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Abstract

Endosymbiosis has played a major role in shaping eukaryotic cells, their success and
diversity. At the base of the eukaryotic tree, an a-proteobacterium endosymbiont in a
protoeukaryotic cell was converted into the mitochondrion through its reductive evolution,
endosymbiotic gene transfer (EGT) and the development of a protein targeting system to direct
the products of the transferred genes to this organelle. Similar events mark the plastid evolution
from a cyanobacterium. However, the primary endosymbiosis of plastid, unlike the
mitochondrion, was followed by the secondary and tertiary movement of this organelle between
eukaryotes through analogous endosymbiotic reduction, EGT and evolution of a protein targeting
system and many subsequent independent losses from different eukaryotic lineages.

The obligate tertiary diatom endosymbiont in a small group of dinoflagellates called
‘dinotoms’ is exceptional in that it retains most of its ancestral characters including a large
nucleus, its own mitochondria, plastids and many other eukaryotic organelles and structures in a
large cytoplasm all enclosed in and separated from its dinoflagellate host by a single membrane.
This level of conservation of ancestral features in the endosymbiont suggests an early stage of
integration. In order to investigate the impacts of endosymbiosis on the organelle genomes and to
determine the extent of EGT and the contribution of the host nuclear genome to the proteomes of
the organelles, | conducted mass pyrosequencing of the A+T-rich portion of the DNA extracted
from two dinotoms, Durinskia baltica and Kryptoperidinium foliaceum, and the SL cDNA
library constructed for D. baltica.

The plastid and mitochondrial genomes of these two dinotoms were sequenced, and the
results indicated that, despite the permanent symbiosis between the host and its endosymbiont in

dinotoms and in spite of small variations, the dinotom organelle genomes have changed very



little from those of free-living diatoms and dinoflagellates. There was also no sign of EGT to the
host in D. baltica, suggesting a strict compartmentalization in which the host mitochondria

remain reliant on the host nucleus while the endosymbiont organelles, mitochondria and plastids,
stay entirely dependent on the endosymbiont nucleus with no genetic exchange between the host

and endosymbiont.



Preface

A version of chapter 2 has been published. Imanian B, Pombert J-F, Keeling PJ. 2010.
The complete plastid genomes of the two “dinotoms” Durinskia baltica and Kryptoperidinium
foliaceum. PloS ONE. 5:e10711. doi: 10.1371/journal.pone.0010711. The project was conceived
by PJK, J-FP and I. J-FP worked on the genome assembly, annotation and Sanger sequencing of
the plastid genome of K. foliaceum. I conducted the culturing, DNA and RNA extractions, CsCl
gradient density centrifugations, DNA amplifications, PCRs, RT-PCRs, Sanger sequencing, final
chromosome walking steps, genome assembly, base calling, annotation and finishing of both
plastid genomes. J-FP and | analyzed the data. | wrote the first draft. J-FP, PJK and I contributed
in editing and writing the final draft.
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wrote the first draft. J-FP, PJK and I contributed in editing and writing the final draft.
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Chapter 1: Introduction

The mitochondrion and plastid endosymbioses

Endosymbiotic events are at the core of evolution of eukaryotic cells. Through
endosymbiosis, unrelated cells were forged together, and new chimeras were born. These
chimeric cells took giant leaps forward together to generate new level of complexity and
diversity. The engulfment, reduction, modification, and integration of the ancestors of an .-
proteobacterium and a cyanobacterium by another cell in separate occasions gave rise to
mitochondria and plastids, respectively (Archibald and Keeling 2002; Gray et al. 1999; Keeling
2010; Palmer 2003). These new additions to the host cells through endosymbiosis resulted in far
more complex cells at both structural and physiological levels, and expanded the ability of new
resulting cells to explore, adapt to and colonize new environments. Among other functions
oxidative phosphorylation and photosynthesis were added to the repertoire of what these new
cells collectively could do.

The a-proteobacterial-like endosymbiont transformed to an organelle very early on in the
evolution of eukaryotic cells prior to their radiation, and as a consequence nearly all
contemporary eukaryotes have at least a mitochondrion or one of its derivatives (i.e.
hydrogenosomes, mitosome) or some of its derived genes (Bui et al. 1996; Roger et al. 1996;
Roger and Silberman 2002; Tovar et al. 2003; Williams et al. 2002; Williams and Keeling 2003).
Long after the establishment of the mitochondrion in the eukaryotic cell, the cyanobacterial
endosymbiosis led to the evolution of another organelle that later on diversified into the plastids
found in the glaucophytes, red algae, green algae and plants. The rich intracellular environment
and availability of nutrients and metabolites remove the necessity of producing these essentials

by the engulfed autonomous cells (in both endosymbiosis and parasitism). In such an



environment, many biochemical pathways in the endosymbiont (and the parasite) with an
equivalent in the host cell become redundant, and the corresponding proteins and genes become
dispensable, and they can be eliminated over time from the proteome and genome of the
engulfed cell. The transformation of a free living prokaryotic cell into an organelle in both
mitochondrial and plastid endosymbioses has been accompanied by miniaturization of the
symbiont, characterized in part by massive gene losses from the bacterial endosymbiont genome,
reducing its size and coding capacity to a small fraction of its estimated original size and
capability. More than 95% of the genes found in the closest free-living relatives of mitochondria
and plastids are missing from the genomes of these two organelles. Modern free-living o.-
proteobacteria (closest relatives of mitochondria) and cyanobacteria (closest relatives of plastids)
possess genomes encoding three to several thousand protein-coding genes (Fogel et al. 1999,
Kaneko et al. 1996, Timmis et al. 2004). The known mitochondrial genomes, however, retain
only up to 97 genes (Adams and Palmer 2003; Gray et al. 1999) while most plastids maintain
only about 1% of the coding capacity of the genomes in their closest free-living prokaryotes
(Dagan and Martin 2009). The missing genes from the genomes of these two organelles have
been either lost completely or transferred to the nucleus of the host cells by hundreds or even
thousands (Martin 2009; Martin et al. 2002; Timmis et al. 2004).

Complementary and subsequent to the endosymbiotic gene transfer (EGT), a protein
targeting system has also evolved independently but with analogous features in both
endosymbiotic events (Pfanner and Geissler 2001; Vesteg et al. 2009). The transferred genes are
encoded and transcribed in the host nucleus, translated in its cytosol, and then some but not all
are targeted to whence they originated. The analogous features and components of the protein

targeting systems for the two organelles include the translocons of outer and inner membranes of
2



the mitochondrion and plastid (TOM, TIM and TOC, TIC), their associated receptor proteins,
carrier proteins and others that recognize, receive and translocate the organelle proteins through
the double-membrane of these organelles to their proper destinations (Cline and Dabney-Smith
2008; Dolezal et al. 2006; Gutensohn et al. 2006; Kovacs-Bogdan et al. 2010). Another
important analogous feature of these transport systems are the addition of a targeting signal or
transit peptide (TP) to the organelle proteins, in many cases to their N-terminal site. The
transferred genes are tagged and the products carry this added signal that specifies the correct
destination in each case. There is no consensus for primary sequences of these sorting signals.
However, both mitochondrial and plastid transit peptides (mTPs and cTPs) do share certain
characteristics in their own amino acid compositions and secondary structures (Danne and
Waller 2011; Duby et al. 2001; Emanuelsson et al. 2000; Franzén et al. 1990; Hammen and
Weiner 1998; von Heijne et al. 1989; von Heijne 1986). The successful integration of the host
and endosymbiont would not have been possible without the large-scale enrichment of the host
nucleus through EGT and the subsequent development of the protein targeting systems that keep
the organelles viable, functional and beneficial.

The striking difference between the evolutionary histories of the mitochondrion and
plastid lies in their relative complexity. The endosymbiosis that gave rise to the mitochondrion
seems to have occurred only once and very early on at or near the base of the eukaryotic tree.
The discoveries of mitochondrion-derived organelles such as hydrogenosomes and mitosomes in
highly reduced anaerobic parasites (Bui et al. 1996; Roger 1999; Williams et al. 2002; Williams
and Keeling 2003; Tovar et al. 2003) shook the foundations of Archezoa Hypothesis (Cavalier-
Smith 1983) and convincingly argued against the hypothetical group of primitively

amitochondriate eukaryotes. These discoveries also implied that complete disposal of



mitochondria is a rare event. With one extraordinary exception (dinotoms), there is also no
evidence of the secondary acquisition of a mitochondrion by a eukaryote from another eukaryote.
The plastid evolution, on the other hand, appears much more eventful. The rise of glaucophytes,
red and green algal lineages after the primary endosymbiosis was just the beginning of the
plastid succeeding movement between eukaryotes, its secondary acquisitions, replacements and
losses.

Secondary endosymbioses

The successful procurement of these two organelles set the conditions for further
experimentations in endosymbiosis by eukaryotes. In the following endosymbiotic events known
as secondary endosymbioses, a eukaryotic cell with a primary plastid was engulfed by and
integrated within another eukaryotic cell. The secondary endosymbioses with red and green
algae played a significant role in restructuring and diversifying many eukaryotic lineages
(Keeling 2009, 2010). While the number of red algal secondary endosymbioses is still
contentious, the fact that it has occurred at least once is not. The red algal endosymbiont or its
derived plastids have been discovered in a large group of eukaryotic taxa such as haptophytes,
cryptophytes, dinoflagellates, apicomplexans and stramenopiles (heterokonts) (Archibald and
Keeling 2002; Cavalier-Smith 1999; Gould et al. 2008; Keeling 2010; Palmer 2003). The
secondary green algal derived chloroplasts have been found in two distantly related eukaryotic
lineages, euglenids (excavates) and chlorarachniophytes (rhizarians), as well as in the unrelated
dinoflagellate genus Lepidodinium (L. viride and L. chlorophorum) (Archibald 2009; Gibbs
1978; Gould et al. 2008; Hansen et al. 2007; Keeling 2010; Kim and Archibald 2009; Matsumoto

et al. 2011; Minge et al. 2010; Van de Peer et al. 1996).



The integration of these secondary endosymbionts (both red and green) with their
respective hosts has resulted in their extensive phenotypic and genetic reduction, comparable in
its nature and extent to the reduction of bacterial ancestors of the mitochondrion and the primary
plastid. In most cases, the eukaryotic endosymbiont has lost its nucleus, its mitochondria and
nearly all other organelles except the plastids that are maintained and wrapped in one or two
extra membranes. In two unrelated lineages, cryptophytes and chlorarachniophytes, which have
plastids derived from a red and a green alga, respectively, the miniaturized nucleus
(nucleomorph) of the secondary endosymbiont is still maintained in a tiny remnant of its own
cytosol (Archibald 2007; Gilson et al. 2006; Lane et al. 2005). The discovery of the
nucleomorphs and later the complete sequencing of their genomes demonstrated compellingly
that the plastid acquisition could occur indirectly or secondarily through another eukaryote
(Archibald 2007; Greenwood 1974; Hibberd and Norris 1984; Lane et al. 2007a; Lane and
Archibald 2006; Lane et al. 2006; Lane et al. 2007b). These endosymbionts, with the retention of
their nucleomorph, represent a transitional state from a eukaryotic endosymbiont to an organelle
(Gilson and McFadden 2002). The genomes of these nucleomorphs are highly compacted and
severely reduced with a very limited coding capacity (Archibald 2007; Gilson et al. 2006; Lane
et al. 2005). These genomes encode only up to 30 genes with plastid functions while the majority
of the genes for plastid-targeted proteins have already been transferred to and are now encoded
in the host nuclear genome (Archibald 2007; Gilson et al. 2006; Gilson and McFadden 2002).
Most of the proteins encoded in the nucleomorph contribute in the maintenance of its genome,
but their functions have to be complemented by the functions of many other proteins whose
genes are now, after their transfer, encoded in the nucleus of the host (Douglas et al. 2001;

Gilson et al. 2006; Keeling 2010; Lane et al. 2007).



Although the EGT to the host is one of the hallmarks of both primary and secondary
endosymbioses, two distinctions between the two events should be noted. First, in the secondary
endosymbioses most of the primary plastid genes (derived from the cyanobacterial ancestor) had
already been transferred to and assimilated by the nuclear genome of primary host which became
the secondary endosymbiont (primary EGT). Thus, the secondary EGT should have occurred
mainly as a result of the successful migration of many genes encoded in the nucleus of the
endosymbiont to the nuclear genome of the host (Archibald 2007; Gould et al. 2008; Keeling
2009, 2010; Kim and Archibald 2009). Recent studies have started to track and assess the genetic
footprints and the extent of the secondary EGT as well as other sources of the horizontally
transferred genes in the nucleus of the hosts in these complex systems (Bachvaroff et al. 2004;
Burki et al. 2012; Deschamps and Moreira 2012; Minge et al. 2010; Moustafa et al. 2009; Patron
et al. 2006).

Second, the extra membrane or membranes that envelope the secondarily derived plastids
have added one or more barriers in the way of the protein products of the transferred genes to
their destination, the plastid. The plastids of haptophytes, cryptophytes, stramenopiles,
apicomplexans and chlorarachniophytes are enveloped in four membranes, the first two (from
inside out) derived from the original or primary endosymbiont (cyanobacterium-like), the third
from the engulfed red or green algal cell membrane, and the fourth from the phagosomal or food
vacuole membrane of the host (Archibald 2009; Archibald and Keeling 2002; Keeling 2010). In
dinoflagellates and euglenids that share many convergent features (Lukes et al. 2009), the
plastids are surrounded by three instead of the expected four membranes as a consequence of the
loss of one of the two outermost membranes either the cell membrane of the secondary

endosymbiont or the phagosomal membrane of the host (Archibald 2009; Archibald and Keeling
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2002; Keeling 2010). The extra membrane barriers in the secondary endosymbioses have been
dealt with, in most cases, by the addition of another targeting signal, called signal peptide (SP),
to the N-terminus of the proteins targeted to the plastid. Since many of the nuclear-encoded
plastid-targeted proteins in the red or green algae that became the eukaryotic endosymbiont
already had a targeting signal, cTP, the addition of SP to cTP has resulted in a bi-partite targeting
signal (Deane et al. 2000; Hirakawa et al. 2009; Lang et al. 1998; Van Dooren et al. 2001; Wastl
and Maier 2000). Some of the nuclear-encoded plastid-targeted pre-proteins in euglenids and
dinoflagellates have modified targeting signals with three functional domains and include, in
addition to the SP and cTP, a hydrophobic signal called stop transfer membrane anchor (STMA)
(Agrawal and Striepen 2010; Minge et al. 2010; Nassoury and Morse 2005; Patron and Waller
2007; Patron et al. 2005; Sheiner and Striepen 2012). These bi- or tri-partite signals direct many
of the secondary plastid proteins first to the protein secretory pathway through the host
endomembrane system. From there, they are directed to the TOC and TIC homologues and their
associated proteins found in the two innermost membranes of secondary plastids (DeRocher et
al. 2000; Durnford and Gray 2006; Felsner et al. 2011; Lang et al. 1998; Sheiner and Striepen
2012; Tonkin et al. 2006; Waller et al. 2000).

Tertiary endosymbiosis in dinoflagellates with a cryptophyte or a haptophyte

endosymbiont

In yet another round of endosymbiotic events, dinoflagellates have experimented with
new partners, this time with secondary plastid-containing eukaryotes, generating new and
extremely complex chimeras. Roughly half of dinoflagellate species are autotrophic, and there is
a growing consensus that they along with their parasitic sister group apicomplexans have
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Cavalier-Smith 1982, 1999; Janouskovec et al. 2010; Keeling 2010; Moore et al. 2008).
Independent plastid losses have occurred many times in dinoflagellates. In several dinoflagellate
genera and species, however, the old red algal-derived plastid has been replaced through the
uptake of other eukaryotes with secondary plastids such as cryptophytes, haptophytes and
diatoms (stramenopiles). Interestingly, the plastids in these three eukaryotic taxa are also derived
from red algae.

The cryptophyte-derived plastids are found in several dinoflagellate species from
Amphidinium, Gymnodinium and Dinophysis genera (Garcia-Cuetos et al. 2010), but in most
cases they are not permanently retained within the dinoflagellate host. In order to keep the plastid
functional, the dinoflagellate host needs to feed on a cryptophyte prey directly or indirectly
through another eukaryote that feeds on the cryptophyte such as the ciliate Myrionecta rubra
(synonym, Mesodinium rubrum) that maintains the cryptophyte plastid, mitochondria and
nucleus for days in isolation and starvation. In a recent transcriptome analysis of the
dinoflagellate host in D. acuminata, only 5 plastid-targeted proteins were discovered, and
phylogenetic analyses indicated that they were derived from various algal groups (1 from
haptophytes, 3 from dinoflagellates and only 1 from cryptophytes) (Wisecaver and Hackett
2010). The transient, sequestered, cryptophyte plastids in two phagotrophic dinoflagellates, A.
poecilochroum and G. acidotum, experience little or no modification, whereas in Dinophysis
species they undergo visible ultrastructural alterations (Garcia-Cuetos et al. 2010). These
modifications have been interpreted as evidence for the permanent nature of the relationship
between the host/predator and its endosymbiont/prey while the lack of evidence for massive
EGT in Dinophysis is used to argue for its transient or transitional nature (Garcia-Cuetos et al.

2010; Wisecaver and Hackett, 2010). Whether the cryptophyte plastid in Dinophysis is an



established organelle, an organelle-in-the-making, or just a monthly ration of food has been the
subject of many studies and heated debates and needs further investigations (Garcia-Cuetos et al.
2010; Hackett et al. 2003; Hallegraeff and Lucas 1988; Lucas and Maret 1990; Park et al. 2010;
Qiu et al. 2011; Schnepf and Elbraechter 1988; Wisecaver and Hackett 2010).

Although a transient relationship between a dinoflagellate from Antarctica and a
haptophyte is also reported (Gast et al. 2007), the permanent nature of the haptophyte-derived
plastids in the two dinoflagellate genera Karenia and Karlodinium is less controversial (Tengs et
al. 2000; Yoon et al. 2002). From the haptophyte endosymbionts in Karenia and Karlodinium
only their plastids remain, and there is no sign of a nucleus, mitochondria or any other
organelles. It is, unfortunately, not clear whether these haptophyte-derived plastids are
surrounded by 2, 3 or 4 membranes (Dodge 1989; Hackett, et al. 2004; Tengs et al., 2000). It is
known, however, that in Karlodinium micrum (synonym Karlodinium veneficum) the plastid
genome has suffered gene losses and shows signs of gene degeneration, massive genome
rearrangements and intergenic space expansion (Gabrielsen et al. 2011). There is evidence of
EGT in these tertiary plastid-containing dinoflagellates (Ishida and Green 2002; Nosenko et al.
2006; Patron et al. 2006; Yokoyama et al. 2011). The expressed sequence tag (EST) surveys and
phylogenetic analyses of the putative plastid-targeted proteins in K. micrum and K. brevis have
revealed that the plastid is maintained by the proteins mostly derived from the haptophyte
endosymbiont along with several proteins derived from the dinoflagellate host as well as other
sources (Nosenko et al. 2006; Patron et al. 2006). These results suggested that the haptophyte-
derived plastid might have coexisted for some time side by side the original dinoflagellate
peridinin plastid (Patron et al. 2006) or that the host might have acquired some of the genes for

the plastid chimeric proteome through HGT by enduring mixotrophy (Nosenko et al. 2006).



Interestingly, the bipartite targeting signals of these proteins included a typical SP followed by a
CTP that differed from cTPs in both haptophytes and dinoflagellates in its lack of net positive
charge, the phenylalanine at position +1 or nearby and the FVAP-domain (Patron et al. 2006).
While the EGT from the haptophyte endosymbiont to the dinoflagellate host in K. micrum has
played a significant role in restructuring the plastid proteome, it has not affected at all the
mitochondrial proteome of the dinoflagellate host (Danne et al. 2011).

Tertiary endosymbiosis in dinotoms

One of the most extraordinary instances of tertiary endosymbioses is found in the so
called dinotoms, a small group of dinoflagellates that harbor a diatom endosymbiont. Dinotoms
have a wide distribution around the world. With only 10 or so described members, dinotoms are
amazingly diverse: some live in fresh water, but most are marine species; some are benthic, some
planktonic; some are thecate, some naked; some are dominantly motile, some are mainly sessile.
Their hosts are classified under several different dinoflagellate genera (Carty and Cox 1986;
Dodge 1971; Horiguchi and Pienaar, 1991, 1994; Pienaar et al. 2007; Tamura et al. 2005; Tomas
et al. 1973; Tomas and Cox, 1973; Zhang et al. 2011) while their endosymbionts seem to belong
to a few different diatom taxa (Chesnick et al. 1997; Horiguchi and Takano 2006; Horiguchi
2004; Imanian and Keeling 2007; McEwan and Keeling 2004; Pienaar et al. 2007; Takano et al.
2008). The union of dinoflagellates and diatoms in dinotoms is in itself bewildering. Diatoms
constitute one of the most diverse and influential microscopic phytoplankton groups, with about
200,000 species (Armbrust et al. 2004; Falciatore and Bowler 2002a; Mann and Droop 1996) and
with an annual organic carbon output rivaled only by the combined efforts of all terrestrial
rainforests (Field et al. 1998; Mann 1999). Dinoflagellates make up another diverse and

cosmopolitan group of algae with about 2,000 classified autotrophic, mixotrophic or
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heterotrophic species, living free or as the symbiont or parasite of others (Taylor 2004; Taylor et
al. 2007). Both of these remarkably intricate, impressively diverse and ecologically important
groups of algae have acquired their own plastids secondarily from a red alga (Moore et al. 2008;
Keeling 2008; Janouskovec et al. 2010). These two very complicated eukaryotic cells have come
together in dinotoms, generating a rare, confounding and intriguing complexity.

The obligate and permanent relationship between the diatom endosymbiont and its
dinoflagellate host in dinotoms has been well studied and documented in at least two species,
Kryptoperidinium foliaceum and Durinskia baltica (Chesnick and Cox 1987, 1989; Figueroa et
al. 2009; Tippit and Pickett-Heaps 1976; Tomas and Cox, 1973). The endosymbiont is ever-
present in all different stages of the dinoflagellate host’s life cycle, sexual and asexual, in the
vegetative cell, the gametes, the zygotes and the cysts (Chesnick and Cox 1987, 1989; Cox and
Rizzo 1976; Dodge 1971, Jeffrey and Vesk 1976; Kite and Dodge 1985; Tippit and Pickett-
Heaps 1976; Tomas and Cox 1973; Figueroa et al. 2009). Like other endosymbionts, the diatom
endosymbiont in dinotoms has experienced reduction. In two extreme cases, a strain of K.
foliaceum isolated from South Carolina and Peridiniopsis niei from China, the diatom
endosymbiont of the dinotom seems to have completely lost its nucleus, but in these cases no
information about the retained plastid has been provided (Kempton et al. 2002; Zhang et al.
2011). The characteristic diatom cell wall and motility are lost in all dinotom endosymbionts.
Also, in most dinotoms, while the host nucleus undergoes normal dinoflagellate mitosis, the
endosymbiont nucleus does not: the chromosomes do not condense, and neither a spindle
apparatus nor any microtubules are observed. The mitotic division and perhaps meiosis do not

occur. The amitotic division of this nucleus during and as a result of the cytokinesis of the host
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cell produces unequal daughter nuclei (Chesnick and Cox 1987, 1989; Figueroa et al. 2009;
Tippit and Pickett-Heaps 1976).

What differentiates this tertiary diatom endosymbiont from other known endosymbionts
is the retention of many of its original features and characters including a large nucleus, all the
plastids with the expected four surrounding membranes, the outermost of which is continuous
with the nuclear envelope, the endoplasmic reticulum (ER), many mitochondria with tubular
cristae, ribosomes, dictyosomes, a large cytoplasm and a single membrane that separates it from
its host (Tomas et al. 1973; Tomas and Cox 1973; Schnepf and Elbrachter 1999; Jeffrey and
Vesk 1976; Dodge 1971; Cox and Rizzo 1976). Each one of these features is unique and is found
only in the diatom endosymbiont of dinotoms. The nucleus of this endosymbiont is much larger
than the inconspicuous nucleomorphs of either chlorarachniophytes or cryptophytes, and it
contains huge amounts of DNA (Kite et al. 1988), roughly 700 x more than that in one of its
closest free-living relatives, the pennate diatom Phaeodactylum tricornutum. The stable
maintenance of its own mitochondria is not seen in any other endosymbiont. This has generated
an exceptional mitochondrial redundancy in dinotoms not found in any other cell. The dinotom
endosymbiont has also retained more membranes than any other secondary or tertiary
endosymbionts, the extra membrane most likely being its own cell membrane (Eschbach et al.
1990). Interestingly, the host in dinotoms retains most of the ultrastructural features found in
other autotrophic, mixotrophic and heterotrophic dinoflagellates, including a dinokaryon with its
permanently condensed chromosomes, an intricate endomembrane system, conspicuous pusules,
trichocysts, accumulation bodies, and in most cases also a triple-membraned eyespot, thought to
be the relic of the original dinoflagellate plastid (Cavalier-Smith 1993; Cox and Rizzo 1976;

Dodge 1971; Horiguchi 2004; Jeffrey and Vesk 1976; Schnepf and Elbrachter 1999; Tomas et al.
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1973; Tomas and Cox 1973). In sum, dinotoms are among the most complicated cells, with at
least five DNA-containing compartments: a plastid, two mitochondrial and two nuclear genomes
(Figure 1.1).

The dinotom host species for which the data are available appear as closest relatives of
each other in small subunit ribosomal DNA (SSU rDNA) and cytochrome ¢ oxidase subunit 1
(Cox1) phylogenetic trees (Inagaki et al. 2000; Tamura et al. 2005; Imanian and Keeling 2007),
sometimes to the exclusion of other dinoflagellates from the same genus (Takano et al. 2008). In
constructed phylogenetic trees (i.e. SSU rDNA, rbcL, a-Tubulin, Actin, Cox1, Cox2, Cox3, Cob,
and mitochondrial LSU rDNA) most dinotom endosymbionts group with pennate diatoms
(Chesnick et al. 1997; Imanian and Keeling 2007; McEwan and Keeling 2004; Pienaar et al.
2007). However, the endosymbionts of Peridinium quinquecorne and three Peridiniopsis species
in SSU rDNA, rbcL and internal transcribed spacer region (ITS rDNA) trees group with centric
diatoms (genus Chaetoceros, Thalassiosira or Discostella) (Horiguchi and Takano 2006; Takano
et al. 2008; Zhang et al. 2011).

Research objectives

Although dinotoms, especially K. foliaceum and D. baltica, had attracted a great deal of
attention, and a wealth of ultrastructural information was available for most of them, many
important questions had remained unexplored and unanswered especially at genetic or genomic
level. Prior to this study, only a handful of nuclear genes (i.e. ssu rDNA, Isu rDNA, actin, a-
tubulin and hsp90), plastid genes (i.e. rbcL), and mitochondrial genes (i.e. cox1-3, cob, Isu
rDNA, ssu rDNA) were sequenced from a few of these organisms. There were also no complete
organelle genomes available for any of the other dinoflagellates with tertiary endosymbionts.

The need for having more insight into the complex genome of dinotoms is better understood in
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the context of endosymbiosis, the process that has given rise to indispensable eukaryotic
organelles (mitochondria and plastids) and to certain extent to protist diversity. With their well-
preserved endosymbiont, dinotoms epitomize an earlier transitional stage in the complicated
process of transformation of a free-living eukaryote to an organelle. They, therefore, present a
rare, if not unique, opportunity to study endosymbiosis in its initial stages. In order to examine
the impact of endosymbiosis on the genome content and structure of mitochondria and plastids in
these extraordinarily complex cells and the contribution of the host nuclear genome to the
proteomes of the two organelles, | conducted the following three projects:

1. Complete sequencing of the plastid genomes of D. baltica and K. foliaceum

From the three examples of tertiary plastids mentioned earlier, none had been completely
sequenced. Except a few genes from the haptophyte plastids of Karenia and Karlodinium and the
cryptophyte plastids of Dinophysis species no genetic data were available for these rare plastids.
Complete sequencing of the plastid genomes of K. foliaceum and D. baltica had the potential to
provide the first insights into these genomes. Comparing the genome content and structure of
these plastids with that of the free-living diatoms such as Phaeodactylum tricornutum and
Thalassiosira pseudonana, for which the complete plastid genome was available, could indicate
how endosymbiosis might have impacted the evolution of genomes in tertiary plastids, and more
specifically whether they had experienced any reduction, gene loss or degradation, and genome
rearrangements. Additionally, since it had been proposed that D. baltica and K. foliaceum
acquired their pennate diatom endosymbiont prior to their divergence (Imanian and Keeling
2007; Inagaki et al. 2000), comparing these two plastid genomes could reveal how similarly or

differently they had evolved in parallel after speciation.
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2. Complete and/or mass sequencing of the mitochondrial genomes of the endosymbiont
and the host in D. baltica and K. foliaceum

The tertiary plastids are rare, but more unusual are the mitochondria of the tertiary
endosymbionts of dinotoms since none of the other known secondary or tertiary endosymbionts
have retained their own mitochondria. The genomic data from these rare mitochondria, just like
the plastids, could shed light not only on the organizational properties of these uncommon
organelles, their content, and their possible reduction, expansion or degeneration, but also on
their parallel evolution and their conformity to or deviation from those of the free-living diatoms.

Dinoflagellates have unusual mitochondrial genomes. In terms of gene content, the
dinoflagellate mitochondrial genomes are among the smallest with only three protein-encoding
genes: cox1, cox3, and cytochrome b (cob) (Nash et al. 2007, 2008; Norman and Gray 2001).
The mitochondrial ribosomal RNA genes in dinoflagellates, like those of their sister group
apicomplexans, are highly fragmented, and only several of these fragments had been identified
prior to this study (Kamikawa et al. 2007; Waller and Jackson 2009). The transcripts of these
genes are also extensively edited, with some editions occurring uniquely in dinoflagellates (Lin
et al. 2002; Zhang and Lin 2005). A large-scale survey of the mitochondrial genome of the host
in D. baltica and K. foliaceum could disclose whether the coexistence of this dinoflagellate
organelle with its diatom counterpart over evolutionary time had affected its genome and its
organization, and more specifically whether there was any sign of reduction, gene loss or
degeneration and genome remodeling.

3. A survey of the host nuclear transcriptome in D. baltica

The permanent endosymbiosis has generally been associated with the drastic reduction of

the endosymbiont and EGT to the host nuclear genome, and this has been shown also in the
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dinoflagellates with the tertiary haptophyte endosymbionts, where many host nuclear-encoded
plastid targeted proteins have been identified through large-scale transcriptome surveys
(Nosenko et al. 2006; Patron et al. 2006). Dinoflagellates have very large nuclear genomes, and
no dinoflagellate genome has been sequenced to date. In recent years and as an alternative to the
whole genome sequencing, several large-scale dinoflagellate EST projects were completed
(Bachvaroff et al. 2004; Hackett et al. 2005; Hackett et al. 2004; Leggat et al. 2007; Nosenko and
Bhattacharya 2007; Patron et al. 2005; Patron et al. 2006; Sanchez-Puerta et al. 2007). The
transcriptome survey of D. baltica could provide an additional set of data of this sort to help
identify the expressed gene content of dinoflagellate genomes as a whole. More importantly, a
survey of the host nuclear transcriptome could reveal whether the host nucleus in D. baltica was
the recipient of any transferred genes from the diatom endosymbiont. There is little doubt about
the permanence of the relationship between the diatom endosymbiont and the dinoflagellate host
in dinotoms including D. baltica, yet the dinotom endosymbiont uniquely retains most of its
ancestral features. The transcriptome survey of the host in D. baltica could show whether its
nuclear genome contributed to the proteomes of its own and its endosymbiont mitochondria and

the plastid, and if so, to what extent.
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Figure 1.1: Transmission electron micrographs of Kryptoperidinium foliaceum (A) and
Durinskia baltica (B).

The nucleus of the host (N) with its permanently condensed chromosomes, the nucleus of the endosymbiont (n), host
mitochondria (M), endosymbiont mitochondria (m), host trichocysts (t) and plastids (P), which are all within the
endosymbiont cytoplasm, are visible. Courtesy of Kevin Carpenter, Patrick Keeling and BI.
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Chapter 2: The plastid genomes of two dinotoms

Introduction

The path of plastid evolution has been neither simple nor linear, but rather full of twists
and turns. After the divergence of glaucophytes, red and green algae following primary
endosymbiosis, plastids spread by the secondary and tertiary uptake of these eukaryotic algae by
new eukaryotic hosts (Archibald and Keeling 2002; Bhattacharya et al. 2004; McFadden 2001;
Palmer 2003). Each of these endosymbiotic events involved a massive loss of genes from the
symbiont as well as a large scale transfer of other genes to its new host. In the primary
endosymbiosis this meant gene transfers from the ancient cyanobacterium, whereas in secondary
and tertiary endosymbioses most gene transfer would be from the nucleus of the endosymbiont
alga to the nucleus of its new host (Archibald et al. 2003; Deane et al. 2000; Patron et al. 2006).
The products of many of these genes would be targeted to the plastid, which necessitated the
development of a new protein targeting system to direct the protein products back to their correct
location (Bruce 2001; Jarvis and Soll 2002).

These processes have been most thoroughly studied in primary and secondary plastids,
but tertiary endosymbioses add another layer of complexity to the process. In tertiary
endosymbiosis an alga with a secondary plastid is taken up by another eukaryote, and to date the
only lineage known to take up tertiary plastids is dinoflagellates, where tertiary plastids derived
from three different lineages are known: Karenia and Karlodinium species with plastids derived
from a haptophyte (Patron et al. 2006; Tengs et al. 2000); Dinophysis species with cryptophyte
derived-plastids (Hewes et al. 1998; Schnepf and Elbraechter 1988; Hackett et al. 2003); and a
small but growing group of dinoflagellates harboring a diatom endosymbiont (Dodge 1971,

Horiguchi and Pienaar 1991, 1994; Tamura et al. 2005; Tomas and Cox 1973), which we refer to
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as dinotoms. By dinotoms, we will refer to the whole biological system that includes both the
dinoflagellate host and the diatom endosymbiont.

Dinotoms are widely distributed in both freshwater and marine environments and some,
most notably Kryptoperidinium foliaceum and Peridinium quinquecorne, form blooms with
occasional harmful effects (Demadariaga et al. 1989; Kempton et al. 2002; Garate-Lizarraga and
Muneton-Gomez 2008). The Dinoflagellate host components are currently divided into at least
five distinct genera, Kryptoperidinium, Durinskia, Peridinium, Gymnodinium, and Galeidiniium
(Carty and Cox 1986; Dodge 1971; Horiguchi and Pienaar 1991, 1994; Tamura et al. 2005;
Tomas and Cox 1973), while the endosymbiont components have been shown to originate from
three different diatom lineages, one pennate (Chesnick et al. 1997; Imanian and Keeling 2007;
McEwan and Keeling 2004; Pienaar et al. 2007) and two centric (Horiguchi and Takano 2006;
Takano et al. 2008).

In haptophyte and cryptophyte endosymbiont-containing dinoflagellates, the
endosymbiont has reduced to the point that only the plastid itself remains. In contrast, the diatom
endosymbionts in dinotoms have preserved more of their genetic and cellular identity than any
other secondary or tertiary plastid. The endosymbiont has lost some characters such as its cell
wall, motility, and the ability to condense its chromosomes normally or divide mitotically
(Chesnick and Cox 1989; Tomas and Cox 1973; Tippit and Pickett-Heaps 1976), but it retains a
large nucleus and the nuclear genome, mitochondria and the mitochondrial genome (Imanian and
Keeling 2007; Imanian et al. 2007), as well as cytosolic ribosomes, endoplasmic reticulum (ER),
and dictyosomes in an extensive cytoplasm that is separated from the host by a single membrane
(Eschbach et al. 1990; Tomas and Cox 1973). Despite such unusual degree of character

retention, the endosymbiont is permanently integrated within its host, and it is present at all
19



different stages of the life cycle including cell division, sexual reproduction, and cyst formation
(Chesnick and Cox 1989, 1987; Figueroa et al. 2009).

The number of plastids in dinotoms varies from one or two (in gametes) to as many as 30
to 40 (in zygotes). Chlorophyll a, c1, and c2 are among the plastid pigments found in the best-
studied dinotoms, K. foliaceum and Durinskia baltica (Jeffrey et al. 1975; Withers et al. 1977).
The main carotenoid in the plastids of these two dinotoms is identified as fucoxanthin (Jeffrey et
al. 1975; Kite and Dodge 1985; Mandelli 1968; Withers et al. 1977) as expected of a diatom and
opposed to peridinin, which is the typical plastid carotenoid in dinoflagellate plastids (Schnepf
and Elbrachter 1999). The peripherally distributed plastids are enclosed in the endosymbiont ER
(which is continuous with the nuclear envelope), and retain thylakoids in stacks of three, girdle
lamellae, and an internal pyrenoid (Horiguchi and Pienaar 1991, 1994; Tamura et al. 2005;
Jeffrey and Vesk 1976; Tomas and Cox 1973).

Although tertiary endosymbiosis has been subject to a good deal of investigation in
recent years, the actual genomes of tertiary plastids have received little attention, and to date no
tertiary plastid genome has been sequenced from any lineage. Here, we describe the complete
plastid genomes from two dinotom endosymbionts, K. foliaceum and D. baltica, in order to
investigate the impact of tertiary endosymbiosis on the content and organization of these
genomes. By comparing these genomes with each other and with available plastid genomes from
free-living diatoms we find that the tertiary endosymbiosis has led to little change in either form
or content of the plastid genome. However, the plastid genome of the endosymbiont of K.
foliaceum is much larger than that of either free-living pennate diatoms or D. baltica, apparently
due to the acquisition, incorporation, and maintenance of integrase/recombinase-encoding

plasmid-like elements that are sporadically distributed in other heterokonts.
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Results
Genome structure, gene repertoire, and GC content of the D. baltica and K. foliaceum
genomes

The D. baltica CSIRO CS-38 plastid genome (GenBank: GU591327) assembly contained
18,704 Titanium pyrosequencing 454 reads (363 bp average), amounting to 6.8 Mbp, or 58—fold
coverage of the genome. The K. foliaceum CCMP 1326 plastid genome (GenBank: GU591328)
assembly included 7,274 reads (383 bp average) amounting to 2.8 Mbp, or 20-fold coverage.
Over 20 kb of the D. baltica and 75 kb of K. foliaceum’s plastid genome sequences were also
ascertained by PCR and Sanger sequencing (see Methods).

The D. baltica and K. foliaceum plastid genomes (Figure 2.1) map as circular molecules
divided into large single-copy (LSC) and small single-copy (SSC) regions by the two inverted
repeats (IRs), a quadripartite structure that is common to many other algal plastid genomes
including the pennate and centric diatoms P. tricornutum and Thalassiosira pseudonana,
respectively (Oudot-Le Secq et al. 2007). The general characteristics of all diatom and diatom-
derived plastid genomes are juxtaposed in Table 2.1.

Like other related plastids, both dinotom plastid genomes use standard plastid/bacterial
genetic code, with GTG as alternative start codon to ATG. This alternative start codon is found
in the same four plastid genes (rbcS, rpl23, rps8, and rpl3) in all four diatom and diatom-derived
plastid genomes.

The IRs in D. baltica are very similar to those of the free-living diatom P. tricornutum
and feature almost the same gene composition (trnP, ycf89, rrs, trnl, trnA, rrl, and rrn5) and
size. The slight difference in the size and composition of the IRs in these two plastids is due to

the presence of psbY in the IRs of P. tricornutum instead of partial ccsA in the IRs of D. baltica.
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The plastid genome size and gene content of D. baltica are remarkably similar to those of P.
tricornutum. The D. baltica plastid genome is only about 900 bp shorter than that of P.
tricornutum, and the two genomes share 159 genes in common. The D. baltica plastid genome
encodes 127 protein-coding genes, three rRNAs, 27 tRNAs, a sufficient set for their plastid
protein synthesis machinery, one transfer-messenger RNA (tmRNA), ssra, and one plastid signal
recognition particle RNA, ffs. Interestingly, like P. tricornutum it has retained syfB, encoding a
trnF synthetase, which is missing from the plastid genome of T. pseudonana but is present in red
algal plastid genomes (Oudot-Le Secq et al. 2007). Only three genes present in the plastid
genome of P. tricornutum are absent from the D. baltica genome: tsf (not found in other diatom
plastid genomes), acpP, and ycf42.

In contrast, the K. foliaceum plastid genome is considerably larger than the plastid
genomes of D. baltica and P. tricornutum, by about 24 and 23 kb, respectively. The IRs in K.
foliaceum are shorter than those of D. baltica and P. tricornutum by almost 1 kb because of the
absence of trnP and ycf89 in the K. foliaceum IRs, so its larger size is not due to the increased
size of the IRs as seen in T. pseudonana (Oudot-Le Secq et al. 2007). Instead, both SSC and LSC
in K. foliaceum are sizably larger than those observed in other diatoms, owing to the presence of
more apparently non-coding DNA (see below) and protein-coding genes. In addition to the same
159 genes found in both D. baltica and P. tricornutum, the plastid genome of K. foliaceum
encodes a putative tyrosine recombinase gene, tyrC, two putative serine recombinase genes,
serC1 and serC2, two smaller ORFs, ORF93 and ORF92 hoth related to serC1, and seven
putative open reading frames (ORFs) larger than 150 amino acids (aa), or 15 ORFs if the

threshold for annotation is lowered to 100 aa.
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Compactness of dinotom plastid genomes

Like other chromist plastid genomes, the plastid genomes of the two dinotoms possess
some of the features of a compact genome. They lack introns, and the same four overlapping
pairs of genes found in diatoms (Oudot-Le Secq et al. 2007) are also found in both dinotoms with
the identical length of overlap: psbD-psbC, atpD-atpF, sufC-sufB, and rpl4-rpl23 with 53, 4, 1,
and 8 nucleotides (nt) overlap, respectively. In addition, dnaB and trnF have no intergenic spacer
in D. baltica and P. tricornutum, whereas this gene pair is separated by 1 nt in K. foliaceum.
Similarly, rpl14 and rpl24 are separated by a single nt in D. baltica, K. foliaceum, and P.
tricornutum.

The plastid genomes of D. baltica, K. foliaceum, and P. tricornutum demonstrate no
considerable change in the length of their genes (Figure 2.S1). Out of the common 159 genes,
108 are invariant in length and the sum of all differences between P. tricornutum genes and those
of D. baltica and K. foliaceum amount to a mere 199 and 142 bp, respectively (and only 57 bp
between K. foliaceum and D. baltica; Figure 2.S1).

Average intergenic spaces in D. baltica (94.3 bp) are only slightly longer than those of P.
tricornutum (88.4 bp), but in K. foliaceum the spacing is more than twice as long (246.7 bp on
average) (Table 2.1). Even when putative ORFs in K. folicaeum are brought into account, the
average spacing is 180 bp, but more importantly when the average is calculated based only on
the 159 shared genes, the average is only 94.1 bp, about equivalent to D. baltica and P.
tricornutum.

Conserved ordered gene blocks
To investigate the conservation of genome structure, MAUVE (Darling et al. 2004) was

used to detect gene clusters. Overall, 23 conserved clusters were found in T. pseudonana, P.
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tricornutum, D. baltica, and K. foliaceum. If T. pseudonana (a more distantly related centric
diatom) is removed from analysis, 14 larger blocks are found. In pairwise comparisons, nine
large conserved blocks are shared between P. tricornutum and D. baltica, 13 between P.
tricornutum and K. foliaceum, and nine between D. baltica and K. foliaceum. However, taking
into account the presence or absence of a single gene between large blocks extends these blocks
(to 16 conserved blocks among the three species amounting to more than 108 kb, 10 blocks
between P. tricornutum and D. baltica, 14 blocks between P. tricornutum and K. foliaceum, and
13 blocks between D. baltica and K. foliaceum) (Figure 2.2). The largest block conserved among
the three species spans more than 31 kb and includes 46 genes appearing in the same order,
encoded on the same strands (ycf33, trnl, trnS ... rpoC1, rpoC2, rps2). The largest conserved
gene block between P. tricornutum and D. baltica is about 33 kb and contains 51 genes (rpl32,
trnL, rbcR ... rps7, tufA, rps10). This conserved gene block is broken into four smaller,
dispersed blocks of genes in K. foliaceum (rpl32-psbA and ycf35-psb28, which are also inverted,;
trnQ-groEL; and dnaK-rps10). There are two small blocks of tRNAs (trnR, trnV, trnY, and trnL,
trnC) that are conserved in three species, but they are inverted in D. baltica and K. foliaceum
with respect to P. tricornutum. Similarly, two small conserved blocks of genes (rpl20, rpl35,
ycf45 and psbC, psbY) appear in inverted orientation in D. baltica with respect to the other two
species.

To see how the organization of blocks of shared genes might have evolved, GRIMM
(Tesler 2002) was used to identify 14 inversions in the transition of the three plastid genomes of
P. tricornutum, D. baltica, and K. foliaceum. If T. pseudonana is added, 23 inversions are
required. In pairwise analyses, GRIMM also proposes 6 inversions for P. tricornutum and D.

baltica, 9 for P. tricornutum, and K. foliaceum, and 8 for D. baltica and K. foliaceum.
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Closer manual inspections reveal that compared to the plastid genome of P. tricornutum
fewer rearrangements of the conserved gene blocks distinguish D. baltica from K. foliaceum:
only three inversions (blocks 2, 8, and 9) and two translocations (block 10 and clpC gene) are
detected in D. baltica versus two inversions (blocks 1, 4), six inversions/translocations (blocks
10,11, 7, 6, 8, and 12) and three translocations (blocks 9, 13, and clpC gene) in K. foliaceum
(Figure 2.2). Compared to the plastid genome of D. baltica, K. foliaceum shows two inversions
(blocks 1, 4), five inversions/translocations (blocks 6, 10, 9, 8, and 7) and two translocations
(blocks 12, and 11).

All the three missing genes from the plastid genomes of D. baltica and K. foliaceum,
present in P. tricornutum, are located in its LSC region. Curiously, however, most of the
rearrangements seem to have occurred in the SSC regions of the plastid genomes of D. baltica
and K. foliaceum (Figure 2.2).

Low gene density regions of the Kryptoperidinium foliaceum plastid genome

There are nine distinct regions (labeled with Roman numerals in Figures 2.1 and 2.2)
within the K. foliaceum plastid genome that have a low gene density and do not show any
similarity to D. baltica, P. tricornutum, or T. pseudonana. Six of the nine regions are dispersed
within the SSC (regions 111-VI111, totaling to more than 17 kb) and three within the LSC (regions
I, 11, and 1X, amounting to about 7.5 kb). All four junctions of the IRs with the SSC and LSC
include such regions: 11 and 1X at the boundary of IRa and LSC, and I1l and VIII at the junction
of IRb and SSC. These nine distinct regions collectively amount to more than 24 kb ranging in
size from 905 bp (region 1X at the boundary of IRa and LSC) to 4852 bp (region 111 at the
junction of IRb and SSC) with an overall GC content of 30.4%, which is 2% lower than the GC

content of the genome as a whole (Table 2.1), and 2.4% lower than the rest of the genome.
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Interestingly, regions | and 11 are each bounded by two imperfect palindromes. A 35 bp
palindrome is located near the rps2 gene and a 44 bp palindrome is located at its other end, near
rbcS. Region 111 is similarly bounded by two palindromic sequences: a 25 bp sequence near the
rrn5 gene and a 42 bp sequence near dnaK. Another 32 bp palindrome is close to one end of
region V (near pshA).

The tyrC gene in K. foliaceum and Heterosigma akashiwo

The tyrC gene located in region I11 shows strong similarity to a putative site-specific
tyrosine recombinase protein (TyrC) encoded within the plastid genome of the raphidophyte
heterokont H. akashiwo (Cattolico et al. 2008). The conceptual translation of tyrC also shows
similarity, albeit much weaker, to putative integrase/recombinase proteins encoded in the plastid
genome of the chlorophycean alga Oedogonium cardiacum and in the mitochondrion of the
charophyte Chaetosphaeridium globosum. As revealed by NCBI Conserved Domain Database
(CDD) searches (Marchler-Bauer et al. 2009), the K. foliaceum TyrC has conserved all the major
catalytic, active, and DNA-binding sites required by this protein for integrase/recombinase
activity, including His 250 and the four invariably conserved sites Arg 145, Arg 253, Lys 172,
and Tyr 285 (Figure 2.S2) (Esposito and Scocca 1997; Friesen and Sadowski 1992; Han et al.
1993). RT-PCR was performed on tyrC and the amplicon sequenced (data not shown),
confirming that this gene is transcribed and most likely expressed in the K. foliaceum plastid
genome.

Similarity between the K. foliaceum plastid genome and pCfl and pCf2 plasmids in
Cylindrotheca fusiformis
A total of five ORFs (orfl141, serC1 (orf205), serC2 (orf212), orf93, and orf92) in the K.

foliaceum plastid genome show strong similarity to ORFs found in the pCf1 and pCf2 plasmids
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of the pennate diatom C. fusiformis. Each of these two plasmids includes several ORFs, two pairs
of which share considerable similarity (ORF217 of pCf2 and ORF218 of pCf1 with almost 80%
aa identity and ORF484 of pCf2 and ORF482 of pCf1 with 54%) (Hildebrand et al. 1992). K.
foliaceum ORF141 (region V1) shares 57% and 47% aa identity with ORF484 (aa 186 to aa 324)
from pCf2 and ORF482 from pCf1 plasmid, respectively. The K. foliaceum SerC1 shares 76%
and 66% aa identity with ORF218 from pCf1 and ORF217 from pCf2, respectively, while SerC2
displays 60% aa identity with C. fusiformis ORF218 and 61% with ORF217. Interestingly, SerC1
and SerC2 share less similarity to each other (57% of aa identity) than they do with C. fusiformis
ORF218 and ORF217, and serC2 also shares a single codon insertion specifically with ORF217.
K. foliaceum orf93 and orf92 (region 1) appear to be truncated versions of the C. fusiformis
ORF218, corresponding to amino acids 1 to 93 and 117 to 206, respectively. The two K.
foliaceum fragments are separated from each other by 69 bp, the conceptional translation of
which shares 87% identity with C. fusiformis ORF218 amino acids 95 to 116, however this
region contains two stop codons suggesting it is a pseudogene.

CDD searches (Marchler-Bauer et al. 2009) reveal that SerC1 and SerC2 in K. foliaceum
have retained almost all the catalytic, DNA-binding, presynaptic, and synaptic residues found in
other site-specific serine recombinases (Figure 2.S3). Once again, RT-PCR (data not shown)
showed that both serC1 and serC2 are transcribed and most likely expressed in K. folicaeum.

In addition to the five abovementioned ORFs, a number of dispersed non-coding
stretches of DNA in several distinct regions of the K. foliaceum plastid genome show strong
similarity to the C. fusiformis pCf1/pCf2 plasmid sequences. A 350-bp sequence in region Il of
K. foliaceum’s plastid genome (Figure 2.1) shows 92% nt identity to a portion of ORF484

(corresponding to aa 322 to 431) from pCf2. This 350-bp sequence does not include any ORF
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but contains two stop codons in the same frame that shows similarity to ORF484. Similarly, in
region VI about 600 bp immediately downstream of ORF141 shows 71% nt identity to C.
fusiformis ORF484 and region 1V contains 240 bp, 110 bp, and 120 bp sequences with strong
similarity to non-coding regions of pCf2 (72%, 72% and 74% nt identity). There is also a 156 bp
sequence in region VIII with strong similarity (66% nt identity) to the non-coding region at the
end of pCf1.

We also searched the non-plastid 454 sequence data (both assembled and singleton reads)
for potential plasmids similar to those of C. fusiformis, however, none were found. Since
ORF218 and ORF482 are close to each other in pCfl and similarly ORF217 and ORF484 are
close in pCf2, we also designed outward primers for the two corresponding K. foliaceum ORFs
(ORF205 or serC1 and ORF141). All attempts to PCR amplify a small product were
unsuccessful.

Discussion
The divergent evolution of two tertiary plastid genomes of diatom origin

The plastid genomes of the tertiary endosymbionts of K. foliaceum and D. baltica share
numerous common features with those of free-living diatoms, including gene content, ordered
gene blocks, and overall genome structure. Especially striking is the similarity to the pennate
diatom P. tricornutum, with which they share more than 108 kb of syntenic gene clusters,
reconfirming the pennate diatom ancestry for these endosymbionts also suggested by molecular
phylogeny (Chesnick et al. 1997; Horiguchi and Takano 2006b; Imanian and Keeling 2007,
McEwan and Keeling 2004; Pienaar et al. 2007). Recent phylogenetic analyses suggest a
particularly close relationship with the genus Nitzschia (Imanian and Keeling 2007; Pienaar et al.

2007; Takano et al. 2008). Unfortunately, at present the only pennate diatom plastid genome
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known is from the more distantly related P. tricornutum. Considering the high degree of
conservation between its plastid genome content, composition, and organization and those of K.
foliaceum and D. baltica, we suggest the plastid genome of closer free-living pennate diatom
relatives will reveal even fewer structural changes have taken place since the tertiary
endosymbiosis.

Notwithstanding the high degree of conservation between the tertiary plastid genomes
and their free-living relative P. tricornutum, the plastid genome of K. foliaceum is different in
one interesting respect. Its genome is more than 23 kb larger than those of its close relatives and
the majority of the additional sequence falls into a handful of specific regions. Most of this
sequence shows no strong similarity to known sequences, but a few regions share a strong
similarity to the plasmids pCfl and pCf2 in the pennate diatom C. fusiformis. The genome also
encodes two site-specific serine recombinase genes also shared with those plasmids, as well as a
site-specific tyrosine recombinase gene present in the plastid genome of another heterokont, the
raphidophyte H. akashiwo.

Earlier hybridization experiments suggest that either pCf1/ pCf2 or plasmids with
considerable sequence similarity existed in three strains of C. fusiformis, in one of three strains
of C. closterium, in Nitzschia angularis, and in N. curvilineata (Hildebrand et al. 1992; Jacobs et
al. 1992), but no sequence data were available to indicate the possible sites of hybridization or
integration of such plasmids with the plastids. In K. foliaceum we find no evidence for the
presence of intact plasmids, only the putative serC1 and serC2 genes and some degenerated
fragments integrated into the plastid genome. Overall we can conclude that both plasmids were
present in an ancestor of K. foliaceum, and fragments of both have persisted by integration into

the plastid genome in K. foliaceum, but not D. baltica.
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While the two serine recombinase genes in the K. foliaceum plastid genome clearly
originated from plasmids and probably functioned in spreading those plasmids, the origin of the
tyrosine recombinase/integrase is less clear. TyrC in H. akashiwo has been speculated to be
involved in converting multimeric plastid molecules to monomeric forms (Cattolico et al. 2008),
similar to what other recombinases do in certain bacteria with circular chromosomes. In
Escherichia coli, homologous recombination of the two sister chromatids results in formation of
a chromosome dimer, and reversion of the dimer to monomers before cell division is
accomplished through the functions of two related recombinases, XerC and XerD (Barre et al.
2001; Blakely and Sherratt 1994; Lesterlin et al. 2004). These two proteins break and re-ligate
DNA strands at conserved specific binding sites (dif), found in the chromosomal segregation
region. The dif sites are usually 28 bp long with two arms, 11 bp each, separated by 6 bp in the
center (Barre et al. 2001; Blakely and Sherratt 1994; Lesterlin et al. 2004). We did not find any
sequences similar to the proposed dif sites of H. akashiwo or other known bacteria (Cattolico et
al. 2008), but whether TyrC in H. akashiwo and K. foliaceum bind dif sites similar to those of
bacterial or viral recombinases, and whether this protein is active in conversion of multimeric
forms of plastid genome or even those of the plasmids to monomers are unknown. However, the
conservation of all the active sites in the conceptual translation of K. foliaceum tyrC (Figure
2.52) and its transcription both imply that the protein is functional. The presence of palindromic
sequences at the boundaries of at least two of the distinct regions (I and 111, the latter of which
also contains a recombinase gene) in the plastid genome of K. foliaceum further suggests these
elements may remain mobile by some means that generates such ends during

movement/replication.
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The ancestral state of the tertiary endosymbiont genome

Despite the more recent common ancestry of the D. baltica and K. foliaceum plastids, the
D. baltica and P. tricornutum plastid genomes share a much greater overall similarity in
structure, in large part due to the presence of plasmid-associated sequences in K. foliaceum.
Which of these two tertiary endosymbionts better represents the state of their common ancestor
is not entirely clear. On one hand, the close similarity between the genomes of D. baltica and P.
tricornutum might suggest this represents the ancestral state and that the genome of K. foliaceum
subsequently acquired plasmids (which are selfish and frequently mobile elements) leading to its
expansion and reorganization. On the other hand the plasmids are known to exist in some form in
other pennate diatoms that are more closely related to the tertiary plastids, most notably some
Nitzschia species (Hildebrand et al. 1991). If they were in the ancestor of the tertiary
endosymbionts then D. baltica would have to have ridded itself of all evidence of both plasmids
to revert to a highly similar form as P. tricornutum. Both explanations, the multiple movements
of plasmids between close relatives or the complete loss of plasmids in certain lineages, are
consistent with the seemingly sporadic interspecies and intraspecies distribution of these
plasmids in diatoms: only 5 out of 18 examined diatom species and only 1 out of 3 strains of the
pennate diatom C. closterium are suggested to have similar plasmids (Hildebrand et al. 1991).
Perhaps the most likely explanation is that the ancestor possessed unintegrated plasmids and a
plastid genome with a structure highly similar to that of P. tricornutum and D. baltica. In K.
foliaceum the plasmids would have integrated into the main plastid genome, degenerated, and
promoted the reorganization of many gene blocks, whereas in D. baltica all traces of the

plasmids were lost, which is not unlikely if they never integrated into the plastid genome.
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Conclusions

Here we describe the first completely sequenced plastid genomes from tertiary
endosymbionts, specifically the diatom-derived plastids of two dinoflagellates, D. baltica and K.
foliaceum. Both genomes have retained many characteristics of the ancestral, free-living diatom,
including elements of genome structure, gene content, and ordered gene clusters. The plastid
genome of K. foliaceum is much larger than that of D. baltica, and contains a site-specific
tyrosine recombinase gene also found in the heterokont H. akashiwo, and the incorporation,
maintenance, and degradation of genetic material from two similar plasmids found in other
pennate diatoms, which have resulted in the addition of two site-specific serine recombinases.

Materials and methods

Strains and culture conditions
Cultures of Durinskia baltica (Peridinium balticum) CSIRO CS-38 and
Kryptoperidinium foliaceum CCMP 1326 were obtained respectively from the CSIRO
Microalgae Supply Service (CSIRO Marine and Atmospheric Research Laboratories, Tasmania,
Australia) and from the Provasoli-Guillard National Center for Culture of Marine Phytoplankton
(West Boothbay Harbor, ME, USA). D. baltica cultures were maintained in GSe medium at
22°C (12:12 light:dark cycle) whereas K. foliaceum cultures were maintained in F/2-Si medium
under the same conditions.
DNA and RNA extractions, PCR, RT-PCR, and DNA fractionation and precipitation
Cells were collected and ground as described previously (Imanian et al. 2007). Ground
cells were lysed in 50 mM Tris-Hcl, 100 mM EDTA, 100 mM NaCl, pH 8.0 in the presence of
[B-mercaptoethanol (2%), SDS (2%) and proteinase K (300 ug/ml) at 50°C for 1 hour. In case of

D. baltica, 6 phenol and 1 phenol/chloroform extractions were performed, whereas for K.
32



foliaceum, 3 phenol, 1 phenol/chloroform, and 2 chloroform extractions were conducted.
Organellar A+T-rich DNA was separated from nuclear DNA using CsCl gradient density
centrifugation. The initial CsCl reflective index was adjusted to 1.3995 and 1.4000 for D. baltica
and K. foliaceum respectively and Hoechst 33258 (Invitrogen, Carlsbad, CA, USA) was added to
the solution (100 ug/ml for D. baltica and 120 pg/ml for K. foliaceum). Ultracentrifugation was
conducted in a Beckman L8 80M ultracentrifuge, using a VTi 80 (Beckman) rotor at 55000 rpm
and 20°C for 22 and 20 hours for D. baltica and K. foliaceum, respectively. The extracted A+T-
rich satellite bands were washed 4 times with CsCI/TE buffer-saturated isopropanol to remove
the Hoechst dye. The DNA was precipitated from CsCl as described previously (Kite et al. 1988)
and eluted in Tris HCI pH 8.0. The purified DNA was amplified using the REPLI-g mini kit
(Qiagen, Missisauga, ON, Canada). The total genomic DNA from both species used for the PCR
reactions was obtained after 2 phenol, 1 Phenol:Chloroform:Isoamyl Alcohol (25:24:1), and 2
chloroform extractions and ethanol precipitation. Total RNA extraction and RT-PCR were
carried out as described previously (Imanian et al. 2007) using the following primers: tyrC_F,
CCATAACTGCGTAATATAGCCG, tyrC_R, TCTGAAGGAATTAAATCTAATCAAGG,
serCl1_F, CCAGTTAACTTGCTACTGTCGG, serC1_R TTGGCTCTGCTGCTAACG, serC2_F
TGTGTCTTCAAAGTCACAAGAGG, and serC2_R
AACTAATCGGTTATATGGTATGTAATTCA. PCR was performed using the EconoTaq
PLUS GREEN kit (Lucigen, Middleton, W1, USA).
Genome sequencing

The D. baltica and K. foliaceum plastid genomes were sequenced using massively
parallel GS-FLX DNA pyrosquencing (Roche 454 Life Sciences, Branford, CT, USA). The GS-

FLX shotgun libraries and pyrosequencing using the GS-FLX Titanium reagents were carried out
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at the Génome Québec Innovation Centre. The Newbler de novo assemblies were edited and re-
assembled with CONSED 19 (Gordon 2004). Plastid sequences in assembled and unassembled
sequence pools were identified by BLAST searches (Altschul et al. 1990). Ambiguous
pyrosequencing homopolymer stretches in the assemblies were verified by PCR/Sanger
sequencing, which invariably yielded sequence that preserved the open reading frame. The only
exceptions were fragments of plasmid-derived genes in the K. foliaceum plastid genomes that are
concluded to be pseudogenes.
Genome annotation and analysis

Genes were identified by DOGMA searches (Wyman et al. 2004) and by BLAST
homology searches (Altschul et al. 1990) against the NCBI nonredundant database
(http://www.ncbi.nlm.nih/BLAST), and annotated using Artemis 11 (Rutherford et al. 2000).
Protein-coding genes were identified using GETORF from EMBOSS 6.0.1 (Rice et al. 2000) and
ORFFINDER at NCBI, with start codons ascertained by comparison with known homologues.
Positions of tRNA-encoding genes were determined with tRNAscan-SE (Schattner et al. 2005).
Ribosomal and miscellaneous RNA-encoding genes were annotated by comparison with P.
tricornutum and T. pseudonana homologues. Repeated elements were searched for using
PipMaker (Schwartz et al. 2000), REPuter (Kurtz et al. 2001), and FUZZNUC from the
EMBOSS package (Rice et al. 2000). Physical maps were generated using GenomeVx (Conant
and Wolfe 2008) and further edited manually. Conserved gene clusters between the D. baltica,
K. foliaceum and P. tricornutum plastid genomes were identified using MAUVE (Darling et al.
2004) and by visual inspection of the physical maps. Hypothetical gene inversions between the
159 genes that are shared between the three genomes were examined using GRIMM (Tesler

2002). Translocations were identified by manual inspections and defined as homologous portions
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of genomes (i.e. a gene or a conserved blocks of genes) appearing at different loci in the same

orientation.
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Figure 2.1: The plastid genome maps of Durinskia baltica and Kryptoperidinium foliaceum.

Functionally related genes are indicated by color and transcriptional direction is indicated by boxes outside the ring (clockwise) or inside the ring
(counterclockwise). Genes for tRNAs are indicated by their single letter code. The large single copy (LSC), small single copy (SSC), and inverted repeats (IRa
and IRb) are shown on the inner circle. Roman numerals (I-1X) mark the locations of 9 distinct regions in the plastid genome of K. foliaceum.
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Figure 2.2: Conserved ordered gene blocks among three plastid genomes.

All possible two-way comparisons between plastid genomes of K. foliaceum, D. baltica, and P. tricornutum.
Conserved blocks of genes are indicated by color, inversions are marked by a black triangle,
inversions/translocations by a hexagon, translocations by a rectangle, missing genes by a black circle and insertions

by Roman numerals I-1X.
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Table 2.1: General characteristics of plastid genomes in dinotoms compared to
diatoms

Durinskia Kryptoperidinium Phaeodactylum Thalassiosira
baltica foliaceum tricornutum ? pseudonana ?
Size (bp)
Total 116470 140426 117369 128814
IR 7067 6017 6912 18337
SSC 39813 56521 39871 26889
LSC 62523 71871 63674 65250
GC content (%)
Total 32.55 324 32.56 30.66
rRNA genes 46.9 47.0 47.2 47.0
tRNA genes 53.5 53.7 53.0 52.6
Other RNAs 27.3 28.3 26.0 25.6
Protein-coding genes 32.4 33.0 32.9 315
Intergenic spacer ° 22.1 26.5 18.8 16.3
Coding sequence (%) ° 86.7 71.9 87.5 85.2
Gene content ¢
Total 159 160 162 159
Protein-coding genes 127 128 130 127
rRNA genes 3 3 3 3
tRNA genes 27 27 27 27
Other RNAs 2 2 2 2
Introns 0 0 0 0
Overlapping genes 4 4 4 4
Average intergenic spacer (bp) 94.3 246.7 88.4 108.2
Start codons
ATG 123 123 124 121
GTG 4 5 5 5
Other 0 0 1ATT 1 ATA

% Data taken from Oudot-Le Secq et al (2007).

® Duplicated genes were taken into account (size/number of genes).

¢ Conserved genes (unique and duplicated) and ORFs were considered as coding sequences.
¢ Duplicated genes and unique ORFs were not taken into account.
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Chapter 3: The mitochondrial genomes of the endosymbiont and host in two

dinotoms

Introduction

Reduction is a universal theme in the symbiotic events that gave rise to mitochondrial and
plastid diversity. In primary endosymbiosis, the a—proteobacterial and cyanobacterial ancestors
of mitochondria and plastids were drastically reduced to organelles that encode only a small
fraction of their original genes (Gray et al. 1999; Kaneko et al. 1996; Nierman et al. 2001;
Palmer 2003). In plastid evolution, this was followed by further rounds of primary and secondary
endosymbiosis. Secondary endosymbionts, derived from red or green algae, have also lost nearly
everything except their plastids (Archibald and Keeling 2002; McFadden 2001), and even in
those exceptions where secondary endosymbionts retained a miniature nucleus (nucleomorph), it
is highly reduced and nearly all its cytoplasmic features are gone (Archibald 2007; Gilson and
McFadden 2002; Gilson et al. 2006; Greenwood 1974; Lane et al. 2005). In tertiary
endosymbionts generally only the plastids remains (Tengs et al. 2000), with one interesting
exception, the so-called ‘dinotoms’.

With 10 known species, dinotoms are a small group of closely related dinoflagellates
whose endosymbionts are thought to belong to at least three different diatom clades (Horiguchi
and Pienaar 1994, 1991; Pienaar et al. 2007; Takano et al. 2008; Tamura et al. 2005).
Considering the small size of this group, dinotoms are very diverse in their morphologies (for
example, with or without thecal plates with different plate configurations among the thecate

species), their habitats (fresh water or marine environments), and their life styles (planktonic or
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benthic, dominantly motile or prevailingly sessile), and have consequently been classified into
five distinct genera.

The tertiary diatom endosymbiont of dinotoms has, like other tertiary endosymbionts’
reduced to some degree: it has lost its distinctive cell wall, motility, and the ability to divide
mitotically (Dodge 1971; Tomas and Cox 1973). Despite these losses and integration within its
host, however, the endosymbiont has also retained many of its original characters, including a
large nucleus with vast amounts of DNA, a large volume of cytoplasm separated from the host
by a single membrane, and perhaps most surprisingly its own mitochondria (Chesnick and Cox
1987, 1989; Cox and Rizzo 1976; Imanian and Keeling 2007; Jeffrey and Vesk 1976; Tippit and
Pickett-Heaps 1976).

In two dinotom species, Durinskia baltica and Kryptoperidinium foliaceum, it has been
shown that the mitochondria of the endosymbionts still express genes for cytochrome ¢ oxidase
subunit 1 (cox1) and cytochrome b (cob) (Figueroa et al. 2009; Imanian and Keeling 2007). The
host mitochondria in D. baltica also expresses cox1 and cob, so this species at least is thought to
possess uniquely redundant mitochondria (Imanian and Keeling 2007; Imanian et al. 2007).
While diatom and dinoflagellate mitochondria are similar morphologically, they could not be
more dissimilar in terms of genomic content and organization. Sequenced diatom mitochondrial
genomes range from 43 to 77 kbp, have a circular map, and encode about 60 genes. While
generally compact, they usually feature one large intergenic spacer composed of repetitive
sequences (from nearly 5 kbp in the centric diatom Thalassiosira pseudonana and the araphid
pennate diatom Synedra acus, to about 35 kbp in the raphid pennate diatom Phaeodactylum
tricornutum) (Oudot-Le Secq and Green 2011; Ravin et al. 2010). In contrast, dinoflagellate

mitochondria encode only three protein-coding genes (cox1, cox3 and cob) and many fragments
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of ribosomal RNA (rRNA), and these appear to be organised on multiple chromosomes that may
be linear, and which are greatly expanded in number and include numerous incomplete copies or
pseudogenes along with highly dispersed short or long stretches of non-coding and repetitive
sequences (Jackson et al. 2007; Slamovits et al. 2007; Waller and Jackson 2009). The disposal of
the canonical start and stop codons of the 3 protein-coding genes, trans-splicing of cox3 in at
least a few species, polyadenylation and editing of the mitochondrial transcripts are among other
oddities observed in the dinoflagellate mitochondrial genomes (Gray et al. 2004; Jackson et al.
2007; Slamovits et al. 2007; Waller and Jackson 2009).

The co-occurrence of these two distinct mitochondria within dinotoms raises questions
about whether or not either or both genomes have been reduced in any way due to this unique
mitochondrial redundancy; or more specifically, do host and symbiont mitochondrial genomes
encode a similar suite of genes found in mitochondria of free-living diatoms and dinoflagellates
that lack a symbiont? In endosymbiotic partnerships, the symbiont is generally the more reduced,
so it is of interest to know whether the dinotom symbiont has retained a full suite of diatom
mitochondrial genes or not. However, in this case the host genome is also of interest because
dinoflagellate mitochondrial genomes are already highly reduced so that all the genes they
originally encoded are also found in the symbiont. To address these questions and investigate the
outcome of the permanent and obligate tertiary endosymbiosis on the content and organization of
the two distinct mitochondrial genomes in dinotoms, we sequenced the endosymbiont
mitochondrial genomes of D. baltica and K. foliaceum. We also extensively sequenced the D.
baltica host mitochondrial genome (but not completely since the nature of dinoflagellate
mitochondrial genomes is not compatible with ‘complete’ sequencing), and produced the first

sequencing data from the host mitochondrial genome in K. foliaceum in addition to extra
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sequencing data pertaining to the transcription in both genomes. Then, we compared these data
from endosymbiont and host in dinotoms with available diatom and dinoflagellate mitochondrial
genomes and sequences, respectively, to see if they are in any way reduced in relation to their
free-living counterparts. We find both endosymbiont genomes are almost identical in gene
content to other diatoms and even genome organization is almost identical to that of the raphid
pennate diatom Fragilariopsis cylindrus. We also find that the host mitochondrion in D. baltica
encodes complete copies of coxland cob genes and a bipartite cox3 gene, many pseudogenes of
all three genes, along with several fragments of the large subunit of ribosomal RNA gene (LSU
rRNA), exactly as described in other dinoflagellates (Gray et al. 2004; Jackson et al. 2007;
Slamovits et al. 2007; Waller and Jackson 2009;). From the host mitochondrion in K. foliaceum,
we also characterized the first identified fragments of the three protein-coding genes, their
corresponding transcripts along with the transcripts of several LSU rRNA fragments, all of which
show a high degree of homology with their counterparts in other dinoflagellates. Overall, it
appears that the endosymbiotic integration of the diatom with its dinoflagellate host has had no
detectable effect on the evolution of its two distinct mitochondrial genomes, which contrasts with
all other secondary and tertiary endosymbionts, where the organelle is lost altogether.
Results
The endosymbiont mitochondrial genomes of D. baltica and K. foliaceum

From the A+T-rich fraction of DNA of D. baltica and K. foliaceum, 299 and 635
pyrosequencing reads with an average length of 366 bp and 386 bp were respectively identified
as endosymbiont mitochondrial sequences. A total of 169 and 123 Sanger reads were also used in
the assemblies, resulting in single contigs of 35,505 bp (D. baltica) and 39,686 bp (K. foliaceum)

with an overall coverage of 5.46 x and 7.73 x, respectively. We were unable to bridge the final
42



gap in both genomes, despite numerous attempts using different long-range PCR protocols under
different conditions, buffer systems, and primers. This is most likely due to the presence of a
large intervening sequence, as is common to other diatom mitochondrial genomes (for example
the 35 kb insertion in P. tricornutum (Oudot-Le Secq and Green 2011)), and/or to the presence of
repetitive elements that may form complex secondary structures that inhibit PCR. Since all the
other sequenced diatom mitochondrial genomes map as circular molecules (Oudot-Le Secq and
Green 2011; Ravin et al. 2010), it is likely that the D. baltica and K. foliaceum genomes share
the same configuration.
General features of the endosymbiont mitochondrial genomes of D. baltica and K. foliaceum
The coding regions of the endosymbiont mitochondrial genomes of D. baltica (34,242
bp) (GenBank: JN378735) and K. foliaceum (34,742 bp) (GenBank: JN378734) are very similar
in size, form and content to those of other diatoms (Table 3.1). They are compact, featuring small
intergenic spacers and a number of overlapping genes, and encode 58 and 59 genes, respectively
(figure 3.1, Table 3.1). In addition to two rRNA genes, D. baltica and K. foliaceum mitochondria
respectively encode 33 and 35 protein-coding, and 23 and 22 tRNA genes. Both code for the
initiator and elongator methionine tRNAs but seem to lack tRNAs for threonine, like all other
known diatoms and heterokonts (Gray et al. 2004). The apparent absence of a tRNA for glutamic
acid (trnE) is shared with S. acus but not with their closer relative P. tricornutum, and the
histidine tRNA is missing from K. foliaceum but not D. baltica. In the latter case, it is possible
that the missing tRNA genes are encoded in the unsequenced portion of the genomes, as they are
encoded in other diatom mitochondria. The two dinotom mitochondrial genomes also share two
potentially spurious open reading frames (ORFs) larger than 100 amino acids (aa), orf138 and

orf105 in K. foliaceum and orf124 and orf102 in D. baltica, respectively displaying 67% and
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55% aa identity to each other. These ORFs are not found in other diatoms and show no
significant homology in BLAST searches (Altschul et al. 1990). Interestingly, the endosymbiont
mitochondrial gene complement is well-conserved across the larger group of stramenopiles or
heterokonts that include diatoms (Ehara et al. 2000). Gene length comparisons between the
mitochondrial genes in the two endosymbionts and those of diatoms indicate that their protein-
coding and rRNA genes are also very similar in size (Figure 3.S1). Only the rpl2 gene in D.
baltica seems shorter at the 5’-end, however, it still retains both the conserved RNA-binding and
the C-terminal domains.

The overall G+C content is very similar in the two endosymbiont mitochondrial
genomes, albeit slightly less so in their intergenic regions (Table 3.1). Their G+C content is also
consistent with that of the other diatom mitochondrial genomes, with the higher total G+C
content observed in that of P. tricornutum due at least in part to the presence of a large 35 kb-
long insertion (nearly half of its genome) with repetitive elements having 36.7% G+C content
(33.6% GC content without). Like their pennate diatom counterparts in S. acus and P.
tricornutum, the endosymbiont mitochondrial genomes of D. baltica and K. foliaceum use the
universal genetic code. In contrast, the centric diatom T. pseudonana (Oudot-Le Secq and Green
2011) and possibly two other Thalassiosirales, T. nordenskioldii and Skeletonema costatum
(Ehara et al. 2000) use TGA for tryptophan rather than as a signal for translational termination.
In addition to the canonical ATG, the two dinotoms use ATA (rps2, rpl2, nad3 in D. baltica and
atp8 in K. foliaceum) and ATT (rps2 in K. foliaceum) as alternative start codons. The alternative
start codons are utilized by other organisms including diatoms. S. acus, for example, uses GTG
(tatC, nad5 and cox2), P. tricornutum uses TTG (cox3, cob and tatC) and GTG (nad7), and T.

pseudonana uses ATT (atp8) as alternatives for ATG. The two endosymbiont mitochondrial
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genomes use all the codons for their proteins just like their diatom and brown algal counterparts
(Oudot-Le Secq et al. 2006), hence the missing tRNAs must be imported from cytosol. As with
most A+T rich genomes, D. baltica and K. foliaceum endosymbiont mitochondrial genomes
display a bias towards A or T in the third codon position of their protein-encoding genes (79%
and 76%, respectively), as do their diatom counterparts (T. pseudonana 79%, S. acus 76%, and
P. tricornutum 72%).
Gene fission

One of the protein-coding genes, nad11, in the endosymbiont mitochondrial genomes of
D. baltica and K. foliaceum is broken into two parts corresponding to its two functional domains:
the iron-sulfur (FeS) binding (nad11a) and the molybdopterin-binding (nad11b) domains. These
two new segments have acquired a new stop codon (hadll1a) and a new start codon (nad11b) and
now reside on opposite strands, distantly separated in the genome. In T. pseudonana and S. acus,
nadll remains intact. However, in the pennate diatom P. tricornutum it is divided into two
segments at about the same position but on the same strand and only 13 bp apart, while in F.
cylindrus nad1la and nad11b are configured exactly as in dinotoms (Oudot-Le Secq and Green
2011). It is noteworthy that the molybdopterin-binding domain of nad11 in brown algae is highly
divergent, and has been relocated to the nucleus of at least one species, Ectocarpus siliculosus
(Oudot-Le Secq and Green 2011).
An in-frame insertion

Another distinguishing feature of both endosymbiont mitochondrial genomes is the
presence of a long insertion in nad2. This nearly 500 bp-long in-frame insertion (from amino
acid 213 in both to aa 377 in D. baltica and aa 381 in K. foliaceum) is not found in P.

tricornutum, S. acus or T. pseudonana, and falls within the NDH/g1-type oxidoreductase
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domain of the Nad2 protein, between two conserved a-helices (Figure 3.S2). The insertion
sequence shares no similarity to any known sequence, and is highly divergent between the two
dinotoms: endosymbiont nad2 genes share 93% and 88% amino acid identity before and after the
insertion site, respectively, whereas the inserts share only 40% identity. This insertion is not
spliced at the mRNA level, as indicated by RT-PCR and sequencing.
Gene fusions in D. baltica

The mitochondrial genome of the endosymbiont in D. baltica also contains two pairs of
genes that have fused: rps3-rpl16 and rps13-nad9 (red arrows in figure 3.1). In both pairs, the
first gene has lost its stop codon while the second has kept its first methionine. In K. foliaceum,
P. tricornutum and T. pseudonana, the rps3 and rpl16 genes are adjacent but not fused, whereas
in S. acus, rps3 is degenerated and remains in the genome as a pseudogene near the rpl16 gene
(Ravin et al. 2010). The other two genes, rps13 and nad9, are adjacent and in close proximity in
K. foliaceum but not in the other diatoms.
Introns in K. foliaceum

The K. foliaceum endosymbiont mitochondrion contains three ORF-encoding introns,
whereas D. baltica has none. One K. foliaceum intron is found in rnl (group I) and two (group |
and group 1) in cox1 (figure 3.1 and figure 3.2). The orf168 located in the rnl intron codes for a
putative single LAGLIDADG endonuclease while orf339 from the cox1 group I intron encodes a
putative heterodimeric endonuclease carrying two LAGLIDADG motifs. The orf715 from the
cox1 group Il intron encodes a reverse-transcriptase maturase (RTM). Of the three K. foliaceum
introns, only one is inserted at a site in common with other diatoms (Table 3.1): the cox1 group Il
intron being found in T. pseudonana and P. tricornutum, and sharing 91% and 81% nucleotide

identity with the conserved cores (510 and 496 aligned residues), respectively. The K.
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foliaceum’s orf715 is also highly similar to orf718 in the T. pseudonana intron and slightly less
so with orf728, a pseudo-RTM, present in two adjacent pieces in the P. tricornutum intron (85%
and 67% amino acid identity over 718 and 730 aligned residues, respectively). The close
phylogenetic relationship between K. foliaceum’s ORF715 and T. pseudonana’s ORF718 has
been corroborated independently through phylogenetic analysis (Kamikawa et al. 2009).
Synteny

The endosymbiont mitochondrial genomes of D. baltica and K. foliaceum are perfectly
syntenic, and demonstrate striking similarity to that of the raphid pennate diatom F. cylindrus.
Two large gene blocks (rps8-rpl6-rps2-rps4-trnN and rpl2-rps19-rps3-rpl16-atp9-trnK-nad4L-
trnD-nad11a) are also conserved with P. tricornutum and T. pseudonana (the green arcs in figure
3.1), whereas a third (rps12-rps7-trnR-rpl14-rpl5-trnG-trnS-trnC-nad1-tatC-trnW-trnl) is shared
with P. tricornutum (the orange arc in figure 3.1). With the exception of trnC, this third block is
also conserved in T. pseudonana. Compared to other diatom mitochondrial genomes, there is a
small inversion unique to the dinotoms (trnA-atp8).

Table 3.2 summarizes the estimated minimum number of inversions required for the
interconversions of the diatom mitochondrial genomes. Transition from either dinotom
mitochondrial genome to that of P. tricornutum, and vice versa, requires only 5 inversions while
their transition to that of T. pseudonana requires 6 inversions. A minimum of 8 inversions are
required to interconvert T. pseudonana with either P. tricornutum or S. acus.

Transcription of the endosymbiont mitochondrial genes

We had previously shown that the endosymbiont cox1, cob, cox2, cox3 and rnl genes in

D. baltica and K. foliaceum are transcribed with no signs of editing, that the cox1 introns in K.

foliaceum are removed from its MRNA, and that cox3 and cob are transcribed as an operon in
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both D. baltica and K. foliaceum (Imanian and Keeling 2007; Imanian et al. 2007). In this study
we further expanded our sampling of the transcripts of mitochondrial genes in the endosymbionts
of dinotoms. Using RT-PCRs with DNase-treated total RNA and specific primers, we obtained
partial nad5 and nad2 products from both genomes. We also investigated and confirmed the
polycistronic transcription of the conserved gene block rps19-rps3-rpl16, which includes the
rps3-rpll6 fused gene in D. baltica. All cDNA sequences were identical to their corresponding
genes, consistent with the lack of editing in diatom mitochondrial transcripts as opposed to those
of dinoflagellates which are heavily edited by substitutions (Lin et al. 2002).
The mitochondrial genome of the dinoflagellate host in D. baltica

From the 454 sequencing data of the A+T-rich fraction of DNA in D. baltica, we
identified more than 29,000 reads (average length of 349 bp amounting to more than 10 million
bp) corresponding to putative dinoflagellate host mitochondrial sequences. These reads were
subsequently assembled into hundreds of unique contigs. Of these, we further analyzed 123 high
quality contigs that included 4,569 reads covering 89,634 bp of unique consensus sequences
from the host’s mitochondrial DNA in D. baltica, providing the most comprehensive assemblage
of any dinoflagellate mitochondrial genome to date. The contigs vary in size from 210 to 2,740
bp, with an average length of 711 bp. We identified full-length copies of the cox1 and cob genes,
the cox3 gene that is split into two parts (GenBank: JX001475-JX001478) along with several
fragments of the large subunit ribosomal RNA (LSU rRNA) gene (GenBank: JX001584-
JX001600). We have also recovered 102 contigs containing pseudogenes of cox1 (GenBank:
JX001520- JX001583), cob (GenBank: JX001497- JX001519) and cox3 (GenBank: JX001482-

JX001496).
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Host mitochondrial protein-coding genes, transcription and editing

The contig containing cox1 is 2,740 bp long with 99 reads (12.6 x coverage), while the
contig that includes cob is 2,020 bp long with 82 reads (14.2 x coverage). As is the case in
several other dinoflagellates (Jackson et al. 2007; Jackson et al. 2012), the D. baltica cox3 gene
is broken in two separate parts: cox3 part 1 (cox3-1) is 733 bp long with 48 reads (22.9 x
coverage), while the second contig, cox3 part 2 (cox3-2), is 595 bp long, with 12 reads (7.0 x
coverage). The 5" end of cox1 gene is preceded by non-coding sequence with no significant
homology to any known sequences. The 3" end of the gene is followed by 81 bp, non-coding,
and then, by a cob pseudogene (339 bp) and a short cox1 pseudogene (110 bp). The cob gene is
also flanked by 115 bp and 259 bp non-coding sequences at its 5" and 3" ends, respectively, and
it is followed by 2 separate cox3 pseudogenes.

In the dinoflagellate Crypthecodinium cohnii, the cox1 gene appears in multiple copies
bounded by distinct flanking sequences (Norman and Gray 2001). It is also reported, though not
definitively shown, that there is more than one copy of cox1 and cob genes in K. micrum
mitochondrial genome (Jackson et al. 2007). In our extensive sequencing survey and careful
assembly of the host mitochondrial genome of D. baltica, we were unable to find any evidence
of multiple copies of the full-length cox1 and cob genes and cox3-1, each of which appears only
in one genomic context. However, the cox3-2 that encodes the short 3" end of the gene appears in
multiple contexts (see GenBank: JX001478, JX001487, JX001488, JX001494) flanked by
distinct sequences like the 3" segment of this gene in K. micrum (Jackson et al. 2007).

The host mitochondrial protein-coding genes of D. baltica have very similar GC content
to their homologues in other dinoflagellates: 33.3% , 29.8% and 28.5% GC content for cox1, cob

and cox3, respectively, compared to an average of 33.2%, 29.6% and 28.4% for the same genes,
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respectively, in other dinoflagellates (Excel file S1 available online:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0043763). These
genes also show high degree of nucleotide and amino acid identities to their counterparts in other
dinoflagellates: cox1, cob and cox3 have an average of 95%, 95% and 89% nucleotide identities
and 90%, 88% and 72% amino acid identities to their homologues in other dinoflagellates (Excel
file S1 available online:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0043763).

One of the distinguishing characteristics of the mitochondrial protein-coding genes in
dinoflagellates is the genes themselves do not encode canonical start and stop codons to direct
the initiation and termination of translation (Jackson et al. 2007; Jackson et al. 2012; Slamovits
et al. 2007). The only exception to date is the cox3 gene of the basal dinoflagellate
Hematodinium which encodes a canonical stop codon (Jackson et al. 2012), and the cox1 gene of
C. cohnii which seems to encode a canonical start codon (Norman and Gray 2001). In some
dinoflagellates the cox3 transcript apparently obtains a stop codon through polyadenylation,
while others simply lack a stop codon (Jackson et al. 2007; Jackson et al. 2012). The cox1, cob
and cox3 genes in D. baltica resemble homologues in other dinoflagellates, in lacking canonical
start and stop codons as well. There is one in-frame TGA codon in the middle of cox3, but in all
likelihood this is edited at the mRNA level as has been shown in the cox1 transcript of
Amphidinium carterae (Nash et al. 2007), the cox3 transcript of K. micrum (Jackson et al. 2007),
and others (Lin et al. 2002; Zhang and Lin 2005). Indeed, TGA, which typically codes for stop
and sometimes for tryptophan, is unassigned in dinoflagellates (Jackson et al. 2007; Jackson et

al. 2012).
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The comparison between the complete cox1 gene and its nearly complete transcript
(GenBank: JX001479) obtained through RT-PCR, reveals extensive substitutional editing
occurring at either the first or second codon positions, resulting without exception in an amino
acid change (see Table 3.S1). Most of the edits substitute a G for an A, while some replacea T
with a C or a C with a U or more infrequently a G with a C. Most of these replacements result in
a conservative substitution of an amino acid (for example, an isoleucine with a valine). The
number of editing sites, their codon positions and the types of edits all are consistent with those
reported for other dinoflagellates (Jackson et al. 2007; Jackson et al. 2012; Lin et al. 2002; Nash
et al. 2007; Zhang & Lin 2005).

A novel feature of the cob gene is the presence of a 150-nucleotide-long in-frame insert
starting at amino acid 121 to 170. The insert sequences show no homology to any other
sequences in the public databases except to a 69-nucleotide-long portion of another insert within
a cox1 pseudogene in D. baltica (GenBank: EF434626.1). The insert is located between the two
predicted transmembrane helices, conserved also in Alexandrium catenella and Pfiesteria
piscicida, without disrupting them (figure 3.S3). The RT-PCR results show that this insert is
transcribed along with the flanking conserved regions of this gene and remains unedited
(GenBank: JX001480) unlike other parts of the transcript that is edited in the dinoflagellate
fashion (Imanian and Keeling 2007).

The cox3 gene in the basal dinoflagellates Oxyrrhis marina and Hematodinium sp. is
unbroken (Jackson et al. 2012; Slamovits et al. 2007), whereas in at least five other
dinoflagellates it is broken into two parts, transcribed and polyadenylated separately and then
trans-spliced together to produce the full-length transcript (Jackson et al. 2007; Jackson et al.

2012). In D. baltica, cox3 is similarly encoded as two separate sections. The cox3-1 segment
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encodes the first 705 nucleotides (corresponding to the first 235 amino acids), the 5" end of the
gene, and it is followed by 27 nucleotides of non-coding sequences. The cox3-2 encodes the 153
nucleotides corresponding to the 3" end of the gene, and it is flanked by stretches of 297 and 145
nucleotides unrelated to cox3 sequences. In K. micrum, the trans-splicing site is predicted to
occur between the codons for the amino acid 235 and 236 (Jackson et al. 2007), which is the
same position where the two parts are patched together in D. baltica (amino acid 235-236). The
evidence for the conserved site of trans-splicing comes from the RT-PCR results. The cox3
transcript in D. baltica (GenBank: JX001481) covers the nucleotides 306 to 768 (corresponding
to amino acids 102 to 258) traversing the two separate parts of the gene including their junction
while there is not even a single 454 sequence (out of more than 29,000 host mitochondrial
sequences we identified from the A+T-rich fraction of the DNA) that spans the two parts of the
gene. The comparison between the cox3 gene and its transcript reveals extensive editing
especially upstream the trans-splicing site (about 36 substitutions), which also includes five A
residues at the junction site. This penta-A is also found at the junction of the two parts of the
cox3 gene in K. micrum and is thought to have been derived from the poly A tail of the part one
of the gene (Jackson et al. 2007).
Host mitochondrial ribosomal RNA gene fragments

The ribosomal RNA genes in both apicomplexans and dinoflagellates are highly
fragmented, and 20 or more fragments have been identified in a few species from both taxa
(Feagin et al. 1997; Jackson et al. 2007; Jackson et al. 2012). We have identified 8 unique
fragments of the LSU rRNA in D. baltica: LSUA, LSUD, LSUE, LSUF, LSUG, RNA2, RNA7 and
RNA10-like fragments. The LSUA, LSUE and RNA10-like fragments appear in two copies, each

of which within a different genomic context. Compared to their homologous sequences in other
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dinoflagellates (for example, in K. micrum, A. catenella and P. piscicida) the D. baltica LSU
rRNA fragments are highly conserved (on average between 88% to 96% nucleotide identities).
The host mitochondrial genome is dominated by pseudogenes

The mitochondrial genomes of apicomplexans are among the smallest mitochondrial
genomes, encoding only 3 protein-coding genes and highly fragmented rRNA genes in a short
linear chromosome (about 6 kbp). Although the dinoflagellate mitochondrial genomes seem to
be as gene-poor, their genome is expanded enormously through amplification of the few genes
and gene fragments they encode, generating in some species multiple copies of these genes and
more often myriads of their gene fragments or pseudogenes (Feagin et al. 1997; Jackson et al.
2007; Jackson et al. 2012; Imanian and Keeling 2007; Nash et al. 2007; Norman and Gray 2001,
Slamovits et al. 2007). In this regard the mitochondrial genome of the host in D. baltica is a
typical dinoflagellate mitochondrial genome with hundreds if not thousands of pseudogenes of
both the protein-coding and LSU rRNA gene fragments. These pseudogenes appear in a wide
variety of sizes, orientations and genomic contexts. They generally include a highly conserved
portion of the true genes (usually with 99% to 100% nucleotide identity to their corresponding
sequences found in the full-length genes), flanked by different non-coding and/or repetitive
sequences (figure 3.3A). The conserved regions of these pseudogenes appear in various lengths,
and we present the sequence data, for the first time, demonstrating that they are derived from all
different regions of the full-length genes without any apparent preference or hot spots for any
specific region (figure 3.3B).

Although the majority of the pseudogenes show a high degree of sequence identity to
different regions of the true genes, we identified a number of pseudogenes with different degrees

of degeneration. For example, a cox1 pseudogene (GenBank: JX001555) is highly conserved
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along the first 327 nucleotides (99% identity), but it is followed by a cob pseudogene that is
highly degenerated (only 44% identity to other dinoflagellates’ cob). In another example
(GenBank: JX001543) a degenerated cox3 pseudogene (46% identity) is located between two
conserved cob and cox1 pseudogenes. These degenerate sequences in the presence of many well-
conserved gene fragments may indicate that rampant amplification and recombination not only
play a role in sequence conservation of many pseudogenes (Jackson et al. 2012) but also
simultaneously generate many mutations elsewhere.
The mitochondrial genome of the dinoflagellate host in K. foliaceum

While we recovered thousands of sequences with significant homology to dinoflagellate
mitochondrial sequences from the A+T-rich fraction of DNA in D. baltica, we were unable to
find any such sequences from the A+T-rich fraction of DNA in K. foliaceum. Our initial attempts
to amplify and sequence the protein-coding genes and their transcripts using degenerate or
dinoflagellate specific primers through PCR and RT-PCR, respectively, were unsuccessful.
However, the 454 sequencing data from the K. foliaceum cDNA library (see Materials and
Methods) generated hundreds of short sequences (average length of 76 bp) that show significant
homology to mitochondrial sequences of other dinoflagellates. The assembly of these reads
generated larger contigs and after subsequent PCR and RT-PCR based on these new data, we
were able to recover larger fragments of all the three protein-coding genes but not their full-
length sequences. These results are summarized in Table 3.3. We also recovered several
fragments of the LSU rRNA transcripts (some in 2 copies within distinct flanking sequences)
including LSUA, LSUE, LSUG and RNA7-like fragments (GenBank: JX001601-JX001608) with
358, 65, 67 and 409 pyrosequencing reads, respectively. Our attempts to recover the full-length

genes and their transcripts through further PCR and RT-PCR failed. Nested primers were also
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tested without any results. We also tested the possibility that gene fragments were encoded on
separate circular chromosomes using outward primers in PCR and long range PCR, but they did
not produce any product.

The host’s mitochondrial protein-coding gene fragments in K. foliaceum have very
similar GC content to their corresponding homologous sequences in other dinoflagellates:
34.3%, 29.6% and 28.9% GC content for cox1, cob and cox3 fragments, respectively (Excel file
S1 available online:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0043763). These gene
fragments also show high degree of nucleotide and amino acid identities to their counterparts in
D. baltica: cox1, cob and cox3 fragments have an average of 99%, 98% and 88% nucleotide
identities and 96%, 93% and 84% amino acid identities to their homologous sequences in D.
baltica (Excel file S1 available online:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0043763).

A comparison between the cox1 gene fragments and their corresponding cDNAs reveals
similar substitutional mMRNA editing to those occurring in D. baltica and other dinoflagellates
(see Table 3.S1). Most of the edits affect either the first or second codon positions, resulting in
an amino acid change. Just like in D. baltica, most of the edits in K. foliaceum are from A to G,
but changes from T to C, C to U and G to C are also observed. Out of 11 editing sites in the cox1

MRNA of K. foliaceum 8 are conserved in D. baltica as well (Table 3.S1).
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Discussion
The mitochondrial genomes of the endosymbionts in D. baltica and K. foliaceum have not
been reduced

The mitochondrial genomes of the tertiary endosymbionts in D. baltica and K. foliaceum
share nearly all the characteristics found in mitochondrial genomes of free-living diatoms,
including gene repertoire, gene length, GC content, and gene order. Their diatom gene set is also
packaged in the diatom style: they are densely packed, with short intergenic sequences, a few
overlapping genes, and no scattered stretches of repeated elements. The only repetitive elements
in diatom mitochondrial genomes are sequestered into one or two long contiguous regions
(Oudot-Le Secq and Green 2011; Ravin et al. 2010), and it is likely that the unsequenced region
of the two endosymbionts corresponds to a similar repetitive element-rich region. In short, the
tertiary endosymbiosis event has had little if any effect on the endosymbiont mitochondrial
genome, which is of interest since in all other comparable cases, the organelle is totally lost.

Recently, Gabrielsen et al. (2011) sequenced the plastid genome of the tertiary
haptophyte in the dinoflagellate Karlodinium veneficum, providing the only available
haptophyte-derived plastid genome for comparison in this study. They showed that it maintains a
genome, but with extensive gene losses, enlarged intergenic regions and substantial
rearrangements compared to that of free-living haptophytes. Some of the existing genes in this
genome have diverged so markedly that they might have become pseudogenes or reliant on RNA
editing to produce functional proteins (Gabrielsen et al. 2011). In contrast to this, we have shown
that the plastid genomes of D. baltica and K. foliaceum are not reduced, and encode well-
conserved genes that are organized similarly to those in the plastid genomes of free-living

diatoms (Imanian et al. 2010). Moreover, the K. foliaceum plastid genome is much larger and
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more re-arranged, mainly because of the integration and partial maintenance of at least two relict
plasmids also found in other diatoms (Imanian et al. 2010).

The endosymbiont mitochondrial genomes of the two dinotoms appear equally unaffected
by their integration with the dinoflagellate. Indeed, we were only able to identify a handful of
features that distinguish dinotom mitochondria, or link them to a subset of free-living diatom
lineages (Figure 3.54). First, the homologous (but divergent) long in-frame insert within nad2 is
found in dinotoms but not in P. tricornutum, S. acus or T. pseudonana. Second, the dinotoms
share a small unique inversion (trnA-atp8). Third, the fragmented nad11 gene and translocated
nadl1b is found in both dinotoms, but also in F. cylindrus (Oudot-Le Secq and Green 2011),
suggesting the dinotom endosymbionts are more closely related to this raphid pennate diatom
than any other diatom for which mitochondrial genome data exist.

The mitochondrial genomes of the host in D. baltica and K. foliaceum retain nearly all their
dinoflagellate characteristics

The dinoflagellate host in D. baltica retains a typical dinoflagellate mitochondrion with
tubular cristae (Imanian and Keeling 2007), and we have shown here that this organelle
maintains a genome with all the typically unusual traits of this genome in other dinoflagellates,
including the gene content, the GC composition, gene and amino acid identities, abandonment of
canonical start or stop codons, and genome organization (Jackson et al. 2007; Jackson et al.
2012; Slamovits et al. 2007; Waller and Jackson 2009; Nash et al. 2007). The cox3 gene in D.
baltica is encoded as two separate sections, and the transcripts are trans-spliced at the same
general region of the gene in at least five other dinoflagellates (and the same nucleotide position
as in K. micrum cox3) to produce the full-length mRNA (Jackson et al. 2007; Jackson et al. 2012;

Waller and Jackson 2009). Despite being gene poor, the host’s mitochondrial genome in D.
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baltica has expanded enormously through amplification and recombination, harboring numerous
pseudogenes. We have also shown here that extensive substitutional mRNA editing occurs in D.
baltica (Jackson et al. 2007; Jackson et al. 2012; Lin et al. 2002). Indeed, the only novel trait we
have found in the D. baltica host mitochondrial genome is the 150-nucleotide in-frame insert
within its cob gene.

The mitochondrial genome of the host in K. foliaceum has been more elusive, but we
have characterized several fragments of all three protein-coding genes and their transcripts along
with several nearly full-length LSU rRNA fragments. These data indicate that the host in K.
foliaceum has a mitochondrial genome that encodes at least the same three protein-coding genes,
with very similar GC content, nucleotide and amino acid identities to those in other
dinoflagellates (Excel file S1 available online:
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0043763). We have
also demonstrated that the K. foliaceum cox1 mRNA editing is substitutional, and its types,
codon positions, and sites show consistency with those seen in other dinoflagellates (Table 3.S1).
Overall, the data seem to be consistent with a conventional dinoflagellate mitochondrial genome
in the host of K. foliaceum, though it is curiously hard to characterise.

These genomes raise the important question of why the endosymbiont mitochondrial
genomes have not been completely eliminated or significantly reduced, and why the host
mitochondrial genomes remain almost completely unaffected by the endosymbiosis. We have
previously suggested that the mitochondrial genome redundancy (with two sets of cox1, cob and
cox3 genes, one from dinoflagellate host and one from the diatom endosymbiont) found in
dinotoms might be due to spatial differentiation rather than functional specialization (Imanian

and Keeling 2007). The nearly complete endosymbiont genomes are consistent with this, but
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additional data from the host mitochondrial genome in K. foliaceum and from mitochondrion-
targeted proteins in both nuclear genomes will be required to really determine whether the
function of either organelle has been affected by the presence of the other.
Conclusions

Despite the full integration of the diatom tertiary endosymbiont within the dinoflagellate
host and the consequent uniqgue mitochondrial genome redundancy within dinotoms, we have
found no evidence of significant changes in the mitochondrial genome of the host in D. baltica
or K. foliaceum compared to those in free-living dinoflagellates. Our results also indicate that the
endosymbiont mitochondrial genomes in the two dinotoms closely resemble those of their
counterparts in free-living diatoms, following nearly the same evolutionary path to those in other
diatoms but starkly distinct from those in other secondary and tertiary endosymbionts where
mitochondria are lost altogether.

Materials and methods

Strains and culture conditions

Cultures of Kryptoperidinium foliaceum CCMP 1326 and Durinskia baltica (Peridinium
balticum) CSIRO CS-38 were respectively obtained from the Provasoli-Guillard National Center
for Culture of Marine Phytoplankton (West Boothbay Harbor, ME, USA) and from the CSIRO
Microalgae Supply Service (CSIRO Marine and Atmospheric Research Laboratories, Tasmania,
Australia). K. foliaceum cultures were maintained in F/2-Si medium at 22 °C (12:12 light:dark
cycle) whereas D. baltica cultures were maintained under the same conditions in GSe medium.
Nucleic acids extraction, preparation and amplification

Exponentially growing cells were collected and ground as described previously (Imanian

et al. 2007). Cells lysis, DNA extractions, precipitations, fractionations, adenine+thymine-rich
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(A+T-rich) DNA isolations, purifications and amplifications were performed for both species as
described earlier (Imanian et al. 2010). Total genomic DNA was extracted for polymerase chain
reactions (PCR) either as described previously (Imanian et al. 2010), or using Master Pure
Complete DNA and RNA Purification Kit (EPICENTRE Biotechnologies, Madison, WI, USA)
following the manufacturer’s instructions. Total RNA for RT-PCR was obtained as described
earlier (Imanian et al. 2007). RNeasy MinElute Cleanup kit (Qiagen, Mississauga, ON) was used
to clean up the total RNA after DNase treatment according to the manufacturer’s instructions.
PCR and RT-PCR reactions were performed using specific primers designed based on the
obtained genomic data as described elsewhere (Imanian et al. 2007, 2010). Long range PCRs
were conducted either as described earlier (Imanian et al. 2007, 2010), or using Expand Long
Template PCR System kit (Roche Applied Science, Indianapolis, IN, USA) following the
manufacturer’s instructions.
The cDNA construction for K. foliaceum

Approximately 5 pg of total RNA was used as template for producing cDNA with
SMARTer Pico PCR cDNA Synthesis kit (Clontech, CA) according to manufacturer’s protocol.
In order to optimize the number of PCR cycles for our sample, we performed between 15 and 30
cycles, and, based on agarose gel, determined that the optimal amplification was reached after 18
cycles.
Genome sequencing

The mt genomes of the endosymbionts and hosts in K. foliaceum and D. baltica and the
cDNA library in K. foliaceum were sequenced using massively parallel GS-FLX DNA
pyrosequencing (Roche 454 Life Sciences, Branford, CT, USA) using GS-FLX shotgun libraries

prepared and sequenced at the Génome Québec Innovation Centre. Sequences were assembled
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de novo using gsAssembler 2.5p1 (formerly known as Newbler), edited and re-assembled with
CONSED 20 (Gordon et al. 1998, 2001). Gaps between contigs and ambiguous pyrosequencing
homopolymer stretches were linked/ascertained by PCR and Sanger sequencing of the resulting
products.
Genome annotation and analyses

Genes were identified through BLAST homology searches (Altschul et al. 1990) against

the NCBI non-redundant databases [http://www.ncbi.nlm.nih/BLAST] and annotated in Artemis

12 (Rutherford et al. 2000). Protein-coding genes of endosymbionts were positioned with
ORFFINDER at NCBI and GETORF from EMBOSS 6.0.1 (Rice et al. 2000) and their start
codons determined by orthologous comparisons with close relatives while transfer-RNA (tRNA)
genes were identified with tRNAscan-SE 1.21 (Schattner et al. 2005). The 5 and 3" ends of the
mitochondrial protein-coding genes of the dinoflagellate hosts were determined after alignments
were made with those in other dinoflagellates. Ribosomal RNA (rRNA) genes of the
endosymbionts were annotated after comparison with their homologues in P. tricornutum and T.
pseudonana, while those of the hosts’ were annotated after comparison with their homologues in
other dinoflagellates especially K. micrum, A. catenella and P. piscicida. Physical circular maps
were prepared using GenomeVx (Conant and Wolfe 2008) and refined manually. Group I and
group Il intron secondary structures were predicted manually according to the conventions
described in Burke et al. (1987) and Michel et al. (1989).

Transmembrane helices domains and the insertion site in the nad2 genes and the D.
baltica’s cob were predicted using Domain homology searches (Marchler-Bauer et al. 2009),
SeaView 4.0 (Gouy et al. 2010) and the TMHMM Server 2.0

[http://www.cbs.dtu.dk/servicess TMHMM-2.0/] (Krogh et al. 2001). Conserved gene blocks

61



between the mitochondrial genomes of dinotoms and diatoms were identified through MAUVE
2.3.1 (Darling et al. 2004) and by manual examination of the physical maps. The hypothetical
numbers of inversions between the dinotom and diatom mitochondrial genomes were estimated
with GRIMM 1.04 (Tesler 2002).

The sequence data for F. cylindrus mitochondrial genome were downloaded through jgi

website [http://genome.jgi-psf.org/Fracyl/Fracyl.download.html] and annotated as described

above.
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Figure 3.1: The mitochondrial genome maps of the endosymbionts in Durinskia baltica and
Kryptoperidinium foliaceum.

Functionally related genes are colour-coded and transcriptional direction is clockwise (boxes outside the ring) or
counterclockwise (inside). Genes for tRNAs are indicated by their single letter code. The dashed lines represent the
gap in the genomes. The blue arrows specify the locations of the introns in the map for K. foliaceum, and the red
arrows point at the locations of gene fusions in the map of D. baltica. The arcs show the conserved gene blocks in
the two dinotoms and P. tricornutum (green and orange arcs) and T. pseudonana (the green arcs). The two genomes
are not represented in scale with respect to one another.
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Figure 3.2: Predicted secondary structure of the three Kryptoperidinium foliaceum
endosymbiont mitochondrial introns modeled according to the conventions described in

Burke et al. (1987) and Michel et al. (1989).

(A) Group | introns. Left, the first cox1 intron; Right, the rnl intron. The K. foliaceum cox1 group I intron (left) had
been previously mistakenly referred to as a group Il intron (Imanian et al. 2007). (B) Group Il intron. The second
cox1 intron. Panels A and B: canonical Watson-Crick base pairings are denoted by dashes whereas guanine-uracyl
pairings are marked by dots. Numbers inside variable loops indicate the sizes of these loops. Exon sequences are
shown in lowercase letters. Panel A: splice sites between exon and intron residues are denoted by arrows; Panel B:
the major structural domains are indicated by roman numerals and capital letters A to D, whereas tertiary
interactions are represented by dashed lines, curved arrows, and/or Greek letters. Nucleotides potentially involved in
the -8’ interaction are boxed. Intron-binding and exon-binding sites are indicated by IBS and EBS, respectively.

The putative site of lariat formation is denoted by an asterisk.
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Figure 3.3: Genes and their pseudogenes in the mitochondrial genome of Durinskia baltica.

(A) The full-length genes and their derived pseudogenes. The full-length protein-coding genes and the LSU rRNA
gene fragments are represented by colored blocks, while the pseudogenes are shown by colored blocks with a
broken tip. The lines represent non-coding sequences. The genes and their matching sequences within the
pseudogenes are color-coded: cox1 in red; cob in blue; cox3 in green; LSU rRNA fragments in yellow. The
sequences are drawn in scale. The numbers at the bottom of the contigs show their sizes in nucleotides, while the
numbers on the top within parentheses specify the number of the first and last amino acids on the full-length gene
corresponding to the conserved sequences of the pseudogenes. (B) The Alignment of the conserved regions of many
pseudogenes with their corresponding full-length gene.
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Table 3.1: General characteristics of mitochondrial genomes in dinotoms compared to
diatoms

Durinskia Kryptoperidinium Phaeodactylum  Synedra  Thalassiosira

baltica foliaceum tricornutum acus pseudonana
Size (bp)
Total > 35505 > 39686 77356° 46657° 43827°
Coding and intergenic 34242 34742 351772 35944° 36519°
GC content (%)
Total 31.02 32.41 35.08 31.78 30.11
rRNA genes 36.27 36.57 36.66 34.03 33.03
tRNA genes 44.03 43.72 43.01 38.52 40.55
Protein-coding genes 30.25 31.64 32.84 30.73 28.96
Intergenic spacer 22.14 26.15 26.17° 26.74 23.53¢
Gene content
Total 58 59 60 61" 61
Protein-coding genes 33 35 34 33" 34
rRNA genes 2 2 2 2° 2
tRNA genes 23 22 24 24° 25
Intronic ORFs 0 3 2 2° 1
Other ORFs 2 2 0 3° 0
Coding sequence (%) 90.45 83.03 77.01° 88.87 82.88"
Introns 0 3 4 3° 1
Gene overlaps (pairs)® 4 2 6 1 1
Fused genes (pairs)" 2 0 1 0 0
Intergenic spacer (bp) 58 109 841° 73 157?
Gene length' 793 (554) 709 (540) 770 (538) 758(531) 741 (519)

& Data from Oudot-Le Secq and Green (2011).

® Data from Ravin et. al. 2010.

¢ Calculated without repeat region (with repeat region it is 36.28%).

¢ Calculated without repeat region (with repeat region it is 30.10%).

¢ Calculated without repeat region (with repeat region it is 41.72%).

f Calculated without repeat region (with repeat region it is 73.48%).

91n D. baltica: rps12-rps7, nad1-tatC, rps19-rps3-rpl16 fusion, orf124-trnP. In K. foliaceum: rps12-rps7, nad1l-
tatC. In P. tricornutum nad4-rps13, rps2-rps4, nad1-tatC, rpl2-rpsl19, rps19-rpl16, rpl5-trnG. In S. acus and T.
Eseudonana nadl-tatC.

" In D. baltica: rps3-rpl16, rps13-nad9. In P. tricornutum: nad9-rps14.

" First number is the average length of protein-coding genes, the number in parentheses is the average length of all
genes.



Table 3.2: Number of inversions for the inter-conversions of the mitochondrial genomes of
the two dinotoms and those of diatoms (predicted by GRIMM)

D. baltica

K. foliaceum
P. tricornutum
S. acus

T. pseudonana

D. baltica
0

0
5
7
6

K. foliaceum
0

0
5
7
6

P. tricornutum
5

5
0
7
8

S. acus
7

7
7
0
8

T. pseudonana
6

6
8
8
0

67



Table 3.3: Partial protein-coding genes and their transcripts found from the host
mitochondrial genome of Kryptoperidinium foliaceum

iiggsi?cl)(n ggm?gesr of Total Length (bp) 454 Reads  Sanger Reads
coxl JX001614 2 968 37
cox1 transcript JX001613 3 1173 69 12
cob JX001611 4 579 13
cob transcript JX001612 3 927 105 9
cox3 JX001609 1 88 4
cox3 transcript JX001610 3 398 25 3
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Chapter 4: A survey of the host nuclear transcriptome in D. baltica

Introduction

The transformation of an autonomous free-living bacterium into an essential organelle
such as the mitochondrion or plastid through endosymbiosis has been accomplished, at least in
part, by successful endosymbiotic gene transfers (EGTSs) to the host nucleus. The contemporary
mitochondrial and plastid genomes encode only a fraction of the genes whose protein products
keep these organelles viable and functional. The majority of the organelle proteins are encoded
in the nuclear genome. The estimates of the scope of the EGT from the bacterial ancestors of the
mitochondrion and plastid to their respective host nucleus hovers around hundreds to over 1,000
genes (Archibald 2006; Gray et al. 2001; Martin 2009; Martin et al. 2002; Moustafa and
Bhattacharya 2008; Reyes-Prieto et al. 2006; Timmis et al. 2004).

The parallel development of a protein targeting system in these two endosymbiotic events
has complemented the EGT so that the protein products of the transferred genes can be sent to
whence they originated. The independently evolved components of the protein targeting systems
for these two organelles have analogous features found in their protein machinery (i.e. the
organelle carrier proteins, the receptor proteins, TOM, TIM and TOC, TIC) (Cline and Dabney-
Smith 2008; Dolezal et al. 2006; Gutensohn et al. 2006; Kovacs-Bogdan et al. 2010) and in their
targeting signals (mTPs and cTPs). While the primary sequences of these targeting signals are
not conserved, the amino acid compositions and secondary structures of both mitochondrial and
plastid transit peptides share certain features that are, indeed, conserved (Danne and Waller
2011; Duby et al. 2001; Emanuelsson et al. 2000; Franzén et al. 1990; Hammen and Weiner

1998; von Heijne et al. 1989; von Heijne 1986).
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In the secondary endosymbioses, the red and green algae were engulfed by and integrated
within other eukaryotes, and, in most cases, they were reduced extensively to just the plastid with
one or two extra membranes (Archibald 2009; Archibald and Keeling 2002; Cavalier-Smith
1999; Gould et al. 2008; Keeling 2010; Kim and Archibald 2009; Matsumoto et al. 2011; Minge
et al. 2010; Palmer 2003). The secondary plastid genomes, like those in primary plastids, encode
only about 200 genes and rely heavily on their host nuclear genomes, which is enriched by EGT
from both the plastid genome and more prominently the nuclear genome of the red or green algal
endosymbiont (Archibald 2007; Gould et al. 2008; Keeling 2009; Kim and Archibald 2009).
Even in cryptophytes and chlorarachniophytes, whose endosymbionts retain their highly reduced
nucleomorphs, the endosymbionts remain vitally dependent on their host nuclear genomes,
where the majority of the plastid-targeted proteins and the proteins for maintenance of the
nucleomorph are now encoded (Archibald 2007; Gilson et al. 2006; Gilson and McFadden 2002;
Lane et al. 2005). The EGT in the secondary endosymbioses has been complemented by the
amendments of the protein targeting system, partly, with the addition of a signal peptide (SP) to
the plastid transit peptide (cTP), which enables the plastid proteins to overcome the extra
membrane barriers (Deane et al. 2000; Hirakawa et al. 2009; Lang et al. 1998; van Dooren et al.
2001; Wastl and Maier 2000). The extent of EGT from the secondary endosymbionts to the host
has been evaluated, sometimes with drastically different results, in diatoms (Bowler et al. 2008;
Deschamps and Moreira 2012; Dorrell and Smith 2011; Moustafa et al. 2009), in chromerids
(Burki et al. 2012; Woehle et al. 2011) and in dinoflagellates (Minge et al. 2010).

There is also evidence of EGT in Karenia and Karlodinium, whose plastid is derived
from a tertiary haptophyte endosymbiont (Ishida and Green 2002; Patron et al. 2006; Yokoyama

et al. 2011). An expressed sequence tag (EST) survey and phylogenetic analyses in Karlodinium
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micrum has revealed that the plastid is maintained by a chimeric proteome derived mostly from
the haptophyte endosymbiont in addition to some plastid-targeted proteins derived from the
dinoflagellate host (none of which are involved in photosynthesis) and other sources (Patron et
al. 2006). Interestingly, the bipartite targeting signals of these proteins included a typical SP
followed by a cTP that differed from those of both haptophytes and dinoflagellates (Patron et al.
2006). These results suggested that the haptophyte-derived plastid might have coexisted for some
time side by side the original dinoflagellate peridinin plastid (Patron et al. 2006).

Durinskia baltica and Kryptoperidinium foliaceum are the best-studied dinotoms, the
dinoflagellates with a tertiary diatom endosymbiont (Chesnick and Cox 1987, 1989; Cox and
Rizzo 1976; Dodge 1971; Figueroa et al. 2009; Imanian et al. 2007; Imanian and Keeling 2007;
Imanian et al. 2010, 2012; Jeffrey and Vesk 1976; Kite et al. 1988; Kite and Dodge 1985; Tippit
and Pickett-Heaps 1976; Tomas and Cox 1973; Tomas et al. 1973). Despite experiencing certain
character losses (Chesnick and Cox 1987, 1989; Figueroa et al. 2009; Tippit and Pickett-Heaps
1976), the dinotom endosymbiont is unique in retaining many of its original features including
an extra surrounding membrane, most likely derived from its original cell membrane (Eschbach
et al. 1990), its own mitochondria and its prominent nucleus (Cox and Rizzo 1976; Dodge 1971;
Jeffrey and Vesk 1976; Schnepf and Elbrachter 1999; Tomas and Cox 1973; Tomas et al. 1973).
The nucleus of this endosymbiont is much larger and contains much more DNA (Kite et al.
1988) than the nucleomorphs of either chlorarachniophytes or cryptophytes, or even the nucleus
of its close free-living relatives, the diatoms Thalassiosira pseudonana or Phaeodactylum
tricornutum.

The obligate and permanent symbiosis of the tertiary diatom endosymbiont with its

dinoflagellate host in dinotoms raises important and interesting questions regarding the extent of
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genetic and genomic integration of the endosymbiont and its host. These questions become more
intriguing in the light of the recent studies that indicate neither the plastid genome nor the
mitochondrial genomes have been substantially reduced or affected in any significant way
compared to their free-living counterparts (Imanian et al. 2010, 2012). In this study, one main
question is asked: Does the host nuclear genome encode any gene acquired through EGT?
Despite the established nature of endosymbiosis in dinotoms, very little change in their organelle
genomes has been detected (Imanian et al. 2010, 2012), and this promotes the expectation of few
or no EGTs to the host nuclear genome with respect and in response to its ‘permanent guest’ and
its organelles. In the case of plastid, there is an extra layer of complexity to reflect on since the
original dinoflagellate plastid has been replaced by that of the diatom endosymbiont. This
implies that the host nucleus, at least once, encoded many genes (mostly of a red algal origin) for
its original peridinin plastid. With its loss, the dinoflagellate old plastid-targeted genes might be
expected to be lost or gone awry as well, or alternatively, mutated, modified and targeted to the
new endosymbiont plastid.

In order to address and answer these questions and evaluate the above-mentioned
expectations, a dinoflagellate splice leader cDNA library was prepared for the dinotom D.
baltica and subsequently subjected to 454 sequencing. The sequences were extensively examined
especially through BLAST searches and phylogenetic analyses. Our results indicate that the host
nucleus encodes and expresses many mitochondrial genes and just a few plastid genes mainly
with a dinoflagellate affinity. More interestingly, our results corroborate with our expectations
arising from the small degree of endosymbiotic reduction since out of thousands of sequences
only a handful of diatom genes were found in the host cDNA sequences, which most likely

represent a small contamination by the endosymbiont nuclear transcripts.
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Results
The assembly of SL cDNA sequences of D. baltica

The pyrosequencing of SL cDNA of D. baltica produced a total of 553,695 reads with an
average length of 351 bp and 59.7% GC content. The de novo assembly was carefully examined,
using consed 23 (Gordon et al. 1998), and the misaligned reads were removed. The final
assembly contained 65% of all the reads, assembled into 5,625 large sequences with an average
of 63.0% GC content. This Transcriptome Shotgun Assembly project has been deposited at
DDBJ/EMBL/GenBank under the accession GAAT00000000. The version described here is the
first version, GAAT01000000.
The host putative nuclear-encoded mitochondrial proteins of D. baltica

Through BLASTP homology searches 42 protein-encoding sequences with putative
mitochondrial functions were identified from the SL cDNA library of D. baltica (Table 4.1). The
coding sequences of these proteins have an average of 62.5% GC content, ranging from 57.0% to
70.0% while the GC content of the protein-coding genes encoded in the mitochondria of D.
baltica and other dinoflagellates and diatoms have an average closer to 30%. The GC content of
these 42 proteins is also noticeably higher than that in the nuclear genomes of Phaeodactylum
tricornutum and Thalassiosira pseudonana (48.9% and 46.9%, respectively) and their coding
sequences (50.0% and 48.0%, respectively) (Armbrust et al. 2004; Bowler et al. 2008). Since the
mitochondrial genome of dinoflagellates and that of the host in D. baltica encode only three
protein-encoding genes (cox1, cob and cox3), the possibility of transfer of the genes commonly
found in the mitochondrial genomes (for example, nad genes and cox2) from the mitochondrion
to its host nucleus was explored. However, no such genes were found. One of the hallmarks of

the nuclear genome of many dinoflagellates is the presence of multi-copy genes sometimes
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appearing in 1,000 or even 5,000 copies (Bachvaroff et al. 2004; Bachvaroff and Place 2008; Lin
2006). In the set of the D. baltica host mitochondrion-targeted sequences 10 proteins have
multiple copies, ranging from 2 to 13 paralogues, whereas 32 out of 42 proteins appear only in a
single copy (Table 4.1). The amino acid identity of the paralogous sequences ranges from 77% to
99%. These 42 putative nuclear-encoded mitochondrial proteins belong to a variety of functional
categories such as amino acid, lipid, and fatty acid metabolism, electron transport, protein
processing, transcription and translation, and they include the enzymes of tricarboxylic acid
(TCA) cycle, electron transport chain, and subunits of ATP synthase (Table 4.1).
The targeting signals of the host putative mitochondrion-targeted proteins

Multiple sequence alignments of the D. baltica 42 putative nuclear-encoded
mitochondrial proteins with their homologues in other eukaryotic and/or prokaryotic taxa
indicated that 35 had a putative N-terminus, and 23 had an extended N-terminus (marked with a
star in Table 4.2) ranging from 16 to 130 amino acids with an average length of 58. In order to
amplify and sequence the 5” end of the truncated sequences, RT-PCR was tried with both the
total RNA and cDNA of D. baltica as template and a specific primer paired with the splice leader
(SL) primer for each sequence, but in most cases they resulted in amplification of many
products. The 5" ends of four truncated sequences were eventually recovered using 5 RACE.
Despite several trials, the 5 ends of the remaining three truncated sequences could not be
recovered (Table 4.1). All the cDNAs with a confirmed complete 5” end had the conserved
dinoflagellate SL (marked with a caret in Table 4.1).

Four out of the 39 proteins with complete N-terminus were mitochondrial carrier proteins
and lacked mitochondrial targeting signals or transit peptides (mTP) (Emanuelsson et al. 2000).

Mitochondrial carrier proteins usually lack an mTP and instead carry an internal targeting signal
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(Habib et al. 2007). The lack of mTP in some mitochondrial carrier proteins has been
experimentally confirmed in the dinoflagellate Karlodinium micrum (synonym, K. veneficum)
(Danne and Waller 2011). The same four carrier proteins (Table 4.1) also lacked N-terminal
extensions when aligned with their respective prokaryotic homologues.

The N-terminus of each of the remaining 35 proteins was examined in search for
mitochondrial targeting signals, and 19 proteins were predicted (TargetP algorithm) to have
putative mTPs (Table 4.1). The alignment of the N-terminal peptides of the 35 proteins and
analyses of their amino acid compositions and secondary structure (Table 4.2) revealed a similar
pattern observed also in the mTPs of mitochondrion-targeted proteins of other eukaryotes
(Bedwell et al. 1989; Habib et al. 2007; Hammen and Weiner 1998; Roise et al. 1988; von
Heijne 1986; von Heijne et al. 1989) especially the dinoflagellate K. micrum (Danne and Waller
2011). An excess of positively charged basic residues (the red boxes in Table 4.2), much fewer
negatively charged acidic residues (the blue boxes), in the background of hydrophobic amino
acids (the yellow boxes) make the majority of the N-terminal peptides carry a net positive
charge, a feature of mTPs of nuclear-encoded mitochondrial proteins in plants, animals, fungi
and also dinoflagellates (Bedwell et al. 1989; Danne and Waller 2011; Habib et al. 2007;
Hammen and Weiner 1998; von Heijne 1986; von Heijne et al. 1989). More specifically, the
positively charged amino acid Arg and the hydrophobic amino acid Ala are used more frequently
in these targeting peptides compared to their respective mature proteins while the negatively
charged amino acids, Asp and Glu, have been used less frequently (Figure 4.1). A similar pattern
is reported for the average percentage of amino acid compositions of most mTPs compared to
their mature nuclear-encoded mitochondrial proteins in the dinoflagellate K. micrum (Danne and

Waller 2011). The other common feature found in many mTPs is the presence of the amphipathic
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a-helical secondary structure (Danne and Waller 2011; Roise et al. 1988), which is also detected
in the N-terminal peptides of many of D. baltica putative mitochondrion-targeted proteins
(marked with Xs in Table 4.2).

The host putative nuclear-encoded mitochondrial proteins of D. baltica with a likely
dinoflagellate ancestry

In order to elucidate the phylogenetic origins of the 42 putative mitochondrion-targeted
proteins in D. baltica, RAXML 7.2.8 (Stamatakis 2006) was used to reconstruct the Maximum
Likelihood phylogenetic trees for each of these proteins. Despite using the strict e-value of le-
25, the blast output file for many of the D. baltica proteins contained large numbers of hits,
resulting in large phylogenetic trees. In these cases only the partial tree is shown. The BLASTP
output for 8 proteins contained fewer than 5 hits, and/or their length was shorter than 50% of the
total length of the alignment. For these proteins no tree reconstruction was attempted, and only
their best blast hit against the NCBI non-redundant (NR) database is reported (Table 4.1). Also,
the position of D. baltica in 7 phylogenetic trees remained unresolved (marked by a question
mark in Table 4.1) (Figures 4.51-4.54). In 4 of these unresolved trees, D. baltica is separated
from the well-supported diatom clade (Figures 4.S1, 4.S3B and 4.54B).

Of the 27 resolved phylogenies, D. baltica groups with dinoflagellates in 21 trees with
varying degrees of bootstrap support: 68%-89% in 6 trees and more than 90% in the other 15
trees. In 6 protein trees, D. baltica shows a strong dinoflagellate affinity, but the trees are
comprised of a limited number of taxa, only dinoflagellates and apicomplexans (Figures 4.S5A-
C) or dinoflagellates plus two or a few more taxa (Figures 4.S5D-F). The remaining resolved
phylogenetic trees contain a large number of taxa, and they are more informative but complex.

For example, the position of D. baltica in the cysteine desulfurase 1 tree is within dinoflagellates
76



with strong bootstrap support, and it is separated from well-supported diatom clade (Figure 4.2).
A similar pattern is also found in the prohibitin tree, where D. baltica branches with
dinoflagellates (98% bootstrap support), and the dinoflagellate clade is the sister clade to
apicomplexans, and they are separated from the diatom clade (Figure 4.S6A). In 10 other
resolved phylogenies the dinoflagellate clade that includes D. baltica is strongly supported, and
they are separated from the well-supported diatom clades in 9 of these trees (Figures 4.S6B,
4.57,4.S8, 4.3-4.5). In two of these trees, diatoms have two separate clades in each tree, with
100% bootstrap support, suggesting that the two proteins have each at least two isoforms in one
or more taxa (Figure 4.5).

The phylogeny of the multi-copy putative mitochondrion-targeted proteins in D. baltica
is more complex due to their different copy numbers, varying evolutionary rates of different
isoforms in different taxa and perhaps limited sampling. For instance, in some phylogenies
nearly all the D. baltica isoforms branch strongly with other dinoflagellates some of which have
also more than one copy of the protein (Figure 4.3B and 4.S9). More complex phylogenetic trees
are shown in Figure 4.S10. Despite the complicated evolutionary histories of these multi-copy
proteins reflected in these trees, the putative dinoflagellate ancestry of D. baltica proteins are
strongly supported at least for some of the isoforms.

The host putative nuclear-encoded mitochondrial proteins of D. baltica with a non-
dinoflagellate affinity

Dinoflagellates are not represented in 5 out of the remaining 6 resolved phylogenetic
trees where D. baltica branches with a non-dinoflagellate taxon. In the cytochrome P450 704C1
isoform 1 phylogeny, D. baltica is the sister to the only bacterium present in the tree, and its

position is strongly supported (98%) to the exclusion of all other taxa that include green algae
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and plants, fungi, oomycetes and a stramenopile (Figures 4.6A). In the small phylogenetic tree of
hydroxymethylglutaryl-CoA lyase, D. baltica groups with bacteria again with 78% bootstrap
support (Figures 4.6B). In the other two small phylogenetic trees, tricarboxylate transport protein
and saccharopine dehydrogenase domain-containing protein, D. baltica branches with the
stramenopile Aureococcus anophagefferens (to the exclusion of both a ciliate and diatoms) and
the rhizarian Bigelowiella natans (to the exclusion of apicomplexans), respectively, and their
positions are weakly supported (Figures 4.6C and 4.6D). In two trees, elongation factor Tu and
acetyl-CoA carboxylase, D. baltica groups with apicomplexans with weak bootstrap support
(Figure 4.7). The grouping of D. baltica with the apicomplexans, the dinoflagellate sister group,
with weak support, especially in elongation factor Tu tree where the dinoflagellate P. marinus
and D. baltica belong to the same strongly supported clade, may still imply a dinoflagellate
ancestry for the D. baltica protein rather than an HGT from apicomplexans. The dinoflagellate
host in K. micrum is reported to have acquired three horizontally transferred genes for
mitochondrion-targeted proteins from different sources (Danne et al. 2011), and it is possible that
D. baltica has also acquired the above-mentioned proteins through recent HGT events. However,
the limited number of taxa and only weak or moderate support for the position of D. baltica in
most of these cases do not make a strong case for HGTs in D. baltica host nuclear-encoded
mitochondrial proteins.
The putative nuclear-encoded plastid proteins in the SL cDNA library of D. baltica
Through BLAST homology searches 8 putative nuclear-encoded plastid proteins were
identified from the SL cDNA library of D. baltica (Table 4.3). These cDNAs have an average of
61.4% GC content, ranging from 48.2% to 68.1% (Table 4.S1) while the GC content of the

protein-encoding genes in the plastid genomes of D. baltica and other diatoms have an average
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closer to 30% (Imanian et al. 2010; Oudot-Le Secq et al. 2007). Four of these cDNAs appear in
only one copy while the other 4 have multiple paralogues, from 2 to 6 copies (Table 4.3), with
the amino acid identity of the isoforms ranging from 73% to 96%. There was also an RT-PCR-
confirmed fused bi-partite cDNA, encoding a plastid adenylate kinase fused to a U-box domain
containing protein (ADK-UBOX fusion), which is unique to D. baltica. The D. baltica putative
nuclear-encoded plastid proteins fall under different functional categories such as
photosynthesis, carbon utilization, ion transport, cell maintenance and growth and amino acid
biosynthesis.

The 5" ends of most of the nuclear-encoded plastid sequences were recovered and/or
confirmed through 5" RACE. Despite numerous attempts through 5" RACE and also RT-PCR
using the SL and specific primers, the presence or absence of the dinoflagellate SL in 2
transcripts could not be determined (Table 4.3). Based on multiple sequence alignments of these
8 proteins with their respective homologues in other eukaryotes and/or prokaryotes, all the
proteins seem to have a complete N-terminus, and 4 are predicted to have an extended N-
terminal sequence, with an average length of 76 amino acids, ranging from 25 to 160 amino
acids (marked with a star in Table 4.3). Of the cDNAs with the confirmed 5" end (5" RACE
results) , only 2 have the conserved dinoflagellate SL. Also, only 3 proteins are predicted to have
a SP, 2 of which are confirmed to lack the SL and have low GC content, fucoxanthin chlorophyll
a/c binding protein (FCP) and thylakoid bound ascorbate peroxidase (APXT), and the third, FeS
assembly ATPase SufC (SufC), which in addition to a SP is also predicted to have a cTP (Table

4.3).
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The putative nuclear-encoded plastid proteins of D. baltica with a dinoflagellate affinity or
origin

In order to examine the ancestry of the putative nuclear-encoded plastid proteins, they
were subjected to similar phylogenetic analyses. Since the fusion protein was unique to D.
baltica, separate trees were reconstructed for each component of the fused protein. The position
of D. baltica in 2 Maximum Likelihood trees, CASTOR and ADK, remained unresolved
(Figures 4.8A and 4.8C). The D. baltica CASTOR protein lacks the SL and it may be encoded in
the endosymbiont nucleus. In the ADK (N-terminal component of the fusion protein) phylogeny,
D. baltica branches with the dinoflagellate Heterocapsa triquetra (49% bootstrap support), but it
does so to the exclusion of the strong diatom clade (Figure 4.8A). In the UBOX tree, despite the
strong support for the Durinskia/Roombia clade, the limited number of taxa makes drawing any
strong conclusion about its origin in D. baltica difficult (Figure 4.8B). The D. baltica cDNA for
ADK-UBOX fusion protein has a confirmed SL, and it is very likely encoded in the host nucleus,
but its origin or origins remain unclear.

In 4 resolved phylogenies, D. baltica branches with other dinoflagellates with > 50%
bootstrap support. In the chloroplast ascorbate peroxidase (APX) tree, the D. baltica protein is
grouped with those in the dinoflagellates Oxyrrhis marina and H. triquetra with 50% bootstrap
support (Figure 4.9A). The lack of SL in the D. baltica APX protein may suggest that it is
encoded in the nucleus of the diatom endosymbiont rather than that of the dinoflagellate host, but
grouping of D. baltica with other dinoflagellates, though weakly supported, excludes moderately
supported diatom and stramenopile clades (Figure 4.9A). In the carbonic anhydrase tree, the
position of D. baltica at the base of the dinoflagellate clade gains 95% bootstrap support (Figure

4.9B) while in the SufC phylogeny, the Durinskia/Perkinsus clade is only weakly supported but
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separated from the strongly supported clade that includes the plastid copy of SufC (Figure 4.9C).
A copy of SufC in D. baltica as well as in K. foliaceum, in diatoms and phaeophyceans is
encoded in the plastid genome, but it seems to have been transferred to the nucleus in other
lineages with plastids. Also, in the chloroplast o-acetyl serine lyase (OASL) tree, the D. baltica
protein (which has a confirmed SL) and its isoforms cluster with the moderately supported
dinoflagellate clade that is separated from the two strongly supported diatom clades (Figure
4.9D). Despite the weak bootstrap support in two cases, these 4 proteins seem to be encoded in
the nuclear genome of the host in D. baltica and have a dinoflagellate ancestry.

The D. baltica SufC is the only putative plastid protein with a dinoflagellate affinity that
has targeting signals: it is predicted to have both a SP and a cTP, which is rich in the amino acid
proline (21.6%) and does not include any phenylalanine (Phe). Presence of Phe, elevated level of
hydroxylated amino acids (Ser and Thr), positively charged Arg along with that of hydrophobic
Ala and lower usage of negatively charged basic residues characterize the amino acid
composition of the cTPs in dinoflagellates (Patron and Waller 2007). None of the remaining
three putative nuclear-encoded plastid proteins have a SP.

The putative nuclear-encoded plastid proteins of D. baltica with a diatom origin

In the remaining two resolved phylogenetic trees, D. baltica is branched with diatoms
with high bootstrap support or within the strongly supported diatom clade. In the phylogenetic
tree for APXT, the D. baltica protein and its paralogue are grouped with two diatoms with 93%
bootstrap support to the exclusion of dinoflagellates (Figure 4.11A), and in the FCP tree D.
baltica is nested within the well-supported diatom clade (Figure 4.11B). The cDNAs for these
two proteins have lower GC content than that of the cDNAs in other nuclear-encoded plastid

proteins of D. baltica (Table 4.S1, see also Table 4.S2), which is closer to the GC content of
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their homologues as well as that of the genomes and coding sequences in the diatoms P.
tricornutum and T. pseudonana (~ 50%) (Bowler et al. 2008; Armbrust et al. 2004). Both of
these proteins are also predicted to have a SP, but no cTP (Table 4.3). For these two proteins, the
leading 30 amino acids after the SP cleavage site were further analyzed, and the average
percentage of their amino acid composition was compared to that of the mature proteins (Figure
4.11C). All the hallmarks of the diatom cTPs are found in the leader sequences of these two
proteins: the amino acid Phe appears at position +1 and a Pro residue at position +3 of both
leader sequences after the SP predicted cleavage site, a feature found in the diatom cTPs
(Armbrust et al. 2004; Patron and Waller 2007); the majority of leader residues are hydrophobic
(53.5% in both leader peptides); both peptides are enriched in the hydroxylated amino acids and
depleted of the polar acidic residues (Figure 4.11C). Based on their phylogeny and the shared
features of their targeting signals with those of diatoms, these two D. baltica proteins are most
likely of a diatom origin and targeted to the plastid. The two proteins also lack the dinoflagellate
SL, and in all likelihood they are still encoded in the nucleus of the diatom endosymbiont of D.
baltica.
Horizontally acquired genes for the tryptophan biosynthesis in D. baltica

From the SL cDNA library of D. baltica a cDNA encoding anthranilate synthase
containing both component I and Il (ASase) was recovered along with that of a PCR-confirmed
tripartite fused protein, composed of a phosphoribosylanthranilate isomerase, a
phosphoribosyltransferase plus a GTP cyclohydrolase domain containing protein (PRAI-PRT-
GTPCH fusion). The D. baltica PRAI-PRT-GTPCH fusion protein is found in neither
dinoflagellates nor diatoms but only in the stramenopile A. anophagefferens. ASase (component

I and I1), PRAI and PRT proteins comprise four of the seven enzymes involved in tryptophan
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biosynthesis. The D. baltica SL cDNA library was searched for the missing three enzymes
(indole-3-glycerol-phosphate synthase and tryptophan synthase subunits a and 3), but none was
found. Since tryptophan biosynthesis is suggested to be localized in the plastid of diatoms as well
as plants, green and red algae (Jiroutova et al. 2007), these proteins were subjected to similar
analyses conducted for the nuclear-encoded plastid proteins. Separate trees were reconstructed
for the PRAI and PRT components of the fusion protein since the fusion was unique to only D.
baltica and A. anophagefferens. The BLASTP output file for the GTPCH component of PRAI-
PRT-GTPCH fusion protein contained fewer than five hits, and thus no phylogenetic tree
reconstruction was attempted for this portion of the fused protein. In ASase phylogenetic tree, D.
baltica is the sister to the haptophyte Emiliania huxleyi with no significant support, and in both
trees reconstructed for the fusion protein PRAI-PRT-GTPCH, it branches with the stramenopile
A. anophagefferens with 100% bootstrap support to the exclusion of the strong diatom clade in
all three trees (Figure 4.10).

The BLAST results indicate that the phototrophic stramenopiles such as A.
anophagefferens and E. siliculosus, in addition to diatoms and D. baltica encode the fused gene
for ASase, while dinoflagellates either do not have the genes encoding the two components of
ASase or the genes are divergent beyond detection. In the ASase phylogeny,
Durinskia/Emiliania clade is separated from the strong diatom clade, but it remains within the
weakly supported stramenopile clade that is in turn nested within a mixed bacterial clade with
70% bootstrap support (Figure 4.10A). This along with the shared fusion marker in D. baltica,
the photosynthetic stramenopiles and the members of the bacterial clade they belong to imply an
early bacterial HGT to this eukaryotic clade, which is consistent with the results of phylogenetic

analyses conducted elsewhere (Jiroutova et al. 2007). The presence of the SL in the ASase
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cDNA is confirmed through 5" RACE, and its presence implies that the ASase gene now resides
in the nucleus of the host in D. baltica. Since ASase is not found in any other dinoflagellate, it is
possible that the dinoflagellate host in D. baltica acquired it through an HGT.

In the two trees reconstructed for the two components of the PRAI-PRT-GTPCH fusion
protein, D. baltica and stramenopile A. anophagefferens make a strong clade to the exclusion of
the strong diatom clade (Figures 4.10B and 4.10C). This and the shared unique character (fusion
protein) and the absence of PRAI and PRT from the dinoflagellate sequence data make a strong
case for a possible HGT event directly and recently from A. anophagefferens to D. baltica. Given
the functional relatedness of the ASase, PRAI and PRT proteins, it is also possible that their
source in D. baltica is one and the same, A. anophageferrens or its close stramenopile relative.
The 5" RACE result for the transcript of the fusion protein in D. baltica indicates that it, unlike
the ASase, does not have the dinoflagellate SL, suggesting that the gene might be encoded in the
nucleus of the diatom endosymbiont rather than that of the host.

Interestingly, no targeting signals (SP or cTP) are predicted for ASase in D. baltica,
Ectocarpus siliculosus and A. anophagefferens. The D. baltica fusion protein like its homologue
in A. anophagefferens is not predicted to have any targeting signal either, implying a cytosolic
localization for these enzymes in the two organisms. If this is true, diatoms are the only group of
stramenopiles in which tryptophan biosynthesis is localized in the plastid.

Various genetic signals in the entire dinoflagellate host SL cDNA library of D. baltica

In order to assess the extent of possible EGT/HGT to the dinoflagellate host in D. baltica,
the Maximum Likelihood phylogenetic trees were reconstructed for 1,856 proteins from the SL
cDNA library of D. baltica. Since the sequences in this library were expected to originate almost

entirely from the dinoflagellate host, the dominant signal was expected to be a dinoflagellate
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signal. Thus, as control, we looked for trees with topologies in which D. baltica sequences
branched exclusively with a dinoflagellate or within a dinoflagellate clade with > 80% bootstrap
support. The strong dominant dinoflagellate signal is indeed what was found: the automatic
search identified 886 trees in which D. baltica grouped exclusively with dinoflagellates with >
80% bootstrap support. Lowering the bootstrap support to > 50% resulted in retrieving 90 extra
trees where D. baltica queries branched exclusively with other dinoflagellates. There were also
207 trees exclusively comprised of only D. baltica proteins (the query and its paralogues only).
Then, we automatically sorted the trees with topologies where the D. baltica proteins grouped
exclusively with those of a taxon of interest or its clade with > 80% bootstrap support.

PhyloSort (Moustafa and Bhattacharya 2008) was used to estimate the number of unique
gene families and to cluster the repetitive trees for the queries with paralogues in both the entire
set of trees and the subset of trees with a dinoflagellate signal. The total 1,856 trees were
clustered into 590 families with the minimum number of gene overlap set to one. The trees
where D. baltica branched with dinoflagellates (886) were grouped into 291 unique clusters, and
the 207 trees comprised only of the D. baltica proteins and their paralogues were clustered into
33 gene families. The repetitive trees in the rest of the sorted trees were manually identified and
clustered.

All the trees with the non-dinoflagellate signal were then manually inspected. In all these
trees D. baltica showed a definite phylogenetic affinity with a non-dinoflagellate taxon or its
clade (with > 80% bootstrap support), but the limited number of taxa (< 8) or the absence of any
other dinoflagellates or diatoms did not allow us assigning a putative origin for many of these
non-dinoflagellate gene/proteins. Thus, the number of non-dinoflagellate proteins decreased in

nearly all different classes after the manual inspection. For instance, the automatic search
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identified 17 proteins that branched strongly with an apicomplexan or within an apicomplexan
clade, but after further inspection this number was reduced to only 3 mainly due to the absence
of any other dinoflagellate in these protein trees. Presence of at least another dinoflagellate or a
dinoflagellate clade is necessary in distinguishing an HGT to D. baltica from apicomplexans
which are the sister group of dinoflagellates and in their absence D. baltica is expected to branch
with them.

Figure 4.12 summarizes the results of automatic search for different phylogenetic
affinities of D. baltica proteins, and Table 4.S3 provides the list of ids and their possible source
for all the non-dinoflagellate, non-diatom sequences found through automatic search (with black
font) and after manual inspection (in red). Several examples of these trees where the gene seems
to have been acquired through putative HGTs are shown in Figure 4.13. The D. baltica putative
peptidase, for example, branches within the oomycete clade to the exclusion of the dinoflagellate
clade, with high bootstrap support for both clades (Figure 4.13A). In the ubiquitin-activating
enzyme EL1 tree, D. baltica is the sister taxon to the stramenopile A. anophagefferens to the
exclusion of well-supported alveolate group that also includes the dinoflagellate P. marinus
(Figure 4.13B). In the putative nexus protein phylogeny, D. baltica is nested within the
prokaryotes excluded from the alveolates, both clades backed by > 80% bootstrap support
(Figure 4.13C). In the acid phosphatase tree, D. baltica and the haptophyte Emiliania huxleyi are
sister taxa, and they branch within the strongly supported clade of green algae and plants to the
exclusion of alveolate group (Figure 4.13D). In two other trees, D. baltica is the sister to an
excavate (Figure 4.13E) and a glaucophyte (Figure 4.13F), respectively, separated strongly from
other dinoflagellates and/or alveolates. D. baltica is also well-separated from other diatoms or

diatom clades in the five out of these six protein trees (Figures 4.13A, 4.13B, 4.13D-F).
86



The diatom genetic footprint in the SL cDNA library of D. baltica

The automatic search through 1,856 reconstructed phylogenetic trees resulted in
recovering only 14 trees in which D. baltica branched strongly (> 80% bootstrap support) with a
diatom or a diatom clade. Lowering the bootstrap support to 50% led to retrieving only an
additional tree. These 15 trees comprised the initial candidates for EGT in D. baltica (Table 4.4).
The average GC content of the 15 putative diatom-derived candidate sequences is 58.7%, higher
than that of their respective diatom homologues (Table 4.S2). A closer look at these numbers
reveals that some of the D. baltica cDNAs have a closer GC content to their homologues than
others, which might simply reflect the wide range of the GC content within diatoms or limited
sampling. Two of the recovered candidate proteins were APXT and FCP proteins, which were
also detected during our search for nuclear-encoded plastid proteins and discussed earlier. The
strong diatom affinity of the D. baltica proteins is apparent in all the 15 trees. However, in some
trees the number of taxa is simply inadequate, and the tree does not provide any more
information other than a strong diatom kinship (Figure 4.S11). The absence of any dinoflagellate
or alveolate taxon or clade with a supported position in the tree is also another shortcoming of
some of these phylogenies (Figure 4.512).

In two large and complex multi-copy protein trees, P-type ATPase and trypsin-like serine
protease, D. baltica groups strongly with one or more diatoms to the exclusion of apicomplexans
or the dinoflagellate/apicomplexan clade (Figure 4.S13). In the phylogenetic tree for DNA
topoisomerase 3-beta-1, diatoms appear in three separate branches: two clades with 100%
bootstrap support and the third clade that includes only the diatom Pseudonitzschia multiseries,
the D. baltica protein and its paralogue (94% bootstrap support) (Figure 4.14). In this tree, the

dinoflagellates are well separated from the diatom/D. baltica clade. In a slightly simpler tree, D.
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baltica branches within one of the two strongly supported diatom clades to the exclusion of both
ciliates and apicomplexans (Figure 4.15A). In the last phylogenetic tree in this set, replication
protein a large 70 kD subunit, D. baltica is nested within the multi-membered diatom clade with
100% bootstrap support, and the dinoflagellate clade is strongly supported and well separated
from the diatom clade (Figure 4.15B).

Since the D. baltica endosymbiont still retains its own large nucleus, the sequences
emanating the diatom signal might have still been encoded in the endosymbiont nucleus and
contaminated the host SL cDNA library. In order to address this issue, the 5" RACE was carried
out to recover the 5" end of the truncated sequences and also to confirm the presence or absence
of the dinoflagellate SL, which is absent from the diatom transcripts. The 5" end of all the
truncated sequences was successfully recovered. However, despite numerous trials, we failed to
confirm the 5" end and presence or absence of the SL sequences in four of these cDNAs (denoted
by a dash under the SL column in Table 4.4) that appeared to have the complete 5” end in their
alignment with their eukaryotic and/or prokaryotic homologues. Of the 11 sequences for which
we were able to amplify and/or confirm the completeness of their 5" end, one cDNA
(isotig02507, coding for a conserved predicted protein) was found to contain several frame shifts
resulting in four stop codons in its coding sequence, and in all likelihood it is originated from a
non-functional pseudogene (Table 4.4). More importantly, none of these 11 cDNAs with
confirmed 5" end had the dinoflagellate SL. This finding implies that none of the diatom-derived
candidate transcripts with the confirmed 5" end is encoded in the nuclear genome of the host, but

derived most likely from that of the diatom endosymbiont.

88



Discussion
The host nucleus in D. baltica encodes putative mitochondrion-targeted proteins
predominantly of a dinoflagellate ancestry, none with a diatom origin

From the SL cDNA library of D. baltica, 42 protein-encoding sequences were identified
with putative mitochondrial functions, many of which were predicted to have an N-terminal
targeting signal with conserved mTP features. The phylogenetic analyses with strict criteria
suggest that while a few of these proteins might have been acquired through recent HGT events
from various sources excluding diatoms (Figures 4.6 and 4.7), the majority have a putative
dinoflagellate origin as expected, signifying their vertical inheritance. This, in turn, implies that
the nuclear-encoded genes for the diatom-derived endosymbiont mitochondrion (Imanian et al.
2012) are not in the host nucleus but in the nucleus of the endosymbiont.

In a similar study on the dinoflagellate K. micrum, whose endosymbiont has lost its
mitochondrion and nucleus, it is shown that EGT from the tertiary haptophyte endosymbiont has
not contributed at all to the mitochondrial proteome of the dinoflagellate host (Danne et al.
2011). Karlodinium micrum and D. baltica have independently acquired their tertiary
endosymbionts from different lineages, and the obligate and permanent symbiosis in these two
organisms is at different stages. Nevertheless, the hosts in these two dinoflagellates have
converged in not recruiting any mitochondrial gene through EGT. There is also no report of any
significant contribution by other secondary or tertiary endosymbionts through EGT to the
mitochondrial proteome of their hosts. Even in Arabidopsis thaliana, which has a primary
plastid, only a handful of mitochondrion-targeted genes with a putative cyanobacterial origin
have been identified (Martin et al. 2002). The small or lack of contribution of the EGT to the

mitochondrial proteome of the host in primary, secondary and tertiary endosymbioses may be
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due to the selective pressure or lack thereof for replacing or remodeling an already functioning
mitochondrial proteome in the already mitochondriate hosts including the dinoflagellate host in
D. baltica. This selective pressure may also explain the only large scale EGT of mitochondrial
genes that of the a-proteobacterial ancestor of the mitochondrion to its most likely
amitochondriate host (Cavalier-Smith 2009).
The plastid in D. baltica remains almost entirely independent of its host nucleus

All plastids rely heavily on the nucleus of their hosts where hundreds of their essential
proteins are encoded. Through BLAST homology searches in the D. baltica SL cDNA
sequences, only several nuclear-encoded plastid proteins were identified, a few showing a
putative dinoflagellate ancestry (Figure 4.9). Three of these proteins lack canonical bipartite
targeting signals (SP-cTP), and they may be no longer targeted to the plastid. Instead, they may
have found a niche in the dinoflagellate cytosol, especially in the case of carbonic anhydrase and
ascorbate peroxidase which have both cytosolic and plastid isozymes. The third protein, o-
acetylserine lyase (OASL), is one of the enzymes in the cysteine biosynthesis that occurs in the
plastid via acetylserine. The cytosolic pathway proceeds via cystathionine, using different and
distantly related enzymes including cystathionine-beta-synthase (CBS), also found in D. baltica
(isogig03677). Despite the possible presence of both pathways in dinoflagellates (Patron et al.
2006), as the enzymes are only distantly related, the D. baltica OASL may not be engaged in the
cytosolic cysteine biosynthesis, and it may have found a new function.

The D. baltica SufC is the only protein with putative dinoflagellate ancestry that is
predicted to have the canonical bipartite plastid targeting signal. Thus, the evidence suggests that
it might be targeted to the plastid. However, for two reasons it remains uncertain whether it is

actually targeted to the plastid within the endosymbiont: first, a copy of the sufC gene is encoded
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in the diatom-derived plastid genome of D. baltica, so making it biochemically unnecessary and
redundant for the host nuclear-encoded copy to be targeted to the plastid; second, since the
endosymbiont of D. baltica, like other dinotoms, is unique in retaining one extra membrane (the
fifth membrane counting from inside the plastid stroma, derived either from the original diatom
cell membrane or the dinoflagellate host phagocytic membrane), it is unknown whether the
canonical targeting signal on the nuclear copy of SufC could actually take the protein through
this uniqgue membrane barrier. If the dinoflagellate SufC protein is not targeted to the plastid of
the diatom endosymbiont, it might have found a function in other compartments within the
dinoflagellate host. The conservation of the targeting signal of the SufC might even suggest that
it might be targeted to the relic plastid of the dinoflagellate, the triple-membraned eyespot.

Also two of the recovered putative nuclear-encoded plastid proteins, FCP and APXT, are
most likely encoded in the nuclear genome of the endosymbiont and not the host, and they both
have bi-partite plastid targeting signals with the conserved features especially in their diatom
homologues (Figure 4.11). This is corroborated with the results of a recent study suggesting that
the endosymbiont nucleus in the dinotom K. foliaceum encodes the gene for the plastid-targeted
oxygen evolving enhancer protein (PsbO) (Yokoyama et al. 2011). In D. baltica as well as in K.
foliaceum the original dinoflagellate peridinin plastid is gone and replaced by the plastids of the
endosymbiont, which retains nearly all its organelles including its own nucleus (Cox and Rizzo
1976; Dodge 1971; Jeffrey and Vesk 1976; Schnepf and Elbrachter 1999; Tomas and Cox 1973;
Tomas et al. 1973). Not surprisingly, the loss of original peridinin plastid in D. baltica seems to
have been followed by the loss of the cDNAs for dinoflagellate plastid-targeted proteins and
perhaps their genes. On the other hand, retention of the endosymbiont nucleus appears to have

made unnecessary the EGT of nuclear-encoded plastid genes to the host nucleus. In K. micrum,
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the nuclear genome of the host should encode all the genes for the plastid-targeted proteins as it
is the only present nuclear genome, and it is shown that most of the recovered nuclear-encoded
plastid-targeted proteins have a haptophyte origin (EGT from the tertiary endosymbiont) while
some are derived from the red alga that gave rise to the peridinin plastid (EGT from the
secondary endosymbiont) (Patron et al. 2006). In D. baltica, however, the contribution of the
dinoflagellate host nucleus in encoding plastid-targeted proteins seems to be minimal if not null,
and the plastids seem to rely entirely on the endosymbiont nucleus.
D. baltica host nuclear genome has acquired many genes from a variety of sources but none
from its diatom endosymbiont

Through phylogenetic analyses, automatic sorting algorithms and manual inspections 28
protein trees congruent with HGT to D. baltica were identified. Identifying an HGT event and
determining its source in an organism is generally challenging (Keeling and Palmer 2008) and
more so in an extremely complex organism such as D. baltica. Based on our phylogenetic
analyses it seems possible that D. baltica has gained many genes through multiple putative
HGTs not from a single source but from a variety of sources including apicomplexans,
stramenopiles, haptophytes, plantae, fungi, excavates and more prominently bacteria (see Table
4.S3 and Figure 4.13). It should be emphasized that some of these lineages (i.e. apicomplexans)
are very unlikely sources of an HGT to D. baltica, and their grouping with D. baltica in the
phylogenetic trees is the result of sampling errors or other tree making artifacts. Interestingly,
two more plausible cases of HGT in D. baltica (Figure 4.10) were not detected through our
phylogenetic analyses and automatic sorting pipeline but through BLAST homology searches
because they involved two fused proteins, ASase (component | and I1) and PRAI-PRT-GTPCH.

The two fused proteins are not found in any dinoflagellate. The immediate source of HGT for the
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fusion protein ASase cannot be determined confidently. However, in case of PRAI-PRT-GTPCH
fusion protein, it seems that D. baltica has acquired it from a stramenopile like A.
anophagefferens, the only organism which has this rare fusion protein. The 5° RACE results
introduce a complicated twist in the story of these two HGTs: while the ASase cDNA has a SL
and perhaps is encoded in the dinoflagellate host nucleus, the cDNA for PRAI-PRT-GTPCH
fusion protein does not have it and is probably encoded in the endosymbiont nucleus. Where
exactly the two fused genes are located, whether they were acquired through one or two HGT
events and when they were transferred all remain unknown.

Out of 1,856 reconstructed phylogenetic trees for the D. baltica SL cDNA sequences and
using automatic sorting algorithms, only 15 proteins with a diatom affinity were identified, 11 of
which were found to lack the dinoflagellate SL. This implied that most of these diatom-derived
genes were originated from the endosymbiont nucleus. These results in conjunction with the
results of the BLAST homology searches for the nuclear-encoded mitochondrion- and plastid-
targeted proteins all indicate that there has been no EGT to the host nucleus in D. baltica.
Considering the permanent and obligate nature of symbiosis in dinotoms (Chesnick and Cox
1987, 1989; Cox and Rizzo 1976; Figueroa et al. 2009; Tippit and Pickett-Heaps 1976; Tomas et
al. 1973; Tomas and Cox 1973) and the close association of the two partners over evolutionary
time, one would expect a large scale EGT to the nuclear genome of the host. This is not the case.
The small degree of reduction in the endosymbiont, the little loss and change in its organelle
genomes (Imanian et al. 2010, 2012), and the lack of almost any EGT to the host nuclear genome
reveal a strict compartmentalization and division of labor between the two partners in D. baltica
not seen in any other endosymbiont. Most other secondary and tertiary endosymbionts/plastids

reside within the endomembrane system of their host and surrounded by 3 or 4 membranes, the
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outermost of which is thought to have been derived from the host phagocytic membrane
(Archibald and Keeling 2002; Archibald 2009). The diatom endosymbiont in dinotoms including
D. baltica has a fifth membrane that separates it from the host cytosol, and it is thought to have
been originated from its ancestral diatom cell membrane (Eschbach et al. 1990). This membrane
might be the actual physical barrier between the diatom and dinoflagellate in dinotoms, and its
endurance over evolutionary time might be the simple reason behind not only the lack of any
EGT to the host but also the little reduction seen in the endosymbiont.
Conclusions

It is generally assumed and shown in many instances that permanent symbiosis and EGT
go hand in hand. While the permanent nature of symbiosis between the host and endosymbiont in
dinotoms such as D. baltica is well documented, in this study no evidence for any EGT was
found in this dinotom. One of the implications of the lack of EGT to the host in D. baltica is that
the host mitochondria remain almost entirely dependent on the host nucleus while the
endosymbiont mitochondria and plastids seem to rely exclusively on the endosymbiont for their
nuclear-encoded proteins. This strict compartmentalization in D. baltica is unique, suggesting
that the permanent symbiosis is not always accompanied by EGT as seen in other organisms with
permanent endosymbionts or endosymbiont-derived organelles.

Materials and methods

Strains and culture conditions

The culture of Durinskia baltica (Peridinium balticum) CSIRO CS-38 and was obtained
from the CSIRO Microalgae Supply Service (CSIRO Marine and Atmospheric Research
Laboratories, Tasmania, Australia). The culture was maintained in GSe medium at 22 °C (12:12

light:dark cycle).
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Nucleic acids extraction, preparation, amplification and 5" RACE

Exponentially growing cells were collected and ground as described previously (Imanian
et al. 2007). Cells lysis, DNA extractions, precipitations and purifications were performed for
both species as described earlier (Imanian et al. 2010). Total genomic DNA was extracted for
polymerase chain reactions (PCR) either as described previously (Imanian et al. 2010), or using
Master Pure Complete DNA and RNA Purification Kit (EPICENTRE Biotechnologies, Madison,
WI, USA) following the manufacturer’s instructions. Total RNA for RT-PCR was obtained as
described earlier (Imanian et al. 2007). RNeasy MinElute Cleanup kit (Qiagen, Mississauga, ON)
was utilized to clean up the total RNA after DNase treatment according to the manufacturer’s
instructions. Oligotex MRNA Mini Kit (Qiagen, Mississauga, ON) was used to purify poly A
RNA from approximately 25 g of cleaned-up total RNA based on the manufacturer’s
instructions. PCR and RT-PCR reactions were performed using specific primers designed based
on the genomic and/or the obtained cDNA data as described elsewhere (Imanian et al. 2007,
2010). Long range PCRs were conducted either as described earlier (Imanian et al. 2007, 2010),
or using Expand Long Template PCR System kit (Roche Applied Science, Indianapolis, IN,
USA) following the manufacturer’s instructions. The 5" ends of truncated transcripts were
recovered/ascertained using FirstChoice RLM-RACE kit (Life Technologies, Burlington, ON)
and sequenced on both strands using BigDye terminator chemistry.
Splice leader (SL) cDNA construction and amplification for D. baltica

Approximately 500 ng of poly A RNA from D. baltica was used as template for
constructing first and second strand cDNA with Just cDNA Double Stranded cDNA Synthesis
kit (Agilant Technologies Canada, Mississauga, ON) according to manufacturer’s protocol with

one modification: instead of oligo (dT) and random 9mer primers, a dinoflagellate splice leader
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(SL) primer (5- CCGTAGCCATTTTGGCTCAAG-3") was used. The resulting double-stranded
cDNA sample was amplified through PCR and/or long-range PCR with the SL primer in
conjunction with the random 9mer primer. The amplified cDNA sample was purified using
QIAquick PCR Purification kit (Qiagen, Mississauga, ON), and re-amplified once more through
PCR and/or long-range PCR. The optimized PCR conditions were determined to be: 94 °C for 2
min, 39 cycles of 94 °C for 15 s, 42 °C for 30 s, 72 °C for 5 min, followed by 72 °C for 6 min,
while the long-range PCR conditions were optimized at 92 °C for 2 min, 34 cycles of 94 °C for
10 s, 45 °C for 15 s, 68 °C for 20 min, followed by 68 °C for 7 min using buffer 3 from Expand
Long Template PCR System kit (Roche Applied Science, Indianapolis, IN, USA).
The cDNA sequencing and assembly

The amplified SL cDNA of D. baltica was sequenced using massively parallel GS-FLX
DNA pyrosquencing (Roche 454 Life Sciences, Branford, CT, USA). The GS-FLX shotgun
libraries and pyrosequencing using the GS-FLX Titanium reagents were carried out at the
Genome Québec Innovation Centre. Sequences were assembled de novo using gsAssembler
2.5p1 (formerly known as Newbler), edited and re-assembled with CONSED 23 (Gordon et al.
1998, 2001), which was also used for designing various primers including outer and inner
primers to amplify the 5" ends of transcripts paired with 5" RACE outer and inner primers,
respectively.
Assessing the phylogenetic footprints of diatoms and other taxa in the SL cDNA sequences
of D. baltica

ORFPredictor (Min et al. 2005) was used to translate the D. baltica SL cDNA sequences,
which were subsequently used as queries in a BLASTP (Altschul et al. 1990) homology search

with an e-value < 1e-5 against the protein collections from complete genomes and EST databases
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(the complete list of the taxa is found in Table 4.54). In order to retrieve all the aligned
sequences (hits) for each query, the default value for blastp parameter —max_target_seqgs was
changed from 100 to 100,000. The sequence retrieval, alignment and tree reconstruction were
conducted as described elsewhere (Burki et al. 2012) with the following modifications. CDHIT
(Li and Godzik 2006) was utilized to remove redundant sequences and close paralogues from
each protein database to simplify interpretations of the resulting phylogenetic trees (with 85%
identity threshold for clustering). The blast output file was parsed with a strict e-value threshold
of 1le-25 to reduce the number of distantly related paralogues and to generate multiple fasta files
including each protein query and the corresponding hits. The sequences in each file were aligned
using MAFFT (Katoh and Toh 2008) with the fftnsi option, and alignment positions were
selected and sites containing more than 10% of were removed using TRIMAL (Capella-
Gutiérrez et al. 2009). The alignment files with fewer than 5 species or when the query
sequences were shorter than 50% of the total length of the alignments were discarded at this
stage. FastTree (Price et al. 2009) with the WAG model of evolution (Whelan and Goldman
2001) was used to reconstruct initial trees. A Ruby script was used to reduce the complexity of
these trees by keeping only a subset of representative operational taxonomic units (OUT) in well-
supported clades (> 0.9 Shimodaria-Hasegawa or SH (Shimodaira and Hasegawa 1989) support);
dinoflagellate and diatom taxa were flagged and left out of this procedure. From other taxa, 10
prokaryotes, 10 green algae, 10 red algae, 10 glaucophytes, 5 streptophytes, and 2 from all the
rest of the taxa retained. The sequences for the retained taxa were retrieved anew into multiple
fasta files, and MAFFT (Katoh and Toh 2008) with the fftnsi option was used to align them and
TRIMAL (Capella-Gutiérrez et al. 2009) was used as described above to choose the aligned

positions and remove the gaps. RAXML 7.2.8 (Stamatakis 2006) was run to reconstruct the
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phylogenetic trees, with LG substitution matrix + I'4 + F evolutionary model with 100 bootstrap
replicates. A Perl script (Chan, Reyes-Prieto, et al. 2011; Chan, Yang, et al. 2011) was used in
the initial sorting of these trees with a variety of preconditions (i.e. the query sequences from D.
baltica should be monophyletic with the members of diatoms, or dinoflagellates, or others such
as green algae, stramenopiles, prokaryotes, etc. with a specified percentage of support, in most
cases at least 80%). PhyloSort was also used to estimate the number of gene families and to
cluster the repetitive phylogenetic trees for the queries with multiple paralogues (Moustafa and
Bhattacharya 2008). Then, the trees under all the preconditions, with the exception of
monophyletic grouping of the D. baltica queries with dinoflagellates, which constituted most of
the trees, were manually examined. The trees with a non-dinoflagellate signal that contained
fewer than 8 taxa were deemed non-informative and discarded. Presence of at least a
dinoflagellate or a diatom taxon or their respective clades was considered as a necessary criterion
in order to assign a non-dinoflagellate non-diatom, but a eukaryotic taxon’s signal to a D. baltica
protein query. Also, presence of both at least a dinoflagellate and a diatom taxon in the trees with
diatom signals was considered a necessary precondition for assigning a diatom signal to a D.
baltica protein query.
Identification and annotation of organelle-targeted genes

The protein sequences for the SL cDNA sequences (described above) were used as
queries in BLASTP homology searches against the protein collections from the following subsets
of the NCBI non-redundant (NR) databases and/or the Joint Genome Institute (JGI) downloaded
on 2012/03/31; a) the available mitochondrial and/or plastid genomes from red, green and
glaucophyte algae, diatoms including the endosymbiont of D. baltica and K. foliaceum and their

host’s mitochondrial genes, other stramenopiles, haptophytes, cryptophytes, apicomplexans
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(mitochondrial and/or apicoplast genomes), ciliates, chromerids (Chromera velia), amoebozoans,
several representatives from opistokonts including human, rat and yeast, and Malawimonas
jakobiformis and Reclinomonas americana, and the organelle-encoded genes of other
dinoflagellates; b) mitochondrial genes including nuclear-encoded, organelle-targeted genes; c)
plastid genes including nuclear-encoded, organelle-targeted genes. The initial candidates for
putative mitochondrial or plastid targeted genes in the SL cDNA sequences of D. baltica were
selected based on their BLAST score (threshold e-value < 1e-5) against the sequences in the first
two databases.

The candidate sequences were, then, used as queries against the entire NR databases. The
BLAST results were examined manually at this stage. In order to be selected as a putative
organelle-targeted protein, the candidate sequence had to meet at least one of the following
criteria: its best BLAST homologues against the entire NR database should be encoded within a
mitochondrial or plastid genome; it should be known to be targeted to the mitochondrion or
plastid; its putative function should be part of a biochemical pathway or process known to occur
in one of the two organelles. Presence of targeting signal was also considered in the final
selection of the nuclear-encoded organelle proteins.

The putative organelle-targeted proteins were annotated based on their best and most
informative homologues found in BLASTP searches against the entire NR database and/or the
domain homology searches against the Conserved Domain database (Marchler-Bauer et al.
2009).

Targeting signal predictions
The presence/absence of the 5" end of transcripts was determined after aligning them

with their best eukaryotic (mitochondrial, plastid and cytosolic copies included whenever
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available) and/or prokaryotic homologues. TargetP (Emanuelsson et al. 2000) was used to check
for mitochondrial transit peptide (mTP), while ChloroP (Emanuelsson et al. 1999) and SignalP
3.0 (Bendtsen et al. 2004) with NN option were used to search for a plastid transit peptide (cTP)
and a signal peptide (SP), respectively. If a signal peptide was predicted, its predicted sequences
were removed prior to search for cTP. Amino Acid Calculator
(http://proteome.gs.washington.edu/cgi-bin/aa_calc.pl) was used to calculate the amino acid
composition of the mTP, cTP, SP and the mature proteins. Webserver SCRATCH
(http://scratch.proteomics.ics.uci.edu/) was used to predict the putative a-helices, and their
potential amphipathic properties were examined by helical wheel projection
(http://cti.itc.virginia.edu/~cmg/Demo/wheel/wheel App.html). The peptides (> 5 amino acids)
that contributed to both the a-helical secondary structure and amphipathic properties were

predicted to make up an amphipathic a-helix (Danne and Waller 2011).
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Figure 4.1: Average percentage of amino acid composition in the Durinskia baltica
mitochondrial transit peptides (mTPs) compared to that of the mature proteins.
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Figure 4.2: The maximum likelihood trees for cysteine desulfurase 1, partial tree.

Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several
taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in
scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. Pl, taxon
with a plastid; PINo, taxon without plastids.
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A) Mitochondrial succinate dehydrogenase iron-sulphur subunit B) Mitochondrial succinate dehydrogenase flavocytochrome ¢
Prok-Deino-Meiot! mhrmﬁzal‘%mi

Plantae-Red :Iﬁlﬁ_ CGabdieria 1|1|]1‘|ur|n|rdl]\|]"ﬁ|l UNO2017 r{“
cata(dl y rida ES?IMI!
. f.' Hl’lr&ophy:_wl’lr\mnuz;’uu? parvumieUNOZ8] T iun
te-Em
P N mocbozo Dictyostel 0937 Pmmm"ﬂ“ Py e 1053
i, disonids 6526409 ﬂm uauommé’m:m
p Crucs 35 -]inclnsdcsmlum enythracumix 1 13476069
; _algae )'delmlh\-mr !r'\mlaura{. \f\\
ylum_tr N 10188
b}:.LI'.l\.I‘Ii l\ut rﬁh_'tr‘rf etk sl‘} fgcnc«h (’j&c i 018
Plamw-(l"lwtcnﬂ‘m—%b ‘_
ac-Circen algiie
100
PlCr ad-Guillardia_theta@ 159012
Plantae-G £ 1 5949 782
PI‘I‘Jaln'I ‘2|m96(
00 Prok- Protco-Salinisphacra_shabancns 4133“24')‘
}g'mk Alpha-Sphingobim sp.mns
64 e Orai mmugummmm%m
Prok-| l’mtm J\II::llulm'mumla chrluhug;l]-ﬂzmﬂ
r P teo-Methylomicrobium_a ?hl\nmﬁjs‘mls 100}
lsena wnlnlc'm"
ichia_rurninantiumd)3 8617434
ba:hlz end.os!mblont‘awﬂsm'?l
Mcl.aron 1)s|1hn|a k:@‘?‘loﬂ
Jumaloﬂella vectensis@ 181975
'-{cuuun Lottia_ 1 60203
dcns 364649
‘LIW'H‘
. TYPUCOCCUS nbﬂl‘ﬂmum.%("hh(" 0322670
Fungi-Laccaria_ 'numlomr T
) l_Fungl Neurospora_crassaa) \CCOC‘)S‘JTO
myces
99 — Pi-Api lexa-Plasmad r@eummmomozo
L plApion 2-Plusmads JeiparumialPFLOG 30w
B
o
T gum"‘J"’“Sr (%m'o %?mm
n:
FFU'l‘.:'\" suugu mn)u -.e’a MO T fJ
e acilliss, ?wummg w.'m
: ’Tmnu,: alefrmentng 65902163
a1 " Prok-Firm-Lactabacillus_reutena | 453447 1
Prok-Actino-C rdncnmm: curumir 236827575
Prok- ACIIWS acknn cmg\ul"'nglf%ww
mchma L~a|dam§“3”vfmu|3
23389
Pmﬂ: l)efe l)eqmmkbwln ncﬁ!phll _u_Z'?IlﬁNU?U
Il’"k['l”uklné' Hrnmrna s 3
o c-Selag 3
— Blantae Strptophyte-Selaginclla mocllendorTis $2638 p T e

Figure 4.3: The maximum likelihood trees for the host putative nuclear-encoded mitochondrial proteins in Durinskia baltica
(SdH FeS subunit and SdH FCytC).

A) Mitochondrial succinate dehydrogenase iron-sulphur subunit, partial tree, B) Mitochondrial succinate dehydrogenase flavocytochrome c. Numbers at the
nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. The braces indicate the D. baltica protein’s isoforms. Several taxa of

interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet; Stramenopiles in orange; Green algae and
Plants in green; Red algae in red; All other taxa in black. P, taxon with a plastid; PINo, taxon without plastids.
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A) 2-oxoisovalerate dehydrogenase, alpha subunit
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Figure 4.4: The maximum likelihood trees for the host putative nuclear-encoded mitochondrial proteins in Durinskia baltica

(OIVDH Alpha subunit and DnaJ/SEC63).

A) 2-oxoisovalerate dehydrogenase, alpha subunit, partial tree, B) DnaJ/SEC63 protein. Numbers at the nodes indicate bootstrap support > 50%. A yellow box
highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in
scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. Pl, taxon with a plastid; PINo, taxon without plastids.
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A) Hypersensitive-induced response protein 1-like band7-domain B) Chaperone protein DnaJ
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Figure 4.5: The maximum likelihood trees for the host putative nuclear-encoded mitochondrial proteins in Durinskia baltica

(HIRP and DnaJ).

A) Hypersensitive-induced response protein 1-like, band7-domain, B) Chaperone protein DnaJ, partial tree. Numbers at the nodes indicate bootstrap support >
50%. A yellow box highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in
dark blue; Diatoms in scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. Pl, taxon with a plastid; PINo,

taxon without plastids.
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A) Cytochrome P450 704C1-like isoform 1
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B) Hydroxymethylglutaryl-CoA lyase, mitochondrial
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Figure 4.6: The maximum likelihood trees for the host putative nuclear-encoded mitochondrial proteins in Durinskia baltica

(CytP450 and HMG CoAL).

A) Cytochrome P450 704C1-like isoform 1, B) Hydroxymethylglutaryl-CoA lyase, mitochondrial, C) Putative tricarboxylate transport protein, D) Saccharopine
dehydrogenase domain-containing protein. Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several
taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet; Stramenopiles in orange; Green algae

and Plants in green; Red algae in red; All other taxa in black. PI, taxon with a plastid; PINo, taxon without plastids.
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A) Elongation factor Tu
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Figure 4.7: The maximum likelihood trees for the host putative nuclear-encoded mitochondrial proteins in Durinskia baltica

(EFTu and AcCoAC).
A) Elongation factor Tu, partial tree, B) Acetyl-CoA carboxylase, partial tree. Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights

the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet
Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. PI, taxon with a plastid; PINo, taxon without plastids.
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Figure 4.8: The maximum likelihood trees for the host putative nuclear encoded plastid proteins in Durinskia baltica (Fusion
Protein AK-UBox and CASTOR).
A) Soluble starch synthase 1, chloroplastic/amyloplastic, B) lon channel CASTOR, chloroplastic, C) Fusion protein, chloroplast adenylate kinase, partial tree, D)
Fusion protein, U-box domain containing protein. Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica.

Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet; Stramenopiles in orange;
Green algae and Plants in green; Red algae in red; All other taxa in black. The D. baltica protein’s isoforms are in dark brown. PI, taxon with a plastid; PINo,

taxon without plastids.

108



A) Chloroplast ascorbate peroxidase
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B) Chloroplast carbonic anhydrase

Prok-Bacter-Haliscomenobacter hydrossm%33266290?
2-Prok-Deino-Deinococcus _pmleo“lyucusﬂ_‘.
Prok-Deino-Deinococcus_geothermalisi 94986292
33 Prok-Deino-Deinococcus_radiodurans(a)13
Prok Demo Deinococcus_maricopensisi 0}320335424
ﬂ;petompﬁon aurammcus(,ls‘) 97163
60 PI Di nuﬂ.lg ate-Heterocapsa | |'II{|lII.Ud @UN1719
Pl-DinofTagellate-C marina 2
P] Dinoflagellate-C _maring
Pl-Dinoflagellate-Heterocapsa triquetra@UN0216
urinskia baltica-isotig03:
Pl-Excavate-Euglena_gracilis@UNO01021
78] Pl-Excavate-Euglena_gracilis@UN00446
ruk Actino-Corynebacterium nuruk|(_,35 559633
Plantae-Gréen_algae-Volvox carferi@77
Plantac: en_algae-Chlamydomonas runhdrdmfu 133249
Prok-Actino-Bifidobacterium_breve@291455716
Prok-Actino-Bifidobacterium blﬁdl.lm& 311063491
Prok-Actino-Scardovia_inopinata@?294790358

0.2

PI-Ding{ el Afr aldnclla@UN3600
g l‘ifmﬁa--Lhﬁ@”\ﬁf'x’"xhc‘[ﬁﬁ.'# Caitnellags UNJ6]

‘?Iapllglr fte Ha\:ln%aLTu( cl‘llf.lbwﬁbld agUN4T

stmococcm ]ucnn arinus@6186

54 'mhc Streptopl wte- Iy 71 sativ. ‘1((: O(" Os12p07830.1
igm.- tre ;L\ ,“} mayslal 19605147
Ill‘lantdc Strc h\-'IC ) mavga

4g41180.1
:1]||11:[§:$ 1r]e “(PE-WII: *;\\rr:ill;] {()] ';\1; ﬁl'nléllLula#é:r i‘:q 1 (Q 93498 l]

g45700.1

C) FeS assembly ATPase SufC
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Figure 4.9: The maximum likelihood trees for the host putative nuclear encoded plastid
proteins in Durinskia baltica (APX, CA, SufC and OASL).

A) Chloroplast ascorbate peroxidase, B) FeS assembly ATPase SufC, C) Chloroplast carbonic anhydrase, D)
Chloroplast o-acetyl serine lyase, partial tree. Numbers at the nodes indicate bootstrap support > 50%. A grey box
indicates the plastid-encoded SufC in B.A yellow box highlights the position of D. baltica. Several taxa of interest
are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet;
Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. The D. baltica
protein’s isoforms are in dark brown. P, taxon with a plastid; PINo, taxon without plastids.
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A) Anthranilate synthase
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Figure 4.10: The maximum likelihood trees for the host proteins in Durinskia baltica inferring horizontal gene transfer events
(ASase and the fusion protein PRAI-PRT) .

A) Anthranilate synthase, B) Fusion protein, phosphoribosyl anthranilate isomerase, C) Fusion protein, phosphoribosyltransferase, partial tree. Numbers at the
nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue;
Apicomplexans and Ciliates in dark blue; Diatoms in scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black.
Pl, taxon with a plastid; PINo, taxon without plastids.
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A) Chloroplast thylakoid bound ascorbate peroxidase
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B) Fucoxanthin chlorophyll a/c binding protein
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Figure 4.11: The maximum likelihood trees for the host putative nuclear encoded plastid proteins in Durinskia baltica (APXT

and FCP).

A) Chloroplast thylakoid bound ascorbate peroxidase, B) Fucoxanthin chlorophyll a/c binding protein. Numbers at the nodes indicate bootstrap support > 50%. A
yellow box highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and ciliates in dark blue;
Diatoms in scarlet; Stramenopiles in orange; Green algae and plants in green; Red algae in red; All other taxa in black. C) Amino acid composition of plastid
transit peptides versus that of the mature protein in these two proteins. PI, taxon with a plastid; PINo, taxon without plastids.
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Figure 4.12: Sequences with various phylogenetic signals identified through automatic
phylogenetic analyses of the SL cDNA library of D. baltica.

The 1856 reconstructed protein trees for the D. baltica sequences were automatically sorted into various groups
based on the phylogenetic affinity and the bootstrap support for the D. baltica query protein (> 80%). The Y-axis
shows the percentage of the phylogenies calculated based on the number of trees after clustering. The numbers on
top of the bars indicate the number of phylogenetic trees (also after clustering for dinoflagellates and before
clustering for all other taxa) in which D. baltica is grouped with that taxon.
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A) Putative peptidase B) Ubiquitin-activating enzyme E1 C) Putative nexus protein
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Figure 4.13: Examples of maximum likelihood trees congruent with HGT from various sources found in the SL cDNA library
of D. baltica.

A) Putative peptidase, partial tree, B) Ubiquitin-activating enzyme E1, partial tree, C) Putative nexus protein, D) Acid phosphatase, E) Hypothetical protein, F)
Lysine-ketoglutarate reductase/saccharopine dehydrogenase bifunctional protein. Numbers at the nodes indicate bootstrap support > 50%. A yellow box
highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and ciliates in dark blue; Diatoms in
scarlet; Stramenopiles in orange; Green algae and plants in green; Red algae in red; All other taxa in black. . PI, taxon with a plastid; PINo, taxon without
plastids.
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Figure 4.14: The maximum likelihood tree for DNA topoisomerase 3-beta-1 showing a
diatom affinity for the D. baltica protein to the exclusion of alveolates.
Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several

taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and ciliates in dark blue; Diatoms in
scarlet; Stramenopiles in orange; Green algae and plants in green; Red algae in red; All other taxa in black. PI, taxon

with a plastid; PINo, taxon without plastids.
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A) Na+-dependent transporter, SNF family B) Replication protein a large 70 kD subunit
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Figure 4.15: The maximum likelihood trees for the putative nuclear encoded proteins in Durinskia baltica congruent with a
diatom affinity or origin to the exclusion of alveolates (SDTSNF and RPA1).
A) Na+-dependent transporter, SNF family, B) Replication protein a large 70 kD subunit. Numbers at the nodes indicate bootstrap support > 50%. A yellow box

highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and ciliates in dark blue; Diatoms in
scarlet; Stramenopiles in orange; Green algae and plants in green; Red algae in red; All other taxa in black. P, taxon with a plastid; PINo, taxon without plastids.
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Table 4.1: Putative mitochondrion-targeted proteins in Durinskia baltica

Function

alternative energy metabolism

amino acid break down

amino acid metabolism

ATP synthase complex

carrier protein

cell cycle, cristae morphogenesis,
functional integrity
cytochrome-independent oxygen
consumption

detoxification

Protein (# of paralogues) BLAST e-
value

Pyruvate:Ferredoxin 0.00E+00

(flavodoxin) Oxidoreductase

(PFO) (13)

3-hydroxyisobutyrate 1.00E-58

dehydrogenase, mitochondrial

precursor (HIBADH)

Hydroxymethylglutaryl-CoA 2.00E-21

lyase, mitochondrial

cysteine desulfurase 1 1.00E-135

2-oxoisovalerate dehydrogenase, 1.00E-86

alpha subunit

saccharopine dehydrogenase 1.00E-33

domain-containing protein

mitochondrial ATP synthase FO 1.00E-36

lipid binding subunit-like protein

3

mitochondrial ATP synthase F1 1.00E-78

delta subunit

mitochondrial ATP synthase 2.00E-34

oligomycin sensitivity-

conferring protein

mitochondrial tricarboxylate 7.00E-50

transporter-like protein 2

ATP-binding cassette protein 3 4.00E-107

mitochondrial 3.00E-34

carnitine/acylcarnitine carrier

protein

putative tricarboxylate transport 6.00E-26

protein

Prohibitin 2.00E-95

AOX alternative oxidase 2.00E-52

isoform A

manganese superoxide 7.00E-36

5end 3"end mTP

yes

yes

yes

yes
yes

yes

yes

yes

yes

yes
yes
yes
yes
yes
yesh

yes

no

no

no

no
yes

no

yes

yes

no

no

no

yes

no

no

no

no

yes

yes

yes

yes
yes

no

yes

yes

yes

no

no

no

no

no

yes

no

Phylogeny

dino ++++

prok ++++

dino ++++
dino ++++

rhiz ++

dino ++++

dino ++++

Karlodinium micrum

dino ++++
?
dino ++++
stram +

dino ++++

?

Contig/lsotig

isotig00473

isotig03674

isotig04911

isotig01672
isotig01468

isotig03670

isotig05154

isotig03014

isotig03806

isotig05539
isotig02716
isotig05364
isotig01938
isotig01743
isotig05153

isotig04461
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Function

electron transport chain

faty acid synthesis
short chain fatty acid oxidation

lipid metabolism, fatty acid beta
oxidation
metabolic homeostasis

mitochondrial fusion?
nucleotide metabolic process

other

protein processing, modification,
transport/folding

TCA cycle

Protein (# of paralogues)

dismutase

electron transfer flavoprotein
subunit beta

cytochrome P450 704C1-like
isoform 1

flavoprotein subunit of succinate
dehydrogenase

mitochondrial cytochrome c-like
protein 2

acetyl-CoA carboxylase
3-hydroxyacyl-CoA
dehydrogenase (2)
Medium-chain specific acyl-
CoA dehydrogenase (8)

protein ETHEL, mitochondrial-
like

Dynamin-like protein
oligoribonuclease, mitochondrial

hypersensitive-induced response
protein 1-like band7-domain (2)
hypothetical protein
CAEBREN_09431
mitochondrial processing
peptidase alpha subunit (3)
peptidase M16 domain protein
)

chaperone protein DnaJ (2)
DnaJ/SEC63 protein

DnaJ heat shock protein HSP40
homolog

2-oxoglutarate dehydrogenase
E1 component

mitochondrial malate
dehydrogenase (NAD)-like
protein 1 (3)

mitochondrial succinate

BLAST e-
value

3.00E-56

6.00E-44

9.00E-86

6.00E-63

2.00E-52
0.00E+00

0.00E+00

7.00E-41

2.00E-24
4.00E-10

5.00E-54
1.00E-12
7.00E-20
2.00E-78
5.00E-67
7.00E-127
8.00E-26
1.00E-13

6.00E-112

5.00E-163

no
yes
yes
yes

yesh
yes

yes
yes

yes
yes

yes
yes
yesh
yes
yes
yes
yes

yes

no

yes

yes

no

no

yes

no
yes

no

no

no
no

yes
no
no
no
no
no
yes

no

no

yes

5end 3"end mTP

n/a

yes

no

no

yes
no

no

no

no
no

no
no
yes
no
yes
no
yes

yes

n/a

yes

Phylogeny

dino ++++

prok ++++

dino ++++
dino ++

api +
dino ++++

dino ++
?
Salpingoeca sp
Dictyostelium
discoideum
dino ++++
Caenorhabditis brenneri
dino ++++
dino ++++
dino ++
dino +++

Perkinsus marinus

Phytophthora infestans

?

dino +++

Contig/lsotig

isotig03016
isotig05328
isotig02801
isotig02327

isotig02914
isotig00972

isotig03561
isotig03564

isotig02685
isotig03838

isotig01135
isotig03091
isotig03833
isotig04357
isotig03251
isotig04081
contig00705
isotig01713

isotig04548

isotig04617
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Function Protein (# of paralogues) BLAST e-

value

dehydrogenase iron-sulphur
subunit-like protein 2
mitochondrial succinyl-CoA 2.00E-83
synthetase alpha subunit
succinate dehydrogenase 0.00E+00
flavocytochrome c (13)

TCA cycle/electron transport dihydrolipoamide 6.00E-29
dehydrogenase DId1

transcription Mitochondrial transcription 9.00E-95
termination factor family protein
@)

mMRNA editing pentatricopeptide repeat- 2.00E-51
containing protein

translation elongation factor Tu 7.00E-91

5end 3"end mTP

yes
yes
yes

yes

no

yesh

no

yes

no

no

no

no

yes

no

yes

no

n/a

yes

Phylogeny

?
dino ++++
Schizosaccharomyces

pombe
dino +++

Perkinsus marinus

api ++

Contig/lsotig

isotig01842
isotig03036
isotig04842

isotig01563

isotig04561

contig6911

The number in the parenthesis indicates the number of paralogues for the protein including the protein itself. The BLAST e-values are those of the best BLAST
hits against the NCBI non-redundant (nr) protein sequence database. The 5" end and presence (*) or absence (#) of the splice leader (SL) has been also confirmed
with 5" RACE. The presence of a mitochondrial transit peptide (mTP) is predicted using the algorithm TargetP. The phylogeny indicates whether the position of
D. baltica in the protein maximum likelihood phylogenies is resolved or not (?), the phylogenetic affinity of the D. baltica protein (api, Apicomplexans; dino,
Dinoflagellates; prok, Prokaryotes; rhiz, Rhizarians; stram, Stramenopiles), the level of bootstrap support (+, 50-59%; ++, 60-79%; +++, 80-89%; ++++, 90-

100%). For the sequences with fewer than 5 hits no phylogenetic tree reconstruction was attempted. In those cases the best BLAST hit is reported.
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Table 4.2: The putative mTPs of the host mitochondrion-targeted proteins in Durinskia

baltica

Protein
PFO*
HIBADH*
HMGCL*
NFS1*
BCKDHA*
SACDH
ATPC*
ATP*
ATPOSCP*
PHB
AOXA
MnSOD*
CYP70411*
SDHA
CYT-C2
MPPA*
ACADM*
ETHE1*
DRP*
ORN¥*
HIR1

CAEBREN*

PM16
DnaJ*

DnaJ/SEC63*
DnaJ/HSP40H*

HCD
OGDHE1*
SDHB2
SUCD*
SDH
DLD1*
MTERF
EFTU*
ACoAC

xxxlxxx |
0
]

Amino acid composition and secondary structure
Ixxxxxxxx | B xxxxxxjxxx

xxfx

ExPExxx

xxx XX
XXXJPRXX

Ixxxxx | ‘
L U

i L
xExxlixx] §
Exkxxx | Exxll | ]

xxxxxxxx XXXXXX

x;lc xF B M xxBExxix)

I il |

il 1 IXXXIXX
] . xxlixli
|xx xxx

H l I IXIX #
xx xxjxi

IXXX.
L F r XXXXXX
i I ] ‘ I ] xxlxxx

xxlxx
xxxxxxxx

xxxxx | i}
I B Exxxxil
L I

xxxxJx

1 1 1 Excdlixx

mTP length  TargetP

33
22
88
43
55
34
16
30

81

86

21

117

87

mTP
mTP
mTP
mTP
mTP
cyto
mTP
mTP
mTP
cyto
mTP
sec
mTP
cyto
cyto
mTP
cyto
cyto
cyto
cyto
cyto
cyto
cyto
mTP
cyto
mTP
cyto
mTP
mTP
mTP
cyto
mTP
cyto
mTP
mTP

Seq Id
isotig00473
isotig03674
isotig04911
isotig01672
isotig01468
isotig03670
isotig05154
isotig03014
isotig03806
isotig01743
isotig05153
isotig04461
isotig05328
isotig02801
isotig02327
isotig03833
isotig03561
isotig03564
isotig02685
isotig03838
isotig01135
isotig03091
isotig04357
isotig03251
isotig04081
contig00705
isotig00972
isotig01713
isotig04617
isotig01842
isotig03036
isotig04842
isotig01563
contig6911
isotig02914

The N-terminal sequences of 35 putative mitochondrion-targeted proteins in Durinskia baltica. Only the first 30
amino acids are shown if the length of transit peptide (mTP) is predicted to be larger than 30. The amino acids are
color-coded based on their chemical properties in a similar manner to Danne and Waller (2011): red, polar basic (H,

K, R); blue, polar acidic (D, E); green, hydroxylated (S, T); grey, polar uncharged (C, N, Q, W, Y); yellow,

hydrophobic (A, F, G, I, L, M, P, V). The crosses indicate the amino acids predicted to form amphipathic a-helix
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secondary structure. TargetP predictions for mTP length and localization are also shown (mTP, mitochondrion; cyto,
cytoplasm; sec, secretory). A star (*) marks the proteins with 5" extended sequences found in its alignment with its
orthologs from other eukaryotes and/or prokaryotes. Abbreviation for protein names: ACADM, Medium-chain
specific acyl-CoA dehydrogenase; ACoAC, acetyl-CoA carboxylase; AOXA, alternative oxidase isoform A; ATPC,
ATP synthase FO lipid binding subunit-like protein 3; ATP3, ATP synthase F1 delta subunit; ATPOSCP, ATP
synthase oligomycin sensitivity-conferring protein; BCKDHA, 2-oxoisovalerate dehydrogenase alpha subunit;
CAEBREN, hypothetical protein CAEBREN_09431; CYP70411, cytochrome P450 704C1-like isoform 1; CYT-C2,
cytochrome c-like protein 2; DLD1, dihydrolipoamide dehydrogenase; DnaJ, chaperone protein DnaJ;
DnaJ/HSP40H, DnaJ heat shock protein HSP40 homolog; DnaJ/SEC63, DnaJ/SEC63 protein; DRP, Dynamin-like
protein; EFTU, elongation factor Tu; ETHEL, protein ETHEL; HCD, 3-hydroxyacyl-CoA dehydrogenase;
HIBADH, 3-hydroxyisobutyrate dehydrogenase, mitochondrial precursor; HIR1, hypersensitive-induced response
protein 1-like band7-domain; HMGCL, Hydroxymethylglutaryl-CoA lyase; MnSOD, manganese superoxide
dismutase; MPPA, mitochondrial processing peptidase alpha subunit; MTERF, mitochondrial transcription
termination factor family protein; NFS1, cysteine desulfurase 1; OGDHEL, 2-oxoglutarate dehydrogenase E1
component; ORN, oligoribonuclease; PFO, Pyruvate:Ferredoxin (flavodoxin) Oxidoreductase; PHB, prohibitin;
PM16, Peptidase M16 domain protein; SACDH, saccharopine dehydrogenase domain-containing protein; SDH,
succinate dehydrogenase; SDHA, flavoprotein subunit of succinate dehydrogenase; SDHB2, succinate
dehydrogenase iron-sulphur subunit-like protein 2; SUCD, succinyl-CoA synthetase alpha subunit.
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Table 4.3: Putative plastid-targeted proteins in Durinskia baltica

Function Protein (paralogue) e-value 5" end
photosynthesis FCP 7.00E-48 yesh
response to oxidative stress ~ APXT (2) 1.00E-104 yesh
APX 2.00E-50 yesh
atp catabolism and transport ~ SufC* 3.00E-95 yes
carbon utilization CA 4.00E-59 yes
amino acid biosynthesis OASL* (5) 9.00E-164 yesh
maintenance and cell growth ADK-UBOX 3.00E-51 yesh
Fusion* (3)
ion transport CASTOR* (6) 2.00E-58 yesh

3" end

yes
yes
no
yes
no
yes
yes

no

SL

no
no
no

yes
yes

no

SP

yes
yes
no
yes
no
no
no

no

CcTP

no
no
no
yes
no
no
yes

no

Phylogeny

diatom ++++
diatom ++++
dino +

dino +

dino ++++
dino ++

1:?

2: kata ++++
5

Seq ID

isotig02599
isotig00853
isotig02367
isotig04489
isotig03896
isotig03490
isotig01071

isotig01020

The number in the parenthesis indicates the number of paralogues for the protein including the protein itself. A star (*) means that the protein is predicted to have

an N-terminus extension based on protein alignments. The BLAST e-values are those of the best BLAST hits against the NCBI non-redundant (nr) protein
sequence database. A caret (*) means that the 5" end and presence or absence of the splice leader (SL) has been confirmed with 5 RACE. The presence of a
plastid transit peptide (cTP) is predicted using the algorithm ChloroP. The phylogeny indicates whether the position of D. baltica in the protein maximum

likelihood phylogenies is resolved or not (?), the phylogenetic affinity of the D. baltica protein (crypto, Cryptophytes; diatom, Diatoms; dino, Dinoflagellates;

kata, Katablepharidophytes; stram, Stramenopiles), the level of bootstrap support (+, 50-59%; ++, 60-79%; ++++, 90-100%). A dash (-) indicates that the
presence or absence of the dinoflagellate splice leader (SL) was not successfully verified through 5" RACE. Abbreviations: SP, signal peptide; stram,
Stramenopiles; ADK-UBOX Fusion, chloroplast adenylate kinase and U-box domain containing protein; APX, chloroplast ascorbate peroxidase; APXT,
chloroplast thylakoid bound ascorbate peroxidase; CA, chloroplast carbonic anhydrase ; CASTOR, chloroplastic ion channel CASTOR; FCP, fucoxanthin

chlorophyll a/c binding protein; OASL, chloroplast O-acetyl-serine lyase.
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Table 4.4: Putative diatom-derived proteins in Durinskia baltica

Biological process or function
photosynthesis

response to oxidative stress
energy production/conversion
carbohydrate metabolism
pyruvate metabolism
proteolysis

ATP catabolic process
transport: amino acid; ions

acyltransferase

DNA topological change
nucleotide excision repair
unknown

Protein (paralogues)
FCP

APXT (2)
NADHD-FAD
PFL

DLD

TLP

ATPaseP
LCNL
SDTSNF
CHX2
CorAMIT (2)
AcylT (3)
TOP3B (2)
RPA1

Prpr ¥

e-value
7.00E-48
1.00E-104
9.00E-10
0
100E-50
5.00E-69
8.00E-126
5.00E-28
1.00E-83
3.00E-33
4.00E-31
0
1.00E-114
5.00E-53
2.00E-58

5" end
yesh
yesh
yesh
yesh
yesh
yesh
yes

yesh
yes

yes

yesh
yesh
yes

yesh
yesh

3" end
yes
yes
no
no
no
no
no
no
no
no
yes
yes
no
no
no

SL
no
no
no
no
no
no
no

no
no
no
no

SP
yes
yes
no
yes
yes
no
no
yes
no
yes
no
no
no
no
yes

mTP/cTP
no/no
no/no
no/no
no/no
no/no
no/no
no/no
no/no
no/no
no/no
no/no
no/no
no/no
no/yes
no/no

Phylogeny
++++
++++
++++
+++
+++
+++
++++
++++
++++
++
++++
++++
+++
++++
++++

Seq ID
isotig02599
isotig00853
isotig05486
isotig04324
isotig01223
isotig01523
isotig04442
isotig04201
isotig03474
isotig03741
isotig05045
isotig00328
isotig00757
isotig02229
isotig02507

The number in the parenthesis indicates the number of paralogues for the protein including the protein itself. The BLAST e-values are those of the best BLAST
hits against the NCBI non-redundant (nr) protein sequence database. A caret (*) means that the 5" end and presence or absence of the splice leader (SL) has been
confirmed with 5" RACE. The presence of a mitochondrial transit peptide (mTP) and a plastid transit peptide (cTP) are predicted using the algorithm TargetP and
ChloroP, respectively. The phylogeny indicates the level of bootstrap support for the D. baltica grouping with a diatom or within a diatom clade (++, 60-79%;
+++, 80-89%; ++++, 90-100%). A dash (-) indicates that the presence or absence of the dinoflagellate splice leader (SL) was not successfully verified through 5
RACE. ¥ means a pseudogene. Abbreviations: AcyIT, acyltransferase family protein; APXT, chloroplast thylakoid bound ascorbate peroxidase; ATPaseP, P-type
ATPase; CHX2, monovalent Cation:Proton antiporter-2 family; CorAMIT, CorA metal ion transporter family; DLD, D-lactate dehydrogenase; FCP, fucoxanthin
chlorophyll a/c binding protein; LCNL, lipocalin-like protein; NADHD-FAD, NADH dehydrogenase, FAD-containing subunit; PFL, pyruvate-formate lyase;
PrPr, predicted protein; RPAL, replication protein a large 70 kD subunit; SDTSNF, Na+-dependent transporter, SNF family; TLP, trypsin-like serine protease;
TOP3B, DNA topoisomerase 3-beta-1.
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Chapter 5: Conclusions

Summary

Prior to the work presented here, many things about several dinotoms, especially D.
baltica and K. foliaceum, were already known. Their pigments (Withers et al. 1977), their
ultrastructure (Eschbach et al. 1990; Jeffrey and Vesk 1976; Tomas and Cox 1973; Tomas, Cox,
et al. 1973, Tomas et al. 1973) their cell division (Tippit and Pickett-Heaps 1976), sexual life
cycle (Chesnick and Cox 1987, 1989), and their endosymbiont (Chesnick et al. 1996, 1997) had
been studied relatively well. However, their sequence data was scarce. In the course of this work,
the plastid genomes of D. baltica and K. foliaceum were completely sequenced, the first
complete tertiary plastid genomes. Shortly thereafter, their endosymbiont mitochondrial genomes
were nearly completely sequenced, another first, and their host mitochondrial genomes were
surveyed, producing one of the best sampled mitochondrial genomes of any dinoflagellates (for
D. baltica) and the first sequence data from the genome of K. foliaceum. The pyrosequencing of
the SL cDNA library in D. baltica added thousands of new sequences almost entirely from the
host dinoflagellate to the public databases.

The results of this study indicated that the diatom endosymbiont organelle genomes in
these two dinotoms have changed very little from those in their free-living cousins, showing no
sign of reduction or degeneration, and this is in accordance with the small degree of
morphological reduction observed in the endosymbionts. The plastid genome of K. foliaceum
has, in fact, expanded conspicuously and undergone more reorganization compared to their
counterparts in free-living diatoms mostly due to the integration, maintenance, degradation and
rearrangements of the two plasmids also found in other diatoms. The host mitochondrial genome

in D. baltica was found to have the same gene content and a very similar organization to that in
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other dinoflagellates. The host mitochondrial genome in K. foliaceum was much more elusive
and hard to sequence, but the well conserved fragments of all the mitochondrial genes found in
other dinoflagellates were recovered from this dinotom, altogether implying that the host
mitochondrial genomes of the two dinotoms remain mainly unchanged in spite of their co-
existence with their endosymbiont counterparts. These endosymbiont counterparts showed even
fewer signs of change, being nearly identical in gene content, gene order and organization to that
in other diatoms especially the pennate diatom Fragilariopsis cylindrus.

The results of the transcriptome survey of the D. baltica host revealed that no EGT to the
host has occurred, and despite the permanent and obligate nature of symbiosis in dinotoms, the
D. baltica endosymbiont retains its genetic integrity and self-reliance with respect to its own
organelles. The finding of the diatom-derived plastid genes with conventional bi-partite targeting
signals, which are most likely encoded in the nuclear genome of the endosymbiont, (i.e. FCP and
APXT) hints at a functional targeting system within the diatom endosymbiont of D. baltica.
However, the lack of EGT to the host in D. baltica implies that a protein targeting system that
targets the products of the transferred genes from the host to endosymbiont in dinotoms is
unnecessary and most likely non-existent.

If the genetic integration and the complementary targeting system are the criteria to
distinguish an endosymbiont-derived organelle from an endosymbiont (Cavalier-Smith and Lee
1985), then, strictly speaking, the dinotom endosymbionts are not or have not yet become
organelles. Although strict definitions might offer convenience and clarity, they usually do not
reflect the true complexity of the subject matter in real life. The transformation of a free-living
cell to an organelle through endosymbiosis is not a linear progression, and it has happened

independently many times. A wide variety of intermediary stages and a wide range of symbiotic
124



interactions have been discovered, and the binomial terminology, endosymbiont and organelle,
does not describe well the nearly continuous spectrum of the endosymbionts in their transition to
an organelle (Keeling and Archibald 2008). The dinotom endosymbiont is not genetically
integrated with its host, but at the cellular level it is. Does this not make it an organelle as well as
an endosymbiont?

Future directions

The genetic survey of the two dinotoms in this study has produced a wealth of
information about their complex genome, but it is far from complete. Despite many trials, the
mitochondrial genomes of the endosymbiont could not be completely sequenced. More
importantly, this survey did not include the nucleus of the endosymbiont. Its survey could shed
light on the extent of genetic reduction in this rare eukaryotic nucleus that divides amitotically
(Tippit and Pickett-Heaps 1976). The recent advances in sequencing technology has made whole
genome sequencing much quicker and cheaper than before, and the progress in the
bioinformatics fronts is promising more accurate and faster assembly algorithms. Soon, it will be
possible perhaps to sequence and assemble the whole genome of at least one of the dinotoms.
Until such a time, a polyA EST or a direct RNA sequencing (Ozsolak et al. 2009) project from
dinotoms that includes the whole transcriptome of the cell could be very informative about the
gene content of the endosymbiont nuclear genome and perhaps even its extent of reduction.
Alternatively, the CsCl gradient density could be applied to the total DNA extracted from a
dinotom, the band enriched in the endosymbiont nuclear DNA (the middle band in the three band
profile of the dinotom DNA in the gradient column) could be isolated, amplified and massively
sequenced through pyrosequencing (as done in this study for the organelle-enriched DNA, the

top or satellite band) or illumina sequencing.
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In this study, two putative diatom-derived (FCP and APXT) and at least one putative
dinoflagellate-derived (SufC) plastid-targeted proteins were identified. It would be curious to
examine whether they are actually targeted to the plastid. No dinoflagellate has been successfully
transformed permanently or transiently with any reporter gene, and a model system for such
experimentations in dinoflagellates is lacking. Until a simpler dinoflagellate model becomes
available, other organisms can be used to test for the targeting destination of these three proteins.
Perhaps the best suited organism is P. tricornutum, a pennate diatom, which has been
successfully transformed (Apt et al. 1996; Niu et al. 2012). A reporter gene such as a green
fluorescent protein (GFP) gene can be used to test whether the targeting signals of the three D.
baltica proteins are able to transport the GFP to its plastid. Transmission electron microscopy in
conjunction with primary antibodies against these proteins and gold-conjugated secondary
antibodies against the first ones could reveal where the proteins destined to, a technique used in
investigating the targeting system for the nuclear-encoded plastid proteins in dinoflagellates
(Nassoury et al. 2003).

There is a report of a strain or variety of K. foliaceum that lacks the endosymbiont
nucleus (Kempton et al. 2002) and other dinotoms that seem to bear different centric diatom
endosymbionts (Horiguchi and Pienaar 1991; Takano et al. 2008) rather than the usual pennate
one. A survey of the SL cDNA library of the first and a survey of the organelle genomes from
the second ones could provide invaluable data for comparison with those gathered for D. baltica
and K. foliaceum in this study. However, most of the known dinotoms, including the mono-
nucleate K. foliaceum and the ones with a centric diatom endosymbiont, have not been
successfully cultured, and some of the most basic aspects of dinotom cell biology, even in D.

baltica and K. foliaceum, have not been explored. Successful culturing of the dinotoms that are
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not available in the culture collections could encourage further studies in the dinotom basic cell
physiology, metabolism and ecology. Such studies in combination with genomic surveys such as
the one presented here could enrich one another and produce invaluable insight into these truly

complex and beautiful organisms.
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Appendix 1: Supplementary figures and tables of chapter 2
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Figure 2.51: Length comparison of the genes encoded in the plastid genomes of D. baltica,
K. foliaceum and the pennate diatom Phaeodactylum tricornutum.

Abbreviations: Db, D. baltica; Kf, K. foliaceum; Pt, Phaeodactylum tricornutum.
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Figure 2.52: K. foliaceum TyrC conserved catalytic, active, and DNA-binding sites.

The sequences of Heterosigma akashiwo's TyrC were manually added to the Conserved Domain Database (CDD)
alignment for K. foliaceum's TyrC. The conserved residues with specific functions are marked with a number sign
(#) above the alignments. Shaded residues indicate invariable sites among all the recombinases in the alignment, and

the long rectangular boxes highlight conserved sites among all the recombinases in the alignment except one.
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Figure 2.S3: The conserved residues found in the SerC1 and SerC2 recombinases encoded

in the plastid genomes of Kryptoperidinium foliaceum and other site-specific serine
recombinases.

The sequences of SerC2 were manually added to the Conserved Domain Database (CDD) alignment for SerC1. The
conserved residues with specific functions are marked with a number sign (#) above the alignments. Shaded residues

indicate invariable sites among all the recombinases in the alignment, and the long rectangular boxes highlight

conserved sites among all the recombinases in the alignment except one.
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Figure 3.51: Gene size comparisons between the protein-coding and rRNA genes in the two
mitochondrial genomes of the dinotom endosymbionts and those of three diatoms.

Ts, Thalassiosira pseudonana; Sa, Synedra acus; Pt, Phaeodactylum tricornutum; Kf, Kryptoperidinium foliaceum;
Db, Durinskia baltica.
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Figure 3.S2: Posterior probabilities for transmembrane helices in nad2 gene of the two
endosymbionts and other diatoms.

The X-axis shows the amino acid number, and the Y-axis the probability. The two conserved transmembrane helices
flanking the dinotoms’ inserts are painted blue in dinotoms and diatoms.
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Figure 3.S3: Posterior probabilities for transmembrane helices in cob gene of the host in D.
baltica compared to that in Pfiesteria piscicida and Alexandrium catenella.

The X-axis shows the amino acid number, and the Y-axis the probability. The black arrow head marks the position

of the insert within the cob gene in D. baltica.
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Figure 3.54: A few ancestral and derived characters in the mitochondrial genomes of the
endosymbionts in the two dinotoms inferred based on the most parsimonious scenario.

The sequence of events is arbitrary.
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Table 3.S1: Editing sites in the cox1 mRNA of Durinskia baltica and Kryptoperidinium

foliaceum
Durinskia baltica
DNA Site DNA | RNA | Codon Site Change aa
154 A G 1st 1>V
175 T C 1st F>L
305 C U 2nd S=>F
445 A G 1st 1=V
515 A G 2nd Y—>C
658 A G 1st 1=V
736 A G 1st >V
739 T C 1st F>L
748 A G 1st 1=V
776 T C 2nd L->S
998 A G 2nd K2R
1004 A G 2nd N->S
1009 C U 1st P>S
1012 T C 1st F>L
1019 G C 2nd G2>A
1063 A G 1st 1>V
1094 G C 2nd G2>A
1114 A G 1st T2>A
1198 G C 1st V-=>L
1211 A G 2nd N—->S
1225 T C 1st S>P
1267 A G 1st 1>V
Kryptoperidinium foliaceum
DNA Site relative to D. baltica DNA | RNA | Codon Site Change aa

76 A G 1st 1>V

90 A G 3rd I=>M

154 A G 1st 12>V

676 A G 1st 1>V

998 A G 2nd K=>R

1004 A G 2nd N->S

1009 C U 1st P->S

1012 T C 1st F>L

1019 G C 2nd G2>A

1063 A G 1st 12>V

1094 G C 2nd G2>A

Editing sites on the cox1 mRNA in the dinoflagellate host of D. baltica and K. foliaceum and the deduced resulting

amino acid change in the Cox1 protein inferred from the differences found in the gene and its corresponding

transcript sequences. The bold fonts mark the conserved changes seen in the two species.
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A) AOX alternative oxidase isoform A
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Figure 4.51: The maximum likelihood trees with an unclear phylogenetic affinity and/or
origin for the host putative nuclear-encoded mitochondrial proteins in Durinskia baltica.

A) AOX alternative oxidase isoform A, partial tree, B) Protein ETHE1, mitochondrial-like. Numbers at the nodes
indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several taxa of interest are
color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet;
Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. P, taxon with a

plastid; PINo, taxon without plastids.
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Figure 4.S52: The maximum likelihood tree for mitochondrial malate dehydrogenase

Pl-Dinoflagellate-Alexandrium_catenella@UN6237

(NAD)-like protein 1, partial tree.

Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several
taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in
scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. Pl, taxon

with a plastid; PINo, taxon without plastids.
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A)  3-hydroxyisobutyrate dehydrogenase, (HIBADH) B) Mitochondrial succinyl-CoA synthetase alpha subunit

100~ Amocbozoa-D " bosoa- Di fium_purp 159229
by D 1i liscoid 66801237 Amoek Di i Jiscoid 166202795
Metazoa-Lottia_giganteads | 64490 E te-Nacgleria_gruberifie_gwl.1.336.1
i CNAG_03375T0

Fungi-Cr

Metazoa-Danio_rerio@DARPOOOOODOI0Z0 g
idi: Fungi-Laccaria_bicolori@ 300566

Fungi-Batrachochyirium_d @16259
o Prok-Proteo-Burkholderia_sp@@ 377812964 36456
Prok-Proteo-Acinetobacter_sp@ 50084766 Metazoa-Danio_rerio@@DARPOOOO00GINSG
1001— prok-Proteo-Acinetobacter_olcivorans@299771992 SGALPOODOD031379
&0 Prok-Bacter-Myroides_od 374601090
Prok-Proteo-Vibrio_vulnificus@3 7676698 IS 246109
Prok-Actino-Arthrobacter_aurescens(a 119960816 Metazoa-Daphnia_pulex@306118
Prok-Acti henolicus@220911410 99 Fungi-Schis I . pompe@SPACIGES. 1 Te

Fungi-Newrospora_crassa@NCL01227T0

Prok-Actino-Rhodococcus_jostii@] 11018538
hron_tuberculosum@IDg1 5701

Prok-Actine-Rhodococcus_equitd 12139137
Prok-Alpha-Methylobacterium_nodulansi@220822161
Pl prophyte-Populus._trich 794266
Prok-Alpha-Sinorhizobium_meliloti@334320233
Prok-Alpha-Rhizobium_etli@86360555
Prok-Alpha-Beijerinckia_indica@ 182677608
Prok-Alpha-Rhodospirill "
Prok-Alpha-Caulobacter_sp167647012
Prok-Alph irillum_s 312686
Prok-Alpha-Polymorphum_gilvum/@328543531

PI-R

Plantae-Red

ne-Porphyridium_cruentun IN21139

algae-Cyanidicsehyzon_merolae@CMH 132

Pl-Excavate-Euglena_gracilis@UN00189

Pl-Haptophyte-Coccolithus_braaradii@UN 11203
Pl-Haptophyte-Emiliania_huxleyif@417649

d-Guillardia_theta@ 157241

natans{@ 53292

Plantac-Red

-, _natans( ] 37432
Excavate-Naegleria_gruberitiestExt_fgeneshHS kg .C_910001

e 5303589 3616

i 18095 _| L . _

52 Plantae-Red_algse-Galdieria_sulphuraria@UN1 140 PINo-K P Roombia_truncataf@UN02565
1S lexa-Plasmod habaudi@PCAS_09058C

I 98 Pl-Apicomple» ¥
Plantac-Red_algne P 1_crueniumi@UN4219 icomplexa-Neospora_caninumis LIV_042590
Pl-Dintom-Phacodactylum_tricomutum@ds141 PINo-Ciliate-Tetrahymena_thermophila@3707.m00239
100 PiNo-Ciliate-Ichthyophthirius_multifilis@2810.m000063

Pl vie-Emiliania_huxleyi@434867
. Durinskia baltica-isotigh 1842

0. is UN16

Tetrahymena_thermophila@3534.m00386

m 100 PiNo-
5] PINg-Ci 52886 mO00383
- PINo-Ciliste-Paramecium_tetraurelia@ 14550711

Pl-Apicomplexa-Toxop] gondi
oof | -
100 PI-Di

Pl-Cryptomonad-Guillardia_f i
Fungi-Ni _crassafi NCUDGSS9TO

Pl-Diatom-Pseudonitzschia_CLN4
Pl-Diatom-Thalassic
Pl-Diatom-Phaeodactyl
Pl-Diatom-|

pseudonana@4| |
n_tricomutumii42013

ragilariopsis_cylindrus@269015

L B!
&7 Fungi-Laccaria_bicolong3 1 6080
— Plantac-G C: _p
Prok-Deino-Oceanithermus_profundu: 0.2
Prok-Chl T ~_thermophilus; 29256 L i O 01
=

Figure 4.S3: The maximum likelihood trees with an unclear phylogenetic affinity and/or origin for the host putative nuclear-
encoded mitochondrial proteins in Durinskia baltica.

A) 3-hydroxyisobutarate dehydrogenase (HIBADH), partial tree, B) Mitochondrial succinyl-CoA synthetase alpha subunit, partial tree. Numbers at the nodes
indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue;
Apicomplexans and Ciliates in dark blue; Diatoms in scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black.

Pl, taxon with a plastid; PINo, taxon without plastids.
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A)  ATP-binding cassette protein 3
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Figure 4.54: The maximum likelihood trees with an unclear phylogenetic affinity and/or origin for the host putative nuclear-
encoded mitochondrial proteins in Durinskia baltica.

A) ATP binding cassette protein 3, partial tree, B) Manganese superoxide dismutase, partial tree. Numbers at the nodes indicate bootstrap support > 50%. A

yellow box highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue;

Diatoms in scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. P, taxon with a plastid; PINo, taxon

without plastids.
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A) Mitochondrial ATP synthase F1 B) Mitochondrial ATP synthase FO C) Mitochondrial processing
delta subunit lipid binding subunit-like protein 3 peptidase alpha subunit
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Figure 4.S5: The maximum likelihood trees with a limited number of taxa showing a dinoflagellate affinity for the host
putative nuclear-encoded mitochondrial proteins in Durinskia baltica.

A) Mitochondrial ATP synthase F1 delta subunit, B) Mitochondrial ATP synthase FO lipid binding subunit-like protein 3, C) Mitochondrial processing peptidase
alpha subunit, D) Mitochondrial tricarboxylate transporter-like protein 2, E) Mitochondrial carnitine/acylcarnitine carrier protein, F) Peptidase M16 domain
protein. Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several taxa of interest are color-coded:
Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae
in red; All other taxa in black. PI, taxon with a plastid; PINo, taxon without plastids.
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A)  Prohibitin B)  3-hydroxyacyl-CoA dehydrogenase
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Figure 4.56: The maximum likelihood trees with a dinoflagellate affinity and/or origin for the host putative nuclear-encoded
mitochondrial proteins in Durinskia baltica.

A) Prohibitin, partial tree, B) 3-hydroxyacyl-CoA dehydrogenase, partial tree. Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights
the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet;
Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. PI, taxon with a plastid; PINo, taxon without plastids.
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A Electron transfer flavoprotein subunit beta
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Figure 4.S7: The maximum likelihood trees with a dinoflagellate affinity and/or origin for the host putative nuclear-encoded
mitochondrial proteins in Durinskia baltica.

A) Electron transfer flavoprotein subunit beta, B) Mitochondrial cytochrome c-like protein 2. Numbers at the nodes indicate bootstrap support > 50%. A yellow
box highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms

in scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. P, taxon with a plastid; PINo, taxon without
plastids.
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Flavoprotein subunit of succinate dehydrogenase
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Figure 4.S8: The maximum likelihood tree for flavoprotein subunit of succinate
dehydrogenase congruent with a dinoflagellate origin for the host putative nuclear-encoded
mitochondrial protein in Durinskia baltica, partial tree.

Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several
taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in
scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. Pl, taxon
with a plastid; PINo, taxon without plastids.
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A) Mitochondrial transcription termination factor
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Figure 4.S9: The maximum likelihood tree for mitochondrial transcription termination
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factor congruent with a dinoflagellate affinity for both copies of the host putative nuclear-

encoded mitochondrial protein in Durinskia baltica.

Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several
taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in
scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa in black. Pl, taxon

with a plastid; PINo, taxon without plastids.
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Medium-chain specific acyl-CoA dehydrogenase

A)

Figure 4.510: The maximum likelihood trees for the host putative nuclear-encoded mitochondrial multi-copy proteins in

Durinskia baltica.

A) Medium-chain specific acyl-CoA dehydrogenase, partial tree, B) Pyruvate:Ferrodoxin (flavodoxin) oxidoreductase (PFO). Numbers at the nodes indicate
bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue;
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A) Monovalent Cation:Proton antiporter-2 family D) Lipocalin-like protein
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Figure 4.511: The maximum likelihood trees with a limited number of taxa showing a
diatom affinity for the putative nuclear-encoded proteins in Durinskia baltica.

A) Monovalent cation:proton antiporter-2 family, B) NADH dehydrogenase, FAD containing subunit, C) Predicted
protein, unknown function, D) Lipocalin-like protein, E) Acyltransferase family protein, F) CorA metal ion
transporter. Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D.
baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark
blue; Diatoms in scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae in red; All other taxa
in black. PI, taxon with a plastid; PINo, taxon without plastids.
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A) D-lactate dehydrogenase

57]

E

100

Prok-Proteo-Alteromonas_macleodiif@332142662
Prok-Uncl-Plautia_stali@329295996
Prok-Firm-Bacillus_sp@373857425
Prok-Firm-Lactobacillus_mali@365926057

68
Prok-Firm-Weissella_paramesenteroides(@24 1896245

Prok-Firm-Lactobacillus_sanfranciscensis(@ 347534749

61

Prok-Alpha-Roseobacter_denitrificans@ 110677489
Prok-Alpha-Methylobacterium_nodulans(@220923013

Prok-Proteo-Pseudoxanthomonas_spadix(@357415678
Prok-Alpha-Beijerinckia_indica@ 182680351
Prok-Alpha-Zymomonas_mobilis@260753199
Prok-Alpha-Zymomonas_mobilis@338707904
Prok-Proteo-Acinetobacter_baumannii@ 184156416
Prok-Proteo-Enhydrobacter_aerosaccus(@257455058
Prok-Alpha-Ketogulonicigenium_vulgare@310815232
Prok-Alpha-Paracoccus_denitrificans(@ 119385653
Prok-Alpha-Novosphingobium_sp@334142628
Prok-Bacter-Capnocytophaga_ochracea@ 256820390
L)gr Prok-Actino-Brachybacterium_faecium@257067718

100 Prok-Actino-Brevibacterium_linens{@ 260906744

Prok-Actino-Corynebacterium_casei@358446471

Pl-Diatom-Phaeodactylum_tricomutum(@46664

1 00 Pl-Diatom-Pseudonitzschia CLN47(@ 183545
ol
Pl-Diatom-Fragilariopsis_cylindrus@207885

Pl-Diatom-Thalassiosira_pseudonana(@?268453

{Durinskia baltica-isotig01223|
0.2

Pl-Excavate-Euglena_gracilis@UN06635 —

B) Pyruvate-formate lyase

Prok-Syne-Synergistes_sp(@365174333

1
—

w

—

Pl-Rhizaria-Bigelowiella_natans@57795
EI (irr:'cn algac-Chlamydomonas_reinhardtii@ 146801
: rae-Volvox_carteri@ 107982

1e- algae-Chlorella_vul (@ 30765
Plantae-Glaucophyte-Cyanophora paradoxa@6119 3 188
Pl- Dmtom Th’t[absmsm scudomnatu 36689

thm (rccn "IlL'IL. I\’I|me:md~. pusilla@44800
Plantae-Green l|L.dL -Ostreococcus_lucimarinus@ 36056
100=Plantae-Green_algae-Ostreococcus_tauri(@ 15593
L[5 rok-Fuso-Tlyobacter_polytropus@310779958
rok-Syne-Synergistes_sp@ 365175268
Prok- Bacter-Flavobacteniaceae_bacterium@372210897
100 prok-Verr-Opitutaceae_bacterium@374592376
Prok-Firm-Clostridium_kluyveri@ 153953732
_[ Y
mProk-Firm-Clostridium _acetobutylicum(@ 15894267
_[ rok-Spir-Sphaerochaeta_pleomorpha(@374315244
k-Spir-Sphacrochaeta globus@ 325970894
jEEPmk—Proleo-(,a:dlobaclenum valvarum(@ 365920989

Prok-Uncl-Plautia_stali@329298233
Prok-Proteco-Teredinibacter_turnerac(@254784614
Prok-Uncl-Haloplasma_contractile@335429208
Prok-Tene- ALhD|Ep|d.bmd_|d1d]dW]1 @ 162446915
rok-Firm-Bacillus_coahuilensis@205373683
=Prok-Firm-Bacillus_thuringiensis(@118476197
Prok-Actino-Atopobium_vaginae@328943329
Prok-Syne-Pyramidobacter _piscolens(@ 282855536
97 Prok-Fuso-Fusobacterium_sp@373499002
Prok-Fuso-Fusobacterium_mortiferum(@340751354
Prok-Bacter-Parabacteroides_distasonis(@ 150009973
Prok-Bacter-Bacteroides_coprosuis@333030501
— Prok-Cyano-Synechococcus_sp@254422531
— Prok-Spir-Spirochaeta_africana@373484518
— Prok-Alpha-Rhodopscudomonas_palustris@ 115525107
— Prok-Verr-Akkermansia_muciniphila@ 187736033
Prok-Verr-Verrucomicrobiae_bacterium(@254443579
Prok-Verr-Coraliomargarita_akajimensis@?294055621

Figure 4.512: The maximum likelihood trees showing a diatom affinity for the putative nuclear-encoded proteins in Durinskia

baltica.

A) D-lactate dehydrogenase, B) Pyruvate-formate lyase. Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D.
baltica. Several taxa of interest are color-coded: Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet; Stramenopiles in

orange; Green algae and Plants in green; Red algae in red; All other taxa in black. P, taxon with a plastid; PINo, taxon without plastids.
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A) P-type ATPase B) Trypsin-like serine protease
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Figure 4.513: The maximum likelihood trees showing a diatom origin or affinity for the putative nuclear-encoded proteins in
Durinskia baltica.

A) P-type ATPase, left: complete tree, right: partial tree, B) Trypsin-like serine protease, top left: complete tree, arrows point at partial sections of the tree.
Numbers at the nodes indicate bootstrap support > 50%. A yellow box highlights the position of D. baltica. Several taxa of interest are color-coded:
Dinoflagellates in light blue; Apicomplexans and Ciliates in dark blue; Diatoms in scarlet; Stramenopiles in orange; Green algae and Plants in green; Red algae
in red; All other taxa in black. PI, taxon with a plastid; PINo, taxon without plastids.
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Table 4.S1: The GC content of the D. baltica nuclear-encoded plastid cDNAs

Protein GC % Seq ID
APXT 48.2 | isotig00853
FCP 52.1 | isotig02599
ADK-UBOX Fusion 64.2 | isotig01071
APX 63.3 | isotig02367
CA 68.1 | isotig03896
OASL 66.4 | isotig03490
SufC 66.8 | isotig04489
CASTOR 61.8 | isotig01020

Abbreviations: ADK-UBOX Fusion, chloroplast adenylate kinase and U-box domain containing protein; APX,
chloroplast ascorbate peroxidase; APXT, chloroplast thylakoid bound ascorbate peroxidase; CA, chloroplast
carbonic anhydrase ; CASTOR, chloroplastic ion channel CASTOR; FCP, fucoxanthin chlorophyll a/c binding
protein; SufC, FeS assembly ATPase SufC; OASL, chloroplast O-acetyl-serine lyase.
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Table 4.52: The GC content of the D. baltica diatom-derived candidate cDNAs compared to

that of their orthologues in other diatoms

DbSeqID |GC% | Pt(gi) |GC% | Tp(gi) |GC% |Fc(jgi) | GC% | To(gi) |GC%
isotig02599 | 52.1 53.6 57.0

isotig02507 | 46.0 50.5 46.6

isotig00853 | 48.2 51.2 53.4

isotig02229 | 45.1 56.4 49.1

isotig04324 | 65.7 48.7

isotig01523 | 66.9 47.5

isotig03741 | 60.1 51.0 48.5

isotig04442 | 62.0 47.9 48.6

isotig05486 | 58.0 40.6

isotig03474 | 64.8 54.5
isotig04201 | 62.8 38.8

isotig05045 | 66.6 39.6

isotig00328 | 60.0 49.0

isotig00757 | 59.1 48.0 48.9 49.7
isotig01223 | 62.9 53.9 46.4

Abbreviations: Db, Durinskia baltica; Pt, Phaeodactylum tricornutum; Tp, Thalassiosira pseudonana; Fc,
Fragilariopsis cylindrus; To, Thalassiosira pseudonana; gi, NCBI gi accession number; jgi, JGI accession number.
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Table 4.S3: The D. baltica sequence ids with an automatically assigned non-dinoflagellate non-diatom phylogenetic signal

Stramenopile Haptophyte Cryptophyte Plantae Ciliate Apicomplexan Metazoan Fungi Excavate Bacteria
contig05983 isotig00588 isotig05221 contig01636 isotig03489 isotig01194 isotig04588 isotig01034 isotig03931 contig01594
isotig02918 isotig01463 contig04881 isotig04283 isotig01239 isotig05539 isotig03143 isotig04367 isotig01822
isotig04218 isotig01508 isotig01785  isotig04644 isotig01330 isotig04879 isotig02388
isotig05115 isotig01995 isotig01864 isotig01471 isotig03134
isotig05144 isotig02679 isotig01921 isotig01606 isotig03143
isotig01360 isotig03458 isotig02632 isotig01971 isotig04056
isotig01682 isotig03625 isotig03401 isotig02292 isotig04086
isotig02295 isotig03693 isotig03433 isotig02710 isotig04216
isotig03793 isotig04008 isotig03694 isotig03285 isotig04327
isotig04435 isotig04485 isotig04023 isotig03760 isotig04351
isotig03869 isotig02912 isotig04707 isotig03868 isotig04467
isotig04984 isotig04593 isotig05109
isotig05314 isotig04960 isotig05328
isotig03526 isotig05158 isotig05511
isotig04214 isotig05248 contig01594
isotig03614 isotig01822
isotig04221 isotig02388
isotig03984
isotig04005
isotig04656
isotig04739
isotig05042

The red font marks the sequences that were assigned a non-dinoflagellate signal after manual inspection.
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Table 4.54: The list of taxa included in the phylogenetic analyses

Alveolate
Alveolate
Alveolate
Alveolate

Alveolate

Stramenopile

Alveolate

Alveolate
Alveolate

Group
Prokaryote
Dinoflagellate
Dinoflagellate
Dinoflagellate
Dinoflagellate
Prokaryote
Dinoflagellate
Prokaryote
Streptophyte
Green Alga
Pelagophyte
Prokaryote
Prokaryote
Rhizaria
Streptophyte
Haptophyte
Red Alga
Prokaryote
Green Alga
Green Alga
Prokaryote
Prokaryote
Red Alga
Apicomplexa
Haptophyte
Green Alga
Prokaryote
Fungi
Apicomplexa
Apicomplexa
Red Alga
Prokaryote
Glaucophyte
Metazoa
Metazoa
Prokaryote
Prokaryote

Taxon

Actinobacteria
Alexandrium catenella
Alexandrium minutum
Alexandrium ostenfeldii
Alexandrium tamarense
Alphaproteobacteria
Amphidinium carterae
Aquificae

Arabidopsis thaliana
Asterochloris sp
Aureococcus anophageferrens
Bacteroides fragilis
Batrachochytrium dendrobatidis
Bigelowiella natans
Brachypodium distachyon
Calcidiscus leptoporus
Calliarthron tuberculosum
Chlamydiae
Chlamydomonas reinhardtii
Chlorella vulgaris
Chlorobi

Chloroflexi

Chondrus crispus
Chromera velia
Coccolithus braarudii
Coccomyxa sp
Crenarchaeota
Cryptococcus neoformans
Cryptosporidium hominis
Cryptosporidium parvum
Cyanidioschyzon merolae
Cyanobacteria
Cyanophora paradoxa
Danio rerio

Daphnia pulex
Deferribacteres
Deinococcus

Plastid
no
yes
yes
yes
yes
no
yes
no
yes
yes
yes
no
no
yes
yes
yes
yes
no
yes
yes
no
no
yes
no
yes
yes
no
no
no
no
yes
no
yes
no
no
no
no

Data type
Genomes
ESTs
ESTs
ESTs
ESTs
Genomes
ESTs
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
ESTs
ESTs
Genomes
Genomes
Genomes
Genomes
Genomes
ESTs
ESTs
ESTs
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
ESTs
Genomes
Genomes
Genomes
Genomes
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Stramenopile

Stramenopile

Alveolate
Alveolate
Alveolate
Alveolate

Alveolate

Alveolate

Alveolate

Group
Amoebozoa
Amoebozoa
Phaeophyte
Haptophyte
Red Alga
Excavate
Excavate
Excavate
Prokaryote
Prokaryote
Diatom
Prokaryote
Red Alga

Red Alga
Metazoa
Glaucophyte
Red Alga

Red Alga
Cryptomonad
Dinoflagellate
Metazoa
Ciliate
Haptophyte
Dinoflagellate
Dinoflagellate
Fungi
Dinoflagellate
Metazoa
Green Alga
Green Alga
Streptophyte
Excavate
Metazoa
Apicomplexa
Fungi
Prokaryote
Streptophyte
Green Alga

Taxon

Dictyostelium discoideum
Dictyostelium purpureum
Ectocarpus siliculosus
Emiliania huxleyi
Eucheuma denticulatum
Euglena gracilis

Euglena longa

Euglena mutabilis
Euryarchaeota
Firmicutes

Fragilariopsis cylindrus
Fusobacteria

Galdieria sulphuraria
Furcellaria lumbricalis
Gallus gallus
Glaucocystis nostochinearum
Gracilaria sp

Griffithsia okiensis
Guillardia theta
Heterocapsa triquetra
Homo sapiens
Ichthyophthirius multifiliis
Isochrysis galbana
Karenia brevis
Karlodinium micrum
Laccaria bicolor
Lingulodinium polyeydrum
Lottia gigantea
Micromonas pusilla
Micromonas sp

Mimulus guttatus
Naegleria gruberi
Nematostella vectensis
Neospora caninum
Neurospora crassa
Nitorospirae

Oryza sativa
Ostreococcus lucimarinus

Plastid
no
no
yes
yes
yes
yes
yes
yes
no
no
yes
no
yes
yes
no
yes
yes
yes
yes
yes
no
yes
yes
yes
yes
no
no
no
yes
yes
yes
no
no
yes
no
no
yes
yes

Data type
Genomes
Genomes
Genomes
Genomes
ESTs
ESTs
ESTs
ESTs
Genomes
Genomes
Genomes
Genomes
ESTs
ESTs
Genomes
ESTs
ESTs
ESTs
Genomes
ESTs
Genomes
ESTs
ESTs
ESTs
ESTs
Genomes
ESTs
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
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Alveolate
Alveolate

Alveolate
Stramenopile

Stramenopile
Stramenopile

Alveolate

Alveolate
Alveolate

Stramenopile
Stramenopile

Stramenopile

Alveolate

Alveolate
Stramenopile

Alveolate

Group

Green Alga
Dinoflagellate
Ciliate
Haptophyte
Dinoflagellate
Diatom
Streptophyte
Oomycete
Oomycete
Prokaryote
Apicomplexa
Apicomplexa
Apicomplexa
Streptophyte
Red Alga

Red Alga

Red Alga
Prokaryote
Haptophyte

Dictyochophyte

Diatom
Katablepharid
Oomycete
Fungi
Streptophyte
Streptophyte
Prokaryote
Dinoflagellate
Prokaryote
Prokaryote
Ciliate
Diatom
Prokaryote
Prokaryote
Apicomplexa
Prokaryote
Fungi
Prokaryote

Taxon

Ostreococcus tauri
Oxyrrhis marina
Paramecium tetraurelia
Pavlova lutheri
Perkinsus marinus
Phaeodactylum tricornutum
Physcomitrella patens
Phytophthora ramorum
Phytophthora sojae
Planctomycetes
Plasmodium berghei
Plasmodium chabaudi
Plasmodium falciparum
Populus trichocarpa
Porphyra haitanensis
Porphyra yezoensis
Porphyridium cruentum
Proteobacteria-nonalpha
Prymnesium parvum
Pseudochattonella farcimen

Pseudonitzschia multiseries CLN47

Roombia truncata
Saprolegnia parasitica
Schizosaccharomyces pompe
Selaginella moellendorffii
Sorghum bicolor
Spirochaetes
Symbiodinium sp
Synergistetes

Tenericutes

Tetrahymena thermophila
Thalassiosira pseudonana
Thermotogae
Thumarchaeota
Toxoplasma gondii
Unclassifides

Ustilago maydis
Verrucomicrobia

Plastid
yes
NA
no
yes
yes
yes
yes
no
no
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
yes
yes
no
yes
yes
no
no
yes
no
no
yes
no
no
no

Data type
Genomes
ESTs
Genomes
ESTs
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
ESTs
ESTs
ESTs
Genomes
ESTs
ESTs
ESTs
ESTs
Genomes
Genomes
Genomes
Genomes
Genomes
ESTs
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
Genomes
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Group Taxon Plastid Data type

Streptophyte Vitis vinifera yes Genomes
Green Alga Volvox carteri yes Genomes
Streptophyte Zea mays yes Genomes
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