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Abstract 

Initiation and propagation of a crack in composite materials can affect their global mechanical 

properties severely. From a numerical modeling perspective, most conventional macro-level 

methods reported for composite laminates are based on the assumption that a Representative 

Volume Element (RVE) of the material is periodically repeated over the entire sample. 

However, a considerable amount of spatial non-uniformity in material and geometrical 

parameters can exist in both unidirectional (UD) and woven fabric composites. The scattered 

distribution of fibers, fibers penetration between composite layers, voids within the matrix, 

human errors during sample preparation, and imperfect thickness distribution can be among 

the most common sources of such non-uniformity. In turn, these non-uniformities can make 

the numerical simulation of composites under the assumption of a periodic RVE unreliable, 

and thereby, the stochastic modeling of effective material properties becomes essential for a 

more precise assessment of composites’ mechanical behaviour.  

In the present work, a new three-dimensional (3D) stochastic extended finite element method 

(XFEM) is proposed and implemented to model the delamination surface in composite 

samples by integrating the capabilities of the finite element method (FEM) commercial 

software (ABAQUS) into a user-defined FORTRAN code and MATLAB package. XFEM is 

known to offer significant advantages over conventional FEM by enabling optimal 

convergence rates in the presence of pronounced discontinuities/singularities such as cracks. 

The effect of nonlinear modeling parameters such as cohesive zone length, penalty stiffness 

factor and large deformation are also considered in the proposed approach to add to the 

accuracy of simulations. The XFEM model is first tested and validated against previously 

reported data in the literature. Next, a statistical distribution is sought from data non-
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repeatability during a set of double cantilever beam (DCB) and end-notched flexure (ENF) 

tests conducted on Poly (phenylene Sulfide) PPS/Glass thermoplastic composite samples. 

Results from the experiments and XFEM are compared and demonstrate the capability of the 

new numerical approach in capturing non-repeatable material response, often seen during the 

fracture testing of UD composites to characterize their mode I and mode II fracture properties. 
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1    Chapter:  Introduction 

Composites are generally defined as multiphase materials made by commingling two or more 

existing materials to achieve required mechanical, thermal or electrical properties. Fiber 

reinforced polymer (FRP) can be categorized as a composite material that is composed of a 

base polymer material called matrix and reinforced by rebars called fibers. A complete 

bonding between these two material phases can provide sufficient functionality toward 

application of composites. The effective mechanical properties of FRP composites are of 

great interest to aerospace and structural engineers and are directly related to the properties of 

individual components of each given FRP as reviewed below.  

 

1.1 Fibers 

Fibers are materials made into long filaments with 10μm diameter. The main duties of fibers 

in composites consist of carrying the external loads and providing the required stiffness, 

strength and thermal stability. Fibers should demonstrate the following characteristics to 

satisfy the desirable mechanical properties of FRP composites [1]: 

1- High modulus of elasticity. 

2- High ultimate strength. 

3- Low variation of strength among their distributions. 

4- High stability of their strength during handling. 

5- High uniformity of diameter and surface dimension among bundles of fibers. 
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In the present industrial applications, there are mainly three dominating types of fibers: 

carbon, glass and aramid fibers. Carbon fibers have high elastic modulus and fatigue failure 

strength in comparison to the other two types of fibers; however, the economic aspects of 

their application should always be considered [2]. Glass fibers have demonstrated good 

mechanical strength relative to their low cost, which has increased their application as 

reinforcing agent in FRP composites in cost-sensitive industries such as construction [1]. In 

Table 1-1, a summary of mechanical properties of commonly used fibers is presented. 

 

 Table 1-1   Mechanical properties of fibers in commonly used FRPs [3] 

Material 
Density 

(kg/m3) 

Longitudinal 

Modulus of 

Elasticity (MPa) 

Longitudinal 

Strength (MPa) 

Relative 

cost 

E-glass 2540 70000 3450 Low 

S-glass 2500 86000 4500 Moderate 

Graphite, high modulus 1900 400000 1800 High 

Graphite, high strength 1700 240000 2600 High 

Kevlar 29 1450 80000 2800 Moderate 

Kevlar 49 1450 130000 2800 Moderate 

 

1.2 Matrix 

The matrix is the base material of a FRP composite which confines and bonds the fibers 

together. It is mainly composed of plastic ingredients that are less environmentally hazardous 
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and more corrosion resistant in comparison to fibers. The followings are the main duties and 

features of matrix materials in FRP composites [1]: 

1- Transferring the external loads to the fibers while binding them together. 

2- Protecting the fibers from environmental hazards and corrosion. 

3- Providing the general shape of a given FRP structure.  

4- Defining some effective mechanical properties of the composite (mainly perpendicular to 

the fiber directions) such as ductility, impact strength, etc.  

In industrial applications, FRP composite materials are often manufactured with two types of 

matrices: thermosets and thermoplastics. Thermosets provide higher strength in comparison to 

thermoplastics; however, once cured, they cannot be reheated and reused or reformed. This is 

in contrast to thermoplastic matrices which can be re-employed for recycling through melting 

and solidification cycles. In Table 1-2, mechanical properties of common matrix materials are 

presented. 
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Table 1-2   Mechanical properties of matrices in commonly used FRP composites [3] 

Material 
Density 

(kg/m3) 

Tensile Modulus 

(MPa) 

Tensile Strength 

(MPa) 

Epoxy 1200-1400 2500-5000 50-110 

Phenolic 1200-1400 2700-4100 35-60 

Polyester 1100-1400 1600-4100 35-95 

Nylon 1100 1300-3500 55-90 

PEEK 1300-1350 3500-4400 100 

PPS 1300-1400 3400 80 

Polycarbonate 1200 2100-3500 55-70 

Polyethylene 900-1000 700-1400 20-35 

Teflon 2100-2300 - 10-35 

 

1.3 Classification of FRP Composite  

Numerous methods for classification of FRP composites exist in the literature. For instance, 

the classification can be based on the different matrices: thermosets and thermoplastics. 

Another approach for classifying the FRP composites is based on fiber material type: carbon, 

glass or aramid. Fiber length can also be applied to differentiate the FRP composites: short-

fiber and long-fiber composites. Short-fiber reinforced composites consist of a dispersed 

phase of discontinuous fibers (fiber length is less than hundred times diameter) with random 

or preferred orientation of fibers. On the other hand, long-fiber reinforced composites contain 

continuous fibers bonded together by the matrix. They can be composed of a unidirectional 
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orientation of fibers or a bidirectional orientation of fibers (e.g., woven composites), or 3D 

textile preforms. 

 

1.4 FRP Composite Materials Applications 

Today fiber Reinforced Polymer (FRP) composite materials are widely used in high tech 

engineering applications including aeronautical, marine and automotive industries. These 

materials have high strength-to-weight ratios, good corrosion resistance, superior fracture 

toughness, and can be engineered based on required strength or performance objectives for a 

given structure. To give few examples, leading aircraft manufacturers such as Airbus and 

Boeing have increased the application of FRP composites in their products from 3% to 20% 

in Airbus A380 and over 50% in Boeing 787 [4].  Figure 1-1 depicts one of the largest aircraft 

wings, with a 42.4 meter span, made of carbon FRP composite assembled for the Airbus 

Military A400M transport aircraft. In construction industry, FRP composites have become a 

good alternative for innovative construction and their applications have already been extended 

to upgrading and retrofitting the existing structures as well as constructing various types of 

off-shore platforms, buildings and bridges. Pontresina Bridge (Figure 1-1-d), with a span 

length of 12.5 m, was constructed in 1997 across the Flanz River in Switzerland. The 

structural truss system of the bridge was made of FRP composite [5]. 
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(a) (b) 

(c) (d) 

Figure 1-1   Sample applications of FRP composite materials in different industries: (a) & (b) Airbus 

Military A400M aircraft CFRP wing (Martin Chainey / Airbus Military), (c) Cross-sections of glass fiber 

reinforced polymer (GFRP) structural members used, and (d) Pontresina Bridge made of FRP [5] 

 

1.5 FRP Composite Materials Weaknesses and Application Limitations 

Although FRP composite structures have proven to provide numerous advantages, initiation 

and propagation of cracks in these materials can affect their mechanical properties drastically. 

The most common FRP composite material failure modes are classified into fiber breakage, 

fiber-pull out, matrix cracking and interlaminar delamination (Figure 1-2). Fiber breakage 
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failure in FRP composites depends on the fibers strength distribution. This failure mode 

occurs when the subjected tensile stress in the FRP increases and leads to failure of low 

strength fibers in the laminate while the high strength fibers are still carrying the external 

load. For a better understanding of fiber breakage, distribution of the fibers strength in FRP 

has been investigated by several researchers and it was realized that the strength of glass 

fibers follows the Rayleigh distribution [6] while the strength of carbon fibers fits the Weibull 

and Gauss distributions [7]. In the cases where fiber strength is greater than the interface bond 

between the matrix and the fibers, the fibers can be pulled out of the matrix due to the tensile 

loading. In several cases, the fiber pull-out occurs at the fibers end, or at a fracture surface in 

the laminate. Another common failure mode in FRP composites attributed to the matrix 

material is called the matrix cracking. Since strength in the matrix is commonly lower than 

the fibers, normally the first stage of failure starts with matrix deterioration. Matrix cracking 

usually takes place before the entire FRP laminate matches its failure point, and it 

demonstrates a ductile failure in comparison to the brittle fiber failures. Among other failure 

modes, delamination is perhaps the most common failure mode and may occur because of a 

weak bonding between composite layers, existing cracks in the matrix material, broken fibers 

and fatigue or impact loadings. It can drastically reduce the structural stiffness and weaken 

the tensile or shear capacity of the FRP structures under service loads [8]. 



 

8 

 

  

(a) (b) 

(c) (d) 

Figure 1-2   FRP composite materials common failure modes: (a) Fiber breakage, (b) Fiber pull-out, (c) 

Matrix cracking, and (d) Interlaminar delamination 

 

Mechanical defects are not the only cumbersome issue affecting the FRP performance and 

applications. Another undesirable feature of FRP composite materials is the complex 

heterogeneous and often stochastic properties of these materials which result in randomness 

and uncertainty in their manufacturing processes and material compositions in final products. 

The deterministic approaches used in many investigations ignored the spatial variability that 

exists in such material behaviour, especially at the micro-level scale, and this effect can entail 

errors into larger scale simulations. Traditionally, a common modeling approach for FRP’s is 

σmax 

σmax 

Fiber Breakage 

σmax 

σmax 

Fiber Pull-out 

σmax 

σmax 

Matrix Cracking 

σmax 
σmax 

Interlaminar 

Delamination 
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the implementation of a homogenization technique [9] and relating a certain scale of material 

properties to the larger scale, mostly by averaging measured properties (Figure 1-3). 

Homogenization techniques can be categorized into micro-level, meso-level and macro-level, 

where the uncertainty and variability are assumed for different scales of material composition. 

At the micro scale, microstructure of the material composition is examined with methods such 

as the moving-window technique (MWT) [10]. This approach requires sophisticated 

experimental instruments and deals with the complexity of the FRP composite material 

conformation and may not be suitable for non-research purposes. Meanwhile, at the meso-

level, study of FRP composites has received considerable attention over the past decades and 

proven to be one of the effective ways to harness uncertainty to homogenization processes 

[11, 12]. However, difficulties with boundary condition assumptions in modeling still exist in 

this technique and have made its application for large structures challenging [13].  The largest 

scale in material composition studies is the macro-scale. Such studies avoid the microscopic 

complexity of composite materials and the numerous random variables. In macro-level 

techniques, an existing material’s behaviour and randomness are captured by coupon size test 

results while relying on continuum-mechanics based structural modeling formulations [14]. 
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Figure 1-3   Different scales of material modeling during homogenization of material properties 

 

1.6 Experimental and Numerical Modeling of FRP Fracture Properties 

In order to improve mechanical performance of FRP composite materials in the presence of 

process-induced or loading-induced cracks, extensive studies on the fracture properties of 

FRP composites have been performed, both experimentally and numerically. Experimentally, 

Owen and Bishop [15] applied the double edge-notched tensile test to measure the mode I 

critical stress intensity factor for varying orientations of UD glass FRP composites (Figure 1-

4). Gaggar and Broutman [16] utilized both single and double edge-notched tensile tests as 

well as a notched bend test to extract the critical stress intensity factors. Mower and Li [17] 

summarized the experimental results from previous investigations and concluded that the 

linear elastic fracture mechanics (LEFM) is not a valid approach for FRP composite materials 

with long fibers and a nonlinear material constitutive model is required to accurately 

characterize the fracture energy toughness of FRP composites. The fracture energy toughness 

of unidirectional FRP composite materials under a double cantilever beam (DCB) test can be 

calculated using the modified beam theory, compliance calibration and modified compliance 

calibration methods [18]. The modified beam theory approach is recommended by O’Brien 

a1 << a2 << a3 

a1 ~10-6 m a2 ~10-3 m 
a3 ~1 m 

Micro-scale Meso-scale Macro-scale 
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and Martin [19] and has shown the most repeated value for the critical fracture energy 

toughness. In order to measure the mode II fracture energy toughness of the FRP composites, 

the end-notched flexure (ENF) test was suggested and employed by Davies et al. [20]. The 

ENF test is today one of the most recognized testing methods for mode II study of FRP 

composite materials. However, due to the unstable nature of this test, only the crack initiation 

values can be extracted from the test results. Edge delamination phenomena is another failure 

mode in FRP composite laminates studied by Lee [21] using the edge crack torsion (ECT) 

test. This test can be applied to extract the mode III interlaminar fracture properties of 

specimens. The extensive investigation on the fracture phenomenon of test samples showed 

delamination problems mainly consist of mixed mode fracture mechanics characteristics. 

Subsequently, the mixed mode bending (MMB) test has been designed as one of the recent 

methods for mixed mode characterization (mode I and II interaction).   
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(a) (b) 

 

(c) (d) 

Figure 1-4   Fracture energy toughness measurement fixtures: (a) Double Cantilever Beam, (b) End-

Notched Flexure, (c) Edge Crack Torsion, and (d) Mixed Mode Bending tests [8] 

 

Regarding numerical modeling of FRP composites delamination, numerous investigations 

have been performed over the past few decades. Hillerborg et al. [22] introduced a 

combination of finite element method and an analytical solution to simulate the crack growth 

in concrete structures. This approach is often referred to as ‘fictitious crack modeling’, where 

a traction-separation law instead of the conventional stress-strain relationship is utilized in the 
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crack-tip zone to capture the degradation of the material properties due to damage. Later, Xu 

and Needleman [23] applied an energy potential function to implement the cohesive zone 

model (CZM) during the analysis of interface debonding. CZM application was extended to 

FRP composites by Camacho and Ortiz [24], Camanho et al.  [25], Blackman et al. [26], Gao 

and Bower [27], Segurado and LLorca [28], Cox and Yang [29]  and Nishikawa et al. [30] 

while they have improved the cohesive interface models. Based on these reports, CZM has 

proven to be capable of modeling the ‘large process zones’—in the present case the FRP 

composite delamination. Despite its capability to model the progressive delamination, some 

severe disadvantages of applying large process zone have been noted and need to be tackled. 

These include numerical instability (elastic snap-back), reduction of stress intensity upon 

delamination initiation, and the fictitious softening of the original body in the process zone. In 

other investigations, a newly introduced feature of the finite element method, known as the 

extended finite element method (XFEM), has been more recently implemented for numerical 

modeling of progressive delamination in FRP composites. The original XFEM approach was 

first introduced by Belytschko and Black [31] and enhanced by Moёs et al. [32]. They 

implemented the concept of a partition of unity method (PUM), introduced earlier by Melenk 

and Babuška [33], to develop a method to model material discontinuity. In the basic XFEM 

approach, a Heaviside step function is implemented to model the crack surface by adding 

extra degrees of freedom to each node of the so called ‘enriched elements’ [32]. They 

introduced a framework capable of considering cracks and frictional contact with the zero-

thickness process zone in 2D problems. Xiao et al. [34] utilized this approach combined with 

a statically admissible stress recovery (SAR) technique in modeling cohesive cracks with a 

softening law composed of linear segments. Later, the approach was implemented by Unger 
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et al. [35] to model the cohesive crack in concrete specimens. The application of the 2D 

model was extended to composite materials by Benvenuti [36], who regularized XFEM for 

embedded cohesive interfaces. Sosa et al. [37] demonstrated the effectiveness of XFEM in 3D 

modeling of fiber metal laminate delaminations and compared their results with existing CZM 

results. XFEM and CZM concepts will be discussed in more detail in Chapters 4 and 5. 

 

1.7 Randomness in FRP Fracture Properties 

As addressed in Section 1.5, studying composite materials based on the assumption of 

Representative Volume Element (RVE) and the subsequent homogenization have been the 

basis of the work of several researchers. Kaw [38] used the RVE approach for unidirectional 

(UD) composites and Peng and Cao [39] developed a dual homogenization technique for 

woven fabrics. However, other investigations have shown that there can be considerable 

spatial non-uniformity both in UD composites [40] and woven fabrics [41, 42], which may 

hinder the full capability of RVE approach for fracture simulations [43]. There can be a 

variety of sources for such non-uniformity of material properties in composites. Examples 

include random distributions of fibers within samples, fiber penetration between layers, 

existence of voids within the matrix, human error in manufacturing process, uneven heating 

or cooling of samples during molding. Hence, there is a need for developing new models that 

can consider the heterogeneousness characteristics of FRP composites and include statistical 

distributions of their mechanical properties as well as the pre-existing defects in test 

specimens [44, 45]. Stochastic modeling of the mechanical behaviour of composites can be 

especially important in predicting critical loads and critical displacement values, as well as 

crack formation patterns in large structures [46, 47]. Among the most recent works on 



 

15 

 

stochastic modeling of FRP composites, Ashcroft et al. [48] emphasized the effect of material 

uncertainty and non-uniformity in predicting delamination phenomena. 

 

1.8 Motivation and Objectives of the Work 

Based on the above background review, a number of investigations have been performed to 

study the mechanical properties of FRP composites. In particular, fracture behaviour of these 

materials is an interesting topic where a variety of experimental tests and numerical 

procedures have been proposed by different research groups. The heterogeneous nature of 

FRP fracture properties has made the research in this area a challenging task. With respect to 

numerical simulations, different numerical methods have been applied to extract the correct 

behaviour of FRP composites and the results demonstrated the necessity for further 

investigation in this field for more realistic simulations.  Among the various numerical 

methods employed to model the delamination in composite materials, the interface element 

method combined with a cohesive law has received great attention by numerous researchers 

to date. Espinosa et al. [49] implemented this method for modeling dynamic delamination of 

woven GFPR composite materials with an anisotropic visco-plastic material model in 

conjunction with a cohesive law. Cohesive zone model properties such as maximum interface 

strength, fracture parameters, penalty stiffness and cohesive zone length were studied by 

Turon et al. [50] and Harper and Hallett [51] to overcome the existing implementation 

obstacles of cohesive zone models in numerical simulations. A generalized framework for 

implementing the cohesive XFEM in modeling delamination was introduced by Benvenuti 

[36]. In that work, the fundamentals of XFEM with cohesive law characteristics were studied 

and examples of DCB test were modeled. In addition to FEM-based methods, a mesh-free 
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based method was utilized by Barbieri and Meo [52] to extensively simulate the mode I and 

II, DCB, ENF and end-loaded split (ELN), tests in 2D with the focus on nonlinear aspects of 

crack problems. Most of the above mentioned studies, however, are based on deterministic 

properties of composite materials, especially their fracture properties, while other 

experimental results demonstrated the variability of the composite fracture phenomenon [48]. 

Among recent stochastic works, Ashcroft et al. [48] introduced micro-structure randomness in 

the form of fracture properties of CFRP composite materials into the numerical simulation of 

DCB tests using interface cohesive elements in the FEM model. Non-uniformity and random 

distribution of material fracture properties were considered by means of uniform and Weibull 

distributions and results emphasized the need for further studies on including micro structural 

randomness for accurate predictions of fracture performance of composite laminates.  

Therefore, the present thesis is primarily aimed at developing and examining an enhanced 

numerical approach for simulating the composite fracture tests considering both material and 

geometric nonlinearities along with stochastic fracture properties. A simplified approach is 

introduced to implement the cohesive zone model and hence to avoid the numerical softening 

due to existence of a large process zone. An ABAQUS user-element subroutine is developed 

and linked to MATLAB to implement the nonlinear XFEM for DCB test simulation (mode I 

fracture). The cohesive zone model is associated with enriched elements to consider a bilinear 

traction-separation law in the crack front using the XFEM contact model following the work 

of Khoei et al. [53]. The model is also implemented to investigate the ENF test for mode II 

fracture properties. Stochastic distributions are employed to the fracture properties of the 

material via the bilinear traction-separation law, and results are compared with both available 

data in the literature and a set of performed tests on Poly Phenylene Sulfide (PPS)/Glass UD 
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modeling capabilities under one framework, along with stochastic fracture properties), 

hence moving towards more reliable damage prediction tools.  

 Implementing stochastic characteristics of the tested PPS/Glass UD composites in the 

XFM simulations and validating with experimental data. 

 Studying the effect of different modeling factors (such as penalty stiffness) in the 

enhanced XFEM approach using a series of sensitivity analysis. 

 

1.9 Thesis Outline 

This thesis is organized into five chapters. The first chapter, presented above, focused on a 

general literature review on experimental and numerical modeling of the fracture mechanics 

of FRP composite materials and also the necessity for considering the variability in micro-

structure of these materials. In Chapter 2, damage modeling and fracture properties of FRP 

composites are reviewed. Also in this chapter, the XFEM method and its applications are 

reviewed and discussed. In the final part of Chapter 2, cohesive zone and contact surface 

implementations of XFEM are described and finite element formulations are presented. In 

Chapter 3, results from XFEM simulations are compared to those extracted from other 

numerical methods and benchmark experimental tests in the literature. Modeling parameters 

such as penalty stiffness, mesh size and cohesive zone length are studied via a set of 

sensitivity analysis to examine the presented XFEM approach effectiveness in modeling 

fracture properties of UD composites.  Chapter 4 presents the fabrication process and 

experimental procedures used to obtain elastic moduli and fracture properties of PPS/Glass 

samples. Following, stochastic features of the measured fracture properties are introduced to 

the XFEM model. Results are then compared with those from experiments using DCB and 
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ENF test set-ups. Finally, in Chapter 5, the undertaken numerical and experimental 

procedures as well as the main results are summarized. Future work recommendations are 

also included in Chapter 5.  
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2    Chapter: Background 

In this chapter, elastic mechanical behaviour, damage properties and fracture mechanics of 

FRP composite materials along with different underlying modes of failure are first reviewed. 

Advantages of damage modeling and fracture mechanics will be compared in modeling the 

post-failure behaviour of FRP composite materials. Next, basic definition and properties of 

XFEM will be described and its application in modeling the LEFM and EPFM will be 

discussed. The implementation of damage mechanics through cohesive zone model (CZM) 

will also be presented and effective parameters in such a model will be summarized. 

 

2.1 Elastic Mechanical Behaviour of FRP composite Materials 

As mentioned in Chapter 1, in FRP the matrix provides the integrity of the composite by 

holding fibers together. It also has greater elongation characteristic than fibers which forces 

the fibers to carry the maximum load before the matrix fails. Fibers, on the other hand, 

provide high strength and stiffness to the material system. Such a material composition will 

lead to anisotropic material properties and entails an appropriate technique for extracting the 

global (macro-level) material behaviour. The conventional elastic constitutive relationship 

between stress ij  and strain kl  for a FRP composite material, similar to an orthotropic 

material, can be written as: 
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where Cijkl (i,j,k,l = 1, 2, 3) are the stiffness matrix, C,  components. For easier demonstration 

of the material parameters, especially for FEM implementation, the following vector-form 

compliance equation is used to describe the material constitutive behaviour: 

1where  CSS  (2-2)

where the compliance matrix, S, is re-arranged as follows: 
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Ei is the elastic modulus in direction i, Gij are the shear moduli and vij are the Poisson’s ratios. 

Generally, the unidirectional composite materials have a transversely isotropic behaviour 

which yields a relationship between material properties as follows: 

1 2 12 13 12 13 ,  , E E G G     (2-4)

Subsequently, the compliance matrix can be redefined as: 
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The American Society for Testing and Materials (ASTM) standards [55-57] has proposed 

several experimental tests for extracting the material elastic constants at macro-scale. 

 

2.2 Failure Modes of FRP Components 

Most FRP composite materials demonstrate a brittle behaviour when imposed to in-plane 

loading.  Typically, the response curve of such laminated FRP composites under tensile test 

starts from the origin and increases linearly up to the failure point. At this point, the material 

faces a form of irreversible damage (e.g., fiber breakage). After this point, it is most likely 

that the load-deformation curve drops to zero and the FRP composite loses its capacity to 

carry further load. The stress-strain relationships for several fiber materials are demonstrated 

in Figure 2-1.  
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Figure 2-1   Comparison of tensile stress-strain curve of fiber materials [58] 

 

Damage initiation in FRP composite materials has a direct relationship with matrix and the 

fiber material properties and the existing flaws in the structure. A difference between the 

elongation limit of the matrix and fibers is a dominant parameter in tensile failure of a 

laminated FRP composite. In the case where failure strain of fibers is larger than the matrix, 

the matrix cracking is expected to happen earlier. However, if the fiber ratio of the composite 

is large enough (greater than about 10%), fibers can continue carrying the load up to their 

rupture. On the other hand, if the fibers have lower elongation than the matrix, which is the 

most common case, it will force fibers to carry the maximum load according to their capacity 

and fail due to breakage. Both cases can theoretically be justified when no flaw exists in the 

FRP composite material (Figure 2-2). Incomplete bonding at the interface of the matrix and 

fibers, air entrapment, uneven distribution of fibers within the matrix, and premature cracks 
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between layers of laminate are several common manufacturing defects in FRP composites 

[58]. 

  

(a) (b) 

Figure 2-2   Stress-strain curves for the matrix and fiber materials: (a) Fibers have larger failure strain 

than that the matrix, and (b) The matrix has larger failure strain than fiber [58] 

 

Depending on the matrix and fiber material properties and the above mentioned 

imperfections, matrix cracking, fiber pull-out, fiber breakage or delamination is expected to 

occur and cause a crack formation in a FRP structure due to the intrinsic brittleness of these 

materials under extensive loadings. These damage modes will reduce the structure’s capacity 

to endure extra loadings; however, they may not lead to complete failure and collapse of the 

structure. Examining the initiation, stability and growth of defects are directly linked to the 

comprehensive study of fracture mechanics and the theory of plasticity.  
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2.3 Fracture Mechanics 

Structural damage associated with the crack causes the local stresses and global deformations 

to increase for the body near the cracked area. Three independent modes are applied to define 

any coupled fracture deformation of a given structure (Figure 2-3) [59]:  

1. Opening mode (mode I), when two faces of the crack are pulled away in the crack’s plane. 

2. Sliding (shearing) mode (mode II), when two faces of the crack are sliding over each other 

in the crack’s plane. 

3. Tearing mode (mode III), when two faces of the crack are taken apart out of the crack’s 

plane. 

 

  
 

(a) (b) (c) 

Figure 2-3   Dominant fracture modes of a cracked body: (a) Opening mode (mode I), (b) Sliding 

(shearing) mode (mode II), and (c) Tearing mode (mode III) [59] 
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Degradation and loss of the integrity of a structure can be drastically increased due to the 

crack formation (and propagation) which entails a careful scrutiny of different fracture modes 

with respect to the composite material composition and structural loadings. In this regard, the 

classical fracture mechanics can be categorized into linear elastic and elastic-plastic fracture 

depending on the type of material under study. Linear elastic fracture mechanics (LEFM) 

discusses deformation and stress fields around the crack-tip when a small plastified zone 

forms in the cracked region relative to the crack length. In such a case, singular stress fields 

emerge at the crack-tip. In LEFM, the stress intensity factors (SIFs) are applied to assess the 

stability of the crack by comparing it to critical SIFs extracted from experiments. The 

Westergaard [60] solution is a well-known approach in applying SIFs to estimate the 

displacement and stress fields near the crack-tip. Despite the capability of LEFM in 

estimating the fracture properties of brittle materials, with the extension of the plastic zone or 

the fracture process zone the singular stress fields vanish from the crack-tip region (e.g., crack 

propagation in steel structures). For such cases, elastic-plastic fracture mechanics (EPFM) 

proposes more accurate solutions and considers a plastic zone in front of the crack-tip region 

where extensive plastic deformation is expected to emerge. Wells [61] proposed the crack-tip 

opening displacement (CTOD) as a failure threshold for a structure. As an extension to the 

nonlinear analysis of such plastic zones, the J-integral was introduced by Rice [62] to 

accurately evaluate the energy release rate of materials when the Griffith theory is imprecise.  

In general, fracture mechanics of a composite material is more challenging in comparison to 

other homogenous materials. The heterogeneous composition of FRP composite materials 

entail complex fracture phenomenon such as delamination. As mentioned before, 

delamination is one of the failure modes in FRP composite materials and can occur because of 
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a weak bonding between composite layers, an existing crack in the matrix material, broken 

fibers, fatigue, impact loadings, etc. In multi-layer laminated FRP composite structures, fibers 

in each layer are confided by adjacent layers on the top and bottom faces and the matrix acts 

as the bonding agent. When a crack forms in the matrix, the brittle nature of the matrix lets 

the LEFM accurately assess the crack stability and propagation pattern. On the other hand, in 

unidirectional laminated FRP composite structures, especially when formed using a moulding 

process with high compression pressure, fibers can penetrate into adjacent layers and the 

bonding between layers can be affected by fibers penetration (called fiber bridging). In this 

case, fibers onset an extra resisting force and prevent the crack from opening and the fracture 

behaviour of the structure demonstrates similar properties to those experienced during an 

elastic-plastic fracture. This aspect of FRP composites has increased the need for more 

advanced techniques of modeling their fracture phenomena and the governing failure modes. 

 

2.4 Damage Mechanics Models 

Several numerical investigations have been focused on the plasticity and damage modeling to 

consider defects in FRP composite structures. In these models, some failure criteria are pre-

defined for the FRP composite and, based on the stress fields in the structure, failed elements 

are identified. Depending on the failure mode and numerical modeling technique, distorted 

elements may be eliminated from the model, or their stiffness would be degraded to simulate 

the material softening. Erdogan and Sih [63] introduced the maximum stress criterion which 

compares the principal stresses in each direction of an element with the material allowable 

stresses to evaluate the dominant failure mode. Hoffman [64] proposed that when the 

maximum strain criterion is similar to the maximum stress criteria, the principal strains in the 
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material directions are compared to the material strains capacity. Tsai [65] applied the Hill’s 

yield surface and redefined the Tsai-Hill theory. The yield surface based on the Tsai-Hill 

criterion is defined as: 
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where ij , Tij and normalYS   are the stresses in different material directions, material strengths 

and normalized failure threshold, respectively. 

Tsai and Wu [66] also presented a failure theory based on the strengths criterion for 

anisotropic materials. The Tsai-Wu failure criterion could differentiate between material 

tensile and compressive strength and ignores the interaction between failure modes. Based on 

this criterion, the failure surface can be expressed as follows: 

normaliijiij YSFF    (2-7)

where i , iF  and ijF  are the re-arranged vector of stress tensor, second and fourth order 

strength tensors, respectively. 

Specifically for unidirectional (UD) laminated composite materials, Hashin [67] introduced a 

set of failure modes based on the combination of fibers and matrix strengths. The failure 

criteria proposed by Hashin [67] can be summarized as follows: 

1- Tensile fiber failure for 11 ≥ 0: 
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2- Compressive fiber failure for 11 < 0: 
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3- Tensile matrix failure for 3322   > 0: 
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4- Compressive matrix failure for 3322   < 0: 
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5- Interlaminar tensile failure for 33 > 0: 
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6- Interlaminar compression failure for 33 < 0: 
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where TX , TY , TZ , CX , CY , CZ , 12S , 13S  and 23S  are the tensile, compressive and shear 

strengths in different material directions. 

 

2.5 Comparison between Fracture Mechanics and Damage Mechanics 

In general, fracture mechanics focuses on local discontinues where macro-cracks are present. 

It observes the singular stress and strain fields in front of the crack-tip, especially in brittle 

materials, and provides an accurate estimation of the damage evolution when a flaw exists in 

the structure. On the other hand, damage mechanics tends to evaluate the stress and strain 

state in the structure and assess whether the material faces degradation in each loading step. In 

addition, it can be applied to study the global behaviour of the structure and predict the failure 

initiation and expansion trend due to the material deterioration. Hence, depending on the 

problem encountered, an appropriate approach should be selected to accurately evaluate the 

structural behaviour of the composite. In the present work, the focus on the local damage 

modelling of FRP composite materials would prompt the implementation of fracture 

mechanics due to the local nature of delamination and brittle properties of such materials. 

However, the large process zone existing in the delamination front will require the 

implementation of elastic-plastic fracture mechanics to ensure the accurate evaluation of the 

structural deformation (this will be formulated in detail in Section 3.2).  
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2.6 Introduction of Extended Finite Element Method  

Numerical modeling is an important part of most engineering applications. In many cases, a 

structure’s dimensions and the test set-up configurations cause limitations when performing 

full-scale experimental studies, increasing the demand for undertaking more numerical 

analyses. A variety of numerical modeling techniques have been proposed in the past decades 

and can be categorized into mesh free methods such as Smoothed Particle Hydrodynamics 

(SPH), Element-Free Galerkin Method (EFGM), Finite Difference Method (FDM) and 

Meshless Methods as well as mesh-based methods such as Finite Element Method (FEM) and 

Boundary Element Method (BEM).  

The FEM can be directly enhanced and used in modeling discontinuities by introducing the 

partition of unity method (PUM), proposed by Melenk and Babuška [33], to approximation 

functions. The basis of PUM is similar to regular finite element approximation where the 

summation of all shape functions at any Gauss point is equal to one. The new method is 

known as the extended finite element method (XFEM) [31-32]. The XFEM has demonstrated 

to be a more accurate and convenient solution where the conventional finite element produces 

rough or highly oscillatory results. In XFEM, similar to conventional FEM, the finite element 

mesh is generated regardless of discontinuities locations. Then, specific search algorithms 

such as the level-set or fast marching methods are utilized to identify the location of any 

discontinuity with respect to the existing mesh and distinguish the different types of required 

enrichments for the affected mesh elements. Next, additional auxiliary degrees of freedom are 

added to the conventional FEM approximation in selected nodes around the discontinuity. 

These degrees of freedom assist the model in capturing the displacement jumps caused by 

discontinuities.  
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Assume a discontinuity (a crack) within an arbitrary finite element mesh (Figure 2-4). The 

displacement field of point x, )(xu g , inside the domain can be described in two parts; the 

conventional finite element approximation, and the XFEM enriched field defining the 

discontinuity [32]: 
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where )(x  is the conventional shape function (also often shown in the literature by ( )N x ), 

)(x  is the general enrichment function, N
all is the finite element mesh nodes and fN  is the 

enriched nodes of the mesh, 
ordu  is the classic degrees of freedom at each node and 

enru  is 

the additional enriched degree of freedom at the J th enriched node. 

  

 

Figure 2-4   An arbitrary finite element mesh with a discontinuity (circles represent the enriched nodes of the 

mesh) 

 

In order to choose the enrichment function, any discontinuous function in the problem domain 

can be employed to estimate the displacement field approximation in vicinity of the crack. A 

Crack 
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function that satisfies such a requirement is the Heaviside step function ( )(xH ). It gains a 

‘+1’ value on one side of the crack and ‘-1’ on the other side of the crack and can be utilized 

when the crack propagation is modeled by straight line segments. To find the Heaviside 

function value at each node of an element, tangential and normal vectors of the crack surface 

curve should be measured. If *X  is the nearest point of a crack to the point X’, Figure 2-5, 

and ne  is the unit normal vector of the crack alignment in which zns eee   ( se is the unit 

tangential vector), then using a scalar product between the distance vector of the element’s 

nodes and the normal vector of the crack surface, the Heaviside function value can be 

calculated. 
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Figure 2-5   Unit tangential and normal vectors for the Heaviside function and nearest point to X on the 

crack surface; X* 

 

Another set of functions utilized in XFEM are those extracted from an analytical solution of 

the near crack-tip displacement fields in LEFM as follows [68]: 
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where tip
xu , tip

yu , tip
zu , IK , IIK  and IIIK  are the crack-tip displacement field and stress intensity 

factors (SIFs) in the three standard fracture modes, and (r, θ) are the local polar coordinate 

system at the crack-tip.  

Subsequently, the extracted crack-tip enrichment functions were proposed by Moёs et al. [32] 

as: 

 









 sin

2
cos,sin

2
sin,

2
cos,

2
sin),(

4

1
rrrrrF

i

enr  (2-19)

Among presented functions, 
2

sin


r  is the only discontinuous function and the remaining 

functions are continuous.  

A more general set of enrichment functions can be achieved by studying the crack asymptotic 

displacement fields in anisotropic materials. For such a case, with general boundary 

conditions and the structure subjected to arbitrary forces, the following characteristic equation 

can be obtained using the equilibrium of forces and compatibility conditions [69]: 

 4 3 2
11 16 12 66 26 222 2 2 0a a a a a a          (2-20)

where ija  is the material compliance matrix components. 
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Lekhnitskii [69] illustrated that the roots of Equation (2-20) are always complex or purely 

imaginary  2,1,  ki kykxk   with the conjugate pairs as 1 , 1  and 2 , 2 . 

Employing the above equations, the displacement fields in the vicinity of the crack-tip were 

elicited by Sih et al. [70] by means of analytical functions and complex variables as follows: 
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For pure mode II: 
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where Re denotes the real part of complex variable. kp  and kq  can also be defined [70]: 
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Using the above equations, the near crack-tip enrichment functions for the crack in an 

anisotropic material are expressed as [71]: 
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where )(kg  and k ,  2,1k  are defined as: 

   22 sinsincos)(  xyxykg   (2-28)
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Moёs et al. [32] substituted the Heaviside and near crack-tip enrichment functions in the 

XFEM approximation and presented the following equation: 
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where g
nodeN  is the set of nodes that have a crack face (but not a crack-tip) in their influence 

domain, Hb  is the vector (in multi-dimensional problems) of additional degrees of freedom 

which are related to the modeling of crack faces (not crack-tips), tipc  is the vector of 

additional degrees of freedom for modeling crack-tips, )(xFenr  is the crack-tip enrichment 

function and 1
nodeK  and 2

nodeK  are the sets of nodes associated with the crack-tip 1 and 2 in their 

influence domains, respectively. Figure 2-6 illustrates a finite element mesh for modeling the 

existing discontinuity in Figure 2-4. Nodes that need to be enriched with Heaviside and near 

crack-tip functions are distinguished by circles and rectangles, respectively. Other nodes that 

are not affected by the crack remain well within the classical finite element framework. 
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Figure 2-6   The influence domain of node J in an arbitrary finite element mesh 

 

The XFEM displacement approximation in Equation (2-30) can be implemented in numerical 

modeling with LEFM to predict the displacement field in a cracked structure. Considering the 

total potential energy governing the problem, we can write: 

 


tVV
t

kt
iV

kb
iVijij dufdufd   (2-31)

where V , t , b
if , 

t
if  and ku  denote the body domain, traction surfaces, body forces, 

external forces vectors and displacement field, respectively. Discretizing the Equation (2-31) 

and applying the variational formulation, the following linear algebraic equation can be 

written: 

00 RuK h   (2-32)

Crack 

Enriched by Heaviside 

Influence domain of node J

J

Enriched by near-tip functions
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Where K0, R0 and hu  denote the initial stiffness matrix, right hand side vector of external 

forces and general vector containing all the nodal parameters including the ordinary, crack 

face and the crack-tip enriched degrees of freedom vectors, respectively: 

 TtipHordh cbuu ,,  (2-33)

In Equation (2-32), the initial stiffness matrix and the right hand side vector of external forces 

are also defined as: 
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 Tcbu tipHord
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The stiffness arrays )( tipHordrs
ij c,b,usr,K  in Equation (2-34) include the classical, 

enriched and coupled components of XFEM approximation: 
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where B is the matrix of derivatives of shape functions and is defined as: 
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 where iH  and enr
iF  are the Heaviside and crack-tip enrichment functions at element nodes. 

Normalizing the enrichment functions by mean of deducting the enrichment functions at 

element nodes will readily satisfy the PUM fundamental (i.e., the summation of normalized 

enrichment functions for a given node will be the unity). Also, the k index is used to 

differentiate between different enrichment functions, respectively.  

  

2.7 Application of XFEM in Linear Elastic Fracture Mechanics 

As addressed earlier, the linear elastic fracture mechanics (LEFM) is a suitable tool for the 

analysis of many materials with a small plastic or process zone in front of the crack-tip. The 

SIFs are the only required variables for assessing the stress and displacement fields around the 

crack-tip under different loading and subsequently, measuring the stability of the crack by 
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comparing SIFs to their critical values extracted from the experiments. In terms of numerical 

modeling of LEFM problems, XFEM provides an accurate estimation of the stress and 

displacement fields around the crack-tip using the Heaviside and crack-tip enrichment 

functions. To further the application of XEFM in LEFM, it is also required to introduce a 

post-processing procedure to evaluate the SIFs. For this purpose, the interaction integral, 

known as M-integral, was proposed by Moёs et al. [32] and Dolbow et al. [72] for isotropic 

materials and extended to orthotropic materials by Kim and Paulino [73]. The interaction 

integral is essentially derived from the J-integral introduced by Rice [72] as in Equation (2-

40).  
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where  1 2 ij ijW   is the strain energy density, iX , it  and kn  represent Lagrangian 

coordinates, vectors of surface traction and vectors of outward normal direction, respectively, 

and the integral paths Γ and Γc denote far-field and crack surface paths, respectively, as 

shown in Figure 2-7. 

 

 



 

42 

 

 

Figure 2-7   Local crack-tip coordinates and the contour Γ and its interior area, VΓ 

 

The form of equation (2-40) is not perfectly suited for FEM implementations and an 

equivalent form can be obtained by applying the divergence theorem and several additional 

assumptions, as discussed by Kim and Paulino [73]: 
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where 'q  is a function smoothly changing from 0'q  at the exterior boundary Γ to 1'q  

near the crack-tip. In the present study, 'q  is assumed to be varying linearly from 1 to 0. 

Noting that the value of q is constant near the crack-tip area, distinguished by shaded 

unaffected elements in Figure 2-7, the gradient of 'q  vanishes in Equation (2-41). By 

adopting auxiliary displacement, stress and strain fields ( Auxilairy
ku , Auxilairy

ij , Auxilairy

ij
 ) and 

superimposing them to displacement, stress and strain fields ( ku , ij , 
ij

 ), the superimposed 

J-integral will contain the following parts: 
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MJJJ AuxiliaryedSuperimpos   (2-42)

where M is the interaction integral in the local crack-tip 2D Polar coordinate and consists of 

terms involving products of actual and auxiliary fields. The Cartesian coordinate definition of 

M-integral is then as follows: 
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To extract the M-integral in local crack-tip Polar coordinates, a simple transformation can be 

employed: 

 sincos 21 MMMLocal   (2-44)

Now, if one wants to relate the superimposed J-integral to the energy release rate, G, of the 

two actual and auxiliary fields, the following relationship between SIFs and M-integral can be 

derived: 
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where 11c ,  12c  and 22c  are defined as follows: 
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Finally, by solving the following algebraic equations for the auxiliary field for mode I and II, 

SIFs can be extracted: 

0.00.12 1211  aux
II

aux
IIIILocal KandKforKcKcM  (2-52)
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(2-53)

 

2.8 Application of XFEM in Elasto-Plastic Fracture Mechanics 

In contrast to LEFM, EPFM deals with ductile materials with a relatively large plastic or 

process zone in front of the crack-tip. Irwin [74] proposed a simple plastic zone correction to 

SIFs in order to consider the plastification effects. Alternative solutions were also introduced 

by Dugdale [75] and Barenblatt [76] to correct plastic zone characteristics. Wells [61] offered 

crack-tip opening displacement (CTOD) as an independent variable to measure the fracture 

energy toughness of materials. This approach covered not only the LEFM but also established 

a way to investigate the EPFM in materials. Later, Rice [62] introduced a path independent 

contour integral, the J-integral, to describe the stress and strain distribution near the crack-tip. 

It is worth mentioning that the J-integral was earlier extracted by Eshelby [77], however; the 

application of this method in studying LEFM and EPFM was proposed by Rice [62]. 
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As mentioned in Section 4.2, the interaction integral method has been frequently adopted in 

LEFM crack analyses to evaluate mixed mode SIFs. One disadvantage of this method is 

related to the dependency of the method on the auxiliary field exact solution. In terms of 

EPFM, XFEM potential has left behind such limitations and provided a convenient solution. 

Motamedi and Mohammadi [78 - 79] implemented dynamic J-integral and CTODs to assess 

the SIFs in orthotropic materials. Definition of Equation (2-41) can be applied to measure the 

tangential component of the J-integral which corresponds to the rate of changes in the 

potential energy per unit crack extension, namely, the energy release rate (G): 

0201 sincos  JJG   (2-54)

where 0  is the crack angle. In order to accurately evaluate the stress and displacement fields 

around the crack-tip, the component separation method, proposed by Aliabadi and Sollero 

[80], was employed. They discussed that the following relationship between the stress 

intensity factors and the CTODs of the crack faces can be obtained: 
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Where p1, p2, q1 and q2 are defined as follows: 
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Another set of relationships between the energy release rate and the SIFs was proposed by 

Wu [81]: 

KcLKG T 1)()2/1(   (2-61)

where )(cL was defined by Dongye and Ting [82] for orthotropic materials with the symmetry 

planes coinciding with the coordinate planes. The non-zero components of )(cL are: 

445533 CCL   (2-62)
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where Cij is the constitutive/stiffness coefficients and 
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Therefore, the ratio of opening to sliding displacements, CODR , can be written as: 
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And the ratio of dynamic stress intensity factors, SIFR , can be obtained as: 
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Substitution for IK  from Equation (2-61) into Equation (2-67) leads to the following 

relationship for IIK : 
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And for IK , by definition we have: 

SIFIII RKK   (2-69) 

 

2.9 Application of Cohesive Interface in Fracture Mechanics 

In several cases where the crack front experiences a large scale processing zone (e.g., large 

blunting with large scale plasticity, fibrous rupture or ductile rupture), the stress singularity 

disappears from the crack-tip and traction forces emerge on the surface of the crack to resist 

the extensive increase of CTOD. This failure behaviour is common in FRP composites, 

especially when two adjacent layers have a bridged fiber orientation. When premature crack 

initiates the growth, a damage zone appears in front of the crack tip and dissipates the high 

stress intensity expected in LEFM. This damage zone occurs in form of a cohesive zone (e.g., 

fiber bridging) and hinders the identification of the crack-tip using conventional methods. In 
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Tvergaard and Hutchinson [84] have extended Needleman’s work [83] on CZM to elastic-

plastic materials, while Cui and Wisnom [85] presented the application of this model for 

materials with perfectly plastic behavior. Later, Xu and Needleman [23] applied their CZM 

into the finite element analysis for the first time to simulate the dynamic fracture analysis. 

Camacho and Ortiz [24] utilized a linear degradable CZM to study the impact damage in 

brittle materials. Although presented models have been utilized in earlier researches to extract 

the behaviour of material interface layers, they have had disadvantages such as introducing 

softening and numerical instability to finite element models, especially during the crack 

propagation steps. To overcome these problems, a rigid cohesive model was proposed by 

Geubelle and Baylor [86]. In their method, a high initial stiffness, known as penalty stiffness, 

was applied to the interface elements for an undamaged region of the material. Material 

behaviour and the material degradation were assessed by damage indices to reduce the initial 

stiffness. A bilinear traction-separation law was also employed to model the initiation and 

propagation of delamination in composite plates. Despite reliable results acquired by this 

approach, the convergence became dependent on the penalty stiffness. Considering 

inappropriate penalty stiffness would result in numerical instabilities, especially when the 

material degradation is commenced in the elements of the front region. It is also worth adding 

that the above mentioned models are accurate for modeling the pure fracture modes, such as 

mode I, mode II and mode III, however, for the mixed-mode problems such as mode I/II, 

some contradictory issues are raised against the fundamental basis of CZM. For instance, 
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because of a large process zone at the crack front for mode I (normal opening), it is not 

expected to observe any stress singularity. This assumption may be opposed by the mode II 

(tangential sliding) acting on a same plane as mode I and causes a stress concentration due to 

the lack of cohesive tractions on the crack surface. To overcome such a difficulty, Ortiz and 

Pandolfi [87] employed the concept of effective separation, eff , and effective traction, eff , 

as follows: 

22*2
tneff    (2-73)

22*2
tneff  

 
(2-74)

where *  is a dimensionless correction factor relating the crack sliding  to the crack opening. 

These two parameters can be simply related by employing a cohesive potential function as 

presented in Equation (2-70). Mi et al. [88] and Alfano and Crisfield [89] improved the 

mixed-mode failure model’s capabilities by developing a damage parameter relating the 

interfacial material strength to the crack relative displacements. The following damage index 

formulation in modeling materials degradation, progressive delamination and various other 

applications are presented by several researchers [25, 51, 90 and 52]: 


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

(2-75)  

where T, mgD ,  , 0  and f  are, respectively, the current effective traction/strength of 

interfacial material ( effT  ), the damage index, relative opening/sliding displacement, 

relative critical opening/sliding displacement and relative failure opening/sliding 
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displacement of the crack faces. The damage index for each individual failure mode can be 

defined as follows:
 
















0

0







f

f
mgD  (2-76)  

The above model assumes the element degradation happens when the crack relative 

displacement exceeds the critical value, 0 , defined in terms of the penalty stiffness, PenK , 

and maximum interfacial strength, maxT , as:
 

PenK

Tmax
0   (2-77)

According to Equation (2-77), selecting an appropriate value for PenK  becomes important to 

establish a stable rigid cohesive model. While choosing a large value for PenK  may help with 

true estimation of the elements stiffness before the crack initiation, it will reduce the required 

critical relative displacement value for the crack initiation and may cause numerical instability 

upon the crack initiation, known as the elastic-snap back [50]. Earlier research have been 

undertaken to formulate the PenK  based on different types of material properties. Turon et al. 

[50] proposed a simple relationship between the transverse modulus of elasticity, transverseE , 

specimen thickness, tck, and penalty stiffness, PenK :
 

ck

transverse
Pen t

E
K


  (2-78)

where   was proposed to be equal to 50 to prevent the stiffness loss. A wide range of penalty 

stiffness values have been considered by other researchers for different traction-separation 
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laws, material properties and numerical simulation purposes. In essence, a comparison 

between numerical analysis and experimental result would be required to identify an optimum 

value for penalty stiffness in each given application.
  

In addition to the penalty stiffness, the length of cohesive zone is another critical factor of the 

CZM. As opening or sliding displacements initially increase, elements in the cohesive zone 

gradually reach the maximum interfacial strength. Upon this point, the element’s stiffness 

moves into the softening region of traction-separation law and experiences irreversible 

degradation. The maximum length of cohesive zone occurs when the crack-tip elements are 

debonded completely (Figure 2-8). 

 

 

Figure 2-8   Schematic of the cohesive zone in front of crack in a given step of numerical simulation
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Accordingly, choosing the correct value for the length of cohesive zone is essential in 

numerical modeling of delamination to prevent numerical difficulties; such as a softening 

problem due to the implementation of the traction-separation law instead of a conventional 

constitutive relationship. Earlier works have studied this topic extensively. Hillerborg et al. 

[22] proposed a characteristic length parameter for isotropic materials as follows: 

2
maxT

G
El IC

allongitudinch   (2-79)

where chl , ICG , allongitudinE  are the cohesive zone length, the critical energy release rate and the 

longitudinal Young modulus of the material, respectively. For various traction-separation 

laws, Planas and Elices [91] introduced a different equation for isotropic materials. However, 

in orthotropic materials, like FRP composite laminates, Jin and Sun [92], and Yang et al. [93] 

demonstrated the effect of longitudinal, transverse and shearing moduli as well as laminate 

thickness on the cohesive zone length. They suggested a modified formulation for measuring 

the cohesive zone length in the slender composite laminates as follows: 

4/3

4/1

2
max

ck
IC

transversech t
T

G
El 








  (2-80)

 It is necessary to mention that the number of elements within the cohesive zone model is 

directly related to the cohesive zone length, and for realistic simulations, it is required to have 

a sufficient number of elements within this region. A range of different values has been 

proposed in earlier works [25 and 94], and it is clear that it is difficult to estimate an exact 

value that could work for all simulations. 
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2.10 Summary 

In this chapter, elastic mechanical behaviour formulation of FRP composite materials was 

briefly described. Next, the expected failure modes for different FRP composite compositions 

were illustrated. General history of the fracture mechanics and damage mechanics were 

presented for a better understanding of subsequent steps in advanced failure modeling of FRP 

composite materials. Fundamentals of XFEM were introduced and its application and 

implementation in modeling LEFM and EPFM problems were presented. Also, CZM 

modeling of delamination interface was introduced and effective parameters in modeling the 

failure surface using this method were outlined. The following chapter will focus on 

implementation of principals of hybrid XFEM and CZM. It will be shown that this hybrid 

method will notably assist conventional FEM with numerical modeling of different fracture 

modes in composites. 
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3    Chapter: Extended Finite Element Method Implementation and 

Validation 

In today’s modern industries, numerical tools demonstrate a great capability to handle stress 

analysis problems with cumbersome structural shapes and material nonlinearity. Among 

different computational methods, FEM has gained a significant attention and is promoted with 

current technological and industrial needs. Numerous commercial FEM packages are 

available for performing advanced stress analysis for a wide range of linear and nonlinear 

materials. In the present research, the ABAQUS package has been implemented as it provides 

a large elements library as well as different material properties options for different types of 

analyses. It also contains different options for modeling contact surfaces and adaptive mesh 

analysis of structures. More importantly, a major interest of employing ABAQUS for 

modeling the delamination problem with XFEM was its flexibility for linking the user-

element subroutines to the FEM solver [95].  

In the present work, a new user-defined 3D element has been developed using Lagrangian 

formulation. Large deformation XFEM has been introduced to the element formulation with 

extended functionality to model the cohesive zone element properties (e.g., traction-

separation law) and interface contact (the code has been included in the Appendix).  

In the next sections, the underlying nonlinear FEM formulation and the extension of its 

application to XFEM modeling of CZM and interface contact in FRP composites will be 

discussed. The validation of the code using data updated in the literature will be presented. 
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Finally a set of sensitivity analysis on XFEM model parameters will be introduced for the first 

time. 

  

3.1 Large Deformation Formulation 

During FEM simulations, the reliability of results decreases when higher terms of 

deformation are neglected. Therefore, it is necessary to apply large deformation formulation 

in the present analysis especially as it is intended to evaluate the geometrical and constitutive 

material nonlinearities of FRP composites under excessive loadings.  

Regardless of the state of deformation, the equilibrium between the internal forces and 

external forces is always established [53]: 

0


 b
j

i

ij f
X

P
 (3-1)

where ijP  is the nominal stress components. The above differential equation is written in the 

reference configuration for the Lagrangian description. Based on the above equation, one 

needs to apply a small or large deformation formulation via the second Piola-Kirchhoff stress 

and Green strain, GreenE , tensors, and consequently use the constitutive material properties to 

formulate the normal stresses. In small displacement theory, only the linear term of Green 

strain tensor is being utilized to calculate the second Piola-Kirchhoff tensor via appropriate 

constitutive relations. However, in the large displacement theory, the nonlinear portion of 

Green strain tensor is considered in stress calculations. The Green strain tensor can be written 

as follows [53]: 
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NLLGreen EEE   (3-2)

where the linear part, LE , and the nonlinear part, NLE , are defined as: 
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To implement the above equations into FEM formulation, it is required to expand the 

equilibrium equation using the conventional FEM weak form approach. The obtained 

equilibrium can be written as [53]: 

   



tVV

t
tTk

V
bTk

V
T dfudfudPF 0 (3-5)
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where P  and F  are the nominal stress tensor and the deformation gradient respectively. 

Applying the standard FEM Galerkin discretization process and rewriting Equation (3-5) in 

terms of nodal variables and FEM shape function leads to the following equation: 





tVV

t
tT

V
bT

V
T dfNdfNdPB 0  (3-6)

where B contains the Cartesian derivatives of the shape functions, 
i

j
ij X

N
B




 . 

In order to maintain the virtual work principal and to preserve the constitutive material stress-

strain relationship, we need to rewrite the above equation using the second order Piola-

Kirchhoff stress tensor, which is a symmetric stress tensor in contrast to the nominal stress 

tensor. The transformed form of Equation (3-6) can be expressed as follows [53]: 
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tVV

t
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V
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V

Tk dfNdfNdBu 0)(  (3-7)

where B  can be defined using the deformation gradient vector, F, as: 
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The variation of the discretized FEM Galerkin method with respect to hdu
 
is: 

h
TV

T
V

T
duKddFBddBud

VV

 


)(  (3-10)

where TK  is the tangential stiffness matrix. If the nodal vectors are substituted into the 

above equation, the tangential stiffness matrix can be formed as [53]: 
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


VV

Vss
T

sV

T
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where MatK , GeoK , SG  and SM  are the material and geometrical portion of tangential 

stiffness, shape function derivatives matrix and re-arranged second Piola-Kirchhoff stress 

tensor, respectively. More specifically SG , and SM are defined as follows. 
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where 33I  is the unity matrix in the three dimensional domain.   

In the final loading step, based on the total nodal displacement, the Cauchy stress tensor,   , 

is calculated by transforming the second order Piola-Kirchhoff stress tensor [53]: 

)det(F

FF T   (3-14)

 

3.2 Nonlinear Solvers  

The nonlinear analysis of structures normally requires an iterative solver to find nodal 

variables under the equilibrium condition in each step. In nonlinear FEM, purely incremental, 

known as explicit, and predictive/corrective, known as implicit, solvers have frequently been 

employed in the literature [96]. The first assumption in both solvers is the equilibrium of 

acting forces on the body. Thus, one can write the equilibrium of the body according to the 

internal forces, intF , and the external loads, extF : 

0int  extFF  (3-15)

In a case where the structure’s response is nonlinear, simply solving the first order linear 

equation will not satisfy Equation (3-15). The difference appearing in a nonlinear FEM 

between external loads and internal forces called residual forces, iRs , in the ith loading step. 

Accordingly, Equation (3-15) is rewritten in the following format: 
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iext RsFF  int   (3-16)

In Figure 3-1, the relationship between internal forces, external forces and residual forces are 

depicted. 

 

 

Figure 3-1   Explicit solver approach and possible drift error in nonlinear problems (dots show numerical 

solution steps) [96] 

 

These residual forces correspond to the new structural configuration after experiencing the 

external load. In purely incremental/explicit solvers, no corrective procedure is applied to 

diminish the residuals. Hence, in such methods, small increments of external loading should 

be imposed to the structure to ensure the residual forces in each numerical step remain within 

an acceptance tolerance [96]. 
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Figure 3-2   Newton-Raphson iterative solver approach in nonlinear FEM problems [96] 

 

On the other hand, in corrective/implicit solvers, the residual forces are moderated with an 

iterative correction method such as the Newton-Raphson or Quasi Newton-Raphson methods. 

In such solvers, the structure's tangent stiffness, TK , needs to be evaluated in each iteration to 

extract the displacement correction due to residual forces, which can be derived from the 

Taylor series as follows: 
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Using Equation (3-17), displacement correction can be implemented by solving the following 

equation in each iteration. 
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After the ith iteration, the total displacement is the summation of previous iterations and the 

new residual forces. Tangent stiffness should be evaluated using the updated displacement 

(Figure 3-2). 

h
i

h
i

h
i uuu  1   (3-20)

In terms of convergence criteria, the iterative solver in ABAQUS stops the iteration steps 

based on two criteria. In the first one, if the residual forces can be negligible at every single 

degree of freedom in comparison to an overall residual force tolerance, external loads and 

internal forces are considered to be in equilibrium. The overall tolerance value can be set 

depending on the user’s demand, and if it remains intact, ABAQUS assumes 0.5% of the 

average force in the entire structure at the given time step. Another threshold for accepting the 

solution is based on the last displacement correction. The last correction should be relatively 

smaller than the fraction of the total incremental displacement (1% by default); otherwise, 

ABAQUS performs another iteration step [96]. 

 

3.3 Modeling Contact on Material Interfaces Using XFEM  

In recent investigations, Khoei et al. [53] introduced a new modeling technique to simulate 

nonlinear 3D contact problems using the large deformation formula and XFEM. The proposed 

tangential stiffness matrix (merely for the interface material) based on nonlinear XFEM was 

defined as: 





VV

VsS
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sV
ep
S

T
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where B  and sG  have an enriched part added to the conventional FEM part of nodal vectors 

and ep
SD  is the elastic-plastic constitutive matrix. These matrices can be redefined as follows: 

 Hord bu BBB   (3-22)

 Hord b
s

u
ss GGG   

(3-23)

where 
HbB  and 

Hb
sG  are defined as (H is the Heaviside function): 
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As mentioned before, to satisfy the PUM fundamentals, the Heaviside function should be 

deducted by Heaviside value at each element’s node. The elastic-plastic constitutive matrix is 

defined as: 




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









33

22

11

0

0

0

0

0

0

K

K

K

Dep
S  (3-26)

where iiK  is the penalty (contact) stiffness assigned to the local coordinates of the contact 

surface. 11K  provides the impenetrable characteristic to the normal direction of the contact 

plane which follows the Kuhn-Tucker thresholds [73]: 

    0,0,0  ContactnContactn PP   (3-27)

where ContactP  contains the vector of contact forces, respectively.  
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The remaining terms in the elastic-plastic constitutive matrix, 22K  and 33K , create the friction 

forces and prevent the contact surfaces from abrupt sliding. For these terms, standard static 

and dynamic friction laws can be applied to perform the analysis [53]. 

 

3.4 Implementation of the Cohesive Zone Model  

As described in Section 2.9, depending on the FRP composite material lay-up, we may expect 

to observe a large processing zone during decohesion. Hence, it is required to apply the 

cohesive crack modeling into the XFEM analysis. For this purpose, a bilinear traction-

separation law is utilized instead of the conventional constitutive relationship for the interface 

material to embed cohesive behaviour into the crack-tip region by means of re-arranging the 

nodal displacement components [35]. They also implemented a cohesive/contact 

transformation matrix ( CohB ) to re-arrange the nodal degrees of freedom and rewrote crack 

opening and sliding displacements and tractions on crack faces as follows: 

k
Coh uB  (3-28)

InterfaceDT   (3-29)

where InterfaceD  includes the cohesive interface material properties as described in Equation 

(2-74). As proposed by Geubelle and Baylor [86], a rigid cohesive zone model is 

implemented to simulate the crack initiation. This model applies an initial rigid stiffness in 

enriched elements before damage initiation and provides a good interpretation of material 

deterioration while the relative crack displacement reaches the failure limit. Also, the 

application of this model with XFEM improves numerical simulations consistency and 
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reduces difficulties such as snap-back and results fluctuation which are mostly caused by the 

reduction of stiffness in fully damaged elements to zero [28].  

 

 

Figure 3-3   Bilinear traction-separation law for modeling the material degradation 

 

The cohesive/contact transformation matrix can be extracted by finding the displacement in 

an enriched element. The displacement vector of any point in the enriched element,  xu g , is: 
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where,   


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




  j

k
kkj

enr
j HHNNN  (3-31)

The conventional FE shape function’s value remains constant for different points in the 

enriched element while the enriched shape function’s value demonstrates an odd function 

property with respect to the interface position: 

   topNbottomN enrenr 
                  

(3-32) 
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δ0 δf 
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Thus, the global relative crack displacement,  , can be described in the form of the 

displacement difference between two points above and beneath the crack surface.  
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(3-34)

In order to find the relative crack displacements in a global coordinate system, a simple 

transformation based on the normal and tangential directions,
 

ijm , of the crack plane with 

respect to the global coordinate can be employed: 
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Consequently, Equation (3-35) can be substituted into Equation (3-29) and used in the 

tangential stiffness formulation to introduce process zone properties within enriched elements 

(also compare to Equation 3-21): 
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Finally, in order to evaluate the internal forces, one can simply employ the Equation (3-37) as 

follows: 

 
 CΓ

int C
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  (3-37)
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0)(min1 element  (3-40)

where 1  is equal to the element nodal distance from the edges of the crack plane defined as: 

      )()()()( 21122
*

131132
*

123322
*

1
*

1 nnnnZZnnnnYYnnnnXXX tttttt   (3-41)

In Equation (3-41), ( 1X , 1Y , 1Z ) is an arbitrary point coordinate on the crack edge and ( tn1 , tn2

, tn3 ) is the unit vector of the crack edge. As an example, in Figures 3-4 and 3-5, a meshed 

object was analyzed using the above mentioned level-set techniques with a crack plane 

situated in the middle layer of the mesh. These figures depict the level-set variables 1  and 

1 , and the resulting enriched nodes as shown in Figure 3-6. 

 

 

Figure 3-4   Variation of φ1 values in an example meshed object (square represents the positive value and 

circle denotes the negative value; the rectangle shows the crack plane) 
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as Gauss quadrature and Simpson’s rule are well-known for their applications in numerical 

computations and provide accurate results in continuous fields. On the other hand, employing 

such numerical integration methods on discontinuous fields will not suffice and lead to pivot 

points in the corresponding equations’ system. Therefore, to prevent such problems from 

being introduced into fracture problems through cracked elements, auxiliary sub-triangles 

should be employed to discretize discontinuous material domains. Then, a numerical 

integration scheme can be utilized to evaluate the integration over each sub-triangle and 

consequently over the cracked element (Figure 3-7). For 3D models, a similar approach can 

be applied and sub-tetrahedral elements replace the sub-triangles in order to deliver sufficient 

integration points in discontinuous fields (Figure 3-8). 

 

 

Figure 3-7   Sub-triangles of a 2D element with third order Gauss quadrature  

    

Crack 
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Figure 3-8   Sub-tetrahedrals of a 3D element with third order Gauss quadrature  

 

The numerical integration of a discontinuous field with subdivided elements is similar but not 

identical to the continuous case. For instance, the numerical integration of an arbitrary 

continuous function, ),,(1 ZYXf , over a single element can be summarized as: 
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where eV  is the element volume, e is the element domain; Gn , gw  and ( 1 , 2 , 3 ) are the 

Gauss quadrature order, points weights and local coordinates, respectively.  

In order to adapt the above formulation to a discontinuous function, ),,('1 ZYXf , the 

following modification should be considered: 
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to capture the response of the structure accurately, while being not too large to make the 

simulations excessively costly; in the present simulation cases it varied between 500 to 1000 

steps.  The summary of the above implementation procedure is shown as a flow-diagram in 

Figure 3-10.  
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Figure 3-10   MATLAB-ABAQUS simulation algorithm employed for modeling the delamination   

 

Yes

No 

Start the 
simulation 

MATLAB reads the user input *.DAT file, 
performs the level-set technique and generates the 

ABAQUS *.INP file 

ABAQUS runs *.INP using UEL subroutine, 
writes the displacement, strain and stress results on 

*.DAT file 

MATLAB performs the post-processing, evaluates 
delamination stability, and extends the crack length 

and rewrites the user input *.DAT file. 

Does Maximum 
Number of runs 

reached?

End of the 
simulation 



 

 

3.6 

In th

XFEM

subro

other

verify

    

3.6.1

The 

interl

main

exam

reinfo

manu

servi

width

AS4/

arm, 

Table

 

 

 

Numerical

he next secti

M framewo

outine provid

r researchers

fy their propo

 Numeric

Double Can

laminar frac

nly fabricated

mple are T3

forced poly 

ufacture airf

ce temperatu

h, and 1.98 

/PEEK, mod

with a 32.9

e 3-1 [52]. 

l Examples 

ons, several

ork presente

ded in the A

s have simi

osed approac

cal Simulati

ntilever Bea

ture energy 

d based on th

300/977-2 c

ether ether 

frame struct

ure is requir

mm thickn

del dimension

9 mm initial

of Mode I a

l benchmark

ed in the p

Appendix. Th

ilarly perfor

ches and cod

ion of the D

am (DCB) i

toughness a

he ASTM D

carbon fibe

ketone, wh

tures and to

red [52]. Th

ness for each

ns were 102

l crack. The

and II Fract

k examples a

previous se

hese exampl

rmed numeri

des as addres

DCB Tests 

s one of th

and damage p

D5528-01 [97

r-reinforced 

hich are wid

o replace ste

he T300/977

h arm with

2 mm long, 2

e material pr

ture Tests: V

are numeric

ections and 

les are well d

ical modelin

ssed below.

he standard 

properties o

7]. Composit

d epoxy an

dely used in

eel compon

-2 models h

55 mm ini

25.4 mm wid

roperties for

Validation o

cally simulat

the ABAQ

described in

ng and exp

tests to eva

of materials. 

te materials 

d AS4/PEE

n the aerosp

nents especia

had a 150 m

itial crack (F

de and 1.56 m

r each speci

of XFEM C

ted using th

QUS user-d

n the literatur

erimental te

aluate the m

DCB sampl

considered 

EK carbon 

pace industr

ally when a

mm length, 2

Figure 3-11

mm thick fo

imen are giv

78 

Code 

e new 

efined 

re and 

ests to 

mode I 

les are 

in this 

fiber-

ries to 

a high 

20 mm 

). For 

or each 

ven in 



 

79 

 

Table 3-1   Mechanical properties of T300/977-2 and AS4/PEEK samples [52] 

T300/977-2 AS4/PEEK 

Elastic Properties Fracture Properties Elastic Properties Fracture Properties

E11 = 150 GPa Tmax = 45 MPa E11 = 122.7 GPa Tmax = 80 MPa

E22 = E33 = 11 GPa GIC = 268 J/m2 E22 = E33 = 10.1 GPa GIC = 969 J/m2

G12 = G13= 6 GPa G12 = G13 = 5.5 GPa  

G23 = 3 GPa G23 = 2.2 GPa  

v12 = v13 = 0.25 v12 = v13 = 0.25  

v23 = 0.5 v23 = 0.48  

 

Previous works on both types of above composite samples have been reported using a 

cohesive interface layer method via the conventional FEM as well as the mesh-free method by 

Camanho et al. [25], Turon et al. [50], Barbieri and Meo [52]. In the present study, effects of 

different important modeling variables such as the interface stiffness (e.g., the penalty factor) 

and the cohesive region length are assessed via the XFEM model. Results (in the following 

sub-sections) are compared to the previous standard numerical approaches to provide further 

understanding of the advantages of the XFEM method in terms of numerical accuracy and 

stability. 

 

3.6.1.1 Effects of Different Modeling Approaches  

Turon et al. [50] investigated the effective cohesive zone length for T300/977-2 specimens. 

They suggested a cohesive zone length of 0.9 mm from numerical simulations on a very fine 

mesh (with element length, le, of 0.125 mm). Based on their work, the size of elements in the 

cohesive zone region should not exceed 0.5 mm, and a minimum of two elements are required 

in this region for acceptable modeling results. In Figure 3-11, the present XFEM global force-
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displacement (F-Δ) results with the fine mesh simulation with the CZM penalty stiffness 

(Kpen) of 1×106 N/mm3 and the cohesive zone length of 1.5 mm are compared to the results 

from Camanho et al. [25], Turon et al. [50], Barbieri and Meo [52] by means of different 

numerical approaches. 
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Figure 3-11   A comparison between DCB test results via different methods on T300/977-2 samples 
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Figure 3-11 shows that all models predict a similar trend of load-displacement during 

delamination of the sample. The mesh-free method [52] overestimates the stiffness of the 

material and leads to raising the peak opening force by 5%, while the Turon et al. [50] 

cohesive finite element approach underestimates the resisting force by 10% in comparison to 

the experimental data obtained by Camanho et al. [25]. The XFEM estimates the peak 

opening force with 3% difference from the experiment and, similar to Camanho et al. [25], it 

provides a more conservative estimation of the fracture behavior of the DCB samples. 

  

3.6.1.2 Effects of Mesh Size and Cohesive Zone Length  

DCB tests of T300/977-2 specimens were simulated using two different mesh sizes, namely 

element lengths of 0.4 mm and 1.25 mm, to demonstrate the effect of coarse and fine mesh on 

the XFEM results. In addition, in order to illustrate the influence of cohesive zone length in 

each case, XFEM simulations were re-run (Figures 3-12 and 3-13) with different lch values 

and the fixed penalty stiffness of 1×106 N/mm3 [50]. 
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Figure 3-12   Load-Displacement DCB test results for the fine mesh (le = 0.4 mm) simulation with different 

cohesive zone lengths for T300/977-2 samples 
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Figure 3-13   Load-Displacement DCB test results for the coarse mesh (le = 1.25 mm) simulation with 

different cohesive zone lengths for T300/977-2 samples 
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Recalling Figure 3-12, in the fine mesh (le = 0.4 mm) model, it is observed that using 3 (lch = 

1.5 mm) to 6 (lch = 2.5 mm) elements within the cohesive zone would lead to an accurate 

estimation of the experimental data, while increasing this critical value to 8 (lch = 3.5 mm) 

elements would introduce an unrealistic global softening behavior to the model. In the coarse 

mesh (le = 1.25 mm) runs (Figure 3-13), only in the case with 3 (lch = 3.5 mm) elements the 

simulation result became relatively agreeable with the experimental values. It is worth adding 

that in an earlier work by Harper and Hallett [51], they had also obtained load-displacement 

results using different mesh sizes in the interface elements. Namely, for smoother numerical 

results, they decreased the elements size to prevent the dynamic effects of larger elements 

failure such as a sudden drop of the fracture energy release rate. They also introduced a global 

damping factor of 5% into the simulations to dissipate the oscillation caused by the cohesive 

element debonding and the loss of stiffness in each step of crack propagation. In the present 

study, the enriched elements in the cohesive zone have the aggregation of stiffness from 

XFEM approximation and the traction-separation law. Hence, when complete debonding 

occurs, the affected elements’ stiffness does not completely disappear by elimination of the 

cohesive zone stiffness, and the XFEM approximation can inherently prevent the oscillations 

to a certain degree, without adapting a damping ratio into the model. This can be especially 

beneficial regarding computational time in the case of explicit analysis. 

  

3.6.1.3 Effects of Different Penalty Stiffness Factors  

As discussed in Section 3.4, the accuracy of the bilinear traction-separation law in modeling 

the process zone is directly dependent on the penalty stiffness value, whose optimum value 

may change from one material or fracture mode to another. In this section, in order to evaluate 
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the accuracy of XFEM predictions against different penalty stiffness values, a set of 

simulations with fine mesh were performed with a wide range of penalty stiffnesses, varying 

from 102 N/mm3 to 105 N/mm3, and a similar cohesive zone length (lch = 2.5 mm). Results 

were compared to the experimental data for both T300/977-2 and AS4/PEEK specimens, 

respectively (Figures 3-14 and 3-15). 
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Figure 3-14   The comparison between DCB test load-displacement results of T300/977-2 samples with 

different penalty stiffnesses 
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Figure 3-15   The comparison between DCB test load-displacement results of AS4/PEEK samples with 

different penalty stiffnesses 
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According to Figures 3-14 and 3-15, XFEM results are less sensitive to the larger order of 

penalty stiffness values (from 103 to 105 N/mm3) in comparison to the conventional finite 

element method discussed by Turon et al. [50]. Also, within the above recommended PenK  

range, two sets of complimentary simulations on AS4/PEEK samples were run to see the 

effect of interaction between the mesh size and the penalty stiffness. According to the results 

in Figures 3-16 and 3-17, the mesh sensitivity decreases using lower values of the penalty 

stiffness, and vice versa. As AS4/PEEK has a higher critical energy release rate (Table 3-1), a 

larger cohesive zone region is expected in comparison to T300/977-2 samples and, hence, the 

sensitivity of simulations to the element size is reduced.  
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Figure 3-16   The comparison between DCB test load-displacement results for fine mesh analysis of 

AS4/PEEK and previous works 
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Figure 3-17   The comparison between DCB test load-displacement results for coarse mesh analysis of 

AS4/PEEK and previous works 
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Figure 3-18   The comparison between ENF test load-displacement results for AS4/PEEK and previous 

works 
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The results from XFEM illustrate smoother softening behaviour at the peak point of the load-

displacement curve. The difference between the experimental curve and the numerical 

simulation after the peak is perhaps related to the slanted behaviour of the ENF load-

displacement curve after crack opening and may be interpreted as an abrupt crack extension 

under increasing load under only one-step simulation. Also from Figure 3-18, it is evident that 

increasing the cohesive zone length leads to material softening and consequently decreases 

the peak value of the numerical load-displacement curve. Finally, comparing lch values in 

Figures 3-12 and 3-18 confirms that, for ENF simulation, much larger process zone lengths 

are required when compared to DCB simulations. 

   

3.6.2.2 Effects of Different Penalty Stiffness Factors  

In this section, different penalty stiffness values, KPen, were employed to evaluate the mode II 

response of AS4/PEEK samples. The length of the cohesive zone was kept constant, lch = 15 

mm, and the crack propagation happened within numerous steps. A range between 103 N/mm3 

to 106 N/mm3 was considered. The effect of this parameter on simulation results is illustrated 

in Figure 3-19.  
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Figure 3-19   Effect of penalty stiffness value on the ENF test load-displacement results for AS4/PEEK 

sample 
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It is clear from Figure 3-19 that applying penalty stiffness lower than 104 N/mm3 will result in 

extensive softening to the model which tremendously reduces the peak load. Such behaviour 

is derived from lower rigidity in the hardening region of the traction-separation law; however, 

such dependency of results on Kpen may become useful for adapting different material 

behaviours in different simulations. On the other hand, extensive hardening in the case with 

Kpen higher than 105 N/mm3 can be unrealistic as it reduces the real deflection of the specimen 

and prevents the actual failure crack opening to be modeled. Finally, comparing Figures 3-14 

and 3-19, it is evident the ENF test is much more sensitive to the range of Kpen, however, a 

value of 105N/mm3 seems optimal for both DCB and ENF tests. 

   

3.7 Summary 

In this chapter, the nonlinear FEM formulation was summarized for delamination simulations 

and different solvers for extracting the structures response were introduced. The extension of 

the nonlinear formulation towards XFEM modeling was then introduced and numerical 

implementation of nonlinear XFEM in simulating the contact interfaces and CZM was 

demonstrated. Finally, two (DCB and ENF) example problems from the literature were 

simulated with the introduced XFEM method and results were compared with the 

conventional FEM, cohesive interface element and element free models. In the next chapter, 

the stochastic nature of FRP composite materials will be discussed and the randomness of 

fracture properties will be introduced to the DCB and ENF simulations of tested PPS/Glass 

material. 
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4    Chapter: Modeling Randomness Effect in UD Laminates Delamination: 

A Non-RVE Approach 

As discussed in Chapter 1, the multi-scale nature of composite materials is tied to the mixture 

of multiple constituent materials. More specifically, in such materials, comingling of the 

matrix and fibers results in heterogeneous material characteristics and often cumbersome 

procedures needed to analyze their mechanical properties at different scales. Studying 

mechanical properties of FRP composite materials can be classified into three different 

groups. Macro-scale is the largest scale for analyzing the FRP composites and includes 

coupon size models for experimental, analytical or numerical analyses. In such a scale, 

anisotropic or orthotropic material properties may be assigned to the material structure. The 

other extent of this type of analysis is related to micro-scale behaviours of FRP composites 

with a focus on the constitutive relationships of individual components of the composite as 

well as the interaction between the matrix and the fibers. The intermediate level of composite 

materials study is known as meso-scale which links the micro-scale analysis to the macro-

scale analysis. Investigation of a laminate lay-up with more concentration on individual plies’ 

mechanical and geometrical properties and orientation is an example of the meso-level study 

which can also include fracture phenomena such as matrix cracking and fiber breakage as 

well as delamination and fiber bridging between layers. For an accurate analysis of structural 

behaviour of composites, it is required to account for the different scales of material 

properties and include their effects in simulations.  

The most basic and yet tangible scale of material analysis in practice is perhaps the macro-

scale since it can be implemented to determine the effective properties of large composite 

structures. Most homogenization techniques aim at this level of analysis and employ smaller-
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scale representative volume elements (RVE’s) to extract the averaged (effective) mechanical 

properties of the material at macro-level. The RVE should have specific characteristics; it has 

to be large enough to contain a sufficient number of heterogeneous characteristics of the 

composite under study and should assume a periodically distributed properties and boundary 

conditions in adjacent RVE’s. Such distribution assumptions through the entire structure can 

make the RVE homogenization technique vulnerable to existing defects in specific plies 

and/or the random distribution of fibers and their bridging. It also may monitor the damage 

mechanism and propagation of a crack, as these phenomena are relatively present in a local 

scale rather than a global scale. As a result, full scale (non-RVE) modeling is required for 

more effective damage modeling.  

The earliest attempts to assign statistical (random) properties to the crack location using 

stochastic modeling of laminates go back to the work of Wang et al. [44] and Fukunaga et al. 

[98]. More detailed investigation on the heterogeneous nature of laminates due to non-

uniform fiber distribution was performed by Baxevanakis et al. [40] where they employed an 

image analysis technique and demonstrated the unreliable aspects of periodic and quasi-

periodic assumptions of fiber distribution material, especially in the case of damage modeling 

of FRP composites. Further study on RVE assumptions by Bulsara et al. [99] suggested the 

efficient size effect of RVE’s. Trias et al. [43] compared stress and strain distributions of a 

periodic (RVE) model with a random model and concluded that a periodic assumption should 

be employed for extracting the effective properties of structures in global scale, while 

including the randomness is required for local analysis of structures such as matrix cracking 

and crack propagation. Silberschmidt [100] connected the microstructural randomness to the 

macro-level analysis and revealed that the fluctuation of mechanical properties is a result of 
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non-uniform fiber distribution. In the most recent investigation, Ashcroft et al. [48] applied a 

Weibull distribution to a set of cohesive elements and modeled the damage evolution of 

CFRP laminates. In their work, fracture energy toughness was defined statistically and 

exploited from a random distribution. 

The influence of the randomness of fiber distribution would increase in unidirectional (UD) 

FRP laminates as the possibility of fibers penetration within different adjacent layers of 

composite raises and leads to larger process zones in front of the crack. The response of the 

structure in such a case during the interlaminar crack growth will demonstrate a resistance 

while damage evolves and forms a resistance curve known as an R-curve. Fiber bridging 

results to an increase in fracture toughness of the material from initiation to steady-state 

delamination extension [101]. More studies on R-curves and fiber bridging showed that 

despite the fact that fiber bridging can directly affect the effective material properties and 

hence the shape of the R-curve, it can also be the case that the R-curve is affected by 

specimen geometry [102]. Nairn [103] combined the energy release rate of fracture mechanics 

with a CZM traction-separation law to represent the fiber bridging and extracted the R-curve 

of the model process zone. Airoldi and Dávila [104] applied experimental data and FEM to 

extract the cohesive element parameters and predicted the R-curve of delamination tests with 

fiber bridging. As also evident from their work, a high scatter of fiber bridging can exist in 

UD laminates and would have a significant effect on their macro-level performance.  

In the next sections of this chapter, the elastic mechanical properties of PPS/Glass will be 

assessed. R-curves of fracture experimental tests (DCB and ENF) with regards to uneven 

fiber/bridging distribution in the fabricated PPS/Glass UD laminates (Section 2.2) will be 
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studied first. Then, stochastic fracture properties of the material will be adapted into the 

developed XFEM model and used to capture non-repeatable material response. 

 

4.1 Sample Preparation: Poly (phenylene Sulfide) (PPS)/Glass FRP  

In recent decades the fiber reinforced thermoplastic composites have drawn more attention to 

some high-tech industries as compared to thermoset composites, as they are lighter, tougher, 

more sustainable, and more cost-effective with the right manufacturing process. Among 

different polymers used in thermoplastic composite industries, Poly Phenylene Sulfide (PPS), 

Poly Butylene Terephthalate (PBT) and Poly Ether Ether Ketone (PEEK) have demonstrated 

strong thermal and mechanical performances [105]. In the present work, PPS resin was 

chosen as a base material for manufacturing in-house test laminates. PPS is a semi-crystalline 

polymer and has excellent mechanical, thermal and physical properties. Its strength and 

affordability can help PPS to fill the gap between the partially crystalline industrial plastics 

and semi-crystalline resins such as PEEK. In addition, reinforced PPS with glass fibers offers 

economical advantages in comparison to carbon fibers by delivering high resistance 

characteristics against chemical and solvents, low moisture absorption, short thermoforming 

mould cycles with a greater creep strength and durability against temperature changes 

[105]. Typical applications of PPS/Glass composites in current industries vary from 

components in construction equipment, pumps parts and impellers to plastic parts in motor 

vehicles. In Figure 4-1, a microscopic image of UD tape of PPS/Glass, commercialized by 

TENCATE ADVANCED COMPOSITES [105], is depicted at two different regions of a 

sample. This particular product has an average void level less than 0.2% with a more even 

fiber-matrix distribution in the corner of the tape.  
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(a) (b) 

Figure 4-1   Microscopic images of fibers and matrix distribution of PPS/Glass UD tape: (a) 

Corner of the tape, and (b) Middle of the tape [105] 

 

The common forming procedures used for making PPS/Glass laminates are mainly similar 

and their minor differences, apart from cost, lie on the range of required temperature or 

pressure as follows. 

1- Press Lamination: In this process, PPS/Glass UD plies can be stacked in any desired 

orientation in a frame mould. Then, the frame is placed into a heated platen press where the 

assembly temperature is increased to approximately 330-360oC at a contact pressure until the 

PPS matrix melting point is reached. Namely, the platen pressure can be raised to 1.7 MPa 

and the assembly kept under this state for approximately 30 minutes. Then, the assembly 

fixture temperature is reduced by a cooling cycle flow passing through platens while the 

pressure is maintained.  

2- Autoclave Lamination: Similar to the press lamination process, in this process PPS/Glass 

laminas are laid-up in any desired orientation and placed in a vacuum bag throughout the 

entire process. A high temperature resisting material is used for the vacuum bag. The fixture 
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assembly is placed in the autoclave for 30 minutes in a temperature close to 315-330oC. 

During this time, the pressure on the fixture is increased from ambient to 0.68 MPa. After the 

heating process, the part is cooled down to a temperature less than 93oC and the pressure can 

be dropped to ambient while the vacuum is released.  

In the present work, the press lamination method (using a Wabash 100 Ton Press shown in 

Figure 4-2) was utilized to form the required test laminates. In the assembly process, 14 layers 

of PPS/Glass UD lamina were stacked. Polyimide Teflon (0.147 mm) with high temperature 

performance (melting at 426oC) was placed in the middle of the stacked pile to represent the 

predefined crack in the specimens. The entire assembly was brought together in a preheated 

moulding fixture and then placed in a heated platen press where the assembled fixture’s 

temperature was sustained at approximately 350oC. The heating platen pressure was raised to 

0.44 MPa and was kept in this state for approximately 28 minutes. This timing span let the 

inside of the mould reach the melting point of PPS at 350oC within 23 minutes and permitted 

the fibers to consolidate over 5 minutes in the molten matrix. Then, the assembly’s 

temperature was reduced via a cooling flow passing through platens for 20 minutes while the 

pressure was maintained at 0.44 MPa (Figure 4-2). 

It is worth adding that, 2D thermoplastic composite plies can also be formed into 3D complex 

shapes using the above apparatuses and appropriate moulds. For the PPS/Glass laminate, it 

can be stacked and heated to around 330-345oC using an infrared oven for a maximum of 8 

minutes and then transferred to a predesigned core/cavity mould where it can be formed to a 

3D shape under a pressure between 0.1-0.4 MPa. Depending on the part shape and 

dimensions, the production process may take under 10 minutes. This process is often referred 

to as thermoforming or stamping. 
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Figure 4-2   (a) Forming cycle used for preparing PPS/Glass test samples using (b) an automated press 

apparatus (Wabash MPI 100 ton) 

 

4.2 Elastic Mechanical Properties of PPS/Glass FRP Composites  

As mentioned earlier, the American Society for Testing and Materials (ASTM) standards [55-

57] can be employed to extract the material elastic constants. In the first step, the longitudinal 

and transverse elastic moduli of the PPS/Glass samples were measured based on ASTM D 

3039/D 3039M [56]. The test specimens were prepared with 250 mm length, 20 mm width, 

and 3 mm thickness. After the test specimen was firmly aligned and tightened in the tensile 

machine grips, a transducer was mounted on the mid-span, mid-width of the specimen. Then, 

the loading cell started to load the specimen with the rate of 2 mm/min. Observed failure was 

explosive failure in the gage area at the middle of specimen (XGM) for longitudinal fibers, 

while in the transverse direction, lateral failure happened close to the grip at top or bottom 
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(LAT/LAB) of the specimen. Table 4-1 contains the test results for longitudinal and 

transverse directions. 

  

Table 4-1   Mechanical properties extracted from tensile testing 

Test 
repeat 

Longitudinal (fiber) Direction 
Transverse (perpendicular to fiber) 

Direction 

Elongation (%) 
Modulus of 

Elasticity (MPa) 
Elongation 

(%) 
Modulus of Elasticity 

(MPa) 
1 5.77 45326.07 0.13 3490.58 

2 9.68 43303.08 0.06 1334.61 

3 9.64 43601.28 0.08 1176.69 

4 8.34 50547.07 0.09 1797.79 

5 6.84 46821.49 0.10 1513.28 

6 8.91 39836.18 0.09 1289.65 

7 6.30 38975.62 0.02 2100.46 

Average 7.93 44058.68 0.08 1814.72 
Standard 
Deviation 

1.40 3460.23 0.03 697.73 

 

As we needed to acquire the remaining material properties for subsequent numerical 

simulations, the average Young’s modulus extracted from experimental data above were 

compared to the supplied material data sheets and brochures (see Figure 4-3 for a snapshot) to 

find and adjust the closest set of material properties given the actual fiber volume fraction, 

reinforcement architecture, etc (for confidentiality reasons the material’s full specification and 

composition have not been disclosed). The final set of elastic properties implemented in the 

subsequent simulations of this thesis is given in Table 4-2.  
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Figure 4-3   Snapshot of elastic mechanical properties for a typical woven PPS/Glass ply from 

material data sheets  

 

Table 4-2   Final set of elastic properties of manufactured UD PPS/Glass FRP composites with “1” being 

the fibers direction; “2” and “3” are perpendicular directions to fibers.   

Effective Elastic Properties 

E11 = 44,400 MPa G12 = 880 MPa v12 = 0.25 

E22 = 1800   MPa G23 = 660 MPa v23 = 0.48 

E33 = 1800   MPa G13 = 880 MPa v13 = 0.25 

 

4.3 Fracture Tests on the Fabricated PPS/Glass Composites 

Both DCB and ENF tests were conducted on the PPS/Glass UD specimens according to the 

procedure described in ASTM D5528-01 [97]. The main goal of these tests was to measure 

the mode I and II fracture energy toughness properties of the material. In DCB test, specimens 

with pre-inserted delamination were put in the tensile machine and underwent opening 

displacement with the rate of 2 mm/min on the grips. At the onset of delamination extension, 
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test, based on the nature of the mode II failure, crack propagation happens due to excessive 

shear deformation and has an abrupt nature as addressed in Chapter 3. Such behaviour makes 

it difficult to control the external load to achieve a target crack extension. Due to this test 

limitation, in the present study only the first step of crack propagation in ENF tests was 

considered while the test repeats were carried out with the same pre-assigned crack length (43 

mm). 

Figures 4-5 and 4-6 depict the obtained experimental data from three repeats of the DCB test. 

According to the observed increasing trend between crack length and the critical energy 

release rate, it could be concluded that the material experiences fiber bridging during 

delamination. This was further verified by macro- and micro- imaging of samples (Figure 4-

7). It is worth adding that fiber bridging is more likely to occur in unidirectional laminates 

than in woven fabric composites, since the layers in UD’s are laid-up in a single orientation 

and during the moulding phase, as the matrix melts, there is less geometrical confinement to 

prevent fibers from penetrating into adjacent layers. The clear data scatter through the test 

repeats in Figure 4-5 also shows that, despite the DCB sample coupons have been cut from 

the same large (master) plate, the distribution of effective material properties could randomly 

vary from one coupon to another. This observation may be due to a non-uniform 

reinforcement pattern, uneven pressure or heating/cooling effect during the compression 

moulding stage of the master plate. Even within the same plate, more uniform pressure or heat 

concentration in the middle section of the plate may have been present compared to its edge 

sections (also recall Figure 4-1). 
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(a) (b) 

 

(c) 

Figure 4-5   The variation of fracture energy toughness versus crack length for the three tested samples 

using: (a) Compliance Calibration Method, (b) Modified Beam Theory Method, (c) Modified Compliance 

Calibration Method [97] 
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(d) 

 

 

Figure 4-6   Illustration of the fiber bridging zone (FBZ) during crack propagation; as the crack length 

increases, FBZ emerges in the cracked region up to the fiber’s rupturing displacement; after fiber 

breakage, the FBZ effect vanishes from the region which has exceeded the failure opening displacement 

 

According to ASTM 5528-01 [97], the modified beam theory provides more conservative 

result in comparison to other methods, and hence it is recommended for design purposes. 

Finally, in addition to the ASTM D5528-01 [97] discontinuous DCB test, continuous crack-

opening tests, i.e., without unloading and re-loading for the next initial crack length 

configuration, were performed to monitor the effect of progressive failure in the specimens 

(results to be discussed in Section 4.5). 
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(a) 

  

(b) (c) 

Figure 4-7   Different images of a DCB test sample: (a) macro scale image of fiber bridging, (b) X-ray 

micro-tomography image of fiber bridging along the sample thickness, and (c) attenuation of the X-ray 

reflection due to absorption; demonstrating uneven distribution of fibers  

 

For ENF tests, as mentioned earlier capturing the step-by-step crack propagation was not 

feasible, therefore only the initial step of crack propagation was used for the analysis (Figure 

4-8). Similar to the DCB test, continuous loading was also employed for the ENF test to 

observe the effect of fiber bridging with extensive crack evolution in the test coupons (results 

5 mm 
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to be discussed in Section 4.5).  The summary of fracture properties extracted from DCB and 

ENF tests is shown in Table 4-3. 

 

  

(a) (b) 

Figure 4-8   ENF test repeat results with a constant crack length (43 mm): (a) the variation of fracture 

energy toughness versus the mid-span displacement, and (b) the variation of bending load versus the mid-

span displacement.  
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Table 4-3   Fracture properties of PPS/Glass samples extracted from DCB and ENF tests 

Fracture Properties 

Mode I (DCB) Mode II (ENF) 

Tmax = 9.6 MPa Tmax = 5.5 MPa 

GIC(ave) = 0.48 kJ/m2 GIIC(ave) = 1.48 kJ/m2 

As a function of delamination 

length: 

As a function of delamination 

length: 

GIC = 0.0075acr + 0.04   kJ/m2 

(For acr> 40 mm) 

GIIC = 0.045acr - 0.5   kJ/m2 

(For acr> 40 mm) 

0  = 9.6e-05 mm 0  = 5.5e-05 mm 

 

4.4 Stochastic Fracture Properties 

As addressed in Section 4.1, FRP composite materials demonstrate a large amount of 

randomness in material properties due to an uneven distribution of fibers in the matrix, and 

the possible penetration of fibers within different layers of laminate during the forming 

processes (especially in the case of unidirectional laminates). In the present work, fracture 

properties of the tested samples are considered to have a stochastic nature based on non-

repeatability observed in repeated experiments, as opposed to deterministic approaches where 

averaged values of experimental results are assumed for the estimation of material properties. 

Namely, a random number within the range of experimentally measured fracture energy 
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toughness values was picked to form a stochastic bilinear traction-separation law of enriched 

elements in the cohesive zone (Figure 4-9): 

  )(2)(
11 stdC

Rand
aveCC GRandGG 

 
(4-1)

where Rand1, GC(ave) and GC(std) are the random integer (odd or even to assign a random sign), 

average and standard deviations of fracture energy toughness, respectively.  

. 

  

 

Figure 4-9   Proposed stochastic bilinear traction-separation behaviour (Rand2 is a random number taken 

from a 2-parameter Weibull distribution; GCL and GCH correspond to the lower and upper limits of GC via 

Equation 4-1)  

 

Following the fiber bridging discussion in Section 4.3 and the observed experimental trend in 

Figure 4-1, the fracture energy toughness distribution was considered to be a function of the 

crack length and hence, a linear interpolation was utilized to extract GC(ave) for each specific 

crack length. For GC(std) , it can be a constant or in a more general form it can scale with GC(ave), 

which in turn becomes a function of crack length. The second random number (Rand2) 

GCL<GC<GCH 

δf 

2GCL/Tmax < δf < 2GCH/Tmax 

Tmax 

Kpen 

T 

δ 
δ0 δfL δfH 

GCL = GC(ave)  – Rand2 × GC(std)   

GCH = GC(ave) + Rand2 × GC(std)  
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corresponding to individual enriched elements in each stage of damage evolution was taken 

from a uniform distribution with a range of 0 to 1. The randomly selected values were then 

converted to a Weibull two-parameter distribution between 0 and 1 via: 

  1

1

2
1

2 1ln
1 

 










 uniformweibull RandRand

     
(4-2)

where 1 > 0 is a shape parameter and 1 > 0 is the scale parameter of distribution and both 

are considered to be equal to 3. It should be added that, according to conventional bilinear 

traction-separation behaviour, a direct relationship exists between the critical fracture energy 

toughness, CG , failure crack opening displacement, f , and maximum interface strength,  

maxT : 

2
max f

C

T
G


  (4-3)

Therefore, the obtained statistical distribution of the fracture energy toughness can be 

converted into the variation of failure crack opening and/or maximum interface strength of 

material via Equation (4-1). Khokhar et al. [106] introduced the randomness into their 

simulation by implementing a relationship between random fracture energy toughness and the 

maximum interface strength by keeping the failure crack opening displacement constant. To 

improve the numerical simulation’s convergence, the present study assumes a constant value 

for the maximum interface strength (see Table 4-3) while the failure crack opening 

displacement is randomly varied during damage evolution (see Figure 4-4). This approach 

relies on constant penalty stiffness and prevents the over-strengthening of elements’ stiffness 

in the process zone. It also stands with the fact that the crack length extension in test 
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specimens is a function of the crack-tip opening displacement (CTOD) and the energy release 

rate in front of crack-tip. 

       

4.5 Numerical Results and Discussions 

An XFEM model of the PPS/Glass composite samples under DCB tests were established 

using the developed ABAQUS user-defined element subroutine.  To consider the stochastic 

aspect of fracture properties in conjunction with Equation (4-1), two different approaches 

were employed. In the first approach, the standard deviation of fracture energy toughness was 

assumed to be constant during the crack propagation (i.e., equal to the standard deviation of 

the entire DCB experimental points in Figure (4-5). In the second approach, a linear function 

was assigned using test data to relate the fracture energy toughness standard deviation to the 

crack length (Table 4-4). 

 

Table 4-4   Employed standard deviation schemes in stochastic simulations of DCB test 

Standard Deviation 

Constant Function of delamination size 

GC(std) = 0.121 kJ/m2 

(For acr > 40 mm) 

GC(std) = 0.2125 - 0.0016acr  kJ/m2 

(For acr > 40 mm) 

  

Figure 4-9 shows a comparison of opening force between measured and predicted values via 

the above two approaches under the standard (discontinuous) DCB tests [97]. 
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(a) (b) 

Figure 4-10   Comparison of the opening force in stochastic simulations of DCB tests with experimental 

data using: (a) constant standard deviation formulation, and (b) standard deviation as a function of crack 

length 

 

(a) (b) 

Figure 4-11   Comparison of predicted fracture energy toughness via stochastic simulations of DCB tests 

with experimental data using: (a) constant standard deviation formulation, and (b) standard deviation as 

a function of crack length  
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(a) (b) 

(c) (d) 

Figure 4-12   Comparison of measured opening force with predicted values in stochastic and deterministic 

simulations of continuous DCB test using: (a) fracture energy/toughness remains equal to the average 

value of experiments, (b) fracture toughness only changes with increase in delamination length, (c) 

fracture toughness increases with extension of delamination with constant standard deviation 

formulation, and (d) fracture toughness increases with extension of delamination with standard deviation 

as a function of delamination length 
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The stochastic fracture energy toughness values (via the XFEM force values in Figure 4-10 

and the standard formulas of ASTM D5528-01 [97]) were also calculated and compared to the 

measured values in Figure 4-11. Similarly, the comparison of results under the continuous test 

mode, i.e. progressive damage, is depicted in Figure 4-12. 

According to Figure 4-11, prediction results for the discrete (standard) DCB case with 

constant standard deviation tend to follow experimental results that are closer to the average 

data points. This observation has been directly reflected in the continuous-mode tests in 

Figure 4-12. As depicted in Figure 4-12(a), the XFEM simulation with constant fracture 

toughness and no stochastic effect (i.e., similar to a deterministic simulation) tends to follow 

the lower bond of experimental repeats. Choosing the lower bond fracture limit can be quite 

acceptable in practical applications where the safety has the highest impact on design. In 

Figure 4-12(b) the XFEM simulation with fracture toughness as a function of delamination 

length, and with no standard deviation effect, shows an increase in resisting force during 

crack evolution, and a better overall prediction capability. This response in particular 

demonstrates that the implemented XFEM model in macro-level simulations can capture the 

effect of fiber bridging in the meso/micro level by increasing the fracture energy toughness 

during each step of delamination extension. Studying stochastic prediction cases, Figures 4-

12(c) and (d), it is seen that having the standard deviation varying with the crack length can 

reproduce a more realistic (wider) range of results by means of a higher variation introduced 

to fracture properties. It can also be observed from Figures 4-12(c) and (d) that utilizing a 

constant standard deviation reduces the fluctuation of stochastic simulations and demonstrates 

a smoother trend, while the variable standard deviation method leads to larger fluctuations 

during the crack propagation steps. Interestingly, the highest scatter/fluctuation at the opening 
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displacement of 22 mm in Figures 4-12(d) coincides with the high deviation observed in 

mode I fracture experiments in Figure 4-11(b) when the delamination length is close to 65 

mm. The numerical results oscillation in Figure 4-12 would have been caused at each crack 

propagation stage when the energy release rate reaches the critical fracture energy toughness 

values. More specifically, when CTODs reaches its onset (i.e., crack starts opening), the 

corresponding elements in front of the crack are progressed within the rigid (high stiffness)  

portion of the bilinear traction-separation law up to the apex where the maximum interface 

strength is reached. After this point, the material faces sudden softening and the opening force 

reduces to the complete failure of elements, leading to the propagation of the crack into the 

next element where again a local increase of the global opening load is expected. Also, the 

delamination propagation inherits different size of kinks/jumps which links to the fact that we 

are allowing the failure opening displacement to vary for different enriched elements. This 

assumption causes the numerical model to deviate from a smooth trend observed in 

experimental results. Figures 4-13 and 4-14 show the schematic of crack evolution based on 

the bilinear traction-separation law and the XFEM model at different stages of delamination. 
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Figure 4-13  Evolution of the cohesive zone in front of crack upon loading in a given simulation step 
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(a) 

(b) 

(c) 

Figure 4-14   Stages of delamination propagation within the DCB numerical model: (a) Onset of rigid 

hardening in the process zone, (b) Apex of the bilinear traction-separation law, and (c) Deterioration of 

the cohesive stiffness 
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In the case of ENF tests, the experimental set-up was simulated using the same ABAQUS 

user-element subroutine. Randomness was introduced into the analysis only by means of the 

constant standard deviation method.  The results for continuous delamination are depicted in 

Figure 4-15. 

 

 
Figure 4-15   Comparison of stochastic measured and predicted force-displacement values in ENF tests on 

the PPS/Glass samples 

 

As illustrated in Figure 4-15, the stochastic simulations of the ENF test have resulted in a 

great agreement with non-repeatable experimental data. In performed simulations, critical 

(opening) deflection varied due to the traction-separation law’s dependency on the failure 

crack sliding displacement and, as illustrated, it also affects the variation of the maximum 

critical flexural load. Based on the observed trend in simulation data, it can be concluded that 
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the fiber bridging effect in ENF test has a minimal effect in global behaviour of the results. 

Figure 4-16 shows the XFEM model contours under different stages of delamination in ENF 

test. It should be added that from an application perspective, for forming processes of 

composite preparation, such as compression moulding set-up in Figure 1-10, mode II fracture 

would be more relevant due to sliding between layers of the laminate under the punch load.  
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(a) 

(b) 

(c) 

Figure 4-16   Stages of delamination propagation within the ENF numerical model: (a) Apex of rigid 

hardening in the process zone, (b) Initial stage of crack propagation, and (c) Extensive deterioration of 

material 
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4.6 Summary 

In this chapter, different methods of fabricating PPS/Glass test samples were reviewed and 

their elastic mechanical properties were extracted. The stochastic nature of DCB and ENF 

tests on PPS/Glass composite was illustrated. This characteristic was next introduced into the 

XFEM numerical analysis by means of a random fracture energy toughness distribution. 

Failure crack opening/sliding displacements were employed to relate the fracture energy 

toughness randomness to the traction-separation law. In order to demonstrate the capability of 

the present method in capturing the DCB and ENF test results, several stochastic simulations 

were performed and the results were compared to experimental data.  
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5    Chapter: Conclusions and Future Work Recommendation 

5.1 XFEM Model Development 

A new framework was presented to numerically simulate the fracture behaviour of FRP 

composite materials and, more specifically, the unidirectional PPS/Glass laminates. For this 

purpose, the ABAQUS finite element package was utilized as a simulation engine. In order to 

extend the capability of ABAQUS in modeling crack and delamination contact interfaces in 

large delaminations, a user-element subroutine was developed to introduce nonlinear XFEM 

element properties including CZM and contact. In these elements, the right hand side vector 

and the stiffness matrix were defined and, according to the employed degrees of freedom, 

were assembled into the global system of equations. In addition, the stochastic fracture 

properties of the composite samples were adapted into the code to capture the randomness 

seen through non-repeatable test results. The model may be used with both implicit and 

explicit nonlinear solvers for both deterministic and stochastic simulations.  

 

5.2 Performed Deterministic Simulations 

Following earlier works in the literature, the performed benchmark deterministic simulations 

demonstrated the effectiveness of the combined XFEM - cohesive zone model (CZM) and 

contact interface modeling approach in 3D numerical analysis of mode I and II fracture 

mechanics of fiber reinforced composites in the presence of large deformation effects and 

interface material nonlinearity. Sets of sensitivity analysis were also performed to evaluate the 

effect of modeling parameters on the XFEM numerical predictions. For more reliable 

simulations, it was found that a minimum of two elements is required within the cohesive 

zone region (regardless of critical length) in front of the crack tip. On the other hand, 
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considering a very long cohesive zone would introduce a global softening of material into 

simulations and can lead to an underestimation of the peak opening force. A maximum of six 

elements with a fine mesh is recommended as the limit within the cohesive zone region for 

mode I fracture analysis of the studied unidirectional composites. It was also observed that 

reducing the penalty stiffness value in the traction-separation law improves the convergence 

of numerical simulations and reduces the mesh size sensitivity. However, using conventional 

FEM this can again cause a softening problem and reduce the peak opening force. The XFEM 

approach with embedded CZM was found to be less sensitive to the aforementioned effects, 

particularly when the penalty stiffness value is chosen arbitrarily within the range of 

transverse and longitudinal moduli of the composite.  In the case of mode II fracture analysis, 

an increase in the penalty stiffness could cause extensive flexural deformation without any 

crack formation while a small value for the penalty stiffness may lead to a lower critical 

flexural force. 

   

5.3 Performed Stochastic Simulations 

For stochastic analysis, the prediction of fracture behaviour of fabricated unidirectional 

PPS/Glass composites was presented. DCB tests, both in the standard and continuous modes, 

were conducted for extracting the experimental material fracture properties along with their 

variation through test non-repeatabilities. Based on the experimental data and obtained x-ray 

images, it was concluded that fiber bridging was present in the specimens during delamination 

and the energy release rate can be a function of the crack length. In order to reproduce the 

experimental results with numerical simulations, under the stochastic behaviour of the 

material the bilinear traction-separation cohesive behaviour was applied within the framework 
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of nonlinear XFEM. It was found that the approach is capable of predicting delamination 

surfaces with the traction due to possible fiber bridging effects. To take the present stochastic 

material properties effect into account, even under a given crack length, the fracture energy 

toughness value was randomized using two different standard deviation methods. 

Specifically, applying the constant standard deviation method (i.e., using the overall standard 

deviation of the entire data sets) demonstrated a low variation of predicted/model values, but 

induced fewer numerical fluctuations in the continuous test mode. In contrast, considering a 

standard deviation as a function of crack length captured a wider range of experimental data 

points by increasing randomness effects in the fracture properties, though it induced some 

fluctuations in the numerical curves.  

For the ENF test, performed to study the mode II fracture energy toughness of the same 

PPS/Glass samples, due to the abrupt nature of shear failure, capturing the dependency of the 

mode II fracture energy toughness on the crack length was not possible. Such failure 

behaviour, however, demonstrated a lower randomness as represented by more repeatable 

continuous mode test data. Therefore, the average fracture energy toughness in this mode was 

assumed to be independent of the crack length and was only affected by the standard 

deviation of the test results. The numerical simulation results were well-agreeing with the 

experimental ones and the variation of the failure deflection was captured by the stochastic 

XEM model. 

 

5.4 Potential Future Work 

Future works may be defined based on three different areas. First, improvements can be made 

to the FEM shell analysis by introducing a similar nonlinear XFEM into the standard shell 
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element formulation, employing the mass and damping matrices for dynamic analysis of 

fracture tests and applying different traction-separation laws for modeling different material 

types. Second, both DCB and ENF tests can be repeated with larger size specimens to capture 

the stabilizing regions of R-curves observed in experiments with longer delamination sizes. 

Such tests can help to scrutinize the stable and unstable nonlinear regions of fiber bridging. 

Third, other fracture tests such as the end loaded split (ELS), mixed-mode bending (MMB) 

and edge crack torsion (ECT) can be studied to verify the advantages of the XFEM method in 

modeling more complex fracture tests and potentially improving the traction-separation law 

application for such tests. Another significant aspect of stochastic modeling is to understand 

the effect of number of random simulations. A larger number of simulations would produce a 

more distinguished region of predictions between upper bond and lower bonds of data. 

Finally, more focus can be put on increasing the number of experimental repeats to gain a 

better estimation of deviation of data from mean values and hence to improve the reliability of 

the simulations. This can also include the introduction of a more precise random distribution 

of fracture properties, specifically by including a non-liner dependency of the fracture energy 

toughness, mean and standard deviation on the crack length via further experimentation and 

statistical analysis. Also, an integration of a microscopic analysis with a signal-to-noise 

(GC(ave)/GC(std)) based stochastic XFEM modeling framework can be worthwhile.  
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Appendices 

Appendix A: ABAQUS User-element Subroutine for Nonlinear XFEM Analysis 

     SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS, 
     1 PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME, 
     2 KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,NPREDF, 
     3 LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,PERIOD) 
C 
      INCLUDE 'ABA_PARAM.INC' 
 
 PARAMETER ( ZERO = 0.D0, HALF = 0.5D0,  
     +     ONE = 1.D0, SEVEN=7.0D0, EIGHT=8.0D0 ) 
C 
      DIMENSION RHS(NDOFEL,*),AMATRX(NDOFEL,NDOFEL),PROPS(*), 
     1 SVARS(*),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL), 
     2 DU(NDOFEL,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*), 
     3 JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*),DDLMAG(MDLOAD,*), 
     4 PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*) 
C 
C 
      REAL*8 GAUSSPOINT(140,MCRD), 
     +       XCR(MCRD+1,MCRD), 
     +       dNdx(NNODE,MCRD+1), 
     +       U_MIDPNT(NNODE,MCRD),  
     +       B(MCRD*MCRD, NDOFEL), 
     +       DNDXi(NNODE,MCRD), 
     +       C_COORDS(NNODE,MCRD), 
     +       Gs(2*MCRD,MCRD*MCRD), 
     +       U_Ms(MCRD*MCRD,MCRD*MCRD), 
     +       C(2*MCRD,2*MCRD), 
     +       Dep(MCRD,MCRD), 
     +       QT(MCRD,MCRD), 
     +       QTT(MCRD,MCRD), 
     +       QR(MCRD,MCRD), 
     +       QRT(MCRD,MCRD), 
     +       DGep(MCRD,MCRD), 
     +       FB(MCRD,MCRD), 
     +       FBT(MCRD,MCRD), 
     +       STRGLB(MCRD,MCRD), 
     +       STRGLOB(MCRD,MCRD), 
     +       dUdx(MCRD,MCRD),    
     +       Nx(1,NNODE), 
     +       GWEIGHT(140), 
     +       FF(MCRD*MCRD), 
     +       STRSG(MCRD*MCRD), 
     +       COOR(MCRD), 
     +       DLTU(MCRD), 
     +       dV(MCRD)            
C      USER-ELEMNT ARRAYS 
C      GENERAL ELEMENT VALUES 
C      GAUSS INTEGRATION VARIABLES (3 INTEG POINT) 
C      ARRAYS FOR 3D ELEMENT 
      REAL*8 U_PHI(NNODE)    
      REAL*8 UNeg(MCRD), 
     +       UPos(MCRD), 
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     +       UNg(MCRD), 
     +       UPs(MCRD), 
     +       U1(MCRD), 
     +       UBAS(NDOFEL), 
     +       EC(2*MCRD), 
     +       STRS(2*MCRD), 
     +       BTSTRS(NDOFEL), 
     +       Trct(MCRD), 
     +       LHSC(NDOFEL), 
     +       RHSC(NDOFEL) 
      REAL*8 BT(NDOFEL,MCRD*MCRD), 
     +       GsT(MCRD*MCRD,2*MCRD) 
      REAL*8 JACB(MCRD,MCRD), 
     +       INVJACB(MCRD,MCRD), 
     +       INVFB(MCRD,MCRD), 
     +       INVFBT(MCRD,MCRD), 
     +       IUNIT(MCRD,MCRD), 
     +       DGBc(MCRD,NDOFEL), 
     +       BTGT(NDOFEL,2*MCRD), 
     +       GB(2*MCRD,NDOFEL), 
     +       MsB(MCRD*MCRD,NDOFEL), 
     +       BTMsB(NDOFEL,NDOFEL), 
     +       BcTDGBc(NDOFEL,NDOFEL), 
     +       KMAT(NDOFEL,NDOFEL), 
     +       KGEM(NDOFEL,NDOFEL), 
     +       KCON(NDOFEL,NDOFEL)     
      REAL*8 Bc(MCRD,NDOFEL), 
     +       BcT(NDOFEL,MCRD), 
     +       CSTRN(MCRD,MCRD), 
     +       EEC(MCRD,MCRD), 
     +       BcRes(NDOFEL,MCRD) 
      REAL*8 Xi, Yi, Zi, WEIGHT, ENRCOH, ENRJC, 
     +       E11, E22, E33, G12, G23, G31, 
     +       Nu12, Nu21, Nu23, Nu32, Nu31, Nu13, 
     +       DETFB, DETJ, nu, uacrt, Jsdv, 
     +       HPOINT, ENRELM, NNINT, KPEN,TMAX, 
     +       Jcrt, Dmg1, Dmg2, Dmg3  
C 
      INTEGER COUNT1, COUNT2, INTP, IINTP, I, J, K, L, M, N 
C            
C      ************************************************************************************* 
C      *** INITIALISATION: IMPORTANT!! FORTRAN DOES NOT PUT ZEROS IN THERE 
AUTOMATICALLY *** 
C      *************************************************************************************        
C     OPEN LEVEL-SET VALUES FROM PRE-PROCESSING 
      OPEN(16, FILE='C:/ABAQUS-Matlab/IOstat 
     +/philvlst.dat',STATUS='OLD') 
C 
      NINTP = 24        ! Number of integration points 
 uacrt  = PROPS(1) ! Crack Lenght 
      dV(1) = PROPS(2)  ! Material Initiation Opening Failure 
      dV(2) = PROPS(3)  ! Material Final Opening Failure 
      E11   = PROPS(4)  ! Material Constant 
      E22   = PROPS(5)  ! Material Constant 
      E33   = PROPS(6)  ! Material Constant 
      G12   = PROPS(7)  ! Material Constant 
      G23   = PROPS(8)  ! Material Constant 
      G31   = PROPS(9)  ! Material Constant 
      Nu12  = PROPS(10) ! Material Constant 
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      Nu23  = PROPS(11) ! Material Constant 
      Nu31  = PROPS(12) ! Material Constant 
 KPEN  = PROPS(13) ! Material Constant 
 Jsdv  = PROPS(14)  ! G Standard Deviation 
C 
C     CALCULATING THE TRACTION-SEPARATION CONSTANT 
 TMAX = KPEN*dV(1) 
 Jcrt = TMAX*dV(2)/2 
      WIDTH = 1 ! Element Tickness 
C      **********************************             
C      *** ZERO THE REQUIRED MATRICES *** 
C      ********************************** 
      ENRELM  = 0.0 
C 
      DO I = 1, NNODE 
         Nx(1,I) = 0.0 
         U_PHI(I)  = 0.0 
         DO J = 1, MCRD+1 
            dNdx(I,J) = 0.0 
         ENDDO 
      ENDDO 
C 
      DO J = 1, MCRD 
         COOR(J) = 0.0 
      ENDDO 
C 
      DO I = 1, 2*MCRD 
         DO J = 1, 2*MCRD 
            C(I,J) = 0.0 
         ENDDO 
      ENDDO 
C 
      DO I = 1, MCRD*MCRD 
         DO J = 1, NDOFEL 
            B(I,J)  = 0.0 
            BT(J,I) = 0.0 
         ENDDO 
      ENDDO 
C 
      DO I = 1, 2*MCRD 
         DO J = 1, MCRD*MCRD 
            Gs(I,J) = 0.0 
    GsT(J,I) = 0.0 
         ENDDO 
      ENDDO 
C 
      DO I = 1, NNODE 
         DO J = 1, MCRD 
            C_COORDS(I,J) = 0.0 
    ENDDO 
 ENDDO 
C 
      DO I = 1, MCRD 
         DO J = 1, MCRD 
       IUNIT(I,J)   = 0.0 
            JACB(I,J)    = 0.0 
            INVJACB(I,J) = 0.0 
            Dep(I,J)     = 0.0 
            DGep(I,J)    = 0.0 
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            QT(I,J)      = 0.0 
            QTT(I,J)     = 0.0 
            QR(I,J)      = 0.0 
            QRT(I,J)     = 0.0 
         ENDDO 
      ENDDO 
C 
      DO I = 1, NNODE 
         DO J = 1, MCRD 
            U_MIDPNT(I,J) = 0.0 
         ENDDO 
      ENDDO 
C 
      DO I = 1, NSVARS 
         SVARS(I) = 0.0 
      ENDDO 
C 
      DO I = 1, NDOFEL 
         DO J = 1, NDOFEL 
            AMATRX(I,J) = 0.0 
       KGEM(I,J) = 0.0 
       KMAT(I,J) = 0.0 
       KCON(I,J) = 0.0 
         ENDDO 
      ENDDO 
C 
      DO I = 1, NDOFEL 
         RHS(I,1) = 0.0 
         RHSC(I) = 0.0 
         LHSC(I) = 0.0 
         UBAS(I) = 0.0 
      ENDDO 
C     ******************** 
C     *** DUMMY ARRAYS *** 
C     ******************** 
      DO I = 1, MCRD 
         IUNIT(I,I) = 1.0 
      ENDDO 
 INTS  = 1  ! Integration point scheme (1: gauss) 
      STYPE = 1  ! Element type (1: B8, 2: T4) 
C      ****************             
C      *** HOOK LAW *** 
C      **************** 
      Nu21 = Nu12*E22/E11 
      Nu32 = Nu23*E33/E22 
      Nu13 = Nu31*E11/E33 
      Delt = (1-Nu12*Nu21-Nu23*Nu32-Nu13*Nu31-2*Nu12*Nu23*Nu31) 
C 
      C(1,1) = E11*(1-Nu32*Nu23)/Delt 
      C(1,2) = E11*(Nu21+Nu31*Nu23)/Delt 
      C(1,3) = E11*(Nu31+Nu21*Nu32)/Delt 
      C(2,1) = E22*(Nu12+Nu13*Nu23)/Delt 
      C(2,2) = E22*(1-Nu13*Nu31)/Delt 
      C(2,3) = E22*(Nu32+Nu31*Nu12)/Delt 
      C(3,1) = E33*(Nu13+Nu12*Nu23)/Delt 
      C(3,2) = E33*(Nu23+Nu13*Nu21)/Delt 
      C(3,3) = E33*(1-Nu12*Nu21)/Delt 
      C(4,4) = G12/2 
      C(5,5) = G23/2 
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      C(6,6) = G31/2 
C      *******************************************             
C      *** FINDING DEFORM SHAPE OF COORDINATES *** 
C      ******************************************* 
      DO I = 1, NNODE 
         DO J = 1, MCRD 
            C_COORDS(I,J) = COORDS(J,I) + U(2*MCRD*(I-1)+J) 
         ENDDO 
      ENDDO 
C      ************************************************             
C      *** FINDING REFERENCE COORDINATE DEFORMATION *** 
C      ************************************************ 
      DO I = 1, NDOFEL 
         U(I) = U(I)  - DU(I,1)   
      ENDDO     
C      *************************             
C      *** CALLING LEVEL SET *** 
C      ************************* 
      CALL LVLSETRDR(U_PHI,JELEM,NNODE) ! READ THE Level-Set FROM MATLAB 
C      *******************************************************             
C      *** CALLING THE LOCAL CRACK'S PLANE IN EACH ELEMENT *** 
C      ******************************************************* 
      CALL MIDPLNFIND(NNINT,U_MIDPNT,QT,U_PHI,COORDS,NNODE,MCRD) 
C 
      DO I = 1, MCRD 
         DO J = 1, MCRD 
            QTT(I,J) = QT(J,I) 
         ENDDO 
      ENDDO 
C      *********************************             
C      *** CALLING GAUSS COORDINATES *** 
C      ********************************* 
      CALL SUBTGAUSS(GAUSSPOINT,GWEIGHT,NNODE,MCRD)      
C      **************************************** 
C      *** LOOKING FOR OPENING DISPLACEMENT *** 
C      **************************************** 
      COUNT1 = 0 
      COUNT2 = 0 
C 
      DO I = 1, MCRD 
         UPos(I) = 0.0  
         UNeg(I) = 0.0 
         UPs(I)  = 0.0 
         UNg(I)  = 0.0 
      ENDDO       
C      ************************************             
C      *** LOOP OVER INTEGRATION POINTS *** 
C      ************************************   
      DO INTP = 1, NINTP             
         HPOINT  = 0.0 
         DO I = 1, MCRD 
            U1(I)   = 0.0 
            DLTU(I) = 0.0 
         ENDDO 
C 
         COOR(1) = GAUSSPOINT(INTP,1) 
         COOR(2) = GAUSSPOINT(INTP,2) 
         COOR(3) = GAUSSPOINT(INTP,3) 
         WEIGHT  = GWEIGHT(INTP)      
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C      ***********************************             
C      *** CALLING THE SHAPE FUNCTIONS *** 
C      ***********************************       
         CALL LAGRANGEBASIS(COOR,Nx,dNdx,NNODE,MCRD)                   
C      *********************************             
C      *** CALCULATING Gpt-LEVEL SET *** 
C      ********************************* 
         DO I = 1, NNODE 
            HPOINT = HPOINT + U_PHI(I)*dNdx(I,4)/ABS(U_PHI(I)) 
         ENDDO 
    IF (HPOINT .GT. 0.0) THEN 
       HPOINT = 1.0 
    ELSEIF (HPOINT .LT. 0.0) THEN 
            HPOINT = -1.0 
    ELSE 
       HPOINT = 0.01 
       WEIGHT = 0.0 
    ENDIF 
C      ********************************************       
C      *** CHECKING FOR Gpt WITHIN CONTACTBOUND *** 
C      ******************************************** 
         DO I = 1, NNODE 
            DO J = 1, MCRD 
               U1(J) = U1(J) + dNdx(I,4)*U(6*(I-1)+J) 
     +         + (HPOINT - ABS(U_PHI(I))/U_PHI(I))* 
     +         (dNdx(I,4)*U(6*(I)+J-3)) 
            ENDDO 
         ENDDO 
C 
         IF (HPOINT .LT. 0.0)THEN 
            COUNT1  = COUNT1  + 1 
            UNeg(1) = UNeg(1) + U1(1)  
            UNeg(2) = UNeg(2) + U1(2)  
            UNeg(3) = UNeg(3) + U1(3)  
         ELSE 
            COUNT2  = COUNT2  + 1 
            UPos(1) = UPos(1) + U1(1)  
            UPos(2) = UPos(2) + U1(2)  
            UPos(3) = UPos(3) + U1(3) 
         ENDIF     
C       
      ENDDO 
      DO I = 1, MCRD 
         DO J = 1, MCRD 
            UPs(I) = UPs(I) + QT(I,J)*UPos(J)/COUNT2 
            UNg(I) = UNg(I) + QT(I,J)*UNeg(J)/COUNT1 
         ENDDO 
      ENDDO 
C 
      DLTU(1) = UPs(1) - UNg(1) 
      DLTU(2) = UPs(2) - UNg(2) 
      DLTU(3) = UPs(3) - UNg(3) 
c       
C      *********************************************             
C      *** FORMING STIFFNESS AND RESIDUAL MATRIX *** 
C      ********************************************* 
C 
C      *******************************             
C      *** CALLING ELAST-PLAST RELATIONSHIP *** 
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C      *******************************       
      DO I = 1,MCRD 
         DO J = 1,MCRD 
            DGep(I,J) = 0.0 
         ENDDO 
      ENDDO 
C 
      CALL ELSPLC(Dep,DLTU,dV,uacrt,C,MCRD,ENRELM,JTYPE,KPEN, 
     1            Dmg1, Dmg2, Dmg3) 
C 
C     ASSIGNING DAMAGE INDECES AND CRACK OPENING DISPLACEMENT TO USER-VARIABLES 
C 
      SVARS(1)=Dmg1 
      SVARS(2)=Dmg2 
      SVARS(3)=Dmg3 
      SVARS(4)=DLTU(1) 
      SVARS(5)=DLTU(2) 
      SVARS(6)=DLTU(3) 
C 
C     TRANSFORIMG THE ELASTIC-PLASTIC RELATIONSHIP INTO LOCAL CRACK PLANE 
C       
      DO I = 1, MCRD 
         DO J = 1, MCRD 
            DO K = 1, MCRD 
               DO L = 1, MCRD 
                  DGep(I,J) = DGep(I,J) + QTT(I,K)*Dep(K,L)*QT(L,J) 
               ENDDO 
            ENDDO 
         ENDDO 
      ENDDO 
C 
C      ************************************ 
C      *** LOOP OVER INTEGRATION POINTS *** 
C      ************************************ 
 DO I = 1, NDOFEL 
         DO J = 1, NDOFEL 
       BTMsB(I,J) = 0.0 
    ENDDO 
 ENDDO 
C 
      DO IINTP = 1, NINTP             
         COOR(1) = GAUSSPOINT(IINTP,1) 
         COOR(2) = GAUSSPOINT(IINTP,2) 
         COOR(3) = GAUSSPOINT(IINTP,3) 
         WEIGHT  = GWEIGHT(IINTP) 
C      ***********************************             
C      *** CALLING THE SHAPE FUNCTIONS *** 
C      *********************************** 
         CALL LAGRANGEBASIS(COOR,Nx,dNdx,NNODE,MCRD)     
         Xi = COOR(1) 
         Yi = COOR(2) 
         Zi = COOR(3) 
    DO I = 1, MCRD 
            DO J = 1, MCRD 
               JACB(I,J) = 0.0 
            ENDDO 
         ENDDO 
C      *******************************             
C      *** FORMING JACOBIAN MATRIX *** 
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C      ******************************* 
         DO I = 1, MCRD 
            DO J = 1, MCRD 
               DO K = 1, NNODE       
                  JACB(I,J) = JACB(I,J) + COORDS(I,K)*dNdx(K,J) 
               ENDDO 
            ENDDO 
         ENDDO 
C                
         DETJ = JACB(1,1)*(JACB(2,2)*JACB(3,3) - JACB(2,3)*JACB(3,2)) - 
     +          JACB(1,2)*(JACB(2,1)*JACB(3,3) - JACB(3,1)*JACB(2,3)) + 
     +          JACB(1,3)*(JACB(2,1)*JACB(3,2) - JACB(2,2)*JACB(3,1)) 
         IF (DETJ .LT. 0.0) THEN 
            DETJ = (-1)*DETJ 
         ENDIF 
         INVJACB(1,1) = (JACB(2,2)*JACB(3,3) - JACB(2,3)*JACB(3,2))/DETJ 
         INVJACB(1,2) = (JACB(1,3)*JACB(3,2) - JACB(1,2)*JACB(3,3))/DETJ 
         INVJACB(1,3) = (JACB(1,2)*JACB(2,3) - JACB(1,3)*JACB(2,2))/DETJ 
         INVJACB(2,1) = (JACB(2,3)*JACB(3,1) - JACB(2,1)*JACB(3,3))/DETJ 
         INVJACB(2,2) = (JACB(1,1)*JACB(3,3) - JACB(1,3)*JACB(3,1))/DETJ 
         INVJACB(2,3) = (JACB(1,3)*JACB(2,1) - JACB(1,1)*JACB(2,3))/DETJ 
         INVJACB(3,1) = (JACB(2,1)*JACB(3,2) - JACB(2,3)*JACB(3,1))/DETJ 
         INVJACB(3,2) = (JACB(1,2)*JACB(3,1) - JACB(1,1)*JACB(3,2))/DETJ 
         INVJACB(3,3) = (JACB(2,2)*JACB(1,1) - JACB(2,1)*JACB(1,2))/DETJ 
C      ********************************             
C      *** FORMING DERIVATIES dN/dx *** 
C      ******************************** 
         DO I = 1, NNODE 
            DO J = 1, MCRD 
               DNDXi(I,J) = 0.0 
            ENDDO 
         ENDDO 
C 
         DO I = 1, NNODE 
            DO J = 1, MCRD 
               DO K = 1, MCRD 
                  DNDXi(I,J) = DNDXi(I,J) + dNdx(I,K)*INVJACB(K,J) 
               ENDDO 
            ENDDO 
         ENDDO 
C      *******************************             
C      *** CALCULATING B-LEVEL SET *** 
C      ******************************* 
         HPOINT = 0.0 
    DO I=1,MCRD 
       DO K=1,MCRD 
               dUdx(I,K)=0.0 
            ENDDO 
         ENDDO 
C               
    DO I=1,MCRD 
       DO K=1,MCRD 
          DO J=1,NNODE 
             dUdx(I,K)=dUdx(I,K)+DNDXi(J,K)*U(6*(J-1)+I) 
          ENDDO 
       ENDDO 
    ENDDO 
C      *********************************             
C      *** CALCULATING Gpt-LEVEL SET *** 
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C      ********************************* 
         DO I = 1, NNODE 
            HPOINT = HPOINT + U_PHI(I)*dNdx(I,4)/ABS(U_PHI(I)) 
         ENDDO 
    IF (HPOINT .GT. 0.0) THEN 
       HPOINT = 1.0 
    ELSEIF (HPOINT .LT. 0.0) THEN 
            HPOINT = -1.0 
    ELSE 
       HPOINT = 0.01 
       WEIGHT = 0.0 
    ENDIF 
         DO I=1,MCRD 
       DO K=1,MCRD 
          DO J=1,NNODE 
             dUdx(I,K) = dUdx(I,K)+(HPOINT-ABS(U_PHI(I))/U_PHI(I))* 
     +                        DNDXi(J,K)*U(6*(J-1)+I+MCRD) 
          ENDDO 
       ENDDO 
    ENDDO  
C      ************************             
C      *** FORMING B MATRIX *** 
C      ************************ 
         DO I = 1, MCRD*MCRD 
            DO J = 1, NDOFEL     
               B(I,J)  = 0.0 
               BT(J,I) = 0.0     
            ENDDO 
         ENDDO 
C 
         CALL GRADB(B,DNDXi,HPOINT,U_PHI,NNODE,MCRD,NDOFEL) 
C 
         BT = TRANSPOSE(B) 
C 
    DO I = 1, MCRD*MCRD 
            FF(I) = 0.0 
         ENDDO 
         DO I = 1, 2*MCRD     
            EC(I)=0.0 
         ENDDO 
C 
         DO I = 1, MCRD 
       DO J = 1, MCRD 
          FB(I,J) = 0.0 
          FBT(I,J) = 0.0 
       ENDDO 
    ENDDO 
C 
         FF = MATMUL(B,U) 
C 
         dUdx(1,1) = FF(1) 
         dUdx(2,1) = FF(2) 
         dUdx(3,1) = FF(3) 
         dUdx(1,2) = FF(4) 
         dUdx(2,2) = FF(5) 
         dUdx(3,2) = FF(6) 
         dUdx(1,3) = FF(7) 
         dUdx(2,3) = FF(8) 
         dUdx(3,3) = FF(9)           
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C 
C      **************************************************           
C      *** FORMING  GREEN-LAGRANGIAN & LARGE STRAINS  *** 
C      ************************************************** 
C 
         DO I = 1, MCRD*MCRD 
            IF (I .EQ. 1 .OR. I .EQ. 5 .OR. I .EQ. 9) THEN 
               FF(I) = FF(I) + 1.0 
            ENDIF 
         ENDDO 
C 
         FB(1,1) = FF(1) 
         FB(2,1) = FF(2) 
         FB(3,1) = FF(3) 
         FB(1,2) = FF(4) 
         FB(2,2) = FF(5) 
         FB(3,2) = FF(6) 
         FB(1,3) = FF(7) 
         FB(2,3) = FF(8) 
         FB(3,3) = FF(9) 
C      *******************************             
C      *** FORMING INVF & GRADF    *** 
C      *******************************  
         DO I = 1, MCRD 
            DO J = 1, MCRD 
               INVFB(I,J) = 0.0 
            ENDDO 
         ENDDO 
         DETFB = FB(1,1)*(FB(2,2)*FB(3,3) - FB(2,3)*FB(3,2)) - 
     +           FB(1,2)*(FB(2,1)*FB(3,3) - FB(3,1)*FB(2,3)) + 
     +           FB(1,3)*(FB(2,1)*FB(3,2) - FB(2,2)*FB(3,1)) 
         IF (DETFB .LT. 0.0) THEN 
            DETFB = (-1)*DETFB 
         ENDIF 
         INVFB(1,1) = (FB(2,2)*FB(3,3) - FB(2,3)*FB(3,2))/DETFB 
         INVFB(1,2) = (FB(1,3)*FB(3,2) - FB(1,2)*FB(3,3))/DETFB 
         INVFB(1,3) = (FB(1,2)*FB(2,3) - FB(1,3)*FB(2,2))/DETFB 
         INVFB(2,1) = (FB(2,3)*FB(3,1) - FB(2,1)*FB(3,3))/DETFB 
         INVFB(2,2) = (FB(1,1)*FB(3,3) - FB(1,3)*FB(3,1))/DETFB 
         INVFB(2,3) = (FB(1,3)*FB(2,1) - FB(1,1)*FB(2,3))/DETFB 
         INVFB(3,1) = (FB(2,1)*FB(3,2) - FB(2,3)*FB(3,1))/DETFB 
         INVFB(3,2) = (FB(1,2)*FB(3,1) - FB(1,1)*FB(3,2))/DETFB 
         INVFB(3,3) = (FB(2,2)*FB(1,1) - FB(2,1)*FB(1,2))/DETFB 
C        
    FBT = TRANSPOSE(FB) 
    INVFBT = TRANSPOSE(INVFB) 
C 
    DO I = 1, 2*MCRD 
            DO J = 1, MCRD*MCRD 
               Gs(I,J)  = 0.0 
      GsT(J,I) = 0.0 
            ENDDO 
         ENDDO 
C 
    CALL TANGSMS(Gs,FF,MCRD) 
C 
         GsT = TRANSPOSE(Gs) 
    GB = MATMUL(Gs,B) 
    EC = MATMUL(GB,U) 
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C      **************************             
C      *** STRESS CALCULATION *** 
C      ************************** 
         DO I = 1, 2*MCRD     
            STRS(I) = 0.0 
         ENDDO 
         DO I = 1, MCRD*MCRD 
            STRSG(I) = 0.0 
         ENDDO 
         DO I = 1, MCRD     
            DO J = 1, MCRD 
               STRGLB(I,J)  = 0.0 
               STRGLOB(I,J) = 0.0 
            ENDDO 
         ENDDO 
C 
         STRS = MATMUL(C,EC) 
C                  
         STRGLOB(1,1) = STRS(1) 
         STRGLOB(2,2) = STRS(2) 
         STRGLOB(3,3) = STRS(3) 
         STRGLOB(2,1) = STRS(4) 
         STRGLOB(1,2) = STRS(4) 
         STRGLOB(1,3) = STRS(5) 
         STRGLOB(3,1) = STRS(5) 
         STRGLOB(2,3) = STRS(6) 
         STRGLOB(3,2) = STRS(6) 
C          
         STRGLB = MATMUL(STRGLOB,IUNIT)          
         STRSG(1) = STRGLB(1,1) 
         STRSG(2) = STRGLB(1,2) 
         STRSG(3) = STRGLB(1,3) 
         STRSG(4) = STRGLB(2,1) 
         STRSG(5) = STRGLB(2,2) 
         STRSG(6) = STRGLB(2,3) 
         STRSG(7) = STRGLB(3,1) 
         STRSG(8) = STRGLB(3,2) 
         STRSG(9) = STRGLB(3,3) 
C     ************************************ 
C     ****  FORMING Gs & Ms MATRICES  **** 
C     ************************************       
         DO I = 1, MCRD**2 
            DO J = 1, MCRD**2               
               U_Ms(I,J) = 0.0 
            ENDDO 
         ENDDO 
C 
      DO I = 1, MCRD               
         U_Ms(I,I) = STRSG(1)      
         U_Ms(I+MCRD,I+MCRD) = STRSG(5)               
         U_Ms(I+2*MCRD,I+2*MCRD) = STRSG(9) 
         U_Ms(I+MCRD,I) = STRSG(4)      
         U_Ms(I,I+MCRD) = STRSG(2) 
         U_Ms(I+2*MCRD,I) = STRSG(7)      
         U_Ms(I,I+2*MCRD) = STRSG(3) 
         U_Ms(I+2*MCRD,I+MCRD) = STRSG(8)      
         U_Ms(I+MCRD,I+2*MCRD) = STRSG(6) 
      ENDDO 
C      ********************************************             
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C      *** FORMING COHESIVE & CONTACT Bc MATRIX *** 
C      ******************************************** 
         DO I = 1, MCRD 
            DO J = 1, NDOFEL         
               Bc(I,J)  = 0.0 
               BcT(J,I) = 0.0 
               BcRes(J,I) = 0.0 
            ENDDO 
         ENDDO 
         DO I = 1, NNODE 
            BcRes(6*I-5,1) = 0.0  
            BcRes(6*I-4,2) = 0.0  
            BcRes(6*I-3,3) = 0.0  
            BcRes(6*I-2,1) = dNdx(I,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I)) 
            BcRes(6*I-1,2) = dNdx(I,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I)) 
            BcRes(6*I,3)   = dNdx(I,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I)) 
            Bc(1,6*I-2) = -2*dNdx(I,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I)) 
            Bc(2,6*I-1) = -2*dNdx(I,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I)) 
            Bc(3,6*I)   = -2*dNdx(I,4)*(HPOINT-ABS(U_PHI(I))/U_PHI(I)) 
         ENDDO 
C             
         BcT = TRANSPOSE(Bc) 
C      ********************************             
C      *** FORMING STIFFNESS MATRIX *** 
C      ******************************** 
         DO I = 1, 2*MCRD 
            DO J = 1, NDOFEL 
               GB(I,J) = 0.0 
          BTGT(J,I) = 0.0 
       ENDDO 
    ENDDO 
C 
    GB = MATMUL(Gs,B) 
         BTGT = TRANSPOSE(GB) 
C 
    DO I=1, NDOFEL 
    DO J=1, NDOFEL 
    DO K=1, 2*MCRD 
    DO L=1, 2*MCRD 
       KMAT(I,J) = KMAT(I,J) + 
     +      BTGT(I,K)*C(K,L)*GB(L,J)*WEIGHT*DETJ*WIDTH 
         ENDDO 
         ENDDO 
         ENDDO 
         ENDDO 
C 
    MsB = MATMUL(U_Ms,B) 
    BTMsB = MATMUL(BT,MsB) 
C 
         DO I = 1, NDOFEL 
            DO J = 1, NDOFEL  
               KGEM(I,J) = KGEM(I,J) + BTMsB(I,J)*WEIGHT*DETJ*WIDTH 
       ENDDO 
       ENDDO 
C  
         DGBc = MATMUL(DGep,Bc) 
    BcTDGBc = MATMUL(BcT,DGBc) 
C 
         DO I = 1, NDOFEL 
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            DO J = 1, NDOFEL  
               KCON(I,J) = KCON(I,J) + BcTDGBc(I,J)*WEIGHT*DETJ*WIDTH 
       ENDDO 
       ENDDO 
C 
         DO I = 1, MCRD 
            Trct(I) = 0.0 
         ENDDO 
C          
         DO I = 1, MCRD  
            DO J = 1, NDOFEL  
               Trct(I) = TrcT(I) + DGBc(I,J)*(U(J)+DU(J,1)) 
       ENDDO 
    ENDDO 
C      ****************************             
C      *** RESIDUAL CALCULATION *** 
C      **************************** 
    DO I = 1, MCRD*MCRD 
            FF(I) = 0.0 
         ENDDO 
         DO I = 1, 2*MCRD     
            EC(I)=0.0 
         ENDDO 
C 
         DO I = 1, MCRD*MCRD  
            DO J = 1, NDOFEL  
               FF(I) = FF(I) + B(I,J)*(U(J)+DU(J,1)) 
       ENDDO 
    ENDDO          
C      *************************************************             
C      *** FORMING  GREEN-LAGRANGIAN & LARGE STRAIN  *** 
C      ************************************************* 
         DO I = 1, MCRD*MCRD 
            IF (I .EQ. 1 .OR. I .EQ. 5 .OR. I .EQ. 9) THEN 
               FF(I) = FF(I) + 1.0 
            ENDIF 
         ENDDO 
C 
         FB(1,1) = FF(1) 
         FB(2,1) = FF(2) 
         FB(3,1) = FF(3) 
         FB(1,2) = FF(4) 
         FB(2,2) = FF(5) 
         FB(3,2) = FF(6) 
         FB(1,3) = FF(7) 
         FB(2,3) = FF(8) 
         FB(3,3) = FF(9) 
C          
    DO I = 1, 2*MCRD 
            DO J = 1, MCRD*MCRD 
               Gs(I,J)  = 0.0 
            ENDDO 
         ENDDO 
C 
    CALL TANGSMS(Gs,FF,MCRD) 
C 
    GB = MATMUL(Gs,B) 
    BTGT = TRANSPOSE(GB) 
C 
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         DO I=1, MCRD 
            DO J=1, MCRD 
               CSTRN(I,J) = 0.0 
               EEC(I,J) = 0.0 
            ENDDO 
         ENDDO 
C          
         DO I=1, MCRD 
            DO J=1, MCRD 
                DO K=1, MCRD 
                    CSTRN(I,J) = FB(K,I)*FB(K,J)+CSTRN(I,J) 
                ENDDO 
            ENDDO 
         ENDDO 
         DO I=1, MCRD 
            DO J=1, MCRD 
               IF (I .EQ. J) THEN 
                   EEC(I,J) = 0.5*CSTRN(I,J)-0.5 
               ELSE 
                   EEC(I,J) = 0.5*CSTRN(I,J) 
               ENDIF 
            ENDDO 
         ENDDO 
C          
         EC(1) = EEC(1,1) 
         EC(2) = EEC(2,2) 
         EC(3) = EEC(3,3) 
         EC(4) = EEC(1,2) 
         EC(5) = EEC(2,3) 
         EC(6) = EEC(3,1) 
C          
         STRS = MATMUL(C,EC) 
C                 
C       XFEM ELEMENTS RESIDUAL FORCES DUE TO LARGE DEFORMATION 
C 
        DO I=1, NDOFEL 
      DO J=1, 2*MCRD 
         RHS(I,1) = RHS(I,1) - 
     +                   BTGT(I,J)*STRS(J)*WEIGHT*DETJ*WIDTH 
           ENDDO 
        ENDDO 
C                 
C       XFEM RESIDUAL FORCES DUE TO COHESIVE REGION OR CONTACT INTERFACE  
C 
        DO I=1, NDOFEL 
      DO J=1, MCRD 
         RHS(I,1) = RHS(I,1) + 
     +                   BcRes(I,J)*Trct(J)*WEIGHT*DETJ*WIDTH 
              RHSC(I) = RHSC(I) + 
     +                   BcRes(I,J)*Trct(J)*WEIGHT*DETJ*WIDTH 
           ENDDO 
        ENDDO  
      ENDDO ! END IF LOOP OVER GAUSS POINTS 
C      **************************************             
C      *** FORMING RIGHT-HAND-SIDE MATRIX *** 
C      ************************************** 
      AMATRX = KMAT + KGEM  + KCON 
      RETURN 
      END 
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Appendix B: Experimental Calculations According to ASTM D5528-01 [97] 

Double Cantilever Beam (DCB) Test: 

I. The Modified Beam Theory (MBT) Method: 

Based on the beam theory expressions, the critical energy release rate for the DCB test is 

written as follows [97] (see also Figure 1-4): 

cr

grip
IC wa

P
G

2

3 
  

(B-1)

where Pgrip,  , w and acr are the applied load, the displacement of the load, specimen width 

and the delamination length, respectively. Due to possible rotation in the crack tip front, 

which is neglected in standard beam theory, a correction factor is considered by treating the 

test with a longer crack length, acr+ cra . To determine the crack length increase, cra , 

experimentally, the cube root ratio of the opening displacement over the applied load, known 

as beam compliance, must be plotted versus delamination length, acr, at onset of all 

delamination propagations. The least square root method should then be utilized to find the y-

intercept which is equal to the crack length increase. By substituting the new crack length into 

the above beam theory equation, one obtains: 
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II. The Compliance Calibration (CC) Method: 

In the compliance calibration (CC) method, the least squares of )log(
gripP


 versus )log( cra at 

onset of all delamination propagations must be plotted and the slope of this line, n, is 

implemented to correct the energy release rate: 
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III. The Modified Compliance Calibration (MCC) Method: 

In the modified compliance calibration (CC) method, the normalized delamination length over 

the thickness versus the cube root ratio of opening displacement over the applied load at onset 

of all delamination propagations must be plotted and the slope of this line, Linem , is 

implemented to calculate the energy release rate: 
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where tck is the specimen thickness. 

Finally, in order to account for shortening of arm of moment and the rotation of the loading 

block, a large displacement correction factor should be multiplied into the energy release 

value calculated from either of the above methods. This correction factor is calculated as 

follows: 
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where Blockt  is the loading block thickness. 

End Notch Flexure (ENF) Experimental Test:	 

Similar to the DCB test, for ENF test data the compliance method is employed to calculate the 

critical energy release rate [19]: 
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