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Abstract

Initiation and propagation of a crack in composite materials can affect their global mechanical
properties severely. From a numerical modeling perspective, most conventional macro-level
methods reported for composite laminates are based on the assumption that a Representative
Volume Element (RVE) of the material is periodically repeated over the entire sample.
However, a considerable amount of spatial non-uniformity in material and geometrical
parameters can exist in both unidirectional (UD) and woven fabric composites. The scattered
distribution of fibers, fibers penetration between composite layers, voids within the matrix,
human errors during sample preparation, and imperfect thickness distribution can be among
the most common sources of such non-uniformity. In turn, these non-uniformities can make
the numerical simulation of composites under the assumption of a periodic RVE unreliable,
and thereby, the stochastic modeling of effective material properties becomes essential for a

more precise assessment of composites’ mechanical behaviour.

In the present work, a new three-dimensional (3D) stochastic extended finite element method
(XFEM) is proposed and implemented to model the delamination surface in composite
samples by integrating the capabilities of the finite element method (FEM) commercial
software (ABAQUYS) into a user-defined FORTRAN code and MATLAB package. XFEM is
known to offer significant advantages over conventional FEM by enabling optimal
convergence rates in the presence of pronounced discontinuities/singularities such as cracks.
The effect of nonlinear modeling parameters such as cohesive zone length, penalty stiffness
factor and large deformation are also considered in the proposed approach to add to the
accuracy of simulations. The XFEM model is first tested and validated against previously

reported data in the literature. Next, a statistical distribution is sought from data non-
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repeatability during a set of double cantilever beam (DCB) and end-notched flexure (ENF)
tests conducted on Poly (phenylene Sulfide) PPS/Glass thermoplastic composite samples.
Results from the experiments and XFEM are compared and demonstrate the capability of the
new numerical approach in capturing non-repeatable material response, often seen during the

fracture testing of UD composites to characterize their mode I and mode II fracture properties.

111



Table of Contents

ADSTIACT ...ttt ettt ii
Table Of CONTENTS ..o s v
LISEOF TABIES ... viii
ST OF FIQUIES ..ottt et ettt e et e e ete e e taeeveeeaseeeaeeeseeeaeeeseeans 1
LASE OF SYMIBDOIS......ceeeioeeeeee et ettt et v eaneens XV
ACKNOWIBAGEMENTS ...ttt et ettt e e e ete et eeeteeeveeeaeeeareeenaeenneas XXV
DEAICALION ...ttt XXVi
1 Chapter: INtroUCHION .........ccuiiiiiieieeeie ettt ettt ettt e et et eeveeeaseeaeeeaeeeree e 1
1.1 FIDETS ..ot ettt et ettt st 1
1.2 IMETTX ottt et h et ettt b et e h e et et h et e at e et e bt et sht e bt e aeennes 2
1.3 Classification of FRP COMPOSILE ......eeecvieeiiiiriiiiiieiie ettt 4
1.4 FRP Composite Materials Applications ..........cccueevuierivieniienieeiiecieeniee e eveesveens 5
1.5 FRP Composite Materials Weaknesses and Application Limitations.............c.......... 6
1.6 Experimental and Numerical Modeling of FRP Fracture Properties........................ 10
1.7 Randomness in FRP Fracture Properties .........ccccoecvieriieeiienieeiieieeieeee e 14
1.8 Motivation and Objectives of the Work ..........cccoecvieiiiieiiieniiiiiieiecee e, 15
1.8.1 Potential for Practical Applications and Expected Originality .........c.ccccceevvereenenne 17
1.9 TheSiS OULINE .....cccuviiiiiiecie ettt s e e e e e e sabeeesabeeesareeens 19

v



2 Chapter: Background ...........cccoecuiiieiiieiieiieieeie ettt ettt steesae e saeesaeensessnens 21

2.1 Elastic Mechanical Behaviour of FRP composite Materials...........cccceeceeieennennen. 21
2.2 Failure Modes of FRP COMPONENLS ........cccueeruiriiriiniiinienieeiceieeieeteneesee e 23
23 Fracture MEChaniCs........cocueiiiriiiiiiiiiitccc e 26
2.4 Damage Mechanics MOdels.........coceeiiiiiiiiiiiiieeieeeeee e 28
2.5 Comparison between Fracture Mechanics and Damage Mechanics ........................ 31
2.6 Introduction of Extended Finite Element Method...........cccoceviiiiiiininiiniiiie 32
2.7 Application of XFEM in Linear Elastic Fracture Mechanics...........cccceeceeniennnennne. 40
2.8 Application of XFEM in Elasto-Plastic Fracture Mechanics ...........cccceeveeniieenennne. 44
2.9 Application of Cohesive Interface in Fracture Mechanics ..........ccccecceevvenienenicnnene 47
29.1 Cohesive Zone MOdEl .........coueiiiiiiiiiiiiiiiiiceeee et 48
2.10 SUMIMATY ...ttt et sat e e e et e s seneeneeens 54
3 Chapter: Extended Finite Element Method Implementation and Validation.................... 55
3.1 Large Deformation FOrmulation.............ccceeiiiiiiiiiiniiiiieeceeeeee e 56
3.2 INONINEAT SOLVETS ...ttt ettt 60
33 Modeling Contact on Material Interfaces Using XFEM ........cccccoceeviniiniinicnicnnnne. 63
34 Implementation of the Cohesive Zone Model .........c..ocoveniiiniiniiiiniiniiiice 66
3.5 Other Numerical Implementation Details............cccceverniiiiniinieniiecceece 69
3.5.1 Node Selection for Enrichment...........c.coociiiiiiiniiniiiceceeeceee e 69



352

3.53

3.5.4

3.6

3.6.1

3.6.1.1

3.6.1.2

3.6.1.3

3.6.2

3.6.2.1

3.6.2.2

3.7

Numerical Integration of Discontinuous Fields ..........ccccocevviniininiiniiniininienne 71
Implementation of the Integration Bound Approach ...........ccceviieiiiiiiiniiiniie, 74
Simulation AIGOTTtRIML......cc.oiiiiiiiiiii e 75

Numerical Examples of Mode I and II Fracture Tests: Validation of XFEM

COAE ..ttt 78
Numerical Simulation of the DCB Tests ........cccccveiveinieneniirieiecicneeeceeeceee 78
Effects of Different Modeling Approaches.........c.ccocueevverieniinieninicnicneeiceeeeenee 79
Effects of Mesh Size and Cohesive Zone Length ..........cccoociviiiiniiniiniicnicnne 82
Effects of Different Penalty Stiffness Factors........c.ccoeeeviriininiininiiniiicene 85
Numerical Simulation of the ENF TeSsts ......cccccceviiniiniiniiiiicecicicccceece 92
Effects of Cohesive Zone Length...........ccociiiiiiiiiiiiniiieceeceeeece 92
Effects of Different Penalty Stiffness Factors........cocccooveviriininiiniiniiniicee 94
SUMIMATY ...ttt ettt et sat e e e st e seeseneeneeens 96

4  Chapter: Modeling Randomness Effect in UD Laminates Delamination: A Non-

4.1

4.2

4.3

43.1

44

RVE APPIOACK...c..iiiiiiiiieiieiieet ettt ettt et e e ene 97
Sample Preparation: Poly (phenylene Sulfide) (PPS)/Glass FRP ...........cccccceeuee. 100
Elastic Mechanical Properties of PPS/Glass FRP Composites..........ccccceevereenenee. 103
Fracture Tests on the Fabricated PPS/Glass Composites ..........ccoceeeeeriervenieeneenne. 105
DCB and ENF Test RESULILS.....cc.coviiiiiiiiriiiniiiicniceetcecceteeeeeeeeee e 106
Stochastic Fracture PrOperties .........ccccoveveeiririiniiiiiniecieeiceecreeeeeeseeie e 112

vi



4.5 Numerical Results and DISCUSSIONS ......u.ueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeenns 115

4.6 SUIMIMATY ...ttt et e ettt e e e sttt e e e et e e e s essteeeeesnsaeeeeennsaeaeesnnnees 125
5 Chapter: Conclusions and Future Work Recommendation ..............cccccceevveevienneeieenennne. 126
5.1 XFEM Model DeVEIOPIMENT .......vvieeeiiieeiieeciiieecieeeieeeiee e evee e sveeesnee s 126
5.2 Performed Deterministic SIMUIAtioNS .........cccocieiiiiiiiiiiieiieeeeeeee e 126
53 Performed Stochastic SImulations.............cooeeiiiiiiiiiiiiiie e, 127
54 Potential Future Work..........oooiiiiiii e 128
RETEIEINCES. ...ttt ettt s e bbb b 130
APPENTICES ..ttt et ettt et e ettt e et e ete et e et e eaeebe e st e eaeeteeateeaeebeenaeeaeeans 143
Appendix A: ABAQUS User-element Subroutine for Nonlinear XFEM Analysis............... 143
Appendix B: Experimental Calculations According to ASTM D5528-01 [97].....ccvveuveneee. 157

vil



List of Tables

Table 1-1

Table 1-2

Table 3-1

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Mechanical properties of fibers in commonly used FRPs [3].......cccccooiiiiiiinnin. 2
Mechanical properties of matrices in commonly used FRP composites [3]............ 4
Mechanical properties of T300/977-2 and AS4/PEEK samples [52] ......c.ccccueeee 79
Mechanical properties extracted from tensile testing...........cocceeveerieieiienieeieenne 104
Final set of elastic properties of manufactured UD PPS/Glass FRP composites

with “1” being the fibers direction; “2” and “3” are perpendicular directions to

IDCTS. e 105
Fracture properties of PPS/Glass samples extracted from DCB and ENF tests... 112

Employed standard deviation schemes in stochastic simulations of DCB test.... 115

viil



List of Figures

Figure 1-1

Figure 1-2

Figure 1-3

Figure 1-4

Figure 1-5

Figure 2-1

Figure 2-2

Figure 2-3

Sample applications of FRP composite materials in different industries: (a) &
(b) Airbus Military A400M aircraft CFRP wing (Martin Chainey / Airbus
Military), (c) Cross-sections of glass fiber reinforced polymer (GFRP)

structural members used, and (d) Pontresina Bridge made of FRP [5].................. 6

FRP composite materials common failure modes: (a) Fiber breakage, (b)

Fiber pull-out, (c) Matrix cracking, and (d) Interlaminar delamination................. 8

Different scales of material modeling during homogenization of material

PTOPETEIES ..eetientieeiieetie et et e et e b ee st e bt e sttt e beesabeeabeesaeeenseesnteenseesnsaenseesseesnseenaeaans 10

Fracture energy toughness measurement fixtures: (a) Double Cantilever
Beam, (b) End-Notched Flexure, (c) Edge Crack Torsion, and (d) Mixed

Mode Bending tests [8].....cccouiieiiiieiiieeeiie ettt 12

Forming process of a heated FRP composite laminate: (a) Initiation of the
forming (Step 1), compression and cooling cycle (Step 2), removing the
male die and possible dimensional distortion of the part (Step 3); and (b)

Delamination spotted in the corner of a compression moulded component [54]. 18
Comparison of tensile stress-strain curve of fiber materials [58].........ccccveeeunenne 24

Stress-strain curves for the matrix and fiber materials: (a) Fibers have larger
failure strain than that the matrix, and (b) The matrix has larger failure strain

than fIDET [58] .eeeieieiieeee e 25

Dominant fracture modes of a cracked body: (a) Opening mode (mode 1), (b)

Sliding (shearing) mode (mode II), and (¢) Tearing mode (mode III) [59].......... 26

X



Figure 2-4

Figure 2-5

Figure 2-6

Figure 2-7

Figure 2-8

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

An arbitrary finite element mesh with a discontinuity (circles represent the

enriched nodes of the Mesh) .........cccoeeiiiieiiiic e, 33

Unit tangential and normal vectors for the Heaviside function and nearest

point to X on the crack surface; X e 34
The influence domain of node J in an arbitrary finite element mesh..................... 38
Local crack-tip coordinates and the contour /" and its interior area, Vr................ 42

Schematic of the cohesive zone in front of crack in a given step of numerical

STIMIULATION ettt e e e e e e e e et e e e e e e e e e e e e eaeeeeeeeeaneaaaens 52

Explicit solver approach and possible drift error in nonlinear problems (dots

show numerical solution StePs) [96] .....uveeuiieeiiiiieiieeeie e 61

Newton-Raphson iterative solver approach in nonlinear FEM problems [96]..... 62

Bilinear traction-separation law for modeling the material degradation .............. 67

Variation of ¢; values in an example meshed object (square represents the
positive value and circle denotes the negative value; the rectangle shows the

(022101 0] 11 1<) SRS 70

Variation of y; values for the front edge of the crack plane in the example
meshed object (square represents the positive value and circle denotes the

NEZALIVE VAIUC) ....viiiiiiieiiieiciie ettt e et e e ae e e sebeeetaeeeaaeeenneeeennes 71

Accepted nodes in the example meshed object based on Equations (3-39) and

(3-41) Of IeVEI-SEt CIILETIA ... .eeeuveeeeiieeetie ettt ete ettt eaneas 71

Sub-triangles of a 2D element with third order Gauss quadrature........................ 72



Figure 3-8 Sub-tetrahedrals of a 3D element with third order Gauss quadrature.................

Figure 3-9 Integration points of a meshed object with enriched elements (red stars are

integration points and blue dots are integration points within the integration

Figure 3-10 MATLAB-ABAQUS simulation algorithm employed for modeling the

AELAMINATION ... e e e e e e e e e e e e e e e e e e e ereaaeaaaaeas

Figure 3-11 A comparison between DCB test results via different methods on T300/977-

2 SAMPIES oottt et e et e e e e et e e e tae e eaaeeeaaeeeraeeens

Figure 3-12 Load-Displacement DCB test results for the fine mesh (/, = 0.4 mm)

simulation with different cohesive zone lengths for T300/977-2 samples.........

Figure 3-13 Load-Displacement DCB test results for the coarse mesh (/. = 1.25 mm)

simulation with different cohesive zone lengths for T300/977-2 samples.........

Figure 3-14 The comparison between DCB test load-displacement results of T300/977-2

samples with different penalty Stiffnesses .......ccceevvvveeviieeiiieeieeee e,

Figure 3-15 The comparison between DCB test load-displacement results of AS4/PEEK

samples with different penalty Stiffnesses .......ccceevvvieeviieeiiieecieece e

Figure 3-16 The comparison between DCB test load-displacement results for fine mesh

analysis of AS4/PEEK and previous WOorks ..........ccceeevuiiiniieenieeciiie e

Figure 3-17 The comparison between DCB test load-displacement results for coarse

mesh analysis of AS4/PEEK and previous WOrks ..........ccccccvevvieiieniieniienieennen.

X1



Figure 3-18 The comparison between ENF test load-displacement results for AS4/PEEK

AN PTEVIOUS WOTKS ...eiiiiiiiiiiiciieece et e e e s 93

Figure 3-19 Effect of penalty stiffness value on the ENF test load-displacement results

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

fOr AS4/PEEK SAMPIE ....ccccviiieiiieeiieecie ettt e 95

Microscopic images of fibers and matrix distribution of PPS/Glass UD tape:

(a) Corner of the tape, and (b) Middle of the tape [105] ......cccovvveeveeeciieniienee, 101

(a) Forming cycle used for preparing PPS/Glass test samples using (b) an

automated press apparatus (Wabash MPI 100 ton) ........ccccceeevvieeiieeecieeeieeee 103

Snapshot of elastic mechanical properties for a typical woven PPS/Glass ply

from material data Sheets.........cceeveiiieiiiiecieee e 105
Experimental test set-ups: (a) DCB, and (b) ENF .......c.ccccoiiiiiiiiiiiiieee 106

The variation of fracture energy toughness versus crack length for the three
tested samples using: (a) Compliance Calibration Method, (b) Modified

Beam Theory Method, (c) Modified Compliance Calibration Method [97] ...... 108

[llustration of the fiber bridging zone (FBZ) during crack propagation; as the
crack length increases, FBZ emerges in the cracked region up to the fiber’s
rupturing displacement; after fiber breakage, the FBZ effect vanishes from

the region which has exceeded the failure opening displacement...................... 109

Different images of a DCB test sample: (a) macro scale image of fiber
bridging, (b) X-ray micro-tomography image of fiber bridging along the
sample thickness, and (c) attenuation of the X-ray reflection due to

absorption; demonstrating uneven distribution of fibers ............cccccceeeciierieennenn. 110



Figure 4-8 ENTF test repeat results with a constant crack length (43 mm): (a) the
variation of fracture energy toughness versus the mid-span displacement, and

(b) the variation of bending load versus the mid-span displacement. ................ 111

Figure 4-9 Proposed stochastic bilinear traction-separation behaviour (Rand, is a
random number taken from a 2-parameter Weibull distribution; G¢; and Gy

correspond to the lower and upper limits of G¢ via Equation 4-1) .................... 113

Figure 4-10 Comparison of the opening force in stochastic simulations of DCB tests
with experimental data using: (a) constant standard deviation formulation,

and (b) standard deviation as a function of crack length..............cccceevvrenennne. 116

Figure 4-11 Comparison of predicted fracture energy toughness via stochastic simulations
of DCB tests with experimental data using: (a) constant standard deviation

formulation, and (b) standard deviation as a function of crack length............... 116

Figure 4-12 Comparison of measured opening force with predicted values in stochastic
and deterministic simulations of continuous DCB test using: (a) fracture
energy/toughness remains equal to the average value of experiments, (b)
fracture toughness only changes with increase in delamination length, (¢)
fracture toughness increases with extension of delamination with constant
standard deviation formulation, and (d) fracture toughness increases with
extension of delamination with standard deviation as a function of

delamination 1ength..........c.coooiiiiiiiiiiiiiie e 117

Figure 4-13 Evolution of the cohesive zone in front of crack upon loading in a given

SIMUIATION SEEP ..eevvieiiieiieiiiieiiecie ettt et ete e et e seeebeesteeesbeesseeebeessseeseensseenseens 120

xiil



Figure 4-14 Stages of delamination propagation within the DCB numerical model: (a)
Onset of rigid hardening in the process zone, (b) Apex of the bilinear

traction-separation law, and (c) Deterioration of the cohesive stiffness............. 121

Figure 4-15 Comparison of stochastic measured and predicted force-displacement

values in ENF tests on the PPS/Glass samples........c.ccccovveviiieniieeniiecciieecieees 122

Figure 4-16 Stages of delamination propagation within the ENF numerical model: (a)
Apex of rigid hardening in the process zone, (b) Initial stage of crack

propagation, and (c) Extensive deterioration of material .............ccccceeevieennnennns 124

Xiv



List of Symbols

A

large
agp

der

cr

B and Bl.j

|

™

Coh
bH

C and Cijkl

D

mg
D Interface

ep
DS

Green

Critical energy release rate large displacement correction factor

Initial delamination/crack length

Crack/delamination length in the current configuration

Crack/delamination increment

Material compliance matrix components

Cartesian derivatives of shape functions matrix and components
Transformed Cartesian matrix of derivatives

Cohesive/contact matrix of shape functions

Crack surface (Heaviside) enriched degree of freedom

Material stiffness matrix and its components

Plane strain/stress material stiffness matrix components

Crack-tip enriched degrees of freedom

Imaginary constants of anisotropic material

Damage index

Matrix of interface material properties

Elastic-plastic constitutive matrix

Imaginary compliance components of anisotropic material
Arm of loading on the test sample

QGreen strain tensor

XV



E L
longitudinal

E NL

transverse

L(X,Y,Z)

f1(X,Y,Z)

fb

Elastic moduli in different directions

Linear part of Green strain tensor

Longitudinal Young’s modulus of anisotropic material
Non-linear part of Green strain tensor

Transverse Young’s modulus of anisotropic material
Unit normal vector of the crack alignment

Unit tangential vector of the crack alignment

Unit binormal vector of the crack alignment

Resisting force against the deformation of numerical model

Deformation gradient in the reference coordinate system
Crack-tip enrichment functions

Second order strength tensors

Fourth order strength tensors

Arbitrary continuous function

Arbitrary discontinuous function

Vector of body forces

Vector of external forces

Total energy release rate

Fracture energy toughness for different fracture modes I, II and III

Mode I critical fracture energy toughness

XVi



G]IC
GC
GC(ave)

GC(std)

J

Auxiliary
Superimposed

Ky

K,, K, and K

1

KCoh

Geo

Mode II critical fracture energy toughness

Total/general critical fracture energy release rate

Mean critical fracture energy release rate

Standard deviation of critical fracture energy release rate
Highest critical fracture energy release rate

Lowest critical fracture energy release rate

Matrix of shape function derivatives

Shear moduli in different directions

Component of anisotropic crack-tip enrichment functions
External load acting on a body

Internal force of a body
Heaviside step function at point x
Identity matrix

J-integral

Auxiliary J-integral
Superimposed J-integral

Initial stiffness matrix

Stress intensity factors
Cohesive/contact portion of tangential stiffness matrix

Geometrical portion of tangential stiffness matrix

Xvil



K™, Ki and K"
K. and K.
L

L(c)and L;(c)

ch

M and M;

Local

Material portion of tangential stiffness matrix

Tangential stiffness matrix

Penalty stiffness variable and its matrix form for three dimensional

problems

Stiffness matrix components for linear finite element method

Auxiliary stress intensity factors

Sets of nodes associated with crack-tip regions

Test sample length

Orthotropic material fracture properties constant

Cohesive zone length

Finite element mesh size and element length

Interaction integral

Local interaction integral

Re-arranged second Piola-Kirchhoff stress tensor

Slope of ordinary least square technique line

Number of sub-polygons in an element for numerical integration

Direction cosines

Conventional finite element method shape function

Finite element mesh nodes

Normalized enriched shape function

XViii



g
Nnode
ng

t t t
(ny,ny,ny)
P and E]

P

Contact

P grip

D;

q;

Enriched nodes of the finite element mesh

Set of nodes corresponding to the crack face
Vector of outward normal direction

Gauss quadrature order

Unit vector of the crack edge

Nominal stress tensor and its components

Vector of contact forces

Loading on a the test sample (from the tensile machine crosshead)
Anisotropic material compliance constant depending on
longitudinal material properties

Smoothing function of contour integral

Anisotropic material compliance constant depending on transverse
material properties

Right hand side vector of external forces

Ratio of opening to sliding displacements
Ratio of dynamic stress intensity factors
Residual forces

Randomly chosen number from a Weilbull distribution

Local polar coordinate system at the crack-tip

Material compliance matrix

Xix



S; Shear strengths in different material directions

T Traction of interfacial material

1 .. Maximum interfacial strength

T; Interlaminar material strength in different directions
L stock Loading block thickness

Lok Test sample thickness

L Surface traction vector

u" Enriched degree of freedom

ut Displacement field of the integration domain

du* Displacement increment

u" General vector containing all the nodal parameters
u Ordinary degrees of freedom

u®(x) Displacement field at point x

u, Displacement field in different directions

y ey Auxiliary displacement field in different directions

ul, u;’p and ufp Displacement fields near the crack-tip in different directions
v, Element volume

v Ratio of each sub-polygon volume to element volume

Vij Poisson’s ratios in different directions

w Strain energy density



Waux

e
X, Y, 2)
(X,.Y,.2))
(X,.%,.2,)
(X,.Y,.Z))
(X, »,2)

YC
Y,
YS,

Zc

Z

Auxiliary strain energy density

Test sample width

Gauss points weights

Modification factor for the weight of each sub-polygon
Compressive strength in fibers direction

Reference (Lagrangian) coordinates

Tensile strength in fibers’ direction

Point on the crack surface

Arbitrary point in finite element mesh

Reference coordinates

Arbitrary point 1 coordinates on the crack surface
Arbitrary point 2 coordinate on the crack edge
Nodal coordinates in the reference configuration
Current coordinates

Compressive strength in perpendicular direction to fibers
Tensile strength in perpendicular direction to fibers
Normalized failure threshold

Compressive strength in perpendicular direction to fibers

Tensile strength in perpendicular direction to fibers

Penalty stiffness scaling factor

xxi



Sl

€ and &,

Weibull distribution shape parameter

Weibull distribution scale parameter
Far-field surface path

Crack surface path
Traction surfaces

Body domain

Opening/Sliding displacement of the grip load

Relative opening/sliding displacement

Relative critical opening/sliding displacement

Effective separation displacement

Relative failure opening/sliding displacement

Highest relative failure opening/sliding displacement

Lowest relative failure opening/sliding displacement

Normal crack-tip opening displacement

Relative normal crack-tip opening displacement parameter

Tangential crack-tip opening displacement

Relative tangential crack-tip opening displacement parameter
Relative crack displacement in the global coordinate system

Green strain tensor and its components

xxii



Auxilai
& ry

i
Efult

Emyult

My My p; and g1,

2
(6.6, 8)
(")

o and o,

o.

1

O-afﬁ"

Ofult

Om,ult

Auxiliary strain tensor components

Fiber failure strain
Matrix failure strain
Fiber strain at matrix failure

Matrix strain at fiber failure

Crack-tip angle

Transformed angles in anisotropic material

Anisotropic material properties derived from material governing

equation

Correction factor of relative crack displacements ratio

Local coordinates of finite element method

Virtual work

Second Piola Kirchhoff stress tensor and its components

Re-arranged second Piola Kirchhoff stress tensor

Effective traction

Fiber failure stress

Matrix failure stress

Cauchy stress tensor

Fiber stress at matrix failure mode

Matrix stress at fiber failure mode

XXiii



Auxilairy
i

$(x)
5,.5,)
Dy

@

Y Q

b

w(x)

Auxiliary stress tensor

Conventional shape function
Traction-separation model potential function
Material fracture energy

Element nodal distance value from the crack face

Orthotropic material parameters relating the stress intensity factors

to crack opening/sliding

General enrichment function
Element nodal distance from the edges of the crack plane

Element domain

XX1v



Acknowledgements

I wish to thank Dr. Abbas S. Milani for his great supervision, mentorship, inspiration, help
and constant encouragement during my PhD research and studies at the University of British
Columbia. I would also like to acknowledge the valuable assistance of Drs. Martin Bureau,
Francis Thibault, David Butcher, Hicham Mir, and Zohir Benrabah from the National
Research Council of Canada — Industrial Materials Institute (NRC-IMI) for training and
providing access to their lab facilities. Finally, financial support from the Natural Sciences

and Engineering Research Council (NSERC) of Canada is greatly acknowledged.

XXV



Dedication

To my parents and family for their unconditional love and support.

XXVi



1 Chapter: Introduction

Composites are generally defined as multiphase materials made by commingling two or more
existing materials to achieve required mechanical, thermal or electrical properties. Fiber
reinforced polymer (FRP) can be categorized as a composite material that is composed of a
base polymer material called matrix and reinforced by rebars called fibers. A complete
bonding between these two material phases can provide sufficient functionality toward
application of composites. The effective mechanical properties of FRP composites are of
great interest to aerospace and structural engineers and are directly related to the properties of

individual components of each given FRP as reviewed below.

1.1 Fibers

Fibers are materials made into long filaments with 10pum diameter. The main duties of fibers
in composites consist of carrying the external loads and providing the required stiffness,
strength and thermal stability. Fibers should demonstrate the following characteristics to

satisfy the desirable mechanical properties of FRP composites [1]:

1- High modulus of elasticity.

2- High ultimate strength.

3- Low variation of strength among their distributions.

4- High stability of their strength during handling.

5- High uniformity of diameter and surface dimension among bundles of fibers.



In the present industrial applications, there are mainly three dominating types of fibers:

carbon, glass and aramid fibers. Carbon fibers have high elastic modulus and fatigue failure

strength in comparison to the other two types of fibers; however, the economic aspects of

their application should always be considered [2]. Glass fibers have demonstrated good

mechanical strength relative to their low cost, which has increased their application as

reinforcing agent in FRP composites in cost-sensitive industries such as construction [1]. In

Table 1-1, a summary of mechanical properties of commonly used fibers is presented.

Table 1-1 Mechanical properties of fibers in commonly used FRPs [3]

Longitudinal
Density Longitudinal Relative
Material Modulus of
(kg/m”) Strength (MPa) cost
Elasticity (MPa)
E-glass 2540 70000 3450 Low
S-glass 2500 86000 4500 Moderate
Graphite, high modulus 1900 400000 1800 High
Graphite, high strength 1700 240000 2600 High
Kevlar 29 1450 80000 2800 Moderate
Kevlar 49 1450 130000 2800 Moderate
1.2 Matrix

The matrix is the base material of a FRP composite which confines and bonds the fibers

together. It is mainly composed of plastic ingredients that are less environmentally hazardous




and more corrosion resistant in comparison to fibers. The followings are the main duties and

features of matrix materials in FRP composites [1]:

1- Transferring the external loads to the fibers while binding them together.

2- Protecting the fibers from environmental hazards and corrosion.

3- Providing the general shape of a given FRP structure.

4- Defining some effective mechanical properties of the composite (mainly perpendicular to

the fiber directions) such as ductility, impact strength, etc.

In industrial applications, FRP composite materials are often manufactured with two types of
matrices: thermosets and thermoplastics. Thermosets provide higher strength in comparison to
thermoplastics; however, once cured, they cannot be reheated and reused or reformed. This is
in contrast to thermoplastic matrices which can be re-employed for recycling through melting
and solidification cycles. In Table 1-2, mechanical properties of common matrix materials are

presented.



Table 1-2 Mechanical properties of matrices in commonly used FRP composites [3]

Density Tensile Modulus | Tensile Strength
Material
(kg/m’) (MPa) (MPa)
Epoxy 1200-1400 2500-5000 50-110
Phenolic 1200-1400 2700-4100 35-60
Polyester 1100-1400 1600-4100 35-95
Nylon 1100 1300-3500 55-90
PEEK 1300-1350 3500-4400 100
PPS 1300-1400 3400 80
Polycarbonate 1200 2100-3500 55-70
Polyethylene 900-1000 700-1400 20-35
Teflon 2100-2300 - 10-35

1.3 Classification of FRP Composite

Numerous methods for classification of FRP composites exist in the literature. For instance,
the classification can be based on the different matrices: thermosets and thermoplastics.
Another approach for classifying the FRP composites is based on fiber material type: carbon,
glass or aramid. Fiber length can also be applied to differentiate the FRP composites: short-
fiber and long-fiber composites. Short-fiber reinforced composites consist of a dispersed
phase of discontinuous fibers (fiber length is less than hundred times diameter) with random
or preferred orientation of fibers. On the other hand, long-fiber reinforced composites contain

continuous fibers bonded together by the matrix. They can be composed of a unidirectional



orientation of fibers or a bidirectional orientation of fibers (e.g., woven composites), or 3D

textile preforms.

1.4 FRP Composite Materials Applications

Today fiber Reinforced Polymer (FRP) composite materials are widely used in high tech
engineering applications including aeronautical, marine and automotive industries. These
materials have high strength-to-weight ratios, good corrosion resistance, superior fracture
toughness, and can be engineered based on required strength or performance objectives for a
given structure. To give few examples, leading aircraft manufacturers such as Airbus and
Boeing have increased the application of FRP composites in their products from 3% to 20%
in Airbus A380 and over 50% in Boeing 787 [4]. Figure 1-1 depicts one of the largest aircraft
wings, with a 42.4 meter span, made of carbon FRP composite assembled for the Airbus
Military A400M transport aircraft. In construction industry, FRP composites have become a
good alternative for innovative construction and their applications have already been extended
to upgrading and retrofitting the existing structures as well as constructing various types of
off-shore platforms, buildings and bridges. Pontresina Bridge (Figure 1-1-d), with a span
length of 12.5 m, was constructed in 1997 across the Flanz River in Switzerland. The

structural truss system of the bridge was made of FRP composite [5].



(c) (d)

Figure 1-1 Sample applications of FRP composite materials in different industries: (a) & (b) Airbus
Military A400M aircraft CFRP wing (Martin Chainey / Airbus Military), (c) Cross-sections of glass fiber

reinforced polymer (GFRP) structural members used, and (d) Pontresina Bridge made of FRP [5]

1.5 FRP Composite Materials Weaknesses and Application Limitations

Although FRP composite structures have proven to provide numerous advantages, initiation
and propagation of cracks in these materials can affect their mechanical properties drastically.
The most common FRP composite material failure modes are classified into fiber breakage,

fiber-pull out, matrix cracking and interlaminar delamination (Figure 1-2). Fiber breakage
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failure in FRP composites depends on the fibers strength distribution. This failure mode
occurs when the subjected tensile stress in the FRP increases and leads to failure of low
strength fibers in the laminate while the high strength fibers are still carrying the external
load. For a better understanding of fiber breakage, distribution of the fibers strength in FRP
has been investigated by several researchers and it was realized that the strength of glass
fibers follows the Rayleigh distribution [6] while the strength of carbon fibers fits the Weibull
and Gauss distributions [7]. In the cases where fiber strength is greater than the interface bond
between the matrix and the fibers, the fibers can be pulled out of the matrix due to the tensile
loading. In several cases, the fiber pull-out occurs at the fibers end, or at a fracture surface in
the laminate. Another common failure mode in FRP composites attributed to the matrix
material is called the matrix cracking. Since strength in the matrix is commonly lower than
the fibers, normally the first stage of failure starts with matrix deterioration. Matrix cracking
usually takes place before the entire FRP laminate matches its failure point, and it
demonstrates a ductile failure in comparison to the brittle fiber failures. Among other failure
modes, delamination is perhaps the most common failure mode and may occur because of a
weak bonding between composite layers, existing cracks in the matrix material, broken fibers
and fatigue or impact loadings. It can drastically reduce the structural stiffness and weaken

the tensile or shear capacity of the FRP structures under service loads [8].
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Figure 1-2 FRP composite materials common failure modes: (a) Fiber breakage, (b) Fiber pull-out, (c)

Matrix cracking, and (d) Interlaminar delamination

Mechanical defects are not the only cumbersome issue affecting the FRP performance and
applications. Another undesirable feature of FRP composite materials is the complex
heterogeneous and often stochastic properties of these materials which result in randomness
and uncertainty in their manufacturing processes and material compositions in final products.
The deterministic approaches used in many investigations ignored the spatial variability that
exists in such material behaviour, especially at the micro-level scale, and this effect can entail

errors into larger scale simulations. Traditionally, a common modeling approach for FRP’s is
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the implementation of a homogenization technique [9] and relating a certain scale of material
properties to the larger scale, mostly by averaging measured properties (Figure 1-3).
Homogenization techniques can be categorized into micro-level, meso-level and macro-level,
where the uncertainty and variability are assumed for different scales of material composition.
At the micro scale, microstructure of the material composition is examined with methods such
as the moving-window technique (MWT) [10]. This approach requires sophisticated
experimental instruments and deals with the complexity of the FRP composite material
conformation and may not be suitable for non-research purposes. Meanwhile, at the meso-
level, study of FRP composites has received considerable attention over the past decades and
proven to be one of the effective ways to harness uncertainty to homogenization processes
[11, 12]. However, difficulties with boundary condition assumptions in modeling still exist in
this technique and have made its application for large structures challenging [13]. The largest
scale in material composition studies is the macro-scale. Such studies avoid the microscopic
complexity of composite materials and the numerous random variables. In macro-level
techniques, an existing material’s behaviour and randomness are captured by coupon size test

results while relying on continuum-mechanics based structural modeling formulations [14].
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Figure 1-3 Different scales of material modeling during homogenization of material properties

1.6 Experimental and Numerical Modeling of FRP Fracture Properties

In order to improve mechanical performance of FRP composite materials in the presence of
process-induced or loading-induced cracks, extensive studies on the fracture properties of
FRP composites have been performed, both experimentally and numerically. Experimentally,
Owen and Bishop [15] applied the double edge-notched tensile test to measure the mode I
critical stress intensity factor for varying orientations of UD glass FRP composites (Figure 1-
4). Gaggar and Broutman [16] utilized both single and double edge-notched tensile tests as
well as a notched bend test to extract the critical stress intensity factors. Mower and Li [17]
summarized the experimental results from previous investigations and concluded that the
linear elastic fracture mechanics (LEFM) is not a valid approach for FRP composite materials
with long fibers and a nonlinear material constitutive model is required to accurately
characterize the fracture energy toughness of FRP composites. The fracture energy toughness
of unidirectional FRP composite materials under a double cantilever beam (DCB) test can be
calculated using the modified beam theory, compliance calibration and modified compliance

calibration methods [18]. The modified beam theory approach is recommended by O’Brien
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and Martin [19] and has shown the most repeated value for the critical fracture energy
toughness. In order to measure the mode II fracture energy toughness of the FRP composites,
the end-notched flexure (ENF) test was suggested and employed by Davies et al. [20]. The
ENF test is today one of the most recognized testing methods for mode II study of FRP
composite materials. However, due to the unstable nature of this test, only the crack initiation
values can be extracted from the test results. Edge delamination phenomena is another failure
mode in FRP composite laminates studied by Lee [21] using the edge crack torsion (ECT)
test. This test can be applied to extract the mode III interlaminar fracture properties of
specimens. The extensive investigation on the fracture phenomenon of test samples showed
delamination problems mainly consist of mixed mode fracture mechanics characteristics.
Subsequently, the mixed mode bending (MMB) test has been designed as one of the recent

methods for mixed mode characterization (mode I and II interaction).
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Figure 1-4 Fracture energy toughness measurement fixtures: (a) Double Cantilever Beam, (b) End-

Notched Flexure, (c) Edge Crack Torsion, and (d) Mixed Mode Bending tests [8]

Regarding numerical modeling of FRP composites delamination, numerous investigations
have been performed over the past few decades. Hillerborg et al. [22] introduced a
combination of finite element method and an analytical solution to simulate the crack growth
in concrete structures. This approach is often referred to as ‘fictitious crack modeling’, where

a traction-separation law instead of the conventional stress-strain relationship is utilized in the
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crack-tip zone to capture the degradation of the material properties due to damage. Later, Xu
and Needleman [23] applied an energy potential function to implement the cohesive zone
model (CZM) during the analysis of interface debonding. CZM application was extended to
FRP composites by Camacho and Ortiz [24], Camanho et al. [25], Blackman et al. [26], Gao
and Bower [27], Segurado and LLorca [28], Cox and Yang [29] and Nishikawa et al. [30]
while they have improved the cohesive interface models. Based on these reports, CZM has
proven to be capable of modeling the ‘large process zones’—in the present case the FRP
composite delamination. Despite its capability to model the progressive delamination, some
severe disadvantages of applying large process zone have been noted and need to be tackled.
These include numerical instability (elastic snap-back), reduction of stress intensity upon
delamination initiation, and the fictitious softening of the original body in the process zone. In
other investigations, a newly introduced feature of the finite element method, known as the
extended finite element method (XFEM), has been more recently implemented for numerical
modeling of progressive delamination in FRP composites. The original XFEM approach was
first introduced by Belytschko and Black [31] and enhanced by Moés et al. [32]. They
implemented the concept of a partition of unity method (PUM), introduced earlier by Melenk
and Babuska [33], to develop a method to model material discontinuity. In the basic XFEM
approach, a Heaviside step function is implemented to model the crack surface by adding
extra degrees of freedom to each node of the so called ‘enriched elements’ [32]. They
introduced a framework capable of considering cracks and frictional contact with the zero-
thickness process zone in 2D problems. Xiao et al. [34] utilized this approach combined with
a statically admissible stress recovery (SAR) technique in modeling cohesive cracks with a

softening law composed of linear segments. Later, the approach was implemented by Unger
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et al. [35] to model the cohesive crack in concrete specimens. The application of the 2D
model was extended to composite materials by Benvenuti [36], who regularized XFEM for
embedded cohesive interfaces. Sosa et al. [37] demonstrated the effectiveness of XFEM in 3D
modeling of fiber metal laminate delaminations and compared their results with existing CZM

results. XFEM and CZM concepts will be discussed in more detail in Chapters 4 and 5.

1.7 Randomness in FRP Fracture Properties

As addressed in Section 1.5, studying composite materials based on the assumption of
Representative Volume Element (RVE) and the subsequent homogenization have been the
basis of the work of several researchers. Kaw [38] used the RVE approach for unidirectional
(UD) composites and Peng and Cao [39] developed a dual homogenization technique for
woven fabrics. However, other investigations have shown that there can be considerable
spatial non-uniformity both in UD composites [40] and woven fabrics [41, 42], which may
hinder the full capability of RVE approach for fracture simulations [43]. There can be a
variety of sources for such non-uniformity of material properties in composites. Examples
include random distributions of fibers within samples, fiber penetration between layers,
existence of voids within the matrix, human error in manufacturing process, uneven heating
or cooling of samples during molding. Hence, there is a need for developing new models that
can consider the heterogeneousness characteristics of FRP composites and include statistical
distributions of their mechanical properties as well as the pre-existing defects in test
specimens [44, 45]. Stochastic modeling of the mechanical behaviour of composites can be
especially important in predicting critical loads and critical displacement values, as well as

crack formation patterns in large structures [46, 47]. Among the most recent works on
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stochastic modeling of FRP composites, Ashcroft et al. [48] emphasized the effect of material

uncertainty and non-uniformity in predicting delamination phenomena.

1.8 Motivation and Objectives of the Work

Based on the above background review, a number of investigations have been performed to
study the mechanical properties of FRP composites. In particular, fracture behaviour of these
materials is an interesting topic where a variety of experimental tests and numerical
procedures have been proposed by different research groups. The heterogeneous nature of
FRP fracture properties has made the research in this area a challenging task. With respect to
numerical simulations, different numerical methods have been applied to extract the correct
behaviour of FRP composites and the results demonstrated the necessity for further
investigation in this field for more realistic simulations. Among the various numerical
methods employed to model the delamination in composite materials, the interface element
method combined with a cohesive law has received great attention by numerous researchers
to date. Espinosa et al. [49] implemented this method for modeling dynamic delamination of
woven GFPR composite materials with an anisotropic visco-plastic material model in
conjunction with a cohesive law. Cohesive zone model properties such as maximum interface
strength, fracture parameters, penalty stiffness and cohesive zone length were studied by
Turon et al. [50] and Harper and Hallett [51] to overcome the existing implementation
obstacles of cohesive zone models in numerical simulations. A generalized framework for
implementing the cohesive XFEM in modeling delamination was introduced by Benvenuti
[36]. In that work, the fundamentals of XFEM with cohesive law characteristics were studied

and examples of DCB test were modeled. In addition to FEM-based methods, a mesh-free
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based method was utilized by Barbieri and Meo [52] to extensively simulate the mode I and
II, DCB, ENF and end-loaded split (ELN), tests in 2D with the focus on nonlinear aspects of
crack problems. Most of the above mentioned studies, however, are based on deterministic
properties of composite materials, especially their fracture properties, while other
experimental results demonstrated the variability of the composite fracture phenomenon [48].
Among recent stochastic works, Ashcroft et al. [48] introduced micro-structure randomness in
the form of fracture properties of CFRP composite materials into the numerical simulation of
DCB tests using interface cohesive elements in the FEM model. Non-uniformity and random
distribution of material fracture properties were considered by means of uniform and Weibull
distributions and results emphasized the need for further studies on including micro structural

randomness for accurate predictions of fracture performance of composite laminates.

Therefore, the present thesis is primarily aimed at developing and examining an enhanced
numerical approach for simulating the composite fracture tests considering both material and
geometric nonlinearities along with stochastic fracture properties. A simplified approach is
introduced to implement the cohesive zone model and hence to avoid the numerical softening
due to existence of a large process zone. An ABAQUS user-element subroutine is developed
and linked to MATLAB to implement the nonlinear XFEM for DCB test simulation (mode |
fracture). The cohesive zone model is associated with enriched elements to consider a bilinear
traction-separation law in the crack front using the XFEM contact model following the work
of Khoei et al. [53]. The model is also implemented to investigate the ENF test for mode II
fracture properties. Stochastic distributions are employed to the fracture properties of the
material via the bilinear traction-separation law, and results are compared with both available

data in the literature and a set of performed tests on Poly Phenylene Sulfide (PPS)/Glass UD
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composites. Finally, a set of sensitivity analyses are performed to identify the effects of

different model variables such as the mesh size, cohesive zone length and penalty stiffness.

1.8.1 Potential for Practical Applications and Expected Originality

As addressed before, composite materials are rapidly replacing metallic materials in different
industries. Moulding process is an essential part of any composite manufacturing line that
deals with forming structural components for vehicles, airplanes, boats, etc. A rising
challenge for optimal implementation of FRP composites in forming processes, however, is to
understand their behaviour and conformability against heat and pressure variations as well as
different geometries of the mould. For instance, during moulding process of a thick FRP
composite into a curved/bent part, it is possible that in the corner of the part, delamination
between layers initiates and propagates and eventually be a reason for the rejection of the part
(Figure 1-5) [54]. The same problem may happen during service under excessive loadings,
even for a part that had been originally manufactured with no flaw. Therefore, it is required
for leading industries to employ advanced simulation tools as part of their design and
manufacturing processes to predict damage phenomena (in the present case, delamination) in
FRP composite materials as accurately as possible, while not ignoring the unavoidable

variation in material properties of composites (in the current case, the fracture properties).
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Delamination onset in the
bent/corner area

Figure 1-5 Forming process of a heated FRP composite laminate: (a) Initiation of the forming (Step

1), compression and cooling cycle (Step 2), removing the male die and possible dimensional distortion of

the part (Step 3); and (b) Delamination spotted in the corner of a compression moulded component [54]

The expected originality of the present work within the context of application of advanced
numerical modeling approaches for composite design and manufacturing can be summarized

as follows.

e Performing mode I and II fracture tests for a PPS/Glass UD laminate used in

aerospace and automotive industries.

e For the first time investigating the observed randomness (non-repeatability) in the

material response from the above fracture tests.

e Enhancing the existing XFEM approach in the literature to model the composite

fracture tests under uncertainty (combining XFEM with contact and cohesive
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modeling capabilities under one framework, along with stochastic fracture properties),

hence moving towards more reliable damage prediction tools.

e Implementing stochastic characteristics of the tested PPS/Glass UD composites in the

XFM simulations and validating with experimental data.

e Studying the effect of different modeling factors (such as penalty stiffness) in the

enhanced XFEM approach using a series of sensitivity analysis.

1.9  Thesis Outline

This thesis is organized into five chapters. The first chapter, presented above, focused on a
general literature review on experimental and numerical modeling of the fracture mechanics
of FRP composite materials and also the necessity for considering the variability in micro-
structure of these materials. In Chapter 2, damage modeling and fracture properties of FRP
composites are reviewed. Also in this chapter, the XFEM method and its applications are
reviewed and discussed. In the final part of Chapter 2, cohesive zone and contact surface
implementations of XFEM are described and finite element formulations are presented. In
Chapter 3, results from XFEM simulations are compared to those extracted from other
numerical methods and benchmark experimental tests in the literature. Modeling parameters
such as penalty stiffness, mesh size and cohesive zone length are studied via a set of
sensitivity analysis to examine the presented XFEM approach effectiveness in modeling
fracture properties of UD composites. Chapter 4 presents the fabrication process and
experimental procedures used to obtain elastic moduli and fracture properties of PPS/Glass
samples. Following, stochastic features of the measured fracture properties are introduced to

the XFEM model. Results are then compared with those from experiments using DCB and
19



ENF test set-ups. Finally, in Chapter 5, the undertaken numerical and experimental
procedures as well as the main results are summarized. Future work recommendations are

also included in Chapter 5.
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2 Chapter: Background

In this chapter, elastic mechanical behaviour, damage properties and fracture mechanics of
FRP composite materials along with different underlying modes of failure are first reviewed.
Advantages of damage modeling and fracture mechanics will be compared in modeling the
post-failure behaviour of FRP composite materials. Next, basic definition and properties of
XFEM will be described and its application in modeling the LEFM and EPFM will be
discussed. The implementation of damage mechanics through cohesive zone model (CZM)

will also be presented and effective parameters in such a model will be summarized.

2.1 Elastic Mechanical Behaviour of FRP composite Materials

As mentioned in Chapter 1, in FRP the matrix provides the integrity of the composite by
holding fibers together. It also has greater elongation characteristic than fibers which forces
the fibers to carry the maximum load before the matrix fails. Fibers, on the other hand,
provide high strength and stiffness to the material system. Such a material composition will
lead to anisotropic material properties and entails an appropriate technique for extracting the

global (macro-level) material behaviour. The conventional elastic constitutive relationship

between stress o and strain &, for a FRP composite material, similar to an orthotropic

material, can be written as:
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where Cyy (ij,k,/ =1, 2, 3) are the stiffness matrix, C, components. For easier demonstration
of the material parameters, especially for FEM implementation, the following vector-form

compliance equation is used to describe the material constitutive behaviour:
£=So where S=C" (2-2)

where the compliance matrix, S, is re-arranged as follows:
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E;is the elastic modulus in direction 7, G;; are the shear moduli and v;; are the Poisson’s ratios.
Generally, the unidirectional composite materials have a transversely isotropic behaviour

which yields a relationship between material properties as follows:
E=E, ,v,=V5,G, =G (2-4)

Subsequently, the compliance matrix can be redefined as:
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The American Society for Testing and Materials (ASTM) standards [55-57] has proposed

several experimental tests for extracting the material elastic constants at macro-scale.

2.2 Failure Modes of FRP Components

Most FRP composite materials demonstrate a brittle behaviour when imposed to in-plane
loading. Typically, the response curve of such laminated FRP composites under tensile test
starts from the origin and increases linearly up to the failure point. At this point, the material
faces a form of irreversible damage (e.g., fiber breakage). After this point, it is most likely
that the load-deformation curve drops to zero and the FRP composite loses its capacity to
carry further load. The stress-strain relationships for several fiber materials are demonstrated

in Figure 2-1.
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Figure 2-1 Comparison of tensile stress-strain curve of fiber materials [58]

Damage initiation in FRP composite materials has a direct relationship with matrix and the
fiber material properties and the existing flaws in the structure. A difference between the
elongation limit of the matrix and fibers is a dominant parameter in tensile failure of a
laminated FRP composite. In the case where failure strain of fibers is larger than the matrix,
the matrix cracking is expected to happen earlier. However, if the fiber ratio of the composite
is large enough (greater than about 10%), fibers can continue carrying the load up to their
rupture. On the other hand, if the fibers have lower elongation than the matrix, which is the
most common case, it will force fibers to carry the maximum load according to their capacity
and fail due to breakage. Both cases can theoretically be justified when no flaw exists in the
FRP composite material (Figure 2-2). Incomplete bonding at the interface of the matrix and

fibers, air entrapment, uneven distribution of fibers within the matrix, and premature cracks
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between layers of laminate are several common manufacturing defects in FRP composites

[58].
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Figure 2-2 Stress-strain curves for the matrix and fiber materials: (a) Fibers have larger failure strain

than that the matrix, and (b) The matrix has larger failure strain than fiber [58]

Depending on the matrix and fiber material properties and the above mentioned

imperfections, matrix cracking, fiber pull-out, fiber breakage or delamination is expected to

occur and cause a crack formation in a FRP structure due to the intrinsic brittleness of these

materials under extensive loadings. These damage modes will reduce the structure’s capacity

to endure extra loadings; however, they may not lead to complete failure and collapse of the

structure. Examining the initiation, stability and growth of defects are directly linked to the

comprehensive study of fracture mechanics and the theory of plasticity.
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2.3 Fracture Mechanics
Structural damage associated with the crack causes the local stresses and global deformations
to increase for the body near the cracked area. Three independent modes are applied to define

any coupled fracture deformation of a given structure (Figure 2-3) [59]:
1. Opening mode (mode I), when two faces of the crack are pulled away in the crack’s plane.

2. Sliding (shearing) mode (mode II), when two faces of the crack are sliding over each other

in the crack’s plane.

3. Tearing mode (mode III), when two faces of the crack are taken apart out of the crack’s

plane.

.

(a) (b) (c)
Figure 2-3 Dominant fracture modes of a cracked body: (a) Opening mode (mode 1), (b) Sliding

(shearing) mode (mode I1), and (c) Tearing mode (mode I11) [59]
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Degradation and loss of the integrity of a structure can be drastically increased due to the
crack formation (and propagation) which entails a careful scrutiny of different fracture modes
with respect to the composite material composition and structural loadings. In this regard, the
classical fracture mechanics can be categorized into linear elastic and elastic-plastic fracture
depending on the type of material under study. Linear elastic fracture mechanics (LEFM)
discusses deformation and stress fields around the crack-tip when a small plastified zone
forms in the cracked region relative to the crack length. In such a case, singular stress fields
emerge at the crack-tip. In LEFM, the stress intensity factors (SIFs) are applied to assess the
stability of the crack by comparing it to critical SIFs extracted from experiments. The
Westergaard [60] solution is a well-known approach in applying SIFs to estimate the
displacement and stress fields near the crack-tip. Despite the capability of LEFM in
estimating the fracture properties of brittle materials, with the extension of the plastic zone or
the fracture process zone the singular stress fields vanish from the crack-tip region (e.g., crack
propagation in steel structures). For such cases, elastic-plastic fracture mechanics (EPFM)
proposes more accurate solutions and considers a plastic zone in front of the crack-tip region
where extensive plastic deformation is expected to emerge. Wells [61] proposed the crack-tip
opening displacement (CTOD) as a failure threshold for a structure. As an extension to the
nonlinear analysis of such plastic zones, the J-integral was introduced by Rice [62] to

accurately evaluate the energy release rate of materials when the Griffith theory is imprecise.

In general, fracture mechanics of a composite material is more challenging in comparison to
other homogenous materials. The heterogeneous composition of FRP composite materials
entail complex fracture phenomenon such as delamination. As mentioned before,

delamination is one of the failure modes in FRP composite materials and can occur because of
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a weak bonding between composite layers, an existing crack in the matrix material, broken
fibers, fatigue, impact loadings, etc. In multi-layer laminated FRP composite structures, fibers
in each layer are confided by adjacent layers on the top and bottom faces and the matrix acts
as the bonding agent. When a crack forms in the matrix, the brittle nature of the matrix lets
the LEFM accurately assess the crack stability and propagation pattern. On the other hand, in
unidirectional laminated FRP composite structures, especially when formed using a moulding
process with high compression pressure, fibers can penetrate into adjacent layers and the
bonding between layers can be affected by fibers penetration (called fiber bridging). In this
case, fibers onset an extra resisting force and prevent the crack from opening and the fracture
behaviour of the structure demonstrates similar properties to those experienced during an
elastic-plastic fracture. This aspect of FRP composites has increased the need for more

advanced techniques of modeling their fracture phenomena and the governing failure modes.

2.4 Damage Mechanics Models

Several numerical investigations have been focused on the plasticity and damage modeling to
consider defects in FRP composite structures. In these models, some failure criteria are pre-
defined for the FRP composite and, based on the stress fields in the structure, failed elements
are identified. Depending on the failure mode and numerical modeling technique, distorted
elements may be eliminated from the model, or their stiffness would be degraded to simulate
the material softening. Erdogan and Sih [63] introduced the maximum stress criterion which
compares the principal stresses in each direction of an element with the material allowable
stresses to evaluate the dominant failure mode. Hoffman [64] proposed that when the

maximum strain criterion is similar to the maximum stress criteria, the principal strains in the
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material directions are compared to the material strains capacity. Tsai [65] applied the Hill’s
yield surface and redefined the Tsai-Hill theory. The yield surface based on the Tsai-Hill

criterion is defined as:

2 2 2 2 2 2
T, T, T, T, T, T,
1 1 1
- (ﬁ"‘ E"' E] (0110-22 + 0330, +0,,0;; ): rs

(2-6)

normal

where o, Tj and YS§

> are the stresses in different material directions, material strengths

normal

and normalized failure threshold, respectively.

Tsai and Wu [66] also presented a failure theory based on the strengths criterion for
anisotropic materials. The Tsai-Wu failure criterion could differentiate between material
tensile and compressive strength and ignores the interaction between failure modes. Based on

this criterion, the failure surface can be expressed as follows:

Fijo-[aj + EG[ = YSnormal (2-7)

where o, F, and F,

i i ij

are the re-arranged vector of stress tensor, second and fourth order

strength tensors, respectively.

Specifically for unidirectional (UD) laminated composite materials, Hashin [67] introduced a
set of failure modes based on the combination of fibers and matrix strengths. The failure

criteria proposed by Hashin [67] can be summarized as follows:

1- Tensile fiber failure for o,,> 0:
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2 .
o], oL +or L 1 Failure
X, s> <1 No Failure

2- Compressive fiber failure for o, <O0:
o 2 =z 1 Failure
X "~ |<1 No Failure

3- Tensile matrix failure for o,, +0;;> 0:

n S 2 52 (>1
Op+0yu |  On=0y0y Op+oy; )2
S; S;

23 12

4- Compressive matrix failure for 0,, +0,,<0:

2
Y 1 Oy t+ 03 n (O-zz +G33)2 n
28, Y. 483,

2 2 2 .
Oy = 0,503 n O, t0y; _ =1 Failure
S223 S122 <1 No Failure

5- Interlaminar tensile failure for o;,> 0:

O3 2_ >1  Failure
Z, “|<1 No Failure

6- Interlaminar compression failure for ;< 0:

<1 No Failure

(2-8)

(2-9)

(2-10)

2-11)

(2-12)
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2
>1 Failure
9y | - e (2-13)
Z. <1 No Failure

where X,, Y., Z,, X., Y., Z-, S,,, S;; and §,; are the tensile, compressive and shear

strengths in different material directions.

2.5 Comparison between Fracture Mechanics and Damage Mechanics

In general, fracture mechanics focuses on local discontinues where macro-cracks are present.
It observes the singular stress and strain fields in front of the crack-tip, especially in brittle
materials, and provides an accurate estimation of the damage evolution when a flaw exists in
the structure. On the other hand, damage mechanics tends to evaluate the stress and strain
state in the structure and assess whether the material faces degradation in each loading step. In
addition, it can be applied to study the global behaviour of the structure and predict the failure
initiation and expansion trend due to the material deterioration. Hence, depending on the
problem encountered, an appropriate approach should be selected to accurately evaluate the
structural behaviour of the composite. In the present work, the focus on the local damage
modelling of FRP composite materials would prompt the implementation of fracture
mechanics due to the local nature of delamination and brittle properties of such materials.
However, the large process zone existing in the delamination front will require the
implementation of elastic-plastic fracture mechanics to ensure the accurate evaluation of the

structural deformation (this will be formulated in detail in Section 3.2).
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2.6 Introduction of Extended Finite Element Method

Numerical modeling is an important part of most engineering applications. In many cases, a
structure’s dimensions and the test set-up configurations cause limitations when performing
full-scale experimental studies, increasing the demand for undertaking more numerical
analyses. A variety of numerical modeling techniques have been proposed in the past decades
and can be categorized into mesh free methods such as Smoothed Particle Hydrodynamics
(SPH), Element-Free Galerkin Method (EFGM), Finite Difference Method (FDM) and
Meshless Methods as well as mesh-based methods such as Finite Element Method (FEM) and

Boundary Element Method (BEM).

The FEM can be directly enhanced and used in modeling discontinuities by introducing the
partition of unity method (PUM), proposed by Melenk and Babuska [33], to approximation
functions. The basis of PUM is similar to regular finite element approximation where the
summation of all shape functions at any Gauss point is equal to one. The new method is
known as the extended finite element method (XFEM) [31-32]. The XFEM has demonstrated
to be a more accurate and convenient solution where the conventional finite element produces
rough or highly oscillatory results. In XFEM, similar to conventional FEM, the finite element
mesh is generated regardless of discontinuities locations. Then, specific search algorithms
such as the level-set or fast marching methods are utilized to identify the location of any
discontinuity with respect to the existing mesh and distinguish the different types of required
enrichments for the affected mesh elements. Next, additional auxiliary degrees of freedom are
added to the conventional FEM approximation in selected nodes around the discontinuity.
These degrees of freedom assist the model in capturing the displacement jumps caused by

discontinuities.
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Assume a discontinuity (a crack) within an arbitrary finite element mesh (Figure 2-4). The
displacement field of point x, u*(x), inside the domain can be described in two parts; the

conventional finite element approximation, and the XFEM enriched field defining the

discontinuity [32]:

ut(x)= D ¢, (ul + D4, (X (x)us”

neN n,eN’

(2-14)

where ¢(x) is the conventional shape function (also often shown in the literature by N(x)),

w(x) is the general enrichment function, N/ is the finite element mesh nodes and N7 is the

enr

. d . . .
enriched nodes of the mesh, ¥ is the classic degrees of freedom at each node and #“" is

the additional enriched degree of freedom at the J ™ enriched node.
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Figure 2-4 An arbitrary finite element mesh with a discontinuity (circles represent the enriched nodes of the

mesh)

In order to choose the enrichment function, any discontinuous function in the problem domain

can be employed to estimate the displacement field approximation in vicinity of the crack. A
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function that satisfies such a requirement is the Heaviside step function ( H(X)). It gains a
‘+1” value on one side of the crack and ‘-1’ on the other side of the crack and can be utilized
when the crack propagation is modeled by straight line segments. To find the Heaviside
function value at each node of an element, tangential and normal vectors of the crack surface
curve should be measured. If X~ is the nearest point of a crack to the point X, Figure 2-5,
and e, is the unit normal vector of the crack alignment in which e, xe =e_ (e,is the unit
tangential vector), then using a scalar product between the distance vector of the element’s
nodes and the normal vector of the crack surface, the Heaviside function value can be

calculated.

H(X):{H d0f (X'-X")e, >0 2-15)

—1 ;otherwise

Figure 2-5 Unit tangential and normal vectors for the Heaviside function and nearest point to X on the

crack surface; X~

Another set of functions utilized in XFEM are those extracted from an analytical solution of

the near crack-tip displacement fields in LEFM as follows [68]:
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u = 5 ! /ZL {K, c0s§(3—4v12 —c059)+ K, sin§(3—4v12 +2+cos€)} (2-16)
V4

12

u)’ =%1/5{K1 sin§(3—4v12 —sind)+ K, (:05%(3—4\/12 —2+cos<9)} (2-17)
12

- 2 r 0
u'™ =—‘{—K sin— .
z G, \2x 1 ) (2-18)

where u”, u', u'” ,K,, K, and K, are the crack-tip displacement field and stress intensity

y z 9
factors (SIFs) in the three standard fracture modes, and (7, ) are the local polar coordinate

system at the crack-tip.

Subsequently, the extracted crack-tip enrichment functions were proposed by Moés et al. [32]

as:

{Fe'”(r,H)}é.1 = x/?sing,x/;cosg,\/;singsinQ»JCOSQSine (2-19)
i=1 2 2 2 2

Among presented functions, Jr smz is the only discontinuous function and the remaining

functions are continuous.

A more general set of enrichment functions can be achieved by studying the crack asymptotic
displacement fields in anisotropic materials. For such a case, with general boundary
conditions and the structure subjected to arbitrary forces, the following characteristic equation

can be obtained using the equilibrium of forces and compatibility conditions [69]:

4 3 2 _
ap i =2ai6 1 + (26112 T g )/u —2ayp+ay, =0 (2-20)
where a; is the material compliance matrix components.
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Lekhnitskii [69] illustrated that the roots of Equation (2-20) are always complex or purely
imaginary (,uk =ty Figy,, k=1, 2) with the conjugate pairs asy,, z and u,, 1.
Employing the above equations, the displacement fields in the vicinity of the crack-tip were

elicited by Sih et al. [70] by means of analytical functions and complex variables as follows:

LA~ My

uZ’”=K1,/% Re| — {ﬂleCOSewzsin@—ﬂ1p1\/6089+ﬂ15m9}} (2-21)

2r o] 1 vy s .
ul =K, % Re —{#1% cosO + u,sin — p,q,4/cos b + u, Slnﬁ}} (2-22)

L U — Hy

For pure mode 1II:

uff” =K, /Z Re ! {p21/0089+ﬂ2 sinf — p,/cosf + g, sinﬁﬂ (2-23)
T

Lt — My

=2 oot - | @2

Lt — My

where Re denotes the real part of complex variable. p, and g, can also be defined [70]:

Py = a“,u,f +a, —a (2-25)
Gy

Gr = Qb T =0y (2-26)
Hy

Using the above equations, the near crack-tip enrichment functions for the crack in an

anisotropic material are expressed as [71]:

(Fr o) = {ﬁ COS% NORG cose—zz V& (0).r Sin%\/ £(0),Vr sin%\/ g (6’)} (2-27)
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where g,(0) and 6,, (k=1,2) are defined as:

g.(0)=lcos 0+ u,, sin OF +(u, sin O (2-28)
ty, Sin 6
0, = arctan 2-29
‘ (cos9+ukxsin0} (2-29)

Moés et al. [32] substituted the Heaviside and near crack-tip enrichment functions in the

XFEM approximation and presented the following equation:

wi(x)= Y4 u+ b HEB! + Y @(x)[z(cff )i(F”’(x)),‘-]

i

nyeN nyEN . keK oe
(2-30)
ip \? enr 2
+ 3 4 (x)[z(c,”” J @) j
l i
lEK}%nde
where N . is the set of nodes that have a crack face (but not a crack-tip) in their influence

domain, b” is the vector (in multi-dimensional problems) of additional degrees of freedom
which are related to the modeling of crack faces (not crack-tips), ¢ is the vector of

additional degrees of freedom for modeling crack-tips, F*"(x) is the crack-tip enrichment
function and K, and K2, are the sets of nodes associated with the crack-tip 1 and 2 in their

influence domains, respectively. Figure 2-6 illustrates a finite element mesh for modeling the
existing discontinuity in Figure 2-4. Nodes that need to be enriched with Heaviside and near
crack-tip functions are distinguished by circles and rectangles, respectively. Other nodes that

are not affected by the crack remain well within the classical finite element framework.
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Figure 2-6 The influence domain of node J in an arbitrary finite element mesh

The XFEM displacement approximation in Equation (2-30) can be implemented in numerical
modeling with LEFM to predict the displacement field in a cracked structure. Considering the

total potential energy governing the problem, we can write:

jr,, o, 0&;dly = J‘ry f-outdr, +Lﬁ -Sudr, (2-31)

where [, I, fib, £ and u* denote the body domain, traction surfaces, body forces,

external forces vectors and displacement field, respectively. Discretizing the Equation (2-31)
and applying the variational formulation, the following linear algebraic equation can be

written:

K°u" =R° (2-32)
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Where K’, R’ and u" denote the initial stiffness matrix, right hand side vector of external
forces and general vector containing all the nodal parameters including the ordinary, crack

face and the crack-tip enriched degrees of freedom vectors, respectively:

T

u" = {u”"d, b, c”"’} (2-33)

In Equation (2-32), the initial stiffness matrix and the right hand side vector of external forces

are also defined as:

uardum'd uarde um'dcfip
Kéi K!i KU
0 bH ord beH bH tip
K" = K;" K; K (2-34)
C//’p”or'd Cl[pr C//’pc/ip
K; K; K;
ord H ap T
0 Ou Ob 0(, _
R = {R R R } (2-35)

ord H
b b b

The stiffness arrays K (r,s=u c¢™)in Equation (2-34) include the classical,

enriched and coupled components of XFEM approximation:

K =[ (B)'DBdQ  (rs=u""b", ") (2-36)

where B is the matrix of derivatives of shape functions and is defined as:

N, 0 0
0 N, 0
e | 00 Ny 037
l Ni,Y Ni,X 0
0 N, N,
_Ni,Z 0 Ni,X |
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(2-38)

(2-39)

where H, and F" are the Heaviside and crack-tip enrichment functions at element nodes.

Normalizing the enrichment functions by mean of deducting the enrichment functions at

element nodes will readily satisfy the PUM fundamental (i.e., the summation of normalized

enrichment functions for a given node will be the unity). Also, the & index is used to

differentiate between different enrichment functions, respectively.

2.7 Application of XFEM in Linear Elastic Fracture Mechanics

As addressed earlier, the linear elastic fracture mechanics (LEFM) is a suitable tool for the

analysis of many materials with a small plastic or process zone in front of the crack-tip. The

SIFs are the only required variables for assessing the stress and displacement fields around the

crack-tip under different loading and subsequently, measuring the stability of the crack by
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comparing SIFs to their critical values extracted from the experiments. In terms of numerical
modeling of LEFM problems, XFEM provides an accurate estimation of the stress and
displacement fields around the crack-tip using the Heaviside and crack-tip enrichment
functions. To further the application of XEFM in LEFM, it is also required to introduce a
post-processing procedure to evaluate the SIFs. For this purpose, the interaction integral,
known as M-integral, was proposed by Moés et al. [32] and Dolbow et al. [72] for isotropic
materials and extended to orthotropic materials by Kim and Paulino [73]. The interaction
integral is essentially derived from the J-integral introduced by Rice [72] as in Equation (2-

40).

ou
f]ﬂ‘ (2-40)

J, = (Wnk -t
FJ:"F an

where W=(1/2)0',7<9g is the strain energy density, X,, £ and n, represent Lagrangian
coordinates, vectors of surface traction and vectors of outward normal direction, respectively,
and the integral paths /" and /. denote far-field and crack surface paths, respectively, as

shown in Figure 2-7.
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Figure 2-7 Local crack-tip coordinates and the contour I" and its interior area, Vr

The form of equation (2-40) is not perfectly suited for FEM implementations and an
equivalent form can be obtained by applying the divergence theorem and several additional

assumptions, as discussed by Kim and Paulino [73]:

Jk :J~ o 8uj W q'der +I o azuj _ 8&7 _laciilm gl c. q'dVr (2_41)
e : Nolexex, ox, ) 2 ax,

Vr

where ¢' is a function smoothly changing from ¢'=0 at the exterior boundary /" to ¢'=1
near the crack-tip. In the present study, ¢' is assumed to be varying linearly from 1 to O.

Noting that the value of ¢ is constant near the crack-tip area, distinguished by shaded
unaffected elements in Figure 2-7, the gradient of ¢' vanishes in Equation (2-41). By

adopting auxiliary displacement, stress and strain fields (u, """, o, g ) and
ij

superimposing them to displacement, stress and strain fields (u,, o, ¢ ), the superimposed

L

J-integral will contain the following parts:
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J

Superimposed

=J+ JAuxiliary +M (2_42)

where M is the interaction integral in the local crack-tip 2D Polar coordinate and consists of
terms involving products of actual and auxiliary fields. The Cartesian coordinate definition of

M-integral is then as follows:

”aX % 0X,

a 2 aux ag 7””‘ aCl -
+ 4o, . g el bg'dVe (i, j,k=1,2,3)
oX, 8X an ox, "’

Vr

M, J{ 8u‘”‘" o Ou, (W+Waux)}q Ldv.

(2-43)

To extract the M-integral in local crack-tip Polar coordinates, a simple transformation can be

employed:

M

Local

=M, cos@+M,sinf (2-44)

Now, if one wants to relate the superimposed J-integral to the energy release rate, G, of the

two actual and auxiliary fields, the following relationship between SIFs and M-integral can be

derived:

J=G=G,+G,=c,K; +c,K,K,+c,K}, (2-45)
Tsuporimoned = €1 (K; + K2 4 (K, + K2 ) (K, + Ko )+, (K, + K2 ] (2-46)
J sy = e (K22 F + 0, KK 8 4 e (K2 f (2-47)
M, =20, K, K+, (KK, + K K2 4+ 20,,K , Ko (2-48)

where ¢,,, ¢, and c,, are defined as follows:
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+
¢, =2 Im(uj (2-49)

2 Hy
1
=—“£Im( ]+@Im(ulyz) (2-50)
2 HH, 2
a
e == Imu + 1) (2-51)

Finally, by solving the following algebraic equations for the auxiliary field for mode I and II,

SIFs can be extracted:

M,, .=2c,K, +c,K, for K =1.0 and K" =0.0 (2-52)

Local

M

Local

=2¢,,K,+c,K, for K =10 and K;;* =0.0 (2-53)

2.8 Application of XFEM in Elasto-Plastic Fracture Mechanics

In contrast to LEFM, EPFM deals with ductile materials with a relatively large plastic or
process zone in front of the crack-tip. Irwin [74] proposed a simple plastic zone correction to
SIFs in order to consider the plastification effects. Alternative solutions were also introduced
by Dugdale [75] and Barenblatt [76] to correct plastic zone characteristics. Wells [61] offered
crack-tip opening displacement (CTOD) as an independent variable to measure the fracture
energy toughness of materials. This approach covered not only the LEFM but also established
a way to investigate the EPFM in materials. Later, Rice [62] introduced a path independent
contour integral, the J-integral, to describe the stress and strain distribution near the crack-tip.
It is worth mentioning that the J-integral was earlier extracted by Eshelby [77], however; the
application of this method in studying LEFM and EPFM was proposed by Rice [62].
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As mentioned in Section 4.2, the interaction integral method has been frequently adopted in
LEFM crack analyses to evaluate mixed mode SIFs. One disadvantage of this method is
related to the dependency of the method on the auxiliary field exact solution. In terms of
EPFM, XFEM potential has left behind such limitations and provided a convenient solution.
Motamedi and Mohammadi [78 - 79] implemented dynamic J-integral and CTODs to assess
the SIFs in orthotropic materials. Definition of Equation (2-41) can be applied to measure the
tangential component of the J-integral which corresponds to the rate of changes in the

potential energy per unit crack extension, namely, the energy release rate (G):

G =J,cosf, +J,sinf, (2-54)

where 6, is the crack angle. In order to accurately evaluate the stress and displacement fields

around the crack-tip, the component separation method, proposed by Aliabadi and Sollero
[80], was employed. They discussed that the following relationship between the stress

intensity factors and the CTODs of the crack faces can be obtained:
{517}: (8_rj |:D11 D12:|{K1 } (2_55)
S, 7 ) | Dy Dy | Ky

with

D, ZIm(ﬂzpl —ﬂlpz],Dn =]m[p1 —sz

H—H, H—H,
(2-56)
D,, :Im(,uz% _ﬂlqzjaDzz :lm[ 9, — 4, J
H—H, H—Hy

Where p1, pa, q1 and ¢, are defined as follows:
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)2 :a11(1+M2)+alz (2-57)

P, = au(l +y22)+a12 (2-58)
g, = alz(l + 4 )+ o) (2-59)
. -
H

q, = (2-60)

Another set of relationships between the energy release rate and the SIFs was proposed by

Wu [81]:

G=(1/2)K"L(c)'K (2-61)

where L(c)was defined by Dongye and Ting [82] for orthotropic materials with the symmetry

planes coinciding with the coordinate planes. The non-zero components of L (c) are:

Ly; =CssCyy (2-62)

1
\/C66C22 Ln = \/Cl 1C66 Lzz =QY ? (2-63)

where Cj; is the constitutive/stiffness coefficients and

Q=(C,C,y, - C122 )\/ CesCos (2-64)
Y =(Cg +4CCy )’ =(Cp, +Cg)’ (2-65)

Therefore, the ratio of opening to sliding displacements, R, can be written as:
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o, D,K,+D,K
RCOD:_2: 218 b el /1 (2-66)
6 DK, +D,K,

And the ratio of dynamic stress intensity factors, Ry, can be obtained as:

K1 — RCODD21 _Dzz
KII D21 +RCODD11

SIF —

(2-67)

Substitution for K, from Equation (2-61) into Equation (2-67) leads to the following

relationship for K, :

K —\/ 2G (2-68)
" VLRSI (€)

And for K, , by definition we have:

K, =K, Ry (2-69)

2.9 Application of Cohesive Interface in Fracture Mechanics

In several cases where the crack front experiences a large scale processing zone (e.g., large
blunting with large scale plasticity, fibrous rupture or ductile rupture), the stress singularity
disappears from the crack-tip and traction forces emerge on the surface of the crack to resist
the extensive increase of CTOD. This failure behaviour is common in FRP composites,
especially when two adjacent layers have a bridged fiber orientation. When premature crack
initiates the growth, a damage zone appears in front of the crack tip and dissipates the high
stress intensity expected in LEFM. This damage zone occurs in form of a cohesive zone (e.g.,

fiber bridging) and hinders the identification of the crack-tip using conventional methods. In
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such problems, a complimentary approach to EPFM based on damage mechanics is required

to provide accurate results.

2.9.1 Cohesive Zone Model

One of the advance methods for simulating the large process zone with traction forces is the
cohesive zone model (CZM). The basis of this model is depicted in the work of Dugdale [75]
and Barenblatt [76], where they improved the LEFM by correcting the plastic zone in front of
the crack-tip to include the defect process zone and de-cohesion. Dugdale [75] assumed a
finite stress equal to the yield stress of the material, which was contradictory to the crack-
opening stress in brittle materials. Barenblatt [76] further investigated the traction existing on
the crack surface and linked the traction magnitude to the distance from the crack-tip.
Needleman [83] implemented a potential function to characterize the traction-separation
model on the crack surface by considering a cohesive zone for ductile interfaces in metals.

The potential function was defined as follows:

5 5 5
<0(5n,5,)=(ﬂ{1—(1+ 5 JeXp( E "JGXP[ = ﬂ (2-70)
n0 n0 t0

where ¢,, 0,, J,, 0,, and 0,, are the material fracture energy, normal and tangential crack

opening displacements, normal and tangential parameter relative to the model. Based on this

potential function, with cohesive tractions on the crack surface, normal and shear tractions (

o, and o,) are functions of crack opening/sliding displacements. The cohesive normal and

tangential tractions can be extracted by finding the derivative of the potential function over

the crack opening/sliding displacements as follows:
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o, Ia—5n (2-71)
8(0(511’51)
o, =————— -
; Py (2-72)

Tvergaard and Hutchinson [84] have extended Needleman’s work [83] on CZM to elastic-
plastic materials, while Cui and Wisnom [85] presented the application of this model for
materials with perfectly plastic behavior. Later, Xu and Needleman [23] applied their CZM
into the finite element analysis for the first time to simulate the dynamic fracture analysis.
Camacho and Ortiz [24] utilized a linear degradable CZM to study the impact damage in
brittle materials. Although presented models have been utilized in earlier researches to extract
the behaviour of material interface layers, they have had disadvantages such as introducing
softening and numerical instability to finite element models, especially during the crack
propagation steps. To overcome these problems, a rigid cohesive model was proposed by
Geubelle and Baylor [86]. In their method, a high initial stiffness, known as penalty stiffness,
was applied to the interface elements for an undamaged region of the material. Material
behaviour and the material degradation were assessed by damage indices to reduce the initial
stiffness. A bilinear traction-separation law was also employed to model the initiation and
propagation of delamination in composite plates. Despite reliable results acquired by this
approach, the convergence became dependent on the penalty stiffness. Considering
inappropriate penalty stiffness would result in numerical instabilities, especially when the
material degradation is commenced in the elements of the front region. It is also worth adding
that the above mentioned models are accurate for modeling the pure fracture modes, such as
mode I, mode II and mode III, however, for the mixed-mode problems such as mode I/1I,

some contradictory issues are raised against the fundamental basis of CZM. For instance,
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because of a large process zone at the crack front for mode I (normal opening), it is not
expected to observe any stress singularity. This assumption may be opposed by the mode II
(tangential sliding) acting on a same plane as mode I and causes a stress concentration due to

the lack of cohesive tractions on the crack surface. To overcome such a difficulty, Ortiz and

Pandolfi [87] employed the concept of effective separation, o, , and effective traction, o,

as follows:

Oy = oI+ §*2§,2 (2-73)
oy =\ol+& o] (2-74)

where & is a dimensionless correction factor relating the crack sliding to the crack opening.

These two parameters can be simply related by employing a cohesive potential function as
presented in Equation (2-70). Mi et al. [88] and Alfano and Crisfield [89] improved the
mixed-mode failure model’s capabilities by developing a damage parameter relating the
interfacial material strength to the crack relative displacements. The following damage index
formulation in modeling materials degradation, progressive delamination and various other

applications are presented by several researchers [25, 51, 90 and 52]:

Ir=K,,o0 0 <9, (elastic part)
Ir'=(1-D,,)K,,0 06,<0<6, (softening part) (2-75)
T=0 0,<0 (decohision part)

where 7, Dmg, o, 6, and 5], are, respectively, the current effective traction/strength of

interfacial material (I'=0,; ), the damage index, relative opening/sliding displacement,

relative critical opening/sliding displacement and relative failure opening/sliding
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displacement of the crack faces. The damage index for each individual failure mode can be

defined as follows:

O, 5-9
D =_1] 2 % 9.

The above model assumes the element degradation happens when the crack relative

displacement exceeds the critical value, J,, defined in terms of the penalty stiffness, K,

end

and maximum interfacial strength, 7, as:

max?

T
5, = —max (2-77)

Pen

According to Equation (2-77), selecting an appropriate value for K, becomes important to

establish a stable rigid cohesive model. While choosing a large value for K,,, may help with

true estimation of the elements stiffness before the crack initiation, it will reduce the required
critical relative displacement value for the crack initiation and may cause numerical instability

upon the crack initiation, known as the elastic-snap back [50]. Earlier research have been

undertaken to formulate the K,,, based on different types of material properties. Turon et al.

[50] proposed a simple relationship between the transverse modulus of elasticity, £

transverse>

specimen thickness, 7.4, and penalty stiffness, K,

aE sverse
KPen = R (2-78)

tck

where a was proposed to be equal to 50 to prevent the stiffness loss. A wide range of penalty

stiffness values have been considered by other researchers for different traction-separation
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laws, material properties and numerical simulation purposes. In essence, a comparison
between numerical analysis and experimental result would be required to identify an optimum

value for penalty stiffness in each given application.

In addition to the penalty stiffness, the length of cohesive zone is another critical factor of the
CZM. As opening or sliding displacements initially increase, elements in the cohesive zone
gradually reach the maximum interfacial strength. Upon this point, the element’s stiffness
moves into the softening region of traction-separation law and experiences irreversible
degradation. The maximum length of cohesive zone occurs when the crack-tip elements are

debonded completely (Figure 2-8).

—_—
T A
T Tonax
\
R
+—> T x

Cohesive zone length

T

A
\ Tmax

v

¢ > X

Maximum cohesive zone length

Figure 2-8 Schematic of the cohesive zone in front of crack in a given step of numerical simulation
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Accordingly, choosing the correct value for the length of cohesive zone is essential in
numerical modeling of delamination to prevent numerical difficulties; such as a softening
problem due to the implementation of the traction-separation law instead of a conventional
constitutive relationship. Earlier works have studied this topic extensively. Hillerborg et al.

[22] proposed a characteristic length parameter for isotropic materials as follows:

G] C

lch = Elongitudiml Trrzlax (2-79)

where /,, G-, E,

ongitudinal A€ the cohesive zone length, the critical energy release rate and the
longitudinal Young modulus of the material, respectively. For various traction-separation
laws, Planas and Elices [91] introduced a different equation for isotropic materials. However,
in orthotropic materials, like FRP composite laminates, Jin and Sun [92], and Yang et al. [93]
demonstrated the effect of longitudinal, transverse and shearing moduli as well as laminate

thickness on the cohesive zone length. They suggested a modified formulation for measuring

the cohesive zone length in the slender composite laminates as follows:

1/4
G
lch = (Etransverse T21C ) tc3k/4 (2_80)

max

It is necessary to mention that the number of elements within the cohesive zone model is
directly related to the cohesive zone length, and for realistic simulations, it is required to have
a sufficient number of elements within this region. A range of different values has been
proposed in earlier works [25 and 94], and it is clear that it is difficult to estimate an exact

value that could work for all simulations.
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2.10 Summary

In this chapter, elastic mechanical behaviour formulation of FRP composite materials was
briefly described. Next, the expected failure modes for different FRP composite compositions
were illustrated. General history of the fracture mechanics and damage mechanics were
presented for a better understanding of subsequent steps in advanced failure modeling of FRP
composite materials. Fundamentals of XFEM were introduced and its application and
implementation in modeling LEFM and EPFM problems were presented. Also, CZM
modeling of delamination interface was introduced and effective parameters in modeling the
failure surface using this method were outlined. The following chapter will focus on
implementation of principals of hybrid XFEM and CZM. It will be shown that this hybrid
method will notably assist conventional FEM with numerical modeling of different fracture

modes in composites.
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3 Chapter: Extended Finite Element Method Implementation and

Validation

In today’s modern industries, numerical tools demonstrate a great capability to handle stress
analysis problems with cumbersome structural shapes and material nonlinearity. Among
different computational methods, FEM has gained a significant attention and is promoted with
current technological and industrial needs. Numerous commercial FEM packages are
available for performing advanced stress analysis for a wide range of linear and nonlinear
materials. In the present research, the ABAQUS package has been implemented as it provides
a large elements library as well as different material properties options for different types of
analyses. It also contains different options for modeling contact surfaces and adaptive mesh
analysis of structures. More importantly, a major interest of employing ABAQUS for
modeling the delamination problem with XFEM was its flexibility for linking the user-

element subroutines to the FEM solver [95].

In the present work, a new user-defined 3D element has been developed using Lagrangian
formulation. Large deformation XFEM has been introduced to the element formulation with
extended functionality to model the cohesive zone element properties (e.g., traction-

separation law) and interface contact (the code has been included in the Appendix).

In the next sections, the underlying nonlinear FEM formulation and the extension of its
application to XFEM modeling of CZM and interface contact in FRP composites will be

discussed. The validation of the code using data updated in the literature will be presented.
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Finally a set of sensitivity analysis on XFEM model parameters will be introduced for the first

time.

3.1 Large Deformation Formulation

During FEM simulations, the reliability of results decreases when higher terms of
deformation are neglected. Therefore, it is necessary to apply large deformation formulation
in the present analysis especially as it is intended to evaluate the geometrical and constitutive

material nonlinearities of FRP composites under excessive loadings.

Regardless of the state of deformation, the equilibrium between the internal forces and

external forces is always established [53]:

ox, 7 (3-1)

where F) is the nominal stress components. The above differential equation is written in the

reference configuration for the Lagrangian description. Based on the above equation, one

needs to apply a small or large deformation formulation via the second Piola-Kirchhoff stress

and Green strain, £, ., tensors, and consequently use the constitutive material properties to

formulate the normal stresses. In small displacement theory, only the linear term of Green
strain tensor is being utilized to calculate the second Piola-Kirchhoff tensor via appropriate
constitutive relations. However, in the large displacement theory, the nonlinear portion of
Green strain tensor is considered in stress calculations. The Green strain tensor can be written

as follows [53]:
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EGreen = EL + ENL (3_2)

where the linear part, £, , and the nonlinear part, E,,, are defined as:

o
oX
Oy
oY
Oy
— oz
E = ou, Ou, (3-3)
_+_

oX oY
Ous | Oy
oY o7
ou,  Ouy
oz oX

ou, 1( Ou, 1( Ou,
ax) 2lax) 2lax
Ou, 1( Ou, 1( Ou,
ay) 2\ar) 20y
oY 1w 1(ou,

+— +—
oz 2\ oz 2\ oz (3-4)

Ou, Ou, Ou, Ou, Ou, Ou,
—L 1y +
0X oY o0X oY oX oY
Ou, Ou, Ou, Ou, Ou, Ou,
—L =L +
oY 6Z 0Y oZ 0Y oZ
Ou, Ou, Ou, Ou, Ou, Ou,
—L =L +
0Z 0X 0Z 0X 0Z oX

N~ N~ |-

To implement the above equations into FEM formulation, it is required to expand the
equilibrium equation using the conventional FEM weak form approach. The obtained

equilibrium can be written as [53]:

[orTPar, — [s(*) r*ar, —£5(u")rf’ dr, =0 (3-5)

T, r,
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where P and F' are the nominal stress tensor and the deformation gradient respectively.
Applying the standard FEM Galerkin discretization process and rewriting Equation (3-5) in

terms of nodal variables and FEM shape function leads to the following equation:

[B"Pdr, - [N"f*dr, - [N f"dl, =0
T,

T, r,

(3-6)

t

ON
where B contains the Cartesian derivatives of the shape functions, B, = —~

ox.

l

In order to maintain the virtual work principal and to preserve the constitutive material stress-
strain relationship, we need to rewrite the above equation using the second order Piola-
Kirchhoff stress tensor, which is a symmetric stress tensor in contrast to the nominal stress

tensor. The transformed form of Equation (3-6) can be expressed as follows [53]:

(") = [B odr, - [N"f"dr, - [N f'dT, =0 3-7)
1—‘V 1—‘V rz
where B can be defined using the deformation gradient vector, F, as:
& v = a oy & ox & o)
oX oX oX oY oY oY oZ oZ o7
v v, oy av, o
0X oX 0X oX 0X oX
N, Ox N, oy N, 0z
oY oY oY oY oY oY
N, Ox N, oy oN, 0z
B _ 0Z oZ 0Z oZ 0Z oZ
PP av e ow, o )

+
oY oX 0oX oY

oN,ox N, ox N, oy N, oy N, oz N, ez
oZ oY oY oZ oZ oY oY oZ oZ oY oY oZ
oN, or N, or N, &y N,y N, &z aN, &=
0Z 0X o0X oZ oZ oX o0X oZ oZ oX oOX o7

N, oy oV, o
oY oX o0X oY

oN, oz o, e
oY oX o0X oY
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The variation of the discretized FEM Galerkin method with respect to du” is:

J— —T
dii(u)= [ B dodl, + [B"dF odl, = K, du' (3-10)

T, T,

where K, is the tangential stiffness matrix. If the nodal vectors are substituted into the

above equation, the tangential stiffness matrix can be formed as [53]:

KT = KMat +KGeo = JETCEdFV + IGSTMsGdeV (3-11)

T, T,

where K,,,, K.,, Gy and M, are the material and geometrical portion of tangential
stiffness, shape function derivatives matrix and re-arranged second Piola-Kirchhoff stress

tensor, respectively. More specifically Gy, and M are defined as follows.

N, 0
ox
0 N, 0
oX
0 0 N,
ox
N, 0 0
oY
oN,
Gi=| 0 — 0 3-12
; = (3-12)
o o M
oY
N, 0 0
oz
Ny
oz
o o M
I oz |
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ol Oplyy 0315,
Mg = Onlys 0ylys (3-13)
sym. (o0 P8

where I, is the unity matrix in the three dimensional domain.

In the final loading step, based on the total nodal displacement, the Cauchy stress tensor, o',

is calculated by transforming the second order Piola-Kirchhoff stress tensor [53]:

, FoF"
O =
det(F)

(3-14)

3.2 Nonlinear Solvers

The nonlinear analysis of structures normally requires an iterative solver to find nodal
variables under the equilibrium condition in each step. In nonlinear FEM, purely incremental,
known as explicit, and predictive/corrective, known as implicit, solvers have frequently been
employed in the literature [96]. The first assumption in both solvers is the equilibrium of

acting forces on the body. Thus, one can write the equilibrium of the body according to the

and the external loads, F

ext *

internal forces, F

int »
F.-F,=0 (3-15)

In a case where the structure’s response is nonlinear, simply solving the first order linear
equation will not satisfy Equation (3-15). The difference appearing in a nonlinecar FEM

between external loads and internal forces called residual forces, Rs;, in the i" loading step.

Accordingly, Equation (3-15) is rewritten in the following format:
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i = R; (3-16)

In Figure 3-1, the relationship between internal forces, external forces and residual forces are

depicted.

Load  Explicit Solver

‘r \'c. °

,v"". Drift Error

I

Actual Structure Response

»
>

Displacement

Figure 3-1 Explicit solver approach and possible drift error in nonlinear problems (dots show numerical

solution steps) [96]

These residual forces correspond to the new structural configuration after experiencing the
external load. In purely incremental/explicit solvers, no corrective procedure is applied to
diminish the residuals. Hence, in such methods, small increments of external loading should
be imposed to the structure to ensure the residual forces in each numerical step remain within

an acceptance tolerance [96].
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Figure 3-2 Newton-Raphson iterative solver approach in nonlinear FEM problems [96]

On the other hand, in corrective/implicit solvers, the residual forces are moderated with an
iterative correction method such as the Newton-Raphson or Quasi Newton-Raphson methods.

In such solvers, the structure's tangent stiffness, K, , needs to be evaluated in each iteration to

extract the displacement correction due to residual forces, which can be derived from the

Taylor series as follows:

ORs.(u!
RS, ) = R !+ St (3-17)
h
Mp}f"“) is the Jacobian Matrix presuming that:
u
— aRSi _ a(Fext _F}nt)
K= ou" ou” G-18)

Using Equation (3-17), displacement correction can be implemented by solving the following

equation in each iteration.

K" Au!' = Rs, (3-19)
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After the i iteration, the total displacement is the summation of previous iterations and the
new residual forces. Tangent stiffness should be evaluated using the updated displacement

(Figure 3-2).
u! =u', +Au! (3-20)

In terms of convergence criteria, the iterative solver in ABAQUS stops the iteration steps
based on two criteria. In the first one, if the residual forces can be negligible at every single
degree of freedom in comparison to an overall residual force tolerance, external loads and
internal forces are considered to be in equilibrium. The overall tolerance value can be set
depending on the user’s demand, and if it remains intact, ABAQUS assumes 0.5% of the
average force in the entire structure at the given time step. Another threshold for accepting the
solution is based on the last displacement correction. The last correction should be relatively
smaller than the fraction of the total incremental displacement (1% by default); otherwise,

ABAQUS performs another iteration step [96].

3.3 Modeling Contact on Material Interfaces Using XFEM

In recent investigations, Khoei et al. [53] introduced a new modeling technique to simulate
nonlinear 3D contact problems using the large deformation formula and XFEM. The proposed
tangential stiffness matrix (merely for the interface material) based on nonlinear XFEM was

defined as:

KT :KMat +KGe0 = J.ETDEPE dFV + IGSTMSGS dFV

l—V l—V

(3-21)
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where B and G, have an enriched part added to the conventional FEM part of nodal vectors

and D¢ is the elastic-plastic constitutive matrix. These matrices can be redefined as follows:

5l 5

G. :I(ﬁ”” cﬁﬁ]

where B” and G '

are defined as (H is the Heaviside function):

i o(N.H) ox o(N,H) oy o(N.H) oz
oX ox X ox oX ox
o(N.H) ox o(N.H) oy o(N.H) oz
oY oY oY oY oY oy
o(N,H) ox o(N,H) oy o(N,H) oz
_ oz oz oz oz oz oz
dMHUE+dMHH% dMHMz+dMHM2 dMHM%+dNHﬁk
Y aX oX oY oY oX 98X 9Y oY oX  aX oY
o(N,H) ox o(N,H) ox dMH)@%ﬂ@Uﬂgz dNH)&+8@uﬂéz
oz oY oY oz oZ oY oY oZ oz oY oY o7
aWmeaWﬂmszm@udmm@iaNm&FJMm@_
oZ oX X oZ oZ X ox oz oz oxX X oz

(3-22)

(3-23)

(3-24)
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o(N,H) 0 0
oX
0 o(N,H) 0
)
0 0 o(N,H)
oX
o(N,H) 0 0
oY
T 8(];;" ) (3-25)
0 0 a(N,H)
oY
o(N,H) 0 0
oz
0 o(N,H) 0
oz
0 0 o(N.H)
i oz |

As mentioned before, to satisfy the PUM fundamentals, the Heaviside function should be

deducted by Heaviside value at each element’s node. The elastic-plastic constitutive matrix is

defined as:
Ell 0 O

D= 0 Kn 0 (3-26)
0 0 Eze

where K is the penalty (contact) stiffness assigned to the local coordinates of the contact

surface. K provides the impenetrable characteristic to the normal direction of the contact

plane which follows the Kuhn-Tucker thresholds [73]:

5)1 2 O’ PContact = 0’ (5;1 )X (PContact) = O (3_27)

where P

Contact

contains the vector of contact forces, respectively.
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The remaining terms in the elastic-plastic constitutive matrix, K» and Ks3 , create the friction
forces and prevent the contact surfaces from abrupt sliding. For these terms, standard static

and dynamic friction laws can be applied to perform the analysis [53].

3.4 Implementation of the Cohesive Zone Model

As described in Section 2.9, depending on the FRP composite material lay-up, we may expect
to observe a large processing zone during decohesion. Hence, it is required to apply the
cohesive crack modeling into the XFEM analysis. For this purpose, a bilinear traction-
separation law is utilized instead of the conventional constitutive relationship for the interface
material to embed cohesive behaviour into the crack-tip region by means of re-arranging the

nodal displacement components [35]. They also implemented a cohesive/contact
transformation matrix (ECoh) to re-arrange the nodal degrees of freedom and rewrote crack

opening and sliding displacements and tractions on crack faces as follows:

5=B.,, u* (3-28)

T= B[nte;jﬁzce 1) (3_29)

where D merace includes the cohesive interface material properties as described in Equation

(2-74). As proposed by Geubelle and Baylor [86], a rigid cohesive zone model is
implemented to simulate the crack initiation. This model applies an initial rigid stiffness in
enriched elements before damage initiation and provides a good interpretation of material
deterioration while the relative crack displacement reaches the failure limit. Also, the

application of this model with XFEM improves numerical simulations consistency and
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reduces difficulties such as snap-back and results fluctuation which are mostly caused by the

reduction of stiffness in fully damaged elements to zero [28].

Tmax

ern

v

9 o

Figure 3-3 Bilinear traction-separation law for modeling the material degradation

The cohesive/contact transformation matrix can be extracted by finding the displacement in

an enriched element. The displacement vector of any point in the enriched element, u*(x), is:

y " N O ord
ut ()= X (N )@( (ZNH H]bJ [0 Nkﬁ} (3-30)
where,
N = N{Z N, —H,) (3-31)

The conventional FE shape function’s value remains constant for different points in the
enriched element while the enriched shape function’s value demonstrates an odd function

property with respect to the interface position:

N (bottom) =-N" (top) (3-32)
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Thus, the global relative crack displacement, S, can be described in the form of the

displacement difference between two points above and beneath the crack surface.

5 = u* (top) — u* (bottom) =[N N ]B}Hd} _[N =N ][”;Hd} (3-33)
5=200 N ]ﬁ):} (3-34)

In order to find the relative crack displacements in a global coordinate system, a simple

transformation based on the normal and tangential directions, m, of the crack plane with

§o

respect to the global coordinate can be employed:

my o mpy o My

Oy my  mpy My 7
_ S| enr - n k
O=|my my My || 0y [=2\my my, my [O N ][bﬁ } = B, (3-35)
My My My z My M3y My

Consequently, Equation (3-35) can be substituted into Equation (3-29) and used in the
tangential stiffness formulation to introduce process zone properties within enriched elements
(also compare to Equation 3-21):

Ky =Ky, +Kg, +K, = [B'DYB dT, + [G"M G dT,
I, L,

e (3-36)
+ I(BCOh) D merface By, Al
1—‘(3

Finally, in order to evaluate the internal forces, one can simply employ the Equation (3-37) as

follows:
—=T enrT
F,=[B odl,+ [N f'dr, (3-37)
1—V l—‘C
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3.5 Other Numerical Implementation Details

The numerical implementation of the presented approach not only requires good
understanding of the conventional FEM, but also entails the nodal selection for the enriched,
enhanced approach for numerical integration over a discontinuous field and contact bound

approximation which will be described in the next sub-sections.

3.5.1 Node Selection for Enrichment

In order to differentiate between ordinary and enriched nodes, all elements have to undergo
selection criteria known as the level-set technique. In the first step, the distance of each node
from the crack face should be determined. Then, in each element, nodal distance values
should be compared. Any cracked element would contain a node with a positive distance
value and a negative one. The following relationship interprets the first selection criterion for

the cracked elements:

O (elemend x @, . (elemend <0 (3-38)
where ¢, is the element nodal distance value from the crack face and is defined as:

o (XY= (X, =Xy + (17 =¥, )y + (27 = 2, ), (3-39)

In Equation (3-39), (Xl*, Yl*, Zl*) and (X, Y;, Z;) are the element’s node coordinates and
arbitrary point coordinates on the crack surface. In the second step, the boundary of the
cracked element should be identified using another level-set technique. Instead of the crack
surface, the nodal distance from the edges of the crack plane is calculated and nodes enclosed

by all edges are considered. The selection criterion can be demonstrated as follows:
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W, ... (elemend <0 (3-40)

where y/, is equal to the element nodal distance from the edges of the crack plane defined as:
(X)) =0 =0 o, = i) + (1 = Y, o =i 42 = 2, Yol =mim) - 3-41)

In Equation (3-41), (X,, Y,, Z,) is an arbitrary point coordinate on the crack edge and (n, , )
,ny) is the unit vector of the crack edge. As an example, in Figures 3-4 and 3-5, a meshed

object was analyzed using the above mentioned level-set techniques with a crack plane

situated in the middle layer of the mesh. These figures depict the level-set variables ¢, and

¥, , and the resulting enriched nodes as shown in Figure 3-6.
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Figure 3-4 Variation of ¢; values in an example meshed object (square represents the positive value and

circle denotes the negative value; the rectangle shows the crack plane)
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Hii

Figure 3-5 Variation of y; values for the front edge of the crack plane in the example meshed object

(square represents the positive value and circle denotes the negative value)

Figure 3-6 Accepted nodes in the example meshed object based on Equations (3-39) and (3-41) of level-

set criteria

3.5.2  Numerical Integration of Discontinuous Fields

In order to obtain a weak form integration formulation (for FEM) for the stiffness and force

matrices, numerical integration should be performed on discretized elements. Methods such
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as Gauss quadrature and Simpson’s rule are well-known for their applications in numerical
computations and provide accurate results in continuous fields. On the other hand, employing
such numerical integration methods on discontinuous fields will not suffice and lead to pivot
points in the corresponding equations’ system. Therefore, to prevent such problems from
being introduced into fracture problems through cracked elements, auxiliary sub-triangles
should be employed to discretize discontinuous material domains. Then, a numerical
integration scheme can be utilized to evaluate the integration over each sub-triangle and
consequently over the cracked element (Figure 3-7). For 3D models, a similar approach can
be applied and sub-tetrahedral elements replace the sub-triangles in order to deliver sufficient

integration points in discontinuous fields (Figure 3-8).

L ]
* *
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.*.
_*.
Crack
//
.*.
.*.
.*.
.*.
* *
i o]

Figure 3-7 Sub-triangles of a 2D element with third order Gauss quadrature
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Crack

Figure 3-8 Sub-tetrahedrals of a 3D element with third order Gauss quadrature

The numerical integration of a discontinuous field with subdivided elements is similar but not
identical to the continuous case. For instance, the numerical integration of an arbitrary

continuous function, f,(X,Y,Z), over a single element can be summarized as:
[[[£(x.y.2)dQ =V, 3 we /i (&, &.6)) + error (3-42)
Q, i=1

where V, is the element volume, €, is the element domain; n;, w* and (&, &,, &) are the

Gauss quadrature order, points weights and local coordinates, respectively.

In order to adapt the above formulation to a discontinuous function, f;(X,Y,Z), the

following modification should be considered:

Moy NG

IIIf'(X,Y,Z)dQ =V, Zprng;f'(fli,fé,fj)+err0r (3-43)

j=1 i=l
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where m_, is the number of sub-polygons and w” is the modification factor for the weight

poly
of each sub-polygon, which can be evaluated by the ratio of each sub-polygon volume, V",

over the element volume:

wh =— (3-44)

3.5.3 Implementation of the Integration Bound Approach

Another numerical aspect of the interface contact and cohesive zone model simulation with
XFEM is the integration (contact) bound. Application of the integration bound in the vicinity
of the interface can eliminate the need for defining new integration points in the interface
surface and decrease the computational time. It also prevents the elastic-plastic relationship to
be mistakenly introduced to the integration points which are far from the interface. Despite
the advantage of this method with regular sub-element methods, the contact bound dimension
is not explicit and one should perform sensitivity analyses to obtain an optimum value in a
given application. In Figure 3-9, integration points in the entire elements and sub-elements

and within the integration bound is illustrated by red stars and blue dots.
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Figure 3-9 Integration points of a meshed object with enriched elements (red stars are integration points

and blue dots are integration points within the integration bound)

3.5.4 Simulation Algorithm

A MATLAB code in concert with ABAQUS was implemented to perform the simulations. In
the first step, MATLAB code reads the nodes coordinates, connectivity tables, material
mechanical properties, crack surface and fracture information from a user defined data file
(*.DAT). Using the level set technique, described in Section 3.4, the MATLAB code
recognizes the ordinary elements and enriched elements of the model. It then assembles an
input file for ABAQUS execution. ABAQUS utilizes the developed user element subroutine
(UEL) along with generated input file (*.INP) to run the model and write the stress, strain and
displacement fields in the results file. At this stage, MATLAB code reads these fields from
the latter file and calculates the energy release rate using the J-integral to evaluate the stability
of the delamination. If the delamination is unstable, MATLAB re-writes a new input file with
extended delamination, otherwise, it only increases the grip opening displacement (with no
delamination progression). The iterative procedure continues until the maximum number of

steps (defined by the user prior to simulation) is reached. This number should be large enough
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to capture the response of the structure accurately, while being not too large to make the
simulations excessively costly; in the present simulation cases it varied between 500 to 1000

steps. The summary of the above implementation procedure is shown as a flow-diagram in

Figure 3-10.
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Figure 3-10 MATLAB-ABAQUS simulation algorithm employed for modeling the delamination
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3.6 Numerical Examples of Mode I and Il Fracture Tests: Validation of XFEM Code

In the next sections, several benchmark examples are numerically simulated using the new
XFEM framework presented in the previous sections and the ABAQUS user-defined
subroutine provided in the Appendix. These examples are well described in the literature and
other researchers have similarly performed numerical modeling and experimental tests to

verify their proposed approaches and codes as addressed below.

3.6.1 Numerical Simulation of the DCB Tests

The Double Cantilever Beam (DCB) is one of the standard tests to evaluate the mode I
interlaminar fracture energy toughness and damage properties of materials. DCB samples are
mainly fabricated based on the ASTM D5528-01 [97]. Composite materials considered in this
example are T300/977-2 carbon fiber-reinforced epoxy and AS4/PEEK carbon fiber-
reinforced poly ether ether ketone, which are widely used in the aerospace industries to
manufacture airframe structures and to replace steel components especially when a high
service temperature is required [52]. The T300/977-2 models had a 150 mm length, 20 mm
width, and 1.98 mm thickness for each arm with 55 mm initial crack (Figure 3-11). For
AS4/PEEK, model dimensions were 102 mm long, 25.4 mm wide and 1.56 mm thick for each
arm, with a 32.9 mm initial crack. The material properties for each specimen are given in

Table 3-1 [52].
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Table 3-1 Mechanical properties of T300/977-2 and AS4/PEEK samples [52]

T300/977-2 AS4/PEEK
Elastic Properties Fracture Properties | Elastic Properties  Fracture Properties
E;1 =150 GPa Thax = 45 MPa E;1=122.7 GPa Tiax = 80 MPa

E»=Es;=11 GPa Gic = 268 J/m?

G12: G13: 6 GPa

G23 =3 GPa
Vi2=Vi3= 0.25
Vo3 = 0.5

Ey=E;3=10.1GPa  Gic =969 J/m?

G12: G13 =5.5GPa

Gy3=2.2 GPa
Vi2=Vi3= 0.25
Vo3 = 0.48

Previous works on both types of above composite samples have been reported using a
cohesive interface layer method via the conventional FEM as well as the mesh-free method by
Camanho et al. [25], Turon et al. [50], Barbieri and Meo [52]. In the present study, effects of
different important modeling variables such as the interface stiffness (e.g., the penalty factor)
and the cohesive region length are assessed via the XFEM model. Results (in the following
sub-sections) are compared to the previous standard numerical approaches to provide further
understanding of the advantages of the XFEM method in terms of numerical accuracy and

stability.

3.6.1.1 Effects of Different Modeling Approaches

Turon et al. [50] investigated the effective cohesive zone length for T300/977-2 specimens.
They suggested a cohesive zone length of 0.9 mm from numerical simulations on a very fine
mesh (with element length, /., of 0.125 mm). Based on their work, the size of elements in the

cohesive zone region should not exceed 0.5 mm, and a minimum of two elements are required

in this region for acceptable modeling results. In Figure 3-11, the present XFEM global force-
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displacement (F-A) results with the fine mesh simulation with the CZM penalty stiffness
(Kpen) of 1x10° N/mm® and the cohesive zone length of 1.5 mm are compared to the results

from Camanho et al. [25], Turon et al. [50], Barbieri and Meo [52] by means of different

numerical approaches.

80



70

60

w =20 mm

ty=3.96 mm t

Present 3D Nonlinear XFEM with the Fine Mesh (Kpen = 10e6 N/mm?)
----- 2D Meshfree (Barberieand Meo [52])

Cohesive Zone Model (Turon et al. [S0])
= == Decohesion Element Method (Camanho et al. [25])

®  Experiment (Camanho et al. [25])

T T T T T T 1

6 8 10 12 14 16 18
Crack opening (mm)

Figure 3-11 A comparison between DCB test results via different methods on T300/977-2 samples
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Figure 3-11 shows that all models predict a similar trend of load-displacement during
delamination of the sample. The mesh-free method [52] overestimates the stiffness of the
material and leads to raising the peak opening force by 5%, while the Turon et al. [50]
cohesive finite element approach underestimates the resisting force by 10% in comparison to
the experimental data obtained by Camanho et al. [25]. The XFEM estimates the peak
opening force with 3% difference from the experiment and, similar to Camanho et al. [25], it

provides a more conservative estimation of the fracture behavior of the DCB samples.

3.6.1.2  Effects of Mesh Size and Cohesive Zone Length

DCB tests of T300/977-2 specimens were simulated using two different mesh sizes, namely
element lengths of 0.4 mm and 1.25 mm, to demonstrate the effect of coarse and fine mesh on
the XFEM results. In addition, in order to illustrate the influence of cohesive zone length in
each case, XFEM simulations were re-run (Figures 3-12 and 3-13) with different /., values

and the fixed penalty stiffness of 1x10° N/mm’ [50].
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Figure 3-12 Load-Displacement DCB test results for the fine mesh (Z, = 0.4 mm) simulation with different

cohesive zone lengths for T300/977-2 samples
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Figure 3-13 Load-Displacement DCB test results for the coarse mesh (I, = 1.25 mm) simulation with

different cohesive zone lengths for T300/977-2 samples
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Recalling Figure 3-12, in the fine mesh (/, = 0.4 mm) model, it is observed that using 3 (/.; =
1.5 mm) to 6 (I, = 2.5 mm) elements within the cohesive zone would lead to an accurate
estimation of the experimental data, while increasing this critical value to 8 (/., = 3.5 mm)
elements would introduce an unrealistic global softening behavior to the model. In the coarse
mesh (/. = 1.25 mm) runs (Figure 3-13), only in the case with 3 (/. = 3.5 mm) elements the
simulation result became relatively agreeable with the experimental values. It is worth adding
that in an earlier work by Harper and Hallett [51], they had also obtained load-displacement
results using different mesh sizes in the interface elements. Namely, for smoother numerical
results, they decreased the elements size to prevent the dynamic effects of larger elements
failure such as a sudden drop of the fracture energy release rate. They also introduced a global
damping factor of 5% into the simulations to dissipate the oscillation caused by the cohesive
element debonding and the loss of stiffness in each step of crack propagation. In the present
study, the enriched elements in the cohesive zone have the aggregation of stiffness from
XFEM approximation and the traction-separation law. Hence, when complete debonding
occurs, the affected elements’ stiffness does not completely disappear by elimination of the
cohesive zone stiffness, and the XFEM approximation can inherently prevent the oscillations
to a certain degree, without adapting a damping ratio into the model. This can be especially

beneficial regarding computational time in the case of explicit analysis.

3.6.1.3  Effects of Different Penalty Stiffness Factors
As discussed in Section 3.4, the accuracy of the bilinear traction-separation law in modeling
the process zone is directly dependent on the penalty stiffness value, whose optimum value

may change from one material or fracture mode to another. In this section, in order to evaluate
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the accuracy of XFEM predictions against different penalty stiffness values, a set of
simulations with fine mesh were performed with a wide range of penalty stiffnesses, varying
from 10° N/mm’ to 10° N/mm’, and a similar cohesive zone length (/; = 2.5 mm). Results
were compared to the experimental data for both T300/977-2 and AS4/PEEK specimens,

respectively (Figures 3-14 and 3-15).
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Figure 3-14 The comparison between DCB test load-displacement results of T300/977-2 samples with

different penalty stiffnesses
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According to Figures 3-14 and 3-15, XFEM results are less sensitive to the larger order of

penalty stiffness values (from 10° to 10° N/mm®) in comparison to the conventional finite
element method discussed by Turon et al. [50]. Also, within the above recommended K ,,,

range, two sets of complimentary simulations on AS4/PEEK samples were run to see the
effect of interaction between the mesh size and the penalty stiffness. According to the results
in Figures 3-16 and 3-17, the mesh sensitivity decreases using lower values of the penalty
stiffness, and vice versa. As AS4/PEEK has a higher critical energy release rate (Table 3-1), a
larger cohesive zone region is expected in comparison to T300/977-2 samples and, hence, the

sensitivity of simulations to the element size is reduced.
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3.6.2 Numerical Simulation of the ENF Tests

The End Notch Flexure (ENF) test was also employed in this research to verify the
effectiveness of the XFEM model in studying the mode II fracture properties of composite
materials. The ENF test configuration is similar to the three-point bending/DCB test, the only
difference is that the sample has a pre-assigned crack in the middle layer. ENF samples can be
prepared according to ASTM standard D5528-01 [97]. Similar to DCB tests, AS4/PEEK
(Table 3-1) was utilized for ENF test simulations. The specimen is 102 mm long, 25.4 mm
wide and 1.56 mm thick for each arm, with a 32.9 mm initial crack.

Barbieri and Meo [52] compared their mesh-free method results with the ENF experimental
values. Based on their work, it was illustrated that the mode II failure has an abrupt nature and
performing its numerical simulation requires a relatively larger cohesive zone, compared to
DCB mode, to capture the entire failure in specimens. In the section to follow, we examine

this effect using the XFEM model.

3.6.2.1  Effects of Cohesive Zone Length
Different sizes of cohesive region were considered to model a sudden mode II failure within
one failure step and the results were compared with those by Barbieri and Meo [52] (Figure 3-

18).
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The results from XFEM illustrate smoother softening behaviour at the peak point of the load-
displacement curve. The difference between the experimental curve and the numerical
simulation after the peak is perhaps related to the slanted behaviour of the ENF load-
displacement curve after crack opening and may be interpreted as an abrupt crack extension
under increasing load under only one-step simulation. Also from Figure 3-18, it is evident that
increasing the cohesive zone length leads to material softening and consequently decreases
the peak value of the numerical load-displacement curve. Finally, comparing /., values in
Figures 3-12 and 3-18 confirms that, for ENF simulation, much larger process zone lengths

are required when compared to DCB simulations.

3.6.2.2  Effects of Different Penalty Stiffness Factors

In this section, different penalty stiffness values, Kp.,, were employed to evaluate the mode 11
response of AS4/PEEK samples. The length of the cohesive zone was kept constant, /., = 15
mm, and the crack propagation happened within numerous steps. A range between 10° N/mm’
to 10° N/mm’ was considered. The effect of this parameter on simulation results is illustrated

in Figure 3-19.

94



w=254mm L =102 mm

1200 ~
ty=3.12 mmt
1000 - M\
— -~ \
4
ap=32.9 mm ’I' N
800 - 0
g Z
—_ s : 2505
a ,l' .,/‘, 1® Present 3D Nonlinear XFEM with the
600 - R 2 | Fine Mesh (Kpen = 10e3N/m?)
Rl i Vo e Present 3D Nonlinear XFEM with the
Lo ,.,’,0’ ! Fine Mesh (Kpen = 10e4N/m?)
400 - R P - = = = Present 3D Nonlinear XFEM with the
ol i Fine Mesh (Kpen = 10e5N/m?)
r:;‘/ s = === Present 3D Nonlinear XFEM with the
T Fine Mesh (Kpen = 10e6N/m?)
200 ~ 2D Meshfree (Barbieri and Meo [52])
" e Experiment (Barbieri and Meo [52])
O g T T T T T 1
0 1 2 3 4 5 6

Middle point deflection (mm)

Figure 3-19 Effect of penalty stiffness value on the ENF test load-displacement results for AS4/PEEK

sample

95



It is clear from Figure 3-19 that applying penalty stiffness lower than 10* N/mm® will result in
extensive softening to the model which tremendously reduces the peak load. Such behaviour
is derived from lower rigidity in the hardening region of the traction-separation law; however,
such dependency of results on K,., may become useful for adapting different material
behaviours in different simulations. On the other hand, extensive hardening in the case with
K,en higher than 10° N/mm° can be unrealistic as it reduces the real deflection of the specimen
and prevents the actual failure crack opening to be modeled. Finally, comparing Figures 3-14
and 3-19, it is evident the ENF test is much more sensitive to the range of K,.,, however, a

value of 10°N/mm’ seems optimal for both DCB and ENF tests.

3.7 Summary

In this chapter, the nonlinear FEM formulation was summarized for delamination simulations
and different solvers for extracting the structures response were introduced. The extension of
the nonlinear formulation towards XFEM modeling was then introduced and numerical
implementation of nonlinear XFEM in simulating the contact interfaces and CZM was
demonstrated. Finally, two (DCB and ENF) example problems from the literature were
simulated with the introduced XFEM method and results were compared with the
conventional FEM, cohesive interface element and element free models. In the next chapter,
the stochastic nature of FRP composite materials will be discussed and the randomness of
fracture properties will be introduced to the DCB and ENF simulations of tested PPS/Glass

material.
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4 Chapter: Modeling Randomness Effect in UD Laminates Delamination:
A Non-RVE Approach

As discussed in Chapter 1, the multi-scale nature of composite materials is tied to the mixture
of multiple constituent materials. More specifically, in such materials, comingling of the
matrix and fibers results in heterogeneous material characteristics and often cumbersome
procedures needed to analyze their mechanical properties at different scales. Studying
mechanical properties of FRP composite materials can be classified into three different
groups. Macro-scale is the largest scale for analyzing the FRP composites and includes
coupon size models for experimental, analytical or numerical analyses. In such a scale,
anisotropic or orthotropic material properties may be assigned to the material structure. The
other extent of this type of analysis is related to micro-scale behaviours of FRP composites
with a focus on the constitutive relationships of individual components of the composite as
well as the interaction between the matrix and the fibers. The intermediate level of composite
materials study is known as meso-scale which links the micro-scale analysis to the macro-
scale analysis. Investigation of a laminate lay-up with more concentration on individual plies’
mechanical and geometrical properties and orientation is an example of the meso-level study
which can also include fracture phenomena such as matrix cracking and fiber breakage as
well as delamination and fiber bridging between layers. For an accurate analysis of structural
behaviour of composites, it is required to account for the different scales of material

properties and include their effects in simulations.

The most basic and yet tangible scale of material analysis in practice is perhaps the macro-
scale since it can be implemented to determine the effective properties of large composite

structures. Most homogenization techniques aim at this level of analysis and employ smaller-
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scale representative volume elements (RVE’s) to extract the averaged (effective) mechanical
properties of the material at macro-level. The RVE should have specific characteristics; it has
to be large enough to contain a sufficient number of heterogeneous characteristics of the
composite under study and should assume a periodically distributed properties and boundary
conditions in adjacent RVE’s. Such distribution assumptions through the entire structure can
make the RVE homogenization technique vulnerable to existing defects in specific plies
and/or the random distribution of fibers and their bridging. It also may monitor the damage
mechanism and propagation of a crack, as these phenomena are relatively present in a local
scale rather than a global scale. As a result, full scale (non-RVE) modeling is required for

more effective damage modeling.

The earliest attempts to assign statistical (random) properties to the crack location using
stochastic modeling of laminates go back to the work of Wang et al. [44] and Fukunaga et al.
[98]. More detailed investigation on the heterogeneous nature of laminates due to non-
uniform fiber distribution was performed by Baxevanakis et al. [40] where they employed an
image analysis technique and demonstrated the unreliable aspects of periodic and quasi-
periodic assumptions of fiber distribution material, especially in the case of damage modeling
of FRP composites. Further study on RVE assumptions by Bulsara et al. [99] suggested the
efficient size effect of RVE’s. Trias et al. [43] compared stress and strain distributions of a
periodic (RVE) model with a random model and concluded that a periodic assumption should
be employed for extracting the effective properties of structures in global scale, while
including the randomness is required for local analysis of structures such as matrix cracking
and crack propagation. Silberschmidt [100] connected the microstructural randomness to the

macro-level analysis and revealed that the fluctuation of mechanical properties is a result of
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non-uniform fiber distribution. In the most recent investigation, Ashcroft et al. [48] applied a
Weibull distribution to a set of cohesive elements and modeled the damage evolution of
CFRP laminates. In their work, fracture energy toughness was defined statistically and

exploited from a random distribution.

The influence of the randomness of fiber distribution would increase in unidirectional (UD)
FRP laminates as the possibility of fibers penetration within different adjacent layers of
composite raises and leads to larger process zones in front of the crack. The response of the
structure in such a case during the interlaminar crack growth will demonstrate a resistance
while damage evolves and forms a resistance curve known as an R-curve. Fiber bridging
results to an increase in fracture toughness of the material from initiation to steady-state
delamination extension [101]. More studies on R-curves and fiber bridging showed that
despite the fact that fiber bridging can directly affect the effective material properties and
hence the shape of the R-curve, it can also be the case that the R-curve is affected by
specimen geometry [102]. Nairn [103] combined the energy release rate of fracture mechanics
with a CZM traction-separation law to represent the fiber bridging and extracted the R-curve
of the model process zone. Airoldi and Dévila [104] applied experimental data and FEM to
extract the cohesive element parameters and predicted the R-curve of delamination tests with
fiber bridging. As also evident from their work, a high scatter of fiber bridging can exist in

UD laminates and would have a significant effect on their macro-level performance.

In the next sections of this chapter, the elastic mechanical properties of PPS/Glass will be
assessed. R-curves of fracture experimental tests (DCB and ENF) with regards to uneven

fiber/bridging distribution in the fabricated PPS/Glass UD laminates (Section 2.2) will be
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studied first. Then, stochastic fracture properties of the material will be adapted into the

developed XFEM model and used to capture non-repeatable material response.

4.1 Sample Preparation: Poly (phenylene Sulfide) (PPS)/Glass FRP

In recent decades the fiber reinforced thermoplastic composites have drawn more attention to
some high-tech industries as compared to thermoset composites, as they are lighter, tougher,
more sustainable, and more cost-effective with the right manufacturing process. Among
different polymers used in thermoplastic composite industries, Poly Phenylene Sulfide (PPS),
Poly Butylene Terephthalate (PBT) and Poly Ether Ether Ketone (PEEK) have demonstrated
strong thermal and mechanical performances [105]. In the present work, PPS resin was
chosen as a base material for manufacturing in-house test laminates. PPS is a semi-crystalline
polymer and has excellent mechanical, thermal and physical properties. Its strength and
affordability can help PPS to fill the gap between the partially crystalline industrial plastics
and semi-crystalline resins such as PEEK. In addition, reinforced PPS with glass fibers offers
economical advantages in comparison to carbon fibers by delivering high resistance
characteristics against chemical and solvents, low moisture absorption, short thermoforming
mould cycles with a greater creep strength and durability against temperature changes
[105]. Typical applications of PPS/Glass composites in current industries vary from
components in construction equipment, pumps parts and impellers to plastic parts in motor
vehicles. In Figure 4-1, a microscopic image of UD tape of PPS/Glass, commercialized by
TENCATE ADVANCED COMPOSITES [105], is depicted at two different regions of a
sample. This particular product has an average void level less than 0.2% with a more even

fiber-matrix distribution in the corner of the tape.
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(a) (b)

Figure 4-1 Microscopic images of fibers and matrix distribution of PPS/Glass UD tape: (a)

Corner of the tape, and (b) Middle of the tape [105]

The common forming procedures used for making PPS/Glass laminates are mainly similar
and their minor differences, apart from cost, lie on the range of required temperature or

pressure as follows.

1- Press Lamination: In this process, PPS/Glass UD plies can be stacked in any desired
orientation in a frame mould. Then, the frame is placed into a heated platen press where the
assembly temperature is increased to approximately 330-360°C at a contact pressure until the
PPS matrix melting point is reached. Namely, the platen pressure can be raised to 1.7 MPa
and the assembly kept under this state for approximately 30 minutes. Then, the assembly
fixture temperature is reduced by a cooling cycle flow passing through platens while the

pressure is maintained.

2- Autoclave Lamination: Similar to the press lamination process, in this process PPS/Glass
laminas are laid-up in any desired orientation and placed in a vacuum bag throughout the

entire process. A high temperature resisting material is used for the vacuum bag. The fixture
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assembly is placed in the autoclave for 30 minutes in a temperature close to 315-330°C.
During this time, the pressure on the fixture is increased from ambient to 0.68 MPa. After the
heating process, the part is cooled down to a temperature less than 93°C and the pressure can

be dropped to ambient while the vacuum is released.

In the present work, the press lamination method (using a Wabash 100 Ton Press shown in
Figure 4-2) was utilized to form the required test laminates. In the assembly process, 14 layers
of PPS/Glass UD lamina were stacked. Polyimide Teflon (0.147 mm) with high temperature
performance (melting at 426°C) was placed in the middle of the stacked pile to represent the
predefined crack in the specimens. The entire assembly was brought together in a preheated
moulding fixture and then placed in a heated platen press where the assembled fixture’s
temperature was sustained at approximately 350°C. The heating platen pressure was raised to
0.44 MPa and was kept in this state for approximately 28 minutes. This timing span let the
inside of the mould reach the melting point of PPS at 350°C within 23 minutes and permitted
the fibers to consolidate over 5 minutes in the molten matrix. Then, the assembly’s
temperature was reduced via a cooling flow passing through platens for 20 minutes while the

pressure was maintained at 0.44 MPa (Figure 4-2).

It 1s worth adding that, 2D thermoplastic composite plies can also be formed into 3D complex
shapes using the above apparatuses and appropriate moulds. For the PPS/Glass laminate, it
can be stacked and heated to around 330-345°C using an infrared oven for a maximum of 8
minutes and then transferred to a predesigned core/cavity mould where it can be formed to a
3D shape under a pressure between 0.1-0.4 MPa. Depending on the part shape and
dimensions, the production process may take under 10 minutes. This process is often referred

to as thermoforming or stamping.
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Figure 4-2 (a) Forming cycle used for preparing PPS/Glass test samples using (b) an automated press

apparatus (Wabash MPI 100 ton)

4.2 Elastic Mechanical Properties of PPS/Glass FRP Composites

As mentioned earlier, the American Society for Testing and Materials (ASTM) standards [55-
57] can be employed to extract the material elastic constants. In the first step, the longitudinal
and transverse elastic moduli of the PPS/Glass samples were measured based on ASTM D
3039/D 3039M [56]. The test specimens were prepared with 250 mm length, 20 mm width,
and 3 mm thickness. After the test specimen was firmly aligned and tightened in the tensile
machine grips, a transducer was mounted on the mid-span, mid-width of the specimen. Then,
the loading cell started to load the specimen with the rate of 2 mm/min. Observed failure was
explosive failure in the gage area at the middle of specimen (XGM) for longitudinal fibers,

while in the transverse direction, lateral failure happened close to the grip at top or bottom
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(LAT/LAB) of the specimen. Table 4-1 contains the test results for longitudinal and

transverse directions.

Table 4-1 Mechanical properties extracted from tensile testing

Longitudinal (fiber) Direction Transverse (pe_rpen_dicular to fiber)
Test Direction
repeat Elongation (%) E@QESE:,U(SD%@ Elor(l%tlon Moduluav(};aE)lastlmty
1 5.77 45326.07 0.13 3490.58
2 9.68 43303.08 0.06 1334.61
3 9.64 43601.28 0.08 1176.69
4 8.34 50547.07 0.09 1797.79
5 6.84 46821.49 0.10 1513.28
6 8.91 39836.18 0.09 1289.65
7 6.30 38975.62 0.02 2100.46
Average 7.93 44058.68 0.08 1814.72
Sg‘fiﬁ 1.40 3460.23 0.03 697.73

As we needed to acquire the remaining material properties for subsequent numerical
simulations, the average Young’s modulus extracted from experimental data above were
compared to the supplied material data sheets and brochures (see Figure 4-3 for a snapshot) to
find and adjust the closest set of material properties given the actual fiber volume fraction,
reinforcement architecture, etc (for confidentiality reasons the material’s full specification and
composition have not been disclosed). The final set of elastic properties implemented in the

subsequent simulations of this thesis is given in Table 4-2.
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Tensile strength warp 35.7 ksi 246 MPa

Tensile strength weft 39.6 ksi 273 MPa
Tensile modulus warp 28 Msi 20 GPa
Tensile modulus weft 26 Msi 18 GPa
Compression strength warp 244 ksi 169 MPa
Compression strength weft 16.9 ksi 117 MPa
Compression modulus warp 29 Msi 20 GPa
Compression modulus weft 25 Msi 18 GPa
In plane shear strength 9.1 ksi 63 MPa

In plane shear modulus 109.0 ksi

Figure 4-3 Snapshot of elastic mechanical properties for a typical woven PPS/Glass ply from

material data sheets

Table 4-2 Final set of elastic properties of manufactured UD PPS/Glass FRP composites with “1” being

the fibers direction; “2” and “3” are perpendicular directions to fibers.

Effective Elastic Properties

Ey1=44,400 MPa G12,= 880 MPa vip=0.25

E22 =1800 MPa G23 = 660 MPa Vo3 = 0.48

E33 =1800 MPa G13 = 880 MPa Vi3 = 0.25

4.3 Fracture Tests on the Fabricated PPS/Glass Composites

Both DCB and ENF tests were conducted on the PPS/Glass UD specimens according to the
procedure described in ASTM D5528-01 [97]. The main goal of these tests was to measure
the mode I and II fracture energy toughness properties of the material. In DCB test, specimens
with pre-inserted delamination were put in the tensile machine and underwent opening

displacement with the rate of 2 mm/min on the grips. At the onset of delamination extension,
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the force on the loading cell was recorded while delamination is was permitted to propagate
for 5 mm, observed and controlled visually, before unloading the specimen for the next
loading step with extended delamination length. In the case of ENF test, a similar specimen
configuration with pre-inserted delamination was employed while the test set-up was
coincided with the three point bending test. The loading on the mid-span was increased with a
rate of 2 mm/min until the delamination commenced in the specimen (Figure 4-4). At this
point, the force was recorded and used in energy release rate calculation. The calculation steps

via recorded data from DCB and ENF tests have been described in Appendix B.

(a) (b)

Figure 4-4 Experimental test set-ups: (a) DCB, and (b) ENF

4.3.1 DCB and ENF Test Results

In order to measure the mode I fracture energy toughness, three different calculation methods
were employed over the DCB test results with three repeats: Compliance Calibration Method,
Modified Beam Theory Method and Modified Compliance Calibration Method. For the ENF
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test, based on the nature of the mode Il failure, crack propagation happens due to excessive
shear deformation and has an abrupt nature as addressed in Chapter 3. Such behaviour makes
it difficult to control the external load to achieve a target crack extension. Due to this test
limitation, in the present study only the first step of crack propagation in ENF tests was
considered while the test repeats were carried out with the same pre-assigned crack length (43

mm).

Figures 4-5 and 4-6 depict the obtained experimental data from three repeats of the DCB test.
According to the observed increasing trend between crack length and the critical energy
release rate, it could be concluded that the material experiences fiber bridging during
delamination. This was further verified by macro- and micro- imaging of samples (Figure 4-
7). It is worth adding that fiber bridging is more likely to occur in unidirectional laminates
than in woven fabric composites, since the layers in UD’s are laid-up in a single orientation
and during the moulding phase, as the matrix melts, there is less geometrical confinement to
prevent fibers from penetrating into adjacent layers. The clear data scatter through the test
repeats in Figure 4-5 also shows that, despite the DCB sample coupons have been cut from
the same large (master) plate, the distribution of effective material properties could randomly
vary from one coupon to another. This observation may be due to a non-uniform
reinforcement pattern, uneven pressure or heating/cooling effect during the compression
moulding stage of the master plate. Even within the same plate, more uniform pressure or heat
concentration in the middle section of the plate may have been present compared to its edge

sections (also recall Figure 4-1).
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Figure 4-5 The variation of fracture energy toughness versus crack length for the three tested samples

using: (a) Compliance Calibration Method, (b) Modified Beam Theory Method, (c) Modified Compliance

Calibration Method [97]
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Figure 4-6 lllustration of the fiber bridging zone (FBZ) during crack propagation; as the crack length
increases, FBZ emerges in the cracked region up to the fiber’s rupturing displacement; after fiber

breakage, the FBZ effect vanishes from the region which has exceeded the failure opening displacement

According to ASTM 5528-01 [97], the modified beam theory provides more conservative
result in comparison to other methods, and hence it is recommended for design purposes.
Finally, in addition to the ASTM D5528-01 [97] discontinuous DCB test, continuous crack-
opening tests, i.e., without unloading and re-loading for the next initial crack length
configuration, were performed to monitor the effect of progressive failure in the specimens

(results to be discussed in Section 4.5).
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(b) (©

Figure 4-7 Different images of a DCB test sample: (a) macro scale image of fiber bridging, (b) X-ray
micro-tomography image of fiber bridging along the sample thickness, and (c) attenuation of the X-ray

reflection due to absorption; demonstrating uneven distribution of fibers

For ENF tests, as mentioned earlier capturing the step-by-step crack propagation was not
feasible, therefore only the initial step of crack propagation was used for the analysis (Figure
4-8). Similar to the DCB test, continuous loading was also employed for the ENF test to

observe the effect of fiber bridging with extensive crack evolution in the test coupons (results
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to be discussed in Section 4.5). The summary of fracture properties extracted from DCB and

ENF tests is shown in Table 4-3.
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Figure 4-8 ENF test repeat results with a constant crack length (43 mm): (a) the variation of fracture
energy toughness versus the mid-span displacement, and (b) the variation of bending load versus the mid-

span displacement.
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Table 4-3 Fracture properties of PPS/Glass samples extracted from DCB and ENF tests

Fracture Properties

Mode | (DCB) Mode Il (ENF)
Tomax = 9.6 MPa Tomax = 5.5 MPa
Gic(avey = 0.48 kJ/m’ Grictave) = 1.48 kJ/m’

As a function of delamination | As a function of delamination

length: length:

Gic = 0.0075a,,+ 0.04 kJ/m> | Gpe=0.045a,,- 0.5 kJ/m>

(For a,,> 40 mm) (For a,,> 40 mm)

5, = 9.6 mm 5, =5.5¢" mm

4.4 Stochastic Fracture Properties

As addressed in Section 4.1, FRP composite materials demonstrate a large amount of
randomness in material properties due to an uneven distribution of fibers in the matrix, and
the possible penetration of fibers within different layers of laminate during the forming
processes (especially in the case of unidirectional laminates). In the present work, fracture
properties of the tested samples are considered to have a stochastic nature based on non-
repeatability observed in repeated experiments, as opposed to deterministic approaches where
averaged values of experimental results are assumed for the estimation of material properties.

Namely, a random number within the range of experimentally measured fracture energy
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toughness values was picked to form a stochastic bilinear traction-separation law of enriched

elements in the cohesive zone (Figure 4-9):

G, = GC(ave) + (_ 1)Ramll Rand , x GC(std) (4-1)

where Rand,, Gcave) and Gegua) are the random integer (odd or even to assign a random sign),

average and standard deviations of fracture energy toughness, respectively.

Tax Ger = Gegvey — Rand; % G
o, GCH: GC(ave) + Randz X GC(rtd)
X, N
Ga<Gc<Gey .................
-
9 o O  Owm
4+“—>

ZGCL/mec < 5_)" < 2GCH/Tmax

Figure 4-9 Proposed stochastic bilinear traction-separation behaviour (Rand, is a random number taken
from a 2-parameter Weibull distribution; G¢; and Gy correspond to the lower and upper limits of G¢ via

Equation 4-1)

Following the fiber bridging discussion in Section 4.3 and the observed experimental trend in
Figure 4-1, the fracture energy toughness distribution was considered to be a function of the
crack length and hence, a linear interpolation was utilized to extract Gy for each specific
crack length. For G¢4, it can be a constant or in a more general form it can scale with Gcve),

which in turn becomes a function of crack length. The second random number (Rand>)
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corresponding to individual enriched elements in each stage of damage evolution was taken
from a uniform distribution with a range of 0 to 1. The randomly selected values were then

converted to a Weibull two-parameter distribution between 0 and 1 via:

1

-1 A
RandZ weibull — |:_ ln(l - RandZuniﬁ)rm ):| (4-2)

1

where ;> 0 is a shape parameter and f,> 0 is the scale parameter of distribution and both

are considered to be equal to 3. It should be added that, according to conventional bilinear

traction-separation behaviour, a direct relationship exists between the critical fracture energy

toughness, G, failure crack opening displacement, J;, and maximum interface strength,

max "~ f (4_3)

Therefore, the obtained statistical distribution of the fracture energy toughness can be
converted into the variation of failure crack opening and/or maximum interface strength of
material via Equation (4-1). Khokhar et al. [106] introduced the randomness into their
simulation by implementing a relationship between random fracture energy toughness and the
maximum interface strength by keeping the failure crack opening displacement constant. To
improve the numerical simulation’s convergence, the present study assumes a constant value
for the maximum interface strength (see Table 4-3) while the failure crack opening
displacement is randomly varied during damage evolution (see Figure 4-4). This approach
relies on constant penalty stiffness and prevents the over-strengthening of elements’ stiffness

in the process zone. It also stands with the fact that the crack length extension in test
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specimens is a function of the crack-tip opening displacement (CTOD) and the energy release

rate in front of crack-tip.

4.5 Numerical Results and Discussions

An XFEM model of the PPS/Glass composite samples under DCB tests were established
using the developed ABAQUS user-defined element subroutine. To consider the stochastic
aspect of fracture properties in conjunction with Equation (4-1), two different approaches
were employed. In the first approach, the standard deviation of fracture energy toughness was
assumed to be constant during the crack propagation (i.e., equal to the standard deviation of
the entire DCB experimental points in Figure (4-5). In the second approach, a linear function
was assigned using test data to relate the fracture energy toughness standard deviation to the

crack length (Table 4-4).

Table 4-4 Employed standard deviation schemes in stochastic simulations of DCB test

Standard Deviation

Constant Function of delamination size
Gegsay = 0.121 kJ/m® Gegsa) = 0.2125 - 0.00164,, kJ/m”
(For a., > 40 mm) (For a. > 40 mm)

Figure 4-9 shows a comparison of opening force between measured and predicted values via

the above two approaches under the standard (discontinuous) DCB tests [97].
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Figure 4-10 Comparison of the opening force in stochastic simulations of DCB tests with experimental

data using: (a) constant standard deviation formulation, and (b) standard deviation as a function of crack

length
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Figure 4-11 Comparison of predicted fracture energy toughness via stochastic simulations of DCB tests

with experimental data using: (a) constant standard deviation formulation, and (b) standard deviation as

a function of crack length
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Figure 4-12 Comparison of measured opening force with predicted values in stochastic and deterministic

simulations of continuous DCB test using: (a) fracture energy/toughness remains equal to the average

value of experiments, (b) fracture toughness only changes with increase in delamination length, (c)

fracture toughness increases with extension of delamination with constant standard deviation

formulation, and (d) fracture toughness increases with extension of delamination with standard deviation

as a function of delamination length
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The stochastic fracture energy toughness values (via the XFEM force values in Figure 4-10
and the standard formulas of ASTM D5528-01 [97]) were also calculated and compared to the
measured values in Figure 4-11. Similarly, the comparison of results under the continuous test

mode, i.e. progressive damage, is depicted in Figure 4-12.

According to Figure 4-11, prediction results for the discrete (standard) DCB case with
constant standard deviation tend to follow experimental results that are closer to the average
data points. This observation has been directly reflected in the continuous-mode tests in
Figure 4-12. As depicted in Figure 4-12(a), the XFEM simulation with constant fracture
toughness and no stochastic effect (i.e., similar to a deterministic simulation) tends to follow
the lower bond of experimental repeats. Choosing the lower bond fracture limit can be quite
acceptable in practical applications where the safety has the highest impact on design. In
Figure 4-12(b) the XFEM simulation with fracture toughness as a function of delamination
length, and with no standard deviation effect, shows an increase in resisting force during
crack evolution, and a better overall prediction capability. This response in particular
demonstrates that the implemented XFEM model in macro-level simulations can capture the
effect of fiber bridging in the meso/micro level by increasing the fracture energy toughness
during each step of delamination extension. Studying stochastic prediction cases, Figures 4-
12(c) and (d), it is seen that having the standard deviation varying with the crack length can
reproduce a more realistic (wider) range of results by means of a higher variation introduced
to fracture properties. It can also be observed from Figures 4-12(c) and (d) that utilizing a
constant standard deviation reduces the fluctuation of stochastic simulations and demonstrates
a smoother trend, while the variable standard deviation method leads to larger fluctuations

during the crack propagation steps. Interestingly, the highest scatter/fluctuation at the opening
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displacement of 22 mm in Figures 4-12(d) coincides with the high deviation observed in
mode | fracture experiments in Figure 4-11(b) when the delamination length is close to 65
mm. The numerical results oscillation in Figure 4-12 would have been caused at each crack
propagation stage when the energy release rate reaches the critical fracture energy toughness
values. More specifically, when CTODs reaches its onset (i.e., crack starts opening), the
corresponding elements in front of the crack are progressed within the rigid (high stiffness)
portion of the bilinear traction-separation law up to the apex where the maximum interface
strength is reached. After this point, the material faces sudden softening and the opening force
reduces to the complete failure of elements, leading to the propagation of the crack into the
next element where again a local increase of the global opening load is expected. Also, the
delamination propagation inherits different size of kinks/jumps which links to the fact that we
are allowing the failure opening displacement to vary for different enriched elements. This
assumption causes the numerical model to deviate from a smooth trend observed in
experimental results. Figures 4-13 and 4-14 show the schematic of crack evolution based on

the bilinear traction-separation law and the XFEM model at different stages of delamination.
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Figure 4-13 Evolution of the cohesive zone in front of crack upon loading in a given simulation step
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Figure 4-14 Stages of delamination propagation within the DCB numerical model: (a) Onset of rigid

hardening in the process zone, (b) Apex of the bilinear traction-separation law, and (c) Deterioration of

the cohesive stiffness
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In the case of ENF tests, the experimental set-up was simulated using the same ABAQUS
user-element subroutine. Randomness was introduced into the analysis only by means of the

constant standard deviation method. The results for continuous delamination are depicted in

Figure 4-15.
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Figure 4-15 Comparison of stochastic measured and predicted force-displacement values in ENF tests on

the PPS/Glass samples

As illustrated in Figure 4-15, the stochastic simulations of the ENF test have resulted in a
great agreement with non-repeatable experimental data. In performed simulations, critical
(opening) deflection varied due to the traction-separation law’s dependency on the failure
crack sliding displacement and, as illustrated, it also affects the variation of the maximum

critical flexural load. Based on the observed trend in simulation data, it can be concluded that
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the fiber bridging effect in ENF test has a minimal effect in global behaviour of the results.
Figure 4-16 shows the XFEM model contours under different stages of delamination in ENF
test. It should be added that from an application perspective, for forming processes of
composite preparation, such as compression moulding set-up in Figure 1-10, mode II fracture

would be more relevant due to sliding between layers of the laminate under the punch load.
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Figure 4-16 Stages of delamination propagation within the ENF numerical model: (a) Apex of rigid

hardening in the process zone, (b) Initial stage of crack propagation, and (c) Extensive deterioration of

material
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4.6 Summary

In this chapter, different methods of fabricating PPS/Glass test samples were reviewed and
their elastic mechanical properties were extracted. The stochastic nature of DCB and ENF
tests on PPS/Glass composite was illustrated. This characteristic was next introduced into the
XFEM numerical analysis by means of a random fracture energy toughness distribution.
Failure crack opening/sliding displacements were employed to relate the fracture energy
toughness randomness to the traction-separation law. In order to demonstrate the capability of
the present method in capturing the DCB and ENF test results, several stochastic simulations

were performed and the results were compared to experimental data.
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5 Chapter: Conclusions and Future Work Recommendation

5.1 XFEM Model Development

A new framework was presented to numerically simulate the fracture behaviour of FRP
composite materials and, more specifically, the unidirectional PPS/Glass laminates. For this
purpose, the ABAQUS finite element package was utilized as a simulation engine. In order to
extend the capability of ABAQUS in modeling crack and delamination contact interfaces in
large delaminations, a user-element subroutine was developed to introduce nonlinear XFEM
element properties including CZM and contact. In these elements, the right hand side vector
and the stiffness matrix were defined and, according to the employed degrees of freedom,
were assembled into the global system of equations. In addition, the stochastic fracture
properties of the composite samples were adapted into the code to capture the randomness
seen through non-repeatable test results. The model may be used with both implicit and

explicit nonlinear solvers for both deterministic and stochastic simulations.

5.2 Performed Deterministic Simulations

Following earlier works in the literature, the performed benchmark deterministic simulations
demonstrated the effectiveness of the combined XFEM - cohesive zone model (CZM) and
contact interface modeling approach in 3D numerical analysis of mode I and II fracture
mechanics of fiber reinforced composites in the presence of large deformation effects and
interface material nonlinearity. Sets of sensitivity analysis were also performed to evaluate the
effect of modeling parameters on the XFEM numerical predictions. For more reliable
simulations, it was found that a minimum of two elements is required within the cohesive

zone region (regardless of critical length) in front of the crack tip. On the other hand,
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considering a very long cohesive zone would introduce a global softening of material into
simulations and can lead to an underestimation of the peak opening force. A maximum of six
elements with a fine mesh is recommended as the limit within the cohesive zone region for
mode I fracture analysis of the studied unidirectional composites. It was also observed that
reducing the penalty stiffness value in the traction-separation law improves the convergence
of numerical simulations and reduces the mesh size sensitivity. However, using conventional
FEM this can again cause a softening problem and reduce the peak opening force. The XFEM
approach with embedded CZM was found to be less sensitive to the aforementioned effects,
particularly when the penalty stiffness value is chosen arbitrarily within the range of
transverse and longitudinal moduli of the composite. In the case of mode II fracture analysis,
an increase in the penalty stiffness could cause extensive flexural deformation without any
crack formation while a small value for the penalty stiffness may lead to a lower critical

flexural force.

5.3 Performed Stochastic Simulations

For stochastic analysis, the prediction of fracture behaviour of fabricated unidirectional
PPS/Glass composites was presented. DCB tests, both in the standard and continuous modes,
were conducted for extracting the experimental material fracture properties along with their
variation through test non-repeatabilities. Based on the experimental data and obtained x-ray
images, it was concluded that fiber bridging was present in the specimens during delamination
and the energy release rate can be a function of the crack length. In order to reproduce the
experimental results with numerical simulations, under the stochastic behaviour of the

material the bilinear traction-separation cohesive behaviour was applied within the framework
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of nonlinear XFEM. It was found that the approach is capable of predicting delamination
surfaces with the traction due to possible fiber bridging effects. To take the present stochastic
material properties effect into account, even under a given crack length, the fracture energy
toughness value was randomized using two different standard deviation methods.
Specifically, applying the constant standard deviation method (i.e., using the overall standard
deviation of the entire data sets) demonstrated a low variation of predicted/model values, but
induced fewer numerical fluctuations in the continuous test mode. In contrast, considering a
standard deviation as a function of crack length captured a wider range of experimental data
points by increasing randomness effects in the fracture properties, though it induced some

fluctuations in the numerical curves.

For the ENF test, performed to study the mode II fracture energy toughness of the same
PPS/Glass samples, due to the abrupt nature of shear failure, capturing the dependency of the
mode II fracture energy toughness on the crack length was not possible. Such failure
behaviour, however, demonstrated a lower randomness as represented by more repeatable
continuous mode test data. Therefore, the average fracture energy toughness in this mode was
assumed to be independent of the crack length and was only affected by the standard
deviation of the test results. The numerical simulation results were well-agreeing with the
experimental ones and the variation of the failure deflection was captured by the stochastic

XEM model.

5.4 Potential Future Work
Future works may be defined based on three different areas. First, improvements can be made

to the FEM shell analysis by introducing a similar nonlinear XFEM into the standard shell

128



element formulation, employing the mass and damping matrices for dynamic analysis of
fracture tests and applying different traction-separation laws for modeling different material
types. Second, both DCB and ENF tests can be repeated with larger size specimens to capture
the stabilizing regions of R-curves observed in experiments with longer delamination sizes.
Such tests can help to scrutinize the stable and unstable nonlinear regions of fiber bridging.
Third, other fracture tests such as the end loaded split (ELS), mixed-mode bending (MMB)
and edge crack torsion (ECT) can be studied to verify the advantages of the XFEM method in
modeling more complex fracture tests and potentially improving the traction-separation law
application for such tests. Another significant aspect of stochastic modeling is to understand
the effect of number of random simulations. A larger number of simulations would produce a
more distinguished region of predictions between upper bond and lower bonds of data.
Finally, more focus can be put on increasing the number of experimental repeats to gain a
better estimation of deviation of data from mean values and hence to improve the reliability of
the simulations. This can also include the introduction of a more precise random distribution
of fracture properties, specifically by including a non-liner dependency of the fracture energy
toughness, mean and standard deviation on the crack length via further experimentation and
statistical analysis. Also, an integration of a microscopic analysis with a signal-to-noise

(Gcrave/Gepsiay) based stochastic XFEM modeling framework can be worthwhile.
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Appendices

Appendix A: ABAQUS User-element Subroutine for Nonlinear XFEM Analysis

ancaan

SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY ,NDOFEL,NRHS,NSVARS,
1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME,
2 KSTEP,KINC,JELEM,PARAMS ,NDLOAD,JDLTYP,ADLMAG,PREDEF,NPREDF,
3 LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,PERIOD)

INCLUDE 'ABA_PARAM.INC'

PARAMETER ( ZERO = 0.D0, HALF = 0.5D0,
+ ONE =1.D0, SEVEN=7.0D0, EIGHT=8.0D0 )

DIMENSION RHS(NDOFEL,*), AMATRX(NDOFEL,NDOFEL),PROPS(*),
1 SVARS(*),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL),

2 DU(NDOFEL,*),V(NDOFEL),A(NDOFEL), TIME(2), PARAMS(*),

3 IDLTYP(MDLOAD, *),ADLMAG(MDLOAD, *),DDLMAG(MDLOAD,*),
4 PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*)

REAL*8 GAUSSPOINT(140,MCRD),
XCR(MCRD+1,MCRD),
dNdx(NNODE,MCRD+1),

U MIDPNT(NNODE,MCRD),
B(MCRD*MCRD, NDOFEL),
DNDXi(NNODE,MCRD),
C_COORDS(NNODE,MCRD),
Gs(2*MCRD,MCRD*MCRD),
U_Ms(MCRD*MCRD,MCRD*MCRD),
C(2*MCRD,2*MCRD),
Dep(MCRD,MCRD),
QT(MCRD,MCRD),
QTT(MCRD,MCRD),
QR(MCRD,MCRD),
QRT(MCRD,MCRD),
DGep(MCRD,MCRD),
FB(MCRD,MCRD),
FBT(MCRD,MCRD),
STRGLB(MCRD,MCRD),
STRGLOB(MCRD,MCRD),
dUdx(MCRD,MCRD),
Nx(1,NNODE),
GWEIGHT(140),
FF(MCRD*MCRD),
STRSG(MCRD*MCRD),
COOR(MCRD),
DLTU(MCRD),

dV(MCRD)

USER-ELEMNT ARRAYS

GENERAL ELEMENT VALUES

GAUSS INTEGRATION VARIABLES (3 INTEG POINT)

ARRAYS FOR 3D ELEMENT

REAL*8 U PHI(NNODE)

REAL*8 UNeg(MCRD),

+ UPos(MCRD),

e
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UNg(MCRD),
UPs(MCRD),

UI(MCRD),

UBAS(NDOFEL),

EC(2*MCRD),

STRS(2*MCRD),
BTSTRS(NDOFEL),

Trct(MCRD),

LHSC(NDOFEL),

RHSC(NDOFEL)

REAL*8 BT(NDOFEL,MCRD*MCRD),

+ GsT(MCRD*MCRD,2*MCRD)
REAL*8 JACB(MCRD,MCRD),
INVJACB(MCRD,MCRD),
INVFB(MCRD,MCRD),
INVFBT(MCRD,MCRD),
TUNIT(MCRD,MCRD),
DGBc(MCRD,NDOFEL),
BTGT(NDOFEL,2*MCRD),
GB(2*MCRD,NDOFEL),
MsB(MCRD*MCRD,NDOFEL),
BTMsB(NDOFEL,NDOFEL),
BcTDGBc(NDOFEL,NDOFEL),
KMAT(NDOFEL,NDOFEL),
KGEM(NDOFEL,NDOFEL),
KCON(NDOFEL,NDOFEL)

REAL*8 Bc(MCRD,NDOFEL),

+ BcT(NDOFEL,MCRD),

+ CSTRN(MCRD,MCRD),

+ EEC(MCRD,MCRD),

+ BcRes(NDOFEL,MCRD)

REAL*8 Xi, Yi, Zi, WEIGHT, ENRCOH, ENRJC,
El1, E22, E33, G12, G23, G31,

Nul2, Nu21l, Nu23, Nu32, Nu31, Nul3,
DETFB, DETJ, nu, uacrt, Jsdv,
HPOINT, ENRELM, NNINT, KPEN,TMAX,
Jert, Dmgl, Dmg2, Dmg3

A+ Tt

o

C

INTEGER COUNTI1, COUNT2, INTP, IINTP, I, J, K, L, M, N
g sfe sk sk sk sk sk she sk sie sk sk sk she sk sk sk sk sk ske sl sk sk sk ske sk sk sk sk sk sl s sk sk sfe sk st sk sk sk sk sk sk sk sk ske st sk sk sk sk sk sl sk sk sk ske s sk sk sk sk sie st sk sk sleoske st skeoskeosteoskeosteoskoskeoskoskeoskokoskoskokoskoskok
C  ***INITIALISATION: IMPORTANT!! FORTRAN DOES NOT PUT ZEROS IN THERE
AUTOMATICALLY ***
C sfe sfe sk s st sfe she she sie ke s sfe sfe she ke ke st sfe she ske sk sfe sfe she ske sk st sfe she she s st she sfe she sie ke st sfe she ske ke st she she sk s st sfe she she sk ke sfe she she sl sk sfe she she sie sk sk sfe sfe she sk st sfe sfe she sk sk st sfe sheskeske e skeseskesk sk
C OPEN LEVEL-SET VALUES FROM PRE-PROCESSING

OPEN(16, FILE='C:/ABAQUS-Matlab/IOstat

+/philvlst.dat',STATUS='OLD")
C

NINTP =24 ! Number of integration points

uacrt = PROPS(1) ! Crack Lenght

dV(1) =PROPS(2) ! Material Initiation Opening Failure

dV(2) = PROPS(3) ! Material Final Opening Failure

E11 =PROPS(4) ! Material Constant

E22 =PROPS(5) ! Material Constant

E33 =PROPS(6) ! Material Constant

G12 =PROPS(7) ! Material Constant

G23 =PROPS(8) ! Material Constant

G31 =PROPS(9) ! Material Constant

Nul2 =PROPS(10) ! Material Constant
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Nu23 =PROPS(11) ! Material Constant

Nu31 =PROPS(12) ! Material Constant
KPEN =PROPS(13) ! Material Constant
Jsdv = PROPS(14) ! G Standard Deviation

CALCULATING THE TRACTION-SEPARATION CONSTANT

TMAX = KPEN*dV(1)
Jert = TMAX*dV(2)/2
WIDTH = 1! Element Tickness

sk sk sk sk sk sk ske sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskoskoskoskoskoskosk sk

**% ZERO THE REQUIRED MATRICES ***

sk sk sk sk sk sk she sk sk sk sk sk sk skt sk sk sk sk sk sk sk sk sk sk skoskoskoskoskoskoskosk sk

ENRELM =0.0

DO =1, NNODE
Nx(1,I) = 0.0
U_PHI(I) =0.0
DO J = 1, MCRD+1

dNdx(1,J) = 0.0
ENDDO
ENDDO

DO J =1, MCRD
COOR(J) = 0.0
ENDDO

DOI=1,2*MCRD
DO J =1, 2*MCRD
C(L,))=0.0
ENDDO
ENDDO

DO 1= 1, MCRD*MCRD
DO J = 1, NDOFEL
B(LJ)) =0.0
BT(J,]) = 0.0
ENDDO
ENDDO

DO 1= 1,2*MCRD
DO J = 1, MCRD*MCRD
Gs(LJ) = 0.0
GsT(J,) = 0.0
ENDDO
ENDDO

DO =1, NNODE
DO J =1, MCRD
C_COORDS(1,J) = 0.0
ENDDO
ENDDO

DOI1=1, MCRD
DO J=1, MCRD
IUNIT(L,J) =0.0
JACB(J) =0.0
INVJACB(LJ) = 0.0
Dep(LLJ) =0.0
DGep(1,J) =0.0
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QT(L)) =0.0

QTT(L)) =0.0
QR(L]) =0.0
QRT(LJ) =0.0
ENDDO
ENDDO

DO =1, NNODE
DO J =1, MCRD
U_MIDPNT(LJ) = 0.0
ENDDO
ENDDO

DO1=1,NSVARS
SVARS(I) = 0.0
ENDDO

DO 1= 1, NDOFEL
DO J = 1, NDOFEL
AMATRX(LJ) = 0.0
KGEM(LJ) = 0.0
KMAT(LJ) = 0.0
KCON(LJ) = 0.0
ENDDO
ENDDO

DO 1= 1, NDOFEL
RHS(L1)=0.0
RHSC(I) = 0.0
LHSC(I) = 0.0
UBAS(I) = 0.0

ENDDO

sk sk sk sk sk sk ke sk sk sk s sk sk sk ko kokoskoskok

¥k DUMMY ARRAYS ***

sk sk sk ok ok sk ke sk sk sk s sk sk sk ko kokoskoskok

DO 1= 1, MCRD
TUNIT(LI) = 1.0
ENDDO

INTS =1 ! Integration point scheme (1: gauss)
STYPE =1 ! Element type (1: B8, 2: T4)

sksk sk sk skoskoskoskoskoskoskoskoskokok ok

*%% HOOK LAW ***
sk sk sk skosk sk sk sk sk sk sk skoskokokok
Nu2l = Nul2*E22/E11
Nu32 = Nu23*E33/E22
Nul3 = Nu31*E11/E33

Delt = (1-Nul2*Nu21-Nu23*Nu32-Nul3*Nu31-2*Nul2*Nu23*Nu31)

C(1,1) = E11*(1-Nu32*Nu23)/Delt
C(1,2) = E11*(Nu21+Nu31*Nu23)/Delt
C(1,3) = E11*(Nu31+Nu21*Nu32)/Delt
C(2,1) = E22*(Nul2+Nu13*Nu23)/Delt
C(2,2) = E22*(1-Nu13*Nu31)/Delt
C(2,3) = E22*(Nu32+Nu31*Nu12)/Delt
C(3,1) = E33*(Nu13+Nul2*Nu23)/Delt
C(3,2) = E33*(Nu23+Nu13*Nu21)/Delt
C(3,3) = E33*(1-Nul2*Nu21)/Delt

C4,4)=Gl12/2
C(5,5) =G23/2
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C(6,6) = G31/2

sk sk ok 3 s sfe sk sk sk sk sk sk sk sk sk sie sk sk sk sk sk sk sk sk sk kool sk sk sk sk sk sk sk skokokoskokoskok

++% FINDING DEFORM SHAPE OF COORDINATES ***
sk sk sk sk sk sk sk sie sk ske sk ske sk ske sk ske sk sk sk ske sk ske sk ske sk ske sk sk ste sk stk sk ok skeoste skeosk skeske skeske skok
DO 1= 1, NNODE
DO J =1, MCRD
C_COORDS(LJ) = COORDS(J,I) + U(2*MCRD*(I-1)+J)
ENDDO
ENDDO

sk sk sk sk e sk ske sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skokokokokokoskoskoskoskoskoskok

##% FINDING REFERENCE COORDINATE DEFORMATION ***
sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk skeosk skosk skosk sk sksk sksk sksk ok

DO =1, NDOFEL
U() = U(I) - DU(L1)

ENDDO

sk sk sk sk sk sk sk sk sk sk sk sk sk skokoskoskoskoskoskoskoskoskokok

***% CALLING LEVEL SET ***

sk sk sk sk sk sk sk sk sk sk sk sk skokoskoskoskoskoskoskoskskoskokok

CALL LVLSETRDR(U_PHLJELEM,NNODE) ! READ THE Level-Set FROM MATLAB

st s s s e e s s s e s s e s s s o e s s e s s s e st s e st s s s s s stk s s s sk s e ok

*** CALLING THE LOCAL CRACK'S PLANE IN EACH ELEMENT ***

st s s st ot s s st ot s st s s st ot sk sk stk sk sk stk sk skt ki sk kool lokosksksloksk sk ok kool sk ok kR

CALL MIDPLNFIND(NNINT,U_MIDPNT,QT,U_PHI,COORDS,NNODE,MCRD)

DO 1= 1, MCRD
DO J =1, MCRD
QTT(J) = QT(.])
ENDDO
ENDDO

sk 3k sk 3k ok ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk skokoskoskosk ok

*#* CALLING GAUSS COORDINATES *#**

s s st e sk okt sk skt ok stk skok ook sk stk sk ok sk ok ok

CALL SUBTGAUSS(GAUSSPOINT,GWEIGHT,NNODE,MCRD)

sk 3k sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok ok sk sk sk sk sk sk ks skokoskoskoskosk sk skokok ok

*#* LOOKING FOR OPENING DISPLACEMENT ***
otk sk koo sk Rk ok sk ok ok koo ok sk Rk ok sk ok ok ok ok ok
COUNTI =0
COUNT2=0

DOI1=1,MCRD
UPos(I) =0.0
UNeg()=0.0
UPs(I) =0.0
UNg() =0.0

ENDDO

sk sk sk sk 3k s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skokoskoskoskoskosko sk skok

##% LOOP OVER INTEGRATION POINTS ***
sk sk sk sk sfe sk sk sie sk sk sk sk sk sk sk sk sk sk sk sk ske sk skt skeoske skeosk sk skoske sk sk
DO INTP = 1, NINTP
HPOINT = 0.0
DO =1, MCRD
Ul(I) =0.0
DLTU(I) = 0.0
ENDDO

COOR(1) = GAUSSPOINT(INTP, 1)
COOR(2) = GAUSSPOINT(INTP,2)
COOR(3) = GAUSSPOINT(INTP,3)
WEIGHT = GWEIGHT(INTP)
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s s s st s s st ot s st e sk sk ok sk skt kol skoRksksk ook sk ok okok

*#* CALLING THE SHAPE FUNCTIONS ***

sk sk 3k 3k ok ok ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk skoskoskoskoskoskookosk ok

CALL LAGRANGEBASIS(COOR,Nx,dNdx,NNODE,MCRD)

sk 3k sk sk ok ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk skskoskoskook ok

##% CALCULATING Gpt-LEVEL SET ***
sk sk sk s sfe sk sk sie sk ske sk sk sk sk sk sk sk sk sk ske sk ske sk skeoste skeoske skesk skesk skok
DO 1= 1, NNODE
HPOINT = HPOINT + U_PHI(I)*dNdx(I,4)/ABS(U_PHI(I))
ENDDO
IF (HPOINT .GT. 0.0) THEN

HPOINT =1.0
ELSEIF (HPOINT .LT. 0.0) THEN
HPOINT =-1.0
ELSE
HPOINT = 0.01
WEIGHT = 0.0
ENDIF

sk sk sk 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk skeokokokokoskokok

### CHECKING FOR Gpt WITHIN CONTACTBOUND ***
sk sk sk sk sk sk sk sie sk ske sk sk sk sk sk ske sk sk sk sk sk ske sk sk st skeoske skeske skeoske skeoske skeoske skesk skeoskeosk skeoskskok
DO 1= 1, NNODE
DO J =1, MCRD
U1(J) = U1(J) + dNdx(L4)*U(6*(I-1)+])
+ (HPOINT - ABS(U_PHI(I))/U_PHI(I))*
(ANdx(I4)*U(6*(I)+]-3))

ENDDO

ENDDO

IF (HPOINT .LT. 0.0)THEN
COUNT1 =COUNT1 +1
UNeg(1) = UNeg(1) + U1(1)
UNeg(2) = UNeg(2) + U1(2)
UNeg(3) = UNeg(3) + U1(3)

ELSE
COUNT2 =COUNT2 +1
UPos(1) = UPos(1) + U1(1)
UPos(2) = UPos(2) + U1(2)
UPos(3) = UPos(3) + U1(3)

ENDIF

ENDDO

DOI=1,MCRD

DO J =1, MCRD
UPs(I) = UPs(I) + QT(LJ)*UPos(J)/COUNT2
UNg(I) = UNg(I) + QT(IJ)*UNeg(J)/COUNTI1
ENDDO

ENDDO

DLTU(1) = UPs(1) - UNg(1)
DLTU(2) = UPs(2) - UNg(2)
DLTU(3) = UPs(3) - UNg(3)

sk sk 3k 3k e sk sk sk sk sk sk sk sk sk skl sie sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk kokokoskokoskoskok

**#* FORMING STIFFNESS AND RESIDUAL MATRIX ***

3k sk sk 3k s sk sk sk sk sk sk sk sk sk skl sie sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk kokoskoskokoskskok

sk sk 3k 3 e sie sk sk sk sk sk sk sk sk sk ke sk sk sk sk sk sk sk sk kokokoskoskosksk

*##% CALLING ELAST-PLAST RELATIONSHIP ***
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sk sk sk sk ok ok ok ok ok sk sk sk sk sk sk sk sk skosk sk sk sk sk sk ko skskskok ok

DO I=1,MCRD

DO J = 1, MCRD
DGep(LJ) = 0.0
ENDDO

ENDDO

CALL ELSPLC(Dep,DLTU,dV ,uacrt,C_LMCRD,ENRELM,JTYPE,KPEN,

1

Dmgl, Dmg2, Dmg3)

ASSIGNING DAMAGE INDECES AND CRACK OPENING DISPLACEMENT TO USER-VARIABLES

SVARS(1)=Dmgl
SVARS(2)=Dmg2
SVARS(3)=Dmg3
SVARS(4)=DLTU(1)
SVARS(5)=DLTU(2)
SVARS(6)=DLTU(3)

TRANSFORIMG THE ELASTIC-PLASTIC RELATIONSHIP INTO LOCAL CRACK PLANE

DOI=1,MCRD

DO J=1,MCRD
DO K =1, MCRD
DO L=1, MCRD

DGep(LJ) = DGep(LJ) + QTT(L,K)*Dep(K,L)*QT(L.J)

ENDDO
ENDDO
ENDDO

ENDDO

sk 3k sk 3k ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk sk sk sk sk skoskoskoskoskoskoskosk sk ok

*#* LOOP OVER INTEGRATION POINTS ***

s s st ot s st s st sk ook sk skt kol kool sk Rk sk ok ok

DO 1= 1, NDOFEL
DO J = 1, NDOFEL
BTMsB(LJ) = 0.0
ENDDO
ENDDO

DO IINTP =1, NINTP

COOR(1) = GAUSSPOINT(IINTP, 1)
COOR(2) = GAUSSPOINT(IINTP,2)
COOR(3) = GAUSSPOINT(IINTP,3)
WEIGHT = GWEIGHT(IINTP)

sk sk sk 3k 3k sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk skoskoskoskoskoskoskoskoskok

**% CALLING THE SHAPE FUNCTIONS *#**

sk sk sk 3k 3k sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk skoskoskoskoskosko sk sk skok

CALL LAGRANGEBASIS(COOR,Nx,dNdx,NNODE,MCRD)

Xi = COOR(1)
Yi = COOR(2)
Zi = COOR(3)
DO 1= 1, MCRD
DO J =1, MCRD
JACB(L,J) = 0.0
ENDDO
ENDDO

3k sk 3k 3 e sie sfe sk sk sk sk sk sk sk sk ke sk sk sk sk sk sk sk sk skokokskoskosksk

**% FORMING JACOBIAN MATRIX ***
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sk 3k 3k 3k ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ke skoskskoskokok

DO =1, MCRD
DO J =1, MCRD
DOK = 1, NNODE
JACB(LJ) = JACB(L,J) + COORDS(LK)*dNdx(K,J)
ENDDO
ENDDO
ENDDO

DETJ = JACB(1,1)*(JACB(2,2)*JACB(3,3) - JACB(2,3)*JACB(3.2)) -
JACB(1,2)*(JACB(2,1)*JACB(3,3) - JACB(3,1)*JACB(2,3)) +
JACB(1,3)*(JACB(2,1)*JACB(3,2) - JACB(2,2)*JACB(3,1))

IF (DETJ .LT. 0.0) THEN

DETJ = (-1)*DETJ

ENDIF

INVJACB(1,1) = (JACB(2,2)*JACB(3,3) - JACB(2,3)*JACB(3,2))/DETJ

INVJACB(1,2) = (JACB(1,3)*JACB(3,2) - JACB(1,2)*JACB(3,3))/DETJ

INVJACB(1,3) = (JACB(1,2)*JACB(2,3) - JACB(1,3)*JACB(2,2))/DETJ

INVJIACB(2,1) = (JACB(2,3)*JACB(3,1) - JACB(2,1)*JACB(3,3))/DETJ

INVJACB(2,2) = (JACB(1,1)*JACB(3,3) - JACB(1,3)*JACB(3,1))/DETJ

INVJACB(2,3) = (JACB(1,3)*JACB(2,1) - JACB(1,1)*JACB(2,3))/DETJ

INVJACB(3,1) = (JACB(2,1)*JACB(3,2) - JACB(2,3)*JACB(3,1))/DET]J

INVJACB(3,2) = (JACB(1,2)*JACB(3,1) - JACB(1,1)*JACB(3,2))/DETJ

INVJACB(3,3) = (JACB(2,2)*JACB(1,1) - JACB(2,1)*JACB(1,2))/DETJ

sk sk 3k 3 e sk sk sk sk sk sk sk st sk s ke sk sk sk sk sk sk sk sk sk sk skoskoskoskoskosk

##% FORMING DERIVATIES dN/dx ***
sk sk sk sk sk sk sk sie sk ske sk ske sk ske sk ske ok sk ke sk sk sk ok skeske skeske skeske skesk sk
DO 1= 1, NNODE
DO J =1, MCRD
DNDXi(I,J) = 0.0
ENDDO
ENDDO

DO 1= 1, NNODE
DO J =1, MCRD
DO K =1, MCRD
DNDXi(1,J) = DNDXi(LJ) + dNdx(IL,K)*INVJACB(K.J)
ENDDO
ENDDO
ENDDO

sk sk sk sk sk sk ske sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskokokoskosksk

##% CALCULATING B-LEVEL SET ***
st s sk sk sk sk sk sk sk stk s skok sk stok skoskokoskokok skokokskokok
HPOINT = 0.0
DO I=1,MCRD
DO K=1,MCRD
dUdx(LK)=0.0
ENDDO
ENDDO

DO I=1,MCRD
DO K=1,MCRD
DO J=1,NNODE
dUdx(L,K)=dUdx(L,K)+DNDXi(J,K)*U(6*(J-1)+])
ENDDO
ENDDO
ENDDO

sk sk 3k 3 e sfe sk sk sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk skokoskoskoskoskoskosk

*##% CALCULATING Gpt-LEVEL SET ***
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DO 1= 1, NNODE
HPOINT = HPOINT + U_PHI(I)*dNdx(I,4)/ABS(U_PHI(I))
ENDDO
IF (HPOINT .GT. 0.0) THEN

HPOINT =1.0

ELSEIF (HPOINT .LT. 0.0) THEN

HPOINT =-1.0

ELSE
HPOINT = 0.01
WEIGHT = 0.0

ENDIF

DO I=1,MCRD

DO K=1,MCRD

DO J=1,NNODE
dUdx(LK) = dUdx(I,K)+(HPOINT-ABS(U_PHI(I))/U_PHI(I))*
DNDXi(J,K)*U(6*(J-1)+I+MCRD)
ENDDO
ENDDO
ENDDO

3k sk ok 3 e sfe sk sk sk sk sk sk skeokokoskoskoskoskoskosko sk skok

4% FORMING B MATRIX ***
sk sk ske sk sk sk skeosie sk ske sk ske skeoske sk sk sk sk sk skesk sk
DO I = 1, MCRD*MCRD
DO J = 1, NDOFEL
B(LJ) =0.0
BT({J.) = 0.0
ENDDO
ENDDO

CALL GRADB(B,DNDXi,HPOINT,U_PHIL,NNODE,MCRD,NDOFEL)
BT = TRANSPOSE(B)

DO 1= 1, MCRD*MCRD
FE(I) = 0.0
ENDDO
DO 1= 1, 2*MCRD
EC(1)=0.0
ENDDO

DO 1= 1, MCRD
DO J =1, MCRD

FB(LJ) = 0.0
FBT(LJ) = 0.0
ENDDO
ENDDO

FF = MATMUL(B,U)

dUdx(1,1) = FF(1)
dUdx(2,1) = FF(2)
dUdx(3,1) = FF(3)
dUdx(1,2) = FF(4)
dUdx(2,2) = FF(5)
dUdx(3,2) = FF(6)
dUdx(1,3) = FF(7)
dUdx(2,3) = FF(8)
dUdx(3,3) = FF(9)
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**% FORMING GREEN-LAGRANGIAN & LARGE STRAINS ***

sk sk 3k 3 e sk sk sk sk sk sk st sk sk e sk sk sk sk sk sk sk sk sk sk sk s sie sk sk sk sk sk sk sk skokokokokoskoskoskoskoskoskoskokokok

anoaaan

DO I =1, MCRD*MCRD
IF (1.EQ. 1 .OR.1.EQ. 5 .OR.1.EQ. 9) THEN
FF(I) = FF(I) + 1.0
ENDIF
ENDDO

FB(1,1) = FF(1)
FB(2,1) = FF(2)
FB(3,1) = FF(3)
FB(1,2) = FF(4)
FB(2,2) = FF(5)
FB(3,2) = FF(6)
FB(1,3) = FF(7)
FB(2,3) = FF(8)
FB(3,3) = FF(9)
C sk sk sk sk sk sk sk sie sk sk sk ske sk ske sk ske sk ske sk sk skeske sk sk sk skesk skeosk sk
C  *** FORMING INVF & GRADF ***
C sk sk sk sk sk sk sk sie sk ske sk ske sk ske sk ske sk sk sk sk skeoske sk sk sk skesk skeske skek
DO =1, MCRD
DO J =1, MCRD
INVFB(LJ) = 0.0
ENDDO
ENDDO
DETFB = FB(1,1)*(FB(2,2)*FB(3,3) - FB(2,3)*FB(3,2)) -
+ FB(1,2)*(FB(2,1)*FB(3,3) - FB(3,1)*FB(2,3)) +
+ FB(1,3)*(FB(2,1)*FB(3,2) - FB(2,2)*FB(3,1))
IF (DETFB .LT. 0.0) THEN
DETFB = (-1)*DETFB
ENDIF
INVFB(1,1) = (FB(2,2)*FB(3,3) - FB(2,3)*FB(3,2))/DETFB
INVFB(1,2) = (FB(1,3)*FB(3,2) - FB(1,2)*FB(3,3))/DETFB
INVFB(1,3) = (FB(1,2)*FB(2,3) - FB(1,3)*FB(2,2))/DETFB
INVFB(2,1) = (FB(2,3)*FB(3,1) - FB(2,1)*FB(3,3))/DETFB
INVFB(2,2) = (FB(1,1)*FB(3,3) - FB(1,3)*FB(3,1))/DETFB
INVFB(2,3) = (FB(1,3)*FB(2,1) - FB(1,1)*FB(2,3))/DETFB
INVFB(3,1) = (FB(2,1)*FB(3,2) - FB(2,3)*FB(3,1))/DETFB
INVFB(3,2) = (FB(1,2)*FB(3,1) - FB(1,1)*FB(3,2))/DETFB
INVFB(3,3) = (FB(2,2)*FB(1,1) - FB(2,1)*FB(1,2))/DETFB

C
FBT = TRANSPOSE(FB)
INVFBT = TRANSPOSE(INVFB)
C
DO 1= 1, 2*MCRD
DO J = 1, MCRD*MCRD
Gs(I,]) =0.0
GsT(J,)=0.0
ENDDO
ENDDO
C
CALL TANGSMS(Gs,FF,MCRD)
C

GsT = TRANSPOSE(Gs)
GB = MATMUL(Gs,B)
EC = MATMUL(GB,U)
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##% STRESS CALCULATION ***
Sk sk sk sk sk sk sk sie sk sk sk sk sk sk skeosk sk skoskoskok skok sk
DO 1= 1, 2*MCRD
STRS(I)=0.0
ENDDO
DO I = 1, MCRD*MCRD
STRSG(I) = 0.0
ENDDO
DO 1= 1, MCRD
DO J =1, MCRD
STRGLB(LJ) = 0.0
STRGLOB(LJ) = 0.0
ENDDO
ENDDO

[oNeoNe!

STRS = MATMUL(C,EC)

STRGLOB(1,1) = STRS(1)
STRGLOB(2,2) = STRS(2)
STRGLOB(3,3) = STRS(3)
STRGLOB(2,1) = STRS(4)
STRGLOB(1,2) = STRS(4)
STRGLOB(1,3) = STRS(5)
STRGLOB(3,1) = STRS(5)
STRGLOB(2,3) = STRS(6)
STRGLOB(3,2) = STRS(6)

STRGLB = MATMUL(STRGLOB,TUNIT)
STRSG(1) = STRGLB(1,1)
STRSG(2) = STRGLB(1,2)
STRSG(3) = STRGLB(1,3)
STRSG(4) = STRGLB(2,1)
STRSG(5) = STRGLB(2,2)
STRSG(6) = STRGLB(2,3)
STRSG(7) = STRGLB(3,1)
STRSG(8) = STRGLB(3,2)
STRSG(9) = STRGLB(3,3)

C sk sk sk sk sk s sk ske sk sk sk sk sk sk sk skosie sk sk sk sk sk sk sk sk sk skokoskoskoskoskoskoskoskok

C  #*** FORMING Gs & Ms MATRICES ****
C sk sk sk sk sk sk sk sk sk sk sk sk skeosk skeosk sk sk skeosk skeosk skeosk skeoskoskeoskosk sk sk skok sk
DO I = 1, MCRD**2
DO J = I, MCRD**2
U Ms(L,J)=0.0
ENDDO
ENDDO
C
DOI=1, MCRD
U_Ms(LI) = STRSG(1)
U_Ms(I+MCRD,I+MCRD) = STRSG(5)
U_Ms(I+2*MCRD,[+2*MCRD) = STRSG(9)
U_Ms(I+MCRD,]) = STRSG(4)
U_Ms(L,I+MCRD) = STRSG(2)
U_Ms(I+2*MCRD,]) = STRSG(7)
U_Ms(LI+2*MCRD) = STRSG(3)
U Ms(I+2*MCRD,I+MCRD) = STRSG(8)
U_Ms(I+MCRD,1+2*MCRD) = STRSG(6)
ENDDO

C sk 3k 3k sk sk ok ok ok ok sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk skoskosk skoskosk sk sk sk sk ok sk skosksksk ok
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**%* FORMING COHESIVE & CONTACT Bc MATRIX ***
sfe she ske sk sk st sfe she sk sk sk she she she st sk sk sfe she sk sk she sfe she sk sk sk st she sk sk sk sfe sheosie sk sk st seskeoskoskeskeosk
DOI1=1,MCRD
DO J=1, NDOFEL
Be(1,J) =0.0
BcT(J,1)=0.0
BcRes(J,1) = 0.0
ENDDO
ENDDO
DO I1=1,NNODE
BcRes(6*1-5,1) = 0.0
BcRes(6*%1-4,2) = 0.0
BcRes(6*1-3,3) = 0.0
BeRes(6*1-2,1) = dNdx(L4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I))
BeRes(6*1-1,2) = dNdx(1,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I))
BeRes(6*1,3) = dNdx(L4)*(HPOINT-ABS(U_PHI(I))/U PHI(I))
Be(1,6%1-2) = -2*dNdx(I,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I))
Bc(2,6*1-1) = -2*dNdx(I,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I))
Be(3,6%1) = -2*dNdx(L,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I))
ENDDO

BcT = TRANSPOSE(Bc)

sk sk 3k 3 e sk sk sk sk sk sk sk st sk sk ke sk sk sk sk sk sk sk sk sk sk koskoskoskosk sk

##% FORMING STIFFNESS MATRIX ***
sk sk sk sk sk sk sk sie sk ske sk ske sk ske sk sk ok sk ke sk ke sk ok skeoske skeske skeske sksk sk
DO 1= 1, 2*MCRD
DO J = 1, NDOFEL
GB(LJ)=0.0
BTGT(J,I) = 0.0
ENDDO
ENDDO

GB = MATMUL(Gs,B)
BTGT = TRANSPOSE(GB)

DO I=1, NDOFEL

DO J=1, NDOFEL

DO K=1, 2*MCRD

DO L=1, 2*MCRD

KMAT(LJ) = KMAT(]J) +
BTGT(,K)*C(K,L)*GB(L,J)*WEIGHT*DETJ*WIDTH

ENDDO
ENDDO
ENDDO
ENDDO

MsB = MATMUL(U_Ms,B)
BTMsB = MATMUL(BT,MsB)

DO I=1, NDOFEL
DO J=1, NDOFEL
KGEM(1,J) = KGEM(L,J) + BTMsB(LJ)*WEIGHT*DETJ*WIDTH
ENDDO
ENDDO

DGBc = MATMUL(DGep,Bc)
BcTDGBc = MATMUL(BcT,DGBc)

DO I=1, NDOFEL
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DO J=1, NDOFEL
KCON(,J) = KCON(LJ) + BcTDGBc(I,J)*WEIGHT*DETJ*WIDTH
ENDDO
ENDDO

DO 1=1, MCRD
Tret(I) = 0.0
ENDDO

DO 1= 1, MCRD
DO J = 1, NDOFEL
Tret(I) = TreT(I) + DGBe(LJ)*(U(J)+DU(J, 1))
ENDDO
ENDDO

sk sk sk 3k 3k sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk skokokokok

##% RESIDUAL CALCULATION #**
sk sk sk sk sfe sk sk sie sk ske st sk sk sk sk sk sk sk skeosk skeoskoskoskoskoskosk sk
DO 1= 1, MCRD*MCRD
FE(I) = 0.0
ENDDO
DO 1= 1, 2*MCRD
EC()=0.0
ENDDO

DO I =1, MCRD*MCRD
DO J = 1, NDOFEL
FF(I) = FF(I) + B(LJ)*(UJ)+DU(J,1))
ENDDO
ENDDO

>k 3k 3k 3k sk ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk skoskoskoskoskoskosko sk skokok

### FORMING GREEN-LAGRANGIAN & LARGE STRAIN #**
sk sk sk sk sk sk sk sie sk sk sk sk sk sk sk sk sk skeosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skeosk stk sk skok skokokosk
DO =1, MCRD*MCRD
IF (1.EQ. 1 .OR.1.EQ. 5 .OR.1.EQ. 9) THEN
FF(I) = FF(I) + 1.0
ENDIF
ENDDO

FB(1,1) = FF(1)
FB(2,1) = FF(2)
FB(3,1) = FF(3)
FB(1,2) = FF(4)
FB(2,2) = FF(5)
FB(3,2) = FF(6)
FB(1,3) = FF(7)
FB(2,3) = FF(8)
FB(3,3) = FF(9)

DO =1, 2*MCRD
DO J = 1, MCRD*MCRD
Gs(LJ) =0.0
ENDDO
ENDDO

CALL TANGSMS(Gs,FF,MCRD)

GB = MATMUL(Gs,B)
BTGT = TRANSPOSE(GB)
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DO I=1, MCRD
DO J=1, MCRD
CSTRN(L]) = 0.0
EEC(LJ) = 0.0
ENDDO
ENDDO

DO I=1, MCRD
DO J=1, MCRD
DO K=1, MCRD
CSTRN(LJ) = FB(K,I)*FB(K,J)+CSTRN(LJ)
ENDDO
ENDDO
ENDDO
DO I=1, MCRD
DO J=1, MCRD
IF (1.EQ. J) THEN
EEC(LJ) = 0.5*CSTRN(I,J)-0.5
ELSE
EEC(LJ) = 0.5*CSTRN(1,J)
ENDIF
ENDDO
ENDDO

EC(1) = EEC(1,1)
EC(2) = EEC(2,2)
EC(3) = EEC(3,3)
EC(4) = EEC(1,2)
EC(5) = EEC(2,3)
EC(6) = EEC(3,1)

STRS = MATMUL(C,EC)

XFEM ELEMENTS RESIDUAL FORCES DUE TO LARGE DEFORMATION

DO I=1, NDOFEL
DO J=1, 2*MCRD
RHS(I,1) = RHS(L1) -

BTGT(1,J)*STRS(J)*WEIGHT*DETJ*WIDTH

ENDDO
ENDDO

XFEM RESIDUAL FORCES DUE TO COHESIVE REGION OR CONTACT INTERFACE

DO I=1, NDOFEL
DO J=1, MCRD
RHS(I,1) = RHS(L 1) +

BeRes(LJ)*Tret(J)*WEIGHT*DETJ*WIDTH

RHSC(I) = RHSC(I) +

BeRes(LJ)*Tret(J)*WEIGHT*DETJ*WIDTH

ENDDO
ENDDO

ENDDO ! END IF LOOP OVER GAUSS POINTS

3 sk sk 3 s sie sk sk sk sk sk sk sk sk skl sk sk sk sk sk sk sk sk sk sk skokoskokokoskoskosk sk sk skok

**#% FORMING RIGHT-HAND-SIDE MATRIX ***

sk sk sk 3 e sfe sk sk sk sk sk sk sk sk sk sl sk sk sk sk sk sk sk sk sk skokoskokokoskoskoskoskokoskokok

AMATRX = KMAT + KGEM + KCON
RETURN
END
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Appendix B: Experimental Calculations According to ASTM D5528-01 [97]

Double Cantilever Beam (DCB) Test:

I.  The Modified Beam Theory (MBT) Method:

Based on the beam theory expressions, the critical energy release rate for the DCB test is

written as follows [97] (see also Figure 1-4):

3P A (B-1)
G]C =—52
2wa

cr

where Py, A, w and a., are the applied load, the displacement of the load, specimen width
and the delamination length, respectively. Due to possible rotation in the crack tip front,
which is neglected in standard beam theory, a correction factor is considered by treating the

test with a longer crack length, a,+Aa,. To determine the crack length increase, Aa,,

experimentally, the cube root ratio of the opening displacement over the applied load, known
as beam compliance, must be plotted versus delamination length, a., at onset of all
delamination propagations. The least square root method should then be utilized to find the y-
intercept which is equal to the crack length increase. By substituting the new crack length into

the above beam theory equation, one obtains:

G, = ot (52
“ 2w, +Aa,)
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II.  The Compliance Calibration (CC) Method:
. oy A
In the compliance calibration (CC) method, the least squares of log(——) versus log(a,,)at
grip
onset of all delamination propagations must be plotted and the slope of this line, n, is

implemented to correct the energy release rate:

nP . A (B-3)
Gy = =
2wa

cr

III.  The Modified Compliance Calibration (MCC) Method:

In the modified compliance calibration (CC) method, the normalized delamination length over
the thickness versus the cube root ratio of opening displacement over the applied load at onset

of all delamination propagations must be plotted and the slope of this line, m,,, , is

implemented to calculate the energy release rate:

A
2
3P grip (7

_ grip
Gre =— )
mLine w ck

B-4
)2/3 ( )

where . is the specimen thickness.

Finally, in order to account for shortening of arm of moment and the rotation of the loading
block, a large displacement correction factor should be multiplied into the energy release
value calculated from either of the above methods. This correction factor is calculated as

follows:
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) A(tck_l_tBluck)
A =1 3(AJ_3¥ (B-5)

where t,,, is the loading block thickness.

End Notch Flexure (ENF) Experimental Test:

Similar to the DCB test, for ENF test data the compliance method is employed to calculate the

critical energy release rate [19]:

2 2
G _ 9acr Pgrip
1c —

2ELongitudinal W2 tck3 (B-6)
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