
SHARED INSTRUCTION-SET EXTENSIONS FOR SOFT MULTIPROCESSOR 

SYSTEMS IMPLEMENTED ON FIELD-PROGRAMMABLE GATE ARRAYS 

 

by 

 

Erin Johnston 

 

BASc, The University of British Columbia, 2010 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF APPLIED SCIENCE 

 

in 

 

THE COLLEGE OF GRADUATE STUDIES 

 

(Electrical Engineering) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

 

(Okanagan) 

 

 

 

 

December 2012 

 

© Erin Johnston, 2012 



 ii

Abstract 

 

Soft-core embedded systems implemented on FPGAs offer a high level of flexibility. 

Application specific customizations can be added in the form of extensions to the processor’s 

regular instruction-set. These custom instructions benefit run-time performance, but come at 

the cost of increased resource usage. Reducing the overall FPGA area required to implement 

a system will decrease static power consumption and allow a smaller, cheaper device to be 

used. There is a constant effort to reduce area and power consumption while maintaining 

performance benefits attained through customizations. 

This thesis presents a new architecture to share custom instruction units among multiple 

processors in a system. This implementation allows run-time performance benefits to be 

maintained while decreasing the overall resource usage. The shared architecture is 

implemented using an arbitrator to determine processor access to each custom instruction in a 

set. Custom instruction inputs and outputs are controlled using additional multiplexors and 

selection hardware. Results for a sample system using fine-grained custom instructions show 

that sharing can reduce the implementation area by up to 24% with minimal impact to the 

critical path delay. This reduction remains high at 19% for a coarse-grained case study of an 

encryption algorithm called SHA. 

The custom instruction configuration depends on the application being performed. A 

benchmark generator and simulator are also developed to evaluate candidates for custom 

instruction implementation and efficiently explore the design space. The overall run-time 

performance of the candidate systems can also be evaluated using these tools. The simulator 

can also be used with an input trace to determine cycle accurate run-time performance for a 

real application, without requiring the entire system to be designed and implemented in 

hardware. The simulator shows up to 53% run-time improvement for a shared fine-grained 

system over a system with no custom instructions. Hardware run-time results for the coarse-

grained case study improve run-time up to 13.5% over a system with no custom instructions. 
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1    Chapter: Introduction 

 

1.1 Background Information 

Embedded systems are compact designs that implement specific applications or controls 

under a specific set of power, cost, speed, and/or reliability constraints. They usually 

comprise of one or many processing cores, on-chip memory, and input and output peripherals 

such as radio frequency transmitters, biosensors, and actuators. We encounter embedded 

systems every day in our cell phones, vehicles, navigation systems, MP3 players, and gaming 

consoles, to name a few. They can also be found in more complex devices such as aircraft 

guidance systems and medical devices. The cost and performance requirements for such 

devices are constantly evolving and pushing design to new levels. 

 

1.1.1 Market Trends 

The need to produce faster, more complex systems is constantly competing with the 

desire to fit designs into a smaller area and to consume less power. According to Moore’s 

law [1] which was stated in 1965, the number of transistors on an integrated circuit will 

double roughly every two years. This trend has held true since that time, with semiconductor 

companies striving to meet or beat this goal. 

Moore’s law has pushed more than just the limits of integrated circuit design and 

transistor technology. In order to keep up with the scaling designs, engineers require more 

sophisticated computer aided design (CAD) tools. Despite advancing tools, a productivity 

gap trend is still occurring. This means there is an increasing gap between design complexity 

and engineer productivity.  
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Along with increasing complexity and reduced productivity, increasing time-to-market 

demands also means less time for revisions and testing, forcing more engineers per design 

task. Extra manpower and technological demands can start to make development costs 

unreasonable.  

One option for reducing costs is to develop using a system-on-chip (SoC). According to 

Chang et al [2], an SoC incorporates a programmable processor, on-chip memory, interfaces 

to peripheral devices, and predesigned and pre-verified accelerating modules. These modules 

are referred to as intellectual property (IP) components. SoCs are favorable because they can 

help reduce development time and, therefore, overall cost.  

SoCs can be verified on field-programmable gate arrays (FPGAs) to ensure correct 

functionality before fabrication. However, SoCs still have high non-recurring engineering 

(NRE) costs associated with masks and fabrication, which according to Margarshack and 

Paulin [3] is the main explanation for the growth in FPGAs. The convenience of an SoC 

depends on the availability of the IP components and the ease of use of the design platform. 

This type of embedded system offers programmability which allows for a wider variety of 

applications. Starting with a base system that includes a processor and memory, IP 

components and programmed customizations can be added to a system to tailor it to an 

application or application domain. Using a programmable device gives the designer better 

control over the system customization.  

A second approach is to use advanced design tools such that system customizations can 

be created in a high-level language. Using a higher level of abstraction keeps the designer 

removed from transistor-level intricacies. For example, programmable logic allows the 

designer to create customizations using a hardware description language (HDL). 
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 Synthesis tools are then used to compile the HDL and translate it to board-level 

connections. The engineer must have knowledge of the hardware and logic, but is not 

required to design the actual layout. Using IP components raises the level of abstraction even 

higher by allowing the engineer to provide parameters and then automatically generate the 

component.  

Despite the urgent need to mitigate the productivity gap, some industry trends have led to 

increases in the productivity gap such as the increased use of multiprocessor systems. 

Although multiprocessor systems have led to another level of complexity to designs that 

further increases the productivity gap, work by Borkar [4] describes the reasoning and 

benefits behind the growing trend toward multiple cores. First, implementing multiple 

smaller processors can actually decrease the individual complexity and improve power 

performance over a single, large core. Also, it is easier to distribute the load and optimize for 

frequency on each processor. 

 

1.1.2 Field-Programmable Gate Arrays 

An FPGA is a programmable logic device that can be reconfigured after manufacturing. 

FPGAs are the most common form of programmable logic and can be configured to perform 

complex logical operations and even store results in memory blocks and registers. A typical 

island-style FPGA architecture is shown in Figure 1.  
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Figure 1. FPGA island style architecture [5]. 

Programmable logic blocks are surrounded by programmable interconnect or routing 

channels. Each of the logic blocks make up a small portion of the overall circuit. By 

connecting these blocks using the interconnect, a larger, more complex circuit can be formed. 

FPGAs can be used instead of application-specific integrated circuits (ASICs) to 

implement highly customized embedded system designs. While ASICs are designed in much 

the same way as systems on FPGAs, ASICs have much higher NRE costs associated with 

fabrication. Zuchowsky et al [6] discuss how even though performance and density for 

ASICs still lead over FPGAs, the flexibility and time-to-market make FPGAs highly 

appealing. Two companies occupy the majority of the FPGA market: Altera [7] and Xilinx 

[8]. According to Altera [9], FPGAs offer a variety of advantages over ASICs such as a 

shorter time to market and lower non-recurring engineering costs. Much of the design effort 

and cost created by designing an ASIC are eliminated using an FPGA. They have a long 

product life and can be reprogrammed by the designer for testing and changing needs.  
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FPGAs are available that implement either hard or soft processing cores. A hard-core 

processor is a core implemented from a predefined block. This is a fixed resource and cannot 

be reprogrammed or customized after fabrication. A soft-core processor is a core 

implemented by programming the logic blocks of the FPGA to act as a microprocessor. It is a 

predesigned intellectual property core that is easily synthesized and highly flexible. Soft-core 

processors are found in many everyday systems and are undetected by the end user. They can 

be found in voice over IP systems, routers, electronic signs, security systems, and vehicles. 

 

 

Figure 2. Nios II soft-core processor [10]. 
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According to Tong et al [11], the three leading soft-core processor providers are Altera 

with the Nios II, Xilinx with the MicroBlaze and PicoBlaze, and Tensilica with the Xtensa. 

Figure 2 shows a Nios II core surrounded by design options including instruction and data 

cache, a memory management unit, and debug hardware. All three companies use reduced 

instruction-set computer (RISC) cores and have options for pre-made fixed hardware block 

customizations or user-defined hardware modules. Fixed block implementations include 

multipliers, barrel shifters, and dividers. Custom implementations change from system to 

system and are specific to the task being performed. 

 

1.1.3 Instruction-Set Extensions 

1.1.3.1 Overview 

Embedded system customization can come in many different forms. On a customizability 

spectrum, soft-core systems implemented on FPGAs lie between general-purpose processors 

(GPPs) and fixed logic processors. GPPs are robust microprocessors that are flexible in their 

application, serving a wide array of tasks from computation to communication to display. 

ARM is a well-known producer of GPPs that are often found in cell phones, MP3 players, 

and game consoles [12]. GPPs are purchased and ready to use “off-the-shelf”, but do not 

provide the performance of a customized processor. At the other end of the customizability 

spectrum lie fixed logic processors. These are complete microprocessors designed for one 

specific purpose. They offer high performance, but unlike a GPP are not portable to other 

tasks. Fixed-logic processors have extremely high NRE costs and require significant time to 

design and manufacture. 
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Soft-core systems implemented on FPGAs provide a tradeoff between the flexibility of a 

GPP and the performance of a fixed-logic processor. They can be designed or reconfigured 

for varying applications, but offer customizability through instruction-set extensions (ISEs). 

ISEs are a form of soft-processor customization in which the instruction-set can be extended 

with custom instructions tailored to an application or application domain. ISEs are not an 

entire custom processor, but rather additions to a base core. The customizability options 

described are certainly not the only options available, as works like that by Clark et al [13] 

blur the lines by combining GPPs with custom hardware. 

Several companies offer processors configurable with ISEs: Stretch and the previously 

mentioned Altera, Xilinx, and Tensilica. Both Altera [7] and Xilinx [8] products require the 

user to define custom instructions using an HDL. Stretch [14] tools allow users to 

automatically create ISEs using only C/C++. Tensilica [15] allows developers to produce 

custom instructions in one of two ways. First, custom instructions can be defined by the user 

in the Tensilica Instruction Extension (TIE) language. The other option is to use the Xpress 

tool that will automatically generate custom instructions in the TIE language based on the 

application source code. 

 

1.1.3.2 CAD for ISEs 

ISEs can range in size and complexity from a few simple operations to an entire co-

processing unit. Custom instructions comprising of few operations are referred to as fine-

grained custom instructions. Fine-grained instructions use hard-coded values and inputs 

passed to the custom instruction as operands. They are defined by selecting critical clusters 

of operations from the application to be executed on the processor.  



 8

Larger ISEs are called coarse-grained custom instructions, and they often take the place 

of an entire function or application in software. Coarse-grained instructions often require a 

greater number of operands that can be hard-coded, passed to the custom instruction, or 

retrieved directly from memory. For both types, custom instructions are implemented in 

hardware as a single, complex instruction. For example, Figure 3 shows a directed acyclic 

graph representation of a small section of application code. Each node or vertex represents an 

operation, and each arrow or edge represents the operands associated with it. The encircled 

section of the graph shows a candidate for fine-grained custom instruction implementation.  

 

 

Figure 3. Directed acyclic graph showing custom instruction selection. 

 

The three selected operations in Figure 3 will be implemented in hardware, and all calls 

in the application following this pattern will be replaced with a single call to the custom 

instruction. Figure 4 is the application code represented by the directed acyclic graph in 

Figure 3.  
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After implementing the selected instructions in hardware, the three operations, shown on 

the left, in the original application are replaced with a single custom instruction call, shown 

on the right. The syntax for using the custom instruction will vary depending on the 

processor being used, but they are often a simple macro or function call. There are many 

works, such as that by Peymandoust et al [16], that not only select custom instructions from 

application source code, but also replace lines of code in the original application with calls to 

the custom instructions. 

 

 

Figure 4. Application code replaced with single custom instruction call. 

 

When evaluating candidate custom-instructions, the primary figure-of-merit is the speed 

increase gained by running the operations in hardware and the frequency of execution in the 

application. Unfortunately, not all candidate sets of instructions can be selected for 

implementation due to constraints imposed by the hardware. In particular, the processor’s 

register file limits the number of inputs and outputs that can be used for any instruction, 

including custom instructions. Further, a sub-graph convexity constraint must also be 

adhered to as discussed in Atasu et al [17].  
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Figure 5 shows the same directed acyclic graph from Figure 3, but with a different set of 

encircled operations. This sub-graph is not a valid selection for custom instruction 

implementation for two reasons: it is not a convex sub-graph, and the register file constraints 

are violated. In the figure, the output from the left-shift becomes an input to the or, an 

operation that is not contained within the sub-graph. The output from the or then becomes an 

input to the exclusive-or, an operation that is again within the sub-graph. To satisfy the 

convexity constraint, the flow of operands within a custom instruction cannot leave the sub-

graph and then re-enter. This selection also violates the most common register file constraints 

which allow two or four inputs and one output. In Figure 5, bold arrows represent inputs to 

the selection, and dashed arrows represent outputs. This custom instruction selection shows a 

total of five inputs and two outputs. 

 

 

Figure 5. Custom instruction convexity and register file constraint. 
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Although obeying register file constraints is the easiest method to implementing custom 

instructions, it limits the performance gains achievable with larger custom instructions. One 

workaround is to access memory directly from within the custom instruction using direct-

memory-access (DMA). This is useful for cases in which a much greater number of inputs or 

outputs are required than the register file will allow. Temporary inputs and outputs are not 

stored by the register file, but rather are kept within the custom instruction until the final 

outputs are produced.  

A simpler method, that can be used when just a few extra inputs or outputs are needed, is 

to pipeline the custom instruction with additional custom instructions designed to read/write 

additional operands to/from the register file. For example, an instruction requiring four inputs 

and one output, but with a register file constraint of two inputs and one output, could use the 

first custom instruction call to load the first two inputs. These inputs are then saved within 

the custom instruction while a second custom instruction call is made that loads the next two 

inputs. This second call to the custom instruction then performs the operations, and the result 

can be returned at the end of its execution.   

Although ISEs can result in significant performance gains, they come at the cost of 

increased area and static power. The impact of additional logic is especially important to 

consider for FPGA implementations in which even a small improvement in area could lead to 

a much cheaper part. Thus, with the addition of each new instruction, one must carefully 

consider the implications on resource usage and the predicted impact on run-time 

performance. In a multiprocessor system, both the performance benefits and area drawbacks 

are multiplied with the addition of each custom instruction. 
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1.1.3.3 Benefits of ISEs 

The impact of custom instruction implementation is reduced run-time and reduced 

dynamic power dissipation. By replacing a cluster of operations in the application with one 

custom instruction call, execution cycles are saved in several ways. First, the Von Neumann 

bottleneck [18], caused by the latency in transfers between the processor and memory, is 

reduced. Even the fastest processors are limited by this transfer rate and spend time stalled, 

waiting for data and instructions. ISEs require fewer fetches from instruction memory or 

cache thus reducing the bottleneck. Only one instruction call is required to perform an entire 

set of operations.  

ISEs also save execution cycles when parallelism is exploited. Parallelism is the ability of 

a system to execute multiple tasks at the same time. Instruction-level parallelism is the 

execution of multiple instructions at once. Only instructions that do not depend on each 

other’s results can be executed in parallel. According to Callahan and Wawrzynek [19], 

reconfigurable systems such as those implemented on an FPGA can easily capitalize on the 

benefits of thread-level parallelism. Sequential programs are reduced in length when basic 

blocks are converted to a hardware implementation and multiple instructions execute at the 

same time. 

Custom instructions employ a form of instruction-level parallelism to reduce run-time 

over the original application. For example, Figure 6 shows a section of code that is 

implemented sequentially in software. When implemented as a custom instruction in 

hardware, the first three levels can be executed at the same time, since one does not depend 

on the result from another. This improves run-time which in turn reduces overall power 

consumption. 
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Figure 6. Software vs custom instruction parallelism. 

 

The addition of custom instructions can also benefit the system in other ways such as 

requiring a reduced instruction memory due to a smaller application code. Also, the use of 

constants in an application can be a challenge for the processor if the constant length cannot 

be represented properly in an instruction op-code. The value must either be pulled from a 

literal pool, or the operation must be broken down into multiple instructions. Constants in 

custom instructions, however, are implemented in the hardware. 

Finally, ISEs affect the number of registers and the number of accesses to the register file 

required. Energy is saved when operations are combined into a single custom instruction and 

fewer register file accesses are needed. Assembly code is also generated much easier during 

program compilation when custom instructions are used. First, there are fewer instructions 

and lines of code to compile. Second, “register pressure” is reduced during register allocation 

because fewer registers are needed to complete the same computation. This is because many 

of the temporary values normally needed now reside within the custom instruction. 
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1.1.4 Multi-core Systems 

As mentioned in Section 1.1.1, there is a growing trend towards multi-core systems. 

According to Wolf [20], strict performance requirements and power and cost constraints have 

pushed engineers to develop multiprocessor systems. In multiprocessor systems, performance 

benefits are seen as each processor is customized for its application. Rather than using one 

large processor to perform a variety of tasks, multiple cores can be used to execute specific 

tasks. 

Compared to separate implementations, multiprocessor systems on a single chip can 

reduce cost and size by providing the opportunity for resource sharing among cores. 

Resources are better utilized by sharing, and costly space can be eliminated or freed up for 

other custom accelerators. Although multiprocessor systems are often used with GPPs, they 

are easily implemented using soft-cores on FPGAs. Also, multi-core systems on FPGAs can 

exploit the benefits of customizability and resource sharing. 

When applied to multi-core architectures, ISEs introduce heterogeneity. The instruction-

set of each core is tailored to its assigned task, thus maximizing performance and reducing 

dynamic power. Heterogeneous multi-core architectures of this type can be created with low 

non-recurring costs and high flexibility when implemented on a programmable fabric. 

Biswas et al [21] [21] show that, with just one large ISE, the average application speed 

increase is 1.4 times while the energy savings can reach up to 40%. These savings are even 

more significant when applied to a multiprocessor system, where each core has the 

opportunity to use custom instructions. 
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1.2 Research Objectives 

The goal of this research is to evaluate the impact of resource sharing, in the form of 

ISEs, among customizable processors implemented on an FPGA. The effects on FPGA area 

and system run-time will be monitored. This thesis will focus on two types of ISEs: fine-

grained custom instructions and coarse-grained custom instructions. Both types will be 

considered in the evaluation of customizable processors.  

A method will be determined for increasing multiprocessor system performance through 

custom instructions while meeting strict area constraints. The design space will be 

thoroughly explored to increase performance and reduce area for a wide range of 

applications. The focus will be on resource sharing in soft-core multiprocessor systems that 

promote flexibility and easily allow for modifications. 

To accomplish these objectives, a new architecture must be developed that will maintain 

run-time benefits incurred by custom instructions, but will also decrease the FPGA resource 

usage. The design should be developed using concepts that apply to any soft-core 

multiprocessor system. 

More specifically, this research has two main objectives: 

1. An architecture will be proposed that maintains the performance benefits of ISEs 

while reducing implementation area and power consumption to lower device 

costs. 

2. The system will be fully evaluated to assess both the benefits and drawbacks 

concerned with run-time, area, and power. The solution will be compared to 

previous works to ensure it is original and makes a contribution to custom 

computing. 
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1.3 Previous Work 

Previous works have defined algorithms to select custom instructions for an application 

or application domain [22] [23] [24] [25] [26]. These algorithms often require parameters 

regarding register file constraints to enumerate possible custom instruction candidates. Then, 

based on performance benefits and frequency of use, candidates are selected for custom 

instruction implementation. Some algorithms aim for smaller instructions with greater 

frequency of use, while others try to find the largest grouping possible assuming this will 

produce the greatest performance benefit. Chen et al [24] and Yu and Mitra [25] focus 

mainly on the speed of the algorithm in an attempt to reduce design time. 

Algorithms to select shared ISEs for multiprocessor systems are not within the scope of 

this research; however, future work is needed in this area to define an algorithm specific to 

multi-core systems. It would also be beneficial for algorithms to be developed capable of 

selecting custom instruction candidates across multiple similar applications. To date, few of 

the previous works have delved into multi-core systems and none have proposed 

architectures to share custom instructions. 

Previous works by Lin and Fei [27], Dinh, Chen, and Wong [28], and Zuluaga and 

Topham [29] developed methods for sharing logic between more than one custom instruction 

for a single processor. In the directed acyclic graph representation of a sample program in 

Figure 7, the operations depicted on the left and the operations depicted  on the right share 

common logic, the multiplier. The instruction in the center has an added multiplexor to 

combine the two sets of operations, reducing the overall implementation area.  
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These works differ from the proposed solution in that this is designed for sharing 

operations within a custom instruction unit for a single processor system. Instead, it is 

proposed that entire instructions be shared between multiple processors. 

 

 

Figure 7. Shared logic between multiple custom instructions. 

 

Lam and Srikanthan [30] developed an efficient method for determining the area of 

custom instruction candidates before implementation. Results show that the area estimates 

are within 8% of the actual implementation size. The usefulness of this algorithm is its ability 

to rule out costly custom instruction candidates thus leaving space for other, more area-

efficient, instructions. Future work could have this solution to the area constraint problem 

combined with the proposed approach to provide even greater area savings. 
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Two other works [31] [32] propose architectures for sharing fabric and sharing fixed 

blocks, respectively, among multiprocessor systems. These papers and how they differ from 

the proposed solution to the area constraint and performance problems are described in more 

detail in Sections 1.3.1 and 1.3.2. 

 

1.3.1 Shared Fabric 

Chen and Mitra [31] propose an architecture for multi-core systems in which more than 

one core can share a programmable fabric for implementing custom instructions. In doing so, 

cores that can benefit from a large number of custom instructions can have a greater share of 

the fabric. This work focuses on improving performance through better system organization. 

It does not reduce the overall area, but simply makes better use of the available space. 

 

 

Figure 8. Shared programmable fabric architecture. 
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Consider an example non-shared, two processor system where each core may place up to 

four custom instructions on its own programmable fabric. For some applications, it may be 

beneficial for one processor to implement three custom instructions and the other to 

implement five custom instructions. This problem is solved by sharing the fabric as shown in 

Figure 8. Although each processor can still only access its own custom instructions, space for 

eight custom instructions can now be divided unequally among the processors.  

This approach differs from the proposed method in that it has two systems sharing space 

for their custom instructions rather than having actual custom instructions shared.This 

approach does not reduce the size of the system, but rather it allows one core to make use of 

space unused by other cores. 

 

1.3.2 Shared Fixed Blocks 

Another method for reducing resource-usage in multiprocessor systems was explored by 

Sheldon et al [32]. In this paper, fixed hardware blocks are shared, or “conjoined” among 

multiple processors to minimize area in FPGAs. Results showed that, for two processor 

systems, area can be reduced by an average of 16% while causing less than 1% cycle-count 

overhead. The focus of this work was strictly on fixed hardware blocks such as multipliers 

and barrel shifters.  

To select the combination of shared and non-shared fixed hardware blocks for 

implementation, the knapsack problem as described by Kellerer et al [33] is used. The 

knapsack problem describes an area constraint and a set of implementations greater than the 

allowed area. An algorithm is used to select which combination will produce the most benefit 

by being implemented in the constrained area.  
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To be more specific, this is a disjunctively constrained knapsack problem, meaning that if 

one choice is selected for implementation, others may be eliminated. For example, choosing 

to implement an individual multiplier for core 1 and an individual multiplier for core 2 can 

eliminate the option of having a shared multiplier between cores 1 and 2. 

Figure 9 is a block diagram of the shared fixed hardware block architecture. It is similar 

in concept to the ideas presented in this thesis, however, fixed functional units are shared 

rather than custom instructions. Further,  the proposed architecture is never synthesized or 

physically implemented on an FPGA. This means that the area results provided are an 

estimate based on the removal of individual blocks. Also, the additional sharing hardware 

such as multiplexors and an arbitration unit are not described in detail or estimated in size. 

 

 

Figure 9. Shared fixed block architecture. 
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The work presented in this thesis differs from previous work in that it focuses on sharing 

ISEs. Although extra hardware is required for arbitration and signal selection in a system 

with sharing, the area overhead is overcome through the reduction in custom instruction 

implementations. Aside from reducing the required FPGA size, the advantage to resource 

sharing for ISEs is that the area made available can be used to implement additional custom 

instructions thus leading to further performance gains.  This thesis clearly outlines the 

hardware overhead required for custom instruction sharing and provides run-time results that 

take any critical path penalties into account. 

 

1.4 Thesis Organization 

This thesis is organized into five chapters. Chapter 1 has outlined the motivation for this 

work, research objectives, and previous work. Chapter 2 describes the shared instruction 

architecture. It discusses two types of custom instructions and provides resource usage and 

critical path delay results. A simulator used to determine run-time operation and results is 

presented in Chapter 3 along with a benchmark generator used to quickly explore the design 

space. This simulator is verified with a case study in Chapter 4.  Critical path delay and 

resource usage results are provided for the case study. Chapter 5 is a summary of all results 

and conclusions. Future work stemming from this research is also discussed. 
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2    Chapter: Shared Instruction Architecture 

In this chapter, the shared instruction architecture is presented. A description of the 

proposed solution is provided in Section 2.1. Section 2.2 gives a general overview of the 

architecture. It describes the flow, from a processor’s request to use the custom instruction, 

until the result is produced. In Section 2.3, finer details of the implementation are presented. 

The two types of custom instructions, fine-grained and coarse-grained, are introduced, and a 

design example is analyzed for resource usage and critical path delay in Section 2.4. A 

summary of all findings and key points from this chapter is discussed in Section 2.5. 

 

2.1 Proposed Solution 

To satisfy area and power constraints while maintaining increased performance, an 

architecture is proposed in which ISEs are shared between two or more cores. As shown in 

the two-core example in Figure 10, each processor core retains its own arithmetic logic unit 

(ALU), but shares a set of ISEs. In the case that a custom instruction is simultaneously 

requested by more than one core, the requests are queued and then executed consecutively 

via an arbitrator. A small amount of additional hardware is added to each processor to map 

the inputs and outputs to and from the correct core.  
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Figure 10. Proposed architecture with instruction-set extensions shared between two cores. 

 

ISE sharing can benefit the system in one of two ways depending on the relative 

importance of cost versus run-time performance. First, the resources made available by 

allowing custom instruction sharing can be used to add additional custom instructions, thus 

leading to further run-time performance gains. Alternatively, a smaller FPGA can be used to 

implement the same design, if custom instructions are shared, thus reducing per part cost and 

static power dissipation. 

In order to take advantage of custom instruction sharing, several challenges must be 

addressed. First, an architecture must be defined that provides run-time instruction sharing 

without significantly increasing critical path delay. There must be a way to evaluate each 

system and a way to test its limits under a variety of run-time conditions. Second, there must 

be compiler support such that ISEs are selected to maximize performance and to reduce 

implementation area through sharing opportunities.  
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The research presented in this thesis focuses on the first of these challenges. More 

specifically, an architectural framework is proposed in which custom instructions are shared 

between processors. This framework is implemented using Nios-II soft processors in a shared 

instruction-memory arrangement. The system was specified in a hardware description 

language (HDL) in a scalable way such that hardware can be easily generated for any number 

of processors, any degree of processor sharing, and any number of custom instructions. To 

the best of the author’s knowledge, this is the only work that addresses the sharing of custom 

instructions between processors. 

 

2.2 Implementation Overview 

The proposed architecture allows processor cores to access a shared set of custom 

instructions, as was shown in Figure 10. In the normal operation of a single core, operands 

from the register file can be directed to either the ALU or the custom instruction unit. In the 

proposed architecture, inputs to the custom instruction unit are multiplexed to allow for 

operands to be provided by multiple cores. Multiplexing is controlled by an arbitration unit 

that also controls to which core the output is forwarded. 

The arbitration unit is comprised of priority selection circuitry and a mechanism for 

queuing cores. When multiple cores request the use of an instruction simultaneously, the 

arbitrator determines which core will have access to the custom instruction based on a fixed 

priority scheme. All other processors in the queue are stalled until the instruction is released, 

after which the core with the next highest priority is allowed to proceed. 
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This architecture is designed for systems where multiple processors are running the same 

or similar applications. This allows for custom instructions to be selected that can be used by 

and can benefit all the processors in a system. The main goal is to reduce the overall FPGA 

implementation area; a reduced implementation area requires a smaller, less costly FPGA. 

Alternatively, the area saved by sharing could be used to implement additional custom 

instructions that will further benefit the performance of the system. While trying to improve 

the density of the design, it is important that run-time performance is still improved over a 

system that does not use custom instructions to execute the application. In Chapters 3 and 4, 

run-time results are provided for the proposed architecture for fine-grained and coarse-

grained ISEs, respectively. A comparison is made to the run-time of architectures that do not 

share custom instructions. 

 

2.3 Implementation Details 

The proposed architecture was implemented for a Stratix III FPGA using Nios-II/s soft 

processors.  According to the Nios II Processor Reference Handbook [34], each Nios II/s 

core uses less than 700 adaptive logic modules (ALMs) of the 56,800 ALMs available on the 

Statrix III device. An ALM is the basic building block of programmable hardware in which 

the digital logic on some FPGAs is built. ALMs can have up to eight inputs and eight outputs 

used in several implementation combinations. Resource usage results will be determined in 

units of ALMs so that comparisons can be made fairly between all systems.  
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The Nios II/s core uses static branch prediction and can have up to a 64KB instruction 

cache. No data cache is available for this core. The core uses a five stage instruction pipeline 

comprised of fetch, decode, execute, memory, and writeback. During the fetch stage, 

instructions are retrieved from memory and the next program counter value is predicted. The 

decode stage then takes place to read the register file and create the datapath control signals. 

Next, the execute stage performs the decoded instruction. When the execute stage has 

finished, data is written to memory during the memory stage. Finally, the register file is 

updated in the writeback stage. Figure 11 depicts the new five-stage pipeline for a shared 

custom instruction-set architecture.  

 

 

Figure 11. Shared custom instruction-set extension pipeline. 
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As for a single processor system, the custom instruction hardware replaces the regular 

execute stage performed by the arithmetic logic unit (ALU). For the proposed architecture, 

each processor retains its own ALU, but shares custom instruction units. The encircled areas 

on the figure represent the additional hardware required to implement sharing, which is the 

same regardless of the custom instruction unit. The custom instruction unit is like a “black 

box” that can be replaced with different instructions for each application. 

In the proposed sharing architecture, all standard Nios II multi-cycle custom instruction 

signaling is maintained. These include the instruction request ID, two input operands, the 

result signal, the start signal, and the done signal. The request ID indicates which instruction 

the processor would like to execute. The start signal indicates a request has been made by the 

processor to execute a custom instruction. The done signal indicates that the custom 

instruction has finished executing and a valid result is available. The start and done serve as 

handshaking controls thus allowing instructions to take multiple clock cycles to execute. 

A multi-cycle custom instruction timing diagram is shown in Figure 12. The start signal 

is set high to indicate the processor’s request for the custom instruction. At this time, the 

inputs must be valid and remain constant until the end of the custom instruction. When 

execution is complete, the done signal is set high by the custom instruction to indicate a valid 

result is waiting for the processor. The instruction request ID must also remain constant for 

the duration of the instruction. The processor uses this signal to select the correct result for 

the extended case where there are multiple instruction options. 
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Figure 12. Multi-cycle custom instruction timing diagram [35]. 

 

2.3.1 Front-End Sharing Hardware 

The front-end of each custom instruction contains data multiplexers, a priority-encoder, 

and hardware to latch start signals from all processors. Because processors normally only 

hold the start signal high for one clock cycle as shown in Figure 12, the request must be 

queued thus preventing the request from being lost if the instruction is currently in-use. The 

start signal is only saved for a particular custom instruction if the processor’s instruction 

request ID signal matches the instruction’s id. This is performed by a comparator as shown in 

the block diagram depicting the front-end hardware in Figure 13. The saved start signal is 

released when the corresponding done signal matching the processor and instruction is 

received. 
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Figure 13. Front-end sharing hardware block diagram. 
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The saved start signals from all processors are connected to a priority encoder. A one-hot 

to binary encoder is used to give precedence to one processor when there are multiple 

requests. The truth table for such an encoder is given in Table 1 for a system with 12 

processors. The output, or select signal, is determined based on the saved start signals from 

each processor, P0 through P11. If multiple processors are requesting the instruction, the 

processor with the lowest ID is given priority, and all other signals are ignored. The output 

from the encoder selects the correct input data which is fed into the custom instruction. This 

entire front-end set of components is required for each custom instruction to provide a fast 

and area-efficient mechanism for arbitration. 

 

Table 1. One-hot to binary priority encoder truth table for a 12 processor system. 
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2.3.2 Back-End Sharing Hardware 

When a result is produced by a custom instruction, it must be forwarded to the correct 

processor. The processor’s instruction request ID signal is used to select the priority encoder 

output, done signal, and result signal from the corresponding instruction. As shown in Figure 

14, the priority encoder output and the processor identification number are then compared. If 

these values match, the done signal is accepted by using the and gate shown. Upon receiving 

a high done signal, the processor will then latch the result value present. This ensures that a 

processor does not erroneously select a result belonging to another processor with higher 

priority. This entire back-end set of components is required for each processor core. 

 

 

Figure 14. Back-end sharing hardware block diagram. 
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2.4 Custom Instructions 

As shown in Figure 13, the custom instruction unit is a “black box” within the shared 

architecture. Custom instructions can be tailored per application either manually or 

automatically while the infrastructure used to support sharing remains the same. Two types 

of custom instructions can be implemented: fine-grained and coarse-grained. Fine-grained 

instructions are made from smaller sections of source code and use few inputs. They usually 

execute in just a few clock cycles and are closely coupled with the pipeline. Coarse-grained 

instructions replace large sections of source code and can use a whole array of inputs. 

Typically, a system with fine-grained instructions will spend less time in each custom 

instruction, but use them more frequently than coarse-grained instructions. Examples of fine-

grained instructions along with an implementation example are given in Section 2.4.1. 

Coarse-grained instructions are described in Section 2.4.2 with an explanation of the required 

architecture adjustments. 

 

2.4.1 Fine-Grained Instructions 

Typically, fine-grained instructions are selected from application source code based on 

register file constraints, speed increase, frequency, and hardware implementation cost. As 

mentioned previously, several algorithms to define and select custom instructions for single-

processor systems have been developed. Automatic instruction selection and enumeration is 

beyond the scope of this thesis and, as a consequence, custom instructions are chosen 

manually.  
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Custom instructions were generated with attributes found to be typical based on an 

analysis of well-known benchmarks. The instructions were not extracted from source code, 

but rather generated using compiler instruction-enumeration and -selection statistics from 

several previous works. The assumptions used are tabulated in Table 2 along with the source 

used to determine their value. Each of the entries in the table represents an architectural 

attribute of the custom instruction such as the “depth” of logic in a custom instruction in 

terms of gates. 

 

Table 2. Attributes of custom instructions assumed when generating the custom instruction-set. 

Statistic Value Source 

Average Custom 

Instructions per 

Application 

9 
Ienne and Leupers 

[36] 

Average Frequency 

of Custom Instruction 
32.3% Clark [37] 

Relative Frequency 

of Operations 

Multiply = 13.3% 

Add        = 31.0% 

Logic     = 55.7% 

Clark et al. [23] 

Custom Instruction 

Depths, Width, and 

Shape 

Depth 2 = 47.5% 

Depth 3 = 24.8% 

Depth 4 = 10.3% 

Depth 5 =   6.2% 

Clark et al. [23] 
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One assumption used to generate the custom instruction-set is that custom instructions 

tend to have a “triangular” shape as depicted in Figure 15. Statistically, custom instructions 

can be organized as a set of logic levels with a “triangular” shape as described by Clark et al 

[23]. In this diagram, each node represents an operation with the outputs of each level of 

operations being connected to the inputs of the next level via a cross-bar network. The level 

closest to the inputs tends to contain the most operations. The number of operations in each 

consecutive level tends to be progressively fewer the closer it is to the output. The custom 

instruction in Figure 15 has four logic levels with the first level performing three operations 

that use the two input operands. The results from this first level are then used as operands to 

the second level which performs two operations. The third level then also performs two 

operations, and the fourth level performs one operation that produces the output. This overall 

shape is assumed for the set of custom instructions defined and depicted in Figure 16. 

Assuming the “triangular” shape assumption, 9 custom instructions were randomly 

generated to define the custom instruction-set shown in Figure 16. The decision to use 9 

custom instructions was based on previous work by Ienne and Leupers [36] that found that 

the average number of custom instructions per benchmark application is 8.72. Clark et al [23] 

found that the probabilities that custom instructions have depths of 2, 3, 4, and 5 levels are 

47.5%, 24.8%, 10.3%, and 6.2%, respectively, for systems in which 5-levels is the maximum 

allowed depth. Based on this, we assumed that five of the nine proposed instructions have 2 

levels, two have 3 levels, one has 4 levels, and one has 5 levels. 
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Figure 15. Average custom instruction shape and layout. 

 

After further processing of the statistics extracted from Clark et al [23], it was determined 

that depth-2 instructions have an average of 3.7 operations, depth-3 instructions have an 

average of 5.3 operations, depth-4 instructions have an average of 7.0 operations, and depth-

5 instructions have an average of 8.3 operations. For this reason, it was assumed that the 

generated custom instructions have 4, 5, 7, and 8 operations for depth-2, depth-3, depth-4, 

and depth-5 instructions, respectively. 

With respect to operation types, the probabilities that an operation is a multiply, add or 

subtract, or a logic operation are 13.3%, 31.0%, and 55.7%, respectively [23]. Thus, 

operations were randomly placed in each of the nine proposed instructions using these 

proportions. The custom instructions can have one or two inputs. The Verilog 

implementation of the nine average custom instructions can be seen in Appendix A. 
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Figure 16. Set of nine custom instructions used for the proposed architecture. 

 



 37

 

2.4.1.1 Experimental Framework 

The proposed architecture and fine-grained custom instructions were implemented for a 

Stratix III FPGA using Nios-II/s soft processors. As defined in the Nios II Custom 

Instruction User Guide [35], the proposed custom instructions are extended multicycle 

instructions, requiring clock, clock enable, start, reset, instruction select, and done signals. 

These fine-grained instructions are confined to two input operands and one output by the 

Nios II register file.  

To determine the impact of sharing as the number of processors varies, Quartus II was 

used to generate systems containing varied numbers of processors using both the original, 

non-shared architecture and the new, shared architecture. Results for these systems are 

discussed in Section 2.4.1.2.  

Using results from the varied processor experiment, systems with a fixed number of 

processors are generated that allow varying degrees of custom instruction unit sharing. This 

means processors can share more than one set of custom instructions in order to alleviate 

bottlenecks caused by competition for the same resource. These results are discussed in 

Section 2.4.1.3. 

For the varied processor and varied sharing systems described above, all cores have their 

own 8 Kb instruction cache and 6 Kb on-chip data memory. The cores share a common 256 

Kb on-chip instruction memory. Synthesis was performed using Quartus II which was used 

to provide both resource usage and critical path delay results. All area and critical path delay 

results have been averaged over five fitter seed values.  
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2.4.1.2 Varied Processor Resource Usage and Critical Path Delay 

Quartus II was used to generate systems containing 3, 6, 9, 12, 15, and 18 processors that 

all share one set of custom instructions. Table 3 shows the percentage area reduction of the 

shared system compared to the non-shared architecture for each case. The shared systems 

containing 6, 9, 12, 15, and 18 processors all showed an area reduction of more than 21% 

over the non-shared architecture containing the same number of processors. The shared three 

processor system did not produce any area benefits over the non-shared architecture. These 

results demonstrate two important points to consider when designing a shared system: a 

minimum amount of sharing is required before area reduction is seen, and a maximum 

amount of sharing can be reached where the area benefits begin to decrease again. 

 

Table 3. Resource usage for fine-grained systems sharing one custom instruction unit. 
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The three processor system demonstrates a case where the minimum amount of sharing 

was not reached to produce an area reduction over the non-shared architecture. Although two 

custom instruction units are removed for this case, the additional infrastructure needed to 

provide custom instruction sharing (i.e. multiplexors, comparators, priority encoders, and 

state machines) is greater than the area saved. 

The most prominent reduction in area is achieved for the 12 processor system 

representing the maximum amount of sharing for this instruction-set before the area benefits 

begin to decrease again. This peak is likely caused by two opposing trends. One trend is that 

an increase in the amount of sharing, achieved by increasing the number of processors, 

results in an increase in resource usage because it leads to larger multiplexors and a larger 

arbitrator. The opposite is true for the resource usage of the custom instructions themselves; 

the more sharing that occurs, the less resource usage. The amount of sharing that will lead to 

an optimal reduction in area will vary depending on the custom instruction unit size and 

complexity. 

Although reducing the implementation area of a design is the main advantage of sharing, 

it can have a negative impact on critical path delay and thus overall runtime. A more compact 

design generally means a shorter critical path delay. However, in the shared architecture, the 

placement of the instruction unit in relation to each processor will be much different than in 

the non-shared architecture. Also, the additional sharing hardware lengthens the time 

required to complete the execute stage of the pipeline. For both the shared and non-shared 

architectures, it is desirable to create ISEs that do not affect the critical path delay of the 

system. 
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An extended path over the custom instruction will lengthen the time required to complete 

the execute stage of the processor’s pipeline. Figure 17 shows the five-stage pipeline of the 

Nios II/s processor. For the fine-grained custom instructions, the execute phase has been split 

into two clock cycles to ensure the critical path of the entire design is not affected by larger 

instructions.  

 

 

Figure 17. Execute phase timing for custom instruction. 

 

The first cycle in the execute stage performs the front-end operations that select the input 

values. These values are then latched, and the actual custom instruction is performed in the 

second clock cycle of the execute stage. The back-end operations, that select the result and 

done signals for the correct processor, are also performed during the second clock cycle. For 

more complex instructions, the custom instruction could be split into more than two clock 

cycles to prevent the instruction from affecting the critical path if necessary. 
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The critical path of the shared architecture is not affected when using the two-cycle 

execute as demonstrated in Table 4. Negligible changes in the critical path delay over the 

non-shared architecture are seen in the 6, 9, 12, 15, and 18 processor cases. These small 

differences are likely caused by variations in the layout due to the non-deterministic nature of 

the layout algorithms used by Quartus II. The 3 processor case shows a larger reduction in 

the critical path, but was not a beneficial implementation in terms of area reduction. Since the 

12-core system showed the greatest area reduction and a slight reduction in critical path delay 

over the non-shared architecture, it was selected for further analysis. The 12-core system also 

presents several opportunities to explore custom instruction unit sharing between varied 

numbers of processors. 

 

Table 4. Critical path delay for systems with varying cores sharing one custom instruction unit. Each 

custom instruction unit has 9 fine-grained instructions. 
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2.4.1.3 Fixed Processor Resource Usage and Critical Path Delay 

Systems containing a fixed number of processors can be arranged into groups, such that 

each group shares a set of custom instructions. In Figure 18 and Figure 19, FPGA resource 

usage and run-time are presented for a 12-core system arranged into different sharing 

configurations. The total number of processor cores in the system remains constant, but the 

number of custom instruction units varies depending on the degree of sharing. 

For example, one arrangement has two cores per custom instruction unit, where each unit 

contains the 9 custom instructions shown in Figure 16. For this system, the twelve cores are 

evenly divided into six groups. In this thesis, this type of arrangement is referred to as 2-way. 

 

 

Figure 18. Resource usage for a system with 12 cores and with varying degrees of sharing. Each 

custom-instruction unit has 9 fine-grained instructions. 
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For the area and critical path delay results, the x-axis represents the number of processors 

sharing each custom instruction unit. The graphs show a magnified view of the results to 

better demonstrate the changes in the y-axis values for each case. For the 4-way, 6-way, and 

12-way sharing configurations, significant reductions in resource usage are seen. In fact, the 

resource usage of a 12-core system is reduced from 25,309 ALMs in the non-shared 

architecture to 19,158 ALMs in the 12-way system. This translates to a 24% reduction in 

FPGA logic resources. The 2-way and 3-way sharing configurations do not show area 

reductions compared to the non-shared architecture due to the additional input multiplexors, 

comparators, and priority encoders required. For example, a 2-way system requires 6 custom 

instruction units and the input multiplexors, comparators, and priority encoders for each 

instruction in each unit. A 12-way system only requires a single custom instruction unit and 

additional front-end hardware for each custom instruction in the set. 

The results presented in Figure 19 show that any changes in the critical-path delay of the 

12-core system are negligible and likely attributed to layout variations. Quartus II timing 

results showed that the additional sharing hardware did not appear on the critical path. 

Therefore, the slight range in values from 9.02 ns to 9.51 ns is likely caused by repositioning 

in the design layout and not by the additional sharing hardware. It could be expected, 

however, that a peak number of processors would be reached where the additional 

multiplexing and encoding hardware would become large enough to cause delays in the 

critical path. 
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Figure 19. Critical path delay for a system with 12 cores and with varying degrees of sharing. Each 

custom-instruction unit has 9 fine-grained instructions. 

 

2.4.2 Coarse-Grained Instructions 

Larger instructions that require more inputs and more clock cycles to complete can also 

be selected from application source code for custom instruction implementation. These 

coarse-grained instructions are usually called less frequently by the application, but have a 

much larger per-use speed increase. 

As mentioned previously, Nios II processors are restricted by their register files, allowing 

for just two inputs and one output. Figure 20 shows a shared architecture with two cores 

capable of using multiple inputs and multiple outputs in the custom instruction. It is similar 

to the architecture in Figure 10 but has a few adjustments for input selection and result 

writeback.  
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Figure 20. Proposed architecture for coarse-grained instruction-set extensions shared between two 

cores. 

 

Rather than providing two input operands, the register file operands can consist of a 

pointer to the front of an array. The values stored in the array can be transferred in bursts 

from memory to internal custom instruction registers and used as operands in the custom 

instruction. The reverse can be done for output operands, with multiple results being 

transferred directly to memory rather than being returned via the register file. Effectively, the 

custom instruction behaves like a co-processor by taking control of the data bus to perform 

memory read and write operations.  
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From this point, the custom instruction proceeds as normal. When the custom instruction 

is completed, the outputs can be written back to memory in any location specified. No result 

is passed back to the processor, as it has already been written to memory. The arbitrator is 

used to select the correct done signal that will notify the processor that the custom instruction 

has completed. A coarse-grained custom instruction case study is given in Chapter 4. 

 

2.5 Summary 

The architecture for sharing sets of custom instructions was introduced in this chapter. 

The sharing architecture has hardware overhead caused by multiplexors, an encoder, and an 

arbitrator, that grows with increased sharing. The area reduction from sharing instruction 

units must be enough to overcome this additional hardware. The new architecture maintains 

all signals required for custom instruction operation as defined in the Nios II Custom 

Instruction User Guide [35] and meets all signal timing requirements. 

An example system containing twelve processors was developed for both fine-grained 

and coarse-grained custom instruction sharing analysis. The fine-grained instructions used to 

gather results were based on statistics for average applications and custom instructions. The 

custom instruction-set comprised of nine custom instructions following a triangular shape. 

Resource usage results show that the area of a shared system can be reduced up to 24% over 

the original, non-shared architecture. The critical path is affected minimally and actually 

shows a slight decrease in the 12-way sharing case. 

Finally, the architecture adjustments required to accommodate coarse-grained instruction 

sharing were described. The coarse-grained scenario will be analyzed with a case study in 

Chapter 4. 
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3    Chapter: Simulating Run-time Behaviour 

To evaluate the run-time performance of the proposed scheme, a simulation framework 

was developed. This chapter details the framework which consists of a benchmark generator 

and a high-level run-time simulator. The simulator was designed to speed-up design space 

exploration and to quickly evaluate the run-time effectiveness of instruction sharing. This 

tool simulates the run-time interaction between processors competing for instruction 

resources and simulates the resulting effect on total run-time. To aid the simulator in the 

efficient analysis of applications and custom instructions best-suited for sharing, a 

benchmark generator was developed that is capable of randomly generating applications 

compatible with the simulator. 

This benchmark generator and simulator are described in more detail in Section 3.1 and 

Section 3.2, respectively. Later, a case study in Chapter 4 is used to determine the accuracy 

of the simulator and demonstrate the effectiveness of exploring the design space using the 

simulator. Section 00 provides run-time results for the fine-grained system introduced 

previously in Section 2.4.1. Finally, processor and custom instruction utilization as the 

amount of sharing increases are discussed in Section 3.4.  
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3.1 Benchmark Generator 

A benchmark generator was developed that randomly generates an execution trace based 

on user-specified parameters such as program length, the ratio of custom instructions to base 

instructions, and the number of custom instructions available. The benchmark generator 

allows us to efficiently determine if a certain type of application will benefit from custom 

instruction implementation and the shared custom instruction-set architecture. The tool can 

either generate unique benchmarks for each processor in the multi-core system or it can 

generate one benchmark to be used by all cores. The unique benchmarks represent a case 

where processors are running similar applications that will still make use of the same set of 

custom instructions. 

The benchmark generator allows the user to define any custom instruction-set. First, the 

generator creates an application of the user-defined length. Then, the cycles required for the 

software implementation of a custom instruction are removed and replaced with the custom 

instruction cycles. For example, the first instruction from the fine-grained set shown again in 

Figure 21 implements four operations. These four operations require 11 cycles when 

implemented in software, but only 2 when implemented in hardware as a custom instruction. 

The 11 cycles are removed from the original application and replaced with 2 cycles that are 

marked as custom instruction one. 
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Figure 21. Four operation custom instruction requiring 11 cycles in software or 2 cycles in hardware. 

 

3.2 Run-Time Simulator 

A high-level run-time simulator was also developed that simulates the effects of 

processor cores competing for a set of shared instructions. The simulator is written in C++ 

and can work independently or in conjunction with the benchmark generator. The simulator 

can be operated with separate benchmark traces for each processor in the system. These 

traces can be generated using the benchmark generator, or they can be extracted from the 

run-time behavior of an application running on a real processor.  

The simulator operates at a higher level than typical instruction-set simulators. The only 

processor state that is maintained is the program counter and the number of clock cycles 

remaining in the execution of the current instruction. For instruction units, the simulator 

maintains a record of which processors have access to its instruction resources and which 

processors are currently queued.  
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The simulator provides an output text file containing run-time statistics for all processors 

in addition to utilization statistics for processors and shared instructions. It details the status 

of each processor on every execution cycle. The cycle status shows an r when a regular 

instruction is being executed, an s when the processor is stalled, and a number when a custom 

instruction is being executed. The processor utilization statistics indicate how often a 

processor is stalled in relation to the overall cycle count. The custom instruction utilization 

statistics indicate how many cycles are spent using a custom instruction unit compared to the 

overall cycle count. 

 In Chapter 4, hardware is implemented as part of a case study, and run-time results are 

compared against those produced by the simulator. Results of the case study show that the 

behavior of the simulator closely matches that of a real system. The key benefit of the 

simulator is it that it accelerates design-space-exploration. Using hardware implementations 

to perform design-space-exploration would require each candidate to be synthesized and then 

programmed onto the FPGA. If one were to explore the various permutations of 9 

instructions being assigned and shared amongst 12 processors, design-space-exploration 

using hardware could take months. Using a traditional hardware simulator such as ModelSim 

would be exponentially worse. The simulator developed in this thesis can estimate the impact 

of a proposed ISE configuration on run-time in roughly one second. 
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3.3 Fine-Grained Run-Time Results 

The run-time results presented in Figure 22 were created by multiplying total run-time 

cycles generated by the simulator with the critical path delay results, shown in Figure 19, 

generated by the synthesis tool. These results were generated for three system types: the 

shared architecture with 12 cores and varying degrees of sharing, the non-shared architecture 

with custom instructions that are not shared between processors, and the base architecture 

which has no custom instructions.  

Figure 22 shows run-time results for two different scenarios: all cores running the same 

application and all cores running different applications. When applications are generated 

automatically for the proposed simulation framework, it is assumed that the frequency of 

custom instructions executed relative to all other instructions is 32.3%. This value was 

originally reported by Clark [37]. The line with “diamond” markers represents 12-core varied 

sharing results with the same 15,000 cycle application run on each core. The line with “X” 

markers represents 12-core varied sharing results with different applications, each being 

15,000 cycles, run on each core. 
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Figure 22. Run-time for a system with 12 cores and with varying degrees of sharing. Each custom instruction unit has 9 instructions. 
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Results are similar for both of the generated application cases: 12 processors running the 

same application and 12 processors each running different applications. For the 12-way 

arrangement, the run-time is reduced by 43% over the base, no custom instruction system for 

the same application case. This increases to 53% for the 4-way arrangement. For the 4-way, 

6-way, and 12-way arrangements, large improvements in run-time are still seen over the base 

system, while causing a significant decrease in the resource usage over the non-shared 

architecture. The increase seen in runtime from 2-way to 12-way sharing is expected and is 

due to stalls caused by processors competing for the same instruction. For this case, the 

impact is minimal as the shared architecture run-time is still beneficial over the base 

architecture. 

 

3.4 Processor and Instruction Utilization 

Run-time processor and custom instruction utilization results were generated by the 

simulator for the 12-core system with all cores running the same application and are 

presented in Figure 23 and Figure 24. By construction, processor utilization is 100% for the 

non-shared architecture. As processor sharing is added and increased from 2-way to 12-way 

sharing, processor utilization drops to 88.4%. Thus, configurations with high degrees of 

sharing will encounter higher frequencies of collisions and therefore processors spend a 

higher percentage of their time stalled. 
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Figure 23. Processor utilization for a fine-grained system with 12 cores running the same application 

with varying degrees of sharing. 

 

Custom instruction utilization follows the opposite trend to processor utilization. As the 

systems progress from no sharing to 12-way sharing, the average utilization for a single 

custom instruction in the set increases from 3.6% to 32.9%. These relatively low utilization 

numbers suggest that custom instructions represent a somewhat “resource expensive” 

approach to accelerating systems. Evidently, this expense can be minimized using the sharing 

approach presented. 
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Figure 24. Custom instruction utilization for a fine-grained system with 12 cores running the same 

application with varying degrees of sharing. 

 

3.5 Summary 

The benchmark generator presented in this chapter can be used to create sample 

applications to check the benefits of custom instruction sharing. The generated benchmarks 

are used as inputs to the high-level simulator that provides run-time results. For the fine-

grained instructions introduced in Section 2.4.1, the simulator shows that the run-time of a 

12-way sharing system is reduced 43% over the base system with no custom instructions 

when all processors are running the same application. This same system in Section 2.4.1.3 

showed a decrease in resource usage of 24% over the non-shared architecture. 
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Also, this chapter discussed how processor and custom instruction utilization are affected 

by sharing. As the degree of sharing increases, processor utilization decreases to 88.4% due 

to stalls, but custom instruction utilization increases to 32.9%. The increase in instruction 

utilization can make a “resource expensive” custom instruction implementation more 

appealing to designers.  
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4    Chapter: Coarse-Grained Case Study 

As described in Chapter 2, coarse-grained instructions are larger custom instructions that 

require more inputs and outputs than the register file allows. This chapter presents a case 

study that implements, in hardware, a multi-processor system with a shared coarse-grained 

instruction-set. The primary focus of this chapter is to demonstrate the effectiveness of 

coarse-grained instruction sharing on a real platform. Because the application was 

implemented in hardware, results are also provided to validate the accuracy of the simulator 

first presented in Chapter 3. The application and custom instruction implementation are 

described in Section 4.1 and Section 4.2, respectively. Resource usage and critical path delay 

for the coarse-grained system are presented in Section 4.2.1. 

The hardware run-time results from the case study are used to verify the simulator 

accuracy in Section 4.3. Coarse-grained custom instruction sharing and the usefulness of the 

simulator are discussed in Section 4.3.2. The processor and custom instruction utilization 

statistics follow in Section 4.3.3. 

 

4.1 Secure Hash Algorithm (SHA) 

The benchmark selected for the case study is the Secure Hash Algorithm (SHA) from the 

security section [38] of the MiBench benchmark suite developed by Guthaus et al [39]. The 

SHA was developed by the National Institute of Standards and Technology (NIST) [40]. It is 

a Federal Information Processing Standard (FIPS) [41] for the US government. The 

encryption algorithm will take any string less than 2�� bits and condense it into a 160 bit 

output. It is used to encrypt email or stored data and is also used whenever a smaller version 

of a message is required.  
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The SHA performs many logical and bit-wise operations that make it well-suited for 

implementation in hardware. Four sections of code were implemented in hardware as four 

different coarse-grained custom instructions as shown in Appendix B. The custom 

instructions were selected and implemented manually. The result from the application when 

using the custom instructions was verified against the result from the original application 

with no custom instructions to ensure correct implementation. More details on the coarse-

grained custom instructions are provided in the next section. 

 

4.2 Coarse-Grained Custom Instruction-Set 

 The SHA benchmark provides the opportunity to select coarse-grained custom 

instructions that replace large sections of the application source code. These custom 

instructions are called less frequently than fine-grained instructions but have a higher per-call 

impact on the speed increase. Architecture changes to accommodate coarse-grained 

instructions were described in Section 2.4.2. 

Figure 25 is a high-level depiction of the SHA custom instruction operation. Each coarse-

grained custom instruction takes the place of a full loop, performed 20 times in the SHA 

application. Initially, six operands are read from memory from inside the custom instruction: 

five from the location at input A and one from the location at input B. Encryption operations 

are then performed on the initial five values from input A. Next, a new value is read from 

memory using input B, and the encryption operations are performed again. This new value is 

obtained by updating the second address located at input B, and performing another read. 

When read and encryption operations have been performed 20 times, the instruction is 

complete and the initial five values are overwritten in memory. 
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Figure 25. Coarse-grained SHA custom instruction operation. 

 

4.2.1  Coarse-Grained Resource Usage and Critical Path Delay 

The experimental setup in this section is the same as used for the fine-grained system in 

Chapter 2. To gather resource usage and critical path delay results for the coarse-grained 

system, 12 cores are implemented for a Stratix III FPGA using Nios-II/s soft processors, 

shared instruction memory, and separate data memories.  

Figure 26 shows resource usage results similar to those presented for the fine-grained 

instructions in Figure 18. Benefits of sharing can be seen for 4-way, 6-way, and 12-way 

systems. With a 4-way sharing configuration, the implementation area is reduced by 4%. 

Increasing the system to 12-way sharing provides a 19% area reduction over the non-shared 

architecture.  

  



 60

Results for the 2-way and 3-way systems are larger than the non-shared architecture. In 

these cases, the area saved by removing custom instruction units is less than the area required 

for the additional multiplexors, comparators, and priority encoders. However, these results 

are dependent on the benchmark and the custom instruction size. It should be noted that these 

results were achieved through manual custom instruction selection. Other benchmarks may 

provide a better area reduction due to larger custom instructions. Sharing larger custom 

instructions will always provide a greater area reduction over the non-shared architecture. 

Instructions that contain larger operations such as multipliers and adds may also be beneficial 

with less sharing (ie. 3-way). 

 

 

Figure 26. Resource usage for a system with 12 cores and with varying degrees of sharing. Each 

custom instruction unit has 4 coarse-grained instructions. 
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Figure 27. Critical path delay for a system with 12 cores and with varying degrees of sharing. Each 

custom instruction unit has 4 coarse-grained instructions. 

 

The critical path delay results shown in Figure 27 demonstrate an example where the 

shared custom instruction architecture begins to affect the critical path. For 2-way through 6-

way sharing systems the critical path is within 9% of the non-shared architecture. These 

increases are minimal and caused by layout on the FPGA, not the sharing architecture. For 

the 12-way configuration, the critical path delay jumps 16% over the non-shared architecture. 

This can be attributed to the growing size of the multiplexors and encoder required for 

sharing. The sharing architecture begins to sprawl more on the FPGA pushing the custom 

instruction on to the critical path. 

 

  



 62

4.3 Simulator Verification 

Because hardware has been built for the case-study in this chapter, it can be used to help 

verify the accuracy of the simulator used in this chapter and Chapter 3. To perform this 

verification, the hardware run-time results from the SHA application case study are 

compared with the simulator results for the case study. The setup and method used to gather 

run-time information is included in Section 4.3.1 with the results produced from the 

experiment in Sections 4.3.2 and 4.3.3. 

 

4.3.1 Experimental Setup 

To perform run-time analysis for the coarse-grained case study, a few adjustments were 

made to the 12-core system. First, a performance counter core is added to the system to 

record the application execution cycle count. The Embedded Peripherals IP User Guide [42] 

defines the operation of the performance counter. The counter can be started when program 

execution begins and can be accessed by each processor as it finishes execution to retrieve 

the total elapsed cycle count.  Second, a soft-block interface for the JTAG UART [42] is 

added to each processor. The UART allows the processors to send character streams to a 

terminal window via a serial connection by writing to a data register. With the counter and 

UART capabilities added, the processors will be able to determine execution cycle counts 

and print the values to the terminal window.  
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Finally, a hardware mutex is added to the system. A mutex is used to determine processor 

control of a shared resource or task. In this case, the mutex restricts each processor from 

executing the application until all processors have completed booting up.  This ensures that 

all processors start at the exact same time making the cycle count accurate and making the 

comparison to the simulator the most reliable. 

The system is once again generated and compiled using Quartus II. Next, the design is 

loaded onto a Stratix III FPGA on an Altera DE3 Development System [43] using the 

Quartus II programmer. Using the Nios II Integrated Development Environment (IDE), the 

SHA application is compiled and loaded onto each processor. The entire system is run for 

each sharing configuration, and the number of cycles required for each processor to complete 

the application is printed to the terminal window. For each configuration, the largest cycle 

count is taken to be the total run-time for the system. 

After the hardware execution cycle-count has been determined, an instruction trace must 

be determined for the SHA application. The instruction trace will be used as an input to the 

simulator instead of employing the benchmark generator. The trace is extracted by running 

one of the processors in the system in ModelSim [44] and analyzing the wave outputs of the 

performance counter, custom instruction start, done, and request ID signals, and the clock.  
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By using the start, done, and request ID signals, one can determine whether a regular 

instruction or a custom instruction is being executed. If a custom instruction is being used, 

the instruction ID, start, and done signals indicate which instruction it is and when it starts 

and ends. Figure 28 is a small section of the ModelSim waveforms. It shows that at cycle 

13,456, custom instruction 0 finishes executing as marked by done going high. At cycle 

13,461, the start signal goes high indicating that custom instruction 1 is beginning execution. 

The performance counter will show how many clock cycles elapsed between the application 

start and finish. The signal values from the waveforms are placed into a spreadsheet and 

analyzed to produce a string of numbers representing the application execution. Each number 

represents one clock cycle, and the value will tell the simulator if it is a regular or custom 

instruction. 

 

 

Figure 28. Modelsim waveform used to determine application trace. 
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Rather than using ModelSim for all sharing configurations, a trace can now be extracted 

for a single processor and quickly applied to all sharing configurations using the simulator. 

ModelSim requires the entire system to be designed, generated, and compiled before a 

simulation can be performed. The simulation alone can take hours, and this time will only 

grow as more processors and complex instructions are added to the system. The simulator 

only requires a trace from a single processor and can produce run-time results for all sharing 

configurations in just minutes. This can help us determine if a system will benefit from a 

certain configuration and specific instructions before the time and effort is put into 

implementing the system. 

 

4.3.2 Coarse-Grained Run-Time Results 

Hardware run-time results for the coarse-grained system are shown in Figure 29. The 

execution cycles, determined using the performance counter, are multiplied by the critical 

path delay determined previously. This value represents the overall run-time. Run-time 

results are also determined using the same method for a 12 processor system running the 

SHA application with no custom instructions, referred to as the base architecture. Compared 

to the base architecture that takes 228 µs to execute, the 12-way sharing case takes 173 µs, 

improving run-time by 24%. For the 4-way sharing case which still shows an area 

improvement over the non-shared architecture, the execution time compared to the base 

system is improved by 32%.  
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Compared to the non-shared architecture, the 4-way sharing configuration only requires 

1.08 times longer to execute. The 12-way sharing configuration only requires 1.19 times 

longer than the non-shared architecture. Although the 2-way and 3-way sharing 

configurations show significant run-time improvements over the base architecture, they will 

not be analyzed as these configurations did not provide any improvement in resource usage 

over the non-shared architecture.  

 

 

Figure 29. Hardware and simulated run-time for a system with 12 cores and with varying degrees of 

sharing. Each custom instruction unit has 4 instructions. 
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The simulated run-time results for the coarse-grained case study are also presented in 

Figure 29. Results show that for the 2-way, 3-way, and 4-way sharing configurations, where 

less sharing occurs, the hardware run-time differs from the simulated by 17 to 20 µs. At 6-

way sharing this drops to 14 µs, and it drops again to just 4 µs at 12-way sharing. In all 

sharing cases, the simulated runtime is less than 12% different from the hardware runtime. 

The difference between the two sets of data can be attributed to conflicting attempts to 

access instruction memory. For the configurations where less sharing occurs, more 

processors will continually be at the same execution point in the application. When a 

processor must fetch instructions from the instruction memory, rather than its individual 

instruction cache, there may be other processors attempting the same action. Much like when 

multiple processors request the same custom instruction, only one processor can access 

instruction cache at a time. The others must queue until the resource becomes available. 

Since the simulator operates at a high level, it is unable to take these stalls into account. The 

effect of instruction memory access stalls would be less noticeable in a system with more 

sharing, since processor execution is already offset due to stalls for the custom instructions. 

The main reason the two data sets tend to converge as the sharing increases is due to 

pauses in the performance counter. Each time a processor reads the cycle count from the 

performance counter, the counter pauses. It must then be told to resume by the processor. 

This allows approximately 140 clock cycles to pass by uncounted. For configurations where 

more sharing occurs, each processor will finish at a different time, creating more individual 

reads from the performance counter.   

Figure 30 shows the adjusted hardware run-time taking these uncounted cycles into 

consideration. The 12-way configuration still shows a hardware run-time reduction of 17% 
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over the base architecture. Now, the difference between simulated run-times and hardware 

run-times is consistent between 19 µs to 24 µs. This means the simulated run-time stays 

within 10.5% to 13.5% of the hardware run-time. The offset between the two data sets is 

roughly constant and can be attributed to boot-up cycles in the hardware run-time that are 

unaccounted for in the simulation. 

These results demonstrate the accuracy of the simulator, proving that the fine-grained 

simulator results are valid. The simulator is an effective way to explore the design space and 

determine run-time results without the required effort and time to fully implement the design. 
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Figure 30. Adjusted hardware and simulated run-time results. 
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4.3.3 Processor and Instruction Utilization 

Processor and custom instruction utilization during simulation are shown in Figure 31 

and Figure 32 for the 12-core system with each core running the SHA application using the 

coarse-grained instructions. From the non-shared architecture to 12-way sharing, the 

processor utilization decreases from 100% to 92.8% due to stalls caused by multiple 

concurrent requests to the same custom instruction. The custom instruction utilization once 

again follows the opposite trend to the processor utilization. As the sharing increases from 

the non-shared architecture to 12-way, the utilization increases from 0.6% to 6.7% for a 

single custom instruction. 

 

 

Figure 31. Processor utilization for a coarse-grained system with 12 cores running the SHA 

encryption algorithm with varying degrees of sharing. 
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Figure 32. Custom instruction utilization for a coarse-grained system with 12 cores running the SHA 

encryption algorithm with varying degrees of sharing. 

 

 

4.4 Summary 

This chapter introduced the coarse-grained case study. The SHA application from the 

MiBench benchmark suite was determined to benefit performance-wise from four coarse-

grained custom instructions. When compiled for varied sharing configurations, the 12-way 

configuration showed a 19% reduction in resource usage, while the critical path is 16% 

greater than the non-shared architecture. 
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Next, hardware and simulated run-time results were determined for the case study. 

Results show that the reported run-time is affected by pauses in the performance counter that 

occur each time the counter is read. After accounting for these pauses, results show that the 

simulated run-time is within 10.5% to 13.5% of the adjusted hardware run-time. The 

difference in run-time results between the two sets can be attributed to instruction memory 

access stalls and unaccounted boot-up cycles. 

Finally, utilization statistics determined by the simulator report that processor utilization 

drops from 100% to 92.8% as sharing increases to 12-way. The custom instruction utilization 

changes from 0.6% to 6.7% as sharing increases.  
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5    Chapter: Conclusion 

In this thesis, the sharing of custom instruction units in soft multi-core systems was 

investigated. In an effort to reduce the resource usage required to implement instruction-set 

extensions while maintaining performance benefits, a shared architecture was developed. 

Previous work focused on sharing fixed hardware blocks or implementation fabric. This 

work is the first to share full custom instruction units. The effectiveness of the new 

architecture was verified using fine-grained examples and a coarse-grained case study. A 

simulator was also developed to efficiently determine run-time results. 

Chapter 2 introduced the new architecture that allows soft core systems implemented on 

an FPGA to share custom instruction resources. Using Nios II processors and Altera design 

tools, an architecture was developed to reduce implementation area by sharing custom 

instruction units. Processor cores that simultaneously request access to the shared instructions 

are queued until given access based on a fixed priority scheme.  

Next, an experiment was designed to test fine-grained resource usage and critical path 

delay using systems with 9 fine-grained custom instructions. Resource usage and critical path 

delay results were determined for fine-grained systems containing 3, 6, 9, 12, 15, and 18 

processors. Based on these results, it was determined that the 12 processor system should be 

used for further analysis. Using the 12 processors in varied sharing configurations, results 

showed that as much as 24% resource usage can be saved with minimal impact on critical-

path delay. In the 4-way, 6-way, and 12-way configurations, overall area reductions were 

seen since the reduced number of custom instruction units implemented saved enough area to 

overcome the additional sharing infrastructure.  
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An application generator and simulator to evaluate the run-time effectiveness of 

instruction sharing were developed and detailed in Chapter 3. The benchmark generator 

created an application of specified length and then reduced the number of execution cycles 

by inserting custom instructions. The generated application was run using the simulator to 

determine the impact of sharing on run-time. It was found that the run-time performance for 

the 4-way sharing case, which still showed area improvements, could be improved by as 

much as 53% over a system without custom instructions. Sharing also increased the 

individual custom instruction utilization from 3.6% for the non-shared architecture to 32.9% 

for the 12-way sharing case. 

Finally, the new architecture was used to implement a 12 processor system with each 

processor executing the SHA application from the MiBench benchmark suite. Four coarse-

grained custom instructions were manually selected from the application source code and 

implemented in hardware. Results showed that implementing the new architecture could 

reduce resource usage by as much as 19% over a system with no sharing. Hardware run-time 

results for the coarse-grained case study were determined by executing the design and 

application on a Stratix III device. The 12-way sharing case improved run-time by 24% over 

a system with no custom instructions.  

The hardware run-time results for the coarse-grained case study were compared with the 

simulated results to verify the accuracy of the simulator. The performance counter used to 

determine hardware run-time cycles pauses with each access. Once these uncounted cycles 

are considered, the hardware run-time results remain within 10.5% to 13.5% of the simulated 

run-time results. The difference between the two data sets can be attributed to unaccounted 

boot-up cycles and instruction memory access stalls.  
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These results verify the accuracy of the simulator and its results for the fine-grained 

system. The simulator can be used as a quick way to determine the run-time impact of 

sharing custom instruction units, before having to design and implement the entire system.  

Overall, this work provides a solution to the resource usage problem caused by 

instruction-set extensions. It has been shown that sharing is possible and beneficial in terms 

of area and application run-time. The architecture developed is highly flexible and can be 

easily adjusted to fit any number of processors using any number of custom instructions. 

 

5.1 Limitation of the Work 

The main limitation of the work described in this thesis is caused by the extra hardware 

required to implement the shared architecture. The additional multiplexors and arbitration 

unit can overtake the benefits of sharing. As the number of processors in the system grows, 

the additional hardware also becomes larger, taking up more of the area savings.  

It is also seen from the results that the amount of sharing must reach a certain threshold 

before resource usage benefits are noticed. However, this must be determined on a case-by-

case basis as every custom instruction unit requires a different amount of resources. A system 

that uses larger custom instructions will see a reduction in area sooner than systems with 

smaller custom instructions. 

Also, the current architecture only supports equally sized sharing groups. For example, a 

12-core system can have two groups of six processors sharing a single custom instruction 

unit. But, an 11-core system cannot have one group of five processors and one group of six 

processors. This limitation is one that could be solved, however, with just a few adjustments 

to the design. 
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5.2 Future Work 

As mentioned in Chapter 1, this work is a first step at examining the use of instruction 

sharing in multi-core systems. More work is needed to develop compiler support such that 

instruction candidates can be selected to maximize sharing opportunities among multiple 

processors. Algorithms currently exist to define custom instruction candidates for single 

processor systems, but more work must be done to expand these to analyze multiprocessor 

systems. I feel that the sharing of instruction resources will eventually become a critical part 

of all future multi-core systems. 

After compiler support is developed, a thorough power analysis would be beneficial to 

determine the effects on both static and dynamic power due to sharing. Compiler support 

would allow systems to quickly be customized for specific benchmarks. It is expected that a 

drop in static power due to reduced area would be seen, but that an increase in dynamic 

power due to increased run-time would be seen. 

This work has also spurred opportunities to investigate varying degrees of sharing within 

the custom instruction unit. For example, it may be beneficial to share some custom 

instructions among all processors and have individual implementations for more commonly 

used instructions. This presents a chance to optimize the sharing configuration for each 

application. 
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5.3 List of Contributions 

The contributions of my work and the completion of my objectives are summarized as 

follows: 

1. I developed an architecture to allow multiple processors to share ISEs. The 

architecture is able to maintain performance benefits achieved by implementing 

custom instructions, while reducing the implementation area required.  

2. Area, critical path delay, and run-time results of fine-grained and coarse-grained 

systems implementing the shared architecture were analyzed.  

3. A benchmark generator and simulator were developed to assist in the analysis of the 

shared architecture and to allow the design space to be thoroughly and quickly 

explored. 
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Appendices 

Appendix A  - Fine-Grained Custom Instruction Implementation 

The following is a section of code from shared_inst.sv that shows the implementation 

for 9 “average” fine-grained custom instructions. 

generate 

case (n) 

 0: begin: a 

  always @(posedge clk) 

  begin 

   adata <= dataa; 

   bdata <= datab; 

    x1 = adata * bdata; 

    x2 = adata | bdata; 

    x3 = adata & bdata; 

    result = x1 & x2 & x3; 

  end 

  end 

 1: begin: b 

  always @(posedge clk) 

  begin 

   adata <= dataa; 

   bdata <= datab; 

    x1 = adata ^ bdata; 

    x2 = adata * adata; 

    x3 = adata | bdata; 

    result = x1 + x2 + x3; 

  end 

  end 

 2: begin: c 

  always @(posedge clk) 

  begin 

   adata <= dataa; 

   bdata <= datab; 

    x1 = adata + bdata; 

    x2 = bdata * bdata; 

    x3 = adata & bdata; 

    result = x1 | x2 | x3; 

  end 

  end 

 3: begin: d 

  always @(posedge clk) 
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  begin 

   adata <= dataa; 

   bdata <= datab; 

    x1 = adata + adata; 

    x2 = bdata + bdata; 

    x3 = adata | bdata; 

    result = x1 ^ x2 ^ x3; 

  end 

  end 

   

 4: begin: e 

  always @(posedge clk) 

  begin 

   adata <= dataa; 

   bdata <= datab; 

    x1 = adata | bdata; 

    x2 = adata + bdata; 

    x3 = adata ^ bdata; 

    result = x1 - x2 - x3; 

  end 

  end 

 5: begin: f 

  always @(posedge clk) 

  begin 

   adata <= dataa; 

   bdata <= datab; 

    x1 = adata * bdata; 

    x2 = adata & bdata; 

    y1 = x1 + x2; 

    y2 = x1 | x2; 

    result = y1 & y2; 

  end 

  end 

 6: begin: g 

  always @(posedge clk) 

  begin 

   adata <= dataa; 

   bdata <= datab; 

    x1 = adata + bdata; 

    x2 = adata | bdata; 

    y1 = x1 & x2; 

    y2 = x1 + x1; 

    result = y1 | y2; 

  end 

  end 

 7: begin: i 
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  always @(posedge clk) 

  begin 

   adata <= dataa; 

   bdata <= datab; 

    x1 = adata * bdata; 

    x2 = adata & bdata; 

    x3 = adata | bdata; 

    y1 = x1 + x2; 

    y2 = x1 | x3; 

    z1 = y1 | y2; 

    result = z1 + y2; 

  end 

  end 

 8: begin: j 

  always @(posedge clk) 

  begin 

   adata <= dataa; 

   bdata <= datab; 

    x1 = adata * bdata; 

    x2 = adata & bdata; 

    y1 = x1 + x2; 

    y2 = x2 + x2; 

    z1 = y1 & y2; 

    z2 = y1 | y2; 

    zz = z1 & z2; 

    result = z1 + zz; 

  end 

  end 

endcase 

endgenerate 
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Appendix B  - Case Study Implementation 

 

The following is a section of code from the SHA application that was selected for 

coarse-grained custom instruction implementation. The Verilog code for each custom 

instruction is also provided. 

B.1 SHA Application 

The highlighted section below, including the for loops, represents the source code 

selected for custom instruction implementation. The highlighted section uses the macros 

defined at the top of the code. 

 

/* SHA f()-functions */ 

#define f1(x,y,z) ((x & y) | (~x & z)) 

#define f2(x,y,z) (x ^ y ^ z) 

#define f3(x,y,z) ((x & y) | (x & z) | (y & z)) 

#define f4(x,y,z) (x ^ y ^ z) 

 

/* SHA constants */ 

#define CONST1  0x5a827999L 

#define CONST2  0x6ed9eba1L 

#define CONST3  0x8f1bbcdcL 

#define CONST4  0xca62c1d6L 

 

/* 32-bit rotate */ 

#define ROT32(x,n) ((x << n) | (x >> (32 - n))) 

 

#define FUNC(n,i)      \ 

    temp = ROT32(A,5) + f##n(B,C,D) + E + W[i] + CONST##n; \ 

    E = D; D = C; C = ROT32(B,30); B = A; A = temp 
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/* do SHA transformation */ 

static void sha_transform(SHA_INFO *sha_info) 

{    int i; 

    LONG temp, A, B, C, D, E, W[80]; 

 

    for (i = 0; i < 16; ++i) { 

 W[i] = sha_info->data[i];     } 

    for (i = 16; i < 80; ++i) { 

  W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]; 

  W[i] = ROT32(W[i], 1);     } 

    A = sha_info->digest[0]; 

    B = sha_info->digest[1]; 

    C = sha_info->digest[2]; 

    D = sha_info->digest[3]; 

    E = sha_info->digest[4]; 

 

    for (i = 0; i < 20; ++i) { 

    FUNC(1,i); } 

    for (i = 20; i < 40; ++i) { 

    FUNC(2,i); } 

    for (i = 40; i < 60; ++i) { 

    FUNC(3,i)  } 

    for (i = 60; i < 80; ++i) { 

    FUNC(4,i)  } 

     

    sha_info->digest[0] += A; 

    sha_info->digest[1] += B; 

    sha_info->digest[2] += C; 

    sha_info->digest[3] += D; 

    sha_info->digest[4] += E; 

} 
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B.2 Coarse-Grained Custom Instruction Implementation 

The following is a section of code from CI.sv that shows the implementation for the 4 

coarse-grained custom instructions. It should be noted that this strictly shows the instruction 

implementation and does not show the state machines and modules required to read inputs 

from and write outputs to memory. 

 

generate 

 case (n) 

  0:  begin 

   always @ (posedge clk) 

   begin 

  // FUNC(1,i) 

   // temp = ROT32(A,5) + f1(B,C,D) + E + W[i] + CONST1; 

   // E = D; D = C; C = ROT32(B,30); B = A; A = temp 

    // ROT32(x,n) ((x << n) | (x >> (32 - n))) 

    // f1(x,y,z) ((x & y) | (~x & z)) 

     

   x1 = A << 5; 

   x2 = A >> 27; 

   y1 = x1 | x2; 

    

   x3 = B & C; 

   x4 = ~B & D; 

   y2 = x3 | x4; 

    

   Out1 = y1 + y2 + E + R5 + 32'h5a827999; 

   Out2 = D; 

   Out3 = C; 

    

   x5 = B << 30; 

   x6 = B >> 2; 

   Out4 = x5 | x6; 

    

   Out5 = A; 

   end 

  end  
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  1:  begin 

   always @ (posedge clk) 

   begin 

  // FUNC(2,i) 

   // temp = ROT32(A,5) + f2(B,C,D) + E + W[i] + CONST2; 

   // E = D; D = C; C = ROT32(B,30); B = A; A = temp 

    // ROT32(x,n) ((x << n) | (x >> (32 - n))) 

    // f2(x,y,z) (x ^ y ^ z) 

     

   x1 = A << 5; 

   x2 = A >> 27; 

   y1 = x1 | x2; 

    

   x3 = B ^ C; 

   y2 = x3 ^ D; 

    

   Out1 = y1 + y2 + E + R5 + 32'h6ed9eba1; 

   Out2 = D; 

   Out3 = C; 

    

   x5 = B << 30; 

   x6 = B >> 2; 

   Out4 = x5 | x6; 

    

   Out5 = A; 

   end 

  end 

  



 89

 

  2:  begin 

   always @ (posedge clk) 

   begin 

  // FUNC(3,i) 

   // temp = ROT32(A,5) + f3(B,C,D) + E + W[i] + CONST3; 

   // E = D; D = C; C = ROT32(B,30); B = A; A = temp 

    // ROT32(x,n) ((x << n) | (x >> (32 - n))) 

    // f3(x,y,z) ((x & y) | (x & z) | (y & z)) 

     

   x1 = A << 5; 

   x2 = A >> 27; 

   y1 = x1 | x2; 

    

   x3 = B & C; 

   x4 = B & D; 

   x5 = C & D; 

   y2 = x3 | x4 | x5; 

    

   Out1 = y1 + y2 + E + R5 + 32'h8f1bbcdc; 

   Out2 = D; 

   Out3 = C; 

    

   x6 = B << 30; 

   x7 = B >> 2; 

   Out4 = x6 | x7; 

    

   Out5 = A; 

   end 

  end 
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3:  begin 

   always @ (posedge clk) 

   begin 

  // FUNC(3,i) 

   // temp = ROT32(A,5) + f4(B,C,D) + E + W[i] + CONST4; 

   // E = D; D = C; C = ROT32(B,30); B = A; A = temp 

    // ROT32(x,n) ((x << n) | (x >> (32 - n))) 

    // f4(x,y,z) (x ^ y ^ z) 

     

   x1 = A << 5; 

   x2 = A >> 27; 

   y1 = x1 | x2; 

    

   x3 = B ^ C; 

   y2 = x3 ^ D; 

    

   Out1 = y1 + y2 + E + R5 + 32'hca62c1d6; 

   Out2 = D; 

   Out3 = C; 

    

   x6 = B << 30; 

   x7 = B >> 2; 

   Out4 = x6 | x7; 

    

   Out5 = A; 

   end 

  end 

 endcase 

endgenerate 


