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Abstract

Image hashing has been a popular alternative of digital watermarking for

copyright protection and content authentication of digital images, due to its

two critical properties – robustness and security. Also, its uniqueness and

compactness make image hashing attractive for efficient image indexing and

retrieval applications. In this thesis, novel image hashing algorithms are

proposed to improve the robustness of digital image hashing against various

perceptually insignificant manipulations and distortions on image content.

Furthermore, image hashing concept is extended to the content-based fin-

gerprinting concept, which combines various hashing schemes efficiently to

achieve superior robustness and higher identification accuracy.

The first contribution of the thesis is the novel FJLT image hashing,

which applies a recently proposed low-distortion dimension reduction tech-

nique, referred as Fast Johnson-Lindenstrauss Transform (FJLT), into image

hashing generation. FJLT shares the low distortion characteristics of ran-

dom projections, but requires less computational cost, which are desirable

properties to generate robust and secure image hashes. The Fourier-Mellin

transform can also be incorporated into FJLT hashing to improve its per-

formances under rotation attacks. Further, the content-based fingerprinting

concept is proposed, which combines different FJLT-based hashes to achieve

better overall robustness and identification capability.

The second contribution of the thesis is the novel shape contexts based

image hashing (SCH) using robust local feature points. The robust SIFT-

Harris detector is proposed to select the most stable feature points under var-

ious content-preserving distortions, and compact and robust image hashes

are generated by embedding the detected feature points into the shape con-

texts based descriptors. The proposed SCH approach yields better identi-
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fication performances under geometric attacks and brightness changes, and

provides comparable performances under classical distortions.

The third contribution of this thesis addresses an important issue of

compressing the real-valued image hashes into robust short binary image

hashes. By exploring prior information from the virtual prior attacked hash

space (VPAHS), the proposed semi-supervised spectral embedding approach

could compress real-valued hashes into compact binary signatures, while the

robustness against different attacks and distortions are preserved. Moreover,

the proposed SSE framework could be easily generalized to combine different

types of image hashes to generate a robust, fixed-length binary signature.
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Chapter 1

Introduction

1.1 Background

During the last two decades, digital media has profoundly changed our daily

life. The advanced development of digital cameras and camcorders as well

as storage techniques facilitate the massive proliferation of digital media

such as images and videos. Due to the advancement of modern networking

techniques and the easy-to-copy nature of digital media, millions of digital

images and videos are distributed and shared daily over Internet with the

help of popular social media network services, such as YouTube and Flicker

etc. However, such convenience of the easy distribution of digital media data

also raises several critical issues as follows:

• Copyright Protection: Due to the nature of Internet, once users upload

their images into public websites, everyone could download the digital

images without any authorization. The goal of copyright protections is

to identify perceptually identical images or videos, even if they suffer

from some distortions induced by the imperfect transmission channel

or small malicious tampering, and to prevent possible illegal usage of

these digital media data.

• Content Authentication: For the sake of easy-to-manipulate nature of

digital images, content tampering such as object insertion or removal

could be easily conducted using certain image processing softwares.

Therefore, how to authenticate the integrity of digital image data and

identify malicious tampering has become one of the most important

issues in digital media security.
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• Efficient Indexing and Retrieval : The efficient management of large

image and video databases could offer users satisfactory query-retrieval

services. However, traditional indexing methods based on manual

annotations are time consuming and have become the bottleneck of

efficient retrieval in large-scale media databases. Hence, automatic

indexing schemes for content-based digital data annotation and fast

searching algorithms for retrieving query data are desired.

Therefore, how to efficiently manage the large-scale media databases and

effectively protect the copyright of digital media data are critical issues to

be resolved.

1.2 Challenges and Motivation

Traditionally, digital watermarking is proposed as a promising technique

to authenticate the integrity of media data and protect digital copyrights.

The fundamental idea of digital watermarking is to embed some authorized

signatures, referred as watermark signals, into host digital images or videos

invisibly or visibly depending on the application scenarios. At the receiver

side, the watermark signals can be detected and extracted as identification

information to indicate the ownerships. However, such an active embedding

process would inevitably cause some slight or imperceptible modifications on

media content, especially when the embedded watermark signals are required

to be robust against standard signal processing attacks such as additive

noise and compression. Therefore there is always a tradeoff between the

strength of the embedded watermark signals and the content quality of the

host media data. Also, since the embedded watermark signals are usually

independent of the host media, digital watermarking is usually incapable of

serving content-based media data retrieval tasks.

To efficiently manage large-scale media databases, especially for digital

images, content-based image retrieval (CBIR) [89] has been proposed and

studied, which aims to extract features from a low level (e.g., color and tex-

ture etc) to a high level (e.g., salient points, objects, and structures etc) and
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automatically retrieve the query image by feature matching. However ro-

bust features to be used for accurate retrieval usually lie in high dimensional

spaces, which require a large storage space for saving and are inappropriate

for fast indexing. Also these features generally lack of security protection

and are vulnerable to unauthorized adversaries. Therefore the conventional

CBIR schemes are not feasible for digital copyright protection.

In this sense, image hashing and the extended content-based fingerprint-

ing concept are proposed and shown to be efficient tools to address issues of

efficient image database management and copyright protection.

1.3 Image Hashing and Content-Based

Fingerprinting

1.3.1 Concept and Properties

As an alternative way for efficient image database management and copy-

right protection, perceptual image hashing or content-based image finger-

printing has been proposed to generate an unique, compact, robust and se-

cure signature for each image [96, 101]. Without embedding any additional

watermark signal into host images, the generated image hash depends on

the image content or characteristics itself.

Given images I and I ′ and their perceptually similar copies with minor

distortion Id and I ′d, and an image hashing function Hk(.) depending on a

secret key k, we can summarize the desired properties of Hk(.) as follows:

• Uniqueness: Perceptually distinct images should have unique signa-

tures

Pr(Hk(I) 6= Hk(I
′)) ≥ 1− τ, 0 ≤ τ < 1. (1.1)

The uniqueness of signatures (image hashes) guarantees the applications of

image hashing on content-based image identification and retrieval.

• Compactness: The size of the hash signature should be much smaller

3



than that of the original image I

Size(Hk(I))� Size(I). (1.2)

Since for large-scale image databases, a critical issue is how to efficiently

save and search the memory space for thousands of image hashes. The

compactness of image hash is desired, because a short enough signature

would facilitate the efficiency of searching and retrieval and require less

storage space.

• Perceptual Robustness: Perceptually identical images should have

similar signatures

Pr(Hk(I) ≈ Hk(Id)) ≥ 1− ε, 0 ≤ ε < 1. (1.3)

Conventional hashing algorithms such as MD-5 and SHA-1 [68] in cryptogra-

phy are sensitive to even slight changes in messages. While for digital image

data, perceptually insignificant distortions introduced to original images due

to lossy compression or noisy transmission channels etc. are inevitable, when

images are distributed via Internet. Therefore, it is required to guarantee

that perceptually similar images have similar image hashes, and image hash-

ing should be robust to such content-preserved un-malicious distortions and

attacks for image identification and retrieval purpose [101]. An example is

illustrated in Figure 1.1, which includes the original image and its distorted

copies under distortions, such as Gaussian blurring, Gaussian noise, motion

blurring, JPEG compression, rotation, cropping, and shearing. Perceptu-

ally, these images are identical in human visual system (HVS), while they

indeed undergo some content-preserving distortions and attacks. The per-

ceptual robustness of image hashing guarantees that these images have very

close hashes, if the algorithms are robust enough against these attacks.

However, for malicious manipulations on the image content such as ob-

ject insertion and removal, images hashes should be sensitive to these per-

ceptually significant attacks for the image authentication purpose, which is

related to the research field of image tampering detection and localization

4



[93].

• One-way Function : Ideally, the hash generation should be non-

invertible,

I 7→ Hk(I). (1.4)

•Unpredictability : The signature is intractable without the secret key,

Pr(Hk(I) 6= Hk′(I)) ≥ 1− δ, 0 ≤ δ < 1. (1.5)

Similar to the traditional hashing, security is an important concern for image

hashing. The property of one-way function guarantees the original image

data is not accessible according to the corresponding hashes. On the other

hand, pseudorandomization techniques are generally incorporated into im-

age hash generation process to enhance the security of image hashes using

secret keys and to prevent the unauthorized usage of digital images.

Ideally, all the above parameters ε, τ , and δ should be close to zero for

a proper designed hashing scheme to generate unique and compact image

hashes, which are robust enough against perceptually insignificant distor-

tions and secure enough to prevent unauthorized access.

1.3.2 Generic Framework

A generic framework of image hashing/fingerprinting generation is shown

in Figure 1.2. Generally, the robustness of image hashing arises from ro-

bust feature extraction and the compression component mainly contributes

to the compactness of the final hash. To inherit the security of traditional

hash functions and prevent unauthorized access, a secret key is incorporated

into either feature extraction or compression or both to make image hashes

unpredictable. To the best of our knowledge, most hashing algorithms incor-

porate the pseudorandomization relying on secret keys into the compression

step, but some state-of-art hashing schemes [60, 74] also introduce pseudo-

randomizations into the feature extraction stage using random sampling or

random projection to further enhance the security (as indicated by the dash

line in Figure 1.2). Since secret keys are owned by owners, hash generation
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(a) Original Image (b) Gaussian Blurring

(c) Gaussian Noise (d) Motion Blurring

(e) JPEG Compression (f) Rotation

(g) Cropping (h) Shearing

Figure 1.1: Examples of distorted image copies under different content-
preserving attacks.
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is a pseudorandom process rather than a completely random one. The in-

coming query hash corresponding to a specific query image will be compared

with image hashes in the database for content identification, authentication

and other applications. Since image hashes are compact signatures, the

comparison could be performed efficiently.

Figure 1.2: The generic framework of image hashing

1.4 Contributions and Thesis Outline

1.4.1 Thesis Contributions

Based on the generic framework of image hashing and the four desired

properties: uniqueness, compactness, robustness, and security, it is obvious

that robust feature extraction, feature compression and the incorporation of

pseudorandomization are the key topics in designing desirable digital image

hashing algorithms. In this thesis, we mainly focus on the robust feature

extraction and feature compression issues and have the following contribu-

tions:

• I conduct a complete literature review on digital image hashing/content-

based fingerprinting, analyze and compare various robust feature extraction

and feature compression methods, and discuss the open issues and research

directions of image hashing and content-based fingerprinting.

• I introduce a recently proposed low-distortion dimension reduction

technique, referred as Fast Johnson-Lindenstrauss Transform (FJLT), and

propose the use of FJLT for generating robust digital image hashes. To

further improve the robustness of FJLT hashing (FJLTH) against rotation
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attacks, I propose the rotation-invariant FJLT hashing (RI-FJLTH) by in-

corporating the Fourier-Mellin transform idea into FJLT hashing. Further-

more, the image hashing concept is extended to the content-based finger-

printing concept, which combines FJLTH and RI-FJLTH schemes to achieve

superior identification performances under various distortions and attacks.

• I propose using the popular scale invariant feature transform (SIFT)[55]

to detect robust feature points and incorporating the Harris criterion to

select the most stable ones which are less vulnerable to image processing

attacks. Then the shape contexts [9] are introduced into hash generation to

represent the geometric distribution of the detected feature points. Exper-

imental results show that the proposed image hashing scheme is robust to

a wide range of distortions, especially against geometric attacks and illumi-

nation changes. Also, since the spatial structure of image content has been

embedded into the hash, the proposed shape contexts based image hashes

could be applied to detect and localize content tampering.

• I propose a binary image hashing compression scheme, which takes

advantages of the extended hash feature space from virtual distortions and

attacks and generates binary image hashes based on semi-supervised spectral

embedding (SSE). The proposed scheme could compress real-valued inter-

mediate hashes into binary image hashes, while preserving their robustness.

Furthermore, it can be generalized to combine different types of real-valued

image hashes and generate a fixed-length binary signature. The proposed

binary image hashing shares the robustness of incorporated hashes, is more

robust against various image distortions and is computationally efficient for

image similarity comparison.

1.4.2 Thesis Outline

The thesis outline is summarized as follows:

Chapter 2 presents a literature survey of digital image hashing and

content-based fingerprinting. Based on the proposed framework, the previ-

ous algorithms are analyzed according to four basic modules, which include

pre-processing on images, robust feature extraction, feature compression,
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and post-processing. Also, security of image hashing based on pseudo-

randomization is also discussed. From the comprehensive analysis on the

state-of-the art approaches, some open research issues and directions are

discussed.

Chapter 3 presents a digital image hashing algorithm based on a recent

dimension reduction technique, the Fast Johnson-Lindenstrauss Transform

(FJLT). The popular Fourier-Mellin transform is further incorporated into

the proposed FJLTH to improve its performance under rotation attacks.

By combining FJLTH and rotation-invariant FJLTH (RI-FJLTH), content-

based fingerprinting idea is proposed and demonstrated to yield superior

robustness against various distortions and attacks, when compared with the

state-of-art NMF image hashing.

Chapter 4 presents a novel digital image hashing algorithm based on ro-

bust SIFT-Harris feature point detection and shape context descriptors. The

state-of-art SIFT for feature point detection is investigated under various

image distortions and attacks. Based on the investigation, Harris criterion is

incorporated to select the most stable SIFT key points under various distor-

tions. When compared with another local feature point detection approach

based on end-stopped wavelets, the proposed scheme is shown to be more

robust against various distortions. Radial shape context hashing (RSCH)

and angular shape context hashing (ASCH) schemes are proposed by embed-

ding the detected SIFT-Harris feature points into shape context descriptors

in radial and angular directions respectively. The proposed SCH is shown

to be more robust than FJLTH, RI-FJLTH, and NMFH under rotation at-

tacks and illumination changes. Also, by combing both RSCH and ASCH,

more robustness can be achieved and its application on image tampering

detection is demonstrated for image authentication purpose.

Chapter 5 presents a novel binary image hashing compression algorithm

using semi-supervised spectral embedding (SSE). With the availability of

real-valued intermediate image hashes, the extended hash feature space un-

der virtual prior attacks is generated and a training is introduced to learn the

spectral embedding based on a given cost function, which is specifically de-

signed to both preserve local similarity between image hashes from distorted
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images and distinguish hashes from distinct images. Based on the learned

embedding, real-valued intermediate image hashes could be projected into

binary image hashes using out-of-sample extensions. The generated binary

image hashes are more robust when compared with the ones using tradi-

tional quantization-based compression methods. Furthermore, the proposed

SSE scheme is extended to combine multiple real-valued intermediate image

hashes and embed them into fixed-length binary hashes, which are demon-

strated to be more robust and more computationally efficient for similarity

measures using Hamming metrics.

Chapter 6 concludes the dissertation and discusses the future work.
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Chapter 2

Image Hashing and

Content-Based

Fingerprinting Review

2.1 Review Framework

In this chapter, previous works on digital image hashing and content-based

fingerprinting approaches in last decades are reviewed, following the key is-

sues of the framework shown in Figure 2.1, which includes pre-processing,

robust feature extraction, feature compression, post processing, and secu-

rity incorporation. These issues summarize the major components that are

critical to design a robust and secure digital image hashing algorithm.

After the review on the algorithm design, the evaluation criteria are

discussed based on different application scenarios. For instance, if the im-

age hashing algorithm is designed for content identification, its robustness

against content-preserving attacks that do not introduce obviously percep-

tual manipulations on image content is usually the major concern to be

evaluated. Other desired evaluation criteria that people usually adopt are

also shown in Figure 2.1 for corresponding application scenarios. Note that

there is one dash lines in Figure 2.1, indicating that the measure is desired

but not necessary. For instance, some digital image hashing algorithms are

mainly designed for image copies detection, and thus focus mainly on the

robustness analysis without taking the security into consideration. How-

ever, for the content authentication purpose, how to protect the integrity of

images is the critical goal, which means that image hashes or fingerprints
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Figure 2.1: The framework of digital image hashing and content-based fin-
gerprinting review

should be secure enough to prevent forgery attacks. Therefore the security

issues have to be taken into consideration.

The papers cited in this review mainly include the following cases: First,

the paper presents a complete hashing or fingerprinting design, which means

that robust and compact hashes are generated to represent digital images,

and security issues for image hash protection are also considered. Secondly,

the paper focuses only on robust feature extraction and fast matching with-

out considering security issues, but it still generates compact signatures

to represent images and aims to retrieve distorted copies under content-

preserving attacks. The reason we include this type of papers is that robust

feature extraction is one of the most important modules in the design of im-

age hashing. The robust feature descriptors could be treated as intermediate

hashes and further encrypted in the post processing stage to generate secure

signatures later. Thirdly, the paper mainly analyzes the security issues of

image hash functions, including the unpredictability arising from pseudo-
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randomization or fragility to some sophisticate attacks. Finally, the papers

that evaluate or compare the performances of state-of-art image hashing or

content-based fingerprinting schemes are also covered.

In order to exclusively focus on the topics we choose and do a comprehen-

sive review on the related literatures, we mainly follow two ways to search

the papers. First, we use some key words to search papers related to the

specific topics from Google Scholar, including: “image hashing”, “content-

based image fingerprinting”, “image digital signature” and so on. This is a

rough way to obtain some popular papers with high citations. Secondly, we

find other related papers following the references and citations. Within the

literature survey, we also found some authors extended their valuable ideas

from conference papers to journal papers. To avoid the redundancy, we only

cite their journal papers when available, because journal papers usually il-

lustrate more details about the proposed ideas, provide more experimental

results with detailed analysis, and could better facilitate other people’s work

in the future.

2.2 Pre-Processing

The pre-processing step is a general way to “filter” the image content be-

fore the robust feature extraction step. Its major purpose is to enhance the

robustness of features by preventing the effects of some distortions, such

as additive noise. Some works take advantages of the pre-processing step

to normalize images into a standardized format, which could facilitate the

robust feature extraction step. The common pre-processing operations ap-

plied on digital images are illustrated as follows and the related references

are listed in Table 2.1.

• Colour Space Dimension Reduction: This is a common operation ap-

plied in most digital image hashing algorithms. Colour images are first

converted to grayscale images to reduce the computational cost for feature

extraction (e.g. 3D to 2D). Another way is based on the colour space trans-

form that converts RGB space to HSI space. Then the 2D digital image

data in the illumination channel is further used for feature extraction.
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Table 2.1: Literature references regarding pre-processing

Methods References

Colour Space
Dimension Reduction

[4, 14, 27, 40, 43, 47, 48, 52, 54, 56,
57, 60, 67, 70, 73, 74, 78, 81, 84,

88, 92, 96, 100, 104]

Resizing [16, 31, 60, 70, 73, 84, 90, 92]

Filtering [80, 84, 92, 103]

Illumination
Normalization

[27, 84, 92]

• Resizing : Images are resized to a predefined size (usually very small,

e.g. 256 × 384) as a default format. The advantages are twofold: First,

the computational cost of feature extraction is much lower. In this sense,

it improves the efficiency of hash generation and facilitates fast indexing

and retrieval applications. Also, features extracted from an image with

standardized size are more robust against the aspect ratio change, which is

one of the geometric attacks.

• Filtering : It is an efficient way to improve the robustness of the ex-

tracted features against noise. Some popular filters, such as median filter

and Gaussian filter, could be applied on digital images for noise reduction.

However, these low-pass filters would also eliminate some details of image

contents and generate blurred images, and thus require that the image hash-

ing scheme is robust against blurring distortions.

• Illumination Normalization: Brightness change or Gamma correction

is a common image processing attack. Illumination normalization processes

such as histogram equalization could effectively render the extracted features

invariant to illumination changes.

In the literatures, there are other pre-processing operations which can

serve as assistant ways for extracting robust features, such as image regis-

tration [93], ellipse block partition [102] to achieve rotation invariance, and

so on.
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2.3 Robust Feature Extraction

Robust feature extraction is one of the fundamental modules in digital image

hashing and fingerprinting algorithms. Image hashes are unique, since the

extracted features are based on the characteristics of digital images, which

are distinctive enough for content identification. On the other hand, as

long as two digital images are perceptually identical, the extracted features

and thus the image hashes should be as similar as possible even the images

are under additive noise, blurring, geometric attacks and other content-

preserving attaches. By reviewing the related literature in last decades, we

note that most previous works focus on seeking robust features to resist

certain distortions and attacks, which are summarized as follows and listed

in Table 2.2.

• Image Pixels and Statistics: Image pixel values are the raw features

that could be directly used for hash generation. However, an N ×N image

will have a feature vector with length N2, which can be quite high dimen-

sional. Therefore a dimension reduction technique that could preserve the

local similarity is desired for feature compression in image hashing. Further-

more, the statistics of pixel values can also be applied as robust features for

image hash generation, such as mean, variance, and other higher moments

such as skewness and kurtosis. The statistic features are usually more ro-

bust than the raw pixel values against noising, blurring, and compression

distortions, but with less distinctiveness, which is significantly important

for the uniqueness of image hashes. Thus tradeoffs between different desired

properties have to be taken into consideration in image hashing approaches.

• Invariant Feature Transform: Coefficients in a transformed domain

can be critical features and robust enough against a large class of image

processing attacks and distortions. The state-of-art transforms to extract

robust features include Discrete Cosine Transform (DCT), Discrete Wavelet

Transform (DWT), Fourier-Mellin Transform, Radon Transform etc. Kim

proposed using ordinal measures of DCT coefficients to generate robust de-

scriptors against histogram equalization, noise addition etc. for the copy

detection purpose [43]. This method was further improved for rotation ma-
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nipulations in [102]. The Radon Soft Hash algorithm (RASH) [47] shows

robustness against small geometric transformation and common image pro-

cessing distortions such as JPEG compression by employing radon trans-

form to extract geometrically invariant features. Swaminathan’s hashing

scheme [92] applies Fourier-Mellin transform to extract invariant features

to achieve better robustness against geometric attacks. The major advan-

tages of the features in a transformed domain lie in their strong robustness

against certain distortions and attacks. However, generally such robustness

is at the cost of vulnerability to other types of attacks. For instance, the

features from the Fourier-Mellin transform domain are robust against ge-

ometric transforms, but they are sensitive to noise addition and blurring

attacks.

• Local Feature Patterns: Local feature patterns are one kind of impor-

tant robust features for generating image hashes. Local feature patterns

usually include edges, corners, blobs, salient regions and so on. Monga et.al

[73] proposed an image hashing method using local feature points detected

by end-stopped wavelet, which are robust enough under various geometric

attacks, including rotation, cropping, shearing etc. Roy et.al [80] proposed

a robust local preserving hashing algorithm based on scale invariant feature

transform (SIFT) [55] to identify image tampering for the authentication

purpose. Obviously, the benefit of applying local feature patterns mainly

lies in their robustness against geometric attacks, which is often the bottle-

neck of other classical features. However, the sensitivity to noise addition,

blurring, and compression limits their practical developments in image hash-

ing, and it remains an open research issue.

• Matrix Decomposition: Since images are inherently 2D matrix data

(e.g. grayscale images), matrix decomposition methods are also explored

for extracting invariant features. For instance, using low-rank matrix ap-

proximations obtained via singular value decomposition (SVD) for hashing

is explored in [45], and non-negative matrix factorization (NMF) with its

non-negativity constraints is also applied for generating robust image hashes

in [74]. The invariant features based on matrix decomposition show good ro-

bustness against noise addition, blurring and compressing attacks. However,
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Table 2.2: Literature references regarding robust feature extraction

Robust Features Sub-categories References

Image Pixels and
Statistics

Pixels
[27, 52, 60, 74, 83, 93,

103, 104]

Mean
[18, 39, 43, 44, 54, 78,

96, 102–104, 110]
Variance [11, 39, 96, 102]

Others
Color [28, 69],
Cumulant [109]

Invariant Feature
Transform

DCT
[34, 40, 43, 45, 49, 56,

109]

DWT
[11, 16, 29, 31, 32, 45,
56, 57, 67, 69, 70, 75,

77, 96, 100, 108]
Fourier

Transform
[24, 27, 60, 78, 80, 90,

92]
Radon Transform [31, 47, 48, 84, 100]

Others
Trace Transform [14],

Gabor Filter [69]

Local Feature Pattern
[11, 24, 27, 56, 73, 78,

80, 81, 106, 110]

Matrix Decomposition [45, 74, 94]

their performances under large geometric attacks are still limited.

Robust feature extraction is a key step in image hashing due to the crit-

ical robustness concern. Based on the literature review and our own study,

we feel that seeking certain features to resist all types of image distortions

and attacks are highly unlikely, while it is relatively easier to find a specific

kind of features to be robust against certain attacks.

2.4 Feature Compression and Post-Processing

The compactness is another critical property of image hashing. Hence, ro-

bust features need to be further compressed into a short real-valued or even

binary sequence, which can essentially be considered as a dimension reduc-

tion process. However, to obtain a very short image hash, it inevitably
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becomes a lossy compression process, and how to preserve the local similar-

ity from a higher dimensional space to a lower dimensional space is always a

critical research challenge. Some typical methods are summarized as follows

and related references are listed in Table 2.3.

• Quantization: It is widely employed for converting continues feature

space to finite discrete feature space and helpful for further signature encod-

ing. Popular approaches include interval quantization, binary quantization

using threshold, ordinal measures and so on for image hash generation.

• Compression Coding : The state-of-art coding techniques in communi-

cations can also be applied for compressing the robust features into short

image hashes, including Distributed source coding (e.g. Wyner-Ziv, Slepian-

Wlof), LDPC coding and error-correcting coding (ECC) etc.

• Random Projection: It is one of the state-of-art dimension reduction

techniques to project data in a high dimensional space into a lower dimen-

sional space, while preserving the local similarity of the data. The random

projection approach can result in performances comparable to that of the

conventional dimension reduction methods such as Principal Component

Analysis (PCA), but be computationally more efficient. Another advantage

of the random projection direction is that the projection is a pseudoran-

domization process that could enhance the security of the designed hashing

scheme.

• Clustering : Clustering methods that divide the feature space into finite

voxels given defined distance metrics and map similar features into the same

centroids of clusters can also be employed in image hashing for feature com-

pression. However, when new original images are registered in the database,

clustering-based methods could only map them into existing clusters unless

the model is retrained. Therefore the computational cost of clustering-based

methods is generally higher than other types of methods.

• Traditional Cryptography : Conventional techniques in cryptography

can sometimes be used for generating short image hashes based on strong

robust features, since they are sensitive to minor distortions of digital im-

ages. Popular techniques include RSA, MD-5, DES, and so on.
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Table 2.3: Literature references regarding feature compression
and post-processing

Methods References

Quantization

[3, 14, 18, 24, 27, 28, 31, 37, 39, 40,
43, 44, 49, 52, 54, 56, 57, 67, 69,
70, 73, 78, 80, 81, 84, 90, 92, 94,

96, 103, 108]

Compression Coding [24, 29, 37, 52, 53, 66, 77, 92, 93, 96]

Random Projection [32, 52, 53, 59, 60, 74, 80, 92, 93]

Clustering [39, 43, 72, 81]

Traditional
Cryptography

[11, 49, 54, 57, 104]

2.5 Security Incorporation

Security is one of the most important properties of image hashing or content-

based fingerprinting due to its application on copyright protection. To make

image hashes unpredictable, the basic idea is to incorporate a “secret key”

into hash generation to make it as a pseudorandomization process. Ideally,

for a secure image hashing scheme, users can’t generate or even forge the

right hash of an image unless with the help of the corresponding “secret

key”. Hence, the incorporation of the “secret key” is inherently an encryp-

tion process in cryptography. The typical way of security incorporation is

summarized as follows and related references are listed in Table 2.4.

• Randomized Tiling : Images are randomly partitioned into overlapped

subregions based on the selected “secret key”. These subregions could be

rectangle, circle, or even ellipse with randomly selected radii. Then, robust

features could be extracted from these randomized areas to enhance the

security of the final image hashes. Randomized tiling is usually applied

in the pre-processing step and an effective way to make the final hashes

unpredictable. The only bottleneck is its sensitivity to geometric attacks.

• Randomized Transform: After robust features are extracted, they are

further transformed into another randomized domain determined by the

selected “secret key”. It is inherently a pseudo-encryption process applied
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Table 2.4: Literature references regarding security incorporation

Methods References

Randomized Tiling [45, 60, 66, 67, 70, 73, 74, 94, 96]

Randomized Transform [4, 27, 40, 52, 60, 66, 84, 94]

Random Projection
[24, 32, 44, 52, 54, 60, 70, 74, 78,

81, 83, 92, 93, 96, 103]

Traditional
Cryptography

[11, 50, 57, 104]

in feature extraction step to make the features unpredictable.

• Random Projection : It is usually applied in feature compression and

post-processing step to project robust features into a lower dimension based

on the projection matrix, whose entries are random variables determined

by the selected “secret key”. One typical example is the Gaussian random

projection [74].

• Traditional Cryptography : The conventional techniques in cryptogra-

phy could also be employed for encrypting features after feature compression

step. Although they are sensitive to the minor changes of encrypted data,

it is still feasible as long as the features are robust enough.

With the help of “secret key”, the encryption of image hashes could

be controlled by the authorized users and prevent the unauthorized access,

which facilitates the application on copyright protection.

2.6 Comparison and Decision Making

Following the framework of image hashing or content-based fingerprinting, a

compact and secure hash is generated and associated with the corresponding

original image in database as an index. When a query hash is received, it will

be compared with the existing hashes based on the selected distance metrics

and the corresponding image will be retrieved according to the classifiers.

Hence, the distance metrics to measure the similarity between hashes and

the classifiers to make decisions are also two important issues in hashing and

fingerprinting schemes.
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2.6.1 Distance Metrics

Given two hashesH1 = {h1(1), h1(2), ..., h1(k)} andH2 = {h2(1), h2(2), ..., h2(k)}
of two images I1 and I2 with length k, the following distance metrics are

usually employed:

Euclidean Distance : Dist(H1, H2) =

√√√√ k∑
i=1

(h1(i)− h2(i))2 (2.1)

L1 Norm : Dist(H1, H2) =
k∑
i=1

|h1(i)− h2(i)| (2.2)

Hamming Distance : Dist(H1, H2) =
k∑
i=1

|h1(i)⊕ h2(i)| (2.3)

The choice of distance metrics depends on the type of hashes. When the

generated hashes are real-valued vectors, Euclidean distance or L1 norm is

usually employed. Otherwise, Hamming distance should be used for binary

hashes. For the comparison and retrieval in large database, binary hashes

and Hamming metrics are preferable for the lower computational cost, while

real-valued hashes and Euclidean distance or L1 norm provide higher iden-

tification accuracy with the cost of more computational burden.

2.6.2 Classifiers

After the similarity between hashes is measured by the selected distance

metrics, classifiers are employed to make the decision for content identifi-

cation. In most image hashing and fingerprinting algorithms, the simple

nearest neighbour classifier or threshold based classifiers are usually used

for making decision.

Dist(H1, H2) ≤ ξ (2.4)
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where ξ is the selected threshold. Although there are a lot of advanced clas-

sification methods proposed in machine learning, they are seldom employed

in image hashing area. The underlying reason is as follows: Image hashing

is an infinite clustering problem, which takes each original image as a new

cluster and all its perceptually identical copies are assumed to lie in the

neighbourhood of the centroid (e.g. the original image). Hence, if advanced

supervised classifiers, such as Support Vector Machine (SVM), are employed,

they could only deal with the finite classification problems and have to be

re-trained, whenever a new original image is registered in database. The

re-training process may incur heavy computational cost when thousands of

images are registered and training advanced classifiers to deal with classifi-

cation for infinite classes is not feasible in practice. One attempt to explore

the classification using SVM and Gaussian Mixture Model (GMM) for image

copy detection is presented in [34]. However, the method could only deal

with the finite classes and the model has to be retrained for new original

images.

2.7 Evaluation Criteria

Since the most important properties of image hashing and content-based

fingerprinting are the robustness and security, most existing works focus on

evaluating these two issues to make the proposed schemes stand out.

2.7.1 Perceptual Robustness

Different from traditional hashing in cryptography, image hashing shouldn’t

suffer from the sensitivity to minor distortions of images due to the percep-

tual robustness. Hence, two images that are perceptually identical in human

visual system (HVS) should have similar hashes. To evaluate the robust-

ness of image hashes, a large class of distortions and attacks are designed,

which could be roughly grouped as content-preserving attacks and malicious

attacks.

• Content-preserving Attacks: The manipulations only introduce distor-
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Table 2.5: Literature references regarding content-preserving attacks part
one

Attacks&Distortions Sub-categories References

Noise Addition

Gaussian Noise

[14, 24, 25, 28, 31, 34, 43,
44, 56, 57, 60, 65, 67, 70,

73, 92, 94, 100, 102–
104, 106, 108]

Salt &Pepper
Noise

[25, 28, 60]

Speckle Noise [25, 28, 60]
Uniform Noise [27, 31, 92, 103]

Filtering

Gaussian Filter

[4, 14, 25, 27, 31, 34, 37,
39, 47, 48, 56, 57, 60, 69,
73, 77, 84, 94, 103, 106,

108–110]

Median Filter

[14, 25, 27, 28, 31, 34, 37,
39, 44, 56, 70, 73, 84, 92,
96, 100, 103, 106, 108–

110]
Average Filter [47, 65, 92]
Wiener Filter [25, 44, 81, 92, 103]

Sharpen Filter
[4, 27, 34, 37, 44, 48, 56,
57, 70, 77, 84, 92, 106,

109, 110]
Motion Filter [25, 43, 60, 102, 110]

tions on pixel level and the content of images perceptually remains the same

in semantic level. The examples include noise addition, filtering, compres-

sion, geometric transforms, brightness changes etc. The details and related

literatures are listed in Table 2.5 and Table 2.6.

•Malicious Attacks: These manipulations introduce small but significant

visual changes in images, such as adding or removing small objects in image

content etc. The details and related literatures are listed in Table 2.7.

Dealing with two major kinds of attacks, image hashing should be gen-

erally robust against content-preserving attacks for content identification

and copyright protection purpose, but sensitive to malicious attacks if the

23



Table 2.6: Literature references regarding content-preserving attacks part
two

Attacks&Distortions Sub-categories References

Geometric Attacks

Rotation

[14, 18, 25, 28, 31, 32, 34,
37, 39, 43, 45, 47, 56, 60,
69, 70, 73–75, 77, 81, 84,
90, 92, 93, 96, 100, 102,

103, 106, 108, 110]

Cropping

[25, 28, 32, 34, 37, 45, 47,
56, 60, 69, 70, 73–

75, 77, 81, 84, 90, 92, 93,
96, 102, 103, 106, 108–

110]

Scaling

[14, 24, 25, 28, 32, 34, 37,
47, 48, 56, 60, 65, 69, 70,

73, 75, 77, 84, 90, 92–
94, 96, 100, 103, 106, 108–

110]

Shearing
[25, 70, 73, 74, 77, 81, 92,

103, 108, 109]

Aspect Ratio
[18, 43, 56, 77, 102, 108,

110]

Affine Transform
[34, 56, 74, 77, 96, 100,

102, 106]

Others
Bending [56, 70, 73, 84,
103, 108, 109], Jittering

[103]

Compression
JPEG

[3, 11, 18, 24, 25, 27–
29, 31, 32, 34, 39, 44, 45,

47, 49, 52–
54, 56, 60, 65, 67, 70, 74,

78, 81, 83, 84, 92–
94, 96, 100, 102–

104, 106, 108–110]
JPEG2000 [29, 52, 53, 103]

Brightness Changes

[24, 25, 27, 28, 31, 34, 43,
44, 56, 60, 65, 67, 69, 77,
81, 90, 92, 93, 106, 108,

110]

Contrast Enhancement [27, 43, 57, 69, 70, 73]
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Table 2.7: Literature references regarding on malicious attacks

Methods References

Adding Objects
[11, 24, 31, 43, 52, 54, 57, 66, 67,

73, 78, 90, 92, 93, 102]

Removing Objects or
Lines

[24, 29, 34, 37, 39, 54, 56, 73, 81,
83, 84, 92, 96, 104, 105, 108, 109]

Manipulating Contents [24, 29, 31, 54, 66, 73]

hashing is designed for content authentication purpose.

2.7.2 Security Analysis

Aside from the robustness analysis, security is also another important issue

in image hashing design. a secure image hashing scheme means that the

generated hashes are hardly predictable or forged without the knowledge

about “secret key”. The most works in last decades mainly evaluate security

issue in two ways: one is the unpredictability and the other is to design

certain sophisticate schemes to test the possibility of forgery.

• Unpredictability : It mainly focuses on evaluating the randomness of

hash values, assuming adversaries knows the hashing algorithm without the

knowledge of “secret key”. The state-of-the art way is to use differential en-

tropy [92] as a metric to evaluate the amount of hash randomness. However,

some researchers stated that the secure hashes should have high differential

entropy but not vice versa [74]. Later, the unicity distance concept in infor-

mation theory [64] is employed to quantify the number of key reuses need

for key estimation as a measure to evaluate the security. Other works, such

as [4, 66], discuss key dependency of hash values. The change in the “secret

key” should significantly change the hashes. Also, the size of key space is

an indicator for evaluating the security of hashes. Recently, mutual infor-

mation [37, 42] is adopted as a measure of information leakage. Mutual

information could be used to measure the amount of uncertainty of pseudo

randomness incorporated in hash generation, given the extracted features

and final hashes.

• Sophisticate Attacks: It is an opposite way to evaluate the security of
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hashing scheme compared with the unpredictability analysis. People design

some sophisticate attacks to test whether an image hashing scheme is secure

enough. The two popular attacks are collision attacks [4, 99] and forgery

attacks [100]. Collision attack is trying to generate similar hashes for two

images, which are partially similar but with noticeable difference. If the

probability of hash collision is very high, it means the hash couldn’t be used

for authenticate image content, and attackers could easily get through the

security check and modify the image content. Forgery attack is trying to

generate a forged image with the similar hash as the target original image

based on some optimization methods, such as hill-climbing. By minimizing

the difference of the hashes from original and forged image, attackers adjust

the forged image and generate forged hashes to approximate real hashes.

Obviously, the sophisticate attacks are subjective ways to evaluate the se-

curity of image hashing and mainly designed for testing the possibility for

authentication purpose.

However, both unpredictability measures and sophisticate attack analy-

sis are only capable of revealing parts of the security of image hashing and

couldn’t be used as a universal measure to comprehensively evaluate the

security, which is still a critical open research area in the future.

2.8 Conclusion

In this chapter, a comprehensive review on digital image hashing and content-

based fingerprinting is presented and most of the closely related literature

references are listed and briefly discussed. Base on the fundamental frame-

work in Figure 2.1 shown in this chapter, the key issues, including pre-

processing, robust feature extraction, feature compression, post-processing,

security incorporation and evaluation criteria, are respectively discussed in

details.

It is clear that the robustness of image hashing mainly arises from the

pre-processing and robust feature extraction steps. However, generating

compact image hashes and preserving the robustness of features mainly rely

on the effective feature compression and post-processing steps. There usu-
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ally exists a tradeoff between the robustness and compactness, since the

compression step embeds features from high dimensional spaces into very

lower ones, which always incurs information loss. The security property

makes digital image hashing schemes different from the conventional CBIR

schemes. It is inherently a pesudorandomization process controlled by a

“secret key” and could be incorporated into feature compression and post-

processing steps or even the feature extraction step. Although there sill

lacks of universal measures for evaluating the security of digital image hash-

ing schemes, the high unpredictability of image hashing has made it an

attractive, promising technique for copyright protection and image content

authentication.
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Chapter 3

Image Hashing and

Content-Based

Fingerprinting Based on Fast

Johnson-Lindenstrauss

Transform (FJLT)

3.1 Introduction

Recently, several image hashing schemes based on dimension reduction have

been developed and reported to outperform previous techniques. For in-

stance, using low-rank matrix approximations obtained via singular value

decomposition (SVD) for hashing was explored in [45]. Its robustness against

geometric attacks motivated other solutions in this direction. Monga intro-

duced another dimension reduction technique, called non-negative matrix

factorization (NMF) [85], into their new hashing algorithm [74]. The ma-

jor benefit of NMF hashing is the structure of the basis resulting from its

non-negative constraints, which leads to a parts-based representation. In

contrast to the global representation obtained by SVD, the non-negativity

constraints result in a basis of interesting local features [30]. Based on the

results in [74], the NMF hashing possesses excellent robustness under a large

class of perceptually insignificant attacks, while it significantly reduces mis-

classification for perceptually distinct images.

Inspired by the potential of dimension reduction techniques for image
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hashing, we introduced Fast Johnson-Lindenstrauss transform (FJLT), a di-

mension reduction technique recently proposed in [5], into our new robust

and secure image hashing algorithm [59]. FJLT shares the low-distortion

characteristics of a random projection process but requires a lower compu-

tational complexity. It is also more suitable for practical implementation

because of its high computational efficiency and security due to the ran-

dom projection. Since we mainly focus on invariant feature extraction and

are interested in image identification applications, the FJLT hashing seems

promising because of its robustness to a large class of minor degradations

and malicious attacks. Considering the fact that NMF hashing was reported

to significantly outperform other existing hashing approaches [74], we use it

as the comparison base for the proposed FJLT hashing. Our preliminary ex-

perimental results in [59] showed that FJLT hashing provides competitive or

even better identification performance under various attacks such as additive

noise, blurring, JPEG compression etc. Moreover, its lower computational

cost also makes it attractive.

However, geometric attacks such as rotation, could essentially tamper

the original images and thus prevent the accurate identification if we apply

the hashing algorithms directly on the manipulated image. Even for the

FJLT hashing, it still suffers from the rotation attacks with low identification

accuracy. To address this concern, motivated by the work [92], [51], we plan

to apply the Fourier-Mellin transform (FMT) on the original images first

to make them invariant to geometric transform. Our later experimental

results show that, under rotation attacks, the FJLT hashing combined with

the proposed FMT preprocessing yields a better identification performance

than that of the direct FJLT hashing.

Considering that a specific feature descriptor may be more robust against

certain types of attacks, it is desirable to take advantage of different features

together to enhance the overall robustness of hashing. Therefore we further

propose an extended concept, namely content-based fingerprinting, to repre-

sent a combined, superior hashing approach based on different robust feature

descriptors. Similar to the idea of having the unique fingerprint for each hu-

man being, we aim at combining invariant characteristics of each feature to
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construct an exclusive (unique) identifier for each image. Under the frame-

work of content-based fingerprinting, the inputs to the hashing algorithms

are not restricted to the original images only, but can also be extendable to

include various robust features extracted from the images, such as colour,

texture, shape and so on. An efficient joint decision scheme is important

for such a combinational framework and significantly affects the identifica-

tion accuracy. Our experimental results demonstrate that the content-based

fingerprinting using a simple joint decision scheme can provide a better per-

formance than the traditional onefold hashing approach. More sophisticated

joint decision-making schemes are worth further being investigated in the

future.

3.2 Theoretical Background

The current task of image hashing is to extract more robust features to

guarantee the identification accuracy under content-preserving manipula-

tions (e.g. noising, blurring, compression etc.) and incorporate the pseudo-

randomization techniques into the feature extraction to enhance the security

of the hash generation. According to the information theory [21], if we con-

sider the original image as a source signal, similar to a transmission channel

in communication, the feature extraction process will make the loss of infor-

mation inevitable. Therefore, how to efficiently extract the robust features

as lossless as possible is a key issue that the hashing algorithms such as SVD

[45], NMF [74] and our FJLT hashing want to tackle.

3.2.1 Fast Johnson-Lindenstrauss Transform

The Johnson-Lindenstrauss (JL) theorem has found numerous applications,

including searching for approximate nearest neighbors (ANN) [5] and di-

mension reduction in database etc. By the JL lemma [22], n points in Eu-

clidean space can be projected from the original d dimensions down to lower

k = O(ε−2 log n) dimensions while just incurring a distortion of at most ±ε
in their pairwise distances, where 0 < ε < 1. Based on the JL theorem,
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Alion and Chazelle [5] proposed a new low-distortion embedding of ldp into

lkp (p = 1 or 2), called Fast Johnson-Lindenstrauss transform (FJLT). FJLT

is based on preconditioning of a sparse projection matrix with a random-

ized Fourier transform. Note that we will only consider the l2 case (p = 2)

because our hash is measured by the l2 norm. For the l1 case, interested

readers please refer to [5].

Briefly speaking, FJLT is a random embedding, denoted as Φ = FJLT (n, d, ε),

that can be obtained as a product of three real-valued matrices:

Φ = P ·H ·D (3.1)

where the matrices P and D are random and H is deterministic [5].

• P is a k-by-d matrix whose elements Pij are drawn independently ac-

cording to the following distribution, where N (0, q−1) means a Normal

distribution with zero-mean and variance q−1,{
Pij ∼ N (0, q−1) with probability q,

Pij = 0 with probability (1− q),

where

q = min

{
c log2 n

d
, 1

}
,

for a large enough constant c.

• H is a d-by-d normalized Hadamard matrix with the elements as:

Hij = d−
1
2 (−1)〈i−1,j−1〉, (3.2)

where 〈i, j〉 is the dot-product of the m-bit vectors of i, j expressed in

binary.

• D is a d-by-d diagonal matrix, where each diagonal element Dii is

drawn independently from {-1,1} with probability 0.5.

Therefore, Φ = FJLT (n, d, ε) is a k-by-d matrix, where d is the original

dimension number of the data and k is the lower dimension number, which is

31



set to be c′ε−2 log n. Here, n is the number of data points, ε is the distortion

rate, and c′ is a constant. Given any data point X from a d-dimension space,

it is intuitively mapped to the data point X ′ at a lower k-dimension space by

the FJLT and the distortion of their pairwise distances could be illustrated

by Johnson-Lindenstrauss lemma [5].

3.2.2 The Fast Johnson-Lindenstrauss Lemma

Lemma 1 Fix any set X of n vectors in Rd, 0 < ε < 1, and let Φ =

FJLT (n, d, ε). With probability at least 2
3 , the following two events occur:

1. For all x ∈ X,

(1− ε)k‖x‖2 ≤ ‖Φx‖2 ≤ (1 + ε)k‖x‖2. (3.3)

2. The mapping Φ : Rd → Rk requires

O(d log d+ min (dε−2 log n, ε−2 log3 n)) (3.4)

operations.

Proofs of the above theorems can be found in [5]. Note that the proba-

bility of being successful (at least 2
3) arises from the random projection and

could be amplified to (1 − δ) for any δ > 0, if we repeat the construction

O(log 1
δ ) times [5]. Since the random projection is actually a pseudorandom

process determined by a secret key in our case, most of the keys (at least 2
3)

are satisfied with the distortion bound described in FJLT lemma and could

be used in our hashing algorithm. Hence, the FJLT will make our scheme

widely applicable for most of the keys and suitable to be applied in practice.

3.3 Image Hashing via FJLT

Motivated by the hashing approaches based on SVD [45] and NMF [74], we

believe that dimension reduction is a significantly important way to capture
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the essential features that are invariant under many image processing at-

tacks. For FJLT, three benefits facilitate its application in hashing. First,

FJLT is a random projection, enhancing the security of the hashing scheme.

Second, FJLT’s low distortion guarantees its robustness to most routine

degradations and malicious attacks. The last one is its low computation

cost when implemented in practice. Hence, we propose to use FJLT for our

new hashing algorithm. Given an image, the proposed hashing scheme con-

sists of three steps: random sampling, dimension reduction by FJLT, and

ordered random weighting. Due to our purpose, we are only interested in

feature extraction and randomization. The hash generated by FJLT is just

an intermediate hash. For readers who are interested in generating the final

hash by compression step, as in the frameworks[92], [73], they are suggested

to refer [37, 96] for details.

Figure 3.1: An example of random sampling. The subimages are selected
by random sampling with size m×m.
.

3.3.1 Random Sampling

The idea of selecting a few subimages as original feature by random sam-

pling, as shown in Figure 3.1, is not novel [45], [74]. However, in our ap-

proach, we treat each subimage as a point in a high dimensional space rather

than a two dimensional matrix as in SVD hashing [45] and NMF hashing

[74]. For instance, the subimage in Figure 3.1, which is a m-by-m patch, is
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actually a point in the m2-dimensional space in our case, where we focus on

gray images.

Given an original color image, we first convert it to a gray image and

pseudorandomly select N subimages depending on the secret key and get

{Ri}, for 1 ≤ i ≤ N . Each Ri is a vector with length m2 by concatenating

the columns of the corresponding subimage. Then we construct our original

feature as:

Feature = {R1, R2, ..., RN} , with size m2 ×N. (3.5)

The advantage of forming such a feature is that we can capture the global

information in the Feature matrix and local information in each component

Ri. Even if we lose some portions of the original image under geometric

attacks such as cropping, it will only affect one or a few components in our

Feature matrix and have no significant influence on the global information.

However, the Feature matrix with the high dimension (e.g. m2, when m =

64) is too large to store and match, which motivates us to employ dimension

reduction techniques.

3.3.2 Dimension Reduction by FJLT

Based on the theorems in Section 3.2, FJLT is able to capture the essential

features of the original data in a lower dimensional space with minor distor-

tion, if the factor ε is close to 0. Recall the construction Φ = FJLT (n, d, ε),

our work is to map the Feature matrix from a high dimensional space to a

lower dimensional space with minor distortion. We first get the three real-

valued matrices P , H and D in our case, which is Φ = FJLT (N,m2, ε),

where H is deterministic but P and D are pseudorandomly dependent on

the secret key. The lower dimension k is set to be c′ε−2 logN and c′ is a

constant. Then we can get our intermediate hash (IH) as

IH = Φ(Feature) = P ·H ·D · Feature , with size k ×N. (3.6)
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Here, the advantage of FJLT is that we can determine the lower dimension k

by adjusting the number of data points, which is the number of image blocks

by random sampling in our case, and the distortion rate ε. This provides

us with a good chance to get a better identification performance. However,

the smaller ε is, the larger k is. Hence we need to make a trade-off between

ε and k in a real implementation.

3.3.3 Ordered Random Weighting

Although the original feature set has been mapped to a lower dimensional

space with a small distortion, the size of intermediate hash can still be large.

For instance, if we set N = 20, ε = 0.1 and c′ = 2, the size of IH will be 600-

by-20. To address this issue, similar to the NMF-NMF-SQ hashing in [74],

we can introduce the pseudorandom weight vectors {wi}Ni=1 with wi ∈ Rk

drawn from the uniform distribution U(x|0, 1) by the secret key, and we can

calculate the final secure hash as

Hash = {〈IH1, w1〉, 〈IH2, w2〉, ..., 〈IHN , wN 〉}, (3.7)

where IHi is the ith column in IH, and 〈IHi, wi〉 is the inner product of

the vectors IHi and wi. Hence, the final hash is obtained as a vector with

length N for each image, which is compact and secure. However, the weight

vector wi drawn from U(x|0, 1) could diminish the distance between the hash

components IHi and IH ′i from two images and degrade the identification

accuracy later. Here we describe a simple example to explain this effect.

Suppose we have two vectors A = {10, 1} and A′ = {1, 1}, the Euclidean

distance is 9. In the first case, if we assign the weight vector w = {0.1, 0.9}
to A and A′, after the inner product (3.7), the hash values of A and A′

will be 1.9 and 1 respectively. Obviously, the distance between A and A′ is

significantly shortened. However, if we assign the weight w = {0.9, 0.1} to

A and A′ in the second case, After the inner product (3.7), the hash values

of A and A′ will be 9.1 and 1 respectively. The distance between A and A′ is

still 8.1. We would like to maintain the distinction of two vectors and avoid

the effect of an inappropriate weight vector as the first case.
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To maintain this distance-preserving property, a possible simple solu-

tion, referred as ordered random weighting, is to sort the elements of IHi

and wi in a descending order before the inner product (3.7) and make sure

that a larger weight value will be assigned to a larger component. In this

way, the perceptual quality of the hash vector is retained by minimizing

the influence of the weights. To demonstrate the effects of ordering, we in-

vestigate the correlation between the intermediate hash distances and the

final hash distances when employing the unordered random weighting and

ordered random weighting. Intuitively, for both the intermediate hash and

the final hash, the distance between the hash generated from the original

image (without distortion) and the hash from its distorted copy should in-

crease when the attack/distortion is more severe. One example is illustrated

in Figure 3.2, where we investigate 50 nature images and their 10 distorted

copies with Salt & Pepper noise attacks (with variance level: 0 ∼ 0.1) from

our database described in Section 3.6.1. We observe that the normalized

intermediate hash distance and the final hash distance are highly correlated

when using ordered random weighting, as shown in Figure 3.2 (a), while the

distances are much less correlated under unordered random weighting, as

shown in Figure 3.2 (b). In Figure 3.2, one example of distance correla-

tion based on one of the 50 nature images is indicated by the solid purple

lines, where a monotonically increasing relationship between the distances

is clearly noticed when using ordered random weighting. Figure 3.2 sug-

gests that the ordered random weighting in the proposed hashing approach

maintains the property of low distortion in pairwise distances of the FJLT

dimension reduction technique.

Furthermore, we also investigate the effect of ordering on the identifica-

tion performance by comparing the ordered and unordered random weight-

ing approaches. One illustrative example is shown in Figure 3.3, where the

distances between different hashes are reported. Among 50 original images,

we randomly pick out one as the target image and use its distorted copies

as the query images to be identified. To compare the normalized Euclidean

distances between the final hashes of the query images and the original 50

images, the final hash distances between the target image and its distorted
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copies are indicated by red squares, and others are marked by blue crosses.

For the Salt & Pepper noise attacks (with variance level: 0 ∼ 0.1) as shown

in Figure 3.3 (a) & (b), we can see that, when using both ordered random

weighting and unordered random weighting, the query images could be eas-

ily identified as the true target image based on the identification process

described in Section 3.3.4. It is also clear that the ordered random weight-

ing approach should provide a better identification performance statistically

since the distance groups are better separated. For the Gaussian blurring

attacks (with filter size: 3 ∼ 21) as shown in Figure 3.3 (c) & (d), it is clear

that the correct classification/identification can only be achieved by using

the ordered random weighting. Based on the two examples illustrated in

Figure 3.3 and the tests on other attacks described in Section 3.6.1, we no-

tice that the identification performance under the blurring attacks is signif-

icantly improved using the ordered random weighting when compared with

the unordered approach. The improvement is less significant under noise

and other attacks. In summary, we observe that ordered random weight-

ing maintains better the distance-preserving property of FJLT compared

with the unordered random weighting and thus yields a better identification

performance.

3.3.4 Identification and Evaluation

Identification Process

Let S = {si}Ni=1 be the set of original images in the tested database and

define a space H(S) = {H(si)}Ni=1 as the set of corresponding hash vec-

tors. We use Euclidean distance as the performance metric to measure the

discriminating capability between two hash vectors, defined as

Distance = ‖H(s1)−H(s2)‖2 =

√√√√ n∑
i=1

(hi(s1)− hi(s2))2, (3.8)

where H(si) = {h1(si), h2(si), ..., hn(si)} means the corresponding hash vec-

tor with length n of the image si. Given a tested image D, we first calculate
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Figure 3.2: An example of the correlations between the final hash distance
and the intermediate hash distance based on 50 images under salt & pepper
noise attacks (with variance level: 0 ∼ 0.1) when employing ordered random
weighting and unordered random weighting.

its hash H(D) and then obtain its distances to each original image in the

hash space H(S). Intuitively, the query image D is identified as the îth orig-

inal images which yields the minimum corresponding distance, expressed as,

î = arg min
i
{‖H(D)−H(si)‖2}, i = 1, ..., N. (3.9)

The simple identification process described above can be considered as a

special case of the K-nearest-neighbor classification approach with K = 1.

Here K is set as 1 since we only have one copy of each original image in

the current database. For a more general case, if we have K multiple copies

of each original image with no distortion or with only slight distortions, we

could adopt the K-nearest neighbor (KNN) algorithm for image identifica-

tion in our problem.

Receiver Operating Characteristics Analysis

Except investigating identification accuracy, we also study the receiver op-

erating characteristics (ROC) curve [26] to visualize the performance of dif-
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Figure 3.3: Illustrative examples to demonstrate the effect of ordering on
the identification performance. The final hash distances between the query
images and the original 50 images are shown for comparing the ordered
random weighting and the unordered random weighting approaches. (a) &
(b) The query images are under salt & pepper noise attacks. (c) & (d) The
query images are under Gaussian blurring attacks.

ferent hashing approaches, including NMF-NMF-SQ hashing, FJLT hashing

and Content-based fingerprinting proposed later. The ROC curve depicts

the relative tradeoffs between benefits and cost of the identification and is an

effective way to compare the performances of different hashing approaches.

To obtain ROC curves to analyze the hashing algorithms, we may define

the probability of true identification PT (ξ) and probability of false alarm
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PF (ξ) as

PT (ξ) = Pr(‖H(I)−H(IM )‖2 < ξ), (3.10)

PF (ξ) = Pr(‖H(I)−H(I ′M )‖2 < ξ), (3.11)

where ξ is the identification threshold. The image I and I ′ are two distinct

original images and the image IM and I ′M are manipulated versions of the

image I and I ′ respectively. Ideally, we hope that the hashes of the original

image I and its manipulated version IM should be similar and thus be iden-

tified accurately, while the distinct images I and I ′M should have different

hashes. In other words, given a certain threshold ξ, an efficient hashing

should provide a higher PT (ξ) with a lower PF (ξ) simultaneously. Conse-

quently, when we obtain all the distances between manipulated images and

original images, we could generate a ROC curve by sweeping the threshold

ξ from the minimum value to the maximum value, and further compare the

performances of different hashing approaches.

3.4 Rotation Invariant FJLT Hashing

Although the Fast Johnson-Lindenstrauss transform has been shown to be

successful in the hashing in our previous preliminary work[59], the FJLT

hashing can still be vulnerable to rotation attacks. Based on the hashing

scheme described in Section 3.3, random sampling can be an effective ap-

proach to reduce the distortion introduced by cropping, and scaling attack

can be efficiently tackled by upsampling and downsampling in the prepro-

cessing. However, to successfully handle the rotation attacks, we need to in-

troduce other geometrically invariant transform to improve the performance

of the original FJLT hashing.

3.4.1 Fourier-Mellin Transform

The Fourier-Mellin transform (FMT) is a useful mathematical tool for image

recognition and registration, because its resulting spectrum is invariant to
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rotation, translation and scaling [92], [51]. Let f denote a gray-level image

defined over a compact set of R2, the standard FMT of f in polar coordinates

(log-polar coordinates) is given by:

Mf (k, v) =
1

2π

∫ 2π

0

∫ ∞
0

f(r, θ)r−ive−ikθdθ
dr

r
. (3.12)

If we make r = eγ ,dr = eγdγ, the equation (3.12) is clearly a Fourier

transform like:

Mf (k, v) =
1

2π

∫ 2π

0

∫ ∞
−∞

f(eγ , θ)e−ivγe−ikθdγdθ. (3.13)

Therefore, the FMT could be divided into three steps, which result in

the invariance to geometric attacks:

• Fourier Transform: It converts the translation of original image in

spatial domain into the offset of angle in spectrum domain. The mag-

nitude is translation invariant.

• Cartesian to Log-Polar Coordinates: It converts the scaling and rota-

tion in Cartesian coordinates into the vertical and horizontal offsets in

Log-Polar Coordinates.

• Mellin Transform: It is another Fourier transform in Log-Polar coor-

dinates and converts the vertical and horizontal offsets into the offsets

of angles in spectrum domain. The final magnitude is invariant to

translation, rotation and scaling.

However, the inherent drawback of the Fourier transform makes FMT

only robust to geometric transform, but vulnerable to many other classical

signal processing distortions such as cropping and noising. As we know,

when converting an image into the spectrum domain by 2D Fourier trans-

form, each coefficient is contributed by all the pixels of the image. It means

that the Fourier coefficients are dependent on the global information of the

image in the spatial domain. Therefore, the features extracted by Fourier-

Mellin transform are sensitive to certain attacks such as noising and crop-

ping, because the global information is no longer maintained. To overcome
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this problem, we have modified the FMT implementation in our proposed

rotation-invariant FJLT (RI-FJLT) hashing.

3.4.2 RI-FJLT Hashing

The invariance of FMT to geometric attacks such as rotation and scaling

has been widely applied in image hashing [92], [101] and watermarking [51],

[6]. It also motivates us to address the deficiency of FJLT hashing by in-

corporating FMT. Here, we propose the rotation-invariant FJLT hashing by

introducing FMT into the FJLT hashing. Specially, the proposed rotation-

invariant FJLT hashing (RI-FJLT) consists of three steps:

• Step 1: Converting the image into the Log-Polar coordinates

I(x, y)→ G(log ρ, θ), (3.14)

where x and y are Cartesian coordinates and ρ and θ are Log-Polar

coordinates. Any rotation and scaling will be considered as vertical

and horizontal offsets in Log-Polar coordinates. An example is given

in Figure 3.4.

• Step 2: Applying Mellin transform (Fourier transform under Log-Polar

coordinates) to the converted image and return the magnitude feature

image.

• Step 3: Applying FJLT hashing in Section 3.3 to the magnitude feature

image derived in Step 2.

For the conversion in Step 1, since the pixels in Cartesian coordinates

are not able to be one-to-one mapped to pixels in the Log-Polar coordinates

space, some value interpolation approaches are needed. We have inves-

tigated three different interpolation approaches for the proposed RI-FJLT

hashing, including nearest neighbor, bilinear and bicubic interpolations, and

found that the bilinear is superior to others. Therefore we only report the

results under bilinear interpolation here. Note that we abandon the first

step of FMT in RI-FJLT hashing, because we only focus on rotation attacks
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(other translations are considered as cropping) and it is helpful to reduce

the influence of noising attacks by removing the Fourier transform step. The

performance will be illustrated in Section 3.6. However, since Step 2 can in-

evitably be affected by attacks such as noising etc., some preprocessing such

as median filtering can help improve the final identification performance.

(a) (b)

(c) (d)

Figure 3.4: An example of conversion from Cartesian coordinates to log-
polar coordinates. (a) Original goldhill. (b) Goldhill rotated by 450. (c)
Original goldhill in log-polar coordinates. (d) Rotated goldhill in log-polar
coordinates.
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Figure 3.5: The conceptual framework of the content-based fingerprinting

3.5 Content-Based Fingerprinting

3.5.1 Concept and Framework

Considering that certain features can be more robust against certain attacks,

to take advantage of different features, we plan to propose a new content-

based fingerprinting concept. This concept combines benefits of conventional

content-based indexing (used to extract discriminative content features) and

multimedia hashing. Here we define content-based image fingerprinting as

a combination of multiple robust feature descriptors and secure hashing

algorithms. Similar to the concept of image hash, it is a digital signature

based on the significant content of image itself and represents a compact

and discriminative description for the corresponding image. Therefore, it

has a wide range of applications in practice such as integrity verification,

watermarking, content-based indexing, identification and retrieval etc. The

framework is illustrated in Figure 3.5.

Specially, each vertical arrow in Figure 3.5 represents an independent

hashing generation procedure, which consists of robust feature extraction

and intermediate hash generation proposed by [72, 92]. Because it is the

combination of various hash descriptors, the content-based fingerprinting

can be considered as an extension and evolution of image hashing, and
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thus offers much more freedom to accommodate different robust features

(color, shape, texture, salient points etc. [89]) and design efficient hashing

algorithms to successfully against different types of attacks and distortions.

Similar to the idea of finding one-to-one relationships between the finger-

prints and an individual human being, the goal of content-based fingerprint-

ing is to generate an exclusive digital signature, which is able to uniquely

identify the corresponding media data no matter which content-preserving

manipulation or attack is taken on.

Compared with the traditional image hashing concept, the superiority

of content-based fingerprint concept lies in its potential high discriminating

capability, better robustness and multilayer security arising from the com-

bination of various robust feature descriptors and a joint decision-making

process. Same as in any information fusion processes, theoretically the dis-

crimination capability of the content-based fingerprinting with effective joint

decision-making scheme should outperform a single image hashing. Since the

content-based fingerprint consists of several hash vectors, which are gener-

ated based on various robust features and different secret keys, it is argued

that the framework of content-based fingerprinting results in a better ro-

bustness and multilayer security when an efficient joint decision-making is

available. However, combining multiple image hashes approaches requires

additional computation cost for the generation of content-based fingerprint-

ing. The tradeoff between computation cost and performance is a concern

with great importance in practice.

3.5.2 A Simple Content-Based Fingerprinting Approach

From the experimental results in Section 3.6, we note that FJLT hashing is

robust to most types of the tested distortions and attacks except for rotation

attacks and that RI-FJLT hashing provides a significantly better perfor-

mance for rotation attacks at the cost of the degraded performances under

other types of attacks. Recall an important fact that it’s relatively easy to

find a robust feature to resist one specific type of distortion, however it is

very difficult, if not impossible, to find a feature which is uniformly robust to
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against all types of distortions and attacks. Any desire to generate an exclu-

sive signature for the image by a single image hashing approach is infeasible.

Here we plan to demonstrate the advantages of the concept of content-based

fingerprinting by combining the proposed FJLT hashing and RI-FJLT hash-

ing. The major components of the content-based fingerprinting framework

include hash generations and the joint decision-making process which should

take advantage of the combinations of the hashes to achieve a superior iden-

tification decision-making. Regarding the joint decision-making, there are

many approaches in machine learning [12] that can be useful. Here we only

present a simple decision-making process in rank level [35] to demonstrate

the superiority of content-based fingerprinting.

Given an image d with certain distortion, we respectively generate the

hash vectors Hd
f and Hd

r by FJLT and RI-FJLT hashing. Suppose the hash

values of original images s are Hs
f and Hs

r generated by FJLT and RI-FJLT

hashing respectively. We denote Pf (s|d) as the confidence measure that we

identify image d as image s when applying the FJLT hashing. Similarly,

Pr(s|d) is denoted for that of the RI-FJLT hashing. Here, we simply define:

Pf (s|d) = Wf (1−
Norm(Hd

f −Hs
f )

Norm(Hs
f )

), (3.15)

Pr(s|d) = Wr(1−
Norm(Hd

r −Hs
r )

Norm(Hs
r )

), (3.16)

where Wf and Wr are pre-selected weights in the case of FJLT and RI-FJLT

hashing respectively and Norm means the Euclidean norm. Considering the

poor performances of RI-FJLT hashing under many other types of attacks

except for rotation ones, we intuitively introduce the weights Wf and Wr,

where 0 < Wr < Wf ≤ 1, to the original confidence measures of FJLT and

RI-FJLT hashing to decrease the possible negative influence of RI-FJLT

hashing and maintain the advantages of both FJLT and RI-FJLT hashing

in the proposed content-based fingerprinting under different attacks.

Regarding the identification decision making, given a tested image d, we

calculate all the confidence measures Pf (si|d)Ni=1 and Pr(si|d)Ni=1 over the
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image database of S = {si}Ni=1 by using FJLT and RI-FJLT hashing, and

make the identification decision correspondingly by selecting the highest one

among Pf (si|d)Ni=1 and Pr(si|d)Ni=1. Note that if a confidence measure P (s|d)

is negative, it means that the image d is outside the confidence interval of

the image s and the confidence measure is assigned to be zero.

3.6 Experimental Results and Analysis

3.6.1 Database and Content-Preserving Manipulations

In order to evaluate the performance of the proposed new hashing algo-

rithms, we test FJLT hashing and RI-FJLT hashing on a database of 100000

images. In this database, there are 1000 original colour nature images, which

are mainly selected from the ten sets of categories in the content-based im-

age retrieval database of the University of Washington [2] as well as our own

database. Therefore, some of the original images can be similar in content if

they come from the same category, and some are distinct if they come from

the different categories. For each original colour image with size 256× 384,

we generate 99 similar but distorted versions by manipulating the original

image according to eleven classes of content-preserving operations, includ-

ing additive noise, filtering operations, geometric attacks and so on, as listed

in Table 3.1. All the operations are implemented using Matlab. Here we

give some brief explanations of some ambiguous manipulations. For image

rotation, a black frame around the image will be added by Matlab but some

parts of image will be cut if we want to keep its size the same as the original

image. An example is given in Figure 3.4(b). Here our cropping attacks

refer to the removal of the outer parts (i.e. let the values of the pixels on

each boundary equal to null and keep the significant content in the middle).

3.6.2 Identification Results and ROC Analysis

Our preliminary study [59] on a small database showed that FJLT hashing

provides nearly perfect identification accuracy for the standard test images

such as Baboon, Lena, and Peppers. Here we will measure the FJLT hashing
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Table 3.1: Content-preserving manipulations and parameter set-
tings

Manipulation Parameters Setting Number

Additive Noise
Gaussian Noise sigma: 0 ∼ 0.1 10

Salt&Pepper Noise sigma: 0 ∼ 0.1 10
Speckle Noise sigma: 0 ∼ 0.1 10

Blurring
Gaussian Blurring filter size: 3 ∼ 21, sigma=5 10
Circular Blurring radius: 1 ∼ 10 10
Motion Blurring len: 5 ∼ 15, θ : 00 ∼ 900 9

Geometric Attacks
Rotation degree = 50 ∼ 450 9
Cropping 5%,10%,20%,25%,30%,35% 6
Scaling 25%, 50%, 75%, 150%, 200% 5

JPEG Compression Quality Factor= (5 ∼ 50) 10

Gamma Correction γ = (0.75 ∼ 1.25) 10

and the new proposed RI-FJLT hashing on the new database, which consists

of 1000 nature images from ten categories. Ideally, to be robust to all rou-

tine degradations and malicious attacks, no matter what content-preserving

manipulation is done, the image with any distortion should still be correctly

classified into the corresponding original image.

It is worth mentioning that all the pseudorandomizations of NMF-NMF-

SQ (statistics quantization) hashing, FJLT hashing, and content-based fin-

gerprinting are dependent on the same secret key in our experiment. As

discussed in [74], the secret keys, more precisely the key-based randomiza-

tions, play important roles on both increasing the security (i.e. making

the hash unpredictable) and enhancing scalability (i.e. keeping the collision

ability from distinct images low and thus yielding a better identification per-

formance) of the hashing algorithm. Therefore, the identification accuracy

of a hashing algorithm is determined simultaneously by both the dimension

reduction techniques (e.g. FJLT and NMF) and the secret keys. As shown

in NMF hashing in [74], if we generate hashes of different images with varied

secret keys, the identification performance can be further improved signif-
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Table 3.2: Identification accuracy for manipulated
images by NMF-NMF-SQ (NMF) hashing, FJLT
hashing and content-based fingerprinting (CBF) based
on FJLT & RI-FJLT hashing)

Manipulations NMF FJLT CBF

Additive Noise

Gaussian Noise * 59.38% 69.5% 62.36%
Salt&Pepper Noise 81.87% 96.87% 97.71%

Speckle Noise 78.27% 99.83% 99.77%

Blurring
Gaussian Blurring 98.31% 99.49% 99.04%
Circular Blurring 98.36% 99.51% 99.09%
Motion Blurring 98.88% 99.81% 99.66%

Geometric Attacks
Rotation 16.43% 36.86% 86.54%
Cropping 16.75% 96.6% 96.14%
Scaling 98.47% 100% 100%

JPEG Compression 99.7% 100% 100%

Gamma Correction 5.22% 86.62% 74.26%

* With the help of median filter in preprocessing, the
identification accuracy of NMF hashing under Gaus-
sian noise could be improved to 90.61%, and 99.5% for
FJLT hashing

icantly because the secret key boosts up the cardinality of the probability

space and brings down the probability of false alarm. Since we mainly fo-

cus on examining the identification capacity of hashing schemes themselves

rather than the effects of secret keys, to minimize the effects of the factor of

the secret keys, we use the same key in generating hash vectors for different

images.

Results of FJLT Hashing

Following the algorithms designed in Section 3.3, we test the FJLT hashing

with the parameters chosen as m = 64, N = 40, ε = 0.1, key = 5, as

summarized in Table. 3.3. Note that most of the keys could be used in FJLT
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Figure 3.6: The overall ROC curves of NMF-NMF-SQ hashing, FJLT hash-
ing, and content-based fingerprinting under all types of tested manipulations

hashing because of its robustness to secret keys, which has been illustrated

in [59]. Since the NMF-NMF-SQ hashing has been shown to outperform the

SVD-SVD and PR-SQ hashing algorithms having the best known robustness

properties in the existing literature, we compare the performance of our

proposed FJLT hashing algorithm with NMF-NMF-SQ hashing when testing

on the new database. For the NMF approach, the parameters are set as

m = 64, p = 10, r1 = 2, r2 = 1, and M = 40 according to [74]. It is worth

Table 3.3: Parameter setting in the FJLT hashing
algorithm

Parameter Value

Size of the subimage m = 64

Length of the hash vector N = 40

Parameters of FJLT ε = 0.1, c = 250, c′ = 1

Secret key key = 5
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mentioning that, to be consistent with the FJLT approach, we chose the

same size of subimages and length of hash vector in NMF hashing (denoted

as m and M), which facilitate a fair comparison between them later. We

also tried the setting p = 40 (with p represents the number of subimages

in the NMF approach), but it was found that the choice of p = 10 yields a

better performance. Consequently, NMF hash vector has the same length

40 as the FJLT hash vector. We first examine the identification accuracy

of both hashing algorithms under different attacks, and the identification

results are shown in Table 3.2. It is clearly noted that the proposed FJLT

hashing consistently yields a higher identification accuracy than that of NMF

hashing under different types of tested manipulations and attacks.

We then present a statistical comparison of the proposed FJLT and

NMF hashing algorithms by studying the corresponding ROC curves. We

first generate the overall ROC curves for all types of tested manipulations

when applying different hashing schemes, and the resulting ROC curves are

shown in Figure 3.6. From Figure 3.6, one major observation is that the

proposed FJLT hashing outperforms NMF-NMF-SQ hashing. To test the

robustness to each type of attacks, an ROC curve is also generated for a

particular attack and hash algorithm. Since we note from Table 3.2 that

the proposed FJLT hashing significantly outperforms NMF-NMF-SQ for

additive noise, cropping and gamma correction attacks, we show the ROC

curves corresponding to the six attacks (i.e. Gaussian noise, Salt&Pepper

noise, Speckle noise, Rotation attacks, Cropping and Gamma correction)

in Figure 3.8. Once again, the ROC curves in Figure 3.8 reinforce the ob-

servation that FJLT hashing significantly outperform the state-of-art NMF

hashing. However, both of them are still a little sensitive to Gaussian noise

as shown in Figure 3.8 (a). The underlying reason is that we didn’t incor-

porate any preprocessing such as median filter into FJLT hashing or NMF

hashing, because we would investigate the robustness of FJLT and NMF

hashing themselves to additive noise. In practice, the preprocessing such as

image denoising before applying image hashing could further improve the

robustness to additive noise (referring to the annotation below Table 3.2),

since both FJLT hashing and NMF hashing are strongly robust to blurring.
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As for the attacks such as JPEG compression and Blurring, since we observe

perfect identification performances and no false alarms in our own experi-

ments, we do not report the ROC curves further, which are similar to the

ROC results via NMF hashing shown in [74].

Here we try to give some intuitive explanations regarding the observed

performances of the two hashing algorithms. In NMF hashing, the dimen-

sion reduction technique is based on the approximative non-negative matrix

factorization, which factorizes the image matrix into two lower rank matri-

ces. However, the problem of choosing a low rank r (e.g. r1, r2 in the NMF

hashing) is of great importance, though it is observed to be sensitive to the

data. While for FJLT hashing, the mapping is obtained by a coefficients

matrix and a subimage is treated as a point in a high dimensional space (in

our case, the dimension is 64×64 = 4096). One advantage of FJLT hashing

is that minor modifications in the content will not affect the integrity of the

global information, which results in a better performance. However, as illus-

trated in Table 3.2 and the ROC curve in Figure 3.8 (d), both FJLT hashing

and NMF hashing provide poor performances under rotation attacks, and

we shall investigate this problem further.

Results of RI-FJLT Hashing

In Table 3.2, we note that one drawback of FJLT hashing is its vulnerability

to rotation attacks. Especially, as shown by an example in Figure 3.4, for a

large rotation degree of 45, FJLT hashing failed to identify the image con-

tent. Here we apply the RI-FJLT hashing approach presented in Section 3.4

to overcome this drawback.

We generated 36 rotated versions for each test image in the database and

the rotation degrees are varied from 5 to 180 with an interval of 5 degrees.

Though not investigated further here, it is worth mentioning that, before the

conversion from Cartesian coordinates to Log-Polar coordinates, some pre-

processing operations such as median filtering can be helpful to enhance the

identification performance [92], especially under additive noise distortions.

We have employed median filter as preprocessing in RI-FJLT hashing. The
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identification results under rotation attacks are shown in Table 3.4. We can

see from the table that FJLT hashing is obviously sensitive to rotation at-

tacks and thus its identification accuracy greatly degrades with the increase

of rotation degree. It is also noted that RI-FJLT hashing still consistently

achieves almost perfect identification accuracy under rotation attacks even

with large rotation degrees.

Although the invariance of Fourier-Mellin transform benefits the FJLT

hashing with the robustness to rotation attacks, such robustness to rota-

tion comes at the cost of degraded identification accuracy for other types

of manipulations and attacks. We have intuitively discussed the reasons

for this observation in Section 3.4. We argue that it may not be feasible

to be robustly against various attacks by only depending on single feature

descriptor. This observation motivates us to look for an alternative solution

that is the content-based fingerprinting we proposed in Section 3.5 to tackle

this problem.

Results of Content-based Fingerprinting

Since FJLT hashing is demonstrated to be robust against a large class of dis-

tortions except for rotation attacks and RI-FJLT hashing achieves superior

performance under rotation attacks at the cost of sensitivity to other manip-

ulations, It accounts for the fact that it is very difficult to design a globally

optimal hashing approach that could handle all of the distortions and manip-

ulations. Hence, we combine FJLT hashing and RI-FJLT hashing following

Table 3.4: Identification accuracy under
rotation attacks by FJLT and RI-FJLT
hashing

Rotation Degree FJLT RI-FJLT

50 ∼ 450 30.43% 94.57%

500 ∼ 900 0.67% 96.03%

950 ∼ 1350 0.58% 94.62%

1400 ∼ 1800 1.13% 96.06%

Overall 8.2% 95.32%
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the framework of content-based fingerprinting proposed in Section 3.5 and

test its performance on the database described in Section 3.6.1. Consider-

ing the poor performance of RI-FJLT hashing on other manipulations, we

need to introduce an elaborate weight shown in Section 3.5.2 to the confi-

dence measure of RI-FJLT hashing to get rid of its negative influence and

try to maintain the advantages of both FJLT and RI-FJLT hashing in the

proposed content-based fingerprinting. Based on our preliminary study, we

set Wf = 1 to keep the advantages of FJLT hashing and find that a good

weight Wr could be drawn from the interval range {0.85 ∼ 0.9}. We set

Wr = 0.895 in our implementation and exhibit the results in Table 3.2.

To have a fair comparison between different approaches, though we com-

bine the FJLT hashing and the RI-FJLT hashing in the content-based fin-

gerprinting, the length of the overall fingerprint vector is still chosen as

40 (with 20 components from the FJLT hashing and the left 20 from the

RI-FJLT hashing), which is the same as that of the FJLT hashing and the

NMF hashing. It is clear that the simple joint decision-making complements

the drawback of FJLT hashing under rotation attacks by incorporating the

RI-FJLT hashing into the proposed content-based fingerprinting. The ROC

curves for FJLT hashing, NMF hashing and the proposed content-based

fingerprinting under rotation attacks are shown in Figure 3.8 (d). Obvi-

ously, among the three approaches, the content-based fingerprinting yields

the highest true positive rates when the same false positive rates are consid-

ered. The ROC curves of the content-based fingerprinting approach under

other types of attacks are also illustrated in Figure 3.8. We note that the

robustness of content-based fingerprinting to additive noise, cropping, and

Gamma correction slightly degrades, as shown in Figure 3.8. One possi-

ble explanation could be that the current simple decision-making process is

not the theoretically optimal one that could eliminate the negative effect of

RI-FJLT hashing under these attacks. However, the overall performance of

content-based fingerprinting as illustrated by the ROC curve in Figure 3.6

demonstrates that it is superior and more flexible than a single hashing ap-

proach, because the selection of features and secure hashes can be adapted

to address different practical application concerns. Therefore, the proposed
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content-based fingerprinting can be a promising extension and evolution of

traditional image hashing.

3.6.3 Unpredictability Analysis

Except for the robustness against different types of attacks, the security in

terms of unpredictability that arises from the key-dependent randomization

is another important property of hashing and the proposed content-based

fingerprinting. Here we mainly focus on the unpredictability analysis of

FJLT hashing, because the unpredictability of the RI-FJLT hashing and the

content-based fingerprinting proposed arise from the FJLT hashing. Higher

amount of the randomness in the hash values makes it harder for the adver-

sary to estimate and forge the hash without knowing the secret keys. Since

it is believed that a high differential entropy is a necessary property of secure

image hashes, we evaluate the security in terms of unpredictability of FJLT

hashing by quantifying the differential entropy of the FJLT hash vector, as

proposed in [92]. The differential entropy of a continuous random variable

X is given by

H(X) =

∫
Ω
f(x) log

1

f(x)
dx, (3.17)

where f(x) means the probability density function (pdf) of X and Ω means

the support area of f(x). Since the analytical model of the pdf of the FJLT

hash vector component is generally not available, we carry out the practical

pdf approximation using the histograms of the hash vector components.

Figure 3.7(a) shows the histogram of a typical component from the FJLT

hash vector of image Lena resulting from 3000 different keys. It is noted that

it approximately follows a Gaussian distribution. Similarly, we can obtain

the histograms of other components. Based on our observations, we state

that the FJLT hash vector approximately follows a multivariate Gaussian

distribution. Therefore, similar to the hash in [74], we have the differential

entropy of the FJLT hash vector X as

H(X) =
1

2
log(2πe)N |Cov| bits, (3.18)
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where |Cov| means the determinant of the covariance matrix of the hash

vector, and N means the length of the FJLT hash vector.
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Figure 3.7: . (a) The histogram of a typical FJLT hash vector component
for image lena from 3000 different secret keys. (b) The covariance matrix of
the FJLT hash vectors for image lena from 3000 different secret keys.

From Figure 3.7(b) where an example of the covariance matrix of the

FJLT hash vector is shown, we can see that the covariance matrix is approx-

imately a diagonal matrix, meaning that the components are approximately

statistically independent. Therefore, |Cov| can be approximately estimated

as

|Cov| =
N∏
i=1

σ2
i , (3.19)

where σ2
i means the variance of the component hi in the FJLT hash vector.

Since from information theory, the differential entropy of a random vector

X ∈ Rn is maximized when X follows a multivariate normal distribution

N (0, Cov) [21], we argue that the proposed FJLT hashing is highly secure

(unpredictable) as it approximately follows Eqn. 3.18. We note that NMF-

NMF-SQ hashing also was shown to approximately follow a joint Gaussian

distribution and a similar statement in terms of differential entropy was

given in [74]. Hence, we state that the proposed FJLT hash is comparably
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as secure as NMF hashing, which was shown to be presumably more secure

than previously proposed schemes that are based on random rectangles alone

[74]).

However, the security of image hashing does not only lie on a higher

differential entropy, which is only one aspect of a secure image hashing [74,

92], but also includes other factors such as key diversity and prior knowledge

possessed by adversaries. Therefore, how to comprehensively evaluate the

security of image hashing is still an open question. Interested readers could

refer to the literatures [64, 92] regarding the security analysis issues.

3.6.4 Computational Complexity

We analyze the computational complexity of the proposed FJLT hashing and

RI-FJLT algorithms (the computational cost of content-based fingerprinting

is the sum of FJLT and RI-FJLT hashing) when compared with the NMF-

NMF-SQ hashing algorithm.

• NMF: In [74], the computational complexity of NMF-NMF-SQ hashing

has been given as follows: it does a rank r1 NMF on n m×m matrices

and then a rank r2 approximation from the resulting m× 2pr1 matrix

in [74]. At last, pseudorandom numbers are incorporated in the NMF-

NMF vector of length mr2 + 2pr1r2, and the total computation cost is

CNMF = n · O(m2r1) +O(2mnr1r2) +O(mr2 + 2nr1r2). (3.20)

• FJLT: Based on the analysis in [5], given a x ∈ Rd, the computation

cost of FJLT on x is calculated as follows. Computing D(x) requires

O(d) time and H(Dx) requires O(d log d). For computing P (HDx),

it takes O(p), where the p is the number of nonzeros in P , we know

the p satisfies the Binomial distribution B(dk, q), therefore we take

the mean value of p as dkq that equals to k log2 n, where k is ε−2 log n.

Then, take the random weight incorporation into account, we have the
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Table 3.5: Computational time costs for lena with 256×256
by FJLT, RI-FJLT and NMF-NMF-SQ hashing algorithms

Computational Cost FJLT RI-FJLT NMF-NMF-SQ

time (s) 1.93 2.43 5.55

total computation cost of the FJLT hashing as (d = m2 in our case)

CFJLT = O(m2(1 + 2 logm)) +O(k(1 + log2 n)). (3.21)

• RI-FJLT: Except for the cost of FJLT hashing, we need to take the

bilinear interpolation that requires O(m2) and Fourier transform that

takes O(m2 logm) by FFT into account. Consequently, the cost of

RI-FJLT is

CRI−FJLT = O(m2(2 + 3 logm)) +O(k(1 + log2 n)). (3.22)

Here, we specify that k ≈ 5m in our case and also take other parameters

into account. Obviously the FJLT and RI-FJLT hashing roughly require a

lower computational cost than that of NMF-NMF-SQ. To have an intuitive

feeling of the computational costs required by different algorithms, we also

test on a standard image Lena with size 256×256 by using a computer with

Intel Core 2 CPU (2.00 GHz) and 2G RAM. The required computational

time is listed in Table 3.5, which shows that the FJLT and RI-FJLT hashing

are much faster than NMF-NMF-SQ hashing. Note that the costs are based

on a length 20 of the hash vectors in our experiments. Increasing the length

of hash vectors will enhance the identification accuracy but will require more

computational costs. This trade-off will be further studied in the future.

3.7 Conclusion

In this chapter, we have introduced a new dimension reduction technique–

FJLT, and applied it to develop new image hashing algorithms. Based on our

experimental results, it is noted that the FJLT-based hashing is robust to
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a large class of routine distortions and malicious manipulations. Compared

with the NMF-based approach, the proposed FJLT hashing can achieve

comparable, sometimes better, performances than those of NMF, while re-

quiring less computational cost. The random projection and low distortion

properties of FJLT make it more suitable for hashing in practice than the

NMF approach. Further, we have incorporated Fourier-Mellin transform to

complement the deficiency of FJLT hashing under rotation attacks. The ex-

perimental results confirm the fact that generating a hash descriptor based

on a certain type of features to resist all types of attacks is highly unlikely

in practice. However, for a particular type of distortion, it is feasible to find

a specific feature to tackle it and obtain good performance. These observa-

tions motivate us to propose the concept of content-based fingerprinting as

an extension of image hashing and demonstrate the superiority of combining

different features and hashing algorithms.

We note that the content-based fingerprinting approach by using FJLT

and RI-FJLT still suffers from some distortions, such as Gaussian noise

and Gamma correction. One solution is to further find other features that

are robust to these attacks/manipulations and incorporate them into the

proposed scheme to enhance the performance. Future work will include

how to incorporate other robust features (such as the popular SIFT-based

features) and secure hashing algorithms to optimize the content-based fin-

gerprinting framework and at the same time explore efficient hierarchical

decision-making schemes for identification.

Furthermore, we plan to explore the variations of the current FJLT hash-

ing. Similar to the NMF-based hashing approach (referred as NMF-NMF-

SQ hashing in [74]) where the hash is based on a two-stage application of

NMF, we can modify the proposed FJLT hashing into a two-stage FJLT-

based hashing approach by introducing a second stage of FJLT as follows:

Treat the intermediate hash IH as a vector with length k × N , and then

reapply FJLT to obtain a representation of the vector IH with further di-

mension reduction. Compared with our current one-stage FJLT-based hash-

ing, the length of intermediate hash IH could be further shortened by the

second FJLT and the security would be enhanced in the two-stage FJLT
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hashing. However, the robustness of a two-stage FJLT-based hashing under

attacks such as cropping may degrade, since now each component in the

modified hash vector is contributed by all the subimages by random sam-

pling. Therefore, the distortion of local information in one subimage could

affect the whole hash vector rather than a couple of hash components. The

computation cost can also be a concern. We will investigate these issues in

the future work.

Another concern that is of great importance in practice but is rarely

discussed in the context of image hashing is automation. Automatic estima-

tion/choice of design parameters removes the subjectivity from the design

procedure and can yield better performances. For instance, algorithms for

automating the design process of image watermarking have already been

implemented in the literatures [19, 86, 87]. However, to our knowledge,

this automated solution has not yet been explored in the context of image

hashing. Our preliminary study in [25] demonstrated that using a genetic

algorithm (GA) for automatic estimation of parameters of the FJLT hash-

ing could improve the identification performance. However, choosing the

appropriate fitness function is challenging in automated image hash. We

plan to investigate different fitness functions and how the GA algorithm can

incorporate other factors (such as keys) and other constraints (such as the

hash length).
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Figure 3.8: The ROC curves of NMF-NMF-SQ hashing, FJLT hashing,
and content-based fingerprinting under six types of attacks respectively. (a)
Gaussian noise; (b) Speckle noise; (c) Salt&pepper noise;(d) Rotation at-
tacks; (e) Cropping; (f) Gamma correction.
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Chapter 4

Perceptual Image Hashing

Based on Shape Contexts

and Local Feature Points

4.1 Introduction

As a tradeoff between geometric invariance and robustness against clas-

sical attacks, Monga et.al [73] proposed an image hashing method using

local feature points, which have been widely studied for object recognition

and image retrieval applications in computer vision and pattern recognition

communities [95]. Feature points are local image patterns which differ from

their immediate neighbourhoods according to some defined characteristics,

such as corners (via Harris), blobs (via Hessian), and salient regions (via

MSER). The desirable property of feature points is their invariance under

large geometric transforms. [73] extracted local feature points detected by

end-stopped wavelets and generated the hashes using adaptive quantization

based on the probability distribution of the features. This histogram-based

hash is robust against JPEG compression, small rotation and scaling as well

as some other image processing attacks. However, this hash ignores the local

distribution of the detected feature points.

In this chapter, we developed a new image hashing algorithm using local

feature points to overcome the concerns presented above. The contributions

are mainly twofold: First, since feature point detection is critical in image

hashing in terms of robust feature extraction, we propose using the popular

scale invariant feature transform (SIFT) [55] to detect robust feature points
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and incorporating the Harris criterion to select the most stable points which

are less vulnerable to image processing attacks. Secondly, based on these ro-

bust feature points, to characterize also local information, we introduce the

shape contexts [9] into hash generation to represent the geometric distribu-

tion of the detected feature points. Also, the proposed shape contexts based

hashes could be applied to detect and localize content tampering, since the

spatial structure of the image content has been embedded into the hash.

Part of the work was presented in [62].

Although the proposed hashing shares some ideas with the popular spa-

tial bag-of-words model [7, 15] in large scale image retrieval, including the

detection of local feature points such as SIFT, and the incorporation of

geometric distribution of these local feature points into the matching and

retrieval, their application scenarios are different and thus require different

concerns. The bag-of-words model is proposed to retrieve the images with

similar objects or from same categories, where the major concern is how to

deal with images taken from different viewpoints or with occlusions. There-

fore a large visual word vocabulary of local feature descriptors is usually

generated using clustering and such huge dimensional feature vectors are

used to retrieve the images with similar contents. However, since image

hashing mainly aims at protecting the copyright of digital images, a com-

pact and secure signature is generated to represent each image. Also different

distortions are of interest in imaging hashing. Its robustness is evaluated

against image distortions arising from transmission noise, lossy compression

and geometric attacks etc. Such post-processing distortions and attacks gen-

erally don’t change the image content perceptually and introduce viewpoint

changes or large occlusions.

4.2 Robust Local Feature Points

Local features, such as corners, blobs and regions, have been widely used

for object detection, recognition and retrieval purposes in computer vision.

The intrinsic advantages of these local features are their invariance under

geometric transforms. However, their robustness against classical attacks,
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especially additive noising and blurring, is limited. A comprehensive review

of the state-of-art local features can be found in [95]. Among various lo-

cal feature detectors and descriptors, SIFT [55] was shown to be relatively

optimal considering the tradeoff between robustness, distinctiveness and effi-

ciency. We will briefly review SIFT first and then propose incorporating the

Harris criterion to improve its robustness against classical image processing

attacks. The extracted robust local features will then be used to generate

hashes in Section 4.3.

4.2.1 Scale Invariant Feature Transform Review

SIFT mainly consists of three steps: scale-invariant points detection and

localization, orientation assignment, and local descriptors generation.

Scale-invariant points detection and localization

The local feature points detected as the candidates of scale-invariant key-

points are based on the searching for local extrema in a series of difference-

of-Gaussian (DOG) images in the scale space σ.

The construction of DOG is proceeded as follows: Image I(x, y) is first

convolved with a series of Gaussian kernel functions G(x, y, σ) with con-

secutively incremental scales σ = {σ1, σ2, ..., σn}, where σ1 < σ2 < ...σn:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (4.1)

where the 2-D Gaussian kernel function is

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 . (4.2)

Then, a DOG is produced by two Gaussian blurred images with nearby

scales kσ and σ as

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ)

= (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y).
(4.3)

With the series of DOG images, the local maximum and minimum are
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detected as the candidates of keypoints by comparing each pixel to its 26

neighbours in 3×3 regions at the current and adjacent scales [55]. The final

locations of keypoints are localized to sub-pixel accuracy by fitting a 3D

quadratic function to the selected candidates to determine the interpolated

position of the maximum, which rejects some candidates of keypoints with

low contrast. Furthermore, the Hessian matrix is computed at the location

and scale of each candidate of keypoints. The ones with large principal

curvature are rejected for eliminating edge response.

Essentially, the DOG detector could be attributed to the detector for

blob structures in the image content, since it provides a close approximation

of the scale-normalized Laplacian of Gaussian [55],

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G. (4.4)

Substituting Eqs. 4.4 into Eqs. 4.3 and using the property of convolution,

we could obtain that

D(x, y, σ) ≈ (k − 1)σ2∇2G ∗ I(x, y)

= (k − 1)σ2G ∗ ∇2I(x, y),
(4.5)

where ∇2I(x, y) is the Laplacian operator commonly used to detect edges

and corners in images. Generally the 2-D Laplacian operator,∇2 = ∂2/∂x2+

∂2/∂y2, is not isotropic when it is discretized as in image processing. How-

ever, we can see that the difference of Gaussian in Equ. 4.5, which is an

approximation of Laplacian of Gaussian, is isotropic, since ∇2G is rotation-

ally invariant. In this sense, the DOG provides better robustness against

geometric transforms of images compared with other gradient-based feature

points detectors such as Harris and Hessian etc.

Orientation assignment

Orientation assignment for each keypoint is very important, since the cor-

responding descriptor can be represented relative to this orientation and

give rise to rotation invariance. It is determined by the peak of the orienta-
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tion histogram formed by the gradient orientations of the detected keypoint

within its neighbourhood. The orientation histogram consists of 36 bins

covering 360 degree range of orientations and weighted by the magnitude of

the corresponding gradient and a Gaussian circular window, which is to re-

inforce the weights of gradients in the centre of neighbourhood and improve

the robustness against additive noise. The details could be found in [55].

SIFT descriptor

Based on the position, scale and orientation of each keypoint, the corre-

sponding descriptor is generated within its local region of the corresponding

blurred image in scale space. The 16×16 local neighbourhood of the key-

point is divided into 4×4 subregions and rotated relative to its orientation.

Within each subregion, the gradient magnitude and orientation are com-

puted, and then the magnitudes weighted by a Gaussian circular window

are accumulated into the orientation histogram with 8 directions. There-

fore, each keypoint has a descriptor with 4 × 4 × 8 = 128 dimensions. The

SIFT descriptor has been shown to provide satisfied distinctiveness for point

matching and robustness against image processing attacks and geometric

transforms [71]. Recently, many works were proposed to improve the dis-

tinctiveness of SIFT descriptor, such as GLOH [71], PCA-SIFT [107], SURF

[8], but they are still based on the DOG detector. Since we believe that the

robustness of keypoint detector is more important for image hashing, we use

the original SIFT descriptor in this work.

4.2.2 Robust Keypoints Detection Using Harris Criterion

To design a robust image hashing against various attacks, robust feature

extraction is the most important step. Although the DOG detector of SIFT

provides satisfying performances under geometric transforms, its poor ro-

bustness against attacks such as additive noise and blurring limits its direct

applications in image hashing. As shown in Figure 4.1 (a)-(d), it is clearly

noted that some false positive keypoints are detected in images with addi-

tive noise and some true keypoints are missed since the blurred image loses
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(a) 578 (b) 692

(c) 436 (d) 836

(e) 81 (f) 83

(g) 73 (h) 87

Figure 4.1: A performance comparison of keypoints detection between SIFT
in {(a), (b), (c), (d)} and the proposed SIFT-Harris in {(e), (f), (g), (h)}
on the original image, the images under Gaussian noise (GN) (σ = 0.1),
blurring (GB) (σ = 0.5, 5 × 5 window) and JPEG compression (QF=10)
attacks. The quantities are the total numbers of the keypoints detected in
the corresponding images by SIFT and the proposed SIFT-Harris detector.
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some details. To extract robust local features, it is desired to select the most

stable keypoints under various distortions and attacks.

By carefully reviewing the survey on feature point detectors [95], we

note that Harris corner could provide stable detection performance with

high repeatability and localization accuracy under various distortions and

geometric transform, though it is still sensitive to additive noise. Therefore

we propose incorporating the Harris criterion to select the most stable SIFT

keypoints for image hashing.

The Harris detector/criterion [33] is based on the auto-correlation ma-

trix, which represents the gradient distribution within a local region of the

selected point. For an image I(x, y), the auto-correlation matrix M at point

(x, y) is represented as:

M =
∑
x,y

w(x, y)

[
I2
x IxIy

IxIy I2
y

]
(4.6)

where w(x, y) is a window to determine the accumulated region, and Ix and

Iy are the image gradients in x and y axis respectively. To make the ma-

trix isotropic, we use the Gaussian kernel function as the weighted window.

Generally, if both eigenvalues, λ1 and λ2 of matrix M , are sufficiently large

positive values, this point (x, y) is a corner point. Instead of computing the

two eigenvalues, Harris [33] proposed an alternative criteron to evaluate the

corner points as

H = λ1λ2 − κ(λ1 + λ2)2 = det(M)− κ trace2(M) (4.7)

where κ is a coefficient with value 0.04 ∼ 0.15 empirically. We set its default

value as 0.06.

Given a set of SIFT points P = {pi(x, y, σ, θ)}Ni=1, where x and y are

the coordinates and σ and θ are the scale and orientation parameters re-

spectively, we compute the Harris response Hσ
i (x, y), where σ means the

standard deviation of the Gaussian kernel window used to compute the auto-

correlation matrix M , and set the threshold to select robust SIFT points as
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Thre =
α

N

N∑
i=1

Hσ
i (x, y), (4.8)

where α is an adjustable parameter to control the robust points selection.

Empirically α ∈ [0.1, 0.5] and we choose 0.5 as the default value. With

this threshold, we could achieve stable keypoints detection even in images

with additive noise or blurring, as illustrated in Figure 4.1 (e)-(h). The

underlying reason is that such a thresholding helps keeping the most stable

local patterns with higher gradients distribution but rejecting the keypoints

with lower gradient distribution, which are more likely introduced by addi-

tive noise. Also, the Harris-based threshold is self-adaptive and can yield

relatively stable detection performance.

4.2.3 Detection Evaluation

To further illustrate the effect of Harris criterion on robust SIFT keypoints

selection, we define a robust function F to evaluate the performance of SIFT

and SIFT-Harris detectors. Let Po be the set of keypoints detected from the

original image and Pd be the set of keypoints detected from its distorted

copy, we define the robust function F as:

F =
|Po
⋂
Pd|

|Po
⋃
Pd|

(4.9)

where |·| means the cardinality of a set, which is a measure of the number of

distinct elements of the set. When the value of F approaches 1, it means that

we have exactly the same set of keypoints detected from both the original

image and its distorted copy. This F value is a criterion to evaluate the

stability of detected keypoints under various distortions.

The result comparison of SIFT and SIFT-Harris detectors are summa-

rized in Figure 4.2. We mainly focus on the content-preserving distortions

including additive noise (e.g. Gaussian noise (GN) with var=0.0025, salt

& pepper noise (SPN), and speckle noise (SN) with var=0.005), blurring

(Gaussian blurring (GB) with σ = 2.5, circular blurring (CB) with ra-
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dius=1, motion blurring (MB) with len=2 and θ = 450), JPEG compression

(JP) with QF=10, rotation (RT) with θ = 50 ∼ 250 and scaling (SC) with

factor = 0.5 ∼ 1.5. The F values of SIFT and SIFT-Harris detectors are

averaged based on the tested results of 20 images under above attacks. Ob-

viously, the SIFT-Harris detector outperforms the original SIFT detector

over most content-preserving distortions and provides slightly worse perfor-

mances under salt & pepper noise and rotation attacks. Hence, the Harris

criterion mainly boosts the detection performance under classic signal pro-

cessing attacks but provides less help on rotation attacks. In addition, we

also compare with the end-stopped wavelet (end-stopped) approach, which

is used to detect the local feature points in [73]. We note that generally the

average F values of the end-stopped wavelet approach under content pre-

serving distortions are close to but slightly worse than those of the original

SIFT detector, and are consistently much lower than those of the proposed

SIFT-Harris detector. In conclusion, the proposed SIFT-Harris detector

could yield more stable local feature points.

Moreover, we also investigate the benefit of robust keypoints against

content preserving manipulations for the purpose of content identification.

Since it is unlikely to exactly obtain the identical set of keypoints detected in

both the original and distorted images, [75] proposed using the Hausdorff dis-

tance that is insensitive to partial failure of keypoints detection to measure

the similarity between the coordinates of two sets of feature points detected

in the original and distorted images. Similarly, we employ the Hausdorff dis-

tance to compare the proposed SIFT-Harris detector with the end-stopped

wavelet detector [73] in terms of the robustness against content preserving

manipulations. We select 8 benchmark images (e.g. Lena, Baboon, Peppers

etc.) and list the average Hausdorff distances between original images and

modified copies under 12 different attacks, as shown in Table. 4.1. Here

the vectors are simply the coordinates of the top 20 detected stable key-

points. We note that the average Hausdorff distances of keypoints detected

by the SIFT-Harris detector are generally smaller than those of the end-

stopped wavelet detector except for the cropping and shearing cases where

the distances by SIFT-Harris are slightly higher. The proposed SIFT-Harris
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Figure 4.2: The average F values of the end-stopped wavelet [73], the SIFT
detector and the proposed SIFT-Harris detector over 20 images under 9
types of content-preserving distortions.

approach is relatively more robust under most content preserving manipu-

lations, especially for blurring and additive noise attacks.

Although similar to [42], we could simply use the coordinates of the de-

tected stable keypoints to directly form the image hashes and such hashes

have shown good robustness against geometric attacks [42], such hashing

is not relatively compact and its lack of security is a concern in practice.

Monga et.al in [73] further proposed a global histogram scheme to gener-

ate image hashes based on the wavelet coefficients of the detected feature

points and introduced pseudo-randomization to enhance the security of the

proposed hashing. However, though being robust against compression and

geometric attacks, it is sensitive to blurring and noising attacks. Also, the

global histogram doesn’t take the local distribution of the feature points into

consideration. Therefore, we plan to seek an alternative way to fully take

advantages of the robust local feature points.
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Table 4.1: Average Hausdorff distances between the coordinates of
the top 20 keypoints detected in the original image and manipulated
copies using the proposed SIFT-Harris and end-stopped [73] detec-
tors.

Manipulation SIFT-Harris End-stopped

Additive Noise
Gaussian Noise (var = 0.005) 0.106 0.120

Salt&Pepper Noise (var = 0.01) 0.070 0.177
Speckle Noise (var = 0.01) 0.067 0.103

Blurring
Gaussian Blurring (σ = 0.5) 0.040 0.070

Circular Blurring (radius = 0.1) 0.066 0.085
Motion Blurring (len = 2, θ = 450) 0.047 0.074

Geometric Attacks
Rotation (θ = 100) 0.257 0.298

Cropping (boundary= 8%) 0.171 0.132
Scaling (factor = 0.5) 0.078 0.144

Shearing (θ ∼ 5%) 0.173 0.157

JPEG Compression (QF= 10) 0.107 0.193

Gamma Correction (γ = 1.3) ) 0.047 0.065

4.3 Image Hashing Based on Shape Contexts

The application of local feature points such as SIFT to image copy detec-

tion is not new [20, 41]. Most of these works mainly detect image copies

or near-duplicate copies by matching the high-dimensional local feature de-

scriptors of keypoints. However, this is not feasible in image hashing, where

we have to compress the robust features into a compact hash and match

the hashes during the detection stage. In [80], the authors proposed a neat

way to encode the geometric relationships between SIFT points into a short

signatures. However they only investigated the robustness against limited

attacks such as rotation, cropping, and compression.

In this section, we propose to use shape contexts, which is a promising

method to measure shape similarity for object recognition, to generate image

hashes based on the robust local feature points detected in Section 4.2. The

motivation of the proposed approach lies in the fact that the distribution
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(a) Original shape contexts (b) RSCH (c) ASCH

Figure 4.3: The diagram of the original shape contexts and the proposed
shape context hashing: RSCH and ASCH.

of local feature points composes the content structure of images. Treating

this geometric structure as an abstract object, we could use a descriptor to

represent this structure as an unique signature. Below we will first introduce

the basic concept of shape contexts, and then propose two image hashing

algorithms using shape contexts and robust feature points, the radial shape

context hashing (RSCH) and the angular shape context hashing (ASCH).

4.3.1 Shape Contexts

Given a set of points P = {pi}Ni=1, which are sampled from the contour of

an object, the shape context of the point pi with respect to the reference

point pc is defined in [9] as

hi(k) = #{pi 6= pc : (pi − pc) ∈ bin(k)}, (4.10)

where pi ∈ P and bin(k)’s are uniform in log-polar coordinates as shown in

Figure 4.3a with the centre located on pc. Hence, the shape context of each

point is a coarse histogram, which represents the relative positions of other

points to the reference point. It has been identified that this descriptor

is highly robust to shape deformation and offers a globally discriminative

characterization, which is effective to solve shape matching and transform

model estimation problems.
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4.3.2 Shape Contexts-Based Image Hashing

Since shape contexts could provide an outstanding description of the geo-

metric structure of shapes, we could embed the geometric distribution of

robust local feature points as well as their descriptors into shape context

to generate image hashes. Such hashing is not only based on the image

content itself, but also takes its distribution into account. However, the

original shape context is designed to be computed for each point sampled

from the object contour, meaning that we have N shape contexts if we have

N local feature points. Obviously, it provides a rich descriptor to represent

the shapes but has to be compressed to be used for hashing directly.

Considering an observation in image content identification and authen-

tication scenarios that generally perceptually insignificant attacks and mali-

cious manipulations on image content would not lead to viewpoint changes,

the center of an image is generally preserved (except for some cropping at-

tacks) and relative stable under certain geometric attacks such as rotation,

shearing etc. It motivates us that we could generate shape contexts with

the reference point in the center and obtain a compact signature for the

image. Another reason of avoiding computing shape context for each local

feature point in hashing is that keypoints detection could not guarantee to

yield exactly the same local feature points when the image is under differ-

ent attacks and manipulations. As a tradeoff, we propose two new image

hashing algorithms, called radial shape context hashing (RSCH) and angu-

lar shape context hashing (ASCH), to generate hashes using shape contexts

with respect to the central reference point:

Radial Shape Context Hashing (RSCH)

Given a set of local keypoints P = {pi(x, y)}Ni=1 and their corresponding

local descriptors D = {dpi(x, y)}Ni=1, the basic steps of RSCH are as follows:

• Step 1 : Given the coordinates of the central point C = (xc, yc) and

the required length of the hash L, construct bins B = {b(k)}Lk=1 of

shape contexts with increment l = max(xc, yc)/L in radial direction
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of polar coordinates as shown in Figure 4(b),

b(k) = {pi ∈ P : (k − 1)l ≤ ‖pi − C‖ < kl}, (4.11)

where ‖pi − C‖ is the relative distance between pi and the central

point C.

• Step 2 : Generate pseudorandom weights {αk}Lk=1 from the normal

distribution N(u, σ2) using a secret key. Each αk is a random vector

with 128 dimensions to be consistent with the dimensions of SIFT

descriptors.

• Step 3 : Let H = {hk}Lk=1 be the hash vector, we have each component

hk as

hk =
∑

pi∈b(k)

w⌈L4θpi
2π

⌉ 〈αk, dpi〉 (4.12)

where 4θpi = (θpi − θC) ∈ (0, 2π) is the relative difference of orienta-

tions between pi and the central point C. We will address the problem

of estimating θC later. The weight wdL4θpi/2πe ∈W = {wi}Li=1, which

is the set of random weights generated from the uniform distribution

U(0.5, 1), is introduced to differentiate the points which are located at

different orientations but in the same hash bin b(k) along the radial

direction.

Angular Shape Context Hashing (ASCH)

Given a set of local keypoints P = {pi(x, y)}Ni=1 and their corresponding

local descriptors D = {dpi(x, y)}Ni=1, the basic steps of the ASCH are as

follows:

• Step 1 : Given the coordinates of the central point C = (xc, yc) and

the required length of the hash L, construct bins B = {b(k)}Lk=1 of

shape context with increment l = 2π/L in angular direction of the

polar coordinates as shown in Figure 4(c),

b(k) = {pi ∈ P : (k − 1)l ≤ (θpi − θC) < kl}, (4.13)
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where (θpi − θC) = 4θpi ∈ [0, 2π) as defined above.

• Step 2 : Generate pseudorandom weights {αk}Lk=1 from the normal

distribution N(u, σ2) using a secret key. Each αk is a random vector

with 128 dimensions to be consistent with the dimensions of SIFT

descriptors.

• Step 3 : Let H = {hk}Lk=1 be the hash vector, we have each component

hk as

hk =
∑

pi∈b(k)

w⌈L‖pi−C‖
‖C‖

⌉ 〈αk, dpi〉 (4.14)

where ‖pi − C‖ is the same as defined above and ‖C‖ =
√
x2
c + y2

c is

the normalization factor. The weight wd‖pi−C‖/‖C‖e ∈ W = {wi}Li=1,

which is the set of random weights generated from uniform distribution

U(0.5, 1), is introduced to differentiate the points which have different

distances to the central point but in the same hash bin b(k) along the

angular direction.

Central Orientation Estimation: The central orientation θC is significantly

important for both ASCH and RSCH, since we need it as a reference di-

rection to calculate the relative difference of orientations between the local

feature point pi and the central point C. However, estimating θC based on

local gradient distribution is not reliable due to different image processing

attacks. Hence, we propose an alternative solution based on Radon trans-

form [48] to estimate an accurate reference orientation of C rather than the

real orientation.

Radon transform is the integral transform consisting of the integral of a

function over straight lines. Given a 2D function f(x, y) and a line p with

orientation θ as shown in Figure 4.4, the radon transform of f(x, y) is the

integral of orthogonal projections to line p:

Rf (p, θ) =

∫ ∞
−∞

f(p cos θ − q sin θ, p sin θ + q cos θ)dq (4.15)
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where q is the orthogonal axis of line p. Here we have

x = p cos θ − q sin θ, (4.16)

y = p sin θ + q cos θ. (4.17)

Based on the radon transform, we could accurately estimate the reference

orientation of the central point C as follows:

• Step 1 : Select the circular neighbourhood of C with radius = 64, and

denote this region as a 2D function f(x, y). Then compute the radon

transform of f(x, y) from 0 to 2π and get Rf (p, θ), where θ ∈ (0, 2π).

• Step 2 : Choose a reference point pr on the p axis with a neighbourhood

Ω ∈ [pr− t, pr + t] as shown in Figure 4.4, the reference orientation θC

could be estimated by

θC = arg max
θ

pr+t∑
p=pr−t

Rf (p, θ), θ ∈ (0, 2π). (4.18)

Here θC is not the exact orientation of the central point C. However,

it provides us a reference orientation, which could be used to calculate the

relative differences of orientations between C and other keypoints. Note

that the choice of the reference point pr could not be the middle point, since

its projection is symmetric for θ and θ + π. In this work, we choose the

quarter point pr as shown in Figure 4.4.

The underlying reason to justify this scheme could be supported by the

properties of radon transform. Suppose the 2D function f(x, y) in Figure 4.4

is rotated by an angle φ to have f ′(x, y) = f(x cosφ−y sinφ, x sinφ+y cosφ),

we have its radon transform as:

Rf ′(p, θ) = Rf (p, θ + φ). (4.19)

When we find the maximum values of Rf (p, θ) and Rf ′(p, θ) for θ ∈ (0, 2π),

the corresponding orientation estimates θfC and θf
′

C could be used to estimate
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Figure 4.4: The radon transform R(p, θ) of a 2D function f(x, y)

the angle φ as:

φ = θf
′

C − θ
f
C . (4.20)

Since the change of the reference orientation θC is corresponding to the

rotation of the image, it means that the relative differences of orientations

between the central point and other keypoints are rotation invariant.

Suppose there is a distortion, i.e. f̃(x, y) = f(x, y) + ∆f , which would

introduce extra perturbations on the radon transform, i.e. Rf̃ (p, θ) =

Rf (p, θ) + ∆f̃ . Under the assumption that Rf (p, θ)� ∆f̃ , we have

arg max
θ

pr+t∑
p=pr−t

Rf̃ (p, θ) = arg max
θ

pr+t∑
p=pr−t

Rf (p, θ). (4.21)

Since the image usually undergoes content-preserving manipulations and

the perturbation ∆f is much smaller than f(x, y), the assumption usually

holds. However, when intensive distortions are considered, this assumption

is too strict to be held. Hence, we introduce an adjustable factor t, which is

the radius of the integration neighbourhood Ω ∈ [pr − t, pr + t] to reinforce
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the assumption. A larger t would guarantee the assumption more stable at

the cost of extra computation. We use t = 3 in our later experiments.

4.4 Experimental Results and Analysis

We plan to evaluate the proposed image hashing algorithms from four as-

pects. The first one is their perceptual robustness against content-preserving

manipulations, which is important for content-based image identification

and retrieval. It is desired that perceptually identical images under dis-

tortions would have similar hashes. The second one is its application to

image tampering detection, which aims to localize the tampered contents

in images for the purpose of image authentication. The third one is the

unpredictability of the proposed hashing measured by differential entropy,

a necessary property of the security of hashing algorithms. The last one is

the computation cost.

4.4.1 Evaluation of Perceptual Robustness

Database and Content-Preserving Manipulations:

We construct a database with over 107000 images. In this database, there

are 1000 original grayscale nature images. For each original image with size

256 × 342, we generate 106 distorted versions by manipulating the original

image according to twelve classes of content-preserving distortions, which

include additive noise, blurring, JPEG compression, geometric attacks and

brightness changes etc. The motivation to construct such a database is

to simulate possible quality distortions of digital images due to the noise

in transmission channel, lossy quantization, and geometric manipulations.

The details are given in Table 4.2. For the additive noise and blurring

attacks, the distortion is introduced based on an acceptable quality range

(e.g. PSNR≥ 23dB). All the operations are implemented using Matlab.
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Table 4.2: Content-preserving manipulations and parameters
setting

Manipulation Parameters Setting Copies

Additive Noise
Gaussian Noise variance ∈ (0.0005 ∼ 0.005) 10

Salt&Pepper Noise variance ∈ (0.001 ∼ 0.01) 10
Speckle Noise variance ∈ (0.001 ∼ 0.01) 10

Blurring
Gaussian Blurring filter size: 3, σ ∈ (0.5 ∼ 5) 10
Circular Blurring radius ∈ (0.2 ∼ 2) 10
Motion Blurring len: 1 ∼ 3, θ ∈ {00, 450, 900} 9

Geometric Attacks
Rotation θ = 20 ∼ 300 8
Cropping boundary: 2% ∼ 10% 9
Scaling factor: 0.5 ∼ 1.5 5

Shearing θ ∈ (1% ∼ 10%) 10

JPEG Compression Quality Factor ∈ (10 ∼ 50) 5

Gamma Correction γ ∈ (0.7 ∼ 1.3) 10

Identification and Evaluation Measures

The evaluation for the perceptual robustness of the proposed image hashing

algorithms is conducted in two aspects: identification accuracy and receiver

operating characteristics (ROC) analysis.

Identification accuracy : Let S = {si}Ni=1 be the set of original images

in the database, we define a corresponding hash space H(S) = {H(si)}Ni=1,

where H(si) = {h1(si), h2(si), .., hn(si)} is the hash vector with length n for

image si. We apply the Euclidean distance D(H(s1), H(s2)) as the perfor-

mance metric to measure the discriminating capability between two hash

vectors H(s1) and H(s2). Given a query image Q, we first generate its hash

H(Q) and calculate its distance to each original image in the hash space

H(S). Intuitively, the query image Q is identified as the îth original image

as:

î = arg min
i
{D(H(Q), H(si))}. (4.22)

The simple identification process described above can be considered as a
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special case of the K-nearest-neighbour classification approach with K = 1.

Here K is set as 1 because we only have one copy of each original image in

the current database. For a more general case, if we have K multiple copies

of each original image with no distortion or with only slight distortions, we

could adopt the K-nearest-neighbour (KNN) classifier. The identification

accuracy is the fraction of the distorted copies of images that are correctly

classified. It’s worth mentioning that the real-value hashes could be fur-

ther encoded into binary strings and the Hamming distance could be used

as the distance measure, which is more computationally efficient than the

Euclidean distance.

Receiver operating characteristics analysis: We also study the ROC

curve [26] to illustrate the identification performances of the proposed image

hashing algorithms and compare them with the state-of-art NMF hashing

and FJLT hashing. The ROC curve depicts the relative tradeoffs between

benefits and cost of the identification and is an effective way to compare the

performances of different hashing approaches. To obtain ROC curves, we

define the probability of true identification PT (ξ) and probability of false

alarm PF (ξ) as

PT (ξ) = Pr(D(H(I), H(IM )) < ξ) (4.23)

PF (ξ) = Pr(D(H(I), H(I ′M )) < ξ) (4.24)

where ξ is the identification threshold. Images I and I ′ are two distinct

original images and the images IM and I ′M are manipulated versions of I

and I ′, respectively. Ideally, we hope that the hashes of the original image

I and its manipulated version IM should be similar and thus be identified

accurately, while the distinct images I and I ′M should have different hashes.

In other words, given a certain threshold ξ, a better hashing should provide

a higher PT (ξ) with a lower PF (ξ). Based on all the distances between

manipulated images and original images, we could generate a ROC curve by

sweeping the threshold ξ from the minimum value to the maximum value.
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Table 4.3: Identification accuracy performances by RSCH, ASCH, R&A SCH, NMF,
FJLT, RI-FJLT hashing algorithms under different attacks (the length of the hash vector
L = 20).

Manipulations RSCH ASCH R&A SCH NMF FJLT RI-FJLT

Additive Noise
Gaussian Noise 83.01% 91.22% 91.67% 99.5% 100% 86.53%

Salt&Pepper Noise 89.77% 92.38% 92.95% 99.6% 100% 99.85%
Speckle Noise 93.5% 95.39% 96.42% 99.58% 100% 86.74%

Blurring
Gaussian Blurring 78.99% 90% 88.9% 99.6% 100% 31.45%
Circular Blurring 83.8% 90.83% 89.6% 99.58% 100% 53.79%
Motion Blurring 96.08% 98.27% 98.19% 99.6% 100% 72.59%

Geometric Attacks
Rotation 82.61% 88.76% 90.75% 30.15% 59.99% 84.68%
Cropping 93.17% 96.93% 96.54% 50.4% 95.41% 69.19%
Scaling 77.8% 90.02% 88.18% 99.5% 100% 81.62%

Shearing 78.88% 89.72% 92.26% 72.6% 98.25% 90.91%

JPEG Compression 91.8% 95.72% 96.18% 99.6% 100% 88%

Gamma Correction 93.91% 95.97% 95.57% 0.13% 61.65% 0.4%

Results

We test the proposed image hashing approaches, the RSCH and ASCH. The

selected length of the hash vector of RSCH and ASCH is L = 20. With each

component being 2-byte, the total hash length is 320 bits, which is relatively

short. We also compare the proposed schemes with the current state-of-art

image hashing algorithms using NMF [74] , FJLT and rotation invariant

FJLT (RI-FJLT)[60]. The default parameters of NMF, FJLT and RI-FJLT

hashing could be found in [60].

First, we illustrate the identification accuracy of different hashing ap-

proaches in Table. 4.3. It is desired that the images with content-preserving

distortions can still be correctly classified to the corresponding original im-

age, no matter what kinds of manipulations are taken. From the results, we

could observe that the NMF hashing and FJLT hashing are still superior

to the proposed local image hashing algorithms using feature points un-

der additive noise, blurring, scaling and compression attacks, although the

proposed RSCH and ASCH achieve comparable identification performances.

The underlying reason is that NMF and FJLT hashing generate hashes by
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extracting robust features from pre-defined image patches, which are de-

termined by the secret key. Since the locations and sizes of image patches

are fixed and invulnerable to the additive noise and blurring attacks etc.,

the essential features are preserved when generating hashes using matrix

factorization or random projection. While in the proposed approaches, de-

tection of local feature points is sensitive to the additive noise and blurring

attacks. From the test results in Figure 4.2, we can see that the identifica-

tion performance is still relatively sensitive to these distortions, even though

we introduced the Harris criterion to select the most stable keypoints and

obtained some improvements. Hence, the local features extracted within the

neighbourhood of keypoints are not so stable compared with the pre-defined

and fixed image patches in NMF and FJLT.

The advantages of generating hashes based on local feature points lie in

the robustness against geometric transforms, especially the rotation attacks.

Since the locations to extract robust features (e.g. SIFT descriptor) are

determined by detected keypoints, the corresponding hashes are invariant

to rotation transforms and the proposed RSCH and ASCH could achieve

better identification accuracy, as shown in Table. 4.3. In contrast, the NMF

and FJLT hashing approaches are sensitive to rotation attacks due to the

changes of pre-defined locations arising from the transform of coordinates.

Here we especially added the rotation-invariant FJLT (RI-FJLT) [60] as a

comparison. The RI-FJLT combines FJLT and Fourier-Mellin transform

[92] to mainly focus on improving the robustness of hashing against rotation

attacks at the cost of sensitivity to blurring and noising attacks. From

Table. 4.3, the identification performance of the proposed schemes is better

than the RI-FJLT. As for the cropping attacks, since the cropped areas

are mainly the boundaries of images, where few keypoints are located, the

performance of the proposed approach is less affected. But for NMF, FJLT,

and RI-FJLT, the performance would degrade when the pre-selected patches

are located close to the boundaries of images. For the scaling attacks, since

the tested image would be first scaled to a default size (e.g. 256× 342) due

to the prescaling step, some details would be lost during the downsampling

or upsampling process and the effect would be similar to blurring attacks.
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The results in Table. 4.3 support this statement.

The proposed image hashing approaches can achieve better performances

under Gamma correction, probably due to that the SIFT descriptors are in-

variant to brightness changes. SIFT descriptors are essentially gradient his-

tograms, which are designed to represent relative difference of pixel values

within the neighbourhood of detected keypoints. Therefore the brightness

changes would have less effect on the gradient distribution. While for the

hashing that extracts features from image patches directly as in NMF, FJLT,

and RI-FJLT hashing, the brightness changes would inevitably introduce ad-

ditional distortions in the matrix factorization and random projection pro-

cess and thus degrade the identification performances. A possible solution

to improve the performances of the original NMF and FJLT hashing is to

incorporate some pre-processing steps that transform the image patches into

luminance invariant domain before feature extraction.

Generally, we observe that ASCH relatively outperforms RSCH, which

indicates that the distribution of feature points in the angular direction has

better discriminative capacity than the distribution in the radial direction.

Intuitively considering the distributions on both directions may further im-

prove the performance on geometric attacks. We therefore propose a simple

joint RSCH-ASCH scheme by avoiding losing the track to the geometric

distribution of local patterns. To have a fair comparison by maintaining the

same hash length in the joint hash, we generate RSCH and ASCH hashes

with length L/2. For an image, given the RSCH hash Hr = {hr(i)}L/2i=1 and

the ASCH hash Ha = {ha(i)}L/2i=1 , we simply define the joint RSCH-ASCH

hash Hr&a = {hr&a(i)}Li=1 by concatenating two hash vectors as:

hr&a(i) = {hπr (1)..., hπr (L/2), hπa(1)..., hπa(L/2)} (4.25)

where Hπ = {hπ(i)} means an arbitrary permutation of H = {h(i)} deter-

mined by a secret key, which is incorporated to further enhance the security.

The corresponding identification accuracy is shown in Table. 4.3. By pre-

serving the same length L = 20 as RSCH and ASCH, the joint RSCH-ASCH

achieves better identification performances under most attacks, and yields
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slight degradations under blurring and Gamma correction compared with

ASCH.
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(c) ROC under cropping
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Figure 4.5: The ROC curves of the proposed shape contexts based image
hashing approaches when compared with the state-of-art NMF, FJLT, and
RI-FJLT hashing approaches.

We then present a statistical comparison of different image hashing ap-

proaches by studying the corresponding ROC curves, as shown in Figure 4.5.

Since the major improvements of the proposed hashing schemes lie in the

robustness against geometric attacks and brightness changes, we mainly

present the ROC curves under these manipulations. With the same proba-

bility of false alarm PF (ξ), a better hashing approach could achieve a higher

probability of true identification PT (ξ). In other words, the ROC curve is

to measure the similarity of hashes between true query images and origi-

nal images under a selected false classification rate. ROC curves provide a
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tradeoff between the true retrieval and misclassification to select, when a

uniform threshold is applied for identification.

It is noted that the proposed hashing approaches achieve the best over-

all robustness as shown in Figure 4.5a under all manipulations listed in

Table 4.3, which is consistent with the reported identification performances.

The ASCH and the joint RSCH-ASCH are slightly better than FJLT hash-

ing, which mainly arises from the improvements in geometric attacks and

brightness changes. We also illustrate the ROC curves under rotation, crop-

ping and brightness changes respectively to show the improvements arising

from the geometric invariance of local feature points and illuminance in-

variance of SIFT descriptors. Compared with RSCH and ASCH, the joint

RSCH-ASCH scheme takes the geometric distributions of local feature points

in both radial and angular directions into account and achieves better overall

identification performance.

4.4.2 Evaluation of Tampering Detection

Since the proposed shape contexts based hash is based on the local distri-

bution of the keypoints rather than the one based on global histogram as

in [73], the geometric structure of the image, which is represented by local

feature points, is embedded into the compact hash. Therefore, the proposed

hash can distinguish images with similar contents but different structures

and thus could be useful for image tampering detection. Image tampering

detection is to localize the artificial modifications in image content. Some

recent works [58, 80, 93] have illustrated the use of multimedia hashes for

identifying the artificial tampering image content.

Given an image I and its tampered copy IT , the tampered area BT could

be localized by using their RSCH Hr = {hkr (I)}Lk=1 and HT
r = {hkr (IT )}Lk=1

in the radial direction and ASCH Ha = {hka(I)}Lk=1 and HT
a = {hka(IT )}Lk=1

in the angular direction as

Br = {binr(k) :
∣∣∣hkr (I)− hkr (IT )

∣∣∣ ≥ δ}, (4.26)
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Ba = {bina(k) :
∣∣∣hka(I)− hka(IT )

∣∣∣ ≥ δ}, (4.27)

BT = Br ∩Ba, (4.28)

where Br and Ba are the sets of histogram bins in radial and angular di-

rections, whose corresponding normalized point-wise distances of hashes be-

tween the image I and its tampered copy IT are larger than the threshold

δ.

The performance of the proposed approach on tampering detection mainly

relies on two factors. The first one is the length of RSCH and ASCH hash

vectors, which decides the resolution of tampered area that could be lo-

calized. The longer the hashes are, the more precise detections could be

achieved. However, minor distortions on the image would also perturb the

detection and introduce higher false alarm rates when the histogram bins are

too fine. The second one is the threshold δ, which is used to determine the

tampered local histogram bins. We investigate these two factors by ROC

analysis on a group of tampered images considering both the combination

of the different hash lengths of RSCH and ASCH and the threshold δ. We

used the CASIA tampered image detection evaluation database [1] and ap-

plied the proposed approach on a group of 10 image pairs, which includes

the original image and tampered copy. An example is shown in Figure 4.6a

and Figure 4.6b. For each image pair, we calculated their RSCH and ASCH

hashes with three different combinations (ASCH-15 & RSCH-5, ASCH-20

& RSCH-10, ASCH-25 & RSCH-15) and normalized the hash distances be-

tween original images and tampered copies to [0, 1]. The design of the

combinations is mainly to make the intersection between RSCH and ASCH

be approximately square. Then we generate the ROC curve by sweeping the

threshold δ from 0 to 1 as shown in Figure 4.7, in which the true positive

rates and false alarm rates are averaged based on the results from 10 image

pairs.

From the ROC curves in Figure 4.7, we observed that the coarse his-

togram bins based on ASCH-15 & RSCH-5 has a higher true positive de-
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(a) Original image (b) Tampered image

(c) Ground truth (d) Tampering detection

Figure 4.6: An example of image tampering detection using the proposed
shape contexts based image hashing approaches.

tection rate at the cost of a little higher false alarm. This combination is

mainly useful when the tampered area is relatively large. The finer his-

togram bins based on ASCH-25 & RSCH-15 has relatively lower false alarm

at low true positive detection rate, while ASCH-20 & RSCH-10 is relatively

a good tradeoff between the true positive rate and false alarm. From the

ROC curve, a suitable threshold δ could be picked up to yield a relatively

high true positive rate with low false alarm (e.g. we set δ = 0.5). An

example of tampering detection is shown in Figure 4.6d. Compared with

the ground truth in Figure 4.6c, the proposed approach could only roughly

localize the tampered region on images, limited by the default shape of his-

togram bins. Additional features as suggested in [58] could further improve

the precise tampering detection. Also, to optimally allocate the histogram

bins for RSCH and ASCH, a recursive way using a coarse-to-fine strategy
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Figure 4.7: The ROC curves for tampering detection

could be applied, though its extra computational cost should be taken into

consideration.

It is worth emphasizing that the NMF, FJLT as well as the the global

histogram based hashing [73] are not applicable for tampering detection. In

this sense, the proposed hashing scheme is more generally applicable.

4.4.3 Unpredictability Analysis

We also investigate the security of the proposed hashing approach in terms of

unpredictability that arises from the key-dependent randomization. Higher

amount of randomness in the hash values makes it harder for the adversary

to estimate and forge the hash without knowing the secret keys. Since it

is believed that a high differential entropy is a necessary property of secure

image hashing, we evaluate the security of the proposed image hashing in

terms of unpredictability by quantifying the differential entropy as in [92].

The differential entropy of a continuous random variable x is given by

H(x) =

∫
Ω
f(x) log

1

f(x)
dx, (4.29)
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where f(x) means the probability density function (pdf) of x and Ω means

the support area of f(x). Since the construction of ASCH is similar to

RSCH, we take RSCH as an example to derive the differential entropy of

its hash element. Suppose that M keypoints {pi}Mi=1 are detected within

the histogram bin b(k) in RSCH, and each of them has a local descriptor

di = {dij}Nj=1 with dimensions N , the hash h(k) is

h(k) =
∑

pi∈b(k)

w⌈L4θpi
2π

⌉ 〈αk, dpi〉 (4.30)

where the pseudorandom weights αk = {αkj}Nj=1 are generated from the nor-

mal distributionN(u, σ2) using the secret key. Here the weights wdL4θpi/2πe =

wi ∼ U(0.5, 1) are introduced to differentiate the keypoints in the same his-

togram bin b(k) of RSCH with different orientations. For simplicity, we don’t

take its randomness into consideration and treat them as fixed weights. It

is known that the sum of normal random variables still follows a normal

distribution. Hence h(k) is normal distributed with expectation value and

variance as

µh = E(h(k)) = µ
M∑
i=1

wi

N∑
j=1

dij , (4.31)

σ2
h = V ar(h(k)) = σ2

M∑
i=1

w2
i

N∑
j=1

d2
ij . (4.32)

Therefore we have its differential entropy as

H(h(k)) =
1

2
log(2πeσ2

M∑
i=1

w2
i

N∑
j=1

d2
ij)bits. (4.33)

Obviously, the differential entropy depends on the number of keypoints de-

tected in images and their corresponding descriptors, which are determined

by the image content. But for a random variable with the same bounded

variance, the differential entropy is maximized when it follows normal distri-

bution. Since the generated hash h(k) ∼ N(µh, σ
2
h), the differential entropy

H(h(k)) is maximized, given the detected local feature points as well as the
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Table 4.4: The average CPU times required by the proposed
SCH, FJLT, and NMF hashing approaches.

Computational cost SCH FJLT NMF

time (s) 3.91 0.638 0.9391

descriptors.

We would like to mention that a higher differential entropy is only one

aspect of a secure image hashing [74, 92], which also includes other factors

such as key diversity and prior knowledge possessed by adversaries. Also,

differential entropy in the continuous form is not invariant under scaling and

translation as stated in [42], and may not be a proper interpretation as the

uncertainty of the hashing. Therefore, there lacks of a universal measure to

comprehensively evaluate the security of image hashing. Interested reader

could refer to the references in [42, 64, 92].

4.4.4 CPU Time Cost

Compared with the FJLT and NMF hashing, which use pre-fixed regions

of interest determined by a secret key for feature extraction, the major and

additional computation cost of the proposed shape contexts based hashing

lies in the robust local keypoint detection. Therefore, the computation cost

of the proposed hashing is higher than the FJLT and NMF hashing. As an

example, we test these approaches on 50 images using a computer with Intel

Core i7 CPU (2.67 GHz) and 3GB RAM and report the average computa-

tional time in Table 4.4.

4.5 Conclusion

In this chapter, we proposed the shape contexts based hashing approaches

using local feature points and investigated their perceptual robustness against

a large class of content-preserving manipulations, image tampering detec-

tion as well as the security and computation cost issues. Based on the geo-

metric invariance of the state-of-art SIFT keypoints, we incorporate Harris

criterion to select a subset of keypoints that are the most stable under ad-
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dition noise, blurring, and compression distortions. From the viewpoint of

object recognition, the distribution of these robust keypoints composes the

content structure of images, we therefore introduce the shape contexts to

embed the geometric distribution as well as the corresponding descriptors

of keypoints into a short hash vector and propose shape context based im-

age hashing algorithms, i.e. RSCH in the radial direction and ASCH in the

angular direction. Since the RSCH or ASCH only considers the distribution

of keypoints in one direction, we propose a simple joint RSCH-ASCH as an

alternative method to consider the distribution in both directions, which can

achieve better overall perceptual robustness. Since the shape contexts based

hashes embed the geometric structure of the image, another advantage of

the proposed hashing is its applicability in image tampering detection.

However, image hashing using feature points still has limitations when

considering the distortions of additive noise and blurring in large scale (e.g.

PSNR < 22dB). Even for the rotation attacks, since the image is trans-

formed into another coordinate space with interpolations, which locally mod-

ify the images without introducing significant perceptual distortion, the de-

tected keypoints are not exactly the same in the original image and its

rotated copy and thus we could only get around 90% identification accuracy

even using shape contexts hashing, as shown in Table 4.3. Our experience

suggests that generating a single type of image hash based on certain features

to resist all types of manipulations is highly unlikely, while it is relatively

easy to find a specific feature to robustly resist certain manipulations. Ob-

viously, combining multiple hashes in a joint decision making framework

can be a promising direction for digital image hashing, as presented in the

content-based fingerprinting framework in Section 3.5. However, how to bal-

ance the compactness of hashes and its robustness will be the critical issues

to deal with and the optimal tradeoff has to be taken into consideration.
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Chapter 5

Compressed Binary Image

Hashes Based on

Semi-Supervised Spectral

Embedding

5.1 Introduction

Currently, almost all existing image hashing works focus on intermediate

hash generation, which includes the steps of robust feature extraction and

signature generation, to generate real-valued image hashes. Since most ro-

bust features are usually robust against certain types of distortions and

attacks and it is hard, if not feasible, to extract robust features which can

resist all types of distortions and attacks, a tradeoff has to be made when

designing image hashes robust against different distortions and attacks, such

as the classical image processing attacks (e.g. additive noise, blurring, com-

pression, etc.) and geometric attacks (e.g. rotation, cropping etc.) [60, 63].

Therefore, how to efficiently take advantages of different features together

to enhance the overall robustness of image hashing, or how to efficiently de-

sign a combined, superior image hashing approach based on different types

of image hashes, is a topic of great importance in practice but less studied

in the current literature. Moreover, few works in the current literatures

illustrate how to compress the real-valued image hashes into binary image

hashes in the post-processing step, while it is a critical issue for fast retrieval

and efficient storage in practice.
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In this chapter, we assume the availability of real-valued image hashes

and focus on the topic of combining different types of image hashes and

jointly compressing them into a short binary image hash. Compared with

the real-valued image hashes, the binary image hashes require less mem-

ory space, support the Hamming distance similarity measure directly and

thus are more suitable for fast retrieval and identification. Also, the gen-

erated joint binary hash could enhance the overall robustness against vari-

ous attacks and distortions by taking advantages of different types of real-

valued image hashes. More important, we would like to emphasize that the

proposed binary image hashing approach presents a fundamental departure

from existing methods in image hashing: Previous image hash generation

methods mainly focus on extracting robust features against various distor-

tions and attacks, and the feature compression and post-processing steps

are image independent. Basically, no prior knowledge from distinct images

or distorted copies is used directly for image hash generation of each im-

age. While in this chapter, for the first time, prior information from virtual

image distortions and attacks is explored in image hash generation when

compressing the real-valued hashes into the binary ones. More specifically,

the proposed binary image hashing scheme takes advantages of the extended

hash feature space from virtual distortions and attacks and generates the

binary hash for each image based on Laplacian spectral embedding. The

contributions of this work include: 1) We first propose compressing the

real-valued hashes into binary signatures with the help of virtual prior at-

tacked hash space (VPAHS), which is produced by applying virtual prior

distortions and attacks on the training images and generating hashes under

such simulated virtual distortions and attacks; 2) We extend the spectral

embedding [91, 98] idea into the image hashing area and learn the optimal

spectral embedding in a semi-supervised way based on VPAHS to project

the real-valued image hashes into a binary one, which could efficiently main-

tain the overall robustness from different types of real-valued image hashes

without increasing the hash length.
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5.2 Motivation

5.2.1 Related Literature Review

In practice, the intermediate real-valued image hashes are further converted

into binary signatures in the post-processing module. In [96], Venkatesan

et al. used randomized quantizer to quantize statistics of wavelet coefficients

and decoded them by the first-order Reed-Muller error-correcting decoder

to produce the binary hash signature. Quantization and error-correcting

coding (ECC) are efficient ways to enhance the robustness of features by

cancelling the influence of small perturbations. Swaminathan et al. [92] ap-

plied gray coding to obtain the binary sequences of quantized intermediate

hashes and compressed them by using the third-order Reed-Muller decoder.

Also, distributed source coding, such as Slepian-Wolf [52], and Wyner-Ziv

[37, 93] can be applied for intermediate hash compression, which assumes

that some side information is available at the decoder side. Although, ECC

or distributed source coding is able to correct some distortions in the com-

pressed messages to further enhance the robustness of quantized interme-

diate hashes, the collision probability between distinct image hashes is also

increased, which leads to extra false alarms in practice.

Essentially, consider the intermediate hashes as real-valued hash features,

the compression step of image hashing becomes an embedding problem of

embedding the real-valued feature space into compact binary hash space,

which is one of the most popular research areas nowadays. The main idea

of embedding learning is to formulate binary projections such that similar

real-valued feature vectors have the similar binary codes, given the distance

functions. The state-of-art embedding methods could be mainly divided

into two categories: 1) Data independent embedding without learning, such

as Locality Sensitive Hashing (LSH) [23], random fourier features [79], min-

hash [17] etc. Based on the asymptotic theoretical property, similar features

can be embedded into the same binary codes with high probabilities using

random projections, at the cost of relaxing the retrieval process to an ap-

proximate nearest neighbour problem with some tolerant errors. Since the

embedding is independent of the data distribution, this category of methods
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may not be optimal to certain data with specific distributions, but more

suitable for heterogeneous ones. 2) Data dependent embedding with learn-

ing, such as Spectral Hashing [98], Kernelized LSH (KLSH) [46], Semantic

Hashing [82], Product Quantization [36] etc. In this category, the embed-

ding process is trained to optimally fit specific data distributions and specific

distance functions, which produce better binary codes to preserve the local

similarity. Recently, some works such as LDAHash [91], sequential projec-

tion learning for hashing (SPLH) [97] etc., introduce the label information

into embedding learning and render it to a supervised learning process, which

produces the binary codes with lower false positive matching rate.

5.2.2 VPAHS and Motivation

In the conventional image hashing approaches, the image hash generation

is a robust feature compression and encryption process without any learn-

ing stage. Also, the image identification process is generally formulated

as a nearest neighbour decision making problem given Euclidean or Ham-

ming distance without employing any advanced supervised classifiers. The

underlying reason of generally not including learning in the identification

decision making process is as follows: Image hashing is an infinite cluster-

ing problem, which takes each original image as a new cluster/class and all

its distorted copies are assumed to lie in the neighborhood of the centroid

(i.e. represented by the original image). Therefore, if advanced supervised

classifiers such as Support Vector Machine (SVM) are used, they have to

be re-trained whenever a new original image is registered in the database.

This re-training may incur heavy computational burden when thousands of

images are registered and thus it is not feasible in practice. In the current lit-

erature of image hashing, prior information (e.g. distorted copies of original

images) is generally not explored in both the image hash generation process

and the decision-making process. We noted one attempt of exploring prior

information in decision-making: In [34], the authors uses virtual attacks to

generate extended feature sets for training supervised classifiers (e.g., SVM)

and detecting image copies, where the classifiers have to be retrained for
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Hash Cluster
Singular Sample

VPAHS of Hash Clusters

(a) VPAHS of multiple hash clusters

Hash Centroid Original Hash

VPAHS of single hash cluster

(b) VPAHS of a single hash cluster

Figure 5.1: The examples of VPAHS and hash clusters based on the FJLT
image hashing scheme

new original images. To our best knowledge, we are not aware of similar

efforts of exploring prior information in image hash generation.

However, we feel that efficient learning can be incorporated into the

image hash generation process by taking advantages of the prior informa-

tion at the owner side. More specifically, since image hashing is desired to

be robust against traditional image processing distortions and some geo-

metric transforms, the variations of the intermediate hashes from distorted

copies may follow certain specific distributions, which motivates us to in-

corporate the data dependent binary embedding idea to fit such specific

distributions and further compress the real-valued image hashes into more

compact binary hashes. To explore the variations of the intermediate real-

valued hashes under certain types of distortions, we could apply virtual

prior attacks (e.g. additive noise, blurring, compression etc.) on original

images to generate simulated distorted copies as well as the corresponding

intermediate real-valued hashes. The hashes of the training original images

and their distorted copies compose the so-called virtual prior attacked hash

space (VPAHS), which could represent the distribution of the intermediate

hashes under certain virtual distortions and attacks.

An example of VPAHS for FJLT image hashing [60] is shown in Fig-
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ure 5.1a, where we apply 12 classes of attacks in Table 5.1 on 7 original im-

ages and we generate 2-dimensional intermediate hashes for both the original

images and their distorted copies. Ideally, we should observe 7 hash clusters

lying in the hash space and the hashes of the distorted copies should lie in

the neighbourhood of the corresponding original hash. From the example

in Figure 5.1a, we can see that most of the distorted copies cluster well to

the corresponding original image, mainly because FJLT hashing is robust

against a large class of image process distortions such as additive noise,

blurring, compressing etc. However, we also note that some distorted copies

under geometric attacks (e.g., rotation transforms) distribute far from the

corresponding original image (e.g. denoted by “singular sample”), due to

the fact that FJLT hashing is sensitive to geometric attacks.

From Figure 5.1b by zooming into one hash cluster, we note a critical

observation that the image hash of the original image actually may not be

the centroid of its cluster. Here we have the following definition:

Definition 1 For a certain original image and its various distorted copies,

suppose the corresponding hashes follow a distribution p(x), the hash centroid

is defined as x̃, where

x̃ = arg max
x

p(x). (5.1)

This definition of hash centroid is the same as the mode of a probability

distribution function. We expect that most distorted image hashes should

distribute around the hash centroid if the image hashing approach is robust

against the corresponding distortions

Obviously, from Figure 5.1b we could observe that the image hash aris-

ing from the original image is not the hash centroid, which means that the

similarity measures between the distorted hashes and original hashes are bi-

ased, if we consider the hashing problem as a clustering problem. Therefore

we may need to estimate the exact hash centroids in VPAHS to facilitate

the incorporation of the learning stage into image hash generation. Here

we propose obtaining an optimal estimate of the hash centroid using kernel

density estimation (KDE) [13]. Let the data set X = {xi}ni=1 be i.i.d. sam-

pled from an unknown distribution f(x), the estimated distribution function
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f̃(x) can be expressed as

f̃(x) =
1

nh

n∑
i=1

K(
x− xi
h

) (5.2)

where K is usually chosen as Gaussian kernel and h is the smoothing pa-

rameter. Based on the estimated distribution f̃(x), the corresponding mode

or centroid could be obtained as the value which yields the maximum f̃(x).

Based on the VPAHS concept and the estimated hash centroids of train-

ing images, in the next section, we will introduce the data dependent spectral

embedding ideas [91, 98] and propose a novel semi-supervised spectral em-

bedding scheme based on VPAHS to compress the real-valued intermediate

image hashes into compact short binary hashes. By fitting the embedding to

the specific distribution illustrated based on VPAHS, the generated binary

hash is optimal for preserving the similarity of intermediate hashes given the

cost function. Also, for new images, the corresponding binary hash codes

are easy to compute without re-training the model.

5.3 Proposed Binary Image Hash Generation

5.3.1 Spectral Embedding Ideas Review

Within the current data-dependent embedding methods, spectral hashing

(also referred as spectral embedding) has been shown to be one of the state-

of-art approaches for compact binary codes construction, especially for com-

pressing the state-of-art SIFT and GIST image descriptors [98]. Suppose we

have a set of feature vectors X = {xi}ni=1, where xi ∈ Rd, the similarity be-

tween each pair of feature vectors is measured by Euclidean distance in

terms of Gaussian kernel as w(i, j) = exp(−‖xi−xj‖
2

ε2
). The goal of spectral

hashing is to find a set of corresponding binary codes B = {yi}ni=1, where

yi ∈ {−1, 1}k, so that the overall weighted Hamming distances between each

99



pair of the k-length binary codes are minimized as:

minimize :
∑
i,j

w(i, j) ‖yi − yj‖2 (5.3)

s.t. :
n∑
i=1

yi = 0

1

n

n∑
i=1

yiy
T
i = I,

where 0 means the k-length zero vector and I denotes the k × k identity

matrix, the constraint
∑

i yi = 0 guarantees that each bit has equal chance

to be -1 or 1, and 1
n

∑
i yiy

T
i = I decorrelates each bit of the codes to

minimize the redundancy. Denote by a n× k matrix Y = {y1,y2, ...,yn}T ,

a diagonal n×n matrix D(i, i) =
∑

j w(i, j), and a n×n weight matrix W ,

whose entries are w(i, j)’s. The above problem could be rewritten as

minimize : trace(Y T (D −W )Y ), (5.4)

s.t. : Y T 1 = 0,

Y TY = I.

By relaxing the constraint Y (i, j) ∈ {−1, 1}, the solutions of the above

problem are {yL1 , ...,yLk }, i.e. the k eigenvectors of the Laplacian matrix L =

(D −W ) associated with the minimal eigenvalues, excluding the one with

zero eigenvalue. For the j-th training data xj , the final binary codes ỹj could

be obtained based on the corresponding j-th elements of the eigenvectors

yLi ’s as

ỹj = sgn(yL1 (j),yL2 (j), ...,yLk (j)), ỹj ∈ {−1, 1}k. (5.5)

Spectral hashing has been widely applied for compressing the state-of-art

SIFT and GIST image descriptors to benefit fast image retrieval. Essentially,

it is a unsupervised binary code learning process, which does not take the

label information into account.

Recently, some works such as LDAHash [91] introduce the label infor-

mation into the cost function for learning embedding and can reduce the
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false positive rate by rendering the problem as a supervised learning prob-

lem. Given the set of n feature vectors, X = {xi}ni=1, LDAHash first divides

them into the positive set of pairs P (e.g., SIFT descriptors from same ob-

jects under different viewpoints) and the negative set of pairs N (e.g., SIFT

descriptors from different objects), then it seeks the affine embeddings of

the form

y = sgn(Px + t), (5.6)

where x ∈ Rd is the feature vector, P is a k×d matrix, t is a k×1 threshold

vector, and y is the corresponding k× 1 binary vector, which is constructed

to minimize the cost function

L = αE{
∥∥y − y′

∥∥2 | P} − E{
∥∥y − y′

∥∥2 | N} (5.7)

where α is a parameter to control the tradeoff between false positive and false

negative rates, and E{· | P} and E{· | N} are the conditional expectations

on the training set of positive and negative pairs of feature vectors, denoted

by x and x′, respectively. Relaxing the problem L to L̃ by removing the

sign function, the cost function becomes

L̃ = αE{
∥∥Px−Px′

∥∥2 | P} − E{
∥∥Px−Px′

∥∥2 | N}

= α · trace{PΣPPT } − trace{PΣNPT }

∝ trace{PΣPΣ−1
N PT }, (5.8)

where ΣP and ΣN are the covariance matrix of the feature vectors in the

sets of positive pairs and negative pairs respectively. The solution of P to

minimize the above cost function L̃ is the k eigenvectors of ΣPΣ−1
N associ-

ated with the k minimal eigenvalues. Obviously, LDAHash incorporates the

label information (e.g. similar features from same objects under different

viewpoints and distinct features from different objects) into the embedding

learning process to optimize the constructed binary codes, which have lower

false positive rates compared with the unsupervised spectral hashing.

As mentioned in Section 5.2.2, image hashing is an infinite clustering

problem that takes each original image as a cluster. Because of this, the
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unsupervised code learning in image hashing may be more feasible than the

supervised learning one, considering the extra burden of re-training for each

new image. However, since label information can be helpful for reducing

the false positive rate of the learned codes and such prior information is

available at the encoder side, we would benefit by exploring such prior in-

formation, even though we may not be able to fully utilize it. Therefore, in

the next section, we propose a semi-supervised spectral embedding scheme

for compressing intermediate hashes into binary hash codes. Here the term

”semi-supervised spectral embedding” means the following: We don’t fully

use the label information (e.g. pairwise labels with similar or dissimilar

pairs {-1, 1}) as in supervised learning [91], but we partially explore the soft

label information weighted by intra-class and inter-class similarity measures

to learn the optimal binary hash embeddings, which could map hashes from

perceptually identical images together in the subspace, but map the ones

from visually distinct images far apart.

5.3.2 Proposed Semi-Supervised Spectral Embedding (SSE)

Referring to the VPAHS concept illustrated in Figure. 2, the hashes of the

distorted images distribute within a specific neighbourhood of the hash of

the original image, although the original hash may not be the centroid of the

cluster. Intuitively, the hashes within the same neighbourhood should be

embedded together and the others be mapped far apart. Recall the weight

matrix W with w(i, j) = exp(−‖xi−xj‖
2

ε2
), where the parameter ε controls

the similarity measure between the pair of data, we could set different ε’s to

penalize the data pairs in the same neighbourhoods and the ones within dif-

ferent neighbourhoods. Therefore, the proposed cost function is formulated

as ∑
i,j

[
α · w1(i, j) ‖yi − yj‖2 − (1− α) · w2(i, j) ‖yi − yj‖2

]
(5.9)
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where : w1(i, j) , w1(xi,xj) = exp(−‖xi − xj‖2

ε2
1

)

w2(i, j) , w2(xi,xj) = 1− exp(−‖xi − xj‖2

ε2
2

)

Here ε1 < ε2, since we use weight w1 to control the similarity of the data

within the same neighbourhoods and w2 to control the similarity of the data

within the different clusters. Obviously, suppose a pair of data xi and xj are

close within the same cluster, w1 would be approximate to 1 and w2 would

be approximate to 0, meaning that the second term has almost no effect

on the cost function and only the first term is penalized. This situation is

the same as the formulation of unsupervised spectral embedding. While the

pair of data xi and xj are not within the same neighbourhood, w1 would

be small but w2 would be close to 1. Hence, minimizing the cost function

is equivalent to map the pair of data far apart. The parameters ε1 and

ε2 control the similarity measure of the data within the same and different

neighbourhoods respectively and should be chosen appropriately based on

training data. Also, we introduce the parameter α as a weight to provide

a trade-off between the contributions of the two terms in the cost function.

We rewrite Eqn. 5.9 as∑
i,j

[
(αw1(i, j) + αw2(i, j)− w2(i, j)) ‖yi − yj‖2

]
. (5.10)

Denote the combined weight as w̃(i, j) = αw1(i, j) + αw2(i, j) − w2(i, j).

We note that the formulation of Eqn. 5.10 is the same as Eqn. 5.3. Hence,

minimizing Eqn. 5.10 is equivalent to find the corresponding eigenvectors of

(D̃ − W̃ ) associated with minimal eigenvalues, where D̃(i, i) =
∑

j w̃(i, j)

is the diagonal matrix. Since we propose using two different ε parameters

obtained from the training data to control the intra-cluster and inter-cluster

similarity of data pairs rather than using the complete label information

as in supervised learning, we refer our scheme as semi-supervised spectral

embedding (SSE).
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5.3.3 Out-of-Sample Extension

However, the embedding obtained above is only capable of constructing bi-

nary codes for the training images rather than handling new original images

as well as the distorted copies. To avoid the re-training process, we need

to generate the binary codes for new images based on the learned embed-

ding, which is referred as out-of-sample extension. A classical solution of

the out-of-sample extension of spectral methods is the Nystrom method [10].

The essential idea is to take advantages of the existing embedding (eigen-

values and eigenvectors) and interpolate the approximate embedding for a

new input.

Suppose that a data set T = {x1,x2, ...,xn} contains n i.i.d samples from

an unknown distribution with the density function p(x) and a Hilbert space

Hp, we could define the eigenvalue problem of the linear operator Kp as

(Kpf)(x) =

∫
K(x,y)f(y)p(y)dy = λf(x), (5.11)

where K(x,y) is a symmetric kernel function (not necessarily positive semi-

definite), λ and f(.) are the eigenvalue and eigenfunction of the linear op-

erator Kp. Since the density p(x) is unknown, an “empirical” distribution p̂

estimated from the training data set T could be used to approximate p(x)

so that we have

(Kp̂f)(x) =
1

n

n∑
i=1

K(x,xi)f(xi) = λf(x), (5.12)

which means the eigenfunction of the new input x could be approximated

by the weighted linear combination of eigenfunctions of the training data

with respect to the kernel function.

Hence, let the symmetric n × n matrix M be with entries M(i, j) =

K(xi,xj) and {λm, vm} be the m-th minimum eigenvalue and the associated

eigenvector, which satisfy the eigenvalue problem Mvm=λmvm. Then for a

new data t, the m-th element of the interpolated embedding u(t) can be
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calculated as:

um(t) =
1

λm

n∑
i=1

vm(i)K(t,xi). (5.13)

for m = 1, ...n, where vm(i) means the i-th element of the vector vm. The

advantage of the Nystrom method is its adaptivity to arbitrary data distri-

butions at the cost of calculating the kernel similarity of the new input with

respect to the training data each time.

It is worth mentioning that, by assuming that the data distribution is

uniform or Gaussian, the embedding could be directly calculated based on

the eigenfunctions rather than interpolations in the original spectral hashing

[98]. However, in our binary image hashing problem, since the distributions

of intermediate hashes can be different for different image hashing methods,

we feel that the Nystrom method is more promising. In practice, we use

the following normalized kernel weight for the new input data t w.r.t the

training data xi based on Eqn. 5.10 as

K̂(t,xi) =
1

n

K(t,xi)√
|Ex∈T [K(t,x)]Ex∈T [K(xi,x)]|

, (5.14)

K(t,xi) = αw1(t,xi) + αw2(t,xi)− w2(t,xi), (5.15)

where Ex∈T [K(t,x)] is the average kernel similarity of the new input data

t with respect to the training data set T . Hence, the m-th bit of the binary

code of the new input data t is

ỹm(t) = sgn(

n∑
i=1

vm(i)K̂(t,xi)). (5.16)

With the help of out-of-sample extension, the binary codes of a new input

data could be obtained based on the existing learned embedding without

retraining, and thus it is computationally efficient in practice.
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Figure 5.2: The proposed binary image hash generation using the semi-
supervised spectral embedding learning

5.3.4 Proposed Method for Binary Image Hash

Construction

Given a set of N original training images S = {si}Ni=1 and an intermedi-

ate hash function IH(x) that generates real-valued intermediate hashes, we

summarize the main steps of the proposed binary hash construction ap-

proach based on semi-supervised spectral embedding, as shown in Figure

5.2.

• Step 1 : For each original training image si, we apply the virtual

prior attacks (referring to the experiment section) to generate an ex-

tended set of M distorted copies s̃i = {sij}Mj=1, and we thus have the

extended training image data S̃. The corresponding VPAHS is ob-

tained by applying the intermediate hash function to S̃, denoted as

X = {IH(s̃ij)}N,Mi=1,j=1.

• Step 2 : With the well chosen parameters ε1, ε2 and α, construct

the Laplacian matrix based on Eqn. 5.10 and find the k eigenvectors

Φ = {φ1(X), φ2(X), ..., φk(X)} with the minimal eigenvalues, where Φ

is with size N ×M -by-k. The k-bit binary code of each training image

sij could be obtained based on the corresponding l-th row of Φ, where
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the index l = (i− 1)N + j:

bsij = {sgn(φ1(l)), sgn(φ2(l)), ..., sgn(φk(l))}. (5.17)

• Step 3 : Given a query image t, we first generate the intermediate hash

IH(t) and then apply the out-of-sample extension to obtain the binary

codes based on Eqn. 5.16. The computation cost is linear with respect

to the size of the training image set, since the approximate eigenvectors

of the query feature IH(t) are interpolated by the weighted combina-

tion of each similarity kernel between the query image and training

images.

The proposed scheme has two-fold advantages: 1) Compared with the con-

ventional binary image hash generation based on quantization, the prior

information obtained from VPAHS is incorporated into the binary embed-

ding process. 2) For a new input data, the binary codes could be obtained

directly based on the existing learned embedding. Its superior performance

will be illustrated in the experiment section.

5.4 Proposed Framework for Combining Multiple

Image Hashes

Generally, extracting a universal robust feature against various attacks and

distortions may not be feasible. Many researchers seek to combine different

robust features to generate a better hash that has superior performances

at the cost of extending the length of hash [60, 63], which obviously would

decrease the efficiency of the similarity measure and retrieval process. Here

we extend the proposed binary image hash generation scheme to tackle the

joint embedding problem, with the goal to combine different intermediate

real-valued image hashes or robust features together and construct the cor-

responding binary codes that share their robustness without extending the

length of final binary hashes.

Suppose, for n images, we have m sets of feature vectors (representing m
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types of real-valued image hashes) as ψ = {X1, X2, ..., Xm}, where each ele-

ment is an intermediate hash vector and the t-th type of image hash data is

denoted as Xt = {xtj}nj=1. The intermediate real-valued image hashes arising

from different hash functions may be robust against certain attacks or distor-

tions respectively. Obviously, different feature spaces may not be compatible

for directly measuring the similarity. Recalling the semi-supervised spectral

embedding based on Eqn. 5.9, the learning process is only dependent on the

similarity measure of the data pair based on the Gaussian kernel rather than

the dimensions of the features. Hence, we reformulate the Eqn. 5.9 as∑
i,j

[
α · w̃1(i, j) ‖yi − yj‖2 − (1− α) · w̃2(i, j) ‖yi − yj‖2

]
(5.18)

where : w̃1(i, j) = exp(−
m∑
t=1

∥∥∥xti − xtj

∥∥∥2

(εt1)2
)

w̃2(i, j) = 1− exp(−
m∑
t=1

∥∥∥xti − xtj

∥∥∥2

(εt2)2
)

By controlling parameters {εt1}mt=1 and {εt2}mt=1, the m feature spaces are

compatible for measuring the similarity based on Gaussian kernel. Therefore

we could combine different types of real-valued intermediate hashes with

certain robustness into the semi-supervised spectral embedding framework.

Since we still can only choose the k minimal eigenvectors for binary codes

construction, the length of the final binary codes can be maintained as k

for the joint embedding. In addition, via the above joint embedding, the

robustness arising from different types of intermediate hashes can somehow

be preserved into the final binary codes, which is superior to the ones based

on certain hash features.
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5.5 Experimental Results and Analysis

The focus of the chapter is to construct robust binary image hashes based

on real-valued intermediate hashes. Hence we mainly evaluate the percep-

tual robustness of the generated binary hash codes against different content-

preserving attacks and distortions. Since the similarity measurement for the

proposed binary hashes is based on Hamming distance, the search and re-

trieval efficiency is superior to that of real-valued intermediate hashes, which

is generally measured based on Euclidean distance. It is worth mentioning

that, since the embedding is essentially a lossy compression process, the

more robustness preserved from the real-valued intermediate image hashes,

the better binary hash codes are constructed.

5.5.1 Database and Content-Preserving Manipulations

In order to evaluate the perceptual robustness of the proposed hashing

algorithms against content-preserving manipulations, we first construct a

database with over 107000 images, which includes 1000 original gray na-

ture images with size 256 × 342 and 106 distorted copies by manipulating

the original image according to 12 classes of content-preserving operations,

including additive noise, blurring, JPEG compression, geometric attacks

and brightness changes etc. The motivation to design such a database is

to simulate possible quality distortions of digital images due to the noise

in transmission channel, lossy quantization, and geometric manipulations.

The details are given in Table 5.1. For the additive noise and blurring at-

tacks, the distortion is introduced based on an acceptable quality range (e.g.

PSNR≥ 25dB). All the operations are implemented using Matlab. The orig-

inal image database and the code used to generate the overall database can

be found at (http://ipl.ece.ubc.ca/multimedia.html) for public research use.

5.5.2 Identification and Evaluation Measures

Perceptual robustness is one critical criteria to evaluate the performances of

image hashing schemes. Ideally, two distinct images I and I ′ should have
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Table 5.1: Content-preserving manipulations and parameters
setting

Manipulation Parameters Setting Copies

Additive Noise
Gaussian Noise variance ∈ (0.0005 ∼ 0.005) 10

Salt&Pepper Noise variance ∈ (0.001 ∼ 0.01) 10
Speckle Noise variance ∈ (0.001 ∼ 0.01) 10

Blurring
Gaussian Blurring filter size: 3, σ ∈ (0.5 ∼ 5) 10
Circular Blurring radius ∈ (0.2 ∼ 2) 10
Motion Blurring len: 1 ∼ 3, θ ∈ {00, 450, 900} 9

Geometric Attacks
Rotation θ = 20 ∼ 300 8
Cropping boundary: 2% ∼ 10% 9
Scaling factor: 0.5 ∼ 1.5 5

Shearing θ ∈ (1% ∼ 10%) 10

JPEG Compression Quality Factor ∈ (10 ∼ 50) 5

Gamma Correction γ ∈ (0.7 ∼ 1.3) 10

different image hashes but a manipulated copy IM of image I under a certain

distortion should have a similar image hash to its original copy. Here we

conduct the evaluation for the proposed scheme in two aspects: identification

accuracy and receiver operating characteristics (ROC) analysis.

• Identification accuracy : The identification accuracy is defined as the

fraction of the distorted image copies that are correctly classified to

the corresponding original images. Suppose the generated final image

hash for each image is a k-bit binary code in our proposed scheme, the

Hamming distance could be used as the distance metric to measure

the similarity between two binary image hashes h1 and h2 as

D(h1, h2) =
k∑
i=1

|h1(i)⊕ h2(i)| . (5.19)

With the above distance measure, we just adopt the simplest nearest-

neighbour classifier to facilitate the retrieval process. If we have K
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multiple copies of each original image with no distortions or with only

slight distortions, we could adopt the K-nearest-neighbour (KNN)

classifier instead.

• Receiver operating characteristics analysis: Except investigating iden-

tification accuracy, we also study the ROC curve [26] to illustrate the

identification performances of the proposed binary image hash genera-

tion scheme. The ROC curve depicts the relative tradeoffs between the

benefit and cost of the identification process and is an effective way to

compare the performances of different image hashing approaches. Let

H(x) is an image hashing function that maps the image to a binary

signature. To obtain ROC curves to compare hashing algorithms, we

define the probability of true identification PT (ξ) and probability of

false alarm PF (ξ) as

PT (ξ) = Pr(D(H(I), H(IM )) < ξ) (5.20)

PF (ξ) = Pr(D(H(I), H(I ′M )) < ξ) (5.21)

where ξ is the identification threshold. Images I and I ′ are two distinct

original images and the images IM and I ′M are manipulated versions of

the images I and I ′, respectively. Given a certain threshold ξ, a better

hashing should provide a higher PT (ξ) with a lower PF (ξ). When

we obtain all the distances between manipulated images and original

images, we could generate ROC curves by sweeping the threshold ξ

from the minimum value to the maximum value, and further compare

the performances of different hashing approaches.

5.5.3 Intermediate Hashes and Baseline Methods

In this chapter, we assume the availability of real-valued intermediate hashes,

and the focus is to evaluate how the robustness could be preserved by the

generated binary image hashes. We compare the proposed scheme to the

conventional methods that are based on quantization as the baseline meth-
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ods.

Intermediate Hashing

The real-valued intermediate hashing methods we adopt in this chapter are

the state-of-art image hashing schemes including FJLT hashing (FJLTH)[60]

presented in Section 3 and Shape Contexts based image hashing (SCH) [63]

presented in Section 4.

• FJLTH : It is an image hashing that is based on the Fast Johnson-

Lindenstrauss transform (FJLT), which shares the low distortion char-

acteristics of random projection but requires lower computational com-

plexity. It is robust against classical attacks and distortions such as

additive noise, compression, blurring etc.

• SCH : It is a very recent image hashing that takes advantages of local

feature patterns such as SIFT and embeds the geometric distributions

of feature points into hashes based on the shape contexts descriptors,

which are robust against geometric attacks and brightness changes.

The hashes arising from these two schemes are real-valued intermedi-

ate hashes, which are usually measured by Euclidean distance metrics. We

apply the proposed semi-supervised spectral embedding scheme to further

compress these real-valued intermediate hashes into binary hashes and mea-

sure the similarities using Hamming distance to enhance the efficiency. Aside

from the evaluation for the robustness of the constructed binary codes for

each of the hashing schemes, we also investigate the performance of the

joint embedding described in Section 5.4 to combine these two complemen-

tary hashing schemes together to further enhance the overall robustness of

the proposed binary image hashes.

Baseline Methods

To illustrate the performance of the proposed scheme, we compare it with

the conventional quantization-based post-processing method as the baseline

method. Let the l-length real-valued hash vector be H = {h1, h2, ..., hL}.
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To generate the k- bit binary image hash, we quantize each of the entries

and represent it using k/L bits by gray coding qg as

BH = {qg(h1), qg(h2), ..., qg(hL)}. (5.22)

To fulfill the quantization within the representative range of k/L bits, the

intermediate hash space may need to be well normalized first. Also, the re-

sulting binary hashes could be further compressed by ECC decoder such as

Reed-Muller decoder etc. Although ECC could further enhance the robust-

ness by correcting small distortions in low level bits, it also would introduce

extra false alarms in practice, since the correction has effects on arbitrary

bits. Hence, we simply adopt quantized binary hashes as the baseline. For

the distance measure applied for this baseline method, we first convert bi-

nary hashes back to integers and use Euclidean distance for classification

due to the fact that each bit has different weights, which are significantly

important for preserving the discriminative capabilities. For this baseline

method, our preliminary study shows that such Euclidean distanced based

approach yields much better identification performances than that of Ham-

ming distance based approach.

5.5.4 Embedding Training

VPAHS Generation

To learn the semi-supervised embedding for binary codes construction, we

first generate the VPAHS based on the training data, which include 100

original images and 40 distorted copies for each of them that consist of a

subset of 12 classes of content-preserving distortions listed in Table 5.1 with

selected parameters. Hence, we totally have 4000 images for the training

stage. Then we generate the intermediate hashes using FJLTH [60] and

SCH [63] for each of the training image and obtain the corresponding real-

valued L-length hash vectors HFJLT and HSCH . We use the default length

L = 20.
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Parameters Setting

One critical issue for the proposed embedding learning scheme is the pa-

rameters setting, especially the choices of ε1 and ε2, which are designed

to measure the intra-class similarity and inter-class similarity respectively.

Here we mainly discuss the parameters setting for a single feature space,

which could be further extended to handle the case of m feature spaces in

joint embedding.

In Section 5.2.2, we have a glance at how distorted hashes distribute

with respect to the original hash. Since the original image hash may not

be the centroid of its hash cluster in VPAHS, we investigate the relations

among the centroids of different clusters in the training data to choose better

parameters. Let C = {ci}mi=1 be the set of hash centroids estimated for

the training VPAHS, which contains m original images and corresponding

distorted copies, we set

ε1 =
µ1

2
min ‖ci − cj‖i 6=j (5.23)

ε2 =
µ2

2
min ‖ci − cj‖i 6=j (5.24)

where ‖·‖means the Euclidean distance, and µ1 and µ2 are adjustable weight

coefficients. Therefore, we simply use the minimal distance among the train-

ing centroids as the reference to set the similarity measure parameters ε1

and ε2. In the experiment, we use µ1 = 8 and µ2 = 32 to satisfy the con-

dition ε1 < ε2. The above choices of the parameters are heuristic but not

exclusive.

As for the weight parameter α that weights the contributions of the intra-

class similarity and inter-class similarity in Eqn. 5.9, 0.5 can be a natural

choice to balance both term in the cost function. But we set α = 0.6

heuristically to slightly more emphasize the contribution of the inner-class

similarity and it generally provides better overall performances.
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Table 5.2: Identification accuracy performances of different hashing algorithms under various attacks (here k = 100
for the k-bit binary image hashes).

Manipulations FJLT (R) FJLT (Q) FJLT (SSE) SCH (R) SCH (Q) SCH (SSE) Joint SSE

Additive Noise
Gaussian Noise 100% 91.77% 96.26% 91.67% 71.26% 84.37% 94.73%

Salt&Pepper Noise 100% 93.82% 97.52% 92.95% 77.22% 89.32% 96.43%
Speckle Noise 100% 96.45% 98.07% 96.42% 77.8% 92.23% 98.06%

Blurring
Gaussian Blurring 100% 89.12% 95.19% 88.9% 69.5% 82.6% 95.36%
Circular Blurring 100% 92.38% 96.56% 89.6% 77.27% 86.32% 95.2%
Motion Blurring 100% 95.77% 98.02% 98.19% 85.46% 96% 98.96%

Geometric Attacks
Rotation 59.99% 34.95% 41.26% 90.75% 69.78% 83.26% 87.49%
Cropping 95.41% 60.22% 67.21% 96.54% 82.96% 94.1% 97.77%
Scaling 100% 95.52% 99.06% 88.18% 67.68% 77.68% 89.08%

Shearing 98.25% 66.6% 76.5% 92.26% 71.99% 86.87% 94.11%

JPEG Compression 100% 95.96% 98.96% 96.18% 74.64% 91.38% 97.28%

Gamma Correction 61.65% 27.49% 24.96% 95.57% 78.4% 91.95% 91.92%

5.5.5 Experimental Results

Performance Evaluation by Identification Accuracy

We first evaluate the performances of the proposed schemes in terms of

identification accuracy. In the experiment, we assume the real-valued inter-

mediate image hashes (e.g. FJLT hash and SCH hash) are available for each

image in the database, whose lengths are set as L = 20 based on [60, 63].

Suppose each hash component is stored using 2 bytes, the total bits are

320 bits. We indicate the identification accuracy results of real-valued in-

termediate FJLT and SCH hashes based on Euclidean distance measure in

Table 5.2 with ”R” in the parentheses, which serve as the upper-bound per-

formance references for evaluating the performances of the corresponding

binary image hashes. Since the process to construct binary image hashes

that represent the corresponding real-valued intermediate hashes is essen-

tially a lossy compression procedure, the performance may degrade when

fewer bits are used. When the length of binary codes is selected, the more

robustness is preserved, the better binary image hashes are constructed.

The conventional post-processing method is based on quantization, which

treats each hash component individually and quantizes them to a certain

number of bits. In the experiment, we quantize each component into 5 bits

and thus the final binary hashes are L = 100 bits long. We denote the
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results of this baseline approach with ”Q” in the parentheses in Table 5.2.

We note that, compared with the performances of real-valued intermediate

hashes (consisting of 320 bits), the identification performances of quantized

binary hashes degrade for both FJLT and SCH image hashing. Since now

each real-valued hash component is only quantized by 5 bits, the discrim-

inative capability of the original image hashes decreases under the lossy

compression. For FJLT hashing, since it is robust against additive noise,

blurring, and compression etc, the corresponding distorted hashes are dis-

tributed densely close to the original hash and the quantized binary hashes

still preserve most robustness against these attacks. As for the distortions,

to which FJLT hashing is sensitive, such as geometric attacks and gamma

correction, the distorted hashes are usually distributed far from the orig-

inal hash and the corresponding binary hashes also have less robustness

preserved. The quantization also affects the performances of SCH hash-

ing. Since the distribution of distorted SCH hashes is not so densely close

to the original hash as in FJLT hashing under additive noise and blurring

attacks, the quantization further spreads the hash clusters and the final bi-

nary hashes have less discriminative capability for identification. Obviously,

without considering any prior information (e.g. VPAHS), the conventional

quantization method is only feasible when enough bits are used to preserve

the inter-image-cluster differences, and less bits can be used if the original

real-valued intermediate hashes are robust enough that the distorted hashes

distribute densely close to original hashes. Therefore determining the num-

ber of bits used to quantize intermediate hashes is a critical issue in the

conventional quantization method.

To the contrary, the proposed semi-supervised spectral embedding (SSE)

scheme takes the VPAHS as prior information into consideration and seeks

the best embedding to construct the binary codes that minimize the par-

ticular distance-based cost function. The constructed binary image hashes

are optimal for preserving the robustness of the real-valued intermediate

hashes given the similarity metrics. In this experiment, we investigate the

performances of the proposed SSE when applied on the FJLTH and SCH

hashes and report the results in Table 5.2. It is clear that the performances
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of SSE for both FJLT and SCH are better than the quantization methods

when using the same number of bits. When compared with the real-valued

intermediate hashes, the average degradation on identification accuracy of

the proposed SSE is around 5%, while it is 10% ∼ 15% for the conventional

quantization. Hence, the binary hashes based on SSE could preserve more

robustness of the corresponding intermediate hashes than the conventional

quantization.

Moreover, another attractive advantage of SSE is its generality for joint

embedding of multiple feature spaces. With the same number of bits, SSE

could embed multiple types of real-valued intermediate hashes into final ro-

bust binary hashes. In the experiment, we combine FJLTH and SCH hashes

together based on the proposition of joint SSE presented in Section 5.4 and

report the results in Table 5.2. Without extending the hash length, the

final binary SSE hash shares the robustness against additive noise, blurring

etc. from FJLTH and robustness under geometric and brightness changes

from SCH, and thus it achieves globally superior performance in terms of

identification accuracy.

Performance Evaluation by ROC curve

We then present a statistical comparison of the proposed semi-supervised

spectral embedding scheme with the conventional quantization methods by

studying the corresponding ROC curves, as shown in Figure 5.3. At a given

probability of false alarm PF (ξ), a better hashing approach could achieve a

higher probability of true identification PT (ξ). In other words, ROC curves

provide a tradeoff between the true retrieval and misclassification by select-

ing the threshold for identification. From Figure 5.3a, it is noted that the

proposed SSE scheme achieves better overall robustness against all attacks

and distortions listed in Table 5.1, when compared with the conventional

quantization methods for both FJLTH and SCH hashing. Furthermore, the

joint SSE by combining the robustness of FJLTH and SCH is demonstrated

to be the best approach, which is consistent with the reported results in

Table 5.2. We also illustrate the ROC curves under blurring, additive noise,
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Figure 5.3: The ROC curves of the conventional quantization, the SSE, and
the joint SSE using FJLTH and SCH.

and geometric attacks in Figure 5.3b, 5.3c, 5.3d. We note that the pro-

posed SSE scheme is consistently better than the conventional quantization

approach and the joint SSE is the best among different approaches by pre-

serving the robustness from both FJLH and SCH.

The Length of Binary Hashes

The hash length is a critical parameter that affects the overall performance of

an image hashing algorithm. A shorter length is preferred in image hashing

for the high efficient similarity measure and retrieval purposes. In conven-

tional quantization methods where each component of the hash vector is

118



Table 5.3: The comparison of average identification accuracy of binary
image hashes based on the proposed SSE and conventional-quantization
methods, when different number of bits are used.

Hash Bits 40 60 80 100 120 140

FJLTH
Quantization \ \ \ 83.12% 89.32% 90.69%

SSE 83.24% 85.42% 88.61% 88.64% 89.12% 89.9%

SCH
Quantization \ \ \ 84.15% 86.14% 94.13%

SSE 93.89% 94.99% 95.58% 96% 96.31% 96.48%

quantized individually, the fewer bits are used, the less robustness is pre-

served by the final generated binary hashes, and thus could produce high

false alarm rates in classification. Since the proposed SSE scheme considers

all the hash components together and seeks the best embedding to con-

struct the binary codes, the generated final binary hash is less sensitive to

the number of bits used. In the experiment, we test the proposed SSE and

conventional quantization method for FJLTH and SCH in a small image

database, which includes 100 original images and 106 distorted copies for

each of them, as function of the numbers of bits used. The comparison of

average identification accuracy is reported in Table 5.3.

It is noted that, when the number of hash bits is below 80, the iden-

tification procedure produces high false alarm rates and the identification

accuracies are very poor when using the quantization methods for both

FJLTH and SCH. Hence, we use “\” to indicate that the result is not ac-

ceptable and the correspond setting is not feasible. For the quantization

methods for both FJLTH and SCH, when more hash bits are used, the av-

erage identification accuracy is better, since the binary hashes have higher

discriminative capability which is closer to that of the real-valued interme-

diate hashes. However, we note that the proposed SSE scheme is not very

sensitive to the number of hash bits. Even when the number of hash bits is

as low as 40, the performance of the proposed SSE is still relatively good.

It is clear that the proposed SSE scheme is superior to the conventional
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quantization method for short binary hash generation. We also note that

the performance of SSE does not increase as sharp as in the conventional

quantization method when more hash bits are used. This is because that

the eigenfunctions arising from the Laplacian matrix are not independent

[38, 98] and the later eigenfunctions contribute less to minimize the cost

function. In summary, the proposed SSE scheme is more significant when

short binary image hashes are required.

5.6 Conclusion

In this chapter, we mainly propose a semi-supervised spectral embedding

(SSE) method for compressing real-valued intermediate image hashes into

short robust binary image hashes. Instead of quantizing intermediate im-

age hashes individually, the proposed method takes advantages of VPAHS

as the prior information and seeks the optimal embedding for constructing

binary image hashes, which jointly explores the intra-image and inter-image

similarities. Our experimental results demonstrate that the proposed SSE

method could generate short binary hashes with better robustness when

compared with the ones arising from conventional quantization methods.

Furthermore, a significant contribution of the proposed SSE is its generality

to multiple image hash spaces, and we propose the joint SSE that could

efficiently combine multiple types of intermediate hashes together and em-

bed them jointly into fixed-length binary hashes. The constructed binary

image hashes based on the joint SSE share the robustness of the combined

individual intermediate hashes and are shown to provide better overall iden-

tification performance.

However, one possible bottleneck of the proposed SSE scheme lies in its

efficiency of out-of-sample extension. Since we adopt the classical Nystrom

method, which is based on the weighted interpolation, the computational

cost is linear with respect to the size of the training dataset. Therefore, it

may not be efficient when large training data are used. An alternative way

to deal with this issue is to investigate the data distribution function and

obtain the exact forms of Laplacian eigenfunctions directly for an arbitrary
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input instead of using weighted interpolations. However, the eigenfunction

problems of Laplacian under different data distributions (except for the uni-

form and Gaussian ones) are still an ongoing research topic [76]. Further,

the pseudorandomization technique could be incorporated into the proposed

SSE scheme in the future work to further enhance the security of the final

binary image hashes for preventing unauthorized access and distribution.
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Chapter 6

Conclusions and Future

Works

6.1 Conclusions

In this thesis, perceptual image hashing and content-based fingerprinting

concepts are investigated, from the theory to applications. Several novel

techniques for improving the perceptual robustness of image hashing are

proposed, analyzed and evaluated on large scale image database. The con-

clusions of the thesis are summarized as follows:

Chapter 2 presents a literature survey of image hashing and content-

based fingerprinting. For the related references proposed in the literature

for image copy detection, image authentication and tampering detection

etc., we categorize and discuss the algorithms according to the major com-

ponents including pre-processing on images, robust feature extraction, fea-

ture compression and post-processing. For the security concern, security

of image hashing arising from pseudo-randomization is also analyzed. Dif-

ferent from traditional review papers, all the related references are listed

in lookup tables for convenient access. Furthermore, from the tables, re-

searchers could easily obtain the perspectives of the recent developments in

the research area of image hashing and content-based fingerprinting. For

instance, Table 2.2 illustrates the robust features that are usually adopted

in previous image hashing works. The more certain features are studied in

related works, generally the better chance that the features can be employed

to generate robust image hashes against a large class of distortions and at-

tacks. Another example is in Table 2.5 and Table 2.6, where the distortions
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and attacks evaluated in related references are listed. Most works investi-

gate the robustness against Gaussian noise, Gaussian filter, compression and

geometric attacks. It suggests that these types of distortions and attacks

are the most common ones, to which the proposed scheme should be robust.

Based on the robustness against these preliminary distortions, researchers

should extend their algorithms to deal with other attacks. Hence, this com-

prehensive review reveals the prospective research directions in the area of

digital image hashing and content-based fingerprinting.

Chapter 3 presents a digital image hashing algorithm based on a recent

dimension reduction technique, the Fast Johnson-Lindenstrauss Transform

(FJLT). FJLT is essentially a random projection method that could preserve

the local similarity of data in a high dimensional space into a lower dimen-

sional space. Images are divided into overlapped sub-images by random

sampling and treated as high-dimension features, which could be further

projected into a lower dimensional space by FJLT for generating compact

image hashes. From the robustness of the proposed FJLT hashing demon-

strated in experiments, we can see that image pixel values and statistics

are robust features against classic image processing attacks such as additive

noise, blurring, and compression etc., but sensitive to geometric attacks and

brightness changes. Hence, the popular Fourier-Mellin transform is incor-

porated into the proposed FJLT hashing (FJLTH) to improve its perfor-

mances under rotation attacks and the content-based fingerprinting concept

by combining FJLTH and rotation-invariant FJLTH (RI-FJLTH) is further

presented and demonstrated to yield superior robustness against various dis-

tortions and attacks. Obviously, content-based fingerprinting is an extended

concept from image hashing and essentially a feature fusion scheme. The

underlying motivation for introducing the content-based fingerprinting con-

cept is that generating a single type of image hash based on certain kinds

of features to resist all types of manipulations is highly unlikely, while it is

relatively easier to find a specific feature to be robust against certain distor-

tions. Fusion at the final hash level could improve the overall robustness.

However, in content-based fingerprinting, the tradeoff between robustness

and compactness should be taken into consideration carefully.
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Chapter 4 presents a novel image hashing algorithm based on robust

SIFT-Harris feature point detection and shape context descriptors. Local

feature patterns such as SIFT have been well studied in the computer vi-

sion area and applied to many research topics and areas. The major benefit

of employing local feature patterns is the robustness against geometric at-

tacks. However, its sensitivity to classic image processing attacks such as

noise addition, compression and especially blurring restricts its practical ap-

plications in image hashing. Based on our preliminary study, Harris criterion

is incorporated to select the most stable SIFT key points under various dis-

tortions. Radial shape context hashing (RSCH) and angular shape contest

hashing (ASCH) schemes are proposed by embedding the SIFT-Harris fea-

ture points into shape context descriptors in radial and angular directions

respectively. The proposed SCH schemes are demonstrated to be more ro-

bust than FJLTH, RI-FJLTH, and NMF hashing under rotation attacks

and illumination changes. The combination of RSCH and ASCH is pro-

posed to capture the distribution of local feature points in both radial and

angular directions to further explore the feature characteristics and improve

the robustness against noise addition, blurring, and compression. Also the

proposed SCH schemes could be used for image tampering detection. We

note that the shape contexts based image hashing inherits the robustness of

local feature patterns against geometric attacks, but the performances under

classical image processing attacks can be sacrificed, even for the combined

RSCH and ASCH approach, due to the intrinsic weakness of local feature

patterns.

Chapter 5 presents a novel binary image hashing compression algorithm

using semi-supervised spectral embedding (SSE). The significance of the

proposed SSE lies in two aspects: First, it is the first time to incorporate

machine learning methods into image hashing. Due to the infinite cluster

problem of image hashing, the advanced learning methods suffer from the

expensive computational cost requirement for dealing with large-scale im-

age databases for generating digital image hashes. The motivation of the

proposed SSE is to learn embeddings to map the real-valued feature space

into the binary space, while preserving the local similarity. By applying
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out-of-sample extension, the learned embedding could be used for mapping

new features into binary signatures without requiring re-training. Therefore

it paves the way of applying advanced learning methods to image hashing.

Secondly, since the proposed SSE is inherently a kernel based method, the

learned embedding mainly relies on the feature similarity rather than feature

dimensions. Therefore the proposed SSE scheme could be easily extended

to combine multiple real-valued intermediate image hashes and embed them

into fixed-length binary hashes. Recalling the tradeoff between robustness

and compactness of content-based fingerprinting, when combining different

types of image hashes, we can see that the proposed SSE leads to a more so-

phisticate fusion way to generate robust and compact binary content-based

image fingerprints.

6.2 Future Works

6.2.1 Learning Optimal Fusion on Hash Spaces Based on

Semi-Supervised Spectral Embedding

Content-based fingerprinting by combining different robust image hashes has

been shown to be a more advanced way to improve the perceptual robust-

ness of image hashing against a large class of image processing attacks and

distortions. Therefore the optimal fusion of different robust image hashes

can be a promising future direction to generate more robust content-based

image hashes, instead of seeking universal robust features that are highly

infeasible in practice. However, heuristic ways by simply concatenating ro-

bust image hashes might benefit the overall robustness at the cost of the

compactness. Hence, advanced machine learning schemes should be consid-

ered for learning the optimal fusion on the hash spaces but still preserving

the compactness of the generated final image hashes.

The proposed SSE scheme in Chapter 5 provides a learning scheme to

optimally map the real-valued intermediate hashes into binary signatures,

given the cost function that preserves the local similarity. It also facili-

ties heuristic ways to combine different robust hashes to generate binary
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signatures without losing the compactness based on the chosen inter-class

similarity and intra-class similarity. However, the heuristic way to control

inter-class and intra-class similarity based on VPAHS is not optimal. We

suggest that the procedure could be further optimized by introducing cost

functions that minimize the hash distances between the original images and

their distorted copies.

6.2.2 Measurable Robustness and Sensitivity Toward

Image Quality Changes

Conventionally, the perceptual robustness of image hashing is measured by

the hash distances between original images and their distorted copies based

on certain thresholds. There still lacks of a measure to quantify the ro-

bustness of an image hashing scheme and monitor its sensitivity to image

quality changes. One of our preliminary studies [61] applied FJLT hashing

on the DCT domain images and obtained image hashes as side information,

which could be used for estimating the image quality of the received image.

The hash distances are shown to be related with certain objective measure-

ments of image quality such as PSNR, and it reveals how sensitive the image

hash is to image quality changes. It is clear that an image hashing scheme

with less sensitivity to image quality changes is more robust than the one

that changes drastically for large quality degradation. In other words, by

investigating the sensitivity of an image hashing scheme under the image

quality changes, it is promising to quantify its robustness and evaluate the

robustness in an objective way.

6.2.3 Hashing at Semantic Feature Levels

By going through the image hashing algorithms in literatures, we feel that

the most important issue of image hashing is robust feature extraction. How-

ever, the features adopted for image hashing in the current literature are still

mainly limited to a low feature level, such as image pixel statistics, with-

out any semantic meaning. Currently, the state-of-art content-based image

retrieval (CBIR) in computer vision has more focused on retrieving images
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at the semantic feature level, such as objects, scenes and so on, by taking

advantages of some advanced semantic feature descriptions such as bag-of-

words model. Therefore it might be promising to extend image hashing

and content-based fingerprinting ideas to be based on the semantic feature

level and to be applied to wider applications such as preventing images with

certain people, faces, and objects from unauthorized access.

6.2.4 Universal Security Measurements

Aside from the compactness, security is another key issue that makes image

hashing and content-based fingerprinting stand out compared with the con-

ventional CBIR area. The pseudo-randomization techniques controlled by

a “secret key” could be generally incorporated into any step of the image

hashing framework for enhancing the security. However, there still lacks of

universal measurements for quantifying and evaluating the security of image

hashing. Unpredictability measured by differential entropy or mutual infor-

mation only reveals necessary properties of secure image hashes, and it is

still inadequate. We feel that other analysis such as key space and fragility

to sophisticated attacks are also important issues that should be taken into

consideration in security study.
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