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Abstract

Let E and f be an Eisenstein series and a cusp form, respectively, of the
same weight k ≥ 2 and of the same level N , both eigenfunctions of the Hecke
operators, and both normalized so that a1 = 1. The main result we seek is
that when E and f are congruent mod a prime p (which may be a prime
ideal lying over a rational prime p > 2), the algebraic parts of the special
values L(E,χ, j) and L(f,χ, j) satisfy congruences mod the same prime.
More explicitly, the congruence result states that, under certain conditions,

τ(χ̄)L(f,χ, j)

(2πi)j−1Ωsgn(E)
f

≡
τ(χ̄)L(E,χ, j)

(2πi)jΩE
(mod p)

where the sign of E is ±1 depending on E, and Ωsgn(E)
f is the corresponding

canonical period for f . Also, χ is a primitive Dirichlet character of conductor
m, τ(χ̄) is a Gauss sum, and j is an integer with 0 < j < k such that
(−1)j−1 ·χ(−1) = sgn(E). Finally, ΩE is a p-adic unit which is independent
of χ and j. This is a generalization of earlier results of Stevens and Vatsal
for weight k = 2.

In this paper we construct the modular symbol attached to an Eisenstein
series, and compute the special values. We give numerical examples of the
congruence theorem stated above, and we sketch the proof of the congruence
theorem.
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Preface

The proofs of the final two theorems that appear in Chapter 6 were supplied
by V. Vatsal.
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Chapter 1

Introduction

The idea that congruences between modular forms should carry over to
congruences in the special values of their L-functions has been studied for
decades. We seek to highlight one of the results in that direction and show
how it generalizes from weight 2 to higher weight.

The method of finding special values of L-functions of cusp forms by
integrating a differential form on an appropriate modular curve was known
at least since the 1970s. In 1972, Manin (in [7]) proved several theorems
that gave an efficient way to compute special values for weight 2 cusp forms,
using what he called “distinguished classes”. Today these are called Manin
symbols. The Manin symbols have an analogue for higher weight, which was
developed by Shokurov ([16]) and Merel ([9], and see also [17]). These ideas
and their relevance to L-functions are discussed below.

In 1977, Mazur (in [8]) used Manin’s idea, as well as a new idea that
he called “modular symbols”, to prove congruence formulae for weight 2
cusp forms of specific level. Then in 1982, Stevens (in [18]) proved that,
given a weight 2 cusp form, a weight 2 Eisenstein series of the same level
congruent to f mod some prime p, a primitive Dirichlet character χ, and
certain specific conditions, the algebraic parts of L(f,χ, 1) and L(E,χ, 1)
are congruent mod p. This theorem was refined by Vatsal in [21].

The paper [21] uses a method of establishing the congruences which we
also use here. First, we construct a modular symbol associated to each mod-
ular form f and E. Then we show that the L-values mod p are determined
by the modular symbols mod p. Finally we show that a congruence mod p

between the modular forms implies the same congruence between the mod-
ular symbols, and then deduce that the L-values must also be congruent.

The construction of a modular symbol associated to a cusp form f is well-
known, and after dividing by a canonical period, it takes values in a module
Lk−2(K) (we will make this explicit below). We can use this construction
to show congruence theorems for cusp forms of higher weight (see [21]), but
the case of congruences between higher-weight cusp forms and higher-weight
Eisenstein series was left open. The main reason for this is that there is no
good way to construct a Γ-invariant Lk−2(C)-valued modular symbol with

1



Chapter 1. Introduction

the same Hecke eigenvalues as E. Instead of this, we define a modular
symbol ME mod p, and this modular symbol will be Γ-invariant when E is
congruent to a cusp form mod p. The modular symbol we define is built
on the maps used in [20], Example 6.4(a). We will present the necessary
construction result below.

To show the final congruence, we use the fact that the two modular
symbols attached to E and f have Hecke eigenvalues the same as those of
E and f . If they are assumed congruent mod p, then we use a multiplicity
one argument to show that the modular symbols are the same up to scaling.
(We also need to show that the modular symbol ME is not identically zero.
This result is presented below.)

The organization of this paper is as follows. The material in Chapters 2
and 3 are mostly a review of results already in the literature. In Chapter 2
we define some functions related to special values of L-functions attached to
modular forms, and we prove some basic properties of those functions. In
Chapter 3, we define the modular symbols attached to cusp forms and show
the connection to the special values of character twists of L-functions. In
Chapter 4 we define the modular symbol attached to an Eisenstein series,
and we prove an integrality result in more generality than just the weight 2
case. In Chapter 5 we calculate the special values of this modular symbol,
and relate them to the character twists of the corresponding L-functions.
In Chapter 6, we sketch the proof of the congruence theorem for the special
values of character twists of a cusp form and a congruent Eisenstein series.
Finally, Chapter 7 explains how to compute the “algebraic parts” of special
values of L-functions attached to cusp forms; we conclude by showing some
computed examples of both.
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Chapter 2

Functions Connected to
Special Values

Before we can state the main results later on, we need to define some func-
tions connected to special values of L-functions and prove some results about
them. The results in this section hold for general modular forms; throughout
this section let f be a modular form of weight k ≥ 2 and any level.

Let A be a ring, and let Ln(A) (for a nonnegative integer n) be the
symmetric polynomial algebra over A of degree n. (Thus the elements of
Ln(A) are homogeneous polynomials of degree n with coefficients in A.)
Throughout what follows, we will always take A to be a subring of C.

Ln(C), for any nonnegative integer n, admits a left action of GL+
2 (Q): if

α =

�
a b

c d

�
∈ GL+

2 (Q), and P (X,Y ) ∈ Ln(C), then

α|P (X,Y ) = det(α)−n
· P (aX + cY, bX + dY )

We will make frequent use of this action below.

Throughout what follows we will always put σ =

�
0 −1
1 0

�
. Also, let

Df (s) :=

� ∞

0
f̃(z)ys−1

dz

where the tilde means that we subtract a0(f), and y is the imaginary part of
z. This integral will converge whenever we take s with real part big enough
(it depends on the weight). The main point is:

Proposition 2.1. In the region of convergence of the integral,

Df (s) = i · Γ(s) · (2π)−s
· L(f, s)

This identity links the above integral to the L-function of f . For the
proof, see [13], p. I-5. We can also prove:

3



Chapter 2. Functions Connected to Special Values

Proposition 2.2. Within the region of convergence of the integral, we have
the formula

Df (s) =

� ∞

i
f̃(z)ys−1

dz + i
k
� ∞

i
( ˜f |σ)(z)yk−1−s

dz

−i

�
a0(f)

s
+ i

k a0(
˜f |σ)

k − s

�

Furthermore, this formula defines a meromorphic continuation of Df (s) to
the entire complex plane, with functional equation

Df (s) = i
k
Df |σ(k − s).

Proof. Break the integral into the sum

Df (s) =

� i

0
f̃(z)ys−1

dz +

� ∞

i
f̃(z)ys−1

dz.

The second integral converges for all s; we only need to deal with the first.
First we have

� i

0
f̃(z)ys−1

dz =

� i

0
f(z)ys−1

dz − i ·
a0(f)

s

Now to treat this integral, we transform z to σz. The result is

−

� ∞

i
f(σz)Im(σz)s−1

d(σz)

= −

� ∞

i
z
k−2(f |σ)(z)y1−s

dz

Now since z = iy along this path, this equals

i
k
� ∞

i
(f |σ)(z)yk−1−s

dz

= i
k
� ∞

i
( ˜f |σ)(z)yk−1−s

dz − i · i
k a0(

˜f |σ)

k − s

The last step holds for large enough s. (The extra i comes from using
dz = idy.) Putting all four pieces together proves the formula. Also, the
remaining integral in the last step above, as well the other integral from
the first step and both of the other terms, are defined for all s, proving the
analytic continuation. From here the functional equation is checked simply
by using the formula on both sides of the claimed identity.
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Chapter 2. Functions Connected to Special Values

With this in mind, let us now define a new function that takes values in
Ln(C):

Ff (s) :=

� ∞

0
f̃(z)(zX + Y )k−2

y
s−1

dz

This integral will clearly converge for large enough values of s.

Proposition 2.3. Within the region of convergence of the integral, we have
the formula

Ff (s) =
k−2�

j=0

�
k − 2
j

�
· i

j
·Df (s+ j) ·Xj

Y
k−2−j

Furthermore, this defines a meromorphic continuation of Ff (s) to the entire
complex plane.

Proof. As in the proof of Proposition 2.2, we begin by splitting the integral
to obtain

Ff (s) =

� i

0
f̃(z)(zX + Y )k−2

y
s−1

dz +

� ∞

i
f̃(z)(zX + Y )k−2

y
s−1

dz

The second integral converges for all s, so we can expand the polynomial
and split the integral, and we obtain

� ∞

i
f̃(z)(zX+Y )k−2

y
s−1

dz =
k−2�

j=0

�
k − 2
j

�
·i
j
·X

j
Y

k−2−j
·

� ∞

i
f̃(z)ys+j−1

dz

(2.1)
Now we need to treat the first integral. Similarly to before, the first

integral becomes

� i

0
f(z)(zX + Y )k−2

y
s−1

dz −

� i

0
a0(f)(zX + Y )k−2

y
s−1

dz

The second of these is a polynomial integral, so we can evaluate it and obtain

− a0(f) ·
k−2�

j=0

�
k − 2
j

�
· i

j
·X

j
Y

k−2−j
· i ·

1

s+ j
(2.2)

For the remaining integral, we use the transformation z �→ σz, and the
integral becomes

−

� ∞

i

1
z2 f(σz)(

−1
z X + Y )k−2

y
1−s

dz

5



Chapter 2. Functions Connected to Special Values

= −

� ∞

i
(f |σ)(z)(zY −X)k−2

y
1−s

dz

(All the powers of z cancel.) Now again we split this integral into one
involving a0(f |σ) and one involving the difference. The former, for large
enough s, gives

− i
k
a0(f |σ)

k−2�

j=0

�
k − 2
j

�
· i

j
·X

j
Y

k−2−j
· i ·

1

k − j − s
(2.3)

This follows from using the Binomial Theorem and keeping track of the
various powers of i that show up, some of which come from the minus sign
in the polynomial (and one of which comes from dz = idy).

The latter integral is

i
2
� ∞

i
( ˜f |σ)(z)(zY −X)k−2

y
1−s

dz

This integral converges for all s, so we can expand the polynomial and split
the integral to obtain

i
k
k−2�

j=0

i
j
·

�
k − 2
j

�
·X

j
Y

k−2−j
·

� ∞

i
( ˜f |σ)(z)yk−1−s−j

dz (2.4)

Now we put these four pieces together to obtain the following formula,
which a priori will be valid only where the integral for Ff (s) converges:

Ff (s) =
k−2�

j=0

·

�
k − 2
j

�
· i

j
·X

j
Y

k−2−j

·

�� ∞

i
f̃(z)ys+j−1

dz + i
k
� ∞

i
( ˜f |σ)(z)yk−1−s−j

dz − i

�
a0(f)
s+j + i

k a0(f |σ)
k−j−s

��

Now we use Proposition 2.2 to arrive at the desired result. It immediately
shows the formula, and the analytic continuation follows from the fact that
the right-hand side of the formula already has an analytic continuation.

Now we can state the connection to the L-function of f :

Corollary 2.4. We have

Ff (s) =
k−2�

j=0

�
k − 2
j

�
· i

j+1
· Γ(s+ j) · 1

(2π)s+j · L(f, s+ j) ·Xj
Y

k−2−j

and this holds for all s.

6



Chapter 2. Functions Connected to Special Values

Proof. Simply combine Proposition 2.3 and Proposition 2.1.

The corollary shows that

Ff (1) =
k−2�

j=0

�
k − 2
j

�
· i

j+1
· (j!) · 1

(2π)j+1 · L(f, j + 1) ·Xj
Y

k−2−j

In other words, Ff (1) is a polynomial whose coefficients encode all the special
values of the L-function of f at the so-called critical integers, namely those
strictly between 0 and k.

Now we return to Proposition 2.3. To do the proof, we expanded all the
polynomials and treated their individual terms separately. However, there
is another formula as well. We can prove it using the same logic as above;
it is just a matter of grouping the terms differently. We state it here as a
separate result.

Proposition 2.5. We have the formula

Ff (s) =

� ∞

i
f̃(z)(zX + Y )k−2

y
s−1

dz −

� ∞

i
( ˜f |σ)(z)[σ|(zX + Y )k−2]y1−s

dz

+i



a0(f |σ) · σ|




k−2�

j=0

�
k − 2
j

�
· i

j
·X

j
Y

k−2−j
·

1
2−s+j



− a0(f) ·
k−2�

j=0

�
k − 2
j

�
· i

j
·X

j
Y

k−2−j
·

1
s+j





From here we can prove another corollary:

Corollary 2.6. For an arbitrary base point z0 in the upper half-plane,

Ff (1) =

� ∞

z0

f̃(z)(zX + Y )k−2
dz −

� ∞

z0

( ˜f |σ)(z)[σ|(zX + Y )k−2]dz

−a0(f) ·

� z0

0
(zX + Y )k−2

dz + a0(f |σ) ·

� z0

0
σ|(zX + Y )k−2

dz

−

� σz0

z0

f(z)(zX + Y )k−2
dz

Proof. If we consider the expression on the right as a function of z0, we
see that it is constant (by which we mean that it is a polynomial in X

and Y whose coefficients are constants); this follows from the fact that the
derivative is 0 (which is an elementary computation using the Fundamental
Theorem of Calculus and the definition of how σ acts on modular forms).
But by Proposition 2.5 (with s = 1), it is true for z0 = i. Thus it is true for
all z0.

7



Chapter 2. Functions Connected to Special Values

We now prove two more lemmas which will be used in later sections.

Lemma 2.7. Put α :=

�
a b

0 d

�
with rational entries and positive determi-

nant. Then

a0(f |α) =
a
k−1

d
· a0(f)

Proof. By definition, (f |α)(z) = (ad)k−1 · d−k · f(αz) = ak−1

d · f(αz), so

a0(f |α) =
ak−1

d · a0(f).

Lemma 2.8. Put α :=

�
a b

c d

�
and τ :=

�
t 0
0 1

�
, all with rational entries

and positive determinant. Then

Ff |ατ (1) = τ
−1

|Ff |α(1)

Proof. By definition, for large enough s, we have

Ff |ατ (s) =

� ∞

0
( ˜f |ατ)(z)(zX + Y )k−2

y
s−1

dz

Now use the substitution u = τz = tz, so that z = u/t, dz = du/t, the limits
of integration are unchanged, and y = Im(u)/t. We also note that

( ˜f |ατ)(z) = (f |ατ)(z)− a0(f |ατ)

= t
k−1(f |α)(u)− t

k−1
a0(f |α)

= t
k−1( ˜f |α)(u)

where in the second line we used Lemma 2.7 for the second term. This
means that after some manipulation of terms, we see that the integral is
equal to

t
1−s

� ∞

0
( ˜f |α)(u) · (1t )

−k+2(utX + Y )k−2
y
s−1

du

= t
1−s

· τ
−1

|Ff |α(s)

where we used the definition of τ−1 acting on a polynomial, and the defini-
tion of Ff (s).

Now the identity Ff |ατ (s) = t
1−s

τ
−1|Ff |α(s) has been proved for s in

some right half-plane; therefore it must remain true in the analytic contin-
uation. Now plug in s = 1 and we have the desired result.

Finally, we prove one last lemma:

8



Chapter 2. Functions Connected to Special Values

Lemma 2.9. Let f be a modular form of weight k ≥ 2, and let χ be a
primitive Dirichlet character of conductor m. Then

τ(χ̄)Df⊗χ(s) = m
1−s

m−1�

a=0

χ̄(a)D
f |



1 a

0 m




(s)

Proof. We start from the identity

τ(χ̄)(f ⊗ χ)(z) =
�

a mod m

χ̄(a)f(z + a
m)

where τ(χ̄) is the standard Gauss sum. To prove this, we expand the right-
hand side using the Fourier expansion of f and switch the order of summa-
tion; what comes out is exactly the left-hand side.

From the above identity and the definition of Df (s), it follows that

τ(χ̄)Df⊗χ(s) =
m−1�

a=0

χ̄(a)D
f |



1 a/m

0 1




(s)

Now to complete the proof we only need to show that

D

f |



1 a

0 m




(s) = m

s−1
D

f |



1 a/m

0 1




(s)

But by definition,

f |

�
1 a

0 m

�
(z) = f |

�
1 a/m

0 1

��
1 0
0 m

�
(z)

= m
k−1

·m
−k

· f |

�
1 a/m

0 1

�
(z/m)

= m
−1

f |

�
1 a/m

0 1

�
(z/m)

So again using the definitions (inside the region of convergence of the inte-
gral),

D

f |



1 a

0 m




(s)

9



Chapter 2. Functions Connected to Special Values

= m
−1

� i∞

0
f̃ |

�
1 a/m

0 1

�
(z/m)ys−1

dz

Now keeping in mind that y = Im(z) and making the substitution u = z/m

gives exactly the claim above. Outside the region of convergence of the
integral, the same formula must hold due to the uniqueness of the analytic
continuation. This finishes the proof.

10



Chapter 3

Modular Symbols and Cusp
Forms

In this section, we let f be a normalized (meaning a1 = 1) cuspidal eigenform
of weight k ≥ 2 and level Γ for some congruence subgroup Γ. Our goal in
this section is to define a modular symbol Mf attached to f and show a
link between Mf and the algebraic parts of special values L(f,χ, j) for a
primitive character χ and an integer j with 1 ≤ j ≤ k − 1. (The meaning
of “algebraic part” will be explained below.) The discussion in this section
will closely follow that of [4], Section 4.

We first state the definition of a modular symbol, along with two other
definitions that we will use below:

Definition 3.1. Let Div0(P1(Q)) be the group of degree zero divisors on
the rational cusps of the upper half-plane. Let A be a Q[M2(Z)∩GL+

2 (Q)]-
module (with the matrices acting on the left). We refer to a map as an
A-valued modular symbol over a congruence subgroup Γ if the map is a
Γ-homomorphism from degree zero divisors to elements of A.

Definition 3.2. Let f be as above. Then the standard weight k modular
symbol Mf is the Lk−2(C)-valued modular symbol defined as follows: on
divisors {b}− {a} (with a, b ∈ P1(Q)),

Mf ({b}− {a}) := 2πi

� b

a
f(z)(zX + Y )k−2

dz

Define Mf on all other degree-zero divisors by linearity.

Definition 3.3. Let χ be a primitive Dirichlet character of conductor m.
Let Φ be any A-valued modular symbol. The operator Rχ, called the twist
operator, is defined as follows: for any degree-zero divisor D,

(Φ|Rχ)(D) :=
m−1�

a=0

χ̄(a)

�
1 a

0 m

�−1

|Φ(

�
1 a

0 m

�
D)

11



Chapter 3. Modular Symbols and Cusp Forms

Remark 3.4. This operator also appears in Section 4 of [4], but our definition
is slightly different. We use χ̄ in the definition instead of χ; also, in that
paper, the authors define the twist operator using a right action of matrices.
Our definition has changed to account for the fact that our matrix action is

a left action. Thus we change from a right action of

�
1 a

0 m

�
to a left action

of the inverse.

Now we can state a result concerning the special values of the L-function
of f :

Theorem 3.5. Let f be as above, and let χ be a primitive Dirichlet character
of conductor m. Then

(Mf |Rχ)({∞}−{0}) = 2πiτ(χ̄)
k−2�

j=0

�
k − 2
j

�
·i
j
·m

j
·Df⊗χ(1+j) ·Xj

Y
k−2−j

Proof. By definition,

(Mf |Rχ)({∞}− {0}) =
m−1�

a=0

χ̄(a)

�
1 −a/m

0 1/m

�
|Mf ({∞}− {

a
m})

= 2πi
m−1�

a=0

χ̄(a)

�
m −a

0 1

��
1/m 0
0 1/m

�
|

� ∞

a/m
f(z)(zX + Y )k−2

dz

= 2πi
m−1�

a=0

χ̄(a)

� ∞

a/m
f(z)(zmX − aX + Y )k−2

dz

Now we use the substitution z �→
z+a
m and then the definition of matrices

acting on modular forms, and the above sum is equal to

2πi
m−1�

a=0

χ̄(a)

� ∞

0

1
mf( z+a

m )(zX + Y )k−2
dz

= 2πi
m−1�

a=0

χ̄(a)

� ∞

0
(f |

�
1 a

0 m

�
)(z)(zX + Y )k−2

dz

By the definitions in the previous section, along with Proposition 2.3, this
is equal to

2πi
k−2�

j=0

�
k − 2
j

�
· i

j
·

�

a

χ̄(a)D
f |



1 a

0 m




(1 + j) ·Xj

Y
k−2−j
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Chapter 3. Modular Symbols and Cusp Forms

Applying Lemma 2.9 with s = j + 1, we obtain

2πiτ(χ̄)
k−2�

j=0

�
k − 2
j

�
· i

j
·m

j
·Df⊗χ(1 + j)Xj

Y
k−2−j

which completes the proof.

Corollary 3.6. With f and χ as in the above theorem,

(Mf |Rχ)({∞}−{0}) =
k−2�

j=0

(−1)j+1

�
k − 2
j

�
·j!·mj

·
τ(χ̄)L(f,χ,1+j)

(2πi)j ·X
j
Y

k−2−j

Proof. Combine the theorem with Proposition 2.1.

The above corollary gives a connection between Mf and L(f,χ, j); but
so far we do not have any assurances of any algebraicity properties of either.
To show how we get algebraic numbers from the modular symbol Mf , we
define an involution on modular symbols induced by the action of the matrix

ι =

�
1 0
0 −1

�
, which sends

Mf ({b}− {a}) �→ ι|Mf ({−b}− {−a})

(the left action of ι on polynomials simply sends Y �→ −Y ). Now choose a
“sign” ±—meaning the +1 or −1 eigenspace of this involution—and project
the modular symbol Mf to one of these eigenspaces. We obtain a new
modular symbol which we will denote M

±
f (for one choice of sign). It is a

theorem of Shimura (proved in [5], or also see [4], [8], or [21]) that there exist
transcendental numbers Ω±

f , called canonical periods, such that the modular

symbols 1
Ω±

f

M
±
f both give values in Lk−2(K), where K is the algebraic

field extension generated over Q by the Hecke eigenvalues of f . Shimura’s
theorem even tells us, for a primitive character χ and a critical integer j,
which sign to choose so that the number

τ(χ̄)L(f,χ, j)

(2πi)j−1Ω±
f

is algebraic. (The choice of sign is (−1)j−1sgn(χ).) For that choice of sign,
the above expression is called the algebraic part of L(f,χ, j). (However, the
canonical periods, and therefore the algebraic parts, are only determined up
to scaling by a unit in K.)
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Chapter 4

Modular Symbols and
Eisenstein Series

4.1 A Basis of Eisenstein Series

We begin with a definition of our basic Eisenstein series φk,x1,x2 . Follow-
ing [20], Section 6, pick a positive integer k > 2 (unlike in that paper, here
we do not assume k is even) and let x1, x2 ∈ Q/Z, and define

Gk,x1,x2(z) :=
(k − 1)!

(2πi)k

�

(a1,a2)∈Q−(0,0)
(a1,a2)≡(x1,x2) (mod Z)

(a1z + a2)
−k

This series converges absolutely and defines a holomorphic Eisenstein series
of weight k. Define φk,x1,x2 to be the Fourier transform of this series, in the
sense of [20], Definition 3.6 (and the beginning of Section 4). More explicitly,
φk,x1,x2 is defined as follows. Let N be the least common denominator of x1
and x2 and consider the map

ψx1,x2 : ( 1
NZ/Z)2 → C×

defined by
ψx1,x2(

a1
N ,

a2
N ) = e

2πi(a2x1−a1x2)

Then
φk,x1,x2(z) =

�

(a1,a2)∈( 1
N Z/Z)2

ψx1,x2(a1, a2)Gk,a1,a2(z)

Our first goal is to study the special values of the L-functions attached
to these Eisenstein series. For that we need to review the basic definitions of
Bernoulli numbers and Bernoulli polynomials, since they will be used below.
We can define the Bernoulli numbers Bn inductively by setting B0 = 1, and
for n ≥ 2,

n�

j=1

�
n

j

�
Bn−j = 0

14



4.1. A Basis of Eisenstein Series

We can then define the Bernoulli polynomials B̃n(x) by

B̃n(x) =
n�

j+0

�
n

j

�
Bn−jx

j

(For more details including equivalent definitions of these two terms, see
Appendix B of [11].) If �·� is the greatest integer function on real numbers,
then define the the periodified Bernoulli polynomial

Bn(x) = B̃n(x− �x�)

Now we can state our first result:

Proposition 4.1. φk,x1,x2 has Fourier expansion

φk,x1,x2(z) =
Bk(x1)

k
− J(k, x1, x2; z)− (−1)kJ(k,−x1,−x2; z)

where

J(k, a, b; z) :=
�

κ≡a (mod 1)
κ∈Q+

κ
k−1

·

∞�

m=1

e
2πizmκ

e
2πimb

For the proof, see [15].
Define, for x ∈ Q/Z,

Z(s, x) :=
∞�

n=1

e
2πinx

n
−s

and
ζ(s, x) :=

�

m≡x (mod 1)
m∈Q+

m
−s

(Clearly these functions are well-defined for x ∈ Q/Z.) Now we have:

Proposition 4.2. L(φk,x1,x2 , s) = −ζ(1− (k− s), x1)Z(s, x2)− (−1)kζ(1−
(k − s),−x1)Z(s,−x2).

Proof. Consider J(k, a, b; z), defined above. If we put q = e
2πiz, then

J(k, a, b; z) =
�

κ≡a (mod 1)
κ∈Q+

κ
k−1

·

∞�

m=1

q
mκ

e
2πimb
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4.1. A Basis of Eisenstein Series

So its L-function is

�

κ≡a (mod 1)
κ∈Q+

κ
k−1

·

∞�

m=1

(mκ)−s
e
2πimb

=
�

κ≡a (mod 1)
κ∈Q+

κ
k−1−s

·

∞�

m=1

m
−s

e
2πimb

= ζ(1− (k − s), a)Z(s, b)

Now the result follows from the above proposition.

We will need the following three properties of the two functions defined
above:

Proposition 4.3. For any positive integer n and any x as above (and Bn

as above),

ζ(1− n, x) = −
Bn(x)

n

This is a well-known property of the Hurwitz zeta function. See, for
example, [11], p. 341.

Proposition 4.4. With n and x as above, unless x ∈ Z and n = 1,

ζ(1− n,−x) = (−1)nζ(1− n, x)

This follows from a well-known property of the Bernoulli polynomials.
See, for example, [11], equations B.10 and B.13.

Proposition 4.5. With n and x as above, unless x ∈ Z and n = 1,

Z(n, x) + (−1)nZ(n,−x) = −i
n
· (2π)n · Γ(n)−1

·
Bn(x)

n

This follows from the definition of Z(n, x) and from the Fourier expan-
sions of the periodified Bernoulli polynomials (which can be found in [14],
p. 16).

Now we will use these facts to prove a result about the polynomial FE(1)
when E is of the form φk,x1,x2 .
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4.1. A Basis of Eisenstein Series

Proposition 4.6. Let E be equal to φk,x1,x2 for some integer k > 2 and
some x1, x2 ∈ (Q/Z)2. Then for any integer j with 0 ≤ j ≤ k − 2, the
coefficient of the X

j
Y

k−2−j term in FE(1) is

�
k − 2
j

�
(−1)j

Bk−j−1(x1)

k − j − 1
·
Bj+1(x2)

j + 1

except in the following cases. When x1 = 0, and k is even, the coefficient of
X

k−2 will be

i
k+1(k − 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πnx2)

nk−1

and when x1 = 0 and k is odd, the coefficient of Xk−2 is

i
k+2(k − 2)! · (2π)−(k−1)

·

∞�

n=1

sin(2πnx2)

nk−1
.

When x2 = 0 and k is even, the coefficient of Y k−2 will be

i
k+3(k − 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πn(−x1))

nk−1

and when x2 = 0 and k is odd, the coefficient of Y k−2 will be

i
k(k − 2)! · (2π)−(k−1)

·

∞�

n=1

sin(2πn(−x1))

nk−1

Remark 4.7. We have excluded the case k = 2 from the result above, but
it is treated in [18], Section 2.5. The non-exceptional cases yield the same
formula as the above proposition when k = 2, but the exceptional cases are
different (and when k = 2 we exclude the case x1 = x2 = 0 entirely).

Proof. First we will deal with the exceptional cases. The first is when k is
even, j = k − 2 and x1 = 0. In this case, we will have

L(E, k − 1) = −
1
2(Z(k − 1, x2) + Z(k − 1,−x2)) = −

∞�

n=1

cos(2πnx2)n
1−k

and the claim follows. (We are computing the coefficient using Corol-
lary 2.4.) If k is odd instead of even, the second exceptional case is proved
using a similar calculation.
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4.1. A Basis of Eisenstein Series

The last two cases are when j = 0 and x2 = 0. Here we can simply use
the functional equation at the end of Proposition 2.2 and then this reduces
to the same computations as in the first case.

It only remains to show the general case. We are looking to compute
L(E, j + 1) for 0 ≤ j ≤ k − 2, and all three of the above identities apply.
Starting from Proposition 4.2, we begin by applying Proposition 4.4 to the
Hurwitz zeta functions. Then we take out a factor of −ζ(1 − (k − j −

1), x1), which is equal to
Bk−j−1(x1)

k−j−1 by Proposition 4.3. Finally we apply
Proposition 4.5 to the sum or difference of Z(j + 1, x2) and Z(j + 1,−x2)
terms. When we combine the results with the formula in Corollary 2.4, the
factors of 2π and the gamma factors cancel; collecting all the powers of i,
we obtain exactly the desired result.

An important fact that is immediately implied by the result above is the
following:

Corollary 4.8. Let E be of the form φk,x1,x2 as above. Then the real part
of FE(1) is rational.

Let α =

�
a b

c d

�
be a matrix with all integer entries and positive deter-

minant; then we can use the distribution law given in ([20], equation 3.9) to
conclude

φk,x1,x2 |α
−1 = det(α)−k+2

�

y=(y1,y2)∈(Q/Z)2
yα≡x (mod Z)

φk,y1,y2 (4.1)

If α has determinant 1, this specializes to

φk,x1,x2 |α = φk,ax1+cx2,bx1+dx2

Remark 4.9. Any element of GL+
2 (Q) can be written as a scalar matrix

times the inverse of a matrix with integral entries, so this also shows how
to evaluate φk,x1,x2 |α for any matrix α ∈ GL+

2 (Q). As an example, we will

compute, for a general φk,x1,x2 , the action of the matrix

�
1 0
0 d

�
. To begin,

we write the matrix as �
d 0
0 d

��
d 0
0 1

�−1

By the definition of matrices acting on modular forms, the action of the
scalar matrix is simply to multiply by d

k−2. Now we can use 4.1 directly on

18



4.2. The Map SE

the second matrix:

φk,x1,x2 |

�
d 0
0 1

�−1

= d
−k+2

d−1�

ν=0

φ
k,

x1+ν
d ,x2

Since we also have a scalar multiple of dk−2 from the action of the scalar
matrix, the final result is

φk,x1,x2 |

�
1 0
0 d

�
=

d−1�

ν=0

φ
k,

x1+ν
d ,x2

This example will be used later.

Before we continue, we introduce one last definition. Given any number
field K, we let Ek(K) be the K-span of the Eisenstein series φk,x1,x2 for all
x1, x2 ∈ Q/Z.

4.2 The Map SE

4.2.1 Definition and Basic Properties

Given a field K and an Eisenstein series E ∈ Ek(K), we would like to define
a map which takes as input an element of GL

+
2 (Q) and outputs an element

of Lk−2(K). To that end we define the map SE , which does not quite give a
K-rational polynomial in all cases, but after proving some basic properties
of SE we will be able to define a new map which does give K-rational
polynomials.

Corollary 2.6, proved above, leads us to the following definition:

Definition 4.10. Define SE : GL+
2 (Q) → Ln(C) by

SE(α) :=

� αz0

z0

E(z)(zX + Y )k−2
dz

+a0(E) ·

� z0

0
(zX + Y )k−2

dz − a0(E|α) ·

� z0

0
α|(zX + Y )k−2

dz

−

� ∞

z0

Ẽ(z)(zX + Y )k−2
dz +

� ∞

z0

(Ẽ|α)(z)[α|(zX + Y )k−2]dz

Notice that this is well-defined because, as with the proof of the corollary,
the derivative with respect to z0 is 0, so this definition does not depend on
the choice of z0. Notice also (directly from the definition) that we can write
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4.2. The Map SE

E as a linear combination of Eisenstein series of the form φk,x1,x2 and the
map SE will respect the linearity.

It is an immediate consequence of Corollary 2.6 that

SE(σ) = −FE(1) (4.2)

We now prove some basic properties of SE . Both of the next two results
were proved for the case k = 2 in Proposition 2.3.3 of [18].

Proposition 4.11. SE satisfies the relation

SE(αβ) = SE(α) + α|SE|α(β)

Proof. If we consider the last four terms in the definition of SE , it is a
simple calculation to show that grouped together without the first term,
they satisfy the relation. (We need to use the fact that the action of α on
the polynomials inside the integrals commutes with integration, which we
know since the integrals are absolutely convergent.) But the first term also
satisfies this relation; to see this it suffices to show the identity

� βz0

z0

(E|α)(z)[α|(zX + Y )k−2]dz =

� αβz0

αz0

E(z)(zX + Y )k−2
dz

This is a straightforward calculation using the substitution u = αz on the
left-hand integral (along with the definition of α−1|(uX + Y )k−2).

Theorem 4.12. Put α =

�
a b

c d

�
(with all rational entries and positive

determinant) and Mα =

�
1 a

0 c

�
. Then SE satisfies the following formula:

if c = 0, then

SE(α) = a0(E)

� b/d

0
(tX + Y )k−2

dt

If c > 0, then

SE(α) = a0(E)

� a/c

0
(tX+Y )k−2

dt+a0(E|α)

� 0

−d/c
α|(tX+Y )k−2

dt−Mα|FE|Mα
(1)

Proof. We begin with the case c = 0. Starting from the definition of SE(α),
we split the first integral and obtain

SE(α) =

� αz0

z0

Ẽ(z)(zX + Y )k−2
dz + a0(E)

� αz0

z0

(zX + Y )k−2
dz
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4.2. The Map SE

+a0(E) ·

� z0

0
(zX + Y )k−2

dz − a0(E|α) ·

� z0

0
α|(zX + Y )k−2

dz

−

� ∞

z0

Ẽ(z)(zX + Y )k−2
dz +

� ∞

z0

(Ẽ|α)(z)[α|(zX + Y )k−2]dz

Now since this does not depend on z0, as explained above, we let z0 → i∞.
Since c = 0, this means αz0 → i∞ as well. So all the integrals that converge
in this case—namely, the first one and the last two—will vanish, and we
only need to treat the other three. The goal is to show that they combine
to give a polynomial not dependent on z0, and that this polynomial is the
one given above.

We can combine the first two integrals to conclude that the expression
we need to find the limit of is

a0(E)

� αz0

0
(zX + Y )k−2

dz − a0(E|α)

� z0

0
α|(zX + Y )k−2

dz

To prove the formula in this case, it suffices to show that

−a0(E|α)

� z0

0
α|(zX + Y )k−2

dz = a0(E)

� b/d

αz0

(uX + Y )k−2
du

for then we could combine the two integrals and obtain the desired result
immediately. But this is simple to show: firstly, we use Lemma 2.7 to replace
a0(E|α) with ak−1

d a0(E). Then we use the definition of α|(zX+Y )k−2 (along
with the fact that the determinant of α is ad) along with the substitution
u = αz = az+b

d . From there an elementary calculation shows the desired
result.

We now turn to the case c > 0, having already proved the c = 0 case
(which we will use below). Here we make use of Proposition 4.11 along with
the identity

α =

�
1/c 0
0 1/c

��
δ a

0 c

��
0 −1
1 0

��
c d

0 1

�

where δ = ad− bc is just the determinant of α.
Notice that SE evaluated on the diagonal matrix is 0, and the action of

it on the polynomials is simply to multiply everything by the scalar c
k−2.

However, by definition of the action of a matrix on a modular form, we see
that

E|

�
1/c 0
0 1/c

�
(z) = c

−k+2
E(z)
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so the scalar multiples cancel in the final result.

The next step is to evaluate SE

�
δ a

0 c

�
. This is simply an application

of the c = 0 case above; we obtain

a0(E)

� a/c

0
(tX + Y )k−2

dt

Next, consider the final term, which (after some matrix multiplication)
is equal to

α ·

�
1 −d

0 c

�
|S

E|α·



1 −d

0 c





�
c d

0 1

�

Before we consider the matrix actions at all, we use the c = 0 case to evaluate
SE . We conclude that this term is equal to

α ·

�
1 −d

0 c

�
|a0

�
E|α ·

�
1 −d

0 c

��� d

0
(tX + Y )k−2

dt

If we pull out the constants and use Lemma 2.7, we get

1
c · a0(E|α) · α ·

�
1 −d

0 c

�
|

� d

0
(tX + Y )k−2

dt

Now consider the action only of the right-hand matrix. Using the defini-
tion of this action and the substitution u = t−d

c , an elementary calculation
confirms that the above expression is equal to

a0(E|α)

� 0

−d/c
α|(uX + Y )k−2

du

Now we consider the middle term, which Proposition 4.11 tells us is

�
δ a

0 c

�
|S

E|



δ a

0 c




(σ)

Now we apply (4.2), and this is equal to

−

�
δ a

0 c

�
|F

E|



δ a

0 c




(1)
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4.2. The Map SE

From here, consider that

�
δ a

0 c

�
=

�
1 a

0 c

��
δ 0
0 1

�

This means we can apply Lemma 2.8 and the expression becomes

−

�
1 a

0 c

�
|F

E|



1 a

0 c




(1)

Putting all the terms together, this gives the above formula and completes
the proof.

Remark 4.13. It would appear at first glance that we have not covered the

case c < 0. However, it is clear that the matrix

�
−1 0
0 −1

�
evaluates to 0

under SE . Also, when we take into account the action on polynomials and
the action on modular forms, the combination of the two actions will always
be trivial whether the weight is odd or even. So to evaluate SE in the c < 0
case we simply change the signs of all the entries in the matrix and use the
c > 0 case:

SE(

�
a b

c d

�
) = SE(

�
−a −b

−c −d

�
) = a0(E)

� a/c

0
(tX + Y )k−2

dt

+a0(E|

�
−a −b

−c −d

�
)

� 0

−d/c
α|(tX + Y )k−2

dt−

�
1 −a

0 −c

�
|F

E|



1 −a

0 −c




(1)

4.2.2 The Involution ι

Let ι =

�
1 0
0 −1

�
, a matrix of determinant −1. We define the action of ι

on an Eisenstein series as follows: first define

φk,x1,x2 |ι = (−1)kφk,x1,−x2

and then extend by linearity to general Eisenstein series.
It is elementary to check that for any numbers a and c, the following

holds:

ι

�
1 −a

0 c

�
=

�
1 a

0 c

�
ι (4.3)
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We will make frequent use of this fact below.
Now for α ∈ GL+

2 (Q), define the map

S
ι
E(α) := (−1)k−1

ι|SE|ι(ι
−1

αι)

We will need the following lemma:

Lemma 4.14. S
ι
E satisfies the relation

S
ι
E(αβ) = S

ι
E(α) + α|S

ι
E|α(β)

Proof. We compute directly from the definition and Proposition 4.11:

S
ι
E(αβ) = (−1)k−1

ι|SE|ι(ι
−1

αβι) = (−1)k−1
ι|SE|ι(ι

−1
αιι

−1
βι)

= (−1)k−1
ι|[SE|ι(ι

−1
αι) + ι

−1
αι|SE|αι(ι

−1
βι)]

= (−1)k−1
ι|SE|ι(ι

−1
αι) + (−1)k−1

α|ι|S(E|α)|ι(ι
−1

βι)

= S
ι
E(α) + α|S

ι
E|α(β)

which is the desired result.

4.2.3 The Map ξE and Rationality

Define the map
ξE := 1

2(SE + S
ι
E)

The main result about ξE is the following:

Proposition 4.15. For any number field K, any E in Ek(K) and any α ∈

GL+
2 (Q), ξE(α) ∈ Lk−2(K).

Proof. We will show this for an arbitrary Eisenstein series of the form φk,x1,x2

and then the result will follow by linearity. Put α =

�
a b

c d

�
. Without loss of

generality, we can assume the matrix has integer entries and c ≥ 0 (because
it is equal to such a matrix times a scalar matrix). First notice that

ι
−1

αι =

�
a −b

−c d

�

Now we will use Theorem 4.12 (and the subsequent remark).
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First we see that if c = 0, the result is clear (since both summands in
the definition of ξE are clearly K-rational in this case). So we may assume
c > 0. Now it suffices to show that the expression

�
1 a

0 c

�
|F

E|



1 a

0 c




(1)− ι

�
1 −a

0 c

�
|F

E|ι|



1 −a

0 c





gives a K-rational polynomial. By Equation (4.3) it suffices to show that

F

E|



1 a

0 c




(1)− ι|F

E|ι|



1 −a

0 c





gives a K-rational polynomial.
For now, assume k is even. We proceed by using the distribution law

(4.1) along with our assumption that E = φk,x1,x2 . For the first term, we
have

E|

�
1 a

0 c

�
=

c−1�

ν=0

φ
k,

x1+ν
c ,x2+a

x1+ν
c

(To see this more clearly, separate the matrix into the product

�
1 0
0 c

��
1 a

0 1

�
;

for the action of the former, refer to Remark 4.9.) By Proposition 4.6, the
only time the corresponding polynomial yields a non-rational term will be
if x1+ν

c = 0 or if x2 + a
x1+ν

c = 0. In the former case, we obtain a term of
the form

X
k−2

· i
k+1(k − 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πnx2)

nk−1

In the latter case, we obtain a term of the form

Y
k−2

· i
k+3(k − 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πn(−x2/a))

nk−1

(unless a = 0, in which case we obtain c − 1 different terms similar to the
above but with −x2/a replaced by (x1+j)/c for each j between 0 and c−1).

Now we treat the second term. We first use the definition of E|ι and
then the distribution law to obtain

E|ι|

�
1 −a

0 c

�
=

c−1�

ν=0

φ
k,

x1+ν
c ,−x2−a

x1+ν
c
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4.2. The Map SE

The first subscript here is the same as the first one above, and the second
subscript here is the opposite of the second one above, so they will be zero
for the same values of x1 and x2 as above. So using the same logic as above,
if the first subscript is 0, we get a term of the form

X
k−2

· i
k+1(k − 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πn(−x2))

nk−1

which, because the cosine function is even and because the action of ι is
trivial on this monomial, will cancel out the corresponding term from the
first polynomial. If the second subscript is 0, we get a term of the form

Y
k−2

· i
k+3(k − 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πn(−x2/a))

nk−1

(again, unless a = 0, in which case we get a sum of terms exactly equal
to the sum in the first term), which will cancel out the corresponding term
from the first polynomial, by the same reasoning as above. Since we have
now shown that all non-rational terms in the formula for ξE cancel, we have
shown the desired result for even k. For odd k, the calculation is exactly
the same, except that the action of ι on polynomials includes a factor of
−1, but the sine function (instead of the cosine used above) is odd. So the
conclusion is the same.

4.2.4 The Map ξ�E

Our definition and the subsequent computation with ξE leads us to consider
another map

ξ
�
E := 1

2i(SE − S
ι
E)

Under this definition, we have

SE = ξE + iξ
�
E

We wish to do a similar computation as in the previous section, using the

explicit formula to compute ξ
�
E(α) for a matrix α =

�
a b

c d

�
with integer

entries and positive determinant (as before, we can extend to rational entries
by using multiplication by a scalar matrix). As in the above computation,
we start by letting E = φk,x1,x2 for some x1, x2 ∈ Q/Z and then we can
extend by linearity.
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4.2. The Map SE

By definition, and by the remark following Theorem 4.12,

SE(α)− S
ι
E(

�
a b

c d

�
) = SE(α)− (−1)k−1

ι|SE|ι(

�
−a b

c −d

�
)

If c = 0, the two terms cancel. This is because the terms a0(E) are the
same in both (the action of ι does not change it in the second term when k

is even, and multiplies it by −1 when k is odd) which makes the sum equal
to

a0(E) ·

�� b/d

0
(tX + Y )k−2

dt+ (−1)k
� −b/d

0
(tX − Y )k−2

dt

�

Now it is clear, using the transformation t �→ −t in the second integral, that
the two terms must cancel.

Now we suppose c > 0 (as before, we can reduce the c < 0 case to this
case). The explicit formula has three terms. Breaking up the computation
term-by-term, the first term will be

a0(E) ·

�� a/c

0
(tX + Y )k−2

dt+ (−1)k
� −a/c

0
(tX − Y )k−2

dt

�

which, similarly to the above, is 0.
The corresponding calculation for the second term will also be zero; here

we need to know that a0(E|α) = (−1)ka0(E|αι), which is clear when E is
of the form φk,x1,x2 , since the constant term only depends on x1, which is
unchanged by the ι-action.

That leaves the third term; so (using Equation (4.3)) it remains to com-
pute

F

E|



1 a

0 c




(1)− (−1)k−1

ι|F

E|



1 a

0 c



ι

(1)

and then apply the action of

�
1 a

0 c

�
to get the final result.

As in the computation for ξE , the distribution law tells us that

E|

�
1 a

0 c

�
=

c−1�

ν=0

φ
k,

x1+ν
c ,x2+a

x1+ν
c

Now we will carry out the rest of the computation using Proposition 4.6.
The proposition tells us that for each summand above, the X

j
Y

k−2−j-term
is �

k − 2
j

�
(−1)j

Bk−j−1(
x1+ν

c )

k − j − 1
·
Bj+1(x2 + a

x1+ν
c )

j + 1
X

j
Y

k−2−j
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4.2. The Map SE

except for the exceptional cases which we will deal with below. For now let
us treat the non-exceptional cases. When we act by ι on the above Eisenstein
series and the polynomial part before using Proposition 4.6, we end up with
terms corresponding to the above, of the form

�
k − 2
j

�
(−1)j

Bk−j−1(
x1+ν

c )

k − j − 1
·
Bj+1(−(x2 + a

x1+ν
c ))

j + 1
X

j(−Y )k−2−j

In general, we have Bn(−x) = (−1)nBn(x), and if k − 2 − j is even, then
j + 1 is odd, and vice versa (since k is even). This means that in all cases,
the two corresponding terms will be equal and will cancel when we subtract
them.

So it remains to compute the two exceptional cases: the Xk−2 term when
the first subscript is zero, and the Y

k−2 term when the second subscript is
zero. We show the result for the even weight case; the odd weight case is
exactly the same. Looking at the terms from the distribution law above,
and again using Proposition 4.6, the Y

k−2 term will be

c−1�

ν=0

Y
k−2

· δ
x2+a

x1+ν
c

· i
k−2(k − 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πn(x1+ν
c ))

nk−1

(where here δ means 1 if the subscript is an integer and 0 otherwise). By
similar logic, the X

k−2 term is

−

c−1�

ν=0

X
k−2

· δx1+ν
c

· i
k−2(k − 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πn(x2))

nk−1

This means we have shown the following:

Proposition 4.16. For an Eisenstein series E = φk,x1,x2 of even weight,

and a matrix α =

�
a b

c d

�
∈ GL+

2 (Q) as above, ξ�E(α) is 0 when c = 0, and

when c �= 0 it is

(aX + cY )k−2
·

c−1�

ν=0

δ
x2+a

x1+ν
c

· i
k−2(k− 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πn(x1+ν
c ))

nk−1

−

c−1�

ν=0

X
k−2

· δx1+ν
c

· i
k−2(k − 2)! · (2π)−(k−1)

·

∞�

n=1

cos(2πn(x2))

nk−1
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4.2. The Map SE

If instead E has odd weight, then ξ
�
E(α) is 0 when c = 0, and when c �= 0 it

is

(aX + cY )k−2
·

c−1�

ν=0

δ
x2+a

x1+ν
c

· i
k−1(k − 2)! · (2π)−(k−1)

·

∞�

n=1

sin(2πn(x1+ν
c ))

nk−1

−

c−1�

ν=0

X
k−2

· δx1+ν
c

· i
k−1(k − 2)! · (2π)−(k−1)

·

∞�

n=1

sin(2πn(x2))

nk−1

There is a more succinct way to phrase the above formula. If we put, for
E = φk,x1,x2 and k even,

C(E) := i
k−2

·X
k−2

· δx1 · (k − 2)! · (2π)−(k−1)
∞�

n=1

cos(2πnx2)

nk−1

and for k odd,

C(E) := i
k−1

·X
k−2

· δx1 · (k − 2)! · (2π)−(k−1)
∞�

n=1

sin(2πnx2)

nk−1

and extend the definition by linearity to other Eisenstein series, we can state:

Corollary 4.17. For an Eisenstein series E = φk,x1,x2 and a matrix α =�
a b

c d

�
∈ GL+

2 (Q) as above, ξ�E(α) is 0 when c = 0, and when c �= 0 it is

�
1 a

0 c

�
|

�
σ|C(E|

�
1 a

0 c

�
σ)− C(E|

�
1 a

0 c

�
)

�

where σ =

�
0 −1
1 0

�
.

This result has another corollary which will be useful below:

Corollary 4.18. For an Eisenstein series E = φk,x1,x2 and a matrix α =�
a b

c d

�
∈ SL2(Z), we have

ξ
�
E(α) = α|C(E|α)− C(E)
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4.3. Primes Dividing the Denominators of Values of ξE

Proof. We first check this property on generators of SL2(Z). For
�
0 −1
1 0

�
,

the result follows directly from the formula in the above corollary (with

a = 0 and c = 1). For

�
1 1
0 1

�
, we wish to show that ξ�E evaluates to

�
1 1
0 1

�
|C(φk,x1,x1+x2)− C(φk,x1,x2)

Now if x1 �= 0, both terms above vanish by the definition of C(E). But
if x1 = 0, then the infinite sum in both terms is identical, so since the
polynomial term on the left is also unchanged, the two terms will cancel.

Since the above corollary states that ξ�E(

�
1 1
0 1

�
) is in fact 0, this shows the

desired result for the two generators of SL2(Z).
To show the result in general, we use the fact that

ξ
�
E(αβ) = ξ

�
E(α) + α|ξ

�
E|α(β)

for any α,β ∈ SL2(Z). (This is a consequence of the definition, Proposi-
tion 4.11, and Lemma 4.14.) If the desired property is satisfied for the two
matrices α and β, then

ξ
�
E(αβ) = α|C(E|α)− C(E) + α|[β|C(E|αβ)− C(E|α)

= αβ|C(E|αβ)− C(E)

This shows the desired result for all of SL2(Z).

4.3 Primes Dividing the Denominators of Values
of ξE

In this section we wish to prove the following:

Lemma 4.19. Suppose E is an Eisenstein series of the form E = φk,x/N,y/N .
Then for any α ∈ SL2(Z), ξE(α) is a polynomial whose coefficients’ denomi-
nators are divisible only by primes dividing N and primes less than or equal
to k + 1.

Proof. We begin by showing that this is true when α is one of the two
generators of SL2(Z). We begin by using Theorem 4.12 and Proposition 4.1
to compute

ξE(

�
1 1
0 1

�
) =

Bk(x/N)

k

� 1

0
(tX + Y )k−2

dt

30



4.4. The Eisenstein Series Associated to a Pair of Dirichlet Characters

Since the Bernoulli polynomial’s coefficients only have denominators divis-
ible by primes at most k + 1 (a fact that follows from, for example, [11],
equations B.5 and B.7), it is clear that our claim holds for this generator.

The other generator is σ =

�
0 −1
1 0

�
. To evaluate ξE on this generator

we use the equation SE = ξE + iξ
�
E , the equation SE(σ) = −FE(1), Propo-

sition 4.6, and the computation in the proof of Proposition 4.16. The result
is that ξE(σ) is a rational polynomial whose coefficients are 0 or are given
by the values of Bernoulli polynomials evaluated on x/N and y/N divided
by positive integers less than k. So the denominators of these coefficients
must be divisible only by primes dividing N and primes less than k. This
proves the claim for both generators.

Now to complete the proof, we use the fact that for any α,β ∈ SL2(Z),

ξE(αβ) = ξE(α) + α|ξE|α(β) (4.4)

(which follows from Proposition 4.11, Lemma 4.14, and the definitions). We
need to know that E|α satisfies the same hypotheses as E, which is clearly
true; and we need to know that the matrix action of α does not introduce
any new denominators, which is clearly true since α has integer entries and
determinant 1. This proves the desired result.

Remark 4.20. Going carefully through the steps of the proof, we see that if
k + 1 is prime, and relatively prime to N , then the only place this appears
as a factor of any of the denominators is from the constant term of the
Bernoulli polynomial Bk. We will use this fact below.

4.4 The Eisenstein Series Associated to a Pair of
Dirichlet Characters

Definition 4.21. Let ε1 and ε2 be two Dirichlet characters mod N1 and
N2 respectively; we do not assume they are primitive, but we assume that
N1 and N2 are not both 1 and that the product of the two characters is odd
when k is odd and even when k is even. Then for any integer k ≥ 2, we
define the Eisenstein series

E(k, ε1, ε2; z) :=
N2−1�

x=0

N1−1�

y=0

ε2(x)ε̄1(y)φ(k,
x
N2

,
y
N1

)
(N2z)
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4.4. The Eisenstein Series Associated to a Pair of Dirichlet Characters

Let K be the field generated over Q by the values of the two characters.
Then E(k, ε1, ε2) ∈ Ek(K). In this section we compute the Fourier expansion
and the L-function of E(k, ε1, ε2).

Define, for any Dirichlet character ψ mod m,

ψ̂(n) :=
m−1�

a=0

ψ(a)e2πian/m

Recall the definition

J(k, a, b; z) :=
�

κ≡a (mod 1)
κ∈Q+

κ
k−1

·

∞�

m=1

e
2πizmκ

e
2πimb

We used this definition earlier (in Proposition 4.1) to state the Fourier expan-
sion of φk,x1,x2 . Now, to help compute the Fourier expansion of E(k, ε1, ε2),
we compute

N2−1�

x=0

N1−1�

y=0

ε2(x)ε̄1(y)J(k, x/N2, y/N1;N2z)

=
∞�

m=1




N1−1�

y=0

ε̄1(y)e
2πizmκ

e
2πim(y/N1)








N2−1�

x=0

�

κ≡x/N2 (mod 1)
κ∈Q+

κ
k−1

ε2(x)e
2πimN2zκ





=
∞�

m=1

ˆ̄ε1(m) ·
N2−1�

x=0

�

κ≡x (mod N2)
κ∈Z+

κ
k−1

·
1

Nk−1
2

· ε2(x)e
2πimzκ

= N
1−k
2

∞�

m=1

ˆ̄ε1(m)
∞�

κ=1

κ
k−1

ε2(κ)e
2πizmκ

= N
1−k
2

∞�

n=1




�

mκ=n
m,κ∈Z+

ˆ̄ε1(m)κk−1
ε2(κ)



 q
n

where in the last line, q = e
2πiz.

Since ε̄1ε2 has the same sign as (−1)k, it follows that the corresponding
sum for (−1)kJ(k,−x/N2,−y/N1) will be the same as for J(k, x/N2, y/N1).
Using Proposition 4.1, this proves
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4.5. Modular Symbols Attached to Eisenstein Series

Proposition 4.22. Let E = E(ε1, ε2) as above. Then

L(E, s) = −2N1−k
2 L( ˆ̄ε1, s)L(ε2, s− k + 1)

where the L-functions on the right are Dirichlet L-functions.

4.5 Modular Symbols Attached to Eisenstein
Series

From now on we will add the following hypotheses on our Eisenstein series

E. We assume that it is of the form −
Nk−1

2
2 E(k, ε1, ε2) (in light of the above

computation for the Fourier expansion, the coefficient is a normalizing factor
so that a1 = 1). We also make two more assumptions on E. To state them,
let K be the field generated over Q by the Hecke eigenvalues of E, with ring
of integers OK . We suppose that there exists a prime ideal p ⊂ OK such
that at any cusp, the constant term of the Fourier expansion has positive
p-adic valuation. Finally, if we let p be the unique rational prime lying under
p, we suppose p > k.

We recall the definition of a modular symbol. Let Div0(P1(Q)) be the
group of degree zero divisors on the rational cusps of the upper half-plane.
Let A be a Q[M2(Z) ∩ GL+

2 (Q)]-module. We refer to a map as an A-
valued modular symbol over a congruence subgroup Γ if the map is a Γ-
homomorphism from degree zero divisors to elements of A.

Suppose that r is the greatest integer such that pr divides all the constant
terms at the cusps of E. By assumption, r is positive. Now we define a map

ME : Div0(P1(Q)) → Lk−2(K
+
/prOK,p)

where K
+ means we are thinking of K as an additive group only, and OK,p

is the localization of OK at the prime ideal p. The map is defined as follows:

ME({b}− {a}) = ξE(γb)− ξE(γa)

where γb and γa are elements of SL2(Z) that map the cusp at infinity to the
cusps b and a, respectively.

Our goal is to show:

Theorem 4.23. Let E, K, OK , p, OK,p, p, and r be as above. Let N1 and
N2 be the moduli of ε1 and ε2, respectively, and suppose that p is relatively
prime to N , the least common multiple of N1 and N2. Then ME is a modular
symbol, over the same congruence subgroup Γ for which E is modular, taking
values in Lk−2(OK,p/prOK,p).
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4.5. Modular Symbols Attached to Eisenstein Series

Proof. To begin with, we must show that the map is well-defined. In other
words, the matrices γb and γa are defined only up to multiplication by the
stabilizer of ∞ on the right, and the stabilizer of the specific cusp on the
left. We will show that for any cusp, choosing a different γ does not change
the value of ξE(γ) mod pr.

Let γa be a matrix in SL2(Z) that sends ∞ to a cusp a. Let α be
another such matrix that stabilizes a, so that αγa also sends ∞ to a. But
αγa = γa(γ−1

a αγa), and γ
−1
a αγa stabilizes ∞. So now it suffices to show

that for any choice of integer n, γa

�
1 n

0 1

�
gives the same values mod pr

as γa does when evaluating ξE on them. Now by Equation (4.4) (and the
definition of ξE),

ξE(γa

�
1 n

0 1

�
)− ξE(γa) = γa|ξE|γa(

�
1 n

0 1

�
)

= a0(E|γa)

� n

0
γa|(tX + Y )k−2

dt

where for the last line we have used Theorem 4.12 and the definition of ξE .
By choice of r, it is now clear (since p > k and the action of γa introduces no
denominators) that the coefficients of the last expression are p-adic integers
divisible by pr, which suffices to show that ME is well-defined.

The next step is to show that this is a Γ-homomorphism. This is a simple
computation using Equation (4.4): if a and b are any cusps, and γ ∈ Γ,

ME(γ({b}− {a})) = ξE(γγb)− ξE(γγa)

= γ|ξE(γb)− γ|ξE(γa)

which is the desired result. (We have used the fact that E|γ = E.)
The last step is to show that ME takes values with coefficients not just

in K, but with denominators not divisible by p. This is a consequence
of the fact that E is a half-integer multiple of an algebraic integer linear
combination of Eisenstein series satisfying Lemma 4.19, and the fact that
p > k and p and N are relatively prime. This shows the theorem when
p �= k + 1.

To finish the proof, we must show this still holds in the case p = k + 1,
when p appears exactly once in the denominator of each of the constant
coefficients of Bk(x/N2) (for 0 ≤ x ≤ N2−1). But now we use the definition
of E(k, ε1, ε2) to see that

a0(E) =
N2−1�

x=0

N1−1�

y=0

ε2(x)ε̄1(y)Bk(x/N2)/k
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4.6. Hecke Operators and Modular Symbols

and so the constant coefficients will cancel when we take the sum of character
values. A similar calculation shows the same result for a0(E|α) for any
α ∈ SL2(Z). This shows that p does not appear in the denominators of
ξE(α) even when p = k + 1, completing the proof.

4.6 Hecke Operators and Modular Symbols

In this section E will be an Eisenstein series satisfying the same assumptions
as in the above theorem. So far we have not discussed the action of Hecke
operators on modular symbols. In this section, now that we have defined the
modular symbol ME , we prove a result concerning the action of the Hecke
operators on it.

First we need the general definition of the Hecke operators. Following [4],
we define them using double coset operators. Let g be a matrix with positive
determinant and integer entries, and let Γ̃ be any congruence subgroup. The
double coset Γ̃gΓ̃ can be written as a finite disjoint union of right cosets of
the form Γ̃gj . We now write, for any modular symbol Φ,

Φ|T (g) =
�

j

Φ|gj

where for a degree-zero divisor D, (Φ|gj)(D) = g
−1
j |Φ(gD) (as we did before,

we change the definition in [4] to account for the fact that our matrix action
on polynomials is a left action). For any prime �, the Hecke operator T�

arises from the matrix

�
1 0
0 �

�
. We also have, for any positive integer d, the

diamond operator �d� which arises from any element of Γ0(N) whose lower
right entry is congruent to d mod N . (Here N is the level of the modular
form we are acting on.)

This shows that the Hecke operators act on modular symbols in a similar
way to modular forms: as a sum of actions by matrices. For a cusp form
f and the corresponding modular symbol Mf , it is a fact stated in [4] (and
easily proved from the definitions) that for a matrix α ∈ GL+

2 (Q),

Mf |α = Mf |α

We will now prove the corresponding result for an Eisenstein series E:

Lemma 4.24. Let E be an Eisenstein series as in the above theorem, let
ME be the associated modular symbol, and let α ∈ GL+

2 (Q). Then for any
degree-zero divisor of the form {b}− {a},

(ME |α)({b}− {a}) = ξE|α(γb)− ξE|α(γa)

35



4.6. Hecke Operators and Modular Symbols

where γb and γa are elements of SL2(Z) that map the cusp at infinity to the
cusps b and a, respectively.

Proof. This is a straightforward computation from the definitions (and also
Proposition 4.11 and Lemma 4.14):

(ME |α)({b}− {a}) = α
−1

|ME({αb}− {αa})

= α
−1

|[ξE(αγb)− ξE(αγa)]

= α
−1

|[ξE(α) + α|ξE|α(γb)− ξE(α)− α|ξE|α(γa)

= ξE|α(γb)− ξE|α(γa)

Combining the above lemma with the fact that the Hecke operators
can be expressed as the sum of right actions of matrices, we arrive at the
following:

Corollary 4.25. Let E be an Eisenstein series as above, and suppose that
E is a simultaneous eigenfunction for the Hecke operators T� (� prime) and
�d�. Then ME is also a simultaneous eigenfunction for the Hecke operators
with the same eigenvalues as E.

Proof. As implied above, this follows from the lemma and the definition
of the Hecke operators. We also use the fact that the ξE map respects
summing different Eisenstein series (in the sense that for two Eisenstein
series E1, E2 ∈ Ek(K), ξE1 + ξE2 = ξE1+E2) and also scalar multiplication.
These facts show that for any Hecke operator T with eigenvalue aT ,

aT ξE = ξE|T =
�

j

ξE|gj

and then the definitions and the lemma show that for any cusps a and b,

(ME |T )({b}− {a}) =
�

j

(ξE|gj (γb)− ξE|gj (γa)) = aTME({b}− {a})
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Chapter 5

Twisted Special Values

In this section we keep the same assumptions on E as we had at the end of
the previous section, which we restate here. We assume that it is of the form

−
Nk−1

2
2 E(k, ε1, ε2) (the coefficient is a normalizing factor so that a1 = 1).

We also make two more assumptions on E. To state them, let K be the field
generated over Q by the Hecke eigenvalues of E, with ring of integers OK .
We suppose that there exists a prime ideal p ⊂ OK such that at any cusp,
the constant term of the Fourier expansion has positive p-adic valuation.
Finally, if we let p be the unique rational prime lying under p, we suppose
p > k.

We know from the previous section that we can associate to E a modular
symbol ME . Let χ be a primitive Dirichlet character of conductor m. We
recall the definition of the twist operator Rχ on modular symbols. If Φ is
any modular symbol, then for any degree-zero divisor D,

(Φ|Rχ)(D) :=
m−1�

a=0

χ̄(a)

�
1 a

0 m

�−1

|Φ(

�
1 a

0 m

�
D)

As in [4], we refer to the “special values” attached to a modular symbol as
the evaluation of that modular symbol on the divisor {∞}− {0}.

5.1 Twisted Special Values on Boundary Symbols

Definition 5.1. Let Div(P1(Q)) be the group of divisors on the rational
cusps of the upper half-plane. Let A be a Q[M2(Z)∩GL+

2 (Q)]-module. We
refer to a map as an A-valued boundary symbol over a congruence subgroup
Γ if the map is a Γ-homomorphism from divisors to elements of A.

Comparing this definition with that of a modular symbol, it is clear that
all boundary symbols are modular symbols. Therefore we can apply the
twist operator to a boundary symbol when we restrict the boundary symbol
to degree-zero divisors.
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5.1. Twisted Special Values on Boundary Symbols

The goal of this section is to show that for any Lk−2(C)-valued bound-
ary symbol B, and any primitive character χ of conductor m, we have
(B|Rχ)({∞}− {0}) = 0. For that result, we will need the following:

Lemma 5.2. Let P be a homogeneous polynomial in X and Y of degree
k − 2. Suppose P is fixed under the SL2(Z)-action of a nontrivial subgroup
of the stabilizer (in SL2(Z)) of the cusp at infinity. Then P is of the form
CX

k−2 for some constant C.

Proof. In general, P is of the form CX
k−2+ak−3X

k−3
Y + · · ·+a1XY

k−3+
a0Y

k−2. Meanwhile, an element of the group that we are assuming fixes P

is of the form

�
1 n

0 1

�
for some n (and since the group is assumed nontrivial

there is at least one such n not equal to 0). The action of a matrix of this
form fixes X and sends Y �→ nX+Y . So the action on P gives a polynomial
of the form

CX
k−2 + ak−3X

k−3(nX + Y ) + · · ·+ a1X(nX + Y )k−3 + a0(nX + Y )k−2

Collecting all the X
k−2 terms together and using our hypothesis that P is

fixed under this action, we obtain the equation

ak−3n+ ak−4n
2 + · · ·+ a1n

k−3 + a0n
k−2 = 0

However, if this equation is true for one nonzero n, then by hypothesis it is
also true for all multiples of n. Choosing enough multiples to obtain k − 2
equations, we get a system of equations in ak−3, ak−2, . . . , a1, a0 whose coeffi-
cient matrix is invertible (since its determinant will be a constant times a Van
der monde determinant). This is enough to show that ak−3, ak−2, . . . , a1, a0

are all zero, which completes the proof.

Lemma 5.3. Let P be a homogeneous polynomial in X and Y of degree
k − 2. Suppose P is fixed under the SL2(Z)-action of a nontrivial subgroup
of the stabilizer (in SL2(Z)) of the cusp at a rational number a/c. Then P

is of the form C(aX + cY )k−2 for some constant C.

Proof. A matrix in SL2(Z) that stabilizes the cusp at a/c must be of the
form �

a b

c d

��
1 n

0 1

��
d −b

−c a

�

for some b, d ∈ Z such that ad− bc = 1, and some n ∈ Z. Now for a matrix
of this form to fix P , we must have

�
a b

c d

��
1 n

0 1

��
d −b

−c a

�
|P = P
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5.1. Twisted Special Values on Boundary Symbols

�
1 n

0 1

��
d −b

−c a

�
|P =

�
d −b

−c a

�
|P

This means that

�
d −b

−c a

�
|P is a polynomial satisfying the hypotheses of

Lemma 5.2 and therefore is of the form CX
k−2 for a constant C. Therefore,

P =

�
a b

c d

�
|CX

k−2

= C(aX + cY )k−2

which is the desired result.

Theorem 5.4. Let B be an Lk−2(C)-valued boundary symbol for a congru-
ence subgroup Γ, and let χ be a primitive Dirichlet character of conductor
m. Then (B|Rχ)({∞}− {0}) = 0.

Proof. From the definitions, we have

(B|Rχ)({∞}− {0}) =
m−1�

a=0

χ̄(a)

�
1 −a/m

0 1/m

�
|B(

�
1 a

0 m

�
({∞}− {0}))

m−1�

a=0

χ̄(a)

�
1 −a/m

0 1/m

�
|B({∞})−

m−1�

a=0

χ̄(a)

�
1 −a/m

0 1/m

�
|B({ a

m})

where we may split the sum because B is a boundary symbol.
The key observation now is that if γ is a matrix in Γ that stabilizes a

cusp α, then it must also fix the polynomial B(α) under the matrix action.
(This follows directly from the Γ-homomorphism property.) So we may treat
each of the sums above using Lemmas 5.2 and 5.3.

For the first sum, we use Lemma 5.2 to conclude that B({∞}) is of the

form C1X
k−2. That polynomial is fixed under the action of

�
1 −a/m

0 1/m

�
,

so the first sum is a constant times X
k−2 times a sum of character values,

and thus is zero.
For the second sum, we use Lemma 5.3 to conclude that B({ a

m}) is of

the form C2(aX + mY )k−2. When we apply the action of

�
1 −a/m

0 1/m

�
,

the resulting polynomial is C2Y
k−2. So the second sum is a constant times

Y
k−2 times a sum of character values, and thus is also zero. This shows the

desired result.
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5.2. Twisted Special Values Associated to E

5.2 Twisted Special Values Associated to E

Now we are able to connect the modular symbol ME with the special values
of L(E,χ, j), for a primitive Dirichlet character χ, at the critical integers.

Theorem 5.5. Let E, k, ε1, ε2, N1, N2, p, p, and r be as above, and let χ
be a primitive Dirichlet character of conductor m, with m relatively prime
to both p and N , the least common multiple of N1 and N2. Then

(ME |Rχ)({∞}− {0}) ≡ τ(χ̄)
k−2�

j=0

�
k − 2
j

�
· i

j
·m

j
·DE⊗χ(1 + j) ·Xj

Y
k−2−j

where the equivalence is mod pr where p is understood to be an ideal of the
ring of integers of K[χ] localized at a prime above p.

Proof. We begin by computing from the definitions:

(ME |Rχ)({∞}− {0}) =
m−1�

a=0

χ̄(a)

�
1 −a/m

0 1/m

�
|ME({∞}− {

a
m})

=
m−1�

a=0

χ̄(a)

�
m −a

0 1

��
1/m 0
0 1/m

�
|[ξE(

�
1 0
0 1

�
− ξE(γa/m)]

where γa/m is a matrix of the form

�
a ba

m da

�
of determinant 1, i.e. it is an

element of SL2(Z) that carries ∞ to a
m . Since ξE(

�
1 0
0 1

�
) = 0, the sum is

equal to

−m
k−2

m−1�

a=0

χ̄(a)

�
m −a

0 1

�
|ξE(γa/m)

Now we claim that

−

m−1�

a=0

χ̄(a)

�
m −a

0 1

�
|ξ

�
E(γa/m) = 0

To prove the claim, we define a map BE on divisors on cusps: for a cusp
α,

BE(α) := γα|C(E|γα)

where C(E) is as defined in the previous section, and we extend linearly to
other divisors. It is elementary to check that this map is a Γ-homomorphism,
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5.2. Twisted Special Values Associated to E

where Γ is the congruence subgroup that stabilizes E; so now we can use
Theorem 5.4 to conclude that

(BE |Rχ)({∞}− {0}) = 0

But computing from the definitions and Corollary 4.18, we see that

0 = (BE |Rχ)({∞}− {0}) =
m−1�

a=0

χ̄(a)

�
m −a

0 1

�
|[BE({∞})−BE({

a
m})]

=
m−1�

a=0

χ̄(a)

�
m −a

0 1

�
|[BE({∞})−BE({

a
m})]

=
m−1�

a=0

χ̄(a)

�
m −a

0 1

�
|[C(E)− γa/m|C(E|γa/m)]

= −

m−1�

a=0

χ̄(a)

�
m −a

0 1

�
|ξ

�
E(γa/m)

which proves the claim.
The claim shows that

−m
k−2

m−1�

a=0

χ̄(a)

�
m −a

0 1

�
|ξE(γa/m) = −m

k−2
m−1�

a=0

χ̄(a)

�
m −a

0 1

�
|SE(γa/m)

From here we carry out the computation using Theorem 4.12, which says
that

SE(γa/m) = a0(E)

� a/m

0
(tX+Y )k−2

dt+a0(E|γa/m)

� 0

−da/m
γa/m|(tX+Y )k−2

dt

−

�
1 a

0 m

�
|F

E|



1 a

0 m




(1)

The first two terms of the sum are p-integral and divisible by pr, by our
assumption on E. (In order to know this, we need to know that the integrals
contain no terms with negative p-adic valuation. That is implied by the
hypotheses that p and m are relatively prime and also that p > k− 1.) The
matrix action in the definition of the twist operator will not change these
facts since it introduces no denominators.
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5.3. An Explicit Formula

We now wish to treat the sum

m
k−2

m−1�

a=0

χ̄(a)

�
m −a

0 1

��
1 a

0 m

�
|F

E|



1 a

0 m




(1)

= m
k−2

m−1�

a=0

χ̄(a)

�
m 0
0 m

�
|

k−2�

j=0

�
k − 2
j

�
· i

j
·D

E|



1 a

0 m




(1+ j) ·Xj

Y
k−2−j

by Proposition 2.3. Then we apply the definition of matrices acting on
polynomials and switch the order of summation to obtain

k−2�

j=0

�
k − 2
j

�
· i

j
·

�

a

χ̄(a)D
E|



1 a

0 m




(1 + j) ·Xj

Y
k−2−j

Now we use Lemma 2.9 with s = j + 1; the resulting sum is

τ(χ̄)
k−2�

j=0

�
k − 2
j

�
· i

j
·m

j
·DE⊗χ(1 + j)Xj

Y
k−2−j

Since the first two terms reduce to 0 mod pr, this is exactly the desired
result.

Corollary 5.6. With all notation the same as in the above theorem,

(ME |Rχ)({∞}−{0}) ≡
k−2�

j=0

(−1)j+1

�
k − 2
j

�
·j!·mj

·
τ(χ̄)L(E,χ,1+j)

(2πi)j+1 ·X
j
Y

k−2−j

where the equivalence is mod pr where p is understood to be an ideal of the
ring of integers of K[χ] localized at a prime above p.

Proof. Combine the above theorem with Proposition 2.1.

5.3 An Explicit Formula

In this section we will give an explicit formula to compute the twisted special
values that appeared in the above section; it will be used in the next two
chapters. Recall that for any E, we can find two Dirichlet characters ε1 and
ε2 (not necessarily nontrivial or primitive) such that

L(E, s) = L(ε1, s)L(ε2, s− k + 1)
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5.3. An Explicit Formula

(For full details, see [10], chapter 4, in particular section 4.7.)
Now let χ be a nontrivial primitive Dirichlet character. Since χ is totally

multiplicative, we have

L(E,χ, s) = L(χε1, s)L(χε2, s− k + 1)

We can evaluate L(E,χ, s) at the critical integers simply by evaluating
the Dirichlet L-functions on the right-hand side of the above equation. To
evaluate L(χε2, s− k + 1), we can use the following standard formula (see,
for example, [18], p. 91): if ψ is a Dirichlet character mod m, then

L(ψ, 1− n) = −1
n ·m

n−1
·

m�

a=1

ψ(a)Bn(
a
m).

This formula can also be rephrased as −1
n ·Bn(ψ), where

Bn(ψ) = m
n−1

·

m�

a=1

ψ(a)Bn(
a
m)

To evaluate L(χε1, s) we must combine the above formula with the stan-
dard functional equation for Dirichlet L-functions: if we set κ(ψ) to be 0 for
odd characters and 1 for even characters, then for primitive ψ,

L(ψ, s)Γ( s+κ
2 )(mπ )

(s+κ)/2 =
τ(ψ)

iκ
√
q
· L(ψ, 1− s)Γ(1−s+κ

2 )(mπ )
(1−s+κ)/2

Unraveling these two formulas, as well as using other standard formulas
for Dirichlet L-functions (all of which can be found in [11], chapter 10),
produces the following:

Proposition 5.7. Let E, ε1, and ε2 be as above, and let N1 and N2 be the
conductors of ε1 and ε2 (though the characters need not be primitive). Let
χ be a primitive Dirichlet character of conductor m. Let ε̃1 and ε̃2 be the
primitive characters that induce ε1 and ε2 respectively, with conductors Ñ1

and Ñ2 respectively. Let j be an integer strictly between 0 and the weight of
E such that ε1χ has the same sign as (−1)j. Then

τ(χ̄)L(E,χ, j)/(2πi)j

= (−i)jτ(χ̄)τ(ε̃1χ)·Cj ·Bj(ε̃1χ)·Bk−j(ε̃2χ)·
�

q|mN1

(1− ε̃1(q)χ(q)
qj )·

�

q|mN2

(1−ε̃2(q)χ(q)q
k−j−1)
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5.4. The Sign of E and the Action of ι

where if j is odd,

Cj = (−i) · 2−j
· (mÑ1)

−j
· ( j−1

2 )!−1
· [(−1

2 )(−3
2 ) · · · (2−j

2 )]−1
·

1
j(k−j)

and if j is even,

Cj = 2−j
· (mÑ1)

−j
· ( j2 − 1)!−1

· [(−1
2 )(−3

2 ) · · · (1−j
2 )]−1

·
1

j(k−j)

Remark 5.8. For critical integers not meeting the condition that ε1χ has the
same sign as (−1)j , L(E,χ, j) is zero due to a trivial zero arising from the
Dirichlet L-functions.

Corollary 5.9. With all notation as in the above proposition, including the
definition of Cj, we have DE⊗χ(j) equal to

i·j!·τ(ε̃1χ)·Cj ·Bj(ε̃1χ)·Bk−j(ε̃2χ)·
�

q|mN1

(1− ε̃1(q)χ(q)
qj )·

�

q|mN2

(1−ε̃2(q)χ(q)q
k−j−1)

Proof. Use the above proposition and Proposition 2.1.

5.4 The Sign of E and the Action of ι

We keep the same assumptions on E as earlier in this section. Recall the

matrix ι =

�
1 0
0 −1

�
and consider the degree-zero divisor

ΛE(χ) :=
m−1�

a=0

χ̄(a)({∞}− {
a
m})

For any a, b ∈ P1(Q), the action of ι on a degree-zero divisor {b} − {a}

is
({b}− {a})ι = {−b}− {−a}

(see, for example, [1] or [20]). We are going to obtain identities involving
the twisted special values computed above by considering the polynomial
ME(ΛE(χ)ι) for an arbitrary primitive character χ.

By the above, we have

ΛE(χ)
ι =

�

a

χ̄(a)({∞}− {−
a
m})

and so
ΛE(χ)

ι = χ(−1)
�

a

χ̄(−a)({∞}− {−
a
m})
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5.4. The Sign of E and the Action of ι

This means
ME(ΛE(χ)

ι) = sgn(χ)ME(ΛE(χ))

Now recall that E is of the form E(k, ε1, ε2). We define the sign of E
to be (−1)k−1

ε1(−1). (In weight 2 this is in accordance with the definition
in [18].)

Lemma 5.10. For any E as above and any degree-zero divisor d,

ME(d
ι) = sgn(E) · ι|ME(d)

Proof. If {α} is a cusp, ι sends it to {−α}. If we let γα =

�
a b

c d

�
be an

element of SL2(Z) mapping {∞} to {α}, then an element mapping {∞} to

{−α} is

�
a −b

−c d

�
= ι

−1
γαι. We will show that

ξE(ι
−1

γαι) = sgn(E) · ι|ξE(γα)

and then the definition of ME will imply the lemma. To show the identity
claimed above, we simply compute directly:

ξE(ι
−1

γαι) =
1
2(SE(ι

−1
γαι) + S

ι
E(ι

−1
γαι))

= 1
2(SE(ι

−1
γαι)− ι|SE|ι(γα))

Because the action of ι on Eisenstein series and on polynomials is an invo-
lution, this is equal to

1
2 ι|(ι|S(E|ι)|ι(ι

−1
γαι)− SE|ι(γα))

= −ι|ξE|ι(γα)

Now using the fact that E = E(k, ε1, ε2) and the definition of the ι-action
on E, we see that E|ι = (−1)kε1(−1)E, so this shows the claim and hence
the lemma.

If we combine the lemma with the equation immediately before it, we
see that we now have two different ways of computing ME(ΛE(χ)ι), so the
results are equal:

sgn(χ)ME(ΛE(χ)) = sgn(E) · ι|ME(ΛE(χ))

On the right-hand side, (−1)kι acts as the involution on polynomials Y �→

−Y . So any term with Y raised to an even power will be fixed by the
involution, and any term with Y raised to an odd power will be negated by
it. This shows the following:
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5.4. The Sign of E and the Action of ι

Proposition 5.11. Let E and χ be as above, and consider the polyno-
mial ME(ΛE(χ)). If sgn(E) = sgn(χ), then the coefficients of the terms
X

j
Y

k−2−j with 0 ≤ j ≤ k − 2 with j odd are all zero. If sgn(E) �= sgn(χ),
then the coefficients of the terms X

j
Y

k−2−j with 0 ≤ j ≤ k − 2 with j even
are all zero.

Remark 5.12. In weight 2, where there is only one term, a constant times
X

0
Y

0, this proposition implies that ME(ΛE(χ)) can be nonzero only if
sgn(E) = sgn(χ), and is always zero when the signs do not match. This
was already known in weight 2—see, for example, [18].
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Chapter 6

The Congruence Theorem

The above results were obtained in order to show congruence results con-
cerning the special values of the L-functions of a cusp form and a congruent
Eisenstein series. (We will explain below what it means for two modular
forms to be congruent mod a prime.) The final results we seek are listed
below for the sake of completeness. Some key points of the proofs are merely
sketched and are also given for even weight only. Full details, including gen-
eralization to the odd weight case, will be published separately in joint work
with V. Vatsal.

In this section we keep the same assumptions on E as we had at the
end of the previous section, which we restate here. We assume that it is of

the form −
Nk−1

2
2 E(k, ε1, ε2) (the coefficient is a normalizing factor so that

a1 = 1). We also make two more assumptions on E. To state them, let K
be the field generated over Q by the Hecke eigenvalues of E, with ring of
integers OK . We suppose that there exists a prime ideal p ⊂ OK such that
at any cusp, the constant term of the Fourier expansion has positive p-adic
valuation. Finally, if we let p be the unique rational prime lying under p,
we suppose p > k.

We now begin with the following:

Theorem 6.1. Let E be as above. Then the modular symbol ME is not
identically zero mod p.

Proof. We will show that there exists a character χ such that the χ-twisted
special value ofME is indivisible by p. To do this, we shall use the calculation
of special values above, together with a result of Friedman and Washington
on indivisibility of twisted Bernoulli numbers. Let � denote an odd prime
which we will specify later, and let χ denote a primitive Dirichlet character
of �-power conductor �

n with n large. We assume that χ has order �
n−1.

Thus χ is a character of the cyclotomic Z�-extension of Q. Then we may
apply Proposition 5.7 and Corollary 5.6 to determine the p-adic divisibility
of the coefficients of the χ-twisted special value of ME . Combining these
results shows that the coefficient of Xj

Y
k−j−2 is the product of three types

of term: elementary explicit constants, Euler products over primes q|N1N2,
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Chapter 6. The Congruence Theorem

and twisted Bernoulli numbers Bj(ε̃1χ) and Bk−j(ε̃2χ). We want to show
that for suitable � and large n, that all these quantities are p-adic units.
This is obvious in the case of the elementary constants for all � �= p and
any n, since p > k. In the case of the Euler factors, it is evident that,
since the �-power roots of unity are distinct modulo p, there are only finitely
many primes � and integers n such that terms of the form 1 −

ε̃1(q)χ(q)
qj or

1 − ε̃2(q)χ(q)qk−j−1 are congruent to zero modulo p. It remains to deal
with the Bernoulli numbers, and this we do by appealing to a theorem of
Friedman and Washington. First consider the case when the characters �1

and �2 are both odd. In this case the result is most easily phrased for the
coefficient of Y k−2, so that j = 0. Then we are dealing with L(E,χ, 1),
and the Bernoulli numbers are B1(ε̃1χ) ·Bk−1(ε̃2χ). We want to know that
these are p-adic units for suitable � and n and χ. But this follows directly
from [3], especially the remark at the end of the proof of Lemma 3 on page
432, and a brief translation of the notation from section 1 of that paper.
(One could also deduce this result from the properties of p-adic L-functions,
which reduce the case of Bk−j to B1, and then apply the well-known results
of Ferrero and Washington.) Thus there exists χ such that the χ-twisted
special value of ME is indivisible by p, and ME is nonzero modulo p. If on
the other hand �1 and �2 are even, one has to look at L(E,χ, j) for even j.
The argument is similar and we omit it.

Now let f be a normalized (meaning a1 = 1) cuspidal eigenform of the
same weight and level as E. We will also assume that f is congruent to E

mod pr in the following sense. If f =
�

anq
n and E =

�
bnq

n are given
by the standard Fourier expansions in terms of q = e

2πiz, we say that E

and f are congruent modulo pr if an ≡ bn (mod pr) for all n ≥ 1 and pr

divides the constant terms of the Fourier expansions of E at all cusps. Here
we understand that p is a prime of residue characteristic p in the ring of
integers of a number field K containing the Fourier coefficients of E and f .

With this definition, we can finally state our main result:

Theorem 6.2. Let f and E be a cusp form and an Eisenstein series respec-
tively, of the same even weight k ≥ 2 and level N , with E ≡ f (mod p), and
(N, p) = 1, and p > k. Fix canonical periods Ω±

f for f . Then there exists a
p-adic unit ΩE such that the following holds:

Let χ be a primitive Dirichlet character of conductor m, with m prime
to both N and p. Then for all positive integers j < k with (−1)j−1 ·χ(−1) =
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Chapter 6. The Congruence Theorem

sgn(E), we will have

τ(χ̄)L(f,χ, j)

(2πi)j−1Ωsgn(E)
f

≡
τ(χ̄)L(E,χ, j)

(2πi)jΩE
(mod pr)

Proof. Let Mf denote the modular symbol associated to f in Chapter 3.
Let Mf = M

+
f +M

−
f denote the decomposition of Mf into eigenspaces for

the involution ι, and write M±
f = NfΩ

±
f , where Ω

±
f are periods of f selected

so that the modular symbols N±
f are K-rational. We may normalize Ω±

f so

that the modular symbols N±
f actually take values in OK,p, where O denotes

the ring of integers of K, and such that N
±
f are nonzero modulo p. Thus

the periods Ω±
f are determined up to some p-adic unit.

Now letME denote the modular symbol on Γ1(N) with values in Ln(O/pr)
associated to E that was constructed in Chapter 4 above. According to the
theorem above, ME is nonzero. Furthermore, we have proven in Chapter
5 that ME is an eigenvector for ι with eigenvalue given by the sign of E.

Now let N
sgn(E)
f denote the reduction of N sgn(E)

f modulo pr. Then we would

like to compare the modular symbols N
sgn(E)
f and ME . We cannot do this

directly, and indeed, in general one expects that these modular symbols will
be different. However, we can salvage the situation as follows. If Γ is any
congruence subgroup and A is a Γ-module, then there is a map which we
denote δ = δA from the space of A-valued modular symbols for Γ1(N) to the
cohomology group H

1(Γ1(N), A), as explained in [4], and that the kernel of
δ is the group of A-valued boundary symbols. Applying the map δ to the

modular symbols considered above, we get cohomology classes δ(N
sgn(E)
f )

and δ(ME) with values in Ln(O/pr). Then we claim that

c · δ(N
sgn(E)
f ) = δ(ME)

where c is a unit in O/pr.
Let us admit this claim for the moment and see how to complete the

proof. The claim implies that δ(cN
sgn(E)
f −ME) = 0, hence cN

sgn(E)
f −ME

is a boundary symbol. But we have computed the χ-twisted special values
of boundary symbols in Section 6.1, and all these special values vanish. It

follows that the χ-twisted special values ofME and cN
sgn(E)
f are equal, which

evidently implies the theorem, if we take ΩE to be a fixed lift of the unit c
to O.

It remains therefore to prove the claim. In the case of weight two, it turns
out that the statement is equivalent to a multiplicity one statement for the
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Chapter 6. The Congruence Theorem

étale part of a certain group scheme occurring as a subgroup of J1(N, p)[p],
which is proved in [22], Theorem 2.12 (and see also [21], Theorem 2.7). The
case of weight k may be reduced to that of weight 2 and J1(Np) by using
Hida theory as developed in [6], Section 4. We omit the details. It is relevant
however to point out that the computed value of the sign sgn(E) is crucial
to distinguish the étale and multiplicative parts of the subgroup schemes in
question. We note also that Hida assumes p ≥ 5; this assumption holds in
our case since p > k ≥ 4.
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Chapter 7

Computing Special Values

Before proceeding, we pause for a quick word on terminology. The term
“modular symbol” has two different definitions in the literature. One defi-
nition, the one used above, is the one used in [4], [8], [18], and [21], among
others. The other definition, which is not equivalent to the first one, is used
in such places as [1], [9], [17], and [20]. It is these latter sources that give
us the computational method discussed in this chapter. However, in this
paper we do not wish to use the same terminology to refer to two different
objects. So the objects called “modular symbols”, in the sense of Cremona,
Merel, and Stein, will be referred to below as modular paths.

7.1 Special Values Related to Cusp Forms

From Chapter 3, we know that the special values of L(f,χ, j) at the critical
integers 1, 2, . . . , k − 1 and a primitive character χ can all be thought of as
the product of a transcendental “canonical period” and an algebraic number.
But we have yet to provide a method that allows us to explicitly compute
the algebraic parts of these special values. We will do this below, using two
key ideas: the theory of modular paths, and the existence of an integration
pairing between these modular paths and modular forms. We will briefly
describe these two ideas here and explain how they come together to give
a way to compute algebraic parts of special values of L-functions. For the
sake of simplicity, for this section only we let Γ = Γ0(N).

7.1.1 Modular Paths

First we describe the theory of modular paths. The theory was first devel-
oped by Manin (see [7]) and then later by Shokurov in [16] and Merel in [9]
(and for a good discussion of the theory, see also [17], chapter 8).

LetM2 be the free abelian group generated by the set of (formal) symbols
of the form {α,β} (order does matter, in spite of the set notation) subject
to the relation

{α,β}+ {β, γ}+ {γ,α} = 0
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7.1. Special Values Related to Cusp Forms

and mod any torsion. (Here α,β, γ ∈ P1(Q).)
Now define Mk to be the tensor product Lk−2(Z) ⊗ M2. We need to

define an action of SL2(Z) on this set. Let g =

�
a b

c d

�
∈ SL2(Z). Then we

define �
a b

c d

�
{α,β} = {

aα+b
cα+d ,

aβ+b
cβ+d}

g(P (X,Y )⊗ {α,β}) = (g|P )(X,Y )⊗ g{α,β}

where the last line refers to the two separate actions. For a congruence
subgroup Γ, the set of weight k modular paths for Γ will simply be the set
Mk mod the left action of matrices in Γ.

It is not at all obvious, but it turns out to be true, that we can write
down a finite Z-basis for this space. Such a basis can be explicitly written
down in terms of linear combinations of Manin symbols. Define the Manin
symbol [P, g] as the modular symbol g(P ⊗ {0,∞}). Since our space of
modular paths is a quotient by the action of Γ0(N), we may interpret g as
a representative of a (right) coset of Γ0(N). Note that by ([17], Proposition
3.10), we may even interpret g as an element of P1(Z/NZ) and the Manin
symbol is still well-defined.

Since Γ0(N) has finite index in SL2(Z), we see that we can write down
a finite list of Manin symbols that generate the other Manin symbols—
namely, symbols of the form [Xj

Y
k−2−j

, (c : d)] with j ∈ Z, 0 ≤ j ≤ k − 2,
and (c : d) ∈ P1(Z/NZ). The number of Manin symbols we get this way is
clearly k − 1 times the order of P1(Z/NZ).

Denote these “generating Manin symbols” by x1, x2, . . . , xK . Some of
these can be written as linear combinations of other ones, as shown below.

Define a right action of SL2(Z) on Manin symbols as follows:

[P, g]h = [h−1
P, gh]

Now we may state the following, originally due to Manin:

Proposition 7.1 ([17], Theorem 8.4). Let σ =

�
0 −1
1 0

�
and τ =

�
0 −1
1 −1

�
.

Then for any Manin symbol x, we have

x+ xσ = 0

x+ xτ + xτ
2 = 0

Furthermore, the space Mk(Γ0(N)) is the quotient of the free abelian group
on x1, x2, . . . , xK by these relations and by any torsion.
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7.1. Special Values Related to Cusp Forms

(The theorem is in greater generality than stated above, but here we only
need it for Γ0(N). There is a third relation that appears when we consider
other congruence subgroups.)

The proof of ([17], Theorem 8.3) assures us that any modular path can
be written as a Z-linear combination of Manin symbols. So to write down a
Z-basis for a modular path space, we need only write down a list of linear
combinations of Manin symbols that are linearly independent and generate
the Manin symbols by Z-linear combinations.

The above proposition allows us to write down a relation matrix which,
when put into echelon form, gives a Q-basis for the Manin symbols. To pass
from that to what we need, we can run a form of the Euclidean algorithm
that will give us, in the end, a list of Q-linear combinations of Manin symbols
whose Z-span includes all the original Manin symbols. Not only does this
mean that our desired Z-basis exists, but every step of the process just
outlined can be made explicit for a given weight and level.

7.1.2 The Integration Pairing

The next step is to define the integration pairing, which makes use of the
modular paths we have just defined. Before doing this, we should mention
the action of the Hecke operators on modular paths.

On Manin symbols, the Hecke operators act as a sum of the right actions
of a prescribed set of matrices, often called Heilbronn matrices; for full
details, see ([17], Proposition 8.8 and equation (8.3.3)). These are enough
to tell us how to write down the action of a Hecke operator on a Manin
symbol, and because our explicit bases are all in terms of Manin symbols,
this allows us to do all the computations with Hecke operators that we need.
We will not go into any more detail here, but further details about the Hecke
action can be found in ([17], Section 8.3).

Now we define the integration pairing:

�·, ·� : Mk(Γ)× Sk(Γ) → C

�P (X,Y )⊗ {α,β}, g� =

� β

α
P (z, 1)g(z)dz

The integration pairing satisfies the following important properties. First
of all, the Hecke operators are self-adjoint with respect to it ([17], Theorem
8.21). Second of all, we have:
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7.1. Special Values Related to Cusp Forms

Proposition 7.2. Let j be a critical integer for L(f, s). Then

L(f, j) =
(−2πi)j−1

(j − 1)!

� i∞

0
f(z)zj−1

dz

=
(−2πi)j−1

(j − 1)!
�X

j−1
Y

k−j−1
⊗ {0,∞}, f�

Proof. The equality of the second and third parts is by the definition of the
integration pairing. For the equality of the first of the first and second parts,
we use Proposition 2.1 and the definition of Df (s).

So the special values we seek can be written in terms of this pairing.
For any particular f , we can view this pairing as a mapMk(Γ) → C. This

map actually respects the splitting of Mk(Γ) into +1 and −1 eigenspaces for
the star involution (whose action is defined in [17]). With notation as above,
we know that f is an eigenfunction for all the Hecke operators. It turns out
that we can pick two elements of Mk(Γ) ⊗ K (where K is the same field
defined above)—call them v

±—such that within each eigenspace of the star
involution, v± is the only simultaneous eigenvector for the Hecke operators
with the same eigenvalue as f .

From the self-adjointness of the Hecke operators, it now follows that
the above map on modular paths, projected onto either eigenspace, can be
evaluated by multiplying the value of the pairing �v±, f� times the projection
of the desired modular path onto that eigenvector. This is a more explicit
way of describing the canonical periods first described in Chapter 3. The
only issue is one of scaling; so far the eigenvectors v± are only defined up to
multiplication by a scalar.

We can fix this by considering the pairing of f with each element of the
Z-basis described in the previous section. For each eigenspace, we search
for one element v such that the other basis elements are algebraic integer
multiples of �v, f�. When we find this element, the corresponding value of
the pairing is our canonical period.

Now we can compute special values by taking the modular pathX
s−1

Y
k−s−1⊗

{0,∞} and projecting it onto the appropriate (properly scaled) eigenvector
to obtain an algebraic multiple of the canonical period. This is what is called
the algebraic part of the special value of the L-function.

As mentioned before, we can now also compute the algebraic parts of
the special values of L(f,χ, s) for a primitive Dirichlet character χ. What
makes this possible is the identity

(f ⊗ χ)(z) =
τ(χ)

m

�

b mod m

χ(−b)f(z + b
m)
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7.2. Computations of Special Values

where τ(χ) is the standard Gauss sum. This identity is equivalent to the
one used in proving Lemma 2.9. Now using this, we compute:

L(f,χ, s) =
(−2πi)s−1

(s− 1)!
· �X

s−1
Y

k−s−1
⊗ {0,∞}, f ⊗ χ�

=
χ(−1)(−2πi)s−1

τ(χ)(s− 1)!

� i∞

0
z
s−1

�
�

b mod m

χ(−b)f(z + b
m)

�
dz

=
χ(−1)(−2πi)s−1

τ(χ)(s− 1)!

�

b mod m

χ(b)

� i∞

0
z
s−1

f(z − b
m)dz

=
χ(−1)(−2πi)s−1

τ(χ)(s− 1)!

�

b mod m

χ(b)

� i∞

−b/m
f(z)(z + b

m)s−1
dz

=
χ(−1)(−2πi)s−1

τ(χ)(s− 1)!
�

�
�

b mod m

χ(b)((X + b
mY )s−1

Y
k−s−1

⊗ {
−b
m ,∞})

�
, f�

This gives us a modular path that we can once again project to the
appropriate eigenvector to obtain the algebraic part of L(f,χ, s). Notice that
we need only compute the canonical periods once, and then this computation
can be done for any χ.

7.2 Computations of Special Values

Below are some explicit computations of twisted special values for two spe-
cific examples of a cusp form and a congruent Eisenstein series (mod a
prime p specified below). The special values associated to the cusp forms
have been computed using the method above; those for the Eisenstein series
were computed using Proposition 5.7.

Proposition 5.11 helps explain the way the data tables are set up. In the
polynomial from Corollary 5.6, the special value L(E,χ, j) appears in the
coefficient of Xj−1

Y
k−j−1. So when the signs match, it is the even j where

the special values are always zero, and when they do not match, it is the
odd special values that are always zero.

Both of the Eisenstein series in these tables have weight 4 and sign −1.
Therefore, when χ is odd, L(E,χ, 2) = 0, while L(E,χ, 1) and L(E,χ, 3)
may be nonzero. On the other hand, when χ is even, L(E,χ, 2) is the
only special value which might not be zero. Comparing with the special
values associated to the cusp forms, each time we have projected to the
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7.2. Computations of Special Values

−1 eigenspace of ι—matching the sign of E. But which values of L(f,χ, j)
project to 0 and which do not depends on whether χ is odd or even (in
accordance with Shimura’s theorem), and the special values that do not
project to 0 correspond exactly with which special values L(E,χ, j) are
nonzero.

In the first 3 tables, f is the unique newform of weight 4 and level
Γ0(5). E is a congruent Eisenstein series whose L-function is the product
of Dirichlet L-functions L(�5, s)L(�1, s− 3), where �j refers to the principal
character mod j. In the tables, m refers to the conductor of a primitive
quadratic character χ. In the first and third tables, the character is odd; in
the second table it is even. In the last column, p refers to the prime such
that E ≡ f (mod p); in this case p = 13 (and we exclude characters with
13|m).

In the last 3 tables, f is the unique newform of weight 4 and level Γ0(7).
E is the Eisenstein series whose L-function is given by L(�7, s)L(�1, s − 3).
This time p = 5 (and we exclude characters with 5|m). The “ratio mod p”
is the ratio of the third column to the second column.
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Table 7.1: Comparison of Twisted Special Values: k = 4, N = 5, j = 1

m τ(χ)L(f,χ,1)
Ω−

τ(χ)L(E,χ,1)
2πi Ratio mod p

3 100 -2/45 12
4 -100 -1/10 12
7 300 -48/35 12
8 800 -9/5 12
11 -2400 -12/5 12
15 -400 -16 12
19 -8800 -44/5 12
20 -1400 -30 12
23 5900 -432/5 12
24 -10800 -184/5 12

Table 7.2: Comparison of Twisted Special Values: k = 4, N = 5, j = 2

m τ(χ)L(f,χ,2)
2πiΩ−

τ(χ)L(E,χ,2)
(2πi)2 Ratio mod p

8 0 13/200 N/A
12 0 13/75 N/A
17 0 208/425 N/A
21 -300/7 64/175 12
24 -50/3 18/25 12
28 0 -208/175 N/A
29 -400/29 432/725 12
33 0 624/275 N/A
37 0 52/37 N/A

Table 7.3: Comparison of Twisted Special Values: k = 4, N = 5, j = 3

m τ(χ)L(f,χ,3)
(2πi)2Ω−

τ(χ)L(E,χ,3)
(2πi)3 Ratio mod p

3 -10/9 -7/3375 12
4 -5/8 -31/8000 12
7 -30/49 -72/6125 12
8 -5/4 -189/16000 12
11 -240/121 -186/15125 12
15 -8/9 -8/225 12
19 -880/361 -682/45125 12
20 -7/4 -3/80 12
23 -590/529 -4536/66125 12
24 -15/8 -713/18000 12
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Table 7.4: Comparison of Twisted Special Values: k = 4, N = 7, j = 1

m τ(χ)L(f,χ,1)
Ω−

τ(χ)L(E,χ,1)
2πi Ratio mod p

3 49 -2/63 4
4 -147 -1/7 4
7 49 -8/7 4
8 -539 -12/7 4
11 -1568 -24/7 4
19 6713 -66/7 4
23 -6272 -576/7 4
24 11368 -276/7 4

Table 7.5: Comparison of Twisted Special Values: k = 4, N = 7, j = 2

m τ(χ)L(f,χ,2)
2πiΩ−

τ(χ)L(E,χ,2)
(2πi)2 Ratio mod p

8 49/8 3/49 4
12 0 25/147 N/A
13 0 100/637 N/A
17 0 400/833 N/A
21 56/3 8/21 4
24 0 75/98 N/A
28 7/2 8/7 4
29 784/29 864/1421 4
33 0 1200/539 N/A
37 0 2400/1813 N/A

Table 7.6: Comparison of Twisted Special Values: k = 4, N = 7, j = 3

m τ(χ)L(f,χ,3)
(2πi)2Ω−

τ(χ)L(E,χ,3)
(2πi)3 Ratio mod p

3 7/18 -19/9261 4
4 21/32 -43/10976 4
7 1/2 -4/343 4
8 77/128 -129/10976 4
11 112/121 -516/41503 4
19 959/722 -99/6517 4
23 448/529 -12384/181447 4
24 203/144 -437/10976 4
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