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Abstract

Models for the spectral dependence of the real and imaginary components of

the dielectric function, appropriate for the case of amorphous semiconduc-

tors, are considered. In the first phase of this analysis, from an empirical

expression for the imaginary part of the dielectric function, this expression

corresponding to that of Jellison and Modine [G. E. Jellison, Jr. and F. A.

Modine, “Parameterization of the optical functions of amorphous materials

in the interband region,” Applied Physics Letters, vol. 69, pp. 371-373, 1996],

a closed-form expression for the real part of the dielectric function is deter-

mined using a Kramers-Kronig transformation. The resultant expression for

the real component of the dielectric function corresponds with that of the

model of Jellison and Modine. The subsequent comparison with experiment

is found to be satisfactory. Then, in the latter stage of this analysis, through

the application of a Kramers-Kronig transformation on an empirical model

for the imaginary part of the dielectric function, this model stemming from
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Abstract

a model for the distributions of electronic states, the spectral dependence of

the real part of the dielectric function is determined. Fits with the results

of experiment, taken over the near-infrared, visible, and near-ultraviolet, are

also found to be satisfactory.
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Chapter 1

Introduction

For the past half-century, electronics has played an important role in

shaping the course of human development. In advanced industrial economies,

such as Canada’s, electronics has become a critical adjunct to modern life.

Electronic devices are ubiquitous. They are found in houses, offices, recre-

ational settings, vehicles, and appliances. They are used in communication

systems, control systems, sensor systems, and in a plethora of other systems.

With each passing year, new applications for electronic devices are conceived.

Thus, the role that electronics plays in modern society continues to broaden.

The transistor is the fundamental building block upon which the electron-

ics revolution has been built. While the first microprocessors, developed in

the early 1970s, were comprised of about a thousand transistors, at the time

of writing, 2012, the standard personal computer, available in most offices

and homes, has in excess of a billion transistors. In the near term future, this

1
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is only expected to exponentially increase, as it has for the past four decades;

Moore [1] prophesized this exponential increase in the number of transistors

on a processor in 1965, and, thus far, Moore’s prophesy, or Moore’s law, as

this projection is now commonly referred to as, has held true.

The electronics revolution found its genesis with the development of the

first transistor in 1947 [2, 3]. Transistors are comprised of conductors, insula-

tors, and semiconductors. The fabrication of the first transistor was achieved

as a result of a detailed and quantitative understanding of the material prop-

erties of these different materials. While the properties of conductors and

insulators were relatively well understood by 1947, the understanding of the

material properties of semiconductors was more rudimentary; at the time,

semiconductors were considered more of a laboratory curiosity. Since that

time, however, fundamental progress in electronics has been achieved through

continued improvements in the understanding of the material properties of

the materials used within electronic devices. The next generation of elec-

tronic device will undoubtedly rely upon an even greater understanding of

these material properties. Accordingly, interest in the material properties of

conductors, insulators, and particularly semiconductors, remains intense.

In conventional electronics, technological improvements have been achieved

2
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as a consequence of making the constituent electronic devices, i.e., the tran-

sistors, smaller, faster, cheaper, and more reliable. There is, however, another

class of electronic device that requires size in order to properly function. Flat

panel displays [4, 5] and scanners [6], acting at the interface between the hu-

man and electronic worlds, are two such examples. Digital x-ray imagers [7]

and photovoltaic solar cells [8, 9] are two other examples. These electronic

devices are commonly referred to as examples of large area electronic devices.

Starting out as a niche field in the late 1960s, large area electronics now con-

stitutes a sizeable and growing fraction of the overall electronics enterprise;

see Figure 1.1 [10].

In conventional electronics, the focus is on producing electronic devices

with sub-micron feature sizes. In contrast, for large area electronics, the

focus is on depositing materials as thin-films over large substrates, i.e., of

the order of a square-meter [11]. For large area electronics, the uniformity

of the resultant thin-films and the expense of the deposition process are of

paramount concern. Crystalline silicon (c-Si), the workhorse of conventional

electronics, can not be deposited as a thin-film. Accordingly, alternative

electronic materials must be employed instead. Microcrystalline silicon (µc-

Si) and amorphous silicon (a-Si) are two alternate silicon-based materials

3
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Figure 1.1: Semiconductor and flat panel display shipments plotted as a

function of date. This data was obtained from the 2005 Information Society

Technologies proposal for advancement [10].
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commonly used in the large area electronics field.

The distinction between c-Si, µc-Si, and a-Si relates to the underlying dis-

tribution of atoms. In c-Si, the atoms are arranged in a periodic and ordered

manner. In µc-Si, however, small crystallites, randomly oriented and sepa-

rated by grain boundaries, are distributed throughout the volume. In a-Si,

all residual crystalline order is absent, there being variations in the short-

range bonding lengths and bonding angles. In Figure 1.2 [12], a schematic

two-dimensional representation of the distribution of atoms within hypotheti-

cal crystalline, microcrystalline, and amorphous semiconductors is presented.

The disorder that is present, in both µc-Si and a-Si, plays an important role

in shaping the resultant properties of these materials.

While disorder is present within the atomic distributions of µc-Si and

a-Si, there is still a considerable amount of order that is present in both

of these materials. For both µc-Si and a-Si, most silicon atoms are bonded

to four other silicon atoms, as in the case of c-Si. The bonding lengths

and bonding angles, while exhibiting variations, are, on average, similar to

those exhibited by c-Si. Accordingly, as the properties of a given material

are primarily determined by its short-range order, many of the properties

of these materials are similar to those of c-Si. The disorder that is present,

5
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Crystalline semiconductor structure

Polycrystalline semiconductor structure

Amorphous semiconductor structure

Figure 1.2: A two-dimensional schematic representation of the atomic distri-

butions associated with hypothetical crystalline, microcrystalline, and amor-

phous semiconductors. This figure is from Nguyen [12].
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however, will lead to some important differences. These will be the focus of

the subsequent analysis.

When a material is exposed to light, it will respond. Consider, for exam-

ple, a beam of light incident upon a semi-infinite slab of material, as seen in

Figure 1.3 [13]. Ignoring reflections from the slab, if the material comprising

the slab is absorbing, assuming that the material within the slab is homo-

geneous, it is found that the intensity of the light exponentially attenuates

as it propagates through the absorbing slab. In particular, it can be shown

that the intensity of the light within the slab

I(z) = Io exp(−αz), (1.1)

where I(z) denotes the intensity of the light at position z, Io represents the

incident light intensity, and α denotes the optical absorption coefficient; it

is assumed that z = 0 corresponds to the interface between the vacuum and

the absorbing slab. Representative attenuations of the light intensity, for a

number of selections of the optical absorption coefficient, α, are depicted in

Figure 1.4 [14].

The absorption that occurs within a semiconductor arises as a conse-

quence of optical transitions from the occupied electronic states in the va-

lence band to the unoccupied electronic states in the conduction band. In
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Chapter 1. Introduction

Figure 1.3: A schematic representation of the light intensity as a function

of the penetration depth, z, with light normally incident upon the material

propagating from the left. This figure is from Thevaril [13].
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Figure 1.4: Variations in the relative intensity, I(z)/Io, with the penetration

depth, z, for different selections of the optical absorption coefficient, α. This

figure is after Orapunt [14].
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Figure 1.5, a representative optical transition is depicted. The optical re-

sponse of a material depends critically upon the availability of electronic

states and on the probability of the optical transitions between such elec-

tronic states. The distributions of valence band and conduction band elec-

tronic states determines the range of possible optical transitions. The optical

transition matrix elements, that couple the electronic states between which

optical transitions occur, determine the probability of such optical transitions

occurring.

The optical response of a material may be characterized in terms of the

spectral dependence of the optical absorption coefficient, α(E), where E

denotes the photon energy of the photons within the beam of incident light.

In a defect-free, disorderless semiconductor, this optical absorption coefficient

terminates abruptly at the energy gap. Accordingly, measurements of the

optical absorption spectrum allow one to determine the corresponding energy

gap. In addition, the spectral dependence of the optical absorption coefficient

beyond the energy gap provides information as to how the electronic states

are distributed and on what the probability of the optical transitions between

such states are. When disorder is introduced, however, the situation is more

complicated, as there are now electronic states encroaching into the otherwise
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incoming photon

h̄ω

conduction band

valence band

energy gap

Figure 1.5: A representative optical transition, from an occupied electronic

state in the valence band to an unoccupied electronic state in the conduction

band.
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Chapter 1. Introduction

empty energy gap region. Accordingly, the optical absorption spectrum no

longer terminates abruptly at the energy gap. In fact, the definition of the

energy gap itself becomes the subject of some controversy.

While α(E) is often experimentally measured, it is the real and imaginary

parts of the dielectric function, ε1(E) and ε2(E), respectively, that are the

more usual focus of theoretical attention. The complex dielectric function

may be expressed as the sum over its real and imaginary components, i.e.,

ε̃(E) = ε1(E) + iε2(E), (1.2)

where ε1(E) and ε2(E) denote the real and imaginary components of this

dielectric function, respectively, and i =
√
−1. The optical absorption coeffi-

cient, α(E), may be related to the imaginary part of the dielectric function,

ε2(E), through the relationship

α(E) =
E

~cn(E)
ε2(E), (1.3)

where ~ and c represent the reduced Planck’s constant and the speed of light

in a vacuum, respectively, and where n(E) denotes the spectral dependence

of the refractive index, where the complex refractive index,

ñ(E) = n(E) + ik(E), (1.4)
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Chapter 1. Introduction

k(E) being the corresponding extinction coefficient. It is noted that the

complex refractive index is related to the complex dielectric function through

the relationship

ε̃(E) = ñ2(E). (1.5)

From Eqs. (1.2), (1.4), and (1.5), one can thus conclude that

ε1(E) = n2(E)− k2(E), (1.6)

and

ε2(E) = 2 n(E) k(E). (1.7)

These functions, α(E), ε1(E), ε2(E), n(E), and k(E), are collectively

referred to as the optical functions, as they quantify the nature of the optical

response of a given material. In this thesis, the optical response of amorphous

semiconductors will be the focus of analysis. Following a presentation of

the theoretical background required of this work, the analysis begins with a

theoretical justification for the empirical model of Jellison and Modine [15], in

which Kramers-Kronig consistent empirical expressions for ε1(E) and ε2(E)

are formulated. Then, a model for the optical functions, i.e., ε1(E) and ε2(E),

stemming from a model for the distributions of valence band and conduction

13



Chapter 1. Introduction

band electronic states, is developed. Finally, these models will be employed

in order to fit some relevant experimental data. Conclusions, regarding the

suitability of these models, will then be drawn from these fits. The main

new results presented in this thesis pertain to the theoretical justification

of the Kramers-Kronig consistent empirical expressions for ε1(E) and ε2(E)

corresponding to the empirical model of Jellison and Modine [15] and the new

model for these optical functions stemming from a model for the distributions

of valence band and conduction band electronic states.

This thesis is organized in the following manner. In Chapter 2, the the-

oretical foundations for this analysis are provided. Then, in Chapter 3, a

theoretical justification for the Kramers-Kronig consistent model of Jellison

and Modine [15] is formulated. An alternate Kramers-Kronig model for the

spectral dependence of ε1(E) and ε2(E), stemming from a model for the un-

derlying distributions of valence band and conduction band electronic states,

is then developed in Chapter 4. Finally, the conclusions of this analysis are

presented in Chapter 5.
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Chapter 2

Theoretical basis for analysis

2.1 The optical response of materials

The optical response of a material is primarily shaped by the distri-

butions of valence band and conduction band electronic states and by the

magnitude of the optical transition matrix elements which couple the elec-

tronic states between which optical transitions occur. The distributions of

valence band and conduction band electronic states determines what optical

transitions can occur in a given material. The magnitude of the optical tran-

sition matrix elements, however, determine the probability of such optical

transitions occurring. The primary goal of this analysis is the development

of Kramers-Kronig consistent models for the spectral dependence of the real

and imaginary components of the dielectric function, ε1(E) and ε2(E), re-

spectively, for the case of amorphous semiconductors. In order to achieve

this goal, the role that each of these factors plays in shaping the optical
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2.1. The optical response of materials

response of an amorphous semiconductor must be well understood.

In this chapter, the theoretical foundations for the work presented in this

thesis are provided. Initially, an expression for the spectral dependence of the

imaginary part of the dielectric function, ε2(E), in terms of the valence band

and conduction band energy levels and the magnitude of the corresponding

optical transition matrix elements, is presented. Then, through the introduc-

tion of a number of suitable assumptions, a relationship between the valence

band and conduction band distributions of electronic states and the spectral

dependence of ε2(E) is developed. Two particular formulations for this re-

lationship are developed: (1) a momentum matrix element formulation, and

(2) a dipole matrix element formulation, these formulations being related

to each other. For each of these formulations, an aggregate matrix element

is employed. The joint density of states (JDOS) function, J(E), is intro-

duced as a corollary to this analysis. The Kramers-Kronig relations are then

presented, these relating the spectral dependence of ε1(E) with ε2(E) and

the spectral dependence of ε2(E) with ε1(E). A number of models, for both

ε1(E) and ε2(E), are then presented. Finally, three sets of experimental data,

corresponding to different samples of a-Si, are presented, these experimental

data sets being used in the subsequent analysis.
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2.1. The optical response of materials

This chapter is organized in the following manner. In Section 2.2, an

expression for the spectral dependence of the imaginary part of the dielectric

function, ε2(E), in terms of the valence band and conduction band energy

levels and the magnitude of the corresponding optical transition matrix el-

ements, is presented. Then, in Section 2.3, three critical assumptions are

introduced, these allowing one to relate the spectral dependence of ε2(E)

with that of J(E). In Section 2.4, a momentum matrix element formulation

for the relationship between the imaginary part of the dielectric function,

ε2(E), and the distributions of the valence band and conduction band elec-

tronic states is developed, the JDOS function and the aggregate momentum

matrix element being introduced as a byproduct of this particular formu-

lation. A dipole matrix element formulation for the relationship between

the imaginary part of the dielectric function, ε2(E), and the distributions

of the valence band and conduction band electronic states is then devel-

oped in Section 2.5, the aggregate dipole matrix element being proposed as

a byproduct of this analysis. The free electron model, for the distributions

of electronic states, is then presented in Section 2.6. The spectral depen-

dence of this JDOS function, assuming free electron distributions of valence

band and conduction band electronic states, is then presented in Section 2.7.
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2.2. The spectral dependence of the imaginary part of the dielectric function

The Kramers-Kronig relationships between the real and imaginary parts of

the dielectric function, ε1(E) and ε2(E), respectively, are discussed in Sec-

tion 2.8, the time-symmetry requirements demanded of these relations being

featured. A number of models for the spectral dependence of the optical

functions, ε1(E) and ε2(E), are then presented in Section 2.9. Finally, ex-

perimental a-Si data sets, corresponding to ε1(E) and ε2(E), are presented

in Section 2.10, these data sets being used in the subsequent analysis.

2.2 The spectral dependence of the

imaginary part of the dielectric function

Optical transitions occur from occupied electronic states in the valence

band (initial states) to unoccupied electronic states in the conduction band

(final states). Within the framework of a one-electron picture, assuming

linear optical response, Jackson et al. [16] assert that the imaginary part of

the dielectric function,

ε2(E) =

(
2πq~
mE

)2
2

V

∑
v,c

|~η · ~P v,c|2δ(Ec − Ev − E), (2.1)

where q denotes the electron charge, m represents the electron mass, V is

the illuminated volume, ~η is the polarization vector of the incident light,

18



2.3. Three critical assumptions

and E is the photon energy; the δ(·) terms refer to the Dirac delta function.

Ev and Ec denote the energy levels of representative valence band and con-

duction band electronic states, |v〉 and |c〉, respectively. ~P v,c represents the

momentum matrix element that couples these particular electronic states in

an optical transition process; in quantum mechanics, this matrix element,

~P v,c = 〈c|~P |v〉, where ~P denotes the momentum operator. The |~η · ~P v,c|2

operation refers to taking the complex modulus squared of the complex num-

ber ~η · ~P v,c. The summation in Eq. (2.1) is performed over all of the occupied

valence band and unoccupied conduction band single-spin electronic states.

2.3 Three critical assumptions

Eq. (2.1) expresses the spectral dependence of the imaginary part of the

dielectric function, ε2(E), in terms of the valence band and conduction band

energy levels and the magnitude of the corresponding momentum matrix

elements. This expression applies to both the crystalline and amorphous

cases. In order to relate ε2(E) with the underlying distributions of valence

band and conduction band electronic states for the specific case of amorphous

semiconductors, three critical assumptions are introduced into the analysis:
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2.3. Three critical assumptions

(1) it is assumed that the incident light is unpolarized, (2) it is assumed

that the disorder that is present in an amorphous semiconductor completely

relaxes the momentum conservation rules, and (3) it is assumed that zero-

temperature statistics apply. The consequences of each approximation is

outlined subsequently.

The absence of polarization simplifies Eq. (2.1). With random polar-

ization, assuming that all of the significant momentum matrix elements are

of the same order of magnitude, the average value of |~η · ~P v,c|2 reduces to

1
3
|Pv,c|2, where |Pv,c| denotes the amplitude of the momentum matrix element.

As a result, Eq. (2.1) reduces to

ε2(E) = (2πq)2
~2

m2E2

2

3V

∑
v,c

|Pv,c|2δ(Ec − Ev − E). (2.2)

In a crystalline semiconductor, momentum must be conserved in an op-

tical transition. In an amorphous semiconductor, however, the momentum

conservation rules are relaxed. That is, optical transitions can occur from

every occupied state (of a particular spin) in the valence band to every un-

occupied state (of the same spin) in the conduction band; spin-flips are not

permitted during an optical transition. As a consequence, in a crystalline

semiconductor, the |Pv,c| values vary greatly, depending upon whether mo-

mentum is conserved or not, while in an amorphous semiconductor, |Pv,c| is

20



2.3. Three critical assumptions

essentially constant for all cases. This greatly simplifies the analysis.

The contrast between c-Si and a-Si is instructive. Consider the case of

N silicon atoms. For the case of c-Si, from a given single-spin state in the

valence band, four optical transitions are possible; there are N
2

possible values

of crystal momentum for the case of c-Si. For the case of a-Si, however,

2N optical transitions are possible. These possible optical transitions are

depicted in Figure 2.1. If the overall “optical strength” of c-Si and a-Si is

similar, it seems likely that the |Pv,c| matrix elements associated with the

small number of possible c-Si optical transitions will be of a much greater

magnitude than that of their more numerous a-Si counterparts. Later on in

this analysis, a normalized matrix element is introduced in order to allow for

a direct comparison between the c-Si and a-Si matrix elements, where the

weighting factor is directly proportional to the ratio between the number of

allowed optical transitions for the c-Si and a-Si cases.

The final assumption that is introduced into this analysis is that of zero-

temperature statistics. In Figure 2.2, the occupancy function,

f(E) =
1

1 + exp(E−EF

KBT
)
, (2.3)

is depicted as a function of an energy, E, for a variety of different tempera-

ture selections, EF denoting the Fermi energy level. It is noted that as the
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Figure 2.1: The possible optical transitions within c-Si and a-Si. This figure

is after Jackson et al. [16].
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Figure 2.2: The occupancy function, f(E), as a function of energy, E, for

various selections of temperature. The Fermi energy level, EF , is the reference

energy level, i.e., EF = 0 eV.
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2.4. A momentum matrix element formulation

temperature goes to zero that this function, sometimes referred to as the

Fermi-Dirac function, reduces to a step function, where the step occurs at

the Fermi energy level, EF . For the case of semiconductors, considering that

the Fermi energy level, EF , is typically in the middle of the energy gap, this

implies that at zero temperature, all of the valence band electronic states are

fully occupied and all of the conduction band electronic states are completely

unoccupied. This assumption simplifies the subsequent analysis.

2.4 A momentum matrix element

formulation

It will be assumed that the overall “optical strength” of c-Si is identical

to that of a-Si. As was discussed earlier, if this is the case it would seem rea-

sonable to expect that the small number of non-zero c-Si momentum matrix

elements will be larger in magnitude than their much more numerous a-Si

counterparts. In order to allow for a direct contrast between these matrix

elements, one could conceive of normalizing the a-Si momentum matrix el-

ements by a factor that is proportional to the ratio between the number of

allowed optical transitions, i.e., 2N
4

. Letting ρA denote the density of silicon
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2.4. A momentum matrix element formulation

atoms within a-Si, this normalization factor becomes 2ρAV
4

.

In order to allow for a direct relationship between ε2(E) and the dis-

tributions of valence band and conduction band electronic states, one can

introduce an aggregate momentum matrix element

P 2(E) ≡ ρAV

2

∑
v,c |Pv,c|2δ(Ec − Ev − E)∑

v,c δ(Ec − Ev − E)
, (2.4)

where the ρAV
2

prefactor allows for a direct comparison between the momen-

tum matrix elements associated with c-Si and a-Si. From Eqs. (2.2) and

(2.4), it can now be shown that

ε2(E) = (2πq)2
~2

m2E2

2

3V

(
2

ρAV

)
P 2(E)

∑
v,c

δ(Ec − Ev − E). (2.5)

The term
∑

v,c δ(Ec − Ev − E) provides for the number of possible optical

transitions between the occupied valence band and unoccupied conduction

band electronic states separated by the energy E. Defining the JDOS func-

tion,

J(E) ≡ 4

V 2

∑
v,c

δ(Ec − Ev − E), (2.6)

from Eq. (2.5), it can now be seen that

ε2(E) = (2πq)2
~2

m2E2

2

3V

V 2

4

(
2

ρAV

)
P 2(E) J(E). (2.7)
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2.4. A momentum matrix element formulation

Thus, the spectral dependence of ε2(E) reduces to a product of a prefactor,

the reciprocal of E2, the aggregate momentum matrix element, and the JDOS

function, J(E).

The valence band density of states (DOS) function, Nv(E), whereNv(E)∆E

represents the number of valence band electronic states between [E,E+∆E],

per unit volume, may be expressed as the sum over all of the valence band

single-spin electronic states divided by the volume, i.e.,

Nv(E) =
2

V

∑
v

δ(E − Ev), (2.8)

where the factor of 2 arises as a consequence of the fact that each elec-

tronic state is a single-spin state, i.e., there are two possible spins. Similarly,

the conduction band DOS function, Nc(E), where Nc(E)∆E represents the

number of conduction band electronic states between [E,E + ∆E], per unit

volume, may be expressed as the sum over all of the conduction band single-

spin electronic states divided by the volume, i.e.,

Nc(E) =
2

V

∑
c

δ(E − Ec), (2.9)

where the factor of 2 arises as a consequence of the fact that each electronic

state is a single-spin state.

Assuming that all valence band states are fully occupied and that all
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2.4. A momentum matrix element formulation

conduction band states are completely unoccupied, i.e., the zero-temperature

assumption, it may be shown that the JDOS function may be expressed as

an integral over the product of the valence band and conduction band DOS

functions, i.e.,

J(E) =

∫ ∞
−∞

Nv(ξ)Nc(E + ξ)dξ. (2.10)

From Eqs. (2.5) and (2.6), one can thus conclude that

ε2(E) =
(2πq)2

3ρA

~2

m2E2
P 2(E) J(E). (2.11)

For a wide variety of amorphous semiconductor experimental analyzes,

it has been assumed that the aggregate momentum matrix element, P 2(E),

exhibits a constant spectral dependence with respect to energy, E. This is

referred to as the constant momentum matrix element assumption. This

assumption, which found its origins in the analysis at Tauc et al. [18], was

widely accepted by researchers in the field until the early 1980s. Despite this

acceptance, it lacks a theoretical justification. Moreover, Cody et al. [19]

demonstrated that experimental results interpreted within the framework of

this assumption are fundamentally inconsistent. Accordingly, other models

for the spectral dependence of ε2(E) are sought.
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2.5. A dipole matrix element formulation

2.5 A dipole matrix element formulation

Cody et al. [19] provided experimental data which challenged the valid-

ity of the constant momentum matrix element assumption. For the purposes

of their study, Cody et al. [19] prepared a large number of a-Si samples under

identical conditions, but with different film thicknesses. They then measured

the spectral dependence of the optical functions using transmission and re-

flectance measurements on these samples. Cody et al. [19] noted that while

fits to this data, determined assuming a constant momentum matrix ele-

ment, are satisfactory, they become greatly improved if one instead assumes

a constant dipole matrix element. Moreover, such an assumption removes a

film thickness dependence artifact that was noted by Cody et al. [19] within

the framework of the constant momentum matrix element assumption. Ac-

cordingly, it is instructive to recast our formulation in terms of the spectral

dependence of the dipole matrix element.

Taking into account the experimental evidence provided by Cody et al. [19],

Jackson et al. [16] recast Eq. (2.1) into a form in which the matrix elements

are instead expressed in terms of the dipole matrix elements as opposed to

the momentum matrix elements, i.e., ~Rv,c = 〈c| ~R|v〉, where ~R denotes the
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2.5. A dipole matrix element formulation

dipole operator. From the commutator relations, Jackson et al. [16] find that

∑
v,c

|η · P v,c|2δ(Ec − Ev − E) =

(
mE

~

)2∑
v,c

|η ·Rv,c|2δ(Ec − Ev − E).

(2.12)

As before, if the incident light is unpolarized, the average value of |~η · ~Rv,c|2

reduces to 1
3
|Rv,c|2, where |Rv,c| denotes the amplitude of the dipole matrix

element. Accordingly, Jackson et al. [16] conclude that

ε2(E) = (2πq)2
2

3V

∑
v,c

|Rv,c|2δ(Ec − Ev − E). (2.13)

Introducing an aggregate dipole matrix element, defined and normalized

in a manner similar to that introduced earlier for the case of the momentum

matrix formalism, Jackson et al. [16] proposed that,

R2(E) ≡ ρAV

2

∑
v,c |Rv,c|2δ(Ec − Ev − E)∑

v,c δ(Ec − Ev − E)
, (2.14)

where, as before, ρA denotes the atomic density. For this definition, it is

noted that Eq. (2.13) may be represented as

ε2(E) = (2πq)2
2

3V

(
2

ρAV

)
R2(E)

∑
v,c

δ(Ec − Ev − E). (2.15)

From Eqs. (2.6) and (2.15), one can thus conclude that

ε2(E) =
(2πq)2

3ρA
R2(E) J(E). (2.16)
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2.5. A dipole matrix element formulation

That is, the spectral dependence of the imaginary part of the dielectric func-

tion, ε2(E), is proportional to the product of a prefactor, R2(E), and J(E).

Given that the density of the silicon atoms within a-Si is typically around

4.4 ×1022 cm−3 [17], it can thus be seen that, for the specific case of a-Si,

Eq. (2.16) may be re-expressed as

ε2(E) = 4.3× 10−45 R2(E) J(E), (2.17)

whereR2(E) is in units of Å2 and J(E) is in the units of cm−6eV−1 [16, 17]. In

light of the experimental results of Cody et al. [19], the spectral dependence

of R2(E) is often assumed to be constant. This is referred to as the constant

dipole matrix element assumption.

It is noted, from Eqs. (2.11) and (2.16), that the relationship between

the aggregate momentum matrix element squared average and the aggregate

dipole matrix element squared average is found to be

P 2(E) =
m2E2

~2
R2(E). (2.18)

Eq. (2.18) allows one to relate the one formulation for the spectral dependence

of the imaginary part of the dielectric function, ε2(E), with the other.
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2.6 Free electron model of the DOS

functions

The spectral dependence of the JDOS function depends upon a con-

volution over the valence band and conduction band DOS functions; recall

Eq. (2.10). Accordingly, the determination of these functions is of paramount

concern. While the exact form of these DOS functions depends critically upon

the exact potential distribution, the free electron DOS function provides a

useful limiting result that is often employed for theoretical benchmarking

purposes.

Consider the electronic states within a cubic box, of dimensions L×L×L,

surrounded by an infinitely high potential barrier, as seen in Figure 2.3. It

will be assumed that the potential within the box itself is nil. From quantum

mechanics, for steady-state conditions, the wavefunctions associated with the

corresponding bound electron states may be determined from Schrödinger’s

equation, i.e.,

~2

2m
52 Ψ(~r) + V (~r)Ψ(~r) = EΨ(~r), (2.19)

where ~, m, V (~r), and E represent the reduced Planck’s constant, the mass

of the electron, the potential energy, and the electron energy, respectively.
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2.6. Free electron model of the DOS functions

Figure 2.3: A schematic representation of a three-dimensional potential en-

ergy well. This figure is from Thevaril [13].
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2.6. Free electron model of the DOS functions

52 denotes the mathematical operator ∂
∂x2

+ ∂
∂y2

+ ∂
∂z2

in three-dimensions.

It may be shown that

Ψ(~r) = Ψnx,ny ,nz(x, y, z) =

(
2

L

)3/2

sin
(πnx
L
x
)

sin
(πny
L
y
)

sin
(πnz
L
z
)
,

(2.20)

where nx, ny, and nz are positive integers, associated with the electron motion

in the different directions; these are the quantum numbers. The energy of the

corresponding electronic states may be found by substituting the obtained

wavefunction, i.e., Eq. (2.20), back into the Schrödinger’s equation, i.e.,

Enx,ny ,nz =
~2

2m

[(πnx
L

)2
+
(πny
L

)2
+
(πnz
L

)2]
, (2.21)

where Enx,ny ,nz represents the energy associated with the nx, ny, and nz

wavefunction, Ψnx,ny ,nz(x, y, z), the labeling integers, nx, ny, and nz, exactly

corresponding to the aforementioned quantum numbers.

In the continuum limit, i.e., for E sufficiently large, the corresponding

DOS function may be shown to be

N(E) =



√
2
m3/2

π2~3
√
E, E ≥ 0

0, E < 0

. (2.22)
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Eq. (2.22) is often referred to the free electron DOS model; within the well,

the potential is nil, i.e., the electrons are “free”. This form for the DOS

function is often assumed in analyzes of amorphous semiconductors.

2.7 The spectral dependence of the JDOS

function

It is often useful to employ the free-electron model for the valence band

and conduction band DOS functions in the evaluation of the JDOS func-

tion. This model suggests that the distribution of electronic states exhibits a

square-root functional dependence on the energy above the conduction band

minimum and below the valence band maximum. Following O’Leary [17],

one can set the valence band DOS function

Nv(E) =


0, E > Ev

Nvo

√
Ev − E, E ≤ Ev

, (2.23)
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and the conduction band DOS function

Nc(E) =


Nco

√
E − Ec, E ≥ Ec

0, E < Ec

, (2.24)

where Nvo and Nco represent the valence band and conduction band DOS

prefactors, respectively, and Ev and Ec represent the valence band and con-

duction band band edges; these DOS functions are also known as the Tauc

DOS functions. The resultant distributions of electronic states, for this spe-

cific case, are depicted in Figure 2.4, nominal values of Nvo, Nco, Ev, and Ec

being employed for the purposes of this analysis; in particular, Nvo and Nco

are both set to 2 ×1022 cm−3 eV−3/2, Ev is set to 0 eV, and Ec is set to 2 eV,

these values being representative of the case of a-Si. Through the use of Eq.

(2.10), it may be shown that

J(E) = NvoNco



π

8
(E − Eg)2, E ≥ Eg

0, E < Eg

, (2.25)

where Eg ≡ Ec−Ev represents the energy gap of the material. The spectral

dependence of the corresponding JDOS function is depicted in Figures 2.5

and 2.6. This is known as the Tauc JDOS function after the pioneering work
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Figure 2.4: The valence band DOS function, Nv(E), and the conduction band

DOS function, Nc(E), plotted as a function of energy, E, determined through

Eqs. (2.23) and (2.24), respectively, assuming the nominal DOS modeling

parameter selections, Nvo = Nco = 2 × 1022 cm−3 eV−3/2, Ev = 0 eV, and

Ec = 2 eV. These values are representative of the case of a-Si.
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Figure 2.5: The JDOS function, J(E), plotted as a function of the photon

energy, E, determined through Eq. (2.25), assuming the nominal DOS mod-

eling parameter selections, Nvo = Nco = 2 × 1022 cm−3 eV−3/2, Ev = 0 eV,

and Ec = 2 eV. These values are representative of the case of a-Si. This plot

is depicted on a linear scale.
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Figure 2.6: The JDOS function, J(E), plotted as a function of the photon

energy, E, determined through Eq. (2.25), assuming the nominal DOS mod-

eling parameter selections, Nvo = Nco = 2 × 1022 cm−3 eV−3/2, Ev = 0 eV,

and Ec = 2 eV. These values are representative of the case of a-Si. This plot

is depicted on a logarithmic scale.
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2.8. Kramers-Kronig relations

of Tauc et al. [18].

2.8 Kramers-Kronig relations

As a consequence of causality, there is a relationship between the spectral

dependence of the real and imaginary parts of the dielectric function, ε1(E)

and ε2(E), respectively. Consider a time-dependent electric field, E(t), ap-

plied to a solid that produces a current density, J(t), in response. The

variations with respect to position of these quantities are neglected. If only

weak fields are considered, then a general linear relationship between E and

J exists, where

J(t) =

∫ ∞
−∞

Σ(t− t′) E(t′)dt′, (2.26)

Σ(t) denoting the time-dependent conductivity. Through a Fourier transform

on Eq. (2.26), one obtains

J (ω) = σ(ω)ξ(ω), (2.27)
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2.8. Kramers-Kronig relations

where J (ω), ξ(ω), and σ(ω) are the Fourier transforms of J , E, and Σ,

respectively, i.e.,

J (ω) =

∫ ∞
−∞

J(t)eiωtdt, (2.28a)

ξ(ω) =

∫ ∞
−∞

E(t)eiωtdt, (2.28b)

and

σ(ω) =

∫ ∞
−∞

Σ(t)eiωtdt. (2.28c)

It is also noted that the inverse Fourier transforms become

J(t) =
1

2π

∫ ∞
−∞
J (ω)e−iωtdω, (2.29a)

E(t) =
1

2π

∫ ∞
−∞

ξ(ω)e−iωtdω, (2.29b)

and

Σ(t) =
1

2π

∫ ∞
−∞

σ(ω)e−iωtdω. (2.29c)

In order to further the analysis, two critical assumptions have to be made:

(1) Σ(t) is zero for negative values of its argument, and (2) J(t) = 0 for t < t0,

where t0 is the earliest value of t′ for which E(t′) 6= 0. The first assumption

leads to the fact that σ(ω) is an analytic function in the upper half of the

complex ω plane. According to Cauchy’s theorem, the integral in Eq. (2.29c)

should vanish for σ(ω) being analytic in the upper half plane. It may thus
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2.8. Kramers-Kronig relations

be shown that

σ(ω0) =
1

2πi

∮
C1

σ(ω)

ω − ω0

dω. (2.30)

At first, the contour of integration of Eq. (2.30) may be chosen to be a small

circle, C1, about ω0, as shown in Figure 2.7. It is known that the distortion

of C1 into a larger contour of integration, C2, does not change the result; see

Figure 2.7, i.e.,

σ(ω0) =
1

2πi

∮
C1

σ(ω)

ω − ω0

dω =
1

2πi

∮
C2

σ(ω)

ω − ω0

dω. (2.31)

Assuming that σ(ω) → 0 for |ω| → ∞, then only contributions from the

real axis play a role in determining the integral in Eq. (2.30). Considering

that ωr is the frequency along the real axis, then it may be shown that

σ(ω0) =
1

2πi

∫ ∞
−∞

σ(ωr)

ωr − ω0

dωr. (2.32)

It is noted that ω0 may be expressed as

ω0 = ω + iω′. (2.33)

Since

lim
ω′→0

1

ωr − ω − iω′
= P

1

ωr − ω
+ iπδ(ωr − ω), (2.34)
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Figure 2.7: Contours of integration for Eq. (2.30).
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where P denotes the principal value, from Eqs. (2.32) and (2.34), it is seen

that

σ(ω) =
1

πi
P

∫ ∞
−∞

σ(ωr)

ωr − ω
dωr. (2.35)

From Eq. (2.35), it is seen that σ(ω) is a complex quantity, i.e.,

σ(ω) = σ1(ω) + iσ2(ω). (2.36)

Thus, it can be seen that

σ1(ω) =
1

π
P

∫ ∞
−∞

σ2(ωr)

ωr − ω
dωr, (2.37a)

and

σ2(ω) = − 1

π
P

∫ ∞
−∞

σ1(ωr)

ωr − ω
dωr. (2.37b)

That is, σ1(ω) and σ2(ω) are Hilbert transforms of each other. As a real E(t)

produces a real J(t), then the time-dependent conductivity, σ(t), must also

be real. This requires that

[σ1(ωr) + iσ2(ωr)]
∗ = σ(−ωr). (2.38)

As a result,

σ1(ωr) = σ1(−ωr), (2.39a)

and

σ2(ωr) = −σ2(−ωr). (2.39b)
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So, from Eq. (2.37a), it is seen that

σ1(ω) =
1

π
P

[∫ 0

−∞

σ2(ωr)

ωr − ω
dωr +

∫ ∞
0

σ2(ωr)

ωr − ω
dωr

]
,

=
1

π
P

∫ ∞
0

σ2(ωr)

[
1

ωr − ω
+

1

ωr + ω

]
dωr,

=
2

π
P

∫ ∞
0

ωrσ2(ωr)

ω2
r − ω2

dωr. (2.40)

Similarly,

σ2(ω) = −2ω

π
P

∫ ∞
0

σ1(ωr)

ω2
r − ω2

dωr. (2.41)

Eqs. (2.40) and (2.41) constitute the Kramers-Kronig relations, applied to

conductivity.

It is also possible to develop Kramers-Kronig relations for the real and

imaginary parts of the dielectric function. Since

ε(ω) = ε0 + i
σ(ω)

ω
, (2.42)

it may be shown that

ε1(ω) = 1−
[
σ2(ω)

ε0ω

]
, (2.43a)

and

ε2(ω) =
σ1(ω)

ε0ω
. (2.43b)
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Thus,

ε1(ω) = 1 +
2

π
P

∫ ∞
0

ωrε2(ωr)

ω2
r − ω2

dωr, (2.44a)

and

ε2(ω) =
2

πω
P

∫ ∞
0

ω2
r [1− ε1(ωr)]
ω2
r − ω2

dωr. (2.44b)

So, the real part of the dielectric function, ε1(E), is related to the imaginary

part of the dielectric function, ε2(E), through the Kramers-Kronig transfor-

mation,

ε1(E) = ε1∞ +
2

π
P

∫ ∞
Eg

uε2 (u)

u2 − E2
du, (2.45)

where ε1∞ should ideally be set to unity. Similarly, the imaginary part of the

dielectric function, ε2(E), is related to the real part of the dielectric function,

ε1(E), through the Kramers-Kronig transformation

ε2(E) =
2

πE
P

∫ ∞
0

u2[1− ε1(u)]

u2 − E2
du. (2.46)

The conditions developed in Eqs. (2.39a) and (2.39b) mandate that

ε1(E) = ε1(−E), (2.47a)

and

ε2(E) = −ε2(−E). (2.47b)

45



2.9. Review of models

These are referred to as the time-symmetry requirements mandated of the

Kramers-Kronig relations.

2.9 Review of models

Within the framework of the momentum matrix element and the dipole

matrix element formulations, the imaginary part of the dielectric function,

ε2(E), may be expressed as the product of the corresponding aggregate op-

tical transition matrix element, the JDOS function, and some other function

of the photon energy. The optical transition matrix elements play an im-

portant role in shaping the spectral dependence of the imaginary part of the

dielectric function, ε2(E). Models for the spectral dependence of the imag-

inary part of the dielectric function, ε2(E), have been developed assuming

a constant momentum matrix element, i.e., a momentum matrix element

that is independent of the photon energy, E. Examples include the model of

Forouhi and Bloomer [20], the model of McGahan et al. [21], and the model

of Jellison and Modine [15].

This assumption of a constant momentum matrix element was first sug-

gested by Tauc et al. [18]. In fact, Tauc et al. [18] suggested that the zero-
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intercept of the plot of
√
αE as a function of E, where α represents the

corresponding optical absorption coefficient, allows one to define the “opti-

cal bandgap” of these materials if the aggregate momentum matrix element

is constant and the valence band and conduction band DOS functions are

square-root in form, i.e., of the form presented in Eqs. (2.23) and (2.24).

Based upon a linear response formalism for ε2(E), Tauc et al. [18] derived

an expression for ε2(E) that characterizes the absorption edge of amorphous

semiconductors. They concluded that

ε2(E) ∝ (E − Eg)2
E2

, (2.48)

for E > Eg, where Eg denotes the corresponding “optical bandgap”. Eq.

(2.48) may be used to describe the interband optical transition mechanism

for the optical response of such a material, and thus, ε2(E) = 0 for E < Eg.

Recalling Eq. (1.7), i.e., ε2(E) = 2n(E)k(E), where n(E) represents the

spectral dependence of the refractive index and k(E) denotes the spectral

dependence of the extinction coefficient, Forouhi and Bloomer [20] suggest

an expression for the extinction coefficient

kFB(E) =
A(E − Eg)2
E2 −BE + C

, (2.49)

where A, B, and C are treated as empirical fitting parameters. The term
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(E −Eg)2 in Eq. (2.49) represents the assumed form for the JDOS function

of the material itself, and arises from the assumed square-root valence band

and conduction band DOS functions; recall Eq. (2.25). This formulation

was then used in order to fit experimental optical functions corresponding to

amorphous diamond-like carbon films [15, 21, 22, 24]. Unfortunately, as was

pointed out by McGahan and Woollam [21, 22], the Forouhi and Bloomer [20]

model is unable to describe the spectral dependence of these optical functions

correctly. In particular, the Forouhi and Bloomer [20] formulation provides

for negative band gaps, a clearly unphysical result [15, 22]. McGahan et al.

[21] made some modifications to the Forouhi and Bloomer [20] model, and

this was shown to successfully fit several n and k experimental data sets.

Unfortunately, the Forouhi and Bloomer [20] and McGahan et al. [21]

formulations have several fundamental problems, these being nicely summa-

rized by Jellison and Modine [15]. They are as listed below:

• While experiment indicates that ε2(E)→ 0 as E →∞, both the models

of Forouhi and Bloomer [20] and McGahan et al. [21] instead approach

non-zero values for ε2(E) as E →∞.

• Both the models of Forouhi and Bloomer [20] and McGahan et al.

[21] fail to satisfy the Kramers-Kronig time-symmetry requirements,
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i.e., Eqs. (2.47a) and (2.47b), which mandate that

k(−E) = −k(E). (2.50)

Jellison and Modine [15] developed a new parameterized model for the

optical functions associated with an amorphous semiconductor that does not

have the problems listed above. In particular, they developed a Tauc-Lorentz

expression for the imaginary part of the dielectric function, ε2(E), based on

the Tauc JDOS function [18, 25], i.e., Eq. (2.25), and the Lorentz oscilla-

tor [26]. They then determined the corresponding spectral dependence of

the real part of the dielectric function, ε1(E), using a Kramers-Kronig trans-

formation, i.e., Eq. (2.45). As with the models of Forouhi and Bloomer [20]

and McGahan et al. [21], the model of Jellison and Modine [15] is cast within

the framework of the constant momentum matrix element assumption.

2.10 Experimental results

In the subsequent analysis, models for the spectral dependence of the real

and imaginary components of the dielectric function, ε1(E) and ε2(E), respec-

tively, are fit to a-Si optical function experimental data, and from these fits,

the “best” model parameters are determined, i.e., the modeling parameters
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that produce the “best” fits with the corresponding experimental data. The

experimental a-Si optical function data considered is from Piller [30], Synow-

icki [31], and Ferluato et al. [32], these experimental results corresponding to

samples of electron-gun evaporated (EGE) a-Si, and plasma enhanced chem-

ical vapor deposition (PECVD) prepared a-Si; the experimental data from

Piller [30] was obtained from a sample of EGE a-Si, the experimental data

from Synowicki [31] was obtained from a sample of PECVD a-Si, and the

experimental data from Ferluato et al. [32] was obtained from a sample of

PECVD a-Si, these samples being referred to as EGE a-Si, PECVD a-Si I,

and PECVD a-Si II, respectively. These three sets of experimental data are

shown in Figures 2.8 and 2.9, the spectral dependence of the real part of the

dielectric function being depicted in Figure 2.8 and the spectral dependence

of the imaginary part of the dielectric function being depicted in Figure 2.9.

The EGE a-Si [30] experimental data set was collected from an electron-gun

evaporated a-Si sample, with silicon as the substrate [30]. For the case of

the PECVD a-Si I [31] experimental data sets, fused silica was used as the

substrate [31]. For the case of the PECVD a-Si II [32] experimental data

sets, glass was used as the substrate [32].
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Figure 2.8: The three experimental data sets, i.e., EGE a-Si [30], PECVD a-

Si I [31], and PECVD a-Si II [32], for the real part of the dielectric function,

ε1(E), as a function of the photon energy, E.
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Figure 2.9: The three experimental data sets, i.e., EGE a-Si [30], PECVD

a-Si I [31], and PECVD a-Si II [32], for the imaginary part of the dielectric

function, ε2(E), as a function of the photon energy, E.
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Chapter 3

The model of Jellison and

Modine

3.1 Empirical models for the optical

functions associated with an amorphous

semiconductor

For the purposes of materials characterization and device design, empir-

ical models for the optical functions of an amorphous semiconductor have

been sought. Forouhi and Bloomer [20] and McGahan et al. [21] have pro-

posed empirical models for such functions. Unfortunately, these models have

a number of shortcomings. While experiment indicates that as E → ∞,

ε2(E) → 0, both the models of Forouhi and Bloomer [20] and McGahan et
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al. [21] yield non-zero values for ε2(E) as E → ∞. The models of Forouhi

and Bloomer [20] and McGahan et al. [21] have the additional problem of

being obtained using unphysical expressions for ε2(E). In particular, the pro-

posed models for ε2(E) do not terminate exact at the energy gap. Finally,

both the models of Forouhi and Bloomer [20] and McGahan et al. [21] fail

to satisfy the time-symmetry requirements mandated of the Kramers-Kronig

relations; recall Eqs. (2.47a) and (2.47b).

In 1996, Jellison and Modine [15] developed a new parameterized model

for the optical functions associated with an amorphous semiconductor that

remedies some of the problems found with these previous models. In this

approach, a physically-based model for the imaginary part of the dielectric

function, ε2(E), is proposed. This model includes a Tauc JDOS function.

i.e., Eq. (2.25), and a Lorentzian momentum matrix element. Then, through

the use of a Kramers-Kronig transformation on ε2(E), i.e., Eq. (2.45), the

spectral dependence of the real part of the dielectric function, ε1(E), is de-

termined.

This chapter is organized in the following manner. In Section 3.2, the

Lorentz model is described. In Section 3.3, Jellison and Modine’s model

for the spectral dependence of the real and imaginary components of the
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dielectric function, ε1(E) and ε2(E), respectively, is presented [15]. Then, in

Section 3.4, an explicit determination of the spectral dependence of ε1(E)

from the use of a Kramers-Kronig transformation on ε2(E), i.e., Eq. (2.45),

is provided. Finally, a fit with the results of experiment is presented in

Section 3.5.

3.2 The Lorentz model

According to the Lorentz model, an atom with electrons bounded by the

nucleus may be considered in the same way as a small mass bounded to a

large mass by a spring. The motion of an electron bound to the nucleus may

be described by

m
d2r

dt2
+mC

dr

dt
+mω2

0r = −qEloc, (3.1)

where m denotes the electron mass, q represents the electron charge, and

Eloc is the driving local electric field acting on the electron. It may be shown

that

r̃ = −eEloc

m

1

(ω2
0 − ω2)− iCω , (3.2)
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and the induced dipole moment is

p̃ =
e2Eloc

m

1

(ω2
0 − ω2)− iCω . (3.3)

There is a linear relationship between p̃ and Eloc if the displacement r is

assumed to be sufficiently small. That is,

p̃ = α̃(ω)Eloc, (3.4)

where α̃(ω) is the frequency-dependent atomic polarizability. From Eqs. (3.3)

and (3.4), it may be shown that

α̃(ω) =
e2

m

1

(ω2
0 − ω2)− iCω . (3.5)

The complex dielectric function, ε̃, may be expressed in terms of the complex

polarizability, α̃, by

ε̃ = 1 + 4πNα̃, (3.6)

where N denotes the number of atoms per unit volume. From Eqs. (3.5) and

(3.6), it may be shown that

ε̃ = 1 +
4πNe2

m

1

(ω2
0 − ω2)− iCω . (3.7)

Since the complex dielectric function, ε̃, may be expressed as the sum over

its real and imaginary components, i.e.,

ε̃ = ε1 + iε2, (3.8)
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where ε1 and ε2 denote the real and imaginary components of the dielectric

function, respectively, it can be seen that

ε1 = 1 +
4πNe2

m

ω2
0 − ω2

(ω2
0 − ω2)2 + C2ω2

, (3.9a)

and

ε2 =
4πNe2

m

Cω

(ω2
0 − ω2)2 + C2ω2

, (3.9b)

Jellison and Modine [15] used this simple Lorentz model in their proposed

parameterized model for the spectral dependence of the imaginary part of

the dielectric function, ε2, shown in the subsequent analysis.

3.3 Model for the optical functions

Within the framework of the momentum matrix element formulation,

i.e., Eq. (2.1), Jellison and Modine [15] propose a Tauc-Lorentz expression for

the imaginary part of the dielectric function, ε2(E), i.e., ε2(E) is essentially

proportional to the product of a Tauc JDOS function and a Lorentz oscillator.

Specifically, Jellison and Modine [15] suggest that

ε2TL(E) =



0, E ≤ Eg

AEoCE

(E2 − E2
o)

2 + C2E2

(E − Eg)2
E2

, E > Eg

, (3.10)
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where the four modeling parameters, Eo, C, Eg, and A, are in units of energy.

Here, Eo denotes the resonance energy of a bound electron at which the

transition of the electron occurs between two atomic states, A represents the

oscillator strength, C is the breadth of the region of anomalous dispersion,

and Eg is the energy gap.

Jellison and Modine [15] determine the real part of the dielectric function,

ε1(E), using a Kramers-Kronig transformation on ε2(E). That is,

ε1(E) = ε1∞ +
2

π
P

∫ ∞
Eg

uε2 (u)

u2 − E2
du, (3.11)

where P represents the Cauchy principal part of the integral. An additional

fitting parameter, ε1∞, is included in order to obtain the desired fits; in the

actual Kramers-Kronig relations, ε1∞ is unity. This integral may be solved,

in closed-form, to yield

ε1(E) = ε1∞ +
1

2

A

π

C

ζ4
aln
αEo

ln

[
E2
g + E2

o + αEg

E2
g + E2

o − αEg

]
− A

πζ4
aa tan
Eo

[
π − tan−1

(
2Eg + α

C

)
+ tan−1

(−2Eg + α

C

)]
+2

AEo
παζ4

Eg
[
E2 − γ2

] [
π + 2 tan−1

(
2(γ2 − E2

g )

αC

)]
−AEoC

πζ4
E2 + E2

g

E
ln
|Eg − E|
(Eg + E)

+
2AEoC

πζ4
Eg ln

 [(Eg + E)|Eg − E|]√
(E2

o − E2
g )

2 + E2
gC

2)

 , (3.12)
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where

aln = (E2
g − E2

o)E
2 + E2

gC
2 − E2

o(E
2
o + 3E2

g ), (3.13a)

aa tan = (E2 − E2
o)(E

2
o + E2

g ) + E2
gC

2, (3.13b)

ζ4 = [(E2 − E2
o)

2 + C2E2], (3.13c)

χ =
√

4E2
o − C2, (3.13d)

and

γ =

√
E2
o −

C2

2
, (3.13e)

Eo, C, Eg, and A being as defined earlier.

The two closed-form expressions for the optical functions, ε1(E) and

ε2(E), respectively, i.e., Eqs. (3.10) and (3.12), provide a Kramers-Kronig

consistent model for the optical functions of an amorphous semiconductor.

This model avoids many of the problems associated with the models of For-

oughi and Bloomer [20] and McGahan et al. [21]. That is, ε2(E) approaches

zero as E → ∞, the model for ε2(E) is physically based, and finally, these

optical function expressions obey the time-symmetry requirements mandated

of the Kramers-Kronig relations, i.e., Eqs. (2.47a) and (2.47b). Jellison and

Modine [15] then employed this model in order to fit a variety of experimen-

tal optical function data for the spectral dependence of ε1(E) and ε2(E), and
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drew a number of conclusions into the character of the materials considered.

3.4 Derivation

3.4.1 Definitions

From Eqs. (3.10) and (3.11), it is seen that

ε1(E) = ε1∞ +
2AEoC

π
P

∫ ∞
Eg

(u− Eg)2
(u2 − E2)[(u2 − E2

o)
2 + C2u2]

du.(3.14)

Letting

f(u) =
(u− Eg)2

(u2 − E2)[(u2 − E2
o)

2 + C2u2]
, (3.15)

the analysis starts with a partial fraction expansion of this polynomial ex-

pression in terms of the roots of its denominator. As the denominator is

a 6th-order polynomial, it has six roots, two of which may be seen imme-

diately, from inspection, to be E and −E, respectively. Accordingly, the

corresponding partial fraction expansion may be expressed as

f(u) =
A1

u+ E
+

A2

u− E +
A3

u− r1
+

A4

u− r2
+

A5

u− r3
+

A6

u− r4
,(3.16)

where A1, A2, A3, A4, A5, and A6 are the co-efficients of the partial fraction

expansions, r1, r2, r3, and r4 being the other four, as yet unknown, roots of

the denominator of f(u).
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3.4. Derivation

3.4.2 Root calculation through expansion of the

denominator

The roots of f(u) may be determined by setting

(u2 − E2
o)

2 + C2u2 = 0. (3.17)

Expanding Eq. (3.17) fully, one can see that

u4 − u2(2E2
o − C2) + E4

o = 0.

Factoring the u2 term, this equation reduces to

u2 =
2E2

o − C2 ±
√

(2E2
o − C2)2 − 4E4

o

2
,

which leads to

u2 = E2
o −

C2

2
± iC

2

√
4E2

o − C2.

Noting that

u2 =

(√
4E2

o − C2

2
± iC

2

)2

,

it is seen that

u = ±
(√

4E2
o − C2

2
± iC

2

)
.
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3.4. Derivation

Letting

a =

√
4E2

o − C2

2
,

and

b =
C

2
,

it is seen that the four roots of f(u) are

r1 = a+ ib, (3.18a)

r2 = a− ib, (3.18b)

r3 = −a+ ib, (3.18c)

and

r4 = −a− ib. (3.18d)

Through inspection, the following relationships are seen amongst these roots,

i.e.,

r2 = r∗1,

r3 = −r∗1,

r4 = −r1,

r1 = −r∗3,

r2 = −r3,
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3.4. Derivation

and

r4 = r∗3.

3.4.3 Calculation of the coefficients

The coefficients, A1, A2, A3, A4, A5, and A6, may be determined using

the usual approach for a partial fraction expansion. That is, for the partial

fraction expansion,

f(z) =
∑
i

Ai
z − zi

, (3.19)

if all the roots, zi, are distinct, then it may be seen that

Ai = (z − zi)f(z)|z=zi . (3.20)

Noting that all of the roots associated with the denominator of f(u) are

distinct, employing the approach suggested in Eq. (3.20), the coefficients A1,

A2, A3, A4, A5, and A6 will be determined. For the case of these coefficients,

a polar notation is employed, i.e., the imaginary number

p+ iq =
√
p2 + q2 exp

(
i tan−1

[
q

p

])
, (3.21)

may instead be expressed as

p+ iq =
√
p2 + q2∠ tan−1

[
q

p

]
, (3.22)
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3.4. Derivation

where this last expression corresponds to polar notation. That is, every

complex number is expressed in this particular polar form. An alternate

form for this polar notation

abs (p+ iq) =
√
p2 + q2, (3.23)

and

arg (p+ iq) = tan−1
[
q

p

]
, (3.24)

may be employed.

Determination of A1

A1 = f(u)(u+ E)|u=−E,

=
(−E − Eg)2

(−E − E)[(E2 − E2
o)

2 + C2E2]
,

= − (E + Eg)
2

2E[(E2 − E2
o)

2 + C2E2]
. (3.25)

Determination of A2

A2 = f(u)(u− E)|u=E,

=
(E − Eg)2

(E + E)[(E2 − E2
o)

2 + C2E2]
,

=
(E − Eg)2

2E[(E2 − E2
o)

2 + C2E2]
. (3.26)
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3.4. Derivation

Determination of A3

A3 = f(u)(u− r1)|u=r1 ,

=
(r1 − Eg)2

(r21 − E2)(r1 − r2)(r1 − r3)(r1 − r4)
,

=
(r1 − Eg)2

(r21 − E2)(r1 − r∗1)(r1 + r∗1)(r1 + r1)
,

=
(r1 − Eg)2

(r21 − E2)(r1 − r∗1)(r1 + r∗1)2r1
. (3.27)

Now, by substituting r1 = a + ib, the factors in the numerator and the

denominator of Eq. (3.27) may be determined and expressed in polar form.

For the numerator, this yields

(r1 − Eg)2 = (a+ ib− Eg)2,

= (a− Eg)2 − b2 + i2b(a− Eg),

=
√

((a− Eg)2 − b2)2 + 4b2(a− Eg)2∠ tan−1
[

2b(a− Eg)
(a− Eg)2 − b2

]
,

=
[
(a− Eg)2 + b2

]
∠ tan−1

[
2b(a− Eg)

(a− Eg)2 − b2
]
.

The polar form for the other factors in the denominator of Eq. (3.27) may

now be expressed as

r21 − E2 =
√

(a2 − b2 − E2)2 + 4a2b2∠ tan−1
[

2ab

a2 − b2 − E2

]
,

2(r1 − r∗1)(r1 + r∗1) = 8ab∠
[π

2

]
,

and
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3.4. Derivation

r1 =
√
a2 + b2∠tan−1

[
b

a

]
.

So, the coefficient, A3, may be expressed in polar form as

A3 =
[(a− Eg)2 + b2]∠

[
tan−1 2b(a−Eg)

(a−Eg)2−b2

]
√

(a2 − b2 − E2)2 + 4a2b2∠
[
tan−1 2ab

a2−b2−E2

] ×
1√

a2 + b2∠
[
tan−1 b

a

] [
8ab∠π

2

] ,
=

[(a− Eg)2 + b2]

8ab[
√

(a2 − b2 − E2)2 + 4a2b2][
√
a2 + b2]

×∠
[
tan−1

2b(a− Eg)
(a− Eg)2 − b2

− tan−1
2ab

a2 − b2 − E2
− tan−1

b

a
− π

2

]
.

Thus, it is seen that

abs(A3) =
[(a− Eg)2 + b2]

8ab[
√

(a2 − b2 − E2)2 + 4a2b2][
√
a2 + b2]

, (3.28a)

and that

arg(A3) = −π
2

+ tan−1
[

2b(a− Eg)
(a− Eg)2 − b2

]
− tan−1

[
2ab

a2 − b2 − E2

]
− tan−1

[
b

a

]
. (3.28b)
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Determination of A4

A4 = f(u)(u− r2)|u=r2 ,

=
(r2 − Eg)2

(r22 − E2)(r2 − r1)(r2 − r3)(r2 − r4)
,

=
(r∗1 − Eg)2

(r∗21 − E2)(r∗1 − r1)(r1 + r∗1)(r
∗
1 + r∗1)

,

=
(r∗1 − Eg)2

2r∗1(r
∗2
1 − E2)(r∗1 − r1)(r1 + r∗1)

. (3.29)

Now, by substituting r∗1 = a − ib, the factors in the numerator and the

denominator of Eq. (3.29) may be determined and expressed in polar form.

For the numerator, this yields

(r∗1 − Eg)2 = (a− ib− Eg)2,

=
√

((a− Eg)2 − b2)2 + 4b2(a− Eg)2∠− tan−1
[

2b(a− Eg)
(a− Eg)2 − b2

]
,

= [(a− Eg)2 + b2]∠− tan−1
[

2b(a− Eg)
(a− Eg)2 − b2

]
.

The polar form for the other factors in the denominator of Eq. (3.29) may

be expressed as

r∗21 − E2 =
√

(a2 − b2 − E2)2 + 4a2b2∠− tan−1
[

2ab

a2 − b2 − E2

]
,

2(r∗1 − r1)(r1 + r∗1) = 8ab∠

[−π
2

]
,

and

r∗1 =
√
a2 + b2∠− tan−1

[
b

a

]
.
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Thus,

abs(A4) =
[(a− Eg)2 + b2]

8ab[
√

(a2 − b2 − E2)2 + 4a2b2][
√
a2 + b2]

, (3.30a)

and

arg(A4) =
π

2
− tan−1

[
2b(a− Eg)

(a− Eg)2 − b2
]

+ tan−1
[

2ab

a2 − b2 − E2

]
+ tan−1

[
b

a

]
. (3.30b)

Through inspection, it is seen that abs(A4) = abs(A3) and that arg(A4) = − arg(A3),

i.e., A3 = A∗4.

Determination of A5

A5 = f(u)(u− r3)|u=r3 ,

=
(r3 − Eg)2

(r23 − E2)(r3 − r1)(r3 − r2)(r3 − r4)
,

=
(r3 − Eg)2

(r23 − E2)(r3 − r∗3)(r3 + r∗3)(r3 + r3)
,

=
(r3 − Eg)2

(r23 − E2)(r3 − r∗3)(r3 + r∗3)2r3
. (3.31)

For this equation, for the numerator,

(r3 − Eg)2 = (−a+ ib− Eg)2,

=
√

((a+ Eg)2 − b2)2 + 4b2(a+ Eg)2∠− tan−1
[

2b(a+ Eg)

(a+ Eg)2 − b2
]
,

= [(a+ Eg)
2 + b2]∠− tan−1

[
2b(a+ Eg)

(a+ Eg)2 − b2
]
.

68



3.4. Derivation

Similarly, for the denominator,

r23 − E2 =
√

(a2 − b2 − E2)2 + 4a2b2∠− tan−1
[

2ab

a2 − b2 − E2

]
,

2(r3 − r∗3)(r3 + r∗3) = 8ab∠

[−π
2

]
,

and

r3 =
√
a2 + b2∠ tan−1

[
b

−a

]
.

Thus,

abs(A5) =
[(a+ Eg)

2 + b2]

8ab[
√

(a2 − b2 − E2)2 + 4a2b2][
√
a2 + b2]

, (3.32a)

and

arg(A5) =
π

2
− tan−1

[
2b(a+ Eg)

(a+ Eg)2 − b2
]

+ tan−1
[

2ab

a2 − b2 − E2

]
− tan−1

[
b

−a

]
. (3.32b)

Determination of A6

A6 = f(u)(u− r4)|u=r4 ,

=
(r4 − Eg)2

(r24 − E2)(r4 − r1)(r4 − r2)(r4 − r3)
,

=
(r∗3 − Eg)2

(r∗23 − E2)(r∗3 − r3)(r∗3 + r∗3)(r
∗
3 + r3)

,

=
(r∗3 − Eg)2

(r∗23 − E2)(r∗3 − r3)(r3 + r∗3)2r
∗
3

. (3.33)
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Here, the numerator of Eq. (3.33) yields

(r∗3 − Eg)2 = (−a− ib− Eg)2,

= [(a+ Eg)
2 + b2]∠ tan−1

[
2b(a+ Eg)

(a+ Eg)2 − b2
]
.

Similarly, the terms in the denominator of Eq. (3.33) yield

r∗23 − E2 =
√

(a2 − b2 − E2)2 + 4a2b2∠ tan−1
[

2ab

a2 − b2 − E2

]
,

2(r∗3 − r3)(r3 + r∗3) = 8ab∠
[π

2

]
,

and

r∗3 =
√
a2 + b2∠− tan−1

[
b

−a

]
.

Thus,

abs(A6) =
[(a+ Eg)

2 + b2]

8ab[
√

(a2 − b2 − E2)2 + 4a2b2][
√
a2 + b2]

, (3.34a)

and

arg(A6) = −π
2

+ tan−1
[

2b(a+ Eg)

(a+ Eg)2 − b2
]
− tan−1

[
2ab

a2 − b2 − E2

]
+ tan−1

[
b

−a

]
. (3.34b)

Through inspection, it is also seen that abs(A5) = abs(A6) and that arg(A5) = − arg(A6),

i.e., A5 = A∗6.
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3.4.4 Grouping the terms in the partial fraction

expression

In Section 3.4.3, it was seen that A3 = A∗4 and that A5 = A∗6. These rela-

tions may be used in order to group the terms associated with the coefficients

in the partial fraction expansion.

Grouping the terms associated with A3 and A4

The terms associated with A3 and A4 in the partial fraction expansion

may be combined as follows:

A3

u− r1
+

A4

u− r2
=

abs(A3)∠(arg(A3))

u− a− ib +
abs(A4)∠arg(A4))

u− a+ ib
,

=
abs(A3)∠(arg(A3))√

(u− a)2 + b2∠
[
− tan−1

(
b

u−a

)]
+

abs(A3)∠− [arg(A3)]√
(u− a)2 + b2∠

[
tan−1

(
b

u−a

)] ,
=

abs(A3)√
(u− a)2 + b2

∠

[
arg(A3) + tan−1

(
b

u− a

)]
+

abs(A3)√
(u− a)2 + b2

∠−
[
arg(A3) + tan−1

(
b

u− a

)]
.
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Letting,

x = arg(A3) + tan−1
(

b

u− a

)
,

and

k =
abs(A3)√

(u− a)2 + b2
,

it may be seen that

A3

u− r1
+

A4

u− r2
= k∠x+ k∠− x,

= k(eix + e−ix),

= 2k cosx,

= 2
abs(A3)√

(u− a)2 + b2
cos

[
arg(A3) + tan−1

(
b

u− a

)]
,

= 2
abs(A3)√

(u− a)2 + b2
cos [arg(A3)]

u− a√
(u− a)2 + b2

−2
abs(A3)√

(u− a)2 + b2
sin [arg(A3)]

b√
(u− a)2 + b2

,

= 2abs(A3) cos [arg(A3)]
u− a

(u− a)2 + b2

−2abs(A3) sin [arg(A3)]
b

(u− a)2 + b2
.
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Letting

c3 = 2 abs(A3) cos[arg(A3)],

and

c4 = −2 abs(A3) sin[arg(A3)],

it is also seen that,

A3

u− r1
+

A4

u− r2
= c3

u− a
(u− a)2 + b2

+ c4
b

(u− a)2 + b2
. (3.35)
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Grouping the terms associated with A5 and A6

The terms associated with A5 and A6 in the partial fraction expansion

may be combined as follows:

A5

u− r3
+

A6

u− r4
=

abs(A5)∠ [arg(A5)]

u+ a− ib +
abs(A5)∠− [arg(A5)]

u+ a+ ib
,

=
abs(A5)∠ [arg(A5)]√

(u+ a)2 + b2∠
[
− tan−1

(
b

u+a

)]
+

abs(A5)∠− [arg(A5)]√
(u− a)2 + b2∠

[
tan−1

(
b

u+a

)] ,
=

abs(A5)√
(u+ a)2 + b2

∠

[
arg(A5) + tan−1

(
b

u+ a

)]
+

abs(A5)√
(u+ a)2 + b2

∠−
[
arg(A5) + tan−1

(
b

u+ a

)]
,

= 2
abs(A5)√

(u+ a)2 + b2
cos

[
arg(A5) + tan−1

(
b

u+ a

)]
,

= 2
abs(A5)√

(u+ a)2 + b2
cos [arg(A5)]

u+ a√
(u+ a)2 + b2

−2
abs(A5)√

(u+ a)2 + b2
sin [arg(A5)]

b√
(u+ a)2 + b2

,

= 2abs(A5) cos [arg(A5)]
u+ a

(u+ a)2 + b2

−2abs(A5) sin[arg(A5)]
b

(u+ a)2 + b2
.

Letting

c5 = 2 abs(A5) cos[arg(A5)],

and
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c6 = −2 abs(A5) sin[arg(A5)].

it is seen that,

A5

u− r3
+

A6

u− r4
= c5

u+ a

(u+ a)2 + b2
+ c6

b

(u+ a)2 + b2
. (3.36)

3.4.5 Summary of the partial fraction expansion

From Eqs. (3.16), (3.35), and (3.36), it is thus seen that

f(u) =
A1

u+ E
+

A2

u− E +
A3

u− r1
+

A4

u− r2
+

A5

u− r3
+

A6

u− r4
,

=
A1

u+ E
+

A2

u− E + c3
u− a

(u− a)2 + b2
+ c4

b

(u− a)2 + b2

+c5
u+ a

(u+ a)2 + b2
+ c6

b

(u+ a)2 + b2
, (3.37)

where

A1 =
−(E + Eg)

2

2E[(E2 − E2
o)

2 + C2E2]
, (3.38a)

A2 =
(E − Eg)2

2E[(E2 − E2
o)

2 + C2E2]
, (3.38b)

c3 = 2 abs(A3) cos[arg(A3)], (3.38c)

c4 = −2 abs(A3) sin[arg(A3)], (3.38d)

c5 = 2 abs(A5) cos[arg(A5)], (3.38e)
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and

c6 = −2 abs(A5) sin[arg(A5)]. (3.38f)

3.4.6 Evaluation of the constants c3, c4, c5, and c6

Calculation of c3

From Eq. (3.38c), it is seen that

c3 = 2abs(A3) cos[arg(A3)], (3.39)

where, from Eq. (3.28b),

arg(A3) = −π
2

+ tan−1
[

2b(a− Eg)
(a− Eg)2 − b2

]
− tan−1

[
2ab

a2 − b2 − E2

]
− tan−1

[
b

a

]
.

Letting

x = tan−1
[

2b(a− Eg)
(a− Eg)2 − b2

]
,

y = tan−1
[ −2ab

a2 − b2 − E2

]
,

and

z = tan−1
[−b
a

]
,
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it is seen that

arg(A3) = −π
2

+ x+ y + z.

Noting that

cos[arg(A3)] = cos(−π
2

+ x+ y + z) = sin(x+ y + z),

it may be seen that

cos[arg(A3)] = cosx cos y sin z − sinx sin y sin z

+ sinx cos y cos z + cosx sin y cos z.

Letting

x = tan−1
[

2b(a− Eg)
(a− Eg)2 − b2

]
,

one observes that

cosx =
(a− Eg)2 − b2
(a− Eg)2 + b2

,

and

sinx =
2b(a− Eg)

(a− Eg)2 + b2
.

Similarly, letting

y = tan−1
[ −2ab

a2 − b2 − E2

]
,
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one observes that

cos y =
a2 − b2 − E2√

(a2 − b2 − E2)2 + (2ab)2
,

and

sin y =
−2ab√

(a2 − b2 − E2)2 + (2ab)2
.

Letting

z = tan−1
[−b
a

]
,

it is seen that

cos z =
a√

(a2 + b2
,

and

sin z =
−b√

(a2 + b2
.

Substituting the results for abs(A3), as well as the cosine and sine of x, y,

and z, respectively, into Eq. (3.39) yields

c3 = 2 abs(A3) cos[arg(A3)],
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c3 =
2

8ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

−b× [((a− Eg)2 − b2)(a2 − b2 − E2)− 2b(a− Eg)(−2ab)]

+

a× [2b(a− Eg)(a2 − b2 − E2) + ((a− Eg)2 − b2)(−2ab)]

 ,

=
2

8ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

2b(a− Eg)[a(a2 − b2 − E2)− 2ab2]

−

((a− Eg)2 − b2)[b(a2 − b2 − E2) + 2a2b]

 .

Calculation of c4

From Eq. (3.38d), it is seen that

c4 = −2 abs(A3) sin[arg(A3)], (3.40)

where, from Eq. (3.28b),

arg(A3) = −π
2

+ tan−1
[

2b(a− Eg)
(a− Eg)2 − b2

]
− tan−1

[
2ab

a2 − b2 − E2

]
− tan−1

[
b

a

]
.
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3.4. Derivation

Similarly, it is seen that

sin[arg(A3)] = sin(−π
2

+ x+ y + z) = − cos(x+ y + z)

= −[cosx cos y cos z − sinx sin y cos z

− sinx cos y sin z − cosx sin y sin z].

Thus,

c4 = −2 abs(A3) sin[arg(A3)],

=
2

8ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

a× [((a− Eg)2 − b2)(a2 − b2 − E2)− 2b(a− Eg)(−2ab)]

−

b× [−2b(a− Eg)(a2 − b2 − E2)− ((a− Eg)2 − b2)(−2ab)]

 ,

=
1

4ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

2b(a− Eg)[b(a2 − b2 − E2) + 2a2b]

+

+((a− Eg)2 − b2)[a(a2 − b2 − E2)− 2ab2]

 .
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3.4. Derivation

Calculation of c5

From Eq. (3.38e),

c5 = 2 abs(A5) cos[arg(A5)], (3.41)

where, from Eq. (3.32b),

arg(A5) =
π

2
− tan−1

[
2b(a+ Eg)

(a+ Eg)2 − b2
]

+ tan−1
[

2ab

a2 − b2 − E2

]
− tan−1

[
b

−a

]
.

Letting

x = tan−1
[ −2b(a+ Eg)

(a+ Eg)2 − b2
]
,

y = tan−1
[

2ab

a2 − b2 − E2

]
,

and

z = tan−1
[−b
−a

]
,

it is seen that

arg(A5) =
π

2
+ x+ y + z.

Noting that

cos [arg(A5)] = cos(
π

2
+ x+ y + z) = − sin(x+ y + z),
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3.4. Derivation

it may also be seen that

cos [arg(A5)] = −[cosx cos y sin z − sinx sin y sin z

+ sinx cos y cos z + cosx sin y cos z].

Letting

x = tan−1
[ −2b(a+ Eg)

(a+ Eg)2 − b2
]
,

one observes that

cosx =
(a+ Eg)

2 − b2
(a+ Eg)2 + b2

,

and

sinx =
−2b(a+ Eg)

(a+ Eg)2 + b2
.

Similarly, letting

y = tan−1
[

2ab

a2 − b2 − E2

]
,

one observes that

cos y =
a2 − b2 − E2√

(a2 − b2 − E2)2 + (2ab)2
,

and

sin y =
2ab√

(a2 − b2 − E2)2 + (2ab)2
.
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3.4. Derivation

Letting

z = tan−1
[−b
−a

]
,

it is seen that

cos z =
−a√

(a2 + b2
,

and

sin z =
−b√

(a2 + b2
.

Substituting the results of abs(A5), as well as the cosine and sine of x, y, and

z into Eq. (3.41), yields

c5 = 2 abs(A5) cos[arg(A5)],

=
−2

8ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

−b× [((a+ Eg)
2 − b2)(a2 − b2 − E2)− (−2b(a+ Eg)) 2ab]

−

a× [−2b(a+ Eg)(a
2 − b2 − E2) + ((a+ Eg)

2 − b2) 2ab]

 ,

=
2

8ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

−2b(a+ Eg)[a(a2 − b2 − E2)− 2ab2]

+

((a+ Eg)
2 − b2)[b(a2 − b2 − E2) + 2a2b]

 .
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3.4. Derivation

Calculation of c6

From Eq. (3.38f),

c6 = −2 abs(A5) sin[arg(A5)], (3.42)

where, from Eq. (3.32b),

arg(A5) =
π

2
− tan−1

[
2b(a+ Eg)

(a+ Eg)2 − b2
]

+ tan−1
[

2ab

a2 − b2 − E2

]
− tan−1

[
b

−a

]
.

Similarly,

sin[arg(A5)] = sin(
π

2
+ x+ y + z) = cos(x+ y + z),

= cosx cos y cos z − sinx sin y cos z

− sinx cos y sin z − cosx sin y sin z.

Thus, it may be seen that

c6 = −2 abs(A5) sin[arg(A5)],

=
−2

8ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

−a× [((a+ Eg)
2 − b2)(a2 − b2 − E2)− (−2b(a+ Eg)) 2ab]

−

b× [−2b(a+ Eg)(a
2 − b2 − E2)− ((a+ Eg)

2 − b2) 2ab]

 ,

84



3.4. Derivation

=
1

4ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

2b(a+ Eg)[b(a
2 − b2 − E2) + 2a2b]

+

((a+ Eg)
2 − b2)[a(a2 − b2 − E2)− 2ab2]

 .

3.4.7 Main integration

So, from Eq.(3.14), it is seen that

ε1(E) = ε1∞ +
2AEoC

π
P

∫ ∞
Eg

(u− Eg)2
(u2 − E2)[(u2 − E2

o)
2 + C2u2]

du,

= ε1∞ +
2AEoC

π
P

∫ ∞
Eg

f(u) du. (3.43)

From the partial fraction expansion of Eq. (3.37), this yields

∫ ∞
Eg

f(u) du =

∫ ∞
Eg

A1

u+ E
du+

∫ ∞
Eg

A2

u− E du

+

∫ ∞
Eg

c3
u− a

(u− a)2 + b2
du

+

∫ ∞
Eg

c4
b

(u− a)2 + b2
du

+

∫ ∞
Eg

c5
u+ a

(u+ a)2 + b2
du

+

∫ ∞
Eg

c6
b

(u+ a)2 + b2
du,
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3.4. Derivation

In order to avoid improper integrals, the integrals will all be taken to t, and

then t will go to infinity, i.e., t→∞. Thus, it can be seen that

=⇒
∫ t

Eg

f(u) du =

∫ t

Eg

A1

u+ E
du+

∫ t

Eg

A2

u− E du

+

∫ t

Eg

c3
u− a

(u− a)2 + b2
du

+

∫ t

Eg

c4
b

(u− a)2 + b2
du

+

∫ t

Eg

c5
u+ a

(u+ a)2 + b2
du

+

∫ t

Eg

c6
b

(u+ a)2 + b2
du. (3.44)

Sequentially integrating the terms in Eq. (3.44), it is thus seen that∫ t

Eg

A1

u+ E
du = A1

∫ t

Eg

1

u+ E
du,

= A1 [ln(u+ E)]tEg
,

= A1 [ln(t+ E)]− A1 ln(Eg + E), (3.45)

and ∫ t

Eg

A2

u− E du = A2

[
lim
ε→0

∫ E−ε

Eg

1

u− E du+ lim
ε→0

∫ t

E+ε

1

u− E du

]
,

= A2

[
lim
ε→0

ln |u− E|E−εEg
+ lim

ε→0
ln |u− E|tE+ε

]
,

= A2

[
lim
ε→0

ln | − ε|
]
− A2 [ln |Eg − E|+ ln |t− E|]

−A2

[
lim
ε→0

ln |ε|
]
,

= A2 [ln |t− E|]− A2 ln |Eg − E|. (3.46)
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3.4. Derivation

Now, for

∫ t

Eg

c3
u− a

(u− a)2 + b2
du,

letting

w = (u− a)2 + b2,

=⇒ dw = 2(u− a) du,

it may be seen that

∫ t

Eg

c3
u− a

(u− a)2 + b2
du =

c3
2

∫ (t−a)2+b2

(Eg−a)2+b2

1

w
dw, (3.47)

=
c3
2

[
ln[(t− a)2 + b2]

]
−c3

2
ln[(Eg − a)2 + b2]. (3.48)

Again, for

∫ t

Eg

c4
b

(u− a)2 + b2
du,

letting

(u− a) = b tan θ,

=⇒ du = b sec2 θ dθ,
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3.4. Derivation

it is seen that

c4

∫ t

Eg

b

(u− a)2 + b2
du = c4

∫ t

Eg

b sec2 θ

b2 tan2 θ + b2
dθ,

= c4 [θ]tEg
,

= c4

[
tan−1

(
u− a
b

)]t
Eg

,

= c4

[
π

2
− tan−1

(
Eg − a
b

)]
. [as t→∞]

(3.49)

Similarly,

∫ t

Eg

c5
u+ a

(u+ a)2 + b2
du =

c5
2

[
ln[(t+ a)2 + b2]

]
−c5

2
ln[(Eg + a)2 + b2], (3.50)∫ t

Eg

c6
b

(u+ a)2 + b2
du = c6

[
π

2
− tan−1

(
Eg + a

b

)]
. (3.51)

From Eq. (3.44), it is seen that

∫ t

Eg

f(u)du = A1 [ln(t+ E)]− A1 ln(Eg + E)

+A2 [ln |t− E|]− A2 ln |Eg − E|
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3.4. Derivation

+
c3
2

[
ln[(t− a)2 + b2]

]
− c3

2
ln[(Eg − a)2 + b2]

+c4

[
π

2
− tan−1

(
Eg − a
b

)]
+
c5
2

[
ln[(t+ a)2 + b2]

]
− c5

2
ln[(Eg + a)2 + b2]

+c6

[
π

2
− tan−1

(
Eg + a

b

)]
. (3.52)

Letting

φ1 = ln(t+ E)]− ln(Eg + E),

φ2 = ln |t− E| − ln |Eg − E|,

φ3 = ln[(t− a)2 + b2]− ln[(Eg − a)2 + b2],

φ4 =
π

2
− tan−1

(
Eg − a
b

)
,

φ5 = ln[(t+ a)2 + b2]− ln[(Eg + a)2 + b2],

and

φ6 =
π

2
− tan−1

(
Eg + a

b

)
,

Eq. (3.52) leads to

∫ ∞
Eg

f(u)du = A1φ1 + A2φ2 +
c3
2
φ3 +

c5
2
φ5 + c4φ4 + c6φ6. (3.53)
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3.4. Derivation

3.4.8 Summation by parts

For simplicity, the summation, depicted in Eq. (3.53), is performed in parts

such that

term 1 = A1φ1 + A2φ2,

term 2 =
c3
2
φ3 +

c5
2
φ5,

term 3 = c4φ4 + c6φ6.

From Eq. (3.53), it is thus seen that

∫ ∞
Eg

f(u)du = A1φ1 + A2φ2︸ ︷︷ ︸
term 1

+
c3
2
φ3 +

c5
2
φ5︸ ︷︷ ︸

term 2

+ c4φ4 + c6φ6︸ ︷︷ ︸
term 3

.

Calculation of term 1

term 1

= A1φ1 + A2φ2,

=
−(E + Eg)

2

2E[(E2 − E2
o)

2 + C2E2]
φ1 +

(E − Eg)2
2E[(E2 − E2

o)
2 + C2E2]

φ2,

=
E2 + E2

g

2E[(E2 − E2
o)

2 + C2E2]
[φ2 − φ1]−

2EEg
2E[(E2 − E2

o)
2 + C2E2]

[φ2 + φ1],

=
E2 + E2

g

2E[(E2 − E2
o)

2 + C2E2]
[φ2 − φ1]−

Eg
[(E2 − E2

o)
2 + C2E2]

[φ2 + φ1],

=
E2 + E2

g

2Eζ4
[φ2 − φ1]−

Eg
ζ4

[φ2 + φ1],
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3.4. Derivation

where

φ2 − φ1 = ln |t− E| − ln |Eg − E| − ln(t+ E)] + ln(Eg + E),

= ln
|t− E|
t+ E

+ ln
(Eg + E)

|Eg − E|
,

= ln
(Eg + E)

|Eg − E|
, [as t→∞]

φ2 + φ1 = ln |t− E| − ln |Eg − E|+ ln(t+ E)]− ln(Eg + E),

= ln[(t+ E)|t− E|]− ln[(Eg + E)|Eg − E|].
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3.4. Derivation

Calculation of term 2:

term 2

=
c3
2
φ3 +

c5
2
φ5,

=
1

8ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

2b(a− Eg)[a(a2 − b2 − E2)− 2ab2]φ3

−

((a− Eg)2 − b2)[b(a2 − b2 − E2) + 2a2b]φ3

+

−2b(a+ Eg)[a(a2 − b2 − E2)− 2ab2]φ5

+

((a+ Eg)
2 − b2)[b(a2 − b2 − E2) + 2a2b]φ5



,

=
1

8ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

2ba[a(a2 − b2 − E2)− 2ab2][φ3 − φ5]

−

(a2 + E2
g − b2)[b(a2 − b2 − E2) + 2a2b][φ3 − φ5]

+

−2bEg[a(a2 − b2 − E2)− 2ab2][φ3 + φ5]

+

2aEg[b(a
2 − b2 − E2) + 2a2b][φ3 + φ5]



,
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3.4. Derivation

=
1

8a(E2
o − C2

4
+ C2

4
)[(E2

o − C2

4
− C2

4
− E2)2 + 4(E2

o − C2

4
)C

2

4
]
×

2a2(a2 − 3b2 − E2)[φ3 − φ5]

−

(a2 − b2 + E2
g )(3a

2 − b2 − E2)[φ3 − φ5]

+

[−2abEg(a
2 − b2 − E2) + 2abEg 2b2][φ3 + φ5]

+

[2abEg(a
2 − b2 − E2) + 2abEg 2a2][φ3 + φ5]



,

=
1

8a E2
o [(E

2 − E2
o)

2 + C2E2]
×

[2(E2
o −

C2

4
)(E2

o − C2 − E2)][φ3 − φ5]

−

[(E2
o −

C2

2
+ E2

g )(3E
2
o − C2 − E2)][φ3 − φ5]


+

Eg
2[(E2 − E2

o)
2 + C2E2]

[φ3 + φ5],

=
−E4

o + E2
gC

2 + E2
gE

2 − E2
oE

2 − 3E2
oE

2
g

8a E2
o [(E

2 − E2
o)

2 + C2E2]
[φ3 − φ5]

+
Eg

2[(E2 − E2
o)

2 + C2E2]
[φ3 + φ5],

=
(E2

g − E2
o)E

2 + E2
gC

2 − E2
o(E

2
o + 3E2

g )

8a E2
o [(E

2 − E2
o)

2 + C2E2]
[φ3 − φ5]

+
Eg

2[(E2 − E2
o)

2 + C2E2]
[φ3 + φ5],

=
aln

4χ E2
o ζ

4
[φ3 − φ5] +

Eg
2 ζ4

[φ3 + φ5],
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3.4. Derivation

where

φ3 − φ5 = ln[(t− a)2 + b2]− ln[(Eg − a)2 + b2]

− ln[(t+ a)2 + b2] + ln[(Eg + a)2 + b2],

= ln
(t− a)2 + b2

(t+ a)2 + b2
+ ln

[(Eg + a)2 + b2]

[(Eg − a)2 + b2]
,

= ln
[E2

g + a2 + b2 + 2aEg]

[E2
g + a2 + b2 − 2aEg]

, [as t→∞]

= ln
[E2

g + E2
o + 2aEg]

[E2
g + E2

o − 2aEg]
,

= ln
[E2

g + Eo2 + χEg]

[E2
g + Eo2 − χEg]

, [recall that, χ =
√

4E2
o − C2 = 2a]

φ3 + φ5 = ln[(t− a)2 + b2]− ln[(Eg − a)2 + b2]

+ ln[(t+ a)2 + b2]− ln[(Eg + a)2 + b2],

= ln[[(t− a)2 + b2][(t+ a)2 + b2]]

− ln[[(Eg − a)2 + b2][(Eg + a)2 + b2]],

= ln[[(t− a)2 + b2][(t+ a)2 + b2]]

− ln[(E2
g + E2

o + χEg)(E
2
g + E2

o − χEg)],

= ln[[(t− a)2 + b2][(t+ a)2 + b2]]− ln[(E2
o − E2

g )
2 + E2

gC
2)].
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3.4. Derivation

3.4.9 Calculation of term 3:

term 3

= c4φ4 + c6φ6,

=
1

4ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
×

2b(a− Eg)[b(a2 − b2 − E2) + 2a2b]φ4

+

((a− Eg)2 − b2)[a(a2 − b2 − E2)− 2ab2]φ4

+

2b(a+ Eg)[b(a
2 − b2 − E2) + 2a2b]φ6

+

((a+ Eg)
2 − b2)[a(a2 − b2 − E2)− 2ab2]φ6



,

=
2b2a(3a2 − b2 − E2) + a(a2 + E2

g − b2)(a2 − 3b2 − E2)

4ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
[φ4 + φ6]

+
2b2Eg(3a

2 − b2 − E2) + 2a2Eg(a
2 − 3b2 − E2)

4ab(a2 + b2)[(a2 − b2 − E2)2 + 4a2b2]
[φ6 − φ4],

=
2b2(3a2 − b2 − E2) + (a2 + E2

g − b2)(a2 − 3b2 − E2)

2C E2
o [(E

2 − E2
o)

2 + C2E2]
[φ4 + φ6]

+
2Eg[b

2(3a2 − b2 − E2) + a2(a2 − 3b2 − E2)

χ C E2
o [(E

2 − E2
o)

2 + C2E2]
[φ6 − φ4],

=
C2

2
(3E2

o − C2 − E2) + (E2
o − C2

2
+ E2

g )(E
2
o − C2 − E2)

2C E2
o [(E

2 − E2
o)

2 + C2E2]
[φ4 + φ6]

+
2Eg[

C2

4
(3E2

o − C2 − E2) + (E2
o − C2

4
)(E2

o − C2 − E2)]

χ C E2
o [(E

2 − E2
o)

2 + C2E2]
[φ6 − φ4],
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3.4. Derivation

=
E4
o − E2E2

o + E2
oE

2
g − E2

gE
2 − E2

gC
2

2C E2
o [(E

2 − E2
o)

2 + C2E2]
[φ4 + φ6]

+
2Eg[−E2

oC
2

2
+ E4

o − E2
oE

2]

χ C E2
o [(E

2 − E2
o)

2 + C2E2]
[φ6 − φ4],

=
−[(E2 − E2

o)(E
2
o + E2

g ) + E2
gC

2]

2C E2
o [(E

2 − E2
o)

2 + C2E2]
[φ4 + φ6]

+
2Eg[E

2 − E2
o + C2

2
]

χ C [(E2 − E2
o)

2 + C2E2]
[φ4 − φ6],

=
−aa tan

2C E2
o ζ

4
[φ4 + φ6] +

2Eg[E
2 − γ2]

χCζ4
[φ4 − φ6].

where

φ4 + φ6 =
π

2
− tan−1

(
Eg − a
b

)
+
π

2
− tan−1

(
Eg + a

b

)
,

= π − tan−1
(
Eg + a

b

)
+ tan−1

(−Eg + a

b

)
,

= π − tan−1
(

2Eg + 2a

C

)
+ tan−1

(−2Eg + 2a

C

)
,

= π − tan−1
(

2Eg + χ

C

)
+ tan−1

(−2Eg + χ

C

)
,

φ4 − φ6, =
π

2
− tan−1

(
Eg − a
b

)
− π

2
+ tan−1

(
Eg + a

b

)
,

= tan−1
(

2ab

b2 − a2 + E2
g

)
,

= tan−1
(

χC

−2(a2 − b2 − E2
g )

)
,

=
π

2
+ tan−1

(
2(a2 − b2 − E2

g )

χC

)
,

[
recall that, tan−1

(y
x

)
=
π

2
+ tan−1

(−x
y

)]
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=
π

2
+ tan−1

(
2(E2

o − C2

2
− E2

g )

χC

)
,

=
π

2
+ tan−1

(
2(γ2 − E2

g )

χC

)
.

3.4.10 Summation of term 1, term 2 and term 3

term 1+term 2+term 3

=
E2 + E2

g

2Eζ4
[φ2 − φ1]−

Eg
ζ4

[φ2 + φ1]

+
aln

4χE2
oζ

4
[φ3 − φ5] +

Eg
2.ζ4

[φ3 + φ5]

+
−aa tan
2CE2

oζ
4
[φ4 + φ6] +

2Eg[E
2 − γ2]

χCζ4
[φ4 − φ6],

=
E2 + E2

g

2Eζ4
ln

[
(Eg + E)

|Eg − E|

]
− Eg
ζ4

ln [(t+ E)|t− E|]

+
Eg
ζ4

ln[(Eg + E)|Eg − E|]

+
aln

8aE2
oζ

4
ln

[
[E2

g + E2
o + χEg]

[E2
g + E2

o − χEg]

]
+
Eg
2ζ4

ln[[(t− a)2 + b2][(t+ a)2 + b2]]

− Eg
2ζ4

ln[(E2
o − E2

g )
2 + E2

gC
2)]

− aa tan
2CE2

oζ
4

[
π − tan−1

(
2Eg + χ

C

)
+ tan−1

(−2Eg + χ

C

)]
+

2Eg[E
2 − γ2]

χCζ4

[
π

2
+ tan−1

(
2(γ2 − E2

g )

χC

)]
, [here t→∞]
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=
aln

4χE2
oζ

4
ln

[
E2
g + E2

o + χEg

E2
g + E2

o − χEg

]
− aa tan

2CE2
oζ

4

[
π − tan−1

(
2Eg + χ

C

)
+ tan−1

(−2Eg + χ

C

)]
+
Eg[E

2 − γ2]
χCζ4

[
π + 2 tan−1

(
2(γ2 − E2

g )

χC

)]

−E
2 + E2

g

2Eζ4
ln

[ |Eg − E|
(Eg + E)

]
+
Eg
ζ4

ln

 [(Eg + E)|Eg − E|]√
(E2

o − E2
g )

2 + E2
gC

2)

 .
3.4.11 Final Tauc-Lorentz expression for the model of

Jellison and Modine

Now, from Eq. (3.43),

ε1(E) = ε1∞ +
2AEoC

π
P

∫ ∞
Eg

f(u)du,

= ε1∞ +
2AEoC

π
[term 1 + term 2 + term 3],

= ε1∞ +
2AEoC

π

aln
4χE2

oζ
4

ln

[
E2
g + E2

o + χEg

E2
g + E2

o − χEg

]
−2AEoC

π

aa tan
2CE2

oζ
4

[
π − tan−1

(
2Eg + χ

C

)
+ tan−1

(−2Eg + χ

C

)]
+

2AEoC

π

Eg[E
2 − γ2]

χCζ4

[
π + 2 tan−1

(
2(γ2 − E2

g )

χC

)]
−2AEoC

π

E2 + E2
g

2Eζ4
ln

[ |Eg − E|
(Eg + E)

]

+
2AEoC

π

Eg
ζ4

ln

 [(Eg + E)|Eg − E|]√
(E2

o − E2
g )

2 + E2
gC

2)

 .

98



3.5. Comparing the results of the Jellison and Modine model with experimental data

=⇒ ε1(E) = ε1∞ +
1

2

A

π

C

ζ4
aln
χEo

ln

[
E2
g + E2

o + χEg

E2
g + E2

o − χEg

]
− A

πζ4
aa tan
Eo

[
π − tan−1

(
2Eg + χ

C

)
+ tan−1

(−2Eg + χ

C

)]
+2

AEo
πχζ4

Eg[E
2 − γ2]

[
π + 2 tan−1

(
2(γ2 − E2

g )

χC

)]
−AEoC

πζ4
E2 + E2

g

E
ln

[ |Eg − E|
(Eg + E)

]

+
2AEoC

πζ4
Eg ln

 [(Eg + E)|Eg − E|]√
(E2

o − E2
g )

2 + E2
gC

2)

 ,
this being the same result as that in Eq. (3.12), all terms being defined in

the same manner.

3.5 Comparing the results of the Jellison

and Modine model with experimental

data

The parameterized model for the optical functions, ε1(E) and ε2(E), of

Jellison and Modine [15] is now fit with the results of experiment. The exper-

imental results that are considered include that of Piller [30], Synowicki [31],

and Ferluato et al. [32], these experimental results corresponding to the EGE

a-Si, PECVD a-Si I, and PECVD a-Si II experimental data sets mentioned
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in Section 2.10, respectively; these experimental data sets are further de-

scribed in Section 2.10. The approach that is adopted for each experimental

fit involves the selection of the modeling parameters that “best-fits” the cor-

responding experimental data set. This is achieved through a selection of

modeling parameters, a determination of the corresponding spectral depen-

dencies of the optical functions, ε1(E) and ε2(E), and a comparison with

the results of experiments. The “best-fit” is obtained through visual inspec-

tion. Through a sweep over a range of parameter values, the parameter

selections that “best-fit” the corresponding experimental optical functions is

determined. It is noted that, in all cases, the results of the model of Jellison

and Modine [15] agree with that of experiment over most of the spectrum

considered. The “best-fit” parameter values, corresponding to the different

experimental fits, are tabulated in Table 3.1. The resultant fits, and the

corresponding experimental data sets, are depicted in Figures 3.1, 3.2, and

3.3, these corresponding to the experimental results of EGE a-Si, PECVD

a-Si I, and PECVD a-Si II, respectively.
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Table 3.1: The “best-fit” a-Si modeling parameter selections employed for

the Tauc-Lorentz model of Jellison and Modine [15] for fits to experimental

data corresponding to EGE a-Si, PECVD a-Si I, and PECVD a-Si II.

parameter (units) EGE a-Si [30] PECVD a-Si I [31] PECVD a-Si II [32]

A (eV) 125 196 203

Eo (eV) 3.43 3.64 3.72

C (eV) 2.54 2.3 2.1

Eg (eV) 1.21 1.51 1.68

ε1∞ 1.0 1.0 0.65
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ε
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ε
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EGE a−Si [30]

Figure 3.1: A “best-fit” of the Jellison and Modine model with the results of

experiment corresponding to the EGE a-Si expermental data set [30]. These

experimental results are from Piller [30]. The fits to experiment are shown

with the solid lines. The experimental data, EGE a-Si [30], is depicted with

the solid points.
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Figure 3.2: A “best-fit” of the Jellison and Modine model with the results of

experiment corresponding to the PECVD a-Si I experimental data set [31].

These experimental results are from Synowicki [31]. The fits to experiment

are shown with the solid lines. The experimental data, PECVD a-Si I [31],

is depicted with the solid points.
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Figure 3.3: A “best-fit” of the Jellison and Modine model with the results of

experiment corresponding to the PECVD a-Si II experimental data set [32].

These experimental results are from Ferluato et al. [32]. The fits to exper-

iment are shown with the solid lines. The experimental data, PECVD a-Si

II [32], is depicted with the solid points.
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Chapter 4

A physically based

Kramers-Kronig consistent

model for the optical functions

associated with amorphous

semiconductors

4.1 Evaluating the JDOS function from the

distributions of electronic states

One weakness associated with the models of Forouhi and Bloomer [20],

McGahan et al. [21], and Jellison and Modine [15], is that they do not pro-
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vide for a direct connection with the underlying distributions of electronic

states. Even the model of Jellison and Modine [15], while being considerably

improved over that of Forouhi and Bloomer [20] and McGahan et al. [21],

fails to provide for a direct relationship between the underlying valence band

and conduction band DOS functions, Nv(E) and Nc(E), respectively, with

the spectral dependence of the optical functions, ε1(E) and ε2(E); Jellison

and Modine [15] take a physically based model for the spectral dependence of

the imaginary part of the dielectric function, ε2(E), and employ a Kramers-

Kronig transformation in order to obtain the spectral dependence of the real

part of the dielectric function, ε1(E). A direct relationship between the func-

tional dependencies of these optical functions, ε1(E) and ε2(E), with the

form of the distributions of electronic states, would allow for the gleaning

of insights into the underlying electronic properties from experimental mea-

surements of the spectral dependence of these optical functions.

In this chapter, an empirical model for the valence band and conduction

band DOS functions, Nv(E) andNc(E), is proposed, this model capturing the

fundamental essence of an amorphous semiconductor, i.e., exponential distri-

butions of tail states and square-root distributions of band states. Then, the

corresponding joint density of states (JDOS) function is evaluated through
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4.2. Empirical model for the DOS functions

the use of Eq. (2.10). Through the application of a model for the aggregate

optical transition matrix element, the corresponding spectral dependence

of the imaginary part of the dielectric function, ε2(E), is determined. A

Kramers-Kronig transformation is then employed in order to determine the

corresponding spectral dependence of the real part of the dielectric function,

ε1(E). A comparison with the results of experiment is then shown.

This chapter is organized in the following manner. In Section 4.2, an

empirical model for the DOS functions is presented. Then, in Section 4.3,

the corresponding JDOS function, J(E), is determined. In Section 4.4, a

model for the spectral dependence of the dipole optical matrix element is

presented. Finally, in Section 4.5, a fit with the results of experiment, for the

spectral dependence of real and imaginary parts of the dielectric function,

ε1(E) and ε2(E), respectively, is shown. Finally, the implications of a non-

unity ε1∞ are described in Section 4.6.

4.2 Empirical model for the DOS functions

There is general consensus that the DOS functions associated with an

amorphous semiconductor, i.e., Nv(E) and Nc(E), exhibit square-root func-
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4.2. Empirical model for the DOS functions

tional dependencies in the band regions and exponential functional depen-

dencies in the tail regions. Following O’Leary [29], one can thus set

Nv (E) = Nvo



√
Ev − EvT exp

(
EvT − Ev

γv

)
exp

(
Ev − E
γv

)
, E > EvT

√
Ev − E, E ≤ EvT

,

(4.1)

and

Nc (E) = Nco



√
E − Ec, E ≥ EcT

√
EcT − Ec exp

(
Ec − EcT

γc

)
exp

(
E − Ec
γc

)
, E < EcT

,

(4.2)

whereNvo andNco denote the valence band and conduction band DOS prefac-

tors, respectively, Ev and Ec represent the valence band and conduction band

band edges, γv and γc are the breadths of the valence band and conduction

band tails, EvT and EcT being the critical energies at which the exponential

and square-root distributions interface. It is clear, from Eqs. (4.1) and (4.2),

that both Nv (E) and Nc (E) are continuous functions of energy.

In order to further simplify these DOS functions, it will be further as-

sumed that the derivatives of these DOS functions, Nv (E) and Nc (E), are

also continuous functions of energy, i.e., these functions are smooth func-
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4.2. Empirical model for the DOS functions

tions. For this to be the case, it may be shown that EvT = Ev − γv/2 and

that EcT = Ec + γc/2 [28]. With these simplifications, Eq. (4.1) reduces to

Nv (E) = Nvo



√
γv
2

exp

(
−1

2

)
exp

(
Ev − E
γv

)
, E > EvT

√
Ev − E, E ≤ EvT

, (4.3)

and Eq. (4.2) reduces to

Nc (E) = Nco



√
E − Ec, E ≥ EcT

√
γc
2

exp

(
−1

2

)
exp

(
E − Ec
γc

)
, E < EcT

, (4.4)

It is noted that in the disorderless limit, i.e., when γv → 0 and γc → 0, these

DOS functions reduce to

Nv (E)→ Nvo


0, E > Ev

√
Ev − E, E ≤ Ev

, (4.5)

and

Nc (E)→ Nco



√
E − Ec, E ≥ Ec

0, E < Ec

, (4.6)

respectively, these being the Tauc DOS functions, i.e., Eqs. (2.23) and (2.24),

respectively.
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The valence band DOS function, Nv(E), is depicted on a linear scale in

Figure 4.1, Nvo and Ev being nominally set to 2 ×1022 cm−3 eV−3/2 and

0.0 eV, respectively, for the purposes of this analysis, i.e., the valence band

band edge forms the reference energy for this plot. A variety of selections

of γv are made, these spanning over the range of values representative of

amorphous semiconductors. It is clearly seen that for energies below the

valence band band edge, Ev, with the tail breadth set to zero, the valence

DOS function terminates abruptly, i.e., there are no electronic states within

the gap. For finite γv, however, a distribution of tail states encroaches into

the gap region, the amount of encroachment increasing with γv. In Figure 4.2,

this plot is depicted on a logarithmic scale, the same parameter selections

as that employed in Figure 4.1 also being used. The conduction band DOS

function, Nc(E), is depicted on linear and logarithmic scales in Figures 4.3

and 4.4, respectively, Nco and Ec being nominally set to 2 ×1022 cm−3 eV−3/2

and 0.0 eV, respectively, for the purposes of this analysis. As with the valence

band case, greater γc corresponds to greater encroachment into the energy

gap.
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Figure 4.1: A linear plot of the valence band DOS function as a function of

energy, E, for various selections of γv. The DOS modeling parameters, Nvo

and Ev, are nominally set to 2 ×1022 cm−3 eV−3/2 and 0.0 eV, respectively,

for the purposes of this plot. This figure is after O’Leary [17].
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Figure 4.2: A logarithmic plot of the valence band DOS function as a function

of energy, E, for various selections of γv. The DOS modeling parameters, Nvo

and Ev, are nominally set to 2 ×1022 cm−3 eV−3/2 and 0.0 eV, respectively,

for the purposes of this plot. This figure is after O’Leary [17].
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Figure 4.3: A linear plot of the conduction band DOS function as a function

of energy, E, for various selections of γc. The DOS modeling parameters, Nco

and Ec, are nominally set to 2 ×1022 cm−3 eV−3/2 and 0.0 eV, respectively,

for the purposes of this plot. This figure is after O’Leary [17].
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Figure 4.4: A logarithmic plot of the conduction band DOS function as

a function of energy, E, for various selections of γc. The DOS modeling

parameters, Nco and Ec, are nominally set to 2×1022 cm−3 eV−3/2 and 0.0 eV,

respectively, for the purposes of this plot. This figure is after O’Leary [17].
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4.3 JDOS evaluation and analysis

The JDOS function, J(E), corresponding to the empirical model for the

DOS functions, i.e., with Nv(E) and Nc(E) as set in Eqs. (4.3) and (4.4),

respectively, is now evaluated using Eq. (2.10). This JDOS function may be

used in order to determine the number of possible optical transitions between

the valence band and the conduction band electronic states. In Figure 4.5,

the JDOS function is depicted on a linear scale for a variety of selections of

γv and γc, the DOS modeling parameters being nominally set to Nvo = Nco

= 2 ×1022 cm−3 eV−3/2, Ev = 0.0 eV, and Ec = 1.7 eV; for all cases, γv is

set equal to γc. This plot is shown on a logarithmic scale in Figure 4.6.

Eq. (2.25) suggests that the functional dependence of
√
J(E) on the

photon energy, E, for energies well above the band gap, allows one to de-

termine the corresponding energy gap, Eg. In Figure 4.7, a linear plot of

the functional dependence of
√
J(E) on the photon energy, E, is depicted.

It is clearly seen that for γv = γc = 0, that the
√
J(E) function termi-

nates abruptly at the band gap edge. For finite γv and γc, however, a tail in

the JDOS function encroaches into the gap region, this tail representing the

amount of disorder that is present.

115



4.3. JDOS evaluation and analysis

1.8 2 2.2 2.4
0

0.2

0.4

0.6

0.8

1

1.2

N
vo

 = N
co

 = 2 × 1022 cm−3eV−3/2

E
g
 = 1.7 eV

γ
v
 = γ

c
 = 100 meV

γ
v
 = γ

c
 = 50 meV

γ
v
 = γ

c
 = 0 meV

Photon Energy (eV)

JD
O

S
 ×

 1
044

 (
cm

−
6 eV

−
1 )

Figure 4.5: A linear plot of the JDOS function as a function of the photon

energy, E, for various selections of γv and γc. The DOS modeling parameters

are nominally set to Nvo = Nco = 2 ×1022 cm−3 eV−3/2, Ev = 0.0 eV, and

Ec = 1.7 eV for the purposes of this plot. This figure is after O’Leary [17].
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Figure 4.6: A logarithmic plot of the JDOS function as a function of the

photon energy, E, for various selections of γv and γc. The DOS model-

ing parameters are nominally set to Nvo = Nco = 2 ×1022 cm−3 eV−3/2,

Ev = 0.0 eV, and Ec = 1.7 eV for the purposes of this plot. This figure is

after O’Leary [17].
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Figure 4.7: A linear plot of the functional dependence of the square-

root of the JDOS function on the photon energy, E, for various selec-

tions of γv and γc. The DOS modeling parameters are nominally set to

Nvo = Nco = 2 ×1022 cm−3 eV−3/2, Ev = 0.0 eV, and Ec = 1.7 eV for

this plot. This figure is after O’Leary [17].
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4.4 Modeling the optical functions

associated with a-Si

In order to determine the spectral dependence of the a-Si optical func-

tions, ε1(E) and ε2(E), the spectral dependence of the JDOS function as-

sociated with this material must be known. With a model for the JDOS

function, in conjunction with a model for the spectral dependence of the ag-

gregate dipole matrix element, R2(E), the spectral dependence of the imag-

inary part of the dielectric function, ε2(E), may be determined through the

use of Eq. (2.17). Then, through the use of a Kramers-Kronig transforma-

tion, i.e., Eq. (2.45), the spectral dependence of the real part of the dielectric

function, ε1(E), may be determined.

For the purposes of this analysis, the spectral dependence of J(E) and

R2(E) associated with a-Si will be independently modeled. Each of these

models will then be contrasted with the corresponding results of experiment,

these a-Si experimental results being from Jackson et al. [16]. From the spec-

tral dependence of J(E) and R2(E), the spectral dependence of ε2(E) will be

determined, and compared with that of experiment. Following this analysis,

fits with the results of experiment corresponding to other samples of a-Si will
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4.4. Modeling the optical functions associated with a-Si

be performed, it being expected that some variations in the DOS modeling

parameters will occur from sample-to-sample, these variations representing

the changes in the physics of each sample.

Thevaril and O’Leary [33] plotted the experimentally determined a-Si

valence band tail breadth parameter, γv, as a function of the conduction

band tail breadth parameter, γc, for the experimental data of Sherman et

al. [23], Rerbal et al. [34], Teidje et al. [35], and Winer and Ley [36]. Fit

values, obtained by O’Leary [17], were also considered. This experimental

data, and the fit data, is depicted in Figure 4.8. It is noted that, in all cases,

the valence band tail breadth parameter, γv, exceeds that associated with

the conduction band, γc. Thevaril and O’Leary [28] demonstrated that when

γv exceeds γc, the optical absorption coefficient is primarily determined by

γv. Thus, many of the optical properties may be determined neglecting the

conduction band tail states, i.e., assuming that γc is equal to zero. For the

purposes of this analysis, γc will be set to zero for all cases.

In Figure 4.9, a plot of the experimental a-Si JDOS results of Jackson

et al. [16] is depicted. This result is directly contrasted with that deter-

mined using the numerical evaluation procedure for the JDOS function for

the DOS modeling parameters set to Nvo = Nco = 2.48 ×1022 cm−3 eV−3/2,
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Figure 4.8: A plot of the dependence of γv on γc. Experimental results

from Sherman et al. [23], Rerbal et al. [34], Teidje et al. [35], and Winer

and Ley [36] are depicted. A modeling result, obtained through a fit with

experimental data, from O’Leary [17], is also depicted on this plot. This

figure is after Thevaril and O’Leary [33].
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Figure 4.9: The spectral dependence of the JDOS function. The a-Si

JDOS results of Jackson et al. [16] are depicted with the solid points. The

JDOS fit result, obtained by setting Nvo = Nco = 2.48 ×1022 cm−3 eV−3/2,

Ev = 0.0 eV, Ec = 1.68 eV, and γv = 40 meV, is depicted with the solid

line.
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4.4. Modeling the optical functions associated with a-Si

Ev = 0.0 eV, Ec = 1.68 eV, and γv = 40 meV. It is noted that the fit is

reasonably satisfactory, except for low JDOS values, where defect absorption

influences the results and high photon energies, where the non-parabolicity

of the bands plays a role influencing the form of the JDOS function. This

a-Si JDOS function will be used in the subsequent analysis.

For the case of a-Si, Jackson et al. [16] experimentally determined the

spectral dependence of the aggregate dipole matrix element squared aver-

age, R2(E). They found that for photon energies below 3.4 eV, this matrix

element remains essentially constant, while for photon energies in excess of

3.4 eV, it falls off with the algebraic dependence E−5. Based on these obser-

vations, Thevaril and O’Leary [28] modeled R2(E) as

R2(E) = R2
o



(
Ed
E

)5

, E ≥ Ed

1, E < Ed

, (4.7)

where Ed is the characteristic energy to whichR2(E) is constant, i.e.,R2(E) =

R2
o, where, for the case of the a-Si experimental data of Jackson et al. [16],

R2
o = 10Å2. This spectral dependence for R2(E), proposed by Thevaril and

O’Leary [28], is contrasted with the experimental R2(E) results of Jackson

et al. [16] in Figure 4.10. The corresponding spectral dependence of ε2(E),
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Figure 4.10: R2(E) as a function of the photon energy, E, determined using

Eq. (4.7), depicted with the solid lines. For the purposes of this fit, R2
o is

set to 10 Å2 and Ed is set to 3.4 eV. The experimental results of Jackson et

al. [16] are depicted with the solid points.
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determined using Eq. (2.17), is depicted on a logarithmic scale in Figure 4.11

and on a linear scale in Figure 4.12.

The DOS modeling parameters are set to Nvo = Nco = 2.48 ×1022

cm−3 eV−3/2, Ev = 0.0 eV, Ec = 1.68 eV, and γv = 40 meV for the purposes of

this plot. It is also compared with the experimental ε2(E) results of Jackson

et al. [16].

While the comparison with the results of experiment is reasonably sat-

isfactory for the case of the logarithmic plot, i.e., Figures 4.11, for the lin-

ear plot, i.e., Figure 4.12, it is seen that the spectral dependence of ε2(E)

does not follow the a-Si experimental results for photon energies in excess

of 3.4 eV. From Figure 4.12, it is also seen that the spectral dependence of

ε2(E) exhibits a sharp peak at Ed, which does not accord with experimental

observation. The formalism for the dipole matrix element squared average,

R2(E), expressed in Eq. (4.7), is responsible for this unphysical sharp peak

in the spectral dependence of the imaginary part of the dielectric function,

ε2(E). In order to avoid this problem created with an abrupt transition

model for the spectral dependence of R2(E), R2(E) is instead remodeled as

R2(E) =
R2
o[

1 +
(
E
Ed

)2x] 1
2

, (4.8)
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Figure 4.11: The spectral dependence for the imaginary part of the dielectric

function, ε2(E), determined using Eq. (2.17), where R2(E) is determined

using Eq. (4.7), on a logarithmic scale. The DOS modeling parameters are

set to Nvo = Nco = 2.48 ×1022 cm−3 eV−3/2, Ev = 0.0 eV, Ec = 1.68 eV,

and γv = 40 meV for the purposes of this plot. The experimental results of

Jackson et al. [16] are depicted with the solid points
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Figure 4.12: The spectral dependence of the imaginary part of the dielectric

function, ε2(E), determined using Eq. (2.17), where R2(E) is determined

using Eq. (4.7), on a linear scale. The DOS modeling parameters are set

to Nvo = Nco = 2.48 ×1022 cm−3 eV−3/2, Ev = 0.0 eV, Ec = 1.68 eV,

and γv = 40 meV for the purposes of this plot. The experimental results of

Jackson et al. [16] are depicted with the solid points
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where x represents the asymptotic polynomial rate of attenuation, i.e., for

the case of the experimental observations of Jackson et al. [16], it is found

that x = 5. It is noted that for photon energies E << Ed, R2(E) = R2
o. For

photon energies greater than Ed, however, R2(E) asymptotically approaches

R2
o(
Ed

E
)x. The spectral dependence of this remodeled R2(E) is contrasted

with the experimental R2(E) results of Jackson et al. [16] and the spectral

dependence of R2(E), proposed by Thevaril and O’Leary [28], i.e., Eq. (4.7),

in Figure 4.13.

The spectral dependence of ε2 associated with the a-Si, evaluated using

Eq. (2.17), where R2(E) is determined using Eq. (4.8), is depicted on a

logarithmic scale in Figure 4.14 and on a linear scale in Figure 4.15. The

DOS modeling parameters are set to Nvo = Nco = 2.48 ×1022 cm−3 eV−3/2,

Ev = 0.0 eV, Ec = 1.68 eV, and γv = 40 meV for the purposes of this

analysis. The asymptotic polynomial rate of attenuation, x, is set to 6.6

for the purposes of this plot. The experimental ε2(E) results of Jackson

et al. [16] are depicted with the solid points. It is noted that the fit is

reasonably satisfactory for both cases. The evaluation of the real part of

dielectric function, ε1(E), may be directly determined from a Kramers-Kronig

transformation, i.e., Eq. (2.45). Numerical integration is employed for the
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Figure 4.13: R2(E) as a function of the photon energy, E, determined using

Eqs. (4.7) and (4.8), are depicted with the solid lines. For the purposes of

this fit, R2
o is set to 10 Å2 and Ed is set to 3.4 eV. The asymptotic polynomial

rate of attenuation, x, is set to 6.6 for the purposes of the Eq. (4.8) plot. The

experimental results of Jackson et al. [16] are depicted with the solid points.
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Figure 4.14: The spectral dependence of the imaginary part of the dielectric

function, ε2(E), determined using Eq. (2.17), where R2(E) is determined

using Eq. (4.8), on a logarithmic scale. The DOS modeling parameters are

set to Nvo = Nco = 2.48 ×1022 cm−3 eV−3/2, Ev = 0.0 eV, Ec = 1.68 eV, and

γv = 40 meV for the purposes of this plot. The asymptotic polynomial rate

of attenuation, x, is set to 6.6 for the purposes of this plot. The experimental

results of Jackson et al. [16] are depicted with the solid points
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Figure 4.15: The spectral dependence of the imaginary part of the dielectric

function, ε2(E), determined using Eq. (2.17), where R2(E) is determined

using Eq. (4.8), on a linear scale. The DOS modeling parameters are set to

Nvo = Nco = 2.48 ×1022 cm−3 eV−3/2, Ev = 0.0 eV, Ec = 1.68 eV, and

γv = 40 meV for the purposes of this plot. The asymptotic polynomial rate

of attenuation, x, is set to 6.6 for the purposes of this plot. The experimental

results of Jackson et al. [16] are depicted with the solid points
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purposes of this analysis.

4.5 Results

Three sets of experimental results are used in order to validate the afore-

mentioned model for the spectral dependence of dielectric functions; these are

the same experimental data sets as that considered earlier. In Figures 4.16,

4.17, and 4.18, the model results are compared with the experimental EGE

a-Si data set [30], the PECVD a-Si I data set [31], and the PECVD a-Si II

data set [32], respectively. The “best-fit” is obtained through visual inspec-

tion. For every case, this model perfectly fits with these three different sets

of experimental data. The fitting parameters values are tabulated in Table

4.1. As this model is directly related to the DOS modeling parameters, it

is possible to extract the underlying fundamental properties related to the

underlying distributions of electronic states from knowledge of the spectral

dependence of these optical functions. This information could help to predict

the behavior of the optical response over a broad range of energies and can

guide the fabrication of optical devices.
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Table 4.1: The “best-fit” a-Si DOS modeling parameter selections employed

for the purposes of this analysis. These modeling parameters relate to

Eqs. (2.17), (2.45), and (4.8)

parameter (units) EGE a-Si [30] PECVD a-Si I [31] PECVD a-Si II [32]

Nvo (cm−3eV−3/2) 1.88× 1022 2.33× 1022 2.42× 1022

Nco (cm−3eV−3/2) 1.88× 1022 2.33× 1022 2.42× 1022

Ev (eV) 0.0 0.0 0.0

Ec (eV) 1.21 1.51 1.68

Eg (eV) 1.21 1.51 1.68

Ed (eV) 3.42 3.64 3.72

γv (meV) 83 40 50

ε1∞ 1.0 1.0 0.65

Ro2(Å2) 10 10 10

x 5.87 6.6 6.6
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Figure 4.16: A “best-fit” of the model results with the results of experi-

ment corresponding to EGE a-Si [30]. These experimental results are from

Piller [30]. The fits to experiment are shown with the solid lines. The exper-

imental data, EGE a-Si [30], is depicted with the solid points.
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Figure 4.17: A “best-fit” of the model results with the results of experiment

corresponding to PECVD a-Si I [31]. These experimental results are from

Synowicki [31]. The fits to experiment are shown with the solid lines. The

experimental data, PECVD a-Si I [31], is depicted with the solid points.
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Figure 4.18: A “best-fit” of the model results with the results of experiment

corresponding to PECVD a-Si II [32]. These experimental results are from

Ferluato et al. [32]. The fits to experiment are shown with the solid lines.

The experimental data, PECVD a-Si II [32], is depicted with the solid points.
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4.6 Implications of a non-unity ε1∞

Ideally, ε1∞ should be equal to unity when all the electronic transitions

are considered in the model for the spectral dependence of the imaginary part

of the dielectric function, ε2(E) [32]. Ferlauto et al. [32] experienced that ε1∞

departs from unity depending upon the band gap differences amongst the a-

Si samples. They also commented that ε1∞ is less than unity for pure a-Si

samples. From Tables 3.1 and 4.1, it is seen that for the EGE a-Si [30] and

the PECVD a-Si I [31] samples, ε1∞ is unity, whereas for the PECVD a-Si

II [32] sample, it is less than unity, which is itself a pure a-Si material.
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Conclusions

Models for the spectral dependence of the real and imaginary components

of the dielectric function, ε1(E) and ε2(E), respectively, appropriate for the

case of amorphous semiconductors, are considered. In the first phase of this

analysis, from an empirical expression for imaginary part of the dielectric

function, this expression corresponding with that of the model of Jellison

and Modine [15], a closed-form expression for the real part of the dielectric

function is determined using a Kramer-Kronig transformation. The resultant

expression for the real and imaginary components of the dielectric function

corresponds with the model of Jellison and Modine [15]. The comparison

with experiment is found to be satisfactory. Then, in the latter stage of the

analysis, through the application of a Kramers-Kronig transformation on an

empirical model for the imaginary part of the dielectric function, this model

stemming from a model for the distributions of electronic states, the spectral
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dependence of the real part of the dielectric function. Fits with the results

of experiment are also found to be satisfactory.

There are a number of matters related to these models for the real and

imaginary components of the dielectric function, ε1(E) and ε2(E), that could

be pursued in the future. A critical comparison between the fits obtained

using the model of Jellison and Modine [15] and that obtained using the new

model would be instructive. The gleaning of insights into the underlying

distributions of electronic states from experimental measurements of these

optical functions, ε1(E) and ε2(E), would also be worthy of further inves-

tigation. Finally, the use of these models for the purposes of device design

and device optimization would be of interest. These topics will have to be

addressed in the future.
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