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Abstract

Graphics Processing Units (GPUs) have been shown to be effective at achiev-
ing large speedups over contemporary Chip Multiprocessors (CMPs) on
massively parallel programs. The lack of well-defined GPU memory mod-
els, however, prevents support of high-level languages like C++ and Java,
and negatively impacts programmability of GPUs. This thesis proposes to
improve GPU programmability by adding support for a well-defined mem-
ory consistency model through hardware cache coherence. We show that
GPU coherence introduces a new set of challenges different from that posed
by scalable cache coherence for CMPs. First, introducing conventional di-
rectory coherence protocols adds unnecessary coherence traffic overhead to
existing GPU applications. Second, the massively multithreaded GPU ar-
chitecture presents significant storage overheads for buffering thousands of
in-flight coherence requests. Third, these protocols increase the verification
complexity of the GPU memory system.

Recent research, Library Cache Coherence (LCC), explored the use of
time-based approaches in CMP coherence protocols. This thesis describes
a time-based coherence framework for GPUs, called Temporal Coherence
(TC), that exploits globally synchronized counters in single-chip systems
to develop a streamlined GPU coherence protocol. Synchronized counters
enable all coherence transitions, such as invalidation of cache lines, to hap-
pen synchronously, eliminating all coherence traffic and protocol races. We
present two implementations of TC, called TC-Strong and TC-Weak. TC-
Strong implements an optimized version of LCC, while TC-Weak uses a novel
timestamp based memory fence mechanism to implement Release Consis-
tency (RC) on GPUs. TC-Weak eliminates TC-Strong’s trade-off between
stalling stores and increasing L1 miss rates to improve performance and
reduce interconnect traffic. By providing coherent L1 caches, TC-Weak im-
proves the performance of GPU applications requiring coherence by 85% over
disabling the non-coherent L1 caches in the baseline GPU. We also show that
write-through protocols outperform a writeback protocol on a GPU as the
latter suffers from increased traffic due to unnecessary refills of write-once
data.
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Chapter 1

Introduction

Graphics Processing Units (GPUs) were originally designed to render graph-
ics for user interfaces, video games, and Computer Aided Design software.
Today, GPUs have also become ubiquitous in high-throughput, general pur-
pose computing. Recent trends show exponential growth in the number of
GPU supercomputers in the list of top 500 most powerful supercomputers
in the world [38]. This is because the high amount of compute power used to
render millions of pixels in parallel translates well to data-parallel execution.
Recent studies [40, 42, 63, 64] have shown that the large speedups attained
by GPUs over Chip Multiprocessors (CMPs) are not just limited to regular
parallelism; even highly irregular algorithms can attain significant speedups
on a GPU. Furthermore, the inclusion of a multi-level cache hierarchy in
recent GPUs [9, 68, 69] frees the programmer from the burden of software
managed caches and further increases the GPU’s attractiveness as a plat-
form for accelerating applications with irregular memory access patterns.

The proliferation of GPU computing has benefited considerably from
the introduction of new programming models. GPU vendors introduced
C-based programming interfaces like OpenCL [51] and NVIDIA CUDA
[71] to ease GPU programming by abstracting away the Single-Instruction
Multiple-Data (SIMD) hardware and providing the illusion of independent
scalar threads executing in parallel. Despite the advances in GPU program-
ming languages, a desire to support high-level languages deeply familiar to
CPU programmers, such as C++ and Java, remains. Many recent projects
[37, 41, 44, 65, 73] attempt to add limited form of C++ or Java support
through libraries or source-to-source compilation, but remain far from sup-
porting the full programming models.

Supporting high-level languages first requires support of well-defined
memory consistency models. These consistency models form the basis of
memory models for high-level languages [15, 58] and provide the synchro-
nization primitives used by multithreaded applications. Today’s GPUs have
ill-defined memory consistency models. For example, NVIDIA’s Fermi [68]
and AMD’s Southern Islands [9] GPUs present problems for GPU applica-
tions where threads may communicate across different GPU cores. Hence,
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Figure 1.1: (a) Performance improvement with ideal coherence. (b) Traffic
overheads of conventional coherence.

their programming models discourage such communication. Moreover, they
lack hardware cache coherence, which is critical in enforcing strict memory
consistency models and is regularly employed by CMPs [27, 52, 55, 77, 83].

This thesis proposes supporting a well-defined memory consistency model
by introducing hardware cache coherence to GPUs. It presents a set of
challenges in doing so that are unique to GPUs or similar high-throughput
architectures. Finally, it proposes and evaluates a novel hardware cache co-
herence mechanism that addresses these challenges. The remainder of this
chapter discusses the motivation for this thesis, the contributions of this
work, and the organization of the remaining chapters.

1.1 Motivation

Cache coherence greatly simplifies supporting well-defined consistency and
high-level language memory models on GPUs [60, 85]. Current GPUs [9, 68,
69] lack hardware cache coherence and require disabling of private caches
if an application requires memory operations to be visible across all cores.
GPU coherence is also the first step in enabling a unified address space in
heterogeneous architectures with single-chip CPU-GPU integration [16, 48].
Note that this thesis focuses on coherence in the realm of GPU cores; we
leave CPU-GPU cache coherence as future work.

A coherent memory system can be provided trivially by disabling any
privates caches. AMD’s Southern Islands GPUs [9] currently have no sup-

2



1.1. Motivation

port for disabling private caches. NVIDIA’s Fermi GPUs [68] allow the
programmer to manually disable private L1 caches while their Kepler GPUs
[70] automatically disable L1 caching of all read-write shared data. How-
ever, this disabling of caches adds significant cost by reducing application
performance. Figure 1.1(a) shows the potential improvement in performance
by enabling L1 caches for a set of GPU applications (described in Chapter
5) that contain communication across GPU cores. We classify these ap-
plications as containing inter-workgroup communication because groups of
threads, called workgroups, that execute on different GPU cores require
communication across these cores. These applications require a coherent
memory space to execute correctly. In Figure 1.1(a), compared to disabling
L1 caches (NO-L1), an ideally coherent GPU (IDEAL-COH) improves per-
formance of these applications by 88% on average. IDEAL-COH maintains a
coherent memory in hardware without incurring any latency or traffic costs
of real hardware coherence. Thus, simply disabling private caches is insuffi-
cient and a hardware cache coherence mechanism for GPUs is warranted.

GPUs present three main challenges for hardware coherence. Figure
1.1(b) depicts the first of these challenges by comparing the interconnect
traffic of the baseline non-coherent GPU system (NO-COH) to three GPU
systems with cache coherence protocols: writeback MESI, inclusive write-
through GPU-VI and non-inclusive write-through GPU-VIni (all three are
described in Section 2.2.4). These three are representative of the commonly
implemented coherence protocols on CMPs. The applications here are clas-
sified as containing intra-workgroup communication because their threads
limit communication to within workgroups only. Hence, no communication
occurs across cores and coherence is not needed. Figure 1.1(b) shows that
introducing a coherence protocol to our baseline GPU adds additional traffic
overheads. This overhead occurs because coherence traffic is generated even
though these applications have no need for it.

The second challenge of GPU coherence is tracking in-flight coherence
requests. To ease protocol implementation, CMP coherence designs use
worst case sized buffers [33] to track in-flight requests. On a GPU, CMP-
like worst case sizing requires an impractical amount of storage for tracking
thousands of in-flight coherence requests. This is because CMPs have, at
maximum, tens of requests in-flight at a time, while on GPUs this is on the
order of tens of thousands.

Third, existing coherence protocols increase hardware complexity by in-
troducing transient coherence states and additional message classes. They
require additional virtual networks [85] on GPU interconnects to ensure for-
ward progress. This also increases power consumption in the interconnection

3



1.2. Contributions

network.
The three aforementioned challenges are unique to high-throughput ar-

chitectures like GPUs, and to our knowledge are not addressed by any CMP
coherence protocols. They arise because GPU architectures are designed
to handle a large number of memory accesses in parallel. Recent research
on scalable coherence [50, 94] for CMPs with thousands of cores focuses on
issues such as tracking a large number of sharers. This is not a problem
for current GPUs as they contain only tens of highly parallel cores. In this
thesis, we propose a new hardware cache coherence protocol for GPUs that
addresses the three challenges described above.

1.2 Contributions

This thesis makes the following contributions:

1. It motivates cache coherence for GPU architectures by quantifying the
performance benefits of having coherent caches in GPUs.

2. It presents the challenges of introducing existing hardware cache co-
herence protocols to GPUs.

3. It presents the GPU-VI and GPU-VIni coherence protocols. These
include two optimizations to a VI protocol [52] that make it more
suitable for GPU architectures.

4. It provides detailed breakdown of interconnect traffic to show why
writeback protocols common on CMPs are not the best design choices
for GPUs.

5. It provides detailed complexity and performance evaluations of inclu-
sive and non-inclusive directory protocols on a GPU. It shows that
unlike for CMPs, performance does not scale with directory sizes on
GPUs.

6. It describes Temporal Coherence, a GPU coherence framework for
exploiting synchronous counters in single-chip systems to eliminate
coherence traffic and protocol races. Temporal Coherence relies on
prediction of lifetimes of private cache lines.

4



1.3. Thesis Organization

7. It proposes and evaluates the TC-Weak coherence protocol which em-
ploys novel timestamp based memory fences to implement Release
Consistency (RC) [35] on a GPU.

8. It proposes and evaluates a simple cache line lifetime prediction mech-
anism that performs well across a range of GPU applications.

1.3 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 provides an overview of the fundamental concepts in mem-
ory consistency and cache coherence, and describes the baseline GPU
microarchitecture used in this study.

• Chapter 3 describes the challenges of introducing traditional cache
coherence to GPUs.

• Chapter 4 describes Temporal Coherence and details the implemen-
tations of our two proposed coherence protocols: TC-Strong and TC-
Weak.

• Chapter 5 describes the simulation methodology and the applications
used in this study.

• Chapter 6 presents and analyzes our experimental results.

• Chapter 7 shows that our two proposed protocols correctly implement
the appropriate coherence and consistency invariants.

• Chapter 8 discusses related work.

• Chapter 9 concludes this thesis and presents ideas for future work.

5



Chapter 2

Background

This chapter describes the necessary background for this thesis. It describes
memory consistency models and explains their importance. Then, it presents
the basics of hardware cache coherence. Finally, it describes the memory
system and cache hierarchy of the baseline non-coherent GPU architecture,
similar to NVIDIA’s Fermi GPUs [68], that we study and evaluate in this
thesis.

2.1 Memory Consistency

A memory consistency model formally specifies the behaviour of the memory
system in a shared-memory multiprocessor. It describes the guarantees on
orderings of memory requests and places restrictions on values that can be
returned by the memory system. The following subsections describe the
basics of memory consistency models.

2.1.1 Memory Consistency Models

The memory consistency problems deals with reordering of memory requests
by the memory system. These reorderings can lead to incorrect program
execution and result. Table 2.1 lists an example program from Sorin et
al. [85] where a reordering of memory requests leads to incorrect results.
The program represents a common programming idiom used to implement
non-blocking queues in pipeline parallel applications [36]. It describes a
producer-consumer relationship with Core 1 producing data and Core 2
consuming it. This communication is facilitated by the shared memory
variable data. Another shared memory variable, flag, indicates when new
data has been produced by Core 1 and is safe to be read by Core 2. Core 2
waits until flag has been set before reading data into a local register.

Table 2.2 lists two possible executions of the example program in Table
2.1. In Execution 1, Core 1’s two store requests, S1 and S2, complete in the
order specified by the program. This execution results in the correct value
of data read by Core 2. In Execution 2 of the same program, S1 and S2

6



2.1. Memory Consistency

Table 2.1: Example program with inter-core communication from Sorin et
al. [85].

Core 1 Core 2

S1: data = NEW L1: r1 = flag

S2: flag = SET B1: if(r1 6= SET) goto L1

L2: r2 = data

Table 2.2: Possible executions of example program.
Execution #1 Execution #2

cycle Core 1 Core 2 Core 1 Core 2

1 S1: data=NEW S2: flag=SET

2 S2: flag=SET L1: r1=flag

3 L1: r1=flag L2: r2=data

4 L2: r2=data S1: data=NEW

result @ Core 2: result @ Core 2:
r1=SET r1=SET
r2=NEW r2=???

do not complete in program order. Further, S1, the request that updates
data, is delayed by the memory system and finishes after request L2 which
reads data. Hence, Core 2 reads an incorrect value of data and an incorrect
program execution results.

The incorrect outcome in Execution 2 resulted because the program re-
quired the update to flag to happen after the update to data, but the mem-
ory system reordered these updates. This is an example of a Store→Store re-
ordering. Similar reorderings can occur for two load instructions (Load→Load
reordering), a load followed by a store (Load→Store reordering) and a store
followed by a load (Store→Load ordering). All of these can lead to incorrect
behaviour.

There are many reasons why a core may reorder memory accesses, such
as to support features that improve performance or to ease hardware im-
plementation. Modern architectures implement out-of-order cores that may
execute instructions out of program order to extract parallelism within a
single thread. Reordering of accesses to different addresses that is safe for
single-threaded programs may not be safe for multi-threaded programs. Ta-
ble 2.2 shows an example of a reordering that is unsafe for multi-threaded
programs. Reorderings can also occur in stages of the memory system such
as the interconnection network, cache controllers and DRAM controllers.

7



2.1. Memory Consistency

Caches may cause reorderings if the first access misses while the second hits.
A Store→Store reordering can occur if the hardware combines the second
store with another store earlier than the first store. Store→Load reorderings
can arise when a store buffer is implemented to allow latency-critical loads
to bypass stores.

A memory consistency model addresses these issues by clearly specify-
ing which reorderings are permissible and which orderings will be enforced.
Hardware that implements that memory consistency model must guarantee
that the specified orderings are correctly enforced. For memory consistency
models that allow reorderings, the hardware must also provide instructions
to prevent reordering when a program’s correctness depends on it. These
instructions are known as memory fences. For example, inserting a memory
fence between instructions S1 and S2 in the example program in Table 2.1
would prevent reordering of their accesses. This modified program would
execute correctly on a larger set of processors than the unmodified program.

2.1.2 Types of Consistency Models

Consistency models are typically classified into two groups: strong consis-
tency models and relaxed (or weak) consistency models. Strong models allow
fewer reorderings of memory operations in hardware than relaxed models.
Relaxed models mandate fewer ordering constraints which may permit more
hardware and compiler optimizations leading to higher performance. How-
ever, relaxed models may make parallel programming more challenging as
the programmer needs to identify instructions in the code where the mem-
ory order must be maintained. For example, the program listed in Table
2.1 would execute correctly on a device that supported a strong consistency
model, but requires a memory fence instruction for correct execution on
relaxed models.

The most well-known and intuitive strong memory consistency model is
Sequential Consistency (SC) [54]. SC requires that all memory operations
from a thread complete in program order, i.e., no reorderings of memory
accesses are permitted. Another strong consistency model is Total Store
Order (TSO). TSO has been shown to match the memory model of the
widely implemented x86 architecture [81]. TSO only permits Store→Load
reorderings. This relaxation allows the inclusion of store buffers, which hide
the latency of store operations by temporarily buffering them at the core and
prioritizing load operations. In doing so, load operations occurring later in
program order than stores complete before them. TSO fences may be used
to enforce a Store→Load ordering, though most programs do not require
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this ordering for correct execution [85].
Relaxed memory models include commercial models such as IBM Power

memory model [29], Alpha [84], SPARC Relaxed Memory Order (RMO)
[86], and ARM [80], and academic models such as Release Consistency (RC)
[35] and Weak Ordering (WO) [7]. All of these models permit reordering of
load and store accesses, i.e., all of Load→Load, Load→Store, Store→Load
and Store→Store reorderings are allowed. Each model provides memory
fences or similar instructions to enforce an ordering when needed.

2.1.3 Which Consistency Model is the Best?

The choice for best consistency model is debatable. Proponents of strong
consistency models argue for their intuitiveness, familiarity and wide-spread
use in the form of x86 architectures. Arguments for relaxed consistency in-
clude better performance afforded by the relaxation of restrictions on com-
piler and hardware. With no clear answer to which consistency model is
best, assuring portability of programs across models becomes a challenge.

To address this challenge, the concept of Sequential Consistency for Data
Race Free (SC for DRF) programs was introduced [7]. A data-race occurs
when two threads within a program access the same memory location, at
least one of the accesses is a store, and there is no synchronization operation,
such as a lock, between the two racing accesses. A program without data-
races is called a data-race free program. SC for DRF guarantees that a data-
race free program will achieve the same execution on a relaxed consistency
model that it would on SC. All consistency models mentioned earlier support
SC for DRF. The programmer now only needs to ensure that the program
is data-race free to allow portability across platforms with different memory
consistency models.

High-level languages like Java and C++ make this task easier for the
programmer by providing primitives and libraries for data-race free syn-
chronization. Both the C++ memory model [15] and the Java memory
model [58] adopt SC for DRF. Hence, a well-defined consistency model that
supports SC for DRF is of paramount importance in supporting C++ and
Java on GPUs. To this end, in this work we propose to support Release
Consistency, which supports SC for DRF, on GPUs.

2.2 Cache Coherence

Cache coherence is a component of the memory consistency model that
deals with problems that arise due to private replication of data in caches.
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Figure 2.1: Incoherence example. The cache prevents Core 2 from reading
the latest value of flag at cycle 3. The code executed is listed in Table 2.1.

With the addition of caches, a thread can continue to read the stale, cached
copy after it has been updated in main memory. A coherence mechanism is
tasked with invalidating those stale copies. It allows the consistency model
to provide guarantees that updates will become visible to all threads on an
architecture with caches. Coherence can also be thought of as a mechanism
to make caches architecturally invisible in the memory system [85].

2.2.1 The Incoherence Problem

To illustrate the problem with naively introducing caches in a multi-core
system, Figure 2.1 shows a possible execution of the program from Table
2.1. The figure shows two cores, each with a private data cache, and the
main memory. The main memory initially contains the values OLD and
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NULL for data and flag, respectively. At cycle 1, Core 2 issues the load
instruction L1 to read flag. The value NULL is read and stored in Core
2’s private cache. At cycle 2, Core 1 issues the two store instructions which
update data and flag in main memory. At cycle 3, Core 2 again issues the
load instruction for flag because it did not equal SET the first time. The
load access hits in Core 2’s private cache and returns the stale value NULL.
A livelock is introduced by adding caches as Core 2 will continuously spin
on the load instruction as it waits for the update to flag.

2.2.2 Properties of Hardware Cache Coherence

The coherence mechanism can be implemented in software or hardware.
Software coherence conservatively invalidates stale cache entries by inserting
invalidation instructions into the code. Hardware coherence does not require
any code modifications, provides superior performance to software-based
coherence [60], and is more prevalent. A hardware cache coherence protocol
performs the following three duties [6]:

1. It propagates newly written values to all privately cached copies.

2. It informs the writing thread or processor when a store operation has
been completed and is visible to all threads and processors.

3. It may ensure write atomicity [6], i.e., a value from a store is logically
seen by all threads at once.

The first property of hardware coherence is that it propagates new values
to processors. Most hardware coherence protocols do so by invalidating all
stale copies before the new value is written in a cache or main memory.
Coherence assigns coherence states to all cache lines. In directory-based
coherence protocols, a structure called a directory tracks the states of all
lines currently cached by all processors. For each cache line, the directory
also stores a sharer list. The sharer list indicates which processors contain
a copy of that line.

Figure 2.2 shows how a directory-based protocol would provide coherence
for the example in Figure 2.1. For simplicity, Figure 2.2 shows the directory
states embedded with main memory. Most implementations today embed
the directory with a shared last-level cache [83] or include a separate on-chip
directory structure [28]. We show a conventional MSI coherence protocol,
named for the three coherence states Modified, Shared and Invalid. The
Modified state indicates the latest value and is an exclusive state; only one
processor may have the line in the Modified state, all other private copies
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Figure 2.2: Example with idealized directory coherence. Compared to Fig-
ure 2.1, coherence adds states to each cache line and a directory in main
memory. The directory tracks the coherence state and a sharer list for each
line.
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Table 2.3: Independent Read Independent Write example from Sorin et al.
[85]. Initially, data1 and data2 = OLD.

Core 1 Core 2 Core 3 Core 4

data1 = NEW data2 = NEW

r31 = data1 r41 = data2

FENCE FENCE
r32 = data2 r42 = data1

must be invalid. The Shared state indicates that multiple processors may
have a copy of the line. The Invalid state indicates an invalid copy.

In Figure 2.2, both data and flag start in the Invalid state as neither of
the cores has a copy. At cycle 1, when Core 2 reads flag, its state changes
to Shared. At cycle 2, Core 1 attempts to write new values to data and
flag. To do this, Core 1 requests Modified permissions for these two lines
from the directory. The directory finds flag in the Shared state in Core
2. Since Modified is an exclusive state, the directory sends an invalidation
request to Core 2 which changes Core 2’s copy of flag to Invalid. After
acquiring Modified permissions, Core 1 can update the values of data and
flag in its local cache. At cycle 3, Core 2 again attempts to read flag.
Its local copy is invalid, so a request is sent to the directory. The directory
finds Core 1 to contain a Modified copy and forwards the request to Core 1.
Core 1 changes its copy’s state to Shared and responds to Core 2 with the
latest value of flag. By invalidating the stale copy in Core 2 and forwarding
the new copy from Core 1, the coherence protocol is able to eliminate the
livelock issue due to incoherence in Figure 2.1.

The second property of coherence is that it informs the writing proces-
sor when the value written by the store operation has become visible to
all processors. As discussed earlier in Section 2.1, the code in Table 2.1
requires a memory fence instruction between the two stores on a relaxed
memory consistency model. The fence instruction needs to guarantee that
other processors cannot read the old value of flag beyond this point. In
Figure 2.2, the fence instruction would wait until the store instruction S1
was complete, ensuring that all stale copies of flag were invalidated by
the coherence protocol. This work presents a coherence protocol called TC-
Weak where a store completes before all stale copies have been invalidated.
Instead, we propose a novel memory fence mechanism to ensure that this
second coherence property is met.
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Finally, the third coherence property, called write atomicity, guarantees
that the value from a store operation becomes logically visible to all threads
or processors at the same time. The write atomicity property is optional
in coherence; some memory consistency models [7, 35, 84, 86] require it
while others [2, 35, 80] do not. We propose a coherence protocol called
TC-Weak that does not provide write atomicity. Table 2.3 lists an example
program, called Independent Read Independent Write (IRIW) [85], where
write atomicity and lack thereof can return different results. In the IRIW
example, Cores 1 and 2 each write to separate locations, and Cores 3 and
4 read both locations but in reversed order. The result r31=NEW, r41=NEW,
r32=OLD, r42=OLD is not possible with write atomicity. It implies that Core
3 saw the update to data1 before the update to data2, and Core 4 saw the
update to data2 before data1. With no write atomicity, this execution is
valid and that result may occur. The IRIW code example makes use of data
races and does not conform to SC for DRF. Modifying the code to eliminate
the data-races by adding the appropriate synchronization operations would
allow it to conform to SC for DRF and would ensure it executes correctly
across all memory models. Most programs do not depend on write atomicity
for correctness [6], and write atomicity is not required by memory models
for high level languages like Java and C++ [6, 85].

Sorin et al. [85] summarize the three coherence protocol properties into
two invariants. The first is referred to as Single-Writer Multiple-Reader
(SWMR) and requires that at any given time a memory location may be
written by only a single thread, or it may be read by any number of threads.
This allows the division of a memory location’s lifetime into epochs. In a
read-write epoch, only a single thread is allowed to read and write to the
given memory location. In a read-only epoch, any number of threads or
processors are allowed to only read the given memory location. The second
invariant is called the Data-Value Invariant and specifies that modifications
to a value in one epoch must be visible in the next epoch. In Section 7.1
we show that one of our proposed protocols that supports write-atomicity,
TC-Strong, ensures these two invariants. Section 7.2 also shows that our
other proposed protocol that does not implement write-atomicity, TC-Weak,
correctly implements the invariants needed for Release Consistency.

2.2.3 Coherence Implementation

Below we describe common design decisions for hardware coherence.
States. Coherence assigns additional states to lines in caches. The ex-

ample in Figure 2.2 used the M(odified), S(hared) and I(nvalid) coherence
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states. These are termed stable states as they describe lines not under-
going coherence activity. Additional transient states are needed to track
transitions from one stable state to another. Transient states are tracked
in associative lookup tables called Miss Status Holding Registers (MSHRs)
(sometimes also called Transaction Buffer Entries (TBEs)), rather than in
the cache or directory storage itself. Reasons for this are twofold [85]. First,
transient states need to track additional information regarding the transi-
tion. For example, when a core attempts to store a new value to a line in
the S state, it must first acquire M permission for the line from the direc-
tory. This line will move to the S→M transient state until a response is
received. If the directory informs the core that other sharers exist, then the
core must wait for invalidation acknowledgments from other sharers before
transitioning to the M state. The number of pending acknowledgment mes-
sages is additional information that the transient state needs to track. This
is tracked inside each MSHR entry. Second, a cache controller may buffer
incoming messages into a pool and each cycle select a message that is ready
to service. An associative lookup of transient states is needed to quickly
determine which of the messages can be processed.

Inclusion and Non-Inclusion. An inclusive cache hierarchy is one
where if a line is present in the lower level cache it must also exist in the
higher level cache. For an inclusive two-level GPU cache hierarchy, a copy
in the private L1 cache would mean that the shared last-level L2 cache also
contains a copy. Inclusion allows the coherence directory to be embedded
within the last-level cache by appending a directory state field and a sharer
list to each cache line. It simplifies directory implementation [11] and saves
tag storage that would be needed if the directory was a separate structure.
The disadvantage is that to maintain inclusion, it invalidates all L1 copies
by sending recall messages to all L1 sharers when an L2 line needs to be
evicted. On CMPs, improperly sized caches can lead to excessive recalls
and performance degradation [60]. In this work we study the effects of both
inclusion and non-inclusion on GPU coherence.

Write-Through and Writeback. The MSI protocol in Figure 2.2
implemented writeback L1 caches. The store operation completed at the
L1 cache after Modified permissions were acquired, and the data was not
propagated to the main memory. Writeback caching reduces store latency
and saves the energy of writing data through to the higher level cache at
every store. Most modern CMP architectures [20, 28, 55, 77, 83] imple-
ment writeback caches and hence coherence protocols such as MSI, MESI
and MOESI are common. The alternative to writeback caches are write-
through caches. These propagate store data to the next level cache at every
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Figure 2.3: Deadlock example. (a) Same network buffer for both requests
and responses introduces a deadlock. (b) Separate network buffers eliminate
deadlock.

store. As a result, write-through caches do not hold dirty data, eliminate
the need for Modified and similar coherence states, and simplify coherence
implementation. Write-through coherence requires only 2 stable states at
the L1: Valid and Invalid. We refer to a write-through coherence protocol
as the VI protocol.

Virtual Networks. Coherence protocols put additional constraints on
interconnection networks. They require a minimum number of virtual net-
works depending on the protocol implementation. Figure 2.3 illustrates the
need for this. Core 1 has a cache line in the S→M transient state that is
waiting for an invalidation acknowledgement from Core 2 before going to
the M state. Core 1 also has requests that currently cannot be processed.
An example would be a request from Core 3 for the same line. In Figure
2.3(a), a single virtual network is used, Core 2’s response becomes stuck be-
hind the blocked requests, and a system deadlock results. In Figure 2.3(b),
the response is sent on a separate virtual network, it bypasses the blocked
requests, and a deadlock is avoided. Coherence requires a separate virtual
network for every message class [85]. Virtual networks may be implemented
as separate physical networks, or as separate virtual channels [30] within the
same physical network. We adopt the latter approach for our evaluations.
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2.2.4 Directory Protocols

This section describes the MESI and GPU-VI directory protocols that we
compare against in this thesis. All of MESI, GPU-VI and GPU-VIni re-
quire a coherence directory to track the L1 sharers. MESI and GPU-VI
enforce inclusion through invalidation (recall) of all L1 copies of a cache line
upon L2 evictions. Inclusion allows the sharer list to be stored with the L2
tags. GPU-VIni is non-inclusive and requires separate on-chip storage for a
directory.

MESI

The MESI coherence protocol is taken from the gem5 simulator [14]. It is
representative of common writeback CMP protocols. Both of MESI’s L1
and L2 caches are writeback write-allocate. It is similar to the MSI protocol
described in Section 2.2 with the exception of the additional Exclusive or E
state. The E state is like the M state in that only one processor may have
a valid copy of the line in this state. Unlike M, the E state is read-only and
is given out in place of the S state when a processor is the first and only
agent to read a line. If that same processor later stores to that line, it can
silently upgrade the line’s state from E to M without having to send the
directory a message to acquire Modify permissions. This E state essentially
optimizes for read-write data by optimistically assuming that any data read
by a processor will soon be modified by the same processor.

Since MESI is a writeback protocol, it does not use the write-through
mechanism for performing atomic operations at the shared L2 cache de-
scribed in Section 2.3.4. Instead, MESI performs the atomic operation at
the L1 cache after the write permission to the line has been acquired. All the
other protocols we evaluate in this thesis use the write-through mechanism
from the baseline GPU to perform atomic operations.

MESI also contains optimizations to eliminate the point-to-point order-
ing requirement of the non-coherent GPU interconnect and cache controllers.
Instead, MESI relies on five physical or virtual networks to support five dif-
ferent message classes to prevent protocol deadlocks. MESI implements
complex cache controllers capable of selecting serviceable requests from a
pool of pending requests. The write-allocate policy at L1 requires that store
data be buffered until proper coherence permission has been obtained. This
requires the addition of area and complexity to buffer stores at each GPU
core.
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GPU-VI

GPU-VI is a two-state coherence protocol inspired by the write-through pro-
tocol in Niagara [52]. GPU-VI implements write-through, write-no allocate
L1 caches. It requires that any store completing at the L2 invalidate all
L1 copies. A store to a shared cache line cannot complete at the L2 until
the directory has sent invalidation requests and received acknowledgments
from all sharers. Since GPU-VI implements an inclusive cache hierarchy,
the directory information is embedded in the L2 cache lines. It requires
recall messages when an L2 lines needs to be evicted. GPU-VI has 4 mes-
sage classes and thus requires 4 physical or virtual networks to guarantee
deadlock-free execution.

We now describe the detailed implementation of the GPU-VI protocol.
A cache coherence protocol is formally specified as a set of state machines.
There is one state machine for each type of cache controller. In the case
of a two-level cache hierarchy present in GPUs, GPU coherence specifies
one state machine for the L1 caches and one for the last-level L2 cache.
Coherence state machines are commonly presented in a table format [59, 85].
Tables 2.4 and 2.5 present the L1 and L2 state machines, respectively, of
the GPU-VI coherence protocol.

Tables 2.4 and 2.5 list the states in the leftmost column and events in
the topmost row. Each table cell describes the transitions between states
when an event, given by the column heading, occurs for a cache line in the
state, given by the row heading. The cell lists the actions taken by the
controllers and the next state of the cache line. Note that each cache line
has its own independent state; coherence is not concerned with interactions
between cache lines of different addresses. The underneath captions describe
the messages, events and conditional statements used within the tables.

Table 2.4 lists the 5 L1 states. The stable states, which are also the
protocol’s namesake, are V(alid) and I(nvalid). The remaining three tran-
sients states are V M, I V and I I. V M handles store operations to a valid
line, I V handles load misses, and I I handles stores misses and invalidation
races. A load transaction looks as follows. A load requested to an I line
issues a (GETS) request to the L2 and moves to the I V state. When data
is returned from the L2, it moves to the V state. Similarly, a store request
to an I line issues a request to the L2 and moves to the I I state. However, a
store acknowledgment from the L2 moves the line back to I. This is because
the L1 in GPU-VI is write-no allocate, i.e., a store miss does not allocate a
line and bring in data. Atomic requests are handled similarly to store. Since
atomic requests are performed at the L2 and also return data, for simplicity
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Table 2.4: L1 States for GPU-VI Protocol.
Processor Request L1 Action From L2

State Load Store Atomic Eviction INV DATA ACK

I GETS GETX ATOMIC × INVACK × ×
(Invalid) → I V → I I → I I
V hit GETX ATOMIC evict INVACK × ×
(Valid) → V M → I I → I → I
V M GETS GETX ATOMIC stall INVACK load done store done
(Upgrade) → I I → I I (pending 0?) (pending 0?)

→ V → V
I V × GETX ATOMIC stall INVACK load done ×
(Load Miss) → I I → I I → I I → V
I I GETS GETX ATOMIC evict INVACK (load?) store done
(Store Miss) load done (pending 0?)

(atomic?) → I
atomic done
(pending 0?)

→ I

L1⇒L2 messages: GETS (load). GETX (store). ATOMIC. INVACK (invalidation ack).
L2 Triggered Events @ L1: INV (invalidation or recall request). DATA (data from load
or atomic request). ACK (store complete from L2).
L1 Conditionals: load/store/atomic? (response to GETS/GETX/ATOMIC?). pending 0?
(all pending requests satisfied?).
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Table 2.5: L2 States for GPU-VI Protocol.
L1 Request or Response L2 Action From Mem

State GETS GETX ATOMIC ALL INVACK Evict Mem Data

I FETCH FETCH FETCH × × ×
(Invalid) → I S → I M → I M
N add sharer ACK DATA × (dirty?) ×
(No Sharers) DATA WB

→ S → I
S add sharer (private?) (private?) × (dirty?) ×
(≥1 Sharers) DATA ACK DATA WB

– else – → N RCL
INV – else – → M I

→ S M INV
→ S M

I S merge stall stall × stall DATA
(Load Miss) → S
I M stall stall stall × stall (store?)
(Store Miss) ACK

(atomic?)
DATA
→ N

S M stall stall stall reset sharer stall ×
(Invalidating) (store?)

ACK
→ S

(atomic?)
DATA
→ N

M I stall stall stall → I stall ×
(Recalling)

L2⇒L1 messages: ACK (store done). DATA (data response). INV (invalidation
requests to all sharers except the requester). RCL (recall/invalidation requests to all
sharers).
L2⇒MEM messages: FETCH (fetch data from memory). WB (writeback data to
memory).
L2 Conditionals: dirty? (L2 data modified?). multiple? (multiple load requests
merged?). private? (lone sharer is requester?).
L2 Actions: merge (merge load requests). add sharer (add requester to sharers list).
reset sharer (remove all sharers and add requester to sharers list).
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reasons they immediately invalidate an L1 line in the V state. Also of note
is that receiving invalidations in any of the transient states causes a line to
move to the I I state. I I is a catch-all state to handle invalidation races
and invalidate the line after its original transaction is complete.

Table 2.5 lists the 7 states for GPU-VI’s L2 state machine. The I stable
state is for an invalid L2 line, the N stable state for a valid L2 line with no L1
sharers, and the S stable state for a valid L2 line with one or more L1 sharers.
The I S and I M transient states handle load and store misses, respectively.
The L2 is a writeback, write-allocate cache, so unlike the L1 both load and
store misses allocate a line in the L2. The S M transient state handles
sending invalidations to sharers and waiting for acknowledgments when a
processor tries to store to a shared line. The M I transient state handles
sending recall/invalidation messages to all sharers when the L2 wants to evict
a shared line. Of note are the transactions involving invalidations. When
an S line with sharers receives a store (GETX) request it may perform one
of two transitions. It will either simply return an acknowledgment if the
writer is the lone sharer, or it will send invalidation requests to all sharers
and then wait in the S M state. In the S M state, when all invalidation
acknowledgments have been received, the L2 sets the requester as the lone
sharer, returns an acknowledgment to the L1 requester, and moves the L2
line back to the S state. A similar sequence of events occurs if an S line is
evicted. After sending any dirty writeback data to memory, the L2 sends
recall/invalidation requests to all sharers and moves the line to theM I state.
The line waits in the M I state until all invalidation acknowledgments have
been received, and then moves to the invalid state.

GPU-VI adds two optimizations over a conventional VI protocol [87]
on CMPs. First, the CMP implementation buffers the store data in a store
queue and only writes the data to the L1 cache when a store acknowledgment
has been received from the directory. The storage needed to buffer store data
presents a significant challenge for GPUs because the number of concurrent
memory requests is orders of magnitude greater than CMPs. Instead, in case
of a store hit, GPU-VI writes the store data to the L1 cache as soon as the
request is serviced by the L1. In case of a store miss, the write no-allocate
feature does not allocate an L1 line. In both cases, GPU-VI does not need to
buffer store data at the core after it exits the in-order memory stage. This
optimization alone breaks write atomicity. A thread can now read from
the L1 a value written by another thread on the same GPU core before all
invalidation acknowledgments for that line are received from the directory.
A naive solution here would be to disallow a read operation to an L1 line that
has a pending store. The native solution is problematic because the memory
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stage in our baseline GPU cores is in-order. Stalling a read operation will
stall the entire upstream memory pipeline, including memory requests from
other wavefronts. GPU-VI implements a second optimization. It treats
loads to any L1 line that has pending stores as misses. This prevents the
load from stalling the upstream memory stages. The point-to-point ordering
guarantee provided by the GPU memory system will ensure that the load
cannot read the value from a pending store at the L2 prematurely, i.e., before
the store operation invalidates all stale copies. Hence, write atomicity will
also be maintained.

GPU-VIni

The non-inclusive GPU-VIni (the ni stands for non-inclusive) decouples the
directory storage in GPU-VI from the L2 cache to allow independent scaling
of the directory size. It adds additional complexity to manage the states
introduced by a separate directory structure. The same cache controller in
GPU-VIni manages the directory and the L2 cache. Eviction from the L2
cache does not generate recall requests. Eviction from the directory still
requires recall because the directory must track all valid lines in the L1
caches. Eviction of a directory entry also triggers an L2 eviction because
the directory must also track all valid L2 lines. The directory in GPU-VIni
can be sized independently of the L2 cache; its size can be increased to
reduce recall rates. By default, GPU-VIni implements an 8-way associative
directory with twice the number of entries as the number of total private
cache lines (R=2 as in the framework proposed by Martin et al. [60]).
Section 6.7 presents data for GPU-VIni with larger directory sizes.

2.3 Graphics Processing Units

The GPU is a type of a compute accelerator architected to provide high
throughput on parallel programs. The highly parallel GPU architecture
leverages light-weight threads and SIMD hardware to support thousands
of concurrent operations. In contrast, CMP architectures are designed to
execute a single to a few threads on each core. CMPs expend hardware
resources to improve the performance of individual threads through features
such as speculation, out-of-order execution and large on-chip caches. The
GPU forgoes such features in favour of a large number of ALUs and deeper
memory pipelines. The GPU effectively hides long latencies, such as that
of a cache-missed memory access, by having a large pool of threads ready
to issue an instruction. This allows programs with sufficient independent
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Figure 2.4: Baseline non-coherent GPU Architecture.

parallelism among threads to achieve high utilization of the parallel GPU
hardware and achieve significant speedups over CMP architectures.

To support fast switching between thread contexts the GPU architecture
contains key differences compared to CMPs. A large register file on the or-
der of Megabytes holds register state for all concurrently scheduled threads
and reduces the overhead of switching thread contexts. A scheduler selects
between thousands of concurrently executing threads to issue the next in-
struction. Most importantly to the subject of this thesis, the GPU memory
system is designed to handle thousands of concurrently executing memory
operations that are generated by the thousands of concurrent threads. The
GPU’s significantly higher memory parallelism is needed to effectively hide
latencies for the large number of GPU threads.

The following subsections describe the baseline GPU architecture that
we study in this work. We describe a non-cache coherent GPU architecture
that resembles NVIDIA’s Fermi GPUs [68].

2.3.1 High-level GPU Architecture

Figure 2.4 shows the high-level organization of our baseline non-coherent
GPU architecture. Only features of the GPU architecture that are relevant
to this work are presented in the figure. A set of GPU cores (Compute cores
in AMD terminology and Single-Instruction Multiple-Thread (SIMT) cores
in NVIDIA’s terminology) connect via an on-chip interconnection network
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to a set of memory partitions. Each core’s memory unit contains an on-chip
scratchpad memory (Local Memory in AMD systems and Shared Memory
in NVIDIA systems), a memory coalescing unit, an L1 data cache and a set
of L1 MSHRs. The memory partitions connect to off-chip GDDR DRAM
chips. The memory partitions also house a slice of the shared L2 cache and
an Atomic Unit that is used to execute read-modify-write operations.

GPUs are most commonly programmed using OpenCL [51] or CUDA
[71]. An OpenCL or CUDA application begins execution on a CPU and
launches compute kernels onto a GPU. Each kernel launches onto a GPU
a hierarchy of threads: an NDRange of work groups of wavefronts of work
items/scalar threads in OpenCL terminology. In NVIDIA’s terminology, the
same hierarchy is named a grid of Cooperative Thread Arrays (CTAs) of
warps of threads. Each workgroup or CTA is assigned to a single GPU
core. Scalar threads within the workgroup are managed as SIMD execution
groups consisting of 32 threads called wavefronts or warps. At each cycle the
hardware scheduler in each GPU core selects a wavefront with an instruction
ready to execute and schedules it onto one of the SIMD pipelines.

2.3.2 GPU Memory System

AGPU kernel commonly accesses the local, thread-private and globalmemory
spaces. Software-managed scratchpad memory is stored in on-chip scratch-
pad buffers at each GPU core and used for communication between threads
in the same workgroup. Thread-private memory is private to each thread.
Global memory is shared across all threads on a GPU. Both thread-private
and global memory are stored in off-chip GDDR DRAM and cached in the
multi-level cache hierarchy. Of these two only global memory is accessible
across threads and hence may require cache coherence. The off-chip DRAM
memory is divided among a number of memory partitions that connect to
the GPU cores through an interconnection network.

Memory accesses to the same cache line from different threads within
a wavefront are merged into a single wide access by the Coalescing Unit.
Therefore, a memory instruction from a single wavefront generates one mem-
ory access for every unique cache line accessed by the threads in the wave-
front. This can range from one access when each of the 32 threads in a
wavefront accesses a consecutive 4-byte word within a single 128-byte cache
line, to 32 accesses when each thread accesses a different cache line. This
behaviour is in stark contrast to a CPU where a single memory instruction
only accesses small part of a single cache line. All memory requests on our
baseline GPU are handled in First-In First-Out (FIFO) order by the in-order
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memory stage of a GPU core. Stores to the same word by multiple scalar
threads in a single wavefront do not have a defined behaviour [71]; only
one store will succeed. In this thesis, from the memory consistency model’s
perspective, a GPU wavefront is similar to a CPU thread.

2.3.3 GPU Cache Hierarchy

The GPU cache hierarchy consists of per-core private L1 data caches and a
shared L2 cache. The L1s follow a write-evict [71] (write-purge [46]), write
no-allocate caching policy. The L1 caches are not coherent. This means that
updates to values will not become visible to other GPU cores that have the
stale value cached in their L1 data caches. Those other cores will continue
to read the stale value until it is evicted from their L1. Each memory
partition houses a single bank of the L2 cache. The L2 cache banks are
writeback with write-allocate. Memory accesses generated by the coalescing
unit in each GPU core are passed, one per cycle, to the per-core L1 MSHR
table. The L1 MSHR table combines read accesses to the same cache line
from different wavefronts to ensure only a single read access per-cache line
per-GPU core is outstanding. Stores are not combined and, since they write-
through, any number of store requests to the same cache line from a GPU
core may be outstanding. Point-to-point ordering in the interconnection
network, L2 cache controllers and off-chip DRAM channels ensures that
multiple outstanding stores from the same wavefront to the same address
complete in program order. All cache controllers service one memory request
per cycle in order. Misses at the L2 are handled by allocating an L2 MSHR
entry and removing the request from the request queue to prevent stalling.

2.3.4 Atomic Operation

Read-modify-write atomic operations are performed at each memory par-
tition by an Atomic Operation Unit. In our model, the Atomic Operation
Unit can perform a read-modify-write operation on a line resident in the L2
cache in a single cycle.
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Chapter 3

Challenges of GPU

Coherence

This section describes the main challenges of introducing conventional co-
herence protocols to GPUs.

3.1 Coherence Traffic

Traditional coherence protocols introduce unnecessary traffic overheads to
existing GPU applications that are designed for non-coherent GPU architec-
tures. With MESI, the traffic overhead is primarily due to its write-allocate
L1 caches. Write-allocate optimizes for store locality by allocating lines into
the L1 on store misses. The detailed breakdown in Section 6.2 shows that
GPU applications exhibit little store locality and the additional traffic is
wasted. Implementing the writeback MESI with write-no allocate instead
of write-allocate would greatly complicate the protocol as now a store oper-
ation can complete at both the L1 and the L2 cache. Additional transient
states are needed at the L1 to generate and complete a write-through op-
eration when a store misses. Additional transient states are also needed at
the L2 to handle a store completing at the L2.

The write-through GPU-VI protocols are better suited than MESI for
GPUs. However, they too reveal a traffic overhead of traditional coherence
on GPUs: recall traffic. When a directory needs to evict an entry, it sends
recall messages to all L1 sharers asking them to invalidate their copies.
Recall traffic is a function of the directory size relative to the aggregate
capacity of all L1 caches, the larger the directory’s relative size the fewer
the number of recalls. For inclusive protocols, the directory size is fixed
by the size of the last-level cache. Inclusive protocols on CMPs implement
large last-level caches, which keeps the recall rate low [60]. A GPU cache
hierarchy, however, is driven by graphics workloads. It features a last-level
L2 cache roughly equal in size to the aggregate L1 caches [9, 68, 69]. CMP
coherence protocols may also employ explicit notifications at L1 evictions to
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update the directory’s sharer state [28] to reduce recall traffic. Each private
cache on a GPU services tens of wavefronts, each of which can generate
32 memory requests per instruction, leading to high cache contention and
line eviction rates. We tested a version of GPU-VI with explicit L1 eviction
messages and found it to increase, rather than decrease, the traffic overhead.
Hence, the inclusive GPU-VI is susceptible to recall traffic on GPUs.

The next option is a non-inclusive write-through protocol like GPU-VIni.
We found that a directory sized according to CMP designs [60] still suffers
from a high recall rate in GPUs. Finally, we show in Section 6.7 that while
very large directories reduce recalls to manageable amounts, they introduce
invalidation traffic since they are large enough to capture working sets be-
tween two consecutive GPU kernels. For intra-workgroup applications, this
invalidation traffic is an overhead that did not exist in the baseline non-
coherent GPU.

An effective way to reduce coherence traffic is to selectively disable co-
herence for data regions that do not require it. Kelm et al. [49] proposed
a hybrid coherence protocol to disable hardware coherence for regions of
data. It requires additional hardware support and code modifications to
allow data to migrate between coherence domains. In this thesis we present
a protocol that enables coherence without the use of coherence messages.
Section 4.3 explains how TC-Weak uses timestamps to enforce coherence at
cache line granularity without requiring any code modifications to identify
coherent and non-coherent data.

3.2 Storage Requirements

In directory protocols, requests racing to the directory may be handled in
one of three ways [85]. They may be processed immediately, held at the
directory in on-chip storage, or negatively acknowledged (NACKed) and
re-issued at a later time. Negative acknowledgments greatly complicate a
protocol, can lead to protocol livelocks, and should be avoided [85]. Instead,
CMP coherence implementations dedicate enough on-chip storage resources
to buffer the worst case number of coherence requests [33].

GPUs, however, execute tens of thousands of scalar threads in paral-
lel. These can lead to tens of thousands of memory requests in-flight at
a time, leading to large MSHR storage overheads for buffering coherence
transactions. Assume 11-byte MSHR directory entries (8 bytes for address,
0.5 bytes for coherence states, 2 bytes for core IDs/sharer vector, 0.5 bytes
for pending acknowledgments count). Also assume a maximum of one out-
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Table 3.1: Comparison of protocol state counts.
State Type Non-Coh. GPU-VI GPU-VIni MESI TC-Weak

L1 Cache Stable 2 2 2 4 2
Transient Cache 2 2 2 2 2

Transient Coherent 0 1 1 4 1
Total L1 States 4 5 5 10 5

L2 Cache Stable 2 3 5 4 4
Transient Cache 2 2 2 3 2

Transient Coherent 0 2 8 9 1
Total L2 States 4 7 15 16 7

standing memory instruction per wavefront, which can diverge to generate
32 memory requests. With 48 wavefronts per GPU core and 16 GPU cores,
a total of 24,576 memory requests may be in-flight. Worst case MSHR siz-
ing would therefore require 264kB of storage. This means that 25% of our
baseline GPU’s L2 cache is dedicated towards buffering coherence trans-
actions. Note that our baseline memory system is not restricted to one
memory instruction per wavefront, we only use this assumption for our nu-
merical argument. Mechanisms that throttle the network via back-pressure
flow-control mechanisms [61] reduce the worst-case storage requirements,
but further complicate coherence controller implementations.

In this thesis we propose two TC coherence protocols that eliminate the
worst-case storage requirement for coherence transactions. They do so by
completely eliminating coherence messages, and hence any protocol races.
As a result, they also do not require any additional virtual networks over the
baseline GPU because they do not introduce any additional message classes.

3.3 Protocol Complexity

Table 3.1 lists the number of states in the protocols we evaluate. We term
stable states as states conventionally associated with a coherence protocol,
for example, Modified, Exclusive, Shared and Invalid for the MESI protocol.
Transient states are intermediate states occurring between stable states.
Specifically, transient cache states are states associated with regular cache
operations, such as maintaining the state of a cache line while a read miss is
serviced. Transient cache states are present in a coherence protocol as well
as the non-coherent architecture. Transient coherent states are additional
states needed by the coherence protocol. An example is a state indicating
that the given line is waiting for invalidation acknowledgments. Coherence
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protocol verification is a significant challenge that grows with the number
of states [24], a problem referred to as state space explosion [72].

Table 3.1 shows that MESI is one of the more complex protocols and
introduces the most number of transient coherence states over the baseline
non-coherent GPU. An inclusive cache hierarchy simplifies coherence imple-
mentation [11] and write-through coherence is simpler than writeback coher-
ence [85]. GPU-VI implements both features and therefore introduces the
least complexity of the three traditional coherence protocols. GPU-VIni is
more complex than GPU-VI because it implements a separate non-inclusive
directory.

The TC-Weak protocol that we propose in this thesis offers the least
complexity measured in the number of transient states. Unlike GPU-VI,
TC-Weak does not require the addition of more virtual networks to the
baseline GPU. It does so by eliminating coherence messages entirely.
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Chapter 4

Temporal Coherence

This section presents Temporal Coherence (TC), a timestamp based cache
coherence framework designed to address the needs of high-throughput GPU
architectures. Time based hardware coherence was first proposed by Shim
et al. [57, 82] for CMPs. They proposed the Library Cache Coherence
(LCC) protocol that implements Sequential Consistency on CMPs. Like
LCC, TC uses time-based self-invalidation for coherence. Unlike LCC, TC
provides a relaxed memory model for GPU applications. In this thesis, we
propose two implementations of TC: TC-Strong and TC-Weak. TC-Strong
is similar to LCC in that it stalls store operations until they have been self-
invalidated by all GPU cores. We find TC-Strong to perform poorly on a
GPU. Our second implementation of TC, TC-Weak, uses a novel timestamp-
based memory fence that eliminates this stalling, performs well on a GPU,
and addresses the challenges of GPU coherence described in Chapter 3.

Section 4.1 describes time-based coherence. Section 4.2 describes TC-
Strong and compares it to LCC. Section 4.3 describes TC-Weak, a novel TC
protocol that uses time to drive both coherence and consistency operations.

4.1 Time and Coherence

In essence, the task of an invalidation-based coherence protocol is to commu-
nicate among a set of nodes the beginnings and ends of a memory location’s
epochs [85]. Time-based coherence uses the insight that single chip systems
can implement synchronized counters [43, Section 17.12.1] to enable low cost
transfer of coherence information. Specifically, if the lifetime of a memory
address’ current epoch can be predicted and shared among all readers when
the location is read, then these counters allow the readers to self-invalidate
synchronously, eliminating the need for end-of-epoch invalidation messages.

Figure 4.1 compares the handling of invalidations between the GPU-VI
directory protocol and TC. The figure depicts a read by processors C1 and
C2, followed by a store from C1, all to the same memory location. Fig-
ure 4.1(a) shows the sequence of events that occur for the write-through
GPU-VI directory protocol. C1 issues a load request to the directory ( 1 ),
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Figure 4.1: Coherence invalidation mechanisms. Messages: R=read,
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and receives data. C2 issues a load request ( 2 ) and receives the data as
well. C1 then issues a store request ( 3 ). The directory, which stores an
exact list of sharers, sees that C2 needs to be invalidated before the store
can complete and sends an invalidation request to C2 ( 4 ). C2 receives
the invalidation request, invalidates the line in its private cache, and sends
an acknowledgment back ( 5 ). The directory receives the invalidation ac-
knowledgment from C2 ( 6 ), completes C1’s store request, and sends C1 an
acknowledgment ( 7 ).

Figure 4.1(b) shows how TC handles the invalidation for this example.
When C1 issues a load request to the L2, it predicts that the read-only
epoch for this address will end at time T=15 ( 1’ ). The L2 receives C1’s
load request and epoch lifetime prediction, records it, and replies with the
data and timestamp of T=15 ( 2’ ). The timestamp indicates to C1 that it
must self-invalidate this address in its private cache by T=15. When C2
issues a load request, it predicts the epoch to end at time T=20 ( 3’ ). The
L2 receives C2’s request, checks the timestamp stored for this address and
extends it to T=20 to accommodate C2’s request, and replies with the data
and a timestamp of T=20 ( 4’ ). At time T=15 ( 5’ ), C1’s private cache
self-invalidates the local copy of the address. At time T=20 ( 6’ ), C2 self-
invalidates its local copy. When C1 issues a store request to the L2 ( 7’ ),
the L2 finds the global timestamp (T=20) to be less than the current time
(T=25) indicating that no L1 caches contain a valid copy of this line. The
L2 completes the store instantly and sends an acknowledgment to C1 ( 8’ ).

Compared to GPU-VI, TC does not use invalidation messages. Globally
synchronized counters allow the L2 to make coherence decisions locally and
without indirection. This example shows how a TC framework can achieve
our desired goals for GPU coherence; all coherence traffic has been elim-
inated and, since there are no invalidation messages, the transient states
recording the state of outstanding invalidation requests are no longer neces-
sary. Lifetime prediction is important in time-based coherence as it affects
cache utilization and application performance. Section 4.4 describes our
simple predictor for TC-Weak that adjusts the requested lifetime based on
application behaviour.

4.2 TC-Strong Coherence

TC-Strong implements RC with write atomicity [35]. It implements write-
through L1 caches and a writeback L2. TC-Strong requires synchronized
timestamp counters at the GPU cores and L2 controllers shown in Fig-
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ure 4.2(a) to provide the components with the current system time. A small
timestamp field is added to each cache line in the L1 and L2 caches, as shown
in Figure 4.2(b). The local timestamp value in the L1 cache line indicates
the time until the particular cache line is valid. An L1 cache line with a
local timestamp less than the current system time is invalid. The global
timestamp value in the L2 indicates a time by when all L1 caches will have
self-invalidated this cache line.

4.2.1 TC-Strong Operation

Every load request checks both the tag and the local timestamp of the
L1 line. It treats a valid tag match but an expired local timestamp as a
miss; self-invalidating an L1 line does not require explicit events. A load
miss at the L1 generates a request to the L2 with a lifetime prediction. The
L2 controller updates the global timestamp to the maximum of the current
global timestamp and the requested local timestamp to accommodate the
amount of time requested. The L2 responds to the L1 with the data and the
global timestamp. The L1 updates its data and local timestamp with values
in the response message before completing the load. If the load response
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arrives after the lifetime received for the line has already expired, then the
load request will be serviced with the received data but the L1 line will not
be updated since it is now invalid. A store request writes through to the L2
where its completion is delayed until the global timestamp has expired.

Figure 4.3(b) illustrates how TC-Strong maintains coherence for the code
snippet in Figure 4.3(a). The code snippet is the same code example we saw
earlier in Table 2.1, but this time including the memory fence instruction.
Figure 4.3(b) shows the memory requests generated by core C1 on the left,
and the state of the two memory locations, flag and data, in C2’s L1 on the
right. The example assumes that initially C2 has flag and data cached with
local timestamps of 60 and 30, respectively. To keep the example simple,
we assume that C2’s operations are delayed and do not occur in the time
frame covered by this example.

C1 executes instruction S1 and generates a store request to L2 for data
( 1 ), and subsequently issues the memory fence instruction F1 ( 2 ). F1
defers scheduling the wavefront because the wavefront has an outstanding
store request. When S1’s store request reaches the L2 ( 3 ), the L2 stalls it
because data’s global timestamp will not expire until time T=30. At T=30,
C2 self-invalidates data ( 4 ), and the L2 processes S1’s store ( 5 ). The fence
instruction completes when C1 receives the acknowledgment for S1’s request
( 6 ). The same sequence of events occurs for the store to flag by S2. The
L2 stalls S2’s store request ( 7 ) until flag self-invalidates in C2 ( 8 ).

Tables 4.1 and 4.2 present TC-Strong’s complete L1 and L2 state ma-
chines, respectively. Each table entry lists the actions carried out and the
final cache line state for a given event (column heading) and an initial cache
line state (row heading). The 4 stable L2 states, I, P, S and E, correspond
to invalid lines, lines with one reader, lines with multiple readers, and lines
with expired global timestamps, respectively. The I S and I M L2 transient
cache states track misses at the L2 for load and store requests. The M I
transient coherent state tracks evicted L2 lines with unexpired global times-
tamps. Note that store requests (GETX and UPGR) at the L2 stall until
the L2 line is in the E state. At the L1, the stable I state indicates invalid
lines or lines with expired local timestamps, and the stable V state indicates
valid local timestamps. The I V and I I transient cache states are used to
track load and store misses, while the V M transient coherent state tracks
stores requests to valid lines.

L2 Eviction Optimization. To maintain inclusion, only expired global
timestamps can be evicted from the L2. One approach is to stall the evic-
tion, and hence the request at the L2 that is triggering the eviction, until
the candidate line has expired. TC-Strong opts to evict the L2 line imme-
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Table 4.1: L1 States for TC-Strong Protocol. Shaded regions indicate addi-
tions to non-coherent protocol.

Processor Request L1 Action From L2
State Load Store Atomic Eviction Expire Data Write Ack

I GETS GETX ATOMIC × × × ×
→ I V → I I → I I

V hit UPGR ATOMIC evict → I × ×
→ V M → I I → I

V M hit UPGR ATOMIC stall → I I store done store done
(upgrade) → I I (pending 0?) (pending 0?)

→ V → V
I V × GETX ATOMIC stall × load done ×
(Rd-miss) → I I → I I → V
I I GETS GETX ATOMIC evict × (load?) store done
(Wr-miss) load done (pending 0?)

(store/atomic?) → I
store/atomic done

(pending 0?)
→ I

L1⇒L2 messages: GETS (load). GETX (store). ATOMIC. UPGR (upgrade).
L2 Triggered Events @ L1: Data (valid data). Write Ack (store complete from L2).
L1 Conditionals: load/store/atomic? (response to GETS/GETX/ATOMIC?). pending 0?
(all pending requests satisfied?).
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Table 4.2: L2 States for TC-Strong Protocol. Shaded regions indicate addi-
tions to non-coherent protocol.

L1 Request L2 Action From Mem
State GETS GETX UPGR ATOMIC Evict Expire Mem Data

I FETCH FETCH FETCH FETCH × × ×
→ I S → I M → I M → I M

P extend TS stall (TS==?) stall (dirty?) → E ×
(Private) DATA ACK WB

→ S – else – → M I
stall

S extend TS stall stall stall (dirty?) → E ×
(Shared) DATA WB

→ M I
E extend TS ACK ACK ACK (dirty?) × ×
(Expired) DATA WB

→ P → I
I S merge stall stall stall stall × DATA
(Read (multiple?)
miss) → S

– else –
→ P

I M stall stall stall stall stall × (write?)
(Write ACK
miss) (atomic?)

DATA
→ E

M I stall stall stall stall × → I ×
(Evicted)

L2⇒L1 messages: ACK (store done). DATA (data response).
L2⇒MEM messages: FETCH (fetch data from memory). WB (writeback data to mem-
ory).
L2 Conditionals: TS==? (requester’s L1 timestamp matches current L2 timestamp?).
dirty? (L2 data modified?). multiple? (multiple load requests merged?).
L2 Timestamp Actions: extend TS (extend L2 timestamp according to request).
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diately to prevent stalling, and instead tracks the unexpired timestamps in
an external structure. It uses unused L2 MSHR entries to store unexpired
timestamps. No modifications to the L2 MSHR table are needed specifically
for this optimization. Note that evicted timestamps may use all the free
MSHR entries and introduce resource stalls. Unlike the resource stalls in
traditional coherence protocols like MESI and GPU-VI, these stalls cannot
lead to protocol deadlocks. This is because TC protocols do not have the
cyclic resource dependency issues that are introduced by coherence mes-
sages. These stalls are akin to the MSHR stalls that can occur even in the
baseline non-coherent GPU.

Private Write Optimization. TC-Strong implements an optimization
to eliminate write-stalling for private data. It differentiates the single valid
L2 state into two stable states, P and S. The P state indicates private data
while the S state indicates shared data. An L2 line read only once exists in
P. Stores to L2 lines in P are private writes if they are from the core that
originally performed the read. In TC-Strong, store requests carry the local
timestamp at the L1, if it exists, to the L2. This timestamp is matched to the
global timestamp at the L2 to check that the core that originally performed
the read is performing a private write. The two requirements that a single
core has this line (the line being in P state) and that the timestamp at the
L1 matches that at the L2 guarantee that the original core is performing a
private write. This optimization is visible in Table 4.2. An UPGR event in
the P state completes without stalling if there is a timestamp match between
the L1 and L2 lines.

4.2.2 TC-Strong and LCC comparison

Both LCC and TC-Strong use time-based self-invalidation and require syn-
chronized counters and timestamps in L1 and L2. Both protocols stall stores
at the last level cache to unexpired timestamps.

TC-Strong requires minimal hardware modifications to the baseline non-
coherent GPU architecture. It supports multiple outstanding store requests
per GPU wavefront. In contrast, LCC assumes only one outstanding store
request per core. LCC implements Sequential Consistency and this restric-
tion eases an SC implementation. The restriction also permits the use of a
memory system that can aggressively reorder memory requests. TC-Strong
implements a relaxed memory model, does not restrict each GPU core to a
single in-flight request, and provides much greater memory-level parallelism
for the thousands of concurrent scalar threads per GPU core. It relies on
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the point-to-point ordering guarantee of the baseline GPU memory system
to ensure correctness of request ordering.

LCC stalls evictions of unexpired L2 lines until they have expired. TC-
Strong removes this stalling by allocating an L2 MSHR entry to store the
unexpired timestamp. This reduces expensive stalling of the in-order GPU
L2 cache controllers. LCC also penalizes private read-write data by stalling
writes to private data until the global timestamp expires. The private write
optimization in TC-Strong detects and eliminates these stalls.

4.3 TC-Weak Coherence

This section describes TC-Weak. TC-Weak relaxes the write atomicity of
TC-Strong. As we show in Section 6.4, doing so improves performance by
28% and lowers interconnect traffic by 26% compared to TC-Strong.

TC-Strong and LCC enforce coherence across all data by stalling stores.
This presents two problems. First, it makes performance more sensitive to
the lifetime prediction mechanism. A misprediction where a large lifetime
is predicted for an actually small lifetime will cause the store operation to
stall unnecessarily. Second, since our baseline GPU implements an in-order
memory system, stalled store operations will block all L2 requests behind
them. This hurts overall system performance as requests from one GPU core
may impede requests from other GPU cores. TC-Weak uses the insight that
by relaxing the write-atomicity property a store operation does not need to
be stalled. Instead, it relies on a novel fence mechanism that guarantees
all preceding store operations from a wavefront have completed before the
fence instruction completes. This provides two main benefits. First, it
eliminates expensive stalling at the shared L2 cache controllers, which affects
all cores and wavefronts, and shifts it to scheduling of individual wavefronts
at memory fences. A wavefront descheduled due to a memory fence does not
affect the performance of other wavefronts. Second, it enforces coherence
only when required and specified by the program through memory fences.
It relies on the data-race free requirement of the SC for DRF paradigm to
ensure that the required orderings are enforced through fence operations.
It implements, RCpc [35], the variant of Release Consistency that does not
require write atomicity.

In TC-Weak, stores to unexpired global timestamps at the L2 do not
stall. Instead, the store data is immediately written to the L2 line and the
store response returns with the L2 line’s global timestamp. The returned
global timestamp is the guaranteed time by which the store will become
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visible to all cores in the system. This is because by this time all cores
will have invalidated their privately cached stale copies. TC-Weak tracks
the global timestamps returned by stores, called Global Write Completion
Time (GWCT), for each wavefront. A memory fence operation uses this in-
formation to deschedule the wavefront sufficiently long enough to guarantee
that all previous stores from the wavefront have become globally visible.

As illustrated in Figure 4.2(a), TC-Weak adds a small GWCT table to
each GPU core. The GWCT table contains 48 entries, one for each wavefront
in a GPU core. Each entry holds a timestamp value which corresponds to
the maximum of all GWCTs observed for that wavefront.

4.3.1 TC-Weak Operation

A memory fence in TC-Weak deschedules a wavefront until all pending store
requests from the wavefront have returned acknowledgments, and until the
wavefront’s timestamp in the GWCT table has expired. The latter ensures
that all previous stores have become visible to the system by fence comple-
tion.

Figure 4.3(c) illustrates how coherence is maintained in TC-Weak by
showing the execution of C1’s memory instructions from Figure 4.3(a). C1
executes S1 and sends a store request to the L2 for data ( 1’ ). Subsequently,
C1 issues a memory fence operation ( 2’ ) that defers scheduling of the wave-
front because the instruction S1’s memory request is outstanding. The L2
receives the store request ( 3’ ) and returns the current global timestamp
stored in the L2 for data. In this case, the value returned is 30 and cor-
responds to C2’s initially cached copy. The L2 does not stall the store,
immediately updates the data in the L2 line, and sends back an acknowl-
edgment with the GWCT, which updates the C1’s GWCT entry for this
wavefront. After C1 receives the acknowledgment ( 4’ ), no memory requests
are outstanding. The scheduling of the wavefront is now deferred because
the GWCT entry of this wavefront containing a timestamp of 30 has not yet
expired. As data self-invalidates in C2’s cache ( 5’ ), the wavefront’s GWCT
expires and the fence is allowed to complete ( 6’ ). The next store instruction,
S2, sends a store request ( 6’ ) to the L2 for flag. The L2 returns a GWCT
time of 60 ( 7’ ), corresponding to the copy cached by C2.

Comparing Figure 4.3(c) to 4.3(b) shows that TC-Weak performs better
than TC-Strong because it only stalls at explicit memory fence operations.
Relaxing write atomicity eliminated the unnecessary stall to the update to
flag and improved the performance of the code sequence in Figure 4.3(a).
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Table 4.3: L1 States for TC-Weak Protocol. Shaded regions indicate addi-
tions to non-coherent protocol.

Processor Request L1 Action From L2
State Load Store Atomic Eviction Expire Data Write Ack

I GETS GETX ATOMIC × × × ×
→ I V → I I → I I

V hit UPGR ATOMIC evict → I × ×
→ V M → I I → I

V M hit UPGR ATOMIC stall → I I store done store done
(upgrade) → I I update GWCT (global?)

(pending 0?) update GWCT
→ V (pending 0?)

→ V
I V × GETX ATOMIC stall × load done ×
(Rd-miss) → I I → I I → V
I I GETS GETX ATOMIC evict × (load?) store done
(Wr-miss) load done (global?)

(store/atomic?) update GWCT
store/atomic done (pending 0?)
update GWCT → I
(pending 0?)

→ I

L1⇒L2 messages: GETS (load). GETX (store). ATOMIC. UPGR (upgrade).
L2 Triggered Events @ L1: Data (valid data). Write Ack (store complete from L2).
L1 Conditionals: load/store/atomic? (response to GETS/GETX/ATOMIC?). global?
(response includes GWCT?). pending 0? (all pending requests satisfied?).
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Table 4.4: L2 States for TC-Weak Protocol. Shaded regions indicate addi-
tions to non-coherent protocol.

L1 Request L2 Action From Mem
State GETS GETX UPGR ATOMIC Evict Expire Mem Data

I FETCH FETCH FETCH FETCH × × ×
→ I S → I M → I M → I M

P extend TS TS++ TS++ TS++ (dirty?) → E ×
(Private) DATA ACK-G (TS==?) DATA-G WB

→ S ACK → M I
– else –
DATA-G

S extend TS TS++ TS++ TS++ (dirty?) → E ×
(Shared) DATA ACK-G (TS==?) DATA-G WB

→ P ACK-G → M I
– else –
DATA-G
→ P

E extend TS TS++ TS++ TS++ (dirty?) × ×
(Expired) DATA ACK ACK DATA-G WB

→ P → I
I S merge stall stall stall stall × DATA
(Read (multiple?)
miss) → S

– else –
→ P

I M stall stall stall stall stall × (write?)
(Write ACK
miss) (atomic?)

DATA-G
→ E

M I FETCH FETCH FETCH FETCH × → I ×
(Evicted) → I S → I M → I M → I M

L2⇒L1 messages: ACK (store done). ACK-G (ACK with GWCT). DATA (data response).
DATA-G (DATA with GWCT).
L2⇒MEM messages: FETCH (fetch data from memory). WB (writeback data to mem-
ory).
L2 Conditionals: TS==? (requester’s L1 timestamp matches pre-incremented L2 times-
tamp?). dirty? (L2 data modified?). multiple? (multiple load requests merged?).
L2 Timestamp Actions: extend TS (extend L2 timestamp according to request). TS++
(increment L2 timestamp).
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Tables 4.3 and 4.4 present TC-Weak’s complete L1 and L2 state ma-
chines, respectively. Each table entry lists the actions carried out and the
final cache line state for a given event (column heading) and an initial cache
line state (row heading). The 4 stable L2 states, I, P, S and E, correspond
to invalid lines, lines with one reader, lines with multiple readers, and lines
with expired global timestamps, respectively. The I S and I M L2 transient
cache states track misses at the L2 for load and store requests. The M I
transient coherent state tracks evicted L2 lines with unexpired global times-
tamps. Note the lack of transient states and stalling at the L2 for stores
to valid (P, S and E) lines. At the L1, the stable I state indicates invalid
lines or lines with expired local timestamps, and the stable V state indicates
valid local timestamps. The I V and I I transient cache states are used to
track load and store misses, while the V M transient coherent state tracks
stores requests to valid lines.

Private Write Optimization. To ensure that memory fences are not
stalled by stores to private data, TC-Weak uses a private write optimization
similar to the one employed by TC-Strong and described in Section 4.2.1.
Store requests to L2 lines in the P state where the L1 local timestamp
matches the L2 global timestamp indicate private writes and do not return
a GWCT. Since TC-Weak does not stall stores at the L2, an L2 line in P
may correspond to multiple unexpired but stale L1 lines. Stores in TC-Weak
always modify the global timestamp by incrementing it by one. This ensures
that a store request from another L1 cache with stale data carries a local
timestamp that mismatches with the global timestamp at the L2, and that
the store response replies with the updated data.

4.4 Lifetime Prediction

Predicted lifetimes should not be too short that L1 lines are self-invalidated
too early, and not too long that storing evicted timestamps wastes L2 cache
resources and potentially introduces resource stalls. In Section 6.6 we show
that a single lifetime value for all accesses performs well. Moreover, this
value is application dependent. Based on this insight, we propose a simple
lifetime predictor that maintains a single lifetime prediction value at each L2
cache bank, and adjusts it based on application behaviour. A load obtains
its lifetime prediction at the L2 bank.

The predictor updates the predicted lifetime based on events local to
the L2 bank. First, the local prediction is decreased by tevict cycles if an
L2 line with an unexpired timestamp is evicted. This reduces the number
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of timestamps that need to be stored past an L2 eviction. Second, the
local prediction is increased by thit cycles if a load request misses at the L1
due to an expired L1 line. This helps reduce L1 misses due to early self-
invalidation. The lifetime is also increased by thit cycles if the L2 receives a
load request to a valid line with an expired global timestamp. This ensures
that the prediction is increased even if L1 lines are quickly evicted. Third,
the lifetime is decreased by twrite cycles if a store operation writes to an
unexpired line at the L2. This helps reduce the amount of time that fence
operations wait for the GWCT to expire, i.e., for stores to become globally
visible. This third mechanism is disabled for applications not using fences
to keep it from unnecessarily harming the L1 miss rate. Table 5.1 lists the
parameter values used in our evaluation; we found these to yield the best
performance across all applications.

Also note that the lifetime prediction mechanism is completely indepen-
dent of the protocol’s correctness. TC-Strong and TC-Weak do not place
any restrictions on the values that can be predicted. In traditional coherence
protocols, optimizations are generally introduced at the cost of additional
states and complexity. The choice of prediction mechanism has no effect on
the complexity of a TC protocol. TC can allow performance improvements
through better prediction mechanisms and without having to modify and
re-verify the coherence implementation.

4.5 Timestamp Rollover

L1 lines in the valid state but with expired timestamps may become un-
expired when the global time counters rollover. This could be handled by
simply flash invalidating the valid bits in the L1 cache [79]. More sophisti-
cated approaches are possible, but beyond the scope of this work. None of
the benchmarks we evaluate execute long enough to trigger an L1 flush with
32-bit timestamps.
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Chapter 5

Methodology

This chapter describes the simulation infrastructure and benchmarks that
we use in this study.

5.1 Simulation Infrastructure

We modeled a cache coherent GPU architecture by extending GPGPU-Sim
version 3.1.2 [12] with the Ruby memory system model from GEMS [62].
Ruby was selected because it provides the easy-to-use SLICC interface to
specify coherence protocols. Interfacing Ruby with GPGPU-Sim required
changes to the core infrastructure of Ruby.

First, Ruby was designed to support only a single outstanding request
per address per core. This assumption was in place because CMP systems
are mostly evaluated with one thread per core and multiple requests to the
same address from the same thread are rare. This is not true for GPUs
where the hundreds of threads in each core may access the same memory
address. To properly model a GPU memory system, we modified Ruby’s
back-end to support multiple accesses to the same address from the same
core. The original implementation in Ruby tracked requests through their
(address, core ID) pairs. This was sufficient to track every unique in-flight
request due to the one request per address per core restriction. Removing the
restriction means two different requests from different wavefronts may alias
to the same (address, core ID) pair. We modified Ruby to track requests
using unique IDs that are different for each request. Tracking via unique
IDs removes any theoretical restrictions on the number of in-flight requests.

Second, Ruby did not support a way to allow certain requests to skip L1
caches, as is needed for the NO-L1 configuration in our study. We supported
this by introducing additional queues at the interface between GPGPU-Sim
and Ruby that allow requests to skip Ruby’s internal structures. Our L1
state machine for our baseline non-coherent protocol handles these requests
differently by forwarding them directly to the L2 cache.

Finally, the original DRAM model in Ruby was idealistic and only mod-
elled the now obsolete DDR-400 memory chips. We modified Ruby to sup-
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port the GDDR5 DRAM model present in GPGPU-Sim. We did so by
implementing a second interface whereby requests inside Ruby travelling
from the L2 cache to off-chip memory are returned back to GPGPU-Sim,
processed by GPGPU-Sim’s GDDR5 DRAMmodel, and sent back to Ruby’s
L2 controller. Ruby’s code had 3 core components: L1 caches, L2 caches and
main memory. All three connect through a single interconnection network.
Since the interconnection network in our baseline GPU does not connect
to DRAM controllers, we removed the memory components from Ruby and
limited the interconnection network to only L1 and L2 caches. This pro-
vided more accurate power data by removing the unused physical links to
DRAM controllers.

The baseline non-coherent memory system and all coherence protocols
are implemented in SLICC. The MESI cache coherence protocol is acquired
from gem5 [14]. Our GPGPU-Sim extended with Ruby is configured to
model a generic NVIDIA Fermi GPU [68]. We use Orion 2.0 [47] to es-
timate the interconnect power consumption. The interconnection network
is modelled using the detailed fixed-pipeline network model in Garnet [8].
Two crossbars, one per direction, connect the GPU cores to the memory
partitions. Each crossbar can transfer one 32-byte flit per interconnect cy-
cle to/from each memory partition for a peak bandwidth of ∼175GB/s per
direction. GPU cores connect to the interconnection network through pri-
vate ports. The baseline non-coherent and all coherence protocols use the
detailed GDDR5 DRAM model from GPGPU-Sim. Minimum L2 latency
of 340 cycles and minimum DRAM latency of 460 cycles (in core cycles)
is modelled to match the latencies observed on Fermi GPU hardware via
microbenchmarks released by Wong et al. [89]. Table 5.1 lists other major
configuration parameters. All of the code use in this study, including our
benchmarks, is available on the web [4].

5.2 Benchmarks

We used two sets of benchmarks for evaluation: one set contains inter-
workgroup communication and requires coherent caches for correctness, and
the other only contains intra-workgroup communication. While coherence
can be disabled for the latter set, we kept coherence enabled and used this
set as a proxy for future workloads which contain both data needing coher-
ence and data not needing it. The following benchmarks fall into the former
set:
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Table 5.1: Simulation Configuration.
GPGPU-Sim Core Model

# GPU Cores 16
Core Config 48 Wavefronts/core, 32 threads/wavefront.

Clock: 1.4 Ghz.
Pipeline width: 32. #Reg: 32768.
Scheduling: Loose Round Robin.
Shared Mem.: 48KB.

Ruby Memory Model
L1 Private Data $ 32KB, 4way, 128B line, 4-way assoc. 128 MSHRs.
L2 Shared Bank 128KB, 8-way, 128B line. 128 MSHRs.

Minimum Latency: 340 cycles. Clock: 700 MHz.
# Mem. Partitions 8

Interconnect 1 Crossbar/Direction. Flit size: 32bytes.
Clock: 700 MHz.
BW: 32 Bytes/Cycle/Link (175GB/s/Direction).

Virtual Channels 8-flit buffer per VC.
# Virtual Networks Non-coherent: 2. TC-Strong and TC-Weak: 2.

MESI: 5. GPU-VI and GPU-VIni: 4.
GDDR Clock 1400 MHz

Memory Channel BW 8 (Bytes/Cycle) (175GB/s peak).
Minimum Latency: 460 cycles.

DRAM Queue Capacity 32, Out-of-Order (FR-FCFS).
GDDR5 Memory Timing tCL=12, tRP=12, tRC=40, tRAS=28, tCCD=2,

tWL=4, tRCD=12, tRRD=6, tCDLR=5, tWR=12,
tCCDL=3, tRTPL=2.

TC-Weak Parameters
Timestamp Size 32 bits

Predictor Constants tevict=8 cycles, thit=4 cycle, twrite=8 cycles.

47



5.2. Benchmarks

Table 5.2: Benchmarks.
Inter-workgroup communication Intra-workgroup communication
Name Abbr. Name Abbr.
Barnes Hut [18] BH HotSpot [21] HSP
CudaCuts [88] CC K-means [21] KMN
Cloth Physics [17] CL 3D Laplace Solver [12] LPS
Dynamic Load Balancing [19] DLB Needleman [21] NDL
Stencil (Wave Propagation) STN Gaussian Filter [1] RG
Versatile Place and Route VPR Anisotropic Diffusion [21] SR

Barnes Hut (BH) implements the Barnes Hut n-body algorithm, widely
used in simulating the motion of galaxies, in CUDA [18]. The Barnes Hut
algorithm makes the problem of calculating forces between bodies tractable
by dividing space into cells, computing summary information for bodies in
each cell, and using the summary information to approximate the forces on
each body. The division of space into cells is accomplished by building an
octree where the leaf nodes are bodies and each parent node is the larger
cell that contains child nodes corresponding to smaller cells or bodies. In
this thesis we focus on the octree-building kernel which uses fine-grained
locking to insert nodes. Coherence is needed to ensure that updates to the
tree become visible to all threads that may be caching the stale state. We
report data for the octree-building kernel with an input of 30000 bodies.

CudaCuts (CC) implements the maxflow/mincut algorithm for image
segmentation in CUDA [88]. The algorithm is used in Computer Vision
problems like video segmentation and multi-camera scene reconstruction.
This implementation uses the push-relabel algorithm to find the minimum
cut in a 2D stencil graph where each node represents a pixel in an image. The
push operation pushes excess flow at each node to its neighbouring nodes
with lower heights, limited by the edge capacities. The relabel operation in-
creases nodes’ heights to enable push operations at nodes with excess flow.
The original implementation by Vineet et al. [88] splits the push operation
into push and pull kernels, citing the lack of inter-workgroup synchroniza-
tion needed for communication between nodes in different workgroups. We
optimized CC by utilizing a coherent memory space to combine the push,
pull and relabel operations into a single kernel, improving performance by
30% as a result.
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Cloth Physics (CL) is a cloth physics simulation based on “RopaDemo”
[17]. Each time step in the simulation consists of two computational steps:
calculating new particle positions by solving equations of motion, and ad-
justing the particle positions to fit constraints defined by the cloth’s proper-
ties. Each constraint defines the maximum and minimum distance between
two particles. The constraint-solving kernel solves all constraints in parallel,
using fine-grained locks to ensure that two constraints moving the same par-
ticle are serialized. Coherence is needed to ensure that updates to particles
become visible to all threads that may be caching the stale position.

Dynamic Load Balancing (DLB) implements task-stealing in CUDA
[19]. It uses non-blocking task queues to load balance the partitioning of an
octree. Each task takes in a set of nodes as input, partitions the nodes into
8 subsets according to their spacial positions, and inserts into a task queue 8
new tasks to further partition each of the 8 subsets. Each workgroup works
on a single task at a time, dividing computation among its threads. Co-
herence is needed to ensure that updates to the shared task queues and the
buffers used to track sets of nodes are visible across all threads. We report
data for an input graph size of 100000 nodes.

Stencil (STN) uses stencil computation to implement a finite difference
solver for 3D wave propagation, which is used in applications like seismic
imaging and fluid dynamics. At each time step, a node reads the latest
value from its 24 adjacent neighbours (8 neighbours in each of the 3 dimen-
sions), and produces a new value of its own. Each workgroup processes a
subset of the stencil nodes. A coherent memory space ensures that updates
to neighbours in a different subset become visible across GPU cores. The
persistent thread model is used to eliminate the need for launching a new
kernel for each time step. STN uses fast barriers [90] to synchronize work-
groups between time steps. Coherence is also needed for the inter-workgroup
synchronization.

Versatile Place and Route (VPR) is a placement tool for FPGAs.
We ported the simulated annealing based placement algorithm from VTR
1.0 [76] to CUDA. The algorithm swaps two randomly selected blocks if
the operation decreases the placement cost function. We parallelized this
algorithm on two fronts. First, multiple swaps are processes in parallel, one
per wavefront. Fine-grained locks ensure that the same location is not pro-
cessed by two parallel swap operations. Second, threads within a wavefront
compute the bounding-box cost function in parallel. Combined, the parallel
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VPR performs 4x faster on GPU hardware (with L1 caches disabled) over
the serial CPU version. Coherent memory is needed to ensure that swapped
locations become visible to all threads. We simulate one iteration in the
annealing schedule for the bgm circuit.

The set of benchmarks with intra-workgroup communication is chosen
from the Rodinia benchmark suite [21], benchmarks used by Bakhoda et al.
[12] and the CUDA SDK [1]. These benchmarks were selected to highlight a
variety of behaviours; we did not exclude any benchmarks where TC-Weak
performed worse than other protocols. All benchmarks we evaluate are listed
in Table 5.2. The code for the applications created or modified for this study
can be found online [4].
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Chapter 6

Results

This section compares the performance of the coherence protocols on a GPU.
Section 6.1 presents performance data, Section 6.2 presents traffic data, and
Section 6.3 presents power and energy data. Section 6.4 compares TC-Weak
to TC-Strong. Section 6.5 evaluates the two optimizations we introduce in
TC-Strong. Section 6.6 presents performance data for TC-Weak with a
sweep of different lifetimes. Section 6.7 explores the impact of scaling GPU-
VIni’s directory size on performance and traffic. Finally, Section 6.8 presents
a sensitivity analysis for our proposed predictor. The TCW configuration
implements TC-Weak with the lifetime predictor described in Section 4.4.

6.1 Performance

Figure 6.1(a) compares the performance of coherence protocols against a
baseline GPU with L1 caches disabled (NO-L1) for applications with inter-
workgroup communication. Figure 6.1(b) compares them against the non-
coherent baseline protocol with L1 caches enabled (NO-COH) for applica-
tions with intra-workgroup communication. In Figure 6.1(a), on average
the coherence protocols have similar performance to each other and better
performance than the baseline non-coherent GPU with L1 caches disabled.
TCW performs 85% better than the baseline GPU for this set of applica-
tions.

MESI performs slightly better than the write-through protocols for the
applications BH and CL. Both BH and CL make extensive use of fine-grained
locking, which uses atomic or read-modify-write operations. In MESI, we
model read-modify-write operations at the L1. In the write-through proto-
cols, they are modelled in an atomic operation unit at the L2. BH and CL
benefit from the merging of atomic operations at the L1 in MESI. VPR also
uses locks, but has very low contention, contains fewer atomic accesses, and
does not gain a performance benefit from L1 atomics.

On CC and VPR, TCW does not perform as well as the other write-
through protocols, GPU-VI and GPU-VIni. Here, predictor settings that
are optimal for average performance across all benchmarks are suboptimal
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Figure 6.1: Performance of coherent and non-coherent GPUs.
HM=harmonic mean.

for these two applications. Section 6.8 shows that using a different set of
parameters for the predictor brings the performance of TCW up to match
the performance of the write-through protocols. Specifically, CC benefits
from smaller increments in lifetime prediction with load misses at the L1 and
VPR benefits from larger increments in lifetime. A more flexible predictor
would be beneficial for these two applications.

DLB achieves a significant speedup with TCW over other coherence
protocols. This is because DLB’s performance is sensitive to invalidation
latency. TCW eliminates invalidations, and hence the invalidation latency,
and achieves ∼2x speedup. Figure 6.2 shows DLB’s performance with vary-
ing interconnect latencies for IDEAL-VI, GPU-VI and TCW. IDEAL-VI
implements GPU-VI with ideal invalidations and recalls, i.e., invalidations
and recalls have no latency and do not introduce interconnect traffic. TCW
performs as well as IDEAL-VI, while GPU-VI’s performance suffers at higher
interconnect latencies. GPU-VI’s performance improves as the invalidation
latency is decreased. DLB’s sensitivity to invalidation latency exists for two
reasons. First, each workgroup fetches for execution a single task at a time.
This task is divided among all threads within the workgroup. The task is
fetched from shared task queues; updating the task queues may generate
invalidation messages. The invalidation latency is on the critical path of an
entire workgroup, i.e., all threads in the workgroup are idle when a task
queue is being updated. Second, DLB builds an octree by partitioning a set
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of nodes into 8 octants and generating 8 new tasks to recursively partition
the 8 subsets. When a child task starts on a different GPU core than its
parent, it sends an invalidation with every data access because its data is
cached on the parent’s L1. The excessive number of invalidations in such a
case hurts performance.

In Figure 6.1(b), the write-through protocols perform as well as the
non-coherent baseline when it comes to applications that do not require
coherence. MESI suffers a 25% slowdown compared to the baseline. This
is a result of MESI’s L1 writeback write-allocate policy which favours store
locality but introduces unnecessary traffic for write-once access patterns
common in existing GPU applications. Section 6.2 shows the large traffic
overhead in MESI for this set of applications. On the application HSP,
the traditional coherence protocols suffer a performance loss while TCW
achieves the same performance as the non-coherent baseline. HSP contains
false sharing, which introduces unnecessary invalidations that lower the L1
hit rate and introduce additional traffic. TCW does not suffer from false
invalidations.

Both Figures 6.1(a) and 6.1(b) show that the potentially larger effec-
tive cache capacity in non-inclusive GPU-VIni adds no performance benefit
over the inclusive GPU-VI. Section 6.7 describes how the performance also
remains unaffected as the directory size is increased in GPU-VIni.
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6.2 Interconnect Traffic

Figures 6.3(a) and 6.3(b) show the breakdown of interconnect traffic between
different coherence protocols. LD, ST, and ATO are the data traffic from
load, store, and atomic requests. MESI performs atomic operations at the
L1 cache and this traffic is included in ST. REQ refers to control traffic for
all protocols. INV and RCL are invalidation and recall traffic, respectively.

MESI’s write-allocate policy at the L1 significantly increases store traffic
due to unnecessary refills of write-once data. On average, MESI increases
interconnect traffic over the baseline non-coherent GPU by 75% across all
applications. The write-through GPU-VI and GPU-VIni introduce unneces-
sary invalidation and recall traffic, averaging to a traffic overhead of 31% and
30% for applications without inter-workgroup communication. TCW re-
moves all invalidations and recalls and as a result reduces interconnect traf-
fic by 56% over MESI, 23% over GPU-VI and 23% over GPU-VIni for this
set of applications.

BH and CL in Figure 6.3(a) have significantly greater store traffic on
MESI than they do on other protocols. The store traffic in MESI includes
the atomic traffic since atomic operations are performed in the L1. The
store traffic is higher in MESI because the entire cache line is brought into
the L1, even if the atomic operation is for a single word within the cache
line. The traffic for TCW in CC and VPR is higher than other write-
through protocols. This is due to suboptimal predictor settings for these
two applications that cause more load misses at the L1. Figure 6.3(a) shows
that coherence traffic is not a large overhead for GPU-VI on applications
that require coherence. These applications have considerate data locality,
as indicated by the performance gain from enabling L1 caches. As a result,
contention at the directory is reduced and recall traffic is low.

In Figure 6.3(b), the HSP benchmark observes significant reduction in
traffic on TCW. While HSP does not contain inter-workgroup communi-
cation, it contains false sharing as indicated by the large amount of INV
traffic on MESI and the two GPU-VIs. TC-Weak eliminates the negative
impacts of false sharing, such as invalidation traffic, on data that does not
require coherence. For the applications in Figure 6.3(b), the coherence traffic
overhead is greater because data locality is lower and more requests thrash
the coherence directory. This results in the recall traffic overhead. TCW
eliminates this traffic overhead.

To provide further insight into the increased store traffic usage in MESI,
Figure 6.4 shows the detailed breakdown of MESI’s store traffic. The two
ST PUT portions refer to traffic used to transfer evicted L1 lines to the
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Figure 6.3: Breakdown of interconnect traffic for coherent and non-coherent
GPU memory systems.
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Figure 6.4: Detailed breakdown of interconnect traffic for MESI.

L2. ST PUT M indicates eviction of L1 data that was modified, while
ST PUT C refers to the portion of the L1 line that was not modified. The
two ST RFL portions refer to the refill traffic used to allocate L1 lines on
stores misses at the L1. ST RFL OW indicates data that will be overwrit-
ten when the store is completed at the L1, while ST RFL C indicates the
portion of ST RFL data that will not be overwritten.

Of these 4 portions, ST RFL C, ST RFL OW and ST PUT C are the
potentially unnecessary traffic overheads in MESI. ST RFL C is the data
not referenced by a store operation but brought into the L1 to allocate a
complete cache line. When store locality is low, this data is not used and
represents a waste of traffic. ST RFL OW is the data that is referenced
by a store operation and brought into the L1 during a store allocate. It
will be overwritten after the store completes at the L1. A single GPU store
instruction often overwrites the complete L1 line, but MESI still wastes
traffic bringing the line data into the L1. ST PUT C are the unmodified
words of an L1 cache line sent to the L2 during an L1 eviction. This is
unnecessary as the L2 contains the unmodified data. Figure 6.4 shows that
these overheads account for a large portion of MESI’s store traffic.

These store traffic overheads result from the store locality optimizing
features of MESI. One example of such a feature is the write allocate nature
of MESI. Another example is the Exclusive, or E, state that optimistically
acquires write permissions to a line when a core is the first to read it. In both
cases MESI sacrifices additional traffic to capture store locality at the L1.
We observe that store locality of GPU applications is low. Hence, MESI’s
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Figure 6.5: Breakdown of interconnect power and energy.

additional store traffic cannot be amortized over future stores requests. One
reason for the GPU’s reduced store locality is the flexible register allocation
scheme that avoids spilling registers by reducing the number of concurrently
executing wavefronts. Secondly, thousands of GPU threads share a small
L1 cache. The resulting high contention at the L1 makes it difficult to keep
store-allocated lines in the L1. Lastly, many GPU applications optimize
for intra- and inter-thread communication through shared memory. This
further reduces store locality in the cached global memory.

6.3 Power

Figure 6.5 shows the breakdown of interconnect power and energy usage.
The breakdown shows the dynamic and static power used by the routers,
and the dynamic and static power used in link traversal. TCW lowers the
interconnect power usage by 21%, 10% and 8%, and interconnect energy us-
age by 36%, 13% and 8% over MESI, GPU-VI and GPU-VIni, respectively.
Two factors contribute to the power savings observed in TCW. First, dy-
namic power is reduced in TCW due to the lower interconnect traffic. This
saving comes through link power and router power as both experience less
activity. Second, TC protocols require only 2 virtual channels, compared to
the 5 required by MESI and 4 required by GPU-VI and GPU-VIni. This
leads to fewer virtual channel buffers in the routers and lower static router
power. Static link power remains the same across configurations as it has
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Figure 6.6: (a) Harmonic mean speedup and (b) normalized average inter-
connect traffic for single fixed timestamp prediction across all applications
for TC-Strong and TC-Weak. TCW uses dynamic predictor instead of single
fixed timestamps.

no relation to the number of virtual channels. Note that the baseline GPU
with L1 caches disabled for inter-workgroup application experiences lower
power usage than the configurations with coherence and L1 caches enabled.
The average power is skewed in this case because the execution time for the
baseline GPU is much greater than the cache coherent configurations. The
energy usage is a better indicator in this case and shows that the coherent
configurations have lower energy usage.

6.4 TC-Weak vs. TC-Strong

Figures 6.6(a) and 6.6(b) compare the harmonic mean performance and
average interconnect traffic, respectively, for configurations of TC-Strong
and TC-Weak that use a single fixed lifetime prediction for all applications.
This is equivalent to the FIXED-DELTA prediction scheme proposed in
LCC [57, 82], which selects a single fixed lifetime that works best across all
applications. TCSUO-FIXED implements TC-Strong without the two opti-
mizations we propose. TCS-FIXED implements TC-Strong with those two
optimizations. TCSOO-FIXED allows memory operations to be reordered
at the L2 cache to reduce the performance impact of stalled store requests
impeding other requests. All three TCS configurations use a fixed lifetime
prediction of 400 core cycles, which was found to yield the best harmonic
mean performance over other lifetime values. TCW-FIXED implements
TC-Weak and uses a fixed lifetime prediction of 1600 core cycles, which
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Figure 6.7: (a) Harmonic mean speedup and (b) normalized average inter-
connect traffic for fixed timestamp prediction chosen on a per-application
basis for TC-Strong and TC-Weak. TCW uses dynamic predictor instead
of per-application timestamps.

was found to be best performing over other fixed lifetime values. TCW
implements TC-Weak with the proposed predictor, as before.

The two optimizations we propose for TC-Strong improve performance
by an average of 4% in TCS-FIXED over TCSUO-FIXED. Allowing re-
ordering of requests at the L2 controller in TC-Strong further improves per-
formance by 5% in TCSOO-FIXED. TCW-FIXED has the same predictor
as TCS-FIXED but outperforms it by 15% while reducing traffic by 13%.
TC-Strong has a trade-off between additional write stalls with higher life-
times and additional L1 misses with lower lifetimes. TC-Weak avoids this
trade-off by not stalling stores. This permits longer lifetimes and fewer L1
misses, improving performance and reducing traffic over TC-Strong. With
the novel predictor proposed in this work, TCW achieves a 28% improve-
ment in performance over TCS-FIXED and reduces interconnect traffic by
26%. The dynamic prediction mechanism is able to select different lifetimes
for different applications and improves performance over the static fixed life-
time prediction. Section 6.6 shows that each application prefers a different
lifetime for better performance.

Figures 6.7(a) and 6.7(b) show the performance and interconnect traffic
for TC-Strong and TC-Weak configurations, but this time selecting the fixed
lifetime on a per-application basis. They select the fixed lifetime prediction
that gives the best performance for each application. TCW performs as well
as TCW-BEST, indicating that the predictor we propose is able to dynami-
cally select the best lifetime for each application. TCW-BEST outperforms
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Figure 6.8: (a) Harmonic mean speedup and (b) normalized average in-
terconnect traffic for TC-Strong with and without proposed optimizations.
The X-axis lists the single fixed lifetime prediction values used across all
applications.

TCS-BEST by 12% and reduces interconnect traffic by 17%. Even with good
lifetime prediction in TC-Strong, a performance gap between TC-Strong and
TC-Weak remains.

6.5 TC-Strong Optimizations

Figures 6.8(a) and 6.8(b) show the impact of the two optimizations proposed
for TC-Strong described in Section 4.2.1. As before, TCSUO-FIXED imple-
ments TC-Strong without the optimizations and TCS-FIXED with them.
Both use the FIXED-DELTA [57, 82] prediction scheme which uses a sin-
gle fixed value for all lifetime predictions. The X-axes in Figures 6.8(a)
and 6.8(b) list the lifetime prediction value used for each configuration. In
Figure 6.8(a), at the optimal fixed prediction of 400 cycles, the proposed op-
timizations improve performance only by 4%. With higher lifetime values,
the performance gap increases and the optimizations make TC-Strong more
resilient to performance loss. The first optimization removed stalling when
unexpired L2 lines are evicted. The second optimization reduced stalling of
store operations to private data. Figure 6.8(a) shows that these two opti-
mizations benefit performance when over-prediction increases the frequency
of these stalls. Figure 6.8(b) shows that the optimizations do not impact
interconnect traffic usage. Both optimizations do not add or remove any
messages, so this result is expected.
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Figure 6.9: Speedup with different fixed lifetimes for TCW-FIXED. ↓ indi-
cates average lifetime observed on TCW.

6.6 TC-Weak Performance Profile

Figure 6.9 presents the performance of TC-Weak with various fixed lifetime
prediction values for the entire duration of the application. The downward
arrows in Figure 6.9 indicate the average lifetime predictions in TCW. An
increase in performance with increasing lifetimes results from an improved
L1 hit rate. A decrease in performance with larger lifetimes is a result of
stalling fences and L2 resource stalls induced by storage of evicted but unex-
pired timestamps. Note that in DLB, TCW-FIXED with a lifetime of 0 is 3x
faster than NO-L1 because use of L1 MSHRs in TCW-FIXED reduces load
requests by 50% by merging redundant requests across wavefronts. The
performance profile yields two main observations. First, each application
prefers a different fixed lifetime. For example, NDL’s streaming access pat-
tern benefits from a short lifetime, or an effectively disabled L1. Conversely,
HSP prefers a large lifetime to fully utilize the L1 cache. Second, the ar-
rows indicating TCW’s average lifetime lie close to the peak performance
lifetimes for each application. Hence, our simple predictor can effectively
locate the best fixed lifetime for each benchmark for these applications.

6.7 Directory Size Scaling

Figures 6.10(a) and 6.10(b) compare the performance and traffic of TCW
to GPU-VIni with directories ranging from 8-way associative and 2x the
number of entries as total L1 lines (VIni-2x-8w) to 32-ways and 16x the
number of L1 lines (VIni-16x-32w). In Figure 6.10(a), directory size and as-
sociativity have no impact on performance of GPU applications. On CMP
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Figure 6.10: Performance (a) and traffic (b) with different GPU-VIni di-
rectory sizes and associativities. (c) Traffic breakdown for RG benchmark
(same labels as Figure 6.3).

architectures, larger directories reduce the frequency of directory misses,
which add significant latency to the memory operation. Many CMP coher-
ence designs [34, 50, 78, 92–94] have been proposed to increase the effective
directory capacity. For GPUs, a larger directory does not translate to better
performance. This is because the latency tolerant GPU architecture is able
to tolerate the additional latency introduced by directory misses.

Larger directory size does impact the interconnect traffic usage on GPUs.
In Figure 6.10(b), a larger directory reduces the coherence traffic overheads
for applications with only intra-workgroup communication. A larger direc-
tory requires fewer recalls. However, even a very large and highly associative
(16x-32way) directory is unable to completely eliminate the coherence traffic
overheads for this set of applications. Figure 6.10(c) shows the breakdown
in RG’s traffic for these directory configurations. As the directory size is in-
creased from 2x to 16x, the reduction in recall traffic is offset by the increase
in invalidation traffic. As the directory size becomes large enough to capture
entire working sets, subsequent kernels need invalidations when accessing the
working set from a previous kernel. Hence, while larger directories may re-
duce recall traffic, the coherence traffic cost of true communication cannot
be eliminated. TCW is able to eliminate both sources of coherence traffic
overheads by using synchronized time to facilitate communication.
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Figure 6.11: TC-Weak predictor performance with varying parameters.
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6.8. TC-Weak Predictor Parameters

6.8 TC-Weak Predictor Parameters

Figure 6.11 evaluates the effects of varying the predictor constants. Figure
6.11(a) varies twrite, Figure 6.11(b) varies tevict and Figure 6.11(c) varies thit.
In each figure the performance is normalized to the predictor configuration
selected for TC-Weak in prior evaluations (twrite = 8, tevict = 8, thit = 4).

In Figure 6.11(a), the performance of applications with intra-workgroup
communication does not change by varying twrite because it is disabled for
applications that do not have memory fences. CC’s performance benefits
with higher twrite and tevict. These parameters decrease lifetimes to prevent
excessive stalling at the core due to memory fences and at the L2 due to
MSHRs occupied by evicted timestamps, respectively. In Figure 6.11(c),
CC benefits further from lower lifetimes that result from a lower thit. Con-
versely, STN and VPR benefit from higher lifetime predictions from a higher
thit. Performance is most sensitive to variations in thit because the ‘load to
expired line’ event is more frequent than the ‘store to unexpired lines’ and
‘eviction of unexpired L2 lines’. As can be seen in Figures 6.11(a), (b) and
(c), the predictor parameters yielding highest harmonic mean performance
were chosen for TC-Weak. A more flexible predictor can benefit performance
of applications like CC and VPR.

6.9 Summary of Results

This chapter presented detailed evaluations of various hardware coherence
protocols on a GPU. It showed that hardware coherence enabled significant
performance improvements by allowing GPU applications that contain inter-
workgroup communication to use L1 caching. The traditional coherence
protocols MESI and GPU-VI introduce a 127% and 31% traffic overhead,
respectively, for a set of applications that do not require coherence. We
showed that the majority of MESI’s large traffic overhead resulted from its
write-allocate nature, while GPU-VI’s traffic overhead was due to excessive
recalls. We showed that a large directory does not address this challenge
of GPU coherence. TC-Weak eliminates the overhead of coherence traffic.
This results in interconnect energy savings of 36% and 13% over MESI and
GPU-VI. This chapter also showed that relaxing write-atomicity in TC-
Weak can benefit performance and traffic over TC-Strong independently of
other features such as the lifetime predictor.
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Chapter 7

Correctness

In this chapter, we show that TC-Strong and TC-Weak implement the re-
quired invariants needed by the respective consistency models. Namely, TC-
Strong implements the variant of RC with write-atomicity, while TC-Weak
implements the variant of RC without write-atomcity.

7.1 TC-Strong Correctness

In this section we show that our TC-Strong based GPU implements a Re-
laxed Consistency model with atomic stores [85], similarly to other existing
consistency models [7, 35, 84, 86]. We first show that TC-Strong satisfies
the Single-Writer Multiple-Reader (SWMR) and Data-Value cache coher-
ence invariants [85, Chapter 2] described in Section 2.2. Then we show
that our system enforces the ordering rules required for relaxed consistency
execution [85, Chapter 5].

7.1.1 TC-Strong Coherence Invariants

Temporal Coherence uses global timestamps to ensure safety without requir-
ing invalidation messages. TC-Strong enforces the following rules. TIME
refers to the current system or wall-clock time. GT refers to the global
timestamp of a given line stored in the L2 cache. LTi refers to the local
timestamp of a given line cached in the L1 cache at ith GPU core.

Rule #1 - Independent Time. Each component has instantaneous
access to TIME. The timestamp counters shown in Figure 4.2(a) provide
each component with the system time.

Rule #2 - Local Timestamp. At all times and for all lines in the
L2, GT >= LTi for every ith L1 that caches the line. This is guaranteed
because the L1 only updates LTi with a timestamp returned by the L2. The
L2 only responds with timestamps that are less than or equal to the line’s
GT.
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7.1. TC-Strong Correctness

Rule #3 - Local Data. An L1 cache will only cache the data and
update LTi from a load response if the updated LTi >= TIME.

Rule #4 - Read Rule. A cache line can only be read at the ith L1 cache
if TIME <= LTi and can only be read at the L2 cache if TIME <= GT .
The L1 cache treats expired lines as invalid. The L2 always extends GT for
an expired line past TIME before performing the read.

Rule #5 - Write Rule. A store completes at the L2 only if TIME >

GT for the line being accessed. The L2 stalls a store until TIME is greater
than GT. GT for a line will not be modified in that time as no other requests
to that cache line can be processed during a stall at the L2.

Rule #1 provides the guarantee that all components operate synchronously.
The above rules ensure the following properties will holding during system
execution.

Property #1. A load and a store to the same line cannot have the
same TIME of completion. Rules #4 and #5 ensure that a load and store
occurring at the L2 cache do not occur at the same TIME because of the
conditions that TIME <= GT for a load and TIME > GT for a store.
Adding Rule #2 also enforces this property at the L1s as loads at the L1s
also obey the TIME <= GT condition.

Property #2. No L1 cache will be holding a line at the time a store
to that line completes. Rules #2 and #5 together imply that when a store
to a line occurs at the L2, TIME > LTi at all L1s that cache the line.
Therefore, the line is effectively invalid in all L1 caches.

Property #3. All unexpired L1 lines, i.e., lines for which TIME <=
LTi, will have seen all stores that completed before the current TIME. Con-
sider the latest load response for a line that updated an L1 cache. The
load response carries with it data for all stores to the line up to the time
when it left the L2 cache. Rules #3 and #5 imply that no store could have
occurred to that line between the time that the load response left the L2
and arrived at the L1. As this was the latest load response for this line, and
the LTi <= GT condition currently holds for the line, according to Rule #5
no store could have occurred between when the load response arrived at the
L1 cache and now. Therefore, no stores have occurred since the latest load
response left the L2 and so the L1 holds the value from the all stores to this
line that have completed so far.

The three properties stated above enforce the SWMR and Data-Value
coherence invariants. Property #1 ensures that a load and store cannot be
overlapped in time. Along with the condition that L2 processes one access
at a time, Property #1 ensures the SWMR invariant holds. Property #2
and #3 ensure the Data-Value invariant which specifies that each load must
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7.2. TC-Weak Correctness

return the value corresponding to the latest store in global memory order.
Property #2 ensures that all stale data is invalidated, while Property #3
guarantees that any read that hits at the L1 cache will see all stores to the
line that completed prior to the current TIME. These coherence invariants
imply a total memory order and that stores occur atomically.

7.1.2 Relaxed Consistency Implementation

Section 7.1.1 showed that TC-Strong implements a total memory order.
The following ordering constraints [85, Chapter 5] are required to ensure
that the total order corresponds to a valid memory order as required by
Relaxed Consistency.

1. Any two memory accesses from a single wavefront separated by a
FENCE obey program order in the total memory order. The in-order GPU
cores enforce this ordering by stalling a FENCE instruction until all previ-
ous load and store operations from the wavefront have completed. Atomic
stores in TC-Strong ensure that stores complete before an acknowledgment
is returned to the GPU core.

2. Any two memory accesses from a single wavefront to the same address
obey program order in the total memory order. The memory stage in the
in-order GPU cores does not reorder memory requests, so they are inserted
in program order to the memory system. The point-to-point ordering at
the interconnect and all cache controllers ensures that requests to the same
address from the same wavefront are processed in-order.

3. A load reads the value from the latest store to the same address.
The SWMR and Data-Value invariants enforced by TC-Strong provide this
guarantee.

7.2 TC-Weak Correctness

In this section we show that a TC-Weak based GPU architecture implements
a Relaxed Consistency model without write atomicity, similarly to existing
consistency models [2, 35, 80]. TC-Weak allows RCpc [35] executions, which
is the RC model without write atomicity. TC-Weak unifies the ACQUIRE
and RELEASE fences of RCpc into a stronger FENCE operation that orders
all requests, similarly to the FENCE in TC-Strong. Informally, correct RCpc
execution requires that FENCES stall until all memory accesses preceding
in program order have performed. As defined by Dubois et al. [32], a load is
considered performed at a point in time when any store issued by any thread
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(wavefront for a GPU) after this time cannot affect the value returned by
the load. A store is considered performed at a point in time after which no
thread (wavefront for a GPU) can read the stale value that was overwritten
by this store. As per RCpc, the following conditions enforce correctness.
The definitions of TIME, GT and LTi remain unchanged from Section 7.1.1.
Additionally, we define GWCT as the Global Write Completion Time, the
timestamp returned by the L2 informing a GPU core of the time by when
this store will be performed.

1. All previous load and store accesses from a wavefront must be per-
formed before a later FENCE can complete.
This guarantee is trivially enforced for load accesses as a FENCE operation
stalls until all pending loads have completed. It is non-trivial for stores
because in TC-Weak an acknowledgment from the L2 that the store re-
quest was completed does not imply that a store has been performed and
is visible to all wavefronts. This is because TC-Weak breaks Rule #5 from
Section 7.1.1 and allows a store request to update the L2 cache even if
TIME <= GT . Rules #1 - #4, however, still apply to TC-Weak. To show
correctness for this case, we use the following properties of TC-Weak.

Property #1’. Given a GWCT returned by a store and the GT of a
line when the store updated the L2 cache, GWCT > GT . All stores occur
at the L2 and the write completion time returned is one plus GT of the line.

Property #2’. At all times, any line in the ith L1 cache with TIME <=
LTi has seen all the stores that performed up to the time that the latest re-
sponse (that updated the local timestamp) for this line from the L2 left the L2
cache. All load responses from the L2 contain data, and hence they contain
all stores to that address up to the time the response leaves the L2. The
load responses update both the data and the local timestamps at the L1 as
per Rule #3.

Using the above two properties we can show that each store is performed
by its GWCT. Assume that a store is processed at the L2 at TIME = 5 and
a GWCT = 10 is returned. Further assume that a load hit at an L1 occurs at
TIME = 10 and the previously mentioned store was not seen by this load
(implying incorrect behaviour). From Property #2’, this implies that no
load response (that updated this L1’s line) left the L2 between TIME = 6
and TIME = 10, inclusive. This further implies that at TIME = 5 the
L1 line had a timestamp of LTi >= 10 because an L1 hit occurred at
TIME = 10 and this line was not modified after TIME = 5. From Property
#1’ we know that at TIME = 5 the timestamp at the L2 for the line was
GT <= 9 because a GWCT = 10 was returned by the store. This is a
contradiction with Rule #2 in Section 7.1.1 which states that GT >= LTi
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at all times. Therefore, by TIME = 10 the load hit at the L1 must have
seen the store, and hence the store was performed by its GWCT = 10.

TC-Weak stores in each GPU core a per-wavefront GWCT entry con-
taining the maximum of the GWCT returned by all previous stores from the
wavefront. A TC-Weak FENCE stalls until all pending stores have updated
the wavefront’s GWCT entry and until TIME >= GWCT entry. This
guarantees that all stores prior to this FENCE have performed.

2. All prior FENCE operations should be completed before any later loads
or stores can be performed.
The in-order GPU core does not schedule any instructions from a wavefront
whose FENCE operation has not yet completed.

3. Synchronization accesses are write atomic and sequentially consistent
with respect to other synchronization accesses.
By default, the read-modify-write, or atomic, operations on a GPU used
for synchronization purposes are not sequentially consistent. Sequentially
consistent atomic operations can be provided by simply enclosing an atomic
access between two FENCE instructions.

The preceding three conditions show that TC-Weak supports RCpc ex-
ecutions. Supporting RCpc executions means that TC-Weak supports SC
execution of Data Race Free (SC for DRF) programs [5].

7.3 Towards Full Verification

This chapter presented the TC-Strong and TC-Weak as a set of rules. It then
showed that these sets of rules are equivalent to the invariants required by
specific implementations of coherence or consistency models. It also briefly
discussed how our protocol implements each rule. The discussion here does
not imply that the protocols we present in this thesis are fully verified.
Future work towards verifying the protocols needs to show that the specific
implementations correctly implement the rules this chapter presented. The
detailed state machines for both TC-Strong and TC-Weak that we presented
in this thesis should aid this final step in full protocol verification.
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Chapter 8

Related Work

This chapter discusses research related to this work.

8.1 Timestamp-Based Software Coherence

The use of timestamps has been explored in software coherence. Cheong
and Viedenbaum [22] proposed a version control based software coherence
scheme that keeps a version number for each variable in a table. At the
beginning of a phase, it stores the version number in an extra field in the
cache line. At the end of the phase, it increments the software version
number for all variables that may have been modified in that phase. In the
next phase a cache line is only considered valid if the variable’s software
version is less than the cache line’s version, otherwise the data may be stale.
This scheme introduces a large storage overhead to track versions for each
variable in software, and a performance overhead due comparing version
numbers at every load.

Min et al. [66] extend this technique with more sophisticated compiler
analysis to determine which variable may be modified in a phase. Chiueh [23]
reduced the storage overhead of tracking a version or timestamp in software
for each variable by using one version number for all variables. However,
the runtime overhead of comparing and maintaining the cache line’s version
number remains. The TS1 [31] software coherence scheme eliminates the
software overhead of tracking version or timestamps. It adds one bit to each
cache line that is set when a variable is referenced in the current phase. At
the end of each phase it invalidates all cache lines where the bit is not set and
that may have been modified by other processors. It however has a run-time
overhead of invalidating lines at the end of each phase. TPI [25] uses the
phase id instead of version numbers as the timestamp. TBSIS [91] combines
TS1 and TPI to reduce both runtime overhead of invalidations and the
storage costs of timestamps. TBSIS however shifts the overhead to hardware
by requiring an instruction that can quickly invalidate all lines where the
timestamp equals a given value. All of these schemes use compiler-directed
analysis and add some form of run-time overhead for software coherence.

70



8.2. Timestamp-Based Hardware Coherence

They are also designed for task-based parallel programming models that are
even more restrictive than current GPU programming models. TC-Weak
does not require any software or compiler support.

8.2 Timestamp-Based Hardware Coherence

Nandy et al. [67] first considered timestamps for hardware coherence. LCC
[57, 82] is a time-based hardware coherence proposal that stores timestamps
in a directory structure and delays stores to unexpired lines to enforce
Sequential Consistency on CMPs. The TC-Strong implementation of the
TC framework is similar to LCC as both enforce write atomicity by stalling
stores at the shared last level cache. Unlike LCC, TC-Strong supports mul-
tiple outstanding stores from a core and implements a relaxed consistency
model. TC-Strong also includes optimizations to eliminate stalls due to
private writes and L2 evictions. Despite these changes, we find that the
stalling of stores in TC-Strong causes poor performance on a GPU. We pro-
pose TC-Weak and a novel time-based memory fence mechanism to elimi-
nate all write-stalling, improve performance, and reduce interconnect traffic
compared to TC-Strong. We also show that unlike for CMP applications
[57, 82], the fixed timestamp prediction proposed by LCC is not suited for
GPU applications. We propose a simple yet effective lifetime predictor that
can accommodate a range of GPU applications. Lastly, we present a full
description of our proposed protocol, including state transition tables that
describe the implementation in detail.

8.3 Self-Invalidation Based Coherence

Self invalidation of lines in a private cache has also been previously ex-
plored in the context of cache coherence. Dynamic Self-Invalidation (DSI)
[56] reduces critical path latency due to invalidation by speculatively self-
invalidating lines in private caches before the next exclusive request for the
line is received. In the sequentially consistent implementation, DSI requires
explicit messages to the directory at self-invalidation and would not alle-
viate the traffic problem on a GPU. In its relaxed consistency implemen-
tation, DSI can reduce traffic through the use of tear-off lines, which are
self-invalidated at synchronization points. Recently, Ros et al. [75] proposed
extending tear-off lines to all cache lines to eliminate coherence directories
entirely, reducing implementation complexity and traffic for CMP coherence.
Their protocol requires self-invalidation of all shared data at synchroniza-
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tion points. Synchronization events, however, are much more frequent on a
GPU. Thousands of scalar threads share a single L1 cache and would cause
frequent self-invalidations. Their protocol also requires blocking and buffer-
ing atomic operations at the last level cache. GPUs support thousands of
concurrent atomic operations; buffering these would be very expensive. A
Last Touch Predictor [53] allows selective invalidation of cache lines, but
would only move the coherence traffic from invalidation to recall. TC-Weak
eliminates all invalidation and recall messages through shared timestamps.

8.4 Scalable Coherence

Denovo [24] simplifies the coherence directory but uses a restrictive pro-
gramming model that requires user annotated code. TC-Weak does not
force restrictions onto the GPU programming model. Kelm et al. [49]
discovered that some applications contain data regions that benefit from
hardware coherence and other regions that benefit with coherence disabled.
They propose a hybrid coherence system that requires code modifications
and additional hardware to disable coherence at a fine granularity for such
applications. In contrast, TC-Weak effectively disables coherence for data
regions that do not require coherence but does not require any code mod-
ifications. Recent coherence proposals [50, 78, 94] simplify tracking sharer
state for 1000s of cores. GPUs have tens of cores; exact sharer representation
is not an issue.

ARM recently announced a cache coherent architecture for their Mali
GPUs [3]. Their architecture uses a MESI directory protocol to provide
coherence within the GPU. AMD’s roadmap [10] for their fused CPU-GPU
architectures includes fully coherent GPUs. Intel’s manycore MIC architec-
ture [26] already includes coherent caches.

8.5 Consistency Models for

Throughput-Oriented Processors

Recently, Hechtman and Sorin [39] explored different consistently models
on a GPU-like massively multithreaded architecture. Their findings sug-
gest that strong consistency models like Sequential Consistency may be well
suited for these architectures because these architectures implement simpler
pipelines. Their results also support our thesis that optimizing for store la-
tency is far less useful for GPU applications than it is for CPU applications.
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Chapter 9

Conclusion and Future Work

This chapter provides a concluding summary of this thesis and presents
future work.

9.1 Conclusions

In this thesis, we motivated hardware cache coherence for GPUs and ex-
plored its implications. We showed that coherence can improve GPU pro-
gramming and improve performance of GPU applications by enabling the
use of private caches. Our evaluations found that some assumptions of CMP
coherence do not apply to GPUs. On GPUs, write-through protocols are
preferable to writeback protocols. Larger directories are not as beneficial to
GPU performance as they are to CMPs.

We found that conventional coherence implementations introduce a new
set of challenges when applied to GPU architectures. The management of
transient state for thousands of in-flight memory accesses adds hardware
and complexity overhead. Coherence adds unnecessary traffic overheads to
existing GPU applications. Accelerating applications with both coherent
and non-coherent data requires that the latter introduce minimal coherence
overheads. We presented Temporal Coherence, a timestamp based coherence
framework that addresses the overheads of GPU coherence. We proposed an
implementation of this framework, TC-Weak, which uses novel timestamp
based memory fences to reduce these overheads.

Our evaluations showed that TC-Weak can successfully address the new
concerns that arise with hardware coherence for highly parallel architectures.
It reduces the traffic of the conventional coherence protocols MESI, GPU-VI
and GPU-VIni by 56%, 23% and 22% across a set of applications without co-
herent data. This leads to lower energy overheads in introducing coherence.
It provides a 85% speedup over disabling the non-coherent L1’s for a set of
applications that require coherent caches. This makes hardware coherence
an attractive feature that allows a new class of applications to benefit from
GPU hardware. Lastly, TC-Weak provides a 28% performance improvement
over TC-Strong. This shows that relaxing some coherence constraints, such
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as write atomicity, can be beneficial over considering coherence as a fixed
black-box system.

There has been a recent push towards properly defining consistency mod-
els for CMPs. The C++ [15] and Java [58] memory models have gone
through revisions to more precisely define their requirements from these
models. Hardware manufacturers are urged [81, 85] to more properly de-
fine the behaviour of their memory systems. GPU hardware, however, has
moved slowly in this aspect by failing to reveal many details of its memory
system. We encourage GPU manufacturers to support well-defined consis-
tency models and the SC for DRF paradigm so that GPU programmers too
can utilize the benefits of high-level languages.

9.2 Future Work

9.2.1 Lifetime Prediction

In this thesis we proposed a simple lifetime prediction mechanism. More
advanced prediction mechanism may further improve the performance of TC
protocols. For example, lifetime may be correlated with instructions and a
Program Counter based prediction might yield better results. Studying the
relationship between code and lifetimes may yield hints on possibly making
more informed predictions through compiler analysis.

9.2.2 Graphics Applications

While we studied the effects of coherence on GPU applications that don’t
need coherence, we did not explore its impacts on graphics applications.
Since graphics are still the major driving force for advancements in GPU
architectures, it is important that coherence does not negatively impact
these applications. With these applications, the issue of how coherence
should handle graphics pipeline specific features, such as texture caches and
Z-Buffer Units [45], arises and needs to be explored.

9.2.3 Cache Management

Recent research [74] shows that thread scheduling and cache management
policies can greatly impact the performance of GPU applications. These
have direct impact on the coherence protocol, and especially the lifetime
of cache lines for TC protocols. Future work should explore GPU cache
management and GPU coherence in conjunction.
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9.2.4 CPU-GPU Coherence

This thesis showed that the requirements for CPU coherence and GPU co-
herence are fundamentally different. Fused CPU-GPU architectures [16, 48]
may need to separately address these challenges. One approach may be to
use a framework [13] that allows combining of different coherence proto-
cols through a single interface. Future work in this domain also includes
studying the impact CPU-GPU coherence has on shared resources, like the
interconnection network.
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