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Abstract

Recent data measured in nanodiscs conflicts with the standard theory of maltose transport

in the MalE-MalFGK2 uptake system found in E. coli. Nanodisc fluorescence quenching data

suggest an alternate pathway in which unliganded MalE binds the P-open transporter, facil-

itating maltose acquisition. Nanodisc data also indicate that MalE regulates maltose uptake

at high concentrations. We analyzed four mathematical models of the maltose uptake system:

the distinct standard and alternate models, and two integrated models. Nanodisc fluorescence

quenching data and nonlinear regression analysis were used to fit equilibrium constants and

kinetic rates. The flux through each pathway in an integrated model was calculated using

asymptotic analysis and fit parameter values. We conclude that it is likely that transport oc-

curs when liganded MalE associates to a P-open conformation of MalFGK2, rather than binding

to the P-closed transporter as suggested by the standard model. The standard pathway was

calculated to be negative, i.e. to occur in reverse as a means of regulating maltose uptake at

high concentration. This analysis conflicts with the standard model in which liganded MalE

binds to a closed transporter and triggers an opening of the transporter proteins which in turn

open the liganded MalE. The analysis also found that a relatively small amount of maltose

transport may occur through the alternate pathway involving unliganded MalE.
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Chapter 1

Introduction

1.1 ABC Transporters

ATP binding cassette (ABC) transporters occur in both eukaryotic and prokaryotic organ-

isms. ABC transporters consist of two ABC domains and two membrane-spanning (transmem-

brane) domains, as shown in Figure 1.1. The ABC domains are nucleotide binding domains,

binding and hydrolyzing ATP to energize unidirectional substrate transport. Substrate trans-

port occurs through a channel formed by the membrane-spanning domains [2]. The ABC trans-

porter domains alternate between two conformations: P-closed (inward facing to the cytosol)

and P-open (outward facing to the periplasm) [2].

Figure 1.1: Diagram of the P-closed (left) and P-Open (right) conformations of MalFGK2,

an ABC transporter with two membrane-spanning domains (MalF and MalG) and two ABC

domains (K), also known as nucleotide binding domains.
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ABC transporters facilitate the translocation of various substrates across cell or organelle

membranes. Eukaryotic and bacterial ABC transporters mostly differ in both the type of sub-

strate transported, and the direction of transport. Most eukaryotic ABC transporters export

hydrophobic molecules from the cytoplasm. Bacterial ABC transporters, however, predom-

inantly import nutrients into the cytoplasm. The import of these nutrients require specific

binding proteins, which have been proposed to deliver the nutrients to the transporter [2].

Specifically, there is a class of binding protein-dependent transport systems primarily found

in Gram-negative enteric bacteria. These transport systems are specific for sugars, amino acids,

and ions [7]. In particular, we consider the binding-protein dependent maltose transport system

in the bacteria E. Coli.

1.2 Maltose Uptake System in E. Coli

MalFGK2 is a bacterial ABC importer and binding protein-dependent transport system

that specifically imports the nutrient maltose in Escherichia Coli. MalFGK2 is composed of 3

proteins: MalF and MalG (the transmembrane proteins) and MalK (the ATP-binding cassette

dimer, also called the ATP interface), as seen in Figure 1.1. Maltose transport is dependent

upon a substrate-binding protein, MalE, found in the periplasmic region of the bacterial cell

[3].

MalE is a protein consisting of two symmetrical lobes that rotate toward each other to

capture maltose with high-affinity, as shown in Figure 1.2. This is referred to as the closed-

liganded conformation of MalE [3]. MalE is found in the periplasm, and is known to be essential

for efficient MalFGK2 import of maltose.

Figure 1.2: MalE reversibly binds to maltose to form closed-liganded MalE.
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1.3 Standard Model

The standard model of maltose uptake characterizes MalE as a type of shuttle, deliver-

ing maltose to MalFGK2. The association of maltose-bound MalE is assumed to trigger the

conformation change from the P-closed transporter to the P-open transporter [3]. Maltose is

subsequently delivered to the open transporter and MalE dissociates upon hydrolysis and trans-

port to return to the periplasm. Recent experimental evidence instead suggests that unliganded

MalE binds to the P-open conformation of MalFGK2, stabilizing or activating the transporter

[1].

1.3.1 Supporting Evidence

The standard model has been supported by crystallographic and biochemical analysis.

An intermediate of the maltose uptake system has been crystallized which consists of intact

MalFGK2 in complex with MalE, maltose, and ATP [4]. The maltose appears at the interface

of the MalF-MalG subunits, about halfway into the lipid bilayer. The MalE is bound to the

MalFGK2 in the open conformation, which has been argued to act as a cap on the transporter

to ensure import of the maltose [4]. This intermediate was captured by blocking ATP hydrol-

ysis with a mutation, such that the ATP-binding cassette dimer is captured in an ATP-bound,

closed conformation [4]. This transition state is consistent with the standard model pathway

of transport, although not uniquely so.

The maltose transporter has also been crystallized in an intermediate step between the P-

closed and P-open conformations. It was found that interactions with maltose-bound MalE in

the periplasm induces a partial closure of the MalK dimer in the cytoplasm and corresponding

opening of the transmembrane domain, in the presence of nucleotides [5]. Furthermore, in the

absence of MalE the transporter was crystallized in a P-closed resting state. This supports the

assumption that liganded MalE triggers the conformation change to an open transporter state,

however it was not shown that MalE without maltose does not induce the same intermediate

state [5].

Additionally, an EPR spectroscopy analysis was used to conclude that ligand-bound MalE

is needed for the closure of the MalK dimer in the presence of ATP [6].
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1.3.2 Contradicting Evidence

There is experimental evidence which contradicts the assumptions of the standard model. A

mutant MalFGK2 which transports lactose instead of maltose was found to still be dependent

on MalE for activity, even though MalE does not bind lactose [7]. This suggests that although

MalE is critical for transport it may not in fact act as a shuttle for the substrate.

It was also determined that MalE can inhibit transport in excess when maltose is held at

sub-stoichiometric levels [8]. The standard model would predict that an increased concentration

of MalE would increase transport, as there would be a higher concentration of liganded Em to

stimulate MalFGK2 to open. If liganded MalE were required to initiate maltose transport, it

would be expected that closed-liganded MalE would have a high affinity for the transporter.

However, it was reported to have a low affinity for the transporter, 50-100 µM [9]. This further

suggests that the underlying assumptions of the standard model may conflict with experimental

evidence.

Nanodisc experiments have shown that the open, unliganded conformation of MalE has

a high affinity for the open conformation of MalFGK2. These experiments also showed that

MalE with a high affinity for maltose has a low transport rate while MalE with a low affinity

for maltose has a high transport rate [1]. An alternate pathway has been suggested to justify

these results in which the unliganded MalE plays a critical role for transport.

1.4 Alternate Model of Maltose Transport

In contrast to the standard model, and in support of previous modeling suggesting that

unliganded MalE does associate with the transporter [8], an alternate theory of maltose trans-

port has been proposed [1]. In what we will refer to as the Alternate model, unliganded MalE

binds with high affinity to MalFGK2, thus increasing the affinity of the complex for maltose,

to facilitate the acquisition of maltose. The Alternate model of maltose transport is supported

by experimental data obtained using detergents, liposomes, and nanodisc experiments to inves-

tigate MalFGK2 [1]. Experimental data were used to conclude that transporter-bound MalE

facilitates the acquisition of the sugar at low concentrations, while at high sugar concentrations

the MalE can bind to maltose and dissociate [1]. This allosteric regulation of maltose therefore

limits the overall rate to transport.
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1.5 Previous Modeling of Maltose Uptake System

A basic standard model for the maltose uptake system has been proposed and analyzed [8].

The following reactions were included:

M + E ⇀↽ Em where M is the substrate (maltose), E is the binding protein, and Em is the

closed, liganded binding protein.

Em + A ⇀↽ D → A+ E, where A is the MalFGK2 transporter, D is the complex formed when

MalGK2 binds to the closed liganded binding protein.

These two reactions characterize the standard model. This model was taken a step further

to allow for unliganded binding protein to bind to the transporter. This adds the reaction:

A+ E ⇀↽ G, where G is the MalFGK2 complex with the unliganded binding protein.

From this model it was concluded that (at least in the case of the maltose uptake system)

it was likely that both the liganded and unliganded conformations of MalE associate with the

transporter. A later extension of this model gave further evidence that both binding protein

conformations bind to the transporter. The above model was fit to experimental data in which

maltose transport was measured in the presence of constant maltose, but varying binding protein

concentration [8].

This model analysis supports the theory that both liganded and unliganded MalE bind

to the transporter. However, the model does not distinguish between the open and closed

conformations of MalFGK2, and therefore does not give insight into whether liganded MalE

binds to the closed transporter to trigger a conformational change. This model analysis does

not give insight into the role of unliganded MalE in transport.
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Chapter 2

Mathematical Models

We consider four biochemical reaction networks and their associated ordinary differential

equation models for the maltose uptake system in E. coli. We refer to these four models as the

Standard, Alternate, Comprehensive, and Full models. Table 2.2 gives the symbols used for

concentrations of MalFGK2 transporter states, binding protein (MalE) states, and substrate

(maltose) for the four models.

We assume that the concentration of maltose in the periplasm is large relative to the con-

centration of transporter and binding protein. We therefore make the simplifying assumption

that maltose concentration is approximately constant. All concentrations of transporter states

and binding protein states are assumed to vary with time when systems are not at equilibrium.

A further model assumption is that nucleotides are required to close the ATP interface

resulting in a P-open transporter conformation [5]. Therefore in the absence of nucleotides,

we assume that only P-closed (ATP interface open) transporter states are possible and that

hydrolysis is inhibited.

In the presence of AMP-PNP, a non-hydrolysable ATP analog, we assume that the ATP

interface can close but cannot hydrolyze. This stabilizes the P-open conformation of the trans-

porter. We consider two cases in the presence of AMP-PNP. The simpler case is that all ATP

interfaces bind and remain closed in the presence of saturating AMP-PNP, in which case we

assume that only P-open transporter states are possible. In the more general case we allow for

both P-open and P-closed transporter states in the presence of AMP-PNP (only hydrolysis is

inhibited).

Both the Standard and Alternate models are nested within the Comprehensive model as

6



seen in Figure 2.3. The Comprehensive model is nested within the Full model shown in Figure

2.4.
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Model Illustration Symbol Definition

E MalE

M Maltose

All Em Closed, liganded MalE

A P-closed transporter (open ATP interface)

F P-open E-MalFGK2 complex with M associated

Standard D Liganded MalE bound to A

B P-open transporter (closed ATP interface)

Alternate

C Unliganded MalE bound to B

Table 2.1: The Comprehensive model consists of all concentration states in the above table.
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Model Illustration Symbol Definition

Full G Unliganded MalE bound to A

Table 2.2: The Full model consists of all concentration states in Table 2.1 and the above table.

2.1 Standard Model

The Standard Model consists of the following reactions:

E +M
Ko⇀↽ EM

A+ Em
K3⇀↽ D

K4⇀↽ F
h3→ A+ E +Min (standard pathway)

The Standard model includes transporter states A, D, and F as seen in Table 2.2 and

Figure 2.1. The single pathway of maltose transport in this model is for a maltose-bound,

closed-liganded MalE (Em) to bind to the closed transporter resting state. This association

instigates a conformational change which induces the opening of MalE. Maltose is subsequently

released into the binding pocket of the transporter for hydrolysis and import. MalE then

dissociates from the transporter and returns to the periplasm. Hydrolysis is assumed to occur

at some constant rate h3.

MalE-maltose-FGK2 complex state (F) is the only P-open transporter state in the Standard

model. For the sake of comparison to data (discussed later), in the absence of nucleotides we

assume the forward rate k+4 = 0 (see Table 2.4 for kinetic rates), therefore the concentration

F = 0 in the absence of nucleotides. In the presence of non-hydrolysable AMP-PNP, we assume

both P-open states A and D, and P-closed state F are possible.

2.2 Alternate Model

The Alternate model consists of the following reactions:

E +M
Ko⇀↽ EM

9



E +M ⇀↽ Em A F D

Figure 2.1: Standard model.
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A
K1⇀↽ B

h1→ A

B + E
K2⇀↽ C

h2→ A+ E

C +M
βKo
⇀↽ F

h3→ A+ E +Min (alternate pathway)

F
βK2
⇀↽ B + Em (open pathway or autoregulation step)

The Alternate model includes MalFGK2 states A, B, C, and F as shown in Table 2.2 and

Figure 2.2. This model does not allow for MalE (liganded or unliganded) to bind to the closed

transporter (A), and therefore does not include the standard pathway of maltose transport. The

alternate pathway of maltose transport is for an unliganded MalE (E) to bind to the P-open

conformation of MalFGK2 (B), forming a complex (C) which is assumed to be stabilized or

increase the affinity of the transporter for maltose. Maltose can then subsequently bind to the

complex and be imported to the cytosol via hydrolysis at a rate h3. We will refer to this as the

alternate pathway of maltose transport.

We also allow for the MalE in complex F to bind maltose, acquire the closed conformation

(Em), and dissociate into the periplasm in an autoregulatory step. We allow this reaction to be

reversible such that a maltose-bound MalE can bind to the open transporter (B), and conse-

quently provide an additional pathway of maltose transport. This allows for the investigation

of whether maltose-bound MalE may in fact bind to the open transporter in the presence of

nucleotides. We refer to this route of maltose transport as the ‘open’ pathway.

ATP hydrolysis is assumed to occur in the absence of MalE and maltose, as shown in

nanodisc experiments [1]. In this case the P-open conformation (B) hydrolyzes ATP and

returns to the P-closed conformation (A) at a constant rate h1. It is also assumed that the

MalE-complex C can hydrolyze at a constant rate h2, causing the MalE to dissociate and the

return of the transporter to the resting state A. Experiments have shown that the addition of

MalE to MalFGK2 increased the ATPase activity 3-fold in nanodiscs and 4-fold in liposomes

[1].

We assume that, in the presence of nucleotides, the forward rate from A to B, k+1 , is large

compared with the backward rate k−1 (see Table 2.4 for kinetic rates) , therefore the equilibrium

constant K1 =
k−1
k+1

<< 1. This assumption is based on experimental evidence that AMP-PNP

(non-hydrolysable nucleotides) stabilizes the P-open conformation of MalFGK2 [1].

The transporter state A is the only P-closed state in the Alternate model. Therefore, in

conditions without nucleotides no binding to the transporter can occur for the Alternate model
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so we set k+1 = 0.

2.3 Comprehensive Model

The Comprehensivel model consists of the following reactions:

E +M
Ko⇀↽ EM

A
K1⇀↽ B

h1→ A

B + E
K2⇀↽ C

h2→ A+ E

A+ Em
K3⇀↽ D

K4⇀↽ F
h3→ A+ E +Min (standard pathway)

C +M
βKo
⇀↽ F

h3→ A+ E +Min (alternate pathway)

F
βK2
⇀↽ B + Em (open pathway or autoregulation step)

The Comprehensive model combines all reactions from the Standard and Alternate models,

and includes transporter states A, B, C, D, and F , as seen in Table 2.2 and Figure 2.3.

Equilibrium constants and kinetic rates for the Comprehensive model are found in Table 2.5

and Table 2.4 . This model allows for maltose transport to occur through the three pathways

described previously and include the standard pathway, the alternate pathway (MalE binds to

the open transporter first, maltose binds subsequently), and the open pathway in which Em

binds to the open transporter (B).

There are three P-open states in the Comprehensive model (B, C, F ) which do not occur in

the absence of nucleotides. This results from our assumption that the forward rates k+1 , k
+
4 = 0

without nucleotides to close the interface. Therefore B = C = F = 0 in conditions without

nucleotides.

In the presence of nucleotides, we consider two cases for the Comprehensive model. In the

first case, we assume that all transporter states can occur in the presence of non-hydrolysable

nucleotides (AMP-PNP) such that the equilibrium parameter K1 in nonzero. In the second,

more simplified case we assume that only P-open transporter states occur in the presence of

saturating AMP-PNP, such that A = D = 0 in the presence of AMP-PNP (i.e. K1 → 0).

12



E +M ⇀↽ Em A B C F

Figure 2.2: The Alternative model.
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E +M ⇀↽ Em A B C D F

Figure 2.3: The Comprehensive model.
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2.4 Full Model

The Full Model consists of the following reactions:

E +M
Ko⇀↽ EM

A
K1⇀↽ B

h1→ A

B + E
K2⇀↽ C

h2→ A+ E

A+ Em
K3⇀↽ D

K4⇀↽ F
h3→ A+ E +Min (Standard pathway)

C +M
βKo
⇀↽ F

h3→ A+ E +Min (Alternate pathway)

F
βK2
⇀↽ B + Em (Open pathway or autoregulation)

A+ E

K3
δ⇀↽ G

G+M
Koδ⇀↽ D

G

K4δ

β
⇀↽ C

The Full model adds one transporter state (G) and three reversible reactions to the Com-

prehensive model as seen in Table 2.2 and Figure 2.4. Equilibrium constants and kinetic rates

for the Full model are found in Table 2.5 and Table 2.4. The Full model can be diagrammed

as a cubed network of reactions. Detailed balance ensures that we only gain one additional

equilibrium parameter from the Comprehensive model (δ), in addition to six new kinetic rates

for each new forward/reverse reaction, as seen in Table 2.4.

Transporter state G is unliganded MalE bound to P-closed MalFGK2. This is an unlikely

state but equilibrium fluorescence quenching data indicates that there is binding occurring

between MalE and MalFGK2 in the absence of maltose and nucleotides [1], and so we consider

state G in order to fit this experimental data.

We allow for unliganded MalE to reversibly bind to the closed transporter and for maltose to

subsequently bind to this complex, forming transporter state D (closed transporter in complex

with MalE and maltose). The Full model also includes a reversible conformation change between

open and closed transporter states with unliganded MalE bound.

In the absence of nucleotides, it is assumed that B = C = F = 0 as in the Comprehensive

15



model. In the presence of AMP-PNP, we consider the stronger assumption that only P-open

states occur (at equilibrium). Experimental data were insufficient to fit the larger Full model

without this assumption.
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E +M ⇀↽ Em A B C D F G

Figure 2.4: The Full model.
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Model Parameter Reaction Units

k−o E +M ← Em t−1

All

k+o E +M → Em c−1 t−1

k−3 A+ Em ← D t−1

k+3 A+ Em → D c−1t−1

Standard

k−4 D ← F t−1

k+4 D → F t−1

k−1 A← B t−1

k+1 A→ B t−1

k−2 B + E ← C t−1

k+2 B + E → C c−1 t−1

Alternate

β1k
−
o C +M ← F t−1

βok
+
o C +M → F c−1t−1

β3k
−
2 B + Em ← F t−1

β2k
+
2 B + Em → F c−1 t−1

Table 2.3: The Comprehensive model consists of all of the kinetic rates and reactions in the

above table.
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Model Parameter Reaction Units

δ1k
+
3 A→ G c−1t−1

δ2k
−
3 A← G t−1

δ3k
+
o G→ D c−1t−1

Full

δ4k
−
o G← D t−1

γ+k+4 G→ C t−1

γ−k−4 G← C t−1

Table 2.4: Additional forward and backward kinetic rates for the Full model. The Full model

also consists of all parameters and reactions in Table 2.2.
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Model Parameter Reaction Units

All Ko = k−o
k+o

E +M
Ko⇀↽ Em c

K3 =
k−3
k+3

A+ Em
K3⇀↽ D c

Standard K4 =
k−4
k+4

D
K4⇀↽ F d

kh F
kh→ A+Min + E t−1

K1 =
k−1
k+1

A
K1⇀↽ B d

K2 =
k−2
k+2

B + E
K2⇀↽ C c

Alternate β = β3
β2

= β1
βo

B + Em
βK2
⇀↽ F

βKo
⇀↽ C +M d

h1 B
h1→ A t−1

h2 C
h2→ A+ E t−1

h3 F
h3→ A+Min + E t−1

Full δ = δ1
δ2

= δ4
δ3

= γ−β
γ+ A+ E

K3
δ⇀↽ G+M

δKo⇀↽ D, G

K4δ

β
⇀↽ C d

Table 2.5: Model parameters with c=concentration, t=time, and d=dimensionless. The Com-

prehensive model combines all parameters and reactions from the Standard and Alternate

models. The Full model consists of all parameters and reactions shown in the above table.
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Chapter 3

Experimental Data

Several methods were used to study the maltose uptake system in E.coli, including deter-

gents, liposomes, and nanodiscs [1]. Detergents are used to make membrane proteins soluble

by forming detergent-protein-lipid micelles. Detergents have drawbacks for membrane protein

stability and can interfere with many molecular techniques, including undesired partitioning of

substrates and products [13]. Liposomes are most useful when compartmentalization of each

side of the bilayer is needed [13]. However, liposomes are large, unstable, and difficult to prepare

with precisely controlled size and stoichiometry.

Because of the drawbacks associated with detergents and liposomes, nanodiscs are used

as an alternative technique for studying membrane proteins. Nanodiscs are soluble nanoscale

phospholipid bilayers which have been used to study the MalFGK2 transporter [1]. Nanodiscs

can self-assemble integral membrane proteins and are therefore useful for understanding mem-

brane protein function [13]. Nanodiscs allow for solubility of membrane proteins at the single

molecule level. This is advantageous compared with liposomes or detergent micelles in terms

of the size, stability, and access to both sides of the phospholipid bilayer domain. It also offers

advantages in adding genetically modifiable features to the Nanodisc structure [13].

Fluorescence Quenching, specifically an electron-transfer based quenching reaction, was used

as a measure of binding between MalFGK2 in nanodiscs (Nd-FGK2) and MalE. Quenching was

measured at constant MalE concentration, with increasing concentration of Nd-FGK2 in the

presence or absence of nucleotides and in the presence or absence of maltose. In the case

where nucleotides were present, AMP-PNP was used as a non-hydrolysable ATP analog. This

condition stabilizes the P-open state transporter [1].
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The ATPase activity was measured at 37o C using Nd-FGK2 in the presence of ATP, in the

presence or absence of MalE, and in the presence or absence of maltose [1]. The basal ATPase

activity in the nanodisc was found to be approximately 10 fold higher than in proteoliposomes,

however in both cases MalE increased the rate of ATP hydrolysis. There was a 3-fold increase in

nanodiscs and a 4-fold increase in proteoliposomes. In the presence of maltose, an inhibition of

the ATPase activity was observed in nanodiscs which was not observed in proteoliposomes. It

was proposed that maltose could negatively affect the association of MalE with the transporter

[1].

3.1 Fluorescence Quenching Experiments

All experimental data used for this analysis comes from experiments with MalFGK2 in

nanodiscs. We will refer to MalFGK2 in nanodiscs as Nd-FGK2. Fluorescence Quenching,

specifically an electron-transfer based quenching reaction, was used as a measure of binding

between MalFGK2 in nanodiscs (Nd-FGK2) and MalE. Equilibrium quenching was measured

for a fixed MalE concentration, for a range of increasing concentration of Nd-FGK2 in the

presence or absence of nucleotides and in the presence or absence of maltose. In the case

where nucleotides were present, AMP-PNP was used as a non-hydrolysable ATP analog. This

condition stabilizes the P-open state transporter [1].

3.2 Equilibrium Data

The equilibrium quenching was measured as a function of increasing Nd-FGK2 concentration

for a fixed total MalE concentration of 20 nM. Experiments were done in the presence or absence

of 1 mM of maltose, as shown in Figure 3.1.

3.3 Time-Dependent Data

Fluorescence quenching was measured as a function of time in minutes. The concentration

of MalFGK2 was fixed at 90 nM, and the concentration of MalE at 20nM. We consider the

experiment performed in the presence of AMP-PNP and in the absence of maltose as seen in

Figure 3.2.
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Figure 3.1: Equilibrium quenching data under 4 conditions: o= AMP-PNP (no maltose), + =

AMP-PNP (with maltose), *=no nucleotides (no maltose), .=no nucleotides (with maltose). Tt

is total concentration of Nd-FGK2. This data appears in [1].
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Figure 3.2: Time course quenching data in the presence of AMP-PNP to block hydrolysis, MalE

(20 nM), and Nd-FGK2 (90 nM).
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3.4 ATPase Experiments

Steady-state ATPase rates were measured for concentrations of MalE and Nd-FGK2 fixed at

2 µM in the presence of ATP. Experiments were performed under three conditions in nanodiscs:

in the presence of MalE and maltose, in the presence of MalE only, and with only Nd-FGK2.

3.5 Fit Methods

All models were fit to equilibrium fluorescence quenching data measured under hydrolysis-

blocking conditions, as well as to the steady-state ATPase data. The time-dependent data

measured in the absence of maltose was used to fit the kinetic rate k+2 in the Comprehensive

model, as well as to estimate the magnitude of the rate k+1 , the forward rate of the conformation

change from P-closed to P-open transporter.

Nonlinear regression and Matlab R© were used to fit model parameters to experimental data

and to generate confidence intervals on fit values. Estimates of equilibrium constants and

hydrolysis rates of the maltose uptake system in nanodiscs were obtained for each model.

Equilibrium fluorescence quenching data for Nd-FGK2 and MalE were used fit the equilibrium

constants (Ki =
k−i
k+i

). ATPase data were used to solve for the hydrolysis rates h1, h2, h3, using

fit equilibrium values.

We assume that hydrolysis is the rate limiting step, and that we are at equilibrium under

hydrolysis-blocking conditions. At equilibrium, the concentrations of each transporter state are

found explicitly as a function of maltose, Ko (the affinity of MalE for maltose), and all other

relevant equilibrium constants.

To fit the quenching data we assume that in each model, the transporter states that have

MalE bound represent quenching concentrations. We assume that the quenching data has been

vertically scaled by some common unknown constant φ, which was fit in addition to all model

parameters.

3.6 Fit Analysis

The Standard model and Alternate model have the same number of equilibrium constants

being fit to the data. Both models are fit to three data sets (n=36), under conditions with AMP-
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PNP (with and without maltose) and in the absence of nucleotides with maltose present. The

sum of the squared residual error (SSR) is compared to determine which model is a better fit to

the equilibrium data set. Neither the Standard or Alternate models have binding between MalE

and MalFGK2 under conditions without nucleotides and without maltose, so this experimental

data set is omitted from this comparison for simplicity.

The Standard and Alternate model are both nested within the Comprehensive model. An

F-test was used to determine whether the Comprehensive model is a significantly better fit to

the three equilibrium data sets than the Standard or Alternate models. The Comprehensive

model also has no fit to experimental data in the absence of both nucleotides and maltose,

allowing for comparison of the Standard, Alternate, and Comprehensive models using only the

three data sets described.

In order to fit the fourth experimental equilibrium data set measured in the absence of

both nucleotides and maltose, the Comprehensive and Full models are both fit to all four

equilibrium data sets (n=48). The function quenching=0 was used for the Comprehensive

model in the fourth data set in order to compare fits with the Full model. The Comprehensive

model is nested within the Full model, and an F-test is used to determine whether the additional

parameter in the Full model produces a significantly better fit to the four data sets. We consider

in this case whether the extra data set measured in the absence of nucleotides and maltose is

significant to the overall maltose uptake system.
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Chapter 4

Nonlinear Regression Fit

4.1 Equilibrium Data Fit

4.1.1 Standard Model

In the absense of hydrolysis we have the following equalities at equilibrium for the standard

model:

D = AEm
K3

, F = D
K4

, E = EmKo
M ,

A+D + F = Tt,

E +D + F + Em = Et,

where Tt =total [NdFGK2], Et =total [MalE].

From this system we obtain the following equilibrium concentration functions for each state:

D = 0.5((Etω + Tt
ω + K3γ

ω2 )±
√

(Etω + Tt
ω + K3γ

ω2 )2 − 4TtEt
ω2 )

where γ = Ko
M + 1, ω = 1 + 1

K4
,

F = D
K4

,

A = Tt −D − F ,

Em = Eo−ωD
γ , and
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E = EmKo
M .

See Appendix A for full derivation and nondimensionalization. The nondimensional equa-

tions were fit to equilibrium quenching data for experiments for comparison to the CS model.

Each data set contains twelve measurements (n=36). The data were measured under the follow-

ing conditions: 1) no nucleotides with maltose, 2) AMP-PNP with maltose, and 3) AMP-PNP

without maltose. The nondimensionalized versions of the functions below were used to fit each

data set:

1. quenching= D
φ ,

2. quenching= D+F
φ ,

3. quenching= 0 was used for comparison to Alternate model fit, as no binding occurs

between MalFGK2 and MalE for the Standard model.

The Standard model was fit for the equilibrium constants K3 and K4, and the vertical

scaling constant φ. Fit results are shown in Table 4.1 and in Figure 4.1.

4.1.2 Alternate Model

In the absense of hydrolysis we have the following equalities at equilibrium for the Alternate

model:

A = K1B,

BE = K2C,

BEm = βK2F ,

βKoF = CM ,

EM = KoEm,

A+B + C + F = Tt, and

E + Em + C + F = Et.

From this system we obtain the following equilibrium functions for concentration of each

state:
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C = 0.5[(ψξ
ν2

+ Et
ν + Tt

ν )±
√

(ψξ
ν2

+ Et
ν + Tt

ν )2 − 4TtEt
ν2

]

where ψ = K2(K1 + 1), ξ = 1 + M
Ko

, ν = 1 + σ, and σ = M
Koβ

. All other variables can be

expressed in terms of C as follows:

E = Et−νC
ξ ,

Em = EM
Ko

,

B = K2C
ξ

Et−νC ,

A = K1B , and

F = σC.

See Appendix B for full derivation and nondimensionalization. The nondimensional equa-

tions were fit to equilibrium quenching data for the same three experiments for comparison to

the Standard model and Comprehensive model. Each data set contains twelve measurements

(n=36). The data were measured under the following conditions:1) no nucleotides with mal-

tose, 2) AMP-PNP with maltose, and 3) AMP-PNP without maltose. The nondimensionalized

versions of the functions below were used to fit each data set:

1. quenching = 0 was used for comparison to the Standard mode fitl as no binding occurs

between MalFGK2 and MalE for the Alternate model ,

2. quenching=C+F
φ ,

3. quenching=C
φ .

The Alternate model was fit for equilibrium parameters K2 and β, using the assumption

that K1 << 1 in the presence of AMP-PNP, so that ψ = K2. We do this to eliminate the need

to fit K1 []. Evidence for this assumption comes from experiments indicating that the P-open

conformation of the transporter is stabilized in the presence of non-hydrolyzable nucletides [1].

Stabilized P-open transporters would correspond to k−1 << 1, where k1 is the backward rate

from the P-open to P-closed transporter states: A ← B, and K1 =
k−1
k+1

. See Table 4.1 and

Figure 4.1 for fit results.
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Model Parameter Fit Value 95% Confidence Interval

K3 6.509832 µM (-24.37, 37.39) µM

Standard K4 0.059 (-0.2696, 0.3877)

φ 34.7222 (-20.123, 89.5674)

kh 0.7514 min−1

K2 44.94 nM (30.702, 59.176) nM

β 14.3858 (9.7109, 19.0607)

Alternate φ 27.943 (26.2673, 29.6188)

h1 0.35 min−1

h2 1.2212 min−1 (1.2034, 1.2371) min−1

h3 0.9575 min−1 (0.8767, 1.0492) min−1

Table 4.1: Fit values for Standard and Alternate models. Hydrolysis rates were calculated using

experimental values found in [1] and fit values above. The value of h1 has no dependence on fit

values and therefore does not have a confidence interval.
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4.1.3 Comprehensive Model

In the absense of hydrolysis we have the following equalities at equilibrium for the Compre-

hensive model:

A = K1B,

BE = K2C,

BEm = βK2F ,

βKoF = CM ,

D = K4F ,

E + Em + C +D + F = Et, and

A+B + C +D + F = Tt.

From this system we obtain the following equilibrium functions for concentration of each

state:

C = 0.5[(ψξ
α2 + Eo

α + To
α )±

√
(ψξ
α2 + Eo

α + To
α )2 − 4ToEo

α2 ]

where σ = M
Koβ

, ξ = 1 + M
Ko

, α = 1 + σ(K4 + 1), and ψ = K2(1 + K1). All other variables

can be expressed in terms of C as follows:

F = σC,

D = K4F ,

Em = EM
Ko

,

E = Eo−αC
ξ , and

B = K2Cξ
Eo−αC .

See Appendix for full derivation and nondimensionalization. The nondimensional equations

were fit to the same equilibrium quenching data for three experiments for comparison to the

Alternate model. Each data set contains twelve measurements (n=36). The data were measured

under the following conditions:1) no nucleotides with maltose, 2) AMP-PNP with maltose, and

3) AMP-PNP without maltose. The nondimensionalized versions of the functions below were
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used to fit each data set:

1. quenching=D
φ ,

2. quenching=C+D+F
φ ,

3. quenching=C
φ .

The Comprehensive model was fit for equilibrium parameters K2, K3, and β and scaling

constant φ. To allow for the possibility that K1 is not very small in the presense of nucleotides,

and to determine the effect of the magnitude of K1 on model fits, the value of K1 was fixed at

0.01, 0.1, 1, and 100. The value of K4 was calculated using detailed balance. See Table ??, Table

??, and Figure 4.1 for fit results. We also fit equilibrium constants in the Comprehensive model

using the simpler assumption that K1 → 0 in the presense of AMP-PNP (the ATP interface

closes and is stabilized for all transporter present). See Appendix C for full derivation, and

Table 4.6 for fit results.

4.1.4 Full Model

The concentrations of each state in the Full model at equilibrium were found using the

following equalities and conservation equations:

A = K1B,

BE = K2C,

BEm = βK2F ,

βKoF = CM ,

D = K4F ,

AE = K3
δ G,

AEm = K3D,

E + Em + C +D + F +G = Et,

A+B + C +D + F +G = Tt,
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Figure 4.1: Equilibrium quenching data under 4 conditions: o= AMP-PNP (no maltose), +

= AMP-PNP (with maltose),*=no nucleotides (no maltose), .=no nucleotides (with maltose).

The Standard model (upper left) has no fit to data in the absence of maltose. The Alternate

model (upper right) has no fit in the absence of nucleotides. The Comprehensive model (lower)

has no fit under conditions of no nucleotides when maltose is absent but does fit the data when

maltose is present.
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K1 Parameter Fit Value 95% Confidence Interval

β 14.3966 (11.3702, 17.4231)

K2 44.49703 nM (35.3802, 53.61188) nM

K4 0.00076413 (0.0005, 0.001)

K3 8.3833 µM (5.4992, 11.2673) µM

0.01

φ 27.9428 (26.859, 29.0265)

h1 0.3535 min−1

h2 1.2212 min−1 (1.2072, 1.234) min−1

h3 0.9583 min−1 (0.8927, 1.0306) min−1

Table 4.2: Fit to nanodisc data for Comprehensive model parameters, forK1 = 0.01 . Hydrolysis

rates were calculated using experimental values found in [1] and fit values above. The value of

h1 has no dependence on fit values and therefore does not have a confidence interval.
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K1 Parameter Fit Value 95% Confidence Interval

β 14.4872 (11.4347, 17.5397)

K2 40.85636 nM (32.48545, 49.22545) nM

K4 0.0071 (0.0044, 0.0097)

K3 8.3833 µM (5.4992, 11.2673) µM

0.1

φ 27.9428 (26.859, 29.0265)

h1 0.3535 min−1

h2 1.2212 min−1 (1.2072, 1.234) min−1

h3 0.9643 min−1 (0.8964, 1.0392) min−1

Table 4.3: Fit to nanodisc data for Comprehensive model parameters, for K1 = 0.1. Hydrolysis

rates were calculated using experimental values found in [1] and fit values above. The value of

h1 has no dependence on fit values and therefore does not have a confidence interval.
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K1 Parameter Fit Value 95% Confidence Interval

β 14.9625 (11.766, 18.159)

K2 22.471 nM (17.867, 27.074) nM

K4 0.0401 (0.0248, 0.0554)

K3 8.3833 µM (5.4992, 11.2673) µM

1

φ 27.9428 (26.859, 29.0265)

h1 0.7 min−1

h2 1.2212 min−1 (1.2072, 1.234) min−1

h3 0.9959 min−1 0.9156, 1.084) min−1

Table 4.4: Fit to nanodisc data for Comprehensive model parameters, for K1 = 1 . Hydrolysis

rates were calculated using experimental values found in [1] and fit values above. The value of

h1 has no dependence on fit values and therefore does not have a confidence interval.
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β 14.9625 (11.766, 18.159)

K2 0.44497 nM (0.353802, 0.536119) nM

K4 0.0827 (0.0498, 0.1156)

K3 8.3833 µM (5.4992, 11.2673) µM

100

φ 27.9428 (26.859, 29.0265)

h1 35.35 min−1

h2 1.2212 min−1 (1.2072, 1.234) min−1

h3 1.0367 min−1 ( 0.9392, 1.1431) min−1

Table 4.5: Fit to nanodisc data for Comprehensive model parameters, for K1 = 100. Hydrolysis

rates were calculated using experimental values found in [1] and fit values above. The value of

h1 has no dependence on fit values and therefore does not have a confidence interval.

K1 Parameter Fit Value 95% Confidence Interval

β 14.3856 (11.3623, 17.4089)

K2 44.942 nM (35.734, 54.148) nM

All Values

K3 8.3833 µM (5.4992, 11.2673) µM

φ 27.9428 (26.859, 29.0265)

Table 4.6: Fit to Comprehensive model with the assumption that K1 → 0. The parameter

K4 = βK2K1

K3
using detailed balance. The hydrolysis rate h1 is also a function of K1 as shown

in Section 4.3. As K1 → 0, h1 → 0.35 min−1.
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Figure 4.2: Equilibrium fit for Comprehensive model (top) and Full model (bottom). Equilib-

rium quenching data under 4 conditions: o= AMP-PNP (no maltose), + = AMP-PNP (with

maltose), *=no nucleotides (no maltose), .=no nucleotides (with maltose).
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F = σC, where σ = M
Koβ

and

Em = EM
Ko

.

We assume that in the absense of nucleotides, we only have P-closed transporter states:

A+D +G = Tt,

E + Em +D +G = Et.

Then,

G = 0.5[(K3γ
ξ2δ

+ Et
ξ + Tt

ξ )±
√

(K3γ
ξ2δ

+ Et
ξ + Tt

ξ )2 − 4TtEt
ξ2

], and

D = M
Koδ

G, where ξ = 1 + M
Koδ

.

See Appendix for full derivation and nondimensionalization. The nondimensional equations

were fit to the equilibrium quenching data for all four experimental conditions for compari-

son to the Alternate model. Each data set contains twelve measurements (n=48). The data

were measured under the following conditions:1) no nucleotides with maltose, 2) AMP-PNP

with maltose, 3) AMP-PNP without maltose, and 4) no nucleotides without maltose. The

nondimensionalized versions of the functions below were used to fit each data set:

1. quenching=D+G
φ ,

2. quenching=C+F
φ ,

3. quenching=C
φ ,

4. quenching=G
φ .

The Full model was fit for equilibrium parameters K2, K3, β, δ, and scaling constant φ.

Experimental data were insufficient to fit K1, therefore the value of K1 was fixed at 0.01 and

the value of K4 was calculated using detailed balance. See Table 4.7 and Figure 4.2 for fit

results.
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Parameter Fit Value|K1=0.01 95% Confidence Interval

β 14.3914 (11.5781, 17.2046)

δ 2.2197 (1.3961, 3.0433)

K2 44.888 nM (36.334, 53.44) nM

K4 0.000767477 (0.0005, 0.001)

K3 8.417206 µM (5.713, 11.12141) µM

K5 = K3
δ 0.000118374 (0.0000887903, 0.00146) µM

φ 27.9523 (26.9445, 28.9601)

Table 4.7: Fit to Full model parameters. Here K4 again depends on K1 using detailed balance,

and h1 depends on K1.

4.2 Time-Dependent Data Fit

4.2.1 In the limit K1 → 0

If we assume that AMP-PNP closes and stabilizes the ATP interface for all transporters

present (K1 → 0), we can fit the value of k+2 using experimental time course of the quenching

data in the presence of AMP-PNP (no maltose). The result relies upon our fit value of K2 =

44.942 nM, where K2 was also fit under the assumption that K1 → 0. In the absence of maltose

and of P-closed MalFGK2, we have the following system of ordinary differential equations

B + C = Tt,

C + E = Et,

dB
dt = −k+2 BE + k−2 C

dC
dt = k+2 BE − k

−
2 C
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dE
dt = −k+2 BE + k−2 C

which can be simplified to give:

dC
dt = k+2 (Tt − C)(Et − C)− k−2 C

C(t) = c+(1−ebk
+
2
t
)

1− c+

c−
e
bk+

2
t

,

where, using Et = 20 nM, Tt = 90 nM:

b =
√

(110 +K2)2 − 7200

c+ = 110+K2+b
2

c− = 110+K2−b
2 .

The fit to time course data gives k+2 = 0.0324 (nm)−1(min)−1, with 95% confidence interval

(0.0289, 0.0359) and sum of squared residual error (SSR) 0.0055, using K2 = 44.942 nM. See

Figure 4.3 for fit to time course data.

4.2.2 Fixed K1, k
+
1

We now consider the less simplified case where both P-open and P-closed transporters can

occur in the presence of AMP-PNP (K1 6= 0). In the absence of maltose, and in the presence of

AMP-PNP to block hydrolysis, we have the following system of ordinary differential equations

for the Comprehensive model:

dA
dt = −k+1 A+ k−1 B

dB
dt = k+1 A− k

−
1 B − k

+
2 BE + k−2 C

dC
dt = −k−2 C + k+2 BE

A+B + C = Tt

C + E = Et

Substituting A = Tt −B − C, and E = Et − C into the above system, we obtain:

dB
dt = k+1 (Tt −B − C)− k−1 B − k

+
2 B(Et − C) + k−2 C
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dC
dt = −k−2 C + k+2 B(Et − C).

We let b, c, and τ be nondimensional variables such that b = B
Et

, c = C
Et

, τ = tk+1 , κ =
k+2
k+1

,

κ1 = K2κ, κ2 = κEt:

db
dτ = (ρ− b− c)−K1b− κ2b(1− c) + κ1c

dc
dτ = −κ1c+ κ2b(1− c)

We fit k+2 for a fixed magnitude of k+1 and K1, and fit value K2 = 44.49703 nM. See Figure

4.3 and Table 4.8 for fit results. It was necessary to fix both k+1 and K1 rather than allowing

the regression to fit the best values, as the one time-dependent quenching data set was only

sufficient to fit k+2 and the quenching vertical scaling constant φ. For each fixed K1, we observed

how the magnitude of k+1 changes the fit value of k+2 and the associated SSR for the fit.

4.3 ATPase Data Fit

To calculate the hydrolysis rates in each model, the following functions were used where B,

C, F are as written above.

h1B|Et=0,M=0 = R1

h1B|M=0 + h2C|M=0 = R2

h1B + h2C + h3F = R3

where R1,2,3 are the experimental NdFGK2 ATPase rates measured in the presense of 1) No

MalE and no maltose, 2) MalE without maltose, 3) MalE and maltose. Fit values of equilibrium

parameters were used to calculate hydrolysis rates and their confidence intervals for each model.
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K1 k+1 min−1 (fixed) k+2 nm−1 min−1 (fit) SSR

0.01 1 1.983 2.1638 ∗ 10−4

10 0.0927 5.1046 ∗ 10−5

102 0.0356 1.2705 ∗ 10−5

103 0.0327 1.3475 ∗ 10−5

104 0.0324 1.367 ∗ 10−5

0.1 1 3.6924 1.8126 ∗ 10−4

10 0.0932 4.9812 ∗ 10−5

102 0.0385 1.2669 ∗ 10−5

103 0.0356 1.3492 ∗ 10−5

104 0.0353 1.3672 ∗ 10−5

1 1 3.2416 6.057 ∗ 10−5

10 0.1110 3.3526 ∗ 10−5

102 0.0674 1.2850 ∗ 10−5

103 0.0645 1.3581 ∗ 10−5

104 0.0642 1.3681 ∗ 10−5

100 1 7.4885 2.0009 ∗ 10−5

10 3.4511 1.3791 ∗ 10−5

102 3.2609 1.3695 ∗ 10−5

103 3.2429 1.3693 ∗ 10−5

104 3.4686 1.422 ∗ 10−5

Table 4.8: Fit of k+2 for fixed K1, k
+
1 . Values of k+1 < 1 gave fits to the data with higher SSR

than for k+1 > 1. Best fits to the data occured for k+1 = 102 min−1. Furthermore, the best fit

occured for K1 = 0.1, k+1 = 102 min−1, k+2 = 0.0385 nm−1 min−1.
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Figure 4.3: Time-dependent fit.
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Chapter 5

Model Comparison

To analyze the model fits to equilibrium quenching data, we compare the sum of squared

residual errors (SSR) for the various models. We also determine whether the additional terms

in the Comprehensive model and Full model are significant to the data when compared to

their nested models. In our first comparison, we consider the fit to data sets from quenching

experiments measured under three conditions: AMP-PNP only, AMP-PNP with maltose, and

no nucleotides with maltose (n=36), as shown in Figure 4.1. The Standard, Alternate, and

Comprehensive model fits are compared for this first data set. In our second comparison, we

consider the Comprehensive model and Full model fits to data sets measured under all four

experimental conditions, as shown in Figure 4.2. This includes quenching data measured in the

absence of nucleotides and without maltose present, which is omitted from the first comparison

as only the Full model has quenching under conditions without nucleotides and without maltose.

5.1 Standard vs. Alternate

Both the Alternate model and Standard model have two equilibrium constants fit to quench-

ing data, therefore we simply compare the SSR for the model fits of these parameters. The

Alternate model is a better fit than the Standard model as it has a lower SSR of 9.8918 ∗ 10−5

as seen in Table 5.1. This result is not surprising as the Standard model does not allow for

the binding of unliganded MalE to the transporter, and is therefore insufficient to explain

the quenching experiment performed in the presence of AMP-PNP, without maltose, in which

strong quenching was observed. The Alternate model does not allow for the binding of MalE

to maltose in the absence of nucleotides and therefore contradicts the quenching experimental
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results performed in the absence of nucleotides.

Since the equilibrium quenching measured was less strong in the absence of nucleotides

compared with AMP-PNP as shown in Figure 3.1, the error contributed to the Alternate model

for omitting this reaction was small compared with the error contributed to the Standard model

for omitting a MalE-MalFGK2 quenching reaction.

Model Fit Parameters SSR1 SSR2

Standard K3,K4 0.0063 0.0065

Alternate K2, β 9.8918 ∗ 10−5 3.2017 ∗ 10−4

Comprehensive K2, β,K3 4.0025 ∗ 10−5 2.67 ∗ 10−4

Full K2, β,K3, δ 4.7432 ∗ 10−5

Table 5.1: Parameters fit to equilibrium nanodisc quenching data. SSR1 gives the sum of the

squared residual error (SSR) for the model fit to 3 experiments in conditions of AMP-PNP

(with and without maltose) and without nucleotides (with maltose), and SSR2 gives the SSR

for model fits to all 4 experiments, including conditions without nucleotides (no maltose). The

Full model has too many parameters to fit to only 3 experiments (therefore it has no SSR1).

5.2 Alternate vs. Comprehensive

Our analysis of the Standard and Alternate model fits above to the equilibrium data show

that the Comprehensive model, which includes all reactions from both models, will better

explain the data measured in all three conditions described above. Comparing fits for AMP-

PNP quenching experiments only, the Comprehensive model and Alternate model fit the data

with the same SSR, indicating that the additional parameter in the Comprehensive model is

not significant to the data when excluding data without nucleotides.

However, when we include the additional data set from the no nucleotides experiment in

the presence of maltose, the Comprehensive model is clearly a better fit as seen in Figure

4.1. We use an F-test to compare the SSR for the fits as seen in Appendix E and find there

is a statistically significant advantage of the Comprehensive model over the Alternate model
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in predicting the experimental quenching data for the three data sets. The parameter K3,

the equilibrium constant for binding liganded MalE to the closed transporter, is the additional

equilibrium parameter in the Comprehensive model compared with the nested Alternate model.

Equilibrium constant K3 is found to be significant to the data (p < 0.0001). See Appendix E

for analysis. We conclude that the Comprehensive model is a better fit to the data than the

Alternate model, and that K3 6= 0 when comparing fits to experimental data measured in the

presence of AMP-PNP, AMP-PNP (with maltose), and no nucleotides (with maltose).

5.3 Comprehensive vs. Full

We now compare the Full and Comprehensive models for the equilibrium parameter fits

to all four quenching data sets as shown in Figure 4.2. See Table 5.1 for the SSR for each

of these model fits. The Full model and Comprehensive model are fit to all 4 quenching

experiments including the no nucleotides (no maltose) experiment. See Appendix E for analysis.

We conclude that the Full model is a better fit to the data than the Comprehensive model when

considering all four equilibrium experiments in the absence of nucleotides and in the presence

of AMP-PNP. We conclude that the equilibrium parameter δ is nonzero in the reaction network

of the maltose uptake system given by the Full model (p < 0.0001).
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Chapter 6

Maltose Transport in

Comprehensive Model

6.1 Analysis of Flux

Using nonlinear regression model fits we have shown that the Full and Comprehensive

models provide superior fits to equilibrium quenching data compared with the Standard and

Alternate models. Both the Full and Comprehensive models contain the following pathways for

maltose transport: the standard, alternate, and open pathways.

Along the standard pathway, liganded MalE binds to the P-closed transporter to initiate

maltose transport. The open pathway of transport is initiated by the binding of liganded MalE

to the P-open transporter. The reverse reaction has been described as an autoregulatory step

through which transport is inhibited at high maltose concentration. The alternate pathway of

transport is for unliganded MalE to selectively bind the P-open transporter forming a high-

affinity complex, and for maltose to subsequently bind and be imported to the cytosol.

We use experimental nanodisc data measured in the presence of ATP and maltose to analyze

the flux through of each of these three pathways [1]. The Comprehensive model is used for this

analysis as the available data are insufficient to estimate all of the additional kinetic parameters

in the Full model shown in Table 2.4.

The ordinary differential equation system for the Comprehensive model is analyzed using

equilibrium constants K3, K2, β and hydrolysis rates h1, h2, and h3, for the Comprehensive

model as fit by nonlinear regression (see Chapter 4). The fit value for the binding rate of MalE to
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P-open transporter k+2 from the time-dependent data as well as the estimate of the magnitude of

k+1 were used for fixed K1 values. Kinetic rates k+3 (binding of P-closed transporter to liganded

MalE), and k+4 (conformation change from P-closed to P-open with Em bound) are unknown.

The binding rate of MalE to maltose, k+o , has been measured experimentally at approximately

10−3 nm−1 min−1 [1]. The proportion of the equilibrium constant β applied to each of the

associated backward rates, βo, β2, as seen in Table 2.4 are unknown.

We want to determine the dominant pathway of maltose transport in the Comprehensive

model for various cases of our unknown forward rates. In order to solve the ODE system at

steady state, we take an asymptotics approach.

Using our fit hydrolysis rates, we have h1 < h3 < h2, and we assume that the unknown

forward rate k+1 is large such that h1 << k+1 . We estimated the magnitude of k+1 by choosing

the fixed value with lowest SSR in the time-dependent fit (see Section 4.2.2). This analysis

gives k+1 that is very large compared to h1, for all fixed K1 values. We divide the steady state

ODE system through by k+1 and regroup parameters. We let ε = h1
k+1

be a small parameter. We

then let γ = k+o
k+1

, α =
k+2
k+1

, δ =
k+3
k+1

, ξ =
k+4
k+1

. We let each concentration A, B, C, D, F , E, Em be

written as an asymptotic solution, A = Ao + εA1, B = Bo + εB1, ...., Em = Emo + εEm1, and

subsitute into the steady state ODE system. The resulting system and expressions for values

of A,B, ..., Em, can be found in Appendix F. They depend on k+j , j = 0, 1, 2, 3, 4, the kinetic

binding rates, the solutions to the steady state system at equilibrium found in Appendix C,

and on the equilibrium constants, Ki.

We now calculate the flux through each pathway of the full model. We first label the fluxes

as follows:

A
f1→ B

f2→ C
f3→ F

g3a→, f3 = alternate pathway flux

A
f5→ D

f5→ F
g3s→ , f5=standard pathway flux

B
f4→ F

g3o→, f4 = open pathway flux

B
g1→ A

C
g2→ A

At steady state we have the following system of equations, where g1 = h1B, g2 = h2C, g3 = h3F ,

and g3 = g3s + g3a + g3o:

f1 = f4 + f2 + g1
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f2 = f3 + g2

f3 + f4 + f5 = g3.

We can write the fluxes f2, f4 as the following differences:

f2 = k+2 BE − k
−
2 C

f4 = β2k
+
2 BEm − β2βk

−
2 F

Substitution of our asymptotic solutions gives the following approximation of the fluxes at

steady state:

f2 = k+2 (Bo + εB1)(Eo + εE1)− k−2 (Co + εC1)

f3 = f2 − g2

f4 = β2k
+
2 (Bo + εB1)(Emo + εEm1)− β2βk−2 (Fo + εF1).

f5 = g3 − f4 − (f2 − g2)

The concentrations B1, E1, C1, F1, Em1 are found for fixed K1 = {0.01, 0.1, 1, 100} and for

the fixed k+1 value found to have the lowest SSR as shown in Table 4.6. All related equilibrium

fit values and k+2 fit value are used for each fixed K1.

The remaining unknowns for the flux calculation include k+3 , k+4 , βo, and β2. The total

maltose transport was calculated for fixed k+o , βo and β2, where:

C +M
βok

+
o→ F , and the reverse F

βoβk
−
o→ C +M

B + Em
β2k

+
2→ F , and the reverse F

β2βk
−
2→ B + Em.

The parameters βo, β2 control the proportion of the equilibrium fit value β that is applied to

the forward and backward rates for the above reactions. Thus we expect these two parameters

to influence maltose flux through the alternate pathway (βo) and the open pathway (β2). For

example, fixing βo = β2 = 1 assumes that only the backward kinetic rates shown above are

affected by the fit equilibrium parameter β. We consider all the fixed cases such that βo =

0.01, 1, 100 and β2 = 0.01, 1, 100, to analyze the effect on the maltose flux along each pathway.

The direction and magnitude of the fluxes through each pathway were found to be relatively

insensitive to the parameters k+3 and k+4 , and to the fixed values of βo and β2. An experimental
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value for k+o , the forward binding rate of MalE to maltose, was used to compute the scaled flux

through each pathway. The flux was not sensitive to values of k+o greater than or equal to 10−4

nm−1 min−1, and the experimental value of k+o = 10−3 nm−1 min−1 falls within this range [1].

The standard pathway was negative for all fixed K1 values less than or equal to 1, as seen

in Figure 6.1. The open pathway was the dominant pathway of maltose transport for fixed

K1 ≤ 1, and the alternate pathway makes a relatively small contribution to overall transport.

The standard pathway was positive and the dominant pathway of maltose transport for the

fixed case of K1 = 100, as seen in Figure 6.2. For large K1 the open pathway is still positive,

and the alternate pathway has a small negative magnitude.

Figure 6.1: The scaled flux in the Comprehensive model, for fixed K1 = 0.1 and k+o = 10−3

nm−1 min−1. For all fixed K1 ≤ 1, the open pathway (dark gray) was the dominant pathway,

the standard pathway (light gray) was negative, and the alternate pathway (black) makes a

small contribution to overall maltose transport.

Figure 6.2: The scaled flux in the Comprehensive model, for fixed K1 = 100 and k+o = 10−3

nm−1 min−1. For large K1 only, the standard model (light gray) was the dominant pathway

of maltose transport. The alternate pathway (black) is negative for large K1, and the open

pathway (dark gray) is positive.
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6.2 Further ATPase Results

Experiments have shown that MalE can inhibit transport in excess when maltose is held

at sub-stoichiometric levels [7]. We replicate this result in the Comprehensive model as shown

in Figure 6.3. Experiments have also shown that MalE increases the basal ATPase activity

in NdFGK2 (MalFGK2 in nanodiscs) by 3-fold. These experiments also found that the in the

presence of maltose, an inhibition of ATPase activity was observed in nanodiscs which was not

observed in liposomes [1]. We replicate these results in the Comprehensive model as shown in

Figure 6.3.

Figure 6.3: Comprehensive model results.(Top Left) Basal steady-state ATPase rate in the

absence of MalE and in the absence of maltose. (Top Right) Total steady-state ATPase rate in

the presence of 2 µM MalE, without maltose (black) and ATPase rate of unbound transporter

state B → A only in the presence of 2 µM MalE (purple). (Bottom Left) Maltose transport

inhibited for large concentrations of MalE, for fixed maltose concentration 2 µM. (Bottom

Right) ATPase activity is inhibited in the presence of maltose, for fixed MalE concentration 2

µM.
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Chapter 7

Discussion

Experimental data in nanodiscs have shown that the standard model of maltose transport,

in which liganded MalE binds to the closed transporter to trigger a conformation change and

deliver maltose, is insufficient to explain all binding interactions observed between MalE and

MalFGK2 in the absence of hydrolysis. Nonlinear regression fit analysis of four mathematical

models has shown that models which include binding of unliganded MalE to the transporter

produce significantly better fits to equilibrium data obtained from nanodisc experiments.

Additionally, it was shown that omission of the standard pathway of maltose transport in

the Alternate model did not result in a better fit to equilibrium data when compared with

the Comprehensive model. This indicates that the Alternate model is insufficient to explain

experimental binding data in the absence of nucleotides. The Full model was shown to be a

significantly better fit to equilibrium nanodisc data than the three models nested within it, as it

provides binding reactions for MalE and maltose under all experimental conditions considered.

The nonlinear regression analysis confirms that a complex network of binding interactions

can occur between the components of the maltose uptake system in E.coli when hydrolysis is

blocked. The three possible pathways of maltose transport available within this network were

analyzed using the Comprehensive model at steady state in the presence of ATP.

The direction and quantity of maltose flux through each available pathway was computed.

Results were relatively insensitive to values of the unknown parameters k+3 and k+4 , and to fixed

values of βo and β2. The standard pathway was negative for fixed values of the equilibrium

constant between P-open and P-closed conformations of the transporter, K1, less than or equal

to 1. For large K1, the standard pathway was positive and the major pathway of maltose
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transport.

The fit analysis to nanodisc time course data gave the best fit for fixed value K1 = 0.1.

For K1 = 0.1, and for all fixed K1 ≤ 1, the open pathway was the major pathway of maltose

transport. A relatively small flux of maltose was calculated along the alternate pathway. The

negative flux along the standard pathway calculated in this range of small K1 could represent

a means of regulating maltose uptake at high concentrations, as proposed [1]. In reverse,

the standard pathway involves binding of MalE to the maltose in the transporter pocket and

subsequent closing of the transporter. Liganded MalE subsequently dissociates from the P-

closed transporter, removing and regulating maltose import.

The open pathway of maltose transport would rely on an affinity of MalE for the P-open

transporter, as observed in nanodisc quenching experiments performed under hydrolysis block-

ing conditions [1]. Perhaps this high affinity encourages the MalE-MalFGK2 intermediate com-

plex. The dominance of the open pathway indicates that the binding of ATP to the nucleotide-

binding domain may close the transporter prior to the association of liganded MalE. We con-

clude that liganded MalE may selectively bind the P-open conformation of MalFGK2 in the

presence of nucleotides to initiate maltose transport, and that the standard pathway may in

fact occur in reverse as a mode of regulating maltose import at high concentrations. We also

conclude that some small amount of maltose import may occur along the alternate pathway.

For this analysis, an enhanced Michaelis-Menten formalism was used to fit ODE model

parameters to experimental equilibrium data. Furthermore, the flux through the transport sys-

tem was calculated using asymptotic analysis, fit parameter values, and experimentally mea-

sured values. Moreover, two apparently distinct models were compared and integrated, and

the fluxes through potential transport pathways were calculated and compared. This type of

analysis could be generalized to other biochemical transport systems to provide insight into

detailed binding networks using biochemical data, and to distinguish between possible trans-

port pathways in cases where available data may conflict with accepted models of biochemical

transport.
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Appendix A

Standard Model

The concentrations of each state in the Standard model at equilibrium were found using the

following equalities and conservation equations:

D = AEm
K3

, F = D
K4

, E = EmKo
M

A+D + F = To

E +D + F + Em = Eo

Now,

A = To −D − D
K4

= To −D(1 + 1
K4

)

E + Em +D + F = Eo

EmKo
M + Em +D + D

K4
= Eo

Em(KoM + 1) +D(1 + 1
K4

) = Eo

let γ = Ko
M + 1, ω = 1 + 1

K4
, then

γEm + ωD = Eo

Em = Eo−ωD
γ

K3D = AEm

K3D = (To − ωD)(Eo−ωDγ )
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K3Dγ = (To − ωD)(Eo − ωD)

K3Dγ = ToEo − ωDEo − ωDTo + ω2D2

0 = ToEo − ωDEo − ωDTo + ω2D2 −K3Dγ

0 = ω2D2 −D(ωEo + ωTo +K3γ) + ToEo

0 = D2 −D(Eoω + To
ω + K3γ

ω2 ) + ToEo
ω2

D = 0.5(b±
√
b2 − 4c)

where b = Eo
ω + To

ω + K3γ
ω2 , c = ToEo

ω2

Nondimensional Standard Model

Let D = dEo, A = aEo, F = fEo, E = eEo, Em = jEo

where d, a, f, e, and j are dimensionless variables. Let ρ = To
Eo
.

Then:

d = 0.5( b
Eo
±

√
b
Eo

2 − 4 c
E2
o
)

where:

b
Eo

= 1
ω + ρ

ω +
K∗

3γ
ω2

c
E2
o

= ρ
ω2 .

a = ρ− ωd

f = d
K4

j = 1−ωd
γ

e = jKo
M
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Appendix B

Alternate Model

The concentrations of each state in the Alternate model at equilibrium were found using

the following equalities and conservation equations:

A = K1B

BE = K2C

BEm = βK2F

βKoF = CM

EM = KoEm

A+B + C + F = Tt

E + Em + C + F = Et

E + EM
Ko

+ C + M
Koβ

C = Eo

ξE + νC = Eo, where ξ = 1 + M
Ko

, ν = 1 + σ

E = Eo−νC
ξ

Em = EM
Ko

B = K2C
ξ

Eo−νC

A = K1B
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F = σC

Now

A+B + C + F = To

K1B +B + C + σC = To

B(K1 + 1) + C(1 + σ) = To

Let ψ = K2(K1 + 1),

ψCξ
Eo−νC + νC = To

ψCξ + νC(Eo − νC) = To(Eo − νC)

ψCξ + νEoC − ν2C2 = ToEo − νToC

ψCξ + νEoC − ν2C2 − ToEo + νToC = 0

−ν2C2 + C(ψξ + νEo + νTo)− ToEo = 0

C2 − C(ψξ
ν2

+ Eo
ν + To

ν ) + ToEo
ν2

= 0

C = 0.5[(ψξ
ν2

+ Eo
ν + To

ν )±
√

(ψξ
ν2

+ Eo
ν + To

ν )2 − 4ToEo
ν2

]

Nondimensional Alternate Model

Let C = cEo, B = bEo, A = aEo, F = fEo, Em = jEo, E = eEo where c,b,a,f,j, and e are

dimensionless variables. Let ρ = To
Eo

, η = ψ
Eo

.

Then:

c = 0.5[( ηξ
ν2

+ 1
ν + ρ

ν )±
√

( ηξ
ν2

+ 1
ν + ρ

ν )2 − 4ρ
ν2

]

f = σc
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Appendix C

Comprehensive Model

The concentrations of each state in the Comprehensive model at equilibrium were found

using the following equalities and conservation equations:

A = K1B

BE = K2C

BEm = βK2F

βKoF = CM

D = K4F

E + Em + C +D + F = Eo

A+B + C +D + F = To

F = σC, where σ = M
Koβ

Em = EM
Ko

E + EM
Ko

+ C +K4σC + σC = Eo

E(1 + M
Ko

) + C(1 +K4σ + σ) = Eo

ξE + αC = Eo, where ξ = 1 + M
Ko

, α = 1 + σ(K4 + 1)

E = Eo−αC
ξ
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B = K2Cξ
Eo−αC

Now

A+B + C +D + F = To

K1B +B + C +K4σC + σC = To

B(K1 + 1) + C(1 +K4σ + σ) = To

Let ψ = K2(K1 + 1)

ψCξ
Eo−αC + αC = To

ψCξ + αC(Eo − αC) = To(Eo − αC)

ψCξ + αEoC − α2C2 = ToEo − αToC

ψCξ + αEoC − α2C2 − ToEo + αToC = 0

−α2C2 + C(ψξ + αEo + αTo)− ToEo = 0

C2 − C(ψξ
α2 + Eo

α + To
α ) + ToEo

α2 = 0

C = 0.5[(ψξ
α2 + Eo

α + To
α )±

√
(ψξ
α2 + Eo

α + To
α )2 − 4ToEo

α2 ]

Let κ = σ(1 +K4)

Nondimensional Full Model

Let C = cEo, B = bEo, A = aEo, F = fEo, D = dEoEm = jEo, E = eEo where c,b,d,a,f,j,

and e are dimensionless variables. Let ρ = To
Eo

, η = ψ
Eo

.

Then:

c = 0.5[( ηξ
α2 + 1

α + ρ
α)±

√
( ηξ
α2 + 1

α + ρ
α)2 − 4ρ

α2 ]

f = σc

d = K4σc

No nucleotides derivation:
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A = K3D
Em

E = EmKo
M

A+B + C +D + F = To

K3D
Em

+ 0 + 0 +D + 0 = To

K3dEo
jEo

+ dEo = To

K3d
j + dEo = To

K∗
3d
j + d = ρ, where K∗

3 = K3
Eo

E + Em + C +D + F = Eo

EmKo
M + Em + 0 +D + 0 = Eo

Em(KoM + 1) +D = Eo

jEo(
Ko
M + 1) + dEo = Eo

j(KoM + 1) + d = 1, let Ko
M + 1 = ω

jω + d = 1

j = 1−d
ω

K∗
3ωd
1−d + d = ρ

K∗
3ωd+ d(1− d) = ρ(1− d)

K∗
3ωd+ d− d2 = ρ− ρd

K∗
3ωd+ d− d2 − ρ+ ρd = 0

−d2 + d(K∗
3ω + 1 + ρ)− ρ = 0

d2 − d(K∗
3ω + 1 + ρ) + ρ = 0

d = 0.5((K∗
3ω + 1 + ρ)−

√
(K∗

3ω + 1 + ρ)2 − 4ρ)

Other Model with assumption that AMP-PNP closes interface
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K4,K1 → 0, therefore A→ 0 and D → 0

1)AMP-PNP: B + C = To

E + C = Eo, E = Eo − C

K2C
E + C = To

K2C + EC = ETo

K2C + (Eo − C)C = (Eo − C)To

K2C + EoC − C2 = EoTo − ToC

−C2 + C(K2 + Eo + To)− EoTo = 0

C2 − C(K2 + Eo + To) + EoTo = 0

(cEo)
2 − cEo(K2 + Eo + To) + EoTo = 0

c2 − c(K∗
2 + 1 + ρ) + ρ = 0

c = (K∗
2 + 1 + ρ)−

√
b2 − 4ρ

2)AMP+Malt: B + C + F = To

E + Em + C + F = Eo

E + EM
Ko

+ C + σC = Eo

E = Eo−C(1+σ)
γ

K2C
E + C + σC = To

K2C + C(Eo−C(1+σ)
γ )(1 + σ) = To(

Eo−C(1+σ)
γ )

K2C + EoC(1+σ)
γ − C2(1+σ)2

γ = ToEo
γ − CTo(1+σ)

γ

K2C + EoC(1+σ)
γ − C2(1+σ)2

γ + CTo(1+σ)
γ − ToEo

γ = 0

−C2 (1+σ)
2

γ + C(K2 + Eo(1+σ)
γ + To(1+σ)

γ )− ToEo
γ = 0

C2(1 + σ)2 − C(K2γ + Eo(1 + σ) + To(1 + σ)) + ToEo = 0
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C2 − C( K2γ
(1+σ)2

+ Eo
(1+σ) + To

(1+σ)) + ToEo
(1+σ)2

= 0

Nondimensionalize:

(cEo)
2 − cEo( K2γ

(1+σ)2
+ Eo

(1+σ) + To
(1+σ)) + ToEo

(1+σ)2
= 0

c2 − c( K∗
2γ

(1+σ)2
+ 1

(1+σ) + ρ
(1+σ)) + ρ

(1+σ)2
= 0

c = 0.5[(
K∗

2γ
(1+σ)2

+ 1
(1+σ) + ρ

(1+σ))−
√
b2 − 4ρ

(1+σ)2
]

quenching: c+f
φ = c(1+σ)

φ
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Appendix D

Full Model

The concentrations of each state in the Full model at equilibrium were found using the

following equalities and conservation equations:

A = K1B

BE = K2C

BEm = βK2F

βKoF = CM

D = K4F

AE = K3
δ G

AEm = K3D

E + Em + C +D + F +G = Eo

A+B + C +D + F +G = To

F = σC, where σ = M
Koβ

Em = EM
Ko

For the Full model we must use the stronger assumption that AMP-PNP stabilizes the

P-open conformation in order to fit the data.
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In the absense of nucleotides, we assume we have only P-closed states:

67



A+D +G = Tt

E + Em +D +G = Et

A = K3
δEG

D = M
δKo

G

K3
δEG+ M

δKo
G+G = Tt

E + EM
Ko

+ M
δKo

G+G = Et

E(1 + M
Ko

) +G(1 + M
δKo

) = Et,

Eγ +Gξ = Et, where ξ = 1 + M
δKo

, γ = 1 + M
Ko

E = Et−ξG
γ

K3
δEG+ M

δKo
G+G = Tt

K3
δ

γ
Et−ξGG+Gξ = Tt

K3γG+Gξδ(Et − ξG) = Ttδ(Et − ξG)

K3γG+GξδEt − ξ2G2δ − TtδEt + TtδξG = 0

ξ2δG2 −G(K3γ + ξδEt + Ttδξ) + TtEtδ = 0

G2 −G (K3γ+ξδEt+Ttδξ)
ξ2δ

+ TtEtδ
ξ2δ

= 0

G = 0.5[(K3γ
ξ2δ

+ Et
ξ + Tt

ξ )±
√

(K3γ
ξ2δ

+ Et
ξ + Tt

ξ )2 − 4TtEt
ξ2

]

Nondimensionalize: let g, d be nondimensional variables such that G = gEt, D = dEt and

let ρ = Tt
Et

, K∗
3 = K3

Et
. Then,

g = 0.5[(
K∗

3γ
ξ2δ

+ 1
ξ + ρ

ξ )±
√

(
K∗

3γ

ξ2δ
+ 1

ξ + ρ
ξ )2 − 4ρ

ξ2
]

d = M
δKo

g

quenching: g+d
φ =

g(1+ M
δKo

)

φ .

In the presence of AMP-PNP, we assume that we have only P-open states at equilibrium.

Therefore in the presense of AMP-PNP the Full model is identical to the Comprehensive model.
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Appendix E

F-test

SSRAlternate 9.8918 ∗ 10−5

SSRComprehensive 4.0025 ∗ 10−5

n 36

F 47.085

v1 1

v2 32

F0.00001,v1,v2 27.41602865

p 0.00000009

SSRComprehensive 2.6127 ∗ 10−4

SSRFull 4.7432 ∗ 10−5

n 48

F 193.8572

v1 1

v2 43

F0.00001,v1,v2 25.03720916

p < 10−8

Table E.1: F-test values for comparing the Alternate and Comprehensive models (left) and for

comparing the Comprehensive and Full models (right).
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Appendix F

Flux Calculation

The Comprehensive Model has the following ODE system, with β = β1
βo

, β = β3
β2

.

dA
dt = −k+1 A+ k−1 B − k

+
3 AEm + k−3 D + h1B + h2C + h3F

dB
dt = k+1 A− k

−
1 B − k

+
2 BE + k−2 C − β2k

+
2 BEm + β3k

−
2 F − h1B

dC
dt = −k−2 C + k+2 BE − βok+o CM + β1k

−
o F − h2C

dD
dt = k+3 EmA− k

−
3 D − k

+
4 D + k−4 F

dF
dt = β2k

+
2 BEm − β3k

−
2 F + k+4 D − k

−
4 F − h3F + βok

+
o CM − β1k−o F

dE
dt = −k+o EM + k−o Em − k+2 BE + k−2 C + h2C + h3F

dEm
dt = −k+3 EmA+ k−3 D − β2k

+
2 BEm + β3k

−
2 F + k+o EM − k−o Em

A+B + C +D + F = Tt

E + Em + C +D + F = Et

We now consider the steady state system with hydrolysis:

0 = −k+1 A+ k−1 B − k
+
3 AEm + k−3 D + h1B + h2C + h3F

0 = k+1 A− k
−
1 B − k

+
2 BE + k−2 C − β2k

+
2 BEm + β3k

−
2 F − h1B

0 = −k−2 C + k+2 BE − βok+o CM + β1k
−
o F − h2C
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0 = k+3 EmA− k
−
3 D − k

+
4 D + k−4 F

0 = β2k
+
2 BEm − β3k

−
2 F + k+4 D − k

−
4 F − h3F + βok

+
o CM − β1k−o F

0 = −k+o EM + k−o Em − k+2 BE + k−2 C + h2C + h3F

0 = −k+3 EmA+ k−3 D − β2k
+
2 BEm + β3k

−
2 F + k+o EM − k−o Em

A+B + C +D + F = Tt

E + Em + C +D + F = Et

Using our fit hydrolysis rates, we have h1 < h3 < h2, and we assume that the unknown

forward rate k+1 is large such that h1 << k+1 . Our previous analysis of k+1 in the time course

quenching data supports this assumption that k+1 is large compared to h1, for all fixed K1

values. We divide the steady state system through by k+1 and regroup parameters. We let

ε = h1
k+1

be a small parameter. We then let γ = k+o
k+1

, α =
k+2
k+1

, δ =
k+3
k+1

, ξ =
k+4
k+1

, and have the

resulting steady state system (1):

0 = −A+K1B − δEmA+K3δD + εB + ρεC + wεF

0 = A−K1B − αBE + αK2C − αβ2BEm + αββ2K2F − εB

0 = −K2αC + αBE − γβoCM + βoβKoγF − ρεC

0 = δEmA−K3δD − ξD +K4ξF

0 = αβ2BEm − β2βK2αF + ξD −K4ξF + γβoCM − βoβγKoF − wεF

0 = −γEM +KoγEm − αBE +K2αC + ρεC + wεF

0 = −δEmA+K3δD − αβ2BEm + β2βK2αF + γEM − γKoEm

A+B + C +D + F = Tt

E + Em + C +D + F = Et

We let each concentration A,B,C,D, F,E,Em be written as an asymptotic solution, A =

Ao + εA1, B = Bo + εB1, ...., Em = Emo + εEm1,and subsitute into (1). We then consider the

O(o) system:

0 = −Ao +K1Bo − δEmoAo +K3δDo
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0 = Ao −K1Bo − αBoEo + αK2Co − αβ2BoEmo + β2βαK2Fo

0 = −K2αCo + αBoEo − γβoCoM + βoβKoγFo

0 = δEmoAo −K3δDo − ξDo +K4ξFo

0 = αβ2BoEmo − β2βK2αFo + ξDo −K4ξFo + βoγCoM − βoβγKoFo

0 = −γEoM +KoγEmo − αBoEo +K2αCo

0 = −δEmoAo +K3δDo − αβ2BoEmo + β2βK2αFo + γEoM − γKoEmo

Ao +Bo + Co +Do + Fo = Tt

Eo + Emo + Co +Do + Fo = Et

The O(o) system is the quasi-steady state system, in this case it is equivalent to the system

at equilibrium without hydrolysis. We have assumed that the hydrolysis rates are slow. We use

our previously derived solutions to the equilibrium system:

Ao, Bo, Co, Do, Fo, Eo, Emo = f(Tt, Et,M,Ki, β),

Where Ki, i = 0, 1, 2, 3, 4, are the equilibrium ratios.

We now consider the O(1) system:

0 = −A1 +K1B1 − δ(EmoA1 + Em1Ao) +K3δD1 +Bo + ρCo + wFo

0 = A1 −K1B1 − α(BoE1 +B1Eo) + αK2C1 − αβ2(BoEm1 +B1Emo) + β2βαK2F1 −Bo

0 = −K2αC1 + α(BoE1 +B1Eo)− βoγC1M + βoβKoγF1 − ρCo

0 = δ(EmoA1 + Em1Ao)−K3δD1 − ξD1 +K4ξF1

0 = αβ2(BoEm1 +B1Emo)− β2βK2αF1 + ξD1 −K4ξF1 + βoγC1M − βoβγKoF1 − wFo

0 = −γE1M +KoγEm1 − α(BoE1 +B1Eo) +K2αC1 + ρCo + wFo

0 = −δ(EmoA1+Em1Ao)+K3δD1−αβ2(BoEm1+B1Emo)+β2βK2αF1+γE1M−γKoEm1

A1 +B1 + C1 +D1 + F1 = 0

E1 + Em1 + C1 +D1 + F1 = 0
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This system is linear, and can be reduced using the conservation equations. We let A1 =

(−(B1 + C1 +D1 + F1)), Em1 = (−(E1 + C1 +D1 + F1)), and reduce the O(1) system to:

B1p1 + C1p2 +D1p3 + F1p4 −Bo = 0

B1p5 + C1p6 + E1p7 + F1p8 − ρCo = 0

B1p9 + C1p10 +D1p11 + E1p12 + F1p13 = 0

B1p14 + C1p15 +D1p16 + E1p17 + F1p18 − wFo = 0

B1p19 + C1p20 +D1p21 + E1p22 + F1p23 + ρCo + wFo = 0

where:

p1 = −1−K1 − αEo + αβ2Emo

p2 = −1 + αK2 + αβ2Bo

p3 = −1 + αβ2Bo

p4 = −1 + αβ2Bo + β2βαK2

p5 = αEo

p6 = −K2α− βoγM

p7 = αBo

p8 = βoβKoγ

p9 = −δEmo

p10 = −δEmo − δAo

p11 = −δEmo − δAo −K3δ − ξ

p12 = −δAo

p13 = −δEmo − δAo +K4ξ

p14 = αβ2Emo
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p15 = −αβ2Bo + βoγM

p16 = −αβ2Bo + ξ

p17 = −αβ2Bo

p18 = −αβ2Bo − ββ2K2α−K4ξ − βoβγKo

p19 = −αEo

p20 = −Koγ +K2α

p21 = −Koγ

p22 = −γM − γKo − αBo

p23 = −Koγ

And so we can solve the O(1) system:

A1, B1,C1, D1, F1, E1,Em1=f(Xo, k
+
j ,Ki, βo, β2)

where k+j , j = 0, 1, 2, 3, 4 are the unknown forward rates, andXo, X = {A,B,C,D,E, F,Em}
are the equilibrium concentrations.

B1 = −(−((p11p4p7−p3(p13p7−p12p8))(p4(−p22p6 +p20p7)−p2(p23p7−p22p8))− (p4(−p12p6 +

p10p7)−p2(p13p7−p12p8))(p21p4p7−p3(p23p7−p22p8)))(−(p16p4p7−p3(p18p7−p17p8))(Bo(p13p7−
p12p8) +Cop12p4ρ) + (p11p4p7 − p3(p13p7 − p12p8))(Bo(p18p7 − p17p8) + p4(Cop17ρ−Fop7ω))) +

((p11p4p7 − p3(p13p7 − p12p8))(p4(−p17p6 + p15p7)− p2(p18p7 − p17p8))− (p4(−p12p6 + p10p7)−
p2(p13p7 − p12p8))(p16p4p7 − p3(p18p7 − p17p8)))(−(p21p4p7 − p3(p23p7 − p22p8))(Bo(p13p7 −
p12p8) + Cop12p4ρ) + (p11p4p7 − p3(p13p7 − p12p8))(Bo(p23p7 − p22p8) + p4(Cop22ρ + p7(Cor +

Fow)))))/(−((p11p4p7−p3(p13p7−p12p8))(p4(−p22p6+p20p7)−p2(p23p7−p22p8))−(p4(−p12p6+

p10p7)−p2(p13p7−p12p8))(p21p4p7−p3(p23p7−p22p8)))((p11p4p7−p3(p13p7−p12p8))(p4(−p17p5+

p14p7) − p1(p18p7 − p17p8)) − (p16p4p7 − p3(p18p7 − p17p8))(−p1(p13p7 − p12p8) + p4(−p12p5 +

p7p9))) + ((p11p4p7− p3(p13p7− p12p8))(p4(−p17p6 + p15p7)− p2(p18p7− p17p8))− (p4(−p12p6 +

p10p7)−p2(p13p7−p12p8))(p16p4p7−p3(p18p7−p17p8)))((p11p4p7−p3(p13p7−p12p8))(p4(−p22p5+

p19p7)−p1(p23p7−p22p8))−(p21p4p7−p3(p23p7−p22p8))(−p1(p13p7−p12p8)+p4(−p12p5+p7p9)))),

C1 = −(−Bop13p16p7 + Bop11p18p7 + Bop12p16p8 − Bop11p17p8 − Cop13p17p3ρ + Cop12p18p3ρ−
Cop12p16p4ρ+Cop11p17p4ρ+Fop13p3p7ω−Fop11p4p7ω−Fop12p3p8ω)/(p13p17p3p6−p12p18p3p6+

p12p16p4p6 − p11p17p4p6 + p13p16p2p7 − p11p18p2p7 − p13p15p3p7 + p10p18p3p7 + p11p15p4p7 −
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p10p16p4p7−p12p16p2p8+p11p17p2p8+p12p15p3p8−p10p17p3p8)+(((p11p4p7−p3(p13p7−p12p8))∗
(p4(−p17p5 + p14p7)− p1(p18p7 − p17p8))− (p16p4p7 − p3(p18p7 − p17p8))(−p1(p13p7 − p12p8) +

p4(−p12p5 + p7p9)))(−((p11p4p7 − p3(p13p7 − p12p8))(p4(−p22p6 + p20p7)− p2(p23p7 − p22p8))−
(p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p21p4p7 − p3(p23p7 − p22p8)))(−(p16p4p7 − p3(p18p7 −
p17p8))(Bo(p13p7 − p12p8) + Cop12p4ρ) + (p11p4p7 − p3(p13p7 − p12p8))(Bo(p18p7 − p17p8) +

p4(Cop17ρ−Fop7ω))) + ((p11p4p7−p3(p13p7−p12p8))(p4(−p17p6 +p15p7)−p2(p18p7−p17p8))−
(p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p16p4p7 − p3(p18p7 − p17p8)))(−(p21p4p7 − p3(p23p7 −
p22p8))(Bo(p13p7 − p12p8) + Cop12p4ρ) + (p11p4p7 − p3(p13p7 − p12p8))(Bo(p23p7 − p22p8) +

p4(Cop22ρ+p7(Coρ+Foω))))))/(((p11p4p7−p3(p13p7−p12p8))(p4(−p17p6 +p15p7)−p2(p18p7−
p17p8))− (p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p16p4p7 − p3(p18p7 − p17p8)))(−((p11p4p7 −
p3(p13p7 − p12p8))(p4(−p22p6 + p20p7)− p2(p23p7 − p22p8))− (p4(−p12p6 + p10p7)− p2(p13p7 −
p12p8))(p21p4p7−p3(p23p7−p22p8)))((p11p4p7−p3(p13p7−p12p8))(p4(−p17p5+p14p7)−p1(p18p7−
p17p8))− (p16p4p7 − p3(p18p7 − p17p8))(−p1(p13p7 − p12p8) + p4(−p12p5 + p7p9))) + ((p11p4p7 −
p3(p13p7 − p12p8))(p4(−p17p6 + p15p7)− p2(p18p7 − p17p8))− (p4(−p12p6 + p10p7)− p2(p13p7 −
p12p8))(p16p4p7−p3(p18p7−p17p8)))((p11p4p7−p3(p13p7−p12p8))(p4(−p22p5+p19p7)−p1(p23p7−
p22p8))− (p21p4p7 − p3(p23p7 − p22p8))(−p1(p13p7 − p12p8) + p4(−p12p5 + p7p9))))),

D1 = −(Bop13p17p6 − Bop12p18p6 − Bop13p15p7 + Bop10p18p7 + Bop12p15p8 − Bop10p17p8 −
Cop13p17p2ρ+Cop12p18p2ρ−Cop12p15p4r+Cop10p17p4ρ+Fop12p4p6ω+Fop13p2p7ω−Fop10p4p7ω−
Fop12p2p8ω)/(−p13p17p3p6 + p12p18p3p6 − p12p16p4p6 + p11p17p4p6 − p13p16p2p7 + p11p18p2p7 +

p13p15p3p7 − p10p18p3p7 − p11p15p4p7 + p10p16p4p7 + p12p16p2p8 − p11p17p2p8 − p12p15p3p8 +

p10p17p3p8) + ((−p13p17p2p5 + p12p18p2p5− p12p15p4p5 + p10p17p4p5 + p1p13p17p6− p1p12p18p6 +

p12p14p4p6 − p1p13p15p7 + p1p10p18p7 + p13p14p2p7 − p10p14p4p7 + p1p12p15p8 − p1p10p17p8 −
p12p14p2p8 − p17p4p6p9 − p18p2p7p9 + p15p4p7p9 + p17p2p8p9)(−((p11p4p7 − p3(p13p7 − p12p8)) ∗
(p4(−p22p6 + p20p7)− p2(p23p7 − p22p8))− (p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p21p4p7 −
p3(p23p7−p22p8)))(−(p16p4p7−p3(p18p7−p17p8))∗ (Bo(p13p7−p12p8) +Cop12p4ρ) + (p11p4p7−
p3(p13p7− p12p8)) ∗ (Bo(p18p7− p17p8) + p4(Cop17ρ−Fop7ω))) + ((p11p4p7− p3(p13p7− p12p8)) ∗
(p4(−p17p6 + p15p7)− p2(p18p7 − p17p8))− (p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p16p4p7 −
p3(p18p7− p17p8)))(−(p21p4p7− p3(p23p7− p22p8))(Bo(p13p7− p12p8) +Cop12p4ρ) + (p11p4p7−
p3(p13p7−p12p8))(Bo(p23p7−p22p8)+p4(Cop22ρ+p7(Coρ+Foω))))))/((p13p17p3p6−p12p18p3p6+

p12 ∗ p16p4p6 − p11p17p4p6 + p13p16p2p7 − p11p18p2p7 − p13p15p3p7 + p10p18p3p7 + p11p15p4p7 −
p10p16p4p7−p12p16p2p8+p11p17p2p8+p12p15p3p8−p10p17p3p8)(−((p11p4p7−p3(p13p7−p12p8))∗
(p4(−p22p6 + p20p7)− p2(p23p7 − p22p8))− (p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p21p4p7 −
p3(p23p7 − p22p8)))((p11p4p7 − p3(p13p7 − p12p8))(p4(−p17p5 + p14p7) − p1(p18p7 − p17p8)) −
(p16p4p7−p3(p18p7−p17p8))∗(−p1(p13p7−p12p8)+p4(−p12p5+p7p9)))+((p11p4p7−p3(p13p7−
p12p8))∗(p4(−p17p6+p15p7)−p2(p18p7−p17p8))−(p4(−p12p6+p10p7)−p2(p13p7−p12p8))(p16p4p7−
p3(p18p7 − p17p8)))((p11p4p7 − p3(p13p7 − p12p8)) ∗ (p4(−p22p5 + p19p7) − p1(p23p7 − p22p8)) −
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(p21p4p7 − p3(p23p7 − p22p8))(−p1(p13p7 − p12p8) + p4(−p12p5 + p7p9))))),

E1 = −(−Bop13p16p6 + Bop11p18p6 − Bop11p15p8 + Bop10p16p8 + Cop13p16p2ρ− Cop11p18p2ρ−
Cop13p15p3ρ+Cop10p18p3ρ+Cop11p15p4ρ−Cop10p16p4ρ+Fop13p3p6ω−Fop11p4p6ω+Fop11p2p8ω−
Fop10p3p8ω)/(−p13p17p3p6 + p12p18p3p6 − p12p16p4p6 + p11p17p4p6 − p13p16p2p7 + p11p18p2p7 +

p13p15p3p7 − p10p18p3p7 − p11p15p4p7 + p10p16p4p7 + p12p16p2p8 − p11p17p2p8 − p12p15p3p8 +

p10p17p3p8) + ((−p13p16p2p5 + p11p18p2p5 + p13p15p3p5− p10p18p3p5− p11p15p4p5 + p10p16p4p5 +

p1p13p16p6 − p1p11p18p6 − p13p14p3p6 + p11p14p4p6 + p1p11p15p8 − p1p10p16p8 − p11p14p2p8 +

p10p14p3p8 + p18p3p6p9 − p16p4p6p9 + p16p2p8p9 − p15p3p8p9)(−((p11p4p7 − p3(p13p7 − p12p8)) ∗
(p4(−p22p6 + p20p7)− p2(p23p7 − p22p8))− (p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p21p4p7 −
p3(p23p7 − p22p8)))(−(p16p4p7 − p3(p18p7 − p17p8))(Bo(p13p7 − p12p8) +Cop12p4ρ) + (p11p4p7 −
p3(p13p7− p12p8)) ∗ (Bo(p18p7− p17p8) + p4(Cop17ρ−Fop7ω))) + ((p11p4p7− p3(p13p7− p12p8)) ∗
(p4(−p17p6 + p15p7)− p2(p18p7 − p17p8))− (p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p16p4p7 −
p3(p18p7 − p17p8)))(−(p21p4p7 − p3(p23p7 − p22p8))(Bo(p13p7 − p12p8) +Cop12p4ρ) + (p11p4p7 −
p3(p13p7−p12p8))(Bo(p23p7−p22p8)+p4(Cop22ρ+p7(Coρ+Foω))))))/((−p13p17p3p6+p12p18p3p6−
p12p16p4p6 + p11p17p4p6 − p13p16p2p7 + p11p18p2p7 + p13p15p3p7 − p10p18p3p7 − p11p15p4p7 +

p10p16p4p7 + p12p16p2p8 − p11p17p2p8 − p12p15p3p8 + p10p17p3p8) ∗ (−((p11p4p7 − p3(p13p7 −
p12p8))(p4(−p22p6+p20p7)−p2(p23p7−p22p8))−(p4(−p12p6+p10p7)−p2(p13p7−p12p8))(p21p4p7−
p3(p23p7− p22p8))) ∗ ((p11p4p7− p3(p13p7− p12p8)) ∗ (p4(−p17p5 + p14p7)− p1(p18p7− p17p8))−
(p16p4p7− p3(p18p7− p17p8))(−p1(p13p7− p12p8) + p4(−p12p5 + p7p9))) + ((p11p4p7− p3(p13p7−
p12p8))∗(p4(−p17p6+p15p7)−p2(p18p7−p17p8))−(p4(−p12p6+p10p7)−p2(p13p7−p12p8))(p16p4p7−
p3(p18p7 − p17p8)))((p11p4p7 − p3(p13p7 − p12p8))(p4(−p22p5 + p19p7) − p1(p23p7 − p22p8)) −
(p21p4p7 − p3(p23p7 − p22p8))(−p1(p13p7 − p12p8) + p4(−p12p5 + p7p9))))),

F1 = −(Bop12p16p6 − Bop11p17p6 + Bop11p15p7 − Bop10p16p7 − Cop12p16p2ρ + Cop11p17p2ρ +

Cop12p15p3ρ−Cop10p17p3ρ−Fop12p3p6ω−Fop11p2p7ω+Fop10p3p7ω)/(−p13p17p3p6+p12p18p3p6−
p12p16p4p6 + p11p17p4p6 − p13p16p2p7 + p11p18p2p7 + p13p15p3p7 − p10p18p3p7 − p11p15p4p7 +

p10p16p4p7 + p12p16p2p8 − p11p17p2p8 − p12p15p3p8 + p10p17p3p8) + ((p12p16p2p5 − p11p17p2p5 −
p12p15p3p5 + p10p17p3p5 − p1p12p16p6 + p1p11p17p6 + p12p14p3p6 − p1p11p15p7 + p1p10p16p7 +

p11p14p2p7− p10p14p3p7− p17p3p6p9− p16p2p7p9 + p15p3p7p9)(−((p11p4p7− p3(p13p7− p12p8)) ∗
(p4(−p22p6 + p20p7)− p2(p23p7 − p22p8))− (p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p21p4p7 −
p3(p23p7 − p22p8)))(−(p16p4p7 − p3(p18p7 − p17p8))(Bo(p13p7 − p12p8) +Cop12p4ρ) + (p11p4p7 −
p3(p13p7 − p12p8))(Bo(p18p7 − p17p8) + p4(Cop17ρ− Fop7ω))) + ((p11p4p7 − p3(p13p7 − p12p8)) ∗
(p4(−p17p6 + p15p7)− p2(p18p7 − p17p8))− (p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p16p4p7 −
p3(p18p7 − p17p8)))(−(p21p4p7 − p3(p23p7 − p22p8))(Bo(p13p7 − p12p8) +Cop12p4ρ) + (p11p4p7 −
p3(p13p7−p12p8))(Bo(p23p7−p22p8)+p4(Cop22ρ+p7(Coρ+Foω))))))/((−p13p17p3p6+p12p18p3p6−
p12p16p4p6 + p11p17p4p6 − p13p16p2p7 + p11p18p2p7 + p13p15p3p7 − p10p18p3p7 − p11p15p4p7 +
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p10p16p4p7+p12p16p2p8−p11p17p2p8−p12p15p3p8+p10p17p3p8)(−((p11p4p7−p3(p13p7−p12p8))∗
(p4(−p22p6 + p20p7)− p2(p23p7 − p22p8))− (p4(−p12p6 + p10p7)− p2(p13p7 − p12p8))(p21p4p7 −
p3(p23p7 − p22p8)))((p11p4p7 − p3(p13p7 − p12p8))(p4(−p17p5 + p14p7) − p1(p18p7 − p17p8)) −
(p16p4p7− p3(p18p7− p17p8))(−p1(p13p7− p12p8) + p4(−p12p5 + p7p9))) + ((p11p4p7− p3(p13p7−
p12p8))(p4(−p17p6+p15p7)−p2(p18p7−p17p8))−(p4(−p12p6+p10p7)−p2(p13p7−p12p8))(p16p4p7−
p3(p18p7 − p17p8)))((p11p4p7 − p3(p13p7 − p12p8))(p4(−p22p5 + p19p7) − p1(p23p7 − p22p8)) −
(p21p4p7 − p3(p23p7 − p22p8))(−p1(p13p7 − p12p8) + p4(−p12p5 + p7p9))))).

We now calculate the fluxes through each pathway of the full model. We first label the

fluxes as follows:

A
f1→ B

f2→ C
f3→ F

g3c→ where f3 = CS pathway flux

A
f5→ D

f5→ F
g3s→ where f5=Standard Pathway flux

B
f4→ F

g3a→ where f4 =Alternate Pathway flux

B
g1→ A

C
g2→ A

We have the following system of equations, where g1 = h1B, g2 = h2C, g3 = h3F .

f1 = f4 + f2 + g1

f2 = f3 + g2

f3 + f4 + f5 = g3

Then all fluxes can be written in terms of fluxes f2, f4:

f1 = g1 + f2 + f4

f3 = f2 − g2

f5 = g3 − f4 − f3

We can write the fluxes f2, f4 as the following differences:

f2 = k+2 BE − k
−
2 C

f4 = β2k
+
2 BEm − β2βk

−
2 F
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Substitution of our asymptotic solutions gives the following approximation of the fluxes at

steady state:

f2 = k+2 (Bo + εB1)(Eo + εE1)− k−2 (Co + εC1)

f4 = β2k
+
2 (Bo + εB1)(Emo + εEm1)− β2βk−2 (Fo + εF1).
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