorder and related stressors) and place-based 

regulations (including smoking cessation policies, tobacco retailing and availability, tobacco 
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advertising, and urban renewal) (Pearce et al., 2012). For the other mediating factor 

indentified, very little research is available that examines whether occupational exposures may 

operate as a mediator of neighborhood SES; however, Martikainen et al. (2003) also 

demonstrated the important connection between neighborhood context, occupational 

composition (i.e. proportion of manual labor workers) and lung cancer risk. Overall, these 

findings suggest that individual smoking behaviour and occupational exposures to industrial 

dusts and odors are partial mediators of the long-term neighborhood SES effect on lung cancer 

risk. 

Strengths and Limitations 

Our study had a considerable number of strengths: a large population-based case-

control study; inclusion of urban and rural residents; availability of long-term neighborhood 

measures; comprehensive individual-level information; and exposure estimates for 

occupational and environmental exposures. Nevertheless, the results of this study need to be 

interpreted with a number of limitations in mind.  

First is the use of a broad indicator of neighborhood SES. Ideally, objective 

neighborhood measures other than SES alone should be included, such as the availability of 

tobacco retailers, physical activity and health food resources, perceived safety, etc., as well as 

individual perceptions of neighborhood SES conditions. Unfortunately, these types of 

variables were not available for this study. Second, we were only able to measure twenty years 

of neighborhood SES exposure and further life-course neighborhood measures (including 

those in early-life) should be evaluated. Third, we used CTs to represent neighborhoods in 

cities and CSDs to represent neighborhoods in non-city areas. The use of larger geographic 

sizes to represent neighborhoods in these areas may explain the weaker associations seen in 

the national analysis compared to the city analysis. The difficulty in defining neighborhoods in 
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rural areas is also reflected in the lower Cronbach's alpha for the five final census variables in 

the national analysis (0.62) compared to the city analysis (0.80). While much more work is 

needed to define and measure neighborhoods in rural areas, this population-based case-control 

study of neighborhood SES is one of the first studies to attempt to include both rural and urban 

locations and neighborhood measures. Fourth, this study has the potential for response bias in 

the recruitment of cases and population controls, even though the response rate for lung cancer 

cases (61.7%) and population controls (67%) was relatively high for a population-based case-

control study. While a random sample of individuals is not a random sample of all places, we 

saw good coverage of Canadian neighborhoods in this study and z-scores for individual census 

variables corresponded to the census average, with small expected differences given the older 

age of the case-control study population compared to the general Canadian population. Fifth, 

the influence of residual confounding from important individual and geographic characteristics 

may exist as well as confounding by unmeasured individual-level factors. This is a particular 

concern for smoking, as shown when simple smoking status is used (Nkosi et al., 2012); 

however, we were able to control for a comprehensive set of individual variables and used 

multiple measures for smoking exposures (i.e. smoking pack-years, years since quite smoking, 

and residential and occupational second hand smoke exposure). Fifth and finally, while we 

modeled neighborhood SES over a twenty year period, our results may not necessarily be 

causal as residents may select into the neighborhoods in which they live on the basis of health-

related behaviours, their occupation, and environmental characteristics. Nevertheless, we have 

taken an important step to furthering our understanding of how neighborhoods many influence 

lung cancer risk by including long-term neighborhood measures and examining mediation by 

health-behaviours and occupational and environmental exposures. 
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6.5. Conclusions 

This study has highlighted three important findings that can be used to guide future 

research on the role of neighborhood context to lung cancer. First, estimating long-term 

neighborhood SES is important for evaluating the influence of neighborhood context on lung 

cancer risk, a result that is likely applicable to all chronic diseases. For such outcomes, study 

results may be severely attenuated if single point-in-time measures of neighborhood 

characteristics are used, as long-term and study-entry neighborhood SES measures, while 

correlated, may be capturing different exposure constructs. Our finding give further support 

for the need to include longitudinal and life-course measures of neighborhood context in 

health research to identify the true magnitude of neighborhood influences on health.  

Second, using long-term neighborhood SES exposures, we found that lung cancer 

cases were more likely to reside in the most deprived socioeconomic neighborhoods of 

Canada and that individual smoking behaviour and potentially occupational exposure to 

industrial dusts and fumes are the main mediating pathways of the effect of neighborhood SES 

on lung cancer risk. While substantial research has examined potential intervention options for 

contextual influences on smoking, these have tended not to include cumulative life-course 

impacts of neighborhood context, which may operate through different pathways to influence 

smoking behaviour. Much more research is also needed to examine how neighborhood SES 

context may shape occupational opportunities or vice-versa how occupational opportunities 

may shape neighborhood SES.  

 Third, long-term neighborhood SES was also associated with lung cancer risk, even 

after accounting for individual-level smoking behaviour and a comprehensive set of other 

potential confounding factors. Hence, more research is needed to examine whether the 
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remaining association is due to chronic stress, unmeasured risk factors, or residual 

confounding from important etiological factors. This information could then be used to further 

examine specific, modifiable pathways by which neighborhood context may influence lung 

cancer risk. 
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Chapter 7 

Conclusions of Dissertation 

 

 

 The objective of this dissertation was to examine whether three exposures associated 

with the physical and social residential environment − specifically, ambient air pollution, 

radon and neighborhood SES − are risk factors for the development of lung cancer in Canada.  

Each research chapter in this thesis was designed for independent publication and contains 

specific conclusions, contributions and limitations. Therefore, this final chapter serves to 

synthesize the overall findings and key contributions, highlight overall limitations of the 

research, and propose future research directions.  

7.1. Summary of Research and Contributions 

 This dissertation contributed to the literature as well as to public and population health 

through: (1) advancing spatiotemporal exposure assessment methods; (2) creating new 

epidemiological knowledge for three environmental exposures; and (3) developing new 

knowledge and tools specific to Canada that can be used to reduce the population health 

burden associated with air pollution, radon and neighborhood SES exposures.  

7.1.1. Methodological advances in spatiotemporal exposure assessment  

 Advances in spatiotemporal exposure assessments were made for all three exposures 

examined in this dissertation. In terms of air pollution, considerable effort was taken to create 

novel spatiotemporal air pollution exposure assessment methods. The national LUR method 

developed in Chapter 2 was one of the first applications of the LUR approach to fixed-site 

national monitoring data and the first to use satellite-based predictor variables. While this 
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approach was very successful in estimating current spatial concentrations of PM2.5 and NO2, it 

was not possible to estimate historical pollution concentrations using this approach (due to the 

detailed geographic data required). Therefore, Chapter 3 modified the national modeling 

strategy so it could be applied to estimate historical air pollution concentrations for residential 

histories within the NECSS lung cancer case-control study. This exposure assessment 

represents one of the most thorough retrospective exposures assessments conducted to date 

and was able to estimate exposures for participants in rural and urban areas of Canada, thereby 

allowing for one of the first national-level epidemiological analyses of air pollution. Chapter 3 

also highlighted the importance of residential mobility to accurate exposure assessments and 

the potential biases that can be incorporated into air pollution epidemiological studies that do 

not incorporate such information. 

 The radon exposure assessment presented in Chapter 5 developed a method for 

estimating long-term ecological estimates for radon exposure using residential histories 

applied to mapped radon concentration and potential areas of Canada. This was the third study 

conducted to-date that has used ecological radon estimates with individual-level outcome and 

covariate data. A very large sample of residential radon measurements (n=14,000) was used to 

create the health region radon maps and significant variation was identified across Canada, 

which has important implications for prevention activities. In addition, this was the first study 

to include both radon concentration and potential maps in the same study, and important 

spatial similarities and differences were observed that may influence the use of such maps for 

educational and policy/risk assessment purposes. 

 This dissertation also contributed substantially to the methodological literature on 

neighborhood SES exposure assessment. Similar to the air pollution exposure assessment, 

Chapter 6 stressed the importance of estimating long-term spatiotemporal neighborhood SES 
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measures from residential histories and longitudinal census data. Important differences were 

observed between long-term and single point-in-time neighborhood SES measures, with the 

latter substantially attenuating effect estimates. In addition, long-term and study-entry 

neighborhood measures seemed to capture different exposure constructs. These findings have 

important implications for all neighborhood context research that uses single-point-in-time 

measures (typically neighborhoods at study entry) and strongly suggests that all neighborhood 

context research should use longitudinal measures. This was also one of the first studies to 

examine neighborhood influences on health in a population-based sample that included 

multiple cities and urban and rural locations. 

 Overall, this dissertation has stressed the need for comprehensive spatiotemporal 

exposure assessment approaches in epidemiology. While epidemiologists are now routinely 

capitalizing on the spatial dimensions of health data, there is a lack of examples (and methods) 

available that incorporate both space and time, especially for chronic diseases with long 

latency. This dissertation has attempted to address this gap by using twenty years of residential 

histories and applying spatiotemporal exposure assessment methods to estimate long-term air 

pollution, radon and neighborhood SES exposures and by evaluating what is gained by using 

such approaches compared to common spatial-only exposure assessments. 

7.1.2. Epidemiological findings 

 New and important epidemiological findings were reported in this dissertation for lung 

cancer incidence and long-term air pollution, radon and neighborhood SES exposures. The air 

pollution and lung cancer findings reported in Chapter 4 support the growing body of evidence 

linking ambient air pollution to lung cancer risk. In summary, ORs for lung cancer incidence 

in the national analyses associated with a 10-unit increase in PM2.5 (µg/m3), NO2 (ppb) and O3 
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(ppb) were 1.29 (0.95-1.75), 1.11 (1.00-1.24), and 1.09 (0.85-1.16), respectively. The results 

of this analysis suggest that increased lung cancer risk is associated with ambient air pollution 

levels in Canada, with the strongest association for NO2 and PM2.5, but that more research is 

needed to examine the risks associated with O3 exposure and proximity to traffic. This study 

represents one of largest air pollution and lung cancer studies conducted to date (and the first 

large study in Canada). This study is unique in that it: conducted risk estimates for three 

ambient air pollutants and proximity to traffic; stratified models by histological subtypes; 

included a population-based sample of both urban and rural populations; and adjusting for a 

comprehensive set of individual and geography information on potential confounders, such as 

second hand smoke exposure, occupational exposures and radon exposures. These 

epidemiological results highlight that lung cancer is associated with the comparability low 

ambient air pollution levels found in Canada and supports further reductions of ambient air 

pollution levels. 

 The radon epidemiological findings shown in Chapter 5 correspond to the existing 

literature that residential radon exposure is a risk factor for lung cancer. A 50 Bq/m3 increase 

in average Health Region radon concentration was associated with a 7% (-6-21%) increase in 

the odds of lung cancer, and exposure quintiles demonstrated a dose-response relationship. 

This risk estimate corresponds closely to existing meta-analyses of residential radon and lung 

cancer risk. In addition, for every ten years that an individual lived in a high radon potential 

zone, the odds of lung cancer incidence increased by 11% (1-23%). To date, only one 

residential radon epidemiological study had been conducted in Canada and reported no 

associations between residential radon concentrations and lung cancer. The research presented 

in this dissertation demonstrates that radon is a significant risk factor for lung cancer in 
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Canada and that these risks are unevenly distributed across Canada − suggesting targeted 

prevention could be used to increase cost-effectiveness of prevention programs.   

 Chapter 6 presented the first epidemiological analysis of long-term exposure to 

neighborhood SES and lung cancer risk. The odds of lung cancer cases residing in the most 

versus least deprived long-term neighborhood SES quintiles were significantly elevated in the 

national (OR: 1.36; 95% CI: 1.14-1.62) and city (OR: 1.46; 95% CI: 1.13-1.89) analyses after 

adjustment for individual SES. This increase remained significant (OR: 1.38; 95% CI: 1.01-

1.88) in the city analysis after adjusting for smoking and other known and suspected lung 

cancer risk factors. For both analyses there was no dose-response relationship, rather all 

associations were observed for the most deprived SES neighborhoods. Smoking behavior was 

identified as the predominant mediating pathway of long-term neighborhood SES, and to a 

smaller degree occupational exposure to industrial dusts and odors in the national analysis. 

The fact that long-term neighborhood SES was associated with lung cancer risk, even after 

accounting for individual-level smoking behavior and a comprehensive set of other potential 

confounding factors, suggests that more research is needed to examine whether the remaining 

association is due to chronic stress, unmeasured risk factors, or residual confounding from 

important etiological factors. This information could then be used to further examine specific, 

modifiable pathways by which neighborhood context may influence lung cancer risk.  

7.1.3. Implications for reducing the burden of lung cancer in Canada 

 The epidemiological studies reported in this dissertation represent the first and/or 

largest studies conducted in Canada for air pollution, radon and neighborhood SES. Therefore, 

these studies contribute substantially to estimating the attributable lung cancer burden 
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associated with these risk factors in Canada. Such estimates are important for identifying 

population health impact and for developing population health policy.   

 All three environmental exposures examined in this dissertation were found to be 

associated with increased lung cancer risk (although not all were statistically significant). The 

magnitude of these associations is only one component contributing to their population health 

impact, and equally important is the prevalence of these risk factors within the Canadian 

population. The population attributable fraction (PAF) includes both the magnitude of risk and 

exposure prevalence and can be used to estimate the disease burden in a population that could 

be eliminated if the effects of certain risk factors were removed. From a population health 

perspective, PAFs are only useful if the association between a risk factor and disease is casual 

− the weight of evidence for the risk factors examined in this dissertation is strongest for 

radon, followed by ambient air pollution and then neighborhood SES. 

 PAFs are presented for PM2.5, NO2, radon and neighborhood SES (O3 was not included 

as little evidence is available for an association with lung cancer). The WHO (2012) 

comparative risk assessment approach was used for PM2.5, NO2 and neighborhood SES, while 

an existing radon PAF of 16% was used, which was calculated from the same residential radon 

measurement data used in Chapter 4 (Chen et al., 2012). Appendix 5 provides detailed PAF 

calculations. Briefly, PM2.5 and NO2 exposure prevalence estimates from the national exposure 

models reported in Chapter 2 of 8.4 (±1.4) µg/m3 and 23.4 (±11.5) ppb are used along with the 

epidemiological findings that lung cancer increased by 29% and 11% per 10-unit increases. 

The counterfactual population exposure used for PM2.5 and NO2 were 2.5 (±1) µg/m3 and 10 

(±5) ppb, respectively. For neighborhood SES an increased risk of 36% for the most versus 

least deprived neighborhood SES quintile was used with a counterfactual of no neighborhood 

SES effects. The resulting PAFs are shown in Figure 15. 



 
150 

 

 

Figure 15.  Summary of PAFs and attributable lung cancer cases during 2011 for the different 

environmental risk factors examined in this dissertation. 

   

 These PAF estimates reflect that a substantial burden of lung cancer is associated with 

the environmental exposures examined in this dissertation, with the largest risks coming from 

radon, followed by PM2.5 and NO2 air pollution and then neighborhood SES. While the sum of 

PAF's needs to be interpreted with caution, due to correlation between risk factors (primarily 

NO2 and PM2.5) the combined PAF for all risk factors is approximately 30%, translating into 

an estimated 7,706 lung cancer cases annually that could be eliminated if the effects of these 

risk factors were removed from the Canadian population. Importantly, these are theoretical 

estimates and more research is needed to establish causality, to incorporate mediating 

contributions (particularly for neighborhood SES), to account for correlated risk factors, and to 

determine counterfactual levels that can feasible be attained through public health and policy 

interventions. This estimate can be viewed as an upper bound estimate, due to exposure 

correlations. In addition, the use of a quintile exposure measure for neighborhood SES is not a 
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useful measure in the PAF framework, as there will always be a most deprived quintile (even 

though this may not have health implications once it reaches a certain threshold). 

Neighborhood context research is very much in its infancy and the body of evidence for 

specific causal associations has yet to be developed, although we were able to highlight the 

important role of smoking as a mediator of the neighborhood SES effect. Nevertheless, these 

estimates provide insights into the importance of these environmental exposures and how their 

risks compare with each other and with other risk factors. 

 The PAF is often misinterpreted in that a set of individual PAFs should add to 100%. 

In fact, PAFs will add to much more than 100% due to the multi-causal nature of lung cancer 

(and most chronic diseases). This is especially important for lung cancer, as PAFs for smoking 

of 80-90% (Parkin et al., 1994) are often interpreted as only 10-20% of the "causes" of lung 

cancer remain. Here we see that the PAFs for these four environmental risk factors combine to 

30% and there remain many known lung cancer risk factors, such as occupational and second 

hand smoke exposures, which would also add significantly to this non-smoking PAF total. 

However, it is not necessarily beneficial to propose a hierarchy or compare one component 

cause against another − preventing or reducing cancer causing exposures wherever possible 

should be the goal of comprehensive cancer prevention programs, which is important to stress 

when interpreting and translating the finding of this dissertation. 

 In addition to providing information to estimate the lung cancer burden associated with 

air pollution, radon and neighborhood SES, this dissertation has created a number of spatial 

exposure assessment products that could be used to help reduce this burden. In terms of air 

pollution, the national LUR models created in Chapter 2 are now being used for population 

surveillance and risk assessments, to identify potential susceptible populations and 

neighborhoods in Canada (i.e. environmental justice research), and for several national-scale 
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epidemiological studies. The retrospective models developed in Chapter 3 are also being used 

to explore whether air pollution is a risk factor for other cancer sites in the NECSS case-

control study (e.g. breast and prostate). The development of the radon concentration maps also 

address an important shortcoming to radon population health prevention in Canada − as there 

were no radon maps currently available. The maps presented in this dissertation are already 

being used to target population health and radon prevention programs. From a population 

health perspective, areas of Canada that have much greater radon risk could be the target of 

focused radon prevention programs, as geographical targeting could increase the impact and 

cost-effectiveness of such programs. Policies could also use the long-term neighborhood 

exposure methods developed in this dissertation to identify and address neighborhoods that 

have experienced consistent deprivation over the last 20-30 years. In addition, smoking 

cessation programs could be tailored and targeted to these persistently low SES neighborhoods 

of Canada.   

7.2. Limitations  

 A number of limitations need to be highlighted to ensure that the results of this 

dissertation are properly interpreted and to stress further research needed in this field. Specific 

limitations were presented in each research Chapter and only overarching limitations 

associated with the NECSS case-control study design and the spatial exposure assessment 

methods conducted are discussed here.   

7.2.1. Study Design 

 The NECSS case-control study has been used throughout this dissertation. The NECSS 

was designed specifically to examine environmental cancer risk factors, and therefore has a 
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number of unique characteristics compared to other studies. However, several limitations need 

to be taken into account when interpreting the epidemiological findings.  

The provincially based population-based study design is both a strength and weakness of 

the NECSS study, particularly when exposures are assessed using GIS and spatial methods. 

Due to residential mobility, study participants were located in all areas of Canada (even 

though Quebec did not participate in the study), thus requiring national-scale exposure 

assessment methods. A large portion of the study population was also located in Southern 

Ontario, specifically in and around the city of Toronto and any response bias or exposure 

assessment error in this geographic area would have a large influence on the epidemiological 

results. Extensive sensitivity analyses were conducted and regional random effects were 

incorporated into all epidemiological models to account for any residual regional differences. 

An inherent weakness of the case-control study design is response and recall bias. While 

the response rate for lung cancer cases (61.7%) and population controls (67%) was relatively 

high for a population-based case-control study, response bias cannot be completely ruled out. 

The fact that different provinces used different methods to recruit population controls 

(including random digit dialing, health insurance databases, and property assessment 

databases) is also a weakness, as these methods may have resulted in different response rates 

and spatial differences in the control population. Because exposures were derived using spatial 

exposure assessment methods this is an important limitation to highlight, and one that is rarely 

examined in epidemiological studies. To address this limitation, we conducted a thorough 

examination of residential histories, included study province and regional random effects in all 

models, and found consistent epidemiological results between provinces.  

Recall bias is less of a concern in this study as we used objective exposure assessment 

methods derived in a GIS; however, these exposures were based on self-reported residential 
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histories. Recall bias was present for self-reported residential histories prior to 1975, with 

cases recalling older residences more often than controls. We therefore restricted the exposure 

period in our study to 1975-1994, where there was no significant difference (p=0.54) between 

the number of geocoded residential-years between cases and controls. Self-selection of 

residential location is also of concern specifically for the neighborhood analysis and our 

results may not necessarily be causal as residents may choose the neighborhoods in which they 

live on the basis of health-related characteristics; however, we took a step towards addressing 

this problem by examining 20 years of residential histories.  

Although this was one of the largest studies of air pollution and lung cancer (in terms of 

the number of lung cancer cases), we were unable to examine risks for never-smokers due to 

the small percentage of cases (6%), which is similar to other air pollution and lung cancer 

studies (e.g. Lepeule et al., 2012). The strong influence of smoking on lung cancer limits study 

power for environmental exposure analyses, as seen in the relatively large confidence intervals 

in some epidemiological results presented in this dissertation; however, this limitation is 

inherent in all non-smoking lung cancer analyses.    

Finally, the influence of residual confounding from important individual and geographic 

characteristics cannot be ruled out. The magnitude of any residual confounding is likely small, 

however, as we were able to control for a comprehensive set of individual variables and used 

multiple measures of smoking histories (i.e. smoking pack-years, years since quite smoking, 

and residential and occupational second hand smoke exposure).  

7.2.2. Spatial exposure assessments 

 Comprehensive long-term spatiotemporal exposure assessments were conducted for air 

pollution, radon and neighborhood SES; nevertheless, potential exposure misclassification 
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remains a limitation of this research. Residential histories were coded using a standard 

geographic reference of 6-digit postal codes (due to privacy concerns) and postal codes can 

change over time and their spatial accuracy is limited in rural areas. The primary limitation of 

the air pollution exposure assessment was the lack of historical data available to assign air 

pollution concentrations and build (and evaluate) exposure models. The ability of models to 

capture fine-scale within-city pollution gradients were also limited by the lack of historical 

GIS data needed for LUR modeling. The primary limitation of the radon exposure assessment 

was the use of ecological and not household radon measures to estimate individual-level radon 

exposures and random error in exposure assessment is therefore present, which would have 

attenuated epidemiological results. The primary limitation of the neighborhood SES exposure 

assessment was the use of administrative derived boundaries and data to represent 

neighborhoods and the difference between neighborhoods estimated from CT and CSD 

boundaries. Measures for specific pathways linking neighborhood social context to lung 

cancer risk (e.g. tobacco availability, physical activity resources, social norms, community 

belonging, crime, or local policies and regulations) could also have been evaluated; however, 

little historical data was available to estimate such measures.  

7.3. Recommendations for Further Research 

In the preceding section, as well as in individual research chapters, I have highlighted 

specific limitations as they apply to the overall study design and to the air pollution, radon and 

neighborhood SES exposure assessments conducted in this dissertation. Here I expand from 

these specific limitations to examine broad future research directions that are required to 

enhance our knowledge of air pollution, radon and neighborhood SES, and more generally the 
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physical and social contextual environments (and their potential synergies) and lung cancer 

risk.  

 Foremost is the need for a multi-level life-course approach that integrates exposure to 

physical and social environments across an individual’s life. While this dissertation examined 

exposures over a twenty-year period, it is likely that air pollution, radon and neighborhood 

SES have critical period, accumulative, latent, and trajectory impacts on lung cancer. The call 

for a life-course approach in epidemiology is not new (Ben-Shlomo and Kuh, 2002; Kuh et al., 

2003; Lynch and Smith, 2005), yet integrative examples including both the physical and social 

environments are few. Throughout this dissertation I have conducted parallel studies of 

different risk factors, and while these have highlighted risks associated with specific 

exposures, they are unlikely to reveal the true risk profiles associated with these environmental 

exposures due to exposure assessment limitations, complex causal pathways, risk factor 

interactions, synergies with biological, behavioral, and psychosocial factors and individual 

susceptibility. For cancer in general, where established risk factors explain only a relative 

small proportion of cancers (Boffetta et al., 2008), a more integrated multilevel life-course 

research approach is required. To help meet this goal, further research is needed on conceptual 

frameworks and theory; enhancements in exposure assessment; as well as analytical methods. 

 First, inadequate attention has been paid to conceptual frameworks and theory for a 

multi-level life-course approach. A lack of theory on specific causal mechanisms linking 

social context to health outcomes has been referenced in many commentaries as the most 

pressing issue facing neighborhood context research (Cummins et al., 2007; Macintyre et al., 

2002; O’Campo, 2003; Oakes, 2006). Very little theory and few conceptual frameworks exist 

that integrate both physical and social environmental exposures, and while there is a growing 

body of research that integrates ambient air pollution and psychosocial stress (Clougherty and 
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Kubzansky, 2009; Gee and Payne-Sturges, 2004; O’Neill et al., 2007, 2003), this research is 

limited to one physical and one social exposure. For example, Clougherty and Kubzansky 

(2009) created a framework for examining social stress and susceptibility to air pollution in 

respiratory health and recommended careful attention be paid to the relative temporalities of 

stress and pollution exposures, to non-linearities in their independent and combined effects, to 

physiologic pathways not elucidated by epidemiologic methods, and to the relative spatial 

distributions of social and physical exposures at multiple geographic scales.  

 In terms of broad conceptual frameworks, very few were identified. Schulz and 

Northridge (2004) provide a framework that incorporates a range of social and physical 

environmental characteristics and emphasizes the interplay of social processes with features of 

the physical environment, highlighting macro-level, community-level and inter-personal level 

pathways. Diez Roux (2003) also examined a broad range of physical and social residential 

environment and the specific pathways that may influence cardiovascular disease. Extending 

these comprehensive theoretical frameworks over the life-course is difficult, but an important 

challenge to future researchers in this area.   

  Testing multi-level life-course models will also require improved exposure 

assessments. In particular, there is a need to enhance the specificity of exposure assessments 

over the life-course, while at the same time reducing exposure misclassification. The 

specificity of exposure assessments is particularly relevant for neighborhood SES, which is a 

surrogate for a spectrum of potential pathways influencing health, compared to air pollution 

and radon epidemiology that examine specific pollutants and risk factors. However, even in air 

pollution epidemiology much more work is needed to examine the specific sources and 

components of air pollution that are responsible for lung cancer risk. As mentioned, while I 

estimated exposures over twenty years in this dissertation, such exposures assessments should 
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be extended over the entire life-course. These improvements in exposure assessments could 

come from new spatiotemporal exposure assessment methods or from other integrated 

exposure assessment approaches including spatial methods, questionnaires, biomarkers and 

linked administrative data. As an example, to further examine the chronic-stress hypothesis, 

studies could measure potentially stressful neighborhood characteristics (e.g. neighborhood 

crime) in childhood, adolescences and adulthood, as well as individual perceptions of 

neighborhood safety and individual biomarkers of allostatic load. This type of integrated 

exposure assessment approach would provide further evidence for distal and proximal 

influences of stress, and specific pathways and mechanisms linking stressful neighborhood 

environmental to health. Much more methodological research is needed to be able to estimate 

life-course exposures, which is a major barrier to understanding of the influence of the 

physical and social environments on health. 

 Finally, different analytical methods are needed to conduct multi-level life-course 

research. Advancements are needed to be able to test the different mechanism relevant to this 

framework (e.g. critical period, accumulative, latent, and trajectory), to account for clustered 

and correlated data structures, and to examine multiple interactions. Effects of place on health 

emerge from complex interdependent pathways and traditional epidemiologic study designs 

and statistical regression approaches have difficulties examining these types of dynamic 

processes (Auchincloss and Diez-Roux, 2008). In this dissertation, I examined air pollution, 

radon and neighborhood SES as distinct environmental risk factors, and future research could 

use network analysis and agent-based models (e.g. El-Sayed et al., 2012), cross-classified 

multi-level models (e.g. Chandola et al., 2005) or structural equation models (e.g. Cole and 

Maxwell, 2003) to further examine how these risk factors interact with each other and with 

individual characteristics.  
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7.4. Summary 

 The purpose of this dissertation was to examine whether three exposures associated 

with the physical and social residential environment − specifically, ambient air pollution, 

radon and neighborhood SES − are risk factors for lung cancer in Canada. Using a large 

population-based case-control study, I conducted long-term exposure assessments using 

twenty years of residential histories and spatiotemporal exposure models. Epidemiological 

results provided evidence that ambient air pollution, radon and neighborhood SES are all 

potential risk factors for lung cancer in Canada. Population attributable fraction estimates 

suggest that up to 7,706 lung cancer cases annually could be eliminated if the effects of these 

risk factors were removed from the Canadian population.  
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Appendix 1  

 

Table 1.  Summary statistics of monitoring data collected from previous city-specific LUR 

monitoring in Canada and used to evaluate national NO2 and benzene models. 

Substancea Year N  Mean +/-SD Min Max 
NO2(µg/m3)      
Edmontonb 2008 50 28.90 (5.88) 17.09 42.96 
Montrealc 05/06 135 22.00 (5.77) 7.44 35.81 
Sarniad 2005 35 19.66 (6.28) 2.39 31.41 
Torontod,e 04/06 196 24.20 (8.46) 8.98 52.18 
Victoriab 2006 40 9.49 (4.87) 0.75 19.18 
Vancouverb 2003 114 30.08 (7.76) 14.49 52.64 
Winnipegb 2008 49 16.06 (5.43) 4.25 32.98 
Benzene(µg/m3)     
Montrealc 05/06 135 1.05 (0.44) 0.39 3.35 
Sarniad 2005 37 0.93 (0.56) 0.28 3.36 
Torontod 2006 45 0.75 (0.54 0.40 4.10 
Winnipegb 2008 94 0.44 (0.26) 0.08 1.12 
aEach city conducted monitoring for 2 week periods. 
bFixed site monitoring was used to adjust to yearly average. 
cAverage of 3 seasons of monitoring (Dec., May., Aug.) used to capture 
yearly average. 
dNo yearly adjustment conducted  (Sarnia data collected in October and 
Toronto in September). 
eCombined 2004 and 2006 data for evaluation. 
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Figure 1. Evaluation of national NO2 model, incorporating satellite data, geographic landuse 

variables and deterministic gradients, with independent within-city measurements.  
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Figure 2. Evaluation of national Benzene model, incorporating geographic landuse variables 

and deterministic gradients, with independent within-city measurements. 

 

 

 

 

 



 
178 

 

 

 

 

Figure 3. Annual 2006 Canadian population exposure estimates from national LUR plus 

gradient models (Frequencies represent street block points, each containing  

approximately 89 individuals). 
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Appendix 2 

 

 

 

 

Figure 1. Annual average (SD) pollutant concentrations from all valid historical NAPS 

monitoring stations that were operating for the entire study period. 
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Figure 2. Census Metropolitan Areas (CMA's) in Canada with PM2.5 and TSP measurements 

used to create predictive models of historical PM2.5 concentrations. 

 

 

Figure 3. Yearly NOx on-road mobile emissions in Canada from 1980 to 2007 and 

extrapolated levels to 1970. 
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Figure 4.  NO2 exposure surfaces (note: 20 annual surfaces were created but only 5 are shown 

here) and locations of NAPS monitors with 50km buffers. The study population residential 

years represents all residential locations between 1975 and 1994 summed within a 50km grid.  
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Figure 5.  O3 exposure surfaces (note: 20 annual surfaces were created but only 5 are shown 

here) and locations of NAPS monitors with 50km buffers. The study population residential 

years represents all residential  locations between 1975 and 1994 summed within a 50km grid. 
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       IDW INTERPOLATION     LINEAR MODELS 

 

  
Figure 6.  Scatter plots of measured versus predicted PM2.5, NO2 and O3 for IDW interpolation 

and linear regression models. 
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Appendix 3 

 

Table 1.  Descriptive statistics of individual-level variables for study participants with 20 years 

of complete residential histories between 1975 and 1994.  

Variable 
Cases 

(n=2390) 
Controls 

(n=3507) 

Individual-Level Variables  

Age (Mean +/- SD) 63.5 (8.2) 59.0 (12.6) 
Sex  
Female 1152 (48%) 1719 (49%) 
Male 1238 (52%) 1788 (51%) 
Education  
< High school 1379 (58%) 1514 (43%) 
High school 406 (17%) 607 (17%) 
> High school 590 (25%) 1373 (39%) 
Smoking Status  
Never Smoking 130 (6%) 1337 (38%) 
Former Smoker 969 (41%) 1446 (41%) 
Current Smoker 1288 (54%) 718 (2%) 

Age Started Smoking  
Non Smoker 130 (6%) 1337 (38%) 
<15 894 (38%) 765 (22%) 
15-19 958 (40%) 925 (26%) 
20-24 293 (12%) 312 (9%) 
≥25 112 (5%) 162 (5%) 
Smoking Pack Years  
Non Smoker 130 (6%) 1337 (38%) 
1 - 19 319 (14%) 1169 (34%) 
20 -29 467 (20%) 392 (11%) 
30 - 39 519 (22%) 247 (7%) 
40 - 49 446 (19%) 149 (4%) 
50 - 59 205 (9%) 69 (2%) 
≥ 60 235 (10%) 79 (2%) 
Years Since Cessation of Smoking  
Non Smoker 130 (6%) 1337 (38%) 
>35 29 (1%) 177 (5%) 
26-35 70 (3%) 312 (9%) 
16-25 158 (7%) 383 (11%) 
11-15 168 (7%) 223 (6%) 
6-10 268 (11%) 208 (6%) 
2-5 276 (12%) 143 (4%) 
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Current Smoker 1273 (54%) 715 (20%) 
Median Household Income  
> $100,000 47 (2%) 137 (4%) 
$50,000 - $99,999 283 (12%) 630 (18%) 
$30,000 - 49,000 474 (20%) 840 (24%) 
$20,000 - 29,999 398 (17%) 548 (16%) 
$10,000 - 19,999 366 (15%) 363 (10%) 
< $10,000 133 (6%) 100 (3%) 
Prefer not to Report 689 (29%) 889 (25%) 
Alcohol (servings/week)  
0 898 (38%) 1311 (37%) 
1 - 2 426 (18%) 814 (23%) 
3 - 5 223 (9%) 378 (11%) 
5 - 10 342 (14%) 520 (15%) 
> 10 501 (21%) 484 (14%) 
Meat (servings/week)  
≤ 2 161 (7%) 391 (11% 
3 - 5 462 (19%) 808 (23%) 
6 - 10 925 (39%) 1310 (37%) 
10 - 15 456 (19%) 595 (17%) 
> 15 386 (16%) 403 (12%) 
Residential Second Hand Smoke Exposure 

(exposure-years)
a  

0 356 (15%) 978 (28%) 
1 - 24 289 (12%) 664 (19%) 
25 - 49 523 (22%) 781 (22%) 
50 - 74 527 (22%) 602 (17%) 
> 74  695 (29%) 482 (14%) 
Occupational Second Hand Smoke Exposure 

(exposure-years)
b  

0 750 (32%) 1244 (36%) 
1 - 29 306 (13%) 620 (18%) 
30 - 69 343 (14%) 577 (17%) 
70 - 139 451 (19%) 506 (15%) 
> 140 532 (22%) 549 (16%) 
Years Working with Occupational Dust and 

Odors
c  

0  1144 (48%) 1842 (53%) 
1 - 9 287 (12%) 506 (15%) 
10 - 19 205 (9%) 308 (9%) 
20 - 29 237 (10%) 283 (8%) 
> 29  514 (22%) 559 (16%) 
Years Working with Hazardous Substances

d  
0 1557 (65%) 2453 (70%) 
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1 - 9  200 (8%) 295 (8%) 
10 - 19 132 (6%) 206 (6%) 
20 - 39 234 (10%) 259 (7%) 
> 40 267 (11%) 294 (8%) 
* Summaries for individuals with 20 years of complete residential histories between 1975 and 1994. 
a Person-years defined by the number of smokers in home multiplied by number of residential years. 
b Person-years defined by the number of smokers in the immediate work environment multiplied by 
number of residential years. 
c Self-reported daily or weekly exposure to industrial dusts and odors at work. 
d Hazards include: arsenic, asbestos, asphalt, benzene, benzedine, cadmium salts, chromium 
salts, isopropyl oil, vinyl chloride, mustard gas, radiation sources, welding, wood dust. 

 

Table 2.  Descriptive statistics of geographic-level variables for study participants with 20 

years of complete residential histories between 1975 and 1994. 

Variable 
Cases 

(n=2390) 
Controls 

(n=3507) 

Study Province 

Newfoundland  101 (4%) 213 (6%) 
Prince Edward Island  60 (3%) 174 (5%) 
Nova Scotia  314 (13%) 458 (13%) 
Ontario  838 (35%) 1296 (37%) 
Manitoba  157 (7%) 236 (7% 
Saskatchewan  141 (6%) 195 (6%) 
Alberta  325 (14%) 411 (12%) 
British Columbia  454 (19%) 524 (15%) 
Urban Size Category

a
  

>500,000  783 (33%) 1139 (33%) 
100,000-499,999  376 (16%) 516 (15%) 
30,000-99,999  217 (9%) 316 (9%) 
1,000-29,999  441 (19%) 688 (20%) 
<1,000  573 (24%) 848 (24%) 
Average Health Region Indoor Radon 
Measurements (bq/m3) (Mean +/- SD) 81.3 (41) 78.6 (39.5) 

Neighborhood Characteristics  
(Years in most deprived relative Quintile)b 

Neighborhood Household Median Income  

0 1584 (67%) 2467 (71%) 
>0-2 165 (7%) 240 (7%) 
>2 - 5 144 (6%) 233 (7%) 
>5 - 10 201 (9%) 259 (7%) 
>10  279 (12%) 287 (8%) 
% No high school diploma 

0 1555 (66%) 2408 (69%) 
>0-2 189 (8%) 257 (7%) 
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>2 - 5 158 (6%) 214 (6%) 
>5 - 10 186 (8%) 277 (8%) 
>10  285 (12%) 330 (10%) 
% Old Dwellings 

0 1565 (66%) 2245 (64%) 
>0-5 277 (12%) 413 (12%) 
>5 - 10 164 (7%) 309 (9%) 
>10 - 15 173 (7%) 235 (7%) 
>15 194 (8%) 284 (8%) 
* Summaries for individuals with 20 years of complete residential histories between 1975 and 1994. 
a Not included in the final multivariate models due to the high correlation with NO2. 
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Figure 1.  Relationship between monitor based NO2 and TSP concentrations in the urban 

monitor bases analysis (PM2.5 measurements were only available starting in 1984 and had 

limited coverage). 
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  Appendix 4 

 

 PAFs were calculated for PM2.5, NO2 and neighborhood SES to compare their impact 

on lung cancer in Canada. An existing PAF estimate was used that has already been developed 

from the residential radon measurement data mapped in Chapter 4 (Chen et al., 2012). O3 

estimates were not included as more research is needed to determine whether the association 

with lung cancer is causal. To estimate the PAF for continuous exposures (PM2.5 and NO2 air 

pollution), Equation 1 was used, while for discreet exposures (neighborhood SES) Equation 2 

was used.  

 
 

Equation 1: 

 

 
where RR(x) is the relative risk at exposure level x; P(x) is the population distribution of 

exposure; P'(x) is the counterfactual distribution of exposure; m is the maximum exposure 

level. 

 

Equation 2:    

 

where P is the prevalence of the dichotomous exposure; and RR is the relative risk.   
  

 The parameters used for each model are shown in Table 1, including risk estimates 

derived in this dissertation as well as those from existing meta-analyses (for comparison). The 

current and counterfactual exposure prevalence estimates are also shown, with the current 
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population exposure estimates to PM2.5 and NO2 estimated from the national LUR models 

presented in Chapter 2 and the counterfactual concentrations determined using the lower 

bound of annual NAPS monitoring data. The current radon exposure estimates and 

counterfactual, as well as the resulting PAF shown in Figure 1, are from (Chen et al., 2012). 

Figure 1 illustrates the resulting PAFs for lung cancer. The combined PAF is 30.4% 

translating to an estimated 7,706 lung cancer cases annually that could be eliminated if the 

effects of these risk factors were removed from the Canadian population. 

 

Table 1.  Parameters used in equations 1 and 2 to estimate population attributable fractions. 

Risk Factor Estimated Risk Current 

Exposures  

(mean ±SD) 

Counterfactual 

Exposures  

(mean ±SD) 
This 

Study 
Meta-

Analyses 
PM2.5 (per 10ug/m3) 29% 21%b 8.4 (1.4)c 2.5 (1.0)d 
NO2 (per 10ug/m3) 11% 11%b 23.4 (11.5)c 10 (5.0)d 
Radon (per 100 Bq/m3) 13% 18%e 41.9 (2.8)f 0 (0.0) 
Neighborhood SES (Q5 vs Q1)a 36% n.a 36% 0% 
a National analysis estimate adjusted for age, sex, study province, education and household income. 
b Pooled estimate from meta-analyses (Chen et al. 2008). 
c Estimated using national LUR exposure models presented in Chapter 2. 
d Correspond to lower-bound NAPS annual measurements. 
e Meta-analyses from Drewski et al., (2005). 
f Population weighted geometric mean and standard deviation. 
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Figure 1.  Summary of PAFs and attributable lung cancer cases during 2011 for the different 

environmental risk factors examined in this dissertation. 

 

 

Radon PM2.5 NO2 Neigh. SES Total

PAF 16 5.7 4.5 4.2 30.4

Cases 4096 1459 1152 998 7706
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