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Abstract

The first chapter of this thesis explored the dominant gene expression pattern in the adult human brain. We

discovered that the largest source of variation can be explained by cell type marker expression. Across brain

regions, expression of neuron cell type markers are anti-correlated with the expression of oligodendrocyte

cell type markers. Next, we explored gene function convergence and divergence in the adult mouse brain.

Our contributions are as follows. First, we provide candidate cell type markers for investigating specific cell

type populations. Second, we highlight orthologous genes that show functional divergence between human

and mouse brains.

In the second chapter, we present our preliminary work on the effects of tissue types and experimen-

tal conditions on human microarray studies. First, we measured the expression and differential expression

levels of tissue-enriched genes. Next, we identified modules with similar expression levels and differen-

tial expression p-values. Our results show that expression levels reflect tissue type variation. In contrast,

differential expression levels are more complex, owing to the large diversity of experimental conditions in

the data. In summary, our work provides a different perspective on the functional roles of genes in human

microarray studies.
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Glossary

AIBS Allen Institute for Brain Science, a nonprofit organization that makes publicly available large-scale

data that pertains to neuroscience which includes in situ images of the mouse brain and human brain

microarray

ANOVA Analysis of Variance, a set of statistical techniques to identify sources of variability between

groups

AUC Area Under a Receiver Operating Characteristic Curve, the area under the curve that shows the true

positive rate against the false positive rate at different cutoffs, an area of 1.0 shows perfect enrichment

while an area of 0.5 indicates no enrichment

DE Differential Expression, the difference in expression levels between sample groups represented by a

p-value

EE Expression, the relative mean expression level of a gene across all samples within a dataset ranging

from 0.0 (no expression) to 1.0 (high expression)

GEO Gene Expression Omnibus, a public data repository of functional genomics studies

GO Gene Ontology, is a set of controlled vocabularies describing gene products in terms of biological

processes, cellular components and molecular functions

H0351.2001 Allen Human Brain Atlas donor profile of a 24 year old African American male

H0351.2002 Allen Human Brain Atlas donor profile of a 39 year old African American male

ISA Iterative Signature Algorithm, a biclustering algorithm that iteratively selects genes and samples that

are significantly different based on a threshold

ISH In situ Hybridization, is an experimental technique where labelled RNA strands hybridize to comple-

mentary strands localized in a specific tissue location

PC1 First Principal Component, the principal component with the largest variance

PCA Principal Component Analysis, a statistical technique that projects high dimensional data to lower

dimensions in terms of orthogonal variables called principal components
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RS Result Set, the pair of sample groups within a dataset from which ANOVA was used

WM/GM White Matter to Grey Matter Transcript Ratio, the gene expression ratio between gray matter

samples and adjacent white matter samples
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Chapter 1

Neuron-enriched gene expression patterns
are regionally anti-correlated with
oligodendrocyte-enriched patterns in the
adult mouse and human brain

1.1 Introduction
Gene expression in the adult mammalian brain is highly complex and poorly understood. Over 80% of all

genes are expressed in the central nervous system, often with patterns that vary in time and space [19, 22, 24].

Many genes show patterns that correspond to classical neuroanatomical subdivisions [24]. Others re-

flect neurotransmitter systems, and yet others appear to reflect patterns laid down during development

[10, 22, 44]. The functional significance of many other patterns is not clear. As the neuroscience com-

munity increasingly integrates data across modalities, gaining a deeper understanding of expression patterns

is important. One way to gain insight into these patterns is to examine their conservation in evolution. An-

other is to dissect them into sub-patterns that reflect different cell types. Progress on both of these fronts

is enabled by the availability of large-scale data sets. In this paper we focus on expression patterns in the

normal adult human brain, comparing them to expression in the normal adult mouse, extending our recent

work [17].

There is a broad expectation that gene expression in the mouse and human should be similar, and the

brain is no exception. It is well known that the fundamental anatomical structure and function of the nervous

system is common across mammals. This is exemplified by the similarities observed in the gene expression

patterns in the subcortical regions of the brain [25, 41]. Gene expression in the cortical regions on the other

hand show greater gene expression diversity between mouse and human [45]. Differences in gene expression

may be due to the increased number of cortical neurons in primates compared to rodents [20]. However,

none of these studies is comprehensive in terms of brain regions or genes and insights into studies that look

at cell type compositions have been limited. Within specific brain regions, inverse relationships between

1



cell type expression patterns have been observed in human [33]. However, it is unclear whether expression

patterns are also anti-correlated between brain regions. Recently we reported that gene expression across

adult mouse brain regions is dominated by patterns associated with neuron and oligodendrocyte marker

expression levels [17]. These patterns were identified by seeking strong anti-correlated patterns of gene

expression and also by principal component analysis (PCA). PCA captures the dominant patterns in the

data in orthogonal variables termed principal components [35]. In the adult mouse brain, higher levels of

expression of genes with a neuron-enriched pattern tended to be associated with anterior regions and regions

with higher macroconnectivity [17]. The opposite was observed for the oligodendrocyte-enriched pattern.

We hypothesized that similar relationships exist in the human brain.

To investigate the gene expression patterns in the human brain, we applied PCA to the regional tran-

scriptomes of two adult human brains. Based on the first principal component (PC1) scores, we identified

two groups of genes that were enriched for neuron cell type markers (the “neuron-enriched” pattern) and

oligodendrocyte cell type markers (the “oligodendrocyte-enriched” pattern) respectively. Our results show

that the significant portion of the transcriptome can be explained by the expression of neuron and oligoden-

drocyte cell type markers which are anti-correlated across brain regions. Moreover, in comparison to mouse

subcortical regions, we report homologous genes with similar expression patterns which are also enriched

for neuron and oligodendrocyte markers but not astrocyte markers. We also observed homologous genes

with differences in expression patterns, the details of these patterns could provide additional insights into

functional similarities and differences among mammalian brain lineages.

1.2 Methods
We used publicly available datasets and performed two independent analyses to study cell type expression

patterns within the human brain and between the mouse and human brain. The overview of the materials

and methods used are shown in Figure 1.1.

1.2.1 Human brain gene expression

We analyzed the normalized gene expression data from two healthy adult human post-mortem brains down-

loaded from the publicly available dataset called the “Allen Human Brain Atlas” provided by the AIBS

(Allen Institute for Brain Science) (http://www.brain-map.org/) [19]. Briefly, donor H0351.2001 was a 24

year old African American male and donor H0351.2002 was a 39 year old African American male. For both

brains, larger regions were manually macrodissected whereas smaller regions were laser captured microdis-

sected. There are 896 brain region samples in the H0351.2001 dataset while the H0351.2002 dataset had

946 samples. The two human datasets were processed and analyzed separately. Sample replicates with the

same “structure name” column annotation were averaged, yielding 323 columns for H0351.2001 and 346

columns for H0351.2002. Samples from the left and right hemispheres were kept separate. Samples of white

matter tracts (corpus callosum and cingulum bundle) were excluded from both matrices which resulted in

320 columns in the H0351.2001 dataset and 345 columns in the H0351.2002 dataset. Each normalized gene

expression matrix contained data for 58,691 probes. We combined multiple probes for the same gene by

taking the mean, yielding expression levels for 29,191 genes.

2
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Figure 1.1: Analysis workflow of human and mouse gene expression across brain regions. Quality
control for expressing genes and grey matter tissue samples were applied prior to analysis. Re-
gional gene expression patterns were defined using PCA for two human brain microarray data in
the first analysis (left). A similar method was applied to mouse ISH data previously as described
in French et al. (2011) (right) [17]. The second analysis compares homologous data matrices
of human H0351.2001 and mouse (middle). Cahoy et al. (2008) cell type markers were used to
define neuron and oligodendrocyte-enriched patterns [9].

1.2.2 Mouse brain gene expression

We used the mouse gene expression data from the “Allen Mouse Brain Atlas” as described in our previous

study [16]. Briefly, colorimetric in situ hybridization (ISH) images were collected from adult male, 56-day-

old C57BL/6J normal mouse brains [24]. The ISH images were previously quantified and registered to a 3D

reference atlas by Ng et al. [30]. The resulting brain region level expression energy (hereafter referred to as

gene expression) is defined as the product of the expression area and the expression intensity [31]. Missing

values are reported as NAs. The resulting mouse expression matrix has 20,444 genes and 207 brain regions.
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1.2.3 Human brain analysis

For the analysis of the human data (independent of the mouse data), we focused our analysis on regionally

variable grey matter expressed genes by discarding genes with standard deviation or mean expression below

the 25th percentile. After filtering, the H0351.2001 dataset had 14,595 genes and 320 brain regions while

the H0351.2002 dataset had 14,615 genes and 345 brain regions.

We mean-centered and scaled the expression of each gene by its standard deviation across brain regions

by using the “scale” function in R [38]. The “prcomp” function in R was used to calculate the principal

components of the scaled gene expression matrix. PC scores for each gene correspond to the “x” value while

PC loadings for each brain region correspond to the “rotation” value of the “prcomp” result. For consistency,

we use the convention that the oligodendrocyte marker MOBP has a positive PC1 score.

We measured the cell type enrichment in PC1 scores by measuring the area under the curve (AUC) of

the receiver operating characteristic curves, in a manner similar to the “wilcox.test” function in R. First, we

ranked genes by their PC1 scores. Second, we divided the ranked list of genes into the positive and negative

gene sets. This condition depends on the cell type of interest. For example, when we calculate the AUC

for neuron markers, those genes that are found in the Cahoy neuron marker list are included in the positive

gene set and all other genes are included in the negative gene set. Afterwards, we compare the positive

and negative gene sets by calculating the AUC. To maintain positive AUC scores, the signs of the glia PC1

scores and loadings were reversed before AUCs are calculated.

1.2.4 Human-mouse comparisons

Human H0351.2001 and mouse brain region names were manually matched using the sample annotations

and ontologies provided by the AIBS. Human genes were converted to mouse genes using HomoloGene

build 66 [43].

We manually compared each brain region name in the AIBS mouse and human structure ontology files.

For this analysis, we averaged the gene expression of both left and right human brain hemispheres with a

matching structure name. However, there are many brain regions with structure names that do not match

between species. To circumvent this, for each species, each brain region was manually annotated with a

parent structure that is common to both species. Gene expression of multiple brain regions with the same

parent structure were averaged. For example, the human regions “CA1”-“CA4” were averaged to match

the parent structure “Ammon’s horn”. Likewise, the mouse regions “Lateral group of the dorsal thalamus”,

“Lateral posterior nucleus of the thalamus”, and “Suprageniculate nucleus” were averaged to match the

parent structure “Lateral group of Nuclei, Dorsal Division”.

Gene expression values of both matrices were then quantile normalized. Finally, genes with expression

levels below the 25th percentile in both species were removed. The resulting matched human and mouse

matrices represent expression values of 7,911 genes across 58 subcortical brain regions.

We calculated the Spearman rank correlation for each homologous gene. Cell type enrichment of the

homologous gene correlation was quantified as AUC in a similar manner to how AUC was calculated from

PC1 scores.
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1.2.5 Statistical analysis

We used the “cor.test” function in R to calculate Spearman rank correlations together with matching p-

values. P-values were corrected for multiple testing by controlling for the false discovery rate, which are

reported as q-values [4]. The distribution of orthologous gene expression pattern correlations was compared

to 20 random distributions where human gene labels were shuffled without replacement. Correlations for

data with missing values were calculated by using the “pairwise” method of the “cor” function in R [38].

Hierarchical clustering was performed with the “hclust” function in R [38], using Euclidean distances

and Ward’s minimum variance method as parameters [42].

Gene ontology analysis for the 100 most positively and negatively correlated expression patterns were

performed using DAVID [11].

1.2.6 Additional data sources

Cell type markers were obtained from Cahoy et al. (2008) [9]. Only those marker genes that have at least

10x fold enrichment were used. In H0351.2001, there are a total of 267 neuron, 103 oligodendrocyte and

143 astrocyte cell type markers that are homologous to the mouse study. Similarly, the H0351.2002 dataset

has 270 neuron, 104 oligodendrocyte and 145 astrocyte markers.

White matter to grey matter (WM/GM) transcript ratios within the anterior cingulate gyrus were obtained

from Sibille et al. (2008) [40]. Sibille et al. defined WM/GM transcript ratio for each gene in each brain

area as the ratio between the average expression of using all samples in the gray matter area and the average

expression of using all samples in the adjacent white matter area. Ratios of multiple probe sets for the same

gene were averaged. Glia to neuron cell ratios for the human cerebellum, cerebral cortex and the rest of the

brain were obtained from Azevedo et al. (2009) who applied a chemomechanical dissociation technique to

purify cells which were labelled by immunohistochemistry [2].

In relation with mouse and human expression pattern differences, the list of 73 genes that show differ-

ential expression pattern between mouse and human visual and temporal cortices was obtained from Zeng

et al. (2012) [45]. Genes with discordant expression patterns between species were obtained from the list of

49 human-specific markers (genes that are correlated with modules enriched for cell types in human but not

in mouse) in the meta-analysis of brain expression performed by Miller and colleagues (2010) [28]. These

brain regions include both cortex and subcortical regions.

1.3 Results

1.3.1 Neuron-enriched and oligodendrocyte-enriched patterns are conserved

We characterized gene expression profiling data from two adult human brains (identified by the AIBS as

donors H0351.2001 and H0351.2002) in a manner comparable to our previous analysis of the adult mouse

brain (Figure 1.1). After filtering (see Methods), the H0351.2001 dataset had 14,595 genes while the

H0351.2002 dataset had 14,615 genes, 13,250 of which were found in both datasets. For H0351.2001,

we obtained 320 brain region samples. Telencephalon accounts for most of the brain region samples (53%),
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metencephalon (22.1%), diencephalon (11%), myelencephalon (8.1%), and mesencephalon the least (5.9%).

The H0351.2002 dataset had 345 samples with similar proportions of major brain divisions as H0351.2001.

In H0351.2001, cerebellar samples clustered more closely compared to other brain regions (Figure 1.2), in

line with previous observations that cerebellum gene expression is the most unique compared to other major

brain divisions [26, 34, 39]. This was less apparent in H0351.2002 (data not shown). Hereafter, we report

results based on these filtered datasets.

Next, we tested whether genes that express anti-correlated cell-type enriched patterns in mouse are also

anti-correlated in humans [17]. We averaged the expression of all human homologs with the mouse neuron-

enriched pattern. Similarly, we also averaged the expression pattern of all human homologs with the mouse

oligodendrocyte-enriched pattern. As in mouse, the averaged neuron-enriched pattern is anti-correlated with

the averaged oligodendrocyte-enriched pattern (H0351.2001 rho = -0.40, P < 0.0001 and H0351.2002 rho

= -0.61, P < 0.0001) (Figure 1.2). Genes that show neuron-enriched patterns are predominantly expressed

in metencephalon and telencephalon regions while genes in the oligodendrocyte-enriched patterns are not

restricted to any major brain division.

This conservation of cell type marker enriched patterns is also evident in a PCA of the human data.

The first three principal components of H0351.2001 accounted for 15.6%, 11.6%, and 8.31% of the total

variance respectively whereas we see a slight decrease in the case of H0351.2002 with 15.2%, 8.07%, and

5.98% of the total variance respectively. The first principal component (PC1) gene scores of the two human

datasets are strongly positively correlated (rho = 0.72, P < 0.0001), indicating that overall, the two brains

have similar dominant expression patterns, consistent with the findings of Hawrylycz et al. (2012) [19]. We

observed that these oligodendrocyte and neuron marker genes tend to have PC1 scores with opposite signs,

consistent with our previous study in mouse. We term these as “oligodendrocyte-enriched” and “neuron-

enriched” respectively. The top 25 genes in the “oligodendrocyte-enriched” and “neuron-enriched” gene sets

are shown in Table 1.1 and Table 1.2 respectively. For each cell type, we measured the cell type enrichment

by comparing the PC1 ranks of those cell type marker genes (as determined by Cahoy) against the PC1 ranks

of the remaining genes (see Methods). In H0351.2001, neuronal markers showed the highest enrichment

(AUC = 0.77), followed by oligodendrocyte markers (AUC = 0.73), and astrocyte markers the least (AUC

= 0.66). We found evidence for comparable cell type marker enrichment in H0351.2002 PC1 loadings as

well (neuron markers AUC = 0.82, oligodendrocyte markers AUC = 0.81, astrocyte markers AUC = 0.63).

By way of comparison, in mouse we had found that PC2 gene loadings showed the highest enrichment for

oligodendrocyte markers (AUC = 0.77) and neuron markers (AUC = 0.63) and no enrichment for astrocyte

markers (AUC = 0.52) [17].

1.3.2 Principal component loadings partly reflect varying cell-type proportions

The PC1 gene loadings could either be explained by variations in expression levels within cells, or by

variations in the ratio of different sub-populations of cells (or some combination of these). To further

investigate this, we calculated the correlation between the H0351.2001 PC1 gene loadings and the white

matter to gray matter transcript ratio (WM/GM) for 8,088 genes with data for both [40]. The correlation is

statistically significant (rho = 0.59, P < 0.0001). Since white matter regions have been excluded from the
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Figure 1.2: Human H0351.2001 gene expression profile of orthologous genes reported in the mouse
neuron and oligodendrocyte-enriched patterns (French et al., 2011) [17]. High and low expres-
sion levels are colored in yellow and blue respectively. Rows are genes colored by their homolog
cell type enrichment. Columns are brain region samples colored by major brain divisions. Hier-
archical clustering was performed using the Ward’s minimum variance method in R [42].
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Gene symbol Gene description Entrez ID PC1 Mean StdDev
SLC27A1 solute carrier family 27 (fatty acid transporter),

member 1
376497 12.67 10.92 0.33

REST RE1-silencing transcription factor 5978 12.46 4.65 0.43
PPARA peroxisome proliferator-activated receptor al-

pha
5465 12.41 3.65 0.37

ARHGEF10 Rho guanine nucleotide exchange factor (GEF)
10

9639 12.33 5.19 0.42

TRIM56 tripartite motif-containing 56 81844 12.14 3.93 0.42
EGFR epidermal growth factor receptor 1956 12.12 4.21 0.55
A 24 P943258 AGILENT probe A 24 P943258 (non-RefSeq) NA 12.11 4.92 0.43
A 23 P129258 AGILENT probe A 23 P129258 (non-RefSeq) NA 12.01 13.75 0.51
RBMS2 RNA binding motif, single stranded interacting

protein 2
5939 12.00 6.32 0.39

A 24 P316059 AGILENT probe A 24 P316059 (non-RefSeq) NA 11.98 4.83 0.39
GPR75 G protein-coupled receptor 75 10936 11.96 6.83 0.39
PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3
5209 11.95 7.15 0.39

C12orf39 chromosome 12 open reading frame 39 80763 11.95 4.65 0.47
MAFIP MAFF interacting protein 727764 11.84 5.13 0.36
CXorf36 chromosome X open reading frame 36 79742 11.82 2.58 0.42
NPAS3 neuronal PAS domain protein 3 64067 11.75 8.08 0.35
SDPR serum deprivation response 8436 11.74 3.43 0.44
LIMS1 LIM and senescent cell antigen-like domains 1 3987 11.74 3.45 0.35
A 24 P475689 AGILENT probe A 24 P475689 (non-RefSeq) NA 11.67 3.67 0.43
BMP7 bone morphogenetic protein 7 655 11.59 7.21 0.38
CTNNA1 catenin (cadherin-associated protein), alpha 1,

102kDa
1495 11.58 6.69 0.41

TJP1 tight junction protein 1 (zona occludens 1) 7082 11.53 8.61 0.34
KIF19 kinesin family member 19 124602 11.53 3.02 0.50
A 23 P134887 AGILENT probe A 23 P134887 (non-RefSeq) NA 11.53 5.72 0.49
F11 coagulation factor XI 2160 11.50 3.10 0.41

Table 1.1: Top 25 genes in the oligodendrocyte-enriched gene set of human H0351.2001 sorted by
PC1 score.

human data we used, we interpret the WM/GM transcript ratios as variations in cell type proportions within

grey matter regions.

We visualized the PC1 loadings on the schematic image of the brain using the Allen Brain Explorer 2

(see Methods) (Figure 1.3). Regions where there is high neuron marker expression include inferior frontal

gyrus, CA2 and temporal pole. Regions where there is high oligodendrocyte marker expression include

globus pallidus, putamen and head of caudate nucleus, in agreement with the enrichment of these regions in

myelinated axons [14].

In addition, we calculated the ratio between “oligodendrocyte-enriched” PC1 markers and “neuron-

enriched PC1” markers and compared it to the glia to neuron ratio measurements performed by Azevedo et
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Gene symbol Gene description Entrez ID PC1 Mean StdDev
RNF41 ring finger protein 41 10193 -18.90 6.48 0.39
ARF5 ADP-ribosylation factor 5 381 -18.87 7.80 0.47
A 32 P86533 AGILENT probe A 32 P86533 (non-RefSeq) NA -18.49 8.19 0.64
GSTA4 glutathione S-transferase alpha 4 2941 -18.49 7.76 0.34
MMS19 MMS19 nucleotide excision repair homolog ... 64210 -18.26 6.51 0.40
TMEM59L transmembrane protein 59-like 25789 -18.26 6.55 0.71
CLTA clathrin, light chain A 1211 -18.26 9.45 0.38
UBE2K ubiquitin-conjugating enzyme E2K ... 3093 -18.24 9.58 0.36
AP2A2 adaptor-related protein complex 2, alpha 2 sub-

unit
161 -18.22 8.50 0.36

NMNAT2 nicotinamide nucleotide adenylyltransferase 2 23057 -18.11 8.75 0.53
LCMT1 leucine carboxyl methyltransferase 1 51451 -18.07 8.87 0.34
PDCD2L programmed cell death 2-like 84306 -17.99 6.54 0.41
LOC727967 similar to block of proliferation 1 727967 -17.92 6.31 0.44
HAGH hydroxyacylglutathione hydrolase 3029 -17.89 8.14 0.50
DHX30 DEAH (Asp-Glu-Ala-His) box polypeptide 30 22907 -17.88 6.94 0.42
RTN1 reticulon 1 6252 -17.87 9.77 0.61
CCT2 chaperonin containing TCP1, subunit 2 (beta) 10576 -17.81 10.38 0.37
PI4KA phosphatidylinositol 4-kinase, catalytic, alpha 5297 -17.80 8.38 0.41
IARS isoleucyl-tRNA synthetase 3376 -17.78 7.50 0.38
ABHD14A abhydrolase domain containing 14A 25864 -17.76 7.74 0.42
PLD3 phospholipase D family, member 3 23646 -17.76 8.49 0.61
ATP6AP1 ATPase, H+ transporting, lysosomal accessory

protein 1
537 -17.74 8.99 0.45

C19orf62 chromosome 19 open reading frame 62 29086 -17.66 7.36 0.43
RAB24 RAB24, member RAS oncogene family 53917 -17.64 8.06 0.38
KLHDC3 kelch domain containing 3 116138 -17.63 6.60 0.43

Table 1.2: Top 25 genes in the neuron-enriched gene set of human H0351.2001 sorted by PC1 score.

Brain division H0351.2001 H0351.2002 Azevedo et al. 2009
Cerebellum -0.032 ± 0.062 0.013 ± 0.045 0.23
Cerebral grey matter -0.00069 ± 0.058 -0.012 ± 0.059 1.48
Rest of the brain 0.016 ± 0.042 0.015 ± 0.042 11.35

Table 1.3: PC1 brain loadings (mean ± standard deviation) of the two AIBS human datasets and mea-
sured glia to neuron ratio from Azevedo et al. (2009) [2] in cerebellum, cerebral grey matter and
remaining brain regions.

al (2009) [2]. In agreement, in H0351.2001, we find that the human cerebellum, cerebral grey matter and

the rest of the brain samples show increasing glia to neuron ratio respectively (Table 1.3). In H0351.2002,

the cerebellum shows higher glia to neuron ratio than cerebral grey matter which may be due to individual

variability or technical artifacts.

Together, these results suggest that gene expression variance in the human brain can partly be explained

by variations in cell type composition, though we cannot exclude contributions from changes in expression
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Figure 1.3: Schematic view of the H0351.2001 human brain showing oligodendrocyte-neuron PC1
marker ratio within each brain region sample. The brain PC1 loadings were obtained from the
rotation attribute result object of the “prcomp” function in R. PC1 brain loadings range from 0.03
(orange) to -0.04 (purple) which suggest increasing glia-neuron ratio. Primary and secondary
axes correspond to the mri z and mri y coordinates respectively. These dots were manually
overlaid onto a brain image from the Allen Brain Explorer 2 software (http://mouse.brain-map.
org/static/brainexplorer). In order to visualize subcortical region samples, we have hidden the
visualization of the left cerebral hemisphere which causes some cortical samples (such as part of
the left temporal cortex) to appear outside of the brain.

within cell types.

1.3.3 Orthologous genes with positively correlated expression patterns are enriched in cell
type markers

In addition to identifying dominant gene expression patterns within each species, we also performed a

comparison of gene expression patterns between orthologous gene and brain region samples in mouse and

in human AIBS data, focusing on the H0351.2001 dataset which we deem to be the higher quality of the

two data sets based on the clustering of cerebellar regions described above. Within data sets, we found that

regional expression patterns show greater homogeneity in human (mean Spearman rho = 0.98 ± 0.0079)
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than in mouse (mean Spearman rho = 0.86 ± 0.022). That is, expression patterns across mouse brain

regions were apparently more variable than across human brain regions, possibly for technical reasons.

Next, we measured the conservation of gene expression patterns by measuring the correlation for each

homologous gene across matched brain regions. Finally, we compared our results with those of other studies

by performing enrichment analyses on genes ranked by the strength of their correlation between species.

To prepare gene expression matrices of the same size, we limited the analysis to genes expressed above

the 25th percentile in both species and brain regions which could be matched between mouse and human, re-

sulting in 7,911 genes and 58 subcortical brain regions (see Methods). Major brain regions include the

hippocampal formation, cerebral nuclei, thalamus, epithalamus, hypothalamus, midbrain regions, pons,

medulla and cerebellum. In this filtered data set, we saw consistent cell type marker enrichment in the

PC scores in both mouse and human which indicates that the filtering process did not have a large effect on

the data with respect to the patterns described in the previous section (data not shown).

We calculated the Spearman rank correlation between pairs of homologous brain regions and found

statistically significant positive correlations (mean Spearman rho = 0.31 ± 0.031, P < 0.0001). The three

most similar brain regions include Ammon’s horn (rho = 0.40), dentate gyrus (rho = 0.38), and subiculum

(rho = 0.35). Brain regions with the poorest correlation include nucleus raphe pontis (rho = 0.21), gracile

nucleus (rho = 0.25), and pallidum (rho = 0.25).

In terms of genes, we measured the Spearman rank correlation of each homologous gene’s expression

levels across matched brain regions. We used these correlation values to rank homologous genes, such

that those genes with conserved expression patterns are positively correlated while genes with discordant

patterns have either no correlation or are anti-correlated across matched regions. We observed a positive

skew in the correlation distribution (mean rho = 0.074, min rho = -0.57, max rho = 0.73; Figure 1.4). To

verify whether this skew is significant or not, we compared this correlation distribution with a random

distribution obtained by shuffling gene labels (see Methods). There are 53 fewer genes with correlation

below -0.30 when compared to random while there are 645 more genes with correlation above 0.30 when

compared to random. Together, this indicates that there are more genes with similar expression patterns

than not. The top 25 genes with the most positively and negatively correlated gene expression between

mouse and human are shown in Table 1.4 and Table 1.5 respectively. Figure 1.5 shows examples of genes

with positively and negatively correlated expression levels across brain regions. We note that when only a

few (∼10) especially highly correlated brain regions were selected, the distribution became more positively

skewed (data not shown), suggesting that more focused comparisons might provide higher resolution results,

but it was not obvious how to choose such regions a priori.

Since we observed cell-type marker enrichment in the gene expression patterns for each species indepen-

dently, we hypothesize that homologous genes that show conserved expression patterns are also enriched for

cell type markers. We measured the cell-type marker enrichment using the ranked list of homologus genes,

annotated by cell type in Cahoy et al. (2008) [9] (see Methods). In line with our hypothesis, our results

show that expression patterns of homologous genes are enriched for neuronal (AUC = 0.74) and oligoden-

drocyte (AUC = 0.71) markers, but not astrocyte (AUC = 0.53) markers (see Methods). We interpret this as

suggesting that neuronal markers and oligodendrocyte markers are generally more conserved in expression
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Figure 1.4: Correlation distribution between orthologous genes that are expressed. Correlation dis-
tribution is skewed towards the positive compared to random where human gene labels were
shuffled without replacement.

patterns in comparison to the non-cell type markers (Table 1.4), consistent with the findings of Miller et

al. [28]. In contrast, astrocyte markers were relatively poorly conserved overall, some astrocyte markers

show positively correlated patterns (e.g. AGT, GFAP) while others show negatively correlated patterns (e.g.

SLC27A1, SCARA3) between mouse and human (Table 1.4 and Table 1.5). We found similar results when

using less stringent criterion for selecting genes from the Cahoy data (at least 5x enrichment instead of 10x,

data not shown). We performed a Gene Ontology (GO) enrichment analysis for the top 100 genes with

the most positively and negatively correlated patterns. Those genes with similar expression patterns are

significantly enriched for Gene Ontology (GO) biological processes such as ion transport (GO:0006811),

transmission of nerve impulse (GO:0019226), and synaptic transmission (GO:0007268). The top 100 genes

with the most negatively correlated patterns are enriched in biological processes such as negative regulation

of homeostatic process (GO:0032845), fatty acid oxidation (GO:0019395), and macromolecule catabolic

process (GO:0009057).

Discordant expression patterns between mouse and human orthologs might indicate interesting func-

tional divergences. We identified only 78 genes with reasonably strong negative correlations between mouse
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Gene symbol Gene description rho Mm Expr Hs Expr
KCNC1 potassium voltage-gated channel, Shaw-related subfamily, member 1 0.73 9.93 3.84
SLC17A6 solute carrier family 17 (sodium-dependent inorganic phosphate cotrans-

porter), member 6
0.73 7.62 4.65

ZIC1 Zic family member 1 (odd-paired homolog, Drosophila) 0.69 3.71 5.61
PCP4 Purkinje cell protein 4 0.66 8.16 4.69
GABBR2 gamma-aminobutyric acid (GABA) B receptor, 2 0.66 13.81 4.38
CACNA1C calcium channel, voltage-dependent, L type, alpha 1C subunit 0.65 2.63 1.81
CAMK2D calcium/calmodulin-dependent protein kinase II delta 0.63 12.37 3.42
OSBPL5 oxysterol binding protein-like 5 0.63 3.17 2.67
VAT1 vesicle amine transport protein 1 homolog (T. californica) 0.62 1.76 1.73
SLC8A1 solute carrier family 8 (sodium/calcium exchanger), member 1 0.62 7.77 3.70
PLCB4 phospholipase C, beta 4 0.61 7.81 4.30
FOXP2 forkhead box P2 0.61 1.90 1.97
SPOCK1 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1 0.61 12.21 3.36
C20orf103 chromosome 20 open reading frame 103 0.61 3.47 3.38
KCNQ3 potassium voltage-gated channel, KQT-like subfamily, member 3 0.61 4.16 3.82
GNG4 guanine nucleotide binding protein (G protein), gamma 4 0.60 0.19 0.24
HTR1A 5-hydroxytryptamine (serotonin) receptor 1A 0.60 1.27 0.85
ZMAT4 zinc finger, matrin type 4 0.60 2.62 2.80
ADAM11 ADAM metallopeptidase domain 11 0.60 10.30 3.41
NRN1 neuritin 1 0.60 9.97 5.40
NTNG1 netrin G1 0.59 6.73 6.15
ST8SIA5 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 5 0.59 5.81 3.90
HCN1 hyperpolarization activated cyclic nucleotide-gated potassium channel 1 0.59 2.62 2.39
PCDH11X protocadherin 11 X-linked 0.59 0.93 0.62
SYN2 synapsin II 0.59 10.29 4.76

Table 1.4: Top 25 genes with similar expression patterns between mouse (Mm) and human
H0351.2001 (Hs) sorted by Spearman rank correlation (rho) with q < 0.01. Expr corresponds
to the mean expression level across brain regions.

and human (rho < -0.3). To seek supporting evidence for these and other negative correlations, we compared

our findings to two previous mouse-human comparisons. Zeng et al. (2012) identified 73 genes with patterns

considered discordant in the neocortex, including differences in laminar distribution [45]. Of these, 12 are

negatively correlated in our study, including one of the 78 meeting a threshold of -0.3 (SLC6A12 rho = -0.31;

Table 1.6). Miller and colleagues identified 49 “human-specific” cell-type markers using meta-analysis of

microarray data, of which fourteen are negatively correlated in our analysis, of which two are below -0.3

(KIAA0174 rho = -0.36 and ADK rho = -0.32; Table 1.7). Thus despite major differences in methodology and

brain regions considered, some previous reports of mouse-human differences are supported by our analysis.

1.4 Discussion
We studied the dominant gene expression patterns across the human brain and observed similar complemen-

tarity between “neuron/oligodendrocyte” enriched patterns as we previously identified in the mouse [17].
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Gene symbol Gene description rho q-value Mm Expr Hs Expr
TMEM2 transmembrane protein 2 -0.57 0.001 0.28 0.95
ABCA8 ATP-binding cassette, sub-family A (ABC1), member 8 -0.45 0.020 0.40 0.50
RPIA ribose 5-phosphate isomerase A -0.44 0.026 0.26 0.57
USP28 ubiquitin specific peptidase 28 -0.44 0.029 2.26 1.55
WARS2 tryptophanyl tRNA synthetase 2, mitochondrial -0.43 0.030 0.46 0.38
SMOC2 SPARC related modular calcium binding 2 -0.42 0.037 0.58 1.16
CROT carnitine O-octanoyltransferase -0.41 0.039 2.20 1.54
KIAA1279 KIAA1279 -0.41 0.044 7.40 3.66
ACOX2 acyl-CoA oxidase 2, branched chain -0.40 0.068 0.49 0.42
AGGF1 angiogenic factor with G patch and FHA domains 1 -0.39 0.079 0.28 0.11
MRPS34 mitochondrial ribosomal protein S34 -0.39 0.062 2.17 1.20
TMLHE trimethyllysine hydroxylase, epsilon -0.39 0.057 2.62 1.44
CTR9 Ctr9, Paf1/RNA polymerase II complex component, ... -0.38 0.072 2.86 1.60
TNFRSF11B tumor necrosis factor receptor superfamily, member 11b -0.38 0.097 0.25 0.60
C2orf29 chromosome 2 open reading frame 29 -0.38 0.073 1.40 0.75
NCF4 neutrophil cytosolic factor 4, 40kDa -0.38 0.078 0.21 0.20
PAICS phosphoribosylaminoimidazole carboxylase, ... -0.38 0.075 1.02 0.94
CEP164 centrosomal protein 164kDa -0.37 0.078 0.91 0.61
CECR5 cat eye syndrome chromosome region, candidate 5 -0.37 0.098 2.40 1.02
KIAA0174 KIAA0174 -0.36 0.100 4.34 2.09
ATRX alpha thalassemia/mental retardation syndrome X-linked -0.36 0.090 6.84 1.85
DNAJC5 DnaJ (Hsp40) homolog, subfamily C, member 5 -0.36 0.097 15.11 3.70
FRMD4A FERM domain containing 4A -0.36 0.097 5.73 1.89
RAP1GAP RAP1 GTPase activating protein -0.36 0.092 14.17 3.32
CDK4 cyclin-dependent kinase 4 -0.36 0.590 1.35 1.23

Table 1.5: Top 25 genes with anti-correlated expression patterns between mouse (Mm) and human
H0351.2001 (Hs) sorted by Spearman rank correlation (rho). Expr corresponds to the mean ex-
pression level across brain regions.

Our analysis also shows that in situ data from mouse can be meaningfully compared to microarray data

from human. As Lee et al. (2008) pointed out, comparisons between ISH and microarray data are chal-

lenging due to technical differences such as probe sequence sensitivity and specificity, dynamic range and

normalization and mapping of ISH data [23]. Despite these technical differences, we report gene expression

pattern similarities as exemplified by the anti-correlation between neuron and oligodendrocyte enriched pat-

terns. Our interpretation of the cell-type enriched pattern in human is similar to our previous interpretation

in mouse [17]. A simple explanation is that neurons and glia vary in inverse proportions across brain regions

in both human and mouse, which shows an anterior-posterior gradient (Figure 1.3). However, it is difficult

to fully verify this because we currently have limited information on the details of the size and proportions

of cell types within each brain region sampled.

The strength of the cell type marker enrichment suggests that many other genes, while not reported as

cell type markers by Cahoy et al. (2008), are likely to be expressed in a cell type enriched manner. Genes

in this category include ones we predict based on our readings to be expressed in neurons such as neural
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Gene symbol Gene description rho q-value Mm Expr Hs Expr
SLC6A12 solute carrier family 6 (neurotransmitter transporter,

betaine/GABA), member 12
-3.13E-01 0.18 0.26 4.43

GPR85 G protein-coupled receptor 85 -2.66E-01 0.29 4.94 5.48
CACNG8 calcium channel, voltage-dependent, gamma subunit

8
-1.64E-01 0.60 3.07 5.21

COL6A1 collagen, type VI, alpha 1 -1.42E-01 0.68 2.47 6.42
KIAA1370 KIAA1370 -1.27E-01 0.72 1.71 5.56
CLCN2 chloride channel 2 -1.08E-01 0.77 1.83 4.09
MFGE8 milk fat globule-EGF factor 8 protein -8.71E-02 0.82 0.75 3.64
PDYN prodynorphin -6.68E-02 0.87 2.31 3.75
PCDH20 protocadherin 20 -3.60E-02 0.94 2.45 4.95
LGALS1 lectin, galactoside-binding, soluble, 1 -8.12E-03 0.99 1.44 9.01
SNCG synuclein, gamma (breast cancer-specific protein 1) -2.37E-03 1.00 6.76 9.92
SLC6A7 solute carrier family 6 (neurotransmitter transporter,

L-proline), member 7
-4.31E-04 1.00 4.49 3.75

Table 1.6: Negatively correlated genes that show discordant patterns in Zeng et al. Genes are sorted by
increasing q-value. Mm Expr and Hs Expr correspond to the mean expression level across mouse
and human brain regions respectively.

Gene symbol Gene description rho q-value Mm Expr Hs Expr
KIAA0174 KIAA0174 -3.62E-01 0.10 4.34 5.17
ADK adenosine kinase -3.21E-01 0.15 5.47 7.89
P2RX7 purinergic receptor P2X, ligand-gated ion channel, 7 -2.90E-01 0.23 0.25 6.41
HSPA8 heat shock 70kDa protein 8 -2.03E-01 0.49 19.90 12.10
LEPROT leptin receptor overlapping transcript -9.69E-02 0.80 0.44 8.02
CBFB core-binding factor, beta subunit -8.12E-02 0.84 0.21 5.49
INPP1 inositol polyphosphate-1-phosphatase -6.90E-02 0.87 4.61 6.09
TGFBR3 transforming growth factor, beta receptor III -4.40E-02 0.92 2.38 5.70
COL4A5 collagen, type IV, alpha 5 -4.18E-02 0.92 0.29 5.37
RNF103 ring finger protein 103 -2.35E-02 0.96 2.59 7.92
UQCRC2 ubiquinol-cytochrome c reductase core protein II -2.32E-02 0.96 11.48 7.10
PSEN1 presenilin 1 -1.71E-02 0.97 0.45 6.35
DYNC1I2 dynein, cytoplasmic 1, intermediate chain 2 -8.67E-03 0.99 12.95 9.65
CHD1L chromodomain helicase DNA binding protein 1-like -8.31E-04 1.00 0.21 6.39

Table 1.7: Negatively correlated genes that show discordant patterns in Miller et al. Genes are sorted
by increasing q-value. Mm Expr and Hs Expr correspond to the mean expression level across
mouse and human brain regions respectively
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Figure 1.5: Examples of positively and negatively correlated gene expression patterns between mouse
and human H0351.2001. Dots represent brain region samples colored by major brain divisions.
Three genes with expression patterns that are positively correlated are shown at the top (SLC17A6
rho = 0.73, MOG rho = 0.39, AGT rho = 0.44) while negatively correlated gene expression pat-
terns are shown at the bottom (USP28 rho = -0.44, ATRX rho = -0.36, FRMD4A rho = -0.36). All
six genes have q-values < 0.3. Expression levels are scaled and centered at zero for visualization.

epidermal growth factor-like 2 (NELL2), reticulon 4 receptor (RTN4R), potassium channel, subfamily K,

member 1 (KCNK1), and glutaminase (GLS) as well as ones we predict to be expressed in oligodendrocytes

such as chloride intracellular channel 4 (CLIC4), crystallin, alpha B (CRYAB), prostaglandin D2 synthase

21kDa (PTGDS), quinoid dihydropteridine reductase (QDPR) and G protein-coupled receptor, family C,

group 5, member B (GPRC5B). Using a literature review, we have confirmed some of these, suggesting

their absence from the lists given by Cahoy et al. to be due to technical factors or the choice of cells used in

their study. For example, ISH of the adult mouse and rat brains show RTN4R (reticulon 4 receptor or Nogo

receptor) is strongly expressed within neurons of the neocortex, hippocampal formation, and granule cells of

the cerebellum [21]. On the other hand, it is also apparent that what we term the “oligodendrocyte-enriched”

and “neuron-enriched” patterns are not purely populated by genes specific for those cell types. For example

in the H0351.2001 dataset, TMEM163, CNTN1, and TMEM2 are Cahoy oligodendrocyte marker genes but

are found close to neuronal markers in our PCA, while the converse is true for the neuronal markers ST8SIA2
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and GPR12. This complexity presumably in part reflects sub-populations of neurons which have a different

physical or regulatory relationship to glial cells than those which occur in the “neuron-enriched” pattern, or

vice versa.

A second goal of our study was to identify similarities and differences in expression pattern between

mouse and human brains. Our overall conclusion is that the similarities vastly outnumber the differences.

We found that the similarities are most striking for genes which are known to be enriched in neurons and

oligodendrocytes (Table 1.4 and Figure 1.5). In contrast, markers of astrocytes demonstrate more differ-

ences between mouse and human. In mouse, astrocyte markers were equally represented in both “neuron-

enriched” and “oligodendrocyte-enriched” patterns [17]. In contrast, in the human data, astrocyte markers

coordinately vary in expression levels considerably across regions. Astrocytes support the metabolically de-

manding tasks of neurons by recycling neurotransmitters and maintaining ion homeostasis in the brain [8].

The enrichment seen in humans could be caused by the increased complexity found only in human astrocytes

[32] or by the higher astrocyte to neuron ratio observed with increasing brain complexity [29]. Aside from

astrocyte markers, we found evidence for other genes showing discordant expression patterns. For example,

the mouse ATRX (alpha thalassemia/mental retardation syndrome X-linked) expression pattern is negatively

correlated with human (rho = -0.36, q = 0.09) (Figure 1.5 and Table 1.5). In adult mouse, this gene has a

higher expression in the medulla compared to the amygdala, while the opposite is true in human. We cau-

tion that from the available data it is difficult to determine which of the differences we observe reflect true

biological differences (e.g., different species isoforms), and which are due to differences between ISH and

microarray. However, the partial overlap of our negative correlations with previous reports of mouse-human

differences [28, 45] suggests that some the other differences we report are worthy of further study.

In summary, using PCA, we provide a candidate list of cell type markers which could be useful for

targeting specific cell types or specific regional patterns of interest. In addition, we report correlations for

the regional expression of genes between mouse and human which can be useful in the development of

mouse disease models or in the study of the molecular evolution of the brain. Future studies that explore the

different regulatory mechanisms of genes with discordant expression patterns might provide insights into

the evolution of brain structure and function. Furthermore, future high-resolution large-scale studies that

examine gene expression in developing mouse and human brain will uncover genes that are only active in

early development and thus provide a better understanding of human brain evolution.
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Chapter 2

Large-scale survey of tissue types and
experimental conditions across datasets

2.1 Introduction
Genes are regulated in different ways. For example, housekeeping genes (e.g. HSP90 [18]) are expressed at

similar levels in nearly every cell under normal conditions. On the other hand, other genes are known to be

expressed in only a few cell types. For example, the neurotransmitter GABA (gamma-aminobutyric acid) is

found in both synaptic vesicles in GABAergic neurons in the brain and also in synaptic like microvesicles

secreted from pancreatic beta-cells [7, 15]. Whether GABA is also expressed in other cell types remains

unclear. Aside from genes differentially expressed (DE) in different cell types, genes are also DE under

different experimental conditions (e.g. disease state, sampling time point or drug treatment).

Sample groups are often chosen with a specific biological question in mind. For example, control sam-

ples are compared to neurological disease samples with the goal of identifying disease-associated genes [36].

However, this targeted approach limits our understanding to comparisons within these two groups that were

selected a priori. A subset of DE genes may also be DE in seemingly unrelated diseases. An understanding

of how diseases are related is helpful for drug re-purposing where old drugs are applied to new diseases. It

may also be useful to apply knowledge from a well-studied disease to a less-studied one provided that both

diseases share a common biological pathway.

The idea of integrating microarray datasets is not new. Large-scale microarray studies such as Lukk

et al. [27] (Array Expression ID: E-MTAB-62) have combined thousands of datasets to identify DE genes

between biological groups such as cell type, tissue type, disease state and cell lines. Lukk et al. grouped

samples by using sample annotations which were provided by the submitters of the dataset. They identified

tissue-enriched genes by comparing the gene’s expression in each tissue group against the global mean

expression level.

Aside from using sample annotations, the gene expression content can also be used as well. Engreitz

et al. [12] formulated this problem in a data-driven fashion. First, they created a library to search against by

calculating the DE profile of each experiment. Next, the DE profile of the input query was compared against
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the library of DE profiles based on a weighted Pearson correlation similarity measure.

To better explore gene function in human and identify which experimental conditions affect it, we com-

piled a list of publicly available human microarray datasets in an unsupervised manner. From these datasets,

we created matrices that represent gene expression levels (EE) and DE levels. We compared these two matri-

ces in two ways. First, we investigated if tissue-enriched genes cluster by tissue type. Second, we identified

modules that are enriched for biological processes. The preliminary work and conclusions presented here

will provide additional insights into future large-scale gene expression investigations.

2.2 Methods

2.2.1 Data overview and pre-processing

Both EE and DE matrices were obtained from the human microarray datasets deposited in Gemma [46].

We term each comparison between two sample groups in each dataset as a “result set (RS)”, e.g. GSE12860

has two RS, control vs. treatment and rheumatoid arthritis fibroblast vs. normal fibroblast. Matrix rows

correspond to genes annotated in the microarray platform. EE columns correspond to datasets while DE

columns correspond to RS. Since most datasets have only one RS (91%), we refer to RS by their Gene Ex-

pression Omnibus (GEO) series ID in our results [3]. We measured gene expression levels at the resolution

of each dataset. Expression levels in the EE matrix were obtained by calling the “dEDVRank” webservice

in Gemma where genes were averaged across all samples in each dataset and normalized from zero (low

expression) to one (high expression) across all genes in the dataset. Since we are also interested in gene

expression changes within a dataset, the Gemma framework was used to calculate the p-values in the DE

matrix. Briefly, a one-way analysis of variance (ANOVA) was performed for all the genes in each RS.

The following filters were applied to the human microarray studies. First, we selected RS that were

derived from the GPL570 and GPL96 platforms which corresponds to the Affymetrix Human Genome U133

Plus 2.0 Array and U133A Array respectively. These platforms are the most common human microarray

platforms in Gemma. Restricting our analysis to within these two similar platforms also reduces variability

between different microarray platforms. Moreover, since these platforms have similar probe sets, there were

fewer instances of probe sets with missing values across RS. Those RS with missing values in more than

10% of the total number of probe sets were excluded. Missing values could be attributed to the filtering

process applied by submitters of the dataset. We also checked for missing values across rows. Those probe

sets with missing values in more than 10% of the total RS were excluded. These probe sets mapped to

RNA genes and pseudogenes (e.g. MIR4680, TEN1-CDK3, and A2MP1). Moreover, we chose RS with

annotations that relate to disease state, treatment, and sampling time point, excluding organism part (e.g.,

different brain regions) from our analysis. Aside from missing values, we also removed those RS with too

many (q-values less than 0.05 for more than 50% of the genes, e.g. GSE16385) or too few (no q-values

less than 0.3, e.g. GSE12644) DE probe sets. We excluded RS (e.g. GSE13501 and GSE7753 (Spearman

rho = 0.66, P < 0.001) that we deemed as outliers due to their high correlations with other RS across all

probe sets (Spearman rho > 75th percentile). We believe that these highly correlated RS will always be

clustered together regardless of which genes were selected and therefore are not as informative. Finally, the
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p-value histogram distribution of DE genes are expected to be similar to a beta-uniform mixture distribution

[37]. We developed a simple heuristic to evaluate this metric where we subtracted the gene counts from the

thirteenth histogram bin from the gene counts of the first histogram bin. P-values were binned every 0.1.

Those datasets that differ by more than 100 gene counts were excluded from our analysis. This eliminated

28 RS from the DE matrix (e.g. GSE16385 and GSE11839). Finally, we filtered the EE matrix by selecting

those genes and datasets from the filtered DE matrix.

2.2.2 Tissue-enriched genes

The list of tissue-enriched genes were selected from Lukk et al. [27]. Briefly, Lukk et al. integrated

microarray datasets to from a final expression matrix of ∼14,000 genes times ∼5,000 samples. They com-

pared each tissue group to the global mean by performing a one-way ANOVA. From this list of genes, we

selected those genes that were upregulated (t-statistic greater than the 75th percentile) in the brain, muscle

and hematopoietic system meta groups. We call these genes as “tissue-enriched” and annotated these genes

as brain-enriched, muscle-enriched and hematopoietic system-enriched genes respectively. Moreover, the

two genes (PDE4DIP and ARHGAP19) that were upregulated in more than one tissue type were excluded

from our analysis. RS were grouped as brain, muscle and “other” by manually curating the sample tissue

type annotation. We combined those RS with the same dataset by averaging p-values across tissue-enriched

genes. Finally, the tissue-enriched DE and EE matrices have the same number of rows (844 genes) and

columns (163 datasets).

2.2.3 Biclustering

The Iterative Signature Algorithm (ISA) (isa2 version 0.3.1-1 R package http://cran.r-project.org/web/packages/

isa2/index.html) was used to identify modules in both the EE and DE matrices [5]. First, DE p-values were

−log10 transformed prior to biclustering. Modules were created by setting the random seed to 1, number

of seeds to 100 and direction up for both rows and columns. We adjusted the parameters to meet the fol-

lowing criteria: first, the number of clusters must be small (< 50) and second, the size of the clusters must

be reasonable (∼100 rows and ∼10 columns). DE modules were identified using a row threshold of 4 and

a column threshold of 1. EE modules were identified using a row and column thresholds of 2.5 and 1.5

respectively. For both cases, removal of similar modules was performed by calling the “isa.unique” function

with a correlation limit of 0.6.

2.2.4 GO enrichment

Gene Ontology (GO) enrichment analysis was performed using the topGO (Version 2.8.0) Bioconductor R

package (http://www.bioconductor.org/packages/2.10/bioc/html/topGO.html). We used all the human gene

annotations from the org.Hs.eg.db database in Bioconductor as our background gene list. For each module,

we performed the Biological Process GO enrichment by selecting all the genes in the module as our input

genes. The classic algorithm was run using the Fisher’s Exact Test as the test statistic. The classic algorithm

scores each GO group independently of its neighbouring GO groups and is also independent of the test

statistic used [1]. The top (most significant) GO group was assigned to each module.
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2.2.5 Statistical analysis

Agglomerative hierarchical clustering was performed using the Ward method with Euclidean distances [13].

In each iteration, the Ward method minimizes the variance within newly formed clusters. Correlations were

calculated using Spearman rank correlations and the default two sided alternative hypothesis was used for

calculating Spearman rho p-values.

2.3 Results

2.3.1 Experimental design and analysis

Our workflow is summarized in Figure 2.1. We performed strict quality checks and selected high quality hu-

man microarray datasets deposited in Gemma, a database and framework for analyzing expression profiling

studies (see Methods) [46]. Initially, the DE matrix had 64,260 genes (64,594 probe sets) across 1,298 RS.

Further data processing and quality checks reduced the matrix to 12,881 genes (12,892 probe sets) and 180

RS (see Methods). Genes with two probe sets included CCR2, DDX39B, EIF2D, FXYD6-FXYD2, HSFX1,

MICA, RAD21L1, RBMXL1, SBF1P1, TRMT1L and ZNF559-ZNF177. We obtained the corresponding EE

matrix by measuring the corresponding gene expression levels in each dataset. In our first analysis, we

analysed the tissue-enriched subset of each matrix (844 genes) (see Methods). Next, using all 12,881 genes,

we identified EE and DE modules by applying the ISA biclustering algorithm in an unsupervised manner.

Each module was then annotated with a biological processes by applying GO enrichment analysis.

2.3.2 Tissue-enriched gene expression and differential expression

We asses the quality of the datasets by clustering gene expression and differential expression of tissue-

enriched genes. We hypothesize that tissue-enriched genes are highly expressed in datasets that use the

corresponding tissue as sample source. From the study of Lukk et al. [27], we found 844 tissue-enriched

genes in our dataset (526 brain-enriched genes, 214 heamtopoeitic system-enriched genes and 104 muscle-

enriched genes). In the EE matrix, there are 15 (9%) brain datatasets, 11 (7%) muscle datatasets and 137

(84%) “other” datatasets (Tables 2.1, 2.2 and 2.3 respectively). We found similar proportions of RS in the

DE matrix (16 brain RS, 11 muscle RS and 153 “other” RS). Our results show that the EE matrix reflects

experimental source tissue type more so than the DE matrix.

As shown in Figure 2.2a, muscle-enriched genes such as MYL3, FXYD1, and DES are highly expressed

in datasets where muscles are used as the tissue source (e.g. GSE9103 and GSE1551; Table 2.2) with low

expression in non-muscle datasets. Likewise, brain-enriched genes such as S100B, NEFL, and GRIA2 are

highly expressed in datasets where nervous tissues or cell lines are used (e.g. GSE1993 and GSE21858;

Table 2.1) with low expression in non-nervous related datasets. This reflects the high-quality of our datasets

such that the majority of tissue-enriched genes are highly expressed in datasets with similar tissue anno-

tations. However, there are a few muscle-enriched genes PDK2, PTP4A3, TMOD1, brain-enriched genes

CALM3, PPP3CA, PPP3CB, CNP, B3GNT1, MAPK8IP3, and hematopoietic system-enriched genes such

as RAB8A, DDX5, GNAI3 which are highly expressed in almost all datasets, except for a few cancer and
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Figure 2.1: Experimental design and analysis

GEO.ID Tissue source Sample Size
GSE1993 Glioblastoma and Astrocytoma frozen primary human tissue 65

GSE21858 Frontal and temporal cortex 8
GSE5388 Human postmortem brain tissue 61

GSE11208 Peripheral ganglion 11
GSE5389 Human post-mortem brain tissue 21

GSE12460 Neuroblastic tumor 64
GSE24072 Fresh glioma tissue 32
GSE4773 SK-N-MC neuroblastoma cells 21
GSE1297 Hippocampal CA1 tissue 31

GSE19728 Normal brain tissue, glioblastoma, and astrocytoma 21
GSE17440 Frontal cortex 8
GSE7621 Postmortem human substantia nigra 25

GSE20168 Postmortem brain prefrontal cortex 29
GSE20141 Substantia Nigra pars compacta 18
GSE2732 Human brain neuronal SH-SY5Y cell lines 18

Table 2.1: Nervous tissue datasets. These datasets involve brain tissues or neuronal cell lines. Tissue
sources were manually curated from GEO.
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GEO.ID Tissue source Sample Size
GSE9103 quadriceps (Vastus Lateralis) muscle biopsy samples 40

GSE10161 cardiac biopsies 27
GSE1551 muscle biopsies 23

GSE24235 biceps brachii muscle biopsies 28
GSE1869 human heart 37
GSE3112 muscle biopsies 40

GSE11686 arm (Extensor and Flexor carpi radialis) muscles 16
GSE13070 quadriceps (Vastus Lateralis) muscle 364
GSE6798 quadriceps (Vastus Lateralis) muscle 29
GSE1145 human heart 107

GSE14901 quadriceps 72

Table 2.2: Muscle tissue datasets. Tissue sources were manually curated from GEO.

GEO.ID Name RS
GSE16844 Integrated pathways for neutrophil recruitment and inflamma-

tion in leprosy
erythema nodosum lep-
rosum VS Lepromatous
Leprosy

GSE12860 Antirheumatic Drug Response in Human Chondrocytes: Po-
tential Molecular Targets to Stimulate Cartilage Regeneration

Rheumatoid arthritis syn-
ovial fibroblasts vs. Nor-
mal donor synovial fibrob-
lasts

GSE15132 Riboflavin depletion impairs cell proliferation in intestinal
cells: Identification of mechanisms and consequences

Control VS Ribodeficient

GSE9971 CYP3A5 Gene Expression is Associated with Early Recur-
rence of Non-small Cell Lung Cancer

recurrent vs non-recurrent
(control) non-small cell
lung cancer

GSE15132 Riboflavin depletion impairs cell proliferation in intestinal
cells: Identification of mechanisms and consequences

24 H VS 48 H VS 72 H

GSE26713 Integrated transcript and genome analyses reveal NKX2-1 and
MEF2C as potential oncogenes in T-ALL

normal bone marrow con-
trol vs pediatric T-ALL

Table 2.3: Examples of datasets and RS from “other” tissues. These datasets were not classified as
brain nor muscle.

inflammatory related datasets (e.g. GSE16844 and GSE12860; Table 2.4). These genes may be highly

expressed in more than one tissue type under normal conditions. It may also be caused by mutations that

upregulate gene expression.

In contrast to the EE matrix, it is not immediately obvious that tissue-enriched genes are differentially

expressed in those RS that use the same tissue type (Figure 2.2b). At first glance, the EE and DE matrices

do not seem to have anything in common. However, a closer inspection of the heatmap shows that the

hematopoietic-system enriched cluster which corresponds to the bottom EE cluster, has more differentially

expressed genes compared to genes in other clusters. On the other hand, most brain-enriched genes (top

cluster) show little expression and are not DE in most datasets. Next, we calculated the Spearman rank
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(a) EE matrix (b) DE matrix

Figure 2.2: EE vs DE tissue-enriched matrices. (a) EE values are the relative average expression. EE
values were binned from 0 (low) to 1 (high). EE rows and columns were clustered using the Ward
method. (b) DE values were −log10 transformed. DE values were binned from 0 (low) to 2.5
(high). DE rows and columns have the same order as that of the EE heatmap in (a).

GEO.ID Name Tissue source
GSE13849 Expression Signatures in Polyarticular JIA Show Heterogeneity and Offer

a Molecular Classification of Disease Subsets
blood

GSE2405 NIH/NIAID Neutrophil Response to A. phagocytophilum leukocytes
GSE20266 Salivary Transcriptomic and Proteomic Biomarkers for Breast Cancer De-

tection
saliva

GSE22377 mRNA expression data from human adenocarcinomas of the stomach intestine
GSE11341 Lung selective gene responses to alveolar hypoxia lung
GSE28796 Gene expression profiles of pretreatment biopsies from dose-dense-

docetaxel-treated breast cancers
breast

Table 2.4: Cancer-related datasets that have low hematopoietic gene expression. Tissue sources were
manually curated from GEO.
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Figure 2.3: The distribution of Spearman rank correlations between EE and DE datasets.

correlation between matching EE and DE datasets across genes. Figure 2.3 shows the correlation distribution

is positively skewed. We interpret this as more datasets show agreement in both EE and DE levels than not.

2.3.3 Modules enriched for biological processes

We hypothesize that genes and experimental datasets cluster together in modules because genes are either

expressed in the same tissue type or share a common functional pathway. From the matrix of 12,881 genes,

we are interested in finding modules that represent a common biological process. An EE module is a cluster

of genes with high expression values across a subset of datasets while a DE module is a cluster of genes that

are significantly differentially expressed across a subset of RS. A close inspection of these modules may

provide novel insights toward genes or disease states.

Traditional clustering methods such as hierarchical clustering only allows one gene to exclusively belong

to a single cluster. Moreover genes are clustered using all samples in the matrix while genes can be expressed

or differentially expressed in only a subset of conditions. To address these issues, we applied the ISA

biclustering algorithm [5]. Biclustering is a technique that overcomes these limitations by simultaneously

clustering rows and columns. ISA has been used to identify regulatory modules (a sub-cluster of genes and

samples) in the yeast transcriptional network [5]. The algorithm uses a set of random genes as input and

iteratively selects genes and samples that are significantly different based on a threshold. The algorithm

ends when the average expression across genes and samples have become very similar as indicated by a
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GO.ID Term Significant classicFisher Module.ID Rows Cols
GO:0006936 muscle contraction 50 < 1e-30 3 175 16
GO:0006955 immune response 53 < 1e-30 4 148 19
GO:0019226 transmission of nerve impulse 36 4.7e-26 1 149 14
GO:0006968 cellular defense response 2 0.0016 2 39 14

Table 2.5: Top GO biological process in each module from the EE matrix. The table is sorted by
increasing p-value from the Fisher’s Exact Test statistic for gene over representation. The number
of significant genes found in each group are shown. Rows represent the number of genes and Cols
represent the number of datasets in each module.

high Pearson correlation. These set of genes and samples are now part of the same module. We applied the

ISA algorithm to both EE and DE matrices separately. Finally, we applied GO enrichment analysis to each

module for biological interpretation.

EE modules cluster by source tissue type

We identified four EE modules after applying ISA on the EE matrix (Table 2.5). On average, most modules

have over 100 genes and over 10 datasets. Figure 2.4 displays the hierarchical clustering of EE modules

based on overlapping genes. This clustering shows that there is greater overlap between brain and muscle

related genes than hematopoietic system genes which is consistent with the clustering of biological groups

in Supplementary Figure 4a of Lukk et al. [27].

We have chosen to take a closer look at Module 3, the muscle contraction module (GO:0006936) as

an example. The Top 5 GO annotations for this module is available in Table 2.6. The expression levels of

genes within this module is more homogeneous relative to randomly chosen genes outside this module (Fig-

ure 2.5). Datasets that belong to this module involve muscle or heart tissues (e.g., GSE1551 and GSE13070)

with a few exceptions (Table 2.7). These exceptions include cancer-related datasets such as GSE2405 (from

leukocytes), GSE22377 (from intestine), GSE11341 (from lung cells) and GSE28796 (from breast) (Ta-

ble 2.4). In addition to the muscle-enriched genes (e.g., MYH6, TTN and MYL2), we also identified genes

that are known to be highly expressed in the brain such as CAMK2A, AQP4, and S100A1 and other genes

that are not muscle-enriched (e.g., HSPB2, PPP1R1A and EBF2). This is perhaps due to the involvement of

calcium signalling pathways in both muscle contraction and neuronal transmission [6].

DE modules have diverse biological processes

We hypothesize that differential expression can offer additional insights toward gene function in addition

to tissue type specificity. To test this, we first applied the same biclustering parameters to the DE matrix

(see Methods). This resulted in 33 DE modules, which on average have ∼387 genes and ∼3 RS. These

modules have approximately three times the number of genes compared to the EE modules. This makes

it difficult to meaningfully compare between EE and DE modules. To circumvent this, we applied stricter

biclustering parameters to the DE matrix and found 37 modules with comparable module sizes. Table 2.8

shows the top GO annotations for each module. Our results show that there are more DE modules compared
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Figure 2.4: Clustering of GO-enriched EE modules. Tree leaves are labelled with the following format:
GO Term | GO.ID | Module.ID.

GO.ID Term Significant classicFisher bicluster
GO:0006936 muscle contraction 50 < 1e-30 3
GO:0003012 muscle system process 51 < 1e-30 3
GO:0006941 striated muscle contraction 26 < 1e-30 3
GO:0061061 muscle structure development 38 1.3e-29 3
GO:0007517 muscle organ development 35 1.0e-28 3
GO:0003008 system process 65 3.1e-22 3
GO:0003009 skeletal muscle contraction 11 2.1e-18 3
GO:0050879 multicellular organismal movement 12 8.4e-18 3
GO:0050881 musculoskeletal movement 12 8.4e-18 3
GO:0014706 striated muscle tissue development 21 6.8e-17 3

Table 2.6: Top 5 GO annotations for the muscle contraction EE module
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GEO.ID Description RS
GSE9103 Skeletal Muscle Transcript Profiles in Trained or Sedentary

Young and Old Subjects
sedentary VS trained

GSE10161 Integrated genomic approaches implicate osteoglycin (Ogn)
in the regulation of left ventricular mass

aortic stenosis vs. healthy
control

GSE1551 dermatomyositis dermatomyositis VS
healthy

GSE24235 Skeletal muscle gene expression in response to resistance ex-
ercise: sex specific regulation

resting vs 24 hrs post
acute resistance exercise

GSE1869 Ischemic and Nonischemic CM and NF Hearts non-ischemic vs ischemic
cardiomyopathy

GSE13849 Expression Signatures in Polyarticular JIA Show Hetero-
geneity and Offer a Molecular Classification of Disease Sub-
sets

Healthy (control group)
vs. juvenile idiopathic
arthritis

GSE3112 Plasma Cells in Muscle in Inclusion Body Myositis and
Polymyositis

inclusion body myositis
VS polymyositis VS nor-
mal control

GSE11686 Unique Transcriptional Profile in Wrist Muscles From Cere-
bral Palsy Patients

cerebral palsy VS healthy
control

GSE13070 Human Insulin Resistance and Thiazolidinedione-Mediated
Insulin Sensitization

preClamp vs postClamp
vs noClamp

GSE6798 Reduced expression of mitochondrial oxidative metabolism
genes in skeletal muscle of women with PCOS

control vs insulin-
resistant polycystic ovary
syndrome

*GSE2405 NIH/NIAID Neutrophil Response to A. phagocytophilum control vs anaplasma
phagocytophilum

GSE1145 changes in cardiac transcription profiles brought about by
heart failure

ischemic, idiopathic di-
lated and normal hearts

GSE14901 Limb immobilization induces a coordinate down-regulation
of mitochondrial and other metabolic pathways in men and
women

pre or post-cast

*GSE22377 mRNA expression data from human adenocarcinomas of the
stomach

diffuse adenocarcinoma
vs intestinal adenocarci-
nomas

*GSE11341 Lung selective gene responses to alveolar hypoxia Normoxia VS 3 H Hy-
poxia VS 24 H Hypoxia
VS 48 H Hypoxia

*GSE28796 Gene expression profiles of pretreatment biopsies from dose-
dense-docetaxel-treated breast cancers

pathological complete re-
sponse (pCR) vs residual
disease (NR)

Table 2.7: Muscle contraction EE module RS. All datasets use muscle or heart as source tissue except
for datasets marked with *.
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Figure 2.5: Muscle contraction EE module. Rows are genes and columns are datasets. Those genes
and datasets that belong to the module are highlighted in black. Genes and datasets that do not
belong to the module were randomly chosen.

to EE modules which reflects the increased variation found in experimental conditions relative to tissue

types. For example, we find GSE9103 and GSE1551 in two separate DE modules (DE Module 18 and DE

Module 1 respectively) even though both datasets are found in only one EE module (Module 3). Finally,

similar to the EE modules, we clustered the DE modules based on gene overlap as shown in Figure 2.6.

In comparison to the GO EE hierarchy, the GO DE hierarchy also includes a module enriched in “immune

response genes” (GO:0006955). Moreover, the GO DE hierarchy also includes modules related to the

“M phase” (GO:0000279) and “response to DNA damage stimulus” (GO:0006974) which suggests the

involvement of a common set of genes with respect to the “immune response genes” enriched module.

We observe a few outliers as well (“generation of precursor metabolites and energy” (GO:0006091) and

“translational elongation” (GO:0006414)). These biological processes might involve a specialized set of

genes that is different from those of other biological processes.

As a use case, we selected DE module 18 (GO:0006091, generation of precursor metabolites and en-

ergy). To visualize the quality of this module’s clustering, Figure 2.7 shows the differential expression of

all genes in this module compared a random set of genes of the same size. The top 5 GO annotations for

this module is available in Table 2.9 which include closely related biological processes such as “oxidative

phosphorylation” and “cellular respiration”. Similar to the muscle contraction EE module before, this DE

module also includes a few muscle-related RS such as GSE9103, GSE10161, GSE11686, and GSE14901
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GO.ID Term Significant Pval Module Rows Cols
GO:0006414 translational elongation 49 < 1e-30 36 87 23
GO:0006091 generation of precursor metabolites

and energy
54 < 1e-30 18 114 19

GO:0000279 M phase 49 < 1e-30 10 98 23
GO:0006955 immune response 51 < 1e-30 1 143 14
GO:0007156 homophilic cell adhesion 15 2.5e-19 13 56 16
GO:0007586 digestion 13 1.9e-17 11 62 4
GO:0034470 ncRNA processing 13 3.7e-16 33 41 19
GO:0006695 cholesterol biosynthetic process 8 1.8e-15 29 35 13
GO:0006955 immune response 29 4.7e-15 34 110 12
GO:0006334 nucleosome assembly 8 6.5e-10 2 79 3
GO:0048259 regulation of receptor-mediated endo-

cytosis
6 1.3e-09 12 88 4

GO:0007186 G-protein coupled receptor protein
signalng pathway

15 2.8e-09 3 78 12

GO:0006974 response to DNA damage stimulus 16 4.3e-09 19 112 2
GO:0016339 calcium-dependent cell-cell adhesion 5 1.9e-08 24 61 13
GO:0048869 cellular developmental process 31 3.1e-08 20 97 1
GO:0009611 response to wounding 15 2.9e-07 15 83 12
GO:0006915 apoptosis 28 6.8e-07 14 148 5
GO:0019219 regulation of nucleobase-containing

compound metabolic process
22 1.6e-06 37 60 16

GO:0007154 cell communication 18 8.6e-06 9 68 15
GO:0050994 regulation of lipid catabolic process 3 2.0e-05 26 31 7
GO:0065008 regulation of biological quality 24 5.1e-05 31 101 2
GO:0042776 mitochondrial ATP synthesis coupled

proton transport
3 7.5e-05 5 114 4

GO:0001539 ciliary or flagellar motility 3 7.7e-05 17 122 4
GO:0007267 cell-cell signaling 12 8.2e-05 25 71 4
GO:0006887 exocytosis 6 0.00014 30 96 3
GO:0051967 negative regulation of synaptic trans-

mission, glutamatergic
2 0.00014 16 55 12

GO:0007215 glutamate signaling pathway 3 0.00014 32 77 6
GO:0009987 cellular process 83 0.00037 8 114 5
GO:2000027 regulation of organ morphogenesis 4 0.00039 35 93 4
GO:0010739 positive regulation of protein kinase A

signaling cascade
2 0.00041 7 113 1

GO:0045449 regulation of transcription 21 0.00048 4 71 5
GO:0022617 extracellular matrix disassembly 2 0.0005 23 112 1
GO:0010467 gene expression 39 0.00056 22 122 2
GO:0006814 sodium ion transport 5 0.0012 28 114 5
GO:0021761 limbic system development 3 0.0013 6 82 2
GO:0007601 visual perception 6 0.0017 21 121 2
GO:0007283 spermatogenesis 4 0.0049 27 70 10

Table 2.8: Top GO biological process in each module from the DE matrix. The table is sorted by
increasing p-value from the Fisher’s Exact Test statistic for gene over representation. Significant
column indicates the number of significant genes in the module that were found in the GO group.
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generation of precursor metabolites and ... | GO:0006091 | 18
translational elongation | GO:0006414 | 36

cell communication | GO:0007154 | 09
regulation of nucleobase, nucleoside, nu... | GO:0019219 | 37

extracellular matrix disassembly | GO:0022617 | 23
spermatogenesis | GO:0007283 | 27

response to wounding | GO:0009611 | 15
regulation of organ morphogenesis | GO:2000027 | 35
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positive regulation of protein kinase A ... | GO:0010739 | 07
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G−protein coupled receptor protein signa... | GO:0007186 | 03
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Figure 2.6: Clustering of GO-enriched DE modules. Tree leaves are labelled with the following for-
mat: GO Term | GO.ID | Module.ID

(Table 2.10) and muscle-enriched genes such as ACTN2, CPT1B, and CKMT2. We also find brain-related

RS in this module such as GSE5388, GSE1297, and GSE2732 (Table 2.10). We suspect that some of these

genes are involved in both metabolism and neuronal systems. To verify this, we compared our list of DE

genes in Module 18 with those genes from another study that reported a list of proteins linked to metabolic

abnormalities in the dorsolateral prefrontal cortex of bipolar disorder post-mortem brain tissues [36]. As ex-

pected, we found 5 out of 46 Pennington et al. genes in common (ATP5B, ATP5C1, ATP5D, UQCRC1, and

SUCLA2; P < 0.0001, hypergeometric). Since these genes are also DE in non-brain related RS (Table 2.10),

these genes are probably involved in different pathways as well.
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Figure 2.7: Generation of precursor metabolites DE module. Values correspond to −log10(P-value).
Rows are genes and columns are RS. Those genes and RS that belong to the module are high-
lighted in black. Genes and RS that do not belong to the module were randomly chosen.

GO.ID Term Significant classicFisher bicluster
GO:0006091 generation of precursor metabolites and ... 54 < 1e-30 18
GO:0006119 oxidative phosphorylation 30 < 1e-30 18
GO:0045333 cellular respiration 27 < 1e-30 18
GO:0022900 electron transport chain 26 < 1e-30 18
GO:0015980 energy derivation by oxidation of organi... 28 < 1e-30 18
GO:0022904 respiratory electron transport chain 20 1.20E-028 18
GO:0042773 ATP synthesis coupled electron transport 19 4.90E-028 18
GO:0042775 mitochondrial ATP synthesis coupled elec... 19 4.90E-028 18
GO:0055114 oxidation reduction 35 7.30E-023 18
GO:0006120 mitochondrial electron transport, NADH t... 15 1.20E-022 18

Table 2.9: Top 5 GO annotations for the generation of precursor metabolites DE module.
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GEO.ID Description RS
GSE15132 Riboflavin depletion impairs cell proliferation in intestinal

cells: Identification of mechanisms and consequences
Control VS Ribodeficient

GSE9103 Skeletal Muscle Transcript Profiles in Trained or Sedentary
Young and Old Subjects

sedentary VS trained

GSE10161 Integrated genomic approaches implicate osteoglycin (Ogn) in
the regulation of left ventricular mass

aortic stenosis vs. healthy
control

GSE5388 Adult postmortem brain tissue (dorsolateral prefrontal cortex)
from subjects with bipolar disorder and healthy controls

Control group VS Bipolar
Disorder

GSE6927 Gingival Epithelial Cell Transcriptional Responses to Com-
mensal and Opportunistic Oral Microbial Species.

affected vs control group

GSE2443 Prostate cancer - comparison of androgen-dependent vs
androgen-independent prostate cancer

GSE12288 Gene expression patterns in peripheral blood correlate with
the extent of coronary artery disease

Coronary artery disease
vs. healthy

GSE11686 Unique Transcriptional Profile in Wrist Muscles From Cere-
bral Palsy Patients

cerebral palsy VS healthy
control

GSE9006 Gene expression in PBMCs from children with diabetes sampling timepoint
GSE5900 Gene Expression of Bone Marrow Plasma Cells from Healthy

Donors (N=22), MGUS (N=44), and Smoldering Myeloma
(N=12)

Control (healthy) vs.
smoldering myeloma

GSE25518 Testis developmental gene expression in cryptorchid boys at
risk of azoospermia

cryptorchidism vs control

GSE29605 Gene expression data from chronic lymphocytic leukemia
samples

control vs mutated IgVH

GSE14901 Limb immobilization induces a coordinate down-regulation
of mitochondrial and other metabolic pathways in men and
women

pre or post-cast

GSE13762 Comparative gene expression profile of 1,25-
dihydroxyvitamin D3-treated human monocyte-derived
dendritic cells

Vehicle Treated VS 1,25
dihydroxyvitamin D3

GSE30499 Inhibition of nonsense-mediated RNA decay by the tumor mi-
croenvironment promotes tumorigenesis

0 vs 1.5 vs 3 vs 4.5 hr

GSE21942 Expression data from peripheral blood mononuclear cells in
multiple sclerosis patients and controls

Multiple sclerosis vs con-
trol group

GSE1297 Incipient Alzheimer’s Disease: Microarray Correlation Anal-
yses

Control vs. AD

GSE16581 Genomic landscape of meningiomas: gene expression benign vs anaplastic
GSE2732 Global gene expression pattern of human brain neuronal (SH-

SY5Y) cell lines exposed to sarin (GB).
Sarin Treated VS Control
group

Table 2.10: Generation of precursor metabolites DE module RS
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2.4 Discussion
Microarray experiments are often designed to identify genes that are involved in a particular biological

phenomenon. For example, genes that are differentially expressed between blood samples from control and

Parkinson’s disease patients may play an important role in the disease. However, which of these DE genes

are also differentially expressed in other neurological disease such as Alzheimer’s disease is also of interest.

To this end, we have integrated hundreds of curated human microarray datasets and investigated expres-

sion and differential expression of genes across datasets and result sets. Our preliminary results show that

as expected, tissue-enriched genes are highly expressed in those samples with the same tissue type. With

respect to modules, there are fewer EE modules than DE modules. We attribute differences in the biologi-

cal process of EE modules to tissue type variation. In contrast, there are more differences in experimental

conditions and this is reflected in the biological process of each DE module.

We highlight possible extensions to our current work. First, most of the datasets in our study are related

to cancer. As more datasets from studies such as drug-effects, neurological and developmental disorders

become available, re-analysis of additional datasets may uncover new relationships between different bio-

logical pathways. Second, our current work can be applied to gene expression studies of model organisms

such as mouse as well. Model organisms allow researchers to discover gene function through controlled

genetic manipulations which are not possible in human. Third, the corresponding fold change of differen-

tially expressed genes can be incorporated. Genes that change expression in the same direction could be

co-regulated by the same transcription factors. Fourth, the interpretation of differentially expressed genes

can be confounded by experimental artifacts. Examples of experimental artifacts include differences in

reagents, equipment, or the time the experiment was conducted. Batch correction can be incorporated dur-

ing data processing or experimental designs can be revisited during data analysis.

In our current work, we used the ISA biclustering algorithm for identifying modules in our data. While

other methods could also be applied, we focused on designing a simple workflow for discovering biological

knowledge from the data that is currently available.

In summary, we have provided a glimpse into gene expression and differential expression of many

seemingly unrelated datasets and experimental conditions in humans. By combining information from other

datasets in an unbiased manner, we can better interpret different biological mechanisms in a broader context.
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