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Abstract

The forbidden configuration problem arises from a question in extremal set theory.

The question seeks a bound on the maximum number of subsets of an m-set given

that some trace is forbidden. In terms of hypergraphs, we seek the maximum number

of edges on a simple hypergraph of m vertices such that this hypergraph does not

contain a forbidden sub-hypergraph.

We will use the notation of matrices to describe the problem as follows. We call a

(0, 1)-matrix simple if it has no repeated columns; this will be the analogue of a simple

hypergraph. Let F be a given matrix. We say that a (0,1)-matrix A contains F as a

configuration if there is some submatrix of A that is a row and column permutation

of F. This is equivalent to a hypergraph containing some sub-hypergraph. F need not

be simple. We define forb(m,F ) as the maximum number of columns possible for a

simple, m-rowed, (0,1)-matrix that does not contain F as a configuration.

A variation of the forbidden configuration problem forbids a family of configu-

rations F = {F1, F2, . . . Fn} instead of a single configuration F . Thus, forb(m,F)

becomes the maximum number of columns possible for a simple, m-rowed, (0, 1)-

matrix that does not contain any one of the Fi ∈ F as a configuration.

We will present a series of results organized by the character of forb(m,F). These

include a classification of families F such that forb(m,F) is a constant and the un-

expected result that for a certain family, forb(m,F) is on the order of m3/2, where

previous results typically had forb(m,F ) on the order of integer powers of m. We will

conclude with a case study of families of forbidden configurations and suggestions for

future work.
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Preface

The question of forbidden configurations was introduced to me by my supervisor Dr.

Richard Anstee, and the choice to explore families of forbidden configurations came

at both his suggestion and that of his previous PhD student Dr. Miguel Raggi.

There are two sections of the paper that contain work done by other people.

The first is a result of Balin Fleming included in Section 2.4, which is used with his

permission and clearly identified as his work. The second is the proof of the result in

Chapter 4, which borrows from the proof for a very similar bound originally included

in a paper by Dr. Anstee, Dr. Attila Sali, and Dr. Raggi. However, the necessary

modifications to the proof for the new result are the original work of Dr. Anstee and

myself.

All other results contained in this paper were produced by myself, some jointly

with Dr. Anstee.
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Chapter 1

Introduction

In this chapter we provide an introduction to the topic of this paper: the question

of forbidden configurations. We begin with the origin of the research question and

its statement. We then provide a list of all necessary notation and definitions for

understanding the content of the paper, including a re-statement of the research

question. This leads to a section summarizing a history of relevant results. We

conclude with an overview of the basic methods that will be used to prove results.

1.1 Extremal problems and hypergraphs

At its heart, combinatorics is a field of mathematics that asks “how many?” This

initial question is often modified as follows: given some condition to be met, what is

the maximum (or minimum) family such that the condition holds, or conversely, that

the condition fails? In extremal combinatorics we are not always able to obtain exact

maximum or minimum bounds, and in these cases seek an asymptotic bound. Our

combinatorial question for this paper relates to similar questions from graph theory,

so we will begin with the following basic definitions.

Definition 1.1.1. A simple graph G is an ordered pair G = (V,E) where V stands

for a set of vertices and E stands for a set of edges, where edges are unique 2-element

subsets of V .

Definition 1.1.2. The complete graph on n vertices, denoted Kn, is a graph on n

vertices such that every possible edge is included in E.
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Forbidden configurations, the subject of this paper, relate to theorems in extremal

graph theory. These theorems address the following combinatorial question: suppos-

ing that a graph G on n vertices has no subgraph isomorphic to a graph H, what is

the maximum number of edges permissible for G? One can also ask the dual ques-

tion: given n vertices what is the minimum number of edges in G such that you are

guaranteed a copy of the subgraph H?

The first theorem, by Turán (and Mantel for k = 3), answers this question for H

as the complete graph Kk as follows:

Theorem 1.1.3. [17] Let G = (V,E) be a simple graph on n vertices with the property

that there is no triangle. Then |E| ≤ n2

4
.

Theorem 1.1.4. [22] Let G be any simple graph on n vertices. Then the minimum

number of edges in G such that G must contain a subgraph isomorphic to Kk is

bounded above by
k − 2

k − 1
· n

2

2
or

(
1− 1

k − 1

)
· n

2

2

Erdős and Simonovits extended a previous result of Erdős and Stone to present a

limit bound when forbidding any subgraph H. It uses the chromatic number of the

subgraph H.

Definition 1.1.5. The chromatic number of a graph G, or χ(G), is the smallest

natural number c such that the vertices of G can be colored with c colors and no two

vertices of the same color share an edge.

Theorem 1.1.6. [12, 13] Let n,H be given. We define ex(n,H) as the maximum

number of edges in an n vertex (simple) graph that has no subgraph isomorphic to H.

Then for all ε > 0, there exists some N such that for all n > N :

n2

2

(
1− 1

1− χ(H)
− ε
)
≤ ex(n,H) ≤ n2

2

(
1− 1

1− χ(H)
+ ε

)
.

Not only does this theorem provide an asymptotic bound for all forbidden sub-

graphs, H, it also connects the idea of a forbidden subgraph with the chromatic

2



number of that subgraph. We will conjecture a similar notion is helpful when looking

at forbidden configurations.

We will now generalize this problem of a forbidden subgraph to hypergraphs. We

begin with our original definition of a graph G as an ordered pair G = (V,E) and

generalize this definition to a hypergraph.

Definition 1.1.7. Let X be a finite set, with 2X denoting the set of all subsets of X,

or the power set of X.

Definition 1.1.8. A hypergraph is an ordered pair H = (X, E), where X is a finite

set of elements called vertices, E is a multiset of sets in 2X , that is, for each E ∈ E,

we have E ∈ 2X . The elements of E are called edges. The hypergraph H is called

simple if the elements E ∈ E are unique. i.e. E is a set.

Definition 1.1.9. A set system A on X is a family of subsets of X, that is, A ⊆ 2X .

It should be clear that the set system A is equivalent to the simple hypergraph

H = (X, E) if A is defined on X and for all E ∈ E , E ∈ A. A simple graph as defined

in Definition 1.1.1 is equivalent to a simple hypergraph where all edges have size 2.

There is some disagreement over whether the edge set E can include the empty

edge, where the empty edge is the set ∅ ∈ 2X . In the understanding of a hypergraph

as a set system, inclusion of the empty set is sensible; however, there is value to

avoiding the empty edge when considering the transversal of a hypergraph. In the

next section, when we recast the forbidden subgraph problem in matrix notation, we

will include the empty edge as a viable edge for the hypergraph.

Definition 1.1.10. A sub-hypergraph is an ordered pair (S, ES), where, given a

hypergraph H = (X, E), S ⊆ X and ES consists of all sets E ∈ E restricted to the

elements in S.

Note that the sub-hypergraph of a simple hypergraph may not itself be simple;

two edges that both contain the same subset of vertices will be the same if they are

restricted to that subset. Also, as in the case of the hypergraph, it is possible for the

empty edge to be included in the edge set of the sub-hypergraph.

Hypergraphs are a generalization of the initial notion of a graph; it is thus natural

to ask if the combinatorial question motivating Theorem 1.1.4 and Theorem 1.1.6

can be applied to hypergraphs. For example, given a hypergraph H = (X, E), where

3



|X| = m, what is the maximum possible size of E so that H does not contain a

sub-hypergraph F?

This is precisely the question founding the study of forbidden configurations. In

the rest of this paper, we will approach this question using the language of matrices.

1.2 Definitions and notation

1.2.1 (0,1)-matrices

Recall that a simple hypergraph H = (X, E) can be thought as a set system A on X.

We will now translate a set system A to a (0, 1)-matrix A.

Let A be a set system defined on the set X. Let |X| = m and |A| = n. For each

set B ∈ A, we generate an incidence vector β, where β is a single column with m

entries. As an incidence vector, β has a 1 in a row i if i ∈ B and 0 otherwise. We can

thus describe all our sets in A as incidence vectors. We join these vectors together

side by side to form the m× n (0, 1)-matrix A. The elements of X index the rows of

A and the sets B ∈ A index the columns. Note that row and column order is not so

important to the combinatorial object and so when we refer to such a matrix A we

are actually thinking of the equivalence class of matrices that could be obtained from

A by row and column permutations.

We say a matrix A is simple if it is a (0, 1)-matrix with no repeated columns. A

simple matrix A can be written as a set system A by reversing the process described

above: if the rows of A are indexed by the elements of the set X, each column β can

be interpreted as a set B ∈ A ⊆ 2X , where the elements of X included in B are those

with a 1 in the corresponding row in β.

We use the notation [m] to mean the set {1, 2, 3, . . . ,m}. We will often use [m]

to index the rows of A.

We use the notation ‖A‖ to describe the number of columns in a matrix A.

Let a set S be a subset of the rows of a matrix A. We use the notation A|S to

describe the matrix A restricted to S, that is, the submatrix of A consisting of the

rows indexed by elements of S.

Given a (0, 1)-matrix A, the (0,1)-complement of the matrix, Ac, is the matrix

that results from replacing all the 1’s in A with 0’s and all the 0’s with 1’s.

4



1.2.2 Forbidden configurations and bounds

In our matrix interpretation of hypergraphs, a sub-hypergraph becomes a configura-

tion.

We define that A contains F as a configuration, written F ≺ A, if there is a

submatrix of A that is a row and column permutation of F . For example, let

F =

[
1 1

1 0

]
and A =

 0 0 0 1

0 1 0 0

0 0 1 1

 .
Then F ≺ A. We see this by looking at the 2× 2 submatrix of A given by rows 1

and 3 and columns 3 and 4.

On the other hand, we say that A avoids F , or F 6≺ A if there is no submatrix in

A that is a row and column permutation of F . For example, let

F =

[
1 1

1 0

]
and A =

 0 1 0 0

0 0 1 0

0 0 0 1

 .
Then F 6≺ A.

If A is a simple (0, 1)-matrix with m rows that avoids F , we use the following

notation: A ∈ Avoid(m,F ). So:

Avoid(m,F ) = {A : A simple, m-rowed matrix; F 6≺ A}.

The primary question of forbidden configurations concerns the following function:

forb(m,F ) = max{‖A‖ : A ∈ Avoid(m,F )}.

In other words, forb(m,F ) is the largest value n such that there exists an m×n simple

(0, 1)-matrix A where A ∈ Avoid(m,F ). This is simply a restatement of the question

from Section 1.1 translated into a matrix representation: given a simple (0, 1)-matrix

A on m rows, what is the maximum number of columns in A so that A does not

contain a configuration F?

For this paper, we intend to modify the forbidden configuration question slightly

by forbidding a family of configurations instead of a single configuration.

5



A forbidden family is a finite set of forbidden configurations, denoted

F = {F1, F2, . . . , Ft}.
We define

Avoid(m,F) = {A : A simple, m-rowed matrix; Fi 6≺ A for i = 1, 2, . . . , t}.

Our previous definition of forb(m,F ) naturally generalizes to:

forb(m,F) = max{‖A‖ : A ∈ Avoid(m,F)}.

So forb(m,F) is the largest value n such that there exists an m× n simple (0, 1)-

matrix A where A ∈ Avoid(m,F).

In order to find forb(m,F), there are often separate arguments to establish a lower

bound and upper bound. The lower bound is frequently established by a construction

of appropriate size that avoids F , while the upper bound is proved separately. Certain

standard techniques for establishing an upper bound will be discussed in Section 1.4.

Often it is not possible to determine exact bounds for the columns of A. In this

case, we must be satisfied with determining asymptotic upper and lower bounds,

expressed in big-O notation.

• forb(m,F) is O(mk) if there exists c ∈ R such that for sufficiently large m

forb(m,F) ≤ cmk.

• forb(m,F) is Ω(mk) if there exists c ∈ R such that for sufficiently large m

forb(m,F) ≥ cmk.

• forb(m,F) is Θ(mk) if there exists c1, c2 ∈ R such that for sufficiently large m,

we have c1m
k ≤ forb(m,F) ≤ c2m

k.

1.2.3 Matrix constructions

We will use the following notation to describe various matrix configurations and

constructions.

We define 1k to be the column of k 1’s and 0k to be the column of k 0’s.

We say that a (0, 1)-column α has column sum s when it contains s 1’s.

We define Kk as the complete object on k rows, that is, the k × 2k simple matrix

of all possible columns on k rows. We define Ks
k as the k ×

(
k
s

)
simple matrix of all

6



columns of column sum s on a matrix of k rows. For example:

K2
4 =


1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 .
A cycle of length k is a graph on k vertices with edges of size 2, such that we can

order the vertices x1, x2, . . . , xk and we have k−1 edges (xj, xj+1) for j = 1, 2, . . . k−1

and the edge (xk, x1). We will define Ck to be the vertex-edge incidence matrix of

the cycle of length k, where the vertices of the cycle index the rows and the columns

indicate which vertices are connected by an edge. Note that the matrix Ck will have

column sum 2 for all columns and row sum 2 for all rows. For example,

C4 =


1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

 .

In our configurations and constructions, we will frequently see the following three

matrices:

The identity matrix on m rows, or Im or K1
m, consists of an m×m matrix with 1’s

on the diagonal and 0’s everywhere else. It corresponds to the set system of singleton

sets on m elements. For example,

I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
The identity complement matrix onm rows, or Icm orKm−1

m , is the (0, 1)−complement

of Im, or an m×m matrix with 0’s on the diagonal and 1’s everywhere else. It cor-

7



responds to a set system of sets of size m− 1 on m elements. For example,

Ic4 =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

The upper triangular matrix on m rows, or Tm, consists of an m×m matrix with

columns of strictly increasing column sum, with 1’s justified towards the top of the

matrix. It corresponds to the set system {{1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, . . . ,m}}. For

example,

T4 =


1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

 .
We will also refer to this matrix as a tower matrix.

We use the notation [A|B] to denote the matrix obtained from concatenating the

two matrices A and B. We use the notation k · A to denote the matrix [A|A| . . . |A]

consisting of k copies of A concatenated together. We give precedence to the opera-

tion · (multiplication) over concatenation so that for example [2 · A|B] is the matrix

consisting of the concatenation of B with the concatenation of two copies of A.

We will use the notation AT to denote the matrix transpose of A.

If A is an m1 × n1 simple matrix and B an m2 × n2 simple matrix, we define

the product A × B as the (m1 + m2) × (n1n2) matrix of all possible combinations

of columns of A over columns of B. Note that this is a different definition than the

conventional notion of matrix multiplication. An example of I2 × I2 is shown below.

[
1 0

0 1

]
×

[
1 0

0 1

]
=


1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

 .

It is interesting to note that after some row and column permutation, I2 × I2 is

the same matrix as the C4 shown earlier.
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1.2.4 Set system terminology

The following definitions appropriate terminology used for set systems (comparable,

disjoint, laminar) and recast them in our matrix notation.

Let α, β be two columns of a (0, 1)-matrix, with the entry in the ith row denoted

αi, βi respectively. We say that α and β are comparable, with α ≤ β (or α ≥ β) if for

all rows i, αi ≤ βi (or αi ≥ βi). We say that α and β are disjoint if on every row i,

αi and βi are not both 1. For example, let

α =


1

1

1

0

 , β =


0

1

1

0

 , γ =


1

0

0

1

 .
Then α and β are comparable, with β ≤ α; β and γ are disjoint; and α and γ are

neither comparable nor disjoint.

We define a laminar family as the following: given a set systemA, for allB,C ∈ A,

B ⊆ C, C ⊆ B or B ∩ C = ∅. A laminar matrix is defined similarly: given a (0, 1)-

matrix A, for all columns α, β ∈ A, α and β are comparable or α and β are disjoint.

Another way to define a laminar matrix is by forbidding a configuration or observing

what columns are missing on any triple of rows in a matrix A (see Section 1.4 for

more detail on “what is missing”). Let

FL =

 1 1

1 0

0 1

 , L1 =

i

j

k

 1

1

0

 , L2 =

i

j

k

 1

0

1

 .
Remark 1.2.1. Let A be a (0, 1)-matrix with no configuration FL. Then A is laminar.

Remark 1.2.2. Let A be a (0, 1)-matrix such that on every triple of rows S = {a, b, c}
there is a bijection σ : S → {i, j, k} such that A|S has no L1 and L2 as indexed. Then

FL 6≺ A and so A is laminar.

1.3 History of results

Here we present a history of results for the forbidden configuration problem. Many of

these results will be used to motivate or prove results given in the research chapters
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of this paper.

1.3.1 Single forbidden configurations

The primary result in the study of forbidden configurations is the following theorem,

proved independently by Sauer and Perles, Shelah, and Vapnik and Chervonenkis.

Theorem 1.3.1. [20, 21, 23] We have that

forb(m,Kk) =

(
m

k − 1

)
+

(
m

k − 2

)
+ · · ·+

(
m

0

)
.

This implies that forb(m,Kk) is Θ(mk−1).

Corollary 1.3.2. For any simple configuration F on k rows, forb(m,F ) is O(mk−1).

Anstee and Füredi proved a generalization of Theorem 1.3.1 as follows:

Theorem 1.3.3. [5] For fixed k, t, as m→∞,

forb(m, t ·Kk) =
(t− 2)

(k + 1)
(1− o(1))

(
m

k

)
+

(
m

k − 1

)
+ · · ·+

(
m

0

)
.

Corollary 1.3.4. For any k-rowed (0, 1)-matrix F , we have that forb(m,F ) is O(mk).

These results establish a maximum upper bound for all single forbidden configu-

rations: in the case of a simple k-rowed configuration, Corollary 1.3.2 gives a bound

of at most O(mk−1), while for all other k-rowed configurations, Theorem 1.3.3 gives

a bound of at most O(mk).

When generating constructions to achieve a lower bound for forb(m,F ), three

matrices frequently occur. These are the I (identity), Ic (identity complement),

and T (upper triangular) matrix, or products of the three. The prevalence of these

three matrices gave rise to the following conjecture of Anstee and Sali. They have

established the conjecture for all 3-rowed F .

Conjecture 1.3.5. [8] Let X(F ) be the smallest p such that F ≺ A1×A2× · · · ×Ap
for every Ai as Im/p, I

c
m/p or Tm/p. Then forb(m,F ) = Θ(mX(F )−1).

10



The notation X(F ) is a direct allusion to Theorem 1.1.6 which linked chromatic

number of a graph (denoted χ(G)) to bounds of this kind.

Here, Anstee and Sali conjecture that matrix products of the identity, identity

complement, and triangular matrices provide sufficient constructions to achieve the

asymptotic bounds for forb(m,F ) for any forbidden configuration F . The three ma-

trices of Conjecture 1.3.5 will appear shortly in a result regarding forbidden families,

indicating that while Conjecture 1.3.5 remains unproven, the use of the identity, iden-

tity complement and triangular matrix is somehow fundamental to solving questions

about forbidden configurations.

1.3.2 Families of forbidden configurations

Because the focus of this paper will be on families of forbidden configurations, we

now shift our attention to results that pertain specifically to forbidden families. For

our first result, we present a theorem of Balogh and Bollobás

Theorem 1.3.6. [9] Let k be given. Then forb(m, {Ik, Ick, Tk}) is O(1).

In other words, when we forbid all three matrices used for constructions in Con-

jecture 1.3.5, the resulting matrices A ∈ Avoid(m, {Ik, Ick, Tk}) all have a constant

upper bound. We should point out that the bound increases dramatically with k and

the asymptotics as a function of k are not fully understood. However, the following

remark gives an easy lower bound.

Proposition 1.3.7. [11] Let k be given. Then forb(m, {Ik, Ick, Tk}) ≥
(
2k−2
k−1

)
.

We establish this result in Proposition 2.1.3.

We have two further results that provide more exact bounds for specific instances

of families for which Theorem 1.3.6 would apply. The first set of bounds comes from

Anstee and Dunwoody, and are exact bounds for the families of Theorem 1.3.6 for

k = 1, k = 2 and k = 3.

Theorem 1.3.8. [11] We have forb(m, {I1, Ic1, T1}) = 0, forb(m, {I2, Ic2, T2}) = 2,

and forb(m, {I3, Ic3, T3}) = 6.

A result of Fleming provides a more precise (if not exact) upper bound for a family

in which the matrices are all sub-matrices of those used in Theorem 1.3.6

11



Theorem 1.3.9. [14] Let Fa =
[
1
0
0
1
|t · 0

0

]
, Fb =

[
1
0
0
1
|t · 1

1

]
and Fc = t ·

[
0
0
1
0
1
1

]
.

If t ≥ 2, forb(m, {Fa, Fb, Fc}) ≤ 6t− 6.

Note that Fa ≺ It+2, Fb ≺ Ict+2 and Fc ≺ T3t

We will take up this result in greater detail in Section 2.4, while discussing for-

bidden families with a constant bound.

Once we forbid only two of the three matrices of Conjecture 1.3.5, a non-constant

bound results, as the following three theorems, proved by Balogh, Keevash and Su-

dakov, indicate.

Theorem 1.3.10. [10] Let k ≥ 2. Then forb(m, {Ik, Ick}) is Θ(mk−1).

Theorem 1.3.11. [10] Let k ≥ 2. Then forb(m, {Ick, Tk}) is Θ(mk−1).

Theorem 1.3.12. [10] Let k ≥ 2. Then forb(m, {Ik, Tk}) is Θ(mk−2).

Forbidding families of forbidden configurations also results in asymptotic bounds

with non-integer exponents.

Theorem 1.3.13. [1] We have forb(m, {C4,13}) is Θ(m3/2).

This theorem is linked to another family with the same bound.

Theorem 1.3.14. [7] We have forb(m, {I2 × I2, T2 × T2, I2 × T2}) is Θ(m3/2).

The previous result was in a preliminary version of [7] and in Section 4.1 we will

prove a stronger result, Theorem 4.1.3.

Finally, we have a result regarding families of balanced and totally balanced ma-

trices. The cycle-incidence matrices of the family {C3, C4, C5, . . . } are also called

balanced matrices; the matrices of the family {C3, C5, C7, . . . } are called totally bal-

anced. It turns out that the bound on these infinite families is dependent simply on

the bound for C3, i.e.

Theorem 1.3.15. [2] We have

forb(m,C3) = forb(m, {C3, C5, C7 . . . }) =

(
m

2

)
+

(
m

1

)
+

(
m

0

)
.

Thus we have a series of results characterizing forbidden families that contain the

three matrices of Conjecture 1.3.5, as well as some more precise constant bounds, and

finally, a set of results relating to balanced and totally balanced matrices.
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1.3.3 Elementary remarks and lemmas

In addition to the results described above, one can easily make a series of helpful

remarks and lemmas regarding forb(m,F ) and forb(m,F) simply by using the defi-

nitions from Section 1.2.

Remark 1.3.16. (Complementarity) Assume F = {F1, F2, . . . , Ft} and

F c = {F c
1 , F

c
2 , . . . , F

c
t }. Then forb(m,Fi) = forb(m,F c

i ) and forb(m,F) = forb(m,F c).

Lemma 1.3.17. (Monotonicity) Suppose F ′, F are configurations. If F ′ ≺ F , then

forb(m,F ′) ≤ forb(m,F ).

Proof. Any matrix that contains F will also contain F ′, and any matrix that avoids

F ′ will also avoid F . The lemma follows. �

Lemma 1.3.18. (Induced lower bound) If F ′ ⊆ F , then forb(m,F ′) ≥ forb(m,F).

Proof. If A avoids F it will also avoid F ′, however there may be a better (larger)

construction for F ′ that does not avoid the configurations in F \ F ′. �

Note that this lemma is superficially the exact opposite of the previous lemma.

In Lemma 1.3.17, a smaller configuration F means a smaller bound forb(m,F ), while

in Lemma 1.3.18 a smaller family F means a larger bound forb(m,F).

Lemma 1.3.19. (Induced upper bound) If F = {F1, F2, . . . , Ft}, then

forb(m,F) ≤ mini∈[t](forb(m,Fi)). Furthermore, forb(m,F) ≤ minF ′⊆F{forb(m,F ′)}.

Proof. Because each F ∈ F must be avoided, forb(m,F) can be no larger than the

smallest forb(m,F ) for all F ∈ F or the smallest forb(m,F ′) for all F ′ ⊆ F . �

We conclude with a final lemma that, while easy to state and simple to prove, will

be remarkably powerful, particularly in conjunction with Theorem 1.3.6 regarding

forbidden families with a constant bound.

Lemma 1.3.20. Let F = {F1, F2, . . . , Ft}. Suppose F ′ is a family such that for each

j ∈ [t], there exists F ′ ∈ F ′ such that F ′ ≺ Fj. Then forb(m,F ′) ≤ forb(m,F).
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Proof. Let F and F ′ be as stated above. Suppose forb(m,F ′) > forb(m,F). This

implies that there is a construction A of size m × forb(m,F ′) that avoids F ′. For

any Fi ∈ F , if there is F ′ ≺ F ′, such that F ′ ≺ Fi, then Fi 6≺ A. However, by our

hypothesis, this is true for all Fi ∈ F . Thus A avoids F and forb(m,F) ≥ forb(m,F ′),
a contradiction.

1.4 Basic methods

1.4.1 Standard induction

One way to establish an upper bound on forb(m,F) is by inducting on m, the number

of rows. The name for this process is standard induction, and it is a common proof

technique used in the field of forbidden configurations. As we will use it in several

results, it is worth describing in some detail here.

Let A ∈ Avoid(m,F), with ‖A‖ = forb(m,F) for some forbidden family F .

Standard induction is based on the following decomposition: Choose a row r in A.

Sort the columns of A based on their entry in column r. Now suppose we delete r.

Certain columns in A[m]\r may now be repeated. These repeated columns form the

sub-matrix Cr. The non-repeated columns with a 0 in row r form the submatrix Br.

Non-repeated columns with a 1 in row r form the submatrix Dr. After this sorting

of rows and columns, the decomposition appears as:

A =
r

[m] \ r

[
0 . . . 0 1 . . . 1

Br Cr Cr Dr

]
. (1.1)

Note that Br, Cr, and Dr are all simple matrices in their own right and the matrix

[Br|Cr|Dr] is also simple. We also know that because F 6≺ A, F 6≺ [Br|Cr|Dr], so

[Br|Cr|Dr] ∈ Avoid(m− 1,F). However ‖A‖ = ‖Cr‖+ ‖[Br|Cr|Dr]‖. Thus if we can

find an upper bound for ‖Cr‖, the upper bound for ‖A‖ arises from induction on the

rows of A as follows:

forb(m,F) ≤ ‖Cr‖+ forb(m− 1,F). (1.2)

In order to establish an upper bound on ‖Cr‖, we will frequently use what we

have termed inductive children, that is, sub-configurations that must be avoided in

14



Cr in order that Fi 6≺ [01]× Cr for all Fi ∈ F . Consider the following example:

F =


 0 0 0 1

1 1 0 1

0 1 1 0

 ,
 1 1

1 1

1 1


 .

Inductive Children of F :

[
1 0 0

0 1 0

]
,

[
0 1 1

0 0 1

]
,

[
1 0 1

0 1 1

]
,

 1

1

1

 ,[ 1 1

1 1

]
.

If either of the last two inductive children are present in Cr, the second configuration

of our forbidden family will appear in the original matrix. Similarly, if any of the first

three inductive children are present in Cr, we will have the first configuration of our

forbidden family. If the forbidden family of inductive children is “simpler” than the

original forbidden family, it will sometimes be easier to construct a bound or apply a

previous result. Then by induction, a bound can be found for the original family.

1.4.2 What is missing

Another proof technique is that of considering “what is missing” or “in short supply”.

For this technique, we have a configuration of k rows. On any k-tuple of rows we

consider which k-rowed columns must be absent (missing), so that the configuration

is avoided, or which k-rowed columns must have a maximum number of copies to

avoid the configuration. For example, if

F =

[
0 1 1 0 0 1

0 0 0 1 1 1

]
,

on any 2-tuple of rows, i, j either there are ‘absent’ columns:

no no

i

j

[
0

0

]
or

i

j

[
1

1

]
,

or one column appears ‘in short supply,’ which in this case, appears at most once,

namely either
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i

j

≤ 1[
1

0

]
.

or the same with the roles of i, j reversed.

If this is true for all pairs of rows inA then we can see that indeedA ∈ Avoid(m,F ).

In general for a set of rows S ∈ [m] with |S| = k and for a k × 1 (0, 1)-column α, we

say that α is in short supply on S (in A) if there is a small bound on the number of

times α appears in A|S. Note that here we are considering α as a submatrix of A|S
not as a configuration; order matters. Also when α appears no times in A|S then we

say α is absent on S.

One basic result that follows from a “what is missing?” analysis is as follows:

given a matrix A, if for each k-tuple of rows from A, some k×1 column with k entries

is missing, then A has no Kk and the bound from Corollary 1.3.2 applies, making

‖A‖ be O(mk−1).

1.4.3 Linear algebra reduction

In the previous section, we noted that a matrix with at least one k×1 column missing

on each k-tuple of rows contains no Kk and is thus of size at most O(mk−1). In this

section we will present a method of Anstee and Fleming that reduces a matrix to this

scenario by eliminating O(mk−1) columns, making the bound for the total matrix also

O(mk−1) [4]. This method presupposes that we have already performed an analysis

of what is missing or in short supply, and all k-tuples of rows are either missing a

column or have at least two columns in short supply.

Theorem 1.4.1. Let t be given. Let A be an m-rowed simple matrix such that for

each S ∈
(
[m]
k

)
, either A|S has one column absent or has two columns αS, βS which

are in short supply, say appearing at most t times. Then ‖A‖ is O(mk−1).

Proof. Let S be the set of all k-tuples of rows S such that there are at least two

columns in short supply on S. Let S ∈ S with columns α and β its columns in short

supply.

We will first define a multi-linear indicator polynomial gS such that, for all columns

γ in the matrix A, gS(γ) is non-zero only when γ|S = α or γ|S = β. We first define a
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multi-linear expression that tracks each α and β on a k-tuple of rows, S. If each row

r in A is assigned a variable xr, this will be:

fS,α =
∏
r∈S

(xr − (α)r).

And similarly for β. We combine these expressions into our multi-linear polynomial:

gS = fS,α − fS,β

Note that the combination of leading terms for each fS,α, fS,β cancels out, leaving gS

with degree k − 1.

We choose pairs Si ∈
(
[m]
k

)
and γi (a column of A) for i = 1, 2, . . . , p such that

γi|Si
is either α or β. In addition we assume that for all pairs i < j, that γj|Si

6= α, β

and for any column γ of A we have that there is an i with 1 ≤ i ≤ p, such that

γ|Si
= α or β. We can achieve this by greedily seeking such pairs Si, γi until no more

are possible.

We form indicator polynomials for each i namely gSi
= fSi,α − fSi,β which are

nonzero for any column γ that has γ|Si
= α or β. We recall that the highest degree

terms in fSi,δ are
∏

j∈Si
xj and so gSi

= fSi,α − fSi,β has degree at most k − 1.

Our choice of pairs has for i < j, that gSi
(γj) = 0 and gSj

(γj) 6= 0. Thus the

p polynomials gSi
are linearly independent. But the polynomials lie in a space of

dimension
(
m
k−1

)
+
(
m
k−2

)
+ · · ·+

(
m
0

)
and so we have the wonderful conclusion that p

is at most this dimension and so is O(mk−1).

We now remove from A all columns γ which have for some i, γ|Si
= α or β. There

can be at most 2tp such columns which is O(mk−1). Our resulting matrix A′ has the

property that for every S ∈
(
[m]
k

)
, we have that A′|S has (at least) one absent column

and so A′ has no Kk. Thus ‖A′‖ is O(mk−1). The number of deleted columns is also

O(mk−1) and so ‖A‖ is O(mk−1). �
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Chapter 2

Families With a Constant Bound

In this chapter we will discuss results pertaining to forbidden families that have a

constant bound. We will use a previously cited result of Balogh and Bollobás to

classify all forbidden families that have a constant upper bound. We will also show

that the complement of this set is all families with at least a linear lower bound. We

will then briefly discuss how the constant bound for these forbidden families is not

monotonic, that is, the constant bound is not weakly decreasing as the number of

rows in the matrix A increases. Finally we will discuss exact bounds for two forbidden

families of constant bound: both an exact bound for a specific forbidden family and

a maximal upper bound for another forbidden family.

2.1 A classification for families of constant bound

In Section 1.2, we stated an important result of Balogh and Bollobàs regarding for-

bidden families, Theorem 1.3.6. This theorem states that for each k ∈ N, forbidding

the family F = {Ik, Ick, Tk} will yield a constant bound on forb(m,F). We will now

prove that this theorem in fact characterizes all forbidden families of constant bound.

Theorem 2.1.1. Let F be a finite forbidden family. Then forb(m,F) is O(1) if and

only if there exists Fi, Fj, F` ∈ F (not necessarily distinct configurations) such that

for some value k ∈ N, Fi ≺ Ik, Fj ≺ Ick, and F` ≺ Tk.

Proof. We prove the forward direction by the contrapositive. Let F be a forbidden

family, where Fi ∈ F is an mi × ni configuration. We choose d to be the maximum

of {{mi}, {ni}} over i. Now suppose there is at least one matrix of I2d, I
c
2d, or T2d
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(without loss of generality, we will assume I2d) where for all Fi ∈ F , Fi 6≺ I2d.

Then for all Fi ∈ F , Fi 6≺ Im for m ≥ 2d and so there exists a linear construction

A ∈ Avoid(m,F), namely, A = Im. Therefore forb(m,F) is Ω(m) and cannot have a

constant upper bound.

The reverse direction is straightforward to prove using Lemma 1.3.20. As stated in

the hypothesis, suppose there exists Fi, Fj, F` (not necessarily unique configurations)

in our family F such that for some value k ∈ N, Fi ≺ Ik, Fj ≺ Ick, and F` ≺ Tk.

Then by Lemma 1.3.20, forb(m,F) ≤ forb(m, {Ik, Ick, Tk}). But by Theorem 1.3.6

forb(m, {Ik, Ick, Tk}) is O(1), so forb(m,F) is also O(1). �

The proof of this classification suggests the following proposition.

Proposition 2.1.2. For all forbidden families F with a non-constant upper bound,

forb(m,F) is Ω(m).

Proof. By Theorem 2.1.1, a family has a non-constant upper bound if there is

some matrix from Ik, I
c
k, Tk such that for all Fi ∈ F , none of the Fi are contained

in this matrix. Without loss of generality, let this matrix be Ik. Then for m ≥ k

the linear matrix Im ∈ Avoid(m,F) and so there is at least a linear construction in

Avoid(m,F). Thus forb(m,F) is Ω(m). �

These two results together tell us that there is no family F such that forb(m,F)

is Θ(m`) where 0 < ` < 1.

2.1.1 A constant construction

Dunwoody describes the following construction that avoids the family {Ik, Tk, Ick}.

Proposition 2.1.3. [11] We select for A all columns from the (k − 1)-fold product

[0k−1|Tk−1]× [0k−1|Tk−1]× · · · × [0k−1|Tk−1] that have column sum at most k − 1. A

is a (k − 1)2 ×
(
2k−2
k−1

)
simple matrix in Avoid((k − 1)2, {Ik, Ick, Tk}).

Proof. We readily see that Tk 6≺ A since A has no column with k 1’s. We also see

that Ik 6≺ A since if Ik ≺ A, then it must use two rows from one of the products Tk−1

but every two rows of Ik contains I2 and no two rows of Tk−1 contain I2. Similarly

Ick 6≺ A So A ∈ Avoid((k − 1)2, {Ik, Ick, Tk}).
We note that [0k−1|Tk−1] contains exactly one column of sum i for each i with

0 ≤ i ≤ k−1. We create a bijection between the elements of
(
2k−2
k−1

)
and the columns as
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follows. We consider 1, 2, . . . , 2k−2 and imagine choosing k−1 entries a1 < a2 < · · · <
ak−1. Then we choose the column of sum a1−1 from the first Tk−1 and the column of

sum ai−ai−1−1 from the ith Tk−1 (from the k−1-fold product) for i = 2, 3, . . . , k−1.

We verify that sum of column sums is at most k− 1 (a1 − 1 +
∑k−1

i=2 (ai − ai−1 − 1) =

ak−1 − k − 1 and we use ak−1 ≤ 2k − 2) and no column sum chosen from a Tk−1

exceeds k − 1 (By our choice of ai’s we have i ≤ ai ≤ 2k − 2 − (k − 1 − i) and so

ai ≤ k + i− 1 and ai−1 ≥ i− 1 and so 0 ≤ ai − ai−1 − 1 ≤ k − 1). �

This construction is interesting for two reasons. First, it establishes a lower bound

for forb(m, {Ik, Tk, Ick}), as seen in Proposition 1.3.7. Second, in contrast to the

bounds that we will present in Section 2.3 and Section 2.4, this is quite a substantial

constant bound, demonstrating that even though the asymptotic bound of the family

is constant by Theorem 1.3.6, there is still room for a large construction that will

avoid the family.

2.2 Failed monotonicity of the constant bound

When considering forb(m,F ) and forb(m,F), a natural question arises about whether

the bound is monotonic with respect to the number of rows, i.e. as m increases, is

forb(m,F ) or forb(m,F) weakly decreasing?

We have one result of Raggi that states that forb(m,F ) is monotonic for single

configurations of a certain kind.

Proposition 2.2.1. [18] Let F be a (0, 1)-matrix that does not contain a row of 0’s,

a row of 1’s, or a repeated row. Then for all m, forb(m,F ) ≤ forb(m+ 1, F ).

While we have this result for single configurations of the type described above,

when considering forb(m,F), particularly for families with a constant bound, the

monotonicity conjecture fails almost immediately. There is a simple family with

a constant bound where forb(m,F) does not satisfy the inequality forb(m,F) ≤
forb(m+ 1,F), namely the 2× 2 block of 0’s and the 2× 2 block of 1’s
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Theorem 2.2.2. We have

forb

(
m,

{[
0 0

0 0

]
,

[
1 1

1 1

]})
=


2 if m = 1,m ≥ 7

4 if m = 2, 5, 6

6 if m = 3, 4

.

Proof. The proof for m = 1, 2 is trivial; on one row the complete matrix [01] avoids

the family and on two rows the complete matrix K2 (with four columns) also avoids

the family.

For m = 3 and m = 4 we use Proposition 2.3.10 to prove the upper bound of

6(` − 1) = 6(1) = 6 and then the construction K2
4 achieves the bound (for m = 3,

simply delete one of the rows of the matrix construction for m = 4).

For m = 5 and m = 6 we have a construction with four columns, which is (K2
4)T .

However, we must show that the upper bound for these rows is no greater than 4.

Suppose there is a matrix of five columns on five or six rows that avoids our family.

We analyze this matrix by rows. In the first row there must be at least three 1’s

or three 0’s. Without loss of generality, we assume there are at least three 1’s. We

now restrict our attention to the remaining rows in the columns underneath these

1’s. These rows must have at least two 0’s, otherwise we generate the block of 1’s.

However, we cannot repeat any of these rows with two 0’s because that will generate

the block of 0’s. There are are only 3 possible ways to order the two 0′s and one 1

in these three columns before creating a repeat. Thus it is not possible to go beyond

four rows, and forb(m,F) for m = 5, m = 6 must be less than 5.

Finally, the bound and construction for m ≥ 7 follows from both Theorem 2.3.4

and Theorem 2.3.6. �

The pattern of bounds in this proof suggests that while the bound on a forbidden

family need not be always monotonic, forb(m,F) may be eventually monotonic, for

m sufficiently large.

2.3 Exact bound for blocks of 0’s and 1’s

In this section, we offer a refinement of the constant bound of Theorem 1.3.6 by giving

an exact bound for forbidden families consisting of a block of zeros and block of ones,
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of which the family in Theorem 2.2.2 is an example.

Definition 2.3.1. Let k, `, p, q be positive integers. We define 0j` as a k × ` block of

0’s and Jpq as a p× q block of 1’s.

These two configurations, 0j` and Jpq, are interesting both for for their non-

monotonic bound, and for their frequent appearance in other configurations, par-

ticularly Ik, I
c
k and Tk.

2.3.1 Column bound

Our first theorem will establish an exact bound for forb(m, {0k`, Jpq}) for m suffi-

ciently large. We will first prove a series of lemmas.

Lemma 2.3.2. Let k, `, p, q be given. Let A ∈ Avoid(m, {0k`, Jpq}), with ‖A‖ = n.

Also let ar denote the number of 0’s in row r of A, and br the number of 1’s in row

r so that ar + br = n. Then:

m∑
r=1

((
ar
`

)
+

(
br
q

))
≤ (k − 1)

(
n

`

)
+ (p− 1)

(
n

q

)
. (2.1)

Proof. We consider the columns of A. We take all ` sized subsets of the columns

and call them 0-buckets. Similarly, we take all q sized subsets of the columns as 1-

buckets. We will have
(
n
`

)
0-buckets and

(
n
q

)
1-buckets. We then process the rows of

A one by one, considering all possible ` sized and q sized subsets of columns on that

row. If one of these subsets contains all 0’s or all 1’s, it makes a contribution to the

appropriate 0-bucket or 1-bucket. Thus if there are a 0’s in a row, and b 1’s (where

a+ b = n), then the row will make contributions to
(
a
`

)
0-buckets and

(
b
q

)
1-buckets.

The left side of (2.1) is thus the total number of contributions over the rows of A.

Each of our
(
n
`

)
0-buckets can have a maximum of k− 1 contributions, and similarly,

our
(
n
q

)
1-buckets can have a maximum of p − 1 contributions, which produces the

right side of the inequality. �

Lemma 2.3.3. Let m, `, q be given with m ≥
(
`+q−2
q−1

)
. Let A = [Kq−1

`+q−2|j · γ]T , where

γ is a column in Kq−1
`+q−2 and j = m−

(
`+q−2
q−1

)
. Then A is an m× (`+ q − 2) simple

matrix and A ∈ Avoid(m, {01`, J1q}).
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Proof. By definition A is simple, with m rows and `+ q− 2 columns. Furthermore,

each row has `− 1 zeroes and q − 1 ones, so A ∈ Avoid(m, {01`, J1q}. �

With these two lemmas, we can now establish an upper bound and constructive

lower bound for forb(m, {0k`, Jpq}).

Theorem 2.3.4. Let k, `, p, q be given. Then there exists some constant ck`pq such

that for m ≥ ck`pq, we have forb(m, {0k`, Jpq}) = `+ q − 2

Proof. We let d = max{k, `, p, q}. We can then say 0k` ≺ T2d, 0k` ≺ I2d and

Jpq ≺ T2d, Jpq ≺ Ic2d. Thus by Theorem 2.1.1, forb(m, {0k`, Jpq}) is O(1).

We wish to show that forb(m, {0k`, Jpq}) = `+ q− 2. From Lemma 2.3.2 we know

that the right side of (2.1) is constant based on n, k, `, p and q. In order to maintain

the inequality in (2.1), the terms of the left side must be zero for most rows r, which

means ar < ` and br < q. Because a + b = n, this requires n ≤ ` + q − 2. So for

sufficiently large m, forb(m, {0k`, Jpq}) ≤ `+ q − 2.

It remains to show we have a construction that achieves the bound. Let A =

[Kq−1
`+q−2|j·γ]T as described in Lemma 2.3.3. By Lemma 2.3.3 A ∈ Avoid(m, {01`, J1q}),

and so we know A ∈ Avoid(m, {0k`, Jpq}). Furthermore, ‖A‖ = `+ q − 2. Thus A is

a construction that achieves the upper bound and so forb(m, {0k`, Jpq}) = q + `− 2.

�

2.3.2 A sharp boundary

We have now shown that forb(m, {0k`, Jpq}) = `+q−2 for m larger than some constant

ck`pq. We can say something more specific about ck`pq when ` = q or p = k. In fact, in

these two cases, we can show that there is a sharp boundary for forb(m, {0k`, Jpq});
for m ≤ ck`pq, forb(m, {0k`, Jpq}) > ` + q − 2 and for m > ck`pq, the bound proved in

Theorem 2.3.4 applies.

First we consider the case where ` = q.

Lemma 2.3.5. Let ` = q, ‖A‖ = n and a+ b = n. Then the terms of the summand

in (2.1) are bounded from below as follows:(
bn
2
c
`

)
+

(
dn
2
e
`

)
≤
(
a

`

)
+

(
b

`

)
. (2.2)
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Proof. Note that if a is written as bn
2
c − i for some i ∈ Z, then b = n − a =

n− bn
2
c+ i = dn

2
e+ i. We proceed by induction on i.

Let a = bn
2
c, and b = dn

2
e. Then

(
a
`

)
+
(
b
`

)
≥
(bn

2
c
`

)
+
(dn

2
e
`

)
is true trivially.

Now assume for the inequality is true for a = bn
2
c− i, b = dn

2
e+ i, for some i ∈ Z.

We must show that(
bn
2
c − (i+ 1)

`

)
+

(
dn
2
e+ (i+ 1)

`

)
≥
(
bn
2
c
`

)
+

(
dn
2
e
`

)
.

Using the combinatorial identity
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
, we can rewrite the left side of

the previous expression as(
bn
2
c − i
l

)
−
(
bn
2
c − i− 1

`− 1

)
+

(
dn
2
e+ i

`− 1

)
+

(
dn
2
e+ i

`

)
.

By induction we know that
(bn

2
c−i
l

)
+
(dn

2
e+i
`

)
≥
(bn

2
c
`

)
+
(dn

2
e
`

)
and by properties of the

binomial coefficient the difference
(dn

2
e+i

`−1

)
−
(bn

2
c−i−1
`−1

)
≥ 0. Thus(

bn
2
c − (i+ 1)

`

)
+

(
dn
2
e+ (i+ 1)

`

)
≥
(
bn
2
c
`

)
+

(
dn
2
e
`

)
,

as desired. �

Proposition 2.3.6. Let p, k be given, and l = q. Let A ∈ Avoid(m, {0k`, Jp`}), with

‖A‖ = n. Then the number of rows m in A is subject to the following bound:

m ≤
(k + p− 2)

(
n
`

)((bn
2
c
`

)
+
(dn

2
e
`

)) (2.3)

Proof. Because Lemma 2.3.5 gives a lower bound for the summand from the left

side of (2.1), we know the following is true:

m

((
bn
2
c
`

)
+

(
dn
2
e
`

))
≤

m∑
r=1

(
αr
`

)
+

(
βr
q

)
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We know from Lemma 2.3.2 that the summand above is bounded by

(k − 1)

(
n

`

)
+ (p− 1)

(
n

q

)
Combining these two inequalities, gives

m

((
bn
2
c
`

)
+

(
dn
2
e
`

))
≤ (k − 1)

(
n

`

)
+ (p− 1)

(
n

`

)
,

resulting in the bound of (2.3). �

We can now prove that when ` = q, the column bound has a sharp boundary

where the column bound changes. In particular, the following results also show lack

of monotonicity for this constant bound.

Theorem 2.3.7. Let p, k be given, and l = q. Then if m ≤ (k−1)
(
2`−1
`

)
+(p−1)

(
2`−1
`

)
,

then there exists a matrix A ∈ Avoid(m, {0k`, Jp`}) such that ‖A‖ > 2` − 2. If

m > (k − 1)
(
2`−1
`

)
+ (p− 1)

(
2`−1
`

)
then forb(m, {0k`, Jpq}) = 2`− 2.

Proof. Let l = q and n = 2`− 1. The row bound described by (2.3) is as follows:

m ≤
(k + p− 2)

(
2`−1
`

)(
`−1
`

)
+
(
`
`

)
= (k + p− 2)

(
2`

`

)
= (k − 1)

(
2`− 1

`

)
+ (p− 1)

(
2`− 1

`

)
.

Let A =
[
(k − 1) ·K`−1

2`−1|(p− 1) ·K`
2`−1

]T
. Then A has (k−1)

(
2`−1
`

)
+(p−1)

(
2`−1
`

)
rows and 2`−1 columns. Furthermore, the configuration O1` will appear exactly k−1

times on any subset of ` columns and the configuration J1` will appear exactly p− 1

times on any subset of ` columns and thus, A ∈ Avoid(m, {Ok`, Jp`}).
Note that this is a best case scenario with only one contribution per row, and so

once we reach the boundary of m = (k− 1)
(
2`−1
`

)
+ (p− 1)

(
2`−1
`

)
the left hand side of

the inequality in (2.1) will be equal to the right hand side. In the next row, because

either ar ≥ ` or br ≥ `, the left hand side will increase by at least one, contradicting
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(2.1) and thereby proving that for m > (k− 1)
(
2`−1
`

)
+ (p− 1)

(
2`−1
`

)
, the bound must

drop to 2`− 2 as already proved in Theorem 2.3.4 for m sufficiently large. �

Similarly to the previous theorem, we can also show that if k = p, the column

bound from Theorem 2.3.4 has a sharp boundary.

Theorem 2.3.8. Let k, `, q be given. Suppose k = p and let n = l + q. Then if m ≤
(k − 1)

(
`+q
`

)
, there exists an A ∈ Avoid(m, {0k`, Jkq}) where ‖A‖ = n. Furthermore,

for m > (k − 1)
(
`+q
`

)
, forb(m, {0k`, Jkp}) < `+ q.

Proof. Let k = p and n = ` + q. Let A = [(k − 1) ·K`
`+q]

T . By definition, A is an

(k − 1)
(
`+q
`

)
× (`+ q) simple matrix. Now consider all `-sized subsets of the columns

of A. Each subset will contain all zeroes on exactly k − 1 rows, thus avoiding 0k`.

Similarly, each q-sized subset of columns will contain all zeroes on exactly k− 1 rows

of A, avoiding Jkq.

It remains to show that this boundary is sharp. We may apply (2.1) from

Lemma 2.3.2. Because k = p and n = `+ q, where
(
`+q
`

)
=
(
`+q
q

)
, the right hand side

of (2.1) can be written as 2(k − 1)
(
`+q
`

)
. On the left hand side of the inequality, we

note that since ar + br = n = `+q, we have 2 ≤
(
ar
`

)
+
(
br
q

)
, with equality when ar = `

and br = q. Thus,

2m ≤
m∑
r=1

(
ar
`

)
+

(
br
q

)
≤ 2(k − 1)

(
`+ q

`

)

Hence for m > (k − 1)
(
`+q
`

)
, forb(m, {0k`, Jkp}) < `+ q. �

A similar argument can be made for n = l + q − 1, with the same row bound.

Theorem 2.3.9. Let k, `, q be given. Suppose k = p and let n = l+q−1. Then if m ≤
(k − 1)

(
`+q
`

)
, there exists an A ∈ Avoid(m, {0k`, Jkq}) where ‖A‖ = n. Furthermore,

for m > (k − 1)
(
`+q
`

)
, forb(m, {0k`, Jkp}) < `+ q − 1.

Proof. Let k = p and n = ` + q − 1. Let A = [(k − 1) ·K`
`+q−1|(k − 1) ·K`−1

`+q−1]
T .

By definition, A is an (k − 1)
(
`+q
`

)
× (` + q − 1) simple matrix. Now consider all

`-sized subsets of the columns of A. Each subset will contain all zeroes on exactly

k − 1 rows in the top half of the matrix, thus avoiding 0k`. Similarly, each q-sized

subset of columns will contain all zeroes on exactly k − 1 rows of the bottom half of

A, avoiding Jkq.
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It remains to show that this boundary is sharp. We may apply (2.1) from

Lemma 2.3.2. Because k = p and n = ` + q − 1, after some manipulation of the

binomials, the right hand side of (2.1) can be written as (k − 1)
(
`+q
`

)
. On the left

hand side of the inequality, we note that since ar + br = n = ` + q − 1, we have

1 ≤
(
ar
`

)
+
(
br
q

)
, with equality when ar = ` or br = q. Thus,

m ≤
m∑
r=1

(
ar
`

)
+

(
br
q

)
≤ (k − 1)

(
`+ q

`

)

Hence for m > (k − 1)
(
`+q
`

)
, forb(m, {0k`, Jkp}) < `+ q − 1. �

2.3.3 Other bounds and constructions

We have now shown that for sufficiently large m, forb(m, {0k`, Jpq} = `+ q− 2 and in

certain cases, we know precisely how large m must be before this exact bound applies.

However, it is not clear what forb(m, {0k`, Jpq}) is for small m. The following results

provide some additional insight into upper and lower bounds for forb(m, {0k`, Jpq}).
The following proposition places an absolute upper bound on forb(m, {0k`, Jpq})

for all values of m, provided that k = p = 2 and ` = q.

Proposition 2.3.10. Let k = 2, p = 2 and ` = q. For m ≥ 3,

forb(m, {02`, J2`}) ≤ 6(`− 1).

Proof. Suppose we have a matrix A which avoids {02`, J2`}. On every subset of 3

rows, the columns of A will be one of the columns of K3, shown and labeled in (2.4).

a b c d e f g h 0

0

0


 1

0

0


 0

1

0


 0

0

1


 0

1

1


 1

0

1


 1

1

0


 1

1

1

 (2.4)

We now consider some subset S of three rows of A. The total number of columns

in A can be expressed as a sum a+b+c+d+e+f+g+h, where each letter represents

the total number of times that column appears on S. Note that we cannot have more

than `− 1 copies of a and b in total, because if a+ b = ` we will have 02`. A similar

argument applies to a, c; a, d; h, e; h, f ; and h, g. So our question can be interpreted

as a linear program where we want to maximize the sum a + b + · · · + g + h under
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the following constraints:

a+ b ≤ `− 1, h+ e ≤ `− 1,

a+ c ≤ `− 1, h+ f ≤ `− 1,

a+ d ≤ `− 1, h+ g ≤ `− 1.

If we add up all our constraints, we get that 3a+b+c+d+e+f+g+3h ≤ 6(`−1) so

the total number of columns a+b+· · ·+g+h is also bounded by 6(`−1). Furthermore,

our sum will achieve this bound when a = h = 0 and b = c = d = e = f = g = `− 1.

�

While we demonstrated a construction that achieves our upper bound of `+ q− 2

for m large, we are still searching for helpful constructions for m small. The following

proposition describes one such candidate.

Proposition 2.3.11. Let k, `, p, q be given. Then Kp
k+p ∈ Avoid(m, {0k`, Jpq}) for

`, q > 1

Proof. Let A = Kp
k+p. Consider any k-sized subset of the rows of A. Because

A = Kp
k+p, each k-sized subset will contain all zeroes in only one column of A.

Similarly, each p-sized subset of rows will contain all ones in only one column of A.

Thus, the rows of A avoid {0k`, Jpq} if `, q > 1. �

This construction has
(
k+p
p

)
columns on k+ p rows and thus shows that, for large

k and p, there can be matrices with many columns in Avoid(m, {Ok`, Jpq}), even if

the final constant bound as given in Theorem 2.3.4 is small.

2.4 Constant bound for another family

The previous bound for configurations of 0′s and 1′s is not the first refinement of the

constant bound for families of forbidden configurations that have a constant bound.

We present the following result of Balin Fleming, taken from his research notes with

his permission.

Let the configurations Fa, Fb,and Fc be defined as follows:

Fa =

[
1 0

0 1

∣∣∣∣ t · 11
]
, Fb =

[
1 0

0 1

∣∣∣∣ t · 00
]

Fc =

[
t ·

0 1 1

0 0 1

]
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where t is some integer constant. The configurations Fa, Fb, Fc are contained in the

matrices Ic3t, I3t, T3t respectively, and are thus a family of constant bound as shown by

Theorem 2.1.1. The value of the following result is a much smaller constant bound

than that implied by Theorem 1.3.6.

Proposition 2.4.1. [14] Let Fa, Fb, Fc be as given above, with t ≥ 2.

Then forb(m, {Fa, Fb, Fc}) ≤ 6t− 6.

Proof. Let A ∈ Avoid(m, {Fa, Fb, Fc}). Either ‖A‖ < 6t−6 (establishing the result)

or ‖A‖ > 6t − 5. By pigeonhole principle we know that some row of A has at least

3t− 2 zeroes or 3t− 2 ones. Without loss of generality, we can assume there is some

row of A with at least 3t− 2 zeroes (if not, the following argument can proceed using

the complement). We call this row i. We now consider the columns of A that have a

zero in row i. We call this set of columns A′, and the next part of the proof will take

place in A′, which, by definition, has at least 3t− 2 columns.

Assume for a contradiction that no row in A′ has t · [01]. Assuming this, all rows

in A′ must have at least 2t− 1 ones or 2t− 1 zeroes. We choose rows j and k, with

no t · [1], so each row has at least 2t − 1 zeroes. With this number of zeroes, we

have at least t ·
[
0
0

]
on the row pair (j, k). Since we have this many

[
0
0

]
columns on

(j, k), we cannot have an I2 on the other columns of (j, k) as this would create the

configuration Fb on these two rows. Hence, either rows j and k are the same or else

they are comparable. In either case, each row j, k, has its ones confined to the same

columns of A′, of which there are at most t − 1. This is true for all row pairs (j, k)

where j and k contain no t · [1]. Thus for these rows, all their ones are contained to

the same set of t − 1 columns within A′. We now repeat this process for all pairs of

rows (g, h) where g, h are a pair of rows with no t · [0]. The same proof follows, that

all zeroes in these rows must be confined to the same t− 1 (at most) columns in A′.

Thus we have two sets of t − 1 columns, leaving behind a set of at least t columns

that are identical, contradicting the simplicity of A. Therefore, there must be some

row with t · [01] in A′. Call this row `.

We now pull back to consider the full width of A, but now in the chosen row `.

As we have just shown, row ` has [t · 01]. Assuming ‖A‖ = 6t − 6, then row ` has

either [(3t−2) ·0|t ·1] or [(3t−2) ·1|t ·0]. Assume the former. Following our previous

argument with row i replaced by row ` we can show that there is some row p with

t · [01] under the zeroes of row `. Then there can be no zero in p under the ones of row
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` (else we will have Fb), so there must be t ones. But this gives a copy of Fc. Thus

row ` cannot have [(3t − 2) · 0|t · 1]. We obtain a similar contradiction if ` contains

[(3t− 2) · 1|t · 0]. Therefore ‖A‖ < 6t− 6. �
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Chapter 3

Families With a Linear Bound

In the previous chapter, we presented a characterization of finite forbidden families

with a constant bound. The proof of this characterization indicated that there was

a gap between forbidden families with constant bound and linear bound, that is, if a

the bound for a forbidden family was not constant, it must be at least linear. Thus

we now turn our attention to forbidden families with a linear bound. We begin with

a set of single configurations with a quadratic bound and determine which families of

these configurations yield a linear bound.

3.1 Families of minimal quadratic configurations

In our search for families with a linear bound, we first consider a list of minimal con-

figurations with a quadratic bound, shown in Table 3.1. We use the word “minimal”

for F with forb(m,F ) being Ω(m2) to indicate that for any F ′ ≺ F and F ′ 6= F , then

forb(m,F ′) is O(m). In a sense, these are the configurations “closest” to having a

linear bound and thus seem like likely candidates for forming families with a linear

bound. We hoped that the analysis of bounds would be more tractable with these

minimal configurations and this expectation was correct.

We will focus our attention on families of size 2 from Table 3.1. By our charac-

terization of constant families through Theorem 2.1.1, we know that some of these

families will immediately yield a constant bound; for example any family containing

both F1 and F2 will have a constant bound as detailed in Section 2.3. Furthermore,

by Corollary 2.1.2 we know that any family without a constant bound must be Ω(m).

Thus, our goal is to show that for some of these non-constant families the upper
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Configuration Bound Construction(s) Reference

F1

[
0 0
0 0

] (
m
2

)
+
(
m
1

)
+
(
m
0

)
Ic × Ic [16]

F2

[
1 1
1 1

] (
m
2

)
+
(
m
1

)
+
(
m
0

)
I × I [16]

F3

[
0 0 0 1 1 1
0 1 1 0 0 1

]
bm2

4
c+m+ 1 I × Ic [3]

F4

 0
0
0

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
Ic × Ic [20, 21, 23]

F5

 1 0 0
0 1 0
0 0 1

 (
m
2

)
+
(
m
1

)
+
(
m
0

) Ic × Ic
Ic × T
T × T

[19]

F6

 0 1 1
1 0 1
1 1 0

 (
m
2

)
+
(
m
1

)
+
(
m
0

) I × I
I × T
T × T

[19]

F7

 1 0 0 1
0 1 1 0
0 0 1 1

 bm2

4
c+m+ 1 T × T [1]

F8

 1
1
1

 (
m
2

)
+
(
m
1

)
+
(
m
0

)
I × I [20, 21, 23]

F9


1 0
1 0
0 1
0 1

 (
m
2

)
+ 2m− 1

I × T
Ic × T [15]

Table 3.1: Minimal Quadratic Configurations
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Pairs of configurations with a con-
stant bound by Theorem 2.1.1.

{F1, F2}, {F1, F6}, {F1, F8},{F2, F4},
{F2, F5}, {F4, F6}, {F5, F8}

Pairs of configurations with an
Ω(m2) construction.

{F1, F4}, {F1, F5}, {F2, F6}, {F2, F8},
{F4, F6}, {F4, F8}, {F5, F6}, {F5, F7},
{F5, F9}, {F6, F7}, {F6, F8}, {F6, F9},

Pairs of configurations known to
have bound Ω(m).

{F1, F3}, {F1, F7}, {F1, F9}, {F2, F3},
{F2, F7}, {F2, F9}, {F3, F4}, {F3, F5},
{F3, F6}, {F3, F7}, {F3, F8}, {F3, F9},
{F4, F7}, {F4, F9}, {F7, F8}, {F7, F9},
{F8, F9}

Table 3.2: Pairs of Minimal Quadratic Configurations

bound is also linear. See row 1 of Table 3.2.

Furthermore, we note that some families of the configurations in Table 3.1 will

continue to have a quadratic bound. Any family of configurations that shares a

construction from column 3 will be Ω(m2), and therefore not Θ(m). See row 2 of

Table 3.2

Thus our method in examining families of the configurations in Table 3.1 was as

follows: attempt to determine the upper bound for families which neither fall under

our constant family classification, nor families where a quadratic product construction

avoids all configurations in the family. Such families are listed in row 3 of Table 3.2.

3.1.1 Families proved using basic methods

The first three considered families all contain the configuration F7 and have similar

proofs.

Proposition 3.1.1. We have forb(m, {F4, F7}) = forb(m, {F7, F8}) ≤ 2m.

Proof. It suffices to show that forb(m, {F4, F7}) ≤ 2m. Let A ∈ Avoid(m, {F4, F7}).

In a standard decomposition of A using row r, Cr must avoid I2 and
[
0
0

]
. To avoid I2,

the columns of Cr must be pairwise comparable (recall from Section 1.2.4), making

them the columns of a triangular matrix. To avoid
[
0
0

]
, the columns of Cr must have

a minimum column sum of m− 2 (note that Cr has m− 1 rows). Because there are

only two columns in a triangular matrix with column sum greater than or equal to

m − 2, there are only two possible columns in Cr. Thus ‖Cr‖ ≤ 2, and by standard
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induction ‖A‖ ≤ 2m. A construction of Ic will create a lower bound of m columns;

we have not found a construction that shows the 2m upper bound to be tight. �

Proposition 3.1.2. We have forb(m, {F1, F7}) = forb(m, {F2, F7}) ≤ 2m.

Proof. It suffices to show that forb(m, {F2, F7}) ≤ 2m. Let A ∈ Avoid(m, {F2, F7}).

In a standard decomposition of A using row r, Cr must avoid I2 and [1 1]. To avoid I2,

the columns of Cr must be pairwise comparable, but to avoid [1 1] they must also be

disjoint. The only possible choice for columns would be 0 and some non-zero column

α, so ‖Cr‖ ≤ 2 and thus by standard induction ‖A‖ ≤ 2m. A construction of Ic will

create a lower bound of m columns; we have not found a construction that shows the

2m upper bound to be tight. �

Proposition 3.1.3. We have forb(m, {F3, F7}) ≤ 3m.

Proof. Let A ∈ Avoid(m, {F3, F7}). In a standard decomposition of A using row

r, Cr must avoid I2 and [0 0 1 1]. To avoid I2, the columns of Cr must be pairwise

comparable, thus columns of a triangular matrix. However since we are also avoiding

[0 0 1 1] in Cr, this only allows for three columns in Cr. Thus ‖Cr‖ ≤ 3 and by

standard induction ‖A‖ ≤ 3m. Any of I, Ic or T will create a lower bound of m

columns; we have not found a construction showing the 3m upper bound to be tight.

�

The next proposition requires a graph theoretic argument to prove the bound.

Proposition 3.1.4. We have forb(m, {F3, F4}) = forb(m, {F3, F8}) ≤ 3m+ 1.

Proof. It suffices to show that forb(m, {F3, F8}) ≤ 3m+1. LetA ∈ Avoid(m, {F3, F8}).

The presence of F8 means that all columns in A have column sum at most two. There

are m+1 possible columns of column sum 0 and 1. It remains to show that the number

of columns of column sum 2 is bounded by 2m.

Here we note that in our understanding of a (0, 1)-matrix as a list of incidence

vectors for a hypergraph (see Section 1.2.1), columns of column sum 2 correspond to

edges on a graph of m vertices. Our second configuration F3 is present when there

are two vertices i, j, where the degree of i is at least 3, the degree of j is at least 3,

there is an edge joining i, j, and there is an edge disjoint from i and j. Thus, edges

from a vertex of large degree can only go to a vertex of degree less than 3, allowing
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us to bound the number of edges on the graph (and thus the number of columns in A

with column sum 2) by counting edges out of small degree vertices. Having selected

i, j, it suffices to have more than 2(m − 1) edges to find an edge not going through

i, j.

Thus a bound of 2m+m+ 1 = 3m+ 1 suffices for forb(m, {F3, F8}). �

Proposition 3.1.5. We have forb(m, {F3, F5}) and forb(m, {F3, F6}) being O(m).

Proof. It suffices to show forb(m, {F3, F5}) is O(m). Let A ∈ Avoid(m, {F3, F5}.

Then applying our decomposition seen in (1.1), we deduce that Cr has no configu-

rations [0 0 1 1] or I3. Let R(r) denote a minimal set of rows of Cr such that Cr|R(r)

is simple and in particular ‖Cr‖ = ‖Cr|R(r)‖. We deduce that Cr|R(r) has no row

of all 0’s nor a row of all 1’s nor a repeated row. Assume Cr|R(r) has at least 3

rows each of row sum 1. Then we deduce that I3 ≺ Cr|R(r). Thus we deduce that

some row s of Cr|R(r) have only one 0 and at least two 1’s. We then deduce that

in A, we have at most one column containing r
s

[
1
0

]
, else A has F3. This works for

every row r ∈ [m]. Consider a directed graph where for each row r we have a di-

rected edge r → s in this case. We deduce that in the directed graph we have a

directed cycle. Thus there are t rows a1, a2, . . . , at for which there is at most one

column containing ai
ai+1

[
1
0

]
for i = 1, 2, . . . , t − 1 and at most one column containing

ak
a1

[
1
0

]
. We now verify that apart from t columns, all columns of A|{a1,a2,...,at} are

either all 0’s or all 1’s. Thus we may delete the t − 1 rows a1, a2, . . . , at−1 and up

to t columns and obtain a simple matrix. This yields the result by induction using

forb(m, {F3, F5}) ≤ t+ forb(m− t+ 1, {F3, F5}). �

The proof of the bound for the following family uses a linear algebra reduction

argument of Anstee and Fleming as seen in Section 1.4.3.

Proposition 3.1.6. forb(m, {F1, F3}) = forb(m, {F2, F3}) ≤ 2m

Proof. We take the case of {F1, F3}. Let A ∈ Avoid(m, {F1, F3}). In order to avoid

F1, on each pair of rows in A must contain at most one
[
0
0

]
while to avoid F3, each

pair of rows must have no
[
0
0

]
or no

[
1
1

]
or at most 1

[
1
0

]
. In the case where all pairs

of rows have no
[
0
0

]
or no

[
1
1

]
, then the result follows from Theorem 1.3.1. In the

case where a pair of rows has only one
[
1
0

]
and therefore, only one of

[
0
0

]
, we have

that every pair of rows has two columns in short supply. By the result of Anstee and
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Fleming (Theorem 1.4.1), we can find O(m) columns to delete so that the resulting

matrix has an absent column on each pair of rows. The resulting matrix has no K2

and hance O(m) columns by Theorem 1.3.1. Thus A has O(m) columns. �

3.1.2 Families proved using a structure argument

The results for several of our families taken from Table 3.1 use a result of Frankl,

Füredi, and Pach [15]. The result is as follows: if a matrix A avoids F9, all columns

of A with column sum i will have a particular structure. Let A ∈ Avoid(m,F9).

Consider the columns of column sum i, labeled in (3.1) as Ti or Si. Then the following

structure must exist on these columns:

Ti Si

Ai

Bi

Ci



1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

1 1 . . . 1
...

...

1 1 . . . 1

0 0 . . . 0
...

...

0 0 . . . 0



or

Ai

Bi

Ci



0 1 . . . 1

1 0 . . . 1
...

...
. . .

...

1 1 . . . 0

1 1 . . . 1
...

...

1 1 . . . 1

0 0 . . . 0
...

...

0 0 . . . 0



(3.1)

Note that for the columns of Ti, |Bi| = i − 1 and for Si, |Bi| = i − (|Ai| − 1).

Also ‖Ti‖ = |Ai| and ‖Si‖ = |Ai|. We will use this structure and its properties in the

proofs that follow.

Proposition 3.1.7. We have forb(m, {F5, F6, F9}) ≤ 2m.

Proof. Let A ∈ Avoid(m, {F5, F6, F9}). We sort the columns of A by column sum.

Because A avoids F9, each set of columns with column sum i will have the structure

shown in (3.1). However, because A must also avoid F5 and F6, the maximum number

of columns of any column sum i must be less than 3 (otherwise there will be an F5

or F6 on the rows Ai). Thus the upper bound bound on ‖A‖ is 2m. �

Proposition 3.1.8. We have forb(m, {F1, F9}) = forb(m, {F2, F9}) = 2m+ 1.
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Proof. It suffices to show forb(m, {F1, F9}) = 2m+ 1. Let A ∈ Avoid(m, {F1, F9}).

We sort the columns of A by column sum, and because A avoids F9, each set of

columns with column sum i will have the structure shown in (3.1). Any matrix

formed by two columns of sum at most m−3 will either contain F1 or F9 or both. So

consider the columns of sum m− 2, m− 1 and m. The maximum number of columns

occurs with structure Sm−2, with |Am−2| = m − 1, structure Sm−1 with |Am−1| = m

and 1m, yielding 2m columns. If we use these columns then we can add precisely one

column of smaller sum, namely the column with a single 1 in row m, without creating

either F1 or F9. Thus forb(m, {F1, F9}) = 2m+ 1. �

Proposition 3.1.9. We have forb(m, {F4, F9}) = forb(m, {F8, F9}) = 2m.

Proof. It suffices to show that forb(m, {F4, F9}) = 2m. Let A ∈ Avoid(m, {F4, F9}).

We sort the columns of A by column sum, and because A avoids F9, each set of

columns with column sum i will have the structure shown in (3.1). However, we also

know that A cannot contain F4 and thus it must have column sum of m−2 or greater

on all columns. This means we can have the columns of sum m− 2, m− 1 in the two

types of structures Si and Ti and in fact, we can take Sm−2 with |Am−2| = m− 1, the

structure Sm−1 with |Am−1| = m and the column 1m, yielding 2m columns total. �

Proposition 3.1.10. We have forb(m, {F7, F9}) is O(m).

Proof. Let A ∈ Avoid(m, {F7, F9}). Let AT denote the columns where columns of

sum i form the structure Ti from (3.1) and let AS denote the columns where columns

of sum i form the structure Si. Then ‖A‖ ≤ 2m+ ‖AT‖+ ‖AS‖, where there at most

2 columns of column sum i not in AT or AS. It suffices to show that ‖AT‖ ≤ 2m; we

will then know ‖AS‖ ≤ 2m by taking (0, 1)-complements, as F c
7 is F7 and F c

9 is F9.

Note that for all i where columns of sum i are inAT , ‖Ti‖ is bounded by the number

of rows containing the identity, or |Ai|. Thus, in order to show that forb(m, {F7, F9})
is O(m), it suffices to show that

∑
|Ai| is O(m).

If Ai ∩ Aj = ∅ for all pairs i, j then
∑

i |Ai| = m and we are done. Now suppose

there are i, j column sums with i > j such that Ai ∩ Aj 6= ∅. Then |Ai ∩ Aj| < 2.

Suppose not. Then there are two rows in Ai ∩Aj that contain [I2|I2] on the columns

of sum i and j. Furthermore, because i > j, |Bi| > |Bj|, so there is some row b ∈ Bi,

b 6∈ Bj. Therefore b must be all 1′s in the columns of column sum i and mostly 0’s in
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the columns of column sum j. Combining row b with the rows in the intersection of

Ai ∩ Aj, we create F7, a contradiction. So |Ai ∩ Aj| = 1.

We now consider Bi, Bj where |Bi| > |Bj|. If Bj\Bi 6= ∅ then Bi\Bj 6= ∅. We find

a copy of F7 on rows p, q, r where p = Ai ∩Aj, q ∈ Bj\Bi and r ∈ Bi\Bj. So we may

assume Bj ⊂ Bi.

Among the column sums of type T , choose three with i > j > k and we may

assume i is the largest column sum. Assume Ai ∩ Aj = {a}, (a row index) and

Ai ∩ Ak = {b}. If a 6= b, then for some c ∈ Bi\Bj, we find a copy of F7 on the rows

a, b, c. Recall that Bk ⊂ Bj ⊂ Bi and so such a c c can be chosen. Choosing two

columns of sum i that have an I2 on rows a and b, one column of sum j with a 1 in

row a (and necessarily a 0 in row b) and one column of sum k with a 1 in row b, will

generate an F7 on rows a, b, c. So we may assume a = b.

With these properties in hand for AT we now prove that ‖AT‖ ≤ 2m by induction

on m. In particular the sets At for t of type T , have the properties that |Ai| ≥ 3 and

|Ai ∩ Aj| ≤ 1. They can be ordered by the index i so that if we have three indices

i > j > k and Ai ∩ Aj = {a} and Ai ∩ Ak = {b}, then a = b. By choosing the

largest index i we reduce the family by eliminating Ai and the remaining sets are on

the elements [m]\(Ai\a) have the same properties so we can apply induction. Thus∑
t |At| = |Ai|+ 2(m− |Ai|+ 1) ≤ 2m. �

Theorem 3.1.11. We have that forb(m, {F3, F9}) is O(m).

Proof. We establish that forb(m, {F3, F9}) ≤ 12m. Let A ∈ Avoid(m, {F3, F9}).

Let AT denote the columns where columns of sum i form the structure Ti from (3.1)

and let AS denote the columns where columns of sum i form the structure Si. Then

‖A‖ ≤ 2m + ‖AT‖ + ‖AS‖, where there at most 2 columns of column sum i not in

AT or AS. We will show ‖AT‖ ≤ 5m and then we deduce ‖AS‖ ≤ 5m by taking

(0,1)-complements (we note that F c
3 is F3 and F c

9 = F9 as configurations). This yields

the bound.

We have that ‖AT‖ =
∑

i |Ai| where the sum is only over those i for which AT

has columns of sum i. We note that for i < j, we cannot have |Bi\Bj| ≥ 2. Else let

p, q ∈ Bi\Bj. Then since |Aj| ≥ 3, there is always a column β of sum j with 0’s in

rows p, q. Now a column α of sum i has 1’s in rows p, q. We deduce that [αβ] has

F9. Thus for i < j, we have |Bi\Bj| ≤ 1.

Now assume
∑

i |Ai| ≥ 5m. Then there is a quintuple i1 < i2 < i3 < i4 < i5
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with some row r ∈ Ai1 ∩ Ai2 ∩ Ai3 ∩ Ai4 ∩ Ai5 . We will consider i1, i3, i5. We have

|Bi3| ≤ |Bi5|−2 and so let s, t ∈ Bi5\Bi3 . Now |Bi1| ≤ |Bi3 |−2 and yet |Bi1\Bi3| ≤ 1.

Thus without loss of generality we may assume s 6∈ Bi1 . We now claim that we have

F3 in rows r, s. In the columns of sum i5 with r ∈ Ai5 and s ∈ Bi5 we find

r

s

[
0 0 1

1 1 1

]
.

Now in both the columns of sum i1 and also in columns of sum i3, we may find

r

s

[
0 1

0 0

]
,

using the fact that i1 /∈ Bi1 and i3 6∈ Bi3 . This yields a copy of F3 and so we may

deduce
∑

i |Ai| ≤ 5m which completes our proof. �

3.2 Other linear results

Based on a result of Balogh, Keevash and Sudakov, we have the following theorem:

Theorem 3.2.1. [10] Let k ≥ 2 be given. Then forb(m, {Ik, Tk}) is Θ(mk−2)

From this theorem we can conclude the following.

Corollary 3.2.2. We have that forb(m, {I3, T3}) is O(m).

Note that Conjecture 1.3.5 states that for single configurations, if forb(m,F ) is

Θ(mk), then there is a construction that avoids F consisting of a k-fold product of

three matrices: I, Ic and T . Thus, if this conjecture were true for forbidden families,

if a family of configurations was contained in all possible two-fold products of I, Ic

and T , then its bound would have to be linear. The conjecture remains unproven (and

likely requires a different statement for forbidden families - see Chapter 4), but its

statement suggests which forbidden families would likely have a linear upper bound,

a bound which must then must be proved.
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Chapter 4

Families With a Super-linear

Bound

The first section of this chapter will contain a proof that refines a previous result,

showing that a certain family of matrices defined as the product of 2 × 2 matrices

has a bound of Θ(m3/2). In the second section of the chapter we will present another

family of matrices, also obtained by taking the product of small 2-rowed matrices.

We conjecture that this family has the same Θ(m3/2) bound and present the outline

for a possible proof.

4.1 Unexpected bound for product configurations

4.1.1 Introduction

Conjecture 1.3.5 implies that for a single forbidden configuration, the power of m in

the asymptotic bound is an integer. A logical question might be whether a similar

(or even the same) conjecture applies to the asymptotic bound of forbidden families.

However when considering a family of two configurations, Anstee and Sali found a

bound of Θ(m3/2). The general idea is as follows. Let ex(m,H) is the maximum

number of edges in a (simple) graph G on m vertices that has no subgraph H. A ∈
Avoid(m,13) will be a matrix with up tom+1 columns of sum 0 or sum 1 plus columns

of sum 2 which can be viewed as the vertex-edge incidence matrix of a graph.

Assume p = |V (H)| and q = |E(H)|. Let I(H) denote the p × q vertex-edge

incidence matrix associated with H.
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Remark 4.1.1. forb(m, {13, I(H)}) = m+ 1 + ex(m,H).

We first encountered this with I2 × I2 which is I(C4), the vertex-edge incidence

matrix of the cycle of length 4.

Theorem 4.1.2. [1] forb(m, {13, C4}) = m+ 1 + ex(m, I(C4)) which is Θ(m3/2).

However we explored the result from the point of view of I2 × I2 and various

product constructions. This resulted in the statement and proof of Theorem 1.3.14.

The matrices used in Theorem 1.3.14 are the products of a small identity matrix and

a small triangular matrix as follows:

I2 =

[
1 0

0 1

]
, T2 =

[
1 1

1 0

]
,

I2× I2 =


1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

 , T2×T2 =


1 1 1 1

1 0 1 0

1 1 1 1

1 1 0 0

 , I2×T2 =


1 0 1 0

0 1 0 1

1 1 1 1

1 1 0 0

 .

A preliminary version of [7] contained Theorem 1.3.14, which proved that forb(m, {I2×
I2, T2 × T2, I2 × T2}) is Θ(m3/2). However, a closer examination of this family re-

vealed that while there are Ω(m2) constructions for the families {I2 × I2, I2 × T2}
and {T2 × T2, I2 × T2}, the best construction that could be achieved for the family

{I2×I2, T2×T2} was Ω(m3/2). This led to the conjecture of the theorem that follows,

which we were able to prove by extending the result of Anstee, Raggi and Sali for

F = {I2 × I2, T2 × T2, I2 × T2}.

4.1.2 Theorem and proof

Theorem 4.1.3. We have forb(m, {I2 × I2, T2 × T2}) is Θ(m3/2).

Before we proceed to the main body of the proof, we will make a few remarks and

present three lemmas.

The proof will use a standard induction argument (recall from Section 1.4.1).

Given our two forbidden configurations I2 × I2 and T2 × T2, when performing the
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standard decomposition using any row r in A, then Cr cannot contain the following

inductive children:

F1 =

 1 1

1 0

1 1

 , F2 =

 1 0 1 0

0 1 0 1

1 1 0 0

 .
Configuration F1 in Cr will produce T2 × T2 and configuration F2 in Cr will produce

I2 × I2.

Lemma 4.1.4. We have forb(m, {F1, F2}) ≤ 2m.

Proof. Let A′ ∈ Avoid(m, {F1, F2}) be a simple matrix. We proceed by standard

induction. In order to avoid F2, the columns of C ′ must avoid its inductive child,

I2. This implies that the columns of C ′ must be pairwise comparable (recall the

definitions of Section 1.2.4), creating a tower matrix. By definition, C ′ is simple so

all the columns must be unique. If ‖C ′‖ ≥ 3, there will be an F1 contained in two of

the columns. Thus ‖C ′‖ ≤ 2, and by induction A′ has at most 2m columns. �

It is worth nothing that in order to achieve the bound of ‖C ′‖ = 2 in the previous

proof, it is necessary for the columns in C ′ to be the column of 0’s and a column

of sum 1. Of course, there may be only one of these columns present, but for our

purposes there must be at least one, as a further restriction will preclude that C ′ is

empty.

Definition 4.1.5. Let A, r, be given with the decomposition (1.1). If there is a row

r′ in a subset of rows S ⊆ [m] such that r′ can be deleted and simplicity maintained

in Cr|S\r′, then we call r′ deletable.

Definition 4.1.6. Let A, r, be given with the decomposition (1.1). We define R(r) ∈
[m] to be a minimal set of rows with the property that Cr|R(r) is simple, with no

deletable rows.

We use the previous lemma to prove the following lemma about the size of R(r).

Lemma 4.1.7. Let A, r, be given with the decomposition (1.1). Given R(r) as

described in Definition 4.1.6, we have that |R(r)| ≥ ‖Cr‖/2.
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Proof. Consider the matrix Cr|R(r). Note that ‖Cr|R(r)‖ = ‖Cr‖. We know that

Cr|R(r) must avoid {F1, F2} (because Cr avoids {F1, F2}) and so by Lemma 4.1.4,

‖Cr|R(r)‖ ≤ 2|R(r)|, which becomes |R(r)| ≥ ‖Cr‖/2, as desired. �

Lemma 4.1.8. Let A, r, be given with the decomposition (1.1). Given R(r) as

described in Definition 4.1.6, we can choose a set of rows S(r) ⊆ R(r) such that

Cr|S(r) contains I|S(r)| and |S(r)| ≥ |R(r)|/2.

Proof. We choose R(r) as described for the proof of Lemma 4.1.7. Let s ∈ R(r)

and perform the standard decomposition of Cr|R(r) using row s into Es, Gs, and Hs;

see (4.1)

Cr|R(r) =
s

R(r) \ s

[
0 . . . 0 1 . . . 1

Es Gs Gs Hs

]
. (4.1)

This scenario is analogous to the situation in Lemma 4.1.4, with Cr|R(r) as A′, Es

as B′, Gs as C ′ and Hs as D′. Therefore, as seen in the proof of Lemma 4.1.4, Gs

is restricted to at most two columns, in fact, a column of sum 0, a column of sum 1

or both. Furthermore, in our case, with Cr restricted to the rows R(r), Gs cannot

be empty. Otherwise s could be deleted while preserving the simplicity of Cr|R(r), a

contradiction to how we chose R(r). Thus, in the matrix Cr|R(r), each row s ∈ R(r)

is associated with one or both of the following column types:

Case 1. There is a a zero column in Gs, which yields a column of sum 1 in Cr|R(r)

with its 1 in row s.

Case 2. There is a column of sum 1 in Gs, which yields a column of column sum

2 with 1’s in rows s and some row t and a column of column sum 1 with a 1 in row t.

To choose our set S(r) ⊆ R(r), with I|S(r)| ≺ Cr|S(r) and |S(r)| ≥ |R(r)|/2, we

will generate a directed graph on the rows of R(r) and then use properties of the

graph to choose an appropriate S(r). We define D to be a directed graph, where

there is an directed edge from vertex s → t if in the decomposition of Cr|R(r) based

on row s, Case 2 occurs. We define the set T as the set of all rows t ∈ R(r) such

that Cr|R(r) has a column of column sum 1 with a 1 in row t. Let U = R(r) \ T . For

each edge u ∈ U , there is an edge u → v, where, by our choice of T , v ∈ T . Let V

be a subset of T such that each vertex in V has an associated u-vertex in U , i.e. let

V = {v ∈ T : there is a u ∈ U with u→ v}. Finally, we define S(r) = U ∪ (T \ V ).

In words, we have chosen a subset of rows in R(r), where each row is associated with
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a column of sum 2 (U), but the row containing the second 1 (V ) has been omitted.

We have also included some extra rows associated with columns of column sum 1

that are distinct from the columns associated with this first set (T \ V ). Thus each

row in S(r) is associated with a distinct column of column sum 1 and so Cr|S(r)
contains an I|S(r)|, potentially with some extra or repeated columns. We can confirm

that |S(r)| ≥ |R(r)|/2 by noting that in fact S(r) = U ∪ (T \ V ) = R(r) \ V , so

|S(r)| = |R(r)| − |V |, and as |V | ≤ |U |, this gives |S(r)| ≥ |R(r)|/2. �

With these lemmas proved, we can now proceed with proof of Theorem 4.1.3.

Proof of Theorem 4.1.3. By a previous result of Anstee, Raggi and Sali, we

know that forb(m, {I2 × I2, I2 × T2, T2 × T2}) is Θ(m3/2). The construction that

achieves this bound is as follows.

For each p a prime power, there is known to exist a projective plane of order p

which consists of p2 + p + 1 subsets each in
(
[p2+p+1]
p+1

)
such that for any two subsets

L1, L2, we have |L1∩L2| = 1 and for each pair of elements a, b there is a unique subset

La,b containing both. A major open problem is whether there exist projective planes

of non-prime power order but we do not concern ourselves with that question. It is

natural to think of elements as points and subsets as lines. The resulting (p2 + p +

1)× (p2 + p+ 1) element-set incidence matrix has (p+ 1)(p2 + p+ 1) 1’s and no 2× 2

submatrix of four 1’s. We may create a 2(p2+p+1)×(p+1)(p2+p+1) simple matrix

so that for each pair of a element/point a and subset/line L with a ∈ L, we have a

column with a 1 in row a and a 1 in row p2 + p+ 1 +L. We verify that the resulting

matrix has no I2× I2 nor T2× T2 and that the number of columns (p+ 1)(p2 + p+ 1)

is Θ((2(p2 + p+ 1))3/2). We can pad this matrix with rows of 0’s to obtain a matrix

of order m with Θ(m3/2) columns.

Because the construction for this bound avoids {I2 × I2, I2 × T2, T2 × T2}, it also

avoids the family of our theorem {I2× I2, T2×T2}. Thus forb(m, {I2× I2, T2×T2}) is

Ω(m3/2). It remains to show that the bound is tight, i.e., that forb(m, {I2×I2, T2×T2})
is O(m3/2).

If we perform the standard decomposition on A, we would be done by induction

if we could show that ‖Cr‖ ≤ cm1/2 for some row r and some constant c. For this

proof, we will use c = 20. We will assume ‖Cr‖ ≥ 20m1/2 for all r and arrive at a

contradiction as follows: we will show that we can associate matrix Cr with a set of

rows S(r) where |S(r)| ≥ ‖Cr‖/4. Then we show that we can choose a set Q ⊆ S(r)
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with |Q(r)| ≥ |S(r)|/3 such that for every choice rp, rq ∈ Q we have |S(rp)∩S(rq)| ≤ 5.

Thus for t = 5/3m1/2 choices r1, r2, . . . , rt ∈ S(r) we show that |S(ri) ∩ S(rj)| < 6

and so obtain disjoint sets of rows

S(r1), S(r2)\S(r1), S(r3)\(S(r1) ∪ S(r2)), . . . S(rt)\(S(r1) ∪ S(r2) ∪ · · · ∪ S(rt−1)).

If we sum the size of these disjoint sets of rows, we get:

5m1/2 + (5m1/2 − 5) + (5m1/2 − 10) + · · ·+ (5m1/2 − 5(t− 1)) > m

a contradiction given that we have m rows.

Let r be a row in A so ‖Cr‖ > 20m1/2. We first choose a set of rows R(r) ⊆ [m]

as described in Definition 4.1.6. By Lemma 4.1.7 we know that |R(r)| ≥ ‖Cr‖/2. We

continue by choosing a set of row S(r) ⊂ R(r) as described in Lemma 4.1.8; again,

we know that |S(r)| ≤ |R(r)|/2, thus |S(r)| ≥ ‖Cr‖/4, and by our choice of S(r), we

know that Cr|S(r) contains an I|S(r)|.

We now focus our attention on the matrix A|S(r). In particular, if we perform the

standard decomposition on A using a row rj ∈ S(r), we wish to know what happens

on the columns of Crj |S(r)\rj .
Let rj ∈ S(r). Perform the standard decomposition using rj on the original matrix

A and then restrict to the rows in S(r) ∪ r. In the decomposition, the columns of

Crj |S(r) must correspond to columns of A which appear with a 1 and 0 in row rj

and are the same elsewhere, in particular, on the rows r ∪ (S(r) \ rj). We thus have

columns in Crj as follows:

rj

S(r) \ rj
r

 0 1

α α

a a

 . (4.2)

We now consider A|S(r) in this arrangement. We will extract two conclusions from

the structure in (4.2), first from the case where a = 0 and second from the case where

a = 1.

We begin with the case where a = 0. Note that since a = 0 is in row r, the columns

of Crj with this feature correspond to columns in [BrCr] in the original decomposition

(1.1), and thus, by Lemma 4.1.10, these columns are laminar.

Returning to the decomposition based on rj, as shown in (4.2); suppose there exist
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two non-zero choices for α, say β 6= γ. We have the following situation for columns

in Crj :

rj

S(r)\rj {
r

 0 0 1 1

β γ β γ

0 0 0 0

 . (4.3)

We know that on the rows S(r), the columns from (4.3) must form a laminar

family, as they have a zero in row r and are thus in [BrCr]|S(r). Columns 3 and 4 have

1’s in common on row rj and we deduce without loss of generality that β ≤ γ and

β 6= γ. Now, considering columns 2, 3, and the fact that 0 6= β, we violate the nested

family property of laminar families, a contradiction. Thus there is only one non-zero

choice for α in Crj when a = 0. Furthermore, if α is repeated, it must have column

sum 1. If α has column sum greater than 1 and it is repeated, it creates a T2 × T2.
This happens because A is a simple matrix and so on some row r′ the columns of Crj
must differ, yielding the following, with T2 × T2 on the first three rows plus row r′.

rj

S(r) \ rj

r′


0 0 1 1

1 1 1 1

1 1 1 1

α′ α′ α′ α′

0 1 0 1

 .

We prove a slightly different result when a = 1. This case will be simpler since the

fact that a = 1 will automatically yield a row of ones on row r, naturally generating

a row of T2 × T2. We will show that the columns in Crj must be disjoint on the rows

S(r) \ rj.
Suppose there are two non-zero columns β, γ in Crj |S(r)\rj .

rj

S(r)\rj {
r

 0 1 0 1

β β γ γ

1 1 1 1

 .
Now suppose β and γ both have entry 1 on some row r′ ∈ S(r) \ rj. Also, like

above, because A is a simple matrix, there is some row r′′ (r′′ 6= r, r′, rj) where the
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columns of Crj differ. The situation is then as follows:

rj

r′

S(r) \ (rj ∪ r′)
r′′

r


0 0 1 1

1 1 1 1

β′ γ′ β′ γ′

0 1 0 1

1 1 1 1

 .

This creates a T2 × T2, therefore all of our non-zero columns α in Crj |S(r)\rj , with 1’s

in row r cannot have a 1 entry on the same row.

Thus we have shown that for any column in Crp |S(r), where rp ∈ S(r), there are

two results. If the entry of a column in row r is 0, then those columns can be 0 or

a single non-zero column α: if α is of size 1 it may be repeated, otherwise there is

only one copy. If the entry of a column in row r is 1, the columns of Crp|S(r) must

be disjoint. We now use these facts to consider what occurs in the rows of Crp |S(r)\rp
(denoted X below).

On the columns of Crp with a 0 in row r, we have two cases for the rows of S(r)\rj.
If α is of size 1 and repeated, there will be one “bad” row, say rs ∈ S(r) \ rp, that

contains multiple ones in these columns. The remaining rows will contain all zeroes

on these columns. In the other case, if the non-zero α is of size greater than 1 and

therefore not repeated, all rows in S(r)\ rp will have at most one 1. Thus for all rows

in S(r) \ rp with the exception of the previously described “bad” row, the remaining

rows will have at most one 1 on the columns of Crp .

On the columns of Crp with a 1 in row r, the rows of S(r) \ rj will contain only

one 1 each.

We can now show that once we choose rp ∈ S(r) for all but one rq ∈ S(r) \ rp,
|S(rp) ∩ S(rq)| < 6. We decompose the matrix A based on row rp ∈ S(r):

Crp Crp

rp

S(r) \ rp

[
0T 1T

X X

]
.

We choose rp and rq so that neither is a “bad” row for the other. By Lemma 4.1.9

we know that we can choose at least a third of the rows from S(r) such that each row

rq is not a “bad” row for all other rows chosen. We decompose A first using rp and
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then using rq.

Crp Crp Crq Crq

rp

rq

S(rp) ∩ S(rq)

 1 0

βT βT

I I

 , rp

rq

S(rp) ∩ S(rq)

 γT γT

1 0

I I

 .
Note that by our choice of rp and rq, β

T and γT contain at most two 1’s each and

therefore must be mostly 0’s. We consider the columns in Crp that have entry 0 in

row rq. By our assumption about the size of S(rp) ∩ S(rq), we know these columns

must contain an I2, underneath 1’s in row rp and 0’s in rq. We now consider the

same columns in Crq . We can find at least two columns with 0 in row rp and 1 in rq,

containing an I2 underneath. Furthermore, these two pairs of columns are distinct,

as they have different entries on rp and rq. When put together they create an I2× I2.
Therefore |S(rp) ∩ S(rq)| ≤ 5.

We finally generate the series of disjoint sets described at the beginning of this

proof and arrive at our contradiction. �

Lemma 4.1.9. Given a row p ∈ R(r), we say row q ∈ R(r) \ p is a bad row for row

p is there is more than one column of Cp with a 0 in row r and a 1 in row q. Assume

for each row r ∈ (s(r) there is at most one bad row s ∈ S(r). Then there is a set of

rows Q ⊆ S(r) such that |Q| ≥ |S(r)|/3 and for any pair of rows rp, rq ∈ Q, we have

rp and rq are not bad rows for each other.

Proof. We will interpret this question as a graph theory problem. We create a graph

with |S(r)| vertices and assign each row of S(r) to a vertex. We assign a directed

edge to two vertices (ri, rj) if rj is a “bad” row for ri. Because for each edge/row ri

there can only be one “bad” row rj, the out-degree of any vertex vi is at most one.

A set of rows that has our desired property is equivalent to choosing an independent

set on our graph. We can choose an independent set by coloring the graph-each color

will correspond to an independent set of vertices.

We will show that we can three-color our graph. We use induction on the number

of vertices. Suppose there exists a v′ ∈ V such that v′ has in-degree 0. Let G′ be the

induced subgraph of G \ v′. Directed graph G′ maintains our property of maximum

out-degree 1, so we color G′ with 3 colors and then add v′ back with an appropriate

color. Suppose there is no vertex v ∈ V with in-degree 0. In this case all vertices
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have in-degree 1 and out-degree 1, and so the edges of G form the union of disjoint

cycles, which we can color with 3 colors.

Since each color corresponds to an independent set, we can choose an independent

set that is at least a third of the remaining rows. �

Lemma 4.1.10. Assume we have obtained S(r) as described in Lemma 4.1.8. Then

on all triples of rows in S(r), the columns in [BrCr] must form a laminar family.

Proof. Recall our description of the “what is missing” method in Section 1.4.2.

Using a computer program written in C++ by Miguel Raggi (download at

http://www.math.ubc.ca/∼anstee/FConfThesisVersion.tar.gz) we are able to com-

pute what is missing on any quadruple of rows in A in order to avoid I2 × I2 and

T2 × T2. There are five possibilities, and on any quadruple of rows in A, one must

apply.

Q0 =

no no no
0

1

0

1




0

0

1

1




1

1

1

1

, Q1 =

no no no no no
0

1

0

1




1

1

0

1




0

0

1

1




1

0

1

1




0

1

1

1

,

Q2 =

no no no no
1

1

1

0




0

1

0

1




0

0

1

1




1

0

1

1

, Q3 =

no no no no
1

1

1

0




1

0

0

1




0

1

0

1




0

0

1

1

,

Q4 =

no no no no no no
1

1

0

0




1

0

1

0




0

1

1

0




1

0

0

1




0

1

0

1




0

0

1

1

.

When we perform the standard decomposition of A based on row r and consider

a quadruple of rows r, i, j, k, we can determine what is missing in Cr on the triple of

rows i, j, k. We would be able to delete rows from Cr and preserve simplicity if we

find a copy of “K2” in what is missing. That is, if on the triple i, j, k, there is a pair
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of rows i, j with all 4 columns of K2 appearing as follows:

i

j

k

no 0

0

a


no 0

1

b


no 1

0

c


no 1

1

d


where a, b, c, d ∈ {0, 1}, then we could delete row k from Cr and preserve simplicity,

a contradiction. The reason for this is that on the three rows i, j, k, the only columns

possibly present would be

i

j

k

 0

0

a


 0

1

b


 1

0

c


 1

1

d


where x denotes the (0,1)-complement of x. We can see that deleting row k will not

result in repeated columns assuming Cr has no repeated columns.

We note that Q3 and Q4 both have the property that if any row is deleted, there

will be a K2 contained on two of the remaining three rows and so we can ignore the

cases represented by Q3 and Q4. In the remaining cases to avoid leaving a K2 after

deleting a row we must delete a certain row(s) from a quadruple. We note that Q2

has K2 on rows 1 and 2 and so to avoid leaving a copy of K2 row r must either be

row 1 or row 2 of such quadruples. Similarly, r must be row 1 of Q1 and could be any

row of Q0. We use Pi to denote a triple arising from the quadruple Qi in these ways.

P0 =

no no no1

0

1


0

1

1


1

1

1

 or

no no no0

0

1


0

1

1


1

1

1

 or

no no no0

1

1


0

0

1


1

1

1

 or

no no no0

1

0


0

0

1


1

1

1


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P1 =

no no no no no1

0

1


1

0

1


0

1

1


0

1

1


1

1

1

 P2 =

no no no1

1

0


1

0

1


0

1

1

 or

no no no1

1

0


0

1

1


1

1

1

.

These then, are the possibilities for what is missing in A, including A|S(r). Because

we know that the columns of A contain an identity matrix on the rows S(r) we know

that the final three cases of P0 and the second set of case of P2 can not be what is

missing on for A|S(r).
Among the remaining options for what is missing (the first case for P0, P1 and

P2), by looking at Q0, Q1 and Q2, we see that below the zeroes in row r, each triple

of rows in S(r) is missing two columns of sum 2. This means that on all triples of

rows in S(r), the columns in [BrCr] must form a laminar family. �

4.2 A similar bound for larger product configura-

tions

Extending the previous result, we considered another family of configurations formed

by the product of small matrices. As before, these small matrices were taken from

the three matrices of Theorem 1.3.6 and Conjecture 1.3.5, I, Ic, and T . In this case,

we used the following three configurations:

E1 =

[
0 1 0

0 0 1

]
, E2 =

[
0 1 1

0 0 1

]
, E3 =

[
1 1 0

1 0 1

]
.

Note that E1 ≺ I3, E2 ≺ T3 and E3 ≺ Ic3.

We then forbid all possible products of these sub-configurations, namely the family

{E1×E1, E1×E2, E1×E3, E2×E2, E2×E3, E3×E3}. If only five of these products are

forbidden, there is a product construction of size Ω(m2) that avoids the five included

matrices. However, when all six are forbidden, the best lower bound is Ω(m3/2) from

a construction of Anstee, Raggi and Sali [7]. This leads us to the following conjecture:

Conjecture 4.2.1. Given the family F = {Ei×Ej : i, j = 1, 2, 3} we have forb(m,F)
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is Θ(m3/2).

The lower bound has already been given, thus the main goal is to establish the

upper bound that forb(m,F) is O(m3/2). We here outline some steps of a potential

proof that we were unable to complete.

The argument will proceed by induction. Let A ∈ Avoid(m,F). Then using the

decomposition shown in (1.1), Cr cannot contain the following inductive children of

our family:

F1 =

 0 0 0 1 1 1

0 1 0 0 1 0

0 0 1 0 0 1

 , F2 =

 0 0 0 1 1 1

0 1 1 0 1 1

0 0 1 0 0 1

 ,

F3 =

 0 0 0 1 1 1

1 1 0 1 1 0

1 0 1 1 0 1

 .
Similarly to the last proof, we have two lemmas relating to the inductive children

and rows of A.

Lemma 4.2.2. We have forb(m, {F1, F2, F3}) ≤ 2m.

Proof. Let A′ ∈ Avoid(m, {F1, F2, F3}) be a simple matrix. We proceed by standard

induction. In order to avoid {F1, F2, F3}, the columns of C ′ must avoid the sub-

configurations E1, E2 and E3. But because E1 ≺ I3, E2 ≺ T3 and E3 ≺ Ic3, by

Lemma 1.3.20, ‖C ′‖ must be constant. A simple pigeonhole argument proves that

‖C ′‖ ≤ 2. �

Using Definition 4.1.6 as in the previous proof, we define R(r) ∈ [m] to be a

minimal set of rows with the property that Cr|R(r) is simple, with no deletable rows.

The result of Lemma 4.1.7 again applies to |R(r)|, so |R(r)| ≥ ‖Cr‖/2.

Similarly to the previous proof, we want to show that for all r, ‖Cr‖ is O(m1/2),

which yields an upper bound of O(m3/2) for the matrix A by induction. We will

attempt to do so by contradiction: assume that for all r that ‖Cr‖ is Ω(m1/2) and

then choose a subset of the rows in such a way that we arrive at a contradiction

regarding the number of rows.

We now need to show that there exists some constant c (say c = 1/3) and some

S(r) ⊆ R(r) such that |S(r)| ≥ c|R(r)| and Cr|S(r) contains either a I|S(r)|, T|S(r)|, or

52



Ic|S(r)|. Such a statement would parallel the statement of Lemma 4.1.8. This is the

primary missing element of the proof. If such a statement could be proved, the rest

of the proof would proceed as follows.

Supposing we can choose this S(r) for all rows r ∈ [m], there must be at least

a third of the rows in [m] such that S(r) contains I|S(r)|, a third of rows such that

S(r) contains T|S(r)|, or a third of rows in S(r) contain Ic|S(r)|. Thus without loss of

generality, we can choose a set Q(r) ⊂ [m] of size Θ(m1/2) such that for all r ∈ Q(r)

Cr|S(r) contains a I|S(r)|.

We now consider the standard decomposition of A based on rows rp, rq ∈ Q(r).

Suppose |S(rp) ∩ S(rq)| ≥ 5. If we decompose A based on rp (and then rq), we have

the following:

Crp Crp

rp

rq

S(rp) ∩ S(rq)

 00 . . . . . . 00

0 . . . 0 1 . . . 1

I I

11 . . . . . . 11

0 . . . 0 1 . . . 1

I I

 .
Using our assumption about |S(rp)∩ S(rq)|, and the pigeonhole principle, we can

assume that one of the two following configurations will occur in the above decom-

position:

rp

rq

S(rp) ∩ S(rq)




0 0 0 1 1 1

0 0 0 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

 or

rp

rq

S(rp) ∩ S(rq)




0 0 0 1 1 1

1 1 1 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

 .
(4.4)

We now consider a decomposition again using rp and rq; however, this time the

decomposition begins with rq.

Crq Crq

rp

rq

S(rp) ∩ S(rq)

 0 . . . 0 1 . . . 1

00 . . . . . . 00

I I

0 . . . 0 1 . . . 1

11 . . . . . . 11

I I

 .
Note that the columns of Crq with a 1 in row rq will be disjoint from the columns
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of the first configuration in (4.4) and the columns of Crq will be disjoint from the

columns of the second configuration in (4.4).

Now the columns of Crq with a 1 in row rq will be forced to contain one of the following

configurations:

rp

rq

S(rp) ∩ S(rq)




0 0 0

1 1 1

1 0 0

0 1 0

0 0 1

 or

rp

rq

S(rp) ∩ S(rq)




1 1 1

1 1 1

1 0 0

0 1 0

0 0 1

 . (4.5)

These configurations are both disjoint from the first configuration in (4.4) and thus,

taken together, produce either an E1×E1 in the first case or E1×E2 in the second case.

If we consider the cases of (4.5) with 0’s in row rq (one of which must occur), these

will be disjoint from the 2nd case listed above, and again, taken together, produce a

E1 × E2 or an E1 × E3. In each case the E1 occurs in the rows of S(rp) ∩ S(rq) and

the other matrix of the product occurs in rp ∪ rq.
Thus |S(rp) ∩ S(rq)| ≤ 4.

Finally, we consider the following sequence of sets. We assume that |S(r)| >
Km1/2 for some suitably large K. For all ri ∈ S(r), we form disjoint sets S ′(ri) as

follows:

S ′(ri) = S(ri) \
i−1∑
j=1

S(rj).

Note that S ′(ri), S
′(rj) are disjoint for all ri, rj ∈ Q(r). We then consider the size of

these sets:

|S ′(r1)|+ |S ′(r2)|+ |S ′(r3)|+ · · ·+ |S ′(rt)|,

where t = m1/2. This sum size of these sets is thus:

Km1/2 + (Km1/2 − 4) + (Km1/2 − 8) + . . .

which is greater than m for K suitably large, a contradiction.
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Chapter 5

A Case Study: Families of 2 x 2

Configurations

When first investigating families of forbidden configurations, we chose to take the

set of all seven 2 × 2 configurations (described and indexed in Table 5.1) and find

forb(m,F) for all 27 − 1 non-trivial families of these configurations, with the goal of

using these families as case studies for other families with larger configurations.

Configuration Bound Construction Contained in

F1

(
0 0
0 0

) (
m
2

)
+
(
m
1

)
+
(
m
0

)
Icm × Icm I4, T4

F2

(
1 0
0 0

)
m+ 1 [Icm|1] I3, T3

F3

(
1 1
0 0

)
m+ 2 [Im|0|1] or [Icm|0|1] T3

F4

(
1 0
1 0

)
m+ 1 [Im|0] or [Icm|1] T3

F5

(
1 0
0 1

)
m+ 1 [Tm|0] I2, I

c
2

F6

(
0 1
1 1

)
m+ 1 [Im|0] T2, I

c
3

F7

(
1 1
1 1

) (
m
2

)
+
(
m
1

)
+
(
m
0

)
Im × Im T3, I

c
4

Table 5.1: List of 2 x 2 Configurations
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These families proved both a good starting point for exploration, and a helpful

way to demonstrate the use of our results and techniques used to prove bounds.

5.1 Constant families

We can use many results previously shown in this paper in order to simplify our

classification of families. The first is Theorem 2.1.1, which allows us to identify

families with a constant bound. For example, the family {F1, F7} has the property

that F1 ≺ I4, F7 ≺ T3, and F7 ≺ Ic4 and thus by Theorem 2.1.1 forb(m, {F1, F7})
is O(1). There are many pairs of configurations that have this property and thus a

constant bound. They are as follows:

{F1, F5}, {F1, F6}, {F1, F7}, {F2, F5}, {F2, F6},

{F2, F7}, {F3, F5}, {F4, F5}, {F5, F6}, {F5, F7}. (5.1)

Now by Remark 1.3.19, we know that forb(m,F) must be no larger than forb(m,F ′)
for all F ′ ⊆ F . Thus any family that contains one of the families in (5.1) can have

at most a constant bound.

We can determine the exact bound for families of 2 × 2 configurations that have

a constant bound. We will prove bounds for ten minimal families of configurations

taken from Table 5.1. Any family with a constant bound will contain a sub-family

identical to one of our ten minimal families for which we have proved an exact upper

bound. By Remark 1.3.19, the bound of the entire family will be the smallest bound

of the subfamilies; thus the bound for a family with a constant bound will be given

by one of our ten minimal families.

Proposition 5.1.1. Let m ≥ 2. We have forb(m, {F1, F5}) = forb(m, {F3, F5}) =

forb(m, {F5, F7}) = 3.

Proof. Let A ∈ Avoid(m,F), for one of the families above. Because our matrix A

must avoid F5, our columns must be pairwise comparable, so that for any α, β ∈ A,

α ≤ β or β ≤ α. Thus our matrix will be a selection of columns chosen from the

triangular matrix [Tm|0]. If we we choose four or more columns from this matrix, on

some subset of rows there will be a T4 or [T3|0], both of which contain F1, F3, and F7.

Thus the bound must be less than 4. The following constructions achieve the bound
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of 3:

{F1, F5} :


1 1 0

1 0 0

0 0 0
...

...
...

 {F4, F5} :


1 1 0

1 0 0
...

...
...

1 0 0

 or


1 0 0

1 1 0
...

...
...

1 1 0

 .
The construction for {F5, F7} is the complement of the construction for {F1, F5}, per

Remark 1.3.16. �

Proposition 5.1.2. We have forb(m, {F4, F5}) = forb(m, {F2, F5}) = forb(m, {F5, F6}) =

2.

Proof. Let A ∈ Avoid(m,F), for one of the families above. Similarly to the previ-

ous proof, in order to avoid F5, A will be taken from columns of the triangular matrix

[Tm|0]. But any three columns chosen from [Tm|0] will include the submatrices T3 or

[T2|0], both of which contain F2, F4, and F6. Thus the bound must be less than 3.

The constructions that achieve the bound of for {F4, F5} are as follows:
1 0

0 0
...

...

0 0

 or


0 1

1 1
...

...

1 1

 .
The construction that achieves the bound of 2 for {F2, F5}, {F5, F6} is [1|0]. �

Proposition 5.1.3. Let m ≥ 7. Then forb(m, {F1, F7}) = 2.

Proof. For proof of this bound, see Section 2.3 and Theorem 2.3.4. For any column

α, a construction of [α|αc] achieves the bound. �

Proposition 5.1.4. We have forb(m, {F2, F6}) = 2.

Proof. Let A ∈ Avoid(m, {F2, F6}). Suppose our matrix A has 3 columns. Without

loss of generality, we can suppose the first row has two 1’s and one 0. Because A is

simple, for some row below the columns containing these two 1’s, these columns must

contain a [10]. However, such a matrix contains F6. A similar argument works for

the complement. Thus forb(m, {F2, F6}) < 3. For any column α, a construction of

[α|αc] achieves the bound. �
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Proposition 5.1.5. We have forb(m, {F1, F6}) = forb(m, {F2, F7}) = 2.

Proof. We will demonstrate the argument for forb(m, {F1, F6}; forb(m, {F2, F7}

follows by Remark 1.3.16. Let A ∈ Avoid(m, {F1, F6}. Suppose our matrix A has 3

columns. Suppose that the first row has two 1s and one 0. Then A cannot avoid F6

by the same argument as the previous family. Now suppose the first row has one 1

and two 0s. We consider the two columns α and β containing the 0s. After the first

row, [α|β] cannot contain [00] on any row, otherwise A will contain F1. In addition,

because A is simple, on some row [α|β] must contain [01]. Therefore [α|β] can never

contain [11] on a row (to avoid F6). In the row containing [10] in columns [α|β], the

third column must contain a 0 in order to avoid F6. However, if this row is repeated

more than once, we have F1. Thus an A ∈ Avoid(m, {F1, F6}) with 3 columns is

not possible and forb(m, {F1, F6} < 3. For any column α, a construction of [α|αc]
achieves the bound. �

Proposition 5.1.6. For m ≥ 5, We have forb(m, {F1, F4, F6}) = forb(m, {F1, F4, F7}) =

forb(m, {F2, F4, F6}) = forb(m, {F2, F4, F7}) = 1.

Proof. Suppose there is a two-column construction A avoiding these families. There

are four options for the rows of A: [00], [11], [01] or [10]. If any one of these rows is

repeated more than once, we will have a F1, F7, F4, or F4 respectively. Thus for the

family {F1, F4, F6}, the only row that can be repeated is [11]. However, because this

is a simple matrix, at some point we must have the row [01] or [10]. This generates an

F6, which is forbidden. A similar argument can be used for the other families listed

above.

Any column α will achieve the bound. �

5.2 Linear families

We know from Proposition 2.1.2 that if a family does not have a constant bound, its

bound is at least linear. Thus all families of 2× 2 configurations that do not have a

constant bound must have at least a linear bound. What is the upper bound of these

families?

In fact, most of the 2 × 2 configurations listed in Table 5.1 have a linear bound.

Thus by Remark 1.3.19, we know that forb(m,F) is O(m) for any F containing
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F2, F3, . . . F6. The only family with the potential to have a greater than linear bound

would be the two configurations with a quadratic bound, namely {F1, F7}, which we

have already shown to have a constant bound. Thus for all families of size greater

than 1, forb(m,F) has at most a linear upper bound. Therefore all families of 2× 2

configurations that do not have a constant bound must have a linear bound, i.e. are

Θ(m).

Carefully examining the list of pairs of configurations that give a constant bound,

we find that the only families of 2 × 2 configurations that do not contain a family

from our list of constant-bounded families (5.1) are the families {F1, F2, F3, F4} or

{F3, F4, F6, F7} and all of their subfamilies. To show that forb(m,F) is Θ(m) for

these families, it remains to show that they admit a linear construction. We will do

so by giving exact bounds for two scenarios.

First, we consider all possible pairs of 2 × 2 configurations that do not yield a

constant bound. These pairs are contained in the family of either {F1, F2, F3, F4} or

{F3, F4, F6, F7}, or alternatively, are not contained in (5.1)).

{F1, F2}, {F1, F4}, {F2, F3}, {F2, F4}, {F3, F4} (5.2)

{F3, F4}, {F3, F6}, {F4, F6}, {F4, F7}, {F6, F7} (5.3)

{F1, F3}, {F3, F7} (5.4)

Remark 5.2.1. The families in (5.2) and (5.3) have a bound of m+ 1.

The families listed in (5.2) and (5.3) have at least one configuration with a bound

of m + 1. Thus the bound for each of the families listed in (5.2) and (5.3) is m + 1,

a consequence of Remark 1.3.19. In all cases there is also a linear construction that

achieves the bound. In the case of families in (5.2), the matrix [Icm|1] avoids each pair

of configurations, as well as any union of them. Similarly, for families in (5.3), the

matrix [Im|0] avoids each family and any union of them.

Remark 5.2.2. The families in (5.4) have a bound of m+ 2.

Each configuration individually has a bound of m+2, enforcing a maximum upper

bound of m+2 (again by Remark 1.3.19) and the configurations [Icm|1|0] and [Im|1|0]

achieve this bound by avoiding {F1, F3} and {F3, F7} respectively.
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5.3 Table of results

The following table (Table 5.2) summarizes the results preceding this section. These

results should completely characterize forb(m,F) where F is a family of 2× 2 config-

urations. Given such a family F , the first line of the table which contains a subfamily

contained in F gives the bound and construction for the entire family F .

F forb(m,F) Construction Proof
{F1, F4, F6}, {F1, F4, F7},
{F2, F4, F6}, {F2, F4, F7}

1 any column Proposition 5.1.6

{F1, F7} 2 [α|αc] Theorem 2.3.4
{F2, F6} 2 [α|αc] Proposition 5.1.4
{F1, F6}, {F2, F7} 2 [α|αc] Proposition 5.1.5
{F2, F5}, {F4, F5}, {F5, F6} 2 Proposition 5.1.2 Proposition 5.1.2
{F1, F5}, {F3, F5}, {F5, F7} 3 Proposition 5.1.1 Proposition 5.1.1
{F1, F2}, {F1, F4}, {F2, F3},
{F2, F4}, {F3, F4}

m+ 1 [Ic|1] Remark 5.2.1

{F3, F4}, {F3, F6}, {F4, F6},
{F4, F7}, {F6, F7}

m+ 1 [I|0] Remark 5.2.1

{F1, F3} m+ 2 [Icm|0|1] Remark 5.2.2
{F3, F7} m+ 2 [Im|0|1] Remark 5.2.2

Table 5.2: Summary of Results

5.4 Critical subfamilies

Our results here suggest an interesting parallel to previous results from the study of

single forbidden configurations. When forbidding a single configuration F , the con-

figuration may have a subconfiguration F ′ ≺ F such that forb(m,F ′) = forb(m,F ).

If this F ′ is minimal, that is, if for all F ′′ ≺ F ′, forb(m,F ′′) < forb(m,F ), F ′ is called

a critical substructure of F [6]. Such a sub-configuration is called critical, because

the larger configuration’s bound somehow depends on the bound of this substructure

and its presence in the larger configuration.

For example, when forbidding the complete object K4, there are seven critical

substructures, whose bound is the same as that of K4.

Theorem 5.4.1. [18] The critical substructures of K4 are 04,14, I4, I
c
4, K

2
4 , [2 ·03], [2 ·

13].
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This means that forbidding, say, 14, has the same “power” as forbidding all of K4,

in that forb(m,14) = forb(m,K4).

We can extend this idea of critical substructures to our forbidden families, where

a subfamily F ′ ⊂ F is called a critical subfamily if forb(m,F ′) = forb(m,F) and F ′

is minimal, that is, for all F ′′ ⊂ F ′, forb(m,F ′′) > forb(m,F). This definition can

also be seen as a further refinement of Remark 1.3.19, which states this very idea:

that the upper bound of a family is restricted by the bounds of all its subfamilies.

We can see this idea clearly at work in the bounds established in the previous

sections of this chapter. For example the family {F1, F2, F3, F4} has a bound of

m + 1, with critical subfamilies {F2}, and {F4}, as they each also have a bound of

m+ 1. Our implicit classification of all families of 2× 2 configurations with constant

bound also uses this principal: if a family F contains at least one of our ten proven

families as a subfamily, then that subfamily serves as a critical subfamily, restricting

the bound for F .

One of the results described in Section 1.3 was that forb(m,C3) =

forb(m, {C3, C4, C5, . . . }) and forb(m,C3) = forb(m, {C3, C5, C7, . . . }). Thus {C3} is

a critical subfamily of {C3, C4, C5, . . . } and {C3, C5, C7, . . . }.
It should be noted that while critical subfamilies can be a useful way to determine

bounds for larger families, the bound for a forbidden family may not always arise from

a critical subfamily. In the case of {F1, F7}, forb(m, {F1, F7}) is constant. However,

the only subfamilies of {F1, F7} are the single configurations {F1} and {F7}, both of

which have a quadratic bound. Thus the bound in this case arises from the interaction

of the two configurations and Theorem 1.3.6, not the bound of a critical subfamily.

61



Chapter 6

Conclusion

6.1 Summary of results

The first type of result in this paper is a classification, seen in Chapter 2 where we

classify all families with a constant bound. While the classification theorem is based

on a result not original to this paper, its conjecture and proof is a strong statement

both about families of forbidden configurations and the interaction of the three key

matrices of Conjecture 1.3.5. First, the classification allows us to not only identify,

almost at a glance, which forbidden families have a constant upper bound, but tells

us therefore which families have at least a linear construction. Furthermore, the

strength and completeness of the result supports the premise of Conjecture 1.3.5,

that somehow the matrices Im, I
c
m and Tm are integral to understanding forbidden

configurations.

However, the bulk of this paper has been devoted to establishing and proving both

exact and asymptotic bounds for specific families of forbidden configurations. It is by

no means an exhaustive survey, and we did not reach any other grand classification

schemes; however, many of our results present interesting aspects of the forbidden

configuration problem when it is extended to families. For example, the theorem and

proof of Section 4.1 both show that the asymptotic bound can be a fractional exponent

of m, not merely an integer exponent of m. The results regarding forbidden blocks

of zeroes and ones in Section 2.3 illustrate the failed monotonicity of the (constant)

bound for a family of forbidden configurations.

However, almost as important as the final bounds discussed in the paper are the

techniques used to prove them. Proofs in Section 2.3 used basic combinatorics, a
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bucketing approach from computer science, and a variation of linear programming.

The proofs of certain linear bounds used a previous result about the structure of

matrices that avoid a certain configuration (F9 in Table 3.1). The proof of the bound

in Section 4.1 is a fresh spin on standard induction, and also includes the method of

“what is missing.”

Finally, the results in this paper suggest various other ideas parallelling previous

work in single forbidden configurations (for example, the idea of critical subfamilies

discussed in Section 5.4). These are not results per se, but we have noted all such

correspondences, or other patterns of note.

In conclusion, this paper presents both refinements and extensions of previous

work, as well as original results. The results will provide either tools or a jumping off

point for continued research in the field. Thus this paper could be used as a helpful

starting reference for anyone seeking to continue working in the field of forbidden

configurations, as it combines a summary of previous important results, presents an

important classification, provides illustration of most known proof techniques, and

suggests areas for exploration.

6.2 Future work

There are several possibilities for future work regarding families of forbidden config-

urations. The first would be an extension of Conjecture 1.3.5 from single forbidden

configurations to families. As alluded to in Chapter 4, Conjecture 1.3.5 fails in the

case of forbidden families. However, there might be an alternative statement for which

it holds. One example might be that the conclusions of Conjecture 1.3.5 hold if the

configurations in a forbidden family represent all the inductive children of a single

forbidden configuration. There may be another claim to be made about the size or

type of a forbidden family on the asymptotic power of its bound.

Another avenue of exploration would be more theorems to classify families of

a certain bound, like Theorem 1.3.6 and Theorem 2.1.1. Similarly, in Section 5.4,

we discussed families which “force” a certain asymptotic bound. Part of classifying

families may be finding all of these critical families or types of critical families for

which a certain bound occurs.

In the proof of Theorem 4.1.3, we used a new technique based on standard induc-

tion and proof by contradiction. This technique was originally used in a similar proof,
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and its adaptability to the new result indicates that it may be a useful addition to the

standard repertoire of methods used to solve problems in forbidden configurations.

In addition, the analysis of “what is missing” was a useful tool in determining various

bounds.

In our results, we have often used pre-established results from the study of single

forbidden configurations. In return, the study of forbidden families might be of use

when studying single configurations. In particular, the use of standard induction can

change the problem from avoiding a single configuration in A to avoiding a family

of inductive children in Cr. Knowledge of certain common families could then help

prove upper bounds for these single configurations.
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