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Abstract

In two very different healthcare settings we demonstrate the benefits of long term

planning using operations research (OR) tools. We present models that handle

considerable variability using solutions based on relatively simple approximations.

In the first setting we present a mixed integer program (MIP) with a goal pro-

gramming (GP) formulation for strategic workforce planning at the British Columbia

Cancer Agency (BCCA). Our model considers experience, minimum and maximum

durations, and redundancy in staffing to guard against unanticipated employee

leaves. We evaluate the model parameters using simulation, and analyze the simula-

tion output with logistic and Poisson regression. The core model can be generalized

to other workforce planning applications in healthcare or to other human resource

intensive industries; the full BCCA model illustrates a real-world implementation.

This research introduces to the workforce planning literature a technique for

building robustness into the plan, together with experience and duration constraints.

In the second setting we study a marginalized population for which myriad

organizations provide healthcare and other services in the absence of system-level

quantitative planning. We use a queueing network to model clients with complex

concurrent disorders (CCD) flowing through services in Vancouver’s Downtown

Eastside (DTES). We perform sensitivity analysis on the input parameters, vali-

date our solution against a simulation model, and conduct scenario comparisons to

evaluate potential procedural and policy changes to the system.

To analyze this network we present a novel approximation technique—called a

linearized closed queueing network (LCQN)—for solving closed queueing networks.

By using an open queueing network with the fixed population mean (FPM) ap-

proach, and by including a trick for dealing with capacitated stations, we create

a network representation that is solved with a linear program (LP). This method

scales to much larger systems. We derive the approximation ratio between this

approximation and the exact solution for a small network, and use simulation to

show that this gap is of no practical significance for the full network.
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Chapter 1

Introduction

The healthcare industry currently faces many challenges. While doctors and other

healthcare workers labour to save lives and cure patients, complex issues are un-

dermining their ability to continue providing the best care possible: Rapidly rising

costs, increasingly elaborate and interlinked systems, and ever-changing technolo-

gies and treatment techniques. The majority of the quantitative aspects of these

complex issues can be addressed using operations research (OR). In the last two

decades the use of OR in healthcare has increased dramatically, yet nevertheless,

many opportunities remain to tackle medical, logistical, operational, and strategic

problems in all forms of healthcare provision.

Considerable OR healthcare research in recent years deals with short term issues,

while research on long term healthcare is less common. In the realm of scheduling

and planning this disparity is vast. For example, a review of nurse rostering and

scheduling [27] includes 83 references, however, only a handful of articles on nurse

workforce planning exist [e.g., 62, 64, 108]. We believe that, given this disparity,

research with a long term focus is a valuable contribution to the field.

Short term (tactical or operational) models provide insight into staff scheduling,

appointment scheduling, treatment provision, and other daily administration. Long

term (strategic) models pertain to matters such as human resource planning, capac-

ity planning, and system design. While both foci are vital, in this dissertation we

emphasize the long term one. We present two strategic planning models for very

different applications that nevertheless share characteristics.

Healthcare systems almost always include variability, whether introduced by

patients, workers, or biology. In both of our research topics we study systems with

considerable inherent variability. The first—a strategic workforce planning model

at the British Columbia Cancer Agency (BCCA)—contends with staff variability

in terms of learning rates, vacations, and most importantly, staff leaves (primarily

maternity/paternity leave). The second—a strategic model of healthcare provision

in Vancouver’s Downtown Eastside (DTES)—faces patient and biological variability

1



Chapter 1. Introduction

in terms of decisions about seeking treatment and the success of various programs.

Many OR techniques exist, and there is great variation within each technique

(e.g., within queueing theory there are many types of queueing stations and net-

works, with different approaches for each one). Choosing the correct tool for a

specific problem is essential for success. And when a problem is complex and involves

variability, the correct tool may be very complex itself. In both of our research topics

we discuss the approaches—which can be quite elaborate—to finding solutions that

specifically deal with the type of system and the type of variability at hand. Yet we

also show that these elaborate solution approaches are not always needed. In both

cases we present simplified modelling techniques that use standard OR tools, albeit

perhaps unconventionally. In fact, in both cases we ultimately use mathematical

programming to solve very different problems.

These simplified modelling techniques are not exact methods; they do not guar-

antee completely correct answers. But they are appropriate for these (and other)

applications because they provide solutions that are very good approximations. We

demonstrate the quality of these approximate techniques: In order to show that the

BCCA model performs well we use a simulation model to test it under different

levels of variability, and then use regression analysis to interpret the simulation

results; for the DTES model we calculate the approximation ratio between our

approximate solution and the exact solution for a smaller problem instance, and also

use simulation to show that for the full model the resulting gap is of no practical

significance. In this way we rely on more elaborate tools to demonstrate that the

simple approaches we employ for two problems are, for all intents and purposes, as

good as more complex techniques. Yet they have the added benefit of being much

easier to explain to healthcare providers, practitioners, and other researchers.

We also discuss how these approximations can be applied to other healthcare

problems. In fact, they are applicable to other industries as well. The history of OR

in healthcare is relatively brief, and many OR healthcare applications borrow from

other industries. But there is also considerable opportunity for other industries

to learn from what is being done with OR in healthcare. We demonstrate OR

approaches to strategic planning problems and show that some of the forces working

against doctors and providers in healthcare can be overcome with the help of models

that provide system level insight and well-informed, data-driven decision making.
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1.1 Workforce Planning at the BCCA

Amidst talk of increasing healthcare costs, an ageing workforce, and constrained

resources, workforce planning is a pertinent topic. Much of the healthcare literature

in OR concerns operational decisions—shift scheduling, surgery block allocation,

patient flow – but models that go beyond the next week or month are less common.

We present a workforce planning model that allows an organization to focus on the

strategic issues that will enable it to create and maintain a well-balanced workforce

now and several years into the future. Our model includes skill acquisition, minimum

and maximum duration constraints, and a mechanism to manage the variability

inherent in the planning of individual careers.

We use a mixed integer program (MIP) with a goal programming (GP) formula-

tion employing two different objective functions—one for creating plans and one for

making minor adjustments. Variability is handled with an intuitive yet powerful ro-

bustness constraint that we evaluate numerically under different assumptions. This

unique combination of GP workforce planning incorporating experience, duration,

and redundancy constraints is applicable in many healthcare settings as well as in

other human resource intensive industries.

One area of healthcare with high costs, continually advancing technology, and

limited human resources is cancer care. Of the many skilled workers involved in

cancer prevention, treatment, and rehabilitation, we focus on radiation therapy

treatment, and specifically, on the radiation therapist (RT) workforce. This group

of employees demonstrates a wide array of skills through their involvement in almost

all aspects of radiation therapy.

The radiation therapy department at the BCCA, described in Chapter 3, was

the motivation for this work. The human resource challenges faced by this depart-

ment are by no means unique to cancer care: Skills are diverse and wide-ranging,

with mastery requiring months or years of experience; employee departures are

unpredictable, whether for maternity/paternity leave, relocation, or retirement; job

satisfaction is associated with retention, and can be influenced by workforce planning

activities. Moreover, prior to implementing our model the department had a process

for scheduling RTs for one month but only a rudimentary planning framework for

looking beyond that time frame.

Considerable literature is devoted to staffing at the operational level. Staff
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scheduling, rostering, shift scheduling, and other related daily or weekly staffing

models are studied in many settings. Ernst et al. [42] provide a comprehensive

overview of the various scheduling approaches in use across a number of industries.

Within the health care industry, many examples of nurse scheduling exist from

older models [74] up through more advanced approaches [94]. Nurses are not the

only health care workers needing schedules; Topaloglu [109] presents a scheduling

model for emergency medicine residents and Brunner et al. [17] assign physicians to

flexible shifts using constraints similar to our duration constraints.

At the strategic level, Lavieri and Puterman [64] use a linear program (LP) to

determine how many nurses to train in aggregate in B.C. over a 20-year planning

horizon. We are concerned, however, with planning individual career trajectories,

which necessitates a horizon that is shorter than 20 years but longer than the

typical scheduling time frame. In this vein, Franz and Miller [44] assign medical

residents to rotations, including preferences for the number of residents in different

areas, but they do not consider durations or experience gained in earlier rotations.

Bhadury and Radovilsky [11] study job rotation using an assignment problem in

which the solution is achieved by iterating through the periods; they include a form

of sequencing that is similar to our requirement for minimum durations, however,

they also do not consider experience gained. Li and King [65] explore personnel

planning at a health clinic where task substitution is included in the model as a

cushion against variability, but this cushion is very different from our redundancy

constraint. An example from the semiconductor industry by Bordoloi and Matsuo

[14] includes experience gained by line workers, however, this model is built on a

production scheduling and inventory planning approach, and we believe it doesn’t

extend to healthcare.

Our model, introduced in Chapter 2, brings to the literature the novel combi-

nation of minimum durations, maximum durations, experience requirements, and a

redundancy constraint. To our knowledge, no staff planning research includes all

of these components. The GP approach, with soft constraints and penalties in the

objective function, handles trade-offs among different requirements. Using GP for

staff planning is not new; Schroeder [99] shows how this approach can be used to

balance different objectives in determining staffing levels in a university setting. GP

is also used in health care, as demonstrated by Topaloglu [110] for medical resident

shift scheduling and by Berrada et al. [10] for nurse shift scheduling, the latter
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including several GP solution approaches. (For a history of GP, see Aouni and

Kettani [7]). The output of our model is a strategic plan—robust against variability

in staff availability—detailing RT assignments to management, at the quarterly

level, for the next several years.

The BCCA is a sophisticated cancer centre, using many varieties of

technology—including OR—to achieve excellent results; cancer survival rates in

B.C. are some of the best anywhere [33]. Given this environment it is not surprising

that our strategic planning project at the BCCA was fairly well-defined from the

start, and that it was focused on a specific problem with clear objectives. Our other

line of research demonstrates that this is not always the case.

1.2 Strategic Resource Planning in Vancouver’s

DTES

The DTES in Vancouver, B.C., is a vibrant neighbourhood with an active residents

association and a sense of community. Unfortunately, it also has much more than its

share of problems. The population of around 18,000 [21] has an average adult income

(excluding subsidies) of only $6,282 (2009 CAD) [16] and grapples with many social

and health issues including high rates of drug use, disease, crime, and prostitution.

Many organizations support the residents of the DTES. Like the BCCA for cancer

patients, these organizations offer a wide range of treatments and paths for clients

with mental health and addictions issues. Yet the two systems couldn’t be more

different; the former is centralized, well-funded, and comprehensive while the latter

is decentralized, arguably inadequately funded, and full of gaps as well as overlaps in

services. With an eye on the role that OR can play within a well-run organization, we

now turn to this very different healthcare system to see how OR might be employed

to help provide aid to a particularly vulnerable population.

The number of people living with complex concurrent disorders (CCD) in the

DTES is staggering. This population with mental health and addiction issues

endures additional challenges including homelessness, physical illness, high rates of

hepatitis and HIV infection, histories of trauma, suicidal behaviour, and difficulty

accessing help. While myriad organizations provide health, social, housing, and

criminal justice amenities in and around the DTES, no high-level quantitative strate-

gic approach exists to create efficiency within the system using existing resources or
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to optimally introduce and position new services and programs.

For background information on the DTES, the book “A Thousand Dreams”

by former Vancouver mayor Campbell, criminologist Boyd, and journalist Culbert

discusses the history of this neighbourhood, the reasons for its current state, and

possible solutions [21]. Two reports from the Vancouver Police Department give a

thorough overview of the mental health and addiction issues from a police perspec-

tive, and include portraits of several individuals [107, 121]. A brief overview of the

DTES as well as a survey of quantitative literature on mental health and addictions

can be found in [68].

Existing research involving this community has focused on epidemiological topics

such as describing population characteristics and risks [35, 111, 122], identifying

causal relationships [123, 124], quantifying costs and services used [53, 84], and

evaluating individual treatment options and interventions [98]. Because of this rich

literature we know a great deal about the residents, the available services, and the

outcomes of some of the interventions. What we don’t know, however, is how the

system works and interacts as a whole, and where improvements can be made to

benefit residents and streamline the delivery of services.

In other words, considerable resources are being directed toward a plethora of

very important, but piecemeal solutions—supportive housing, primary care, treat-

ment teams. In order to address system-wide problems, one must be able to examine

the whole system, and this is where OR comes into play. The literature contains

relevant examples of OR healthcare models that are specific to addictions or mental

health issues, for instance, Earnshaw et al. [40] use an LP to determine the allocation

of funds for HIV prevention, and Caulkins et al. [25] use a Markov chain approach

to explore cocaine use in the US, including changing rates of initiation informed by

data. Caulkins et al. [26] use a dynamic compartmental model to study drug use

trends in Australia, and Richter and Loomis [93] employ a similar approach to study

an HIV intervention in substance users.

In our research we use a queueing network to model clients flowing through

various services. Our approach involves a new method which we refer to as a

linearized closed queueing network (LCQN); we have obtained exact bounds for

a small example and we demonstrate bounds computationally for larger instances,

however, we haven’t yet obtained rigorous bounds for those larger instances. We de-

scribe our queueing theory approach in detail in Chapter 4 and provide a background
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on queueing theory literature therein.

Studying a population of substance users, Kaplan and Johri [50] use a queueing

approach to model the cycle from abstinence through drug use and into treatment.

Koizumi et al. [57] use queueing theory to investigate patients flowing through

mental health resources in Philadelphia. These last two examples are the most

methodologically relevant mental health or addictions articles.

Only a couple articles use OR models to study these issues in the DTES. Bay-

oumi and Zaric [9] use simulation to evaluate the cost and health impact of Van-

couver’s safer injection site. Pourbohloul et al. [86] use a compartmental model to

understand the effects of a large syphilis intervention. However, to our knowledge,

there are no quantitative OR models in the literature that focus on many mental

health and addiction services for an entire population.

We believe this research is important for two reasons. It helps to demonstrate

that OR is applicable to the field of mental health and addictions. And it provides

a framework for seeking desperately needed answers in a geographic and medical

area lacking quantitative strategic planning. These points will become clear when

we discuss the results of this research topic in Chapter 5. Decision makers at the

various organizational and political levels will be better informed and more prepared

to make informed choices using our models of the services in the DTES.

1.3 Brief Overview of Computer Simulation

Simulation is used to evaluate various aspects of both research topics in this disser-

tation, so we present an overview of this approach. The term computer simulation

describes a broad class of tools that allows one to model a real-world or hypothetical

system by (repeatedly) trying out the significant events, moves, or decisions affecting

the entities or individuals that comprise the system. Put simply, it is about imitating

a system, in order to study it, rather than attempting to find a corresponding (but

perhaps more elegant or tractable) representation of that system.

Simulation models, like many other types of models, allow us to study and

learn from a virtual system rather than working with a real-world system, often for

practical reasons. Sometimes it is prohibitively expensive, unethical, or too time-

consuming to try making changes in a real system, and other times such a system

doesn’t yet exist.
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The term simulation has another meaning in healthcare that refers to exercises

in which health workers physically practice or act out situations such as surgery or

disaster response for education, training, or assessment purposes. However, we use

the word to refer to computer simulation only.

In the last several decades, simulation models have become more powerful.

Because simulation is in many ways a brute force approach—using computers to

generate numerous random inputs and outcomes in order to get an idea of an average

outcome—the field has benefited greatly from increases in computing power.

A number of computer simulation approaches exist, a few of which are common

in healthcare and are mentioned here:

Monte Carlo simulation can be particularly useful for calculation purposes. It

involves generating random numbers according to distributions for various

(often correlated) inputs and then performing a calculation on those inputs.

Agent-based simulation is appropriate for simulating individual people or other

entities that make decisions based on interactions with each other and with

the system. Each individual is essentially represented by an algorithm making

random decisions that are influenced by other outcomes in the overall model.

Hybrid models are useful when a pure approach is not sufficient. These models

combine different types of simulation approaches or they pair simulation with

other tools. For instance, in Chapter 3, simulation combined with MIP enables

us to evaluate the workforce planning model as it is subjected to random staff

leaves.

Discrete event simulation (DES) is typically useful for describing objects or

people moving through different stages in a system; it is described in more

detail below.

For examples of simulation in healthcare, see these prefaces to special issues on

healthcare simulation by Anderson [5] and Anderson and Merode [6] and the rest

of the articles contained in those issues. An example of DES in healthcare can be

found in Werker et al. [118].
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1.3.1 Discrete Event Simulation

DES models have several components: Events, random-number generators, and

time. Events happen at a specific time, and often lead to other events being

scheduled. Simulated time is essentially measured continuously (actually in very

small discrete units, e.g., in simulated seconds or milliseconds). The software that

performs the simulation keeps track of an event list with all scheduled future events,

moving down the list and processing each event in turn. Processing an event means

updating the event list accordingly, e.g., if the event “client shows up at hospital” is

being processed, it could generate a random service time and then schedule another

event for “client departs hospital” at the appropriate future time. Throughout the

running of the model, statistics are tracked for any measures of interest. Often

another component, stations, is part of these models. E.g., the hospital may be a

station with an associated capacity and distribution for service times.

A single replication of a DES model proceeds until some stopping condition.

Typically this condition is that a certain amount of simulated time has passed (this

condition is easy to model—when the model begins, an event is immediately sched-

uled at the specified future time that causes the model to halt). After the replication

is over, the statistics are tallied and the results can be analyzed. However, because

these results are based on random numbers, they may not represent typical system

performance. Therefore, DES usually involves performing many replications (with

independent streams of random numbers) in order to infer the average performance

of the system. With enough replications, and relying on statistical theory, it is

easy to calculate not just an average but also a confidence interval for each measure

tracked. The end result is that we can describe the system to any level of accuracy,

as long as we are willing to run enough replications to achieve confidence intervals

with our desired width.

Many software packages simplify the work involved in creating a DES model.

Because it is commonly used in healthcare and other industries, and because of prior

familiarity, we use Arena to create and run the DES model. (For more information

on simulation, on DES in particular, and on the Arena software, see [51].)
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1.4 Queueing Review

Queueing theory is used in Chapters 4 and 5 to model healthcare and other services

in the DTES. The queueing approach employed builds on basic theory which we

review herein.

A typical queueing model consists of entities arriving, possibly waiting, and

then getting served by a server before exiting the system. (Henceforth we refer

to these entities as “clients” in order to use the terminology most common in the

DTES). Arrivals can be classified in different forms including deterministic, general,

or Markovian. This last form describes random arrivals that follow a Poisson process,

or in other words, the number of arrivals in any particular period length follows a

Poisson distribution and correspondingly, the time between two consecutive arrivals

follows an exponential distribution. One need not assume the arrival process is

stationary (unchanging over time) but we make that assumption in order to simplify

analyses. This arrival process and the stationarity assumption are discussed in more

detail in §5.1.1.

Service times can also follow any of the same distributions; when service times

are exponentially distributed we say that they are also Markovian. (A service time

can also be referred to as a length of stay (LoS); a service rate, the reciprocal of

LoS, is often used to specify the parameter value.) The model may include a single

server, multiple (finite number of) servers, or an infinite number of servers. Several

simple models are reviewed below.

For information on these simple models, or on the more common extensions

to these models, any queueing theory text can be helpful (Bhat [12], Gross et al.

[47]). Many papers go beyond what is found in the textbooks with extensions such

as a general distribution for service times, s servers, and additional waiting spaces

[120] or queues with a last-in-first-out discipline [4], however because we limit our

analyses in several ways—Markovian arrivals and service times, single class queues,

a first-in-first-out discipline, and stationary arrival processes—the models described

below provide sufficient background to introduce our model.

1.4.1 Queueing Notation

The following notation is used to introduce simple queueing models.

n = Number of clients in the system, i.e., the state of the system.
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λ = Arrival rate; λn is the state-specific arrival rate when the system is in state n.

µ = Service rate; µn is the service rate when the system is in state n. Note that

LoS—length of stay—is the reciprocal of service rate.

ρ = Traffic intensity; ρn is the traffic intensity corresponding to state n.

Cn = Multiplier corresponding to state n (this term simplifies some of the other

expressions).

P0 = Probability there are 0 clients in the system in steady state.

Pn = Probability there are n clients in the system in steady state.

L = Expected number of clients in the system in steady state.

W = Expected waiting time for a client upon arrival to the system in steady state.

1.4.2 Birth-and-Death Processes

The birth-and-death process is a special case of a continuous time Markov chain,

and is the foundation for the analyses of the various queueing models. For details,

see any queueing text, [e.g., 47, 73]. The basic idea, using the notation from Hillier

and Lieberman [48], is as follows:

A birth-and-death process only allows transitions from n to n + 1 (for n ≥ 0)

or to n − 1 (for n > 0). The former transition is called a “birth” and the latter

is called a “death”, representing the arrival or departure of a customer from the

queueing station, respectively. The time until the next birth (arrival) is exponen-

tially distributed with parameter λn and the time until the next death (departure)

is exponentially distributed with parameter µn.

Assuming, for now, that the steady state exists, we can analyze the queue by

recognizing that in the long run the entering rate equals the leaving rate for any

state, where the state is the number of customers in the system. (Conditions for the

existence of steady state are discussed below for specific queues.) Given all birth

transition rates, λn, and all death transition rates, µn, we can write the balance

equation for each state for n = 0,1, . . . and then solve this system of equations to

determine the steady-state probabilities, denoted Pn. We use the fact that all of
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these probabilities must sum to 1 to express the Pn terms as a function of the birth

and death rates (introducing the term Cn to simplify the notation):

C0 = 1 (1.1)

Cn =
λn−1λn−2⋯λ0

µnµn−1⋯µ1

, for n = 1,2, . . . (1.2)

P0 = (
∞
∑
n=0

Cn)
−1

(1.3)

Pn = CnP0, for n = 0,1,2, . . . (1.4)

In the following subsections we summarize the analyses of several queueing

models using this birth-and-death result as a starting point.

1.4.3 M/M/1, M/M/s, and M/M/∞ Queues

One of the most basic queueing models consists of Markovian arrivals, Markovian

service times (with a different parameter), and a single server. Using Kendall’s

notation ([52], [104]), we refer to this system as an M/M/1 queue. The first M

represents the Markovian arrivals, the second M represents the Markovian service

times, and the 1 represents the number of servers. We could also talk about

an M/M/s model with a finite number of servers, s > 1. In some situations it

makes sense to assume an M/M/∞ model with an unlimited number of servers

(representing the situation in which arriving entities are served immediately with

the same service rate no matter how busy the system is).

For each of these queueing models it is easy to determine the probability dis-

tribution for the number of clients in the queue, where the queue is described as

those waiting for service plus those being served. We can also determine the average

number of clients in the queue and the expected waiting time.

The M/M/1 queue has the same arrival rate regardless of which state, n, the

queue is in. We therefore write λn = λ. Service time is µn = µ. We define the traffic

intensity to be ρ = λ/µ. Using the solution approach for a birth-and-death process

we determine Cn = (λ/µ)n = ρn. If ρ < 1 the queue will reach steady state and we

can solve for the probability of having zero clients in the queue, P0; the probability

of having n clients, Pn; the average length of the queue (including those waiting and
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those being served), L; and the expected waiting time, W :

P0 = [
∞
∑
n=0

Cn]
−1

= 1 − ρ (1.5)

Pn = (1 − ρ)ρn, for n = 1,2, . . . (1.6)

L =
∞
∑
n=0

nPn =
λ

µ − λ
(1.7)

W = 1

µ − λ
(1.8)

The M/M/s queue is identical to the M/M/1 queue with respect to arrivals,

however, service time depends on how many clients are in service. The service rate

µn equals nµ if up to s clients are in service and sµ if s or more clients are in service

(i.e., the servers are full). Traffic intensity is ρ = λ/sµ, and as with a single server, ρ

must be less than one to achieve a steady state. We can derive the same quantities

as above:

Cn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λn

µn
1
n! , for n = 1,2, . . . , s

λn

µn
1

s!sn−s , for n = s, s + 1, . . .
(1.9)

P0 = [1 +
s−1

∑
n=1

λn

µn
1

n!
+

∞
∑
n=s

λn

µn
1

s!sn−s
]
−1

= [
s−1

∑
n=0

λn

µn
1

n!
+ λ

s

µs
1

s!

1

1 − λ/(sµ)
]
−1

(1.10)

Pn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

λn

µn
1
n!P0, for n = 1,2, . . . , s

λn

µn
1

s!sn−sP0, for n = s, s + 1, . . .
(1.11)

L = P0ρ

s!(1 − ρ)2

λs

µs
+ λ
µ

(1.12)

W = P0ρ

s!(1 − ρ)2

λs−1

µs
+ 1

µ
(1.13)

The M/M/∞ queue allows one to model many servers yet has a very simple

formula for the average queue length, L. Arrivals are the same as above, and service

times are easily seen by letting s in the M/M/s model go to infinity: µn = nµ for all

values of n. The system can handle unlimited arrivals and is therefore guaranteed

to achieve steady state. The following equations are easy to derive for this model:

Cn =
λn

µn
1

n!
(1.14)
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P0 = [
∞
∑
n=0

Cn]
−1

= e−λ/µ (1.15)

Pn =
λn

µn
1

n!
e−λ/µ (1.16)

L =
∞
∑
n=0

nPn = λ/µ (1.17)

W = 1/µ (1.18)

The simple formula for W makes intuitive sense. If all clients begin receiving

service immediately upon arrival then the average time a client spends in the system

is the reciprocal of the service rate. Using Little’s law [69] we can easily see that

L = λW = λ/µ. This result is very important; in our model, we take advantage of

this simple formula for the average number of clients in the queue.

1.4.4 M/M/s/s/N and M/M/N/N/N Queues

We introduce two relevant queues corresponding to M/M/s and M/M/∞ queues,

with finite waiting capacity and a finite calling population.

An M/M/s queue with limited space in the system for K clients with K > s
is referred to as an M/M/s/K queue (again using Kendall’s notation). If there

is no additional waiting space beyond the space in the s servers, we have K = s
and we refer to the system as an M/M/s/s queue (also known as the Erlang-B

model). Furthermore, if the population using this queue is not infinite (as per the

assumptions in the previous section), we say it has a finite calling population of size

N , and refer to the system as an M/M/s/s/N queue. The arrival rate, l, has a

different interpretation than the previous arrival rates: It represents the per client

rate, i.e., the rate at which any individual client in the population not currently in

the queue arrives at the queue. The size of this waiting population is N − n; the

total arrival rate, λ, depends on the size of this population thus: λn = (N −n)l. The

following equations describe this model (assuming N > s):

λn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(N − n)l for n = 0,1, . . . , s − 1

0 for n ≥ s
(1.19)

µn = nµ for n = 1,2, . . . , s (1.20)
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Cn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ln

µn
(N
n
) for 0 ≤ n ≤ s

0 for n > s
(1.21)

Pn = CnP0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ln

µn
(N
n
)P0 for 0 ≤ n ≤ s

0 for n > s
(1.22)

P0 = [
s

∑
n=0

ln

µn
(N
n
)]

−1

(1.23)

L = P0

s

∑
n=0

n
ln

µn
(N
n
) (1.24)

This model, as mentioned above, is a modification of the M/M/s queue. We now

modify the M/M/∞ queue to consider a finite calling population. Such a model

could be described as M/M/∞/∞/N , however, given the finite population, there

could never be more than N busy servers or N clients in the queue. We therefore

refer to this system as an M/M/N/N/N queue. The model is described thus:

λn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(N − n)l for n = 0,1, . . . ,N − 1

0 for n = N
(1.25)

µn = nµ for n = 1,2, . . . ,N (1.26)

Cn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ln

µn
(N
n
) for 0 ≤ n ≤ N

0 for n > N
(1.27)

Pn = CnP0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ln

µn
(N
n
)P0 for 0 ≤ n ≤ N

0 for n > N
(1.28)

P0 = [
N

∑
n=0

ln

µn
(N
n
)]

−1

= 1

(1 + l/µ)N
(1.29)

L = P0

s

∑
n=0

n
ln

µn
(N
n
) = 1

(1 + l/µ)N
s

∑
n=0

n
ln

µn
(N
n
) = N(l/µ)(1 + l/µ)N−1

(1 + l/µ)N

= Nl

l + µ
(1.30)

The equations for P0 and L are elegantly simple, especially compared to the same

measures from the seemingly similar M/M/s/s/N queue. In order to derive these

terms we use a couple of tricks: Equation (1.29) utilizes the generating function for

the binomial coefficient; equation (1.30) involves rewriting the factorial terms based
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on N − 1 instead of N .

As far as we know, deriving these values by solving the steady state probabilities

has not been mentioned in the literature. However, it is a fairly trivial result that

is also possible to find in other ways. For instance, the effective arrival rate, λe, is

equal to the per capita arrival rate, l, times the average number of clients not in the

queue: L0 = N −L. Using Little’s law, we know that L = λeW . Further, the average

waiting time is simply W = 1/µ, because there is no delay for service. Putting these

pieces together gives L = l(N −L)(1/µ). Solving for L yields equation (1.30).

1.4.5 Open Jackson Networks

In 1963, Jackson showed that performance measures could be easily calculated for

certain networks of queues [49]. Rather than consider a queueing model that consists

of a single queue of clients waiting for one service (with one or more servers), an

open Jackson network consists of multiple services, each with its own queue. Clients

complete service at one queue and transition to another queue or out of the system

according to routing probabilities. These networks assume Markovian arrivals and

service times, albeit in a more generalized fashion than illustrated in the single-

queue examples above; both arrival and service rates are allowed to depend on the

number of customers in the corresponding queue. An open Jackson network has

an elegant closed-form solution, but one must assume that the clients arriving at

the network are coming from an infinite “calling population”. The implication of

this assumption is that external arrival rates are unaffected by what goes on in the

network because there are always more clients who show up for service.

Two additional assumptions (hereafter referred to as “Jackson network assump-

tions”) must be made for a network to be a Jackson network: 1) Every station must

be visited by some sample path with positive probability; and 2) every client must

exit the system with probability 1.0.

The notation introduced in §1.4.1 is expanded upon to represent networks of

queues:

j = 1,2, . . . , J stations (we also use i for stations).

J = the set of all stations.

J
− = the set of capacitated stations.
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λj = aggregate arrival rate at station j.

ζj = external arrival rate at station j.

zj = external per-person arrival rate at station j (for use with a finite calling

population where the input parameter is of this form and ζj is calculated

from the model solution).

µj = service rate at station j. Note that µj = 1/LoSj.

pij = routing probability for transitioning from station i to station j.

Lj = expected number of clients at station j.

N = number of people in the total population (calling population).

A key result for the Jackson network is that each queue, or service, can be ana-

lyzed in isolation once its aggregate arrival rate has been determined. Determining

the aggregate arrival rates of all stations involves solving a system of equations

based on the fact that, in steady-state, each service’s aggregate arrival rate equals

its aggregate departure rate. The resulting set of equations is:

λj = ζj +∑
i∈J
pijλi, ∀j (1.31)

If the above network is a Jackson network (in which each station is able to reach

steady-state) then there exists a unique equilibrium probability distribution (by

Theorem 4.5 from [49]). Conversely, every such equilibrium probability distribution

induces a positive solution to equation (1.31). The existence of a unique positive

solution to the λ values follows from this result.

This system is typically solved using matrix algebra, where P is the square J-

dimensional routing probability matrix (and P is clearly invertible given that there

is a unique positive solution):

λ = (I − P ′)−1
ζ (1.32)

With the calculated aggregate arrival rates, λj, the individual queues (stations)

can be analyzed using the simple models discussed above, or using variations of

these models.
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1.4.6 Finite Calling Populations

Assuming an infinite calling population is fairly typical in many applications, such

as call centres (Koole and Mandelbaum [58]) or manufacturing settings (Bitran and

Dasu [13]). However, in the context of the DTES the population is clearly not

infinite. If, for instance, a policy change resulted in a drastic increase in the number

of clients in treatment, then fewer clients would be outside the system generating

“external” arrivals at the entry points, and these external rates would decrease.1

However, were we to assume an infinite calling population, this feedback would not

be represented in the model. We therefore must represent the total population as

a finite calling population, thereby necessitating external arrival rates based on the

number of clients not in the system, which is in turn based on the number of clients

in the system and on the total population, N .

Using a fixed, finite population conveys the idea that no clients enter or leave the

DTES, which is not true. However, this assumption is reasonable for the purpose

of these analyses if we assume that clients who leave are replaced by similar clients

who enter the system. (Modelling the flows in and out of the population is a task

for a future version of the model, and will be explored in more detail at that time;

it is beyond the scope of this dissertation.)

1.4.7 Closed Queueing Networks

Ignoring the computational challenges, the most straightforward manner for repre-

senting a network with a finite calling population is with a closed queueing network.

The subsequent section addresses approximating closed networks with open net-

works, which turn out to require significantly less computation. But first we briefly

review the history of closed queueing networks and discuss ways to analyze them.

Some of these approaches extend to multi-server stations, and some also include

multiclass clients (i.e., different populations moving through the same network)

In 1967, Gordon and Newell [45] formalized and extended Jackson’s work to

closed queueing systems with exponential service times. They presented the product

1This rate decrease is based on the assumption that if there are fewer clients in a population
periodically using a service, then the use of that service by that population would decrease
proportionally to a decrease in the population. The converse, that somehow clients would
compensate for an overall drop in the external population size by using services more frequently,
is hard to justify.
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form solution analogous to that of the open queueing network. This product form

solution includes a normalization constant, G(N), which ensures that the sum of

the probabilities across all possible states equals one. However, no efficient way

to calculate the normalization constant was introduced at the time, meaning that a

brute-force approach involving the enumeration of the entire state space was implied.

Given J stations and a population of N , the number of terms to be evaluated in

the enumeration is (J+N−1
N

) [20]. This need for enumeration meant that only the

smallest problem instances could be solved.

In due course, more efficient approaches for dealing with closed networks began to

appear in the literature. Five methodologies are briefly discussed: The convolution

algorithm, mean-value analysis, the integral approach, Monte Carlo summation, and

using generating functions for the normalization constant. For each methodology,

the seminal paper and select others are cited.

Convolution Algorithm The first computational advance following the work by

Gordon and Newell came in 1973 from Buzen [20]. This paper included an approach,

called the convolution algorithm, for calculating the normalization constant by re-

cursively determining G(1) through G(N) for one station, and then solving for each

additional station until all stations are included. As such, the convolution algorithm

only requires that a J × N table be calculated (using very simple operations).

Furthermore, only a single N -dimensional column must be stored at each step of

the process. In its basic form this algorithm assumes M/M/1 stations and a single

class of clients.

Mean-Value Analysis The next major idea for working with closed networks

followed a different tack, and came in 1980 from Reiser and Lavenberg [92]. Rather

than try to calculate the normalization constant, the mean-value analysis approach

directly calculates several performance measures of the network in equilibrium,

including the mean number of customers in each queue and the mean waiting time.

It accomplishes this recursively, through the fact that a customer arriving at the

system sees a system in equilibrium with one fewer customer. The mean-value

analysis algorithm also extends to multiclass networks; the algorithm requires a

nested loop for each class of customers.
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The Integral Approach Bell Labs produced considerable research on queueing

networks including the integral approach, which was packaged as the PANACEA

software in the early 1980s, as described by Ramakrishnan and Mitra [90]. This

approach replaces summations with integrals and uses these asymptotic expansions

to recursively solve for measures such as mean queue length and expected waiting

time. It makes use of pseudo-networks, which are related to the original network but

have different parameters and no infinite-capacity servers. Multiclass networks are

able to be dealt with, however, the earlier versions could not handle load-dependent

service rates which means that multi-server stations were not initially included. As

well, assumptions are made about “normal usage” which is defined as utilizations

less than 0.85. (When the load is “heavy”, the bounds returned by the algorithm

can be quite large). Later related work included load-dependent servers [77].

Monte Carlo Summation In 1993, Ross and Wang introduced an approximate

approach for analyzing large, multiclass, closed queueing networks: Monte Carlo

summation [95]. This method used sampling techniques to derive performance

measures, based on a combination of summations and integral representations.

Instead of returning bounds, like PANACEA, confidence intervals are calculated.

And unlike PANACEA, heavy loads are handled effectively. Initially, multi-server

stations were excluded, but a revised version in 1997 [96] added this functionality.

Generating Functions for the Normalization Constant Choudhury et al.

introduced another approach in 1995 that provides an efficient way of calculating

the normalization constant [29]. This method replaces the normalization constants

(for the full network and associated networks for which performance measures are

desired) with analogous generating functions and then numerically inverts these gen-

erating functions in order to calculate the normalization constant(s). This approach

is demonstrated on multi-chain closed networks with single-server stations and/or

infinite-capacity stations. Although more complex, the approach can be extended

to load-dependent cases such as for multi-server stations.

Additional methodologies that have not been discussed here come in various

flavours, including extensions to the above approaches (e.g., Lam and Lien [63]),

hybrid methods (e.g., Reiser [91]), and others (e.g., Casale [24]).
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All of the methods discussed thus far work with the product form of a closed

queueing network and calculate or approximate either 1) the normalization constant

in order to derive performance measures or 2) the performance measures directly.

Yet another set of approaches does not involve the product form of a closed network:

Approximating a closed network with an open queueing network.

1.4.8 Approximating a Closed Queueing Network with an

Open Queueing Network

The difference between an open and a closed queueing network is the size of the

population; the former is infinite and the latter is finite. With an infinite popula-

tion, there are always new customers entering the network, whereas with a finite

population the same customers cycle back through the network indefinitely. In the

latter case, the activity in the network affects the rate at which customers cycle

back, or re-enter, the network.

With some rearrangement, however, a closed network can be made to look like

an open network. By removing a single station, it essentially becomes the external

population. In Figure 1.1 station 0 has been removed. Flows previously entering

station 0 now enter the external population and flows previously leaving station

0 now leave the external population and are termed external arrivals. However,

the external arrival rates, ζj, must approximate the service times of the removed

station if the open network is to approximate a closed network. These rates are

calculated by taking the service time of the removed station and multiplying by the

corresponding routing probability.

Figure 1.1: Converting a closed network (left) to an open network (right): Station
= oval; route = arrow; route to/from external population = dashed arrow.

2 31

0

2 31

external population

ζ1 ζ3
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The main approach that uses an open network to approximate a closed one is

the fixed population mean (FPM) method formalized by Whitt in 1984 [119]. This

approach sets the external arrival rates so that they are proportional to the mean

size of the “external” population in equilibrium. To determine the mean size of the

external population one takes the total calling population, N , and subtracts the

sum of all mean queue lengths, ∑Ji=1Li in the network (where queue lengths include

clients in service). The mechanics of the FPM method are explained in §4.1.3, and

the quality of the approximation is discussed in §4.2.1.
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Chapter 2

Workforce Planning Model

2.1 Basic Model

In this chapter and the next we treat the BCCA model and application. We begin

by describing a simplified version of the model.

The basic model is a multi-period assignment problem with side constraints and

a GP objective function. The side constraints, enforcing minimum and maximum

durations, redundancy, and minimum experience levels, make the problem non-

trivial to solve. We use GAMS software to represent the model and CPLEX to

find the MIP solution—an assignment of agents to tasks for each period of the

planning horizon. In a minor departure from the pure assignment problem, certain

tasks in our model require multiple agents. Additionally, we are unconcerned with

agent–task assignment costs; we simply wish to meet all task requirements.

Formulating the model in the language of the radiation therapy department,

“agents” are RTs, “tasks” are referred to as areas (an area may comprise several

daily tasks), and “periods” are quarters (so that a two-year model has a horizon of

eight quarters). We designate i ∈ I RTs, j ∈ J areas, and t = 1, . . . , T periods. In

some constraints we also use k to represent preceding areas and u to represent time

periods. We represent the assignments with binary variables x:

xi,j,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if RT i is assigned to area j in period t

0 otherwise
∀i, j, t

In order to model the duration constraints, we require binary variables y to track

the beginning of sequences, where a sequence is defined as a continuous block of one

or more periods during which an RT works in one area:

yi,j,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if RT i begins a sequence in area j in period t

0 otherwise
∀i, j, t
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We model experience with binary variables z to track when RTs have the neces-

sary experience in one area in order to work in another area (using k Exp⇁j to denote

that experience is required in area k in order to be assigned to area j):

zi,j,k,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if RT i has experience in area k to work in j by t

0 otherwise
∀i, j, k, t ∶ k Exp⇁j

Finally, we require continuous variables v(1) and v(2) to track and penalize

violations of the two soft constraints—maximum duration and redundancy. These

two variables appear in the objective function, allowing us to define the optimal

solution as one that best balances these two different goals.

v
(1)
i,j,t = violation of the maximum duration constraint ≥ 0 ∀i, j, t

v
(2)
j,k,t = violation of the redundancy constraint ≥ 0 ∀j, k, t ∶ k Exp⇁j

The model, shown here, is described in more detail below:

min C(1)∑
i,j,t

v
(1)
i,j,t +C(2) ∑

j,k,t

v
(2)
j,k,t (2.1)

s.t. ∑
j

xi,j,t ≤ 1 ∀i, t (2.2)

∑
i

xi,j,t ≥Dmin(j, t) ∀j, t (2.3)

xi,j,t − xi,j,t−1 ≤ yi,j,t ∀i, j, t (2.4)

t+Smin(j)−1

∑
u=t

xi,j,u ≥ Smin(j) ⋅ yi,j,t ∀i, j, t (2.5)

t+Smax(j)
∑
u=t

xi,j,u ≤ Smax(j) + v(1)i,j,t ∀i, j, t (2.6)

Ereq(j, k) ⋅ zi,j,k,t ≤ Est(i, k) +
t

∑
u=1

xi,k,u ∀i, j, k, t ∶ k Exp⇁j (2.7)

xi,j,t ≤ zi,j,k,t ∀i, j, k, t ∶ k Exp⇁j (2.8)

∑
i

zi,j,k,t ≥ f ⋅Dmin(j, t) − v(2)j,k,t ∀j, k, t ∶ k Exp⇁j (2.9)

x, y, z ∈ {0,1}; v(1), v(2) ≥ 0

Constraints (2.2) and (2.3) form the core of the model. Constraint (2.2) states
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that each RT must be assigned to at most one area in a period; the inequality allows

for RTs to be left unassigned, which is important once staff leaves are included.

Constraint (2.3) requires that the number of RTs assigned to an area cannot be less

than the minimum staffing demand, Dmin; the inequality allows the model to assign

more RTs than required because, in practical applications, all available staff are

typically given assignments. If our model consisted of only these two constraints,

the x variables, and a constant objective function, we would have the feasibility

version of the multi-period assignment problem with the distinction that some tasks

require multiple agents. Without assignment costs, or any constraints that span

multiple periods, we could simply take a single-period solution and repeat it for all

periods t = 1, . . . , T . The remaining constraints, while making the problem more

compelling and more applicable, clearly prevent this approach.

Constraints (2.4) through (2.6) deal with minimum and maximum durations of

work sequences. The minimum duration concept is motivated by two aspects of RT

work: 1) Most task areas require a short reorientation period to allow RTs to refresh

their knowledge and to learn about new technology or recent changes; and 2) RTs

report a desire to not move areas too frequently because they find it disruptive. The

maximum duration concept is motivated similarly: 1) Some task areas can lead to

repetitive stress injuries; and 2) RTs report a desire to not work in one area for

too long in order to more easily gain exposure to other areas and to increase job

satisfaction. The minimum and maximum sequence lengths for an area j are given

by the constants Smin(j) and Smax(j), respectively.

Minimum durations are described by the first two of these constraints: equation

(2.4) forces y to equal one at the beginning of a sequence; equation (2.5) forces

all x variables in a sequence to equal one, which means that if an RT begins a

sequence, he or she must be assigned to that area for the minimum duration of that

sequence. In a model that includes just the core multi-period assignment problem

as well as the minimum duration constraints, it is still possible to find a solution

for the first period and then repeat it for all periods. However, maximum durations

make such an approach impossible. Additionally, in practice, maternity leaves and

other departures by RTs will ensure that the single-period solution cannot simply

be repeated.

Unlike our approach to modelling minimum durations, we have chosen to model

maximum durations as a soft constraint—a restriction that can be violated at a
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cost. The costs of violating soft constraints are adjustable to reflect the relative

importance of the various soft constraints and are included in the GP objective

function. Constraint (2.6) specifies that for a given RT i and area j, every possible

continuous block of periods one period longer than the maximum duration must

have at least one period in which the appropriate x variable equals zero, or else a

violation occurs and is penalized via v(1) in (2.1).

For many applications, the multi-period assignment problem with minimum and

maximum durations may be sufficient. In radiotherapy, however, the acquisition of

skills is a key part of the staff planning process. Without tracking experience, the

model is likely not sufficiently realistic to be of use in an application.

2.2 Experience and Redundancy

The most interesting component of the basic model is the experience requirement.

To our knowledge, our model is the first workforce planning model to include both

duration and experience requirements. In practice at the Vancouver Centre, RTs

will typically receive close to five years of experience in the treatment area, and then

subsequently in simpler planning areas, before being assigned to the most complex

planning area.

2.2.1 Experience Constraints

The z variables and related constraints are only defined for areas k and j where

experience in k is required for j. Figure 2.1 shows the experience precedence

relationship for the BCCA application.

Figure 2.1: Experience precedence requirements (does not show times required).

The experience constraints work as follows: Constraint (2.7) forces z to equal
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zero when the RT does not have the required experience; constraint (2.8) only allows

assignment of RTs to areas when the necessary experience exists. These constraints

depend on Est, the starting experience (at time t = 0) for each RT i in each area k,

and Ereq, the number of periods of experience required in area(s) k to work in area j.

Adding so many binary variables to our model may seem imprudent. In fact,

a more concise formulation of the experience requirement uses continuous (non-

negative) variables to track the number of periods of experience each RT has in each

area, and with some minor rearranging, these continuous variables can be folded into

the formulation to eliminate them. However, not including the binary z variables

causes problems when we add the redundancy constraint. (Please see Appendix A

for more discussion on the alternate formulation of the experience requirements).

2.2.2 Redundancy Constraints

Creating a workforce plan for the next two to three years necessitates flexibility. In

practice, it is impossible to adhere to a plan no matter how good it is; RTs take

leaves, gain experience at different rates, or end up needing to be reassigned for

other reasons. In order to meet our original goal of creating a plan that is robust

against these types of variability, we must encourage the model to create plans that

are robust against unforeseen circumstances. In practice we find that maternity

leaves and early retirements cause the most serious planning problems, but we have

nevertheless chosen a broad approach that can handle other types of uncertainty as

well.

When RTs take unanticipated leaves, the department must move other RTs into

the vacant areas. To retain RTs with experience who are able to fill in these vacan-

cies, the model must encourage redundancy in all of the more complex areas. We

achieve this redundancy by adding a redundancy constraint (2.9) to the formulation.

This soft constraint uses the v(2) variables to track redundancy violations, thereby

encouraging the model to find solutions in which the number of RTs with experience

in any particular area is a factor, f ≥ 1, times the staffing demand requirement Dmin.

Finding the best value for f is investigated through simulation in §3.2.
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2.2.3 Objective Function

The model objective (2.1) is to obtain the smallest combined violation of the max-

imum duration constraint and the redundancy constraint. We use coefficients C(1)

and C(2) to weight the two different types of violations captured by v(1) and v(2)

and then minimize this weighted sum. C(1) and C(2) are set using trial and error

(actually, one can be standardized to 1.0 while the other is changed relative to it);

there are no data that suggest a formal way to calculate relative costs of the two

different types of violations. In practice, we find the solutions are not very sensitive

to these two weights.

Two techniques we have chosen not to employ deserve mention: Robust optimiza-

tion and stochastic programming. Robust optimization finds the optimal solution

for bounded (and often worst-case) inputs. Because employee leaves involve binary

values—either an employee is on leave or she isn’t—it is difficult to create inputs

for a robust optimization model without getting extremely conservative results. Lin

et al. [67] demonstrate the use of robust optimization in a scheduling context, but

they only examine variability in continuous inputs: Task durations, market demand,

and material prices. Stochastic programming relies on probability distributions and

would be more fitting to our model, however, given that our MIP is already quite

large, turning it into a stochastic model would yield excessive solution times. For

instance, Punnakitikashem et al. [88] solve a stochastic nurse assignment model in

30 minutes (not to optimality) for a much smaller instance than we require that

assigns two to four nurses to roughly twenty patients over eight one-hour periods.

Denton et al. [38] compare robust optimization, stochastic programming, and a

heuristic approach in a surgery block scheduling model, but they also only introduce

variability into continuous inputs.
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Chapter 3

Workforce Planning Application

and Simulation

3.1 BCCA Application

Prior to implementing our model at the Vancouver Centre of the BCCA, the manager

of the RT workforce created daily schedules for the upcoming 30 days using a simple

Excel spreadsheet but did almost no longer-term planning. This manager, whose

title is “chief RT”, is responsible for scheduling and planning. Using a two- to three-

year time horizon in our model, he can create staff plans for approximately 90 RTs

working in more than a dozen areas. The planning process consists of creating a new

plan for the upcoming two calendar years every November. Additionally, the plan

can be rebalanced every May for July through December. Each plan incorporates

the first several quarters from the previous plan with little or no changes while

making substantial changes further out.

One motivation is clearly to enable the chief RT to create better plans in less

time. Another motivating factor came from the RT staff; in 2007, RTs throughout

B.C. engaged in a visioning exercise—including a survey exploring job satisfaction—

to determine strategic directions for the RT group. One of the findings was that RTs

desired more visibility into the department workings and more involvement in their

own career path development. The human resources department commissioned each

centre’s chief RT to implement processes to address these goals. To support this

effort, and recognizing that certain RT skills take several years to acquire, we have

created a quarterly planning model that spans two to three years in order to deliver

a feasible one-year plan that abides by the longer-term learning constraints.

Building upon the model described in Chapter 2, we now present the system

that has been implemented at the Vancouver Centre of the BCCA. This system

includes additional hard and soft constraints, a more complex objective function,

and perhaps most importantly, a stand-alone application to simplify use. We have
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strived to describe the basic model so that it will be generally applicable across a

wide range of industries and situations, however, we also recognize that adjustments

and additions, such as those described in this section, are necessary to adapt our

model to a real-world situation.

3.1.1 Extensions

Several extensions were helpful in implementing our model. An initial position con-

straint allows us to anchor the beginning of the time horizon to current assignments.

The initial position denotes the area to which each RT is assigned at the start of

the planning horizon (or, in a less formal sense, it is the area in which each RT has

been most involved recently). This constraint assigns each RT to this area for an

initial period, t = 0, so that the model can take advantage of that assignment for

minimum durations.

Because the model doesn’t account for personnel issues (e.g., personalities that

do not work well together), different learning styles, or a variety of other realistic

impediments to creating viable staff plans, we have added a forced-assignment

feature. The application allows management to specify certain assignments that

must be achieved. A soft constraint enforces these assignments with a fairly high

penalty such that the model will essentially obey all forced assignments unless they

would lead to infeasibility. Along similar lines, the application allows the user to

easily block RTs from certain areas during some or all periods.

The Vancouver Centre uses a pool of more than a dozen “casual” RTs who are

brought in on a part-time basis to perform tasks, such as treatment, that require

less experience. We include a soft constraint to discourage using this pool of casuals

and a hard constraint to prohibit them from working in certain higher-skilled areas.

Because these casuals are included in daily scheduling, it makes sense to allow

casuals to be assigned to entry-level areas in our staff plan. Yet if too much reliance

were placed on them, the permanent staff members might not be able to build the

experience necessary for the more difficult areas.

Additional extensions include a soft constraint that encourages all RTs to work

at least one quarter in the treatment area each year and a penalty on exceeding

the staffing coverage for certain areas. The former constraint achieves plans with a

better balance between hands-on treatment experience and some of the more difficult

planning and imaging areas; the latter ensures that extra staff—above the demand
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requirements—are allocated to the areas in which the chief RT feels they would be

most useful.

Changes to the basic model to incorporate part-time RTs are included in con-

straints (2.3), (2.7), and (2.9). 0 < P (i) < 1 is an input that specifies the proportion

of time each RT works. For example, an RT working 0.75 time would only contribute

three-quarters as much to the minimum staffing demand requirements and would

attain experience more slowly.

3.1.2 Two Objective Functions

The BCCA application includes two different objective functions. The first, which

finds an initial plan, is a typical GP objective that seeks to violate the soft constraints

as little as possible while also aiming for redundancy. The penalties for violating

the various soft constraints can be tweaked to change their importance, as can the

penalty for violating the robustness constraint.

The second objective function is used to “adjust” a plan rather than to create a

new one; it induces a solution as close to the previous one as possible:

min C(a)∑
i,j,t

[xi,j,t +X(i, j, t) − 2xi,j,tX(i, j, t)] (3.1)

The deviations (over and under) from the previous plan, X(i, j, t), are given by

(1 −X(i, j, t))xi,j,t and X(i, j, t)(1 − xi,j,t). The sum of these deviations is:

∑
i,j,t

[(1 −X(i, j, t))xi,j,t +X(i, j, t)(1 − xi,j,t)] (3.2)

which can be simplified to yield the objective function in equation (3.1).

In practice, this simple function is extremely useful to the chief RT because he

tends to make minor changes to the inputs (for instance, to force-assign a particular

RT for one or two quarters) and then rerun the model. Without this feature, a new

solution would be optimal yet would not resemble the previous solution, causing

major disruptions to the staff planning process by drastically changing the planned

work paths that may have already been discussed with staff members. In this

situation, the chief RT prefers a slightly less-than-optimal solution that only includes

a few modifications to accommodate the changes. This idea of iterating between a

mathematical objective function and user inputs has been introduced previously—
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3.1. BCCA Application

see Cohn et al. [32] for a healthcare shift scheduling application—but our approach

with two different GP objective functions appears to be new to healthcare.

Appendix B presents the full BCCA model.

3.1.3 The Application

The BCCA RT staff planning application includes not just the MIP model but also

the interface and the system infrastructure on which everything runs. This tool

was originally created as an Excel prototype for the Vancouver Centre. Since then,

other members of our team, The CIHR Team in Operations Research for Improved

Cancer Care, have created the stand-alone application from the original prototype.

The main user of the application is the chief RT, working with several of the RT

resource therapists—those responsible for helping to create the daily schedules and

for providing input into the longer-term plans.

The workforce planning tool is designed to be simple and informative. It contains

input tables plus a dashboard that allows the user to run the model, save scenarios,

and examine the resulting plans. Other windows display solution reports. Behind

the scenes, the application calls the GAMS model to solve the MIP.

Figure 3.1 is a screen shot of the first few rows of the workforce plan generated

by the application. The different areas show up as different colours (shown here in

grayscale), allowing a user to quickly glimpse the entirety of the schedule without

reading each cell. The names of the individual RTs have been blurred.

Figure 3.1: Sample workforce plan (first few rows).
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3.2 Simulation

The purpose of performing simulation is to investigate how the redundancy factor

impacts robustness under various leave indexes (where a higher index results in

higher likelihoods of RTs going on leave) and workforce sizes. In other words, we

use it to test the impact of uncertainty on the quality of staff plans, where the

uncertainty arises from not knowing which staff members will go on leave and when

they decide to do so.

The redundancy constraint described in §2.2 uses a factor of f = 2 to encourage

robustness in the BCCA application; we found that in our model this parameter

value returns solutions that our users judge to have an appropriate level of re-

dundancy. However, we have also sought to determine if there is a value for the

parameter f that provides more robustness without negative consequences. Using

simulation to iteratively generate employee leaves and re-solve the model, we have

tested several parameter values under different settings. Specifically, we evaluate the

extent of understaffing for three levels of redundancy as we also vary the employee

leave rate and the RT staff size so that our results can be generalized to other

situations.

3.2.1 Simulation Approach and Validation

In practice, the workforce planning application is used to reshuffle plans periodically

when leaves are realized. We employ a similar approach in the simulation that

combines random number generation and many replications with re-solving of the

MIP model, using the second objective function described in §3.1.2. (For a brief

overview of simulation, see §1.3).

The approach is this: A workforce plan is created with the desired level of

redundancy; some (or none) of the RTs then randomly begin leaves in period 1

(for simplicity, all leaves last for four periods unless a particular RT is randomly

assigned a leave while already on leave, in which case it will continue for four more

periods from that point); the plan is re-solved using the “adjust” objective function

to minimize disruptions to the staff. These last two steps—generating leaves and re-

solving the plan—are repeated until eight periods have passed. In each period, the

horizon is rolled forward one period so that eight-period plans are always generated.

In this way, the redundancy constraint is evaluated for two years’ worth of plans.
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The simulation model may seem difficult to validate, on the one hand, because

there are no workforce plans to compare this system against (there was no system in

place for staff planning prior to implementing this one). On the other hand, the only

aspect of this situation being “simulated” is staff leaves. The rest of the simulation

approach involves solving the MIP and rolling the time horizon forward. Therefore

this generation of staff leaves is all that requires validation.

Unfortunately we do not have access to historical staff leave data. What we do

have is an anecdotal description of the pattern of leaves. We have been told that,

on average, four RTs are on leave at any one time. And that leaves typically last

one year. We have also been shown examples of leaves that lasted longer than one

year. Our simulation varies the leave index such that an average of four concurrent

leaves in a pool of 80 – 90 RTs corresponds to a value toward the lower end of the

range tested. In this way we cover the likely amount of staff leaves but also test

a lower level and a much higher level of staff leaves. Our simulation removes staff

for leaves of four quarters. In this way it corresponds to the typical leave length

reported to us. Yet occasionally our simulation model randomly chooses to send

an already-on-leave RT on leave for an additional four quarters, thereby capturing

the occasionally longer leaves reported to us. Although we are not able to validate

the entire simulation framework by comparing results to actual data, we have shown

that the random elements of this framework compare accurately to anecdotal reports

from the workforce.

3.2.2 Experimental Design

In order to evaluate different parameter values for the redundancy constraint we have

designed a full factorial experiment with three factors (see [61] for information on

experimental design). The quantity f takes on the values 1, 2, or 3, corresponding to

no redundancy, some redundancy, and considerable redundancy, respectively. At the

same time we vary the leave index, li, and the size of the RT pool, rt. The leave index

can take on values from 0.25 to 2.0 in increments of 0.25; in the implementation we

have chosen a leave index of 1.0 corresponds roughly to one out of ten RTs beginning

a leave every quarter. The RT pool consists of 10, 20, or 30 staff members. Table

3.1 shows the factors and levels for the experiment.

The outcome of each replication can be summarized as two different means:

1) The proportion of time that a simulation replication results in understaffing; and
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Table 3.1: Design of experiment for BCCA simulation.
Factor Levels
li 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00
f 1, 2, 3
rt 10, 20, 30

2) the number of person-periods of understaffing. The first is a summary of a binary

outcome—either there is some understaffing or there is no understaffing. The second

is a count—the sum of understaffing (in RTs) across all periods. Both means have

practical uses and are included herein.

The experiment consists of all 72 combinations of levels from the three factors,

and we simulate each combination with 500 replications. Preliminary trials with 100,

200, 500, and 1000 replications all provided results suitable for analysis, however

with only 100 and 200 replications some of the plots of the aggregated results were

jagged. We chose 500 because it was a large enough number of replications to provide

smoother results, that is, to get a monotonically increasing/decreasing response as

any one factor was increased.

3.2.3 Statistical Analysis

Plots from the simulation, displayed in §3.3, appear to show clear results. With the

volume of replications, and given that there are clear outcomes we wish to link to

the factors in our experiment, regression is the logical framework within which to

perform hypothesis testing. These analyses, presented in the next section, were all

conducted using R.

The predictor variables are the three factors from the experiment: The robust-

ness factor f , the leave index li, and the size of the RT pool rt. The response

variable encodes the extent of understaffing, once again either as a binary outcome

or as a count. The binary outcome fits into a logistic regression paradigm while the

count fits with Poisson regression. Both approaches are presented.

This choice of logistic and Poisson models for this data is appropriate and also

necessary; if one attempted to use multiple regression models with binary or non-

negative (count) explanatory variables the results would be based on the wrong

assumptions and could therefore exhibit incorrect inferences (e.g., incorrect p-values)

or nonsensical predictions (e.g., a probability of understaffing greater than one or a
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count less than zero). (See [43, 71], or any statistics reference on generalized linear

models, for more information.)

The factor levels are all quantitative. However, in the regression models it

simplifies analyses and allows for better fits to treat some of these quantitative

inputs as categorical variables. The factor f , taking on the values 1, 2, or 3, may be

(and in fact is) highly nonlinear in its effect on the response variables. We therefore

create dummy variables for f = 2 and f = 3 denoted f2 and f3, respectively. The rt

factor, taking on the values 10, 20, or 30, is nonlinear (but not dramatically nonlinear

like f). Arguments can be made for treating it as a quantitative variable requiring

a second-order term or as a categorical variable; we have opted for the latter to

simplify interpretation of the coefficients for rt and any interaction terms involving

this variable. The dummy variables for rt = 20 and rt = 30 are rt20 and rt30,

respectively. The li factor is also somewhat non-linear in its effect on the response

variables, but we nevertheless represent it quantitatively. If we were concerned with

precision, the model would include li terms up to at least the fourth-order (all are

very significant), however, for the purpose of drawing conclusions about relationships

among the factors and the direction of those relationships, the first-order li term is

sufficient.

In the logistic regression model we regress the simulation inputs on the binary

response variable, y, which equals 1 if there is any understaffing during the model’s

horizon and 0 otherwise. The regression equation is shown below in terms of p, the

proportion of replications with understaffing, and does not explicitly include the

interaction terms for simplicity:

ln( p

1 − p
) = β0 + β1li + β2f2 + β3f3 + β4rt20 + β5rt30 + interaction terms (3.3)

In the Poisson regression model the simplest approach would be to regress the

simulation inputs on the count of understaffing, y (measured in person-periods).

However, the amount of understaffing should increase as the RT staff size increases.

In fact, if there is no effect, then the amount of understaffing should increase

proportionally with the staff size. We therefore include the rate, rather than the

count, of understaffing. Rate equals count divided by exposure, where exposure is

the size of the staff pool, rt. The Poisson regression model, shown with only the
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first-order terms, is written thus:

log ( y
rt

) = β0 + β1li + β2f2 + β3f3 + β4rt20 + β5rt30 + interaction terms (3.4)

We rewrite the model so that the response variable y is separate from the rt

term, with the latter being treated as an offset—a separate term with the coefficient

fixed at 1:

log(y) − log(rt) = β0 + β1li + β2f2 + β3f3 + β4rt20 + β5rt30 + interaction terms

(3.5)

The following hypotheses will be used to investigate the effects of the three

factors in both models; “understaffing” refers to the probability of understaffing in

the logistic regression model and to the rate of understaffing in the Poisson regression

model:

1. H0: β1 = 0. Understaffing is not affected by the leave index.

HA: β1 > 0. Understaffing increases as the leave index increases.

2. H0: β2 = β3 = 0. Understaffing is not affected by the level of robustness.

HA: At least one of β2, β3 < 0. Understaffing decreases when robustness is
introduced.

3. H0: β4 = β5 = 0. Understaffing is not affected by the RT pool size.

HA: At least one of β4, β5 < 0. Understaffing decreases with the RT pool size.

4. H0: βs for the li and f interaction terms = 0. The level of robustness affects
understaffing comparably, regardless of the leave index.

HA: At least one of these βs ≠ 0. As the leave index varies, changes in the
level of robustness affect understaffing differently (and vice versa).

5. H0: βs for the li and rt interaction terms = 0. The RT pool size affects
understaffing comparably, regardless of the leave index.

HA: At least one of these βs ≠ 0. As the leave index varies, changes in the RT
pool size affect understaffing differently (and vice versa).

6. H0: βs for the f and rt interaction terms = 0. The RT pool size affects un-
derstaffing comparably, regardless of the robustness level.
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3.3. Results

HA: At least one of these βs ≠ 0. As the robustness level varies, changes in
the RT pool size affect understaffing differently (and vice versa).

The simulation results and the analysis of these hypotheses are discussed below.

3.3 Results

The workforce planning application (including earlier iterations) was used for three

consecutive years to create RT workforce plans at the BCCA. (The chief RT is

experimenting with a combined scheduling/planning approach during the current

planning cycle). Anecdotal reports are very favourable both in terms of the quality

of plans created and the time saved by using this tool. These plans tend to move

RTs to different areas more frequently than was previously accomplished, which

is generally appreciated by the workforce. Additionally, they achieve a level of

robustness that has enabled the department to easily deal with variability thus far.

The solution time for a two-year plan to 1% optimality is one to two minutes,

running on a 2.2 GHz dual core CPU with ample RAM (solution times on a

multi-processor server are not drastically faster). The model contains over 100,000

constraints, 50,000 variables, and 400,000 non-zero entries. Almost 80% of the

variables are binary. Partially due to some of the practicalities of the application

that allow more detailed specification of which RTs can work in what areas at

what times, the pre-solve process is able to reduce the problem to around 15,000

constraints and 10,000 variables.

To quantitatively evaluate the workforce plans and the appropriate level of

robustness we now turn to simulation and regression analyses.

3.3.1 Simulation Results

Figure 3.2 expresses the results of the simulation as a binary outcome. Observe

that the proportion of simulation replications involving understaffing increases as

the leave index increases. We include results for all three redundancy levels when

the RT pool is fixed at 10 staff members; we also include all three RT pool sizes

when the redundancy is fixed at f = 1 (no redundancy).

As mentioned, in the Poisson regression we divide the count by the RT pool size

in order to get a rate of understaffing. For instance, a replication resulting in a total
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Figure 3.2: Simulation results, proportion of understaffing, for rt = 10 and for f = 1.

shortage of 20 person-periods with rt = 10 would have an understaffing rate equal

to 2. The average rates from all replications are shown in Figure 3.3; as before we

first fix rt = 10 and then fix f = 1. Some of the differences appear very small when

we look at the rates so we also plot the decrease in rate compared with a baseline

of f = 1. Figure 3.4 shows that an increase in redundancy from f = 1 to f = 2

corresponds to a rate difference of approximately 0.03. By multiplying this rate by

the pool size of 10 to get a count, we see approximately one-third of a person-period

less understaffing. In plain terms, the added redundancy leads to the very practical

benefit of one less person of understaffing for about a month.

Figure 3.3: Simulation results, rate of understaffing, for rt = 10 and for f = 1.
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Figure 3.4: Simulation results, difference in rate of understaffing compared to f = 1,
for rt = 10 and for f = 2.

3.3.2 Statistical Results

Based on these plots, we expect to find that the level of robustness has a statistically

significant effect on the extent of understaffing (hypothesis 2. HA). In fact, both

regression models lead to very clear rejection of the null hypotheses for tests 1

through 5, with barely significant conclusions for some of the terms in test 6.

For the sake of parsimony we remove the coefficients associated with test 6 from

both regression models. Table 3.2 shows the output for the logistic regression model

and table 3.3 shows the output for the Poisson regression model. All regression

analyses were performed in R.

Table 3.2: Logistic regression results.
Variable Estimate Std. Error
Intercept -2.4744*** 0.0820
li 3.2092*** 0.0833
f2 -0.7628*** 0.1042
f3 -0.9636*** 0.1063
rt20 -1.1580*** 0.0995
rt30 -2.2589*** 0.1168
li ∶ f2 0.2481* 0.1036
li ∶ f3 0.3326** 0.1044
li ∶ rt20 1.0886*** 0.0968
li ∶ rt30 2.1576*** 0.1148
*p < 0.05, **p < 0.01, ***p < 0.001.
Based on z-test.

Table 3.3: Poisson regression results.
Variable Estimate Std. Error
Intercept -3.2035*** 0.0442
li 1.6854*** 0.0262
f2 -0.1984*** 0.0485
f3 -0.3290*** 0.0496
rt20 -1.2293*** 0.0510
rt30 -1.6365*** 0.0486
li ∶ f2 0.1002*** 0.0281
li ∶ f3 0.1492*** 0.0287
li ∶ rt20 0.4835*** 0.0300
li ∶ rt30 0.6785*** 0.0285
***p < 0.001.

Based on t-test.
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The coefficients from both models are statistically significant. We use the signs

of these coefficients to discuss the direction of the relationships. First we note that

the signs are consistent between the logistic and Poisson models: In both cases, an

increase in the leave index li results in an increase in the extent of understaffing;

as redundancy f increases, or as staff size rt increases, the extent of understaffing

decreases; finally, the interaction terms show that an increase in li coupled with

either the addition of redundancy or an increase in staff size results in an increase

in understaffing (i.e., an increase in li overpowers any additional redundancy or any

increase in staff size).

The coefficients from the logistic regression equation can be used to determine

odds ratios. For instance, the coefficient for li is 3.20918. Therefore the change

in odds associated with a unit increase in li is e3.20918 = 24.76. In other words,

increasing the leave index by 1.0 increases the odds of encountering understaffing

at some time during the two year horizon by almost 25 times. Redundancy is also

interesting to examine; increasing the redundancy factor from f = 1 (baseline) to

f = 2 corresponds to a change in odds of e−0.76281 = 0.466 and increasing to f = 3

gives us e−0.96355 = 0.382. Put simply, adding some redundancy decreases the odds

of encountering understaffing by about 53% while adding considerable redundancy

decreases the odds by about 62% (or by a further 9% when taken cumulatively).

The other coefficients can be interpreted similarly.

To interpret the coefficients from the Poisson regression equation we use incidence

rate ratios. The coefficient for li is 1.68537. The change in rate is then e1.68537 = 5.39,

meaning that increasing the leave index by 1.0 increases the rate of understaffing

by over five times. Increasing f from 1 to 2 decreases the rate of understaffing by

about 18% while increasing f from 1 to 3 decreases this rate by about 28%. Again,

the other coefficients can be interpreted likewise.

To visualize this output we graph the regression lines transformed by the ap-

propriate link function in order to view plots that correspond to the simulation

output. (Because these plots are so similar to the simulation output, we graph them

separately rather than attempt to display too many lines virtually on top of each

other.) Figure 3.5 shows the results of the logistic regression. As above, we include

results for the three redundancy levels when rt = 10 and also for the three RT pool

sizes when f = 1. The latter plot, when f = 1, shows how the interaction terms mimic

the simulation output whereby the probability of understaffing actually increases as
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rt increases, but only if li is greater than about 1.2.

Figure 3.5: Regression results, proportion of understaffing, for rt = 10 and for f = 1.

The Poisson regression results are shown in figures 3.6 and 3.7, with the latter

displaying the decrease in exposure compared with a baseline of f = 1. It is

noted that transforming the regression equation by the inverse of the link function

introduces bias because the averages determined in the regression model have been

manipulated non-linearly. Nevertheless, this bias is very small and the plots are

much more informative in this form.

Figure 3.6: Regression results, rate of understaffing, for rt = 10 and for f = 1.

The conclusions for this research are presented in Chapter 6. The following two

chapters address the DTES research.
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Figure 3.7: Regression results, difference in rate of understaffing compared to f = 1,
for rt = 10 and for f = 2.
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Chapter 4

DTES Queueing Model

As described in the Introduction (Chapter 1), we explore two strategic planning

topics in this dissertation. This chapter and the following one address the second

topic: strategic planning in Vancouver’s DTES.

We model services for CCD clients in the DTES with a queueing network. Clients

from a finite population arrive at a service, spend some amount of time there, and

then transition to another service or back into the Non-treatment Population

according to routing probabilities. From the perspective of an individual client,

paths through this network tend to be cyclical; a client may arrive at the emergency

department (ED), transition to Inpatient care, transition to a long term treatment

program, spend time in the Non-treatment Population, and eventually end up

back at the ED.

We develop an approximation method for analyzing a closed queueing network.

We describe the approximation ratio introduced by this approximation for a sim-

ple example—a network with one station and a finite population. We then use

simulation to investigate the quality of the approximation for the full network.

For a partial overview of the fundamentals of queueing theory and of queueing

networks please see §1.4.

4.1 A Queueing Network Model of DTES

Services

There are hundreds of health, housing, social, and criminal justice organization in

the DTES. We limit our model to the main health and criminal justice services—

those that are most costly and/or most likely to affect health outcomes. These

are: Police, Criminal Justice, ED, Acute Care, Inpatient, methadone

maintenance treatment (MMT), case management (CM), assertive community treat-

ment (ACT), and Family Practice. We also include a generic entry point to the
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system called Other Entry. As mentioned, clients that are in the population

but are not in any of these services make up the Non-treatment Population.

(In future versions of our model we will include housing and social services, and

also revisit the list of included services.) We refer to each of these services using

the queueing term “station”, noting that the “Police station” is the entire service

provided by the Vancouver Police Department and not just the physical building.

4.1.1 The Queueing Model

The DTES queueing model is shown in Figure 4.1. Stations with short-term stays

(hours or days) are drawn with ovals; medium term stations (weeks or months) with

boxes, and long term stations (months or years) with arrow-boxes (to emphasize the

ongoing aspect of these treatments). Capacitated stations have a double outline.

Arrows denote paths with non-zero routing probabilities; dashed arrows show paths

emanating from or returning to the Non-treatment Population.

We assume the clients in the DTES comprise a homogeneous population even

though we suspect we could group clients demographically or otherwise and ob-

serve different arrival rates, routing probabilities, and service rates. In subsequent

research we will address this issue by investigating and including sub-populations

with different parameter values. Some results, particularly around services tailored

toward specific sub-populations, such as ACT, should be interpreted cautiously

given this homogeneity assumption.

Another assumption is that an individual client is in exactly one station (in-

cluding Non-treatment Population) at a time. In order to achieve reasonable

results given this simplification we assume that clients receiving multiple treatments

are represented in the model as receiving their primary treatment. In this way we

ensure no double counting occurs. But we also likely under-estimate MMT and

Family Practice usage. In the future we will investigate better ways to address

this issue.

4.1.2 Overview of Approximation Approach

Our model of DTES services is based on a closed queueing network which we

approximate with an open network using the FPM constraint (the fixed population

mean approach was introduced in §1.4.8). This representation reflects the idea that
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Figure 4.1: Queueing model of DTES services. Short LoS: oval; medium LoS:
box; long LoS: arrow-box; capacitated station: double outline; route: arrow; route
to/from Non-treatment Population: dashed arrow.
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the population is not completely closed—clients do occasionally enter or leave—but

that the population size is roughly constant. Furthermore we assume all M/M/∞
stations so that the number of clients in each station can be computed as a linear

function, Lj = λj/µj. These functions (one for each station j ∈ J) ensure the FPM

constraint is linear, therefore analyzing the system entails solving a system of linear

equations.

A closed network would include a station for the Non-treatment Popula-

tion. In our FPM approximation, we remove this station so that it becomes the

“external” part of the system. This station is the logical choice for several reasons:

1) All services are represented in the model (if we didn’t remove the non-treatment

population we would have to remove a service-providing station, and it would be

more difficult to explain why a station was missing to non-OR audiences); 2) the
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input parameters support this arrangement in their given form (we have service rates

for all stations, and external arrival rates from the non-treatment population)2; and

3) we can calculate bounds in §4.2 on the throughput of this removed station, and

it makes more sense to discuss the rate of clients entering or leaving the Non-

treatment Population than entering/leaving any other single station; and 4) if

we wish to use a semi-open network (an approach that has characteristics of both

closed and open networks) for a future version of this model in order to capture a

changing non-treatment population, this arrangement is the most appropriate.

For stations that are capacitated, we propose a new approach for approximating

these capacities using linear equalities and inequalities; each capacitated station is

replaced by three stations, one of which has a bounded aggregate arrival rate. We

believe that this combination of the FPM approach, infinite-server stations, and

approximated-capacity stations is a new contribution to the literature on closed

queueing networks that potentially simplifies the analysis. We refer to this approx-

imate model as a linearized closed queueing network (LCQN).

The following steps outline the transformation of a closed queueing network to

the corresponding LCQN:

0. Start with a closed queueing network.

1. Apply the FPM approximation: Remove one station and replace it with an

“external population”.

2. Represent all remaining stations as M/M/∞ queues, and identify those that

are capacitated.

3. Split each of these capacitated stations into three stations using the approxi-

mation approach below (§4.1.4).

Figure 4.2 illustrates the progression through these steps.

4.1.3 Applying FPM Approach with M/M/∞ Stations

Clients from the (external) Non-treatment Population arrive at station j

according to the external per capita arrival rates, zj ≥ 0 ∀j with at least one

2We could transform the input parameters to enable removal of any station, but because such
a step can be skipped it simplifies the explanation of the model.
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Figure 4.2: Converting a closed queueing network to an LCQN: Closed network
(top left); apply FPM (top right), use M/M/∞ stations but identify stations to be
capacitated (bottom left); and split capacitated stations (bottom right). The M/0/∞
queue is defined in §4.1.4.
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zj > 0. (Unlike in an open Jackson network, the ζj’s are now calculated based

on the zj’s.) Because all stations are infinite-server stations, service always begins

immediately with mean service rate µj. The interarrival times and the service rates

are assumed to be exponentially distributed, as per the simple models discussed

in §1.4. Upon completion of service (where completion includes departure for other

reasons besides completing treatment), clients transition to another service according

to the routing probabilities pij. With probability 1−∑i pij a client transitions back to

the Non-treatment Population. We define L0 as the unknown size of the Non-

treatment Population so that we can easily express the total population size

as N = ∑Ji=0Li. The uncapacitated closed network represented as an open network,

including the FPM constraints (equations (4.2) and (4.3)), calculation of the non-
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treatment population size, and calculation of the external rates ζj is represented

with these linear equalities:

λj = ζj +∑
i≠j
pijλi, ∀j (4.1)

zjL0 = ζj, ∀j (4.2)

L0 = N −∑
i

λi
µi

(4.3)

This model is based on Whitt [119]. The only difference is that we include

only M/M/∞ stations in the open network version, so that the entire system of

equations is linear. Examples in the literature that use the FPM approach tend

to include single or finite server stations, however, doing so makes the calculation

of the Lj, j = 1,2, . . . , J terms highly non-linear, and limits the problem size and

solution method. (In the general case, equation (4.3) is written L0 = N − ∑iLi,
where the average number of clients at each station is given by a nonlinear function

Li = fi(λi, µi, si,N), and a fixed point solution would likely be achievable.3)

With an eye to using an LP to solve the system of equations, we define pii = −1

and rearrange the above system so that it is clear that λj, L0, and ζj (j = 1, . . . , J)

are the decision variables:

∑
i

pijλi + ζj = 0, ∀j (4.4)

zjL0 − ζj = 0, ∀j (4.5)

∑
i

λi
µi

+L0 = N (4.6)

Theorem 4.1. An open Jackson network with M/M/∞ stations and the FPM

constraints has a unique solution with the following property:

λj > 0 ∀j, L0 > 0, ζj ≥ 0 ∀j, and at least one ζj > 0. (P1)

Proof. We established the existence of a unique positive solution to the λ variables

when the ζj’s are nonnegative and at least one ζj > 0 (see §1.4.5). We require

zj ≥ 0 ∀j, with at least one zj > 0, therefore if L0 > 0 and if equations (4.4), (4.5),

and (4.6) have a unique solution, then that solution has property (P1).

3See §§1.4.3 & 1.4.4 for examples of functions for L.

49



4.1. A Queueing Network Model of DTES Services

We show via linear independence that equations (4.4) and (4.5) have a unique

solution by eliminating the ζ variables, yielding:

∑
i

pijλi + zjL0 = 0, ∀j (4.7)

Yet we already know this system has a unique solution, as long as L0 is strictly

positive. We next consider equation (4.6) which clearly cannot be linearly dependent

with equation (4.7) because of the positive constant, N , on the right hand side.

Thus, if L0 > 0, the system of equations including the FPM constraints has a unique

solution.

It remains to be shown that L0 is strictly positive. We rewrite the equations in

matrix form and solve for L0:

L0 = N − ( 1

µ
)
T

λ (4.8)

λ = (I −P T )−1
ζ = (I −P T )−1

zL0 (4.9)

L0 = N − ( 1

µ
)
T

(I −P T )−1
zL0 (4.10)

L0 =
N

1 + ( 1
µ)

T
(I −P T )−1

z
(4.11)

We have already established that (I −P T )−1
z is a strictly positive vector, for

any nonnegative (and nonzero) vector z when we established this result for the

ζ values. The vector 1/µ is strictly positive, therefore the denominator equals 1

plus a strictly positive number. N is also strictly positive, so L0 must be strictly

positive. Furthermore, the denominator is bounded below by 1, giving a range of

0 < L0 < N .

On its own, this model is useful for studying clients flowing through a network

in which there is abundant capacity in all stations.

4.1.4 Adding Capacitated Stations—the LCQN Approach

Representing specific stations as uncapacitated, such as Police, is a reasonable

assumption. Even though a client may incur some small amount of waiting during

busy times, all clients can still proceed through service and move on to the next
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station or return to the non-treatment population. However, several stations must

be modelled with capacities: Inpatient, CM, and ACT. For other stations we can

use the M/M/∞ queue to determine the distribution of Lj, the number of clients

in that station, in order to further investigate the uncapacitated assumption.

We present what we believe is a new approach for modelling capacitated sta-

tions with a simple yet effective approximation that splits each of these stations

into several dummy stations and introduces inequalities to cap arrivals in order to

approximate the arrival rate of the corresponding finite-capacity queues.

First we introduce some new notation which will be useful for our approximation:

TheM/0/∞ queue, with Markovian arrivals, deterministic service time equal to zero,

and an unspecified positive number of servers (we denote it as ∞ servers so that

it is similar to the other stations in the network). With the LoS equal to zero,

clients simply pass right through it, so specifying the precise number of servers is

not necessary.

In this new method, each capacitated station j ∈ J
−

is split into three (a,

b, c) stations—ja for all clients who arrive at the station, jb for clients who

observe the station as full and balk (i.e., are lost and return to Non-treatment

Population), and jc for clients who continue on to receive the service. We model

the “a” and “b” stations as M/0/∞ queues, while the “c” station is an M/M/∞
queue.4

Figure 4.3 illustrates the splitting of a capacitated station (j = 3). The uncapac-

itated version is on the left and the capacitated version is on the right. Associated

constraints are shown with each network. The necessary changes to the input data

in order to accommodate this split for each such station are:

For each j ∈ J
−

:

• Replace station j with three stations, ja, jb, and jc;

• for each i, rename pij as pi,ja and rename pji as pjc,i;

• set pja,ja = −1 (like the other pii coefficients), pjb,jb = 0, and pjc,jc = 0;

• rename ζj as ζja ;

• rename zj as zja ;

• rename µj as µjc ;

• introduce λ̄j to represent the capacitated arrival rate (discussed below);

4The “b” stations could be removed from the model, however, we believe the LCQN approach
is more clearly illustrated with them present.
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Figure 4.3: Example of capacitated station 3 (left) split into three stations (right)
with maximum arrivals capped at λ̄.
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• set all other p, ζ, and z terms involving these three stations to zero5.

It is also convenient to define several other subsets of J , in addition to J
−

, the

set of capacitated stations:

J
∞
= the set of uncapacitated stations, i.e., stations that have not been split.

Ja = the set of “a” stations.

Jb = the set of “b” stations.

Jc = the set of “c” stations.

With the aim of ensuring that as few clients as possible balk (travel to the “b”

station and then immediately to the Non-treatment Population) we introduce

an objective function: min∑j∈J− λjb . This objective aims to ensure that as much

capacity as possible, at capacitated stations, is used. With the requirement that

the balking variables be non-negative, we have an LP, the solution of which is an

approximate solution to our closed queueing network. The FPM constraint is not

new; limiting all stations to M/M/∞ queues and using split stations in conjunction

with the FPM approach is, to the best of our knowledge, the primary innovation.

5Note that µja and µjb do not enter into the LP because “a” and “b” are M/0/∞ queues.
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The complete LP including the equations for split stations is:

min∑
j∈J−

λjb (4.12)

∑
i∈J /Jb

pijλi + ζj = 0, ∀j ∈ J
∞ ∪Ja (4.13)

λja − λjb − λjc = 0, ∀j ∈ J
−

(4.14)

λjc ≤ λ̄j, ∀j ∈ Jc (4.15)

zjL0 − ζj = 0, ∀j ∈ J
∞ ∪Ja (4.16)

∑
i∈J∞∪Jc

λi
µi

+ L0 = N (4.17)

λjb ≥ 0 (4.18)

Using J for the number of stations, and introducing J̄ = ∣J− ∣ ≤ J for the number

of capacitated stations and Z = ∑j 1{zj>0} ≤ J for the number of stations with

strictly positive external arrivals (and eliminating the variables ζj and constraints

(4.16) for which zj = 0), it can be seen that the full LP has J + 2J̄ +Z + 1 variables

and J + 3J̄ + Z + 1 constraints. There are J̄ nonnegativity constraints, therefore

the number of remaining constraints is the same as the number of variables. If all

stations are capacitated and have external arrivals, we have 4J + 1 variables and

5J + 1 constraints.

A result describing the solution form for the full network would be ideal; in lieu

of that we present two results—one that describes the solution form for a small

example and one that provides a result concerning the solution for any network.

Theorem 4.2 describes the form of the optimal solution for a network with a single

station and a finite calling population; Theorem 4.3 shows that the LP for any

network has an optimal solution. (Theorem 4.2 uses notation consistent with that

already introduced, except that the subscript j’s are omitted because there is only

one station.)

Theorem 4.2. The optimal solution of the LP representing a single station network

with the FPM approximation—that is, a network with a single queue and a finite

calling population—has one of the following two forms:
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Case 1: There is no balking and the station is not at capacity (i.e., λc < λ̄). The

variable values are:

λb = 0 (4.19)

λc =
zN

1 + z
µ

< λ̄ (4.20)

λa = λc > 0 (4.21)

L0 =
Nµ

µ + z
> 0 (4.22)

ζ = zL0 > 0 (4.23)

Case 2: There is a nonnegative amount of balking and the station is at capacity

(i.e., λb ≥ 0 and λc = λ̄). The variable values are:

λb = zN − (1 + z
µ
) λ̄ ≥ 0 (4.24)

λc = λ̄ > 0 (4.25)

λa = zN − z
µ
λ̄ > 0 (4.26)

L0 = N − λ̄
µ
> 0 (4.27)

ζ = zL0 > 0 (4.28)

Proof. The LP for a single station network takes inputs λ̄, z, µ,N > 0 and is as

follows:

min λb (4.29)

− λa + ζ = 0 (4.30)

λa − λb − λc = 0 (4.31)

λc ≤ λ̄ (4.32)

zL0 − ζ = 0 (4.33)

1

µ
λc +L0 = N (4.34)

λb ≥ 0 (4.35)
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Combining (4.30) and (4.33) gives:

−λa + zL0 = 0 (4.36)

Substituting λa = λb + λc (4.31) and L0 = (N − 1
µλc) (4.34) yields:

−λb − λc + z (N − 1

µ
λc) = 0 (4.37)

Solving for λc and using (4.32) gives:

λc =
zN − λb

1 + z
µ

≤ λ̄ (4.38)

Solving for λb yields:

λb ≥ zN − (1 + z
µ
) λ̄ (4.39)

As a result of the objective function, λb = max{zN − (1 + z
µ) λ̄, 0}.

Case 1 occurs when λb = 0. Equation (4.20) follows from (4.38); equation (4.21)

follows from (4.31). Equation (4.22) comes from using the value for λc from (4.20)

in (4.34) and then simplifying, and from the fact that z, N , and µ are all strictly

positive.

Case 2 occurs when λb = zN − (1 + z
µ)λ̄. Equation (4.25) comes from using this

value for λb in (4.38) and then simplifying, while (4.26) combines λa = λb+λc = λb+λ̄
with the value for λb. Equation (4.27) follows directly from (4.34) and λc = λ̄.

This theorem shows that, for the simple example, there is either balking or

unused capacity. It is possible for there to be both (if the capacity, λ̄, is exactly

what is needed), but it is not possible for there to be unused capacity in conjunction

with no balking. A more desirable result would have been to show this situation

exists for each station in any network at the optimal solution, however, we have not

done so. Instead, we are able to show that any network has an optimal solution

(below).

Theorem 4.3. The LP for the LCQN approximation of any closed network with

the Jackson network assumptions described in §1.4.5 has an optimal solution.
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Proof. The LP has a feasible solution: Treat all stations as capacitated and take, for

instance, λjc = 0 for all j. (Any uncapacitated station can be represented, without

loss of generality, as a capacitated station with λ̄j sufficiently large.) This solution

has the following form:

λjc = 0 ∀j ∈ J
− = J (4.40)

λja = λjb = ζj = zjL0 ∀j ∈ J
− = J (4.41)

L0 = N − ∑
j∈Jc

λjc
µj

= N (4.42)

Existence of a feasible solution to the LP implies that, if the optimal objective

function value is bounded, there is an optimal solution. To show the solution is

bounded we consider the objective function: min∑j∈J− λjb . Because the λjb’s are all

nonnegative (as per the nonnegativity constraint), the optimal objective function

value is bounded below by 0.

For capacitated stations, the LP redirects all external and internal arrivals to the

“a” station (4.13), then sends all clients from this station directly to either the “b”

or the “c” station (4.14), and caps all arrivals at the “c” station with a maximum

aggregate arrival rate λ̄j (4.15).

The parameters λ̄j must allow the model to achieve an appropriately accurate

approximation of a multi-server station with sj servers. We propose a value to use

for these parameters, along with an alternate maximum aggregate arrival rate, λ̂j.

The proposed value, λ̄j, is based on the idea that the aggregate arrivals to that

station need to be capped such that the traffic intensity, ρj, is close to 1.0, as it will

be for any busy station that needs capacitating. In fact, the more servers a station

has, the closer the traffic intensity can be to 1.0, so we use a simple way to include

this asymptotic behaviour with ρj = 1−1/sj. The second proposed value, λ̂j, equates

the capacitated arrival rate to the effective arrival rate of the multi-server station we

wish to approximate. It does this by recognizing that the effective arrival rate equals

the raw arrival rate multiplied by the probability a client is not blocked. It might

seem that by matching a station’s maximum arrival rate to the effective arrival rate

of the station we wish to approximate we would achieve an exact result, however, the

distribution of (and average of) the number of clients in that queue would still differ.

Both metrics—effective arrival rate and average number of clients—are investigated
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in §4.2.2.

Parameters λ̄j and λ̂j are total arrival rates and are therefore appropriate for a

finite population (closed) network model:

1. λ̄j = ρjsjµj, with ρj = 1 − 1/sj, which gives:

λ̄j = (sj − 1)µj (4.43)

2. λ̂j = λj ⋅ (1 − P{blocking}) (4.44)

The value of λ̄j in equation (4.43) is bounded above by the theoretical arrival

limit. Equation (4.44) is based on matching the effective arrival rate, which equals

the total arrival rate times one minus the probability of blocking, which we calculate

below in §4.2.2.

4.2 Approximation Bounds and Ratios

4.2.1 FPM

Whitt [119] (§3.3) discusses bounds on the FPM approach for balanced and unbal-

anced networks. The former refers to networks in which all stations have the same

traffic utilizations; the latter refers to networks with stations having different traffic

utilizations, which is certainly the case for our model. A bound that compares

the network throughput—the rate of flow through the removed station—can be

conservatively estimated. For instance, using Whitt’s result, an unbalanced network

with single-server stations that is otherwise the same size as our model would have

an approximate throughput for the closed network that is 1.00013 times higher than

the throughput for the corresponding open network with the FPM approximation

(with the caveat that severely unbalanced networks might result in a slightly looser

bound, something we check in §5.4.2). This number comes from comparing the open

throughput, θo, with the approximate closed throughput, θcapprox, using N = 7500

clients and J = 11 stations (notation has been changed from Whitt’s for consistency

with out terminology):

θcapprox = θo(J +N)/(J +N − 1)

Our model does not have single-server stations, but the above equation can also be
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used as a bound on networks with multi- and infinite-server stations because the

single-server version results in a larger (more conservative) bound.

4.2.2 Approximate Capacitated Arrival Rate

In our model we use M/M/∞ stations (split into a, b, c) to approximate M/M/s/s
stations (stations with s servers, and clients who balk if all servers are busy).

However, rather than evaluate the quality of this approximation within the FPM

paradigm (itself an approximation), we wish to evaluate it on its own. We do so for

a system with a finite external population and only one station, which is analogous

to that considered in Theorem 4.2.

The single station analogue for an M/M/s/s station under FPM is the

M/M/s/s/N queue, which includes the finite calling population without requiring

an approximation (i.e., no FPM constraint). (See §1.4.4 for the description and

notation of the M/M/s/s/N and M/M/N/N/N queues.)

The single station analogue for the capacitated station in our approximation

is the M/M/N/N/N queue, which also incorporates the finite calling population

without the FPM approximation. Even though the capacitated station is split

into three stations, we can replace it with this single M/M/N/N/N queue which

essentially represents the “c” station with capped arrivals (assuming high traffic

intensity). Clients who do not make it to “c” simply pass through “a” and “b”

then immediately return to the finite calling population, so they can therefore be

ignored in this setting. Figure 4.4 helps explain the single station analogues for both

situations.

In the larger model we use λ̄j for the capacitated arrival rate, however, with the

single station analoque we must use a per capita arrival rate, and therefore use a

corresponding capacitated per capita arrival rate, l̄. The corresponding l for some

λ is given for any state, n, by:

ln = λn/Ln (4.45)

where Ln is the number of clients in the queue when the system is in state n.

We only consider high traffic intensities because these are the types of stations

we choose to capacitate in our model. (In fact, we are interested in traffic intensities

at, or even well above, ρ = 1, which can clearly exist when balking occurs.) Because
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Figure 4.4: Rationale for M/M/s/s/N and M/M/N/N/N comparison of single
station systems. The finite-server station with FPM is converted into an exact finite-
server station with a finite calling population (left); the capacitated split station with
FPM constraint (single station LCQN) is converted into an exact infinite-server
station with restricted arrivals λ̄ (right).
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Not relevant

this small example may not necessarily extend to a larger network, we also address

the quality of this approximation in §5.4.2 by using a simulation model to validate

the network performance.

The comparison is shown for two performance measures, effective per capita

arrival rate, le, and average queue length, L, for theM/M/s/s/N andM/M/N/N/N
systems (hereafter referred to as the (s) case and the (N) case, respectively). First

we give the measures of interest:

l
(s)
e = l (1 − P{blocking})

= l (1 − P (s)s )

= l
⎛
⎝

1 −
ls

µs
(N
s
)

∑sn=0
ln

µn
(N
n
)
⎞
⎠

(4.46)
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l
(N)
e = l (4.47)

L(s) =
s

∑
n=0

n ln

µn
(N
n
)

∑sm=0
lm

µm
(N
m
)

(4.48)

L(N) =
N

∑
n=0

n ln

µn
(N
n
)

∑Nm=0
lm

µm
(N
m
)

= Nl

l + µ
(4.49)

These measures come from the analysis of M/M/s/s/N and M/M/N/N/N queues

in §1.4.4. Equation (4.46) results from (1.22) and (1.23), equation (4.48) combines

(1.24) and (1.23), and equation (4.49) combines (1.30) and (1.29).

The approximation ratio for model throughput (where throughput only includes

arrivals that receive service) comes directly from (4.46) and (4.47):

l
(s)
e

l
(N)
e

= 1 −
ls

µs
(N
s
)

∑sn=0
ln

µn
(N
n
)

(4.50)

If an approximation is perfect, the approximation ratio will be 1.0. While it is

difficult to interpret terms involving ratios of exponents and binomial coefficients, we

can see that if s is very small then the numerator will be closer to the denominator,

and consequently the ratio will be larger. Numerical examples below explore this

further.

The approximation ratio for queue length comes from (4.48) and (4.49):

L(s)

L(N)
= l + µ
Nl

s

∑
n=0

n ln

µn
(N
n
)

∑sm=0
lm

µm
(N
m
)

(4.51)

We now turn to examples for insight.

First we discuss how λ̄ relates to l̄ (and how λ̂ relates to l̂). On average, the

number of clients outside the station, based on the effective arrival rate at the

station, λe, is given by L0 = N − λe/µ. Using the elementary result in (4.45) we

now use l̄ = λ̄/L0 = λ̄/(N − λ̄/µ) for the following comparisons (similarly for l̂ using

λ̂). (In the few cases where l̄ > l, we use l̄ = l because these situations would be

uncapacitated in the LP.)

We explore numerical examples for the approximation ratio for throughput, le,
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and for average queue length, L. These ratios are shown for a variety of s and N

values in Table 4.1 with incoming traffic intensity ρ = 1.0. To achieve this traffic

intensity, we set the per capita offered load l/µ = ρs/N . (Dividing by the total

population, N , rather than the average size of the external population, L0, makes

this offered load a conservative value.) Because the capacitated stations in our

model tend to have more incoming traffic than they can handle, we also show the

same results for ρ = 1.5 (Table 4.2) and ρ = 2.0 (Table 4.3).

Table 4.1: Approximation ratios for a multi-server station vs. infinite-server
capacitated station with incoming traffic intensity = 1.

s N l/µ l
(s)
e /l(N)e L(s)/L(N) L(s)/L(N)(l̄) L(s)/L(N)(l̂)

2 100 0.02 0.60241 0.61036 1.19679 1.00530
10 100 0.1 0.82070 0.83863 0.84710 1.00519
20 100 0.2 0.91998 0.93599 0.93599 1.00383
10 500 0.02 0.79248 0.79663 0.86779 1.00115
50 500 0.1 0.94076 0.94669 0.94669 1.00088
100 500 0.2 0.99321 0.99457 0.99457 1.00023
20 1000 0.02 0.84959 0.85259 0.87987 1.00058
100 1000 0.1 0.96973 0.97276 0.97276 1.00036
200 1000 0.2 0.99930 0.99944 0.99944 1.00002

Table 4.2: Approximation ratios for a multi-server station vs. infinite-server
capacitated station with incoming traffic intensity = 1.5.

s N l/µ l
(s)
e /l(N)e L(s)/L(N) L(s)/L(N)(l̄) L(s)/L(N)(l̂)

2 100 0.03 0.47309 0.48363 1.40863 1.00659
10 100 0.15 0.63022 0.66720 0.96695 1.00761
20 100 0.3 0.72589 0.78071 0.94823 1.00749
10 500 0.03 0.59748 0.60553 0.97982 1.00159
50 500 0.15 0.70493 0.73444 0.97751 1.00176
100 500 0.3 0.79694 0.83755 0.97617 1.00171
20 1000 0.03 0.62955 0.63696 0.97643 1.00085
100 1000 0.15 0.72050 0.74845 0.98610 1.00092
200 1000 0.3 0.81225 0.84980 0.98546 1.00090

Each of these three tables shows the ratio of the effective arrival rates, using

uncapped arrivals, under the (s) and (N) models (as stated earlier, the former is

the exact calculation and the latter is the approximation). These ratios, l
(s)
e /l(N)e ,

are clearly quite far from 1.0 for the examples with smaller s and N values. As such,
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Table 4.3: Approximation ratios for a multi-server station vs. infinite-server
capacitated station with incoming traffic intensity = 2.

s N l/µ l
(s)
e /l(N)e L(s)/L(N) L(s)/L(N)(l̄) L(s)/L(N)(l̂)

2 100 0.04 0.38700 0.39926 1.53560 1.00736
10 100 0.2 0.49870 0.54883 1.01635 1.00857
20 100 0.4 0.57367 0.65894 0.99088 1.00872
10 500 0.04 0.46900 0.47962 1.02483 1.00176
50 500 0.2 0.54063 0.58657 0.99756 1.00190
100 500 0.4 0.61181 0.68945 0.99487 1.00191
20 1000 0.04 0.48693 0.49719 1.00647 1.00092
100 1000 0.2 0.54770 0.59293 0.99820 1.00097
200 1000 0.4 0.61809 0.69447 0.99709 1.00098

the ratios of the queue lengths, L(s)/L(N), are also quite far from 1.0 for the same

examples.

With our goal of devising a good approximation for the queue length, L, we

investigate the ratio when the (N) case uses capacitated arrival rates, l̄ or l̂ (while

the (s) case continues to use the uncapped arrival rate). The ratio for queue lengths

using the first capacitated arrival rate, L(s)/L(N)(l̄), is close to 1.0 for most of the

examples, especially those with higher traffic intensities. The ratio using the second

rate, L(s)/L(N)(l̂), is very close to 1.0.

In our network model we must use total arrival rates rather than per capita

arrival rates (i.e., λ’s rather than l’s). We use the first approximation, λ̄, even though

it is less accurate than the second one. Our network model determines the aggregate

(uncapacitated) arrival rates with linear equations, and λ̄ can be calculated without

knowing the arrival rate. On the other hand, λ̂ requires knowing the aggregate

arrival rate, and furthermore, cannot be calculated linearly. Consequently we can

neither calculate it before running the model nor in the model. The only option

would be to calculate it after running the model and then rerun the model, in the

hopes of getting closer to the solution.

Regardless, these approximation ratios and the numerical examples show that,

at least for a network with a single station, our LCQN approximation is quite good

for larger values of s and N . As we will see, the parameters we use for the DTES

model do indeed include such larger values.
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4.2.3 Summary of Single Station Network Comparisons

In the previous section we compared the (s) case to the (N) case. We now discuss

how these two cases relate to the LCQN approach from §4.1.4, and specifically to the

analagous single station network LP introduced in Theorem 4.2, hereafter denoted

(LP ).
The (s) case represents this small network exactly, while the (N) case approx-

imates the capacitated station with the split station approach. Both the (s) and

(N) cases represent the finite calling population exactly. The (LP ) case is similar

to the (N) case, in that it uses the split station approach, however, it also includes

an approximation for the finite calling population in the form of the FPM approach.

We see that the average number of clients in the queue is the same for these latter

two cases, as long as we adjust for the fact that the (N) case uses a per capita arrival

rate, l̄, while the (LP ) case uses a total arrival rate, λ̄. To compare these cases we

assume traffic intensities over 1.0, in other words, the single station is capacitated.

Table 4.4 summarizes the characteristics of each of the three cases.

Table 4.4: Comparison of single station network models with capacitated arrivals:
(s), (N), and (LP ).

Case (s) (N) (LP )
Description M/M/s/s/N M/M/N/N/N LCQN

Finite pop. exact exact FPM

Capacity exact split station split station

Eff. arr. rate l
(s)
e l

(N)
e = l̄ λ

(LP )
e = λ̄

= l
⎛
⎝

1 −
ls

µs
(N
s
)

∑sn=0
ln

µn
(N
n
)
⎞
⎠

= λ̄

(N − λ̄/µ)

Avg. # clients L(s) L(N) = Nl̄

l̄ + µ
L(LP )

= ∑sn=0

n ln

µn
(N
n
)

∑sm=0
lm

µm
(N
m
)

=
N λ̄
(N−λ̄/µ)
λ̄

(N−λ̄/µ) + µ
= N −L0

= λ̄/µ = λ̄/µ

It is clear from this table that, while the effective arrival rates for the (N) case
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and the (LP ) are given in different forms—the former is a per capita rate and the

latter is a total rate—the average number of clients in each case, L(N) and L(LP )

respectively, is the same.

4.3 Justification for a Queueing Network Model

Many techniques exist for working with this type of model including other closed

network analytical or approximate procedures, various simulation approaches, and

system dynamics (SD). We believe the approach we have chosen—the FPM approx-

imation of a closed network with some capacitated stations—is the most appropriate

way to understand our model of the DTES.

4.3.1 LCQN vs. Other Queueing Approaches

The differences among the exact approaches and various approximate approaches,

including ours, are very small for a model of the size considered here (where size

refers to the population size and number of stations). However, the inaccuracies

introduced by a number of the model parameters are orders of magnitude larger.

Given this discrepancy between the data quality and the approximation quality, the

choice of technique, with respect to approximation quality, is arguably unimportant.

We have therefore opted for a technique with fast solution time that can scale well

and can potentially be extended to more complex future versions of our model

(including multiple client classes and additional services).

4.3.2 Advantages and Disadvantages of Simulation vs.

Queueing Networks

There are several reasons to use a queueing model over a simulation model, but

they don’t negate the benefits of doing the latter alongside the former. We discuss

a particular type of simulation—DES—in the next chapter as a means of validating

certain assumptions about the queueing approach. As the main method of address-

ing our research question, however, queueing models are the most appropriate.

Our queueing model will give the same answer every time. In contrast, a DES

model generates many random numbers over many replications in order to determine

the “typical” behaviour of the system. The resulting solutions will differ from run
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to run, which is a drawback when discussing and comparing multiple scenarios.

To address this issue, DES software produces confidence intervals, which help us

interpret these differences, yet it is simpler if we avoid this issue to the extent

possible. Furthermore these intervals are often rather large, unless we are able to

take advantage of variance reduction techniques or are willing to run the model for

a very long time.

When precision in the results is important, speed is clearly a factor. The queueing

model produces an answer in well under a second, yet the DES model takes many

minutes, hours, or days to run (depending on how small we wish the confidence

intervals to be). This speed difference becomes magnified when we wish to run

multiple scenarios. As we will explain in detail in Chapter 6, this difference means

we can perform all desired analyses on the queueing model in under a minute, yet

it would take months to do the same set of analyses with our DES model.

We can also sometimes find interesting structural policies with a queueing model.

With a DES model we cannot. However, the DES approach can be very useful

for some models because it is much more flexible (e.g., for operational or tactical

models). With DES we can represent queue priorities, different arrival or service

time distributions, complex interactions, object attributes, and many other details

that typically have to be ignored with queueing models.

A big advantage of simulation is that users can watch the animation, and often

have more confidence in this approach because it is easier to grasp.

One less tangible advantage of queueing theory is as follows: In the healthcare

field many non-OR practitioners know about simulation but seem to believe it is

the only tool for conducting such analyses. We feel that introducing additional

techniques allows us to act as educators, teaching practitioners about the many

benefits of using an OR approach and demonstrating that the OR toolkit is capable

of addressing myriad healthcare issues.

4.3.3 Advantages and Disadvantages of System Dynamics

The advantage of using our approach over SD is best demonstrated with a compari-

son between DES, which is very useful in validating our model, and SD, which could

be used for similar purposes.

SD is a modelling approach based on “stocks” and “flows”, and is continuous.

In contrast, DES represents discrete clients flowing through a system. SD is con-
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sequently deterministic; by working with flows it is incapable of handling different

distributions like DES (and to a lesser extent like queueing theory).

The benefits of SD are twofold: It can handle qualitative inputs and it shows

how a system changes over time. The qualitative input idea seems tempting, at first,

however, the ability to produce precise output values is severely affected by using

qualitative (imprecise) inputs. An example of a qualitative input one might want

to include is the positive impact on enrolment in a new program or service from

word-of-mouth communication among potential clients. This feature is useful for

developing models of higher-level policy implications but doesn’t give us the detail

we require. For the DTES model we wish to investigate policy issues, but with a

sound quantitative approach.

The ability to show how a system changes over time may be useful for future

work on this topic, but for now we wish to study the system in steady state, and SD

does not excel at this type of analysis. One idea is to use it to show how the steady-

state system currently in existence changes over time when a particular scenario is

implemented, and we may pursue this idea at some point.

DES has several benefits over SD. The ability to show how a system reaches

steady state is also built into DES models, as is the ability to represent the system

once it is in steady state. As well, time step issues that appear in SD models

(particularly when the service times are so dissimilar) are not an issue in DES. DES

can also handle many different distributions for input parameters (such as service

times and arrival rates). Finally, DES offers more flexibility in general, allowing us

to validate any assumptions we make in the queueing model.

For an example of SD applied in healthcare see [39]. Comparisons of SD and

DES can be found in [15, 79].
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Chapter 5

A Model of Services in the DTES

The purposes of our modelling research on CCD client services in the DTES are:

1) To better understand the existing system; and 2) to be able to quantify the pro-

jected outcomes from potential improvements to the system. The model described in

Chapter 4 helps us understand the structure of the system as well as the limitations

of our approach. Now we apply this model to the DTES.

The first part of this chapter covers the inputs to the model. We then discuss

sensitivity analysis on those inputs to contribute to our understanding of the system

by illustrating which inputs tend to affect which outputs. Our main results are

presented toward the end of this chapter when we present a comparison with a

simulation model and then discuss scenario comparison in order to evaluate potential

procedural or policy changes to the system.

Our model produces two primary outputs: Total system cost and health out-

comes. We can examine each of these measures for each station—cost is an estimate

of the average cost per client for that station, while the health outcome is an estimate

of the quality adjusted life years (QALYs), on average, for clients in that station.

Ultimately we are interested in the total cost and the total average QALYs, over

the population being studied, for the entire system, so that we can compare these

two measures across scenarios.

The model also produces other outputs, such as the average number of clients

in each station or in the Non-treatment Population. In some cases we discuss

some of these outputs as well as the two primary ones in order to lend additional

insight.

Based on the input parameters described in the following section, the total cost

of the system is about $208 billion per year, or $75.93 per person per day. This

figure, as discussed in more detail below, includes the cost of running all services as

well as crime costs (including intangible costs). The average QALYs per person is

18.06. For perspective, the average Canadian consumes public health resources at

$15.92 per day [30] and policing resources at $1.06 per day [103].
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5.1. Model Parameters

5.1 Model Parameters

The parameters for this model come from published articles, publicly available

reports, expert interviews, and secondary analysis of existing data. In some cases

we were unable to find an exact figure and thus used estimates. For these cases, and

in fact for all inputs, we describe extensive sensitivity analysis in §5.3.

We tried to find exact sources for all parameters (i.e., numbers specifically

pertaining to the services and population being studied). When that was not

possible, we used proxies from similar situations in Canada or the US, and failing

that, we used the best source we could find. All cost figures have been converted to

Canadian dollars (CAD), and adjusted to 2011 levels based on the consumer price

index (CPI) (see Appendix C for details).

The inputs, costs, and health measures (Tables 5.1, 5.2, and 5.3, respectively)

are described below.

5.1.1 External Arrival Rates

We model the external arrival rates in two different ways depending on the data

available—as a total external daily arrival rate or as a per-person external daily

arrival rate. A per-person daily rate can be used directly in the model, whereas the

total daily rates require special consideration in the base case and are then converted

to per-person rates prior to scenario analyses. Use of per-person arrival rates results

in an optimal solution (as shown in Theorem 4.3), however, use of total arrival rates

can result in infeasible solutions. We have checked our parameter values to ensure

we avoid such solutions. These inputs are calculated thus:

POLICE external arrival rate is the sum of the non-criminal and the criminal

arrival rates. Police involvement for non-criminal activity averages 17 contacts

per day [113] and for criminal activity is 4.7 contacts per day, calculated

from several statistics and assumptions: 7248 crimes are committed per year

(assuming half of all District 2 crimes are attributable to the population being

studied) [116]; about 23.8% of crimes result in criminal justice involvement

(there were 16,897 new cases at the Vancouver Provincial Court out of 70,898

calls for police with priority 1, 2, or 3 during the Downtown Community

Court’s pre-evaluation period) [3]; the ratio of crimes to cases for the overall
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Table 5.1: Inputs for DTES model. A subjective rating of each parameter value’s
quality is given, where 1 star is low quality and 3 stars is high quality.

Parameter Units Value Quality Source(s)
External Arrival Rate
Police /day 21.7 ☀☀☀ [113]; [116]; [3]
ED /person/day 0.0091 ☀☀☀ [106]
Other /day 10.7 ☀☀☆ [19]

Routing Probability
Police→CrimJst 0.22 ☀☀☀ [113]; [116]; [3]
Police→ED 0.05 ☀☆☆

ED→Acute 0.14 ☀☀☀ [105]
ED→Inpatnt 0.05 ☀☆☆

Other→ED 0.11 ☀☀☆ [19]
Other→Inpatnt 0.11 ☀☀☆ [19]
Other→MMT 0.04 ☀☀☆ [19]
Other→CM 0.10 ☀☀☆ [19]
Other→ACT 0.01 ☀☆☆

Other→Family 0.08 ☀☀☆ [19]
Acute→Inpatnt 0.05 ☀☆☆

Acute→MMT 0.05 ☀☆☆

Acute→CM 0.05 ☀☆☆

Inpatnt→MMT 0.05 ☀☆☆

Inpatnt→CM 0.05 ☀☆☆

Inpatnt→ACT 0.01 ☀☆☆

Length of Stay
Police hours 2.6 ☀☀☀ [121]
CrimJst days 63 ☀☀☀ [3]
ED hours 4 ☀☀☆

Other - -
Acute days 12 ☀☀☀ [115]
Inpatnt days 89 ☀☀☀ [112]; [100]; [18]; [114]
MMT days 338 ☀☀☀ [81]
CM days 1275 ☀☀☆ [23]
ACT days 3464 ☀☀☆ [80]
Family days 1275 ☀☀☆ [23]

Population
CCD population people 7500 ☀☀☆ [72]

Station Capacity
Inpatnt beds 162 ☀☀☀ [112]; [18]; [114]
CM people 1400 ☀☀☀ [60]
ACT people 90 ☀☀☀ [60]
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Vancouver population is assumed to hold for DTES crimes. Another way to ar-

rive at the number of crimes per year suggests 8070, which means our estimate

is probably somewhat conservative. This alternate figure is calculated based

on the following statistics: The average opioid user not in treatment commits

1.65 crimes per year [117]; there are approximately 4000 non-treatment clients

in the model committing crimes at about this rate; there are approximately

2700 outpatient (treatment) clients committing crimes at 33% of this rate

[46]. Note also that the 1.65 and 33% figures almost exactly match similar

statistics from another source that measured police contacts before and after

introducing supportive housing to a homeless population in Portland, Maine

[78].

ED aggregate per capita arrival rate is based on the average ED usage per

person for the cohort population from the At Home Study [106], which is a

very good proxy for the population in this model. Using the pre-trial results,

the total person-years for the cohort is 382 and the total ED visits is 962. We

adjust the calculated rate by a factor of 1.333 in order to include Vancouver

General Hospital visits on top of the St. Paul’s Hospital visits accounted for

in the study to get an average rate of 0.0092 visits per person per day. This

figure includes arrivals from the other two entry points; the model determines

the external arrival rate by subtracting any other ED arrivals.

OTHER ENTRY external arrival rate is a catch-all station for the various ad-

ditional ways clients can enter the system, such as via Vancouver’s safer

injection site, Insite. We use Insite referrals as a starting point [19, Table

D7], and then make the assumption that this number can be doubled to get

total other entries. The average daily arrival rate comes from Insite referrals

to all programs other than housing for 2005, times two, which equals 10.7

arrivals per day.

These arrivals all assume that the arrival processes are stationary, or unchanging

over time. In practice, arrivals are affected by factors such as time of year and time

within the two-week welfare cheque period. These cyclic behaviours will likely be

investigated in a later version of this model, but we decided that in keeping with

our goal of creating a fairly simple model with limited scope, this issue could be

postponed.
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5.1.2 Routing Probabilities

Routing probabilities describe the likelihood that an individual at a particular

service moves to each other service upon leaving. For example, clients in the ED

transition to Acute Care 14% of the time, to Inpatient 5% of the time, and back

into the Non-treatment Population the rest of the time. Of all the inputs to

the model, this data was the most difficult to find. Therefore, many of these routing

probabilities are simply estimates that we perform sensitivity analysis on to study

how the outcome behaves over a range of values. The figures that come from reliable

sources are:

POLICE→CRIMINAL JUSTICE is based on the two rates discussed above: 21.7 po-

lice arrivals per day, out of which 4.7 lead to criminal justice. 4.7/21.7 = 0.217

ED→ACUTE CARE comes from the preliminary At Home Study results [105].

OTHER ENTRY→ED comes from Insite referrals to “Hospital Emergency” [19, (Ta-

ble D7)].

OTHER ENTRY→INPATIENT uses Insite referrals to “Detoxification bed” as a proxy

[19, (Table D7)].

OTHER ENTRY→MMT comes from Insite referrals to “Methadone” [19, (Table

D7)].

OTHER ENTRY→CM uses Insite referrals to “Community services” as a proxy [19,

(Table D7)].

OTHER ENTRY→FAMILY PRACTICE uses Insite referrals to “Community clinics”,

divided by two as an estimate of the clinics of the family practice variety [19,

(Table D7)].

The remaining routing probabilities are estimates for which sources were un-

available.

5.1.3 Lengths of Stay

LoSs are given for all services. For the services with the shortest durations (Police,

ED), the precise input value is unimportant. We nevertheless use the available data,
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but concentrate our efforts on the longer LoSs. One service, Other Entry, has

an LoS equal to zero days6 because it is simply a pass-through entry point that

represents clients arriving at the various treatment options through other means.

Average LoSs range from several hours to a number of years. The numbers come

from the following sources:

POLICE LoS is simply the average contact time, which is assumed to be 2.6 hours

[121], the city-wide average for all calls. If an estimate were available for calls

involving this population, it would likely be higher.

CRIMINAL JUSTICE LoS is a weighted average using some statistics from the Down-

town Community Court [3]. For clients involved in the Downtown Community

Court: 27% were in pre-trial jail for an average of 16 days and 73% were in

pre-trial supervision for an average of 33 days (assuming all clients not in jail

were in supervision); 45% were in after-trial jail for an average of 22 days and

55% were in supervision for an average of 45 days (again assuming those not

in jail were under supervision). The average LoS works out to 63 days.

ED LoS is estimated at 4 hours, though this number is entirely insignificant to the

model outputs.

ACUTE CARE LoS is 12 days [115] (average LoS in mental health/psych at St.

Paul’s Hospital).

INPATIENT LoS is a weighted average of the LoS at the three inpatient services

considered in this model: Burnaby Centre for Mental Health and Addictions

(BCMHA) (100 beds [112], 135 day LoS [100]); Vancouver and Cordova Detox

Centres (53 beds, 6 day LoS [18]); Community Transition Care Team (9 beds,

59 day LoS which is based on 56 clients served in one year and assuming 100%

utilization [114]). The average LoS is 89 days.

MMT LoS is based on the 12-month retention rate [81], calculated assuming ex-

ponentially distributed LoS.

CM LoS comes from a study of case management and outreach [23].

6We use an M/0/∞ queue for this service, as described in §4.1.4.
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ACT LoS is based on the B.C. standard for flow-through rate of 10% per annum

turnover [80], calculated assuming exponentially distributed LoS.

FAMILY PRACTICE LoS is assumed to be the same as CM.

5.1.4 Population Size

One of the reasons for creating this model and the accompanying research on CCD

clients in the DTES is to better understand this population about which many

basic facts are not known or understood. For instance, no one seems to know the

actual size of the population. The entire population of the DTES is roughly between

16,000 and 18,000, depending on the source [70], [21]. The population of harmed

individuals7 is estimated to be about 15,000, with 50 to 70% having concurrent

disorders [72]. A fairly conservative estimate of the total CCD population is therefore

7,500 (50% of 15,000).

Another way to arrive at an estimate (involving very rough estimates) is to start

with the estimated 5000 injection drug users [54], and then double this number to

include those struggling with other substances (including alcohol) and those who

are not actively using but nevertheless have a substance addiction. We then need

to determine what portion of people with an addiction issue have mental health

issues, which is difficult because so many mental health issues are undiagnosed or

under-reported. We start with the estimate of 35% of a sample of homeless people

who reported having received a mental health diagnosis at some point [55], and

then double this number to account for two factors: 1) Undiagnosed or unreported

illnesses, and 2) higher concurrence specifically among people with addictions than

among homeless individuals. Recognizing that this estimate is far from precise, we

nevertheless arrive at the similar figure of 7000 clients.

This input, the size of the DTES population with CCD, can substantially alter

model outcomes. In queueing terminology, this population is referred to as the finite

calling population. We perform considerable sensitivity analysis on this parameter

in order to observe the outcomes over a range of inputs and to investigate whether

or not the overall policy implications are robust with respect to changes in inputs.

7Harmed individuals refers to people with some form of addiction issue and any of the following:
Mental illness, history of trauma/abuse, suicidality, significant physical illness.
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5.1.5 Service Capacities

Three of the services in our model have capacities that are restrictive enough to

clearly cause clients to balk: Inpatient, CM, and ACT. These capacities are

derived as follows:

INPATIENT capacity is the total number of beds across all facilities grouped into

this service – BCMHA, Detox (Vancouver and Cordova), and Community

Transition Care Team (see Inpatient LoS, above, for sources).

CM capacity is based on the typical number of active clients at the Strathcona

Mental Health Team [60], because they are the main provider of this type of

treatment and appear to be operating close to maximum capacity.

ACT capacity is based on the ten-member team’s mandate to provide service at a

9:1 ratio [60].

5.1.6 Station Costs

The two primary outputs of the model are costs and health outcomes. The former

is intended to include all costs – direct costs for providing the service and indirect

costs to society, businesses, or individuals from activities such as crime. Costs for

stations come in two forms: The cost for Police and ED are given per client served,

whereas all others are given per client per day. See Table 5.2. (From the client’s

perspective, contact with Police or Criminal Justice might not seem like they

are being “served”, however, we use the word in a general sense to describe the

provision of any resource in our model.)

Crime costs must also be considered. We use the estimate of $77 for the average

daily cost of crime for members of the non-treatment population, and then apply

a multiplier of 0.33 [46] to calculate the average daily cost of crime for clients in

long term treatment programs. We assume clients in other stations do not commit

crimes while in those stations. The average daily cost of crime, and the station

costs, adjusted to 2011 CAD, are calculated thus:

POLICE cost per contact is based on the Vancouver Police Department estimate of

2.6 hours per call, with two officers responding at an annual cost of $100,000

each (based on 90 full-time officers equalling a $9 million cost) [121]. It also
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Table 5.2: Cost inputs in 2011 CAD, including a subjective rating of each parameter
value’s quality. The cost of each service is listed without and also with crime costs
factored in.

Service Crime Combined
Station Units Cost Cost Cost Quality Source(s)
Police $/contact 642 642 ☀☀☀ [121]; [41]
CrimJst $/day 54 20 74 ☀☀☆ [3]; [76]
ED $/contact 387 387 ☀☀☀ [105]; [59]; [85]
Other - -
Acute $/day 647 647 ☀☀☀ [85]
Inpatnt $/day 289 289 ☀☀☆ [112]; [18]; [114]; [100]
MMT $/day 17 25 42 ☀☀☀ [125]
CM $/day 22 25 47 ☀☀☀ [60]
ACT $/day 46 25 71 ☀☀☀ [60]
Family $/day 2 25 27 ☀☀☆ [87]
Non-tr $/day 0 77 77 ☀☀☀ [116]; [89]

assumes hourly overhead costs ($40 in 1993) and 1560 active patrol duty hours

per year (from a study of Canadian police forces published in 1994) [41].

CRIMINAL JUSTICE cost per day is based on a weighted average of the costs of the

components. Using the same averages and LoS described in the Criminal

Justice LoS calculation above, as well as an adjusted per diem jail cost of

$199.75 and per diem supervision cost of $11.55 [76], the per day average

criminal justice cost is $53.91.

ED cost per visit comes from the cost of a hospital emergency ($195.08 in 2002)

[59] plus 35.9% [105] times the cost of an ambulance ride ($396 in 2007) [85].

ACUTE CARE cost per day is from [85].

INPATIENT cost per day uses the same weighted average as the Inpatient LoS

calculation, with the following costs: BCMHA and Community Transition

Care Team per diem cost is $350 (2011 CAD) (unpublished per diem rate for

tertiary care from Vancouver Coastal Health (VCH)); detox per diem cost is

$125.42 (2002 CAD)[59].

MMT daily cost is from [125] (this cost matches, or is somewhat higher than,

anecdotal figures I was told by local sources).
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CM cost per day is $22, calculated based on yearly operating costs [60].

ACT cost per day is $46, calculated based on yearly operating costs [60].

FAMILY PRACTICE cost per day is estimated at $2 based on two monthly visits

and the fee-for-service figure of $30.06 for a “visit in office (age 2 – 49)” [87].

NON-TREATMENT POPULATION daily cost is assumed to include only the crime

cost of $77. By not including other costs to society (lost business, lost pro-

ductivity, etc.) this cost can be considered conservative.

Cost NON-TR crime is calculated based on 2011 Vancouver Police Department

crime statistics [116], assuming half of all District 2 crimes are committed by

this population, and on crime cost estimates not including criminal justice

system costs but including estimates for intangible costs using a conservative

valuation for the intangible cost of a homicide [89].

5.1.7 Health Outcomes

Health outcomes are most useful in showing the extent of the effect on client health

of changes to resources, procedures, or policies. Health outcomes are included in

this model by way of quality of life (QoL) estimates for the various stations, as well

as an overall estimate of average life years remaining for this population. Research

(cited below) shows that different treatment programs, or a lack of treatment, are

associated with different QoL. By multiplying the QoL for each service by the

number of people in that service and by the average remaining life years, LY, we

can estimate the expected QALY for the entire population for any scenario (for

brevity, we define the set of all stations containing clients and therefore necessary in

the QALY calculation as JQ = J
∞ ∪Jc∪{0}, where {0} is the Non-treatment

Population):

E[QALYs per person] = 1

N
∑
j∈JQ

[QoLj ⋅ LYj ⋅Lj] (5.1)

Table 5.3 shows the estimates, which are derived from these sources and assump-

tions:
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NON-TREATMENT POPULATION QoL is the weighted average of the “before” mea-

sure for CM and ACT from [31].

CM QoL comes from [31].

ACT QoL also comes from [31].

POLICE, ED QoL is assumed to be 10% worse than QoL for the Non-treatment

Population. However, because the LoS is very short, this figure is inconse-

quential to model outcomes.

CRIMINAL JUSTICE QoL is assumed to be the same as QoL for Non-tr.

ACUTE CARE, INPATIENT QoL is based on the CM QoL, but adjusted up by

8% to incorporate the improvement associated with inpatient vs. outpatient

treatment [34].

MMT QoL is an 18.6% improvement [83] over the non-treatment QoL.

FAMILY PRACTICE QoL is assumed to be the same as CM.

Table 5.3: Quality of Life inputs, inclding a subjective rating of parameter quality.
Station QoL Quality Source(s)
Police 0.526 ☀☆☆

CrimJst 0.584 ☀☀☆

ED 0.526 ☀☆☆

Other -
Acute 0.702 ☀☀☀ [31]; [34]
Inpatnt 0.702 ☀☀☀ [31]; [34]
MMT 0.693 ☀☀☀ [31]; [83]
CM 0.650 ☀☀☀ [31]
ACT 0.660 ☀☀☀ [31]
Family 0.650 ☀☀☆

Non-tr 0.584 ☀☀☀ [31]

The average remaining life years, LY, is estimated to be 29.4 for all services. This

calculation is based on: The proportion of males to females in the DTES (60:40)

and the Vancouver health area life expectancies for males and females (79.1, 84.2)

[36]; the lost life years due to severe mental illness for males and females (14.1, 5.7)

[37]; and the mean age of this population, estimated at 41 from the VIDUS cohort

[2].
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A Note on QALYs The use of QALYs is well established in the medical decision

making and cost-effectiveness literatures [97], and there are many arguments for and

against this approach (see Knapp and Mangalore [56] for arguments against using

such measures or Chisholm et al. [28] for a discussion of QALYs in mental health).

Given that we felt it valuable to report health outcomes in some form, we chose

practicality over perfection and went with the approach with the most readily

available data. Many studies attempt to quantify QoL for clients in situations

similar to those in our model. We considered using the Disability Adjusted Life

Year (DALY) measure, but had more difficulty acquiring data. We therefore report

QALY outcomes, with the caveat that this measure is not perfect but does allow us

to make population-level comparisons. We also stress that we are only applying the

QALY methodology at the population level and not at the individual level.

5.2 Model Output

We mainly discuss the two primary outputs—cost and QALYs. Other outputs,

such as the average number of clients in a station or in the Non-treatment

Population or the balking rate at a capacitated station, are discussed to a lesser

extent.

The next section delves into sensitivity analysis to address the less precise inputs,

however, a few simple results stand regardless of the exact input parameter values:

1) The Non-treatment Population accounts for roughly the same proportion

of overall costs as it does of total population (56% and 55%), yet a large cost of

this group is in the increased chance of contact with the most expensive stations—

Police, ED, Acute Care, and Inpatient; 2) conversely, the least expensive

stations are MMT, CM, Family Practice, and Criminal Justice (with the

last due to the lower cost of supervision), so changes to the system that result in

more clients entering and/or remaining in these services will result in lower costs8;

3) lastly, the QoL rates tend to be higher for the lower cost stations, with the

exception of Acute Care and Inpatient, therefore these two stations may help

explain policies that differ the most between cost and health outputs.

Though the model produces precise results, it is important to remember that

8We are not saying more clients should be in Criminal Justice; this is simply a statement
about cause and effect.
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the accuracy of those results is limited by the accuracy and quality of the inputs

(and to a much lesser extent, by the accuracy of the queueing approximations).

Because in some cases the input quality is limited due to data availability, the

exact cost or QALY output values are perhaps less important than the comparisons

across different scenarios. With these limitations in mind, the model clearly has two

important uses:

1. Calculator for planners. Procedural or policy changes can be evaluated

from a cost and health perspective; sensitivity analysis must be included in these

evaluations to understand the limitations corresponding to specific inputs (§5.3).

DES could also be used to develop confidence intervals on model outcomes (though

we do not demonstrate this use of DES herein).

2. Scenario comparison. Many different scenarios can be compared in order

to choose several good alternatives for additional study. Again sensitivity analysis

helps provide more robust results (§5.5.2).

5.2.1 Model Validation

The scope of this model is limited to the main health and criminal justice com-

ponents that the CCD population in the DTES encounters. As well, several other

limitations—clients are only in one station at a time; clients in long term treatment

cannot depart briefly for Police, ED, or other involvement and then return; and the

population is homogeneous—potentially skew the results. Yet we still must validate

that the outputs are correct insofar as they apply to this limited portion of the real

world. We do this by examining several other results from the model that are neither

inputs (which we seek to indirectly validate) nor primary outputs (which measure

unknown quantities), asking whether our results are reasonable given the model

limitations. The results we discuss are: Size of the Non-treatment Population,

average usage levels of the uncapacitated stations, and amount of balking at the

capacitated stations.

The mean size, m, of the Non-treatment Population is 4201. This figure

is very difficult to validate because it is a count of the people generally not counted

by scientific studies. When compared with anecdotal reports we find it is in the

right range. We can also compare it to numbers from the literature that, while
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not measuring the same population, measure similar groups or overlapping groups.

For instance, from March 2004 to April 2005, 4764 clients registered with Insite [1].

Clearly this population is not the same as the non-treatment population, but there

is probably considerable overlap.

The average usage levels of the stations that are interesting to compare are

Criminal Justice (297), Acute Care (64), MMT (265), and Family Practice

(1091). We do not have data on the total number of clients in the criminal justice

system or in acute care at either hospital. For MMT, we know that the DTES

rate is 35 people per 1000 general population [81]. This rate suggests 560 – 630

clients should be on MMT. However, one limitation of our model is that only the

main treatment modality is captured. We know that clients in CM, ACT, Family

Practice, and even Criminal Justice are also on MMT, yet have not accounted

for them in this version. Given this limitation, the result from our model of 265

clients with MMT as their main treatment course seems reasonable. The Family

Practice number of 1091 clients is also difficult to validate; we know that primary

care access is fairly high—among injection drug users in one study, 78% accessed

some form of primary care within the past year [53]. However we also know that

most of the primary care available does not involve clients seeing their own family

doctor (which we are trying to model with this station). If we apply 78% to the total

population of 7500, we see that about 5850 clients access primary care. Given that

most of these clients saw a nurse rather than their own family doctor at a drop-in

clinic, the result from our model is not unreasonable.

The capacitated stations are all at capacity, which in itself provides some valida-

tion. We can also look at the amount of balking: For Inpatient, one patient balks

for every patient served; for CM, one patient balks for every three patients served;

and for ACT, three patients balk for every patient served.

These balking rates are also difficult to validate, but we can present some

comparisons. One of the components of the Inpatient treatment is detoxification.

Over a one-year period, 35% of clients referred to Vancouver Detox dropped out

before treatment began [66]. This statistic suggests our balking rate is a bit too

high, however, it is quite conceivable that the balking rates at the other inpatient

treatment components are higher because of the longer treatment times, resulting

in an overall inpatient treatment balking level on par with what our model suggests.

Our model suggests a believable rate for CM—one in four patients referred to

80



5.3. Sensitivity Analysis

CM (including self-referrals) is lost. We do not yet have data to validate this

number, however, we plan to obtain it for the next version of the model.

For ACT we also do not have data to validate the balking rate of over three

patients per patient served. Yet in this case such a high rate is sensible given

the limited capacity and high LoS associated with this service. Furthermore, an

incorrect rate in this case would mean the routing probabilities going into the

ACT station are incorrect, yet if that is true, then we’re simply over- or under-

estimating the number of clients who balk and then return to the Non-treatment

Population compared to the number of clients who do not get referred and

therefore return to the Non-treatment Population. Suffice it to say that as long

as all ACT capacity is being used in the real world, our model seems to represent

this station adequately.

Additional model validation is discussed in §5.3 when we perform sensitivity

analysis on the model, which serves the purpose of testing it under extreme input

values, and in §5.4 when we compare the results to a simulation model, which serves

to show that the results are similar given a different solution methodology.

Further validation will not be performed for this version of the model. In future

versions that include housing and that address some of the other limitations, we will

conduct additional validation.

Having created a model of the services in the DTES, we use sensitivity analysis to

examine the inputs in more detail in order to identify limitations in the conclusions

we can draw from these inputs. We then discuss the DES model and its utility in

validating certain assumptions about our queueing model. Finally, we compare a

number of scenarios in the queueing model to see what types of changes result in

the most favourable cost and health outcomes.

5.3 Sensitivity Analysis

Sensitivity analysis involves varying one or more inputs and observing the resulting

variations in the outputs or in other measures of interest. It is usually performed for

three reasons: 1) When inputs are not known exactly, sensitivity analysis tells us if

it is important to try to find a precise value or if a lack of precision will not have

a meaningful effect on the outputs; 2) when inputs are known but might change

at some point in the future, sensitivity analysis allows us to describe how robust
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the solution is to future parameter fluctuations; and 3) when trying to understand

similar problems, sensitivity analysis provides insight into the relationship between

inputs and outputs.

When working with LPs there is a special type of sensitivity analysis that

relies on the solution structure to determine a range within which each objective

coefficient or right-hand-side value can change while still maintaining essentially the

same LP solution. However, even though we use an LP to solve our problem, the

input parameters we wish to investigate are not the ones included in this type of

sensitivity analysis. We therefore use the more basic approach of solving the model

repeatedly—once for each input parameter value we wish to investigate.

5.3.1 Sensitivity to a Single Parameter

To test sensitivity to single parameter changes, we use an Excel macro that loops

through all input parameters, solving the model for each step within a specified range

for each parameter (while holding all other inputs at their base value), and recording

the outputs corresponding to each solution. Table 5.4 shows the specifications; for

instance, the first row corresponds to trying the values 4000, 5000, 6000, 7000, 8000,

and 9000 for the total population size.

The range over which each parameter is varied was chosen to represent plausible

values. We used literature sources, interviews, and our judgement to determine the

more extreme values that could be possible for each parameter.

The detailed results of the sensitivity analysis include the cost and QALY esti-

mates—as well as the mean queue lengths and aggregate arrival rates for all stations,

in addition to the Non-treatment Population size—for each parameter value.

This report is far too large to include in its entirety, but we have summarized the

results in Table 5.5 by showing the range over which each parameter was varied as

well as the ranges of the two primary outputs—cost and QALYs. We shade those

outputs displaying a higher sensitivity, however, this shading must be interpreted

prudently because it depends on the input parameter ranges.

QALYs are much less sensitive to input changes compared to costs. This insen-

sitivity is (at least partially) due to our conservative approach toward incorporating

health outcomes into the model. Specifically, we assume everyone in the population

has the same life expectancy, so the only change among stations is in QoL. This

issue will be revisited in the next version when we extend the model to include
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Table 5.4: Sensitivity analysis—single parameter input specifications.
Parameter Min Max Step Base Value
Population 4000 9000 1000 7500
Arrivals Police 20 30 1 21.7
Arr. /capita ED 0.005 0.015 0.001 0.0091
Arrivals Other 5 15 2 10.7
Cap Inpatnt 90 190 50 162
Cap CM 1100 2000 300 1400
Cap ACT 60 100 10 90
LoS Police 0.1 0.3 0.1 0.108
LoS CrimJst 50 80 10 63
LoS ED 0.1 0.5 0.1 0.167
LoS Acute 8 16 2 12
LoS Inpatnt 60 120 10 89
LoS MMT 180 720 60 338
LoS CM 365 2190 365 1275
LoS ACT 2000 5000 1000 3464
LoS Family 365 2190 365 1275
Cost coef Police 400 800 50 642
Cost CrimJst 50 125 25 54
Cost coef ED 300 600 100 387
Cost Acute 500 1000 100 647
Cost Inpatnt 200 500 100 289
Cost MMT 8 18 2 17
Cost CM 18 28 2 22
Cost ACT 30 60 5 46
Cost Family 0.5 10 0.5 2
Cost Non-tr 0 50 10 0
Cost Non-tr crime 50 90 10 77
Police→CrimJst 0.2 0.4 0.05 0.217
Police→ED 0.01 0.1 0.01 0.05
CrimJst→Inpatnt 0 0.1 0.05 0
ED→Acute 0.1 0.2 0.01 0.141
ED→Inpatnt 0.01 0.1 0.01 0.05
Other→ED 0.05 0.15 0.02 0.11
Other→Inpatnt 0.05 0.15 0.02 0.11
Other→MMT 0.01 0.1 0.01 0.04
Other→CM 0.05 0.2 0.05 0.1
Other→ACT 0.005 0.02 0.005 0.01
Other→Family 0.05 0.13 0.02 0.08
Acute→Inpatnt 0.01 0.1 0.01 0.05
Acute→MMT 0.01 0.1 0.01 0.05
Acute→CM 0.01 0.1 0.01 0.05
Inpatnt→MMT 0.01 0.1 0.01 0.05
Inpatnt→CM 0.01 0.1 0.01 0.05
Inpatnt→ACT 0.005 0.02 0.005 0.01
Crime treat ratio 0.2 1 0.2 0.33
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Table 5.5: Sensitivity analysis—single parameter results summarized. Cost ranges
> $5 and QALY ranges > 0.5 are shaded.

Parameter Range Costs QALYs
Population 4000 – 9000 $64.39 – $77.94 18.7 – 17.9
Arrivals Police 20 – 30 $75.83 – $76.42 18.1 – 18.1
Arr. /capita ED 0.005 – 0.015 $73.16 – $79.77 18.0 – 18.1
Arrivals Other 5 – 15 $82.39 – $72.03 17.8 – 18.2
Cap Inpatnt 90 – 190 $74.09 – $76.65 18.0 – 18.1
Cap CM 1100 – 2000 $77.56 – $73.83 18.0 – 18.1
Cap ACT 60 – 100 $76.00 – $75.91 18.0 – 18.1
LoS Police 0.1 – 0.3 $75.93 – $75.88 18.1 – 18.1
LoS CrimJst 50 – 80 $76.05 – $75.78 18.1 – 18.1
LoS ED 0.1 – 0.5 $75.96 – $75.79 18.1 – 18.1
LoS Acute 8 – 16 $74.35 – $77.50 18.0 – 18.1
LoS Inpatnt 60 – 120 $75.84 – $75.98 18.1 – 18.1
LoS MMT 180 – 720 $76.69 – $74.16 18.0 – 18.2
LoS CM 365 – 2190 $80.58 – $75.93 17.8 – 18.1
LoS ACT 2000 – 5000 $75.93 – $75.93 18.1 – 18.1
LoS Family 365 – 2190 $82.23 – $69.60 17.9 – 18.2
Cost coef Police $400 – $800 $75.23 – $76.39 18.1 – 18.1
Cost CrimJst $50 – $125 $75.77 – $78.74 18.1 – 18.1
Cost coef ED $300 – $600 $75.50 – $77.00 18.1 – 18.1
Cost Acute $500 – $1000 $74.69 – $78.92 18.1 – 18.1
Cost Inpatnt $200 – $500 $74.02 – $80.46 18.1 – 18.1
Cost MMT $8 – $18 $75.61 – $75.97 18.1 – 18.1
Cost CM $18 – $28 $75.19 – $77.05 18.1 – 18.1
Cost ACT $30 – $60 $75.74 – $76.10 18.1 – 18.1
Cost Family $0.5 – $10 $75.71 – $77.10 18.1 – 18.1
Cost Non-tr $0 – $50 $75.93 – $103.44 18.1 – 18.1
Cost Non-tr crime $50 – $90 $57.43 – $84.84 18.1 – 18.1
Police→CrimJst 0.2 – 0.4 $75.98 – $75.45 18.1 – 18.1
Police→ED 0.01 – 0.1 $75.93 – $75.93 18.1 – 18.1
CrimJst→Inpatnt 0 – 0.1 $75.93 – $75.93 18.1 – 18.1
ED→Acute 0.1 – 0.2 $74.70 – $77.66 18.0 – 18.1
ED→Inpatnt 0.01 – 0.1 $75.93 – $75.93 18.1 – 18.1
Other→ED 0.05 – 0.15 $75.93 – $75.93 18.1 – 18.1
Other→Inpatnt 0.05 – 0.15 $75.93 – $75.93 18.1 – 18.1
Other→MMT 0.01 – 0.1 $76.59 – $74.61 18.0 – 18.1
Other→CM 0.05 – 0.2 $77.26 – $75.93 18.0 – 18.1
Other→ACT 0.005 – 0.02 $75.93 – $75.93 18.1 – 18.1
Other→Family 0.05 – 0.13 $79.24 – $70.42 18.0 – 18.2
Acute→Inpatnt 0.01 – 0.1 $75.93 – $75.93 18.1 – 18.1
Acute→MMT 0.01 – 0.1 $76.37 – $75.40 18.0 – 18.1
Acute→CM 0.01 – 0.1 $75.93 – $75.93 18.1 – 18.1
Inpatnt→MMT 0.01 – 0.1 $76.08 – $75.75 18.0 – 18.1
Inpatnt→CM 0.01 – 0.1 $75.93 – $75.93 18.1 – 18.1
Inpatnt→ACT 0.005 – 0.02 $75.93 – $75.93 18.1 – 18.1
Crime treat ratio 0.2 – 1 $71.83 – $97.08 18.1 – 18.1
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heterogeneous sub-populations.

We also show the detailed results for two of the several dozen parameters:

Population size in Table 5.6 and the routing probability for Acute→MMT in

Table 5.7. The sensitivity analysis for population size shows how drastically the

model outputs can change when a key input such as this one is varied over a large

range. Additionally, it shows how the queue lengths are affected: Capacitated

services essentially remain at capacity with a smaller (and certainly with a larger)

population; ED queues increase with Non-tr because this arrival rate is expressed

as a per capita rate; and the services fed by ED also increase with Non-tr. If

the population were made much smaller we would get an infeasible solution with

Non-tr becoming negative. This infeasible solution, as explained in §5.1.1, is a

result of fixing one or more ζ values rather than letting the LP choose these values

based on the z per capita arrival rates.

As an example of an insensitive parameter, the sensitivity analysis for the routing

probability (Acute→MMT) shows how little the model is affected by some inputs;

the main outputs are virtually unaffected by changes to this routing probability,

while only the queue length for MMT is substantially affected. In fact, most of

the input parameters have similarly small effects on the outcomes over the ranges

we tested. From this analysis we can see that the exact parameter estimates for

many of the inputs are less important than for key inputs such as population size.

Nevertheless, as the MMT queue length in the last example shows, attention should

be paid to the inputs that do substantially affect any outputs we wish to examine

in detail.

5.3.2 Sensitivity to Groups of Parameters

The above analysis shows that many of the parameters have little effect on the

outputs, as long as they are varied in isolation. However, if we want to ask questions

about the effects of multiple parameter changes on the model outputs we must

perform more involved sensitivity analysis. For instance, cost and QALYs are

insensitive to changes in all of the routing probabilities—except Other→Family
and perhaps ED→Acute—when investigated one at a time. But the result likely

differs if two or more of these inputs are changed simultaneously.

Ideally we will see nothing of interest in this analysis. We would like to know
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Table 5.6: Sensitivity analysis—single parameter example for population size.
Value 4000 5000 6000 7000 8000 9000
Cost $64.39 $69.89 $72.91 $75.07 $76.69 $77.94
QALYs 18.71 18.44 18.25 18.11 18.01 17.93
Queue Length
Police 2.4 2.4 2.4 2.4 2.4 2.4
CrimJst 296.7 296.7 296.7 296.7 296.7 296.7
ED 1.2 2.6 4.1 5.5 7.0 8.4
Acute 12.0 26.5 41.3 56.1 70.9 85.8
Inpatnt 140.8 161.0 161.0 161.0 161.0 161.0
MMT 188.3 212.5 233.4 254.3 275.1 296.0
CM 1399.0 1399.0 1399.0 1399.0 1399.0 1399.0
ACT 89.0 89.0 89.0 89.0 89.0 89.0
Family 1091.4 1091.4 1091.4 1091.4 1091.4 1091.4
Non-tr 779.4 1719.0 2681.8 3644.7 4607.5 5570.3

Aggregate Arr.
Police 21.70 21.70 21.70 21.70 21.70 21.70
CrimJst 4.71 4.71 4.71 4.71 4.71 4.71
ED 7.09 15.64 24.40 33.17 41.93 50.69
Other 10.70 10.70 10.70 10.70 10.70 10.70
Acute 1.00 2.21 3.44 4.68 5.91 7.15
Inpatnt arr. 1.58 2.07 2.57 3.07 3.57 4.07
Inpatnt balk 0.00 0.26 0.76 1.26 1.76 2.26
Inpatnt cont. 1.58 1.81 1.81 1.81 1.81 1.81
MMT 0.56 0.63 0.69 0.75 0.81 0.88
CM arr. 1.20 1.27 1.33 1.39 1.46 1.52
CM balk 0.10 0.17 0.24 0.30 0.36 0.42
CM cont. 1.10 1.10 1.10 1.10 1.10 1.10
ACT arr. 0.12 0.13 0.13 0.13 0.13 0.13
ACT balk 0.10 0.10 0.10 0.10 0.10 0.10
ACT cont. 0.03 0.03 0.03 0.03 0.03 0.03
Family 0.86 0.86 0.86 0.86 0.86 0.86

External Arr.
Police ext. 21.70 21.70 21.70 21.70 21.70 21.70
ED ext. 4.83 13.38 22.14 30.90 39.67 48.43
Other ext. 10.70 10.70 10.70 10.70 10.70 10.70
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Table 5.7: Sensitivity analysis—single parameter example for Acute→MMT routing
probability.
Value 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Cost $76.37 $76.26 $76.15 $76.04 $75.93 $75.82 $75.72 $75.61 $75.50 $75.40
QALYs 18.03 18.03 18.04 18.05 18.06 18.06 18.07 18.08 18.08 18.09
Queue Length
Police 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
CrimJst 296.7 296.7 296.7 296.7 296.7 296.7 296.7 296.7 296.7 296.7
ED 6.4 6.3 6.3 6.3 6.3 6.2 6.2 6.2 6.2 6.1
Acute 64.6 64.3 64.1 63.8 63.5 63.3 63.0 62.7 62.5 62.2
Inpatnt 161.0 161.0 161.0 161.0 161.0 161.0 161.0 161.0 161.0 161.0
MMT 193.4 211.5 229.4 247.1 264.7 282.2 299.5 316.6 333.6 350.5
CM 1399.0 1399.0 1399.0 1399.0 1399.0 1399.0 1399.0 1399.0 1399.0 1399.0
ACT 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0
Family 1091.4 1091.4 1091.4 1091.4 1091.4 1091.4 1091.4 1091.4 1091.4 1091.4
Non-tr 4196.2 4178.4 4160.8 4143.4 4126.1 4108.9 4091.9 4075.0 4058.3 4041.7

Aggregate Arr.
Police 21.70 21.70 21.70 21.70 21.70 21.70 21.70 21.70 21.70 21.70
CrimJst 4.71 4.71 4.71 4.71 4.71 4.71 4.71 4.71 4.71 4.71
ED 38.19 38.02 37.86 37.70 37.55 37.39 37.24 37.08 36.93 36.78
Other 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70
Acute 5.38 5.36 5.34 5.32 5.29 5.27 5.25 5.23 5.21 5.19
Inpatnt arr. 3.36 3.35 3.34 3.33 3.32 3.31 3.30 3.29 3.28 3.28
Inpatnt balk 1.55 1.54 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.47
Inpatnt cont. 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81
MMT 0.57 0.63 0.68 0.73 0.78 0.83 0.89 0.94 0.99 1.04
CM arr. 1.43 1.43 1.43 1.43 1.43 1.42 1.42 1.42 1.42 1.42
CM balk 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.32 0.32 0.32
CM cont. 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
ACT arr. 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
ACT balk 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
ACT cont. 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Family 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

External Arr.
Police ext. 21.70 21.70 21.70 21.70 21.70 21.70 21.70 21.70 21.70 21.70
ED ext. 35.92 35.76 35.60 35.44 35.29 35.13 34.97 34.82 34.67 34.52
Other ext. 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70 10.70

87



5.3. Sensitivity Analysis

that there are no surprises in which individually sensitive inputs become much more

sensitive, or in which insensitive inputs become sensitive, when taken jointly. We

proceed with this exercise to provide additional confidence in our later results.

The idea behind sensitivity analysis on groups of input parameters is simple:

We change several parameters, solve the model, observe the outputs, and repeat. In

practice, however, it is too easy to become swamped in data. If we were to try ten

different values for each of the seventeen routing probabilities, and were interested

in all permutations, we would have to somehow make sense of 1017 sets of results.

Even if we only looked at two different values for each of these inputs, we would still

face 217 ≈ 130,000 sets of outputs. We clearly need to carefully choose which inputs

we investigate in tandem.

As with single parameter analyses, we use an Excel macro to adjust the param-

eters and record the results. This macro loops through a list of parameter groups.

For each group of two or more parameters (each with a specified range and step

size), the macro tries all permutations and records the two primary outputs. This

process is best illustrated with several examples.

Table 5.8 shows the specifications for the macro. Each group of parameters is

separated by a blank line, and results in its own output table.

FAMILY PRACTICE sensitivity analysis. The first group of parameters describes

sensitivity analysis to be performed simultaneously on all three inputs involving

family practice: LoS Family has four steps (800, 1200, 1600, 2000), Cost Family

has five steps, and Other→Family has three steps, so the resulting output table

will have 4 × 5 × 3 = 60 rows. For brevity, the first few and the last few rows are

shown in Table 5.9. The results are also shown (in their entirety) in Figure 5.1.

The left chart shows that LoS and routing probability (Other→Family) have

larger effects on total cost when varied than does the cost of the Family Practice

station. We can also see that total cost decreases with higher LoS and/or higher

routing probability. Furthermore, the sensitivity analysis shows greater sensitivity

when LoS is high and/or when routing probability is low. For instance, the effect

of changing the cost of Family Practice from $0 to $8 is small regardless of the

other two parameter values, but it is smallest when they are also small.

The right chart displays the same information for QALYs instead of cost. Note

that the cost of Family Practice is omitted—this is because it has no effect on
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Table 5.8: Sensitivity analysis—multiple parameter input specifications.
Parameter Min Max Step Base Value
LoS Family 800 2000 400 1275
Cost Family 0 8 2 2
Other→Family 0.05 0.15 0.05 0.08

LoS MMT 180 720 60 338
LoS CM 365 2190 365 1275

Cap ACT 90 180 45 90
LoS ACT 2000 4000 1000 3464
Cost ACT 30 70 20 46
Other→ACT 0.01 0.02 0.01 0.01
Inpatnt→ACT 0.01 0.03 0.01 0.01

Table 5.9: Sensitivity analysis—multiple parameter example for Family Practice
(12 out of 60 rows shown).

LoS Family Cost Family Other→Family Cost QALYs
800 0 0.05 $ 81.18 17.9
1200 0 0.05 $ 79.39 17.9
1600 0 0.05 $ 77.61 18.0
2000 0 0.05 $ 75.82 18.1
800 2 0.05 $ 81.29 17.9
1200 2 0.05 $ 79.56 17.9
1600 2 0.05 $ 77.83 18.0
2000 2 0.05 $ 76.10 18.0
800 4 0.05 $ 81.41 17.9

⋮ ⋮ ⋮ ⋮ ⋮
1200 8 0.15 $ 70.73 18.3
1600 8 0.15 $ 66.06 18.4
2000 8 0.15 $ 61.38 18.6

QALY outcomes in our model. Here we see that the effect on QALYs is opposite

to the effect on cost: Higher LoS and/or higher routing probability correspond to

higher QALYs. Again, the output is more sensitive when the LoS is high and/or

routing probability is low.

This example shows purely linear relationships among the inputs and the out-

puts, however, this is often not the case. If changes to input parameters cause the

model to cross a capacitated station threshold, the resulting outputs will exhibit
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5.3. Sensitivity Analysis

Figure 5.1: Cost (left) and QALYs (right) under different values of three
input parameters: LoS Family Practice, Cost of Family Practice, and
Other→Family.
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piecewise linearity. Furthermore, many analyses will show nonlinear results for

other reasons. Knowing that inputs will often be linear means we can restrict the

steps to a small number (e.g., 2) when conducting sensitivity analysis on groups of

parameters.

This example also illustrates an inverse relationship between cost and QALYs,

however, that will not always be true. In some cases, input changes will cause both

outputs to increase (or decrease) simultaneously.

We also mention an obvious limitation concerning the plots of results from

multiple parameter sensitivity analysis. In the Family Practice example we only

examine three parameters; plotting more than three parameters is difficult to do in

a decipherable manner.

We include two more examples of multiple parameter analyses, and then discuss

the entire sensitivity exercise below.

ACT sensitivity analysis Five parameters deal with the ACT station: Capacity

of ACT, LoS of ACT, Cost of ACT, Other→ACT, and Inpatnt→ACT. This

analysis produces interesting results in that these parameters, simultaneously varied

over their respective ranges, have almost no effect on the main outputs. Across all

162 permutations the cost varies from $75.28 to $76.23 and the QALYs vary from

18.05 to 18.08. This group of parameters likely has little effect on the output for

several reasons: The ACT station tends to fill to capacity regardless of what input
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values we use (without making drastic parameter changes); the cost, including crime

cost for clients in ACT, is very similar to the average per capita cost; and the station

can only handle a small number of clients (compared to MMT, CM, or Family

Practice). This result does not mean ACT is unimportant in an overall DTES

strategy, however, it may simply highlight a limitation of this model. We believe a

future version of the model that includes sub-populations may show ACT to be an

important treatment option for certain types of clients.

Population and crime cost sensitivity analysis Two parameters that have a

large effect on outputs when analyzed individually are population size and cost of

crime in Non-tr (the estimate of crime costs per capita for Non-tr that is also

used at a reduced level to estimate crime costs for clients in long term treatment).

The sensitivity analysis of these two parameters shows that these effects intensify

when both are varied simultaneously. Figure 5.2 shows the cost and QALY outputs

as these two input parameters vary; the right chart does not include cost Non-tr

crime because it has no effect on QALYs.

Figure 5.2: Cost (left) and QALYs (right) under different values of two input
parameters: Population and cost Non-tr crime.
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Additional parameter groups Some of the other parameter groups analyzed in

the same manner but not discussed in detail are:

Crime parameters: Cost Non-tr crime, Police→CrimJst, and Crime treat

ratio. The higher each of these inputs is, the higher the cost (up to $119 for

extreme input values). QALYs are virtually unaffected.
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Sensitive parameters 1: Several parameters that display high sensitivity indi-

vidually are Population, Arrivals Other, LoS CM, and LoS Family. As a

group, these parameters only account for moderately larger fluctuations than

they do individually. However, two instances result in infeasible solutions

(when Population is small and LoS’s are large, the external arrival rates are

too high to sustain a positive Non-treatment Population).

Sensitive parameters 2: Another group of individually sensitive parameters are

Population, Other→Family, and Crime treat ratio. These parameters result

in large fluctuations (cost ranges from $45 to $103 and QALYs range from

17.8 to 18.9) but the more extreme values correspond to the extreme input

examples only.

The multiple parameter sensitivity analysis capability is useful for examining

groups of inputs that require special consideration because it is clearly not possible

to examine all groups. We have shown that it is easy to perform these analyses on

any small group of inputs and analyze the resulting effects on cost and QALYs. With

this framework in place we can address any concerns that arise regarding values of

the estimates in our model.

One other form of sensitivity analysis is probabilistic sensitivity analysis [e.g.,

82]. This approach involves treating parameters as random variables with various

distributional assumptions. The analysis consists of repeatedly drawing different

values for the parameters and measuring model outputs, then drawing inferences on

the aggregate output. We do not use this approach herein.

The main inference from all of the sensitivity analyses—both single and multiple

parameter—is that there are a few key inputs that have a potentially large effect

on the main outputs. From a cost perspective, these key inputs are Population,

Arrivals Other, LoS Family, Cost Inpatnt, Cost Non-tr, Cost Non-tr crime,

and Other→Family. From a QALY perspective, Population has the largest effect,

though the range is within one QALY. All of these inputs are considered to be of

high or medium quality, regardless, we recognize that there are likely inaccuracies in

these data that do have an effect on the model outcomes. Nevertheless, the effects of

changing the model to accommodate different scenarios later in this chapter will be

fairly robust to input inaccuracies for two reasons: 1) The more sensitive inputs are

of reasonable quality, and 2) the direction and magnitude of changes across different
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scenarios will likely be affected only slightly by inexact inputs, because those inputs

will be consistent across scenarios.

The inputs that we identified in the group parameter analyses as potentially

problematic are LoS Family and Other→Family. Based on what we have ob-

served in single and group parameter sensitivity analysis, will be addressing the

quality of Population, Arrivals Other, LoS Family, Other→Family, and Cost

Inpatnt in the next iteration of our model (incidentally all are ☀☀☆; those that

are ☀☀☀ do not need additional investigation, and those that are ☀☆☆ do not

appear to exhibit sensitivity.).

5.4 Discrete Event Simulation

The closed queueing network approach we have chosen as the main tool for ana-

lyzing the system of services in the DTES provides us with accurate output values

contingent on several questions:

• Is the model valid?

• Are the input parameters correct?

• Are the bounds established by the approximation approach reasonable?

• Are the mathematical modelling assumptions appropriate?

We discussed the validity of the model in §5.2.1, and addressed the fact that it

has limited scope and is therefore limited by the features included in this version;

we also showed that the error introduced by the LCQN approach is minimal for a

small version of our network. In the previous section, we discussed the precision

of the input parameters. Now we turn to the modelling assumptions, and also to

confirming that the approximation approach introduces only minimal errors for the

full model.

Because of the limitations of the queueing approach, the modelling assumptions

and approximation approach are necessary. DES doesn’t have this limitation; simu-

lation models are more flexible in many ways, so even though there are drawbacks to

using them (as discussed in §4.3.2), DES is a useful tool for justifying the modelling

assumptions and approximations.
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5.4.1 DES Model

The DES model is similar to the queueing model: It contains the same stations, the

Non-treatment Population, and clients flowing through the system. However,

rather than working with averages to calculate arrival rates and queue lengths which

in turn allow us to calculate cost and health outcomes, the DES model accounts for

the individual clients moving from station to station, and in and out of the Non-

treatment Population.

The queueing models discussed in Chapter 4 describe a system in steady-state,

however, simulation models usually require a warm-up period to reach an equilib-

rium9. For each replication we therefore run the model for a warm-up period during

which we let the system settle into an equilibrium, and then we collect statistics

after this time.

The easiest way to initialize the system would be to start with all clients in

the Non-treatment Population, and let the stations fill up and equilibrate

during the warm-up. Not surprisingly, this method could take a long time to reach

an equilibrium. Instead we initialize the system using the suggested queue lengths

from the queueing model so that the simulation reaches steady-state much more

quickly. Because of this trick, the warm-up period can be fairly short, and even if

the suggested starting point from the queueing model is not quite right, it is bound

to be much closer to the simulation’s equilibrium than an empty system. For each

replication’s warm-up period we use an ample 365 days. After the warm-up, each

replication runs for 20 years. We use 30 replications (and a long run time) in order to

obtain very narrow confidence intervals on the simulation output. Experimentation

with different values shows that shorter warm-ups and runs provide slightly less

consistent results, longer warm-ups do not provide a better steady-state starting

point, and longer runs do not provide narrower confidence intervals.

During the simulation, clients randomly enter stations, depart stations, and move

to the next station or to the Non-treatment Population. We provide a simple

account of what happens when a client enters ED from Non-tr:

• The data for ED is updated to reflect a new arrival;

• the data for Non-tr is updated to reflect a departure;

• a service time is randomly chosen, based on the ED service time distribution;

9Queueing models that describe “transient” systems also exist.

94



5.4. Discrete Event Simulation

Figure 5.3: DES model of DTES services: Short term = oval; medium term = box;
long term = arrow-box; capacitated station = double outline; route = arrow.
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• an event is scheduled in the software’s event list for a client to leave ED after

the service time has elapsed;

• the rates for external arrivals are all adjusted according to this new external

(Non-tr) population size;

• the time for the next entry to ED is randomly chosen based on the external

arrival rate distribution;

• and this next entry is scheduled for the random future time.

When a client leaves ED:

• The data for this station is updated to reflect a departure;

• the next destination for that client is randomly chosen, based on the ED

routing probabilities. . .

– an arrival is created for the chosen station or
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– if the next destination is Non-treatment Population then an arrival

is created for Non-tr and the external arrival rates are updated.

In this manner the simulation model proceeds, generating many of these events

for each “day” in each replication.

The DES model is shown in Figure 5.3. Much of the diagram as the same is

Figure 4.1 in Chapter 4, however the Non-treatment Population that was

managed through the FPM constraint in the queueing model has been replaced

by a station that functions the same as all of the other stations in the system

except that departures from Non-tr are generated to reflect the external arrival

processes to Police, ED, and Other Entry. In this way the DES model is

an exact representation of a closed system (with finite population) rather than an

approximation of one.

5.4.2 Testing Model Assumptions

In §4.2 we discussed bounds and approximation ratios associated with a simplified

version of our approximated network. And in §4.1 we mention the distribution

assumption—that the interarrival times and the service times are all exponentially

distributed, i.e., they each follow a Poisson process. These are the two types of

assumptions we explore with the DES model. Specifically, we investigate each of

the following—running 30 replications (one year for warm-up plus twenty years for

simulation) each.

Simulation Models:

1. FPM: We have shown the FPM approximation is extremely accurate for

this setting, but we nevertheless compare the uncapacitated queueing network

with the corresponding uncapacitated DES model using Markovian arrivals and

service times. This model also serves to validate the simulation approach by

showing that we obtain the same output measures as with a queueing model.

2. Capacitated stations: We activate the capacities for Inpatient, CM, and

ACT in both models to see if the approximation in the queueing network

performs similarly to the capacitated stations in the DES model (in which

individual clients balk if they observe the station to be full, thereby more

accurately representing the real world).
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3. Service time distributions: We compare the exponentially distributed ser-

vice times in the queueing model with other distributions in the DES model

to see how sensitive the outputs are to distributional assumptions.

4. Arrival process distributions: We compare the exponentially distributed

interarrival times in the queueing model with other distributions in the DES

model.

One way to compare the queueing network with the DES model is to look

at the average number of clients in each station and in the Non-treatment

Population. We can see that the bounds and approximation ratios related to

our approximations are indeed practically insignificant for the level of precision we

require: Table 5.10 shows a comparison for the uncapacitated models and Table

5.11 shows the same comparison for the capacitated models.

Table 5.10: Simulation—comparison of average number of clients in each station for
the uncapacitated queueing model and the corresponding simulation model. 95%
confidence intervals (CI) are also shown for the DES results.

Queue DES DES
Station Uncap. Uncap. Uncap. CI % Dif.
Police 2.1 2.1 (2.1, 2.1) −0.1%
CrimJst 259.6 259.0 (258.0, 259.9) −0.2%
ED 5.5 5.5 (5.5, 5.5) −0.1%
Acute 55.6 55.8 (55.6, 56.0) +0.4%
Inpatnt 258.5 258.5 (257.4, 259.6) +0.0%
MMT 254.0 254.5 (252.4, 256.7) +0.2%
CM 1674.3 1678.7 (1670.0, 1687.3) +0.3%
ACT 424.9 422.6 (417.9, 427.3) −0.5%
Family 955.0 956.9 (951.4, 962.5) +0.2%
Non-tr 3610.6 3606.5 (3601.0, 3611.9) −0.1%

The uncapacitated queueing model is very similar to the uncapacitated simu-

lation model. The difference in the average number of clients in each station is

statistically insignificant at the 0.05 significance level10, illustrating (for this specific

set of parameter values) that the FPM approximation is certainly accurate enough

for our purposes.

10Confidence intervals are created using a t-statistic with (30 − 1) degrees of freedom and the
averages from the 30 independent replications.
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This comparison also verifies that the simulation model is working as designed,

in other words, there are no bugs or modelling mistakes.

Table 5.11: Simulation—comparison of average number of clients in each station for
the capacitated queueing model and the capacitated simulation model (with 1/µ ∼
Exp and 1/zjL0

∼ Exp). Again, 95% confidence intervals are given for the DES results.

Queue DES DES
Station Base Cap. Cap. CI % Dif.
Police 2.4 2.4 (2.3, 2.4) +0.1%
CrimJst 296.7 297.4 (296.7, 298.2) +0.3%
ED 6.3 6.3 (6.2, 6.3) −0.0%
Acute 63.5 63.6 (63.4, 63.8) +0.2%
Inpatnt 161.0 160.8 (160.8, 160.8) −0.1%
MMT 264.7 264.0 (262.3, 265.7) −0.3%
CM 1399.0 1396.7 (1396.5, 1396.8) −0.2%
ACT 89.0 89.7 (89.7, 89.8) +0.8%
Family 1091.4 1089.6 (1082.9, 1096.4) −0.2%
Non-tr 4126.1 4129.5 (4123.4, 4135.5) +0.1%

The capacitated queueing model (LCQN), despite including both the FPM

approximation and our capacitated station approximation, clearly shows very little

difference from the corresponding simulation model. Though the differences are

statistically significant (several queueing values fall outside the DES confidence

intervals), they are practically insignificant. This comparison validates the use of

these approximations, at least for this specific set of input parameters. We also

include a comparison of the same capacitated queueing and simulation models with

a very different set of input parameters in Appendix E, which again shows very little

difference between the two sets of outputs.

To investigate the effect of different service time distributions we modify the

capacitated simulation model to use distributions other than exponential. Instead

of exponential service times with 1/µj ∼ Exp(1/µj) we test two other distributions:

Uniform with 1/µj ∼ U(0.9/µj,
1.1/µj); and log-normal11 with 1/µj ∼ lnN (1/µj,

2/µj). The

uniform distribution is intended to test fairly consistent times (we have parameter-

ized the variance to be quite small—about 6% of that given by the corresponding

exponential distribution), and the log-normal distribution is for testing very right

11The log-normal distribution is often described with its own special parameters µ (log-scale)
and σ2 (shape); for simplicity, and to be consistent with Arena’s notation, we describe it with the
mean and standard deviation of the resulting random variable.
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skewed times with the same expected value (we have parameterized the variance to

be four times that given by the corresponding exponential distribution).

The results are shown in Table 5.12. With this set of input parameters, the

uniform service times increase the number of clients in (uncapacitated) long term

treatments and Criminal Justice while decreasing the number in the Non-

treatment Population. The log-normal service times have a small effect—

decreasing the number in Family Practice and increasing the Non-treatment

Population. The size of the effects on Family Practice and Non-tr are large

enough to warrant further exploration, though both of the distributions we tested

represent extremes that are unlikely to be observed for the actual service times at

these stations. Nevertheless, we plan on examining service time data in the next

iteration of our research.

Table 5.12: Simulation—comparison of average number of clients in each station for
the capacitated queueing model and simulation model under different service time
distributions.

Queue DES DES DES CI for CI for
Station Base 1/µj∼Exp 1/µj∼U 1/µj∼lnN 1/µj∼U 1/µj∼lnN
Police 2.4 2.4 2.3 2.3 (2.3, 2.4) (2.3, 2.4)
CrimJst 296.7 297.4 297.0 295.6 (296.4, 297.7) (294.4, 296.9)
ED 6.3 6.3 6.6 6.9 (6.6, 6.6) (6.9, 6.9)
Acute 63.5 63.6 67.1 69.9 (67.0, 67.3) (69.6, 70.2)
Inpatnt 161.0 160.8 160.8 160.9 (160.8, 160.8) (160.9, 161.0)
MMT 264.7 264.0 269.9 258.9 (268.7, 271.1) (256.5, 261.3)
CM 1399.0 1396.7 1323.9 1380.5 (1323.1, 1324.8) (1378.6, 1382.5)
ACT 89.0 89.7 89.0 89.6 (88.9, 89.1) (89.6, 89.6)
Family 1091.4 1089.6 1176.7 944.6 (1170.9, 1182.4) (937.9, 951.3)
Non-tr 4126.1 4129.5 4106.5 4290.7 (4100.7, 4112.2) (4283.5, 4297.8)

Finally we investigate different interarrival time distributions by modifying the

capacitated simulation model (using the original exponentially distributed service

times). In our queueing model, the time between arrivals—interarrival times—is

assumed to be exponentially distributed, i.e., 1/(zjL0) ∼ Exp(1/(zjL0)). Note that the

interarrival time is the reciprocal of the per capita rate times the calling popu-

lation L0. We test the same two distributions as above: Uniform with 1/(zjL0) ∼
U(0.9/(zjL0),

1.1/(zjL0)); and log-normal with 1/(zjL0) ∼ lnN (1/(zjL0),
2/(zjL0)).

The results are displayed in Table 5.13. Changing the arrival processes has

almost no effect on the DES model outcomes. The most plausible explanation is
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that the model is much less sensitive to the arrival process than it is to the service

times, because arrivals happen many times a day while service times can be months

or years in duration. And changing the way one or two dozen arrivals happen

throughout the day is not noticeable at the time scale of the longer term stations.

Table 5.13: Simulation—comparison of average number of clients in each station for
the capacitated queueing model and simulation model under different interarrival
time distributions.

Queue DES DES DES CI for CI for
Station Cap. 1/(zjL0)∼Exp 1/(zjL0)∼U 1/(zjL0)∼lnN 1/(zjL0)∼U 1/(zjL0)∼lnN
Police 2.4 2.4 2.3 2.4 (2.3, 2.4) (2.3, 2.4)
CrimJst 296.7 297.4 297.2 296.8 (296.3, 298.0) (295.5, 298.1)
ED 6.3 6.3 6.3 6.3 (6.2, 6.3) (6.3, 6.3)
Acute 63.5 63.6 63.7 63.8 (63.5, 63.8) (63.6, 64.0)
Inpatnt 161.0 160.8 160.9 160.7 (160.8, 160.9) (160.7, 160.8)
MMT 264.7 264.0 264.8 262.7 (263.2, 266.4) (260.8, 264.5)
CM 1399.0 1396.7 1396.8 1396.3 (1396.7, 1396.9) (1396.2, 1396.5)
ACT 89.0 89.7 89.7 89.7 (89.7, 89.7) (89.7, 89.7)
Family 1091.4 1089.6 1094.0 1093.4 (1088.4, 1099.7) (1087.7, 1099.2)
Non-tr 4126.1 4129.5 4124.4 4127.8 (4119.5, 4129.2) (4122.3, 4133.4)

Note that in our queueing model, L0 is the calculated average size of the Non-

treatment Population, however, in the simulation model it is continually up-

dated to reflect the simulated size of this population as the model progresses. The

arrival rates are therefore constantly fluctuating.

In future versions of the DTES model it will be necessary to test additional

assumptions related to sub-populations, clients in long term treatment who depart

temporarily to visit other stations (e.g., Police, ED), and clients concurrently

receiving multiple treatments. We have shown that the DES model provides a

mechanism to test such assumptions, and that despite the shortcomings of this

approach, it is a valuable tool for verifying the correctness of our queueing model.

5.5 Scenarios

Scenario analysis is the process of comparing different scenarios to the “base case”

and to each other in order to draw conclusions about which system modification or

set of modifications is most likely to achieve the best outcomes. It is frequently used

in many modelling applications, including those based on LPs and on simulation.
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Out of the many possibly interesting scenarios to study we limit our discussion to

a handful that represent the breadth and form of the procedural and policy changes

this model is able to explore. When we mention “long term treatments” we mean

MMT, CM, ACT, and Family Practice. We study each scenario in isolation

(not cumulatively).

Scenarios:

1. Increased referrals: From the ED and Acute Care to Inpatient and

long term treatments.

2. Lower turnover: By increasing LoS in long term treatments.

3. Expanded INPATIENT capacity: Inpatient capacity is doubled.

4. Expanded long term capacity: CM and ACT capacities are both in-

creased.

5. Urgent Response Centre: A facility is added that accepts clients from the

Police and refers them on to other stations.

6. Decreased ED use: ED per capita total arrival rate is cut in half, to

approximate the effect of a very successful drop-in clinic program or of other

interventions that reduce the need for this service.

7. Decreased Crime: Crime costs and Criminal Justice rates are reduced to

see how much the criminalization of this population affects outcomes.

8. Uncapacitated model: Capacities on Inpatient, CM, and ACT are re-

moved so that the entire network is free of capacity restrictions (this scenario

is the same as the uncapacitated queueing network compared to the first DES

model discussed in §5.4.2, but with the FPM constraint).

Combination Scenarios

A. Increased referrals and Expanded long term capacity

B. Increased referrals and Lower turnover

C. Expanded INPATIENT capacity and Expanded long term capacity
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D. Increased referrals, Lower turnover, Expanded long term capacity,

Decreased ED use, and Decreased Crime

E. All scenarios (excluding Uncapacitated)

The framework we use for creating scenarios is quite simple: For each scenario

we create a copy of the model that links back to the base model for all parameter

values. We then adjust only the desired inputs and/or model structure accordingly.

The one additional adjustment is that the scenarios all use the per capita external

arrival rates (calculated in the base case), not just for ED (this one is provided as

an input), but also for Police and Other Entry. In this way we can realistically

investigate changes to the system that increase or decrease the size of the Non-

treatment Population, based on the assumption that these arrival rates do

occur in the DTES on a per client basis.

Creating a copy of the model for each scenario that links back to our input

parameters makes it easy to run sensitivity analysis on these scenarios. We use the

same framework described in §5.3, but record the outputs from the scenario(s) of

interest in addition to the base case outputs.

5.5.1 Scenario Analysis Results

The scenarios we test vary in their effect on cost and QALYs. Clearly we would like

to identify a scenario that would be inexpensive, politically feasible, and procedurally

straightforward to implement and that includes the largest cost decrease and QALY

increase. However, to actually implement any of these scenarios would require at

least some investment in new resources, system changes, or new programs. At this

point we restrict our discussion to the outputs captured in our model, with the

caveat that the cost output does not represent the entire cost.

Table 5.14 lists each scenario, its description, and its predicted per capita cost

and QALYs. (As with other solution approaches, scenario analysis produces many

additional outputs.) Of note is that all scenarios reduce the cost (compared to the

base case) except for Scenario 2—Expanded Inpatnt capacity. This increase is

due to the high cost of the Inpatient station. The scenario with the largest cost

decrease is Combo D—a combination of Scenarios 1, 2, 4, 6, and 7. The predicted

per capita cost is $55.29, which represents an annual population cost of $151 million

(compared to $208 million for the base case). This substantial savings corresponds
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Table 5.14: Scenario analysis—costs and QALYs for individual scenarios and
combinations of scenarios.

Scenario Description Cost QALYs
Base Base case $75.93 18.1
Scenario 1 Inreased referrals $72.20 18.2
Scenario 2 Lower turnover $72.14 18.2
Scenario 3 Expanded Inpatnt capacity $79.40 18.1
Scenario 4 Expanded long term capacity $74.67 18.1
Scenario 5 Urgent Response Centre $75.23 18.1
Scenario 6 Decreased ED use $72.94 18.0
Scenario 7 Decreased crime $65.25 18.1
Scenario 8 Uncapacitated $77.25 18.2
Combo A Increased referrals & expanded long term cap. $70.18 18.3
Combo B Inreased referrals & lower turnover $67.79 18.3
Combo C Expanded Inpatnt & long term capacities $77.38 18.2
Combo D Scenarios 1, 2, 4, 6, 7 $55.42 18.4
Combo E All scenarios (excluding “uncapacitated”) $56.70 18.5

to a predicted per capita lifetime QALY increase of 0.3, which is better than with

most of the other scenarios.

This savings, compared to the current situation, ignores the costs associated

with implementing programs that would bring about the increased referrals, lower

turnover, etc. (if such changes are even possible). But it also emphasizes that the

best scenario need not involve doing all of the things that seem like good ideas

(note that Combo E—All scenarios—is inferior in terms of cost but not in terms

of QALYs). Furthermore if shows how several changes made in chorus can have a

smaller impact than the sum of each considered individually: The per person cost

savings of Combo D is about $21, whereas the sum of the savings of the individual

scenarios comprising it is about $23. However sometimes the reverse is true. For

instance, Combo B produces more savings than the combined savings of Scenarios

1 and 2. These two examples illustrate the extent to which the results of such a

system can be nonlinear, and why it is crucial to model all of the interactions rather

than examining individual programs and services.

As in the sensitivity analysis, the QALYs are fairly consistent, likely because of

the conservative approach we use in modelling health outcomes.

Several other outputs are also interesting to compare across scenarios. Table

5.15 lists the projected average Non-treatment Population size, as well as the
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Table 5.15: Scenario analysis—NON-TREATMENT POPULATION size and average client
counts for certain stations.

Scenario Non-tr CrimJst Inpatnt MMT CM ACT Family
Base 4,126 297 161 265 1,399 89 1,091
Scenario 1 3,704 266 161 346 1,399 89 1,470
Scenario 2 3,695 266 161 360 1,399 89 1,466
Scenario 3 4,019 289 288 283 1,399 89 1,063
Scenario 4 3,798 273 161 246 1,682 269 1,005
Scenario 5 4,054 291 161 295 1,399 89 1,140
Scenario 6 4,180 301 161 225 1,399 89 1,106
Scenario 7 4,169 239 161 267 1,399 89 1,103
Scenario 8 3,611 260 258 254 1,674 425 955
Combo A 3,208 231 161 304 1,999 269 1,273
Combo B 3,203 230 161 455 1,399 89 1,906
Combo C 3,690 265 264 260 1,711 269 976
Combo D 2,844 163 161 344 1,999 269 1,693
Combo E 2,749 158 215 382 1,999 269 1,702

projected average number of clients in Criminal Justice and each of the medium

and long term treatments. From this table it is clear that Combo D is the lowest cost

scenario because it shifts clients out of Non-tr and into the long term treatments.

But we can also see that this combination scenario would require more Family

Practice resources than are currently estimated to be in use.

The last set of outputs we compare across scenarios are the balking rates for

the three capacitated stations. These rates are calculated as the “balk” station

arrival rate divided by the “continue” station arrival rate for each of Inpatient,

CM, and ACT. Table 5.16 shows how many of the scenarios actually increase the

balking rates as they divert more clients to, or decrease turnover at, these stations.

A hyphen signifies the arrivals at that station, in that scenario, are low enough that

we can assume no clients balk.

The specific parameter and/or structure changes introduced in each scenario

could be adjusted; different values would no doubt result in different outcomes.

Table 5.17 describes these specifications for each scenario including the factors used

to increase or decrease various inputs. A single table containing all of the outputs

discussed above is included in Appendix F.
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Table 5.16: Scenario analysis—rate of balking (λjb/λjc) for capacitated stations, i.e.,
number of clients who balk for each client served.

Scenario Inpatnt λb/λc CM λb/λc ACT λb/λc

Base 0.8 0.3 3.9
Scenario 1 1.5 0.7 5.3
Scenario 2 0.6 0.8 5.6
Scenario 3 - 0.3 4.3
Scenario 4 0.7 - 0.5
Scenario 5 0.9 0.4 5.9
Scenario 6 0.3 0.2 3.9
Scenario 7 0.9 0.3 3.9
Scenario 8 - - -
Combo A 1.1 0.1 0.8
Combo B 1.1 1.2 7.3
Combo C - - 0.6
Combo D 0.3 0.3 1.5
Combo E - 0.3 2.2

5.5.2 Sensitivity Analysis of Scenarios

The sensitivity analysis we performed on the base case is intended to show that

even though the model may be sensitive to certain inputs, we can still rely on the

quality of the outputs, especially if we are aware of which input parameters we must

be mindful of. Performing sensitivity analysis on each scenario is often considered

unnecessary, especially given that we are most interested in comparing the main

outputs across scenarios that will all tend to be affected in the same direction, and

to a similar magnitude, given slight changes in the input parameter values. As with

the sensitivity analysis of groups of parameters, we proceed with this exercise hoping

to find no surprises.

We perform single parameter sensitivity analysis (as per §5.3) on each scenario.

The results of these analyses are presented in Appendix F (each scenario occupies

a full-page table). There are indeed no surprises; the same parameters that have a

larger impact on the base case also tend to have a large impact on the scenarios. For

instance, the cost range associated with varying Cost Non-tr is fairly large (from

the base value of $0 up to $50). Similarly the cost range associated with varying the

Crime treat ratio is also somewhat large (from its base value of 0.33 up to a value of

1.0, representing equal crime rates for clients in long term treatment as for clients

in the Non-treatment Population). The population size also has a large effect
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Table 5.17: Scenario analysis—detailed description of parameter and model
structure changes for each scenario.

Scenario Parameter and structure changes
Base -

Scenario 1 Increase routing probabilities from {ED, Other, Acute} to
{Inpatnt, MMT, CM, ACT, Family} by a factor of 1.5.

Scenario 2 Increase LoS for {Inpatnt, MMT, CM, ACT, Family} by
a factor of 1.5.

Scenario 3 Increase Inpatnt capacity by a factor of 2.

Scenario 4 Increase capacity for CM to 2000 and for ACT to 270.

Scenario 5 Divert half of Police→ED clients to an urgent response
centre station for an average of one hour, and then on
to {Inpatnt (0.4), MMT (0.2), CM (0.2), ACT (0.1),
Family (0.1)}.

Scenario 6 Adjust ED arrivals by a factor of 0.5.

Scenario 7 Adjust CrimJst arrivals (via Police, leaving noncrime
arrivals as is) and adjust crime cost, both by a factor of 0.8.

Scenario 8 Remove capacities on {Inpatnt, CM, ACT}.

Combo A Scenario 1 & Scenario 4

Combo B Scenario 1 & Scenario 2

Combo C Scenario 3 & Scenario 4

Combo D Scenarios 1, 2, 4, 6, 7

Combo E Scenarios 1 – 7

on both cost and QALY outputs.

We do not present results for multiple parameter sensitivity analysis of scenarios.

Given the sheer number of permutations that might be considered we reserve this

capability for addressing specific concerns if and when they arise.

Overall, the same considerations discussed with respect to the sensitivity analysis

results for the base case also hold for the scenarios. This information is useful in

interpreting the scenario results, and will also be useful as we refine input values for

the next version of this model.
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5.6 Discussion

The most important implication of this chapter is that there are ways to save money

and improve health outcomes. This claim requires two caveats: 1) Costs of system

changes were not included and 2) the scope of this model is limited. Regardless,

we can see that the cost of not changing anything is very high. If a combination of

these scenarios were implemented—for instance, increased capacities in long term

treatment stations, programs to decrease turnover, an urgent response centre for the

police, and higher routing probabilities to specific programs—clients in the DTES

would surely benefit from more and longer treatment stays and from fewer trips to

the ED. Consequently, the strain on the ED and Acute Care would be lessened

a little bit. Depending on the costs of these changes, the overall cost to the system

could decrease while health outcomes increased.

One clear driver of the cost output is the crime cost. The sensitivity analysis

shows that this input affects the outputs, and Scenario 7 explores reducing this and

related parameters. The cost of crime is therefore important as an input, but it is

also important as a factor when we explore scenarios. Clearly, any procedural or

policy changes that can reduce this cost will have an impact on the overall system

cost.

One way to explore which scenarios are most beneficial is by creating efficient

frontiers. Figure 5.4 shows cost plotted against two different measures: QALYs

and Non-treatment Population size. We observe that Non-tr is an almost

perfect proxy for QALYs—the left and right charts are almost exact mirror images of

each other in which higher QALYs correspond to lower Non-tr. This relationship

suggests that any positive change in health outcomes will correspond to a decrease

in the Non-treatment Population.

Because it is difficult to quantify the trade-off between cost and QALYs, it is

useful to examine all scenarios that aren’t dominated by other scenarios (i.e., are

closest to the optimal corner of the chart using an arbitrary weighting for the two

axes). The black dotted line shows the efficient frontier for individual scenarios and

the grey dashed line shows it for combination scenarios. We observe that, when

considering the individual scenarios, there are four that stand out: S1, S2, S7, and

S8. For the combination scenarios the two that sit on the efficient frontier are CD

and CE.
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Figure 5.4: Scenario results and efficient frontiers for scenarios (black) and
combination scenarios (grey). Cost vs. QALYs (left); cost vs. Non-treatment
Population (right).
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These charts also help us explore trade-offs between scenarios. For instance

Scenarios 7 and 8 exemplify the competing goals of reducing costs and increasing

QALYs. The former reduces costs with almost no change in QALYs, while the latter

increases QALYs with a minor increase in cost. The ability to examine various

options in this manner is one of the strengths of this type of model.

Even with the limitations mentioned above, the sensitivity analysis demonstrates

that policy implications we draw from this model are robust against sensitive inputs.

In other words, while we may not know the exact routing probabilities or LoS, and we

consequently cannot predict the exact cost and QALY outcomes, the best scenarios

are generally still the best choices across a large range of inputs.

In subsequent research we will incorporate estimates for the costs of implemen-

tation into these (and other) scenarios. At this point it is clear that improvements

to the system likely involve increased capacities, lower turnover rates, ways to deal

with crime rates and crime costs, and reduced ED use. There are no surprises in

this list, however, as has been mentioned before, our model provides a method for

quantifying the effects of each and all of these changes in order to determine where

to expend resources and what to implement first.
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Chapter 6

Conclusion

Our research illustrates how strategic planning provides benefits in two very different

healthcare systems. In one system we plan career paths for skilled healthcare workers

for the next couple of years; in the other we assess and plan services and resources

for a marginalized population. We measure success in the first system by the soft

constraints we are able to meet and by the plan’s ability to handle variability in

staff leaves. These goals are indirectly related to better resource usage and improved

ability to deliver quality service, therefore they are also indirectly related to cost

and health outcomes. In the second system variability is incorporated into the

methodology, and we measure success directly in terms of predicted cost and health

outcomes.

In both applications we have chosen simple approaches for representing complex

aspects of the respective systems: The BCCA workforce planning model handles

variability in an MIP via a soft constraint that encourages redundancy in workforce

experience; the DTES queueing network is solved using two different approximations

that, when combined, allow for an LP formulation to achieve solutions almost

instantaneously, even though closed queueing networks are typically hard to solve.

6.1 Workforce Planning at the BCCA

For strategic workforce planning, our multi-period assignment problem with side

constraints and a GP solution approach incorporates the primary components neces-

sary in a radiation therapy setting. Our basic model—with duration, experience, and

redundancy constraints—is extended in our application to approximately 90 RTs,

14 areas, and 8 periods. We also provide guidance, informed by a simulation model

and regression analysis, on setting the redundancy parameter; at the Vancouver

Centre of the BCCA we have opted to use f = 2 to achieve a good balance between

robustness and over-training. The combination of constraints is a new contribution

to the workforce planning literature.
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The tool our team developed was used for three years and is considered valuable

for two main reasons: 1) It provides plans that are feasible, robust, and appealing

to the RTs; and 2) it saves the chief RT and resource therapists considerable time.

Providing a plan that achieves all of the goals defined by management has been

a great success for the Vancouver Centre. According to the chief RT, “The intro-

duction of a Radiation Therapy Staff Planning Model provides the chief therapists

the opportunity to plan the direction of each individual staff member over a period

of years. The advantages of this lie in the ability to use resources more effectively,

to enhance career development, to anticipate potential shortages in specialty areas

and train staff to fill those gaps before they appear, and to provide staff with a clear

map of their future direction within the workplace. The staffing model provides chief

therapists with a clear record of the progress and development of any staff member

and allows for personnel changes within the department to be effectively managed.”

Additionally, providing a rapid solution means the tool can help the department look

beyond the next few weeks. “Historically, the scheduling of radiation therapists has

required extensive amounts of time spent by chief therapists in planning the daily

and monthly schedules, a complex and often tedious process that has focused on the

coming month.” [101]

Although we have run the model beyond two years while returning timely so-

lutions, we find the two-year horizon is satisfactory. Because the casual staff tend

to fill areas that require less experience, most of the permanent staff already have

three or more years of experience. Given that it takes five to six years to acquire

experience at the highest level, the horizon is long enough to track this entire

trajectory. Furthermore, extending the model beyond two or three years could

introduce more variability, particularly from retirements. Nevertheless, rounding

heuristics [75], a looser solution gap, or additional constraints on staff eligibility (to

further restrict the solution space) could be useful should we need to lengthen the

planning horizon.

6.2 Strategic Planning in the DTES

Our queueing network model of health and criminal justice services in Vancouver’s

DTES demonstrates that a high-level quantitative approach can be very useful in

this setting. Containing ten of the most important and/or costly services and a
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finite population of 7,500 clients, this model produces cost and QALY outputs that

can be used to compare potential procedural or policy changes to the system.

This research provides two main contributions. The first contribution, to the

queueing network literature, is the LCQN approximation; the second contribution,

to the field of operations research healthcare, is the systems modelling approach for

a network of mental health and addiction services for a needy population.

Even with the caveats mentioned in Chapter 5 that the model is limited in scope

and doesn’t include all costs, we note several important policy implications: 1) The

Non-treatment Population must be reduced in size to decrease overall system

costs; 2) such a reduction must come from expanded long term treatment capacities

and probably from increased referrals to such programs; 3) the changes we explore

can help reduce ED usage, but only so far (i.e., additional programs to reduce ED

usage need to be explored); and 4) a combination of system improvements is required

to bring about meaningful cost and health improvements.

We created the model in Excel so that it is easy to share with other researchers

and decision-makers. Even though it is limited in scope, it nevertheless provides

useful insight into how the current system works and what effects might be felt from

different scenarios.

The model also demonstrates our new methodology—the LCQN approach— for

approximating closed queueing networks with certain characteristics. Extremely

fast solutions can be found for much larger networks, assuming some infinite-server

stations, some finite-server stations with many servers, and a large finite population

that is impatient (won’t wait but rather chooses to balk when services are full).

We demonstrate that the quality of the approximate solutions, given appropriate

network characteristics, are very close to the exact solutions.

Much of the value of this application is that it is a first step toward building a

more comprehensive model of the services in the DTES. On its own it demonstrates

the types of procedural and policy changes we can explore, and the potential benefits

from various changes. It supports the general consensus that treatment is less

expensive—and leads to better health outcomes—than not doing anything. It

also introduces new tools to this community. Finally it demonstrates that we

can quantify the outcomes of the various solutions that researchers, providers, and

politicians have proposed for the people of the DTES.
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6.3 Approximation Bounds and Ratios; Solution

Times

Solutions to the workforce planning model typically take one−two minutes. One

reason we are able to find solutions so quickly is that we are satisfied with near-

optimality. The solver stops when the solution is within 1% of optimality, though

it is worth noting that finding an optimal solution typically only doubles the total

solution time. Because the objective function involves arbitrarily-determined trade-

offs, we find that a 1% solution gap is perfectly acceptable. Furthermore, in light

of user adjustments (e.g., via forced-assignments), our solution gap is probably

narrower than it needs to be.

Solutions to the DTES queueing network take a fraction of a second, and because

the model uses an LP, the approach scales very well to much larger networks. We

did not include comparisons to exact approaches for solving large closed queueing

networks, though they would be slower. But we demonstrated that our new ap-

proximation approach of linearizing a closed queueing network is simple, fast, and

provides small gaps.

Compared to DES our queueing network algorithm is many times faster. Our

Excel model finds the solution for the base case as well as 13 additional scenarios,

for 300 sensitivity analysis instances, in under 40 seconds. That works out to over

100 solutions per second. In contrast, with the warm-up period of one year and

a further 20 years of simulation in each of 30 replications, a single solution from

the DES model takes about ten hours. If we were to do all of the scenario and

sensitivity analyses using this simulation model it would take 14 × 300 × 10 hours,

or over four years. Even using variance reduction techniques, a shorter run time,

and fewer replications, we would still need days, weeks, or months to perform these

analyses.

6.4 Lessons Learned and Challenges

These applications were not without challenge. At the BCCA we found that ease

of use and intuitive interfaces can be more important than the details of objective

costs or side constraints. As well, we discovered that the capability for the user to

“adjust” the resulting plan—using the second objective function—was indispensable.
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Figuring out how to represent certain rules of thumb as mathematical constraints

also required a lot of discussion in which we sometimes learned that the rule of

thumb was unnecessary, or at the least, misleading, given our modelling approach.

With the DTES model we learned a lot about the system while defining the

research question. Initial versions of the model were either too abstract to be

applicable or too detailed to be generalizable. The main challenges we faced were

in defining an appropriate scope and then finding suitable data inputs to populate

the model.

6.5 Future Work

We are working on sharing the workforce planning tool with other BCCA centres

around the province, and our team—the CIHR Team in Operations Research for

Improved Cancer Care—has recently created a daily scheduling model that will

interface, in the future, with this planning model in order to replace the manual

monthly process of scheduling the workforce.

The next version of the DTES queueing model will include additional health,

housing, and social services. We will also incorporate sub-populations, removing the

homogeneity assumption. This step will allow us to model different demographic

groups as well as clients with different types of needs and service usage patterns.

This next version will also remove some of the limitations around client flow, so

that a client could be in multiple treatments simultaneously (rather than in their

primary treatment only), or they could have Police, ED, or Criminal Justice

involvement while in long term treatment and then return to that treatment.

Future work on the queueing approximation (LCQN) involves several directions:

1) Establishing an appropriate result regarding the LP approximation for the full

network; 2) finding bounds for the entire network, and not only for a single station

(as in §4.2); 3) determining how to extend the queueing approximation to the multi-

class case, so that sub-populations can be represented; and 4) extending the network

to include clients concurrently in more than one station.

The overarching goal of the next version of the DTES model is to not only create

high-level policy recommendations, but to be able to use the model for more detailed

planning. To do so, costs must be all-inclusive, the scope must include all major

services, and population must include more detail so that different types of clients
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who interact with the system in unique ways are better understood and represented.

6.6 Applicability to Healthcare and Other

Industries

Beyond the BCCA centres, other healthcare workers—physicians, nurses, or techni-

cians—as well as other industries—education, hospitality, military, or others—would

benefit from the workforce planning methodology. Our basic model provides a

starting point for a staff planning application, and our BCCA implementation

illustrates some of the features and challenges one can expect to encounter.

The DTES model is also generalizable. It is immediately applicable to other

finite populations consuming healthcare resources within a network, such as other

marginalized urban populations. The approach would have to be modified if it were

applied to populations with different medical conditions where waiting for services

is the norm.

The queueing approximation we introduce certainly has applicability to other

industries. Any large closed network with high levels of balking and with some

stations operating at capacity could be modelled. Busy computer networks and

flexible manufacturing systems are prime examples.

Beyond the specifics of the models, we have demonstrated an approach to strate-

gic planning that is applicable to other healthcare systems. This approach involves

examining the goals and needs of each system, and also recognizing the appropriate

level a solution must fill: In an organization like the BCCA, the understanding

of OR tools is high, the system is well-organized, and solutions must fit neatly

onto specific problems with generally well-defined outcomes; in a situation like the

DTES, few people understand quantitative tools, the system is very decentralized,

and problems require a great deal of clarification before they can even be defined.

Regardless, these and other OR tools are able to address strategic planning issues

in healthcare under uncertainty.
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Appendix A

Alternate Formulation of

Experience Variables

The formulation of the experience variables in the basic model uses binary variables

z to denote when each RT i has the required level of experience in area k for area j

by period t. Constraint (2.7) forces z to be zero when the experience is not sufficient.

Constraint (2.8) only allows assignment if the experience is sufficient. However, this

restriction can be represented with continuous variables instead of binary variables,

which would be preferable were it not for the robustness constraint also requiring

the binary form of z.

Let z′ denote a continuous (positive) variable that can replace z:

z′i,k,t = amount of experience RT i has in area k by period t (A.1)

z′i,k,t ≥ 0 ∀i, k, t (A.2)

The following constraints then replace (2.7) and (2.8):

z′i,k,t = Est(i, k) +
t

∑
u=1

xi,k,u ∀i, k, t (A.3)

Ereq(j, k) ⋅ xi,j,t ≤ z′i,k,t ∀i, j, k, t ∶ k Exp⇁j (A.4)

It is easy to see that (A.3) and (A.4) could actually be combined, and the variables

z′ removed entirely. As long as these variables weren’t required elsewhere in the

model, the entire experience requirement could be captured in a flow constraint

represented thus:

Ereq(j, k) ⋅ xi,j,t ≤ Est(i, k) +
t

∑
u=1

xi,k,u ∀i, j, k, t ∶ k Exp⇁j (A.5)

This alternative formulation leads to solution time improvements of about 15%.
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Appendix B

Full BCCA Model

The full BCCA model uses the same variables as the basic model, but includes

several additional ones as well. Additional violation variables are required: v(0)

penalizes the system for exceeding the minimum staffing demand requirements, ;

v(1) and v(2) are unchanged; v(3) tracks violations of the forced assignments; v(4)

tracks violations of the requirement that each RT should work in the treatment area

at least once per year.

The model includes all of the original constraints and some new ones as well.

The original constraints that have been modified have been renumbered with an “a”

or “b”:

s.t. ∑
j

xi,j,t ≤ 1 ∀i, t (2.2a)

∑
i

P (i) ⋅ xi,j,t =Dmin(j, t) + v(0)j,t ∀j, t (2.3a)

∑
i

P (i) ⋅ xi,j,t ≤Dmax(j, t) ∀j, t (2.3b)

xi,j,t − xi,j,t−1 ≤ yi,j,t ∀i, j, t (2.4)

t+Smin(j)−1

∑
u=t

xi,j,u ≥ Smin(j) ⋅ yi,j,t ∀i, j, t (2.5)

t+Smax(j)
∑
u=t

xi,j,u ≤ Smax(j) + v(1)i,j,t ∀i, j, t (2.6)

Ereq(j, k) ⋅ zi,j,k,t ≤ Est(i, k) + P (i) ⋅
t

∑
u=1

xi,k,u ∀i, j, k, t ∶ k Exp⇁j (2.7a)

xi,j,t ≤ zi,j,k,t ∀i, j, k, t ∶ k Exp⇁j (2.8)

∑
i

P (i) ⋅ zi,j,k,t ≥ f ⋅Dmin(j, t) − v(2)j,k,t ∀j, k, t ∶ k Exp⇁j (2.9a)

xi,j,0 = 1 ∀i, j ∶ i is initially in j (B.1)

xi,j,t ≥ 1 − v(3)i,j,t ∀i, j, t ∈ F (i, j, t) (B.2)

xi,j,t ≤ A(i, j, t) ∀i, j, t (B.3)
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Appendix B. Full BCCA Model

t+3

∑
u=t
xi,treat,u ≥ 1 − v(4)i,t ∀i, t ∈ {1,5,9, . . .} (B.4)

x, x̄, x, y, z ∈ {0,1}; v(0), v(1), v(2), v(3), v(4) ≥ 0

The first objective function in the BCCA application balances five types of violations

against each other:

min C(0)∑
j,t

v
(0)
j,t +C(1)∑

i,j,t

v
(1)
i,j,t +C(2) ∑

j,k,t

v
(2)
j,k,t +C

(3)∑
i,j,t

v
(3)
i,j,t +C(4)∑

i,t

v
(4)
i,t (B.5)

The second objective function, introduced in §3.1.2, allows the user to make minor

changes and then find a similar solution. Because the previous solution was found

using violation penalties, these penalties can now be ignored. However, violations

of forced assignments, v(3), must be retained so that when the user adjusts the

plan—primarily through forced assignments—these adjustments can be realized:

min C(a)∑
i,j,t

[xi,j,t +X(i, j, t) − 2xi,j,tX(i, j, t)] +C(b)∑
i,j,t

v
(3)
i,j,t (B.6)

The additional constants in the full BCCA model are P (i), a ratio between

0 and 1 to handle part-time staff, where a value of 1 represents a full-time RT;

Dmax(j, t), the upper bound on staffing demand; and A(i, j, t), a matrix with 0-

1 entries representing all eligible assignments that is generated from several input

tables in the Excel application. An alternate approach would be to restrict each

constraint to the eligible assignments, however, we have chosen this simple notation

for clarity in the formulation.
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Appendix C

Converting to 2011 Costs

In order to compare apples to apples, all cost figures taken from the literature were

converted to 2011 Canadian dollars.

Costs used were either presented in Canadian dollars (CAD) or United States

dollars (USD), so those in the latter currency were converted to the former currency

using historical yearly averages from the Bank of Canada (1997 - 2011) [8] and from

CanadianForex (1992 - 1996) [22]. Bank of Canada only provides annual exchange

rates as far back as 1997, however, the figures from CanadianForex match those of

Bank of Canada during that time.

To convert costs to 2011 dollars we used the Canadian CPI for all items, from

Statistics Canada [102]. Table C.1 shows the exchange rate and index by year along

with the calculated index conversion factor.

Table C.1: Exchange rates and CPI used to adjust cost figures to 2011 CAD.
Year USD-CAD Rate CPI CPI Factor
1992 1.209 84 1.427
1993 1.290 85.6 1.401
1994 1.366 85.7 1.399
1995 1.373 87.6 1.369
1996 1.364 88.9 1.349
1997 1.385 90.4 1.326
1998 1.483 91.3 1.313
1999 1.486 92.9 1.291
2000 1.485 95.4 1.257
2001 1.548 97.8 1.226
2002 1.570 100 1.199
2003 1.402 102.8 1.166
2004 1.302 104.7 1.145
2005 1.212 107 1.121
2006 1.134 109.1 1.099
2007 1.075 111.5 1.075
2008 1.066 114.1 1.051
2009 1.142 114.4 1.048
2010 1.030 116.5 1.029
2011 0.989 119.9 1.000
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Appendix D

Excel Queueing Model

D.1 Solving the LP

We use Excel to formulate and solve the LP model of the queueing network because

the problem is well within the size limitations of Excel’s built-in solver. This solver,

an add-in from Frontline Systems, has a limit of 200 decision variables; our model

only has 20—one for each λ (16, including split stations), one for each z (3), and

one for the L0 variable.

Because we use macros to run sensitivity analysis, it is important that the solver

be accessible from Visual Basic for Applications (VBA), the programming language

of Excel macros. However, even though it is accessible, it ends up being fairly slow.

Additionally, on a Mac the solver add-in runs as a separate application, adding

additional overhead and making VBA calls more complex. We therefore developed

a different way to solve the LP.

Most of the constraints in the LP are equality constraints, so these must be

binding at any solution. We can therefore easily examine all possible extreme points

by looking at all binding/non-binding permutations of the remaining inequality

constraints. As discussed in §4.1.4, there are J+2J̄+Z+1 variables and J+3J̄+Z+1

constraints. Each extreme point must have at least as many binding constraints as

variables: Specifically, there are J + J̄ +Z +1 equality constraints so (at least) J̄ out

of the total 2J̄ inequalities must be at equality in any extreme point solution. We

simply evaluate all (2J̄
J̄
) = (6

3
) = 20 permutations to see which feasible one has the

lowest objective function value.

It turns out to be much faster to examine all of these extreme points using

matrix functions in a spreadsheet than to call the solver. To do so, we have 20

square matrices lined up vertically below the base case (and below each scenario)

that cover all permutations of these inequality constraints. For each permutation

the spreadsheet computes the objective function value and checks for feasibility.

The feasible extreme point with the best objective function value is chosen as the
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optimal solution.

Because this solution is found entirely using spreadsheet functions, it happens

almost instantaneously for a model of this small size. It is in this way that we are

able to average about 100 solutions per second when running the sensitivity analysis

macro.

D.2 Other Excel Model Notes

The external arrival inputs are supposed to represent only external arrivals, i.e.,

only those that come from the Non-treatment Population but not those that

come from other stations within the network. The ED per capita arrival rate we

identified as a data input actually represents the aggregate arrival rate. We therefore

modified the corresponding constraint to allow the model to use this rate directly.

Rather than use zEDL0 − ζED = 0, we use zEDL0 − λED = 0.

External arrival rates for Police and Other Entry are given in absolute

terms (e.g., ζPolice = 21.7). We use these absolute arrival numbers in the base case,

but calculate the per capita rates based on L0. These per capita rates are used

throughout the scenarios and also in the DES.

Figure D.1 is a screen shot of the base case as it is set up in Excel. The variables

are shown across the top in row 2, and the constraints are shown one per row starting

in row 6. Cost and QALY outcomes are calculated at the bottom. The values for

the λ̄ parameters are calculated based on station capacities at the far right.
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Figure D.1: Screen shot of Excel queueing model showing the base case.
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Appendix E

Simulation with Alternate Inputs

In order to further validate the quality of our queueing network approximation

approach we compare the queueing model (with FPM and capacitated station

approximations) to the DES model (with Markovian arrivals and service times)

using a very different set of input parameters. These parameters are not chosen to

be realistic. We maintain the same population size, and leave the same three stations

capacitated. Beyond these similarities, each arrival rate, routing probability, length

of stay, and station capacity is either doubled or halved (based on a virtual coin flip,

maintaining feasible routing probabilities if any sums were to exceed 1.0).

Table E.1: Simulation—comparison of capacitated queueing model with the
capacitated simulation model alternate other input parameters.

Queue DES DES
Station Other Other Other CI % Dif.
Police 2.4 2.3 (2.3, 2.4) −0.1%
CrimJst 150.4 150.0 (149.1, 150.9) −0.2%
ED 8.5 8.6 (8.6, 8.6) +0.5%
Acute 171.9 172.6 (172.4, 172.8) +0.4%
Inpatnt 80.0 80.8 (80.8, 80.8) +1.0%
MMT 586.8 590.7 (589.1, 592.3) +0.7%
CM 699.0 699.9 (699.9, 699.9) +0.1%
ACT 44.0 44.7 (44.7, 44.7) +1.6%
Family 136.4 135.9 (134.3, 137.5) −0.4%
Non-tr 5620.7 5614.5 (5612.5, 5616.5) −0.1%

The results of this comparison are shown in Table E.1. The differences are

negligible, and even though some are statistically significant, they are all practically

insignificant for our purposes. For example, the difference between the two ap-

proaches for MMT is only four clients, a number that is smaller than the presumed

error in related inputs.

Table E.2 shows the original and alternate input parameters for this comparison.
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Table E.2: Alternate instance of input parameters for queueing model and DES.
Parameter Units Base Value Alt. Value

External Arrival Rate

Police /day 21.7 × 1/2 = 10.85
ED /person/day 0.0091 × 2 = 0.0182

Other /day 10.7 × 1/2 = 5.35
Routing Probability

Police→CrimJst 0.22 × 1/2 = 0.11

Police→ED 0.05 × 1/2 = 0.025
ED→Acute 0.14 × 2 = 0.28
ED→Inpatnt 0.05 × 2 = 0.1

Other→ED 0.11 × 1/2 = 0.055

Other→Inpatnt 0.11 × 1/2 = 0.055
Other→MMT 0.04 × 2 = 0.08

Other→CM 0.1 × 1/2 = 0.05
Other→ACT 0.01 × 2 = 0.02

Other→Family 0.08 × 1/2 = 0.04

Acute→Inpatnt 0.05 × 1/2 = 0.025
Acute→MMT 0.05 × 2 = 0.1
Acute→CM 0.05 × 2 = 0.1
Inpatnt→MMT 0.05 × 2 = 0.1

Inpatnt→CM 0.05 × 1/2 = 0.025

Inpatnt→ACT 0.01 × 1/2 = 0.005
Length of Stay
Police hours 2.6 × 2 = 5.2
CrimJst days 63 × 2 = 126

ED hours 4 × 1/2 = 2
Other - - -

Acute days 12 × 1/2 = 6

Inpatnt days 89 × 1/2 = 44.5

MMT days 338 × 1/2 = 169
CM days 1275 × 2 = 2550

ACT days 3464 × 1/2 = 1732

Family days 1275 × 1/2 = 637.5
Population

CCD population people 7500 7500
Station Capacity

Inpatnt beds 162 × 1/2 = 81

CM people 1400 × 1/2 = 700

ACT people 90 × 1/2 = 45
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Appendix F

Scenario Analysis—Extras

This appendix provides additional data on the scenario analyses performed in Chap-

ter 5. Table F.1 summarizes all of the scenarios analysis results.

Table F.1: Scenario analysis—costs, QALYs, population and station counts, and
balking rates. B0 is the base case; S1–S8 are the scenarios; CA–CD are the
combination scenarios.

ID Cost QALY NON
CRIM

JST
INP MMT CM ACT FAM

INP
λb/λc

CM
λb/λc

ACT
λb/λc

B0 $75.93 18.1 4126 297 161 265 1399 89 1091 0.8 0.3 3.9
S1 $72.20 18.2 3704 266 161 346 1399 89 1470 1.5 0.7 5.3
S2 $72.14 18.2 3695 266 161 360 1399 89 1466 0.6 0.8 5.6
S3 $79.40 18.1 4019 289 288 283 1399 89 1063 - 0.3 4.3
S4 $74.67 18.1 3798 273 161 246 1682 269 1005 0.7 - 0.5
S5 $75.23 18.1 4054 291 161 295 1399 89 1140 0.9 0.4 5.9
S6 $72.94 18.0 4180 301 161 225 1399 89 1106 0.3 0.2 3.9
S7 $65.25 18.1 4169 239 161 267 1399 89 1103 0.9 0.3 3.9
S8 $77.25 18.2 3611 260 258 254 1674 425 955 - - -
CA $70.18 18.3 3208 231 161 304 1999 269 1273 1.1 0.1 0.8
CB $67.79 18.3 3203 230 161 455 1399 89 1906 1.1 1.2 7.3
CC $77.38 18.2 3690 265 264 260 1711 269 976 - - 0.6
CD $55.42 18.4 2844 163 161 344 1999 269 1693 0.3 0.3 1.5
CD $56.70 18.5 2749 158 215 382 1999 269 1702 - 0.3 2.2

We performed sensitivity analysis on all of the scenarios. Tables F.2 to F.14

summarize the results of these analyses. In each table the “Base Range” shows the

values used in the base case and in the scenarios. When a particular scenario adjusts

an input, the “Adjusted Range” is also displayed (otherwise “—” is shown).
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Table F.2: Sensitivity analysis of Scenario 1—Inreased referrals.
Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $61.65 – $74.56 18.8 – 18.0
Arrivals Police 20 – 30 — $72.11 – $72.64 18.2 – 18.2
Arr. /capita ED 0.005 – 0.015 — $69.77 – $75.53 18.2 – 18.2
Arrivals Other 5 – 15 — $79.04 – $67.61 18.0 – 18.3
Cap Inpatnt 90 – 190 — $70.33 – $72.92 18.1 – 18.2
Cap CM 1100 – 2000 — $73.75 – $69.52 18.1 – 18.3
Cap ACT 60 – 100 — $72.26 – $72.18 18.2 – 18.2
LoS Police 0.1 – 0.3 — $72.20 – $72.15 18.2 – 18.2
LoS CrimJst 50 – 80 — $72.30 – $72.06 18.2 – 18.2
LoS ED 0.1 – 0.5 — $72.22 – $72.07 18.2 – 18.2
LoS Acute 8 – 16 — $70.77 – $73.61 18.2 – 18.2
LoS Inpatnt 60 – 120 — $72.11 – $72.24 18.2 – 18.2
LoS MMT 180 – 720 — $73.09 – $70.18 18.1 – 18.3
LoS CM 365 – 2190 — $76.06 – $72.20 18.0 – 18.2
LoS ACT 2000 – 5000 — $72.20 – $72.20 18.2 – 18.2
LoS Family 365 – 2190 — $80.39 – $64.87 17.9 – 18.4
Cost coef Police 400 – 800 — $71.57 – $72.61 18.2 – 18.2
Cost CrimJst 50 – 125 — $72.05 – $74.72 18.2 – 18.2
Cost coef ED 300 – 600 — $71.81 – $73.15 18.2 – 18.2
Cost Acute 500 – 1000 — $71.08 – $74.88 18.2 – 18.2
Cost Inpatnt 200 – 500 — $70.29 – $76.73 18.2 – 18.2
Cost MMT 8 – 18 — $71.78 – $72.24 18.2 – 18.2
Cost CM 18 – 28 — $71.45 – $73.32 18.2 – 18.2
Cost ACT 30 – 60 — $72.01 – $72.36 18.2 – 18.2
Cost Family 0.5 – 10 — $71.90 – $73.76 18.2 – 18.2
Cost Non-tr 0 – 50 — $72.20 – $96.89 18.2 – 18.2
Cost Non-tr crime 50 – 90 — $54.69 – $80.63 18.2 – 18.2
Police→CrimJst 0.2 – 0.4 — $72.24 – $71.78 18.2 – 18.2
Police→ED 0.01 – 0.1 — $72.20 – $72.20 18.2 – 18.2
CrimJst→Inpatnt 0 – 0.1 — $72.20 – $72.20 18.2 – 18.2
ED→Acute 0.1 – 0.2 — $71.13 – $73.68 18.2 – 18.2
ED→Inpatnt 0.01 – 0.1 0.015 – 0.15 $72.20 – $72.20 18.2 – 18.2
Other→ED 0.05 – 0.15 — $72.20 – $72.20 18.2 – 18.2
Other→Inpatnt 0.05 – 0.15 0.075 – 0.225 $72.20 – $72.20 18.2 – 18.2
Other→MMT 0.01 – 0.1 0.015 – 0.15 $72.99 – $70.66 18.1 – 18.3
Other→CM 0.05 – 0.2 0.075 – 0.3 $72.63 – $72.20 18.2 – 18.2
Other→ACT 0.005 – 0.02 0.0075 – 0.03 $72.20 – $72.20 18.2 – 18.2
Other→Family 0.05 – 0.13 0.075 – 0.195 $76.38 – $65.77 18.1 – 18.4
Acute→Inpatnt 0.01 – 0.1 0.015 – 0.15 $72.20 – $72.20 18.2 – 18.2
Acute→MMT 0.01 – 0.1 0.015 – 0.15 $72.72 – $71.57 18.1 – 18.2
Acute→CM 0.01 – 0.1 0.015 – 0.15 $72.20 – $72.20 18.2 – 18.2
Inpatnt→MMT 0.01 – 0.1 — $72.34 – $72.02 18.2 – 18.2
Inpatnt→CM 0.01 – 0.1 — $72.20 – $72.20 18.2 – 18.2
Inpatnt→ACT 0.005 – 0.02 — $72.20 – $72.20 18.2 – 18.2
Crime treat ratio 0.2 – 1 — $67.51 – $96.34 18.2 – 18.2
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Table F.3: Sensitivity analysis of Scenario 2—Lower turnover.
Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $58.79 – $74.51 18.8 – 18.1
Arrivals Police 20 – 30 — $72.05 – $72.57 18.2 – 18.2
Arr. /capita ED 0.005 – 0.015 — $69.71 – $75.46 18.2 – 18.2
Arrivals Other 5 – 15 — $78.96 – $67.56 18.0 – 18.3
Cap Inpatnt 90 – 190 — $70.30 – $72.85 18.2 – 18.2
Cap CM 1100 – 2000 — $73.69 – $69.46 18.1 – 18.3
Cap ACT 60 – 100 — $72.19 – $72.12 18.2 – 18.2
LoS Police 0.1 – 0.3 — $72.14 – $72.09 18.2 – 18.2
LoS CrimJst 50 – 80 — $72.24 – $72.00 18.2 – 18.2
LoS ED 0.1 – 0.5 — $72.16 – $72.01 18.2 – 18.2
LoS Acute 8 – 16 — $70.71 – $73.54 18.2 – 18.2
LoS Inpatnt 60 – 120 — $72.02 – $72.20 18.2 – 18.2
LoS MMT 180 – 720 270 – 1080 $73.05 – $70.06 18.1 – 18.3
LoS CM 365 – 2190 547.5 – 3285 $75.95 – $72.14 18.0 – 18.2
LoS ACT 2000 – 5000 3000 – 7500 $72.14 – $72.14 18.2 – 18.2
LoS Family 365 – 2190 547.5 – 3285 $80.31 – $64.83 18.0 – 18.4
Cost coef Police 400 – 800 — $71.51 – $72.55 18.2 – 18.2
Cost CrimJst 50 – 125 — $71.99 – $74.65 18.2 – 18.2
Cost coef ED 300 – 600 — $71.75 – $73.09 18.2 – 18.2
Cost Acute 500 – 1000 — $71.02 – $74.81 18.2 – 18.2
Cost Inpatnt 200 – 500 — $70.23 – $76.67 18.2 – 18.2
Cost MMT 8 – 18 — $71.70 – $72.18 18.2 – 18.2
Cost CM 18 – 28 — $71.39 – $73.26 18.2 – 18.2
Cost ACT 30 – 60 — $71.95 – $72.30 18.2 – 18.2
Cost Family 0.5 – 10 — $71.84 – $73.70 18.2 – 18.2
Cost Non-tr 0 – 50 — $72.14 – $96.77 18.2 – 18.2
Cost Non-tr crime 50 – 90 — $54.65 – $80.55 18.2 – 18.2
Police→CrimJst 0.2 – 0.4 — $72.17 – $71.72 18.2 – 18.2
Police→ED 0.01 – 0.1 — $72.14 – $72.14 18.2 – 18.2
CrimJst→Inpatnt 0 – 0.1 — $72.14 – $72.14 18.2 – 18.2
ED→Acute 0.1 – 0.2 — $71.08 – $73.62 18.2 – 18.2
ED→Inpatnt 0.01 – 0.1 — $71.70 – $72.14 18.2 – 18.2
Other→ED 0.05 – 0.15 — $72.14 – $72.14 18.2 – 18.2
Other→Inpatnt 0.05 – 0.15 — $72.14 – $72.14 18.2 – 18.2
Other→MMT 0.01 – 0.1 — $72.92 – $70.60 18.1 – 18.3
Other→CM 0.05 – 0.2 — $72.57 – $72.14 18.2 – 18.2
Other→ACT 0.005 – 0.02 — $72.14 – $72.14 18.2 – 18.2
Other→Family 0.05 – 0.13 — $76.31 – $65.73 18.1 – 18.4
Acute→Inpatnt 0.01 – 0.1 — $72.14 – $72.14 18.2 – 18.2
Acute→MMT 0.01 – 0.1 — $72.66 – $71.51 18.2 – 18.2
Acute→CM 0.01 – 0.1 — $72.14 – $72.14 18.2 – 18.2
Inpatnt→MMT 0.01 – 0.1 — $72.33 – $71.90 18.2 – 18.2
Inpatnt→CM 0.01 – 0.1 — $72.14 – $72.14 18.2 – 18.2
Inpatnt→ACT 0.005 – 0.02 — $72.14 – $72.14 18.2 – 18.2
Crime treat ratio 0.2 – 1 — $67.44 – $96.35 18.2 – 18.2
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Table F.4: Sensitivity analysis of Scenario 3—Expanded Inpatnt capacity.
Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $64.39 – $81.59 18.7 – 18.0
Arrivals Police 20 – 30 — $79.33 – $79.74 18.1 – 18.1
Arr. /capita ED 0.005 – 0.015 — $74.50 – $84.07 18.0 – 18.2
Arrivals Other 5 – 15 — $85.05 – $76.12 17.9 – 18.2
Cap Inpatnt 90 – 190 180 – 380 $76.55 – $79.36 18.1 – 18.1
Cap CM 1100 – 2000 — $81.36 – $76.72 18.0 – 18.2
Cap ACT 60 – 100 — $79.50 – $79.37 18.1 – 18.1
LoS Police 0.1 – 0.3 — $79.40 – $79.35 18.1 – 18.1
LoS CrimJst 50 – 80 — $79.58 – $79.16 18.1 – 18.1
LoS ED 0.1 – 0.5 — $79.43 – $79.24 18.1 – 18.1
LoS Acute 8 – 16 — $77.88 – $80.91 18.1 – 18.1
LoS Inpatnt 60 – 120 — $76.82 – $80.45 18.1 – 18.1
LoS MMT 180 – 720 — $80.35 – $77.20 18.1 – 18.2
LoS CM 365 – 2190 — $84.91 – $79.40 17.9 – 18.1
LoS ACT 2000 – 5000 — $79.40 – $79.40 18.1 – 18.1
LoS Family 365 – 2190 — $86.36 – $72.31 17.9 – 18.3
Cost coef Police 400 – 800 — $78.72 – $79.85 18.1 – 18.1
Cost CrimJst 50 – 125 — $79.25 – $82.14 18.1 – 18.1
Cost coef ED 300 – 600 — $78.98 – $80.44 18.1 – 18.1
Cost Acute 500 – 1000 — $78.19 – $82.31 18.1 – 18.1
Cost Inpatnt 200 – 500 — $75.99 – $87.50 18.1 – 18.1
Cost MMT 8 – 18 — $79.06 – $79.44 18.1 – 18.1
Cost CM 18 – 28 — $78.65 – $80.52 18.1 – 18.1
Cost ACT 30 – 60 — $79.21 – $79.57 18.1 – 18.1
Cost Family 0.5 – 10 — $79.19 – $80.53 18.1 – 18.1
Cost Non-tr 0 – 50 — $79.40 – $106.20 18.1 – 18.1
Cost Non-tr crime 50 – 90 — $61.30 – $88.12 18.1 – 18.1
Police→CrimJst 0.2 – 0.4 — $79.47 – $78.65 18.1 – 18.1
Police→ED 0.01 – 0.1 — $79.40 – $79.40 18.1 – 18.1
CrimJst→Inpatnt 0 – 0.1 — $79.40 – $80.37 18.1 – 18.1
ED→Acute 0.1 – 0.2 — $78.08 – $81.26 18.1 – 18.1
ED→Inpatnt 0.01 – 0.1 — $75.95 – $80.37 18.1 – 18.1
Other→ED 0.05 – 0.15 — $79.40 – $79.40 18.1 – 18.1
Other→Inpatnt 0.05 – 0.15 — $77.95 – $80.35 18.1 – 18.1
Other→MMT 0.01 – 0.1 — $80.16 – $77.87 18.1 – 18.2
Other→CM 0.05 – 0.2 — $80.69 – $79.40 18.1 – 18.1
Other→ACT 0.005 – 0.02 — $79.40 – $79.40 18.1 – 18.1
Other→Family 0.05 – 0.13 — $83.07 – $73.23 18.0 – 18.3
Acute→Inpatnt 0.01 – 0.1 — $78.93 – $79.99 18.1 – 18.1
Acute→MMT 0.01 – 0.1 — $79.91 – $78.78 18.1 – 18.1
Acute→CM 0.01 – 0.1 — $79.40 – $79.40 18.1 – 18.1
Inpatnt→MMT 0.01 – 0.1 — $79.69 – $79.04 18.1 – 18.1
Inpatnt→CM 0.01 – 0.1 — $79.40 – $79.40 18.1 – 18.1
Inpatnt→ACT 0.005 – 0.02 — $79.40 – $79.40 18.1 – 18.1
Crime treat ratio 0.2 – 1 — $75.32 – $100.43 18.1 – 18.1
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Table F.5: Sensitivity analysis of Scenario 4—Expanded long term capacity.
Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $64.21 – $76.39 18.8 – 18.0
Arrivals Police 20 – 30 — $74.58 – $75.14 18.2 – 18.1
Arr. /capita ED 0.005 – 0.015 — $72.50 – $77.54 18.1 – 18.2
Arrivals Other 5 – 15 — $82.25 – $70.04 17.9 – 18.3
Cap Inpatnt 90 – 190 — $72.95 – $75.34 18.1 – 18.2
Cap CM 1100 – 2000 2000 – 2000 $75.23 – $73.88 18.1 – 18.2
Cap ACT 60 – 100 270 – 270 $74.73 – $74.65 18.1 – 18.2
LoS Police 0.1 – 0.3 — $74.68 – $74.63 18.1 – 18.1
LoS CrimJst 50 – 80 — $74.77 – $74.55 18.2 – 18.1
LoS ED 0.1 – 0.5 — $74.70 – $74.54 18.2 – 18.1
LoS Acute 8 – 16 — $73.21 – $76.12 18.1 – 18.2
LoS Inpatnt 60 – 120 — $74.42 – $74.81 18.2 – 18.1
LoS MMT 180 – 720 — $75.35 – $73.09 18.1 – 18.3
LoS CM 365 – 2190 — $80.47 – $73.42 17.9 – 18.2
LoS ACT 2000 – 5000 — $74.67 – $74.67 18.1 – 18.1
LoS Family 365 – 2190 — $80.25 – $68.98 18.0 – 18.3
Cost coef Police 400 – 800 — $74.03 – $75.09 18.1 – 18.1
Cost CrimJst 50 – 125 — $74.53 – $77.26 18.1 – 18.1
Cost coef ED 300 – 600 — $74.27 – $75.66 18.1 – 18.1
Cost Acute 500 – 1000 — $73.53 – $77.43 18.1 – 18.1
Cost Inpatnt 200 – 500 — $72.76 – $79.20 18.1 – 18.1
Cost MMT 8 – 18 — $74.38 – $74.71 18.1 – 18.1
Cost CM 18 – 28 — $73.78 – $76.02 18.1 – 18.1
Cost ACT 30 – 60 — $74.10 – $75.18 18.1 – 18.1
Cost Family 0.5 – 10 — $74.47 – $75.75 18.1 – 18.1
Cost Non-tr 0 – 50 — $74.67 – $99.99 18.1 – 18.1
Cost Non-tr crime 50 – 90 — $56.95 – $83.21 18.1 – 18.1
Police→CrimJst 0.2 – 0.4 — $74.71 – $74.29 18.2 – 18.1
Police→ED 0.01 – 0.1 — $74.67 – $74.67 18.1 – 18.1
CrimJst→Inpatnt 0 – 0.1 — $74.67 – $74.67 18.1 – 18.1
ED→Acute 0.1 – 0.2 — $73.80 – $75.86 18.1 – 18.2
ED→Inpatnt 0.01 – 0.1 — $74.37 – $74.67 18.1 – 18.1
Other→ED 0.05 – 0.15 — $74.67 – $74.67 18.1 – 18.1
Other→Inpatnt 0.05 – 0.15 — $74.67 – $74.67 18.1 – 18.1
Other→MMT 0.01 – 0.1 — $75.26 – $73.50 18.1 – 18.2
Other→CM 0.05 – 0.2 — $77.21 – $73.42 18.0 – 18.2
Other→ACT 0.005 – 0.02 — $74.67 – $74.67 18.1 – 18.1
Other→Family 0.05 – 0.13 — $77.61 – $69.72 18.1 – 18.3
Acute→Inpatnt 0.01 – 0.1 — $74.67 – $74.67 18.1 – 18.1
Acute→MMT 0.01 – 0.1 — $75.06 – $74.20 18.1 – 18.2
Acute→CM 0.01 – 0.1 — $75.46 – $73.76 18.1 – 18.2
Inpatnt→MMT 0.01 – 0.1 — $74.81 – $74.50 18.1 – 18.2
Inpatnt→CM 0.01 – 0.1 — $74.96 – $74.32 18.1 – 18.2
Inpatnt→ACT 0.005 – 0.02 — $74.67 – $74.67 18.1 – 18.1
Crime treat ratio 0.2 – 1 — $70.12 – $98.15 18.1 – 18.1
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Table F.6: Sensitivity analysis of Scenario 5—Urgent Response Centre.
Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $64.02 – $77.33 18.7 – 17.9
Arrivals Police 20 – 30 — $75.18 – $75.43 18.1 – 18.1
Arr. /capita ED 0.005 – 0.015 0.0049 – 0.0149 $72.50 – $78.99 18.1 – 18.1
Arrivals Other 5 – 15 — $81.13 – $71.40 17.9 – 18.2
Cap Inpatnt 90 – 190 — $73.38 – $75.94 18.0 – 18.1
Cap CM 1100 – 2000 — $76.84 – $72.86 18.0 – 18.2
Cap ACT 60 – 100 — $75.29 – $75.20 18.1 – 18.1
LoS Police 0.1 – 0.3 — $75.23 – $75.18 18.1 – 18.1
LoS CrimJst 50 – 80 — $75.34 – $75.08 18.1 – 18.1
LoS ED 0.1 – 0.5 — $75.25 – $75.08 18.1 – 18.1
LoS Acute 8 – 16 — $73.69 – $76.75 18.1 – 18.1
LoS Inpatnt 60 – 120 — $75.14 – $75.27 18.1 – 18.1
LoS MMT 180 – 720 — $76.05 – $73.31 18.0 – 18.2
LoS CM 365 – 2190 — $79.74 – $75.23 17.9 – 18.1
LoS ACT 2000 – 5000 — $75.23 – $75.23 18.1 – 18.1
LoS Family 365 – 2190 — $81.78 – $68.74 17.9 – 18.3
Cost coef Police 400 – 800 — $74.54 – $75.67 18.1 – 18.1
Cost CrimJst 50 – 125 — $75.07 – $77.98 18.1 – 18.1
Cost coef ED 300 – 600 — $74.80 – $76.26 18.1 – 18.1
Cost Acute 500 – 1000 — $74.02 – $78.12 18.1 – 18.1
Cost Inpatnt 200 – 500 — $73.31 – $79.75 18.1 – 18.1
Cost MMT 8 – 18 — $74.87 – $75.26 18.1 – 18.1
Cost CM 18 – 28 — $74.48 – $76.34 18.1 – 18.1
Cost ACT 30 – 60 — $75.04 – $75.39 18.1 – 18.1
Cost Family 0.5 – 10 — $75.00 – $76.44 18.1 – 18.1
Cost Non-tr 0 – 50 — $75.23 – $102.25 18.1 – 18.1
Cost Non-tr crime 50 – 90 — $56.89 – $84.05 18.1 – 18.1
Police→CrimJst 0.2 – 0.4 — $75.27 – $74.76 18.1 – 18.1
Police→ED 0.01 – 0.1 0.005 – 0.05 $75.79 – $74.54 18.1 – 18.1
CrimJst→Inpatnt 0 – 0.1 — $75.23 – $75.23 18.1 – 18.1
ED→Acute 0.1 – 0.2 — $74.03 – $76.90 18.1 – 18.1
ED→Inpatnt 0.01 – 0.1 — $75.23 – $75.23 18.1 – 18.1
Other→ED 0.05 – 0.15 — $75.23 – $75.23 18.1 – 18.1
Other→Inpatnt 0.05 – 0.15 — $75.23 – $75.23 18.1 – 18.1
Other→MMT 0.01 – 0.1 — $75.87 – $73.93 18.0 – 18.2
Other→CM 0.05 – 0.2 — $76.17 – $75.23 18.0 – 18.1
Other→ACT 0.005 – 0.02 — $75.23 – $75.23 18.1 – 18.1
Other→Family 0.05 – 0.13 — $78.47 – $69.81 18.0 – 18.2
Acute→Inpatnt 0.01 – 0.1 — $75.23 – $75.23 18.1 – 18.1
Acute→MMT 0.01 – 0.1 — $75.66 – $74.71 18.1 – 18.1
Acute→CM 0.01 – 0.1 — $75.23 – $75.23 18.1 – 18.1
Inpatnt→MMT 0.01 – 0.1 — $75.37 – $75.04 18.1 – 18.1
Inpatnt→CM 0.01 – 0.1 — $75.23 – $75.23 18.1 – 18.1
Inpatnt→ACT 0.005 – 0.02 — $75.23 – $75.23 18.1 – 18.1
Crime treat ratio 0.2 – 1 — $71.02 – $96.89 18.1 – 18.1
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Table F.7: Sensitivity analysis of Scenario 6—Decreased ED use.
Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $62.97 – $74.54 18.7 – 17.9
Arrivals Police 20 – 30 — $72.81 – $73.55 18.0 – 18.0
Arr. /capita ED 0.005 – 0.015 0.0028 – 0.0078 $71.56 – $74.87 18.0 – 18.1
Arrivals Other 5 – 15 — $79.44 – $69.41 17.8 – 18.2
Cap Inpatnt 90 – 190 — $71.03 – $73.68 18.0 – 18.0
Cap CM 1100 – 2000 — $74.35 – $71.45 18.0 – 18.1
Cap ACT 60 – 100 — $72.98 – $72.93 18.0 – 18.0
LoS Police 0.1 – 0.3 — $72.94 – $72.89 18.0 – 18.0
LoS CrimJst 50 – 80 — $73.01 – $72.85 18.0 – 18.0
LoS ED 0.1 – 0.5 — $72.96 – $72.86 18.0 – 18.0
LoS Acute 8 – 16 — $72.09 – $73.78 18.0 – 18.0
LoS Inpatnt 60 – 120 — $72.31 – $72.98 18.0 – 18.0
LoS MMT 180 – 720 — $73.53 – $71.54 18.0 – 18.1
LoS CM 365 – 2190 — $77.13 – $72.94 17.8 – 18.0
LoS ACT 2000 – 5000 — $72.94 – $72.94 18.0 – 18.0
LoS Family 365 – 2190 — $78.74 – $67.13 17.8 – 18.2
Cost coef Police 400 – 800 — $72.23 – $73.40 18.0 – 18.0
Cost CrimJst 50 – 125 — $72.78 – $75.78 18.0 – 18.0
Cost coef ED 300 – 600 — $72.71 – $73.51 18.0 – 18.0
Cost Acute 500 – 1000 — $72.27 – $74.55 18.0 – 18.0
Cost Inpatnt 200 – 500 — $71.03 – $77.47 18.0 – 18.0
Cost MMT 8 – 18 — $72.67 – $72.97 18.0 – 18.0
Cost CM 18 – 28 — $72.19 – $74.06 18.0 – 18.0
Cost ACT 30 – 60 — $72.75 – $73.11 18.0 – 18.0
Cost Family 0.5 – 10 — $72.72 – $74.12 18.0 – 18.0
Cost Non-tr 0 – 50 — $72.94 – $100.81 18.0 – 18.0
Cost Non-tr crime 50 – 90 — $54.27 – $81.93 18.0 – 18.0
Police→CrimJst 0.2 – 0.4 — $72.97 – $72.64 18.0 – 18.0
Police→ED 0.01 – 0.1 — $72.87 – $73.03 18.0 – 18.0
CrimJst→Inpatnt 0 – 0.1 — $72.94 – $72.94 18.0 – 18.0
ED→Acute 0.1 – 0.2 — $72.29 – $73.86 18.0 – 18.0
ED→Inpatnt 0.01 – 0.1 — $72.28 – $72.94 18.0 – 18.0
Other→ED 0.05 – 0.15 — $72.88 – $72.98 18.0 – 18.0
Other→Inpatnt 0.05 – 0.15 — $72.66 – $72.94 18.0 – 18.0
Other→MMT 0.01 – 0.1 — $73.53 – $71.77 18.0 – 18.1
Other→CM 0.05 – 0.2 — $74.57 – $72.94 17.9 – 18.0
Other→ACT 0.005 – 0.02 — $72.94 – $72.94 18.0 – 18.0
Other→Family 0.05 – 0.13 — $75.99 – $67.88 17.9 – 18.2
Acute→Inpatnt 0.01 – 0.1 — $72.94 – $72.94 18.0 – 18.0
Acute→MMT 0.01 – 0.1 — $73.19 – $72.64 18.0 – 18.1
Acute→CM 0.01 – 0.1 — $72.94 – $72.94 18.0 – 18.0
Inpatnt→MMT 0.01 – 0.1 — $73.07 – $72.78 18.0 – 18.0
Inpatnt→CM 0.01 – 0.1 — $72.94 – $72.94 18.0 – 18.0
Inpatnt→ACT 0.005 – 0.02 — $72.94 – $72.94 18.0 – 18.0
Crime treat ratio 0.2 – 1 — $68.87 – $93.93 18.0 – 18.0
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Table F.8: Sensitivity analysis of Scenario 7—Decreased crime.
Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $57.34 – $66.56 18.7 – 17.9
Arrivals Police 20 – 30 — $65.12 – $65.86 18.1 – 18.1
Arr. /capita ED 0.005 – 0.015 — $62.33 – $69.29 18.0 – 18.1
Arrivals Other 5 – 15 — $70.54 – $61.97 17.8 – 18.2
Cap Inpatnt 90 – 190 — $63.24 – $66.03 18.0 – 18.1
Cap CM 1100 – 2000 — $66.48 – $63.61 18.0 – 18.2
Cap ACT 60 – 100 — $65.28 – $65.24 18.1 – 18.1
LoS Police 0.1 – 0.3 — $65.25 – $65.21 18.1 – 18.1
LoS CrimJst 50 – 80 — $65.28 – $65.20 18.1 – 18.1
LoS ED 0.1 – 0.5 — $65.27 – $65.13 18.1 – 18.1
LoS Acute 8 – 16 — $63.61 – $66.88 18.1 – 18.1
LoS Inpatnt 60 – 120 — $65.18 – $65.29 18.1 – 18.1
LoS MMT 180 – 720 — $65.85 – $63.84 18.0 – 18.2
LoS CM 365 – 2190 — $68.77 – $65.25 17.9 – 18.1
LoS ACT 2000 – 5000 — $65.25 – $65.25 18.1 – 18.1
LoS Family 365 – 2190 — $70.57 – $59.89 17.9 – 18.3
Cost coef Police 400 – 800 — $64.57 – $65.69 18.1 – 18.1
Cost CrimJst 50 – 125 — $65.12 – $67.51 18.1 – 18.1
Cost coef ED 300 – 600 — $64.81 – $66.32 18.1 – 18.1
Cost Acute 500 – 1000 — $63.99 – $68.27 18.1 – 18.1
Cost Inpatnt 200 – 500 — $63.34 – $69.78 18.1 – 18.1
Cost MMT 8 – 18 — $64.93 – $65.28 18.1 – 18.1
Cost CM 18 – 28 — $64.50 – $66.37 18.1 – 18.1
Cost ACT 30 – 60 — $65.06 – $65.41 18.1 – 18.1
Cost Family 0.5 – 10 — $65.03 – $66.43 18.1 – 18.1
Cost Non-tr 0 – 50 — $65.25 – $93.04 18.1 – 18.1
Cost Non-tr crime 50 – 90 40 – 72 $50.35 – $72.42 18.1 – 18.1
Police→CrimJst 0.2 – 0.4 0.1811 – 0.1811 $65.27 – $64.95 18.1 – 18.1
Police→ED 0.01 – 0.1 — $65.26 – $65.24 18.1 – 18.1
CrimJst→Inpatnt 0 – 0.1 — $65.25 – $65.25 18.1 – 18.1
ED→Acute 0.1 – 0.2 — $63.93 – $67.09 18.0 – 18.1
ED→Inpatnt 0.01 – 0.1 — $65.25 – $65.25 18.1 – 18.1
Other→ED 0.05 – 0.15 — $65.25 – $65.25 18.1 – 18.1
Other→Inpatnt 0.05 – 0.15 — $65.25 – $65.25 18.1 – 18.1
Other→MMT 0.01 – 0.1 — $65.77 – $64.20 18.0 – 18.1
Other→CM 0.05 – 0.2 — $66.23 – $65.25 18.0 – 18.1
Other→ACT 0.005 – 0.02 — $65.25 – $65.25 18.1 – 18.1
Other→Family 0.05 – 0.13 — $68.05 – $60.59 18.0 – 18.2
Acute→Inpatnt 0.01 – 0.1 — $65.25 – $65.25 18.1 – 18.1
Acute→MMT 0.01 – 0.1 — $65.60 – $64.83 18.0 – 18.1
Acute→CM 0.01 – 0.1 — $65.25 – $65.25 18.1 – 18.1
Inpatnt→MMT 0.01 – 0.1 — $65.37 – $65.10 18.0 – 18.1
Inpatnt→CM 0.01 – 0.1 — $65.25 – $65.25 18.1 – 18.1
Inpatnt→ACT 0.005 – 0.02 — $65.25 – $65.25 18.1 – 18.1
Crime treat ratio 0.2 – 1 — $62.00 – $82.00 18.1 – 18.1
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Table F.9: Sensitivity analysis of Scenario 8—Uncapacitated.
Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $64.43 – $79.64 18.8 – 18.1
Arrivals Police 20 – 30 — $77.18 – $77.60 18.2 – 18.2
Arr. /capita ED 0.005 – 0.015 — $73.41 – $82.08 18.1 – 18.3
Arrivals Other 5 – 15 — $84.72 – $72.76 17.9 – 18.4
Cap Inpatnt 90 – 190 ∞ – ∞ $77.42 – $77.19 18.2 – 18.2
Cap CM 1100 – 2000 ∞ – ∞ $77.81 – $76.47 18.2 – 18.3
Cap ACT 60 – 100 ∞ – ∞ $77.31 – $77.23 18.2 – 18.2
LoS Police 0.1 – 0.3 — $77.25 – $77.21 18.2 – 18.2
LoS CrimJst 50 – 80 — $77.40 – $77.06 18.2 – 18.2
LoS ED 0.1 – 0.5 — $77.28 – $77.12 18.2 – 18.2
LoS Acute 8 – 16 — $75.88 – $78.61 18.2 – 18.2
LoS Inpatnt 60 – 120 — $74.82 – $79.78 18.2 – 18.3
LoS MMT 180 – 720 — $78.05 – $75.39 18.2 – 18.3
LoS CM 365 – 2190 — $84.24 – $73.13 18.0 – 18.4
LoS ACT 2000 – 5000 — $77.40 – $77.11 18.2 – 18.3
LoS Family 365 – 2190 — $83.18 – $71.09 18.1 – 18.4
Cost coef Police 400 – 800 — $76.64 – $77.65 18.2 – 18.2
Cost CrimJst 50 – 125 — $77.11 – $79.71 18.2 – 18.2
Cost coef ED 300 – 600 — $76.87 – $78.19 18.2 – 18.2
Cost Acute 500 – 1000 — $76.16 – $79.87 18.2 – 18.2
Cost Inpatnt 200 – 500 — $74.18 – $84.52 18.2 – 18.2
Cost MMT 8 – 18 — $76.95 – $77.29 18.2 – 18.2
Cost CM 18 – 28 — $76.36 – $78.59 18.2 – 18.2
Cost ACT 30 – 60 — $76.35 – $78.05 18.2 – 18.2
Cost Family 0.5 – 10 — $77.06 – $78.27 18.2 – 18.2
Cost Non-tr 0 – 50 — $77.25 – $101.32 18.2 – 18.2
Cost Non-tr crime 50 – 90 — $60.09 – $85.52 18.2 – 18.2
Police→CrimJst 0.2 – 0.4 — $77.31 – $76.66 18.2 – 18.2
Police→ED 0.01 – 0.1 — $77.25 – $77.25 18.2 – 18.2
CrimJst→Inpatnt 0 – 0.1 — $77.25 – $78.13 18.2 – 18.2
ED→Acute 0.1 – 0.2 — $76.39 – $78.42 18.2 – 18.3
ED→Inpatnt 0.01 – 0.1 — $74.32 – $80.64 18.2 – 18.3
Other→ED 0.05 – 0.15 — $77.25 – $77.25 18.2 – 18.2
Other→Inpatnt 0.05 – 0.15 — $76.02 – $78.05 18.2 – 18.2
Other→MMT 0.01 – 0.1 — $77.90 – $75.95 18.2 – 18.3
Other→CM 0.05 – 0.2 — $80.23 – $73.15 18.1 – 18.3
Other→ACT 0.005 – 0.02 — $77.38 – $77.01 18.2 – 18.3
Other→Family 0.05 – 0.13 — $80.39 – $71.90 18.2 – 18.4
Acute→Inpatnt 0.01 – 0.1 — $76.85 – $77.75 18.2 – 18.2
Acute→MMT 0.01 – 0.1 — $77.69 – $76.73 18.2 – 18.3
Acute→CM 0.01 – 0.1 — $78.22 – $76.12 18.2 – 18.3
Inpatnt→MMT 0.01 – 0.1 — $77.48 – $76.97 18.2 – 18.2
Inpatnt→CM 0.01 – 0.1 — $77.85 – $76.53 18.2 – 18.2
Inpatnt→ACT 0.005 – 0.02 — $77.29 – $77.18 18.2 – 18.2
Crime treat ratio 0.2 – 1 — $72.57 – $101.39 18.2 – 18.2
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Table F.10: Sensitivity analysis of Combo Scenario A—Increased referrals &
expanded long term cap..

Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $61.10 – $72.63 18.9 – 18.2
Arrivals Police 20 – 30 — $70.10 – $70.56 18.3 – 18.3
Arr. /capita ED 0.005 – 0.015 — $68.22 – $73.07 18.3 – 18.4
Arrivals Other 5 – 15 — $78.45 – $66.21 18.0 – 18.5
Cap Inpatnt 90 – 190 — $68.29 – $70.92 18.3 – 18.3
Cap CM 1100 – 2000 2000 – 2000 $70.64 – $69.52 18.3 – 18.3
Cap ACT 60 – 100 270 – 270 $70.23 – $70.17 18.3 – 18.3
LoS Police 0.1 – 0.3 — $70.18 – $70.14 18.3 – 18.3
LoS CrimJst 50 – 80 — $70.27 – $70.07 18.3 – 18.3
LoS ED 0.1 – 0.5 — $70.20 – $70.07 18.3 – 18.3
LoS Acute 8 – 16 — $68.95 – $71.40 18.3 – 18.3
LoS Inpatnt 60 – 120 — $70.10 – $70.23 18.3 – 18.3
LoS MMT 180 – 720 — $70.96 – $68.41 18.3 – 18.4
LoS CM 365 – 2190 — $76.05 – $70.18 18.0 – 18.3
LoS ACT 2000 – 5000 — $70.18 – $70.18 18.3 – 18.3
LoS Family 365 – 2190 — $77.28 – $63.96 18.1 – 18.5
Cost coef Police 400 – 800 — $69.64 – $70.54 18.3 – 18.3
Cost CrimJst 50 – 125 — $70.06 – $72.37 18.3 – 18.3
Cost coef ED 300 – 600 — $69.84 – $71.01 18.3 – 18.3
Cost Acute 500 – 1000 — $69.21 – $72.51 18.3 – 18.3
Cost Inpatnt 200 – 500 — $68.27 – $74.71 18.3 – 18.3
Cost MMT 8 – 18 — $69.82 – $70.22 18.3 – 18.3
Cost CM 18 – 28 — $69.12 – $71.78 18.3 – 18.3
Cost ACT 30 – 60 — $69.61 – $70.68 18.3 – 18.3
Cost Family 0.5 – 10 — $69.93 – $71.54 18.3 – 18.3
Cost Non-tr 0 – 50 — $70.18 – $91.57 18.3 – 18.3
Cost Non-tr crime 50 – 90 — $53.85 – $78.04 18.3 – 18.3
Police→CrimJst 0.2 – 0.4 — $70.22 – $69.82 18.3 – 18.3
Police→ED 0.01 – 0.1 — $70.18 – $70.18 18.3 – 18.3
CrimJst→Inpatnt 0 – 0.1 — $70.18 – $70.18 18.3 – 18.3
ED→Acute 0.1 – 0.2 — $69.28 – $71.47 18.3 – 18.3
ED→Inpatnt 0.01 – 0.1 0.015 – 0.15 $70.18 – $70.18 18.3 – 18.3
Other→ED 0.05 – 0.15 — $70.18 – $70.18 18.3 – 18.3
Other→Inpatnt 0.05 – 0.15 0.075 – 0.225 $70.18 – $70.18 18.3 – 18.3
Other→MMT 0.01 – 0.1 0.015 – 0.15 $70.86 – $68.85 18.3 – 18.4
Other→CM 0.05 – 0.2 0.075 – 0.3 $72.53 – $70.18 18.2 – 18.3
Other→ACT 0.005 – 0.02 0.0075 – 0.03 $70.18 – $70.18 18.3 – 18.3
Other→Family 0.05 – 0.13 0.075 – 0.195 $73.80 – $64.71 18.2 – 18.5
Acute→Inpatnt 0.01 – 0.1 0.015 – 0.15 $70.18 – $70.18 18.3 – 18.3
Acute→MMT 0.01 – 0.1 0.015 – 0.15 $70.64 – $69.64 18.3 – 18.4
Acute→CM 0.01 – 0.1 0.015 – 0.15 $70.72 – $70.18 18.3 – 18.3
Inpatnt→MMT 0.01 – 0.1 — $70.32 – $70.01 18.3 – 18.3
Inpatnt→CM 0.01 – 0.1 — $70.18 – $70.18 18.3 – 18.3
Inpatnt→ACT 0.005 – 0.02 — $70.18 – $70.18 18.3 – 18.3
Crime treat ratio 0.2 – 1 — $64.81 – $97.86 18.3 – 18.3
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Table F.11: Sensitivity analysis of Combo Scenario B—Inreased referrals & lower
turnover.

Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $56.10 – $70.40 18.9 – 18.2
Arrivals Police 20 – 30 — $67.71 – $68.17 18.3 – 18.3
Arr. /capita ED 0.005 – 0.015 — $65.74 – $70.57 18.3 – 18.4
Arrivals Other 5 – 15 — $76.08 – $62.79 18.1 – 18.5
Cap Inpatnt 90 – 190 — $65.90 – $68.52 18.3 – 18.4
Cap CM 1100 – 2000 — $69.21 – $65.46 18.3 – 18.5
Cap ACT 60 – 100 — $67.83 – $67.77 18.3 – 18.3
LoS Police 0.1 – 0.3 — $67.79 – $67.75 18.3 – 18.3
LoS CrimJst 50 – 80 — $67.87 – $67.67 18.3 – 18.3
LoS ED 0.1 – 0.5 — $67.81 – $67.67 18.3 – 18.3
LoS Acute 8 – 16 — $66.55 – $69.01 18.3 – 18.3
LoS Inpatnt 60 – 120 — $67.68 – $67.84 18.3 – 18.3
LoS MMT 180 – 720 270 – 1080 $68.77 – $65.63 18.3 – 18.5
LoS CM 365 – 2190 547.5 – 3285 $70.83 – $67.79 18.2 – 18.3
LoS ACT 2000 – 5000 3000 – 7500 $67.79 – $67.79 18.3 – 18.3
LoS Family 365 – 2190 547.5 – 3285 $77.87 – $59.95 18.1 – 18.6
Cost coef Police 400 – 800 — $67.24 – $68.14 18.3 – 18.3
Cost CrimJst 50 – 125 — $67.66 – $69.97 18.3 – 18.3
Cost coef ED 300 – 600 — $67.45 – $68.61 18.3 – 18.3
Cost Acute 500 – 1000 — $66.82 – $70.11 18.3 – 18.3
Cost Inpatnt 200 – 500 — $65.88 – $72.32 18.3 – 18.3
Cost MMT 8 – 18 — $67.24 – $67.85 18.3 – 18.3
Cost CM 18 – 28 — $67.04 – $68.91 18.3 – 18.3
Cost ACT 30 – 60 — $67.60 – $67.95 18.3 – 18.3
Cost Family 0.5 – 10 — $67.41 – $69.82 18.3 – 18.3
Cost Non-tr 0 – 50 — $67.79 – $89.14 18.3 – 18.3
Cost Non-tr crime 50 – 90 — $51.47 – $75.64 18.3 – 18.3
Police→CrimJst 0.2 – 0.4 — $67.82 – $67.43 18.3 – 18.3
Police→ED 0.01 – 0.1 — $67.79 – $67.79 18.3 – 18.3
CrimJst→Inpatnt 0 – 0.1 — $67.79 – $67.79 18.3 – 18.3
ED→Acute 0.1 – 0.2 — $66.91 – $69.01 18.3 – 18.4
ED→Inpatnt 0.01 – 0.1 0.015 – 0.15 $67.79 – $67.79 18.3 – 18.3
Other→ED 0.05 – 0.15 — $67.79 – $67.79 18.3 – 18.3
Other→Inpatnt 0.05 – 0.15 0.075 – 0.225 $67.79 – $67.79 18.3 – 18.3
Other→MMT 0.01 – 0.1 0.015 – 0.15 $68.65 – $66.15 18.3 – 18.5
Other→CM 0.05 – 0.2 0.075 – 0.3 $68.29 – $67.79 18.3 – 18.3
Other→ACT 0.005 – 0.02 0.0075 – 0.03 $67.79 – $67.79 18.3 – 18.3
Other→Family 0.05 – 0.13 0.075 – 0.195 $72.74 – $60.86 18.2 – 18.5
Acute→Inpatnt 0.01 – 0.1 0.015 – 0.15 $67.79 – $67.79 18.3 – 18.3
Acute→MMT 0.01 – 0.1 0.015 – 0.15 $68.36 – $67.11 18.3 – 18.4
Acute→CM 0.01 – 0.1 0.015 – 0.15 $67.79 – $67.79 18.3 – 18.3
Inpatnt→MMT 0.01 – 0.1 — $67.96 – $67.57 18.3 – 18.4
Inpatnt→CM 0.01 – 0.1 — $67.79 – $67.79 18.3 – 18.3
Inpatnt→ACT 0.005 – 0.02 — $67.79 – $67.79 18.3 – 18.3
Crime treat ratio 0.2 – 1 — $62.41 – $95.49 18.3 – 18.3
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Table F.12: Sensitivity analysis of Combo Scenario C—Expanded Inpatnt & long
term capacities.

Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $64.21 – $79.81 18.8 – 18.1
Arrivals Police 20 – 30 — $77.31 – $77.74 18.2 – 18.2
Arr. /capita ED 0.005 – 0.015 — $73.45 – $81.67 18.1 – 18.3
Arrivals Other 5 – 15 — $84.72 – $73.01 17.9 – 18.4
Cap Inpatnt 90 – 190 180 – 380 $75.31 – $77.32 18.2 – 18.2
Cap CM 1100 – 2000 2000 – 2000 $77.94 – $76.59 18.2 – 18.2
Cap ACT 60 – 100 270 – 270 $77.44 – $77.36 18.2 – 18.2
LoS Police 0.1 – 0.3 — $77.38 – $77.33 18.2 – 18.2
LoS CrimJst 50 – 80 — $77.53 – $77.19 18.2 – 18.2
LoS ED 0.1 – 0.5 — $77.41 – $77.24 18.2 – 18.2
LoS Acute 8 – 16 — $75.98 – $78.77 18.2 – 18.2
LoS Inpatnt 60 – 120 — $74.90 – $79.18 18.2 – 18.2
LoS MMT 180 – 720 — $78.20 – $75.48 18.2 – 18.3
LoS CM 365 – 2190 — $84.59 – $75.86 18.0 – 18.3
LoS ACT 2000 – 5000 — $77.40 – $77.38 18.2 – 18.2
LoS Family 365 – 2190 — $83.45 – $71.08 18.1 – 18.4
Cost coef Police 400 – 800 — $76.75 – $77.79 18.2 – 18.2
Cost CrimJst 50 – 125 — $77.24 – $79.89 18.2 – 18.2
Cost coef ED 300 – 600 — $76.99 – $78.33 18.2 – 18.2
Cost Acute 500 – 1000 — $76.27 – $80.06 18.2 – 18.2
Cost Inpatnt 200 – 500 — $74.25 – $84.81 18.2 – 18.2
Cost MMT 8 – 18 — $77.07 – $77.42 18.2 – 18.2
Cost CM 18 – 28 — $76.47 – $78.75 18.2 – 18.2
Cost ACT 30 – 60 — $76.81 – $77.88 18.2 – 18.2
Cost Family 0.5 – 10 — $77.19 – $78.42 18.2 – 18.2
Cost Non-tr 0 – 50 — $77.38 – $101.98 18.2 – 18.2
Cost Non-tr crime 50 – 90 — $60.03 – $85.73 18.2 – 18.2
Police→CrimJst 0.2 – 0.4 — $77.44 – $76.78 18.2 – 18.2
Police→ED 0.01 – 0.1 — $77.38 – $77.38 18.2 – 18.2
CrimJst→Inpatnt 0 – 0.1 — $77.38 – $78.29 18.2 – 18.2
ED→Acute 0.1 – 0.2 — $76.51 – $78.57 18.2 – 18.2
ED→Inpatnt 0.01 – 0.1 — $74.37 – $78.92 18.1 – 18.2
Other→ED 0.05 – 0.15 — $77.38 – $77.38 18.2 – 18.2
Other→Inpatnt 0.05 – 0.15 — $76.12 – $78.21 18.2 – 18.2
Other→MMT 0.01 – 0.1 — $78.04 – $76.05 18.2 – 18.3
Other→CM 0.05 – 0.2 — $80.46 – $75.86 18.1 – 18.3
Other→ACT 0.005 – 0.02 — $77.38 – $77.38 18.2 – 18.2
Other→Family 0.05 – 0.13 — $80.59 – $71.91 18.1 – 18.3
Acute→Inpatnt 0.01 – 0.1 — $76.97 – $77.89 18.2 – 18.2
Acute→MMT 0.01 – 0.1 — $77.83 – $76.84 18.2 – 18.2
Acute→CM 0.01 – 0.1 — $78.39 – $76.21 18.2 – 18.2
Inpatnt→MMT 0.01 – 0.1 — $77.62 – $77.09 18.2 – 18.2
Inpatnt→CM 0.01 – 0.1 — $78.00 – $76.64 18.2 – 18.2
Inpatnt→ACT 0.005 – 0.02 — $77.38 – $77.38 18.2 – 18.2
Crime treat ratio 0.2 – 1 — $72.81 – $100.92 18.2 – 18.2
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Table F.13: Sensitivity analysis of Combo Scenario D—Scenarios 1, 2, 4, 6, 7.
Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $48.65 – $56.74 19.0 – 18.3
Arrivals Police 20 – 30 — $55.33 – $55.90 18.4 – 18.4
Arr. /capita ED 0.005 – 0.015 0.0028 – 0.0078 $54.49 – $56.72 18.4 – 18.5
Arrivals Other 5 – 15 — $61.67 – $52.14 18.1 – 18.6
Cap Inpatnt 90 – 190 — $53.31 – $56.25 18.4 – 18.5
Cap CM 1100 – 2000 2000 – 2000 $55.80 – $54.89 18.4 – 18.5
Cap ACT 60 – 100 270 – 270 $55.46 – $55.41 18.4 – 18.4
LoS Police 0.1 – 0.3 — $55.42 – $55.40 18.4 – 18.4
LoS CrimJst 50 – 80 — $55.43 – $55.42 18.4 – 18.4
LoS ED 0.1 – 0.5 — $55.43 – $55.38 18.4 – 18.4
LoS Acute 8 – 16 — $54.84 – $56.01 18.4 – 18.4
LoS Inpatnt 60 – 120 — $54.82 – $55.46 18.4 – 18.4
LoS MMT 180 – 720 270 – 1080 $55.93 – $54.29 18.4 – 18.6
LoS CM 365 – 2190 547.5 – 3285 $58.30 – $55.42 18.2 – 18.4
LoS ACT 2000 – 5000 3000 – 7500 $55.42 – $55.42 18.4 – 18.4
LoS Family 365 – 2190 547.5 – 3285 $62.26 – $50.18 18.2 – 18.6
Cost coef Police 400 – 800 — $54.96 – $55.73 18.4 – 18.4
Cost CrimJst 50 – 125 — $55.34 – $56.97 18.4 – 18.4
Cost coef ED 300 – 600 — $55.26 – $55.81 18.4 – 18.4
Cost Acute 500 – 1000 — $54.97 – $56.51 18.4 – 18.4
Cost Inpatnt 200 – 500 — $53.51 – $59.95 18.4 – 18.4
Cost MMT 8 – 18 — $55.01 – $55.47 18.4 – 18.4
Cost CM 18 – 28 — $54.36 – $57.02 18.4 – 18.4
Cost ACT 30 – 60 — $54.85 – $55.93 18.4 – 18.4
Cost Family 0.5 – 10 — $55.09 – $57.23 18.4 – 18.4
Cost Non-tr 0 – 50 — $55.42 – $74.39 18.4 – 18.4
Cost Non-tr crime 50 – 90 40 – 72 $43.02 – $61.40 18.4 – 18.4
Police→CrimJst 0.2 – 0.4 0.1811 – 0.1811 $55.45 – $55.08 18.4 – 18.5
Police→ED 0.01 – 0.1 — $55.38 – $55.48 18.4 – 18.4
CrimJst→Inpatnt 0 – 0.1 — $55.42 – $55.42 18.4 – 18.4
ED→Acute 0.1 – 0.2 — $54.99 – $56.04 18.4 – 18.5
ED→Inpatnt 0.01 – 0.1 0.015 – 0.15 $54.78 – $55.42 18.4 – 18.4
Other→ED 0.05 – 0.15 — $55.39 – $55.45 18.4 – 18.4
Other→Inpatnt 0.05 – 0.15 0.075 – 0.225 $55.20 – $55.42 18.4 – 18.4
Other→MMT 0.01 – 0.1 0.015 – 0.15 $55.92 – $54.48 18.4 – 18.6
Other→CM 0.05 – 0.2 0.075 – 0.3 $56.33 – $55.42 18.4 – 18.4
Other→ACT 0.005 – 0.02 0.0075 – 0.03 $55.42 – $55.42 18.4 – 18.4
Other→Family 0.05 – 0.13 0.075 – 0.195 $58.77 – $50.79 18.3 – 18.6
Acute→Inpatnt 0.01 – 0.1 0.015 – 0.15 $55.42 – $55.42 18.4 – 18.4
Acute→MMT 0.01 – 0.1 0.015 – 0.15 $55.64 – $55.16 18.4 – 18.5
Acute→CM 0.01 – 0.1 0.015 – 0.15 $55.42 – $55.42 18.4 – 18.4
Inpatnt→MMT 0.01 – 0.1 — $55.53 – $55.29 18.4 – 18.5
Inpatnt→CM 0.01 – 0.1 — $55.42 – $55.42 18.4 – 18.4
Inpatnt→ACT 0.005 – 0.02 — $55.42 – $55.42 18.4 – 18.4
Crime treat ratio 0.2 – 1 — $50.69 – $79.81 18.4 – 18.4
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Table F.14: Sensitivity analysis of Combo Scenario E—All scenarios (excluding
“uncapacitated”).

Cell Base Range Adjusted Range Costs QALYs
Population 4000 – 9000 — $48.49 – $59.04 19.0 – 18.3
Arrivals Police 20 – 30 — $56.63 – $57.04 18.5 – 18.5
Arr. /capita ED 0.005 – 0.015 0.0026 – 0.0076 $54.53 – $59.62 18.4 – 18.5
Arrivals Other 5 – 15 — $62.02 – $53.94 18.2 – 18.6
Cap Inpatnt 90 – 190 180 – 380 $55.69 – $56.66 18.5 – 18.5
Cap CM 1100 – 2000 2000 – 2000 $57.02 – $56.24 18.5 – 18.5
Cap ACT 60 – 100 270 – 270 $56.73 – $56.69 18.5 – 18.5
LoS Police 0.1 – 0.3 — $56.70 – $56.67 18.5 – 18.5
LoS CrimJst 50 – 80 — $56.73 – $56.65 18.5 – 18.5
LoS ED 0.1 – 0.5 — $56.71 – $56.65 18.5 – 18.5
LoS Acute 8 – 16 — $56.15 – $57.24 18.5 – 18.5
LoS Inpatnt 60 – 120 — $54.53 – $58.94 18.5 – 18.5
LoS MMT 180 – 720 270 – 1080 $57.44 – $55.06 18.4 – 18.6
LoS CM 365 – 2190 547.5 – 3285 $60.70 – $56.70 18.3 – 18.5
LoS ACT 2000 – 5000 3000 – 7500 $56.70 – $56.70 18.5 – 18.5
LoS Family 365 – 2190 547.5 – 3285 $65.03 – $50.24 18.2 – 18.7
Cost coef Police 400 – 800 — $56.25 – $56.99 18.5 – 18.5
Cost CrimJst 50 – 125 — $56.61 – $58.19 18.5 – 18.5
Cost coef ED 300 – 600 — $56.55 – $57.06 18.5 – 18.5
Cost Acute 500 – 1000 — $56.27 – $57.72 18.5 – 18.5
Cost Inpatnt 200 – 500 — $54.14 – $62.75 18.5 – 18.5
Cost MMT 8 – 18 — $56.24 – $56.75 18.5 – 18.5
Cost CM 18 – 28 — $55.63 – $58.30 18.5 – 18.5
Cost ACT 30 – 60 — $56.12 – $57.20 18.5 – 18.5
Cost Family 0.5 – 10 — $56.36 – $58.51 18.5 – 18.5
Cost Non-tr 0 – 50 — $56.70 – $75.02 18.5 – 18.5
Cost Non-tr crime 50 – 90 40 – 72 $44.53 – $62.56 18.5 – 18.5
Police→CrimJst 0.2 – 0.4 0.1811 – 0.1811 $56.72 – $56.41 18.5 – 18.5
Police→ED 0.01 – 0.1 0.025 – 0.025 $56.81 – $56.56 18.5 – 18.5
CrimJst→Inpatnt 0 – 0.1 — $56.70 – $57.35 18.5 – 18.5
ED→Acute 0.1 – 0.2 — $56.21 – $57.38 18.5 – 18.5
ED→Inpatnt 0.01 – 0.1 0.015 – 0.15 $54.64 – $59.17 18.5 – 18.5
Other→ED 0.05 – 0.15 — $56.61 – $56.75 18.5 – 18.5
Other→Inpatnt 0.05 – 0.15 0.075 – 0.225 $55.00 – $57.81 18.5 – 18.5
Other→MMT 0.01 – 0.1 0.015 – 0.15 $57.36 – $55.44 18.4 – 18.6
Other→CM 0.05 – 0.2 0.075 – 0.3 $57.74 – $56.70 18.4 – 18.5
Other→ACT 0.005 – 0.02 0.0075 – 0.03 $56.70 – $56.70 18.5 – 18.5
Other→Family 0.05 – 0.13 0.075 – 0.195 $60.63 – $51.15 18.4 – 18.6
Acute→Inpatnt 0.01 – 0.1 0.015 – 0.15 $56.41 – $57.05 18.5 – 18.5
Acute→MMT 0.01 – 0.1 0.015 – 0.15 $56.96 – $56.38 18.5 – 18.5
Acute→CM 0.01 – 0.1 0.015 – 0.15 $56.70 – $56.70 18.5 – 18.5
Inpatnt→MMT 0.01 – 0.1 — $56.89 – $56.47 18.5 – 18.5
Inpatnt→CM 0.01 – 0.1 — $56.70 – $56.70 18.5 – 18.5
Inpatnt→ACT 0.005 – 0.02 — $56.70 – $56.70 18.5 – 18.5
Crime treat ratio 0.2 – 1 — $51.92 – $81.32 18.5 – 18.5
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