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Abstract 

Nonlinear time history analysis was carried out in order to estimate the demands on cantilever 

shear wall buildings due to the design level earthquakes. A hysteretic bending moment - 

curvature relationship was developed and implemented into computer program OpenSees. The 

study included 15 different shear wall buildings that ranged in height from 10 to 50 stories with a 

range of elastic bending moment demand at the base as a ratio of bending moment capacity from 

1.3 to 3.7. 

The influence of ground motion selection and scaling on different structural response quantities 

was studied. The input ground motions were scaled to uniform hazard spectrum (UHS) and 

conditional mean spectrum (CMS). It was observed that a fewer number of spectrum matched 

ground motions can be used to establish the mean response, while a reasonable similarity was 

found between the mean demand parameters from spectrum matched and the envelope of CMS 

ground motions. 

Mean roof displacements from nonlinear time history analysis were used to determine 

appropriate effective stiffness values to be used in response spectrum analysis to accurately 

predict the maximum roof displacement. It was observed that stiffness reduction factor reduced 

from 1.0 to about 0.5 as the ratio of elastic bending moment demand at the base to the wall 

flexural capacity increased from 1.3 to 3.7. In addition, models were proposed for the complete 

envelopes of curvature demand and interstory drift demand over the wall height, including an 

accurate estimate of the maximum curvature demand at the wall base, midheight curvature 

demand, and maximum interstory drift at the roof. The developed models for base curvature and 

roof interstory drift demands were expressed in term of roof displacement demand. The 

midheight curvature demand was found to be less than the recommended values for yield 

curvature. Lastly, the results of nonlinear time history analysis were used to determine an 

expression for estimating base shear force demands. The shear amplification factor, defined as 

the ratio that the design base shear force needs to be increased, was found to be independent of 

the building height and to have a maximum value of 2.0. 
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Chapter 1 : Introduction 

1.1 Concrete Shear Wall Buildings 

Concrete shear walls are a popular seismic force resisting system for high-rise buildings in North 

America. Excellent performance in past earthquakes, less architectural restrictions compared to 

moment resisting frames, and faster construction times are some advantages of concrete shear 

walls compared to other seismic force resisting systems. Figure 1.1 shows one common form of 

high-rise concrete shear wall buildings, which has a central core consisting of concrete walls 

surrounding a cluster of elevator and stair shafts. The rectangular-shaped cores have large 

openings in the walls on at least two opposite sides to provide access into the elevators and 

stairways. The vertical wall segments adjacent to the openings are coupled together by the 

horizontal wall segments above and below the openings creating a coupled wall system in the 

direction parallel to the walls with openings (E-W direction in Figure 1.1). When two sides of 

the core do not have large openings, the core acts as a cantilever wall system perpendicular to the 

coupled walls (N-S direction in Figure 1.1). Such core wall systems with cantilever walls in one 

direction are the predominant seismic force resisting system for high-rise buildings in western 

Canada and have been used for a number of buildings in the US. 

 Another form of high-rise concrete shear wall buildings is using numerous thin shear 

walls distributed throughout the building. In high-rise residential buildings in Chile for example, 

usually the 6 or 8 in. partition walls between every room are shear walls that help control the 

lateral movements of the building. Figure 1.2 shows the plan view of such buildings.  
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Figure 1.1 Layout of core walls in the plan of a concrete shear wall building. 

 

 

Figure 1.2 Plan view of a shear wall building showing main structural walls acting as cantilever 

wall system. 
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1.2 Seismic Design of Concrete Shear Walls 

There are five important aspects of the seismic response of concrete shear walls that are 

investigated as a part of this thesis: (i) the maximum wall displacements at the top of buildings, 

(ii) the maximum flexural demands at the base of the walls, (iii) the flexural demands near the 

midheight of the walls due to the influence of higher modes, (iv) the profile of interstory drifts 

over the height of the shear walls, and (v) wall shear force demands. Each of these is discussed 

briefly below. 

1.2.1 Roof Displacement Demands 

Estimating roof displacement demand is one of the most important aspects of the seismic design 

of concrete shear walls. For example, the Canadian Concrete Code for the design of concrete 

structures (CSA A23.3-04) uses this parameter to determine the inelastic rotation demands at the 

base of the wall, the punching shear failure of slabs around gravity-load columns, and the shear 

strength of concrete shear walls in the plastic hinge region.  

 Linear dynamic analysis - in the form of response spectrum analysis (RSA) - is 

commonly used to estimate roof displacement demands by design engineers. The predicted roof 

displacement demand depends on the effective sectional stiffness (flexural rigidity) EIe used for 

the shear walls in the RSA. Available recommendations on effective stiffness of concrete shear 

walls vary considerably. CSA A23.3-04 recommends an effective stiffness of 0.7EIg for a wall 

with axial compression force of 0.1fc'Ag. ATC 72 (2010) recommends using an effective stiffness 

of 0.4EIg to 0.5EIg for walls with a similar axial compression force level based on limited shake 

table results. Some researchers have suggested using much lower effective stiffnesses - in the 

order of 0.2EIg - to obtain a good estimate of the roof displacement demand of a 7-story shear 

wall building (Panagiotou 2008). One of the topics of this thesis is to investigate what is the 

appropriate effective stiffness that should be used in an RSA to estimate the maximum roof 

displacement demand. 
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1.2.2 Inelastic Deformation Demands at the Base of Wall 

In Canada, the geometry of concrete cantilever shear walls is usually chosen so as to limit the 

maximum compression strain demands in the concrete such that confinement reinforcement is 

not needed. The maximum compression strain demands are a function of the maximum curvature 

demand and the compression strain depth, which depends on the geometry of the concrete wall 

and the axial compression load applied to the wall. Flexural deformation demands, such as 

curvatures, are largest at the base of a cantilever shear wall.  

 Both the Canadian concrete code CSA A23.3-04 and the ACI 318 building code use 

relatively recently developed rational models for relating the maximum curvature demands in the 

wall to the maximum top wall displacement. The details of these models are presented in Section 

5.4.1.1.  

 In the Canadian code approach, the inelastic rotation demand θid is compared with the 

inelastic rotation capacity of the wall at the base θic to ensure that the wall has enough ductility 

to undergo the induced seismic displacements. The inelastic rotational capacity is equal to the 

inelastic curvature capacity times the plastic hinge length, which is assumed to be equal to half 

the wall length (0.5lw). The inelastic rotation demand at the base of a cantilever shear wall is 

determined from the inelastic portion of roof displacement demand ∆id. Figure 1.3 summarizes 

the relationship between total roof displacement ∆t and inelastic rotation at the base of the wall. 

The elastic portion of the roof displacement ∆e is based on the time history results of White 

(2004) who used a limited number of ground motions (10 ground motions) and restricted the 

inelastic response of the shear walls to the base of the wall.  The relationship between top wall 

displacement and maximum curvature at the base of cantilever shear walls is investigated in the 

current thesis using a larger number of different shear wall heights hw and a larger number of 

ground motions in order to achieve more reliable time history results. 
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Figure 1.3 Determination of inelastic rotation demand from roof displacement demand (lw = wall 

length, hw = wall height, θid = inelastic rotation demand, ∆id = inelastic portion of roof 

displacement demand, and ∆e = elastic portion of roof displacement demand). 

1.2.3 Flexural Demands at Wall Midheight 

The current procedures for designing cantilever shear wall buildings in Canada assumes there 

will be a plastic hinge zone at the base of the wall, which is detailed for ductility; but the rest of 

the wall will remain elastic. A number of time history analyses have shown that very large 

bending moments may develop near the midheight of cantilever shear walls due to higher mode 

bending moments, and thus cantilever shear walls may experience significant flexural yielding 

near midheight. As the walls are not provided with ductile detailing near midheight, this yielding 

is of significant concern. 

 One solution that has been proposed is to increase the flexural capacity of shear walls to 

restrict flexural yielding to the base of the wall; however as the walls have much reduced axial 

compression near midheight, very significant increases in vertical reinforcement is needed to 

prevent yielding near mid-height. Some researchers have proposed design envelopes, which 

correlate the design bending moment at the midheight to displacement ductility and fundamental 

period of the structure. Using such envelopes is equivalent to providing higher percentages of 

0.5 lw

θid
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∆∆∆∆ id

∆∆∆∆ t

∆∆∆∆e
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longitudinal reinforcement than using the conventional bending moment envelope determined 

using response spectrum analysis.  

 In the current thesis the maximum curvature demands at midheight are investigated to 

determine whether special ductile detailing should be provided near the midheight of cantilever 

shear walls. 

1.2.4 Interstory Drift Demands 

Interstory drift demands strongly influence the deformation demands on the gravity-load system 

including the columns and the slab-column connections. For example, larger interstory drifts 

cause larger rotational demands on slab-column connections, and this increases the likelihood of 

a punching shear failure of the slabs. In practice, interstory drift demands are usually determined 

from a linear analysis such as response spectrum analysis. Due to the concentration of inelastic 

rotation at the base of a cantilever wall, the interstory drift profile may be significantly different 

than determined from a linear analysis. The typical profiles of maximum interstory drifts is 

another topic that will be investigated in the current thesis. 

1.2.5 Shear Force Demands 

Accurately estimating the shear force demands is of particular importance in the seismic design 

of cantilever shear walls in order to ensure these structures will have a ductile response. In 

practice, the shear force demand is normally estimated from response spectrum analysis using 

the same reduction factor as is used to determine the bending moment demand accounting for 

flexural ductility. As flexural yielding at the base of a cantilever wall has much less influence on 

the higher mode shears compared to the first mode shear, the shear force demands determined 

from nonlinear time history analysis are usually considerably larger than those determined from 

a linear analysis. The difference between the shear force demands from the two approaches is 

often called the dynamic shear amplification. Available recommendations on the shear 

amplification factor are generally based on nonlinear time history results using limited number 

of ground motions and simple hysteretic models. 
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In the current thesis, a state-of-the-art hysteretic model and a large number of ground motions 

are used to determine a better estimate of shear force demands on high-rise shear walls. As the 

flexural rotations at the base of a wall significantly influence the shear resistance, the 

relationship between base rotation and base shear force demands are investigated. 

1.3 Nonlinear Time History Analysis of Concrete Shear Walls 

Nonlinear time history analysis has been used extensively by researchers to investigate the 

seismic response of structures and it is increasingly used by design engineers undertaking 

performance-based earthquake engineering design. A state-of-the-art nonlinear time history 

analysis requires a detailed analytical model as well as a comprehensive study on the selection 

and scaling of ground motions. 

1.3.1 Analytical Models for Concrete Shear Walls 

Available modeling tools for concrete shear walls include a finite element approach, fiber 

models, and bending moment - curvature models. The finite element approach is suitable for 

studying the behavior of shear-critical structures, where the influence of shear force and shear 

deformation play a significant role in the structural response. The accuracy of this approach has 

been validated with experimental results on large-scale slender and squat reinforced concrete 

shear walls (Palermo and Vecchio 2004), and it was proved that the finite element approach is a 

reliable tool for predicting the hysteretic behavior of concrete shear walls under reverse cyclic 

loads.  

 The problem associated with the finite element approach is the amount of output data 

produced and extracting useful data from the analysis. The output data can be overwhelming if 

this approach is used to perform nonlinear time history analysis. Fiber models and bending 

moment - curvature models are used more often than the finite element method due to less 

computational cost and more manageable outputs. In the fiber model, the cross section of a 

reinforced concrete element is discretized into a series of fibers with a prescribed constitutive 

relationship for concrete and reinforcing steel. The strains in the concrete and reinforcement are 

obtained using the assumption that plane sections remain plane, a valid approximation for 
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flexural dominated structures but not for shear-critical structures. Implementing fiber model with 

detailed material models in commercial softwares makes the use of this analytical tool more 

appealing since the user has the option of modeling the concrete softening in compression, the 

concrete tension stiffening, and the softening of reinforcing steel under cyclic loads. Comparison 

of the fiber model prediction of the cyclic response of large-scale slender concrete shear wall 

specimens with experimental data showed good agreement (Orakcal and Wallace 2006).  

The main concern associated with the fiber model is that it does not explicitly reflect the 

influence of wall characteristics - such as axial compression force, cross sectional geometry, and 

the percentage of longitudinal reinforcement - on the cyclic response of these structural 

elements. The hysteretic bending moment - curvature models are more transparent than the fiber 

model since the user can compute the parameters of the hysteretic model from the properties of 

the shear wall. Also, the user can easily control the shape of the hysteretic loops by changing the 

key parameters of the hysteretic model. Developing a hysteretic bending moment - curvature 

relationship results in better insights into the factors that influence the hysteretic characteristics 

of concrete shear walls. 

 Hysteretic models usually feature bilinear backbone curves. Although these models have 

been used extensively for modeling the hysteretic behavior of concrete shear walls (Priestley 

2003; Rutenberg and Nsieri 2006; Panagiotou 2008), they are not suitable for modeling the 

backbone curve for high-rise concrete shear walls. Core walls in high-rise buildings have large 

flanges and are subjected to high axial compression force. For these elements, a large portion of 

the backbone segment is similar to the uncracked portion of the flexural response, and a bilinear 

backbone cannot approximate both the stiffness and yield curvature of the shear wall 

simultaneously. Figure 1.4 compares the bending moment - curvature relationship for a 30 story 

building core with an axial stress ratio P/fc'Ag of 10.1% and 0.5% longitudinal reinforcement in 

the flanges determined from fiber analysis with trilinear and bilinear approximations. If the slope 

of the bilinear curve is adjusted to approximate the initial stiffness of the predicted nonlinear 

curve, the yield curvature is significantly underestimated, while if the initial stiffness of the 

bilinear curve is adjusted to match the yield curvature, the bilinear approximation underestimates 

the stiffness characteristics of the shear wall. Figure 1.4 shows that the trilinear backbone curve 

gives a better approximation of the nonlinear response in terms of capturing both the initial 

stiffness and the yield curvature. 
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Figure 1.4 Comparison of actual bending moment - curvature relationship determined from fiber 

analysis with trilinear and bilinear approximations. 

 Nonlinear structural models include detailed 3-dimensional models, 2-dimensional 

models, and equivalent single-degree-of-freedom (SDOF) oscillators. The 3-dimensional and 2-

dimensional models are performed by assigning bending moment - curvature relationship or 

fibre models to each component. Plasticity can be assumed to be spread over the length of the 

element or concentrated at both ends. Higher mode effects can also be detected by both models. 

Performing time history analysis using a 3-dimensional model gives insight into the additional 

demands on gravity-load columns associated with torsion. Using 2-dimensional models can still 

be used to estimate seismic demands on the shear wall itself since out of plane deformations are 

negligible in shear walls with doubly symmetric dross sections for which shear wall response is 

generally attributed to in-plane deformations. Also, the computational cost associated with 

nonlinear time history analysis on 3-dimensional models is relatively high, and it hinders the use 

of large number of ground motions in time history analysis. The 2-dimensional modeling of 

concrete shear is referred to as multi-degree-of-freedom (MDOF) models in this thesis. It 

consists of beam-column elements that represent the individual segments of the shear wall within 

floors (see Figure 1.3) and lumped seismic masses in every floors.  
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The nonlinear modelling of structures can be further simplified by developing an equivalent 

SDOF system. The properties of the SDOF model are determined from pushover analysis, which 

usually defines the relationship between base shear force and roof displacement demands. The 

most common load pattern used to perform pushover analysis would be proportional to the first 

mode displacement shape of the structure. It is, in fact, demonstrated in section 3.2 of this thesis 

that the SDOF oscillators can provide a reasonable estimate of the mean roof displacement 

determined from the MDOF method. It should be mentioned that the computational cost 

associated with SDOF models is much less than that for 3-dimensional and MDOF models. The 

limitation of SDOF models is that it does not explicitly detect the influence of higher modes on 

response quantities.  

1.3.2 Ground Motion Selection and Scaling  

Nonlinear time history analysis is the most rigorous method to estimate demands on high-rise  

structures due to earthquakes. The tall Building Initiative (PEER 2010) recommends this method 

of analysis to detect higher mode effects on the structural response of tall walls rather than using 

nonlinear static (pushover) analysis. In addition to the details of the nonlinear model, ground 

motion selection and scaling can impact the results of the time history analysis. A significant 

amount of research has been carried out in recent years to provide guidelines on appropriate 

ground motion selection and scaling schemes (PEER GMSM, Haselton et al. 2009; ATC 82 

2011). Traditionally, the input ground motions are selected based on the magnitude and distance 

of a potential earthquake happening at the site as well as the source mechanism and site soil 

condition. The selected ground motions are then scaled to a target spectrum, which is generally 

in the form of uniform hazard spectrum (UHS). The common methods of scaling are spectrum 

matching, scaling at the fundamental period, and scaling over a range of periods. Recently, 

Baker and Cornell (2006) introduced conditional mean spectrum (CMS) as an alternative target 

spectrum to the UHS. The CMS accounts for the correlation between spectral accelerations at 

other periods given a target spectral acceleration at the period of interest (also called 

conditioning period T*); thus it is a more realistic scenario than the UHS, which is essentially the 

envelope of spectral accelerations at all periods. It means that scaling the ground motions to the 
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UHS gives response quantities that are larger than those determined using the ground motions 

scaled to the CMS.  

 Most of the research carried out thus far deals with the sensitivity of the seismic response 

of concrete moment resisting frames to different ground motion selection and scaling 

approaches. Further research is needed to quantify the influence of scaling methods on the 

seismic response of concrete shear walls. It is also important to include demand parameters that 

are of particular importance for the seismic design of shear walls, e.g. roof displacement, 

curvature, interstory drift, and shear force demands. Lastly, it is necessary to include adequate 

number of conditioning periods for computing the target CMS, and compare the envelope of the 

responses from different conditioning periods with the demand parameters corresponding to the 

ground motions scaled to the UHS. 

1.4 Research Approach 

Nonlinear time history analysis is used in this thesis to study the seismic behavior of cantilever 

shear wall buildings. The approach taken in this research is to preserve the transparency of the 

analysis as much as possible by using the simplest model that is appropriate for the phenomenon 

being investigated. As the torsional response of shear wall buildings is not a part of the current 

investigation, a 2-dimensional model of the cantilever shear walls is used. One part of the current 

study involved examining how the shape of the force - displacement relationship influences the 

displacement demands. For this part of the study, a simple nonlinear single-degree-of-freedom 

model was used. Simple hysteretic models such as a trilinear bending moment - curvature 

relationship was used to model the cantilever shear walls rather than a more general fiber model, 

which is less transparent.  

 Fifteen different shear wall buildings are included in this study. The differences between 

the buildings are the heights (number of stories) and the flexural capacity of the shear walls in 

the buildings. The amount of longitudinal reinforcement in each shear wall is determined for 

different values of flexural strength reduction factor R, which is defined as the ratio of elastic 

bending moment demand to nominal flexural strength of the cantilever walls, both calculated at 

the base of the buildings. The flexural strength reduction factor is similar to the force reduction 
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factor Rd in CSA A23.3-04, and is termed "force reduction factor" throughout this thesis to 

specify the ratio of elastic bending moment demand at the base to the wall flexural capacity. 

The results from nonlinear time history analysis depend greatly on what ground motions are used 

and how these motions are scaled. Thus an extensive study was undertaken on the influence of 

ground motion selection and scaling on the response of cantilever shear walls. The uniform 

hazard spectrum (UHS) and conditional mean spectrum (CMS) computed at different 

conditioning periods were considered as the target spectrum for scaling the ground motions. 

Fifteen cantilever shear walls with various height and percentage of longitudinal reinforcement 

are designed and modelled in OpenSees. The study includes 10 to 50 story walls with 

fundamental period varying from 1.0 to 5.0 seconds. The results from time history analysis were 

used to develop models for an accurate prediction of response quantities that are of particular 

importance in the seismic design of concrete shear walls. 

1.5 Thesis Objectives 

The objectives of this thesis are: 

• Develop a hysteretic trilinear bending moment - curvature relationship that can be used to 

perform nonlinear time history analysis of concrete shear walls. 

• Investigate the influence of ground motion selection and scaling on the seismic response 

of cantilever shear walls. 

• Develop a recommendation for effective stiffness EIe to be used in response spectrum 

analysis of cantilever shear walls in order to obtain a good estimate of roof displacement 

demand. 

• Investigate the relationship between roof displacement and base curvature demands for 

cantilever shear walls of different heights. 

• Evaluate available models for estimating base curvature demand and propose a new 

model to accurately estimate the mean and mean plus one standard deviation base 

curvature demand. 
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• Investigate the relationship between flexural strength and curvature demand at the 

midheight of cantilever shear walls and develop a simple estimate of midheight curvature 

demands. 

• Develop a simplified model to estimate interstory drift demand profiles over the height of 

cantilever shear walls. 

• Develop a simplified shear force envelope accounting for the so called dynamic shear 

amplification due to the influence of higher modes after a cantilever wall develops a 

plastic hinge at the base. 

• Investigate the relationship between shear force demand and inelastic rotation at the base 

of the wall, which directly influences the shear resistance of the wall. 

• Validate the developed models for effective stiffness, base curvature, and interstory drift 

demands using the results of a shake table test of a full-scale 7-story cantilever shear 

wall. 

1.6 Thesis Organization 

This thesis consists of eight chapters and five appendices. Chapter 2 deals with the development 

of a hysteretic bending moment - curvature relationship for modeling the flexural response of 

slender shear walls. Fiber analysis is extensively used in this chapter to understand the bending 

moment - curvature relationship of slender walls subjected to reverse cyclic loads. The model is 

verified with the experimental results of two concrete shear wall specimens with different 

geometry and axial compression stress ratio. The hysteretic bending moment - curvature 

relationship is used to model 15 different high-rise concrete shear walls with different heights 

and flexural capacities designed according to the requirements of the Canadian Building Code 

CSA A23.3-04. 

 Chapter 3 focuses on the influence of the characteristics of force - displacement response 

of concrete shear walls on the effective stiffness. A summary of current recommendations on 

effective stiffness is presented at the beginning, followed by the analogy used in this thesis for 

estimating effective stiffness. The equivalent SDOF approach is used in this chapter for 

predicting roof displacement demands. The influence of hysteretic model and tension stiffening 

on the effective stiffness is also discussed in this chapter. 
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Chapter 4 presents the influence of ground motion selection and scaling on the structural 

response of cantilever shear walls. This chapter starts with a detailed summary of the previous 

research. It also contains time history results using different ground motion scaling method 

including spectrum matching, scaling at the fundamental period, and over a range of periods. 

Both UHS and CMS computed at different conditioning periods are considered as the target 

spectrum. Dispersion of time history results and the adequacy of seven ground motions for 

calculation of mean response are also discussed in this chapter. 

 Chapter 5 presents simplified models for predicting flexural demands on cantilever shear 

walls. Mean roof displacements are used to obtain appropriate effective stiffness values for 

performing response spectrum analysis. The CSA and ACI approaches for predicting base 

curvature demand is discussed and a refined model is developed for estimating mean and mean 

plus one standard deviation results. A design curvature profile is introduced that addresses 

midheight curvature demands on cantilever shear walls. A simple interstory profile is proposed 

for predicting interstory drift demands over the height. Influence of shear deformation and base 

flexibility on flexural demands is also studied in this chapter. Lastly, a modified RSA using 

varying effective stiffness over the height is introduced in this chapter for accurate estimate of 

curvature demands. 

 Chapter 6 presents seismic shear force demands of cantilever shear walls. This chapter 

begins with a summary of existing recommendations on shear amplification factor. An 

investigation is then carried out to obtain a simple base shear force - base rotation interaction 

diagram for three highly nonlinear walls. The influence of period lengthening on midheight shear 

force demands is also investigated. This chapter ends with a simple design envelope for 

predicting shear force demands over the height of cantilever shear walls. 

 Chapter 7 presents a comparison between the simplified flexural models developed in 

Chapter 5 with the shake table results of a full scale 7-story shear wall building. Roof 

displacement demand from the test is used to validate the effective stiffness values, while base 

curvature and interstory drift envelope are compared with the experimental results. 

 Contributions and recommendations for future work are presented in Chapter 8. 

Appendix A presents the layout of the core walls in example shear wall buildings. The 

percentage of longitudinal reinforcement and the parameters of the hysteretic trilinear bending 

moment - curvature relationship over the height of example shear wall buildings are presented in 

Appendix B. The details of the hysteretic force - displacement model used in the SDOF study 
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conducted in Chapter 3 are shown in Appendix C, while the response spectra corresponding to 

ground motions used in this chapter are presented in Appendix D. The analytical results for the 

full range of walls studied in Chapter 3 are also included in Appendix E. 
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Chapter 2 : Hysteretic Bending Moment - Curvature Relationship 

for Nonlinear Analysis of Cantilever Shear Walls 

2.1 Overview 

In this chapter, a hysteretic bending moment - curvature relationship is developed as a tool to 

perform nonlinear time history analysis of cantilever shear walls. The model is verified by 

making comparisons with the experimental data from two large-scale tests of slender flanged and 

rectangular cantilever shear walls. 

2.2 Nonlinear Modelling of Concrete Shear Walls 

2.2.1 Fiber Analysis 

Fiber analysis has been used extensively to predict the response of reinforced concrete members 

subjected to both static and dynamic loads (Orakcal and Wallace 2006; Taucer et al. 1991; 

Khaled et al. 2011). In this model, the cross section of an element is discretized into a series of 

uniaxial elements and an appropriate constitutive relationship is assigned to each fiber. The cross 

section response is obtained from integration of the response of fibres using the assumption that 

plane sections remain plane. Element forces are then calculated from integrating section forces at 

several integration points along the element. 

 Fiber analysis presented in this work was conducted in OpenSees (OpenSees 2008). 

There are several constitutive models for concrete and reinforcing steel in OpenSees which allow 

the user to model the response of concrete in compression and tension as well as the response of 

reinforcing steel. The so called Concrete03 and Steel02 models were used as the constitutive 

relationship for concrete and reinforcing steel, respectively. The general shape of the two models 

is shown in Figure 2.1.  
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(a) 

 

(b) 

 

(c) 

 

 

Figure 2.1 Constitutive relationships for: (a) concrete in compression, (b) concrete in tension, 

and (c) reinforcing steel. 

 
 The behaviour of concrete in compression (Figure 1(a)) consists of an ascending parabola 

branch until the stress reaches concrete compression strength fc' at compressive strain of ε0, 

followed by a descending linear branch. The behaviour of concrete in tension (Figure 1(b)) 

consists of a linear segment until tensile stress reaches the concrete tensile strength fct, followed 

by a nonlinear curve and linear branch until the stress gets to zero at tensile strain of εctu. Note 

that fct0 and εct0 are the stress and strain corresponding to the transition from the nonlinear to 

linear segment, respectively. The Steel02 constitutive model can be described by defining the 

yield stress Fy, elastic modulus Es, post yield slope bEs as well as three parameters that control 
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the transition from elastic to plastic branches. The Steel02 constitutive relationship is based on 

the Menegotto and Pinto (1973) material model and is a well established model that can 

reasonably represent the response of reinforcing bars subjected to cyclic loading.  

2.2.2 Hysteretic Bending Moment - Curvature Models 

Hysteretic bending moment - curvature models have been used as an alternative to the fiber 

model for simulating the inelastic behaviour of reinforced concrete members in flexure. These 

models incorporate stiffness degradation and pinching under reversal and have been 

implemented in different computer programs. For example, the Takeda and Clough hysteretic 

rules have been implemented in computer program Ruaumoko (Carr 2002). These hysteretic 

models feature bilinear backbone relationship, which is not essentially a suitable approximation 

of the backbone curve for concrete shear walls with high axial compression force. In fact, White 

(2004) compared the force - displacement response predicted from the Clough model with 

experimental results of a slender shear wall specimen (Adebar et al. 2007), and he concluded that 

using the Clough model resulted in hysteretic loops that were much larger than those observed 

from the experiment, i.e. the Clough model did not capture the pinching characteristics of the 

flanged cross section subjected to high axial compression force. 

 Although the Takeda and Clough hysteretic models have been used extensively in 

research, the hysteretic response of concrete walls is better understood if a hysteretic bending 

moment - curvature model is developed based on the cross sectional analysis of the walls. 

Ibrahim (2000) studied the flexural response of walls with high axial compression force and light 

amount of longitudinal reinforcement and concluded that the uncracked segment of the bending 

moment - curvature relationship for such walls is significant. Based on the fiber analysis of 

different cross sections with a wide variety of axial compression force and longitudinal 

reinforcement ratio, Ibrahim proposed the concept of upper-bound and lower-bound response 

(see Figure 2.2). The upper-bound response corresponds to a previously uncracked wall loaded 

monotonically to failure, while the lower-bound response represents response of a wall reloaded 

after being severely damaged. The initial and secondary slope of both responses is uncracked 

flexural stiffness EIg and cracked flexural stiffness EIcr, respectively. The flexural capacity of the 

section Mn can be calculated from sectional analysis, and the parameters ML΄ and ML˝ can be 

determined from the following equations: 



19 
 

 

Figure 2.2 The upper-bound and lower-bound trilinear bending moment – curvature relationship 

(from Ibrahim 2000). 

 

���� = �1.5	
� + 
��� �� + 0.08��																																																																																																		��	2.1 

��� = 
�� �� + 0.08��																																																																																																																								��	2.2 

where fcr is the cracking strength of concrete, P is the axial compression force, Ag is the gross 

cross sectional area, Sg is the gross section modulus, and lw is the wall length. In developing the 

upper-bound and lower-bound responses, Ibrahim (2000) assumed that i) concrete in 

compression unloads and reloads to the envelope of the monotonic stress - strain relationship 

with a slope equal to the elastic modulus of concrete Ec, and ii) the stress - strain relationship for 

reinforcing steel is bilinear. Consequently, the difference between the upper bound and lower 

bound response is contributed to the loss of tension stiffening in the concrete as the wall is 

loaded from an uncracked stage to a severely cracked stage.  

 The upper-bound and lower-bound trilinear models depicted in Figure 2.2 are suitable for 

predicting the response of walls subjected to monotonic loading. A full hysteretic bending 

moment - curvature relationship needs to be developed for performing time history analysis. The 

hysteretic model must have appropriate stiffness degradation and unloading rules that represent 

the behaviour of high-rise wall cross sections subjected to cyclic loads. For this purpose, the 
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experimental data from two large-scale specimens are used to validate the fiber model and the 

assumptions used to develop the trilinear models shown in Figure 2.2. The fiber model is then 

used to develop appropriate stiffness degrading rules to be used in the hysteretic bending 

moment - curvature model. A simple unloading rule is also developed based on test data from a 

large-scale reinforced concrete section subjected to cyclic axial load. Lastly, the hysteretic 

bending moment - curvature model is validated with experimental results. 

2.3 Experimental Program  

2.3.1 UBC Shear Wall Specimen 

Figure 2.3 shows the details of the test specimen. The specimen was 11.76 m high and was 1.625 

m long with a flanged cross section. The flanges were 380 mm thick and 203 mm long, while the 

web was 1219 mm long and 127 mm thick. The flanges consisted of 5-10M vertical bars (ρ = 

0.65%) enclosed by No.3 hoops spaced at 64 mm in the lower 3 m of the wall and spaced at 150 

mm over the rest of the wall. Vertical reinforcement in the web consisted of 4-10M bars spaced 

at 305 mm over the length of the wall (ρ = 0.26%). The web was also reinforced with 10M 

horizontal bars spaced at 305 mm vertically. The clear cover to the reinforcement was 6 mm. 

 Average concrete compressive strength at the time of testing was 49 MPa, while the yield 

strength and ultimate strength of reinforcing bars were 455 MPa and 650 MPa, respectively. 

Testing of the specimen consisted of loading the specimen to a specific displacement in one 

direction and then unloading and reloading it to the same displacement in the opposite direction. 

A constant axial compression load of 0.1	
���was applied to the wall throughout the test in 

addition to the lateral load applied at the top of the specimen. The experimental data was 

gathered for the four loading/unloading cycles for each specific displacement. During the test, it 

was observed that first concrete cracking and vertical reinforcement yielding occurred at global 

drift ratios of 0.18% and 0.39%, respectively. Cover of concrete at the compression face started 

to fall off at the global drift ratio of 1.5%, and the flange vertical reinforcement buckled and 

pushed off the concrete cover at the fourth cycle at the global drift ratio of 2.4%.  
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Figure 2.3 Details of the UBC specimen: (a) elevation, and (b) cross section. From Adebar et al. 

(2007), © ACI Structural Journal, by permission. 

2.3.2 Clarkson Shear Wall Specimen 

Figure 2.4 presents the details of the test specimen. The specimen was 3660 mm high and 1219 

mm long with a rectangular cross section. The cross section was 102 mm thick, and the cover to 

the reinforcement was 19 mm. Longitudinal reinforcement at the boundaries included 8#3 bars 

(ρ = 3.6%) enclosed by 4.76 mm diameter wires spaced at 76 mm. Vertical reinforcement in the 

web consisted of 8#2 bars spaced at 191 mm over the length of the wall (ρ =  0.21%). Horizontal 

reinforcement at the web consisted of two curtains of #2 bars spaced at 191 mm over the height 

of the specimen.  

 Average concrete compressive strength at the time of testing was 42.8 MPa, while the 

yield strength for #3 and #2 web bars was 414 MPa and 448 MPa, respectively. The specimen 

was subjected to a cyclic lateral load applied at the top as well as a constant axial compression 

force of 0.07	
���. Similar to the UBC specimen, the Clarkson specimen was loaded to a 

specific displacement in one direction to the same displacement in the opposite direction. At 

least two complete cycles was performed for each specific displacement. During the test, it was 
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observed that the longitudinal reinforcement at the boundaries yielded at the global drift ratio of 

0.75%, while the concrete crushed at the edge of the specimen at 1% global drift ratio. The 

longitudinal reinforcement buckled at the global drift ratio of 2.5%. 

 

(a) 

 

 (b) 

 

 

 

 

 

 

Figure 2.4 Details of the Clarkson specimen: (a) elevation (from Thomson and Wallace 2004, © 

Journal of Structural Engineering, by permission), and (b) cross section (from Orackal and 

Wallace 2006, © ACI Structural Journal, by permission). 
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2.4 Fiber Modelling Prediction of UBC and Clarkson Shear Wall 

Specimens 

Fiber analysis of UBC and Clarkson specimens was performed in OpenSees using Concrete03 

and Steel02 constitutive models depicted in Figure 2.1. Elastic modulus of concrete Ec and 

concrete tensile strength fct was assumed to be 4500�	
� and 0.33�	
�, respectively. The strain 

corresponding to peak stress at compression, ε0, was assumed to be 0.002 and the Kent and Park 

(1973) model was used to determine the slope of the descending branch of Concrete03 

backbone. The tensile strength fct0 was assumed to be 10% of the concrete tensile strength fct, 

while εct0 and εctu were considered to be 0.002 and 0.003, respectively (Adebar and Ibrahim 

2002). Elastic modulus of steel Es was set to 200,000 MPa and steel strain hardening was 

assumed to be 0.02. Both UBC and Clarkson specimens were modelled in OpenSees using five 

beam-column elements with displacement formulation. A fixed base support was assumed for 

both specimens. It should be noted that no shear deformation was considered in the fiber 

modelling of the two specimens. Recorded shear deformations were negligible for the UBC 

specimen. For Clarkson specimen, however, relatively large shear deformations were recorded in 

the lower 0.9 m of the specimen. As a result, it is necessary to separate the experimental results 

for top displacement into flexural and shear deformation components. Figure 2.5 and Figure 2.6 

compare the lateral load - top displacement prediction from the fiber model with experimental 

results. The fiber model predictions are shown with a thick line. Note that the drift values 

indicated in Figure 2.6 correspond to the total top displacement recorded during each cycle. The 

horizontal axis in Figure 2.6, on the other hand, shows the flexural component of the measured 

top displacement for the Clarkson specimen. 
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Figure 2.5 Lateral force - top displacement relationship for the UBC specimen from fiber model 

(shown with thick line) and its comparison with experimental results for different drift ratios. 
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Figure 2.5 Cont'd. 

  

  

Figure 2.6 Lateral force - top displacement relationship for the Clarkson specimen from fiber 

model and its comparison with experimental results for different drift ratios. 
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Figure 2.6 Cont'd. 
 
 
 Figure 2.5 and Figure 2.6 indicate that the fiber model captures the measured response 

reasonably well for both specimens. Particularly, the stiffness degradation in subsequent cycles 

is well represented by the fiber model. The fiber model also provides a good prediction of the 

measured lateral load capacity. It should be noted that the lateral strength of both specimens 

dropped during the last cycle due to the buckling of the longitudinal bar. Since the fibre model 

cannot capture such response, it overestimates the lateral load capacity at global drift ratios of 

2.39% and 2.5% for UBC and Clarkson specimens, respectively. The fiber model prediction of 

the residual displacements for the Clarkson specimen agrees well with the recorded residual 

displacements at higher global drift levels. For the UBC specimen, on the other hand, the fibre 

model prediction of residual displacements is lower than the measured values. Residual 

displacements for the UBC specimen were considerably small due to high axial compression 
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force and low percentage of longitudinal steel, two properties that are common characteristics of 

high-rise shear walls in Canada. 

 Figure 2.7 and Figure 2.8 show the predicted compressive stress-strain response in the 

extreme fibre of confined concrete and the stress-strain response in the outermost layer of the 

longitudinal steel for the UBC and Clarkson specimens, respectively. It can be seen from Figure 

2.7 that concrete compressive strains are less than 0.003 for all drift values, while maximum 

tensile strain in the reinforcing steel is approximately 2.5%. For the Clarkson specimen, 

however, concrete compressive strains are greater than 0.003 for drift values of 1.5%, 2%, and 

2.5% (see Figure 2.8). Also, the maximum tensile strain in the reinforcing steel is nearly twice as 

much as that for the UBC specimen at the drift ratio of 2.5%. Note that 0.003 is generally 

considered as the compressive strain capacity of unconfined concrete. 

 

(a) (b) 

Figure 2.7 Fiber model prediction of the stress-strain response of: (a) the extreme fibre of the 

concrete core, and (b) the outermost layer of longitudinal steel for the UBC specimen. 
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(a) (b) 

Figure 2.8 Fiber model prediction of the stress-strain response of: (a) the extreme fibre of the 

concrete core, and (b) the outermost layer of longitudinal steel for the Clarkson specimen. 

 
The following observations can be made: 

 1. Concrete compressive strains for the UBC specimen are lower than those associated 

with the Clarkson specimen. The reason is due to the fact that neutral axis depth is smaller for 

the UBC specimen since it has a flanged cross section and low percentage of longitudinal 

reinforcement. 

 2. The concept of upper-bound and lower-bound response proposed by Ibrahim (2000) 

were based on the assumption of fixed elastic modulus for concrete and reinforcing steel. This 

assumption is valid for reinforced concrete cross sections subjected to monotonic loading or 

cyclic loads in which concrete and reinforcing steel strains remain small. The Concrete03 and 

Steel02 constitutive models used in this work for modelling the hysteretic behaviour of concrete 

and steel fibers are more realistic since they capture the softening of concrete and reinforcing 

steel under cyclic loading. This softening in the material behaviour needs to be considered in the 

Ibrahim’s lower-bound bending moment - curvature model. The details of the analytical 

procedure for this modification will be presented hereafter. 
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2.5 Refinement of Lower-bound Bending Moment - Curvature Relationship 

As discussed in the previous section, reinforced concrete sections can have a softer response than 

the lower-bound bending moment – curvature relationship due to the stiffness degradation of 

concrete and reinforcing steel fibers under cyclic loading. It is known that the flexural response 

of well detailed reinforced concrete sections is ductile, but the stiffness of the section degrades as 

the curvature demand increases. Therefore, it is necessary to replace the constant lower-bound 

response with a trilinear bending moment – curvature relationship with a yield curvature that is 

correlated to the maximum curvature demand in the previous cycle. The fiber model can be used 

for this purpose since as it was seen in section 2.4, it captured the measured response of UBC 

and Clarkson specimens reasonably well.  

 The first step in refining the lower-bound response is to establish a range of cross 

sections with varying geometry and the percentage of longitudinal reinforcement. The 

considered cross sections are then subjected to a reverse cyclic loading protocol, and a simplified 

method is adopted to determine the yield curvature from the results of the fiber analysis. The 

influence of reinforcing steel constitutive model and the wall length is also examined. 

2.5.1 Example Cross Sections Used in Fiber Analysis 

A series of shear walls were considered in this study that are commonly used as the seismic force 

resisting system for a typical 30 story residential building in Vancouver BC. Both rectangular 

and flanged cross sections were included although walls in high-rise buildings typically have 

flanged cross sections. The ratio of height to the length of the walls (hw/lw) was chosen to be 10, 

which gives a wall length of approximately 10 m. Figure 2.9 presents the general cross section of 

the considered walls. The considered cross sections are rectangular (denoted as R), flanged with 

small flange width (denoted as SF), and flanged with big flange width (denoted as BF). A flange 

thickness of 0.75 m was considered for the three geometries, while the web thickness was 

assumed to be 1.0 m for the BF and 0.5 m for other cross sections. The percentage of 

longitudinal reinforcement in the web, ρw, was assumed to be 0.25% for all cross sections, while 

three values 0.5%, 1%, and 2% were considered as the percentage of longitudinal reinforcement 

in the flange (ρf). Table 2.1 summarizes the properties of the cross sections. For each cross 
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section with a given geometry and the percentage of longitudinal reinforcement, axial 

compression force varied from 0.05	
��� to approximately 0.15	
���. The former is considered 

as the lower bound for axial compression stress ratio for high-rise walls, while the latter is 

selected such that neutral axis depth is limited to the flange thickness for the flanged cross 

sections or 0.2 times the wall length for rectangular cross sections. This was done to ensure that 

the considered cross sections have adequate curvature capacity associated with the unconfined 

concrete in compression. A total of 17 various cases were considered by varying cross sectional 

geometry, longitudinal reinforcement percentage, and axial compression stress ratio. 

 

 

Figure 2.9 General schematic of the cross sections included in the study. 

Table 2.1 Properties of the cross sections used in fiber analysis. 

Cross section bf 
1(m) tf 

2(m) tw
3(m) ρf 

4(%) ρw 
5(%) 

R 0.5 
0.75 

0.5 0.5, 1.0, 

2.0 

 

0.25 BF 5.0 1.0 
SF 3.0 0.5 

1 flange width, 2 flange thickness, 3 web thickness, 4 percentage of longitudinal reinforcement in the 
flange, 5 percentage of longitudinal reinforcement in the web. 
 
 Fibre analysis of the 17 cross sections was performed in OpenSees using Concrete03 and 

Steel02 constitutive models for concrete and reinforcing steel, respectively. Concrete 

compressive strength 	
� was considered to be 50 MPa, and Kent and Park (1973) model was 

used to determine the slope of the descending linear branch of stress-strain relationship for 

concrete in compression. It was assumed that the ratio of the volume of the confinement 

reinforcement to the confined concrete is 0.1%, which gives an ultimate compressive strain 

capacity of 0.005 for concrete. Note that such amount of confinement steel results in only 0.8% 

tw
bf

tf tf

bf

lw = 10m
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increase in concrete compressive strength. Figure 2.10 shows the details of the constitutive 

relationship for concrete in compression. Concrete tension stiffening details are identical to those 

specified in section 2.4 for UBC and Clarkson specimens. The yield strength and strain 

hardening for Steel02 model was assume to be 400 MPa and 0.02, respectively. 

 

 

Figure 2.10 Stress-strain relationship for concrete in compression. 

2.5.2 Modified Lower-bound Bending Moment - Curvature Relationship 

The 17 cross sections introduced in Section 2.5.1 were subjected to reverse cyclic curvature 

histories. For each cross section, the curvature demand was increased incrementally until it 

reached section curvature capacity defined as 0.0035/c. Note that 0.0035 is the maximum 

compressive strain capacity of unconfined concrete and c is the neutral axis depth determined 

from sectional analysis. The reason for limiting maximum curvature demand to 0.0035/c is that 

there is zero or little confinement for concrete in most high-rise walls constructed in Vancouver, 

BC. As a result, the cross section curvature capacity is almost reached as the concrete strain at 

the extreme compression fiber reaches 0.0035.  

 Figure 2.11 shows the hysteretic bending moment - curvature relationship determined 

from fiber analysis for a given cross section. A trilinear bending moment - curvature model was 

developed to fit the results from fiber analysis. The trilinear model consists of the following 

segments: an initial segment which represents the uncracked response of reinforced concrete 
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section (with a slope equal to the uncracked flexural stiffness EIg), and a second segment that 

represents the section stiffness accounting for concrete and reinforcing steel softening under 

cyclic loading. The bending moment that defines the transition from the first segment to the 

second segment is the bending moment at crack opening Mco, and was defined as P/Ag.Sg. Note 

that Mco is similar to parameter ML' defined in Equation 2.2, except that the latter has an 

additional empirical term 0.08Plw. 

 Determining the slope of the second segment of the trilinear bending moment - curvature 

relationship requires defining an additional point since the yield curvature ��∗ is not known. For 

this purpose, it was assumed that the second segment of the trilinear model passes through a 

point on the fiber model prediction with a bending moment equal to 60% of the cross section 

flexural capacity Mn. Note that the selection of 60% was made after reviewing a number of 

curves determined from fiber analysis, and it was observed that choosing 0.6Mn results in a 

reasonable fit to the nonlinear prediction. Figure 2.12 shows the variation of the yield curvature 

as a function of curvature demand times the wall length for different cross sections. 

 

 

Figure 2.11 Development of trilinear bending moment – curvature relationship from fibre model 

prediction. 

M
om

en
t

curvature

Mn

0.6Mn

φy
*

fibre model 
prediction Mco



33 
 

 

Figure 2.12 Variation of yield curvature as a function of maximum applied curvature for 

considered cross sections. 

 Figure 2.12 indicates that the yield curvature is equal to 0.004/lw for low curvature 

demands and it increases to 0.012/lw as the curvature demand exceeds 0.05/lw. Choosing the 

value of 0.004/lw for yield curvature is consistent with Adebar et al. (2005) recommendation for 

this parameter. Also shown in Figure 2.12 is the proposed line that relates the yield curvature to 

the applied curvature demand. The proposed line consists of two segments: the first line with a 

steeper slope which represents mostly rectangular cross sections, and the second line with a 

shallower slope which represents flanged cross sections. It should be noted that walls with 

rectangular cross sections have less curvature capacity compared to flanged walls; therefore lines 

corresponding to rectangular sections tend to stop at lower curvature demands. The proposed line 

shown in Figure 2.12 will be used to define the stiffness degradation rules of the trilinear 

hysteretic bending moment - curvature relationship. The details of this model will be presented 

in section 2.7. 

 The results shown in Figure 2.12 were developed using the Steel02 constitutive model for 

reinforcing steel and fixing the length of cross sections to 10 m. A sensitivity analysis needs to 

be carried out to investigate the influence of these parameters on the yield curvature ��∗ . The 

results are presented in the following sections. 
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2.5.3 Influence of Reinforcing Steel Constitutive Model on Yield Curvature 

As it was shown in Figure 2.1, the Steel02 constitutive relationship addresses the softening of 

reinforcing steel under cyclic loading. Ibrahim (2000), on the other hand, used a bilinear stress-

strain model for reinforcing steel to develop the trilinear models shown in Figure 2.2. In order to 

observe the effect of steel constitutive model on the yield curvature, a BF cross section with 1% 

longitudinal reinforcement in the flanges and axial compression force of 0.12	
��� was selected. 

Fibre analysis was performed using the so called Steel01 model in OpenSees, which has a 

bilinear backbone and is identical to what Ibrahim used to model the reinforcing steel response 

under cyclic loading. Figure 2.13 shows the variation of the yield curvature corresponding to the 

two constitutive models. 

 Figure 2.13 indicates that details of steel constitutive model barely affects the yield 

curvature for lower curvature demands, but the difference between the yield curvatures 

associated with the two steel models tend to increase as the curvature demand increases. Also, it 

can be seen from Figure 2.13 that the yield curvature would be constant if bilinear steel model 

(Steel01) was used in the fiber analysis. This observation is consistent with the idea of constant 

lower-bound bending moment - curvature relationship. Determination of the yield curvatures 

using the Steel02 stress-strain model seem to be more realistic than using the Steel01 relationship 

since the latter cannot capture the softening of reinforcing bars subjected to cyclic loading. 
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Figure 2.13 Influence of reinforcing steel constitutive model on the yield curvature. 

2.5.4 Influence of Cross Section Length on Yield Curvature 

As it was shown in Figure 2.9, the cross sections used to obtain yield curvature ��∗  were 10 m 

long. Both axes in Figure 2.12 were multiplied by the wall length so the proposed line for 

computing the yield curvature can be used for any cross section. However, it is necessary to 

consider cross sections with different length to ensure that the proposed line for computing the 

yield curvature is still valid. For this purpose, two additional flanged cross sections were added. 

The first one is 7.5 m long, and the flanges are 3.75 m long and 0.6 m thick. The web is 6.3 m 

long and 0.75 m thick. The second one is 14 m long, and the flanges are 7 m long and 1 m thick. 

The web is 12 m long and 1.4 m thick. Longitudinal reinforcement ratio in the flanges and in the 

web is 2% and 0.25%, respectively, for both cross sections. Axial compression force for both 

walls is assumed to be 0.12	
���. Figure 2.14 shows the variation of the yield curvature for both 

walls. Note that the two additional walls are identified in Figure 2.14 according to the wall 

length.  

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 0.01 0.02 0.03 0.04 0.05 0.06

φ φ φ φ 
y*

x 
w

al
l l

en
gt

h

Maximum applied curvature x wall length

Steel02

Steel01



36 
 

 

Figure 2.14 Variation of the yield curvature for walls with different length. 

 Also shown in Figure 2.14 is the yield curvature variation for the BF cross section with 

an axial compression force, flange and web longitudinal reinforcement ratios equal to those for 

the two additional cross sections (labelled as Lw = 10 m). Figure 2.14 indicates that walls with 

different length have similar yield curvature values provided that they have similar axial 

compression force and longitudinal reinforcement ratios. As a result, the proposed line presented 

in Figure 2.12 can be applied to any cross section with a length other than the length of 10 m 

considered for the cross sections shown in Figure 2.9. 

2.6 Unloading Point and Modelling Residual Curvatures 

In this section a simple model will be developed to define the unloading point, which accounts 

for the amount of axial compression force and longitudinal reinforcement. Also, the results from 

testing a large-scale reinforced concrete element under reverse cyclic axial load will be 

combined with plane section analysis to model residual curvature in the hysteretic bending 

moment - curvature relationship. The details are presented in the following sections. 
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2.6.1 Unloading Point 

A simple model for computing the bending moment at crack closing, Mcc, is presented in Figure 

2.15. According to this model, some portion of the axial compression force is required to yield 

the longitudinal reinforcing steel in compression before closing the cracks in concrete when the 

cross section is loaded from a given displacement in one direction to a specific displacement in 

the opposite direction. The Mcc parameter can be determined from the following equation: 

�

 = ( − #)���� −�# 																																																																																																																								��	2.3 

where 

# = #% + #� = �#%	� + �#�	�																																																																																																							��	2.4 

and 

�# = 1
2#%&�� − '%(																																																																																																																														��	2.5 

 Note that Asf ,Asw, fy, tf, and lw are longitudinal steel area in the flange and in the web, 

yield strength of reinforcing steel, flange thickness, and wall length, respectively. Also, Ms in 

Equation 2.5 is the bending moment from the yielding of flange longitudinal reinforcement in 

tension. 

 

Figure 2.15 Model for computing bending moment at crack closing. 
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2.6.2 Residual Curvatures 

In order to estimate residual curvatures, experimental results were first used to establish the 

relationship between residual strains and maximum applied strains for a reinforced concrete 

section under cyclic axial load. Residual strains were then converted to residual curvatures using 

the assumption that plane sections remain plane. The details are presented in the following 

sections. 

2.6.2.1 Experimental Program 

Fronteddu (1992) tested five large-scale reinforced concrete members to study the effect of 

cyclic loading on concrete tension stiffening. The specimens had various cross sections and 

longitudinal reinforcement percentages; however, they were all 1500 mm long and were 

subjected to cyclic axial loading. The experimental results for so called UC4 specimen are 

presented here because this was the only specimen that was subjected to both axial tension and 

compression loads.  

 Figure 2.16 shows the cross sectional details and loading history for specimen UC4. The 

cross section was 700 mm wide and 350 mm deep and longitudinal reinforcement consisted of 

eight 20M bars (reinforcement ratio of 1%). There was no transverse reinforcement, and clear 

cover to longitudinal reinforcement was 87.5 mm in both directions. Concrete compression 

strength was 33.5 MPa, and the average yield strength and ultimate strength of steel was 435 

MPa and 626 MPa, respectively. The load history consisted of both forced controlled and 

displacement controlled strategies. It should be noted that the force controlled strategy was 

consistently used for loading the specimen in compression. 
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Figure 2.16 Cross sectional details and loading history for specimen UC4 (from Fronteddu 1992, 

© MA.Sc thesis, by permission). 

 The measured load - deformation response of the specimen is presented in Figure 2.17. It 

can be seen from Figure 2.17 that residual strain is equal to zero for strain demands less than 

0.002, while it tends to increase as the applied strain demand increases. Figure 2.18 plots the 

measured residual strain as a function of maximum applied strain. A straight line was fitted to 

experimental results in order to define a simple model for estimating residual strains from 

maximum applied strains. 

 

 

Figure 2.17 Measured load - deformation response for specimen UC4 (from Fronteddu 1992, © 

MA.Sc thesis, by permission). 
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Figure 2.18 Residual strain as a function of maximum applied strain. 

2.6.2.2 Relationship between Residual Curvature and Residual Strain 

The relationship between residual strains and maximum applied strains for a reinforced concrete 

cross section was presented in Figure 2.18. The common assumption of plane sections remain 

plane is used to convert residual strains to residual curvatures. As a result, curvature at a given 

section is the ratio of tensile strain in the longitudinal reinforcing steel to a portion of the wall 

length. This portion of wall length is essentially the distance between the reinforcing steel and 

the neutral axis (denoted as ds). As the curvature demand increases, ds tend to increase since the 

neutral axis depth reduces. Pushover analysis of the cross sections depicted in Figure 2.9 showed 

that ds varies between 0.6 and 0.7 times the wall length when the tensile strain in the outermost 

longitudinal reinforcing steel reaches 0.002. The ds values for the UBC and Clarkson specimens 

are 0.68 and 0.60, respectively. It should be noted that ds is bigger for flanged sections than 

rectangular sections with equal length since the neutral axis depth is smaller for flanged sections. 

 Figure 2.19 shows the variation of residual curvature for the UBC and Clarkson 

specimens as the ds parameter changes from 50% to 70% of the wall length. Maximum applied 

curvature shown in Figure 2.19 corresponds to 1% tensile strain in the outermost reinforcing 

steel in the Clarkson specimen and a ds value of 0.5 times the wall length. It can be seen from 

Figure 2.19 that the difference between residual curvatures associated with different ds values is 
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small at higher curvature demands, while the difference becomes more evident at lower 

curvature demands. 

 In this work, 0.6lw was chosen as the appropriate value for the ds since changing this 

parameter from 0.5lw to 0.6lw did not have a big impact on the residual curvature for flanged 

sections. It also gives lower residual curvatures than assuming ds = 0.5lw for a given curvature 

demand. It should be noted that low residual curvatures is a characteristic of high-rise shear 

walls with high axial compression force and low amount of longitudinal steel, as it was seen 

from experimental results of the UBC specimen. 

 
 

 
Figure 2.19 Variation of residual curvature as a function of the ds parameter. 

2.7 Trilinear Hysteretic Bending Moment - Curvature Relationship 

The findings from Sections 2.5 and 2.6 are used to develop a hysteretic bending moment - 

curvature model. Figure 2.20 shows a schematic of this model. According to this model, the 

backbone of the hysteretic model (denoted as path A) consists of a linear elastic segment until 

the bending moment reaches the bending moment at crack opening �
). This parameter can be 

determined from the following expression: 
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�
) = �	
� + 
��� ��																																																																																																																													��	2.6 

where all parameters in Equation 2.6 were defined in Section 2.2.2. Note that the slope of the 

linear elastic segment is the uncracked flexural stiffness, �+�. For bending moments greater than 

�
), the loading path would be linear from �
) to the bending moment at flexural capacity, �,. 

The slope of this segment is cracked flexural stiffness, �+
�. Having known �
) , �,, �+�, and 

�+
�, the upper bound yield curvature, ��,./, can be computed from the geometry. The third 

segment of path A has a slope equal to 0�+�, which represents the post yield stiffness due to 

steel strain hardening. A β value of 0.5% was specified to represent the slope of path A for 

curvature values greater than the upper-bound yield curvature. This value was selected based on 

the experimental results for the UBC and Clarkson specimens. It should be noted that path A is 

similar to the upper-bound bending moment - curvature relationship presented in Figure 2.2, 

except that the parameter ���� is replaced by �
). 

 For subsequent reloading, the hysteretic path consists of a series of lines originating from 

�
) to a point on the envelope (denoted as path E). The slope of the loading path tends to 

decrease as the maximum curvature demand in the previous cycle increases. Note that the yield 

curvature, ��∗ , is a function of maximum curvature in the previous cycle and can be determined 

from Figure 2.12. 

 The unloading paths prior to yielding (denoted as path B) return linearly from maximum 

curvature to the bending moment at crack closing �

. It is assumed that the unloading point 

corresponding to path B is located at the linear elastic segment of the backbone; therefore, 

curvature at crack closing is equal to �

/�+�. The unloading paths after yielding consist of two 

linear segments: the first line originates from maximum curvature and continues until bending 

moment is equal to �

 (denoted as path D), and the second line that passes through the residual 

curvature,��2#, and it ends to �
) in the reverse direction (denoted as path F). It should be noted 

that residual curvatures are the ratio of residual strains shown in Figure 2.18 to a ds value equal 

to 0.6 times the wall length. 

 For mid-cycle reloading, the reloading path (denoted as path C) follows the uncracked 

flexural stiffness �+�from the point it leaves the unloading path. The reloading path intersects 

and follows a linear path from �
) to maximum previous curvature.  

 



43 
 

 

Figure 2.20 Trilinear hysteretic bending moment - curvature relationship for reinforced concrete 

cross sections. 

2.8 Validation of Trilinear Hysteretic Bending Moment - Curvature 

Relationship with Experimental Results 

Figure 2.21 and Figure 2.22 compare the lateral load - top displacement prediction from the 

hysteretic bending moment - curvature model shown in Figure 2.20 (denoted as trilinear model) 

with experimental results for UBC and Clarkson specimens. The analytical model predictions are 

shown with a thick line. Figure 2.21 indicates that the trilinear model can capture the observed 

stiffness degradation and residual displacements of the UBC specimen very well. The predicted 

residual displacements are generally lower than the measured ones for most drift ratios. It should 

be noted that the bending moment at crack closing, Mcc, is positive for the UBC specimen 

because according to Equations 2.3 to 2.5, high axial compression force and low amount of 

longitudinal reinforcing steel ratio results in positive values for Mcc. 
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Figure 2.21 Lateral force - top displacement relationship for the UBC specimen from the trilinear 

model (shown with thick line) and its comparison with experimental results for different drift 

ratios. 
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Figure 2.21 Cont'd. 

  

  

Figure 2.22 Lateral force - top displacement relationship for the Clarkson specimen from the 

trilinear model (shown with thick line) and its comparison with experimental results for different 

drift ratios. 
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Figure 2.22 Cont'd. 

 
 
 Figure 2.22 indicates that the predicted lateral force - top displacement relationship 

agrees reasonably well with the measured response for drift ratios up to 1.5%. For drift ratios of 

2% and 2.5%, however, the predicted response is stiffer than the measured response due to the 

fact that the trilinear hysteretic bending moment - curvature relationship was mainly developed 

to predict the response of cross sections subjected to curvature demands up to the curvature 

capacity corresponding to unconfined concrete. As it can be seen from Figure 2.8, concrete 

compressive strains in the extreme fibre associated with drift ratios of 2% and 2.5% are 

considerably greater than the value of 0.0035 considered as the compressive strain capacity for 

unconfined concrete. It implies that base curvature demand corresponding to these drift ratios are 

considerably higher than the curvature capacity for unconfined concrete. Concrete compressive 

strains in the UBC specimen and generally in high-rise cantilever shear walls are less than 

0.0035 because of the large width of the flanged cross sections. Also note that Mcc is negative for 
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the Clarkson specimen due to the combination of low axial compression force and high 

longitudinal reinforcing steel ratio at the boundaries. 

2.9 Example Shear Wall Buildings 

Fifteen different high-rise concrete shear wall buildings were included in this study. The 

differences between the buildings are the heights (number of stories) and the flexural capacities 

of the shear walls in the buildings. Five different building heights were included: 10, 20, 30, 40, 

and 50 stories. The corresponding heights of the cantilever shear walls in these buildings 

measured from the seismic base (grade level) are 29.7, 57.7, 85.7, 113.7, and 141.7 m. For these 

buildings, the first floor has a height of 4.5 m, while other floors have a typical height of 2.8 m. 

Additional shear walls provided below grade causes the critical section for bending of the tower 

shear walls to be at grade level. The base of the wall was assumed to be fixed. All buildings with 

the same number of stories have the same concrete shear wall geometry dictated by the number 

and size of required stairway and elevator shafts. 

  Figure 2.23 shows the arrangement of concrete core walls in the 30 story buildings. The 

layout of the core walls for other buildings are presented in Appendix A. The core walls shown 

in Figure 2.23 act as three C-shaped cantilever walls in one direction and three U-shaped coupled 

walls in the transverse direction. In the current study, the results are presented only for the 

analysis in the cantilever direction. The overall dimensions of the core are 9.00 x 11.44 m, where 

9.00 m is the overall length of the cantilever walls and 11.44 m is the overall length of the 

coupled walls. The 30 story coupled walls have two openings that are 1.22 m each. Thus the sum 

of the lengths of the coupled wall segments are 9.0 m, and this is called sum of flange widths in 

Table 2.2, i.e., flanges of the three C-shaped cantilever walls. The 10 story buildings have a 5.50 

x 7.22 m core with one opening in each coupled wall resulting in a 6.0 m sum of flange widths, 

while the 50 story buildings have a 13.75 x 17.16 m core with three openings in each coupled 

wall resulting in a 13.50 m sum of flange widths. It should be noted that the cantilever walls in 

the five different height buildings have height-to-length ratios of 5.4, 7.7, 9.5, 10.6, and 10.3, 

respectively. 

  The 30 story core has three C-shaped cantilever walls - two have a web thickness of 0.45 

m and one has a thickness of 0.30 m. The sum of these wall thicknesses, called sum of web 
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widths in Table 2.2, is 1.20 m. The 10 story core has two 0.30 m thick C-shaped walls (0.60 m), 

while the 50 story core has two 0.50 m thick C-shaped walls and two 0.30 m thick C-shaped 

walls (sum of 1.60 m). 

 

 
Figure 2.23 Outline of core walls in 30 story buildings. 
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Table 2.2 Properties of fifteen shear wall buildings used in current study. 

No. Stories 10 20 30 40 50 

lw (m)1 5.50 7.50 9.00 10.75 13.75 

bf (m) 2 6.00 8.00 9.00 11.50 13.50 

tw (m) 3 0.60 0.90 1.20 1.40 1.60 

tf (m) 4 0.45 0.55 0.70 0.80 0.85 

Ag (m
2)5 8.2 14.6 21.7 31.2 42.2 

 Ig (m
4)6 39.4 126.2 261.4 545.8 1189.5 

fc' (MPa) 30 35 40 45 55 

EcIg (kNm2) 9.71x108 3.36x109 7.44x109 1.65x1010 3.78x1010 

m (kg)7 825,700 927,625 998,980 1,284,400 1.946,993 

T1 (s)8 1.0 2.0 3.0 4.0 5.0 

P/fc'Ag (%)9 5.9 8.7 10.1 6.1 11.4 6.2 12.7 6.2 

ρf @ base(%) 10 4.0 2.5 1.2 0.8 0.60 3.5 1.2 0.5 0.5 0.52 3.5 1.0 0.5 0.5 

ρf @ mid-ht (%)11 1.9 1.3 0.8 0.8 0.60 1.9 0.7 0.5 0.5 0.52 1.8 0.5 0.5 0.5 

ρw (%) 12 1.2 0.25 0.25 0.25 0.25 0.25 

 Rg
 13 1.7 2.6 4.2 5.2 4.0 1.4 2.4 3.1 4.3 2.6 4.4 1.4 2.1 2.4 4.1 

1 cantilever wall length, 2 sum of flange width, equal to length of coupled walls minus total door 
openings, 3 sum of cantilever wall thicknesses, 4 thickness of coupled walls, 5 wall cross sectional area, 6 
gross moment of inertia, 7 mass per floor, 8 fundamental period of the building corresponding to EIg, 

9 
axial compression stress ratio at the base, 10 average percentage of vertical reinforcement in coupled walls 
(“flange” of core) at the base of structure, 11 average percentage of vertical reinforcement in coupled walls 
at mid-height, 12 average percentage of vertical reinforcement in cantilever walls (“web” of core), 13 Force 
reduction factor Rg = ratio of elastic bending moment demand at base of structure (calculated using  EIg) 
to nominal flexural strength Mn.  

 
 

  The reinforcement in the walls was designed to meet the requirements of the Canadian 

building code CSA A23.3-04. Three different reinforcement designs were completed for 10, 30, 

and 50 story walls. The amount of vertical reinforcement in the walls was kept constant from the 

base to a height equal to 1.5 times the wall length and then decreased approximately linearly 

over the building height. A brief summary of the reinforcement percentages at the base and 

midheight of the walls are given in Table 2.2. The average reinforcement percentages are 

reported for the flanges of the C-shaped cantilever walls (i.e., the coupled walls) and the webs of 

the cantilever walls. Note that minimum reinforcement requirements controlled the amount of 

vertical reinforcement in the upper levels of the building. According to CSA A23.3-04 

requirements, minimum vertical reinforcement ratio is equal to 0.0015bwlw in regions of plastic 

hinging and 0.001bwlw outside the regions of plastic hinging for concentrated vertical 

reinforcement, and 0.0025bwlw for distributed reinforcement, where bw and lw are the width and 

the length of the shear wall, respectively. One reinforcement design was completed for each of 
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the 20 and 40 story buildings. The percentage of vertical reinforcement is equal to the minimum 

vertical reinforcement ratio over the entire height of these two buildings. The variation of the 

percentage of longitudinal reinforcement over the height of the walls are presented in Appendix 

B. 

  The flexural strength of the cantilever walls depends on the amount of vertical 

reinforcement and the level of axial compression applied to the walls. The level of axial 

compression in turn depends on the tributary area of floor slabs supported by the walls. In the 

first nine building designs, the gravity columns were located around the periphery of the floor 

slabs resulting in large axial compression applied to the shear walls. As shown in Table 2.2, the 

axial stress ratios P/fc´Ag for these buildings were 5.9%, 8.7%, 10.1%, 11.4% and 12.7% for the 

10, 20, 30, 40, and 50 story buildings, respectively. For the 30 story and 50 story buildings, a 

fourth design was done with additional gravity-load columns added to the building to reduce the 

axial compression applied to the shear walls. The reduction in axial stress ratio P/fc´Ag for the 30 

story and 50 story buildings to 6.1% and 6.2% resulted in a significant reduction in flexural 

capacity of the cantilever shear walls. For the 40 story wall, a second design was done by 

reducing the axial compression force applied to the shear wall from 11.4 to 6.2%. This reduction 

in axial compression force resulted in 70% reduction in flexural strength of the shear wall at the 

base. Also, for 10 story walls, a fourth case was considered with a vertical reinforcement ratio 

equal to the minimum vertical reinforcement ratio, which is equal to 0.8%. Figure 2.24 shows 

the variation of flexural strength capacity over the height for the fifteen shear walls. 
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Figure 2.24 Variation of flexural bending moment capacity over the height for different shear 

walls. 

 The ratios of elastic bending moment demand to flexural bending moment capacity of the 

cantilever walls, both calculated at the base of the building, are called the force reduction factor 
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Rg for the building, and are given for all eleven buildings in the last row of Table 2.2. The elastic 

bending moment demands on the cantilever shear walls correspond to uncracked flexural 

capacity EIg and were determined from response spectrum analysis using the target uniform 

hazard spectrum (UHS) shown in Figure 2.24. The target UHS is similar to the design spectrum 

for Vancouver, BC for site class C as specified in National Building Code of Canada (NBCC 

2005) and the ASCE7-05 design spectrum (ASCE 2005) for Seattle WA for site class B. The 

NBCC design spectrum is in fact a uniform hazard spectrum corresponding to 2% probability of 

exccedance in 50 years, and it varies linearly between periods of 2 and 4 seconds and it remains 

constant for periods greater than 4 seconds. The target UHS decreases proportional to 1/T for 

periods between 2 and 6 seconds, and then the decrease was set proportional to 1/T2 for periods 

greater than 6 seconds. The target UHS is more consistent with ASCE7-05 design spectrum at 

longer periods. The target UHS is referred to as UHS throughout this thesis. 

 

Figure 2.25 Comparison of NBCC design spectrum with ASCE7-05 design spectrum and the 

target UHS used in response spectrum analysis. 
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2.10 Summary 

The aim of this work was to develop an analytical tool to simulate the flexural response of 

concrete shear walls. Fiber analysis and hysteretic bending moment - curvature relationship were 

considered as possible analytical options. The fiber analysis was proved to be a reliable 

analytical tool to predict the lateral force - top displacement relationship of two large-scale test 

specimens. A hysteretic bending moment - curvature relationship was developed with a trilinear 

backbone curve. Stiffness degradation rules were established based on the fiber analysis of a 

series of reinforced concrete cross sections with a wide range of axial compression force and 

longitudinal reinforcement ratios. The influence of reinforcing steel constitutive relationship and 

the cross section length on the bending moment - curvature relationship of concrete shear walls 

were examined. Hysteretic loops of the trilinear bending moment - curvature model were fully 

defined by developing unloading rules based on a mechanical analogy to compute the bending 

moment at crack closing, experimental results of a large scale reinforced concrete cross section 

subjected to reverse cyclic axial load, and the assumption that plane sections remain plane. The 

proposed hysteretic bending moment - curvature relationship was verified by making 

comparisons with the experimental results from two large-scale tests of cantilever shear walls. 

 Fifteen cantilever shear wall buildings that were 10 to 50 stories high were considered as 

the practical range of shear wall buildings. Longitudinal reinforcement in the walls was designed 

to meet the requirements of CSA A23.3-04. These walls were modelled in OpenSees using the 

trilinear hysteretic bending moment - curvature relationship. The parameters to define the 

hysteretic model were calculated at each floor considering the amount of axial compression force 

and the percentage of longitudinal reinforcement. 
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Chapter 3 : Influence of Nonlinear Force - Displacement Response 

of Concrete Walls on Effective Stiffness 

3.1 Introduction to Effective Stiffness 

In Canada and west coast of the U.S., response spectrum analysis (RSA) is widely used to 

estimate the maximum drift demands of concrete shear wall buildings. To reliably estimate the 

displacement demands, the linear model must account for stiffness loss corresponding to 

concrete cracking and reinforcement yielding. This is usually done by applying a single stiffness 

reduction factor α = Ie/Ig over the entire height of the shear wall. The effective stiffness of the 

equivalent linear system, EIe, should be determined such that it accurately represents the 

nonlinear response of concrete shear walls. 

 Figure 3.1 shows a summary of the proposed stiffness reduction factors. FEMA 356 

(2000) recommends factors of 0.8 and 0.5 for uncracked and cracked walls, respectively. CSA 

A23.3-04 specifies that the effective moment of inertia, Ie, is a function of axial compression 

force and is equal to 0.6 for a wall with no axial compression force and equal to 0.7 for a wall 

with an axial compression force of 0.1fc'Ag, where fc' is the concrete compressive strength and Ag 

is the gross cross sectional area of the shear wall. Paulay and Priestley (1992) also related the 

effective stiffness to axial compression force. They recommended a reduction factor of 0.25 for a 

concrete wall with no axial compression force and a factor of 0.35 for a wall with an axial 

compression force equal to 0.1fc'Ag. Figure 3.2 shows a schematic of the CSA and Paulay and 

Priestley approaches to estimate effective stiffness. The CSA method defines the effective 

stiffness as the slope of the line that gives area under the curve equal to the actual nonlinear 

bending moment - curvature relationship. Paulay and Priestley define effective stiffness as the 

slope of the line that connects the origin to the yield point.  

 Some researches recommended effective stiffness based on shake table test results. 

Lestuzzi (2002) tested a series of 1/3-scale rectangular walls with axial compression force equal 

to 0.03fc'Ag subjected to synthetic earthquakes. Lestuzzi concluded that effective stiffness 

dropped to approximately 10% of the gross stiffness. Schotanus and Maffei (2007) suggested an 

effective stiffness of 0.2EIg from the results of a full scale rectangular wall (Panagiotou 2008) 
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with an axial compression force of 0.05fc'Ag. Doepker (2008) used the shake table results of a 

series of reinforced concrete wall specimens and defined effective stiffness as a function of drift 

demand. According to Doepker model, effective stiffness is equal to 30% of the uncracked 

stiffness for drift ratios less than 0.3% and it decays exponentially to an effective stiffness equal 

to 5% of the gross flexural stiffness as the drift ratio increases to 4%. 

 

 

Figure 3.1 Recommended stiffness reduction factor. 

 

Figure 3.2 Equal area and Paulay & Priestley approaches for computing effective stiffness. 
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The proposed stiffness reduction factors discussed above were determined from sectional 

analysis or from shake table results of walls with low fundamental periods (0.2 to 0.59 second). 

In order to obtain a good estimate of displacement demands of shear wall buildings during 

earthquakes, it is necessary to compare displacement demands from nonlinear time history 

analysis with the displacements determined from linear analysis. Single-degree-of-freedom 

(SDOF) oscillators are used in this chapter to model the base shear - roof displacement 

relationship of cantilever shear walls. In the first step, roof displacement demands determined 

using SDOF oscillators are compared with the roof displacement demands from multi-degree-of-

freedom (MDOF) approach for three shear walls to validate the accuracy of the SDOF approach 

to predict roof displacement demands. Lastly, in order to observe the influence of the force - 

displacement response of walls on the roof displacement demand, 13 shear walls with a wide 

range of axial compression force and vertical reinforcement percentage are selected. The 

fundamental  period of these walls range from 0.5 second to 4 seconds. Both spectrum matched 

and real records are used in time history analysis. For each force - displacement relationship and 

fundamental period, the ratio of elastic force demand to strength R varies from 1.0 to 5.0. 

3.2 SDOF versus MDOF Modelling for Predicting Roof Displacement 
Demands 

In this section roof displacement demands from SDOF oscillators are compared with roof 

displacement demands from MDOF models for three example shear walls. This was done to 

validate the predicted roof displacements from the SDOF approach. Three 10, 20, and 40 story 

walls are selected for this purpose. That is, a 10 story wall with Rg = 5.2; a 20 story wall with Rg 

= 4.0; and a 40 story wall with Rg = 2.6. The three walls feature minimum longitudinal 

reinforcement according to CSA A23.3-04. The structural properties of the three walls are 

presented in Table 2.1. These walls were modelled using both SDOF and MDOF approaches. 

The details of the analytical models are presented hereafter. 

3.2.1 SDOF Modelling of Example Shear Walls 

Figure 3.3 shows a general schematic of the hysteretic force - displacement relationship used for 

the SDOF modelling of the three walls. The hysteretic model can be fully defined by knowing 
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key parameters ki, Vco, Vn, ∆yUB, ∆yLB, Vcc.  Compared to the trilinear hysteretic bending moment - 

curvature model developed in Chapter 2, the hysteretic force - displacement relationship has 

simpler rules for stiffness degradation and unloading. This includes using a constant lower bound 

yield displacement ∆yLB, which can be calculated by integrating curvatures from lower - bound 

trilinear bending moment - curvature relationship (see Figure 2.2). Also, the hysteretic force - 

displacement model assumes no residual displacement for positive Vcc values. The hysteretic 

model was implemented into OpenSees by Korchinski (2007), and was modified as part of the 

current study in order to model walls with negative Vcc values. Korchinski (2007) also compared 

the predicted force - displacement relationship from Figure 3.3 with experimental results from 

Adebar et al. (2007) and he concluded that the predicted hysteretic loops from the analytical 

model are slightly smaller than those observed in the experiment. The full description of the 

hysteretic force - displacement model is presented in Appendix C. 

 

Figure 3.3 Hysteretic force - displacement relationship used for SDOF oscillators. 

 Figure 3.4 presents the base shear - top displacement relationship for the three walls. 

Each graph includes the upper bound, lower bound, and unloading points for the three walls 

subjected to reverse cyclic loading with a lateral load pattern proportional to the first mode 

shape. The values of the key points shown in Figure 3.4 is used to perform time history analysis. 
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A mass-spring-dashpot system was modelled in OpenSees for this purpose. The spring has a 

force - displacement relationship shown in Figure 3.3 with the key properties depicted in Figure 

3.4. A 3% viscous damping was considered for the dashpot The mass m of the SDOF system was 

adjusted in order to achieve fundamental periods of 1.0, 2.0, and 4.0 seconds, which are the 

fundamental periods of the 10, 20, and 40 story walls, respectively. All time history analyses 

adopted the Newmark integration method with coefficients β = 0.5 and γ = 0.25. The time step 

was set equal to 0.005 s, and the Newton-Raphson iteration method was used to satisfy 

equilibrium at each time step.  

 

Figure 3.4 Base force - roof displacement relationship for 10, 20, and 40 story walls. 
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3.2.2 MDOF Modelling of Example Shear Walls 

Time history analysis of the three shear walls was done using the trilinear hysteretic bending 

moment - curvature relationship presented in Figure 2.20. The parameters that define the trilinear 

model were calculated at each floor considering the variation of axial compression. A force 

element was defined at each floor level to model the vertical spread of plasticity in the walls. The 

base was assumed to be fixed, and shear deformations were not considered in the analytical 

model. Rayleigh damping was assumed with mass proportional and initial stiffness matrixes. A 

damping ratio of 3% was assigned for the first and third modes. The time step was set equal to 

0.0025, and the Newton-Raphson iteration method was used to satisfy equilibrium at each time 

step. Lastly, the Newmark integration method with coefficients β = 0.5 and γ = 0.25 was used in 

time history analysis. 

3.2.3 Ground Motions Used for Time History Analysis 

Nonlinear time history analyses were performed using a set of forty ground motions taken from 

the suite of ground motions used in ATC 55 project (ATC 2005). Of these forty ground motions, 

twenty motions were recorded on site class B, and twenty motions were recorded on site class C. 

The ground motions correspond to eight different earthquakes with magnitude Ms ranging from 

6.1 to 7.1 and peak ground acceleration ranging from 48.9 to 504.2 cm/s2. 

 The target spectrum for scaling ground motions is the uniform hazard spectrum (UHS) 

shown in Figure 2.25. The 40 ground motions were scaled in two different ways: scaling to the 

UHS at the fundamental period T1 and scaling to match the UHS over the periods between 0.2T1 

and 1.5T1 as recommended by ASCE standard 7-05 (ASCE 2005). It was decided to scale the 

ground motions so that the mean spectrum follows the UHS between 0.2T1 and 1.5T1, rather than 

conservatively scaling the ground motions to be above the UHS over this period range. It means 

that the ground motions were scaled such that the mean spectrum has the same area under the 

curve as the UHS over this period range. This scaling method was applied to perform time 

history analysis for both SDOF and MDOF systems. Comparison between the mean spectrum of 

the ground motions and the UHS for different fundamental periods and the two scaling methods 

is presented in Appendix D. 
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3.2.4 Results 

The SDOF oscillator has an initial period and damping ratio equal to the first mode response of 

the MDOF structure. If the structure remains elastic, the roof displacement corresponding to the 

first mode is equal to Γ������, where 1rφ  is the value of first mode vector at the roof (equal to 

1.0), D1 is the elastic spectral displacement corresponding to the first mode period, and Г1 is first 

mode participation factor, which is equal to 111 /1 φφφ MM . Note that M and 1rφ  are mass matrix 

and first mode vector, respectively. In the case of nonlinear response, roof displacement 

predicted from the SDOF oscillator is an approximation to the actual roof displacement demand 

since this method assumes that elastic first mode shape is still valid even when the structure 

response is nonlinear (Chopra et al 2003). The value of Г1 is 1.47, 1.51, and 1.54 for the 10, 20, 

and 40 story walls, respectively. Note that D1 is the peak displacement determined from 

nonlinear time history analysis of the equivalent SDOF oscillators. 
  Figure 3.5 compares the roof displacement demand determined using the SDOF 

oscillators with the roof displacement demand corresponding to the MDOF system for the three 

shear walls. Note that both axes in these plots are expressed in terms of global drift ratio for 

individual ground motions, which is the ratio of maximum roof displacement demand to the wall 

height. 
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Figure 3.5 Comparison of global drift ratios from MDOF with global drift ratios from SDOF 

oscillator for 10, 20, and 40 story walls. 

 

 Figure 3.5 indicates that regardless of how ground motions are scaled, the MDOF and 

SDOF models give similar roof displacement demands for the 10 and 20 story walls although the 

SDOF oscillator tends to give higher roof displacement demand for the majority of ground 

motions. For the 40 story wall, the difference between the roof displacement demand predicted 

from the two models increases for individual ground motions. For some ground motions, using 

SDOF model results in roof displacement demands that are significantly lower than those 

determined using the MDOF approach. 

  It is also interesting to compare the mean roof displacement demands from the two 

analytical models. Figure 3.6 shows the ratio of roof displacement from the SDOF oscillator to 
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the roof displacement demand from the MDOF system as a function of the fundamental period 

for the three walls.  

 

Figure 3.6 Ratio of mean roof displacement demand from MDOF model to the mean roof 

displacement from SDOF oscillator for different ground motion scaling methods. 
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Figure 3.7 Ratio of mean roof displacement demand from MDOF model to the mean roof 

displacement from SDOF oscillator as a function of global drift ratio from MDOF model for the 

three walls. 

 Figure 3.7 indicates that the mean displacement ratio tend to increase as the global drift 

ratio increases. The maximum ratio is 1.22, 1.13, and 1.18 for 10, 20, and 40 story walls, 

respectively, which correspond to the scale factor of 5.0. 
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3.3 Effective Stiffness of Cantilever Shear Walls using SDOF Approach 

As it was observed in Section 3.2, the SDOF approach provides a good estimate of the mean roof 

displacement demand. This method of analysis will be used in this section to estimate roof 

displacement and consequently effective stiffness of cantilever shear walls. The details are 

presented hereafter. 

 The hysteretic force - displacement model presented in Figure 3.3 is fully determined by 

knowing key parameters ki, Vco, Vn, ∆yUB, ∆yLB, and Vcc. It is necessary to generate a realistic 

range of the key parameters of the hysteretic model so that the considered force - displacement 

models can be regarded as a reasonable representation of the base shear - roof displacement 

relationship of high-rise walls. The parameters of the hysteretic model are a function of bending 

moment and lateral load distribution over the height of walls. Wall geometry, axial load level, 

and amount of vertical reinforcement influence the shape of the force - displacement 

relationship. In order to develop a realistic range for the key parameters of the hysteretic model, 

Korchinski (2007) studied a series of rectangular and flanged walls with different height to 

length ratios. Web reinforcement ratio was assumed to be 0.25% for all walls. Flanged 

reinforcement ratio was varied from 0.5% to 2% for flanged walls and from 1% to 4% for 

rectangular walls. Axial load was also varied from 0 to 0.3fc'Ag. From this database, 13 walls 

were selected to represent the practical range of key parameters of the hysteretic force - 

displacement model. The properties of the 13 walls are shown in Table 3.1. Each wall is labelled 

by a combination of “L” and “R” characters. “L” stands for Linear and represents the linear 

segment of the backbone curve. The number after this character is proportional to the ratio of 

Vco/Vn. “R” stands for Reinforcement and is followed by a number which is proportional to the 

ratio of the secondary slope ks to the initial slope ki.  
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Table 3.1 Parameters that define the hysteretic response of the 13 walls considered in the study. 

Walls nco VV /  ncc VV /  is kk /  niyUB Vk /∆  niyLB Vk /∆  

W-L2-R3 0.20 -0.20 0.286 2.00 3.00 
W-L2-R2 0.20 -0.20 0.167 2.70 5.00 
W-L2-R1 0.20 -0.20 0.103 3.50 8.00 
10 story 0.37 -0.17 0.2 4.37 6.39 

W-L4-R4 0.40 0.0 0.375 1.60 2.00 
W-L4-R2 0.40 0.0 0.167 2.60 4.00 
W-L4-R1 0.40 0.0 0.107 3.20 6.00 
20 story 0.42 0.09 0.3 1.61 2.0 

W-L5-R3 0.50 0.15 0.333 1.70 2.00 
W-L5-R2 0.50 0.15 0.167 2.40 3.50 
W-L5-R1 0.50 0.15 0.111 2.80 5.00 
40 story 0.51 0.26 0.2 1.92 4.14 

W-L6-R3 0.60 0.30 0.286 1.65 2.00 
W-L6-R2 0.60 0.30 0.167 2.10 3.00 
W-L6-R1 0.60 0.30 0.118 2.40 4.00 
W-L8-R2 0.80 0.60 0.167 1.40 2.00 

 

 Also shown in Table 3.1 are the characteristics of the 10, 20, and 40 story walls described 

in section 3.2. Table 3.1 indicates that the properties of the three walls fit within the 

characteristics of the 13 walls. The upper-bound and lower-bound curves for the 13 walls are 

shown in Figure 3.8 and Figure 3.9, respectively. The horizontal axis in both figures is 

normalized by the displacement at which the initial slope ki intercepts the shear force at the 

flexural capacity Vn, i.e. Vn/ki. The vertical axes are also normalized by the shear force at the 

flexural capacity Vn. 
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Figure 3.8 Upper-bound force - displacement relationship for the 13 shear walls. 

 

Figure 3.9 Lower-bound force - displacement relationship for the 13 shear walls. 
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To perform time history analysis, the forty ground motions described in section 3.2.3 were 

scaled to the UHS in three different ways: 1) spectrum matching using computer program 

SYNTH (Naumoski 2001); 2) scaling to the UHS at the fundamental period T1, and 3) scaling to 

match the UHS over the period range between T1 and 1.5T1. Note that the period range of 0.2T1 

to 1.5T1 prescribed by ASCE7-05 is replaced by the period range of T1 to 1.5T1. The lower 

bound 0.2T1 is considered to capture higher mode effects, and need not be considered in this 

study since the shear walls are considered as SDOF oscillators. Similar to section 3.2.3, equal 

area under the curve approach was used to match the ground motions to the UHS over the 

periods between T1 and 1.5T1. Comparison of the mean spectrum corresponding to different 

scaling methods with the UHS is presented in Appendix D. 

  For each shear wall, the mass m of the SDOF oscillator was adjusted in order to achieve 

different periods. A period range from 0.5 to 4.0 seconds at 0.5 second intervals was considered 

for each wall. The force reduction factor R varied from 1.0 to 5.0 at 0.25 intervals. Note that the 

R factor is defined as the ratio of elastic force demand (equal to the product of mass times the 

spectral acceleration at the fundamental period Sa(T1)) to the wall strength Vn. For each period 

and R value, maximum displacement from time history analysis was recorded for the three 

scaling methods. The mean displacement of the ground motions was then used to define the 

effective period and consequently effective stiffness. Effective period was defined as the period 

of an equivalent linear system with the same spectral ordinate as the mean displacement from 

time history analysis. Effective periods were obtained using the UHS. The effective stiffness is 

determined from the effective period and the stiffness reduction factor α is determined from the 

ratio of stiffnesses, i.e. α = ke/ki. The stiffness reduction factor is assumed to be the ratio of 

effective flexural rigidity EIe to gross flexural rigidity EIg. 

  Figure 3.10 through 3.12 shows the results for the thirteen walls using spectrum matched 

ground motions and periods of 1.0, 2.0, and 4.0 seconds, respectively. The results for other 

periods and ground motion scaling methods are presented in Appendix E.  
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Figure 3.10 Stiffness reduction factor as a function of force reduction factor for 13 shear walls 

with the period of 1.0 second. 

 

Figure 3.11 Stiffness reduction factor as a function of force reduction factor for 13 shear walls 

with the period of 2.0 seconds. 
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Figure 3.12 Stiffness reduction factor as a function of force reduction factor for 13 shear walls 

with the period of 4.0 seconds. 
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period of 4.0 seconds, on the other hand, stiffness reduction factor drops to about 0.8 and then it 

remains constant as the R value increases. This is consistent with the equal displacement rule, 

which states that the maximum displacement of a nonlinear system is approximately equal to the 

displacement of the linear system for structures with longer periods. The accuracy of this 

assumption is shown in Figure 3.13. Figure 3.13 illustrates the mean values of the ratio of the 

maximum nonlinear displacement to linear displacement for forty ground motions scaled at the 

initial period T1. For a given period and R value, each point on the plot corresponds to the mean 

of the 520 maximum nonlinear displacements (13 walls times 40 ground motions).  

 

Figure 3.13 Ratio of inelastic to elastic displacement for different periods and force reduction 

factors. 

 Figure 3.13 indicates that for periods greater than 0.5 second, the ratio of inelastic to 

elastic displacement is relatively independent of period for a given R factor. Furthermore, for 

longer periods, i.e. greater than 3 seconds, the ratio is insensitive to the variation of the force 

reduction factor. For example, the ratio varies between 1.05 and 1.19 as R increases from 1.0 to 

5.0. This observation validates the accuracy of equal displacement rule for taller shear walls. On 

the other hand, the ratio is very dependent on R for short period structures: as R increases from 

1.0 to 5.0, the ratio of inelastic to elastic displacement increases from 1.07 to 2.18. This means 

0.0

0.5

1.0

1.5

2.0

2.5

0.5 1 1.5 2 2.5 3 3.5 4

R
at

io
 o

f 
in

el
as

ti
c 

d
is

p
la

ce
m

en
t 

to
 e

la
st

ic
 d

is
p

la
ce

m
en

t

Period (s)

R=1.0

R=1.5

R=2.0

R=2.5

R=3.0

R=3.5

R=4.0

R=4.5

R=5.0



71 
 

that equal displacement rule significantly underestimates nonlinear displacements of short period 

structures. 

  Figure 3.14 shows the variation of stiffness reduction factor as a function of force 

reduction factor and period for the three ground motion scaling methods. Each line in Figure 

3.14 represents the mean value of the stiffness reduction factors for the thirteen walls with a 

given period and R value. Figure 3.14 indicates that stiffness reduction factors for spectrum 

matched ground motions are lower than those for other scaling methods for all periods except for 

T = 0.5 s. For spectrum matched ground motions, stiffness reduction factor is relatively 

independent of the period for R factors less than 3.0; however, for higher R values, stiffness 

reduction factor increases from 0.5 to 0.8 as the period increases from 0.5 to 4.0 seconds. For 

scaled over range ground motions and R = 5.0, stiffness reduction factor varies from 0.55 to 0.7 

as the period increases from 1.0 to 4.0 seconds. 

  

 

 

Figure 3.14 Variation of mean stiffness reduction factor as a function of period and force 

reduction factor for three ground motion scaling methods. 
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As it was shown in Figure 3.14, stiffness reduction factors corresponding to the period of 0.5 

second for ground motions scaled to the UHS at T1 and over the range are significantly lower 

than those for spectrum matched ground motions. This can be explained by comparing the mean 

spectrum of the ground motions for these scaling methods with the UHS. Figure 3.15 shows the 

mean spectrum for the two scaling methods. 

 

Figure 3.15 Comparison of the mean spectrum of ground motions scaled to the UHS at 

fundamental period and over the range of periods with the UHS. 
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stiffness reduction factors are fairly well banded considering the wide range of walls studied, a 

closer examination is needed to observe the variation of stiffness reduction factor within the 13 

shear walls. Figure 3.16 presents stiffness reduction factor using spectrum matched ground 

motions for R = 5.0 for two periods of 2.0 and 3.0 seconds. Horizontal axis in this figure 

represents the ratio of shear force at crack opening Vco to shear force at flexural capacity Vn (see 

Figure 3.3), while vertical axis shows stiffness reduction factor for different walls if equal-area-

under-the-curve approach is used to determine effective stiffness from the  upper-bound and 

lower-bound force - displacement curves shown in Figure 3.8 and Figure 3.9, respectively. Also 

shown in Figure 3.16 is the stiffness reduction factors determined from time history analysis. 

 

  

Figure 3.16 Comparison of stiffness reduction factors determined using equal-area-under-the-

curve approach for upper-bound and lower-bound curves with stiffness reduction factors from 

time history analysis (denoted as THA) for 13 walls with R = 5.0 using spectrum matched 

ground motions. 
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R2, while the lowest effective stiffness within thirteen walls belongs to this wall if effective 

stiffness is obtained from peak displacement demands from time history analysis. 

 It can be concluded that the ratio of elastic force demand to strength R has the highest 

influence on effective stiffness. As R increases from 1.0 to 5.0, stiffness reduction factor reduces 

from 1.0 to a value which is not generally less than 0.5 for spectrum matched ground motions. It 

was shown that for walls with longer periods, stiffness reduction factor is relatively independent 

of R. It was also observed that stiffness reduction factor does not depend on the period for R 

values less than 3.0. Ground motion scaling method can influence the results, but the resulting 

stiffness reduction factors from spectrum matched ground motions and ground motions scaled to 

the UHS over the range of periods were similar. Axial compression stress ratio was found to 

have much less influence on the effective stiffness than previously thought. Opposite to what 

was expected, the wall with the highest axial compression stress ratio P/fc'Ag was found to have 

the lowest effective stiffness because the wall had smaller hysteretic loops. Smaller hysteretic 

loops results in lower hysteretic energy dissipation and thus higher displacement demands. 

3.4 Additional Considerations 

The following analysis results are presented in this section: influence of the unloading point on 

the wall displacement, effective stiffness using simplified force - displacement models, and the 

influence of tension stiffening on effective stiffness. 

3.4.1 Influence of Unloading Point on Displacement Demands 

This section studies how much the variation of the unloading point influences displacement 

demands and hence effective stiffness of a shear wall. This was done by comparing mean 

displacement demands of the two walls having the same force - displacement characteristics 

except different crack closing (Vcc) points. Since the 13 shear walls listed in Table 3.1 have very 

different characteristics, an additional walls was created for this purpose. The additional wall, 

labeled W-L5-R3A, has the same characteristics as the wall W-L5-R3 except that the crack 

closing point for this wall was changed from 0.15Vn to 0.3Vn. The period for both walls was 

assumed to be 2 seconds, and stiffness reduction factors were determined from mean 



75 
 

displacements using spectrum matched ground motions. Figure 3.17 shows the results for the 

two walls. 

 

Figure 3.17 Comparison of stiffness reduction factor for two walls with different unloading 

characteristics. 
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beams, while the second one exhibits no hysteretic energy dissipation and can be used to model 

the rocking behaviour. Figure 3.18 shows a schematic of these models.  

  

Figure 3.18 Elastic-perfectly-plastic (EPP) and nonlinear-elastic (NE) force - displacement 

models. 

Figure 3.19 shows the variation of stiffness reduction factor for five periods ranging from 

2.0 to 4.0 seconds using EPP and NE models and spectrum matched ground motions. For both 

models, stiffness reduction factor is equal to 1.0 for R = 1.0. For higher R values, stiffness 

reduction values corresponding to the EPP model are greater than 1.0 indicating that the mean 

nonlinear displacements are less than the corresponding elastic displacements. Low 

displacements could be attributed to high hysteretic energy dissipation for the EPP relationship. 

Stiffness reduction factors  corresponding to the NE model, on the other hand, drops from 1.0 to 

0.34 for T = 2.0 seconds and from 1.0 to 0.61 for T = 4.0 seconds. In fact, these stiffness 

reduction factors are lower than those for the 13 walls presented in Figure 3.10 and Figure 3.12 

for periods of 2.0 and 4.0 seconds, respectively. High nonlinear displacements are due to zero 

hysteretic energy dissipation for the NE model. 
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Figure 3.19 Stiffness reduction factor for walls with different periods and force reduction factors 

using EPP and NE force - displacement models. 

3.4.3 Influence of Tension Stiffening on Effective Stiffness 

It is well known that once the reinforced concrete cracks, some tension stresses are still carried 

by the  concrete between two adjacent cracks because of the bond between concrete and 

reinforcing steel. This increases the average stiffness of the reinforced concrete element and is 

known as tension stiffening. It is interesting to investigate the influence of tension stiffening on 

the effective stiffness of concrete walls. The details of the tension stiffening model mainly 

changes the characteristics of the backbone segment of the force - displacement relationship 

since tension stiffening in concrete tends to diminish as the concrete becomes severely damaged 

and the reinforcement yields. As a result, a convenient way to study the influence of tension 

stiffening on the effective stiffness would be to change the characteristics of the backbone curve 

(upper-bound segment as shown in Figure 3.3) without changing other key points. For this 

purpose, the wall W-L4-R1 was selected and two additional walls - labelled W-L4-R1A and W-

L4-R1B - were created with the key points of the force - displacement relationship that are 

identical to those for wall W-L4-R1, except that the upper-bound yield displacement ∆yUB for W-

L4-R1A and W-L4-R1B  is 0.5 times and 1.5 times the upper-bound yield displacement for W-

L4-R1, respectively. Figure 3.20 shows the upper-bound curve for the three walls. 
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Figure 3.20 Comparison of upper-bound force - displacement relationship for the three walls. 

The three walls were subjected to the suite of spectrum matched ground motions. A 

period of 2 seconds was assumed for the three walls, and the R factor varied from 1.0 to 5.0. 

Figure 3.21 presents the variation of stiffness reduction factor for the three walls. Figure 3.21 

shows that tension stiffness has minor impact on the effective stiffness for R values less than 1.5. 

This is because maximum displacement for the three walls was less than the upper-bound yield 
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characteristics in this range of displacement demands as they possess identical unloading points. 

As a result, variation of upper-bound response had minor influence on displacement demand and 
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for W-L4-R1A and 0.43 for W-L4-R1B, which is relatively small given the big difference 

between the upper-bound curves for the three walls. This is due to the fact that the three walls 

already reached the lower-bound response and therefore details of upper-bound response had 

slight influence on deformation demands and effective stiffness. This situation can be analogous 

to a severely damaged shear wall where there is no tensile stresses in the concrete.  For R values 

between 2.0 and 3.5, tension stiffening has the biggest impact on the effective stiffness because 

the response of the three walls oscillated between the upper-bound and the lower-bound 

responses. The wall with lowest hysteretic energy dissipation (W-L4-R1B) had the highest 
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displacement and lowest effective stiffness, while the wall with highest hysteretic energy 

dissipation (W-L4-R1A) had the lowest displacement and highest effective stiffness. 

 

Figure 3.21 Stiffness reduction factor versus force reduction factor R for the three walls using 

spectrum matched ground motions. 

3.5 Summary and Conclusions 

Roof displacement demands from nonlinear time history analysis were used to develop 

appropriate effective stiffness values to be used in a linear dynamic - response spectrum - 

analysis. The effective flexural stiffness of a concrete shear wall is normally thought to increase 

with the level of axial compression applied to the wall because compression increases the 

bending moment to cause flexural cracking. The results of this study indicate that axial 

compression stress had much less influence on the effective stiffness. In fact, the wall with the 

highest axial compression stress ratio actually had the lowest effective stiffness because the wall 

had proportionally less hysteretic energy dissipation (See Figures 3.10 through 3.12). 

  It was found that an important parameter that influences effective stiffness is the ratio of 

elastic force demand to strength R. It was observed as R increases from 1.0 to 5.0, stiffness 
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reduction factor reduces from 1.0 to a value which is not generally less than 0.5 for spectrum 

matched ground motions. Ground motion scaling method can influence the results, but the 

resulting stiffness reduction factors from spectrum matched ground motions and ground motions 

scaled to the UHS over the range of periods were similar. 
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Chapter 4 : Influence of Ground Motion Selection and Scaling on 

Seismic Response of Cantilever Shear Walls 

4.1 Introduction 

Nonlinear time history analysis is the most rigorous method to estimate demands on structures 

due to earthquakes. It is used by researchers to investigate the seismic response of structures and 

it is increasingly used by design engineers undertaking performance-based earthquake 

engineering design. It is well known that selection and scaling of ground motions can greatly 

influence the results of nonlinear time history analysis. Of particular interest with high-rise 

cantilever wall buildings are: (i) maximum wall displacements at the top of buildings, which 

strongly correlate to many other demand parameters; (ii) maximum interstory drifts over the 

height, which strongly influence demands on the gravity-frame systems, e.g., punching shear 

failure of slabs around gravity-load columns; (iii) maximum wall curvatures at the base and near 

midheight, which directly influence maximum compression strains in concrete and maximum 

tension strains in vertical wall reinforcing steel, and; (iv) wall base shear force, which must be 

known in order to design a wall with a ductile response. Inappropriate selection and scaling of 

ground motions for high-rise concrete cantilever walls can result, for example, in a large 

overestimation of the influence of higher modes on the base shear and on the midheight 

curvatures of the wall. 

 In the current chapter, the influence of different methods to select and scale ground 

motions is investigated for 11 different high-rise cantilever shear walls that are 10, 30 or 50 

stories high, and are designed for different force reduction factors. This includes: 1) amplitude 

scaling the ground motions to match a uniform hazard spectrum (UHS) at the fundamental 

period and over a prescribed range of periods; 2) spectrum matching the motions to the UHS; 3) 

matching the ground motions to conditional mean spectrum (CMS). The influence of 

conditioning period for computing CMS on different demand parameters is investigated. The 

adequacy of choosing a set of seven ground motions to establish the mean response for design 

purposes is also examined.  
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4.2 Literature Review 

Input ground motions to perform time history analysis are usually selected based on the 

magnitude and distance of a potential earthquake happening at the site - which can be 

determined from probabilistic seismic hazard analysis (PSHA) - as well as the fault mechanism. 

The selected records are then scaled to match a prescribed target spectrum. In Canada, the 2005 

National Building Code of Canada (NBCC 2005) provides a UHS with 2% probability of 

exceedance in 50 years. This UHS is also used as the input spectrum for performing response 

spectrum analysis (RSA) in practice. Input motions are mainly matched to the UHS in three 

ways: 1) scale the records to the target spectral acceleration at the fundamental period of the 

structure T1; 2) scale the records to match the UHS over a range of periods; 3) spectrum 

matching. Individual records are characterized by 5% damped elastic spectrum. Seismic code 

provisions such as ASCE standard 7-05 (ASCE 2005) recommends a period range of 0.2T1 to 

1.5T1 for the second method. That is, for 2-dimensional analysis, the records must be scaled such 

that the mean spectrum of the scaled records does not fall below the target spectrum at any point 

within this period range. The limit 0.2T1 is to ensure that important higher modes are adequately 

excited, while the limit 1.5T1 is for considering the period lengthening due to nonlinearity. 

Katsanos et al. (2010) recommended using TL instead of 0.2T1 as the lower bound, which is the 

period of the highest mode of vibration for which the activated mass is about 90% of total, and 

2T1 as the upper bound for the structures that are located in the regions with high seismic 

intensities. The idea of scaling the records over the range of periods seems to be more rational 

than scaling at the fundamental period since it considers a wider range for spectral accelerations 

that can possibly influence different response parameters.  

 Spectrum matching is a process in which the frequency content of the input motions is 

altered to artificially match the response spectrum of individual records to the target spectrum. 

There are different algorithms and softwares available to generate spectrum match records 

(RSPMatch, Abrahamson 1992; SYNTH, Naumoski 2001; Atkinson 2009). The advantage of 

using spectrum matched records is that the variability of the demand parameters is substantially 

reduced, i.e. fewer records can be used to estimate the mean response (Watson-Lamprey and 

Abrahamson 2006). Similar to the second method of scaling described above, spectrum matched 

records can be generated to match the target spectrum over a prescribed range of periods. ATC 
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82 (2011) observed that scatter of demand parameters can be further reduced by matching the 

ground motions over a larger period range from 0.02T1 to 3T1. Huang et al. (2011) concluded 

that compared to the real records, spectrum matched records underestimate the mean 

displacement of highly inelastic single-degree-of-freedom (SDOF) oscillators. Furthermore, they 

cannot be used to establish the distribution of structural response if the input motions are 

matched to the mean target spectrum. In order to estimate the distribution of demand parameters 

using spectrum matched records, Hancock et al. (2008) used 84th-percentile spectrum as the 

target spectrum instead of the mean spectrum. 

  Both SDOF oscillators and multi-degree-of-freedom (MDOF) buildings were used as the 

structural model in assessing the influence of record selection and scaling method on demand 

parameters. Luco and Bazzurro (2007) compared inelastic displacement demands for SDOF 

oscillators (with elastic periods between 0.1 second and 4.0 seconds and force reduction factors 

of 2, 4, 6, 8, and 10) and maximum interstory drift as well as global drift ratio for a 9 story steel 

moment resisting frame with a fundamental period of 2.3 seconds using scaled records with 

those corresponding to unscaled motions. The input motions had a moment magnitude Mw 

between 6.4 and 7.6 and closest source to site distance between 0 and 50 km. Bias was defined 

as the ratio of the median response parameter from the scaled records to that associated with 

unscaled records possessing a target spectral acceleration without scaling. Luco and Bazzurro 

demonstrated that scaling introduced bias in maximum interstory drift ratio and the bias tend to 

increase as the scale factor increased. It was also concluded that the amount of bias depends on 

the period of the structure, force reduction factor, and the response parameter under 

investigation. 

  Kurama and Farrow (2003) studied the effectiveness of different scaling methods in 

reducing the scatter in maximum displacement demand. Peak ground acceleration (PGA), Arias 

intensity-based parameter, effective peak velocity, spectral acceleration at the fundamental 

period, and spectral acceleration over a range of periods were considered as target intensity 

measures. Both SDOF oscillators (with different hysteretic models and force reduction factors of 

1, 2, 4, 6, and 8) and MDOF buildings (4 and 8 story concrete moment resisting frames with 

fundamental periods of 0.49 and 0.87 second, respectively) were included in the study. A subset 

of records compiled for SAC steel project (Somerville 1997) was used as the input motion. 

Kurama and Farrow concluded that for soil site class C and D, scaling over a range of periods is 

more effective than scaling at the fundamental period, and substantially more effective than 
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scaling to the target PGA in reducing the scatter particularly for larger force reduction factors. It 

was also observed that the hysteretic type did not affect the maximum displacement demand 

significantly, while soil type can influence the amount of dispersion for a given scaling method. 

  Heo et al. (2011) investigated the influence of two scaling methods on the seismic 

response of 4 story and 12 story concrete frame buildings with fundamental periods of 0.88 and 

2.1 seconds, respectively: scaling the records to the ASCE7-05 design spectrum at the 

fundamental period of the buildings, and spectrum matching. A benchmark was developed by 

carrying out regression analysis through a complete set of 200 time history analysis to relate 

maximum interstory drift ratio to the spectral acceleration at different modal periods. It was 

demonstrated that interstory drifts using spectrum matched records were closer to the predictions 

from the regression model than those from the records scaled at the fundamental period. The 

authors stated that further study is required to refine the regression model by including more 

intensity measures in addition to spectral accelerations at the elastic modal periods. Also, more 

demand parameters in addition to maximum interstory drift ratio need to be considered. 

 Wood and Hutchinson (2010) investigated the influence of three ground motion scaling 

methods: (a) scaling between zero and four seconds, (b) scaling between the first and second 

modal periods, and (c) scaling at the fundamental period on the seismic response of 8, 12, and 20 

story concrete frames with fundamental periods of 0.89, 1.33, and 2.07 seconds, respectively. 

Note that the first scaling method is similar to the recommended period range of 0.2T1 to 1.5T1 

specified by the ASCE7-05 standard. A set of 21 ground motions with moment magnitude Mw 

between 5.5 and 7.35 and closest source to site distance between 2 and 25 km was scaled to the 

ASCE7-05 design spectrum using the mentioned scaling methods. Maximum floor acceleration, 

maximum interstory drift ratio, and maximum plastic rotation were considered as the response 

parameters of interest. The results of the study indicated that using the third scaling method 

resulted in more pronounced higher mode effects especially for the tallest frame, while the 

response parameters from the first and second scaling methods were reasonably close. 

 Naeim and Lew (1995) questioned validity of using UHS as the target spectrum for 

scaling ground motions since it is the envelope to spectral accelerations at different periods that 

will not necessarily occur within a single motion. Baker and Cornell (2006) proposed 

Conditional Mean Spectrum (CMS), which accounts for the correlation between spectral 

accelerations at other periods given a target spectral acceleration at the period of interest. Baker 

(2011) summarized a step by step procedure for computing the CMS. The procedure involves 
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de-aggregation of the UHS to estimate the mean magnitude and mean distance for a specific 

conditioning period and return period, computing the mean and standard deviation of spectral 

accelerations using an attenuation model, and calculating the correlation between spectral 

accelerations at other periods and the conditioning period. The computed CMS will then be used 

as the target spectrum to select motions for use in time history analysis. Baker (2011) indicated 

that response parameters corresponding to the ground motions scaled and matched to the CMS 

are closer to the response parameters from unscaled records that have spectral accelerations 

equal to the target spectral acceleration at the conditioning period. Jayaram et al. (2011) 

extended the idea of Conditional Mean Spectrum to Conditional Spectrum (CS) in order to 

capture the variability in the input motions having a target mean spectrum. Selecting and 

matching the records to the CS results in a more accurate prediction of the variability in the 

demand parameters. Jayaram et al. (2011) studied the displacement demands for SDOF 

oscillators (with an elastic period of 0.5 second and force reduction factors of 1, 4, and 8) and 

maximum interstory drift ratio for MDOF structures (4 and 20 story concrete moment resisting 

frames with fundamental periods of 0.94 and 2.63 seconds, respectively). They concluded that 

time history results using ground motions selected and matched to the CS had slightly higher 

mean but considerably larger scatter compared to the time history results from a set of records 

for which only the mean spectrum matched the prescribed CMS. 

 The Ground Motion Selection and Modification (GMSM) program at the Pacific 

Earthquake Engineering Research centre (PEER) published a comprehensive report (PEER 

GMSM, Haselton et al. 2009) with the aim of evaluating different ground motion selection 

schemes and comparing the structural response using various sets of records with a benchmark 

model. Median maximum interstory drift ratio was considered as the response parameter of 

interest, and several ground motion scaling methods were considered including scaling to the 

target spectral acceleration at fundamental period, scaling to the UHS over a period range of 

0.2T1 to 1.5T1, and scaling to the CMS computed at the fundamental period T1. Several bins of 

records were used for each scaling scheme in order to better observe the variation of the 

interstory drift within different sets of records selected for each scaling method. The structural 

systems considered in the study included three reinforced concrete frames and one reinforced 

concrete shear wall. The concrete frames were 4, 12, and 20 story structures with fundamental 

periods of 0.97, 2.01, and 2.63 seconds, while the concrete shear wall had 12 stories with a 

fundamental period of 1.2 second. The findings for the 12 story shear wall indicated that all 
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groups of records, except records scaled to the CMS, tend to overestimate the median interstory 

drift ratio compared to the prediction from the benchmark model. It was observed that scaling to 

the spectral acceleration at fundamental period leads to an overestimation of median response by 

29%, while scaling to the CMS underestimates the median response by only 5%. 

 The ATC 82 (2011) project covers guidelines for selecting, scaling, and spectrum 

matching the ground motions for time history analysis. The UHS, CMS, and CS were considered 

as possible target spectrums, while scaling techniques included scaling at a target period, scaling 

over a range of periods, and spectrum matching. For scaling over the range, it was suggested to 

increase the ASCE7-05 upper bound limit of 1.5T1 to 2.5T1 for frame structures in order to better 

represent the period lengthening due to nonlinearity. The CMS and CS were considered as more 

realistic target spectrums to scale the input motions. The former can be used to provide unbiased 

predictions of the mean demand parameters, while the latter provides a tool to predict the mean 

and variability in the response parameters. ATC 82 stated that the UHS can be used as the target 

spectrum if it is not known which conditioning period gives highest demand parameters, 

although using the UHS as the target spectrum results in conservative estimates of the demand 

parameters. Furthermore, a parametric study was carried out to investigate the influence of 

conditioning period on maximum interstory drift ratio and maximum peak floor acceleration 

(PFA) for 1 to 20 story concrete moment resisting frames. Four conditioning periods of the first 

mode period T1, 2T1, and higher mode periods of T2 and T3 were considered for each building. 

The results for the 20 story frame indicated that the drift hazard curves – annual probability of 

exceedance versus maximum interstory drift - corresponding to different conditioning periods 

are similar. On the other hand, the median interstory drift and PFA varied as the conditioning 

period changed: T1 and 2T1 produced the highest median interstory drift values at smaller and 

larger return periods, while the third elastic mode period, T3, resulted in the largest PFA 

response. Finally, the ATC 82 project compared demand parameters from spectrum matched 

ground motions with those from the records matched to the CMS and the benchmark model 

predictions. It was observed that the records matched to the UHS produced slightly higher 

median interstory drifts than the other two sets of records for a 12 story concrete moment frame 

with a fundamental period of 2.01 seconds. Furthermore, spectrum matching over a wider range 

of periods reduced the variability in the response parameters. Based on a limited amount of data, 

it was suggested to perform spectrum matching over a period range from 0.02T1 to 3T1. The 
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upper bound limit of 3T1 and the lower bound limit of 0.02T1 are considered to reduce the 

variability in first-mode and higher-mode dominated demand parameters, respectively. 

 Most of the studies carried out thus far on the ground motion selection and scaling 

methods considered medium-rise concrete moment resisting frames as the structural model and 

maximum interstory drift ratio as the response parameter of interest. The GMSM program was 

the only study which investigated the sensitivity of the maximum interstory drift ratio of a 12 

story concrete shear wall corresponding to the records scaled to the UHS and the CMS computed 

at the fundamental period. The influence of ground motion scaling on the seismic response of 

high-rise shear walls and the sensitivity of other demand parameters to the scaling method still 

need to be examined. Particularly, the sensitivity of first-mode dominated and higher-mode 

dominated response parameters to various scaling schemes and conditioning periods is 

investigated in this work. The variability in the structural response using different sets of records 

is also studied. Finally, the adequacy of ASCE7-05 rules for choosing seven ground motions to 

estimate the mean design quantities are discussed.  

4.3 Selection and Scaling of Ground Motions to UHS 

The input ground motions in this section are scaled to the uniform hazard spectrum (UHS) 

shown in Figure 2.25. The UHS is similar to the design spectrum for Vancouver, BC and 

ASCE7-05 design spectrum for Seattle, WA. Summary of ground motions and scaling methods 

are presented hereafter. 

4.3.1 Summary of Ground Motions 

Ground motions used in this work were selected from the PEER Next Generation Attenuation 

(NGA) strong motion database (PEER 2010). Eighty records were selected from 23 different 

earthquakes with the following criteria: 

1- Moment magnitude (Mw) between 6.5 and 8.0. 

2- Closest source to site distance (R) between 0.5 km and 50 km. 

3- Motions were recorded on site class B, C, and D according to NBCC 2005 guidelines 

(average shear wave velocity Vs between 180 and 1500 m/s). 
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4- Longest usable period greater than 8.0 seconds. 

 The first and second criteria were established based on the mean magnitude and source to 

site distance determined from de-aggregation of the UHS using computer program EZ-FRISK 

(Risk Engineering Inc. 2010). To extract the mean magnitude and mean distance values, R model 

sources within 200 km from Vancouver were considered as seismic source zones. Table 4.1 

shows the de-aggregation results. 

 

Table 4.1 Mean magnitude and mean source to site distance from de-aggregation of the UHS. 

Period (s) Sa (g)1 Mmean
2 Rmean (km)3 

0.15 0.97 6.50 52.0 
0.28 0.86 6.50 49.1 
0.50 0.64 6.67 54.3 
0.80 0.47 6.81 52.7 
1.0 0.33 6.91 51.6 
1.5 0.26 6.98 46.4 
2.0 0.17 6.98 49.4 
3.0 0.12 6.99 47.9 
5.0 0.07 6.99 47.9 

1 spectral acceleration at a given period, 2 Mmean = mean magnitude, and 3 Rmean = mean source to site 
distance. 
 

 Shome and Cornell (1998) and Baker and Cornell (2005) studied the dependence of 

structural response to moment magnitude Mw and source to site distance R of the input motions, 

and they concluded that there is not a strong correlation between structural response parameters 

and the source to site distance. Therefore, in order to increase the number of strong motion 

records to be used in this study, the range of the source to site distance values was broadened 

(Atkinson, personal communication 2010). As a result, the chosen source to site distance range 

(0.5 km < R < 50 km) is different from the mean distance values determined from the de-

aggregation. The fourth criterion was established to make sure that the ground motions have a 

minimum longest usable period of 8.0 seconds, which is slightly more than 1.5 times the 

fundamental period of the tallest building in the study (5.0 seconds for 50 story walls). Of the 

selected 80 records, 40 have R between 0.5 and 20 km, while the remaining 40 have R between 

20 and 50 km. Among these 80 records, 51 of the ground motions were recorded in the U.S and 

Canada, 9 were recorded in Taiwan, 8 in Turkey, 5 in Japan, 3 in each of Iran and Italy, and 1 in 
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Jordan. Peak ground accelerations varied from 0.075g to 1.66g. Table 4.2 summarizes the 

ground motion details. 

Table 4.2 Ground motion details. 

Event Station Mw
1 R2 (km) PGA (g) Vs (m/s) Max T3 

Imperial Valley, 1979 Agrarias 6.53 0.65 0.2903 274.5 15.9 
Imperial Valley, 1979 Bonds Corner 6.53 2.68 0.6861 223.0 8.0 
Imperial Valley, 1979 El Centro Array #4 6.53 7.05 0.3745 208.9 8.0 

Superstition Hills, Parachute Test Site 6.54 0.95 0.4509 348.7 13.3 
Superstition Hills, Brawley Airport 6.54 17.03 0.1349 208.7 8.0 
Superstition Hills, Poe Road (temp) 6.54 11.16 0.3629 207.5 11.4 
Kobe, Japan, 1995 Nishi-Akashi 6.90 7.08 0.4862 609.0 8.0 
Kobe, Japan, 1995 KJMA 6.90 0.96 0.7105 312.0 15.9 
Kobe, Japan, 1995 Shin-Osaka 6.90 19.15 0.2293 256.0 10.0 

Erzican, Turkey 1992 Erzincan 6.69 4.38 0.4886 274.5 8.0 
Irpinia, Italy, 1980 Sturno 6.90 10.84 0.2898 1000.0 10.0 
Nahanni, Canada, Site 3 6.76 5.32 0.1512 659.6 15.9 
Nahanni, Canada, Site 2 6.76 4.93 0.3849 659.6 15.9 
Nahanni, Canada, Site 1 6.76 9.60 1.0556 659.6 15.9 
Northridge, 1994 Canoga Park - Topanga Can 6.69 14.70 0.3764 267.5 15.9 
Northridge, 1994 Tarzana - Cedar Hill A 6.69 15.60 1.6615 257.2 10.0 
Northridge, 1994 Newhall - W Pico Canyon 6.69 5.48 0.3848 285.9 15.9 
Loma Prieta, 1989 UCSC 14 WAHO 6.93 17.47 0.5174 376.1 8.0 
Loma Prieta, 1989 UCSC 16 LGPC 6.93 3.88 0.7835 477.7 8.0 
Loma Prieta, 1989 Gilroy Array #3 6.93 12.82 0.4621 349.9 8.0 

Imperial Valley, 1979 Delta 6.53 22.03 0.2849 274.5 15.9 
Imperial Valley, 1979 Victoria 6.53 31.92 0.1353 274.5 15.9 
Imperial Valley, 1979 El Centro Array #1 6.53 21.68 0.1418 237.3 8.0 
Imperial Valley, 1979 Superstition Mtn Camera 6.53 24.61 0.1598 362.4 8.0 

Superstition Hills, Wildlife Liquef. Array 6.54 23.85 0.1914 207.5 8.0 
Kobe, Japan, 1995 Kakogawa 6.90 22.50 0.2668 312.0 8.0 
Kobe, Japan, 1995 OSAJ 6.90 21.35 0.0762 256.0 15.9 
Irpinia, Italy, 1980 Bisaccia 6.90 21.26 0.0888 1000.0 13.3 
San Fernando 1971 Gormon - Oso Pump Plant 6.61 46.78 0.0874 308.4 8.0 
San Fernando 1971 Santa Felita Dam (Outlet) 6.61 24.87 0.1562 389.9 8.0 
San Fernando 1971 Whittier Narrows Dam 6.61 39.45 0.1155 298.7 8.0 
Friuli, Italy, 1976 Codroipo 6.50 33.40 0.0753 274.5 8.0 
Northridge, 1994 Pacific Palisades – Sunset 6.69 24.08 0.3316 446.0 15.9 
Northridge, 1994 Glendale - Las Palmas 6.69 22.21 0.2558 446.0 8.0 
Northridge, 1994 Hollywood - Willoughby 6.69 23.07 0.1976 234.9 8.0 
Northridge, 1994 Mt Wilson - CIT Seis Sta 6.69 35.88 0.1678 821.7 10.0 
Northridge, 1994 LA - Griffith Park 6.69 23.77 0.2458 1015.9 8.6 
Loma Prieta, 1989 Calaveras Reservoir 6.93 35.49 0.0908 513.7 8.3 
Loma Prieta, 1989 Sunol - Forest Fire Station 6.93 47.57 0.0773 400.6 8.3 
Loma Prieta, 1989 APEEL 10 – Skyline 6.93 41.88 0.0950 391.9 8.0 

Landers, 1992 Joshua Tree 7.28 11.03 0.2489 379.3 14.3 
Landers, 1992 Lucerne 7.28 2.19 0.7214 684.9 10.0 
Landers, 1992 Coolwater 7.28 19.74 0.3733 271.4 8.0 

Hector Mine, 1999 Hector 7.13 11.66 0.3062 684.9 40.0 
Denali, Alaska, 2002 TAPS Pump Station #10 7.90 2.74 0.3243 329.4 40.0 

Manjil, Iran, 1990 Abbar 7.37 12.56 0.5051 724.0 7.7 
Kocaeli, Turkey, Izmit 7.51 7.21 0.2037 811.0 8.0 
Kocaeli, Turkey, Yarimca 7.51 4.83 0.3055 297.0 11.4 
Kocaeli, Turkey, Duzce 7.51 15.37 0.3255 276.0 10.0 
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Event Station Mw
1 R2 (km) PGA (g) Vs (m/s) Max T3 

Duzce, Turkey, 1999 Duzce 7.14 6.58 0.4273 276.0 13.3 
Duzce, Turkey, 1999 Bolu 7.14 12.04 0.7662 326.0 15.9 

Cape Mendocino, Petrolia 7.01 8.18 0.6236 712.8 14.3 
Cape Mendocino, Cape Mendocino 7.01 6.96 1.3455 513.7 14.3 
Cape Mendocino, Rio Dell Overpass – FF 7.01 14.33 0.4244 311.8 14.3 
Tabas, Iran, 1978 Dayhook 7.35 13.94 0.3505 659.6 8.0 
Tabas, Iran, 1978 Tabas 7.35 2.05 0.8128 766.8 15.9 
Chi-Chi, Taiwan, TCU078 7.62 8.20 0.3927 443.0 20.0 
Chi-Chi, Taiwan, TCU079 7.62 10.97 0.5290 364.0 11.4 

Landers, 1992 Twentynine Palms 7.28 41.43 0.0701 684.9 8.3 
Landers, 1992 Palm Springs Airport 7.28 36.15 0.0929 207.5 14.3 
Landers, 1992 Desert Hot Springs 7.28 21.78 0.1407 345.4 14.3 

Chi-Chi, Taiwan, TCU071 7.62 5.31 0.6229 624.9 20.0 
Chi-Chi, Taiwan, TCU088 7.62 18.16 0.5230 553.4 20.0 

Hector Mine, 1999 Joshua Tree 7.13 31.06 0.1498 379.3 10.98 
Hector Mine, 1999 Amboy 7.13 43.05 0.1935 271.4 12.5 
Sitka, Alaska, 1972 Sitka Observatory 7.68 34.61 0.0941 659.6 12.5 

Denali, Alaska, 2002 ANSS/UA R109 R109 7.90 43.0 0.083 963.9 15.38 
Gulf of Aqaba, 1995 Eilat 7.20 44.10 0.0954 354.9 8.0 

Landers, 1992 Yermo Fire Station 7.28 23.62 0.2234 353.6 14.28 
Landers, 1992 Barstow 7.28 34.86 0.1193 370.8 14.28 
Landers, 1992 Mission Creek Fault 7.28 26.96 0.1286 345.4 15.87 

Chi-Chi, Taiwan, HWA056 7.62 41.10 0.1045 511.3 40.0 
Chi-Chi, Taiwan, TCU034 7.62 35.69 0.1991 393.8 40.0 
Chi-Chi, Taiwan, TCU042 7.62 26.32 0.2125 272.6 40.0 
Kocaeli, Turkey, Goynuk 7.51 31.74 0.1387 424.8 8.0 

Duzce, Turkey, 1999 Mudurnu 7.14 34.30 0.0896 659.6 10.0 
Kern County, 1952 Taft Lincoln School 7.36 38.89 0.1728 385.4 15.87 

St Elias, Alaska, 1979 Icy Bay 7.54 26.46 0.1293 274.5 25.0 
Chi-Chi, Taiwan, TCU045 7.62 26.00 0.473 704.6 40.0 
Chi-Chi, Taiwan, HWA058 7.62 45.77 0.109 553.4 40.0 

1Moment magnitude, 2closest distance to source, 3longest usable period. 

4.3.2 Scaling of Ground Motions to the UHS 

The 80 ground motions were scaled to the UHS at the fundamental period T1 of the 10, 30, and 

50 story walls, which is 1.0, 3.0, and 5.0 seconds, respectively. Figure 4.1 shows the mean 

spectrum of the records scaled at T1 to the target UHS (denoted as ST1 for “scaled at T1”) as well 

as the target UHS. Figure 4.1 indicates that the mean spectrum of the records matches the UHS 

over a very wide range of periods, while scaling the ground motions to the UHS at fundamental 

periods of 3.0 and 5.0 seconds results in mean spectral accelerations that are as large as twice the 

spectral accelerations from the UHS at shorter periods. To address this issue, some of the ground 

motions with high spectral accelerations at short periods were eliminated. This results to a 

subgroup of 53 ground motions for T1 = 3.0 seconds and 35 ground motions for T1 = 5.0 seconds. 

These ground motions are referred to in this study as SOR for “scaled over range”. Figure 4.2 
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shows the mean spectrum of the two suites of the records. It can be seen from this figure that the 

mean spectrum matches the UHS over a period range wider than 0.2T1 to 1.5T1 as recommended 

by ASCE7-05.  

 

  

 

 

Figure 4.1 Comparison of mean spectrum of the ground motions scaled to the UHS at the 

fundamental period of 1.0, 3.0, and 5.0 s with the UHS. 
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Figure 4.2 Comparison of mean spectrum of the ground motions scaled to the UHS over the 

range of periods for shear walls with fundamental periods of 3.0 and 5.0 s with the UHS. 

  Spectrum matched records were also used as input motions to perform time history 

analysis in this study. Forty records were randomly selected from the 80 ground motions 

described in section 4.3.1 and were altered to a suite of synthetic motions such that the spectrum 

of the individual records matched the UHS. The spectrum matched ground motions were created 

using computer program SYNTH (Naumoski 2001). Figure 4.3 compares the response spectra of 

the spectrum matched (SM) ground motions with the target UHS. There is very little deviation 

from the target spectrum. 

 

Figure 4.3 Comparison of UHS with acceleration spectra for spectrum matched ground motions. 
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4.4 Selection and Scaling of Ground Motions to Conditional Mean 

Spectrum (CMS) 

Ground motions in this part were selected and scaled to match conditional mean spectrum 

(CMS) rather than UHS as the target spectrum. The CMS (Baker and Cornell 2006) accounts for 

the correlation between spectral acceleration at other periods, given a target spectral acceleration 

at a particular period. The equation for computing CMS is a function of the conditioning period 

(denoted as T*, Baker 2011), mean and standard deviation of spectral accelerations from an 

attenuation model using mean magnitude and mean distance determined from de-aggregation of 

the UHS, and the correlation between the spectral acceleration at other periods and the 

conditioning period. The first step to compute CMS is to identify the conditioning period T*. 

Although it is often assumed to be the fundamental period of the structure, it can be other periods 

depending on the structural characteristics and the response parameters to be investigated. For 

example, roof displacement and maximum interstory drift are deemed to be influenced mainly by 

first mode response, whereas higher modes contribute significantly to the base shear force. Also, 

it is believed that the taller the wall is, the greater higher modes would influence particular 

response parameters such as midheight curvature and base shear force demands. Consequently, 

multiple periods may need to be considered depending on the structural response to be studied. 

For this purpose, it was decided to include modal periods with a total modal mass equal to 90% 

of the total mass. Consequently, T2 for the 10 story and T2 and T3 for the 30 and 50 story walls 

were included. Note that the second mode period for 10, 30, and 50 story walls is 0.15, 0.5, and 

0.8 second, while the third mode period for 30 and 50 story walls is 0.15 and 0.28 second, 

respectively. In addition, two conditioning periods of 1.5T1 and 2T1 were considered for 10 story 

walls, which essentially represent the period elongation due to nonlinear behaviour. A period of 

5.0 s was also considered for the 30 story walls for the same purpose. This conditioning period is 

approximately equal to 1.5 times the fundamental period of 30 story walls. Note that the 

maximum value for T* is limited to 5.0 seconds since the simplified correlation model (Baker 

and Cornell 2006) was employed to computed the CMS. The Open source PSHA online package 

OpenSHA (OpenSHA 2009) was used to compute the predicted mean and standard deviation 

values for the Boore and Atkinson attenuation model (Boore and Atkinson 2008). Having 

computed the CMS, nine sets of records, each containing 40 ground motions were selected and 
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scaled using the source code available at (http://www.stanford.edu/~bakerjw/gm_selection.html). 

The algorithm for this source code is developed by Jayaram et al. (2011). Figures 4.4 to 4.6 

compare the UHS with the CMS computed at the fundamental periods of 1.0, 3.0, and 5.0 s as 

well as the CMS corresponding to other conditioning periods. Also each figure compares the 

mean spectrum of the ground motions selected and scaled to the CMS at various conditioning 

periods with the target CMS. It can be seen that the mean spectrum matches the target CMS over 

the period range of 0.2T1 to 1.5T1.  

4.5 Example Shear Walls and Characteristics of the Analytical Model 

Eleven shear walls were included in this study. That is, three 10 story walls with Rg = 1.7, 2.6, 

and 4.2; four 30 story walls with Rg = 1.4, 2.4, 3.1, and 4.3; and four 50 story walls with Rg = 

1.4, 2.1, 2.4, and 4.1. The characteristics of these eleven shear walls are presented in Table 2.2.  

  Nonlinear time history analysis of the 11 shear walls was conducted in OpenSees 

(OpenSees 2008) using the trilinear hysteretic bending moment - curvature relationship depicted 

in Figure 2.20. The parameters that define the hysteretic model were calculated at each floor 

level considering the level of axial compression force and amount of vertical reinforcement at 

that level. A force element was defined at each floor level to model the vertical spread of 

plasticity in the walls. The base was assumed to be fixed and shear deformations were not 

considered in the analytical model. Rayleigh damping was assumed with mass proportional and 

initial stiffness matrixes. A damping ratio of 3% was assigned for the first and third modes. This 

is consistent with the recommendations of ATC 72 (2010) for modelling viscous damping in 

high-rise buildings. The time step was set equal to 0.0025, and the Newton-Raphson iteration 

method was used to satisfy equilibrium at each time step. Lastly, the Newmark integration 

method with coefficients β = 0.5 and γ = 0.25 was used in time history analysis.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

Figure 4.4 Comparison of: (a) UHS with CMS computed at different conditioning periods, (b) to 

(e) CMS with mean spectrum of records selected and scaled to the target CMS (T1 = 1.0 s). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

 

Figure 4.5 Comparison of: (a) UHS with CMS computed at different conditioning periods, (b) to 

(e) CMS with mean spectrum of records selected and scaled to the target CMS (T1 = 3.0 s). 
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(a) 

 

 

(b) 

 

(c) 

 

(d) 

 

Figure 4.6 Comparison of: (a) UHS with CMS computed at different conditioning periods, (b) to 

(e) CMS with mean spectrum of records selected and scaled to the target CMS (T1 = 5.0 s). 
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ground motions: ST1 = scaled to the UHS at T1, SM = spectrum matched to the UHS, SOR = 

scaled to the UHS over a range of periods. The mean responses from all methods for selecting 

and scaling ground motions and all eleven walls are also presented in Tables 4.3 to 4.6. Note that 

for 10 story walls, two sets of ST1 and SOR ground motions are identical. 

The following assumptions were made for interstory drift and shear force envelopes: 

 1. Interstory drift at elevation hi is equal to the maximum interstory drift between elevations 

hi and hi-1. 

 2. Shear force at elevation hi is equal to the maximum shear force demand between 

elevations hi and hi+1. Maximum shear force demand is constant between two adjacent floors 

(see Figure 4.7), while the shear force envelopes shown in Sections 4.6.1 and 4.6.2 were 

determined by connecting shear force demands at each elevation with a straight line.  

 

 

Figure 4.7 Comparison of actual mean shear force envelope (shown with a thick line) with the 

linear piece-wise approximation (shown with a dashed line) for the 30 story wall with Rg = 2.4 

using SOR ground motions (Rg is the ratio of elastic bending moment demand at the base 

corresponding to EIg to nominal flexural strength Mn). 
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4.6.1 Sensitivity of Response Parameters to Conditioning Period T* 

Figures 4.8 to 4.18 show the mean envelopes of various demand parameters for the eleven shear 

walls associated with the ground motions selected and scaled to the CMS at different 

conditioning periods. Note that the term “CMSTi” refers to the CMS corresponding to the 

conditioning period of Ti. 

The following observations can be made: 

 1. The CMS1.5T1 set gives highest roof displacement demand for 10 story walls with 

force reduction factors of 2.6 and 4.2 (Figures 4.9 and 4.10). Selecting 1.5T1 as the conditioning 

period increases roof displacement demand 22% compared to the roof displacement demand 

from CMST1 or CMS2T1 sets for the 10 story wall with Rg = 4.2. For the 30 story walls, on the 

other hand, using CMST1 set gives higher roof displacement demand than the CMS1.5T1 set 

(Figures 4.11 through 4.14). For 50 story walls, it was not possible to develop the CMS at large 

enough periods to account for elongation of the fundamental period because the simplified 

correlation model was used to compute the target CMS.  

 2. In terms of mean interstory drift demand at top of walls, the CMS1.5T1 set gives 

highest values for 10 story walls with Rg factors of 2.6 and 4.3 (Table 4.4), while the mean 

interstory drift ratio corresponding to the CMST1 set is slightly higher than that for the 

CMS1.5T1 records for Rg = 1.7. Similar to roof displacement demand, using T1 as the 

conditioning period results in higher interstory drifts than using 1.5T1 for 30 story walls (Figures 

4.11 through 4.14). 

 3. The CMS1.5T1 set gives highest base curvature demand in 10 story walls with force 

reduction factors of 2.6 and 4.2. For the 10 story wall with Rg = 4.2, using the CMS1.5T1 set 

results in mean base curvature demands that are 40% and 31% higher than those corresponding 

to the CMST1 and CMS2T1 sets, respectively (see Table 4.5). Similar to roof displacement and 

interstory drift demands, the CMST1 set gives highest base curvature demand for 30 story walls 

(Figures 4.11 through 4.14). Also, it was observed that although the CMST2 and CMST3 sets 

result in low base curvature demands, they give higher midheight curvature demands compared 

to the CMST1 or CMS1.5T1 records (Figures 4.11, 4.12, and Figures 4.15 through 4.18). 

 4. The CMST1 set consistently controls the base bending moment demand in all walls 

except for the 10 story wall with Rg = 4.2, for which the results from the CMS1.5T1 are the 

largest. Similar to base curvature demands, the ground motions selected and scaled to the CMS 
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corresponding to T2 and T3 give higher midheight bending moment demands than those 

associated with T1 or 1.5T1. For example, for the 50 story wall with Rg = 4.1 (Figure 4.18), the 

CMST3 gives larger moments from the height of 110 m to the top, while moment demands using 

the CMST2 set is the largest from the height of 80 m to 110 m. Finally, demands from the 

CMST1 set are the largest for heights below 70 m.  

 5. The lowest base shear force demands belong to the conditioning periods of 2T1, 1.5T1, 

and T1 for 10, 30, and 50 story walls, respectively (Table 4.6). The CMST2 set gives highest 

base shear forces for 10 and 30 story walls, while using the CMST3 set results in highest 

demands for 50 story walls. Using higher mode periods as the conditioning period rather than the 

fundamental period T1 increases the base shear force demand up to 23%, 26%, and 73% for 10, 

30, and 50 story walls, respectively. For 10 story walls, CMST2 set gives higher shear forces at 

the top of the wall, while largest shear forces near midheight belong to CMST1 for Rg = 1.7 and 

Rg = 2.6 and to CMS1.5T1 for Rg = 3.2 (Figures 4.8 to 4.10). For 30 story walls, CMST2 gives 

largest shear forces except that CMST1 and CMST3 gives larger shear forces near the midheight 

for Rg = 1.4 and Rg = 4.3, respectively (Figures 4.11 to 4.14). Lastly, for 50 story walls, CMST2 

and CMST3 alternatively give highest midheight shear demands (Figures 4.15 through 4.18).  
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Figure 4.8 Sensitivity of demand parameters to conditioning period for 10 story wall with Rg = 

1.7. 

0

5

10

15

20

25

30

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

H
e

ig
h

t (
m

)

Displacement (m)

CMS2T1

CMS1.5T1

CMST1

CMST2

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6

H
e

ig
h

t (
m

)

Interstory drift ratio (%)

CMS2T1

CMS1.5T1

CMST1

CMST2

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

H
e

ig
h

t (
m

)

Curvature (rad/km)

CMS2T1

CMS1.5T1

CMST1

CMST2

0

5

10

15

20

25

30

0 50000 100000 150000 200000 250000 300000

H
e

ig
h

t (
m

)

Bending moment (kNm)

CMS2T1

CMS1.5T1

CMST1

CMST2

0

5

10

15

20

25

30

0 5000 10000 15000 20000 25000

H
e

ig
h

t (
m

)

Shear force (kN)

CMS2T1

CMS1.5T1

CMST1

CMST2



102 
 

  

  

 

 

Figure 4.9 Sensitivity of demand parameters to conditioning period for 10 story wall with Rg = 

2.6. 
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Figure 4.10 Sensitivity of demand parameters to conditioning period for 10 story wall with Rg = 

4.2. 
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Figure 4.11 Sensitivity of demand parameters to conditioning period for 30 story wall with Rg = 

1.4. 
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Figure 4.12 Sensitivity of demand parameters to conditioning period for 30 story wall with Rg = 

2.4. 

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6

H
e

ig
h

t (
m

)

Displacement (m)

CMS1.5T1

CMST1

CMST2

CMST3

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

H
e

ig
h

t (
m

)

Interstory drift ratio (%)

CMS1.5T1

CMST1

CMST2

CMST3

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5

H
e

ig
h

t (
m

)

Curvature (rad/km)

CMS1.5T1

CMST1

CMST2

CMST3

0

10

20

30

40

50

60

70

80

90

0 200000 400000 600000

H
e

ig
h

t (
m

)

Bending moment (kNm)

CMS1.5T1

CMST1

CMST2

CMST3

0

10

20

30

40

50

60

70

80

90

0 5000 10000 15000 20000 25000

H
e

ig
h

t (
m

)

Shear force (kN)

CMS1.5T1

CMST1

CMST2

CMST3



106 
 

  

  

 

 

Figure 4.13 Sensitivity of demand parameters to conditioning period for 30 story wall with Rg = 

3.1. 
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Figure 4.14 Sensitivity of demand parameters to conditioning period for 30 story wall with Rg = 

4.3. 
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Figure 4.15 Sensitivity of demand parameters to conditioning period for 50 story wall with Rg = 

1.4. 
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Figure 4.16 Sensitivity of demand parameters to conditioning period for 50 story wall with Rg = 

2.1. 
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Figure 4.17 Sensitivity of demand parameters to conditioning period for 50 story wall with Rg = 

2.4. 
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Figure 4.18 Sensitivity of demand parameters to conditioning period for 50 story wall with Rg = 

4.1. 
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4.6.2 Comparison of Demand Parameters from Different Scaling Schemes 

Figures 4.19 through 4.29 compare the mean envelope from different scaling methods - namely 

SM, ST1, and SOR ground motions - with the CMS envelope associated with the largest 

responses (denoted as CMS-E). The following observations can be made: 

  1. The shapes of displacement envelopes shown in Figures 4.19 to 4.29 are similar to a 

first mode dominated displacement profile. An influence of higher modes is evident in the 

displacement envelopes of the 50 story walls using ST1 ground motions. The mean roof 

displacements associated with the CMS-E were found to be between 90 and 100% of the mean 

roof displacement determined using the SM ground motions (Table 4.3). For the 10 and 30 story 

walls, the mean roof displacements from ST1 and SOR are within 90 to 105% of the mean roof 

wall displacements from the SM records. For the 50 story walls, the mean roof displacements 

from the SOR and ST1 ground motions are from 100 to 110% and 110 to 120% of the mean roof 

displacements from SM ground motions, respectively. 

  2. Using the SM and SOR ground motions results in very similar interstory drift 

envelopes over the height of shear walls. These interstory drift envelopes are dominated by the 

first mode displacement profile except for those corresponding to the ST1 records. The mean 

interstory drift at the top of walls from CMS-E is 88%, 95%, and 86% of the value from the SM 

ground motions for the 10, 30, and 50 story walls with the highest force reduction factors, 

respectively (Table 4.4). For 30 and 50 story walls, the mean interstory drifts at the top from the 

ST1 records is 15% and 50% higher than those using the SM ground motions, respectively.  

  3. The base curvature demand from the SOR ground motions are generally between 90 

and 100% of the mean base curvature from the SM records. The mean base curvature demands 

from the CMS-E are generally lower than those from the SM ground motions (minimum of 80%) 

except for three 30 story walls (Table 4.5). For 50 story walls, the ST1 set gives higher base 

curvature demands that are at least double the results from the SM ground motions. In terms of 

midheight curvature demands, using SOR set results in larger curvatures above midheight than 

the SM records due to the increased response in higher modes. Mean curvature envelopes from 

the CMS-E are a lower bound to the mean curvature envelopes determined using the SM ground 

motions. For 30 and 50 shear walls, ST1 gives much higher curvature values above midheight 

due to higher modes: the ratio of curvatures around midheight from ST1 to SM are 2.8, 2.5, 2.4, 

2.4 for 30 story walls and 4.6, 3.3, 3.2, and 4.2 for 50 story walls (Figures 4.22 to 4.29). 
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  4. It was observed that scaling method has little impact on base bending moment 

demands. This is because for most walls, bending moment demands at the base are controlled by 

the flexural strength of the walls. The ST1 ground motions gives higher midheight moment 

demands for 30 and 50 story walls, while the lowest moment demands belong to the CMS-E 

(Figures 4.22 to 4.29). 

  5. Mean base shear force demands from the SOR records are between 93 and 102% of 

the mean base shear force demands using the SM ground motions (Table 4.6). The CMS-E 

typically gives mean base shear force demands that are 80 to 95% of the mean base shear force 

demands from SM and SOR sets. Mean shear force envelopes from the CMS-E are a lower 

bound to those from the SM ground motions, while the SOR ground motions gives higher shear 

forces near midheight than the SM records for 50 story walls with force reduction factors of 1.4, 

2.1, and 2.4 (Figures 4.26, 4.27, and 4.28). Mean base shear force demands from ST1 set are 

about 35% and 200% higher than those from the SM ground motions for the 30 and 50 story 

walls, respectively.  
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Figure 4.19 Comparison of demand parameters for 10 story wall with Rg = 1.7 using spectrum 

matched (SM), scaled over range (SOR), and the envelope of results using CMS ground motions 

(CMS-E). 
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Figure 4.20 Comparison of demand parameters for 10 story wall with Rg = 2.6 using spectrum 

matched (SM), scaled over range (SOR), and the envelope of results using CMS ground motions 

(CMS-E). 
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Figure 4.21 Comparison of demand parameters for 10 story wall with Rg = 4.2 using spectrum 

matched (SM), scaled over range (SOR), and the envelope of results using CMS ground motions 

(CMS-E). 
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Figure 4.22 Comparison of demand parameters for 30 story wall with Rg = 1.4 using different 

sets of ground motions. 
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Figure 4.23 Comparison of demand parameters for 30 story wall with Rg = 2.4 using different 

sets of ground motions. 
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Figure 4.24 Comparison of demand parameters for 30 story wall with Rg = 3.1 using different 

sets of ground motions. 
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Figure 4.25 Comparison of demand parameters for 30 story wall with Rg = 4.3 using different 

sets of ground motions. 
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Figure 4.26 Comparison of demand parameters for 50 story wall with Rg = 1.4 using different 

sets of ground motions. 
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Figure 4.27 Comparison of demand parameters for 50 story wall with Rg = 2.1 using different 

sets of ground motions. 
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Figure 4.28 Comparison of demand parameters for 50 story wall with Rg = 2.4 using different 

sets of ground motions. 
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Figure 4.29 Comparison of demand parameters for 50 story wall with Rg = 4.1 using different 

sets of ground motions. 
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Table 4.3 Mean roof displacement demand using different sets of ground motions. 

Mean Roof displacement (m) 
 

Rg ST1 SM SOR CMS-E 
CMS 

Wall 2T1 1.5T1 T1 T2 T3 

10 story 
1.7 - 0.119 0.117 0.114 0.088 0.111 0.114 0.040 - 
2.6 - 0.134 0.134 0.126 0.093 0.126 0.124 0.036 - 
4.2 - 0.190 0.183 0.169 0.138 0.169 0.138 0.032 - 

30 story 

1.4 0.456 0.437 0.434 0.431 - 0.331 0.431 0.141 0.055 
2.4 0.565 0.561 0.523 0.520 - 0.457 0.520 0.148 0.054 
3.1 0.615 0.651 0.565 0.586 - 0.531 0.586 0.158 0.055 
4.3 0.660 0.641 0.593 0.592 - 0.518 0.592 0.163 0.058 

50 story 

1.4 0.800 0.710 0.746 0.656 - - 0.656 0.237 0.095 
2.1 0.891 0.810 0.818 0.771 - - 0.771 0.262 0.103 
2.4 0.898 0.801 0.820 0.731 - - 0.731 0.289 0.105 
4.1 0.830 0.690 0.754 0.635 - - 0.635 0.267 0.095 

 
 

Table 4.4 Mean interstory drift demand at the top of wall using different sets of ground motions. 

Mean top wall interstory drift ratio (%) 
 

Rg ST1 SM SOR CMS-E 
CMS 

Wall 2T1 1.5T1 T1 T2 T3 

10 story 
1.7 - 0.55 0.55 0.52 0.40 0.50 0.52 0.24 - 
2.6 - 0.58 0.58 0.58 0.42 0.58 0.53 0.22 - 
4.2 - 0.86 0.84 0.76 0.62 0.76 0.65 0.19 - 

30 story 

1.4 0.96 0.78 0.81 0.80 - 0.56 0.80 0.36 0.17 
2.4 1.13 0.97 0.94 0.89 - 0.77 0.89 0.38 0.15 
3.1 1.16 1.06 0.97 0.96 - 0.85 0.96 0.39 0.15 
4.3 1.18 1.02 1.01 0.97 - 0.82 0.97 0.36 0.15 

50 story 

1.4 1.20 0.80 0.84 0.70 - - 0.70 0.38 0.20 
2.1 1.25 0.88 0.90 0.76 - - 0.76 0.41 0.22 
2.4 1.22 0.85 0.87 0.78 - - 0.78 0.43 0.22 
4.1 1.22 0.81 0.84 0.70 - - 0.70 0.39 0.18 
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Table 4.5 Mean base curvature demand using different sets of ground motions. 

Mean base curvature (rad/km) 
 

Rg ST1 SM SOR CMS-E 
CMS 

Wall 2T1 1.5T1 T1 T2 T3 

10 story 
1.7 - 0.69 0.68 0.72 0.53 0.72 0.67 0.23 - 
2.6 - 0.96 1.02 0.88 0.59 0.83 0.88 0.23 - 
4.2 - 1.45 1.35 1.18 0.90 1.18 0.84 0.25 - 

30 story 

1.4 0.38 0.27 0.27 0.35 - 0.22 0.35 0.14 0.07 
2.4 0.63 0.37 0.41 0.45 - 0.29 0.45 0.18 0.08 
3.1 0.85 0.60 0.61 0.60 - 0.45 0.60 0.22 0.09 
4.3 1.08 0.99 0.86 0.74 - 0.58 0.74 0.23 0.09 

50 story 

1.4 0.36 0.16 0.15 0.12 - - 0.12 0.08 0.06 
2.1 0.51 0.24 0.23 0.19 - - 0.19 0.12 0.08 
2.4 0.57 0.28 0.28 0.23 - - 0.23 0.15 0.09 
4.1 0.90 0.40 0.40 0.36 - - 0.36 0.14 0.08 

 
 

Table 4.6 Mean base shear demand using different sets of ground motions. 

Mean base shear force (kN) 
 Rg ST1 SM SOR CMS-E CMS 

Wall 2T1 1.5T1 T1 T2 T3 

10 story 
1.7 - 22747 22001 20531 13763 16129 16601 20531 - 
2.6 - 18924 17593 14504 10067 11714 12176 14504 - 
4.2 - 12207 11628 10014 7438 8708 8435 10014 - 

30 story 

1.4 46177 35985 34574 31706 - 21680 26077 31706 26344 
2.4 39855 29351 28582 23972 - 16055 21516 23972 22182 
3.1 38695 30478 29658 23969 - 16012 21069 23969 21791 
4.3 36307 24415 23899 21462 - 13895 17055 21462 18733 

50 story 

1.4 136331 76289 75949 71763 - - 42584 62923 71763 
2.1 158176 75532 74984 71072 - - 41092 61982 71072 
2.4 173146 75179 76618 69876 - - 41020 61277 69876 
4.1 141076 67737 63476 53332 - - 33130 53292 53332 

 

4.7 Variability in Demand Parameters 

Predicting variability in time history results is important to be considered for particular actions 

and structural elements. The Tall Building Initiative (PEER TBI 2010) recommends using µ+σ 

instead of µ for force-controlled actions such as punching shear failure of slabs, shear force 

demand in shear walls, and compressive strain of concrete in elements that do not have adequate 
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confinement in order to reduce the probability of failure under such actions. Note that µ and σ are 

the mean and standard deviation of the structural response determined from time history 

analysis, respectively. The TBI specifies that a large number of records (20 to 30 records) is 

needed in order to obtain a reliable estimate of the scatter in demand parameters. The ATC 82 

(2011), however, indicates that the conditional spectrum (Jayaram et al. 2011) is the only ground 

motion selection and scaling approach that provides a tool to predict the variability in demand 

parameters and other record selection schemes - such as record selection based on target 

magnitude and source to site distance - do not consider the variability in the spectral values. 

 The intent of this section is to compare the scatter and mean plus one standard deviation 

results using different ground motion selection and scaling schemes. The spectrum matched 

(SM) records cannot be used to estimate the dispersion in structural responses since the 

individual records are altered to match the target spectrum, a procedure which results in reducing 

dispersion in response parameters. Table 4.7 to 4.10 compares the coefficient of variation (Cv = 

σ/µ) values from ST1 and SOR sets with the CMS envelope from various conditioning periods 

(denoted as “CMS-E”).  

 

Table 4.7 Coefficient of variation for roof displacement demand using different sets of ground 

motions. 

  Coefficient of variation 
Wall Rg ST1 SOR CMS-E 

10 story 
1.7 - 0.13 0.17 
2.6 - 0.38 0.34 
4.2 - 0.55 0.38 

30 story 

1.4 0.34 0.27 0.44 
2.4 0.47 0.35 0.33 
3.1 0.54 0.36 0.48 
4.3 0.65 0.44 0.52 

50 story 

1.4 0.40 0.35 0.38 
2.1 0.52 0.40 0.45 
2.4 0.53 0.39 0.51 
4.1 0.52 0.40 0.47 
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Table 4.8 Coefficient of variation for interstory drift demand at top of wall using different sets of 

ground motions. 

  Coefficient of variation 
Wall Rg ST1 SOR CMS-E 

10 story 
1.7 - 0.17 0.16 
2.6 - 0.33 0.36 
4.2 - 0.47 0.34 

30 story 

1.4 0.38 0.26 0.42 
2.4 0.40 0.32 0.38 
3.1 0.43 0.32 0.50 
4.3 0.50 0.35 0.58 

50 story 

1.4 0.49 0.33 0.44 
2.1 0.46 0.35 0.51 
2.4 0.47 0.32 0.49 
4.1 0.46 0.35 0.54 

 

Table 4.9 Coefficient of variation for base curvature demand using different sets of ground 

motions. 

  Coefficient of variation 
Wall Rg ST1 SOR CMS-E 

10 story 
1.7 - 0.25 0.42 
2.6 - 0.71 0.81 
4.2 - 0.97 0.87 

30 story 

1.4 1.02 0.20 0.50 
2.4 0.91 0.59 0.79 
3.1 0.75 0.60 0.99 
4.3 0.66 0.62 1.07 

50 story 

1.4 1.30 0.29 0.34 
2.1 0.89 0.41 0.55 
2.4 0.82 0.46 0.62 
4.1 0.82 0.84 0.79 
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Table 4.10 Coefficient of variation for base shear force demand using different sets of ground 
motions. 

  Coefficient of variation 
Wall Rg ST1 SOR CMS-E 

10 story 
1.7 - 0.32 0.17 
2.6 - 0.36 0.19 
4.2 - 0.34 0.21 

30 story 

1.4 0.53 0.33 0.21 
2.4 0.63 0.35 0.30 
3.1 0.63 0.35 0.28 
4.3 0.77 0.34 0.32 

50 story 

1.4 0.71 0.34 0.21 
2.1 1.11 0.31 0.20 
2.4 1.05 0.33 0.19 
4.1 1.30 0.28 0.25 

 

  Tables 4.7 through 4.10 indicate that for the SOR ground motions, the coefficient of 

variation tend to increase as the force reduction factor increases. For base shear force demand, 

on the other hand, the Cv coefficient corresponding to the SOR set is relatively constant. The 

coefficient of variation is around 0.4 for roof displacement, interstory drift at the top of wall, and 

base shear force demands using the SOR ground motions. The coefficient of variation for base 

shear force demand determined using the ST1 set is much higher than those from the SOR 

records, while the lowest Cv values belong to the CMS-E case. Also note that coefficient of 

variation for base curvature demand is larger than that for other demand parameters.  

  Figure 4.30 compares mean plus one standard deviation (µ+σ) results for four responses 

determined from the SOR ground motions with those from the CMS-E. It can be seen from 

Figure 4.30 that for roof displacement and interstory drift demands, the mean plus one standard 

deviation values for both sets are similar. For the base curvature demand, the µ+σ from the 

CMS-E is 84%, 110%, and 97% of the results determined using the SOR ground motions for the 

10, 30, and 50 story walls with the highest force reduction factors, respectively. The base shear 

force demand using the CMS-E is consistently lower than the results from the SOR records, 

especially for the 50 story walls. The mean plus one standard deviation base shear force demands 

from the CMS-E were found to be between 80% and 90% of the µ+σ base shear force demands 

using the SOR ground motions.  
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Figure 4.30 Comparison of mean plus one standard deviation results using SOR and envelope of 

CMS ground motions for roof displacement, interstory drift at top of wall, base curvature, and 

base shear force demands for 11 shear walls. 

  Time history results determined using the SOR ground motions will be used in Chapter 5 

to develop simplified models for estimating flexural demands on cantilever shear walls. This is 

due to the fact that the mean demand parameters from the SM and SOR sets were found to be 

similar, yet the latter can be used to study the variability in different structural responses. It was 

also observed that for roof displacement, interstory drift, and base curvature demands, the mean 

plus one standard deviation results from the SOR and CMS sets are similar. The SOR ground 

motions will also be used in Chapter 6 to study the relationship between base shear force and 

base rotation demands because as it was observed in Section 4.6.1, different conditioning periods 

define the CMS envelope of base shear force and base curvature demands. Using the SOR 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

µ
 +

 σ
ro

o
f 

d
is

p
la

c
e
m

e
n

t 
d

e
m

a
n

d
 fr

o
m

 C
M

S
-E

 
(m

)

µ + σ roof displacement demand from SOR records (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

µ
 +

 σ
m

a
x
im

u
m

 i
n

te
rs

to
ry

 d
ri

ft
 f

ro
m

 C
M

S
-E

 
(%

)

µ + σ maximum interstory drift from SOR records (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

µ
 +

 σ
b

a
s
e

 c
u

rv
a
tu

re
 d

e
m

a
n

d
 f

ro
m

 C
M

S
-E

 
(r

a
d

/k
m

)

µ + σ base curvature demand from SOR records (rad/km)

0

20000

40000

60000

80000

100000

0 20000 40000 60000 80000 100000 120000

µ
 +

 σ
b

a
s

e
 s

h
e
a

r 
fo

rc
e
 f

ro
m

 C
M

S
-E

 (
k

N
)

µ + σ base shear force from SOR records (kN)



131 
 

ground motions, on the other hand, is less computational demanding for establishing such 

interaction diagrams. 

4.8 Roof Displacement Demand Using ATC 55 Ground Motions 

The purpose of the single-degree-of-freedom study conducted in Chapter 3 was to obtain 

effective stiffness such that the roof displacement from the linear model would be equal to the 

roof displacement demand determined from the nonlinear structure. A set of 40 records from 

ATC 55 project (ATC 2005) recorded on site class B and C was used as the input motions in the 

SDOF study. The 80 ground motions used in this chapter are more suitable for performing time 

history analysis of high-rise shear walls as the longest usable period for these ground motions 

was long enough to accommodate the period elongation of the first mode period of 50 story 

walls. A comparison of roof displacement demand from different methods for selecting and 

scaling ground motions showed good agreement (see Table 4.3). It is interesting to compare roof 

displacement demands of the eleven shear walls using ATC 55 ground motions with those using 

SM, SOR, and CMS ground motions. For this purpose, the ATC 55 ground motions were scaled 

to the UHS in two ways: at the fundamental period (denoted as ST1_A) and over a period range 

of 0.2T1 to 1.5T1 (denoted as SOR_A). Table 4.11 presents mean roof displacement demands 

using various sets of ground motions. 

  Table 4.11 indicates that the mean roof displacement from the SOR_A ground motions 

varies from 90% to 110% of the mean roof displacement from the SM records. The mean roof 

displacement results corresponding to the SOR_A set is 2%, 0%, and 4% higher than those 

associated with the CMS ground motions. Roof displacements from the ST1_A set is generally 

lower than those determined using the SOR_A set. Similar roof displacement demands from 

different sets of ground motions listed in Table 4.11 indicates that ATC 55 ground motions can 

be used in time history analysis if roof displacement is the demand parameter of interest. 

Determination of other responses such as curvature and shear force demands from time history 

analysis using ATC 55 ground motions is not recommended for high-rise shear walls with a 

fundamental period greater than 4.0 seconds since scaling these ground motions to the UHS for 

longer periods results in high spectral accelerations around higher mode periods. This can 

influence those structural responses that are dominated by higher mode effects. 
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Table 4.11 Comparison of mean roof displacement demand from ATC 55 ground motions 

(denoted as ST1_A and SOR_A) with mean roof displacement demand from other sets of ground 

motions. 

   Mean roof displacement (m) 
Wall Rg SM SOR CMS-E ST1_A SOR_A 

10 story 
1.7 0.119 0.117 0.114 0.116 0.129 
2.6 0.134 0.134 0.126 0.124 0.153 
4.2 0.190 0.183 0.169 0.129 0.172 

30 story 

1.4 0.437 0.434 0.431 0.414 0.468 
2.4 0.561 0.523 0.520 0.475 0.587 
3.1 0.651 0.565 0.586 0.516 0.636 
4.3 0.641 0.593 0.592 0.510 0.591 

50 story 

1.4 0.710 0.746 0.656 0.751 0.735 
2.1 0.810 0.818 0.771 0.790 0.747 
2.4 0.801 0.820 0.731 0.785 0.749 
4.1 0.690 0.754 0.635 0.680 0.658 

 

4.9 Evaluation of the Seven Ground Motion Set for Calculation of Mean 

Seismic Demands 

In this section, the provisions of the ASCE7-05 standard (ASCE 2005) for calculating the design 

value are studied. According to this standard, if seven or more ground motions are used, the 

design value is considered to be the mean value of time history results, while if less than seven 

ground motions are used, the maximum value of response quantities is taken as the design value. 

It is necessary to evaluate how much the mean value of a given demand parameter varies as 

different sets of seven records are used as the input motion. 

 In theory, the possible number of k combinations of a set with n elements is called 

binomial coefficient and equals 
�����������…����	��

�����������…�
 .The k factor is equal to 7 and n is the 

number of selected ground motions which is equal to 80, 53, and 35 for the 10, 30, and 50 story 

shear walls, respectively. In order to reduce the number of possible combinations to a practical 

number, the following criteria were applied: 

1. Equal-area-under-the-curve approach was used to determine the scale factor required 

to match the individual ground motions to the UHS over a period range between 0.2T1 to 1.5T1. 
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2. One ground motion with the scale factor closest to 1.0 was chosen from a given 

earthquake. 

 The above criteria reduced the number of selected ground motions n to 12, 15, and 11 for 

the 10, 30, and 50 story walls, respectively. These sets are referred to as Set1, Set2, and Set3 

hereafter. Table 4.12 to Table 4.14 presents the ground motion details for the three sets. Note 

that SF1 in these tables corresponds to the scale factor determined from the equal-area-under-

the-curve criterion described above. 

 

Table 4.12 Ground motion details for Set 1. 

Event Station Mw R (km) SF1 SF2 SF 
Nahanni, Canada, 1985 Site 1 6.76 9.6 0.76 1.19 0.91 
Loma Prieta, 1989 UCSC 14 WAHO 6.93 17.47 0.83 1.19 0.99 
Imperial Valley, 1979 Delta 6.53 22.03 1.25 1.19 1.50 
Kobe, Japan, 1995 Kakogawa 6.9 22.5 1.57 1.19 1.88 
Northridge, 1994 Pacific Palisades – Sunset 6.69 24.08 1.08 1.19 1.29 
Landers, 1992 Joshua Tree 7.28 11.03 0.93 1.19 1.11 
Hector Mine, 1999 Hector 7.13 11.66 1.28 1.19 1.53 
Manjil, Iran, 1990 Abbar 7.37 12.56 0.88 1.19 1.05 
Kocaeli, Turkey, 1999 Izmit 7.51 7.21 1.64 1.19 1.96 
Duzce, Turkey, 1999 Duzce 7.14 6.58 0.65 1.19 0.78 
Cape Mendocino, 1992 Petrolia 7.01 8.18 0.63 1.19 0.75 
Tabas, Iran, 1978 Dayhook 7.35 13.94 1.39 1.19 1.66 

 

Table 4.13 Ground motion details for Set 2. 

Event Station Mw R (km) SF1 SF2 SF 
Kobe, Japan, 1995 Shin-Osaka 6.9 19.15 1.30 1.05 1.37 
Irpinia, Italy, 1980 Sturno 6.9 10.84 0.67 1.05 0.70 
Nahanni, Canada, 1985 Site 1 6.76 9.6 1.13 1.05 1.19 
Northridge, 1994 Canoga Park - Topanga Can 6.69 14.7 1.04 1.05 1.09 
Loma Prieta, 1989 Gilroy Array #3 6.93 12.82 1.61 1.05 1.70 
Imperial Valley, 1979 Delta 6.53 22.03 1.09 1.05 1.15 
Superstition Hills, 1987 Wildlife Liquef. Array 6.54 23.85 1.13 1.05 1.19 
Manjil, Iran, 1990 Abbar 7.37 12.56 1.01 1.05 1.06 
Kocaeli, Turkey, 1999 Izmit 7.51 7.21 1.51 1.05 1.59 
Duzce, Turkey, 1999 Duzce 7.14 6.58 0.64 1.05 0.68 
Cape Mendocino, 1992 Rio Dell Overpass – FF 7.01 14.33 1.04 1.05 1.10 
Tabas, Iran, 1978 Dayhook 7.35 13.94 1.87 1.05 1.97 
Landers, 1992 Yermo Fire Station 7.28 23.62 0.86 1.05 0.91 
Hector Mine, 1999 Amboy 7.13 43.05 1.21 1.05 1.28 
St Elias, Alaska, 1979 Icy Bay 7.54 26.46 1.55 1.05 1.63 
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Table 4.14 Ground motion details for Set 3. 

Event Station Mw R (km) SF1 SF2 SF 
Imperial Valley, 1979 El Centro Array #4 6.53 7.05 1.01 1.11 1.12 
Northridge, 1994 Tarzana - Cedar Hill A 6.69 15.6 0.70 1.11 0.78 
Superstition Hills, 1987 Wildlife Liquef. Array 6.54 23.85 1.06 1.11 1.18 
Kobe, Japan, 1995 OSAJ 6.9 21.35 1.74 1.11 1.93 
Irpinia, Italy, 1980 Bisaccia 6.9 21.26 1.56 1.11 1.73 
Hector Mine, 1999 Hector 7.13 11.66 1.39 1.11 1.54 
Manjil, Iran, 1990 Abbar 7.37 12.56 1.16 1.11 1.28 
Kocaeli, Turkey, 1999 Duzce 7.51 15.37 0.68 1.11 0.76 
Duzce, Turkey, 1999 Duzce 7.14 6.58 0.58 1.11 0.65 
Cape Mendocino, 1992 Rio Dell Overpass – FF 7.01 14.33 1.34 1.11 1.48 
Landers, 1992 Yermo Fire Station 7.28 23.62 0.79 1.11 0.88 

 
  

 The ASCE7-05 standard also specifies that for 2-dimensional modelling, the mean value 

corresponding to the 5% damped response spectrum for a set of records should not be less than 

the target spectrum over the period range from 0.2T1 to 1.5T1. A similar approach was taken here 

for matching the mean spectrum of Set1, Set2, and Set3 to the target UHS: an additional scale 

factor was applied to ensure that the mean spectrum for each set does not fall below the UHS 

more than 10% at any period over the specified range. This additional scale factor is denoted as 

“SF2” in Tables 4.12 through 4.14, and is equal to 1.19, 1.05, and 1.11 for Set1, Set2, and Set3, 

respectively. Also presented in these tables is the total scale factor (denoted as “SF”) for 

individual records, which is the product of SF1 and SF2 factors. Note that the SF factor for the 

ground motions in Sets1 through 3 is between 0.5 and 2.0. Figure 4.31 compares the mean 

spectrum of the three sets with the UHS.  
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(a) 

 

(b) 

 

(c) 

 

 

Figure 4.31 Comparison of mean spectrum for: (a) Set1, (b) Set2, and (c) Set3 ground motions 

with the UHS over the period range of 0.2T1 to 1.5T1. 

 The total possible combination of 7 out of 12, 15, and 11 ground motions is 792, 6435, 

and 330, respectively. Of these possible combinations, those sets of seven ground motions were 

considered that the corresponding mean spectrum does not fall below the UHS more than 10% at 

any period between 0.2T1 and 1.5T1. It turned out that 305, 1094, and 80 sets of seven records 

satisfied this criteria for the Set1, Set2, and Set3 ground motions, respectively. Time history 

analysis was conducted for the eleven shear walls using the scale factors presented in Tables 

4.12 to 4.14, and the mean value of different demand parameters corresponding to potential sets 

of seven records was calculated. For each shear wall, the minimum and maximum value of the 

mean demand parameters from the 305, 1094, and 80 sets of seven records were reported. The 
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results are presented in Figure 4.32. Table 4.15 summarizes the minimum and maximum ratios 

of demand parameters from different sets of seven ground motions to the mean response from 

spectrum matched records. 

 

  

  

 

 

Figure 4.32 Comparison of minimum and maximum demand parameters from the sets of seven 

ground motions  and Set1, Set2, and Set3 with the mean demands from spectrum matched (SM) 

ground motions. 
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Table 4.15 Minimum and maximum ratio of the mean response from the set of seven ground 

motions to the mean response from spectrum matched records (min/max, %). 

Wall Rg RD1 ID2 BC3 BM4 BS5 

10 story 
1.7 105/134 110/132 112/179 99/104 93/121 
2.6 97/125 114/140 85/130 95/100 79/100 
4.2 85/114 90/112 78/129 94/103 94/115 

30 story 

1.4 91/125 96/130 91/120 94/111 86/119 
2.4 76/113 81/115 82/154 92/103 80/118 
3.1 67/104 74/107 61/116 90/100 77/126 
4.3 59/111 70/111 42/94 92/99 87/137 

50 story 

1.4 98/118 100/128 89/124 92/116 94/132 
2.1 87/107 89/111 89/129 94/106 89/126 
2.4 87/109 89/110 89/125 95/105 89/131 
4.1 96/129 98/127 84/156 96/100 106/165 

1 roof displacement demand, 2 interstory drift demand at the top of wall, 3 base curvature demand, 4 

bending moment demand at the base, 5 base shear force demand. 

 

 Figure 4.32 indicates that mean roof displacement demand from the three sets varies 

between 81% and 110% of the mean roof displacement from the SM ground motions. The mean 

interstory drift corresponding to the three sets was found to be between 88% and 118% of the 

mean interstory drift from the SM ground motions. The mean base curvature demand associated 

with the three sets is between 68% and 123% of the mean base curvature demand using the SM 

records, while the mean bending moment demand at the base from the three sets varies between 

96% and 107% of the mean base bending moment demand from the SM ground motions. Lastly, 

mean base shear force demand from the three sets is between 88% and 154% of the mean base 

shear force demand from the SM records. Therefore, reducing the number of ground motions 

from 80, 53, and 35 to 12, 15, and 11 results in demand parameters that are significantly 

different from those determined using spectrum matched ground motions. 

  It is also interesting to compare the average minimum and maximum values reported in 

Table 4.15 in order to observe how much on average the mean responses from the set of seven 

ground motions are different from the mean values associated with the SM ground motions. The 

average minimum ratio for the four response parameters and 11 walls (44 cases) is 88%. All but 

9 of the minimum ratios are 80% or higher and only 6 of the minimum ratios are smaller than 

75%. The lowest ratio of 42% is for base curvature of the 30 story wall with Rg = 4.3. The other 

low minimum ratios are for roof displacement and interstory drift for the same 30 story shear 

wall and base curvature for two other 30 story walls with Rg = 2.4 and 3.1. It was investigated 
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whether the same seven ground motions caused the low minimum ratios; but this was not the 

case. A comparison of mean spectra from the critical seven ground motions resulting in the 

minimum ratios and mean spectra of the spectrum matched ground motions revealed a possible 

explanation only for the low ratio of 42% for the base curvature of the 30 story wall with Rg = 

4.3. Figure 4.33 shows that the mean of seven records dropped well below the mean of the SM 

ground motions at periods less than 0.2T1 = 0.6 second. For the other low ratios, no significant 

difference is visible between the mean spectrum.  

 

 

Figure 4.33 Comparison of mean spectrum of seven ground motions associated with maximum 

and minimum base curvature demand for the 30 story wall with Rg = 4.3 with the UHS. 

 
  The maximum ratios of mean response parameters determined using seven ground 

motions to mean response parameters determined using spectrum matched ground motions have 

an average value of 120% for the 44 different cases summarized in Table 4.15. All but 12 ratios 

are less than 130% and only 4 ratios are greater than 140%. The three large maximum ratios are 

base curvature for the 10 story wall with Rg = 1.7 (179%), base curvature for the 50 story wall 

with Rg = 4.1 (156%) and base shear force for the 50 story wall with Rg = 4.1 (165%). 

Examination of the mean spectra from the seven ground motion sets resulting in the large 

maximum ratios did not provide an explanation for the large ratios. For example, the mean of 
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seven ground motions resulting in base curvature of the 50 story wall with Rg = 4.1 that are 

156% of the result determined using spectrum matched ground motions only exceeds the UHS 

by a maximum of 30% over the range of 0.05T1 to 0.2T1 (see Figure 4.34). 

 

 

Figure 4.34 Comparison of mean spectrum of seven ground motions associated with maximum 

and minimum base curvature demand for the 50 story wall with Rg = 4.1 with the UHS. 
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interstory drift demands over the height, while multiple conditioning periods defined the mean 

envelope for curvature and shear force demands. It implies higher computational cost if CMS 

ground motions are used to develop a design envelope for these structural responses.  

 It was found that the mean roof displacement and mean interstory drift at the top of walls 

using ground motions matched to the CMS at different conditioning periods is between 90 and 

100% of the mean values from the spectrum matched (SM) records. For base curvature and base 

shear force demands, on the other hand, the mean results from the CMS ground motions are 

generally higher than 80% of the base curvature and base shear force demands from the SM 

records. The results from SM ground motions are very similar to the mean results using the SOR 

ground motions (with maximum difference of 12%, 8%, 12%, and 7% for roof displacement, 

interstory drift at the top of wall, base curvature, and base shear force demands, respectively). It 

was also observed that scaling only at the fundamental period gives mean roof displacement 

demands that are 20% higher than those associated with the SM records, while it results in a 

large overestimation of the influence of higher modes on the base shear force and on midheight 

curvature demands in taller shear wall buildings. Lastly, mean plus one standard deviation roof 

displacement, interstory drift at the top, and base curvature demands from the ground motions 

matched to the CMS at different conditioning periods are generally higher than 90% of those 

associated with SOR ground motions. For base shear force demand, the mean plus one standard 

deviation results from CMS records were found to be about 80% of the results using SOR 

ground motions.   

 The provisions of the ASCE standard 7-05 for calculating the design value were studied. 

It was shown that the mean design values from a potential set of seven ground motions can vary 

from about 0.5 to 1.5 times the corresponding mean results from the SM ground motions. This 

clearly shows that the set of seven ground motions is not adequate for establishing the mean 

design values. Comparison between the mean spectra resulting the minimum and maximum 

ratios for a specific demand parameter showed no significant difference.  

 Findings of this study indicate that using SM ground motions results in demand 

parameters that are close to the results associated with the SOR records, yet fewer number of 

input records can be used because using spectrum matched ground motions reduces the 

variability in the structural responses considerably. The demand parameters corresponding to the 

records matched to the CMS are generally lower than those from the spectrum matched records; 

however, it should be noted that the conditioning periods used in this work were limited to the 
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first three modal periods as well as two periods representing the fundamental period elongation 

due to nonlinearity. Any other period may be considered as the conditioning period with 

corresponding demand parameters more critical than those associated with conditioning periods 

considered in this study. Including more conditioning periods will increase the computational 

cost of the time history analysis.  
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Chapter 5 : Flexural Demands on Cantilever Shear Walls  

5.1 Overview 

In this chapter, results from nonlinear time history analysis are used to develop simplified 

models for estimating flexural demands on cantilever shear walls. Mean roof displacement from 

time history analysis is used to determine appropriate effective stiffness values to be used in 

response spectrum analysis as a confirmation of the work done in Chapter 3. The current 

equations of CSA A23.3 and ACI 318-05 (ACI Committee 2005) codes for estimating base 

curvature demands are evaluated, and models are developed to estimate mean and mean plus one 

standard deviation base curvature demand. The intensity of curvature demands around the 

midheight is evaluated, and a simplified curvature envelope is introduced to predict curvature 

demands over the height. Also, a simplified envelope is proposed for estimating interstory drift 

demands over the height. The influence of shear deformation and the flexibility of the base on 

various response parameters is also studied in this chapter. Time history results determined using 

the trilinear bending moment - curvature relationship is compared with those using the elastic-

perfectly-plastic (EPP) hysteretic model. Lastly, a modified response spectrum analysis is 

introduced as a method to estimate curvature and interstory drift demands. 

5.2 Example Shear Wall Buildings and Ground Motions Used in Time 

History Analysis 

Thirteen cantilever shear walls were included in this chapter. That is, three 10 story walls with Rg 

= 1.7, 2.6, and 4.2; one 20 story wall with Rg = 4.0; four 30 story walls with Rg = 1.4, 2.4, 3.1, 

and 4.3; one 40 story wall with Rg = 4.4; and four 50 story walls with Rg = 1.4, 2.1, 2.4, and 4.1. 

The structural characteristics of these walls were presented in Table 2.2. The 20 and 40 story 

walls had minimum longitudinal reinforcement and were added to investigate the midheight 

yielding phenomenon in high-rise shear walls. 

 Time history results presented in this chapter correspond to the “scaled over the range” 

ground motions (denoted as SOR in Chapter 4). Using SOR ground motions allows to study the 
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variability in the demand parameters while it resulted in mean responses similar to those 

determined using spectrum matched (SM) ground motions. To develop scaled over the range 

ground motions for the 20 and 40 story walls, a subgroup of 62 ground motions for T1 = 2.0 

seconds and 40 ground motions for T1 = 4.0 seconds were selected from the set of 80 records. 

Figure 5.1 shows the mean spectrum of the two suites of records. It can be seen from these 

figures that the mean spectrum matches the UHS over a period range wider than 0.2T1 to 1.5T1 

as recommended by ASCE standard 7-05.  

 

(a) 

 

(b) 

 

Figure 5.1 Comparison of the mean spectrum of ground motions scaled to the UHS over the 

period range (denoted as SOR) with the UHS for: (a) a 20 story shear wall with T1 = 2.0 s, and 

(b) a 40 story wall with T1 = 4.0 s. 

5.3 Roof Displacement Demands of Shear Walls 

Effective stiffness of cantilever shear walls using SDOF oscillators was extensively investigated 

in Chapter 3. Similar approach is taken in this part in order to determine appropriate effective 

stiffness values for use in response spectrum analysis (RSA). RSA was used as a potential tool to 

obtain linear displacements since it is the primary method used by practicing engineers in 

Canada, yet it requires less computational effort compared to linear time history analysis. The 

input parameters to perform RSA are the design spectrum, damping, and the structural 

characteristics of the building. In this work, the UHS shown in Figure 5.1 and 5% damping were 
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considered as the input parameters. The linear displacements from different modes were 

combined using Complete Quadratic Combination (CQC) method. The first four modes were 

considered as the potential important modes although the first mode is usually the governing 

mode for determining roof displacements. 

 Appropriate effective stiffness values are determined such that the roof displacement 

from RSA matches the mean roof displacement from the time history analysis. A stiffness 

reduction factor of 1.0 was assumed as the first guess and it was reduced iteratively until the best 

match for roof displacement was achieved. Lower reduction factors must be used for walls with 

higher nonlinear action. Figures 5.2 through 5.5 compare the mean displacement profile from 

time history analysis with the displacement profile from RSA for the 13 shear walls. Note that 

the force reduction factor shown in these figures is the ratio of elastic bending moment 

corresponding to effective stiffness EIe at the base of the wall to the wall flexural strength Mn. 

Table 5.1 compares the force reduction factors corresponding to uncracked flexural stiffness EIg 

and effective flexural stiffness EIe. Force reduction factors corresponding to effective flexural 

stiffness are denoted as R hereafter. Also shown in Figures 5.2 through 5.5 are the displacement 

envelopes from RSA using stiffness reduction factors proposed by CSA A23.3-04, which can be 

determined from the following equation: 

� =
���
���

= 0.6 +
�

����
																																																																																																																										��	5.1 

where P is the axial force at the base of the wall due to gravity loads.  
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Table 5.1 Force reduction factor corresponding to uncracked and effective flexural stiffnesses. 

Wall Rg
1 R2 

10 story 
1.7 1.7 
2.6 2.3 
4.2 3.2 

20 story 4.0 2.7 

30 story 

1.4 1.4 
2.4 2.0 
3.1 2.3 
4.3 3.1 

40 story 4.4 3.6 

50 story 

1.4 1.3 
2.1 1.8 
2.4 2.0 
4.1 3.7 

1 based on gross (uncracked) flexural stiffness EIg, 
2 based on effective stiffness EIe which results in roof 

displacement demand equal to the mean roof displacement demand from time history analysis. 
 

  

 

 

Figure 5.2 Comparison of mean displacement profile determined from time history analysis 

(denoted as THA) with displacement envelope from response spectrum analysis (denoted as 

RSA) for 10 story walls with different force reduction factors. 

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2

H
ei

gh
t (

m
)

Displacement (m)

R = 1.7

THA

RSA (1.0EIg)

RSA (Eq 5.1)
0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2

H
ei

gh
t (

m
)

Displacement (m)

R = 2.3

THA

RSA (0.8EIg)

RSA (Eq 5.1)

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2

H
ei

gh
t (

m
)

Displacement (m)

R = 3.2

THA

RSA (0.5EIg)

RSA (Eq 5.1)



146 
 

(a) 

 

(b) 

 
Figure 5.3 Comparison of mean displacement profile determined from time history analysis 

(denoted as THA) with displacement envelope from response spectrum analysis (denoted as 

RSA) for: (a) 20 story wall with R = 2.7, and (b) 40 story wall with R = 3.6. 

  

  
Figure 5.4 Comparison of mean displacement profile determined from time history analysis 

(denoted as THA) with displacement envelope from response spectrum analysis (denoted as 

RSA) for 30 story walls with different force reduction factors. 

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5

H
ei

gh
t (

m
)

Displacement (m)

R = 2.7

THA

RSA (0.5EIg)

RSA (Eq 5.1)
0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

H
ei

gh
t (

m
)

Displacement (m)

R = 3.6

THA

RSA (0.65EIg)

RSA (Eq 5.1)

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6

H
ei

gh
t (

m
)

Displacement (m)

R = 1.4

THA

RSA (0.9EIg)

RSA (Eq 5.1)
0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6

H
ei

gh
t (

m
)

Displacement (m)

R = 2.0

THA

RSA (0.65EIg)

RSA (Eq 5.1)

0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

H
ei

gh
t (

m
)

Displacement (m)

R = 2.3

THA

RSA (0.5EIg)

RSA (Eq 5.1)
0

10

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

H
ei

gh
t (

m
)

Displacement (m)

R = 3.1

THA

RSA (0.5EIg)

RSA (Eq 5.1)



147 
 

  

  
Figure 5.5 Comparison of mean displacement profile determined from time history analysis 

(denoted as THA) with displacement envelope from response spectrum analysis (denoted as 

RSA) for 50 story walls with different force reduction factors. 
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attributed to the fact that using RSA is restricted to linear structures, while the actual 

deformation profile from time history analysis is affected by yielding over the base plastic hinge 

region which results in higher rotations and deformation at lower floors. 

 Figure 5.6 plots the stiffness reduction factor α as a function of force reduction factor R 

for the 13 shear walls. The following equation was proposed for estimating stiffness reduction 

factor: 

� =
���
���

= 1.4 − 0.4� ≥ 0.5																																																																																																															��	5.2 

 

Figure 5.6 Stiffness reduction factor as a function of R for the thirteen walls. 
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5.4.1 Base Curvature Demands 

5.4.1.1 Estimating Base Curvature Demand Using CSA and ACI Approaches 

According to CSA A23.3-04 provisions, the ductility of concrete shear walls is evaluated by 

ensuring that the inelastic rotational capacity of wall, θic, is greater than the inelastic rotational 

demand, θid. The inelastic rotational capacity can be determined from the following equation: 

�� = �� − ���� 																																																																																																																																	��	5.3 

where � is the curvature capacity and is equal to the ratio of maximum compressive strain of 

concrete (0.0035 for unconfined concrete) to neutral axis depth c, �� 	is the yield curvature and is 

assumed to be the ratio of 0.004 to the wall length lw, and lp is the plastic hinge length and is 

assumed to be 0.5lw. The inelastic rotational demand of concrete walls can be estimated from the 

following equation: 

��" =
Δ�"

ℎ% − 0.5� 
																																																																																																																																			��	5.4 

where hw is the wall height and the inelastic displacement demand ∆id equals the total 

displacement demand ∆t minus the elastic displacement demand ∆e. According to CSA A23.3-04 

provisions, the elastic displacement demand can be taken as the ratio of total displacement 

demand to the force reduction factor R, i.e. ∆e = ∆t /R (Adebar et al. 2004). Base curvature 

demands �" can be determined by equating Equation 5.3 and 5.4: 

�" = �� +
2
�%

Δ&(1 −
1
�)

ℎ% − 0.25�%
																																																																																																																��	5.5 

 Another possible approach is to relate base curvature demands to global drift ratio	Δ&/ℎ%. 

According to ACI 318-05, confinement steel must be provided if the compression strain depth c 

exceeds: 

* ≥
�%

600(Δ&ℎ%
)
																																																																																																																																										��	5.6 

 Setting a maximum compressive strain of 0.003 for unconfined concrete and substituting 

c with 0.003/�" gives: 

�" =
1.8Δ&
ℎ%�%

																																																																																																																																														��	5.7 
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Note that Equation 5.7 is an implied equation in ACI 318-05 for predicting base curvature 

demand. The predictions from Equation 5.7 is referred to in this study as ACI 318. 

5.4.1.2 Relationship Between Base Curvature and Roof Displacement Demands 

Both CSA and ACI approaches (i.e. Equations 5.5 and 5.7) relate maximum base curvature 

demand to maximum roof displacement demand. Although this assumption is valid for first 

mode elastic response, the response quantities determined from nonlinear time history analysis 

can be affected by structural as well as ground motion characteristics. Consequently, the 

relationship between various demand parameters determined from nonlinear time history 

analysis can be different from that determined using elastic analysis, a phenomenon associated 

with the influence of higher modes on structural response quantities. To investigate higher mode 

effects in cantilever shear walls, roof displacement and base curvature time histories for three 10, 

30, and 50 story walls were examined. The R factor corresponding to these walls is 3.2, 3.1, and 

3.7, respectively. Only 30 records out of 80 ground motions were studied for the 10 story wall, 

while all ground motions were considered for the 30 and 50 story walls. Figures 5.7 to 5.9 

summarize the results. 

 Figure 5.7 indicates that base curvature demands at the instant of maximum roof 

displacement are very close to the maximum base curvature for the majority of ground motions. 

Also, maximum base curvatures tend to increase as the roof displacement demand at the instant 

of maximum base curvature increases. The displacement profile over the height at the time when 

maximum base curvature occurs is similar to the first mode displacement profile. The plots for 

the 30 and 50 story walls, on the other hand, are significantly different. That is, base curvature 

demands at the instant of maximum roof displacement are much lower than the maximum base 

curvature demands. There is no correlation between the roof displacement demand at the instant 

of maximum base curvature and maximum base curvature demand. Also, for the 30 and 50 story 

walls, the shape of displacement profiles at the instant of maximum base curvature are 

influenced by higher mode response for some ground motions. 
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Figure 5.7 Relationship between base curvature and roof displacement demands for the 10 story 

wall with R = 3.2. 
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Figure 5.8 Relationship between base curvature and roof displacement demands for the 30 story 

wall with R = 3.1. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

B
as

e 
cu

rv
at

u
re

 a
t 

th
e 

in
st

an
t 

o
f 

m
ax

im
u

m
 r

o
o

f 
d

is
p

la
ce

m
en

t 
(r

ad
/k

m
)

Maximum base curvature (rad/km)

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

M
ax

im
u

m
 b

as
e 

cu
rv

at
u

re
 (

ra
d

/k
m

)

Roof displacement at the instant of maximum base curvature (m)

0

10

20

30

40

50

60

70

80

90

0.0 0.2 0.4 0.6 0.8 1.0 1.2

H
ei

g
h

t (
m

)

Displacement profile at the instant of maximum base curvature (m)



153 
 

 

 

 

Figure 5.9 Relationship between base curvature and roof displacement demands for the 50 story 

wall with R = 3.7. 
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Time history results shown in Figures 5.7 through 5.9 indicate that for 30 and 50 story walls, the 

influence of higher modes caused maximum base curvature and roof displacement demands 

occur at different instants. For the 10 story wall, on the other hand, maximum base curvature and 

maximum roof displacement occur simultaneously, which indicates that first mode is the 

dominant mode of vibration. It is necessary to mention that the CSA and ACI approaches to 

estimate base curvature demands is relatively straightforward since it relates base curvature 

demand to the roof displacement demand, a parameter that can be determined accurately if 

appropriate stiffness reduction factors, such as those presented in Figure 5.6, are used in 

response spectrum analysis. This makes using roof displacement as the input parameter to 

estimate base curvature demands appealing. This approach will be adopted in Section 5.4.1.4, in 

which a refined model will be developed for predicting base curvature demands. 

5.4.1.3 Evaluation of CSA A23.3-04 Approach for Predicting Base Curvature Demands 

There are three pieces of information required to estimate the base curvature demand from the 

CSA approach (see Equation 5.5): yield curvature ��, elastic displacement demand Δ�, and also 

total displacement demand itself. The focus in this section is on the yield curvature and elastic 

displacement demand, as the method to determine roof displacement demands was already 

discussed in Section 5.3. 

5.4.1.3.1 Estimating Yield Curvature  

There are different recommendations for the yield curvature of concrete shear walls. Paulay 

(2001) estimated the curvature at first yield of reinforcement is about 0.0026/lw in walls with 

small flexural compression zone, while Wallace (2007) used 0.0025/lw to 0.003/lw for estimating 

yield curvature. Englekirk (2007) chose 0.0033/lw, and Adebar et al. (2005) concluded that 

0.004/lw is a upper bound estimate of the yield curvature. 

 One of the input parameters for the trilinear hysteretic bending moment - curvature 

relationship used to perform time history analysis is the upper-bound yield curvature ��,./, a 

parameter that represents the yield curvature for a wall that is loaded monotonically to yield 

without having been previously cracked (Adebar and Ibrahim 2002). The upper bound yield 

curvature is a function of axial compression force and longitudinal reinforcement, and it 
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accounts for the influence of tension stiffening on the response of uncracked walls. Table 5.2 

summarizes this parameter for the 13 shear walls. 

 

Table 5.2 Upper-bound yield curvature times wall length for the range of walls used in time 

history analysis. 

Wall R �/(�′��) ��,./�% 

10 story 
1.7 0.059 0.0032 
2.3 0.059 0.0029 
3.2 0.059 0.0028 

20 story 2.7 0.087 0.0026 

30 story 

1.4 0.101 0.0031 
2.0 0.101 0.0031 
2.3 0.101 0.0033 
3.1 0.061 0.0023 

40 story 3.6 0.062 0.0024 

50 story 

1.3 0.127 0.0033 
1.8 0.127 0.0035 
2.0 0.127 0.0042 
3.7 0.062 0.0023 

 

 Table 5.2 indicates that the upper bound yield curvature is generally greater than 0.003/lw 

for most walls, except those with minimum amount of vertical reinforcement and low axial 

compression force, e.g. 20, 30, 40, and 50 story walls with the highest force reduction factors. 

These walls yield at lower curvatures because high tension stiffening in such walls causes the 

bending demands reach the nominal bending moment capacity Mn at lower curvatures. Based on 

the values shown in Table 5.2, the value of 0.0026/lw proposed by Paulay (2001) seems to 

underestimate the yield curvature for the majority of walls, while the recommended value of 

0.004/lw by Adebar et al. (2005) is a safe upper bound. It should be noted that CSA A23.3-04 

uses 0.004/lw as the yield curvature in Equation 5.5. 

5.4.1.3.2 Estimating Elastic Displacement 

One of the assumptions of CSA A23.3-04  approach for estimating base curvature demands is 

that the elastic potion of total roof displacement demand is equal to the ratio of total 

displacement demand to force reduction factor R. In this section, the results from time history 

analysis will be used to compute elastic portion of total displacement demand at the roof. 

Equation 5.5 was rearranged in order to obtain elastic portion of roof displacement: 
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∆�= ∆& − ��" − ���� �ℎ% − 0.5� �																																																																																																��	5.8 

 Elastic displacement for individual records was calculated using maximum base 

curvature φd  and maximum roof displacement ∆t demands determined from time history 

analysis. Two values of 0.0025/lw and 0.004/lw were considered as the lower bound and upper 

bound estimates for the yield curvature. Plastic hinge length lp was found to vary between 0.47 

and 0.72 times the wall length using the Bohl and Adebar (2011) equation: 

� = 0.2�% + 0.05ℎ% 																																																																																																																													��	5.9 

 Therefore, two values of 0.5lw and 0.7lw were considered as the lower bound and upper 

bound estimate of the plastic hinge length for the thirteen walls. The elastic displacement was 

computed from Equation 5.8 for two cases of (1) 0.0025/lw for the yield curvature and 0.5lw for 

the plastic hinge length, and (2) 0.004/lw for the yield curvature and 0.7lw for the plastic hinge 

length. Figure 5.10 presents the ratio of elastic to total displacement for individual motions. Also 

shown in this figure are the mean and mean minus one standard deviation values for the 13 

walls. 

 Figure 5.10(a) indicates that CSA A23.3-04 assumption for predicting elastic portion of 

roof displacement demand (i.e. 
23
24
= 5

6
) gives elastic displacements that are consistently lower 

than µ-σ values from time history analysis. This implies that the approach taken by CSA A23.3-

04 for estimating base curvature demands gives conservative results for most cantilever walls, 

especially for taller walls if Equation 5.5 is computed based on yield curvature and plastic hinge 

length equal to 0.004/lw and 0.5lw, respectively. The results in Figure 5.10(b) indicate that the 

CSA approach gives elastic displacements that are closer to µ-σ ratios from time history analysis 

for the majority of walls. 

 There are some data points in Figure 5.10 with negative elastic displacements or elastic 

displacement demands that are greater than the total roof displacement demand. Negative elastic 

displacements correspond to ground motions that cause significant higher mode effects with 

small roof displacement and high base curvature demand. The data points with elastic 

displacements larger than total displacement correspond to ground motions with base curvature 

demands less than the yield curvature. It should be noted that the number of data points with ∆e ≥ 

∆t is higher in Figure 5.10(a) than in Figure 5.10(b). 
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(a) (b) 

Figure 5.10 Comparison of the ratio of elastic to total displacement demand from CSA A23.3-04 

with the mean (denoted as THA,µ) and mean minus one standard deviation (denoted as THA,µ-

σ) results from time history analysis for: (a) yield curvature of 0.004/lw and plastic hinge length 

of 0.5lw, and (b) yield curvature of 0.0025/lw and plastic hinge length of 0.7lw. 

 

 It can be seen from Figure 5.10 that the CSA approach underestimates the elastic portion 

of the roof displacement demand for most cases. Underestimating elastic displacement is 

equivalent to overestimating base curvature demand (see Equation 5.5). It is necessary to 

develop separate models to estimate mean and mean plus one standard deviation base curvature 

demands determined from time history analysis. The details of the model are presented hereafter. 

A comparison between base curvature demands from time history analysis with the predictions 

using Equations 5.5 and 5.7 will be presented in section 5.4.1.4. 

5.4.1.4 Refined Model for Predicting Base Curvature Demands 

In this section a refined model for predicting base curvature demands will be developed. For this 

purpose, the base curvature demand is expressed as a function of roof displacement demand as 

follows: 

�" = 7
Δ&
ℎ%�%

																																																																																																																																								��	5.10 
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 The parameter C was calculated for individual records using maximum base curvature demand 

obtained from time history analysis and roof displacement demand from response spectrum 

analysis using stiffness reduction factors presented in Figure 5.6. Figure 5.11 shows the 

computed mean and mean plus one standard deviation of coefficient C as a function of the force 

reduction factor, wall height, and the ratio of wall height to force reduction factor hw/R. 

 Figure 5.11 indicates that the C coefficient is not correlated to the wall height and the 

force reduction factor, while it decreases as the ratio of wall height to force reduction factor, 

hw/R, increases. For two walls with equal height, the wall with higher force reduction factor has 

higher C factor than the wall with lower force reduction factor. This is similar to the CSA 

approach (Equation 5.5), which correlates the base curvature demand to 1/R. For two walls with 

equal R values but different heights, the wall with larger height has lower C factor than the 

shorter wall. Again, this is similar to the CSA approach because the length of plastic hinge 

increases as the wall height increases (see Equation 5.9), which results in lower inelastic 

rotational demands (see Equation 5.4) and consequently lower base curvature demands. The 

constant C factor of 1.8 in Equation 5.7 is also shown in Figure 5.11 with a solid line. Equation 

5.11 and Equation 5.12 are proposed to calculate the C coefficient corresponding to the mean 

and mean plus one standard deviation time history results: 

7 = 1.8 − 0.017
ℎ%
�
≥ 0.8																																																																																																																��	5.11 

7 = 2.8 − 0.022
ℎ%
�
≥ 1.0																																																																																																																��	5.12 

 Figure 5.12 compares base curvature predictions from Equations 5.10 & 5.11 (denoted as 

M1 model) and Equations 5.10 & 5.12 (denoted as M2 model) with the mean and mean plus one 

standard deviation base curvature demands determined from time history analysis. Also shown 

in this figure are the predictions from CSA A23.3-04 (Equation 5.5) and ACI 318 (Equation 5.7). 

Note that the input roof displacement in all models is the roof displacement determined from 

response spectrum analysis using stiffness reduction factors shown in Figure 5.6. 
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Figure 5.11 Variation of C coefficient corresponding to the mean and mean plus one standard 

deviation of results from time history analysis as a function of wall height, force reduction 

factor, and the ratio of wall height to force reduction factor. 
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Figure 5.12 Comparison of base curvature demands from different models with mean and mean 

plus one standard deviation results for time history analysis (denoted as THA) for 10 to 50 story 

walls. 

 

 Figure 5.12 indicates that the M1 model provides the best prediction of the mean 

response. Base curvature demands predicted from the CSA and ACI approaches are consistently 

higher than the mean time history results for all walls and also higher than the mean plus one 

standard deviation results for 30, 40, and 50 story walls. CSA and ACI prediction of base 

curvature demand for 10 story walls with R factors of 2.3 and 3.2 and also the 20 story wall is 

lower than mean plus one standard deviation time history results. Base curvature predictions 

from the M2 model are consistently higher than the mean plus one standard deviation results. 
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5.4.1.5 Prediction of Base Curvature Demand for Individual Ground Motions 

In Figure 5.12, base curvature demands predicted from different models were compared with the 

mean and mean plus standard deviation of results obtained from time history analysis. In this 

part, the CSA (Equation 5.5), ACI (Equation 5.7), and M1 (Equations 5.10 & 5.11) models are 

used to predict the base curvature demand for each ground motion using the maximum roof 

displacement obtained from time history analysis. The results are shown in Figures 5.13 through 

5.16.  

 

  

 

 

Figure 5.13 Comparison of maximum base curvature demand for individual ground motions 

determined from time history analysis (denoted as THA) with the predictions from different 

models for 10 story walls with different force reduction factors. 
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Figure 5.14 Comparison of maximum base curvature demand for individual ground motions 

determined from time history analysis (denoted as THA) with the predictions from different 

models for 20 and 40 story walls. 

  

  

Figure 5.15 Comparison of maximum base curvature demand for individual ground motions 

determined from time history analysis (denoted as THA) with the predictions from different 

models for 30 story walls with different force reduction factors. 
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Figure 5.16 Comparison of maximum base curvature demand for individual ground motions 

determined from time history analysis (denoted as THA) with the predictions from different 

models for 50 story walls with different force reduction factors. 

 Figures 5.13 through 5.16 indicate that the three models give base curvature demands 

that are generally higher than those from time history analysis. The CSA and ACI models over 

predict the curvature demands for taller walls especially those with lower force reduction factors, 

while the M1 model predictions are generally closer to time history results. For some ground 

motions, the three models underestimate the base curvature demand because higher mode effects 

result in base curvature demands that are larger than those determined from the first mode 

assumption. It should be noted that base curvature models are developed to predict base 

curvature demands for a suite of ground motions not for individual records. 
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5.4.1.6 Discussion of Mean and Mean Plus One Standard Deviation Results 

As it was observed in Figure 5.12, mean plus one standard deviation base curvature demands are 

very different from the mean results especially for walls with high force reduction factors. The 

question that arises is that which one should be considered to evaluate the seismic demands on 

shear walls?  

 In order to answer this question, it is necessary to compare the base curvature demand 

with the curvature capacity of the 13 walls. Most walls constructed in the west coast of Canada 

have no confinement to vertical reinforcement, so curvature capacity of a concrete shear wall can 

be considered to be 0.0035/c, where 0.0035 is the compressive strain capacity for unconfined 

concrete and c is the compression strain depth. Table 5.3 summarizes compression strain depth 

and curvature capacity of the 13 walls. 

 

Table 5.3 Compression strain depth and curvature capacity for the range of shear walls. 

Wall R c (mm) c/lw ϕcap (rad/km)1 ϕmax,THA (rad/km)2 

10 story 
1.7 547 0.099 6.4 1.45 
2.3 341 0.062 10.3 4.29 
3.2 233 0.042 15.0 7.67 

20 story 2.7 308 0.041 11.4 3.57 

30 story 

1.4 748 0.083 4.7 0.43 
2.0 514 0.057 6.8 1.37 
2.3 443 0.049 7.9 1.58 
3.1 298 0.033 11.7 2.00 

40 story 3.6 297 0.027 11.8 1.92 

50 story 

1.3 1014 0.074 3.5 0.24 
1.8 754 0.055 4.6 0.33 
2.0 700 0.051 5.0 0.50 
3.7 389 0.028 9.0 1.07 

 1 curvature capacity of unconfined concrete at the base, 2 maximum base curvature demand from a single 
ground motion. 
 

 Table 5.3 indicates that maximum base curvature demands from time history analysis are 

significantly lower than the curvature capacity of the walls at the base. It implies that unconfined 

concrete has adequate curvature capacity to tolerate earthquake induced deformations. 

Consequently, no concrete crushing in compression occurs in the shear wall itself regardless of 

using mean or mean plus one standard deviation results to compute the curvature demands at the 

base. 
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Base curvature demands on the shear walls can be used to assess the performance of other 

structural members. CSA A23.3-04 requires that the structural components that are not part of 

the Seismic Force Resisting System (SFRS) must have adequate ductility to undergo the 

displacement demands on the SFRS. Gravity-load columns, for instance, must be designed such 

that the curvature capacity of these elements is greater than or equal to the curvature demands in 

SFRS. The new requirement of CSA A23.3-04 (CSA August 2009 update) specifies that the 

compression strain depth c of columns should satisfy the following equation: 

* ≤
9:�%

2��" + 0.004
																																																																																																																																��	5.13 

where εcu is assumed to be 0.0035 and inelastic rotational demand θid on SFRS is: 

��" = ��" . � = ��" − ��� ∗ 0.5�%																																																																																																	��	5.14 

 Gravity-load columns in high rise structures in the west coast of Canada usually have 

elongated rectangular cross sections (Adebar et al. 2010). This special configuration together 

with the fact that most columns do not have confinement limits the curvature capacity of such 

elements. Therefore, in order to provide a greater margin against crushing of concrete in gravity-

load columns, it is suggested that mean plus one standard deviation base curvature demands 

from time history analysis be used to compute inelastic rotational demand in Equation 5.14, i.e. 

Equations 5.10 and 5.12 be used to predict induced curvature demands in gravity-load columns. 

Note that using Equation 5.14 implies that the maximum base curvature in gravity-load columns 

is equal to the maximum base curvature demand in the shear wall. 

5.4.2 Midheight Curvature Demands  

Current design codes such as CSA A23.3 and ACI 318 provide detailing provisions at the base 

of concrete walls to ensure that they have adequate ductility to undergo the deformations induced 

by seismic actions. The length of ductile detailing is called plastic hinge length lp, and the rest of 

the wall is assumed to remain elastic, so the walls are not provided with ductile detailing outside 

the base plastic hinge region. This approach does not consider the formation of a plastic hinge 

near midheight due to the influence of higher modes. Moehle et al. (2007) concluded that a 

second plastic hinge near midheight can be developed in addition to the base plastic hinge in tall 

walls subjected to high seismic loads. Panneton et al. (2006) pointed out that plastic hinges can 
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occur above the base of an 8 story shear wall located in Eastern Canada although the considered 

wall had enough ductility to undergo such plastic deformations. Priestley et al. (2007) proposed a 

design bending moment envelope in which the design bending moment at the midheight 

increases as the displacement ductility and the fundamental period of the wall increases. This 

approach is in contrast with the CSA A23.3-04 approach in which the design bending moment 

decreases from factored moment at the top of the plastic hinge region to zero at the top of the 

wall. Panagiotou (2008) introduced Dual Plastic Hinge model in which a second plastic hinge 

located at midheight is considered in addition to the conventional plastic hinge at the base. The 

model was examined for three 10, 20, and 40 story walls subjected to three near fault ground 

motions with high spectral accelerations over a period range that covered second mode period of 

the walls. Panagiotou observed large curvature ductility around the midheight, and he concluded 

increasing flexural strength at the midheight can prevent midheight yielding. 

 In this part, the sensitivity of midheight curvature demand to the bending moment 

capacity at the midheight and spectral acceleration at second mode period will be investigated. 

The relationship between midheight curvature and global drift ratio will be also examined. 

Lastly, a simple model for estimating midheight curvature demands will be proposed. 

5.4.2.1 Sensitivity of Midheight Curvature to Flexural Strength 

To limit flexural yielding at the midheight, some researchers have proposed design envelopes, 

which is equivalent to design for higher bending moment demands around the midheight. It 

should be noted that since the walls have much reduced axial compression near midheight, very 

significant increases in vertical reinforcement is needed to prevent yielding near midheight. It is 

necessary to compare the mean curvature envelope from time history analysis with the flexural 

strength envelopes in order to observe how much the variation of flexural strength would change 

the mean curvature demands around the mid-height. Figure 5.17 presents mean curvature 

profiles for 11 different shear walls. Also shown in this figure are the bending moment capacity 

envelopes for individual walls. For the 11 walls, the base curvature demand increases 

significantly as the flexural strength of the wall is reduced. The mean midheight curvature is less 

sensitive to the flexural strength of the walls. For example, maximum midheight curvatures for 

50 story walls with R = 1.8 and R = 3.7 are identical (0.133 rad/km for R = 1.8 versus 0.132 

rad/km for R = 3.7). At the location that the maximum curvatures occur for R = 1.8, flexural 
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strength of the wall with R = 1.8 is 1.5 times the flexural strength of the wall with R = 3.7. 

Therefore, it seems that increasing flexural strength slightly reduces midheight curvature 

demands, while it significantly reduces base curvature demands. 

 

(a) 

 

(b) 

 

(c) 

 

 

Figure 5.17 Relationship between midheight curvature demand and flexural capacity at 

midheight for: (a) 10 story, (b) 30 story, and (c) 50 story walls. 
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5.4.2.2 Sensitivity of Midheight Curvature to Characteristics of Ground Motions 

The influence of ground motion characteristics on various demand parameters was investigated 

in Chapter 4. The sensitivity analysis carried out on conditioning period T* revealed that base 

shear force and in some cases midheight curvature demands from the ground motions matched to 

the CMS computed at T* = T2 were higher than those associated with the records matched to the 

CMS computed at T* = T1. Also, it was observed that ST1 ground motions (ground motions 

matched to the UHS only at the fundamental period) gave highest midheight curvatures in taller 

walls. Note that the ST1 ground motions had higher spectral accelerations at shorter periods than 

other sets of records. These observations indicate that midheight curvature demands are 

influenced by the characteristics of the ground motions around higher mode periods. Figure 5.18 

plots midheight curvature demand as a function of spectral acceleration at second mode period 

for 10 to 50 story walls. Figure 5.18 indicates that midheight curvature generally increases as the 

spectral accelerations at the second mode  increases. The correlation seems to be stronger for 10 

to 30 story walls. For 50 story walls, midheight curvature demand is insensitive to the variation 

of the spectral accelerations at T2. Therefore, it can be concluded that ground motions with 

higher spectral accelerations around second mode period tend to induce higher midheight 

curvature demands in cantilever shear walls.  

5.4.2.3 Midheight Curvature versus Global Drift Ratio 

In order to develop a simple model for predicting midheight curvature demands, midheight 

curvatures corresponding to walls with different heights but similar force reduction factors were 

plotted as a function of the ratio of the roof displacement demand to the wall height, ∆t / hw. 

Figure 5.19 shows this variation for the thirteen walls and individual ground motions. Note that 

curvature values shown in Figure 5.19 are the maximum curvatures occurring at any location 

along the height ranging from h = lw to the top of the walls. The mean and mean plus one 

standard deviation of midheight curvature demands shown in Figure 5.19 are presented in Table 

5.4. 
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Figure 5.18 Variation of midheight curvature versus spectral acceleration at second mode for 10 

to 50 story walls. 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 5.19 Variation of midheight curvature demand as a function of global drift ratio for (a) 

low, (b) medium, and (c) high force reduction factors. 
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Table 5.4 Mean (µ) and mean plus one standard deviation (µ+σ) results for midheight curvature 

times wall length. 

φmid . lw 
Wall R µ µ+σ 

10 story 
1.7 0.0018 0.0035 

2.3 0.0020 0.0037 

3.2 0.0021 0.0037 
20 story 2.7 0.0023 0.0042 

30 story 

1.4 0.0014 0.0027 

2.0 0.0020 0.0039 

2.3 0.0019 0.0032 

3.1 0.0021 0.0037 
40 story 3.6 0.0018 0.0033 

50 story 

1.3 0.0015 0.0027 

1.8 0.0018 0.0029 

2.0 0.0019 0.0025 

3.7 0.0023 0.0040 

 Average 0.0019 0.0034 
 

 Figure 5.19 shows that there is no correlation between midheight curvature demand and 

global drift ratio. The majority of the data on the vertical axis are below 0.004 for the thirteen 

walls indicating that maximum midheight curvature is less than the yield curvature as proposed 

by Adebar et al. (2005). Table 5.4 indicates that the product of maximum midheight curvature 

times the wall length varies from 0.0014 to 0.0023 for the mean results and from 0.0025 to 

0.0042 for the mean plus one standard deviation results. The mean value of the midheight 

curvature demand times the wall length for the thirteen walls corresponding to the mean and 

mean plus one standard deviation results is 0.0019 and 0.0034, respectively. Therefore, 0.002/lw 

and 0.0035/lw are appropriate values for midheight curvature demands depending whether mean 

or mean plus one deviation of time history results are used. Comparing these two values with the 

recommendations for the yield curvature (see Section 5.4.1.3.1) reveals that midheight curvature 

demands in concrete shear walls are approximately equal to the yield curvature, and therefore, 

there is no need to prevent flexural yielding of cantilever shear walls near midheight by trying to 

increase the flexural capacity of the walls. Relatively few detailing rules are needed to ensure 

that shear walls have adequate ductility to undergo the induced midheight curvature demands. 
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5.4.3 Simplified Design Envelope for Curvature Demands 

A simplified design envelope for predicting curvature demands over the height is proposed in 

Figure 5.20 based on the general shape of curvature envelopes determined from time history 

analysis. 

 

 

Figure 5.20 Simplified design envelope for predicting curvature demands in cantilever shear 

walls. 

 ϕmid in Figure 5.20 refers to midheight curvature demand and can be determined from the 

following equations: 

(�<�")<�=> =
0.002
�%

																																																																																																																									��	5.15 

(�<�")<�=>?@A =
0.0035
�%

																																																																																																																��	5.16 

where (�<�")<�=> and (�<�")<�=>?@A are midheight curvature demand corresponding to the 

mean and mean plus one standard deviation values from time history analysis, respectively. 

Also, �B refers to the base curvature demand and can be determined from Equations 5.10 
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through 5.12. The length of plastic hinge region, lp, was calculated using Equation 5.9 and Bohl 

and Adebar (2011) model, and it was observed that wall length lw is an appropriate upper bound 

to approximate this parameter. Figure 5.21 through Figure 5.24 compares curvature envelopes 

corresponding to the mean and mean plus one standard deviation results from time history 

analysis with the simplified models. Note that in these figures, the M1 envelope uses Equations 

5.10, 5.11, and 5.15, while the M2 envelope uses Equations 5.10, 5.12, and 5.16. 

 

  

 

 

Figure 5.21 Comparison of mean (denoted as THA,mean) and mean plus one standard deviation 

(denoted as THA,mean+SD) curvature envelopes determined from time history analysis with the 

simplified models for 10 story walls. 
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Figure 5.22 Comparison of mean (denoted as THA,mean) and mean plus one standard deviation 

(denoted as THA,mean+SD) curvature envelopes determined from time history analysis with the 

simplified models for 20 and 40 story walls. 

  

  
Figure 5.23 Comparison of mean (denoted as THA,mean) and mean plus one standard deviation 

(denoted as THA,mean+SD) curvature envelopes determined from time history analysis with the 

simplified models for 30 story walls. 
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Figure 5.24 Comparison of mean (denoted as THA,mean) and mean plus one standard deviation 

(denoted as THA,mean+SD) curvature envelopes determined from time history analysis with the 

simplified models for 50 story walls. 

5.5 Interstory Drift Demands of Shear Walls 

Estimating base curvature demands on gravity-load columns was discussed in Section 5.4.1.6. 

Slab-column connection is another component of the gravity-load resisting system that must 

have adequate ductility to undergo seismic displacement demands. According to CSA A23.3-04 

guidelines, shear reinforcement must be provided in the slab if the shear stress from gravity loads 

exceeds RE times the limiting shear stress for gravity loads. The reduction factor RE is 

determined from the following equation: 
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where D� is the interstory drift demand; therefore, an accurate estimate of interstory drift is 

necessary to calculate the resistance of slab-column connections. 

 In this section, two methods of obtaining interstory drift from response spectrum analysis 

will be compared. The correlation of maximum interstory drift (at the top of wall) and midheight 

interstory drift demands with the roof displacement demand will be investigated. Lastly, a 

simplified design envelope for estimating interstory drifts over the height of shear walls will be 

introduced. 

5.5.1 Calculation of Interstory Drift from Response Spectrum Analysis 

The displacement demands determined from RSA can be used to calculate interstory drift 

demands. One method is to compute interstory drifts corresponding to each mode and then 

combine the results using Complete Quadratic Combination (CQC) method. The second method 

is to calculate interstory drift from the displacement envelope profile, which is essentially the 

combination of the displacement demands from different modes. The shortcoming of the second 

approach is that the maximum displacements at each floor do not obtain their peak values at the 

same time, i.e. it is not correct to estimate interstory drift demands from a vector summation. 

 Figure 5.25 shows the interstory drift envelope from the two approaches for the 50 story 

wall with R = 3.7. Displacement demands were determined from RSA using a stiffness reduction 

factor of 0.5. Figure 5.25 indicates that the two methods result in similar interstory drift values, 

except that the first method gives slightly higher interstory drifts at upper floors. Since obtaining 

interstory drift demands from displacement envelope profile is easier than from individual 

modes, yet it gives reasonably accurate results, it will be used hereafter to determine interstory 

drift demands from response spectrum analysis. 

 

 

 

 

 

 

 



177 
 

 

Figure 5.25 Comparison of interstory drift envelopes from the two approaches for the 50 story 

wall with R = 3.7. 

5.5.2 Correlation of Roof and Midheight Interstory Drift Demands with Maximum Roof 

Displacement 

Establishing a simple model for estimating interstory drift demands requires relating interstory 

drifts at key points to another demand parameter. In this work, roof and midheight interstory 

drift demands are expressed as a function of roof displacement demand since the latter, as it was 

shown in Section 5.3, can be predicted accurately if appropriate effective stiffness values are 

used in response spectrum analysis. The relationship between maximum roof and midheight 

interstory drifts with the roof displacement demand can be illustrated by examining time history 

plots of the three demand parameters for individual ground motions. This was done for three 10, 

30, and 50 story walls with force reduction factors of 3.2, 3.1, and 3.7, respectively. Only 30 

records out of 80 ground motions were investigated for the 10 story wall, while all motions were 

considered for the 30 and 50 story walls. Figure 5.26 shows the results. 
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Figure 5.26 Roof and midheight interstory drifts at the instant of maximum roof displacement for 

the 10, 30, and 50 story walls. 
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It can be inferred from Figure 5.26 that roof and midheight interstory drift demands at the instant 

of maximum roof displacement are very close to the corresponding maximum values for the 

majority of records. The scatter is higher for the 30 and 50 story walls than for the 10 story one, 

e.g. for several ground motions, maximum roof displacement and maximum interstory drifts at 

the top of wall occur at different instants. However, it can be inferred from Figure 5.26 that both 

roof and midheight interstory drifts are well correlated to the roof displacement demand. This 

finding will be used to develop a simplified model for predicting interstory drift demands at the 

roof and at the midheight.  

5.5.3 Simplified Design Envelope for Predicting Interstory Drift Demands 

In this section, a simplified model for predicting interstory drift demands will be developed 

based on the results from time history analysis. According to this model, roof interstory drift and 

midheight interstory drift – denoted as (ID)r and (ID)m, respectively – are expressed as a function 

of global drift ratio ∆t / hw , as follows: 

(�H)I = �I
Δ&
ℎ%

																																																																																																																																					��	5.18 

(�H)< = �<
Δ&
ℎ%

																																																																																																																																		��	5.19 

where parameters Ar and Am were calculated for individual records using (ID)r and (ID)m values 

obtained from time history analysis and roof displacement demand ∆t from response spectrum 

analysis using stiffness reduction factors presented in Figure 5.6. Figure 5.27 shows the 

computed mean and mean plus one standard deviation values of Ar and Am as a function of the 

force reduction factor R for the thirteen walls. 
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Figure 5.27 Variation of Ar and Am corresponding to the mean and mean plus one standard 

deviation results from time history analysis as a function of force reduction factor R for the 

thirteen walls. 

 Figure 5.27 indicates that both Ar and Am are relatively independent of R factor regardless 

whether mean or mean plus one standard deviation results were used. The dashed lines in these 

figures represent upper bound estimates of the two parameters, that is 1.6 and 2.2 for Ar and 1.3 

and 1.8 for Am corresponding to mean and mean plus one standard deviation results, respectively. 

Having known Ar and Am, one can calculate roof and midheight interstory drift demands from 

Equations 5.18 and 5.19 respectively. 

 A simplified design envelope for predicting interstory drift demands over the height is 

proposed in Figure 5.28. It should be noted that (ID)b in Figure 5.28 reflects the amount of 

rotation at the base of shear walls with flexible foundation or those with several floors below 

grade which are usually used for parking or commercial space. Having determined (ID)r and 

(ID)m from Equations 5.18 and 5.19, respectively, one can obtain (ID)b from the geometry. For 

example, using Ar = 1.6 and Am = 1.3 results in the following equation for base rotational 

demands: 

(�H)B = 0.7
Δ&
ℎ%

																																																																																																																																				��	5.20 

and, base rotational demand corresponding to Ar = 2.2 and Am = 1.8 can be determined from: 

(�H)B = 1.0
Δ&
ℎ%

																																																																																																																																				��	5.21 

0.0

0.5

1.0

1.5

2.0

2.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0

A
r

Force reduction factor, R

mean

mean+SD

Ar = 2.2

Ar = 1.6

0.0

0.5

1.0

1.5

2.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0

A
m

Force reduction factor, R

mean

mean+SD

Am = 1.8

Am = 1.3



181 
 

The adequacy of Equations 5.20 and 5.21 will be examined in Section 5.6.2 for a 30 story shear 

wall with base support stiffness varying from infinite (fixed) to a very low value. 

 

 

Figure 5.28 Simplified design envelope for predicting interstory drift demands in cantilever 

shear walls. 
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obtained from time history analysis. The D1 and D2 models, on the other hand, provide a 

reasonably conservative estimate of interstory drift demands over the height for all walls. 
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slab-column connections. Note that using D1 and D2 models to assess the safety of slab-column 

connection in the gravity-load resisting system implies that interstory drifts in the gravity-load 

resisting system are equal to those in the shear wall. 

 

 

Figure 5.29 Comparison of mean (denoted as THA,mean) and mean plus one standard deviation 

(denoted as THA,mean+SD) interstory drift envelopes from time history analysis with the 

predictions from RSA and simplified models for 10 story walls with different force reduction 

factors. 
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Figure 5.30 Comparison of mean (denoted as THA,mean) and mean plus one standard deviation 

(denoted as THA,mean+SD) interstory drift envelopes from time history analysis with the 

predictions from RSA and simplified models for 20 and 40 story walls. 

Figure 5.31 Comparison of mean (denoted as THA,mean) and mean plus one standard deviation 

(denoted as THA,mean+SD) interstory drift envelopes from time history analysis with the 

predictions from RSA and simplified models for 30 story walls with different force reduction 

factors. 
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Figure 5.32 Comparison of mean (denoted as THA,mean) and mean plus one standard deviation 

(denoted as THA,mean+SD) interstory drift envelopes from time history analysis with the 

predictions from RSA and simplified models for 50 story walls with different force reduction 

factors. 

5.6 Influence of Shear Deformation and Base Rotational Stiffness on 

Seismic Demands of Shear Walls 

The demand parameters presented thus far correspond to flexural deformation of cantilever shear 

walls with a fixed base support. Other possible sources of deformation would be shear 

deformation and base support flexibility. In this section, the influence of shear deformation on 

demand parameters such as roof displacement, base curvature, and interstory drift at the top of 

wall will be investigated. Also, a case study will be carried out to examine the influence of base 

rotational stiffness on various demand parameters. 
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5.6.1 Influence of Shear Deformation  

Modeling shear response of reinforce concrete members requires complicated hysteretic models 

which accounts for initial uncracked shear stiffness, reduction in shear stiffness due to the 

formation of diagonal cracking, and also accumulation of residual strain. It is well established 

that large shear deformations can develop after the formation of diagonal cracking and 

reinforcement yielding if the reinforced concrete has adequate shear reinforcement (Gerin and 

Adebar 2004; Rajaee Rad and Adebar 2009; and Gerin and Adebar 2009). 

 The shear response of reinforced concrete slender walls is usually assumed to be elastic 

(Boivin and Paultre 2010). The stiffness of the linear model varies from gross shear stiffness 

GcAvg to cracked shear stiffness GcrAvg, where Gc is gross shear modulus and is equal to 0.4Ec 

and Gcr is cracked shear modulus, which is defined as the secant stiffness to the yield point and 

is a function of the percentage of transverse reinforcement. Also, Avg is the cross sectional area 

effective in shear, and can be taken as the web area of the cross section. In this work, shear 

deformations are assumed to be linearly elastic with shear stiffness equal to GcrAvg. Gerin and 

Adebar (2004) concluded that crack shear stiffness is about 0.1 times the gross shear stiffness. 

Selecting lower bound shear stiffness results in higher shear deformation demands, which allows 

to examine how much shear stiffness can potentially influence roof displacement demands. 

Figure 5.33 plots mean roof displacement demands from time history and response spectrum 

analysis. Note that the term “w shear def.” in Figure 5.33 refers to the case with shear 

deformations included in the analytical model, while the term “w/o shear def.” corresponds to 

the case without shear deformations. 

 Figure 5.33 indicates that including shear deformation has negligible influence on the 

roof displacement demand of taller walls. The increase is not more than 5% for 30 and 50 story 

walls. For 10 story walls, on the other hand, including shear deformation results in 20%, 16%, 

and 10% increase in mean roof displacement for force reduction factors of 1.7, 2.3, and 3.2, 

respectively. Also shown in Figure 5.33 are roof displacement demands obtained from response 

spectrum analysis using stiffness reduction factors depicted in Figure 5.6 .Response spectrum 

analysis was repeated for two cases of with and without shear deformation scenarios. It can be 

concluded from Figure 5.33 that response spectrum analysis with shear deformation gives roof 
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displacement demands that are in good agreement with those determined from time history 

analysis with shear deformation scenario.  

 

 

Figure 5.33 Comparison of roof displacement demands from flexure only with flexure plus shear 

deformation components determined using time history (THA) and response spectrum (RSA) 

analysis. 

 Table 5.5 compares mean base curvature and mean roof interstory drift demands for two 

analytical models from time history analysis. Table 5.5 indicates that the ratio of base curvature 

and roof interstory drift demands for the walls with shear deformation to those without shear 

deformation varies from 0.91 to 1.15 and from 1.01 to 1.34, respectively. Including shear 

deformation generally results in an increase in interstory drift demands. The amount of increase 

is higher for the 10 story walls than for the 30 and 50 story walls. 
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Table 5.5 Comparison of mean base curvature and mean roof interstory drift demands from time 

history analysis corresponding to models with and without shear deformation component. 

 Base curvature (rad/km) Roof interstory drift (%) 
Wall R w shear w/o shear w shear w/o shear 

10 story 
1.7 0.78 0.68 0.73 0.55 
2.3 0.99 1.02 0.78 0.58 
3.2 1.37 1.35 0.96 0.84 

30 story 

1.4 0.26 0.27 0.84 0.81 
2.0 0.41 0.41 1.00 0.94 
2.3 0.61 0.61 1.04 0.97 
3.1 0.78 0.86 1.02 1.01 

50 story 

1.3 0.15 0.15 0.90 0.84 
1.8 0.23 0.23 0.94 0.90 
2.0 0.28 0.28 0.89 0.87 
3.7 0.33 0.40 0.88 0.84 

5.6.2 Influence of Base Rotational Stiffness 

Time history results presented in Sections 5.3 to 5.5 correspond to fixed base cantilever shear 

walls. Evaluating the stiffness of base support is a complicated task since it depends on the 

stiffness of floor diaphragms below grade, stiffness of foundation wall, and also soil type. The 

influence of foundation rocking, floor diaphragms, and the uplifting of the core walls due to the 

rocking mechanism on the seismic response of concrete shear walls has been investigated by 

Anderson (2003), Rajaee Rad and Adebar (2009), and Nielsen et al. (2010). The concern in this 

section is not modeling all possible parameters that would influence the boundary condition at 

the base, but is to evaluate the impact of base rotational stiffness on the behavior of cantilever 

shear walls and compare time history results with those for a fixed base support wall. It was 

assumed that buildings with fixed and flexible base supports are located on firm soil class (e.g. 

soil site class C according to NBCC 2005); therefore, the influence of soft soil on the seismic 

demands are not investigated. For this purpose, fixed support was replaced with a rotational 

spring with infinite axial and shear stiffnesses, while the rotational stiffness of the elastic spring 

was varied in order to achieve different levels of rotation at the base. The analysis was carried 

out for the 30 story walls with R = 3.1, and the base rotational stiffness was reduced in three 

steps. Table 5.6 compares modal periods of the wall with different base rotational stiffnesses. 
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Table 5.6 Modal periods of 30 story walls with fixed and flexible base supports. 

Wall T1 (s) T2 (s) T3 (s) 
Fixed base 2.97 0.47 0.17 
Case 1 4.61 0.73 0.26 
Case 2 5.74 0.82 0.28 
Case 3 6.91 0.87 0.29 

 

 It can be inferred from Table 5.6 that the Case 3 wall possesses a very soft base spring 

since the fundamental period has elongated from 2.97 s for the fixed base wall to 6.91 s. Note 

that the third mode period is not as sensitive as the first mode period to the base rotational 

stiffness.  

 Table 5.7 shows the mean roof displacement demand determined from time history 

analysis (THA) and response spectrum analysis (RSA) for walls listed in Table 5.6. The 

displacement demands from RSA correspond to the stiffness reduction factor of 0.5, which gives 

a roof displacement demand that is equal to the mean roof displacement for the wall with a fixed 

base support.  

 Table 5.7 indicates that the displacement demand increases as the rotational stiffness of 

the base spring decreases. Also, RSA gives higher roof displacement demands than time history 

analysis for Case 2 and Case 3, i.e. using a stiffness reduction factor of 0.5 for walls with flexible 

base generally gives higher roof displacement demands than those determined from time history 

analysis. 

 

Table 5.7 Comparison of mean roof displacement demand determined from THA and RSA for 

30 story walls with different base stiffnesses. 

 Roof displacement (m) 
Base support THA RSA 

Fixed 0.59 0.59 
Case 1 0.61 0.63 
Case 2 0.66 0.78 
Case 3 0.69 0.81 

 

 Figure 5.34 shows the mean curvature and bending moment envelopes for the four walls 

listed in Table 5.6. It can be seen that as the base rotational stiffness reduces, base curvature and 

base moment demands tend to decrease, while midheight curvature and midheight moment 

demands remain relatively constant. It was also observed that reducing base rotational stiffness 
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increases roof displacement demand up to 17%, while it reduces base curvature and base 

moment demands up to 49% and 19%, respectively.  

  

Figure 5.34 Comparison of mean curvature and bending moment profiles for 30 story walls with 

different base support stiffnesses determined from time history analysis. 

 

 Comparison between mean and mean plus one standard deviation interstory drift 

envelopes for the four walls and the predictions from D1 and D2 models is presented in Figure 

5.35. Since roof displacement demands corresponding to time history analysis are lower than 

those from response spectrum analysis for Case 2 and Case 3 walls, the former was used to 

compute the key parameters of the simplified models. This was done to ensure that the models 

still predict accurate base rotations even if lower roof displacements are used. Figure 5.35 

indicates that the simplified models give a reasonably accurate prediction of interstory drift 

demands over the height for walls with a flexible base support. 
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Figure 5.35 Comparison of mean (denoted as THA,mean) and mean plus one standard deviation 

(denoted as THA,mean+SD) interstory drift envelopes from time history analysis with the D1 

and D2 models for 30 story walls with various base support stiffnesses. 
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conduct time history analysis for estimating shear force demands in concrete shear walls. It is 

interesting to compare demand parameters from the trilinear model with those from the EPP 

relationship in order to observe how much the details of the hysteretic model influences the 

results. For this purpose, three 10, 30, and 50 story walls with force reduction factors of, 

respectively, 3.2, 3.1, and 3.7 were modeled using the EPP relationship. The EPP model can be 

defined by knowing three parameters: the initial slope of the backbone curve, bending moment 

capacity Mn, and post yield stiffness. The bending moment capacity is identical to those used for 

the trilinear model, and post yield stiffness is assumed to be 0.5% of the gross flexural stiffness 

EIg. Two initial slopes of EIg and 0.5EIg were assumed for each wall. The fundamental period for 

the 10, 30, and 50 story walls is 1.0 s, 3.0 s, and 5.0 s for the initial slope of EIg, and 1.34 s, 4.20 

s, and 7.01 s for the initial slope of 0.5EIg, respectively. Figure 5.36 compares the trilinear and 

EPP bending moment - curvature models at the base of the three walls. The mean time history 

results are presented in Figures 5.37 through 5.39. 

 

  

 

 

Figure 5.36 Bending moment - curvature relationship at the base for 10 story wall with R = 3.2, 

30 story wall with R = 3.1, and 50 story wall with R = 3.7. 
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Figure 5.37 Comparison of mean demand parameters using trilinear and EPP models for the 10 

story wall with R = 3.2. 
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Figure 5.38 Comparison of mean demand parameters using trilinear and EPP models for the 30 

story wall with R = 3.1. 
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Figure 5.39 Comparison of mean demand parameters using trilinear and EPP models for the 50 

story wall with R = 3.7. 
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Figures 5.37 through 5.39 indicate that roof displacement demands from the EPP model with 

0.5EIg initial stiffness are 11%, 18%, and 3% lower than those associated with the trilinear 

model for 10, 30, and 50 story walls, respectively. Mean interstory drifts at the top of the wall 

from EPP relationship with 0.5EIg initial stiffness are 12%, 18%, and 5% lower than those 

corresponding to the trilinear model. Base curvature demands corresponding to the EPP model 

with 0.5EIg initial stiffness are 27%, 32%, and 70% higher than those from the trilinear model 

for the 10, 30, and 50 story wall, respectively. The difference exacerbates if nonlinear behavior 

is expressed in terms of curvature ductility. Curvature ductility is defined as the ratio of mean 

base curvature determined from time history analysis to the yield curvature. Curvature ductility 

at the base for the trilinear model is 2.5, 3.4, and 2.2 for, respectively, 10, 30, and 50 story walls, 

while it is 12.8, 18.6, 16.2 for the EPP model with EIg initial stiffness and 7.4, 11.3, and 10.1 for 

the EPP model with 0.5EIg initial stiffness. Midheight curvature demands from the trilinear 

model are similar to those determined using the EPP relationship with 0.5EIg initial stiffness. In 

terms of curvature ductility at the midheight, using the trilinear model results in no midheight 

yielding for the 10 story wall and moderate yielding for the 30 and 50 story walls. Comparison 

of mean midheight curvature demands with the yield curvature for the EPP models shows a 

curvature ductility of 3.0, 2.5, and 4.6 for EIg and 2.6, 1.5, and 3.1 for 0.5EIg initial stiffnesses 

for 10, 30, and 50 story walls, respectively. The difference between the curvature ductility at the 

base and at the midheight from the trilinear and EPP models is mostly attributed to the difference 

between the yield curvature predicted by these models rather than the difference between mean 

curvature demands from time history analysis. 

 Figures 5.37 to 5.39 also indicate that the mean base shear force demands from the 

trilinear model are consistently lower than those associated with the EPP models. The mean base 

shear force demand from the trilinear model is 28%, 19%, and 14% lower than that from the EPP 

model with 0.5EIg initial stiffness, while it is 26%, 23%, and 20% lower than the mean base 

shear force demand corresponding to the EPP model with EIg initial stiffness. 
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5.8 Using RSA to Estimate Curvature Envelope 

As it was shown in Section 5.3, a good estimate of roof displacement can be obtained if 

appropriate stiffness reduction factors are used in response spectrum analysis. Applying a 

constant stiffness reduction factor implies that the shear wall possesses uniform stiffness 

distribution over the height. Results from time history analysis, on the other hand, indicated that 

largest curvature demands occur at the base of the wall, and curvature demands tend to increase 

around the midheight. Seismic demands at other elevations are less than these critical regions; 

therefore, the idea of applying uniform stiffness reduction factor does not capture the actual 

distribution of stiffness over the height of cantilever shear walls. To address this, Panagiotou 

(2008) proposed the Dual Plastic Hinge model, in which flexural rigidity at the base and at the 

midheight was reduced to rEIe, while flexural stiffness at other sections was assumed to be EIe. 

The r factor was defined as the ratio of post yield stiffness to initial stiffness EIe and was 

assumed to be 2%. Also, effective stiffness EIe was assumed to be 0.5 times the gross flexural 

stiffness EIg. The length over which flexural rigidity was reduced at the base and midheight was 

considered to be 0.1 times the wall height hw. Panagiotou (2008) concluded that applying dual 

plastic hinge concept in the design of cantilever shear walls results in lower amount of vertical 

reinforcement and easing of detailing along the height.  

 A modified response spectrum analysis similar to the Dual Plastic Hinge model is 

proposed in this section in order to better predict curvature demands in cantilever shear walls. 

Figure 5.40(a) shows a general schematic of the model. According to this model, plastic hinge 

length at the base and midheight was assumed to be 0.5lw and 3lw, respectively. Stiffness 

reduction factors α, β, and γ were determined such that base curvature and midheight curvature 

demands predicted from RSA match the mean values from time history analysis, yet it gives an 

accurate prediction of mean roof displacement demands. This was done in two steps as follows: 

 1. For the first step, effective stiffness at the base was reduced from EIe (Figure 5.40(b)) 

to αEIg (Figure 5.40(c)) to give base curvature demands equal or greater than mean base 

curvature demands from time history analysis. Since reducing stiffness at the base increases roof 

displacement demands, the effective stiffness above the plastic hinge region at the base was 

increased in order to obtain roof displacement demands equal to mean roof displacement 

demands from time history analysis. A reduction factor of 0.9 was considered for these regions, 
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i.e. β = γ = 0.9 (Figure 5.40(c)). Figure 5.41(a) shows the variation of the reduction factor α as a 

function of force reduction factor R for the thirteen walls. 

 2. For the second step, effective stiffness at midheight was reduced from EIe (Figure 

5.40(b)) to γEIg (Figure 5.40(d)) to give midheight curvature demands equal to or greater than 

mean midheight curvature demands from time history analysis. The effective stiffness outside 

the midheight plastic hinge region was adjusted to obtain roof displacements equal to the mean 

roof displacement demand from time history analysis. Figure 5.40(b) and Figure 5.40(c) show 

the variation of stiffness reduction factor at the midheight plastic hinge region (denoted as γ) and 

outside this region (denoted as β) as a function of R for the thirteen walls. 

 3. Final curvature and interstory drift demands for a wall can be calculated by taking the 

maximum of curvature and interstory drift envelopes determined from steps one and two. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.40 General schematic of (a) RSA with variable stiffness reduction factor, (b) RSA with 

uniform reduction factor to estimate roof displacement demand, (c) RSA with reduced stiffness 

reduction factor at the base to estimate base curvature demand, and (d) RSA with reduced 

stiffness reduction factor at the midheight to estimate midheight curvature demand. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.41 Variation of: (a) α determined in step 1, (b) γ determined in step 2, (c) β determined 

in step 2; (d) comparison of roof displacement demand from step 1 and 2 with roof displacement 

demand using a constant effective stiffness over the height. 

 Figure 5.41(d) compares roof displacement demands from RSA using stiffness reduction 

factors presented in Figures 5.41(a) to (c) with those determined from RSA using constant 

stiffness reduction factors over the height. It can be seen that roof displacement demand from the 

two approaches are very similar. 

 Figures 5.42 to 5.45 compare curvature and interstory drift envelopes determined from 

Step 3 with the mean envelopes from time history analysis. Also shown in these figures are the 

curvature and interstory drift profiles from RSA using constant stiffness reduction factors. As it 

can be seen from these figures, the traditional RSA with constant effective stiffness over the 
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height gives poor estimate of base and midheight curvature demands, while the modified RSA 

with varying stiffness reduction factors gives a reasonable estimate of these demands. Note that 

the idea of developing RSA with varying effective stiffness over the height was to predict mean 

curvature envelopes from time history analysis, yet it can be seen from Figures 5.42 through 5.45 

that the interstory drift envelopes corresponding to the modified RSA are a reasonable upper 

bound to the interstory drifts envelopes determined from time history analysis. 
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Figure 5.42 Comparison of mean curvature and interstory drift envelopes from time history 

analysis (THA) with predictions from RSA using varying and uniform stiffness reduction factors 

for 10 story walls. 
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Figure 5.43 Comparison of mean curvature and interstory drift envelopes from time history 

analysis (THA) with predictions from RSA using varying and uniform stiffness reduction factors 

for 20 and 40 story walls. 
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Figure 5.44 Comparison of mean curvature and interstory drift envelopes from time history 

analysis (THA) with predictions from RSA using varying and uniform stiffness reduction factors 

for 30 story walls. 
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Figure 5.45 Comparison of mean curvature and interstory drift envelopes from time history 

analysis (THA) with predictions from RSA using varying and uniform stiffness reduction factors 

for 50 story walls. 
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5.9 Summary and Conclusions 

Time history analysis was used to develop simplified models to predict flexural response of 

cantilever shear walls. The study included 13 different cantilever shear walls that were 10 to 50 

stories high, and had a wide range of longitudinal reinforcement percentages and axial 

compression force levels. Mean roof displacement demands from time history analysis was used 

to determine effective stiffness of cantilever shear walls. It was observed that stiffness reduction 

factor drops from 1.0 to 0.5 as the force reduction factor increases. Using the recommended 

reduction factors in a linear analysis such as response spectrum analysis (RSA) results in roof 

displacement demands that are similar to the mean displacement demands from time history 

analysis.  

 The relationship between base curvature and roof displacement demands was 

investigated for three walls. It was observed that these demands did not occur at the same instant 

in taller walls due to the influence of higher modes. It was also observed that the CSA A23.3-04 

approach underestimates the elastic portion of the roof displacement demand, which implies that 

this approach overestimates base curvature demands especially in taller walls. A model was 

proposed in order to predict base curvature demands corresponding to mean and mean plus one 

standard deviation results determined from time history analysis. The proposed model relates 

base curvature demands to the global drift demand through a term, which is a function of the 

wall height and force reduction factor. Also, a new model for predicting midheight curvature 

demands was developed. It was observed that the intensity of midheight curvature demand is 

relatively independent of the wall flexural strength, and midheight curvature demand vary 

between 0.002/lw and 0.0035/lw, where lw is the wall length. Midheight yielding can be well 

tolerated by providing minimum detailing over the elevation range from above the plastic hinge 

region at the base to 0.75hw, where hw is the wall height. Lastly, a simplified design envelope for 

predicting curvature demands over the height was proposed. The input parameters for this model 

are the base curvature demand, midheight curvature demand, and the plastic hinge length at the 

base. 

 This study introduced a new model for predicting interstory drift demands in cantilever 

shear walls. Accurate estimate of this parameter is of particular importance in assessing the 

strength of slab-column connections. Roof and midheight interstory drifts were expressed in 
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terms of the global drift ratio. It was observed that both roof and midheight interstory drift 

demands are relatively independent of the force reduction factor. Two models were proposed for 

estimating interstory drift demands corresponding to mean and mean plus one standard deviation 

results determined from time history analysis. Both models feature residual drift demands at the 

base to represent the additional rotation at the base of walls with a flexible support. A simplified 

design envelope was then proposed to estimate interstory drift demands over the height. The 

accuracy of the model was demonstrated for walls with fixed and flexible base supports.  

 The influence of shear deformation on roof displacement demands of cantilever shear 

walls was studied. It was concluded that including shear deformation does not impact demand 

parameters on cantilever shear walls significantly even though a lower-bound shear stiffness is 

used in the analytical model. 

 Time history results using trilinear and Elastic-perfectly-plastic (EPP) hysteretic models 

were also compared in this study. It was observed that except roof displacement and interstory 

drift at the top of wall, other demand parameters from the EPP models are higher than those 

associated with the trilinear model. It was observed that the reason the two models resulted in 

very different base and midheight curvature ductility ratios is due to the fact that the two 

analytical models offer very different estimate of the yield curvature. 

 This study introduced a modified response spectrum analysis with varying stiffness 

reduction factor in order to predict the mean curvature envelope. It was observed that although 

using constant stiffness reduction factors in RSA results in good prediction of roof displacement 

demands, it gives a poor estimate of base and midheight curvature demands. The modified RSA 

is accomplished in two steps: in the first step the stiffness of the wall at the base in reduced to 

estimate mean base curvature demands, while in the second step the wall stiffness is reduced at 

the midheight in order to estimate mean midheight curvature demands from time history 

analysis. Final curvature envelope for a wall would be the maximum of the envelopes 

determined from steps one and two. It was also observed that using the modified RSA results in 

interstory drifts that are an upper-bound to the mean interstory drift demands determined from 

time history analysis. 
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Chapter 6 : Shear Demands on Cantilever Shear Walls 

6.1 Overview 

In this chapter, time history results are used to estimate shear force demands on cantilever shear 

walls. Previous recommendations on shear amplification factor are reviewed. The relationship 

between base shear force and base rotation demands and the influence of higher mode period 

elongation on midheight shear force demands are investigated. Lastly, shear force profiles 

corresponding to mean time history results are used to develop simple design envelopes for 

predicting shear force demands over the height. 

6.2 Dynamic Shear Amplification Factor 

Estimating shear force demands is of particular interest in the seismic design of cantilever shear 

walls in order to ensure these structures will have a ductile response. Due to the influence of 

higher modes, the shear force demands from nonlinear time history analysis are considerably 

larger than those from linear analysis. The difference between shear force demands from the two 

approaches is often called dynamic shear amplification factor. Many previous studies have been 

carried out in order to estimate this parameter. A brief review of these studies is presented in this 

section. 

 Blakely et al. (1975) observed that base shear force demands from time history analysis 

of 6 to 20 story shear walls are larger than those determined from the static code procedure. Only 

five unscaled ground motions were used in the study, and a bilinear bending moment - curvature 

relationship was used to model the shear walls. Blakely et al. proposed the following equation to 

amplify shear force demands from the code procedure: 

�� = �0.9 + 	10 , 	 ≤ 6																																																																																																																��	6.1
1.3 + 	30 , 	 > 6 � 

where n is the number of stories. It should be noted that the shear amplification factor ωv in 

Equation 6.1 is limited to 1.8, i.e. this parameter is constant for buildings with the number of 
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floors n equal to or greater than 15. Also implied in Equation 6.1 is that ωv is proportional to the 

fundamental period of the structure since the latter is usually a function of number of stories. 

Rutenberg and Nsieri (2006) conducted time history analysis on a series of 5 to 25 story shear 

walls with fundamental periods ranging from 0.3 to 3.0 s. These walls were subjected to 2 suites 

of records, each containing 20 ground motions, developed for SAC project (Somerville 1997). 

The elastic-perfectly-plastic hysteretic model was used in the analytical model, and the following 

equation was proposed based on the mean base shear force demands: �� = �0.75 + 0.22�� + � + ������																																																																																																		��	6.2 

where T and q are the fundamental period and behaviour factor (similar to force reduction factor 

which is defines as the ratio of elastic bending moment demand to the wall capacity, both 

calculated at the base of the wall), respectively. Note that Vd is the shear force demand at the 

base determined from static analysis using an inverted triangular lateral load pattern and is equal 

to 
� !"#�$% &! � , where Mn is the bending moment at flexural yielding, and H and n are the total 

height and number of stories, respectively. The ratio of Va/Vd in Equation 6.2 is essentially the 

shear amplification factor ωv. Rutenberg and Nsieri also introduced a simple model to estimate 

shear force distribution over the height of the building. According to this model, shear force is 

constant over a length equal to 0.1H, and then it decreases to 0.5 times the base shear force 

determined using Equation 6.2. The elevation at which shear force is dropped to 0.5Va is ξH, 

where ξ is equal to 1.0-0.3T and is greater than or equal to 0.5.  

 Keintzel (1990) used the SRSS modal combination method to estimate base shear force 

demands from time history analysis. He assumed that only the first and second modes are the 

dominant modes of vibration, and he proposed the following equation for predicting base shear 

force demand VED: �'( = )��'($�* + ���'(*�*																																																																																																															��	6.3 

where VED1 and VED2 are the design base shear forces corresponding to the first and second 

modes, respectively. Equation 6.3 indicates that the design shear force from the second mode is 

increased by the behaviour factor q in order to account for the influence of higher modes. 

Keintzel simplified Equation 6.3 by assuming that the ratio of the base shear force from the 

second mode to the base shear force from the first mode is equal to √0.1 ,-�.!�,-�.&� , where Sa(T1) 

and Sa(T2) are the spectral accelerations corresponding to the first and second modes, 
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respectively. Implementing this assumption in Equation 6.3 and considering the influence of 

flexural overstrength on the first mode shear force gives the following equation, which has also 

been used in the Eurocode 8-EC 8 (CEN 2004): 

�� = �./�01�� 21�2'��* + 0.1�3���4�3���$��*																																																																																														��	6.4 

where ωv is shear amplification factor and should be applied to the design shear force determined 

from the first mode, 01�	is the overstrength associated with reinforcing steel strain hardening, 

MRd/MEd is the ratio of design flexural strength to the design bending moment demand at the base 

of the wall, and Sa(Tc) is the maximum spectral acceleration. According to EC 8 provisions, the 

minimum and maximum value for ωv is 1.5 and the q factor, respectively.  

 Priestley and Amaris (2003) studied the seismic response of 6 cantilever shear walls with 

the number of stories from 2 to 20 and fundamental period ranging from 0.34 to 3.65 s. Five 

spectrum matched ground motions compatible with the EC 8 design spectrum were used as the 

input motion, and the walls were modelled using the Takeda hysteretic model. Similar to the 

approach taken by Keintzel, Priestley and Amaris proposed a so called Modified Modal 

Superposition (MMS) method, in which the shear force at a given floor i, Vi, can be determined 

from the following equation: �6 = ��$6* + �*'6* + �7'6* +⋯�9.:																																																																																																									��	6.5 

where V1i is the design shear force from the first mode and the other terms are the elastic shear 

forces corresponding to higher modes. Equation 6.5 implies that nonlinear response only limits 

the shear force from the first mode response, and shear forces from higher modes are not 

affected by ductility in the same manner as the first mode response is. 

 The MMS method described above has been modified by several researchers. Sullivan et 

al. (2008) compared base shear force demands from Equation 6.5 with time history results for 

two groups of frame-wall structures using the Takeda hysteretic model subjected to only five real 

(not spectrum matched) ground motions. They observed that the MMS method gives 

considerably higher base shear forces than the mean base shear force from time history analysis. 

A so called Transitory Inelastic Modal Superposition (TIMS) method was introduced, which 

accounts for the period lengthening of higher modes due to the inelastic behaviour. The base 

shear force from this method can be determined from the following equation: �;.<�, = ��;$=! + �;.<�,** + �;.<�,7* +⋯+ �;.<�,>* �9.:																																																															��	6.6 



209 
 

where �;$=  is the ductile first mode base shear force (identical to V1i term in Equation 6.5), and 

VbTIMSn is the base shear force corresponding to the nth mode of a structure with a very soft spring 

at the base. Sullivan et al. (2008) indicated that the stiffness of the spring at the base is possibly 

close to the post yield stiffness. Performing eigen value analysis of a structure with a softened 

base results in very long fundamental period, which essentially represents the hinge mechanism 

at the base due to the flexural yielding. 

 Pennucci et al. (2010) followed a similar approach to estimate shear force demands in tall 

concrete shear walls. They carried out time history analysis on a series of walls with fundamental 

periods varying from 1 to 10 seconds. The ratio of elastic bending moment at the base to the 

flexural strength (denoted as RM) ranged from 1 to 5. The Takeda hysteretic model was used to 

model the plastic hinge region at the base, and the rest of the wall was assumed to remain elastic. 

Eleven spectrum matched ground motions were used in time history analysis, and a damping of 

only 0.5% was set to the first and third modes. Pennucci et al. observed that for a wall with 

fundamental period of 4 s and RM = 4, the ratio of elastic shear force demand at the base to the 

mean base shear force demand from time history analysis is considerably less than 4.0. 

Consequently, using traditional response spectrum analysis leads to underestimation of shear 

force demands in taller walls with higher force reduction factors. Lastly, the following equation 

was proposed to predict base shear force demand: 

�� = �'�,$?@ + )��A6>,*�* + ��A6>,7�7 +⋯?A 																																																																																								��	6.7 

where VEd,1 is the elastic base shear force form the first mode of a wall with a fixed support, and 

Vpin,i (i = 2, 3,…) is the elastic base shear force from higher modes of response of a wall with a 

pinned support. The authors found that the Rp factor is related to RM: for RM = 1, Rp goes to 

infinity, while for very flexible structures (RM = ∞) Rp goes to 1.0.  

 Calugaru and Panagiotou (2011) studied the seismic response of cantilever shear walls 

subjected to pulse type loading. The study included 10, 20, and 40 story walls with fundamental 

periods ranging from 2.2 to 6.6 s, and three force reduction factors of 2, 4, and 6 were considered 

for each wall. The Clough hysteretic relationship was used to model the nonlinear response over 

the plastic hinge region at the base of walls, and the remainder of the wall was modelled with 

elastic elements with an effective stiffness equal to 0.4EIg. Calugaru and Panagiotou proposed 

the following equation to estimate a given response quantity (such as shear force or bending 

moment demand) at floor i: 
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B6 = /�B$6 Ω;,=?$ �* + �B*6 �* + �B76 �7�?#�* 																																																																																																��	6.8 

where, Qi
1, Q

i
2, and Qi

3 are the elastic quantities corresponding to the first, second and third 

modes at floor i, R1 is the force reduction factor applied to the first mode response, Ωb,o is the 

overstrength factor, and RH is the reduction factor associated with higher modes. The authors 

found that RH is generally much smaller than R1. It was found that for base shear force demand, 

RH varies from about 1 to 2 for pulse loads with periods between second and third mode periods 

of the shear wall. 

 CSA A23.3-04 Clause 21 defines shear force demand and shear resistance of ductile 

walls in order to ensure that the ductile response (flexural yielding at the base plastic hinge 

region) occurs prior to shear failure. Clause 21.6.9 states that the shear force demands 

determined from linear analysis must be increased by the ratio of probable moment capacity to 

the applied factored moment at the base of the wall. Also, the shear force demand is limited to 

shear demands determined from linear analysis. Boivin and Paultre (2010) performed nonlinear 

time history analysis on a 12-story cantilever shear wall located in Montreal and they concluded 

that shear force demand from time history analysis was greater than the predicted shear force 

demand from the CSA A23.3 prediction.  

 In terms of shear strength, CSA A23.3-04 defines concrete shear strength Vc as a function 

of the parameter β. The β parameter reduces as the longitudinal strain increases, which is an 

indicator of the diagonal crack width. Bentz et al. (2006) observed that β varied from 0.3 to 

about 0.15 as longitudinal strain εx increased from 0 to 2.5x10-3. Clause 21 of CSA A23.3-04, on 

the other hand, recommends a lower-bound value for 0.18 for β for regions of plastic hinging, 

and then reduces this parameter further to account for the reduction in aggregate interlock shear 

resistance due to the increase in the width of diagonal cracks. The inelastic rotation at the base 

plastic hinge region θid, is used as an indicator of diagonal crack width. The same analogy was 

taken by Krolicki et al. (2011) to relate concrete shear resistance to displacement ductility based 

on experimental results. 

 Most of the researchers focused on estimating shear force demands by using a small 

number of ground motions (five by Priestley and Amaris; five by Sullivan et al. ,and eleven by 

Pennucci et al.) to conduct time history analysis. The relationship between base rotation and base 

shear force demands during ground motion shaking still needs to be examined in order to 
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understand the intensity of base rotations at the instant of high base shear force demands. Lastly, 

it is necessary to correlate shear force demands determined from time history analysis to the 

results from response spectrum analysis, as the latter is the method that is used in practice to 

estimate seismic demands on cantilever shear walls. A simplified design envelope for predicting 

shear force demands over the height is also proposed in this chapter. 

6.3 Shear Force - Base Rotation Relationship  

In order to understand the relationship between base rotation and base shear force demands, time 

history results for three 10, 30, and 50 story walls were examined. The force reduction factor 

corresponding to these walls is 3.2, 3.1, and 3.7, respectively. The number of input ground 

motions is 80, 53, and 35 for 10, 30, and 50 stories high walls, respectively. These records are 

referred to as “SOR” ground motions in Chapter 4.  

 Figure 6.1 shows the variation of base curvature and base bending moment demands at 

the instant of maximum base shear force demand for the three walls. Note that the vertical axis in 

the left figures is normalized by the mean base curvature demand, which is essentially the mean 

value of the largest base curvature demand recorded for individual ground motions. Figure 6.1 

indicates that the base curvature demands are relatively small at the time when maximum base 

shear force occurs. The ratios are bigger for the 10 story wall, and it gets smaller for the 30 and 

50 story walls. In terms of bending moment demand at the base, it can be seen that bending 

moments at the instant of maximum base shear force are relatively large for the 10 story wall – 

all moments are higher than the bending moment at crack opening Mco. For the 30 and 50 story 

walls, on the other hand, bending moments corresponding to half of ground motions are less than 

Mco indicating that bending moments are relatively low when maximum base shear force occurs. 

 The main drawback of Figure 6.1 is that it only shows base curvature at the instant when 

maximum base shear force occurs. Other possible critical instants might be the instants at which 

base curvature demand is significantly higher than the curvature demands at the instant of 

maximum base shear force, while the corresponding base shear force is slightly lower than the 

maximum base shear force for that ground motion. Figure 6.2 shows an example of such case.  
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(a)  

(b)  

(c)  

Figure 6.1 Variation of base curvature and base bending moment at the instant of maximum base 

shear force for (a) 10 story, (b) 30 story, and (c) 50 story walls. 
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Figure 6.2 Variation of base rotation versus base shear force for one ground motion for the 10 

story wall with R = 3.2. 
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the entire record and the corresponding base shear force demand at the instant of maximum base 

curvature demand. The interaction diagram for a given ground motion passes through points (1) 

to (4). This procedure was repeated for all ground motions for the three shear walls. Figure 6.4 

shows the results. 

 

 

Figure 6.3 Base shear - base rotation interaction diagram. 
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(a) (b) 

(c)  

Figure 6.4 Base shear - base rotation interaction diagrams for (a) 10 story, (b) 30 story, and (c) 

50 story walls. 
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have equal base rotations, which indicates that the maximum base curvature occurs within time 

steps with base shear demand equal to or greater than 50% of the maximum value. For 30 and 50 

story walls, on the other hand, base rotations for point (4) are larger than those associated with 

point (2), which means that for these walls, the maximum base curvature occurs at base shear 

forces that are less than 50% of the maximum base shear force.  

 Figure 6.4 shows that base rotations associated with mean base shear forces are generally 

small. Base rotation corresponding to the mean base shear force (point (1) in Figure 6.3) is 

0.003, 0.001, and 0.0006 for 10, 30, and 50 story walls, respectively. On the other hand, the base 

shear forces at high base rotations (point (4) in Figure 6.3) are lower than the corresponding 

mean base shear force demands. The ratio of mean base shear force for point (4) to that for point 

(1) is 0.60, 0.49, and 0.43 for 10, 30, and 50 story walls, respectively. This observation is 

contrary to CSA A23.3-04 design provisions, which uses maximum base shear force and 

maximum base rotation simultaneously to design horizontal reinforcement. Interaction plots 

shown in Figure 6.4 indicate that base rotations at high base shear force were relatively lower 

than the corresponding maximum values. Consequently, concrete shear strength is expected to be 

higher since lower base rotation is associated with smaller diagonal cracking and less reduction 

in the aggregate interlock shear resistance. 

6.4 Mean versus Mean Plus One Standard Deviation Base Shear Force  

Comparisons between base shear force demands corresponding to mean and mean plus one 

standard deviation results were discussed in Chapter 4. It was shown that the coefficient of 

variation is approximately 0.3 for SOR ground motions, which indicates that mean plus one 

standard deviation base shear force demands are 30% higher than those associated with the mean 

results. The Tall Building Initiative (PEER TBI 2010) and SEAONC recommended procedure 

(SEAONC 2007) recommended using mean plus one standard deviation results for actions with 

low ductility such as punching shear failure of slabs and shear force in walls. Gerin and Adebar 

(2009) studied the shear response of reinforced concrete walls and they concluded that concrete 

walls can have considerable ductility after the horizontal reinforcement yields. As a result, 

considering dispersion in order to achieve higher conservatism in the shear design of concrete 

shear walls may not be necessary as the wall failure mode is not brittle when shear force demand 

exceeds the shear capacity at a given instant. 
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It is interesting to plot peak base shear force demands for various ground motions and compare 

them with the maximum base shear force demand. In this way, reduction in base shear demand 

can be determined as a function of number of cycles. For this purpose, peak shear force demands 

for all cycles were determined for three 10, 30, and 50 story walls with force reduction factors of 

3.2, 3.1, and 3.7, respectively. For each ground motion, peak base shear force at various cycles 

was normalized to the maximum base shear force over the entire ground motion, and a curve was 

determined that related the normalized base shear force to the number of cycles. For a given 

number of cycles, the mean value for a suite of ground motions shows how much on average the 

base shear force drops compared to the maximum value.  Figure 6.5 shows the mean plots for the 

three walls. 

 

 

Figure 6.5 Normalized base shear force demand as a function of number of peaks. 
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base shear force is less than 80% of the maximum value. Therefore, it seems that considering 

mean shear demands is adequate for estimating shear demands on cantilever walls since after 

few cycles, the base shear force drops by approximately 20%. Mean shear force demands will be 

used in this chapter to develop simplified models for estimating shear force demands in 

cantilever shear walls. 

6.5 Shear Force Profile over the Height 

Figure 6.6 compares the mean shear force enveloped for 10 to 50 story walls with different force 

reduction factors using the SOR ground motions. It can be seen from Figure 6.6 that the shape of 

the mean shear force envelope changes as the height of the wall increases. Mean shear force for 

10 story walls reduces gradually over the height, while for 30 and 50 story wall, mean shear 

force envelope has a bulge near midheight. For 50 story walls, shear force demand around 

midheight for two R values of 1.8 and 2.0 is higher than the corresponding values for R factors of 

1.3 and 3.7 (48000 kN for R = 1.8 and 2.0 as opposed to 34700 kN for R = 1.3 and 3.7). These 

observations need further examination. 

 Although shear force profiles shown in Figure 6.6 correspond to walls with nonlinear 

behaviour, performing response spectrum analysis can give insight into the influence of higher 

modes on the shear force distribution over the height. Figure 6.7 shows the shear force profiles 

from the first to fourth modes of vibration and the envelope of these profiles using CQC method 

for 10 to 50 story walls. Note that elastic shear force demands shown in this figure correspond to 

0.5EIg flexural stiffness. 
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Figure 6.6 Variation of mean shear force profile over the height of 10 to 50 story walls with 

different force reduction factors. 
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Figure 6.7 Shear force profile corresponding to different modes for 10 to 50 story walls. 
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Figure 6.7 shows that for the 10 story wall, the shape of the shear force envelope is highly 

influenced by the first mode shear force profile over the height. The shear force envelope at the 

base, however, is influenced by the first and second modes. As the wall height increases, shear 

force from the second mode dominates the envelope above the midheight, while at the 

midheight, the contribution of the third mode becomes higher. As a result, shear force envelopes 

for 20 to 50 story walls remain constant over a region starting around the midheight. This 

observation is consistent with the general shape of the shear force envelopes for the 50 story 

walls with intermediate force reduction factors, as shown in Figure 6.6.  

 It is also important to examine why there are large midheight shear force demands for 50 

story walls with force reduction factors of 1.8 and 2.0. A possible explanation for this 

observation would be to compare shear force envelopes corresponding to CMS ground motions 

using different conditioning periods. In this way, it is possible to determine which conditioning 

period defines the envelope of the shear force demand near the midheight. This was done for five 

shear walls: 10 story wall with R = 3.2, 30 story walls with R = 2.3 and R = 3.1, and 50 story 

walls with R = 2.0 and R = 3.7. Selected conditioning periods for the 10 story wall are 2T1, 1.5T1, 

T1, 1.5T2, and T2, while 2T1, T1, 1.5T2, T2, and T3 are selected for 30 story walls. For 50 story 

walls, T1, T2, 2T3, and T3 are considered. Note that 1.5T2 and 2T3 represent the period elongation 

of the second and third modes for the 10 (as well as 30) and 50 story walls, respectively. Figure 

6.8 shows the results. The following observations can be made: 

 1. For the 10 story wall, the CMS at 1.5T1 defines the shear force envelope around the 

midheight. The shear force demand reduces gradually around the midheight as 1.5T1 is the 

conditioning period that is associated with the elongation of first mode period. Also, changing 

conditioning period from T2 to 1.5T2 did not change the mean shear force envelope, which 

indicates that the elongation of higher mode has no effect on shear force distribution over the 

height. 

 2. For the 30 story walls, the CMS at 1.5T2 defines the shear force envelope over the 

elevation range from 50 to 60 m for R = 2.3 and from 7 to 22 m for R = 3.1. Over these regions, 

mean shear forces from the CMS at 1.5T2 is very close to those determined using SOR ground 

motions. It was observed that period elongation of the second mode has no effect on base shear 

force demand since mean base shear force demands corresponding to T2 and 1.5T2 are similar. 

Also note that the CMS at T3 controls the shear force envelope over the elevation range from 40 
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to 55 m for R = 3.1, while for R = 2.3, the shear force near midheight corresponding to this 

conditioning period is considerably lower than those associated with T2 or 1.5T2. 

 

Figure 6.8 Shear force envelope for 10, 30 and 50 story walls using CMS ground motions with 

different conditioning periods. 
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 3. For the 50 story wall with R = 2.0, the CMS at 2T3 defines the shear force envelope 

over the elevation range from 70 to 90 m. The mean shear force near midheight from this 

conditioning period is very similar to those determined using SOR ground motion, which 

indicates that high midheight shear forces for the 50 story wall with R = 2.0 are derived by the 

elongation of the third mode period. For R = 3.7, the CMS at 2T3 defines the shear force 

envelope from h = 40 to 80 m; however, the difference between mean shear forces using T3 and 

2T3 is insignificant. Similar to what was observed for 30 story walls, elongation of higher mode 

periods has no effect on the mean base shear force demand for 50 story walls. 

 The sensitivity analysis shown in Figure 6.8 demonstrates that midheight shear forces in 

the 10 story wall are derived by the elongation of the first mode period, while in 30 and 50 story 

walls, the elongation of higher mode generally defines the shear force envelope over different 

regions along the height. It was shown that high midheight shear forces for the 50 story wall with 

R = 2.0 are derived by the elongation of third mode period. Also, second mode period elongation 

defines the shear force envelope over some portion of the height of the 30 story walls. 

Determining which conditioning period defines the shear force envelope of taller walls with high 

force reduction factor requires significant computational effort. The investigation conducted in 

this section with a limited number of conditioning periods cannot be generalized to other walls, 

rather it gives some insight into the influence of higher mode period lengthening on midheight 

shear force demands in high-rise cantilever shear walls. 

6.6 Simplified Design Envelope for Predicting Shear Force Demands 

In this section, mean shear force demands from time history analysis are used to establish a 

simplified design envelope for predicting shear force demand over the height. Time history 

analysis was carried out for 13 shear walls (three 10 story, one 20 story, four 30 story, one 40 

story, and four 50 story) using the SOR ground motions. The details are presented hereafter. 

6.6.1 Estimating Base Shear Force 

Figure 6.9 compares the predicted base shear force demand from different models with the mean 

and mean plus one standard deviation base shear force demands determined from time history 

analysis. The predicted base shear forces were calculated using Equation 6.5 (Priestley and 
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Amaris), Equation 6.6 (Sullivan et al.), Equation 6.3 (Keintzel), and Equation 6.2 (Rutenberg 

and Nsieri). Elastic modes 1 to 4 were considered in Eq. 5 and Eq.6. Two stiffness reduction 

factors of 1.0 and 0.5 were used to compute elastic shear forces and the corresponding force 

reduction factor. These values are considered as the upper-bound and lower-bound stiffness 

reduction factors. 

 

(a) (b) 

Figure 6.9 Comparison of base shear force demand from different models using stiffness 

reduction factors of (a) 0.5, and (b) 1.0 with the mean and mean plus one standard deviation 

(µ+σ) results from time history analysis (denoted as THA). 

 
 Figure 6.9 indicates that Sullivan et al. approach gives base shear forces that are 

consistently lower than the mean results from time history analysis. For this method, the results 

corresponding to stiffness reduction factor of 1.0 are closer to the mean results. The base shear 

forces predicted by Priestley and Amaris approach using stiffness reduction factor of 1.0 are 

higher than the mean plus one standard deviation results for 20 to 50 story walls; however, using 

an effective stiffness of 0.5EIg gives base shear forces that are generally lower than µ+σ results. 
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the mean results for 50 story walls (Figure 6.9(a)), which indicates that considering only second 

mode is not adequate for predicting base shear force demands for tall walls. 

 It can be seen from Figure 6.9(a) that Rutenberg and Nsieri approach gives closest values 

to the mean time history results for most walls. The predictions from Priestley and Amaris 

method is better than Rutenberg and Nsieri and also Keintzel approaches for 50 story walls. 

Therefore, it seems that either Priestley and Amaris or Rutenberg and Nsieri approaches provide 

a good prediction of mean base shear force demand. A comparison between mean shear force 

envelopes from time history analysis with those from these approaches will be presented in 

section 6.6.2. 

 In design, the base shear force determined using response spectrum analysis is reduced 

by the same ratio that the elastic bending moments are reduced to account for flexural ductility 

of the structure. The shear amplification factor is the amount these design shear forces (reduced 

from the elastic analysis) need to be increased again. In order to establish a simple model for 

shear amplification factor, mean base shear forces from time history analysis were compared 

with base shear forces from response spectrum analysis for fixed base cantilever walls. Elastic 

modes 1 to 4 and an effective stiffness of 0.5EIg were used to compute the elastic bending 

moments and shear forces. Elastic shear forces from different modes were combined using the 

CQC method. To obtain design shear forces, elastic shear forces were reduced by the ratio of 

elastic bending moment at the base corresponding to 0.5EIg to wall flexural strength Mn (denoted 

as R(0.5EIg)). Table 6.1 compares force reduction factors associated with different effective 

stiffness values. The shear amplification factors are also shown in Figure 6.10. 
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Table 6.1 Force reduction factor R corresponding to different stiffness effective stiffness values. 

Wall Rg
1 R2 R(0.5EIg)

3 

10 story 
1.7 1.7 1.3 
2.6 2.3 2.0 
4.2 3.2 3.2 

20 story 4.0 2.7 2.7 

30 story 

1.4 1.4 1.0 
2.4 2.0 1.8 
3.1 2.3 2.3 
4.3 3.1 3.1 

40 story 4.4 3.6 3.2 

50 story 

1.4 1.3 0.9 
2.1 1.8 1.4 
2.4 2.0 1.6 
4.1 3.7 2.6 

 1 based on gross flexural stiffness EIg, 
2 based on effective stiffness which results in roof displacement 

demand equal to the mean roof displacement demand from time history analysis, 3 based on 0.5EIg. 
 

 

Figure 6.10 Shear amplification factor as a function of force reduction factor corresponding to 

0.5EIg. 
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exception is the 40 story wall, which has a shear amplification factor of 2.3. Also shown in 

Figure 6.10 is the proposed equation for calculating shear amplification factor for cantilever 

shear walls: �� = 0.5 E?9.:'<F + 1G , 1 ≤ �� ≤ 2																																																																																																	��	6.9 

 A comparison between the predicted base shear force from Equation 6.9 with mean time 

history results will be presented in Section 6.6.2 

6.6.2 Estimating Shear Force Demands near Midheight 

Figures 6.11 through 6.14 compare the shear force envelope from different models with mean 

shear force envelopes obtained from time history analysis. Note that the R factor in these Figures 

corresponds to an effective stiffness of 0.5EIg. 

 

  

 

 

Figure 6.11 Comparison of shear force envelope from different models with the mean shear 

force envelope from time history analysis (denoted as THA) for 10 story walls with different 

force reduction factors. 
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(a) 

 

(b) 

 

Figure 6.12 Comparison of shear force envelope from different models with the mean shear 

force envelope from time history analysis (denoted as THA) for: (a) 20 story wall, and (b) 40 

story wall. 

 

  

  

Figure 6.13 Comparison of shear force envelope from different models with the mean shear 

force envelope from time history analysis (denoted as THA) for 30 story walls with different 

force reduction factors. 
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Figure 6.14 Comparison of shear force envelope from different models with the mean shear 

force envelope from time history analysis (denoted as THA) for 50 story walls with different 

force reduction factors. 
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Figures 6.11 through 6.14 also show that Rutenberg and Nsieri approach provides a reasonable 

estimate of mean shear force results for the thirteen walls. Although this method can be readily 

used to estimate shear force demands in cantilever walls, it overestimates mean base shear force 

demands in 50 story walls. One reason for this observation is that Rutenberg and Nsieri equation 

is based on time history results for 5 to 25 story cantilever shear walls. The other possible reason 

is that Rutenberg and Nsieri used elastic-perfectly-plastic (EPP) bending moment - curvature 

relationship for performing time history analysis. As it was observed in Figures 5.37 through 

5.39, using trilinear moment - curvature relationship results in lower base shear force demands 

than using the EPP model. In addition, for 50 story walls, the ratio of midheight shear force to 

base shear force is greater than the 0.5 factor proposed by Rutenberg and Nsieri. To refine this 

approach, a simple design envelope was developed with key parameters that can be obtained 

from RSA with fixed base support using 0.5EIg effective stiffness. Figure 6.15 shows a 

schematic of this model. 

 (Vf)RSA shown in Figure 6.15 is shear force from RSA using an effective stiffness of 

0.5EIg. The ωv factor is the shear amplification factor and can be determined from Equation 6.9, 

while hw and lw are the wall height and wall length, respectively. The ξ parameter controls the 

shape of the envelope at upper levels and is equal to 0.5 for number of floors n ≤ 30 and it 

reduces linearly to 0.3 for n = 50. Comparison between mean shear force enveloped from time 

history analysis with the predictions from the design envelope is shown in Figure 6.16. As it can 

be seen from Figure 6.16, the design envelope generally gives a reasonable upper-bound 

estimate of the mean shear force envelopes. 

 Figure 6.16 also compares mean shear force envelopes from time history analysis with 

those determined from RSA. Note that RSA was performed using an effective stiffness of 0.5EIg, 

and shear force envelopes were then scaled using shear amplification factor obtained from 

Equation 6.9. Figure 6.16 indicates that the envelopes from RSA are generally an upper-bound to 

the mean shear force envelopes from time history analysis. The only exceptions are the 30 story 

wall with R = 2.3 and 50 story walls with force reduction factors of 1.4 and 1.6. For these walls, 

scaled envelopes from RSA underestimate the shear force demand around the midheight. For 50 

story walls, midheight shear forces from scaled RSA are approximately 25% lower than those 

determined from time history analysis. This observation suggests that using RSA to predict 

midheight shear force demands for tall shear walls must be done cautiously. The design envelope 

shown in Figure 6.15 can be used in such cases. 
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Figure 6.15 Simplified design envelope for predicting shear force demands in cantilever shear 

walls. 

 

  

 

 

Figure 6.16 Comparison of mean shear force envelope from time history analysis (denoted as 

THA) with the envelope shown in Figure 6.15 and scaled shear force envelope from RSA. 
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Figure 6.16 Cont'd. 
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Figure 6.16 Cont'd. 

6.7 Summary and Conclusions 

Time history results were used to estimate shear force demands in cantilever shear walls. A 

simple base shear - base rotation interaction diagram was developed to study the intensity of 

base rotations at the instant of maximum base shear force demand. It was observed that the base 

rotation associated with the maximum base shear force was smaller than the maximum base 

rotation for individual ground motions. Low base rotation corresponding to high base shear force 

demand results in smaller diagonal cracking, which increases concrete shear strength. 

 An investigation was carried out to understand the intensity of shear force demands near 

the midheight. Time history results showed that large shear force demands were developed 

around the midheight for 50 story walls with intermediate force reduction factors. It was 

observed that period lengthening of higher modes caused high midheight shear force demands in 

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000 100000

H
ei

g
h

t (
m

)

Shear force (kN)

THA

Envelope
RSA

50 story, R = 0.9
0

20

40

60

80

100

120

140

160

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

H
ei

g
h

t (
m

)

Shear force (kN)

50 story, R = 1.4

RSA

THA Envelope

0

20

40

60

80

100

120

140

160

0 20000 40000 60000 80000

H
ei

g
h

t (
m

)

Shear force (kN)

50 story, R = 1.6

RSA

THA Envelope

0

20

40

60

80

100

120

140

160

0 10000 20000 30000 40000 50000 60000 70000

H
ei

g
h

t 
(m

)

Shear force (kN)

THA

RSA

Envelope

50 story, R = 2.6



234 
 

such walls. For shorter walls, on the other hand, period lengthening of the first mode derived 

high shear force demands near the midheight. 

 Mean shear force envelopes from time history analysis were compared with the shear 

force demands determined from available recommendations on shear amplification factor. The 

Rutenberg and Nsieri method provided the best envelope although this method overestimated the 

base shear force demand in 50 story walls. A simple envelope was proposed based on Rutenberg 

and Nsieri model to estimate the design shear force over the height of cantilever shear walls. The 

proposed envelope can be easily determined by performing response spectrum analysis for walls 

with a fixed base support using 0.5EIg flexural stiffness. Comparison of mean time history 

results with the proposed envelope showed good agreement. Also, it was observed that RSA can 

be used for estimating mean shear force demands if they are scaled by appropriate shear 

amplification factors. For very tall walls, however, midheight shear force demands from scaled 

RSA were found to be 25% lower than those determined form time history analysis.  
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Chapter 7 : Validation of Flexural Models with Shake Table Results 

7.1 Overview 

Shake table test results of a 7-story shear wall at the University of California at San Diego 

(UCSD) are used in this section to validate the simplified models developed for estimating roof 

displacement, base curvature, and interstory drift demands. A 3-dimensional linear model of the 

wall was developed in SAP and the stiffness of the linear model was adjusted to match roof 

displacement demands obtained from the experiment. The peak interstory drift profile recorded 

during the test was compared with the simplified interstory drift model. Lastly, base curvature 

demands predicted from simplified models were compared with those measured during the test. 

7.2 Description of the Specimen 

Figure 7.1 shows the elevation and floor plan view of the shear wall specimen (Panagiotou 

2008). The specimen is a seven story building designed using displacement-based approach for a 

site located in Los Angeles. The total height of the specimen is 19.2 m. The main lateral force 

resisting system for the building is a 3.66 m long rectangular shear wall (so called web wall). 

The thickness of the web wall is 0.2 m at levels 1 and 7 and 0.15 m at other elevations. The 

longitudinal reinforcement ratio for the web wall is 0.66% at levels 1 and 7 and 0.81% 

elsewhere. The specimen includes two additional walls, which provide lateral and torsional 

stability. The flange wall is 4.87 m long, and is 0.2 m thick at level 1 and 0.15 m thick 

elsewhere. The third wall is a precast segmental wall which is connected to the slabs at each 

elevation with pin-pin horizontal trusses. The simply supported slab is 0.2 m thick, and is 

supported by the web wall and four steel gravity columns with pinned ends. The web wall is 

connected to the flange wall via a slotted connection. This connection is 0.61 m wide and 4.88 m 

wide, and has two slots on both ends. The slots are 51 mm wide and 140 mm thick to minimize 

the coupling between the web and flange walls. The concrete had a compressive strength of 37.9 

MPa, and the yield strength for the reinforcing steel was 455 MPa. The total seismic weight of 
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the specimen is 2045 kN, and the mass distribution over the height is evenly distributed over the 

height. 

 

Figure 7.1 Elevation and plan view of the seven-story wall specimen (from Panagiotou 2008, © 

Ph.D. thesis, by permission). 

7.3 Test Program and Experimental Results 

The specimen was subjected to four earthquakes in the direction parallel to the web wall. Figure 

7.2 shows the acceleration and displacement spectra corresponding to 5% damping for the four 

ground motions. Also shown in this figure is the spectral acceleration and spectral displacement 

for the UHS used in this thesis as the target spectrum for scaling ground motions. Note that EQ1 

and EQ4 represented records with 63.7% and 5.8% probability of exceedance in 50 years for the 

period of 0.5 s, respectively. White noise tests were performed to measure the period of the 

building prior and after each earthquake. The fundamental period of the building at the 
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beginning of the experiment was measured to be 0.51 s. This period increased to 0.59 s because 

the specimen was subjected to 25 white noise tests prior to EQ1. The fundamental period shifted 

to 0.65, 0.82, 0.88, and 1.16 s after EQ1, EQ2, EQ3, and EQ4, respectively. The fundamental 

period of the specimen prior to each earthquake is shown in Figure 7.2 with a dashed line. The 

experimental results are summarized in Table 7.1. 

 

Figure 7.2 Spectral acceleration and spectral displacement spectra corresponding to 5% damping 

for the input ground motions (Note: fundamental period of the specimen prior to each motion is 

shown in dotted lines). 

 
Table 7.1 Maximum values of different demand parameters recorded in the experiment. 

 EQ1 EQ2 EQ3 EQ4 
Global drift ratio (%) 0.28 0.75 0.83 2.06 
Base curvature times wall length 0.002 0.0107 0.0114 0.0282 
Tensile strain in long. steel  0.0061 0.0173 0.0178 0.0285 
Compressive strain in concrete -0.0007 -0.0017 -0.0018 -0.0039 
Interstory drift at the top of wall (%) 0.35 0.89 1.03 2.36 

  

 A considerable difference was observed between the measured base bending moment 

demand and the web wall flexural strength. The measured base bending moment demand was 

5368 kNm, 8351 kNm, 8353 kNm, and 11495 kNm for EQ1 to EQ4, while the flexural strength 

of the web wall was 6368 kNm (Panagiotou 2008). This increase of the flexural capacity of the 

wall is associated with the slotted slab connecting the web and flange walls. The slab was slotted 

to reduce the coupling between the two walls. The moment capacity of the slotted connection 
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was 6.22 kNm and 10.2 kNm per unit length of the connection for the side connecting to the 

flange wall and for the side connecting to the web wall, respectively. Although these moments 

are low, the shear force from the yielding of the slotted connection caused significant axial force 

variation in the web and flange walls when it is summed over seven stories. This variation leads 

to considerable increase in the moment capacity of the specimen. This observation was verified 

by comparing bending moment and shear force demands from experiment with those determined 

from nonlinear time history analysis using the trilinear hysteretic bending moment - curvature 

relationship shown in Figure 2.20. The results from this study indicated that roof displacement, 

base curvature, and maximum interstory drift at the roof vary between 85% and 120% of the 

experimental results, while the predicted base shear and bending moment demands are 

significantly less than those determined from the experiment, especially for the EQ4. Similar 

observations were found by Martinelli and Filippou (2009). Panagiotou et al. (2007) indicated 

that such overstrength may not be observed in real buildings since the configuration of gravity 

columns and slabs in practice are different from those of the specimen, therefore the 

development of such overstrength seems to be questionable to apply for a real structure.  

7.4 Linear Analysis of the Specimen for Predicting Effective Stiffness 

The purpose of this section is to obtain appropriate effective stiffness values to be used in the 

linear analysis in order to predict roof displacement demands from the shake table test. A 3-

dimensional linear model of the specimen was set up in SAP (Computers & Structures Inc. 

2010). The model included the web wall, flange wall, precast segmental wall, gravity columns, 

and slabs. The flexibility of the foundation was modelled using rotational springs at the base of 

the web wall and flange wall. Fundamental period of the analytical model using EIg for the three 

concrete walls and 0.2EIg for the slab was 0.52 s, which nearly matched the fundamental period 

of 0.51 s measured from white noise test at the beginning of the experiment. Wong (2010) 

observed that reducing slab stiffness from 0.2EIg to 0.1EIg does not change roof displacement 

demand from the linear model more than 10% for EQ1 and EQ4. As a result, an effective 

stiffness of 0.2EIg was considered to model cracking of the slab during the experiment. Note that 

Elastic Modulus of concrete Ec and self weight of concrete was assumed to be 4500���� and 

2400 kN/m3, respectively.  
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For each earthquake, appropriate effective stiffness was determined in two steps. In the first step, 

the stiffness of the walls was calibrated such that the fundamental period of the linear model 

matched the period obtained from the white noise tests prior to each earthquake. The stiffness 

reduction factor associated with this step is denoted as β. In the second step, the stiffness of the 

wall is further reduced so that the roof displacement from response spectrum analysis matched 

the maximum roof displacement from the experiment. The stiffness reduction factor associated 

with this step is denoted as α. It should be noted that the fundamental period of the specimen 

shifted from 0.51 s to 0.59 s prior to EQ1 due to applying 25 white noise tests. A reduction factor 

of β = 0.8 was required to increase the fundamental period of the analytical model from 0.52 s to 

0.59 s. The input spectrum for performing response spectrum analysis is the acceleration 

spectrum for individual earthquakes as shown in Figure 7.2. Table 7.2 shows the reduction 

factors α and β associated with the two steps. 

 

Table 7.2 Stiffness reduction factors to estimate the period and roof displacement of the 

specimen using the acceleration spectrum for individual earthquakes. 

 WN3 EQ1 EQ2 EQ3 EQ4 
Reduction factor in the first step (β)1 0.8 0.8 0.64 0.4 0.30 

Reduction factor in the second step (α)2 - 0.8 0.9 1.3 0.53 
Product (αβ) - 0.64 0.58 0.52 0.16 

R1 - 1.43 2.22 2.32 3.54 
R2 - 1.32 3.22 3.70 3.22 

Fundamental period from white noise prior to earthquake (s) 0.51 0.59 0.65 0.82 0.88 
Fundamental period of linear model prior to earthquake (s) 0.52 0.59 0.65 0.81 0.88 
Fundamental period from white noise after earthquake (s) 0.59 0.65 0.82 0.88 1.16 
Fundamental period of linear model after earthquake (s) 0.59 0.65 0.69 0.68 1.16 

Roof displacement / wall height (%) - 0.28 0.75 0.83 2.06 
1as a fraction of stiffness prior to EQ1, 2as a fraction of stiffness prior to each earthquake, 3white noise 
applied prior to EQ1. 
 

 Force reduction factors R1 and R2 in Table 7.2 refer to the ratio of the elastic bending 

moment demand to the nominal flexural capacity of the specimen: the R1 factor was calculated 

using stiffness of the specimen prior to each earthquake, while the R2 factor corresponds to the 

stiffness of the wall after each earthquake, i.e. effective stiffness that gives a roof displacement 

demand equal to the roof displacement demand obtained from the experiment. Reduction factors 

associated with EQ2 and EQ3 are similar since these motions have similar spectral accelerations 

for periods greater than 0.5 s. 
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The α values required to match roof displacement demand is 0.9 and 1.3 for EQ2 and EQ3, 

respectively. This is because of the fact that spectral displacement tends to decrease between 

0.67 s and 0.8 s for EQ2 and between 0.7 s and 0.95 s for EQ3 (see Figure 7.2). The fundamental 

period of the specimen is 0.65 and 0.82 s prior to EQ2 and EQ3, respectively. Therefore, 

stiffness reduction factor must be close to 1.0 for EQ2 and greater than 1.0 for EQ3 in order to 

reduce the effective period and hence increase the roof displacement demand. To remedy this, it 

was decided to perform response spectrum analysis using a smooth spectrum instead of the 

spectrum for individual earthquakes. The UHS shown in Figure 7.2 was scaled such that it gives 

area-under-the-curve equal to those corresponding to EQ1 to EQ4 over a period range from T1 to 

2T1. Periods lower than T1 were not considered since higher modes do not contribute to roof 

displacement demand in an elastic analysis. Also, 2T1 was considered as an upper bound for the 

elongation of period due to nonlinear behaviour. Figure 7.3 compares the scaled UHS with the 

displacement spectrum for individual earthquakes. Stiffness reduction factors using scaled UHS 

are shown in Table 7.3. 
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Figure 7.3 Comparison of scaled UHS with the displacement spectra for individual earthquakes. 

 
Table 7.3 Stiffness reduction factors to estimate the period and roof displacement of the 

specimen using the scaled UHS. 

 WN3 EQ1 EQ2 EQ3 EQ4 
Reduction factor in the first step (β)1 0.8 0.8 0.64 0.39 0.34 

Reduction factor in the second step (α)2 - 0.84 0.65 0.75 0.55 
Product (αβ) - 0.67 0.42 0.29 0.19 

R1 - 1.45 2.73 2.32 3.44 
R2 - 1.38 2.44 1.98 3.16 

Fundamental period from white noise prior to earthquake (s) 0.51 0.59 0.65 0.82 0.88 
Fundamental period of linear model prior to earthquake (s) 0.52 0.59 0.65 0.82 0.88 
Fundamental period from white noise after earthquake (s) 0.59 0.65 0.82 0.88 1.16 
Fundamental period of linear model after earthquake (s) 0.59 0.64 0.80 0.93 1.17 

Roof displacement / wall height (%) - 0.28 0.75 0.83 2.06 
1as a fraction of stiffness prior to EQ1, 2as a fraction of stiffness prior to each earthquake, 3white noise 
applied prior to EQ1. 
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Table 7.3 shows that using smooth UHS results in α values that vary from 0.84 to 0.55 as the 

force reduction factor R2 increases from 1.38 to 3.44. Stiffness reduction factor of 0.84 refers to 

EQ1, when the specimen had limited yielding (base curvature demand times web wall length = 

0.002), while stiffness reduction factor of 0.55 refers to EQ4, when the specimen had significant 

yielding (base curvature demand times web wall length = 0.0282). Therefore, it can be 

concluded that stiffness reduction factor reduced from 0.84 for an earthquake that caused limited 

yielding to 0.55 for an event which resulted significant yielding at the base of the specimen. 

7.5 Comparison of Base Curvature and Interstory Drift Demands from 

Experiment with Simplified Models 

Figure 7.4 compares the maximum recorded interstory drift corresponding to each earthquake 

with the predictions from the D1 model. Roof and midheight interstory drifts for the D1 model 

are equal to 1.6∆t/hw and 1.3∆t/hw, respectively. Figure 7.4 indicates that the D1 model provides a 

reasonably conservative estimate of interstory drift demands for the four earthquakes. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 7.4 Comparison of interstory drift profile from experiment with the prediction from the 

D1 model for (a) EQ1, (b) EQ2, (c) EQ3, and (d) EQ4. 

 

 Figure 7.5 compares the base curvature demand for the web wall from different analytical 

models with the maximum recorded base curvature demand. Note that the R2 values shown in 

Table 7.3 were used to compute the base curvature demand for the CSA and M1 models. The 

predictions from the M1 model are lower than those form the ACI 318 approach since the C 

factor in the M1 model (see Equation 5.11) is less than 1.8 depending on the ratio of the wall 

height to the force reduction factor. The CSA method also provides a reasonable estimate of the 

recorded base curvature demand. 
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Figure 7.5 Comparison of the predicted base curvature of the web wall from different analytical 

models with the experimental results. 

7.6 Summary and Conclusions 

Shake table test results of a 7-story shear wall building were used to assess the accuracy of 

simplified models developed in Chapter 5 for predicting roof displacement, base curvature, and 

interstory drift demands. A 3-dimensional linear model was constructed in SAP, and the stiffness 

of the model was calibrated to match the fundamental period and roof displacement demand 

recorded during the experiment. It was observed that stiffness reduction factor dropped from 

0.84 to 0.53 as the force reduction factor increased from 1.4 to 3.2. Figure 7.6 plots the stiffness 

reduction factors determined from this study as well as the stiffness reduction factors obtained 

from nonlinear time history analysis of the 13 shear walls as described in Chapter 5. Figure 7.6 

indicates that stiffness reduction factors determined from the experiment are consistent with the 

results obtained from time history analysis. 

 It was also observed that the simplified models for predicting base curvature and 

interstory drift demands provide a reasonable estimate of the maximum recorded values from the 

experiment. 
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Figure 7.6 Comparison of stiffness reduction factor for the 7-story shear wall specimen 

determined from linear analysis (i.e. α versus R2 as shown in Table 7.2 and Table 7.3) with the 

stiffness reduction factor of 10 to 50 story shear walls using nonlinear time history analysis. 
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Chapter 8 : Contributions and Recommendations for Future Work 

8.1 Contributions 

Nonlinear time history analysis was used to investigate the seismic response of cantilever 

concrete shear walls. The research involved the modeling and design of 15 slender shear walls 

that were 10 to 50 stories high. The findings and contributions for each chapter is summarized 

hereafter. 

8.1.1 Trilinear Hysteretic Bending Moment - Curvature Relationship 

The objective of Chapter 2 was to develop a transparent hysteretic bending moment - curvature 

model as an analytical tool for performing time history analysis of cantilever shear walls. The 

experimental results from two shear walls with rectangular and flanged cross sections showed 

that the flanged wall with a high axial compression force and low percentage of  longitudinal 

reinforcement had less residual displacements and smaller hysteretic loops than those for the 

rectangular cross section. In addition, it was observed that the loading segment of the force - 

displacement relationship for the flanged wall resembled a trilinear curve rather than the 

conventional bilinear backbone curves used in most hysteretic model such as the Clough 

hysteretic model. It was observed that the fiber model provides a reasonable prediction of the 

force - displacement relationship of both specimens. The fiber model was used to develop a 

rational model for the softening of reinforced concrete sections subjected to reverse cyclic loads. 

The influence of reinforcing steel constitutive relationship on the yield curvature was examined. 

A rational model was developed to estimate residual curvatures in shear walls subjected to 

reverse cyclic loads. The trilinear hysteretic model proved to accurately estimate the general 

response of both flanged and rectangular specimens.  
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8.1.2 Effect of Ground Motion Selection on Demand Parameters 

The objective of Chapter 4 was to investigate the influence of ground motions selection and 

scaling on the seismic response of cantilever shear walls. The input ground motions in this study 

were selected and scaled to the UHS and CMS. The ground motions were scaled to the UHS in 

two ways: scaling at the fundamental period and over a range of periods. T1, T2, T3 as well as 

1.5T1 and 2T1 were considered as possible conditioning periods. Time history results indicated 

that a single conditioning period defined the envelope response for displacement and interstory 

drift demands over the height of the walls, while different conditioning periods contributed to the 

envelope of the curvature and shear force demands. It was observed that maximum values for 

roof displacement, roof interstory drift, and base curvature demands were associated with T1 or 

1.5T1 conditioning periods, while maximum base shear and midheight curvature were caused by 

the ground motions matched to the CMS computed at T2 or T3. For 10 story walls, using 

conditioning period of 1.5T1 gave higher roof displacement demands than 2T1, indicating that the 

period lengthening due to the nonlinear action was closer to 1.5T1.  

 It was observed that the mean roof displacement and mean interstory drift at the roof 

from the envelope of the ground motions matched to the CMS at different conditioning periods 

varied between 90 and 100% of the mean values from the spectrum matched ground motions. 

This difference is considerably less than the reported 29% difference between maximum 

interstory drift from ground motions scaled to the UHS and the CMS computed at T1 for the 12 

story shear wall analyzed by PEER GMSM program (Haselton et al. 2009). The base curvature 

and base shear force demands from the ground motions matched to the CMS were not lower than 

80% of the mean results from the spectrum matched records. The difference between the base 

curvature and base shear force demands using CMS and spectrum matched ground motions did 

not always increase as the force reduction factor increased. 

 In most cases, the structural responses from the two sets of spectrum matched records 

and ground motions matched to the UHS over a range of periods (SOR) were similar. Using 

spectrum matched ground motions reduced the dispersion of the response, meaning a fewer 

number of ground motions can be used without influencing the mean value of the structural 

response. A reasonable similarity between the roof displacement and roof interstory drift 

demands from spectrum matched and CMS ground motions was observed. For curvature and 
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shear force demands, a maximum difference of 20% was reported between the spectrum matched 

and the envelope of results using various sets of CMS ground motions. This difference could be 

reduced if more conditioning periods were used, but this would entail considerable 

computational effort.  

 The findings of Chapter 4 indicated that using spectrum matched ground motions is the 

best method for establishing mean response for cantilever shear walls. Since the variability of the 

responses from individual records was minimal, the mean structural envelopes from spectrum 

matched ground motions were more stable than the SOR ground motions. It was also concluded 

that using additional conditioning periods provides closer responses to those obtained from the 

spectrum matched ground motions; however, specifying a single period as the conditioning 

period that governs the maximum responses such as shear force and curvature demands might 

not be evident in tall shear walls with high nonlinear action. Period lengthening of higher modes 

can contribute to maximum response over the height of the wall. Using a set of spectrum 

matched ground motions, on the other hand, establishes a mean response with minimal 

computational effort. 

8.1.3 Effective Stiffness 

This study dealt with the estimating of roof displacement demands in cantilever shear walls. 

Roof displacement demands from time history analysis were used to define appropriate effective 

stiffness values to be used in a linear analysis such as response spectrum analysis. This method 

of estimating effective stiffness ensures that the linear analysis yields an accurate estimate of the 

mean roof displacement demands determined from time history analysis. Both single-degree-of-

freedom (SDOF) and multi-degree-of-freedom (MDOF) approaches were used for estimating 

effective stiffness. The SDOF study included a higher number of periods and force reduction 

factors due to low computational costs associated with the time history analysis of SDOF 

systems. In both studies the stiffness reduction factor was expressed as a function of force 

reduction factor rather than axial compression force. 

 Time history results indicated that the stiffness reduction factor dropped from 1.0 to 

about 0.5 as the force reduction factor increased from 1.0 to 5.0. As opposed to current 

recommendations for effective stiffness - Ibrahim and Adebar (2004), CSA A23.3 (2004), 



249 

 

Paulay and Priestley (1992) - it was found that the variation of axial compression force had less 

influence on effective stiffness. In fact, walls with high axial compression force and low 

longitudinal reinforcement ratio tend to have lower effective stiffness. This is due to the fact that 

such walls have a flag-shaped force - displacement relationship with smaller hysteretic loops. It 

was proven that walls with lower hysteretic dissipation capacity had lower effective stiffness 

since the mean displacement demands corresponding to these walls were higher than those with 

larger hysteretic loops.  

8.1.4 Flexural Demands on Cantilever Concrete Shear Walls 

The main contribution from this section of thesis was the determination of curvature and 

interstory drift demands in cantilever shear walls. A comparison of roof displacement and base 

curvature time histories for three walls with different heights showed that for taller walls, the 

maximum value for these response quantities do not occur at the same instant for individual 

ground motions. This observation is an indication of the influence of higher mode response in 

high-rise shear walls with considerable nonlinear action. It was demonstrated that the CSA 

A23.3-04 approach for estimating base curvature demands underestimates the elastic portion of 

the total roof displacement demand for most walls especially for taller walls, which leads to an 

overestimation of base curvature demands in tall cantilever shear walls. To address this issue, a 

simple equation was developed to predict the base curvature demand associated with the mean 

and mean plus one standard deviation results determined from time history analysis. The 

equation relates the base curvature demand to the global drift ratio using a term which is a 

function of wall height, length, and force reduction factor. 

 The findings from an investigation of midheight curvature demands indicated that this 

demand parameter is less sensitive to the flexural strength of the wall around midheight. It was 

demonstrated that the location at which maximum midheight curvature occurs varied along the 

height as the force reduction factor increased. Consequently, providing additional flexural 

strength around midheight is ineffective in reducing curvature demands along the height of 

concrete shear walls. It was observed that midheight curvature demand corresponding to mean 

plus one standard deviation results from time history analysis was 0.0034/lw, where lw is the wall 

length. This value is similar to the recommended values for yield curvature. Therefore, 
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midheight curvatures can be tolerated by providing minimum detailing for ductility around 

midheight. A simple design envelope was proposed for predicting curvature demands over the 

height of cantilever shear walls. 

 Another contribution from Chapter 5 was to develop a design envelope for predicting 

interstory drift demands over height. A comparison of mean interstory drift profiles from time 

history analysis with those determined using response spectrum analysis showed that linear 

analysis underestimated interstory drifts at lower floors even if appropriate effective stiffness 

values were used to accurately estimate mean roof displacement demands from time history 

analysis. The design envelope developed in Chapter 5, however, provides a reasonable upper 

bound to interstory drift profile determined from time history analysis. The predicted interstory 

drift values from this simplified model can be used to assess the likelihood of punching shear 

failure of slabs in gravity-load columns. Lastly, the accuracy of the proposed interstory drift 

profile for a shear wall with flexible base support was demonstrated. 

8.1.5 Shear Demands on Cantilever Concrete Shear Walls 

The objective was to develop a simple base shear - base rotation interaction diagram for three 

cantilever shear walls with high force reduction factors. Results from this study showed that base 

rotations were relatively low when base shear force was high. Low base rotation is equivalent to 

lower strain in longitudinal reinforcement, a parameter that influences the width of diagonal 

cracks and concrete shear strength. The fact that the maximum values of base shear force and 

base rotation demands did not occur simultaneously due to the influence of higher mode 

response increases the shear strength of shear walls in earthquakes.  This observation contrasts 

current seismic design guidelines which entail the shear design of concrete walls for maximum 

shear force and maximum rotation demands. Reducing concrete shear strength for maximum 

base rotation leads to an underestimation of concrete shear strength since rotations corresponding 

to high base shear force demands were considerably lower than the maximum base rotations. 

 The findings from time history analysis indicated that mean base shear forces from time 

history analysis were higher than those resulting from linear analysis reduced by force reduction 

factor, which is defined as the ratio of elastic bending moment demand to the wall nominal 

capacity - both calculated at the base of the building. The ratio of base shear force demands from 



251 

 

time history analysis to the base shear force from linear analysis is generally referred to as shear 

amplification factor. It was observed that for most walls, the shear amplification factor increased 

from 1.0 to 2.0 as the force reduction factor increased from 1.0 to 3.5. Also, shear amplification 

factors for 10 story walls were lower than those for taller walls. 

 Another contribution was the determination of shear force demands around the midheight 

in tall cantilever shear walls. It was observed that the ratio of midheight to base shear force 

demands in 50 story walls with intermediate force reduction factors was higher than those for 

other shear walls. A sensitivity analysis using different conditioning periods showed that for 30 

and 50 story walls, elongation of higher mode periods resulted in midheight shear force demands 

that were higher than those from higher mode periods. For a 10 story wall, on the other hand, 

elongation of the first mode period defined the shear force envelope around midheight. It was 

also observed that as the force reduction factor increased, the elongation of higher mode periods 

defined the shear force envelope at different elevations, while the shear force demand 

corresponding to these conditioning periods decreased around the midheight. Lastly, it was 

observed that base shear force demand was rather insensitive to the elongation of the higher 

mode period, which indicated that higher mode period elongation mainly influenced midheight 

shear force demands in tall cantilever shear walls. 

8.2 Future Work 

The analytical results presented in this research correspond specifically to cantilever concrete 

shear walls. Further investigation needs to be undertaken on seismic response of coupled shear 

walls, which consist of cantilever shear walls connected through coupling beams. The behavior 

of coupled wall structures may deviate from those observed in this thesis depending on the level 

of coupling between individual walls. The trilinear bending moment - curvature relationship 

developed in this work to perform time history analysis accounts for constant axial compression 

force from gravity loads. The axial load on coupled wall structures, however, is not constant 

during seismic loads since the shear forces developed in the coupling beams influence the axial 

compression force in individual shear walls. Research on coupled wall structures provides 

insight into curvature and shear force distribution in coupled wall systems as well as the end 

rotations of coupling beams. 
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This thesis focused on the flexural modeling of cantilever shear walls. This analytical model can 

be further extended by developing a model for shear response of such systems. Although an 

insignificant interaction between shear force and rotation demands was observed at the base of 

cantilever walls, the inclusion of a shear model results in a more realistic estimate of shear forces 

over the height of walls. In addition, an estimate of shear deformations at lower floors is critical 

for evaluating the safety of gravity load columns. 

 The main intent of this thesis was to investigate the seismic response of cantilever shear 

walls. Time history results for shear walls were also used to develop simple models to estimate 

seismic demands on gravity-load columns. It was assumed that maximum curvature and 

interstory drift demands in gravity-load columns were equal to those in the shear wall. This 

assumption requires further examination and could be refined by performing time history 

analysis on structural systems including both shear wall and gravity load resisting systems. 

Using this method, the interaction between seismic and gravity force resisting systems can be 

further researched. 

 This study dealt with the 2-dimensional modeling of cantilever shear walls. This method 

of modeling does not take into account the additional seismic demands on structural components 

resulting from torsion. Both shear walls and gravity load columns can undergo additional 

demands in buildings with plan irregularity. A 3-dimensional model could address additional 

demands on both shear wall and gravity-load columns since the 2-dimensional modeling did not 

account for the influence of torsion on seismic demand parameters. 
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Appendix A: 

Cross Sectional Layout of the Example Core Walls 
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Figure A.1 Outline of the core walls in 10 story buildings. 

 

 

Figure A.2 Outline of the core walls in 20 story building. 
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Figure A.3 Outline of the core walls in 30 story buildings. 

 

Figure A.4 Outline of the core walls in 40 story buildings. 
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Figure A.5 Outline of the core walls in 50 story buildings. 
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Appendix B: 

Tabular Data for Example Core Walls 
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Table B.1 Longitudinal reinforcement percentage in the flange (ρf) and nominal bending moment 
capacity (Mn) for 10 story walls. 

    ρf (%) Mn (kNm) 
h (m) P/f'cAg Rg=1.7 Rg=2.6 Rg=4.2 Rg=5.2 Rg=1.7 Rg=2.6 Rg=4.2 Rg=5.2 

0 0.059 4.00 2.50 1.20 0.45 262599 182992 112533 72037 

4.5 0.050 4.00 2.50 1.20 0.45 257499 177648 106979 66335 

7.3 0.045 4.00 2.50 1.20 0.45 254274 174269 103467 62766 

10.1 0.039 3.29 2.09 1.05 0.45 213320 148654 91671 59183 

12.9 0.033 2.58 1.68 0.90 0.45 171863 122869 79876 55588 

15.7 0.028 1.87 1.27 0.75 0.45 129783 96791 67956 51982 

18.5 0.022 1.16 0.86 0.60 0.45 87139 70480 55975 48363 

21.3 0.017 0.45 0.45 0.45 0.45 43997 44003 43997 44734 

24.1 0.011 0.45 0.45 0.45 0.45 40330 40330 40330 41094 

26.9 0.006 0.45 0.45 0.45 0.45 36718 36718 36718 37445 

29.7 0.000 0.45 0.45 0.45 0.45 33026 33026 33026 33026 
ρf = 0.45% is minimum longitudinal reinforcement in the flanges, longitudinal reinforcement in the web, 
ρw = 0.25% over the height for all walls, total flange cross sectional area = 5.4 m2. 

Table B.2 Longitudinal reinforcement percentage in the flange (ρf) and nominal bending moment 
capacity (Mn) for 20 story wall. 

h (m) P/f'cAg ρf  (%) Mn (kNm) 
0 0.087 0.60 255915 

4.5 0.080 0.60 243861 

7.3 0.076 0.60 236334 

10.1 0.072 0.60 228786 

12.9 0.068 0.60 221217 

15.7 0.063 0.60 213628 

18.5 0.059 0.60 206018 

21.3 0.055 0.60 198387 

24.1 0.051 0.60 190735 

26.9 0.046 0.60 183063 

29.7 0.042 0.60 175370 

32.5 0.038 0.60 167656 

35.3 0.034 0.60 159922 

38.1 0.030 0.60 152167 

40.9 0.025 0.60 144391 

43.7 0.021 0.60 136594 

46.5 0.017 0.60 128777 

49.3 0.013 0.60 120938 

52.1 0.008 0.60 113080 

54.9 0.004 0.60 105200 

57.7 0.000 0.60 97300 
ρf = 0.60% is minimum longitudinal reinforcement in the flanges, ρw = 0.25% over the height for all 
walls, total flange cross sectional area = 8.8 m2. 
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Table B.3 Longitudinal reinforcement percentage in the flange (ρf) and nominal bending moment 
capacity (Mn) for 30 story walls. 

ρf (%) Mn (kNm) 

h (m) P/f'cAg
1 P/f'cAg

2 Rg=1.4 Rg=2.4 Rg=3.1 Rg=4.3 Rg=1.4 Rg=2.4 Rg=3.1 Rg=4.3 
0 0.101 0.061 3.50 1.20 0.50 0.50 1138624 669081 523832 375018 

4.5 0.096 0.057 3.50 1.20 0.50 0.50 1120863 650381 504846 363399 

7.3 0.092 0.055 3.50 1.20 0.50 0.50 1109766 638700 492987 356155 

10.1 0.089 0.053 3.50 1.20 0.50 0.50 1098640 626989 481099 348902 

12.9 0.086 0.051 3.50 1.20 0.50 0.50 1087485 615250 469182 341638 

15.7 0.083 0.049 3.50 1.20 0.50 0.50 1076302 603483 457237 334364 

18.5 0.079 0.047 3.34 1.15 0.50 0.50 1032968 581263 445262 327080 

21.3 0.076 0.045 3.18 1.10 0.50 0.50 989470 558984 433258 319785 

24.1 0.073 0.043 3.03 1.05 0.50 0.50 945807 536645 421226 312481 

26.9 0.069 0.041 2.87 1.00 0.50 0.50 901979 514246 409165 305166 

29.7 0.066 0.039 2.71 0.95 0.50 0.50 857987 491787 397075 297841 

32.5 0.063 0.037 2.55 0.90 0.50 0.50 813829 469268 384955 290506 

35.3 0.059 0.035 2.39 0.85 0.50 0.50 769507 446690 372807 283161 

38.1 0.056 0.033 2.24 0.80 0.50 0.50 725020 424051 360630 275805 

40.9 0.053 0.031 2.08 0.75 0.50 0.50 680369 401353 348425 268440 

43.7 0.050 0.029 1.92 0.70 0.50 0.50 635552 378594 336190 261064 

46.5 0.046 0.027 1.76 0.65 0.50 0.50 590571 355776 323926 253677 

49.3 0.043 0.025 1.61 0.60 0.50 0.50 545425 332898 311634 246281 

52.1 0.040 0.024 1.45 0.55 0.50 0.50 500114 309960 299312 238875 

54.9 0.036 0.022 1.29 0.50 0.50 0.50 454638 286962 286962 231458 

57.7 0.033 0.020 1.13 0.50 0.50 0.50 408998 274583 274583 224031 

60.5 0.030 0.018 0.97 0.50 0.50 0.50 363192 262175 262175 216594 

63.3 0.026 0.016 0.82 0.50 0.50 0.50 317222 249738 249738 209146 

66.1 0.023 0.014 0.66 0.50 0.50 0.50 271088 237272 237272 201689 

68.9 0.020 0.012 0.50 0.50 0.50 0.50 224788 224777 224777 194221 

71.7 0.017 0.010 0.50 0.50 0.50 0.50 212253 212253 212253 186743 

74.5 0.013 0.008 0.50 0.50 0.50 0.50 199700 199700 199700 179255 

77.3 0.010 0.006 0.50 0.50 0.50 0.50 187119 187119 187119 171757 

80.1 0.007 0.004 0.50 0.50 0.50 0.50 174508 174508 174508 164248 

82.9 0.003 0.002 0.50 0.50 0.50 0.50 161869 161869 161869 156730 

85.7 0.000 0.000 0.50 0.50 0.50 0.50 149201 149201 149201 149201 
1axial compression force for Rg = 1.4, 2.4, and 3.1, 2axial compression force for Rg = 4.3, ρf = 0.50 is 
minimum longitudinal reinforcement in the flanges, longitudinal reinforcement in the web, ρw = 0.25% 
over the height for all walls, total flange cross sectional area = 12.6 m2. 
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Table B.4 Longitudinal reinforcement percentage in the flange (ρf) and nominal bending moment 
capacity (Mn) for 40 story walls. 

      ρf (%) Mn (kNm) 
h (m) P/f'cAg

1 P/f'cAg
2 Rg=2.6 Rg=4.4 Rg=2.6 Rg=4.4 

0 0.114 0.062 0.52 0.52 1080128 635365 
4.5 0.109 0.060 0.52 0.52 1049021 623757 
7.3 0.107 0.059 0.52 0.52 1029616 616528 

10.1 0.104 0.058 0.52 0.52 1010172 609294 
12.9 0.101 0.056 0.52 0.52 990690 602055 
15.7 0.098 0.055 0.52 0.52 971169 594812 
18.5 0.095 0.054 0.52 0.52 951610 587563 
21.3 0.093 0.053 0.52 0.52 932013 580309 
24.1 0.090 0.051 0.52 0.52 912377 573051 
26.9 0.087 0.050 0.52 0.52 892703 565787 
29.7 0.084 0.049 0.52 0.52 872990 558519 
32.5 0.081 0.048 0.52 0.52 853239 551246 
35.3 0.079 0.047 0.52 0.52 833450 543968 
38.1 0.076 0.045 0.52 0.52 813622 536685 
40.9 0.073 0.044 0.52 0.52 793756 529397 
43.7 0.070 0.043 0.52 0.52 773851 522104 
46.5 0.067 0.042 0.52 0.52 753909 514806 
49.3 0.065 0.040 0.52 0.52 733927 507503 
52.1 0.062 0.039 0.52 0.52 713908 500196 
54.9 0.059 0.038 0.52 0.52 693849 492883 
57.7 0.056 0.037 0.52 0.52 673753 485566 
60.5 0.053 0.036 0.52 0.52 653618 478244 
63.3 0.051 0.034 0.52 0.52 633445 470916 
66.1 0.048 0.033 0.52 0.52 613233 463584 
68.9 0.045 0.032 0.52 0.52 592983 456247 
71.7 0.042 0.031 0.52 0.52 572695 448905 
74.5 0.039 0.029 0.52 0.52 552368 441558 
77.3 0.036 0.028 0.52 0.52 532003 434207 
80.1 0.034 0.027 0.52 0.52 511599 426850 
82.9 0.031 0.026 0.52 0.52 491157 419488 
85.7 0.028 0.025 0.52 0.52 470677 412122 
88.5 0.025 0.023 0.52 0.52 450158 404750 
91.3 0.022 0.022 0.52 0.52 429601 397374 
94.1 0.020 0.021 0.52 0.52 409005 389993 
96.9 0.017 0.020 0.52 0.52 388371 382607 
99.7 0.014 0.018 0.52 0.52 367699 375216 

102.5 0.011 0.017 0.52 0.52 346988 367820 
105.3 0.008 0.016 0.52 0.52 326239 360419 
108.1 0.006 0.015 0.52 0.52 305452 353013 
110.9 0.003 0.013 0.52 0.52 284626 345603 
113.7 0.000 0.012 0.52 0.52 263761 338187 

1axial compression stress ratio for Rg = 2.6, 2axial compression stress ratio for Rg = 4.4, ρf = 0.52% is 
minimum longitudinal reinforcement in the flanges, ρw = 0.25% over the height for all walls, total flange 
cross sectional area = 18.4 m2. 
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Table B.5 Longitudinal reinforcement percentage in the flange (ρf) and nominal bending moment 
capacity (Mn) for 50 story walls. 

      ρf (%) Mn (kNm) 

h (m) P/f'cAg
1 P/f'cAg

2 Rg=1.4 Rg=2.1 Rg=2.4 Rg=4.1 Rg=1.4 Rg=2.1 Rg=2.4 Rg=4.1 
0 0.127 0.062 3.50 1.00 0.48 0.48 3924905 2481567 2178190 1297803 

4.5 0.123 0.060 3.50 1.00 0.48 0.48 3873583 2428376 2124611 1270573 

7.3 0.120 0.059 3.50 1.00 0.48 0.48 3841579 2395210 2091203 1253613 

10.1 0.118 0.058 3.50 1.00 0.48 0.48 3809521 2361990 2057741 1236640 

12.9 0.115 0.056 3.50 1.00 0.48 0.48 3777410 2328717 2024226 1219655 

15.7 0.113 0.055 3.50 1.00 0.48 0.48 3745245 2295389 1990657 1202657 

18.5 0.110 0.054 3.50 1.00 0.48 0.48 3713026 2262008 1957034 1185646 

21.3 0.108 0.053 3.50 1.00 0.48 0.48 3680754 2228573 1923358 1168622 

24.1 0.105 0.052 3.41 0.95 0.48 0.48 3594022 2165762 1889628 1151585 

26.9 0.103 0.050 3.31 0.90 0.48 0.48 3507113 2102839 1855844 1134536 

29.7 0.100 0.049 3.22 0.85 0.48 0.48 3420026 2039807 1822006 1117473 

32.5 0.098 0.048 3.12 0.80 0.48 0.48 3332762 1976664 1788115 1100398 

35.3 0.095 0.047 3.03 0.75 0.48 0.48 3245321 1913411 1754170 1083311 

38.1 0.093 0.045 2.93 0.70 0.48 0.48 3157703 1850048 1720172 1066210 

40.9 0.090 0.044 2.84 0.65 0.48 0.48 3069907 1786575 1686120 1049097 

43.7 0.088 0.043 2.75 0.60 0.48 0.48 2981934 1722991 1652014 1031970 

46.5 0.085 0.042 2.65 0.55 0.48 0.48 2893783 1659297 1617854 1014831 

49.3 0.083 0.040 2.56 0.48 0.48 0.48 2805456 1583641 1583641 997680 

52.1 0.080 0.039 2.46 0.48 0.48 0.48 2716951 1549374 1549374 980515 

54.9 0.078 0.038 2.37 0.48 0.48 0.48 2628269 1515054 1515054 963338 

57.7 0.075 0.037 2.27 0.48 0.48 0.48 2539409 1480680 1480680 946148 

60.5 0.073 0.036 2.18 0.48 0.48 0.48 2450372 1446252 1446252 928945 

63.3 0.070 0.034 2.08 0.48 0.48 0.48 2361158 1411770 1411770 911729 

66.1 0.068 0.033 1.99 0.48 0.48 0.48 2271767 1377235 1377235 894500 

68.9 0.065 0.032 1.90 0.48 0.48 0.48 2182198 1342646 1342646 877259 

71.7 0.063 0.031 1.80 0.48 0.48 0.48 2092452 1308003 1308003 860005 

74.5 0.060 0.029 1.71 0.48 0.48 0.48 2002528 1273307 1273307 842738 

77.3 0.058 0.028 1.61 0.48 0.48 0.48 1912428 1238557 1238557 825459 

80.1 0.055 0.027 1.52 0.48 0.48 0.48 1822150 1203754 1203754 808166 

82.9 0.053 0.026 1.42 0.48 0.48 0.48 1731695 1168896 1168896 790861 

85.7 0.050 0.025 1.33 0.48 0.48 0.48 1641062 1133985 1133985 773543 

88.5 0.048 0.023 1.24 0.48 0.48 0.48 1550252 1099021 1099021 756212 

91.3 0.045 0.022 1.14 0.48 0.48 0.48 1459265 1064003 1064003 738868 

94.1 0.043 0.021 1.05 0.48 0.48 0.48 1368101 1028931 1028931 721512 

96.9 0.040 0.020 0.95 0.48 0.48 0.48 1276759 993805 993805 704143 

99.7 0.038 0.018 0.86 0.48 0.48 0.48 1185240 958626 958626 686761 

102.5 0.035 0.017 0.76 0.48 0.48 0.48 1093544 923393 923393 669366 

105.3 0.033 0.016 0.67 0.48 0.48 0.48 1001670 888106 888106 651958 

108.1 0.030 0.015 0.57 0.48 0.48 0.48 909619 852766 852766 634538 

110.9 0.028 0.014 0.48 0.48 0.48 0.48 817391 817372 817372 617105 

113.7 0.025 0.012 0.48 0.48 0.48 0.48 781924 781924 781924 599659 
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ρf (%) Mn (kNm) 
h (m) P/f'cAg

1 P/f'cAg
2 Rg=1.4 

1.41.4 
Rg=2.1 
2.1 

Rg=2.4 
2.4 

Rg=4.1 
4.1 

Rg = 1.4 Rg = 2.1 Rg = 2.4 Rg = 4.1 
116.5 0.023 0.011 0.48 0.48 0.48 0.48 746423 746423 746423 582200 

119.3 0.020 0.010 0.48 0.48 0.48 0.48 710868 710868 710868 564728 

122.1 0.018 0.009 0.48 0.48 0.48 0.48 675259 675259 675259 547244 

124.9 0.015 0.007 0.48 0.48 0.48 0.48 639597 639597 639597 529747 

127.7 0.013 0.006 0.48 0.48 0.48 0.48 603881 603881 603881 512237 

130.5 0.010 0.005 0.48 0.48 0.48 0.48 568111 568111 568111 494714 

133.3 0.008 0.004 0.48 0.48 0.48 0.48 532287 532287 532287 477179 

136.1 0.005 0.003 0.48 0.48 0.48 0.48 496410 496410 496410 459630 

138.9 0.003 0.001 0.48 0.48 0.48 0.48 460480 460480 460480 442069 

141.7 0.000 0.000 0.48 0.48 0.48 0.48 424495 424495 424495 424495 
1axial compression stress ratio for Rg = 1.4, 2.1, and 2.4, 2axial compression stress ratio for Rg = 4.1, ρf = 
0.48% is minimum longitudinal reinforcement in the flanges, ρw = 0.25% over the height for all walls, 
total flange cross sectional area = 22.95 m2. 

 

Table B.6 Cracked flexural stiffness (EIcr) for 10 story walls. 

  EIcr (KNm2)*108 
h (m) Rg=1.7 Rg=2.6 Rg=4.2 Rg=5.2 

0 4.30 2.68 1.28 0.33 

4.5 4.30 2.68 1.28 0.33 

7.3 4.30 2.68 1.28 0.33 

10.1 3.66 2.27 1.09 0.33 

12.9 2.98 1.82 0.94 0.33 

15.7 2.26 1.34 0.73 0.33 

18.5 1.50 0.87 0.52 0.33 

21.3 0.60 0.33 0.33 0.33 

24.1 0.60 0.33 0.33 0.33 

26.9 0.60 0.33 0.33 0.33 

29.7 0.60 0.33 0.33 0.33 
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Table B.7 Cracked flexural stiffness (EIcr) for 30 story walls. 

EIcr (kNm2)*109 

h (m) Rg=1.4 Rg=2.4 Rg=3.1 Rg=4.3 
0 2.59 1.05 0.52 0.52 

4.5 2.59 1.05 0.52 0.52 

7.3 2.59 1.05 0.52 0.52 

10.1 2.59 1.05 0.52 0.52 

12.9 2.59 1.05 0.52 0.52 

15.7 2.59 1.05 0.52 0.52 

18.5 2.48 1.01 0.52 0.52 

21.3 2.39 0.98 0.52 0.52 

24.1 2.29 0.94 0.52 0.52 

26.9 2.19 0.90 0.52 0.52 

29.7 2.09 0.87 0.52 0.52 

32.5 1.98 0.83 0.52 0.52 

35.3 1.88 0.79 0.52 0.52 

38.1 1.78 0.75 0.52 0.52 

40.9 1.67 0.71 0.52 0.52 

43.7 1.56 0.67 0.52 0.52 

46.5 1.46 0.63 0.52 0.52 

49.3 1.34 0.60 0.52 0.52 

52.1 1.23 0.55 0.52 0.52 

54.9 1.11 0.52 0.52 0.52 

57.7 1.00 0.52 0.52 0.52 

60.5 0.88 0.52 0.52 0.52 

63.3 0.76 0.52 0.52 0.52 

66.1 0.64 0.52 0.52 0.52 

68.9 0.52 0.52 0.52 0.52 

71.7 0.52 0.52 0.52 0.52 

74.5 0.52 0.52 0.52 0.52 

77.3 0.52 0.52 0.52 0.52 

80.1 0.52 0.52 0.52 0.52 

82.9 0.52 0.52 0.52 0.52 

85.7 0.52 0.52 0.52 0.52 
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Table B.8 Cracked flexural stiffness (EIcr) for 50 story walls. 

  EIcr (kNm2)*1010 

h (m) Rg=1.4 Rg=2.1 Rg=2.4 Rg=4.1 
0 1.15 0.40 0.23 0.23 

4.5 1.15 0.40 0.23 0.23 

7.3 1.15 0.40 0.23 0.23 

10.1 1.15 0.40 0.23 0.23 

12.9 1.15 0.40 0.23 0.23 

15.7 1.15 0.40 0.23 0.23 

18.5 1.15 0.40 0.23 0.23 

21.3 1.15 0.40 0.23 0.23 

24.1 1.14 0.39 0.23 0.23 

26.9 1.10 0.37 0.23 0.23 

29.7 1.07 0.34 0.23 0.23 

32.5 1.06 0.34 0.23 0.23 

35.3 1.03 0.32 0.23 0.23 

38.1 0.99 0.28 0.23 0.23 

40.9 0.96 0.29 0.23 0.23 

43.7 0.94 0.27 0.23 0.23 

46.5 0.91 0.25 0.23 0.23 

49.3 0.89 0.23 0.23 0.23 

52.1 0.85 0.23 0.23 0.23 

54.9 0.75 0.23 0.23 0.23 

57.7 0.79 0.23 0.23 0.23 

60.5 0.78 0.23 0.23 0.23 

63.3 0.74 0.23 0.23 0.23 

66.1 0.72 0.23 0.23 0.23 

68.9 0.69 0.23 0.23 0.23 

71.7 0.66 0.23 0.23 0.23 

74.5 0.62 0.23 0.23 0.23 

77.3 0.59 0.23 0.23 0.23 

80.1 0.56 0.23 0.23 0.23 

82.9 0.54 0.23 0.23 0.23 

85.7 0.51 0.23 0.23 0.23 

88.5 0.48 0.23 0.23 0.23 

91.3 0.45 0.23 0.23 0.23 

94.1 0.42 0.23 0.23 0.23 

96.9 0.37 0.23 0.23 0.23 

99.7 0.36 0.23 0.23 0.23 

102.5 0.31 0.23 0.23 0.23 

105.3 0.27 0.23 0.23 0.23 

108.1 0.26 0.23 0.23 0.23 

110.9 0.23 0.23 0.23 0.23 

113.7 0.23 0.23 0.23 0.23 

116.5 0.23 0.23 0.23 0.23 
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EIcr (kNm2)*1010 
h (m) Rg=1.4 Rg=2.1 Rg=2.4 Rg=4.1 

119.3 0.23 0.23 0.23 0.23 

122.1 0.23 0.23 0.23 0.23 

124.9 0.23 0.23 0.23 0.23 

127.7 0.23 0.23 0.23 0.23 

130.5 0.23 0.23 0.23 0.23 

133.3 0.23 0.23 0.23 0.23 

136.1 0.23 0.23 0.23 0.23 

138.9 0.23 0.23 0.23 0.23 

141.7 0.23 0.23 0.23 0.23 

 

 

Table B.9 Bending moment at crack opening (Mco) and bending moment at crack closing (Mcc) 
for 10 story walls. 

  Mco (kNm) Mcc (kNm) 
h (m) Rg=1.7 to 5.2 Rg=1.7 Rg=2.6 Rg=4.2 Rg=5.2 

0 51238 -182806 -95059 -34965 -11852 

4.5 47414 -186630 -98883 -38789 -18082 

7.3 45008 -189036 -101289 -41195 -20488 

10.1 42601 -158622 -84744 -36668 -25257 

12.9 40238 -128165 -68155 -32097 -27663 

15.7 37832 -97751 -51610 -27570 -30027 

18.5 35426 -67337 -35064 -23042 -32433 

21.3 33063 -36880 -18476 -18471 -34796 

24.1 30657 -39285 -20877 -20877 -11852 

26.9 28293 -41648 -23240 -23240 -18082 

29.7 25887 -44054 -25646 -25646 -20488 

 

 

 

 

 

 

 

 



272 

 

Table B.10 Bending moment at crack opening (Mco) and bending moment at crack closing (Mcc) 
for 20 story wall. 

h (m) Mco (kNm) Mcc (kNm) 
0 168107 28030 

4.5 160118 20042 
7.3 155148 15071 

10.1 150177 10100 
12.9 145206 5130 
15.7 140235 159 
18.5 135265 -4812 
21.3 130294 -9782 
24.1 125323 -14753 
26.9 120353 -19724 
29.7 115382 -24695 
32.5 110411 -29665 
35.3 105440 -34636 
38.1 100470 -39607 
40.9 95499 -44578 
43.7 90528 -49548 
46.5 85557 -54519 
49.3 80587 -59490 
52.1 75616 -64460 
54.9 70645 -69431 
57.7 65675 -74402 

Note: cracked flexural stiffness EIcr = 0.28*109 kNm2 is constant over the height. 
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Table B.11 Bending moment at crack opening (Mco) and bending moment at crack closing (Mcc) 
for 30 story walls. 

 Mco (kNm) Mcc (kNm) 
h (m) Rg=1.4 to 3.1 Rg=4.3 Rg=1.4 Rg=2.4 Rg=3.1 Rg=4.3 

0 355938 260666 -391629 3925 124311 29039 
4.5 343622 253346 -403945 -8391 111995 21718 
7.3 335954 248790 -411613 -16059 104327 17163 

10.1 328286 244235 -419281 -23727 96659 12608 
12.9 320618 239680 -426949 -31395 88991 8053 
15.7 312950 235125 -434617 -39064 81322 3498 
18.5 305281 230570 -415131 -38133 73654 -1058 
21.3 297613 226014 -395645 -37202 65986 -5613 
24.1 289945 221459 -376159 -36271 58318 -10168 
26.9 282277 216904 -356673 -35340 50650 -14723 
29.7 274609 212349 -337187 -34410 42981 -19278 
32.5 266940 207794 -317701 -33479 35313 -23834 
35.3 259272 203238 -298215 -32548 27645 -28389 
38.1 251604 198683 -278729 -31617 19977 -32944 
40.9 243936 194128 -259243 -30686 12309 -37499 
43.7 236268 189573 -239757 -29755 4641 -42054 
46.5 228599 185018 -220271 -28825 -3028 -46610 
49.3 220931 180462 -200785 -27894 -10696 -51165 
52.1 213263 175907 -181299 -26963 -18364 -55720 
54.9 205595 171352 -161813 -26032 -26032 -60275 
57.7 197927 166797 -142326 -33700 -33700 -64830 
60.5 190258 162242 -122840 -41369 -41369 -69386 
63.3 182590 157686 -103354 -49037 -49037 -73941 
66.1 174922 153131 -83868 -56705 -56705 -78496 
68.9 167254 148576 -64382 -64373 -64373 -83051 
71.7 159586 144021 -72041 -72041 -72041 -87606 
74.5 151918 139466 -79710 -79710 -79710 -92162 
77.3 144249 134910 -87378 -87378 -87378 -96717 
80.1 136581 130355 -95046 -95046 -95046 -101272 
82.9 128913 125800 -102714 -102714 -102714 -105827 
85.7 121245 121245 -110382 -110382 -110382 -110382 
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Table B.12 Bending moment at crack opening (Mco) and bending moment at crack closing (Mcc) 
for 40 story wall. 

h (m) Mco (kNm) Mcc (kNm) 
0 456891 6542 

4.5 449520 -830 
7.3 444933 -5416 

10.1 440347 -10003 
12.9 435760 -14590 
15.7 431173 -19176 
18.5 426587 -23763 
21.3 422000 -28350 
24.1 417413 -32936 
26.9 412827 -37523 
29.7 408240 -42109 
32.5 403654 -46696 
35.3 399067 -51283 
38.1 394480 -55869 
40.9 389894 -60456 
43.7 385307 -65042 
46.5 380720 -69629 
49.3 376134 -74216 
52.1 371547 -78802 
54.9 366961 -83389 
57.7 362374 -87976 
60.5 357787 -92562 
63.3 353201 -97149 
66.1 348614 -101735 
68.9 344028 -106322 
71.7 339441 -110909 
74.5 334854 -115495 
77.3 330268 -120082 
80.1 325681 -124669 
82.9 321094 -129255 
85.7 316508 -133842 
88.5 311921 -138428 
91.3 307335 -143015 
94.1 302748 -147602 
96.9 298161 -152188 
99.7 293575 -156775 

102.5 288988 -161362 
105.3 284401 -165948 
108.1 279815 -170535 
110.9 275228 -175121 
113.7 270642 -179708 

Note: cracked flexural stiffness EIcr = 1.26*109 kNm2. 
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Table B.13 Bending moment at crack opening (Mco) and bending moment at crack closing (Mcc) 
for 50 story walls. 

 Mco (kNm) Mcc (kNm) 

h(m) Rg=1.4 to 2.4 Rg=4.1 Rg=1.4 Rg=2.1 Rg=2.4 Rg=4.1 
0 1502333 940047 -674723 535531 787264 224978 

4.5 1467444 923015 -709612 500642 752375 207945 
7.3 1445736 912417 -731321 478933 730666 197347 

10.1 1424027 901819 -753030 457224 708957 186749 
12.9 1402318 891221 -774739 435515 687248 176151 
15.7 1380609 880623 -796447 413807 665539 165553 
18.5 1358900 870025 -818156 392098 643831 154955 
21.3 1337192 859427 -839865 370389 622122 144357 
24.1 1315483 848829 -815887 372885 600413 133759 
26.9 1293774 838231 -791909 375382 578704 123161 
29.7 1272065 827633 -767932 377878 556995 112563 
32.5 1250356 817035 -743954 380374 535287 101965 
35.3 1228648 806437 -719976 382870 513578 91367 
38.1 1206939 795839 -695998 385367 491869 80769 
40.9 1185230 785241 -672020 387863 470160 70171 
43.7 1163521 774643 -648043 390359 448451 59573 
46.5 1141812 764045 -624065 392856 426743 48975 
49.3 1120104 753447 -600087 405034 405034 38377 
52.1 1098395 742849 -576109 383325 383325 27779 
54.9 1076686 732251 -552131 361616 361616 17181 
57.7 1054977 721653 -528154 339907 339907 6583 
60.5 1033268 711055 -504176 318199 318199 -4015 
63.3 1011560 700457 -480198 296490 296490 -14613 
66.1 989851 689859 -456220 274781 274781 -25211 
68.9 968142 679261 -432242 253072 253072 -35809 
71.7 946433 668663 -408265 231363 231363 -46407 
74.5 924724 658065 -384287 209655 209655 -57005 
77.3 903016 647467 -360309 187946 187946 -67603 
80.1 881307 636869 -336331 166237 166237 -78201 
82.9 859598 626271 -312353 144528 144528 -88799 
85.7 837889 615673 -288375 122819 122819 -99397 
88.5 816180 605075 -264398 101111 101111 -109995 
91.3 794472 594477 -240420 79402 79402 -120593 
94.1 772763 583879 -216442 57693 57693 -131191 
96.9 751054 573281 -192464 35984 35984 -141789 
99.7 729345 562683 -168486 14275 14275 -152387 

102.5 707636 552085 -144509 -7433 -7433 -162985 
105.3 685928 541487 -120531 -29142 -29142 -173583 
108.1 664219 530889 -96553 -50851 -50851 -184181 
110.9 642510 520291 -72575 -72560 -72560 -194779 
113.7 620801 509693 -94269 -94269 -94269 -205377 
116.5 599092 499095 -115977 -115977 -115977 -215975 
119.3 577384 488497 -137686 -137686 -137686 -226573 
122.1 555675 477899 -159395 -159395 -159395 -237171 
124.8 533966 467301 -181104 -181104 -181104 -247769 
127.7 512257 456703 -202813 -202813 -202813 -258367 
130.5 490548 446105 -224521 -224521 -224521 -268965 
133.3 468840 435507 -246230 -246230 -246230 -279563 
136.1 447131 424909 -267939 -267939 -267939 -290161 
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 Mco (kNm) Mcc (kNm) 
h (m) Rg=1.4 to 2.4 Rg=4.1 Rg=1.4 Rg=2.1 Rg=2.4 Rg=4.1 
138.9 425422 414311 -289648 -289648 -289648 -300759 
141.7 403713 403713 -311357 -311357 -311357 -311357 
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Appendix C: 

Hysteretic Force - Displacement Relationship Used for Single-Degree-of-Freedom 
Oscillators 
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Figure C.1 shows a schematic of the hysteretic force - displacement relationship used in time 

history analysis of the single-degree-of-freedom (SDOF) oscillators in chapter 3. According to 

this model, the backbone of the hysteretic model (denoted as path A) consist of a linear segment 

until shear force reaches Vco, followed by a nonlinear curve until it reached the shear force at the 

flexural capacity of the wall Vn. Note that Vco corresponds to shear force at crack opening and is 

a function of the lower-bound bending moment (Adebar and Ibrahim 2002) and lateral load 

distribution acting on the wall. The slope of the linear segment of path A, ki, is the initial 

stiffness of the wall and depends on the wall height and gross flexural stiffness EIg. Korchinski 

(2007) defined a fourth - order polynomial to model the nonlinear segment of the backbone 

curve. The solution of the polynomial requires five pieces of information to determine five 

constants of the polynomial. Four constants can be determined by inserting the position of start 

and endpoints of the curve as well as the slope of the curve at these points. The fifth constant can 

be obtained by defining an additional point that the curve must pass through between the start 

and endpoints of the curve. The displacement at flexural capacity, ∆yUB, is calculated by 

integrating the curvatures determined from the bending moment diagram using the upper-bound 

bending moment - curvature relationship (Adebar and Ibrahim 2002) over the height of the wall. 

For displacements greater than ∆yUB, the envelope is defined by a linear segment with a slope 

equal to 2% of the initial stiffness ki to model strain hardening of the reinforcement. 

 The hysteretic path consists of a series of linear paths originating from Vco to a point on 

the envelope corresponding to maximum previous displacement (denoted as path C). The slope 

of the loading paths tend to decrease as displacement increases; however, in the cases that ∆yLB is 

exceeded, all subsequent loading paths follow the lower-bound reloading path regardless of 

maximum previous displacement (denoted as path E). Lower-bound yield displacement, ∆yLB, is 

calculated by integrating curvatures determined from lower-bound trilinear bending moment - 

curvature relationship (Adebar and Ibrahim 2002) over the height of the wall. 

 Unloading paths return linearly from maximum displacement to shear force at crack 

closing, Vcc (denoted as path B). This parameter is a function of bending moment at which cracks 

will close due to the presence of axial load. For simplicity, it is assumed that the unloading point 

is located at the linear segment of path A, i.e. zero residual displacement when pushing back the 

wall to the origin for positive values of Vcc. In cases that Vcc is negative, the hysteretic model 
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exhibits residual displacement (denoted as path D). Note that Vcc is negative for walls with low 

amount of axial compression force and high percentage of longitudinal reinforcement. 

 For mid-cycle reloading, the reloading path follows the initial slope ki from the point 

where it leaves the unloading path (denoted as path F). The reloading path intersects and follows 

a linear path from Vco to maximum previous displacement. In the cases that maximum previous 

displacement exceeds ∆yLB, mid-cycle reloading follows the initial stiffness ki until it joins the 

lower-bound reloading path. 

 

Figure C.1 Hysteretic force - displacement relationship used in SDOF oscillators. 
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Appendix D: 

Mean Spectra of Ground Motions Used in Chapter 3 
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B.1 Mean Spectra for Ground Motions Scaled to the UHS between 0.2T1 and 1.5T1  

  

 

 

 

B.2 Mean Spectrum for Spectrum Matched Ground Motions 
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B.3 Mean Spectra for Ground Motions Scaled to the UHS at the fundamental period T1 
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B.4 Mean Spectra for Ground Motions Scaled to the UHS between T1 and 1.5T1 
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Appendix E: 

Effective Stiffness of the 13 Walls Using SDOF Approach Corresponding to Different 
Ground Motion Scaling Methods 
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E.1 Effective Stiffness Corresponding to Spectrum Matched Ground Motions 
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E.2 Effective Stiffness Corresponding to Ground Motions Scaled to the UHS at T1 
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E.3 Effective Stiffness Corresponding to Ground Motions Scaled to the UHS between T1 

and 1.5T1 
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