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Abstract 
 
Bayesian statistics is an alternative approach to traditional frequentist statistics that is rapidly gaining 

adherents across different scientific fields. Although initially only accessible to statisticians or 

mathematically-sophisticated data analysts, advances in modern computational power are helping to 

make this new paradigm approachable to the everyday researcher and this dissemination is helping 

open doors to problems that have remained unsolvable or whose solution was extremely complicated 

through the use of classical statistics.  In spite of this, many researchers in the behavioural or 

educational sciences are either unaware of this new approach or just vaguely familiar with some of its 

basic tenets. The primary purpose of this thesis is to take a well-known problem in psychometrics, the 

estimation of the polychoric correlation coefficient, and solve it using Bayesian statistics through the 

method developed by Albert (1992). Through the use of computer simulations this method is compared 

to traditional maximum likelihood estimation across various sample sizes, skewness levels and numbers 

of discretisation points for the latent variable, highlighting the cases where the Bayesian approach is 

superior, inferior or equally effective to the maximum likelihood approach. Another issue that is 

investigated is a sensitivity analysis of sorts of the prior probability distributions where a skewed 

(bivariate log-normal) and symmetric (bivariate normal) priors are used to calculate the polychoric 

correlation coefficient when feeding them data with varying degrees of skewness, helping demonstrate 

to the reader how does changing the prior distribution for certain kinds of data helps or hinders the 

estimation process. The most important results of these studies are discussed as well as future 

implications for the use of Bayesian statistics in psychometrics.  
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1.     Introduction 

 
 1.1 Opening remarks 

 
When students in introductory methodology courses are first exposed to the basic ideas of statistical 

inference (under the Neyman-Pearson paradigm), an all-too-familiar situation occurs the moment that 

confidence intervals are introduced. In spite of careful explanations, worked-out textbook examples and 

constant exhortations from instructors and APA taskforces, it is not unusual for a misconception to 

proliferate regarding their appropriate interpretation (Anderson, Burnham & Thompson, 2000; 

Thompson, 2002; Wilkinson & TFSI, 1999).  Over and over again, claims such as “there is a 95% chance 

that the (insert the name of your parameter of choice) falls within such and such bounds” get uttered as 

a way to make sense of what these numbers mean. And over and over again instructors and 

methodologists have to fight their way into communicating the correct interpretation: that if the 

experiment or study in question were to be repeated under the same circumstances (i.e. same 

treatment to samples coming from the same population) over and over again to infinity, and 95% 

confidence intervals were calculated each time, the researcher can expect that 95% of those confidence 

intervals will contain the true population mean, regression coefficient, factor loading or the parameter 

estimate needed. Although this explanation is mathematically correct and directly reflects the 

traditional paradigm of null hypothesis testing, any researcher or data analyst, at any given moment, can 

raise a very legitimate question: what about my 95% confidence interval? What about the uncertainty in 

my dataset and not in these hypothetical infinite replications?  It may come as a surprise to some that, 

unfortunately, very little information can be extracted from these intervals to answer such questions 

(Agostini, 2003; Berger & Sellke,1987; Gill, 1999). The classical or frequentist viewpoint requires, by its 

own definition of probability, that such long-run frequency of events must be present (Spanos, 2011). 

Most of the statistical methods used in everyday research adhere to this interpretation which, up to a 

certain point, limits the kind of inferences that can be made from the data (Gill, 1999; Lee, 2011). But it 
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does not have to be this way. An alternative view of probability, with alternative methods of estimation, 

is beginning to challenge the current position held by classical statistics as the sole approach to data 

analysis, paving the way for what could become the next new paradigm to guide the process from data 

collection and knowledge creation.   

 Bayesian statistics provide a different light under which data can be analysed and parameters 

can be estimated. Although the underlying technical extensions are very similar to those of classical or 

frequentist statistics (both have instances of the general/generalised linear model, a notion of statistical 

inference, etc.) several important differences have contributed to the popularisation and use of 

Bayesian methods, starting with their conceptualisation of probability. Whereas the relative frequency 

of events is central in classical statistics, Bayesian statistics relies on a definition of probability that has 

more to do with states of knowledge or degree of belief (Bunge, 2012; Crovelli, 2011). Most people used 

to the traditional frequentist definition feel cautious when words such as ‘belief’ get used in the context 

of scientific research because of the aura of subjectivity conveyed with it. It is, in these cases, that 

emphasis should be made on the fact that subjective is not the same as arbitrary, and that to assume 

that the scientific (or any human) endeavour is free from people’s own intellectual background is indeed 

quite naïve (Karni, 2011). Mathematically speaking, it has been shown that the conceptualisation of 

probability as degree of belief is consistent within an axiomatic framework of probability theory (cf. De 

Finetti, 1974; Cox, 1946; Jaynes, 1957). De Finetti’s coherence argument is one of the first articulations 

of the issue, but later extensions have been made through the use of Jayne’s Maximum Entropy 

principle or Cox’s logical consistency reasoning. Even modern results of probability based on measure-

theoretic approaches where sample spaces are defined over sigma-algebras have shown to be 

consistent under the subjective definition of probability (Strzalecki, 2011).  

 Until recently, most of the advances in Bayesian statistics had been somewhat out of reach for 

the applied researcher, particularly in the social sciences. As it will be elaborated in subsequent sections, 
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Bayesian methods of estimation depend upon the integration of probability densities in multiple 

dimensions whose solution is difficult to find. Advances in computer power have allowed for the 

development of a family of methods known under the umbrella term of Markov Chain Monte Carlo 

(MCMC) which have contributed to their dissemination, but there still exist a variety of areas where data 

analysis is routinely performed but the Bayesian perspective is either ignored or misunderstood.  

 The social sciences have recently seen a surge both in the development and application of 

Bayesian methods (Diaconis, 2009; Gelman & Shalizi, 2011). As statistical models increase their 

complexity (particularly in the realm of latent variables or missing data), the need for a more flexible 

framework to accommodate them increases as well, opening the doors for the Bayesian paradigm to 

help inform both the data-analytic and theory-testing process in these areas of knowledge. Item 

Response Theory (IRT) and Latent Class (LC) models have received particular attention due to the 

complicated nature of their estimation but, unfortunately, the ‘Bayesian Revolution’ has not yet gained 

much traction among psychological and educational researchers when compared to what is being seen 

now in areas like biology or economics (Kruschke, Aguinis & Joo, 2012).   

 

 1.2 Purpose and structure of the thesis 

Given the fact that the Bayesian paradigm is still mostly unfamiliar (or completely ignored) by a 

considerable number of people in the social/behavioural/health sciences and that many of the leading 

theorists in Bayesian methods only consider problems pertaining to the social sciences “in passing” (so 

that they provide a general overview of the problem and the solution but no further development of the 

ideas is done) this thesis explores a very common problem in psychometrics: the estimation of the 

correlation of ordinal data through the use of the polychoric correlation coefficient. This particular 

statistic has been widely researched from the frequentist perspective using the method of maximum 

likelihood, testing its estimation under a wide variety of different conditions to see the impact that each 
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of them have on the quality of the estimates (conditions such as the number of cutpoints in the latent 

variable, the skewness of both the observed and latent variables, etc.). Until now, not much work has 

been done to look at it from a Bayesian perspective though. The primary purpose of this thesis is to 

extend the work of Albert (1992) who proposed both a flexible mathematical framework to make the 

estimation of the polychoric correlation tractable and a general overview of the design of a Gibbs 

sampler that could be used to perform the necessary calculations. Albert himself only shows two brief 

examples as a demonstration of how his approach could be implemented, but no systematic study is 

done to test whether his approach holds in the various circumstances that applied researchers regularly 

find themselves in. Choi, Kim, Chen & Dannels (2011) have recently shown that a different form of 

Bayesian estimation outperforms traditional maximum likelihood in a variety of settings, but their 

method is restricted only to the case of the bivariate Gaussian distribution. Albert’s method will be 

investigated further and extended to accommodate left-skewed latent distributions in an effort to help 

document some of the advantages that switching from frequentist to Bayesian methods has, as well as 

the instances where the choice of estimation is irrelevant or even when the traditional approach is 

preferred. Although the Bayesian conceptualisation of probability is still controversial, Bayesian 

estimation methods are slowly moving at the forefront of statistical analysis which helps make the case 

as for why practitioners in the social sciences would benefit greatly by starting to become familiar with 

this new approach.  
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2. Literature review 

2.1 An overview of Bayes’ theorem and the Bayesian approach to statistics 

Consider the following scenario. One finds her or himself walking down the street and happens to find a 

coin. The coin is a little bit different from what anyone has come across before, probably left by a visitor 

from another land. If one were to use that coin for a betting game of sorts, how confident can one be 

that such coin is fair? Perhaps tossing it a few times to test it would be the best option. If say after ten 

tosses one finds that one side of the coin came up 7 times and the other 3 times, what can be inferred 

about the coin? What if after 20 tosses the other side came up 19 times and one side only came up 

once? Regardless of what the results are, one thing that can be pointed out is that each person’s beliefs 

concerning the fairness of the coin are affected by the very act of testing it. They can be reaffirmed or 

they can be changed, but what is thought about the uncertainty surrounding the coin is influenced by 

the act of testing it. 

 From any introductory methods or statistics course students become acquainted only with the 

frequentist or classical definition of probability, which implies that probability can be understood as the 

long-run frequency of sampling events taken from the sample space (Nickerson, 2000). In the case of the 

previously-mentioned coin, the sample space is simply both sides of the coin (the only two possibilities 

that can arise in the experiment) and the sampling event is each tossing of the coin. If the coin is fair, 

after a theoretical infinite number of tosses one should conclude that the proportion of obtaining one 

side of the coin versus the other one is 0.5. Two things stand out from this conception of probability. 

The first one is the need for the infinite number of tosses. For any finite number of tosses, regardless 

how many there are, the average frequency will approximate 0.5 but it will never be 0.5. The second 

one is that nothing is known about the probability of any specific toss. The coin is only fair on average 

and the probability that heads or tails will come out is 0.5 in the long-run, but when one is about to 

make a toss, nothing is known about the probability associated with that specific toss.   
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 A Bayesian twist can be given to the same scenario.  Assume that the hypothetical coin-tosser 

picks up the coin, inspects it and asks him/herself: how big is it? What shape does it have? Does it look 

perfectly circular or is it slightly elongated? Does it have any kinks that would push it to one side or the 

other when I flip it? All of these aspects are taken into consideration before the person in question 

formalises her or his beliefs in a single number, the (subjective) probability that the coin is fair. With 

each flip of the coin, however, this probability (better interpreted as degree of belief) gets updated and 

changes. If the coin is assumed to be fair and both sides of it come out roughly the same number of 

times, there is little need for the coin-tosser to make considerable adjustments to the initially-held 

beliefs. But what if one side consistently shows up more often than the other one? With each new toss 

the probability of fairness becomes updated such that after any series of tosses, there is a final 

assessment of belief in the fairness conditioned on the evidence gathered through previous coin tosses. 

The crux of the Bayesian approach to probability relies on the very fact that the probabilities of 

outcomes become updated with every new piece of evidence that is collected (Chechile, 2011).  

 Bayesian statistics owes its name to the work of the English mathematician and Presbyterian 

minister Thomas Bayes (1702-1761).  In 1764, his seminal work "An Essay towards solving a Problem in 

the Doctrine of Chances" was published posthumously by his friend the moral philosopher Richard Price, 

where Bayes states the first mathematical formulation of inductive reasoning through his celebrated 

theorem, Bayes’ theorem, in which previous probabilities can be combined to obtain an estimate of the 

probability of a future event (Stephens, Buskirk, Hayward & Martinez Del Rio, 2005). In its simplest form 

it can be expressed as follows. For any two non-independent events A and B with probabilities P(A), P(B) 

and conditional probabilities P(A|B) (read, ‘probability of A given B’) and P(B|A) the following 

relationship can be stated through Bayes’ theorem:  
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The probability of A given B in this case is the product of the probability of B given A times the 

probability of A divided by the probability of B. Each term that goes in Bayes’ theorem receives a name. 

P(B|A) is called the ‘likelihood’, P(A) the ‘prior probability’ (or simply prior) and P(B) is called the 

‘evidence’. The French mathematician LaPlace is credited with extending many of the results originally 

proposed by Bayes (including a re-derivation of the theorem which is now used) although he was mostly 

unaware of the work done by the English reverend. 

Consider the following example to try and bring this mathematical expression to a more 

concrete level: 

  

So the probability of inferring rain from finding wet grass requires, first, the absolute probability 

of finding the grass to be wet. If the grass is not wet then it is an oxymoron to ask for the probability of 

inferring rain from wet grass. Now, from the spectrum of possibilities surrounding finding wet grass, one 

needs two probabilities: the probability that it rained and a certain degree of belief regarding the 

inference of finding wet grass because it rained. In this specific example, it could be argued that perhaps 

the front lawn of some house has a roof on top of it so that the probability that the grass gets wet 

because it rained is very low but it is very high if the sprinklers are on. Finding the grass to be wet, 

therefore, does not immediately imply that it rained but it remains in the spectrum of possibilities. All of 

these events with certain degrees of plausibility get combined together to obtain a final probability 

assessment so that if one opens the door and sees wet grass it is possible to make the inference that 

rain could be an explanation for that. Bayes’ theorem allows to mathematically proceed from observing 

‘wet grass given rain’ to assessing the probability of ‘rain given wet grass’.  

One of the best examples of the relevance of this process in the social sciences can be found in 

Cohen’s 1994 critique of null hypothesis testing, “The earth is round, p < .05” : 
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“When one tests Ho one is finding the probability that the data (D) could have arisen if Ho were true, 

P(D|Ho). If that probability is small then it can be concluded that if Ho is true then D is unlikely. Now 

what really is at issue, what is always the issue is the probability that Ho is true given the data, P(Ho|D), 

the inverse probability (…) but that is the posterior probability, available only through Bayes Theorem 

(p.998).” 

 The Bayesian approach to statistics has always been controversial (MacCallum, Edwards & Cai,  

2012). Even from its inception, Thomas Bayes was so reluctant to let his result be known that it had to 

be published posthumously because of the implications that it had. These ‘inverse probabilities’, as they 

were initially referred to, violated some of the first conceptualisations of probability known in history 

because they provided evidence for an event that could have never happened before. In general, the 

probability of A given B is different from the probability of B given A, so P(A|B) ≠ P(B|A), but through 

Bayes’ theorem it is possible to estimate this quantity. Most of the major figures in mathematical 

statistics openly condemned this approach, including Fisher who vehemently and consistently criticised 

it as a theory “founded upon error and must be wholly rejected” (Fisher, 1970, p.10). Edwards (2004) 

points out that, as an interesting twist of fate, Fisher would come to realise that in order to solve the 

shortcomings of the kind of inferences that can be derived from null hypothesis testing he would need 

to use these “inverse probabilities” (and Bayes’ theorem). Unwilling to do so, he developed the concept 

of ”fiducial probabilities” for which he was later criticised due to the logical and mathematical errors 

that went into developing them. Several authors concur that from Fishers final papers it could be seen 

that he was not only reconsidering his own position towards Bayesian statistics but also that Bayesian 

inference was probably the only kind of statistically-justifiable inference (Barnard, 1987; Dale, 1999; 

Fienberg, 1997).  Although no one questions the validity of Bayes’ theorem today, there are still 

detractors who question the kind of conclusions that be obtained from switching from classical to 

Bayesian statistics, particularly because of this conceptualisation of probability as degree of belief 

(Efron, 1986). 
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2.2 Bayesian estimation 

Until recent days, the development of Bayesian statistics had been confined to theoretical 

advancements and some limited applications due to the inherent difficulty in the calculations involved. 

In its more general form, Bayes’ theorem can be expressed as: 

 

Where θ is a vector of unknown parameters that will be estimated, L(θ|D) is the likelihood of 

the parameters given the data and P(θ) is the prior probability of the parameters. The main problem 

with Bayesian estimation is concerned with the calculations that take place in the denominator of the 

expression, the integral. Integrals can be notoriously difficult to evaluate and, in many cases, numerical 

approximations are the only possible way to evaluate them, which requires a lot of computer power. 

Modern computers, however, are now capable of doing an impressive amount of calculations in limited 

time which has opened the doors for Bayesian statistics to become accessible to the everyday 

researcher.  

 Casella and Berger (1987) commented once that Bayesian estimation and inference methods 

could be conceptualised as following three very general steps. The first one asks for the researcher to 

specify a statistical model and a prior distribution. Next the estimation is done and finally, as a matter of 

good practice, the results are compared to those obtained through competing models in order to be 

able to choose the most appropriate ones. 

 The first step of model building is where Bayesian statistics finds most of its criticisms. In the 

numerator of Bayes’ theorem is the term referred to as the ‘prior probability’ or, simply, ‘the prior’. This 

term reflects the degree of belief of the researcher concerning the phenomenon under study before the 

actual collection of data. The priors can be chosen at will and, depending on the model being analysed, a 

different choice of priors can generate different parameter estimates and, hence, different conclusions 

(Dempster, 2005). One of the main claims that detractors of Bayesian statistics make is that by including 
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the subjective influence of the researcher through the use of priors one is likely to bias the conclusions 

derived from the analysis of the data (Bem, Utts &  Johnson, 2011; Berger, 1990). That only through 

adopting a completely objective position, the “viewpoint from nowhere” described by Leahey (1991), 

can one safely proceed into the enterprise of creating science. There exist several arguments against 

such position, both epistemological and statistical which are beyond the scope of this thesis, although a 

brief exploration of them will help clarify some of the misconceptions that surround Bayesian inference. 

From an epistemological point of view it is extremely naïve to believe that the researcher has no impact 

on his or her object of research. Even pure, hard sciences such as physics acknowledge the presence of 

an observer effect where the very act of measuring something influences it (Matthews, 2011; Monahan 

& Jill, 2010; Shen, 2009). An electron, for instance, can behave as a particle or as a wave depending on 

how it is measured. In the domain of the social sciences the context in which participants are measured 

can greatly influence the kind of responses they will give, even in seemingly objective measures such as 

blood pressure of electro encephalogram readings.  

Statistically speaking, common frequentist analysis does not go without its own subjective 

assumptions (Risinger, 2012). The main workhorse of estimation in classical statistics, the method of 

maximum likelihood, requires the data analyst to subjectively choose a likelihood function over which 

the parameter space will be maximised. In the social sciences it is customary for this likelihood to be 

Gaussian (with a few exceptions such as in logistic regression) and the software usually makes the 

choice. However, there are still consequences to choosing the wrong likelihood function for the data, 

which can range from very minor bias to an absolute lack of consistency of the estimates depending on 

the complexity of the model (Pawitan, 2001). A second statistical drawback of estimation in classical 

statistics is that there is no way for the data analyst to aid in the estimation process through the use of 

data from previous research (Agostini, 2003; Lee, 2011). Say, for example, that one is using a 

psychological scale from some specific subfield of the discipline which is considered as the ‘gold 
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standard’, so inferences derived from its scores have been found to be supported by empirical evidence. 

Say further that, as it happens commonly in the social sciences, one is using this scale on a small sample. 

Under the Bayesian framework, the researcher can gather information of the previously-available 

research concerning this scale to help reduce the uncertainty surrounding the estimates of interest, but 

under the classical framework all one has is the data and nothing more. Since the frequentist definition 

of probability requires the idea of infinite sampling and re-sampling, all the researcher has when she or 

he collects data is one instance of those many samples, regardless of how crude her or his sampling 

techniques were or how few participants he or she was able to gather. There is no way to bring into the 

estimation previous information to help in the analysis of data. Bayesian estimation, on the other hand, 

can help reflect this information through the choice of a prior distribution (Berger, 2000). Things as 

simple as data plots or having estimates of means and standard deviations from the variables can be 

brought forward into the prior so that the Bayesian estimates can profit from the work being done 

before by other researchers.  

Once a prior and a model have been chosen (choosing a model works in the same way as one 

would do in classical statistics: regression, ANOVA, etc.) the second step is to move on to the estimation 

process. Some analytic solutions exist for a limited number of Bayesian model specifications which 

usually imply using Bayes’ theorem alongside well-behaved integrals. The best example would be 

inferring the proportion of heads that one obtains after a series of coin tosses. Since the proportion p of 

heads and tails can be any number in the interval between 0 and 1, a suitable distribution with support 

over this domain is the beta distribution. The beta distribution is unimodal and governed by two 

parameters (referred to by convention as ‘a’ and ‘b’) which help define its skewness and kurtosis. If one 

works under the assumption that the coin is fair (so p = 0.5) then a equals b and the distribution looks 

like the normal distribution (that is, symmetric, unimodal and bell-shaped). If one believes that the coin 

is not fair, the skew of the distribution can be moved to the right (so closer to 0 if one thinks the coin is 
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biased against heads) or to the left (so closer to 1 if the bias is assumed to be favouring heads). The beta 

distribution for inferring a binomial proportion (as this problem is usually known) is very well-behaved 

analytically because once all the integration and calculations are done, the resulting distribution is also 

part of the beta family. Distributions whose prior and posterior belong to the same family are known as 

conjugate distributions and many lend themselves to analytical solutions as opposed to numerical 

approximations (Greenland, 2001).   

Unfortunately, the majority of Bayesian models are not amenable to exact solutions and 

numerical methods have to be invoked. As it was previously mentioned, the number of simultaneous 

dimensions over which one would need to integrate increases as a function of the number of 

parameters in the model. Many of these integrals do not even exist in closed-form (so no symbolic 

formula can be provided for it) which just increases the complications. Bayesian analysis saw its 

development stumped by this very fact until the mid-1950s when, for the first time, researchers could 

implement a series of high-powered approximations that have become collectively known as Markov 

Chain Monte Carlo (MCMC). 

MCMC methods are the collective name of a series of computational algorithms that allow the 

researcher to sample from high-density regions of probability distributions that either exist in multiple 

dimensions or have very complex forms (Kruschke, 2010). A useful analogy to how MCMC methods work 

would be that of a frog jumping across lily pads of several different sizes following a set of simple rules. 

The jump to the first lily pad is made at random from any part of the pond. If the next lily pad is bigger 

than the one where the frog is on now, then the frog jumps on it, however, if it is not, the frog only 

jumps on it probabilistically, taking into account the relative size of the next lily pad to the one it is on 

now. Say the hypothetical frog is on a lily pad with a size of 7 units and the one where it supposed to 

jump has a size of 5 units. The imaginary frog would use a fair spinner (marked from 0 to 1 to indicate 

probabilities) and would only jump to the following lily pad if the spinner falls anywhere between 5/7 



13 

 

(so about 0.71) and 1. If the spinner falls below 5/7 then the frog stays where it is and spins again. 

Although somewhat simplified, the important result that comes out from it is that after enough jumps 

and spinnings, the frog will visit each and every lily pad proportionally to its size so that it spends more 

time on bigger lily pads and less time on smaller ones. Recognising the analogy that the pond is the 

probability distribution and the lily pads are intervals on it, the mathematical miracle of MCMC 

algorithms with random walks is that, eventually, the algorithm visits every point of the probability 

distribution. If one were to imagine this in the usual normal case, for instance, the algorithm will tend to 

move away from the tails (where the probability density is very low) towards the middle of the 

distribution close to the mean (where the probability density is high). However, the tails and the middle 

of the distribution will be visited proportionally to how probable events are there, reproducing the 

probability distribution up to an accuracy proportional to how many iterations (or in more formal 

terminology “samples”) are run by the algorithm. It will only reproduce the distribution perfectly if 

infinite MCMC iterations are taken, just as maximum likelihood will only yield the exact estimate of a 

parameter under the assumption of an infinitely large sample size. Sampling from this posterior 

distribution is at the centre for Bayesian inference and Bayesian estimation, since it is from there that 

parameters and measures of the uncertainty of those parameters are calculated (Martin, Quinn & Park, 

2011).  

For instance, the mean of the posterior distribution is usually taken as the best parameter 

estimate, and its standard deviation as a measure of its variability. If more than one parameter is being 

calculated, their joint posterior distribution contains all the information needed to estimate them, but it 

becomes very difficult to find it due to its high-dimensional nature. In such cases, it is possible to convert 

this high-dimensional problem into multiple low-dimensional problems through sampling from the 

conditional form of the posterior distribution, instead of the joint distribution, although there are times 

in which even this is not possible and much more complex computations are required (Lynch, 2010).  
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There exist several algorithms that fall under the umbrella term of ‘MCMC’. Two of the most 

popular ones are the Metropolis-Hastings algorithm and Gibbs sampling, which will be employed in this 

thesis (Gelman, Carlin, Stern, & Rubin, 2004). Casella and George (1992) provide one of the best 

overviews of Gibbs sampling, starting by acknowledging the fact that sampling from the joint posterior 

distribution for many parameters can be very complicated. In this case, the joint distribution of the 

vector of parameters θ is ‘broken down’ by conditioning across each parameter, so that instead of 

sampling simultaneously from a single distribution, several samples are taken from several distributions 

where each parameter is conditioned on all the other ones. If, for instance, one attempts to find the 

parameter estimates of a bivariate normal distribution with parameters (μ1, μ2) for the mean, (σ1, σ2) for 

the variances and covariance σ12 , in order to find μ1 one would have to sample from the marginal 

distribution f(μ1| μ2, σ1, σ2, σ12). Because it is known that any joint distribution is the product of its 

marginal distributions, under some general conditions Gibbs sampling can reproduce the joint posterior. 

In spite of the power of this algorithm, there exist certain caveats to its use. The conditional distribution 

of the parameters must be known in order to be sampled from, for instance. It is also true that because 

Gibbs sampling rotates across parameters, convergence problems can exist if these are highly 

autocorrelated, as it usually happens in time series problems.   

The Metropolis algorithm is very similar to what was previously described in the frog-and-lily-

pad analogy. One starts with a proposal distribution, say P(X), a target distribution, say T(Y), that needs 

to be approximated (the posterior in the case of Bayesian analysis) and a specific point from where to 

start the random walk. A value is sampled from the proposal distribution (call it ‘x’) and it is evaluated in 

the target distribution, so T(x) is calculated. Next, a value is generated from a uniform distribution with 

domain between 0 and 1 and the following rule is applied: if the ratio T(x)/P(x) (usually multiplied times 

an appropriate normalising constant so that the ratio is always less than 1 for any x) is less than the 

value generated by the random uniform distribution, then x is accepted and stored. If not, then another 
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value from P(X) is sampled and the same rule is applied iteratively. Once this is done over and over 

again, the random walk will have visited enough areas of high density on T(Y) to be able to reproduce 

such distribution to a degree of accuracy proportional to how many values of ‘x’ were accepted. This is 

why the Metropolis algorithm is also known as the rejection algorithm (Kruschke, 2010; Lynch, 2010). 

Just as with Gibbs sampling, the Metropolis algorithm is not without its own caveats. If the 

proposal distribution is too narrow and the target distribution too wide-spread, the algorithm can take a 

long time to explore enough regions of the latter until a representative sample of it has been generated. 

It is also true that the first samples of the target distribution will only be representative of the area 

where the random walk began so they need to be discarded. This is known as the ‘burn-in’ period and 

depending on the complexity of the target distribution, several ‘burn-in’ periods might be required in 

order to be sure that representative samples of the target distribution are been taken (Rupp, Dey & 

Zumbo, 2004). Convergence can also be an issue for it because there is no direct way to assess whether 

one has a representative sample of the target distribution or not. This is why further analysis of the 

samples needs to be performed in order to assure convergence.  

MCMC methods helped considerably in the development of Bayesian statistics by making it 

possible to sample from regions along which the integral of the distribution in the denominator was not 

well-behaved (Brooks, Gelman, Jones & Meng, 2011). It also allowed for repeated sampling and 

repeated updating of the likelihood which eventually gives way to the end result of most calculations, 

the posterior distribution. Because the parameters are considered to be random variables under the 

Bayesian statistical framework (as opposed to those in classical statistics where the parameters are fixed 

values in the population that need to be estimated), the posterior distribution summarises the 

uncertainty in the estimation (Morey & Rouder, 2011). The expected value of the probability distribution 

(or mean) corresponds to the parameter estimate, and a standard deviation of it can be calculated as 

well, in order to get a measure of the variability involved in the calculations. As an analogue to 
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frequentist confidence intervals, a credible or high density intervals can also be obtained to place 

bounds on the range of plausible values that the parameter estimate can take. These credible intervals 

do follow the intuitive interpretation where one can be “95% confident” that the true estimate falls 

within the interval (Gill, 1999). 

The last step in the estimation of Bayesian models involves proposing an alternative model (or a 

series of alternative models) and evaluating the strength of the evidence in favour of each one. One of 

the main paradigmatic shifts that come with the introduction of a Bayesian perspective to statistics is 

that the concept of an abstract population whose parameters one is estimating or making 

generalisations about is not needed (Anderson, Burnham & Thompson, 2000; Kruschke, 2010). The 

Bayesian perspective conceptualises the uncertainty associated with the estimation through attaching a 

probability to the parameter one seeks to get at. For classical statistics (and just taking the normal 

distribution for the sake of example, it could be any distribution) the sample mean, which is itself a 

random variable, is an estimate of the population mean, which is a fixed-but-unknowable number. It 

does not change over time or through any process. It is that which gives the population’s distribution 

(alongside with the standard deviation) its shape and many of its properties. However, for Bayesian 

statistics, all the researcher has is her or his beliefs with regards to the statistical model that generated 

the data and the data itself. The process that generated the data is not static but in constant movement 

and, therefore, the parameters that contributed to generate this data are also assumed to be changing 

(Dehghani, Iliev & Kaufmann, 2012). When data is brought in it is factored into the parameter estimation 

which makes the uncertainty surrounding them change. Perhaps it makes the distribution narrower so 

that it centres on the most plausible parameter. Or perhaps the data adds to the uncertainty of the 

model more than it is expected so that the distribution of the parameter becomes more spread out. In 

either case, the parameters being sought are subject to change according to their posterior distribution 

and it is not until more data is gathered and brought into the process that an update on the estimation 
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can be made, either to change it or solidify it. Testing competing models simply implies testing the same 

data under different assumptions from the researcher regarding how the uncertainty of the parameter 

behaves (Karni, 2011). By changing the prior, one can test whether the shape of the posterior changes 

or not and by how much, evidencing the fact that different sets of assumptions can lead to different 

conclusions. The strength of these conclusions can be calculated through an index called a Bayes factor 

so that the researcher can decide which model does a better job in making sense of her or his data.   

 

2.3 Applied Bayesian estimation: the case of the polychoric correlation coefficient 

Bayesian estimation is beginning to make headway into the realm of the social sciences (Muthén & 

Asparouhov, 2012). As MCMC methods become more and more widespread, more and more software 

programs targeted to psychologists, sociologists, education researchers, etc. are beginning to include 

them either as an alternative or, sometimes, even as a default on the estimation of particularly 

complicated models. One of such cases where Bayesian methods have made particularly important 

advances in the social sciences is on its flexibility to handle discrete data, something that has been a 

challenge in the past before the advent of numerical methods and computational approximations 

(Agresti, 2007). A specific instance of this problem is reflected in the issue of calculating the Pearson 

product-moment correlation coefficient when both variables are assumed to come from the same 

latent, bivariate distribution which becomes discretised, otherwise known as the polychoric correlation 

coefficient.  

 Pearson (1900) was the first to introduce the concept of the polychoric correlation when 

discussing the appropriate analysis of discrete data. The model on which this particular type of 

correlation is based assumes that the trait or variable one is interested in measuring is truly continuous 

but is either discretised by the act of measuring or is not directly available to the researcher so only 

discrete units of it can be obtained. It assumes that two types of parameters control the generation of 
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observed data: the polychoric correlation coefficient (or collection of those if one is working on a 

multivariate setting) and the thresholds that divide the variables. The model assumes that if a certain 

measure crosses a particular threshold value on the continuum it gets placed on a category of higher 

ordinal value. If there is not enough amount of such measure then what gets recorded is the category of 

immediate lower value. Figure 1 shows a depiction of the model for a binary case (so the tetrachoric 

correlation) with thresholds set at 0 and the correlation fixed at 0.5. It is important to notice here that 

the shaded area represents the sections of the marginal univariate normal curves where the proportion 

of said measure goes past the threshold value.  

 

Figure 1: Schematic representation of the tetrachoric correlation coefficient with 
The correlation set at 0.5 and the thresholds set at 0.5 

  

  According to Pearson’s colleague Burton Camp (1933), Pearson himself considered that the 

polychoric correlation coefficient was one of his most relevant contributions to the field of statistics, but 

its acceptance was not particularly wide-spread because of the difficulties involved in its computation. 
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Pearson only worked on the 2 X 2 contingency table case with binary data (which would later go on to 

become the tetrachoric correlation coefficient) and used a particular series expansions (called the 

tetrachoric series) which was commonly employed to approximate multivariate normal probabilities 

before other methods of computation were developed. Ritchie-Scott (1918) extended both the theory 

and computation of the tetrachoric correlation coefficient to any arbitrary r x s frequency table to keep 

track of the discretisation of the latent continuous variables, coining the term polychoric correlation to 

suggest that the variable would be sub-divided in any arbitrary number of ways and not only four parts, 

as implied in the name tetrachoric correlation. Several refinements to the estimation where done in 

succeeding years, but the real advancement was seen in Olsson (1979) with the introduction of his 

likelihood equations whose solutions provided estimates for both the thresholds and the correlation 

coefficient.  

 Joreskog’s (1994) generalisation of Olsson’s method of maximum likelihood allowed for the 

estimation of polychoric correlation matrices, under the assumption of an underlying continuous 

multivariate normal distribution, and due to the prominence that the analysis of ordinal data was having 

in structural equation models, more and more simulation research began to appear concerning the 

estimation of this measure of association under a variety of conditions such as the number of 

discretisation points (or response options in a Likert-type questionnaire), sample size and unequal 

distances among the thresholds (e.g. Green, Akey,  Fleming, Hershberger & Marquis, 1997; Muthen & 

Kaplan, 1992; Hutchinson & Olmos, 1998). Although some research indicates that moderate violations of 

the normality assumption do not influence the estimation of the polychoric correlation coefficient 

greatly, more recent results do suggest that violations of this assumption beyond skewness and kurtosis 

do make the case to consider the assumption of bivariate normality with much more regard (Ekstrom, 

2008). From most of the literature review, it appears that the size of discretisation intervals (or 

alternatively whether the latent distribution is skewed or not), the number of discretisation points and 
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sample size are the three main factors influencing the estimation of the polychoric correlation 

coefficient through maximum likelihood (Flora & Curran, 2004).  

 There have primarily been two approaches to the Bayesian estimation of the polychoric 

correlation on the literature: the one developed by Chen and Choi (2009) and the one used in this thesis 

by Albert (1992). Chen and Choi (2009) correctly point out that, in real practice, the desirable sample 

sizes to obtain stable estimates for the polychoric correlation coefficient may not be available to the 

researcher. In their literature review they signal out the fact that most research on the performance of 

the maximum likelihood estimation of the polychoric correlation coefficient uses minimum sample sizes 

of 200 or more participants in simulation studies. They also mention that because most maximum 

likelihood optimisers are based on hill-climbing methods over the gradient, there is a possibility of 

settling in a local maximum or non-convergence. They propose two alternatives through Bayesian 

methods referred to as Expected A Posteriori (EAP) (or the mean of the posterior distribution) and 

Maximum A Posteriori (MAP) (or the mode of the posterior distribution). In both cases bivariate 

normality is assumed and the same likelihood equation as proposed by Olsson is employed in the Bayes’ 

theorem step of the calculation. Chen & Choi found that the EAP estimate suffers of shrinkage effect (as 

it is common with Bayesian estimators which tend to gravitate towards the mean of the prior 

distribution) and proposed the MAP alternative which is not affected by it. In their study comparing both 

the traditional maximum likelihood, the EAP and the MAP estimates they focus on a variety of sample 

sizes (25, 50, 100, 200 and 400), correlation coefficients ranging from 0 to 0.7 and numbers of categories 

2, 3, 5 and 7. They found evidence that the MAP estimate outperforms the other two, particularly in 

cases of small sample sizes and low correlations.  

 The Albert (1992) method is slightly different in the sense that he was not attempting to 

empirically demonstrate the advantages or disadvantages that his approach may have when compared 

to other methods. Albert (1992) developed the mathematical framework to allow for the estimation of 
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the polychoric correlation coefficient assuming any likelihood or prior distribution (so that one is not 

necessarily constrained by using the bivariate normal likelihood proposed by Olsson). A general sketch 

of the Gibbs sampler is provided as well so that the reader can work on coding his or her own and 

provides the conditional distribution on the cases of a bivariate normal, bivariate t and the bivariate log-

normal distribution for skewed cases. In the end he proceeds with two small examples (one with 

simulated data and one with real, skewed data) of how his method could be used to calculate the 

polychoric correlation. In both cases sample sizes of 100 were used with categorisations of 3 cutpoints in 

each variable.  

 The Albert approach was preferred in this thesis over Choi et. al.’s one because of its flexibility in 

implementation. MAP and EAP still require the assumption of underlying bivariate normality which 

could be a reason as for why they were never tested under the condition of skewed distributions or 

unequally-spaced intervals. They also do not provide the conditional distribution of the bivariate normal 

distribution given the thresholds and the correlation coefficient so that it is difficult to extend these 

methods to other underlying distributions. Although the Albert method is more applicable due to its 

generality, he worked mostly on the mathematical aspects of the derivations and left the testing of its 

algorithm as avenues for future research. The purpose of this thesis then is to take an approach similar 

to what Choi & Chen did with his EAP/MAP estimators but following Albert’s methodology and test it 

against the traditional method of maximum likelihood.  
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2.4 Example of Bayesian estimation of the polychoric correlation coefficient 

To help familiarise the reader with the process of Bayesian estimation, a full example of what would 

constitute one simulation run will be shown with particular attention placed on the steps involved in the 

estimation stages of the polychoric correlation coefficient. Using the R statistical software package, 50 

values were sampled from a standard bivariate normal distribution with correlation set at 0.5. Following 

the discretisation measurement process, the continuous variables were categorised in two groups for 

each case: those values greater than the mean of each variable were re-labelled as 1 and those falling 

below were labelled as 0, in order to obtain a binary variable. This is akin to a 2-question survey to 50 

people where the response format is restricted to “YES/NO” or “TRUE/FALSE” answers. Table 1 shows 

the contingency table of proportions for the simulated data.  

  
Item 1 

  
NO YES 

It
em

2
  

NO 0.28 0.22 

YES 0.18 0.32 
Table 1: Contingency table of the proportions of simulated data with a  

sample size of 50 and binary response format 
 

 
A function implementing the Gibbs sampler algorithm developed by Albert (1992) was 

developed in R. It can either take as an input the raw data or a contingency table of probabilities and 

outputs the Bayesian estimate of the polychoric correlation, the standard deviation, the standard 

deviation corrected for dependence between sampled values for the posterior and credible intervals. In 

order to help the reader gain better insight into the inner workings of the algorithms, time series plots 

will be presented for the correlation coefficient and the thresholds as well as images of the posterior 

distribution from which the correlations and thresholds are being sampled.   

Table 2 presents some of the most commonly-reported summary statistics to describe the 

posterior distribution. As it can be seen, the mean (also known as Expected A Posteriori estimator or 

EAP) yields an estimate that is remarkably close to the set correlation of 0.5, just as the thresholds which 
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were set at 0. The standard deviation and the time-series corrected standard deviation also gives an idea 

of the uncertainty surround the estimate, which in this case is moderate.  

Figure 2 is a visual representation of the time series plots that depicts the process of sampling 

from the conditional posterior distribution of the polychoric correlation coefficient. After 10,000 

iterations, it is possible to see how the estimate jumps progressively from its initial point of 0 to 0.5 with 

every new set of iterations. The closer the algorithm gets to the estimate, the more the Markov Chains 

begin to stabilise around a solution. According to Figure 2, somewhere close to the 8,000th iteration the 

true value has been achieved and the remaining 2,000 iterations mostly just show how the time series 

begin to flatten out around the true value of 0.5 

Figure 3 is simply an empirical density plot of the sampled values. It more or less mimics the 

behaviour of the time series plot, as expected, where very little density is located around the left-hand 

side of the graph and the closer one gets to the value of 0.5, the more density it accumulates until it 

peaks around the correct estimate. A visual inspection of the empirical posterior density can greatly help 

the researcher to see whether or not it settled in a proper solution. If the graph had shown cases like a 

bimodality or positive kurtosis (platykuritc distirbutions), it would have helped the researcher know that 

the solution on which the Markov Chains settled is not a good-enough solution and further checks 

would be required.  

 

Table 2: Descriptive statistics of the posterior distribution for the polychoric correlation coefficient. 

  Mean Mode 
 Standard 
Deviation 

Time Series Standard 
Deviation 

95% Credible 
Interval 

Correlation 
Estimate 0.51 0.48 0.012 0.01022 (0.392, 0.516) 

Threshold 1 
Estimate 0.0012 -0.013 0.11 0.0172 (-0.0011, 0.0359) 

Thershold 2 
Estimate 0.011 0.006 0.17 0.064 (-0.0062, 0.0601) 
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Figure 2: Time series plot of the Gibbs sampler showing the convergence of the Markov Chains towards 

the polychoric correlation estimate. 

 

Figure 3: Density plot of the posterior distribution of the polychoric correlation coefficient. 
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2.4 Summary 

From this brief review it can be seen that: (a) Bayesian statistics provides a legitimate alternative to 

traditional frequentist estimation that is slowly becoming more prominent with the recent increase in 

affordable computational power, (b) even though Bayesian estimation is starting to become part of the 

standard methods used in many areas of science, its incursion in the mainstream of the social sciences 

has either been seen with suspicion or somewhat ignored outside the sphere of the most quantitatively-

oriented methodologists, and (c) many of the leading authorities in Bayesian statistics only consider 

problems pertaining to the social sciences briefly, leaving a whole area open for further development 

which may or may not be left unexplored depending on whether it gets noticed by people who are both 

mathematically-sophisticated and have an interest in measurement and data-analytic problems related 

to psychology, education, sociology, etc. In light of these observations, the purpose of this thesis is to 

further extend the use of Bayesian methods to estimate the polychoric correlation coefficient.  
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3. Methods 

In order to further investigate the properties of Bayesian estimation methods for the case of the 

polychoric correlation coefficient, I used Monte Carlo simulations to test the performance of the 

algorithm under conditions similar to the ones that have been used to test the method of maximum 

likelihood (cf. Muthen & Hofacker, 1988; Muthen & Kaplan, 1992; Quiroga, 1992; Rigdon & Ferguson, 

1991). The data were generated to reflect some of the less-than-ideal circumstances that researchers 

face in their everyday practice in order to discover how much is it possible to deviate from the 

theoretical model that substantiates the estimation method and still obtain relatively accurate results. 

Bayesian and frequentist solutions were compared further then in order to see in which cases one 

method outperformed the other one or in which cases the choice of method was irrelevant given the 

type of data being analysed.  

 I implemented two studies targeted to answer two different questions related to the 

performance of both estimation procedures for the polychoric correlation coefficient. Study 1 compared 

Olsson’s (1979) maximum likelihood solution to the Bayesian methodology developed by Albert (1992) 

under a variety of different conditions such as numbers of cutpoints for the latent variable, skewness 

and sample size. Study 2 used a theoretical extension proposed by Albert to handle skewed data 

through the use of a log-normal distribution and a slight modification that was made to it which was 

necessary to handle left-skewed data (the log-normal distribution is always right-skewed). It was used to 

assess how much skew warrants the use of the log-normal distribution as opposed to the regular normal 

distribution and the impact that it had to use a model designed for skewed data to analyse symmetric 

data. Both studies and subsequent data analysis were done in the statistical software package R. 

 Further details on the derivatives of the conditional likelihood equations and a copy of the R 

code that implements the Bayesian estimation of the polychoric correlation coefficient can be found on 

on the Technical Appendix section at the end of this thesis.  
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 3.1 Study 1 

 This study used simulation designs similar to the ones that have been implemented to test the 

performance of the method of maximum likelihood. Given that Albert (1992) only used two small 

simulations as examples of his method and that the Chen & Choi (2011) simulation study did not include 

skewness as a variable (even though previously research has shown it can influence the estimation), this 

study attempts complemented both by including skewness as a factor alongside with other 

theoretically-relevant conditions. A quick overview of the factors and their levels are: 

 

 5 different sample sizes: N = 15, 25, 50, 100 and 500.  

 6 different, equally-spaced cut points in the latent variable, starting from 2 (binary responses) to 

up 7. 

  6 levels of skewness for the latent variable (-3, -2, -1, 0, 1, 2, 3). 

 
This results in a 5 X 6 X 6 fully-crossed design with 180 cells. Five hundred samples were generated for 

each condition and they were analysed using both Olsson’s maximum likelihood solution and Albert’s 

Bayesian estimation method defined in the appendix. The following estimates were recorded as 

dependent variables in this study: the polychoric correlation coefficient, the standard error (for the case 

of maximum likelihood) and the standard deviation of the posterior distribution (for the case of the 

Bayesian methods), the empirical skewness of the observed data and the number of convergences for 

the case of the maximum likelihood algorithm.  

 
3.2  Study 2 

This study investigated some of the theoretical developments presented by Albert for the cases of right-

skewed data by using a bivariate log-normal prior as well as the necessary modifications that were 

implemented to handle left-skewed data, described in the appendix. The main aim for this study was to 
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track the impact that a different prior distribution may have on the estimation of the polychoric 

correlation coefficient, an issue that is both well-known and widely controversial in Bayesian statistics.  

 

The factors and the levels in this study go as follows: 

 6 levels of skewness of the latent variable (-3, -2, -1, 0, 1, 2, 3) 

 6 different, equally-spaced cut points in the latent variable, starting from 2 (binary responses) to 

up 7. 

 
For the purpose of making the study more manageable, sample size was fixed at N = 100. Five hundred 

datasets with those pre-specified conditions were generated and analysed using both the log-normal 

(right or left skewed, depending on the condition of the study) prior and the normal prior in each 

combination of conditions. The dependent variables recorded were the polychoric correlation 

coefficient, the standard deviation for the posterior distribution and the observed skewness from the 

raw data. Since it is known that changing the prior distribution tends to have an effect on the estimates 

of the statistics, it was important to therefore document the kind of impact it had (such as biases, 

consistent over- or underestimation, wider credible regions, etc.) as well as trying to understand under 

which conditions did the estimation improve when one model was chosen over the other.  

 

 3.3 Data generation 

The generation of non-normally distributed, correlated data has been a subject of extensive research in 

Monte Carlo simulations. There exist a wide variety of methods to do so, being the preferred one among 

social scientists the one published by Vale and Maurelli (1983). This method uses several powers of 

standard normal variates and joins them together through suitable coefficients in a polynomial equation 

in order to obtain a joint distribution with certain skewness, kurtosis and correlation structure. Although 

popular due to the ease of its implementation, it has been criticised before because of how 
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cumbersome the calculations can become in the cases where many variables need to be generated and 

also because not all combinations of skewness or kurtosis are possible (Tadikamalla, 1980). It has 

recently been found as well that the estimates generated through the Vale and Maurelli algorithm are 

also prone to large variances and in many cases what is specified as the intended population skewness 

and kurtoses are underestimated (Headrick & Pant, 2012).  

 In light of these findings and mostly out of algorithmic convenience, a newer, alternative 

method which is gaining track very quickly was preferred: the use of copula distributions. Copulas are 

extremely flexible, extremely powerful analytic tools which allow either for the construction or 

estimation of joint probability distributions. The advantage of using copulas is that it is possible to 

specify the marginal distributions separately from the dependence structure and, then, join (or couple) 

them to create the multivariate distribution. For a more extensive description of copulas both as data-

generators for Monte Carlo simulations and as tools for data analysis please see Joe (1997). 

 The basic model from which data comes from then is a bivariate Gaussian copula with beta-

distributed marginals. The beta distribution was chosen because of the ease with which its skewness can 

be controlled through its shape parameters.  In order to be consistent with the interpretation of the 

polychoric correlation coefficient, the assumed dependency model is that of a Gaussian copula which 

preserves the linear relationship between variables. The discretisation process (i.e. the way in which the 

cut points for the latent variable are generated) follows the same procedure as that of normal 

categorisation described in Bollen and Barb (1981), where the mean of the distribution is taken as a 

reference point and then the distribution is divided through equally-spaced intervals that move away 

from the mean of the distribution towards the extremes. After the data has been sampled from the 

copula distribution and discretised, it is subjected to analysis both through maximum likelihood 

estimation and Bayesian estimation and the results are recorded. The data is then discarded and new 

dataset is re-sampled over and over again until the number of simulation runs is completed for each 
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condition of the Monte Carlo experiment. Figures 4 to 6 show three examples of different bivariate 

Gaussian copulas with beta-distributed marginals at varying levels skewness, similar to the data-

generating distributions that were used throughout this thesis. These distributions are examples of 

actual distributions used in this thesis as latent, continuous populations from which data was sampled 

and discretised. It is important to notice on these figures the skewness on the beta-distributed marginals 

results on overall skewness in the joint distribution. This becomes particularly evident when contrasting 

Figure 4 and Figure 6.  

 

 
Figure 4: Bivariate Gaussian copula with beta-distributed marginals set at  skewness of 0 
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Figure 5: Bivariate Gaussian copula with beta-distributed marginals set at  skewness of 1  

 

 
 

Figure 6: Bivariate Gaussian copula with beta-distributed marginals set at  skewness of 2 
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 3.4 Analysis and interpretation of results 

The analysis and interpretation of these simulation results were conducted both by following the 

general guidelines of published simulation research in the social sciences as well as by treating the 

computer-generated data as results obtained from a controlled experiment (Zumbo & Harwell, 1999). 

An attempt was made to construct a linear model of the simulation results to further explore the 

relationships between the simulation conditions and the variables recorded as dependent variables in 

an effort to try to understand how was it that each condition contributed to the variability and accuracy 

of the estimates.  

 The use of a linear model was expected to help inform the interpretation of results by 

summarising the conditions in which one estimator was better than the other one and by helping to 

untangle the complex interactions that became present when these types of experiments were 

performed. 

The following measures for study outcomes were employed and became the ‘dependent 

variables’ of sorts when the linear model was created to understand the impact that each condition had 

in the simulation design. All measures were taken from Bandalos (2006).  

 
3.4.1 Measures used in the analysis of results 
 

First, the percentage of convergences from the maximum likelihood estimator was calculated using the 

convergence rate expressed as: 

 , 

where CR denotes the convergence rate, pcin stands for properly converged iteration number, in for the 

within-condition iteration number (i.e. 500 in all studies) and multiplied by 100 to obtain a percentage. 

It was expected that this measure would provide further insight as to the simulation conditions where 
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the ML estimator was so sensitive that not even a proper solution was found given the data it was 

working with.  

 Second, mean bias within each experimental condition was calculated as follows: 

, 
Where MB denotes mean bias,  is the polychoric correlation coefficient in iteration i,  is the true 

correlation coefficient (set at 0.5 for throughout conditions in this proposal) and pcin is the properly 

converged iteration number.  

 The bias of estimators in both theoretical and applied settings can be interpreted in many 

different ways and its presence (or lack thereof) factors considerably in the preference of one estimator 

over another. From a statistical viewpoint, the fact that an estimator generates biased results must be 

mentioned and whenever possible, provide a quantification of such bias if further corrections are 

necessary (Bandalos, 2006). From a practical perspective, however, the relevance of bias on an estimate 

is mostly contingent on how much it can change the inferences researchers make from their data. Since 

this simulation studies can be used to understand the robustness of each estimator to various 

conditions, I used the criterion suggested by Hoogland and Boomsma (1998) and labelled any bias on 

the correlation estimate over .05 as unacceptable, regardless of whether it is in the positive or negative 

direction. 

 Third, the variability of the estimates was assessed by calculating the Root Mean Squared Error 

(RMSE) following the formula: 

, 
 

where pcin,  and  are defined as above. 
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4. Results 

4.1 Study 1: Comparison of maximum likelihood and Bayesian estimation for the polychoric 
correlation coefficient 
 
 4.1.1 Convergence rate for the ML estimator 
 
The convergence of the maximum likelihood estimator for the polychoric correlation was tracked at 

each simulation condition. Consistent with previous results (e.g. Chen & Choi, 2009; Flora & Curran, 

2004), there were several instances where no optimal solution was found. Across all conditions, 12.5% 

of the maximum likelihood solutions did not converge. Sample size was the primary driving cause behind 

this problem where the highest amount of non-convergences were found at the sample size of 15 

(10.7%), followed by N = 25 (8.12%) and N = 50 (5.44%). For sample sizes of 100 and 500 the algorithm 

converged in all iterations. Skewness and the number of categories also played an important role 

influencing the performance of the algorithm where, in general, left-skewed data resulted in a higher 

amount of improper solutions. For the number of categories, results were consistent with the simulation 

studies by Choi et. al. (2011) who found that as the number of categories increased, the number of 

convergences decreased. Table 3 summarises these results for a sample size of 15 and with the 

skewness condition depicted in each column and the number of categories in each row. 

 

        Skewness     

Number of Categories -3 -2 -1 0 1 2 3 

2 13.20% 10.11% 9.32% 3.80% 4.27% 5.78% 5.92% 

3 11% 9% 8.12% 4.81% 4.32% 5.82% 6.63% 

4 12.26% 9.15% 8.50% 4.63% 4.20% 5.88% 6.90% 

5 12.13% 10.70% 9.43% 3.21% 5.00% 6.02% 7.33% 

6 13.12% 11% 10.12% 4% 5.09% 6.19% 7.49% 

7 13.79% 11.90% 10.07% 4.72% 5.58% 6.50% 8.22% 

 Table 3: Percentage of non-convergences by number of category and Level of Skewness for N = 15 
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4.1.2 Bias of the maximum likelihood and Bayesian estimates  

The bias of the estimation for both the maximum likelihood and Bayesian methods was calculated 

alongside with the root mean square error to obtain more information about its variability. The detailed 

summary of the findings regarding bias on the estimate can be found in Table 4. The general findings go 

as follows:   

 In general, Albert’s Bayesian estimation method greatly outperforms the method of maximum 

likelihood in small and moderate sample situations. For the cases of N = 15 and N = 25, there was an 

overall tendency towards a downward bias across conditions for the maximum likelihood method 

ranging anywhere from 0.03 to 0.23. The mean bias for the Bayesian estimator was towards the positive 

end, ranging from 0.03 to 0.18 across conditions.  In the moderate sample size of N = 50, minor biases 

were present for the case of symmetric data, but a substantial bias was found in the most extreme 

skewed cases (so a skewness of the latent variable of +3 or -3), a finding consistent with research on the 

maximum likelihood estimation of the polychoric correlation (e.g. Muthen & Hofacker, 1988). Bias is also 

present in Bayesian estimation, but it was somewhat lower that in the case of maximum likelihood and 

always on the positive direction. For the sample sizes of 100 and 500 the bias is negligible for both 

algorithms, as per the Hoogland and Boomsma (1998) criterion. Figure 7 shows the overall pattern of 

the mean bias and how it becomes reduced as sample size increases. These results reflect very closely 

those found in Choi et.al.’s (2011) simulation studies. 

 The number of categories improved the performance of both estimation methods as they 

increased for the cases of either symmetric or slightly skewed data (so a skewness of +1/-1). With 

moderate and particularly with the severe skewed conditions (so +2/-2 and +3/-3 respectively) the 

situation reversed and the larger the number of categories, the more substantial was the bias of the 

estimation, particularly in the cases with small sample sizes. Figures 8 and 9 show the pattern of mean 

bias as the number of categories increases and also as skewness moves from -3 to +3. In the case of
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           Table 4: Mean bias results for the maximum likelihood (ML) and Bayesian estimation (Bayes) solution 
Number of 
Categories N 

  
-3  

  
 -2 

  
-1  

  
0 

  
1 

  
2 

  
3 

    ML Bayes ML Bayes ML Bayes ML Bayes ML Bayes ML Bayes ML Bayes 

  15 -0.23 0.18 -0.21 0.18 -0.19 0.16 -0.15 0.11 -0.143 0.120 -0.182 0.142 -0.191 0.177 

  25 -0.21 0.16 -0.20 0.13 -0.16 0.09 -0.12 0.05 -0.141 0.141 -0.176 0.157 -0.187 0.164 

7 50 -0.16 0.09 -0.14 0.05 0.06 0.02 0.03 0.002 -0.121 0.132 0.110 0.113 -0.174 0.111 

  100 0.03 0.001 0.02 0.005 0.004 0.001 0.001 0.001 -0.02 0.01 -0.052 0.002 0.042 0.002 

  500 0.001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 

  15 -0.21 0.15 -0.20 0.16 -0.14 0.12 -0.09 0.07 -0.15 0.137 -0.17 0.132 -0.188 0.182 

  25 -0.18 0.13 -0.19 0.10 -0.15 0.11 -0.05 0.02 -0.136 0.120 -0.121 0.115 -0.176 0.178 

6 50 -0.11 0.03 0.05 0.02 0.03 0.01 0.011 0.001 0.11 0.063 0.014 0.025 0.132 0.114 

  100 0.002 0.001 0.002 0.001 0.023 0.001 0.001 0.001 0.01 0.001 0.007 0.003 0.006 0.003 

  500 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

  15 -0.19 0.12 -0.19 0.1 -0.13 0.08 -0.10 0.06 -0.141 0.127 -0.155 0.140 -0.212 0.156 

  25 -0.15 0.10 -0.12 0.11 -0.09 0.03 0.04 0.03 -0.122 0.112 -0.131 0.122 -0.160 0.149 

5 50 0.07 0.07 0.05 0.03 0.04 0.02 0.02 0.015 0.093 0.028 0.048 0.29 -0.100 0.082 

  100 0.051 0.0001 0.036 0.001 0.047 0.001 0.001 0.001 0.02 0.001 0.005 0.002 -0.032 0.020 

  500 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

  15 -0.20 0.09 -0.15 0.08 -0.11 0.05 -0.06 0.04 -0.132 0.122 -0.162 0.128 -0.200 0.144 

  25 -0.10 0.06 -0.05 0.02 -0.05 0.01 -0.03 0.011 -0.066 0.118 -0.100 0.012 -0.134 0.127 

4 50 0.06 0.05 0.006 0.001 0.007 0.002 0.012 0.001 -0.024 0.012 -0.007 0.001 -0.108 0.090 

  100 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.0001 0.001 0.001 -0.002 0.0001 

  500 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

  15 -0.17 0.09 -0.11 0.10 -0.07 0.05 -0.054 0.032 -0.128 0.115 -0.122 0.120 -0.193 0.120 

  25 0.05 0.10 -0.03 0.05 -0.04 0.03 0.066 0.020 0.052 0.031 -0.042 0.012 -0.07 0.02 

3 50 0.02 0.03 0.001 0.0001 0.01 0.002 0.014 0.011 -0.024 0.011 0.0021 0.0001 -0.03 0.02 

  100 0.0001 0.0001 0.0031 0.0001 0.0042 0.0001 0.001 0.001 0.002 0.0001 0.0001 0.0001 0.0001 0.0001 

  500 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

  15 -0.16 0.17 -0.10 0.08 -0.05 0.03 -0.026 0.021 -0.073 0.041 -0.092 0.074 -0.155 0.128 

  25 -0.16 0.04 -0.09 0.03 -0.04 0.02 0.017 0.002 0.032 0.038 -0.101 0.052 -0.152 0.111 

2 50 0.06 0.005 0.04 0.005 0.001 0.001 0.001 0.001 0.012 0.003 -0.033 0.008 0.093 0.030 

  100 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

  500 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

Skewness 
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skewness it is possible to see a U-shaped pattern which was a consequence of the scaling of the graph, 

with the skewness condition of 0 being in the middle of it and, hence, also the section of the graph 

where bias was at its smallest. For the case of the number of categories, it is possible to see a 

progressive trend towards minimum bias as the discretisation points for the latent variables increases. 

Overall, as it can be seen in Figures 7 to 9, sample size appeared to be the best determinant to 

ensure an appropriate performance for each algorithm, since at the largest sample sizes of 100 and 500, 

the estimation was unaffected regardless of the skewness and number of categories that discretised the 

data. With moderate and smaller sample sizes a complex relationship was present between the number 

of categories and the skewness of the latent variable, although the mean bias showed that Albert’s 

Bayesian method outperforms the traditional maximum likelihood estimation. 

 

 
Figure 7 : Mean bias across different sample sizes. Values were averaged across conditions. 

ML = Maximum Likelihood estimate, Bayes = Bayesian estimate 
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Figure 8 : Mean bias across different numbers of categories. Values were averaged across conditions. 

ML = Maximum Likelihood estimate, Bayes = Bayesian estimate 

 
Figure 9 : Mean bias across different skewness levels. Values were averaged across conditions. 

ML = Maximum Likelihood estimate, Bayes = Bayesian estimate 
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A linear model was conducted on the results of the bias both for the maximum likelihood and 

Bayesian estimation cases in order to further explore the impact that each condition had on the 

magnitude of it. Results for each case including 2-way and 3-way interactions are presented on Table 5 

and Table 6. Absent of any other criteria for effect sizes, Cohen’s (1988) criterion of an eta squared of 

0.1 or greater is considered a large effect size and discussed further. Those were highlighted in the two 

tables: 

  Sum of Squares Eta squared 
Percentage of R-squared 

(TOTAL R2 =.685) 

Model       

Intercept 5924.972     

Sample Size (n) 102.648 0.272 0.398 

Number of Categories (cats) 42.325 0.112 0.164 

Skewness (sk) 51.28 0.136 0.199 

n X sk 2.321 0.006 0.009 

n X cats 9.214 0.024 0.036 

sk X cats 10.425 0.028 0.040 

n X sk X cats 39.653 0.105 0.154 

Error 118.854     

Total 6301.692     

Corrected Total 376.72     

Table 5: Summary of ANOVA results for the bias of the ML estimator. Eta-squared values greater than .10 are highlighted.  
 

  Sum of Squares Eta squared 
Percentage of R-squared 

(TOTAL R 2= .830) 

Model       

Intercept 6847.329     

Sample Size (n) 81.48 0.113 0.136 

Number of Categories (cats) 100.92 0.140 0.168 

Skewness (sk) 154.79 0.214 0.258 

n X sk 56.12 0.078 0.094 

n X cats 87.46 0.121 0.146 

sk X cats 90.12 0.125 0.150 

n X sk X cats 28.41 0.039 0.047 

Error 122.454     

Total 7569.083     

Corrected Total 721.754     

Table 6: Summary of ANOVA results for the bias of the Bayesian estimator. Eta-squared values greater than .10 are 
highlighted. 
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Table 5 shows that there exists a 3-way interaction between all the variables in the model which 

needs to be further explored in order to make better sense of the complex impact that all three 

variables have on the bias of the estimation. A non-linear effect from skewness is suspected because of 

the U-shaped relationship present in Figure 9, so a series of interaction plots were drawn in order to 

make the relationship appear more evident. Three interaction plots at samples sizes of 15, 50 and 500  

in Figures 10 to 12 are presented showing the relationship between skewness and numbers of 

categories to help make the trend become more apparent:  

 

 
Figure 10 : Interaction plot showing the two-way interaction of the Categories factor and the 

         levels of Skewness factor at the sample size of 15. The true correlation is 0.5 
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Figure 11 : Interaction plot showing the two-way interaction of the Categories factor and the 

                      levels of Skewness factor at the sample size of 50. The true correlation is 0.5 
 

. 
Figure 12 : Interaction plot showing the two-way interaction of the Categories factor and the 

                      levels of Skewness factor at the sample size of 500. The true correlation is 0.5 
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 As it can be evidenced through the series of interaction plots on Figures 10 to 12, the sample 

size factor has an inverted U-shaped relationship with the levels of skewness. At the starting point of the 

lowest sample size of 15, it is quite evident that the maximum downward bias (also found on Figure 9) 

tends to gravitate towards the most extreme cases of positive and negative skew. However, as skew 

moves towards 0, the bias decreases and the marginal means of the polychoric correlation coefficient 

get closer and closer to the true correlation coefficient of 0.5. The inverted U-relationship is also 

somewhat maintained at the middle level of sample size of 50, but it has been lessened considerably. 

The bias surrounding the estimate of the polychoric correlation coefficient is smaller and the curve is 

much less pronounced, although it is still somewhat evidence that there is a peak at the skewness 

condition of 0 when compared to the general trend of the other skewness level. At the maximum 

sample size of 500 the curvilinear relationship has practically disappeared and there is very little 

variability around the true correlation coefficient of 0.5, as shown on Figure 12. 

A potential explanation as for why this curvilinear trend is present could be because of how the 

contingency table of item proportions is filled-out before it is used in the estimation of the polychoric 

correlation coefficients. With small and moderate sample sizes there is a higher probability that many 

cells in such tables will be empty. If the table has very few cells (such as with binary outcomes) chances 

are at least a few data points will fall in each one helping the algorithm take care of the estimation. 

Now, on the cases with larger number of categories this becomes progressively worse for small sample 

sizes, however, it is known that as the number of discretisation points increases, the observed data 

approximates the hypothesised latent continuous distribution (see Bollen & Barb, 1981). So in cases of 

large sample sizes, a greater number of categories provides better estimates of the polychoric 

correlation. The maximum likelihood algorithm works well at the extremes of the discretisation-points 

(so very few or very large number of categories) but it is not particularly good around the middle. 
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Because the within-cell variability is so small, statistical inference is not of primary concern on 

this situation but the variance decomposition properties of ANOVA are utilised in order to further 

characterise and understand the role that each simulation variable plays in explaining the bias of the 

correlation coefficient. Eta-squared (η2) is used in this case to orthogonally decompose the variance on 

each condition. As shown in Table 5 for the case of maximum likelihood it is possible to see that sample 

size is the most relevant condition with the highest eta-squared followed by the skewness of the data. 

Both conditions have been shown in previous research to be relevant to the precision of the estimation 

of the polychoric correlation coefficient. It is possible to see as well that a 3-way interaction between all 

three conditions has a greater eta-squared than all two-way interactions, helping to communicate the 

fact that these variables have complex effect on the bias. 

 One can see that in Table 6, for the case of Bayesian estimation, skewness shows the highest 

eta-squared in explaining the magnitude of the bias followed by number of categories and sample size. 

Here, it is important to consider as a possible explanation the fact that sample size does not influence 

Bayesian estimation as much as it does maximum likelihood. Nevertheless, the statistical model 

underlying the data is crucial for Bayesian statistics which is probably why the simulation condition 

directly related to the misspecification of the model (skewed instead of symmetric data) has the 

greatest impact in explaining the change in the bias for this estimator. The number of categories is also 

important to consider here, since as the number of discretisation points increases, the number of 

threshold parameters that require estimation also increases making the Markov Chains unstable, 

particularly for cases of skewed data.  

 

4.1.3 Variability and accuracy of the maximum likelihood and Bayesian estimates 

The variability of the bias was measured using the Root Mean Squared Error (RMSE). Three very distinct 

patterns can be identified in Figures 13 to 15. They visually depict the relationship between one of the 
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three major simulation conditions being studied while averaging across the other two. In Figure 13, the 

sample size condition reported the maximum RMSE for both the maximum likelihood solution (RMSE = 

0.257) and the Bayesian estimate (RMSE = 0.221). This is also the case where the maximum amount of 

non-convergences was found for the ML estimate, which suggests that optimisation over the likelihood 

surface proved to be difficult for it. As sample size increased, the RMSE decreased in a quasi-exponential 

fashion, a result that is also consistent with the findings of Choi et. al. (2011), although the decrease was 

at a much slower rate than what these authors found. It is also worth noting that as sample size 

increases, the RMSE for both estimation methods decreases and becomes more and more similar until 

they reach the maximum of 500, where the differences are almost non-existent. In each case, the line of 

the Bayesian estimate remained below the one of the maximum likelihood solution, suggesting that 

Bayesian methods exhibited smaller variability and, hence, a higher level of accuracy around the true 

correlation of 0.5 

 For the category condition in Figure 14, it is possible to see that an increase in the number of 

categories is paired with an increase in the RMSE. This is a pattern consistent with what was found in 

Table 4, where the bias tended to increase alongside with the number of categories as well as with the 

amount of non-convergences present in the ML estimate. A potential explanation as for why this might 

be the case is due to the fact that when the number of categories that discretise the latent bivariate 

distribution is large, there exists a higher chance for some categories to never be sampled, leaving 

empty spaces in the contingency tables used to calculate the polychoric correlation coefficient. In these 

cases, the ML algorithm will have trouble finding a proper solution, generating somewhat disparate 

results.   
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Figure 13 : RMSE across different sample sizes. Values were averaged across conditions. 

RMSE = Root Mean Squared Error, ML = Maximum Likelihood estimate, Bayes = Bayesian estimate 
 

 
Figure 14 : RMSE across different categories. Values were averaged across conditions. 

RMSE = Root Mean Squared Error, ML = Maximum Likelihood estimate, Bayes = Bayesian estimate 
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Figure 15 : RMSE across different skewness values. Values were averaged across conditions. 

RMSE = Root Mean Squared Error, ML = Maximum Likelihood estimate, Bayes = Bayesian estimate 

 

For the case of the Bayesian estimate, a large number of categories imply additional parameters on the 

conditioning of the posterior distribution form which the correlation coefficients are being sampled, 

creating difficulties on the convergence of the Markov Chains. 

 In Figure 15, the skewness variable exhibits a clear U-shape across the different conditions, 

touching its lowest point when the data is generated from a symmetric distribution, so skewness = 0. 

Consistent with previous findings on the literature (e.g. Flora & Curran, 2004; Joreskog, 1994), the 

higher the skewness the more troublesome it is for reliable estimates to be found. On this study 

condition, no estimator consistently outperformed the other one and the only clearly discernible 

pattern is that on cases of extreme skewness, the RMSE is at its highest and it progressively decreases as 

the skewness decreases as well. A potential explanation for this pattern could be the fact that a model 

that does not match the data-generating mechanism is used to analyse the data, translating into biased 

and unstable estimates.  
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4.1.4 Uncertainty of the maximum likelihood and Bayesian estimates 

The standard error for the ML estimate and the standard deviation of the posterior distribution for the 

Bayesian estimate were calculated in order to obtain a better sense of the uncertainty associated with 

the statistics being calculated. Although the concepts are not interchangeable, the idea behind them is 

very similar and in many cases both are within the same range.  

 Figure 16 shows the empirical density plots for both the maximum likelihood and Bayesian 

estimates of the polychoric correlation across simulation conditions. It can be seen from it that there is 

more variability for the ML estimate than for the Bayesian one, suggested by the fact that its density 

plot is skewed to the right, with a tail that extends all the way past -0.5 (so some of the estimates are a 

full unit below the true correlation of +0.5). It is also possible to see that there is a much higher density 

on estimates over 0.5 and it is the only graph of the two that extends to the theoretical upper limit of 1. 

The density of the Bayesian estimates is both more compact (suggesting a lower variability of the 

estimates) and has a   

 
Figure 16: Empirical densities of the ML and Bayesian estimates across simulation conditions 
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a higher peak around the true correlation of +0.5, suggesting that a larger number of estimates fell 

closer to it than the ones calculated via maximum likelihood.  

 A boxplot of the standard errors (for the case of ML) and the standard deviation of the posterior 

distribution (for the Bayesian estimator) shows that even though the mean standard error for the ML is 

lower than the mean standard deviation, a lot more uncertainty is present on the maximum likelihood 

estimates. Standard deviations range from 0.092 to 0.43 whereas standard errors can go from 0.055 to 

0.64. Approximately 55.2% of standard errors fall over their mean of 0.183 whereas 44.9% of the 

standard deviations are located over their mean of 0.188, suggesting that Bayesian estimates are more 

efficient in controlling the uncertainty involved in their calculation because their standard deviations 

tend to be smaller.  

 
Figure 17: Boxplot of the standard error of the estimate and the standard deviation of the 

posterior distribution for the ML and Bayesian estimates respectively 
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4.2 Study 2: Comparison of bivariate normal and bivariate log-normal choice of prior distributions 
 

As it was previously mentioned in the introduction, the choice of prior density influences both the 

estimate of the statistic being studied and the inferences that can be derived from the data. In the case 

of the polychoric correlation coefficient, it is known that the nature of the latent, continuous density can 

have an impact on its estimation but relatively little work has been done in order to extend the 

assumption of bivariate (or multivariate) normality to accommodate other latent distributions (Ekstrom, 

2008). Albert’s (1992) framework has a natural extension through the use of a different conditional 

posterior distribution, the log-normal distribution, which is flexible enough to accommodate latent 

skewed distributions. From Study 1 it was possible to see that skewness is an important factor on the 

estimation of the polychoric correlation coefficient. Study 2 attempts to look at how well can Albert’s 

framework handle non-normal cases.  

 

 4.2.1 Bias of the estimate 

It is known that the skewness of the latent variable reflects on the estimates depending on how the 

contingency table gets populated (Savalei, 2011). The more skewed the latent variable is, the more 

certain cells receive the bulk of the proportions while others are left virtually empty or with very few 

data points, biasing the estimation. 

 As shown in the previous study, it can be seen that the symmetric prior density (bivariate 

normal) was able to handle cases with small number of categories and extreme skewness or small levels 

of skewness if there is a larger number of categories. Bias became more severe at the highest level of 

skewness or when the number of categories is moderate/large, even with skewness levels of +/-2. In 

cases such as these ones, it is immediately possible to see that the switch from bivariate normal to 

bivariate log-normal yields much better estimates in terms of lower bias. Figure 18 shows how the use 
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of a symmetric prior distribution to analyse data coming from a skewed distribution demonstrates 

consistent underestimation or over estimation, depending on the direction of the skewness of the 

marginal distributions. The choice of a skewed prior, on the other hand, shows much smaller bias and it 

achieves its maximum at the point of zero skewness, where the model used to fit the data is incorrect. 

Mean bias across replications in this case for the symmetric prior distribution ranged from -.16 for left 

skew of -3 to   to 0.14 for a right skew of +3. For the case of the log-normal (skewed) prior, bias achieves 

its maximum at the skewness condition of zero, 0.11. 

 
Figure 18: Mean bias across different skewness levels. Values were averaged across conditions. 

Symmetric = Normal prior density, Skewed = Lognormal prior density 
 

 
 The number of categories also had an effect on the resulting estimates in terms of the choice of 

prior. As it was detailed before, the level of skewness of the latent variable impacts the way in which the 

contingency tables are filled-out, swaying the algorithm one way or another and influencing the 
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estimation. In general, the fewer number of categories the less the impact of the choice of prior on the 

bias of the estimates. As the number of categories increases the bias on the estimation becomes greater 

 
Figure 19: Mean bias across different numbers of categories. Values were averaged across conditions. 

Symmetric = Normal prior density, Skewed = Lognormal prior density 

 
up until the largest number of categories, where it begins to decrease again, showing an inverted-U 

shaped relationship in the case of both symmetric and skewed priors. The lines representing both types 

of priors cross each other two times, so no absolute pattern of over or underestimation can be found 

regarding the type of distribution used. The consistent overestimation of the Bayesian solution, 

regardless of the choice of prior, is a result that is consistent with Study 1, although the variability on the 

estimation is probably due in part because of the averaging across the skewness condition. It is 

interesting to notice that around the medium range of categories (including the ever-so-popular 5 

response format option) the Markov Chains take some of its longest time to converge, requiring several 

more sample draws from the conditional posterior distribution. For the case of the log-normal prior with 

5 categories, Figure 20 shows the time series plot of the sample draws from the posterior averaged 

across all 500 replications. Although the posterior expected value centres on the true correlation value 
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of 0.5 with a slight overestimation, it is possible to see that the variability of the samples is considerably 

larger when compared to the time series plot from Figure 2 on page 24 of this thesis, where all the 

assumptions behind the estimation are in place and the convergence can be easily identified as the 

number of cycles increases.   

 
Figure 20: Time series plot of the samples from the posterior distribution of the lognormal prior  

with 5 categorisation points averaged across 500 replications. 

 

4.2.2 Uncertainty of the estimate 

The standard deviations of the posterior distributions for both estimates were recorded in order to 

obtain more information regarding the variability and uncertainty of the results. Because of the long tail 

of the lognormal distribution, it is known that that its standard deviation is larger than that of its 

associated normal analogue (Attfield & Hewett, 1992), however, the standard deviation of the posterior 

distribution is still an accurate summary of the variance involved in the estimates of the correlation. 
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Figure 21 shows the empirical density plot of the estimates for the skewed and symmetric prior 

distributions, helping visualise their variability across replications and conditions.   

 
Figure 21: Empirical densities of the Normal and Lognormal prior 

 estimates across simulation conditions. 

 

As it is possible to see, the mean of both empirical distributions are accurately centred on the 

true correlation of 0.5, although the choice of skewed prior shows a higher peak around it, implying that 

there is more density on this area of the graph and, therefore, it captures values close to the theoretical 

estimate more often. One possible explanation as for why this is the case is because across the skewness 

conditions analysed in Study 2, only one corresponds to a symmetric distribution, whereas the other six 

conditions imply the continuous distribution is skewed and an appropriate prior is being chosen to 

analyse it. There is somewhat higher variability on the skewed prior which has both a longer tail on the 
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left and higher density over the symmetric prior. Regardless of the choice of density no severely 

extreme values are estimated by either one of them. 

 
Figure 22: Boxplot of the posterior standard deviations of the normal and lognormal prior 

 

The boxplots of both types of posterior distributions show that even though, on average, the 

standard deviation for the skewed distribution is smaller than that of the symmetric distribution, the 

spread of the skewed distribution is considerably greater than that of the symmetric distribution. The 

difference between the mean standard deviations is 0.03 but the difference between their respective 

maximums is 0.12, for instance. It is also possible to see that the whiskers of the boxplot representing 

the lognormal prior extend themselves longer both towards the lower and higher end, suggesting the 

fact that there are considerably larger numbers for this density, particularly on the higher end of it. From 
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here it is possible to conclude that there is more variability in the estimates coming from the lognormal 

prior. Albert (1992) both observed and commented on this situation in the original article where he 

proposed his Bayesian framework. Upon comparing the results obtained for the lognormal and normal 

priors, he noticed that the standard deviation of the posterior distribution was somewhat larger than 

that of the normal distribution, even though he did not offer any potential explanations concerning the 

reason behind this.   
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5. Conclusion 

The purpose of this thesis was to expand on the previously-published findings regarding the different 

ways of calculating the polychoric correlation coefficient and how the conditions under which maximum 

likelihood estimation is tested impact the Bayesian framework developed by Albert (1992). 

Acknowledging the fact that Bayesian statistics are becoming a competing paradigm to classical 

statistics, this thesis also aimed at taking a problem pertinent to the social sciences (the analysis of 

categorical data when a continuous, latent construct is being hypothesised to underpin it) and giving it a 

Bayesian twist, highlighting the advantages and drawbacks that this new estimation framework has 

when compared to more traditional methods. 

 
 5.1 Summary of Study 1 and Study 2 
 
Study 1 can be framed and interpreted as a robustness study where the performance of the Bayesian 

algorithm is tested alongside with that of maximum likelihood to understand under which conditions 

one outperforms the other or both give the same answer. In general, the MCMC approach was found to 

outperform the ML approach in the some of the most difficult cases (small sample sizes with skewed 

data and medium/large number of categories) but does not do so consistently. Sample size proved to be 

a variable of great importance since bias diminished as it increased in both cases. Skewness of the data 

only becomes an issue in the extreme cases, even with moderately large sample sizes, but can be a 

problem even in moderate cases if the sample size is small. Maximum likelihood estimation showed 

consistent problems with underestimation whereas Bayesian methods tended towards overestimation, 

possibly due to the fact that this type of algorithms tend to be swayed by the mean of the prior 

distribution. Overall, the Bayesian estimation of the polychoric correlation coefficient tended to be more 

robust than that of the traditional maximum likelihood, with the exception of cases where extreme 

skewness was involved due to the fact that these methods are very sensitive to model specification and 
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the choice of the wrong model can work against finding the appropriate estimate of the statistic being 

studied. 

Study 2 attempts to further understand the Bayesian approach to the estimation of the 

polychoric correlation coefficient by dwelling in one of the most controversial aspects of Bayesian 

statistics which is the choice of a prior distribution. By reproducing the same skewness conditions as in 

Study 1 but performing the analysis with skewed (bivariate lognormal) and symmetric (bivariate normal) 

priors, it is possible to document the impact that the choice of distribution has in the ultimate 

estimation of the correlation coefficient. Overall, as expected, an increase in the skewness of the data 

being analysed goes hand-in-hand with better performance of the lognormal prior distribution over the 

normal prior. The number of categories seemed to play a complex role as well in the estimation, but no 

discernible pattern appeared in the simulation study with regards to whether the choice of one prior 

over the other is preferable, which is probably due to the fact that the number of categories condition 

was averaged across the skewness condition. 

 

5.2 Conceptual issues arising from the implementation of these studies 
 
During the development and implementation of the simulation studies, two important issues arose that 

required careful examination before a full implementation of the methodology could be developed. The 

first one is the discretisation process of the continuous latent variable and its implication on the models 

used to be analysed and the second one is the role of bias in Bayesian data analysis.  

For computer simulation purposes, there exist two general ways in which one can generate 

skewed discrete data coming from a continuous variable. The first one is to keep the thresholds fixed at 

equal intervals and manipulate the skewness of the latent variable, which is the Bollen and Barb (1981) 

method employed throughout this thesis. The second one is to keep the latent variable symmetric (so fix 

its skewness at 0) and manipulate the distance of the thresholds, so that unequal cutpoints will favour 
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certain areas of the density of the distribution over others, resulting in samples that are skewed towards 

such areas (see Zumbo, Gadermann & Zeisser, 2007 for an example). For matters of the data-generation 

process, the choice of approach is irrelevant because any specified skewness can be achieved by either 

one of them indistinctively. But for data-analytic purposes, an important distinction between the 

Bayesian and frequentist approach to data analysis becomes apparent. 

For the case of the polychoric correlation coefficient (and the same argument is valid in any 

other statistical techniques that requires the frequentist paradigm) the method of maximum likelihood 

assumes right from the start that the data comes from a bivariate or multivariate normal distribution 

which later becomes discretised, echoing the same thought process described in the Bollen and Barb 

(1981). All the analyses done on the data begin from such assumption and it is that very reason for why 

the Olsson (1979) likelihood equations are used for the estimation. Under the frequentist paradigm, the 

model takes precedence over the data and in such cases where the data does not fit the model 

corrections such as transformations, the removal of outliers, etc. are prescribed in order to aid on the 

estimation. 

In Bayesian data analysis, the opposite takes place and the data takes precedence over the 

model, which is why the prior distributions discussed in Section 2.2 of this thesis become so relevant. It 

is through the use of the prior that the likelihood equation becomes influenced to accommodate the 

characteristics of the sample one is working with. This is one of the primary reasons for why Bayesian 

methods have become controversial, which is that they force the researcher to acknowledge that other 

sources of uncertainty exist which are not contained in the likelihood function, violating the likelihood 

principle of frequentist statistics that state that all the information needed to draw inferences from the 

data is contained in either the likelihood function or some transformation of it (Casella & Berger, 1987).  

The role of bias in Bayesian statistics highlights an important aspect of the way in which it 

conceptualises the uncertainty of the data. As elaborated on Section 2.2, the end result of the 
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estimation process is not a unique number or estimate as in the case of maximum likelihood, but a 

probability distribution of the most plausible values of such estimate out of which the most plausible 

value is selected. Usually, this number is the mean or the mode of the posterior distribution but it could 

well be any other number depending on the purposes of the analysis. If a distribution and not a single 

value is the end result of Bayesian analysis then, what is the role of bias? Bias from what? And, more 

importantly, if the Bayesian paradigm does away with the frequentist notion of long-run probability, 

then what is the final value from which bias can be calculated, particularly when it is known that 

different prior distributions can generate different final results? In cases like this, it is very important to 

keep in mind the definition of probability that underlies Bayesian analysis. The posterior distribution is 

nothing more than a way to measure of the uncertainty of the parameters being estimated and, as such, 

it still obeys the laws of probability. Among such laws it is true that, as long as one does not end with a 

degenerate case, an expected value of said distribution exists. The bias that gets calculated is from this 

expected value (or some other representative measure) and it is the uncertainty around this value that 

what re-expressed in Bayesian statistics through the posterior probability distribution and not 

necessarily through a standard error as in the case of ML-based estimates. The bias of a parameter 

estimate exists and its calculation is meaningful, a fact that can be evidenced by reminding the reader 

that as the sample size increases, both maximum likelihood and Bayesian solutions will converge 

towards the same answer (Kruschke, 2010). It is the way in which such bias is understood what changes 

slightly when jumping from the frequentist to the Bayesian paradigm.  

 
5.3 Contributions and limitations of this thesis 

 
The Bayesian perspective to statistical estimation and analysis is still not very well-known among social 

scientists, and even many who are specifically trained in quantitative analysis are only familiar with 

some of its overall concepts. The main aim of this thesis was, therefore, to take on a problem that is 
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common in psychometrics and attempt to approach it from a Bayesian point of view. Although similar 

studies have been done before (e.g. Choi et.al., 2011) the first novel contribution of this thesis is the 

introduction of the skewness condition in the robustness-like study of the MCMC algorithm. Section 3.3 

of this thesis elaborates on some of the difficulties to generate data with a pre-specified correlation 

matrix and different levels of marginal skewness and kurtosis and although modern solutions exist (eg. 

Headrick & Pant, 2012), most quantitatively-oriented social scientists still rely on the Vale and Maurelli 

(1983) process to generate their data, regardless of how cumbersome and limited it can be. The use of 

copulas to generate the desired bivariate distributions can also be cited as a novel contribution since 

their use has been restricted mostly to the fields of financial mathematics and biostatistics.  

 Although the Albert (1992) article presents a general overview of how the Gibbs sampler for this 

polychoric correlation coefficient looks like, many gaps are left for the reader to fill-in, in case he or she 

is interested in the full implementation of the algorithm. It is particularly complicated to obtain the first, 

second and third derivatives of the log-likelihoods of the bivariate distributions which are necessary for 

the variance-stabilising transformations before the Markov chains can be run. The Technical Appendix 

included at the end of this thesis works through the mathematics that Albert probably worked on before 

writing his article and provides, in closed form expressions, all the necessary equations that would need 

to be translated into code if anyone were going to try and re-implement them. These equations were 

not published but are crucial building blocks in the Bayesian framework herein developed. Last but not 

least, out of this thesis came a fully-customisable R function capable of handling any kind of discrete 

data in order to estimate the polychoric correlation coefficient through MCMC. This function can be 

found in the Technical Appendix. With the appropriate packages installed and running the necessary 

code beforehand, the function is ready to operate, offering the user a graphic display of the chains, the 

mean of the posterior distribution as best estimate, the standard deviation of such posterior distribution 

and the top and bottom 5% empirical quantiles which can be used as credible intervals.  
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 Several limitations are also present in the simulation studies that comprise this thesis. The first 

one is that although the focus was to test the algorithms under difficult situations such as small sample 

sizes, not too much attention was paid to the opposite side of the spectrum, larger sample sizes. It is 

generally true that with larger sample sizes maximum likelihood tends to perform better, but very large 

sample sizes can also create very large Markov chains which may take longer than expected to converge 

(Kruschke, 2010). Studying how to optimise the MCM algorithm could have been further explored in this 

thesis.  

 Choi et. al. (2011) provided very insightful recommendations by exploring not only the expected 

a posteriori (EAP, or the mean of the posterior distribution) but also the maximum a posteriori (MAP, or 

the mode of the posterior distribution) estimators of the polychoric correlation coefficient and found 

that, in several cases, MAP estimators outperformed both traditional maximum likelihood and EAP. This 

thesis solely focused on the EAP estimator because Albert provided not guidance in terms of how to 

calculate MAPs from the conditional distributions he published. Choi et. al. (2011) approach relies 

exclusively on the log-likelihood of the bivariate normal distribution for which closed-form expressions 

for the mode exist. Albert (2012) used conditional distributions both for the bivariate normal and the 

lognormal case for which the estimation of the mode can be complicated and is probably impossible 

unless numerical methods are used.  

 Another limitation worth mentioning is the fact that other types of prior distributions could 

have been used as a manner of conducting a ‘sensitivity analysis’ of sorts in order to see which type of 

prior has the most impact on the results, or in which cases the choice of prior has no influence when 

estimating the polychoric correlation coefficient. For purposes of this thesis, only a lognormal prior 

distribution was used to control the skewness condition, but distributions with varying degrees of 

kurtosis or different levels of tail dependence, for instance, could have been used as well to further 

investigate the assumption of latent bivariate normality and its relationship to the estimation process. 
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The choice of prior distributions has always been a controversial topic in Bayesian analysis and the more 

informed a researcher can be about his or her choice of prior the better it is for both the appropriate 

understanding and use of Bayesian estimation methods. 

 
5.4 Insight into the future directions and challenges of Bayesian statistics in psychometrics 

 
With the advent of modern computer power, Bayesian statistics has come within the reach of the 

applied researcher who is interested in using this approach to conduct her or his routine analyses. 

Introductory textbooks that require little technical background have also begun to appear (e.g. 

Kruschke, 2010), catering to experts in fields outside of statistics in order to help them become familiar 

with this alternative approach to traditional data analysis. In spite of this, there is still a long way for the 

Bayesian paradigm to start taking hold, particularly among the social sciences.  

 Perhaps the greatest obstacle to be found is the education of future generations of 

methodologists and applied statisticians in the social sciences with regards to Bayesian analysis. Up until 

now, any student or practitioner wishing to dwell deeply in the new paradigm needs a certain degree of 

proficiency in the more mathematical aspects of statistics. Most curricula of applied statistics programs 

for social scientists tend to move away from it, creating a barrier between the Bayesian approach and 

potential users that could benefit from it. It is also true that many of the programs, as they are, are quite 

saturated with very relevant content for everyday data analysis, which makes it complicated then to try 

to extend them to include introductory material related to Bayesian statistics.  

 A second great obstacle that has even been addressed as one of the ‘open problems’ in 

Bayesian statistics is the criticism that surrounds choosing prior distributions (Jordan, 2011). The fact 

that the researcher or data analyst has so much input on the end results of the estimation process 

troubles a great number of experts in the field, vehemently opposing the use of Bayesian statistics or, at 

the very least, not recommending their use until many of the properties of their models are better 
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understood. A lot of misinformation exists with regards to the proper role of the prior in Bayesian 

estimation but, ultimately, the challenge to the use of this new approach in data analysis does not come 

from the mathematics underpinning it but from the way in which statistics is so intricately related to the 

process of creating science. The seeming absolute objectivity that comes from the classical paradigm is a 

difficult mind set to get away from and a more thorough discourse is needed then not only in the 

process of analysing data but in how the analysis of data shapes the development and presentation of 

results that will later go on to become scientific knowledge.  

 Another important limitation which has been brought forward in the debate to include Bayesian 

statistics into the mainstream of applied science is that of software issues. At the present moment, 

there exist very few software programs targeted towards Bayesian analysis that is GUI-friendly. With the 

exception of a few specific applications (e.g. Netica for Bayesian networks), most software targeted to 

this area of statistics requires at least some basic familiarity with the process of writing computer code, 

something not all social scientists feel comfortable with or proficient in. The second issue is the 

computational difficulties associated with MCMC methods. Although it is true that significant advances 

have been made on the process of making the implementation of these algorithms more approachable, 

more research is needed to help with speeding up a lot of the processes inherently involved in the tying 

up of all the Markov chains. If the applied scientists see just marginal gains and a great loss of time in 

the use of Bayesian methods for their everyday analyses, it is difficult to expect that they will try to even 

consider these methods as legitimate alternatives to what classical statistics has to offer.  

 Bayesian statistics still have a long way to go before it becomes a more mainstream option in 

standard data analysis and estimation. Nevertheless, the shift has already started and the fact that more 

and more journal articles, conference papers and introductory textbooks are beginning to appear points 

towards the fact that, eventually, this new approach could very well become a legitimate alternative to 

the way in which social scientists analyse and help consolidate scientific knowledge. 
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Appendix 
 

R SYNTAX 

 

library(MASS) 

library(mvtnorm) 

library(truncnorm) 

library(polycor) 

library(e1071) 

library(copula) 

 

############################################################## 

# Log Likelihood function of Phi and its derivatives  

#  

#Calculated from subsection "The conditional distribution of  

#rho given (c,d,theta)", page 51-52 

############################################################## 

 

 

NegLoglikOfPhi<-function(phi, n, s11, s12, s22){ 

   

  -( -n/2 * log(phi) + (n - 2) * log(phi + 1) - ((s11+s22)/8 - s12/4) 

* phi - ((s11+s22)/8 + s12/4)/phi ) 

    

}  

 

 

NegGradOfPhi<-function(phi, n, s11, s12, s22){ 

   

  -(-n/(2 * phi) + (n - 2)/(phi + 1) - (s11 + s22)/8 + s12/4 + ((s11 + 

s22)/8 + s12/4)/phi^2 ) 

   

} 

 

 

 

DerOfPhi<-function(phi, n, s11, s12, s22){ 

   

  L.phi<-( -n/2 * log(phi) + (n - 2) * log(phi + 1) - ((s11+s22)/8 - 

s12/4) * phi - ((s11+s22)/8 + s12/4)/phi ) 

  Grad.phi<-(-n/(2 * phi) + (n - 2)/(phi + 1) - (s11 + s22)/8 + s12/4 

+ ((s11 + s22)/8 + s12/4)/phi^2 ) 

  Hess.phi<-( n/(2 * phi^2) - (n - 2)/(phi + 1)^2 - ((s11 + s22)/4 + 

s12/2)/phi^3 ) 

  ThirdDer.phi<-( -n/phi^3 + 2 * (n - 2)/(phi + 1)^3 + 3 * ((s11 + 

s22)/4 + s12/2)/phi^4 ) 

   

  list(L.phi = L.phi, Grad.phi = Grad.phi, Hess.phi = Hess.phi, 

ThirdDer.phi = ThirdDer.phi) 

} 
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##Calculating the mode of Phi 

 

NROfPhi<-function(n, s11, s12, s22, start){ 

   

  max.try<-100 

   

  while(max.try > 0){ 

    max.try<-max.try-1 

    op<-optim(par = runif(1,-start,20-start), fn=NegLoglikOfPhi, 

gr=NegGradOfPhi, lower = 1e-3, upper = 50, method = "Brent", n = n, 

s11 = s11, s12 = s12, s22 = s22) 

    if(op$convergence == 0){ 

      return(op$par) 

    } 

  } 

   

  if(op$convergence != 0){ 

    print("Error in finding phi") 

    stop() 

  } 

   

} 

 

############################################################## 

# Log Likelihood function of Tau and its derivatives 

# 

#Calculated from subsection "The conditional distribution of  

#rho given (c,d,theta)", page 51-52 

############################################################## 

 

NegLoglikOfTau<-function(tau, n, s11, s12, s22, nu){ 

 

  phi<-(nu * tau + 1)^(1/nu) 

  der<-DerOfPhi(phi, n = n, s11 = s11, s12 = s12, s22 = s22) 

  L.phi<-der$L.phi 

  Grad.phi<-der$Grad.phi 

  Hess.phi<-der$Hess.phi 

   

  d.phi<-(nu * tau + 1)^(1/nu - 1) 

   

  L.tau<-L.phi + log(d.phi) 

   

  -L.tau 

   

} 

 

NegGradOfTau<-function(phi, n, s11, s12, s22, nu){ 

   



72 

 

  phi<-(nu * tau + 1)^(1/nu) 

  der<-DerOfPhi(phi, n = n, s11 = s11, s12 = s12, s22 = s22) 

  L.phi<-der$L.phi 

  Grad.phi<-der$Grad.phi 

  Hess.phi<-der$Hess.phi 

   

  d.phi<-(nu * tau + 1)^(1/nu - 1) 

  Grad.tau<-Grad.phi * d.phi + (1 - nu)/(nu * tau + 1) 

   

  -Grad.tau 

   

} 

 

DerOfTau<-function(tau, n, s11, s12, s22, nu){ 

   

  phi<-(nu * tau + 1)^(1/nu) 

  der<-DerOfPhi(phi, n = n, s11 = s11, s12 = s12, s22 = s22) 

  L.phi<-der$L.phi 

  Grad.phi<-der$Grad.phi 

  Hess.phi<-der$Hess.phi 

   

  d.phi<-(nu * tau + 1)^(1/nu - 1) 

  d2.phi<-(1 - nu) * (nu * tau + 1)^(1/nu - 2) 

   

  L.tau<-L.phi + log(d.phi) 

  Grad.tau<-Grad.phi * d.phi + (1 - nu)/(nu * tau + 1) 

  Hess.tau<-Hess.phi * d.phi^2 + Grad.phi * d2.phi - nu * (1 - nu)/(nu 

* tau + 1)^2 

   

  list(L.tau = L.tau, Grad.tau = Grad.tau, Hess.tau = Hess.tau) 

   

} 

 

 

## Calculating the mode of Tau 

 

NROfTau<-function(n, s11, s12, s22, nu, start){ 

   

  max.try<-100 

   

  lower<-min((.001^nu-1)/nu, (10^nu-1)/nu) 

  upper<-max((.001^nu-1)/nu, (10^nu-1)/nu) 

   

  while(max.try > 0){ 

    max.try<-max.try-1 

    op<-optim(par = runif(1,-start,20-start), fn=NegLoglikOfTau, 

gr=NegGradOfTau, method = "Brent", lower = lower, upper = upper, n = 

n, s11 = s11, s12 = s12, s22 = s22, nu = nu) 

    if(op$convergence == 0){ 

      return(op$par) 
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    } 

  } 

   

  if(op$convergence != 0){ 

    print("Error in finding tau") 

    stop() 

  } 

   

} 

 

############################################################## 

# Sampling of Rho, Theta, and the Thresholds 

# 

#Based on section 2.1 and 2.2 

############################################################## 

 

 

 

SampleRho<-function(c, d, theta1, theta2, rho){ 

 

  n<-length(theta1) 

  s11<-sum(theta1^2) 

  s12<-sum(theta1 * theta2) 

  s22<-sum(theta2^2) 

 

  phi0<-NROfPhi(n = n, s11 = s11, s12 = s12, s22 = s22, start = 

(1+rho)/(1-rho)) 

 

  der<-DerOfPhi(phi0, n = n, s11 = s11, s12 = s12, s22 = s22) 

  ThirdDer.phi<-der$ThirdDer.phi 

  Hess.phi<-der$Hess.phi 

 

  nu<-1 + phi0 * ThirdDer.phi/(3 * Hess.phi) 

 

  mu<-NROfTau(n = n, s11 = s11, s12 = s12, s22 = s22, nu = nu, start = 

(phi0^nu - 1)/nu) 

 

  Hess.tau<-DerOfTau(mu, n = n, s11 = s11, s12 = s12, s22 = s22, nu = 

nu)$Hess.tau 

  sigma2<-1/(-Hess.tau) 

 

  max.try<-100 

  while(max.try > 0){ 

    max.try<-max.try - 1 

    tau<-rnorm(1, mu, sqrt(sigma2)) 

    if(nu * tau + 1 > 0){ 

      rho<-((nu * tau + 1)^(1/nu) - 1)/((nu * tau + 1)^(1/nu) + 1) 

      max.try<-0 

    } 

  } 
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  if(is.na(rho)){ 

    stop("Error in SampleRho") 

  } 

 

 

  rho 

 

  } 

 

 

 

SampleTheta<-function(rho, c, d, x, y, theta1, theta2){ 

   

  n<-length(x) 

  new.theta1<-NULL 

  new.theta2<-NULL 

  tmp<-theta2[1] 

  for(i in 1:n){ 

     

    tmp1<-rtruncnorm(1, a = c[x[i]], b = c[x[i]+1], mean = 

rho*theta2[i], sd = sqrt(1-rho^2)) 

     

 

    if(tmp1 < c[x[i]] || tmp1 > c[x[i]+1]){ 

      print("error in sampling theta") 

      stop() 

    } 

 

    new.theta1<-c(new.theta1, tmp1) 

     

    tmp2<-rtruncnorm(1, a = d[y[i]], b = d[y[i]+1], mean = rho*tmp1, 

sd = sqrt(1-rho^2)) 

    if(tmp2 < d[y[i]] || tmp2 > d[y[i]+1]){ 

      print("error in sampling theta") 

      stop() 

    } 

    new.theta2<-c(new.theta2, tmp2) 

  } 

   

  list(theta1 = new.theta1, theta2 = new.theta2) 

   

} 

 

SampleThreshold<-function(theta1, theta2, rho, c, d){ 

   

  new.c<-c(-Inf) 

  for(i in 2:(length(c)-1)){ 

    upper.c<-min(c[i+1], min(theta1[theta1>=c[i]])) 

    lower.c<-max(c[i-1], max(theta1[theta1<=c[i]])) 
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    new.c<-c(new.c, runif(1, lower.c, upper.c)) 

  } 

  new.d<-c(-Inf) 

  for(i in 2:(length(d)-1)){ 

    upper.d<-min(d[i+1], min(theta2[theta2>=d[i]])) 

    lower.d<-max(d[i-1], max(theta2[theta2<=d[i]])) 

    new.d<-c(new.d, runif(1, lower.d, upper.d)) 

  } 

   

  new.c<-c(new.c, Inf) 

  new.d<-c(new.d, Inf) 

   

  list(c = new.c, d = new.d) 

   

} 

 

## Section 2.2 

 

Gibbs<-function(x, y, iter = 1e4, trace = FALSE){ 

   

  library("truncnorm") 

   

  n<-length(x) 

   

  rho<-0.5 

  c<-c(-Inf, qnorm(as.vector(cumsum(table(x)))/n, lower.tail = T)) 

  d<-c(-Inf, qnorm(as.vector(cumsum(table(y)))/n, lower.tail = T)) 

 

  tmp.c<-c 

  tmp.c[1]<-c[2]-.1 

  tmp.c[length(tmp.c)]<-c[length(c)-1]+.1 

  tmp.d<-d 

  tmp.d[1]<-d[2]-.1 

  tmp.d[length(tmp.d)]<-d[length(d)-1]+.1 

  theta1<-NULL 

  theta2<-NULL 

  for(i in 1:n){ 

    theta1<-c(theta1, runif(1, tmp.c[x[i]], tmp.c[x[i]+1])) 

    theta2<-c(theta2, runif(1, tmp.d[y[i]], tmp.d[y[i]+1])) 

  } 

   

  gibbs.rho<-NULL 

  gibbs.c<-NULL 

  gibbs.d<-NULL 

   

  for(i in 1:iter){ 

    st<-SampleTheta(rho, c, d, x, y, theta1, theta2) # Formula 2.4 in 

paper 

    theta1<-st$theta1 

    theta2<-st$theta2 
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    rho<-SampleRho(c, d, theta1, theta2, rho) # Corresponds to 

conditional posterior distribution of rho on page 51, includes 

formulae 2.2 and 2.3 

    scd<-SampleThreshold(theta1, theta2, rho, c, d) 

    c<-scd$c 

    d<-scd$d 

    gibbs.rho<-c(gibbs.rho, rho) 

    gibbs.c<-rbind(gibbs.c, c[2:(length(c)-1)]) 

    gibbs.d<-rbind(gibbs.d, d[2:(length(d)-1)]) 

    if(trace && i %% 100 == 0){ 

        

 cat(i) 

 cat(" iterations completed.") 

 cat("\n") 

    } 

  } 

   

  list(rho = gibbs.rho, c = gibbs.c, d = gibbs.d) 

   

} 

 

 

############################################################## 

# Function to calculate Batch Means 

############################################################## 

 

 

 

BatchMeans<-function(vals,bs = "sqroot",warn = FALSE){ 

   

  N<-length(vals) 

  if(N < 1000){ 

    if(warn){ # if warning 

      cat("WARNING: too few samples (less than 1000)\n") 

    } 

    if(N < 10){ 

      return(NA) 

    } 

  } 

   

  if(bs=="sqroot"){ 

    b<-floor(sqrt(N)) # batch size 

    a<-floor(N/b) # number of batches 

  }else{ 

    if(bs=="cuberoot"){ 

      b<-floor(N^(1/3)) # batch size 

      a<-floor(N/b) # number of batches 

    }else{ # batch size provided 

      stopifnot(is.numeric(bs))   

      b<-floor(bs) # batch size 
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      if(b > 1){ # batch size valid 

        a <- floor(N/b) # number of batches 

      }else{ 

        stop("batch size invalid (bs=",bs,")") 

      } 

    } 

  } 

   

  Ys<-sapply(1:a,function(k) return(mean(vals[((k-1)*b+1):(k*b)]))) 

   

  muhat<-mean(Ys) 

  sigmahatsq<-b*sum((Ys-muhat)^2)/(a-1) 

   

  bmse<-sqrt(sigmahatsq/N) 

   

  bmse 

   

} 

 

 

############################################################## 

# Utility functions - convert 

#Converts a contingency table to two vectors 

############################################################## 

 

 

 

convert<-function(tbl){ 

   

  data<-NULL 

  for(i in 1:nrow(tbl)){ 

    for(j in 1:ncol(tbl)){ 

      data<-rbind(data, matrix(rep(c(i, j), tbl[i, j]), ncol = 2, 

byrow = T)) 

    } 

  } 

  data<-as.data.frame(data) 

  colnames(data)<-c("x", "y") 

  data 

 

} 

 

 

######################################################################

####################################### 

#  Main Function 

# 

#This function calculates polychoric correlation using the Gibbs 

Sampling method 

# 
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#Arguments: 

#u1: It can be a contingency table or a vector of the first ordinal 

variable 

#u2: If u1 is a vector, then u2 must be a un-null vector given the 

second ordinal variable 

#iter: number of iterations of Gibbs sampling 

#t0: First t0 samplings will be excluded due to non-convergence 

#everyN: Only every N-th sampling will be taken 

#trace: If TRUE, the program will print out the number of iterations 

executed for every 100 iterations 

#graph: If TRUE, a graph will be printed showing the sampling history 

of the correlation and thresholds 

# 

#Outputs: rho, c, d 

#rho is the vector of Gibbs sampled rho 

#c is the vector of thresholds of X 

#d is the vector of thresholds of Y 

######################################################################

######################################## 

 

polycorGibbs<-function(u1, u2 = NULL, iter = 1e4, t0 = 200, everyN=10, 

trace = FALSE, graph = FALSE){ 

   

  if(class(u1) == "table"){ 

    data<-convert(u1) 

    x<-data$x 

    y<-data$y 

  }else{ 

    if(class(u1) == "integer"){ 

      if(is.null(u2)){ 

        print("The argument u2 cannot be null ") 

      }else{ 

        x<-u1 

        y<-u2 

      } 

    }else{ 

      print("Invalid input") 

      return(NULL) 

    } 

  } 

 

  if (length(unique(x))==1) { 

    print("Error: x is a constant vector") 

    return(NULL) 

  } 

 

  if (length(unique(y))==1) { 

    print("Error: y is a constant vector") 

    return(NULL) 

  } 
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  if (length(x) != length(y)){ 

    print("Please make sure the length of the two input vectors are 

the same!") 

    return(NULL) 

  } 

 

  xd <- sort(unique(x)) 

 

  yd <- sort(unique(y)) 

   

  x_rec<-x 

  y_rec<-y 

 

  for(i in 1:length(x)){ 

    for (j in 1:length(xd)){ 

      if (x[i] == xd[j]){ 

   x_rec[i]<-j 

      } 

    } 

  } 

 

  for(i in 1:length(y)){ 

    for (j in 1:length(yd)){ 

      if (y[i] == yd[j]){ 

   y_rec[i]<-j 

      } 

    } 

  } 

 

  x_rec = as.integer(x_rec) 

  y_rec = as.integer(y_rec) 

 

  x<-x_rec 

  y<-y_rec 

 

  plc<-Gibbs(x, y, iter, trace) 

  rho<-as.matrix(plc$rho, ncol = 1) 

  c<-as.matrix(plc$c, ncol = length(unique(x_rec))-1) 

  d<-as.matrix(plc$d, ncol = length(unique(y_rec))-1) 

   

  res<-data.frame(rho, c, d) 

  res<-res[-(1:t0), ] 

  res<-res[seq(1,nrow(res),by= everyN),] 

  colnames(res)<-c("rho", paste("c", 1:(length(unique(x))-1), sep = 

""), paste("d", 1:(length(unique(y))-1), sep = "")) 

  mn<-signif(apply(res, 2, mean), 3) 

  md<-signif(apply(res, 2, median), 3) 

  sd<-signif(apply(res, 2, BatchMeans), 3) 

  qsd<-signif(apply(res, 2, sd), 3) 
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  cor<-signif(cor(res), 3) 

   

  cor[lower.tri(cor)]<-NA 

  diag(cor)<-NA 

   

  smy<-cbind(mn, md, sd, qsd) 

  colnames(smy)<-c("mean", "median", "SD", "Numeric SD") 

   

  cat("Summary\n") 

  print(smy) 

  cat("\nCorrelation\n") 

  print(cor) 

   

  if(graph){ 

    #par(mfrow = c(1, 1)) 

    plot(rho, type = "l", xlab = "Round", ylab = "rho", col = "red") 

    abline(h = smy["rho", "mean"]) 

    windows() 

    for(i in 1:ncol(c)){ 

      if(i==1){ 

        plot(c[, i], type = "l", ylim = c(min(c), max(c)), xlab = 

"Round", ylab = "Threshold of X", col = i+1) 

        abline(h = smy[paste("c", i, sep = ""), "mean"]) 

      }else{ 

        lines(c[, i], type = "l", col = i+1) 

        abline(h = smy[paste("c", i, sep = ""), "mean"]) 

      } 

    } 

    windows() 

    for(i in 1:ncol(d)){ 

      if(i==1){ 

        plot(d[, i], type = "l", ylim = c(min(d), max(d)), xlab = 

"Round", ylab = "Threshold of Y", col = i) 

        abline(h = smy[paste("d", i, sep = ""), "mean"]) 

      }else{ 

        lines(d[, i], type = "l", col = i) 

        abline(h = smy[paste("d", i, sep = ""), "mean"]) 

      } 

    } 

  } 

  plc 

   

} 

 

 

 



Technical Appendix

The following paragraph is just a quick overview of the general framework
described in Albert(1992) to estimate the polychoric correlation coefficient.
To obtain the posterior distribution of the correlation ρ, it is necessary to
first apply the transformation φ = 1+ρ

1−ρ such that φ > 0. Then we proceed to

obtain the mode of the distribution of φ, denoted as φ̂, using the Newton-
Raphson algorithm. To correct for the skewness of the distribution about
the mode, it is necessary to apply the power transformation τ = (φν − 1)/ν,
described in Albert(1989), where ν = 1 + [l′′′(φ̂)φ̂]/[3l′′(φ̂)]. The posterior
distribution of τ is approximately N(µ, σ2), where µ is the mode of the
distribution of τ and σ2 = (−l′′2(µ))−1. Here l2 is the log posterior density of
τ . A sampler of ρ can then be developed by, first, generating Z from N(µ, σ2)
and then setting ρ = ((νZ + 1)1/ν − 1)/((νZ + 1)1/ν + 1). This technical
appendix details the derivation and implementation of the log likelihoods of
φ and τ and their first, second, and third derivatives. The exact forms of ν,
µ and σ2 are also shown.

Now that φ = 1+ρ
1−ρ , we have ρ = φ−1

φ+1
, and the Jacobian term is J =

| d
dφ

φ−1
φ+1
| = 2

(1+φ)2
. We then need to replace ρ with φ−1

φ+1
in Equation (2.2)

in Albert (1992) and multiply it times the Jacobian to obtain the posterior
distribution of φ or π1(φ), in Albert’s notation. Note that there is a minor
typo in Equation (2.2). It should be

π(ρ|(c, d, θ)) = C(1− ρ2)−n/2exp{− 1

2(1− ρ2)
(Sξξ − 2ρSξη + Sηη)}

Making the previously-mentioned substitution we have:

π1(φ) = C[
4φ

(φ+ 1)2
]−

n
2 exp{− 1

2 4φ
(φ+1)2

(Sξξ + Sηη − 2
φ− 1

φ+ 1
Sξη)}

2

(φ+ 1)2

1
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Taking the logarithm of π1(φ), we can obtain the log likelihood of φ as:

l1(φ) = C − n

2
logφ+ (n− 2)log(φ+ 1)− (φ+ 1)2

8φ
(Sξξ + Sηη) +

(φ2 − 1)

4φ
Sξη

where C stands for the constant that makes the likelihood proper. Expanding

the terms (1+φ)2

8φ
as 1

8
( 1
φ

+ 2 + φ), and (1−φ2)
4φ

as 1
4
( 1
φ
− φ), we can then take

the derivative and obtain the the first derivative of l1 as:

l′1(φ) = − n

2φ
+
n− 2

φ+ 1
− 1

8
(1− 1

φ2
)(Sξξ + Sηη) +

1

4
(1 +

1

φ2
)Sξη

The second derivative of l1 is:

l′′1(φ) =
n

2φ2
− n− 2

(φ+ 1)2
− 1

8
(− 1

φ3
(−2))(Sξξ + Sηη) +

1

4
(− 2

φ3
)Sξη

=
n

2φ2
− n− 2

(φ+ 1)2
− 1

4φ3
(Sξξ + Sηη + 2Sξη)

and the third derivative of l1 is:

l′′′1 (φ) =
−n
φ3

+
2(n− 2)

(φ+ 1)3
+

3

4φ4
(Sξξ + Sηη + 2Sξη)

Which is multiplied by φ to obtain Albert’s suitable re-expression of ν.

l′′′1 (φ)φ =
−n
φ2

+
2(n− 2)φ

(φ+ 1)3
+

3

4φ3
(Sξξ + Sηη + 2Sξη)

Through algebra it is possible to obtain and simplify to:

ν = 1 + [l′′′1 (φ̂)φ̂]/[3l′′1(φ̂)]

= 1 +
− n

φ̂2
+ 2(n−2)φ̂

(φ̂+1)3
+ 3

4φ̂3
(Sξξ + Sηη + 2Sξη)

3n

2φ̂2
− 3(n−2)

(φ̂+1)2
− 3

4φ̂3
(Sξξ + Sηη + 2Sξη)

=
1

3

 n

φ̂2
− 2(n−2)(φ̂+3)

(φ̂+1)3

n

φ̂2
− 2(n−2)

(φ̂+1)2
− 1

2φ̂3
(Sξξ + Sηη + 2Sξη)


Note that φ̂ is found using Newton-Raphson steps of the form φi+1 = φi −
l′1(φi)/l

′′
1(φi), as described by Albert(1992).

2
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Now τ = φν−1
ν

. Replace φ with (ντ + 1)1/ν in the π1(φ) and multiply it
times the Jacobian term (ντ + 1)1/ν−1, to get the distribution function of τ .
The log likelihood of τ is given by:

l2(τ) = c+ (
2− n

2ν
− 1)log(ντ + 1) + (n− 2)log[(ντ + 1)1/ν + 1]

− 1

8
[(ντ + 1)

1
ν + 2 + (ντ + 1)−

1
ν ](Sξξ + Sηη)

+
1

4
[(ντ + 1)

1
ν − (ντ + 1)−

1
ν ]Sξη

Taking the first derivative of l2(τ) we obtain:

l′2(τ) =
2− n− 2ν

2(ντ + 1)
+

(n− 2)(ντ + 1)1/ν−1

(ντ + 1)1/ν + 1

− 1

8
(ντ + 1)1/ν−1(Sξξ + Sηη − 2Sξη)

+
1

8
(ντ + 1)−1/ν−1(Sξξ + Sηη + 2Sξη)

The second derivative of l2(τ) is:

l′′2(τ) =
(2− n− 2ν)(−ν)

2(ντ + 1)2
+

(n− 2)(ντ + 1)1/ν−2{1− ν[1 + (ντ + 1)1/ν ]}
[(ντ + 1)1/ν + 1]2

− 1

8
(1− ν)(ντ + 1)1/ν−2(Sξξ + Sηη − 2Sξη)

− 1

8
(1 + ν)(ντ + 1)−1/ν−2(Sξξ + Sηη + 2Sξη)

In this case, the value of µ, the mode of the distribution of τ , is found by using
Newton-Raphson with the form of τi+1 = τi − l′2(τi)/l

′′
2(τi). As mentioned

previously, σ2 = (−l′′2(µ))−1. Now we have the exact form of N(µ, σ2) which
is the approximate distribution for τ . So for each drawing of ρ, we need to
find the values of φ̂, ν, µ, and σ2, which depend on the samplers of (ξh, ηh)
for h = 1, ..., n.
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