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Abstract

Flow Cytometry (FCM) is widely used to investigate and diagnose human disease.
Although high-throughput systems allow rapid data collection from large cohorts,

manual data analysis can take months. Moreover, identification of cell populations
can be subjective, and analysts rarely examine the entirety of the multidimensional

dataset (focusing instead on a limited number of subsets, the biology of which
has usually already been well-described). Thus, the value of Polychromatic Flow

Cytometry (PFC) as a discovery tool is largely wasted.
In this thesis, I will present three computational tools that once merged

together provide a complete pipeline for analysis and visualization of FCM data:
(1) a clustering algorithm for identification of homogeneous groups of cells (cell

populations); (2) a set of statistical tools for identifying immunophenotypes (based
on the cell populations) that are correlated with an external variable (e.g., a clinical

outcome); (3) a tool for identifying the most important parent populations that
can best describe a set of related immunophenotypes. In addition to technical

advancements, this pipeline represents a conceptual advance that allows a more
powerful, automated, and complete analysis of complex flow cytometry data than

previously possible. As a side product, this pipeline allows complex information
from PFC studies to be translated into clinical or resource-poor settings, where

multiparametric analysis is less feasible. I demonstrated the utility of this approach
in a large (n = 466), retrospective, 14-parameter PFC study of early HIV infection,

where we identified three T-cell subsets that strongly predicted progression to
AIDS (only one of which was identified by an initial manual analysis).

Before and during the development of this pipeline, a wide range of computa-
tional tools for analysis of FCM data were published. However, guidance for end
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users about appropriate use and application of these methods is scarce. The Flow

Cytometry: Critical Assessment of Population Identification Methods (FlowCAP)
is a highly collaborative project for evaluation of these computational tools using

real-world datasets. The FlowCAP results presented here will help both computa-
tional and biological scientists to better develop and use advanced bioinformatics

pipelines.
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Chapter 1

Introduction

Flow Cytometry (FCM) is the primary tool for measurement of multiple markers

(primarily surface or intra-cellular proteins) simultaneously on single cells in a
high-throughput fashion. FCM enables investigators to divide cells to subsets based

on their phenotype and/or function. This makes this technology a very powerful
tool for exploratory analysis of cellular systems for designing diagnosis tests,

identifying targets for therapies, and monitoring the progression of diseases. In
addition, FCM’s ability to isolate cell subsets based on their phenotype has made it

a unique tool for in vivo and in vitro studies of homogeneous cell populations.
In FCM, cells are labelled with fluorescent markers and are then moved past a

laser beam that excites the fluorochrome (a fluorescent molecule that can emit light

upon excitation) one cell at a time. The light emitted from each individual cell is
collected using a series of light and colour detectors. In addition to fluorescence

intensity values for each marker, measurements also include Forward Scatter
(FSC) and Side Scatter (SSC), which correlate to the cell size and granularity,

respectively. Traditionally, FCM analysis has been a labour-intensive process [8].
New technological developments have made it possible to apply FCM in a high-

throughput fashion, rendering data analysis a significant challenge.
The FCM hardware was mostly developed in the 1990s, data analysis tools

capable of analyzing a large number of measurements per cell are not yet widely
available [71]. For the recently developed mass cytometry [11] and single-cell

gene-expression analysis instruments [22], even partial exploration of the high
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multidimensional space through conventional manual analysis approaches is no

longer feasible.

1.1 Cell Population Identification
Identification of homogenous groups of cells for further study (gating) is critical

in analysis of FCM data. Most frequently, this is done by drawing polygons on
series of bi-variate scatter plots produced from two dimensional projections of the

data (a.k.a. manual gating). However, manual gating is subject to user variability
[47, 108, 121] and is unsuitable for high-throughput data analysis [48]. In addition,

the number of bi-variate plots that need to be analyzed grows exponentially by
increasing the number of measurements per cell, rendering a complete manual

analysis of even less than ten dimensions unfeasible.
Clustering is the problem of partitioning an unlabelled set of multi-dimensional

vectors into groups (clusters) of “similar” points. This problem is similar to the
population identification problem for FCM data in that in both cases the target is

identification of homogeneous subsets of a multi-dimensional space. Over the past
decades, an extensive amount of research has been dedicated to designing objective

functions that, at least implicitly, define what constitutes a cluster and optimizing
them (i.e., finding the best clusters given an objective function)[51]. Here, I will

discuss the main classes of clustering algorithms: 1) hierarchical, 2) spectral, 3)
density-based, and 4) model-based clustering:

Hierarchical Clustering

Hierarchical clustering algorithms are based on the idea that successive clusters
can be inferred from previously established clusters. For example, agglomerative

(bottom up) hierarchical algorithms begin with each element as a separate cluster
and merge them into successively larger clusters. The number of clusters (or an

equivalent threshold) needs to be pre-identified for these algorithms.
One of the main drawbacks of hierarchical clustering algorithms is the amount

of resources that they require. These algorithms use a similarity matrix. Creating
and storing this matrix requires O(n2) time and memory, where n is the number of

data points. Due to these time and memory requirements, hierarchical clustering
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algorithms have not been successfully applied to FCM experiments [8].

Spectral Clustering

In spectral clustering, first a graph is produced in which every cell is considered a

node and the length of the edges represent the multidimensional distance between
the cells; then the graph is partitioned into different sub-graphs using objective

functions from graph theory. One of the most prominent approaches is partitioning
the graph into sub-graphs that minimize the normal cuts of each partition [127].

Spectral clustering algorithms (like hierarchical ones) work based on a similarity
matrix and cannot be directly applied to large datasets. However, they can

automatically select the number of clusters using their objective function (e.g., the
SamSPECTRAL algorithm [127] as discussed below).

Density-based Clustering

Density-based clustering is based on the assumption that a cluster is a region with
high density [34]. This enables this class of algorithms to avoid using a large

similarity matrix. Estimation of the density is usually performed using smoothing
methods (e.g., Kernel Density Estimation (KDE), probability binning, etc.[99]).

However, this estimation becomes more challenging for high-dimensional datasets
[29]. Due to time requirement issues, this approach is usually limited to three or

fewer dimensions [29]. In addition, a successful density estimation usually relies
on a user-defined “smoothing parameter” (e.g., bandwidth or bin size).

Another challenge in this type of clustering is defining a “high density region”.
Definitions used in practice are usually based on a manually defined threshold over

the estimated density function or its derivatives (see, e.g. [84]).

Model-based clustering

Model-based clustering has its roots in the fitting of Gaussian mixture model

(GMM)s [70]. The most popular approach is to use Expectation Maximization (EM)
to estimate the parameters of a multivariate normal distribution. Then, every point

will be assigned to the component (cluster) with maximum posterior probability.
Model selection criterions (e.g., Bayesian Information Criterion (BIC), Akaike
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Information Criterion (AIC), and Integrated Complete Likelihood (ICL)) can be

used to estimate the correct number of clusters [70]. The K-means algorithm can
be seen as a special case of GMMs with equal spherical variances. It is possible

to construct more robust models using t and skew-t mixture models at the cost of
higher time complexity (see Chapter 2 for more details).

1.1.1 Clustering Algorithms for Cell Population Identification

Several methods have been developed to use the clustering methodologies above

to automate the gating process. flowClust [70] is a model-based clustering
approach that models cell populations using a mixtures of t-distributions. Box-

Cox transformations are used to remove potential skewness of each component of
the mixture model. flowMerge [37] extends the flowClust algorithm by applying

a cluster merging algorithm [10] to allow multiple components to model the same
populations, enabling it to fit concave cell populations. FLAME [97] uses a mixture

of skew-t-distributions to make the model more flexible to skewed cell populations.
The CDP algorithm uses a GPU-based procedure for fitting Gaussian mixture

models in parallel [20]. This can be potentially applied to either flowClust or
FLAME for faster analysis. curvHDR [84], FLOCK [99], Misty Mountain [117],

and flowPeaks [44] are non-parametric density-based approaches, and therefore
are not limited to identifying cell populations based on shape but usually have

different draw backs. For example, curvHDR models cell populations based on
the curvature of the underlying distribution; however, it requires user-defined

parameter values and cannot be applied to more than three-dimensional data.
SamSpectral [127] uses an spectral clustering algorithm to find cell populations,

including non-convex ones. To deal with the high time and memory requirements
of the spectral clustering algorithm, SamSpectral finds cell populations based

on representative sub-sampling of the data (also see SWIFT [83] for another
alternative); however, this can potentially decrease the quality of the gating, as

some biological information can be lost during the sampling. SamSpectral also
requires user-defined parameter values for each data set of similar experiments.
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1.1.2 Fast and Flexible Clustering for Cell Population Identification

Model-based clustering for identification of cell populations can be made more
robust to noise using more complex statistical models. However, fitting these

complicated models to the data takes longer, to the extent that would render these
algorithms useless for larger datasets, even when using state-of-the-art computing

clusters. Finak et. al. suggested that a post-clustering refining of the identified cell
populations (to merge highly overlapping clusters into single cell populations) can

improve the results[37]. I hypothesized that this post-clustering step can be much
more important than the initial model fitting step, and that replacing the model

fitting step with a simpler process can significantly speed up the cell population
identification process.

K-means is a fast clustering algorithm that has been widely used in different
areas over the past few decades. However, it requires the number of clusters to be

pre-specified. This is not possible for most FCM use-cases. It also is very sensitive
to the algorithms initialization and is limited to spherical clusters (not all cell

population in FCM are spherical). In Chapter 2, I discuss a methodology that refines
the clusters produced by K-means using a merging strategy based on a Gaussian

mixture model for faster cell population identification without compromising the
benefits of model-based clustering.

1.2 Immunophenotyping using FCM for Cross-Sample
Exploratory Analysis

A primary use-case of FCM is exploratory analysis of the immune system for
identification of immunophenotypes that correlate with a clinical outcome. These

cell populations can then be used for diagnosis and monitoring purposes as well
as for guiding the design of new therapies. However, manual exploration of high-

dimensional datasets in addition to being subjective and error-prone is highly time
consuming [75]. At as low as 6 measurements per cell, looking at all possible cell

populations becomes very challenging. 13 color experiments are now common in
clinical setting, and 40 to 100 dimensional studies in limited scales have also been

reported [22]. For none of these a complete manual analysis can be envisioned due
to exponential increase in the number of cell populations that can be analyzed and
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the number of bi-variate scatter plots that need to be investigated.

Using the computational cell population identification algorithms described
above is a natural choice for mining these multi-dimensional spaces. Several recent

studies have reported such analysis ([9, 27, 129]). However, multi-dimensional
cell population identification for exploratory analysis is associated with several

complications. First, the cell populations need to be matched to each other across
multiple samples. This process has proven to be subjective, often requiring input

from human experts [98]. Second, this approach ignores the hierarchical nature

of the cells involved in the immune system by assuming that every cell belongs to
only one cell population. However, in presence of a larger number of markers, cell

populations should be allowed to overlap (because certain marker combinations
might provide partially redundant information) to enable the computational model

to explore the exclusion of certain markers to determine if they are clinically
relevant. Third, these algorithms do not incorporate the background knowledge

of human experts to guide the identification of rare cell populations that cannot be
automatically identified.

In Chapter 3, I will describe a methodology that combines several one
dimensional cell populations to produce a large number of high-dimensional

overlapping clusters. Due to the simple nature of the original one dimensional
analysis, incorporating expert knowledge and matching the cell populations across

multiple samples becomes very simple. The large number of overlapping cell
populations increases the chance of a positive hit in exploratory analysis and

reveals important information about the clinical relevance of the markers (this will
be used as the basis of Chapter 4).

1.3 Characterization and Visualization of
Immunophenotypes

The methodology described in Chapter 3 usually identifies a large number of
highly overlapping immunophenotypes (e.g., CD4+CD8− cells are also included

in the CD4+ immunophenotype). In Chapter 4, I will describe a methodology
for organizing these cell populations in a hierarchy, using their most important

parent populations (as determined by the strength of the correlation with a clinical
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outcome). This approach not only will better visualize the correlates of a clinical

outcome, but also helps translate the complicated findings of high-dimensional
assays to lower dimensions appropriate for clinical and/or highly regulated settings

or for sorting of these populations for invivo and invitro studies.

1.4 Critical Assessment of Computational Pipelines for
Analysis of FCM Data

In absence of public repositories and guidelines in scientific journals that would

encourage the publication of FCM data, a very limited amount of high quality data
is publicly available. Computational tools for FCM have frequently been tested on

small datasets and evaluation of the results have usually relied on visual inspection,
providing very limited information about the generalizability of the results and

therefore the practical utility of the work in clinical and/or biological settings. In
Chapter 5, I will discuss a highly collaborative project in which we evaluated a

large number of computational methodologies on a wide range of real world FCM

datasets. The use-cases include both cell population identification (identification

of all cell populations, e.g. for exploratory analysis of the immune response to
a vaccine) and sample classification (prediction of an external outcome, e.g. a

disease outcome) under different settings.
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Chapter 2

flowMeans: Rapid Cell
Population Identification in Flow
Cytometry Data

2.1 Introduction
With the advent of high-throughput FCM analysis, millions of cells can be analyzed

for up to 40 markers per sample. For these experiments, the runtime of gating
algorithms is a bottleneck of automated FCM data analysis pipelines [8]. The

K-means clustering algorithm was the first automated data analysis approaches
applied to FCM data [82]. Given a n vectors, X = (X1,X2, ...,Xn), of length n, K-

means aims to partition X into K < n sets S = S1,S2, ...,Sk so as to minimize the
within-cluster sum of squares:

argmin
S

K

∑
i=1

∑
X j∈Si

||X j − ci||2, (2.1)

where ci is the centroid or center of Si estimated by its mean value.

However, the adoption of K-means has been restricted, because it requires the
number of populations to be pre-identified, it is sensitive to its initialization, and

it is limited to modelling spherical cell populations. To estimate the number of

8



clusters, Pelleg et al. [91] and Hamerly et al. [50] extended basic K-means by

using the Bayesian Information Criterion and a normality test, respectively. Voting-
K-means [59] tries to achieve a good clustering by running the K-means algorithm

with a number of different settings and combining the results using an ensemble
clustering algorithm. However, the application of these algorithms for automated

FCM data analysis has not been successful since the first two are sensitive to noise,
and all three require user-defined parameter values [8, 127].

In this section, we present a new K-means-based clustering framework that

addresses the initialization, shape limitation, and model-selection problems of K-
means clustering, and can be applied to FCM data. We extended the flowMerge

[41] approach by replacing the statistical model with a faster clustering algorithm.
By introducing a new merging criterion, our approach finds non-convex cell

populations, and we use a change point detection algorithm to estimate the number
of clusters.

2.2 Materials and Methods

2.2.1 Initial Number of Clusters

The K-means clustering algorithm relies on users to define the number of clusters
(K) to find. Using a predefined number of clusters for all FCM samples is not

possible due to intersample variability. We solved this problem by automatically
choosing K based on a reasonable maximum. The variants of the K-means

algorithm discussed in the introduction try to estimate the exact number of clusters,
and are not suitable for estimating the maximum number of clusters. Using the

number of cells as the maximum is also not practical due to high runtime required
for merging a large number of cells in FCM experiments (e.g., commonly in the

hundreds of thousands). Instead, we use the number of modes found individually
in every eigenvector of the data. Using individual eigenvectors makes solving the

mode-counting problem practical, but results in overlapping clusters (since some
cell populations will be projected on more than one eigenvector and will be counted

more than once). These overlapping clusters are later merged.
While many mode-detection algorithms are available, we used an approach
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based on the work of Duong et al. [29] for mode detection using kernel density

estimation, which has has previously proven to be successful on FCM data [84].
Formally, for a n vectors, X = (X1,X2, ...,Xn), of length n sampled randomly from

the density function f , the kernel density estimator f̂ is defined to be the mean of
n Gaussian kernel estimations:

f̂ (x) =
∑n

i=1 K( x−Xi
h )

n ·h
, (2.2)

where h is the bandwidth selected using Scott’s rule [111], and K(·) is the Gaussian
kernel function:

K(x) =
1√
2 ·π

· e−
x2
√

2 . (2.3)

The gradient of the estimator is:

∆ f̂ (x) =
2

n ·h2 ·
n

∑
i=1

(x−Xi) ·K
(

x−Xi

h

)
(2.4)

We then used a simultaneous significance test (based on Bonferroni’s correc-

tion) to find the regions where the gradient is significantly different from zero [29].
Finally, the number of modes in the data is estimated by the number of times that

the gradient changes from positive to negative for every one dimensional projection
of the data on the eigenvectors. The K-means algorithm is then initialized with the

total number of modes across all dimensions.

2.2.2 Merging

We solved the initialization problem at the cost of finding redundant clusters.

To find the correct populations, these clusters must be merged. In addition, to
capture non-spherical populations, we allow more than one cluster to model a

single population (i.e., nearby clusters are merged).
The merging procedure iterates between the following two steps until all of

the points are merged to a single cluster: (1) calculate/update the distance between
every pair of clusters; (2) identify and merge the closest pair of clusters.
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Distance Metric

Given two populations X = (x1,x2, ...,xN) and Y = (y1,y2, ...,yM), we want to
estimate the probability that the point (in this case, cell) yi belongs to X . The closer

yi is to the center of X (i.e., X), the more likely it is to belong to X . However, the
probability also depends on the dispersion of X . This can be estimated by the

normalized Euclidean distance X−yi
SX

, where SX is the sample standard deviation of
X . In the multivariate case, the direction in which X is spread is also important, so

the normalization term should be replaced by the covariance matrix. This results
in a distance metric called the Mahalanobis distance. Formally, the Mahalanobis

distance between X and yi is defined as:

D(X ,yi) =

√
(X − yi) ·S−1

X · (X − yi)>, (2.5)

where SX is the covariance matrix of X .
Based on D(x,yi), we define a symmetric semi-metric (semi-distance) function

between populations X and Y :

D(X ,Y ) = min


√

(X −Y ) ·S−1
X · (X −Y )>√

(X −Y ) ·S−1
Y · (X −Y )>

. (2.6)

Estimating the Number of Populations

As long as two clusters are overlapping (i.e., model the same cell population),

the distance between them will be very small, and these will be merged. After
several merging steps, when the remaining clusters are well separated, the distance

between the next clusters to be merged is significantly larger than the previous
ones, indicating that these likely represent separate cell populations. We devised a

segmented regression algorithm to detect the change point in the distance between

the merged clusters. This algorithm divides the data to two subsets based on a given
break point and fits a line to each of the subsets. The break point that minimizes

the error of this model represents the number of clusters for which the clusters are
well separated.

Formally, let N be the initial number of clusters, i = (1, ...,N) the vector of
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iteration numbers, NC = N − i the vector of number of clusters at each iteration,

and Dist the distance between the merged clusters at each iteration. The segmented
regression model can be described with the following equation:

DistR(i,BP) =

{
A1 ·NC(i)+B1, if NC(i) < BP
A2 ·NC(i)+B2, if NC(i) ≥ BP

, (2.7)

where DistR is the vector of predicted values for Dist, BP is the break point at
which we are expecting an abrupt change of the distance between clusters, and

(A1, B1) and (A2, B2) are the slope and offset of the regression lines for the points
before and after the break point, respectively. The least squares method must be

applied separately to each segment to estimate the parameters of each line. Finally,
the optimized break point BPopt value that minimizes the sum of squared errors

(SSE) can be found using exhaustive search over BP ∈ {2,3, ...,#Clusters−1}:

BPopt ∈ argmin
BP

(
N

∑
i=1

(Dist(i)−DistR(i,BP))
2

)
, (2.8)

Figure 2.1 shows an example where the change point is in the solution with 6

clusters.

Figure 2.1: An example of finding the change point using segmented regres-
sion. The chosen solution (shown in red) consists of 6 populations.
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2.2.3 Evaluation

We compared flowMeans to flowMerge and FLAME, the current state-of-the-
art automated gating algorithms. acBIC and Scale-free Weighted Ratio (SWR)

were used to determine the initial number of clusters for flowMerge and FLAME,
respectively. The comparison was conducted using a computer running Ubuntu

LTS 8.04 with a 3.2 GHz Intel Pentium CPU and 3 GB of RAM. For flowMeans
and flowMerge, 10 random clustering solutions were used for initialization.

To avoid model singularity issues caused by the data transformations, a small
uniform noise was added to every event before the analysis by any of the

algorithms. Convergence was determined using the default criteria of each
software. flowMerge and FLAME both have optional free parameters that the

user can use to adjust the behaviour of the algorithm (for example by specifying a
threshold for the boundary events). We left these parameters at their default values

to study the unsupervised performance of all three algorithms.
Our evaluation of the algorithms was based on comparison against manual

analysis by human experts that was performed using a set of scatter plots of
two dimensional projections of the data. While several metrics are available for

comparison of clusterings [106], we used the F-measure, because it has proven to
be successful for evaluation of the performance of automated gating algorithms

[1]. Let n be the number of data points, C the set of membership labels assigned by
the human expert, and K the set of membership labels calculated by the automated

algorithm. The F-measure is formally defined as:

F(C,K) = ∑
ci∈C

|ci|
n

·max
k j∈K

F(ci,k j) (2.9)

F(ci,k j) =
2 ·R(ci,k j) ·P(ci,k j)

R(ci,k j)+P(ci,k j)
(2.10)

R(ci,k j) =
ni j

|ci|
(2.11)

P(ci,k j) =
ni j

|k j|
, (2.12)

where ni j is the number of points with label ci ∈ C that are assigned to k j ∈ K.
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The points that the human expert had not included in the analysis (for example

outliers or biologically irrelevant populations) were excluded before calculating
the F-measure.

We measured the F-measure of every sample and reported the average as a
single value representative of the distribution. While the average F-measure value

helps to evaluate the overall performance of the algorithm across a dataset, it does
not help in understanding how these algorithms differ in the analysis of individual

samples. We therefore selected four cases where the F-measure values of one of

these algorithms was significantly better than another algorithm for further visual
illustration of the performance of each method.

Since FLAME’s web-based interface does not provide CPU time measurement,
all runtimes were measured as wall-clock time on our reference machine. However,

we verified that for flowMeans, the difference between CPU time and wall-clock
time never exceeded 200 milliseconds.

2.2.4 Datasets

We used two fully gated datasets to evaluate our approach:

Graft versus Host Disease (GVHD)

GvHD occurs after stem cell transplantation. This dataset is a collection 12

randomly selected peripheral blood samples (from 31 patients) analyzed for CD4,
CD8b, CD3, and CD8 [15].

Diffuse Large B-Cell Lymphoma (DLBCL)

DLBCL is an aggressive lymphoma that can quickly spread to different parts of the

body. Its diagnosis is usually performed via lymph node biopsy. The lymphoma
dataset from the BC Cancer Agency consists of 30 randomly selected lymph node

biopsies from patients seen between 2003 and 2008 [48]. These patients were
histologically confirmed to have DLBCL. Cells were stained for three markers,

CD3, CD19, and CD5.
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Table 2.1: Comparison of F-measure of flowMeans, flowMerge, and
FLAME.

Dataset Mean F-measure (SD)
flowMeans flowMeans
Euclidean Mahalanobis flowMerge FLAME

GvHD 0.63(0.10) 0.84(0.07) 0.80(0.06) 0.68(0.13)
DLBCL 0.65(0.11) 0.92(0.04) 0.92(0.05) 0.59(0.14)

2.3 Results
Table 2.1 shows the average F-measure values for flowMerge, FLAME,
flowMeans (using the symmetric Mahalanobis semi-distance function), and

flowMeans-Euclidean (using an Euclidean distance function) against expert man-
ual analysis. flowMeans and flowMerge performed similarly on both of the

datasets, while FLAME had a lower F-measure. As can be seen from the Cu-
mulative Distribution Function (CDF) plots shown in Figure 2.2, these averages are

not distorted by the presence of outliers.
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Figure 2.2: Cumulative Distribution of F-measure over different samples

Figure 2.3 shows the number of clusters identified by each of the algorithms
and the manual analysis. For the GvHD dataset, the results obtained by flowMeans
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are the closest to those from the manual analysis, followed by those from

flowMerge. The number of clusters identified by FLAME are in a much larger
interval. For the DLBCL dataset, again, the results obtained by flowMeans are

the closest to those from the manual analysis, followed by those from flowMerge.
The difference between the results of flowMerge and flowMeans is smaller in the

DLBCL dataset. FLAME typically identifies a quite high number of clusters (10
on average).

Figure 2.3: Boxplots of the number of clusters selected by manual analysis
and the three algorithms for the (a) GvHD and (b) DLBCL datasets.

Table 2.2 shows that on average, the runtime of flowMeans was significantly
lower than that of flowMerge and FLAME. We next examined whether this

difference was due to the time requirement of the clustering method or the model-
selection approach. Tables 2.1 and 2.2 show that while calculating the symmetric

Mahalanobis semi-distance function increases the time requirement, replacing it
with a simple Euclidean distance function decreases the accuracy of the identified

populations to less than that obtained by the current state-of-the-art methods. Table
2.3 shows the runtime of the clustering algorithm used by each of these frameworks

for identifying 10 clusters. This demonstrates that flowMeans’ simpler clustering
model is contributing to the lower runtime.Figure 2.4 shows the agreement between

the F-measure of flowMeans and either flowMerge or FLAME. All F-measure
values were in the interval [0.5,1] (shown in panels (a) and (b)), indicating that

flowMerge and flowMeans perform similar to each other, even for outlier samples
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in the correlation plots. The flagged sample in panel (c) shows the extreme case

in which FLAME’s performance might be closer to the manual gates than that of
flowMeans. In this sample, flowMeans has identified an extra population, while

FLAME has avoided this at the cost of not identifying one of the manually gated
populations. Figure 2.4 panel (c) shows that the F-measure of these two algorithms

is rather close while FLAME is slightly higher. However, in panel (d) (flowMeans’
best case) FLAME did not perform equally well, since it found too many sub-

populations.

Table 2.2: Comparison of Average Wall-Clock Runtime of flowMeans,
flowMerge, and FLAME.

Dataset Average Runtime (mm:ss)
flowMeans flowMeans
Euclidean Mahalanobis flowMerge FLAME

GvHD 00:17 00:28 15:34 18:41
DLBCL 00:13 00:21 11:40 15:35

The output of each algorithm for the four outlier samples (marked with red
X ′s in Figure 2.4) is shown in Figure 2.5.Panel (a) in Figure 2.5 shows the sample

chosen in Figure 2.4 (a). In this sample, the performance of flowMerge is better
than that of flowMeans, since flowMerge identified the four populations found

by the human expert, while flowMeans found only three. Panel (b) of Figure
2.5 illustrates the two out of three biologically interesting populations found by

flowMeans; we note that the remaining cluster is also missed by flowMerge, even
though it identifies three additional populations. Similarly, panels (c) and (d)

in Figure 2.5 show two other samples for which FLAME performed better than
flowMeans and vice-versa.

2.4 Discussion
Model-based methods have proven to be successful in automating the FCM

gating process [41]. However, the time-requirement of these methods represents

a bottleneck in applying them to samples with millions of cells and tens of
parameters. The application of simpler models to speed up the population
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Figure 2.4: Agreement between F-measures of flowMeans and either
flowMerge (a,b) or FLAME(c,d) on GvHD(a,c) and DLBCL(b,d)
datasets. The cell populations for the samples indicated with red X ′s
in panels (a)-(d) are shown in respective panels in Figure 2.5. The cor-
relation coefficient (CC) and concordance correlation coefficient (CCC)
are shown as legends.

identification problem has not been successful, as these algorithms are limited by
different factors (e.g., reliance on user-defined parameters or specific shapes of

populations). For example, while the K-means clustering algorithm (as a special
case of GMMs with spherical variance constant across clusters) is quick compared
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to other model based approaches, applying it to FCM data has not been successful,

since it is limited to spherical cell populations and relies on pre-defined number of
populations. A GMM can handle elliptical populations, but has a higher running

time, since more iterations are required for fitting it to FCM data, which is generally
quite noisy. t and skew-t mixture models are more flexible with respect to kurtosis

and skewness, at the cost of further increasing the running time [127]. These
models can use model selection criteria to estimate the number of populations;

however, fitting multiple models compounds runtime requirements.

Since FCM cell populations are not elliptical, flowMerge allows more than one
elliptical component to model the same population. We developed a similar frame-

work to extend the K-means algorithm by merging the clusters that belong to the
same population. Using the spherical model of the K-means algorithm, our frame-

work has a significantly lower runtime compared to more flexible but computa-
tionally expensive statistical models (e.g., a skew/t-mixture model). Improvements

in processing time are an important consideration in high-throughput data produc-
tion environments. Savings in runtime also increase as the number of measured

parameters increases, as is the trend in FCM technology.
The use of more than one centroid to model the same population enabled our

K-means based approach to find non-convex cell populations. However, the initial
number of clusters needs to be determined before applying K-means. Choosing

the correct number of clusters to initialize K-means is not critical, as long as the
number selected is larger than the number of cell populations, since the extra

(overlapping) clusters are later merged. We used the number of modes in the
data (orthogonally projected on one-dimensional sub-spaces) as an upper bound

for the number of clusters. Using one-dimensional projections of the data has
the drawback of not finding populations that can only be identified in multiple

dimensions. flowMeans addresses this problem, to some extent, by projecting
the points on the eigenvectors (instead of individual markers) followed by multi-

dimensional clustering. However, this can potentially be improved by designing
a multi-dimensional procedure for finding a more accurate upper bound for the

number of clusters. Regardless of the specific approach, an important advantage
of flowMeans over the current model-based approaches is that it doesn’t need

to fit multiple models to estimate the correct number of clusters. This, along
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with avoiding an expensive statistical model, resulted in a significantly improved

running time (>20 times on average) compared to the current state-of-the-art
model-based gating algorithms, without any decrease in accuracy.

We used the position and shape of clusters to identify candidate clusters
for merging. Furthermore, We defined a symmetric Mahalanobis semi-distance

function that takes the covariance of the clusters into account for calculating the
distance between them. At every iteration of flowMeans, these Mahalanobis semi-

distances need to be recalculated for the modified cluster. This recalculation

procedure represents a bottleneck in the runtime of our framework. However,
Tables 2.1 and 2.2 show that replacing it with an Euclidean distance function

decreased the accuracy of the predicted populations. One possible approach to
preserve accuracy and increase speed would be to use a covariance matrix updating

procedure (see, e.g. [57]) to update the symmetric Mahalanobis semi-metric
without recalculating it.

Our empirical evaluation was based on comparison against manual analysis.
While a wide range of metrics are available for cluster evaluation, we used F-

measure, because it has been shown to have a better performance in discriminating
between the clustering solutions that are similar or different from the manual

analysis [1]. The F-measure values show that flowMeans and flowMerge perform
similarly, both on average and for individual samples.In spite of using a more

flexible statistical model, FLAME usually has a lower F-measure. Figure 2.3
suggests that this might be due to the high number of populations that FLAME

identifies. To further study the characteristics of these algorithms, we used the F-
measure values to select four extreme case samples where the performance of the

algorithms varies significantly for visual comparison. While visual comparison
generally confirmed the F-measure values, it is important to note that due to

the high dimensionality of the data, the margins of the populations could not be
effectively visualized. Using human gates as the gold standard for comparison

is also complicated, as human results can be subjective and highly variable
[47, 108, 121]. For example, in Figure 2.5(d) it is not clear if the human has missed

the green population found by flowMeans, has intentionally decided to merge it
with the blue population, or has marked those cells as outliers. For cases similar

to this, if a sample is critically important and the F-measure value alone cannot be
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trusted, multi-dimensional visualization (i.e., looking at different bi-variate plots as

done in the back-gating procedure) can be used to check the margins using different
dimensions. Visualizing cell populations in multiple dimensions remains an area

for future improvement. This includes finding the dimensions (or combination of
dimensions) that can effectively visualize the populations using feature selection

and feature extraction strategies.
An implementation of flowMeans is publicly available as an R package through

Bioconductor, a free, open source and open development software project for the

analysis and comprehension of genomic data [45].

Table 2.3: Comparison of Average Runtime of the Clustering Algorithms
used for each Framework for Identifying 10 Clusters.

Dataset Average Runtime (mm:ss)
K-means Gaussian Mixture Model t Mixture Model skew-t Mixture Model

(flowMeans) (flowMerge) (flowMerge) (FLAME)
GvHD 00:07 04:26 05:37 07:36

DLBCL 00:05 03:31 04:07 05:51
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Figure 2.5: Panels (a)-(d) illustrate the cell populations found by flowMeans,
flowMerge, and FLAME for the samples shown with red X’s in
respective panels in Figure 2.4. In this figure, the >90th percentiles
of each cluster are visualized to make the boundaries more robust after
projection to a two dimensional scatter plot. Therefore the populations
might be different from the real distributions on the margins. The pink
cluster in panel (d) is a multi-modal population with 2 high-density
regions. In every panel, colors of each solution are matched with the
solution with the maximum number of clusters.
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Chapter 3

flowType: Immunophenotype
Extraction for Flow Cytometry
Data with Application to
Identification of Immunologic
Correlates of HIV Protection

3.1 Introduction
The immune response to infection, vaccination, or malignancy can be characterized
by examining changes in the expression of a wide array of proteins expressed on

leukocytes (either generally or on antigen-specific B- or T-cells). These proteins
identify an enormous variety of cell types, and it is often not known which subsets

of cells are clinically relevant. In some settings, the immunologically-relevant
cell subset represents a small minority of the bulk cell population. Therefore,

gross measurements taken from heterogeneous samples (as generally done with
microarrays) may mask immunologically or clinically significant signals. This

limitation can be overcome with Polychromatic Flow Cytometry (PFC) (>5 color),
where protein expression can be assessed among a large number of cell subsets, at
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the single cell level [24, 93].

The need for PFC is particularly apparent in studies of Human Immunod-
eficiency Virus (HIV), were the strongest cellular correlate of clinical outcome

(CD4+ T-cell count) provides little help in identifying those individuals who would
benefit from early initiation of Highly Active Anti-Retroviral Therapy (HAART)

[16, 26, 60, 109]. Recent studies of Simian Immunodeficiency Virus (SIV) infec-
tion of nonhuman primates provide some guidance, demonstrating that the level of

central memory T-cells may be a relevant predictor of the need for early therapy

[65, 78, 122]. Similarly, a recent study of early HIV infection suggests the presence
of long-lived T-cells during early infection correlates with long-term progression,

as does the absence of proliferating cells [42]. Likewise, measurements of poly-
functional T-cells (simultaneously producing at least three of the following: IFNγ ,

IL2, CD107a, MIP1β and TNFα) are relevant in individuals whose disease pro-

gresses slowly [61, 123]. Importantly, enumeration of central memory, long-lived,

proliferating, or polyfunctional cells requires PFC technology, since many mark-
ers are needed to discriminate each of these cell types from other populations of

leukocytes.
Thus, it is evident that highly multiplexed approaches (such as PFC [11, 90]) are

critical, at least as exploratory tools to identify potential correlates of pathogenesis;
however, even though a PFC experiment collects data describing tens of thousands

of cell subsets, only a small proportion of those can be reasonably queried against a
clinical outcome. The choice of these subsets depends heavily on the investigator;

therefore, important immunophenotypes that were not initially hypothesized to
be important may be ignored [23]. Another challenge emerges when assessing

the statistical rigor of findings from manual data analysis. Since the number of
exploratory attempts at the analysis is rarely reported, adjustment for multiple

comparisons is not usually performed. Multiple testing correction is complicated
further when the choice of candidate cell populations for exploratory analysis

is biased by the results of previous similar studies. A fourth challenge is the
identification of the minimal set of markers that describe a clinically relevant

cell type. Although thousands of immunophenotypes can be identified in a PFC

experiment, it is not clear how many of these subsets represent functionally distinct

cell populations. Moreover, for those cells that are clinically relevant, the exact
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set of markers needed to identify that cell subset is rarely known. This is a

particularly important problem, because it prevents the translation of results from
PFC studies to more widespread use in clinical or resource-poor settings where

complex instrumentation is often not available.
To address these problems, we developed a computational approach for

identifying biomarkers in PFC data with clinical outcomes. Briefly, this approach
first defines all possible immunophenotypes within a dataset and assesses the

relationship between each and the clinical outcome. Importantly, the approach

combines completely automated analysis of markers with some level of expert
guidance to facilitate identification of rare subsets. Next, it reveals the minimal set

of markers needed to identify the cell populations of interest. We demonstrate the
utility of this approach by applying it to a dataset derived from a large retrospective

study of individuals at the early stage of HIV infection. The dataset included a well-
defined clinical outcome - time to Acquired Immunodeficiency Syndrome (AIDS)

diagnosis or death, against which the frequency of each immunophenotype was
correlated. We identified three groups of related T-cell subsets whose frequency

during early infection had a statistically and clinically significant relationship with
progression to AIDS. One of these groups was closely related to a cell population

identified previously using standard manual approaches [42].

3.2 Materials and Methods

3.2.1 The Cohort

The HIV Natural History Study has collected clinical data on HIV-infected patients

since 1985. Basic demographic characteristics of this dataset are described
elsewhere [125]. We studied a subset of these subjects (n = 466) for which

peripheral blood mononuclear cells (PBMCs) acquired within 18 months of
seroconversion were available. The cohort included 135 death/AIDS events as

defined by 1993 guidelines [19]. The date of the last follow-up or initiation
of HAART was considered a censoring event. The immunologic and virologic

characteristics of this subset were previously published [42].
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3.2.2 Flow Cytometry Assays

Antibodies, staining procedures, and instrumentation were described previously
[42]. Briefly, the staining panel enumerated various subsets of naı̈ve and memory

T-cells defined by CD3, CD4, CD8, CD45RO, CD27, CD28, CD57, CCR5, CCR7,
CD127, and KI-67. CD14 and V-amine dye were used to exclude monocytes

and dead cells, respectively. All study samples were treated the same way using
methods common to the field (i.e., gradient centrifugation of whole blood, isolation

of PBMC, cryopreservation, and thawing). Therefore, the results presented are not
confounded by sample manipulation, and are applicable to most of the settings in

which HIV pathogenesis/vaccination studies are performed. On average ≈ 400000
cells including ≈ 120000 T-cells were measured (Figure 3.2).

3.2.3 Population Identification

Dead cells, doublets, and cellular debris were removed, and live T-cells were
selected by manual gating as previously described [42]. The flowMeans algorithm

was used for cell population identification within the T-cell compartment as
described in Chapter 2. The software package, as well as the infrastructure

for PFC data analysis [49] are available through Bioconductor [45]. flowMeans
identified many clusters in the data and repeatedly merged adjacent ones based

on the Mahalanobis distance between them until the desired number of clusters
was reached. For each of the 10 markers in our data, flowMeans was used to

identify a partition that divided the cells into a positive and a negative population (a
movie demonstrating this partitioning is available online1). This was based on the

assumption that the expression was either on or off (i.e., there are two distinct cell
populations). These 10 partitions could be combined in 210 possible ways, resulting

in 1024 cell populations. To allow exclusion of markers from subset identification
(which later enabled us to identify the most clinically meaningful markers), each

marker could be assigned a “neutral” value (i.e., that marker was excluded from the

clustering - see the Discussion section); thus, for any single subset, each marker
could be negative, positive, or neutral (ignored). This increased the number of

possible cell populations to 310 (59049). An example of all possible combinations

1http://www.youtube.com/watch?v=SDwub9PPN0Y
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Table 3.1: Comparison of F-measure of flowMeans, flowMerge, and
FLAME.

Immunophenotype p-value p-value CI Adjusted CPHR R2 Cell
p-value Coefficient Frequency

1 Ki-67+CD127− 2.7×10−08 (2.9×10−15, 2.1×10−6) 1×10−3 19 0.069 0.01
2 CD45RO−CD8+CD57+CCR5−

CD27+CCR7−CD127−
3.1×10−07 (1.5×10−11, 1.6×10−2) 1×10−2 633 0.059 6×10−4

3 CD28−CD45RO+CD57− 5.6×10−7 (1.1×10−11, 2.6×10−4) 2e-02 12 0.056 5×10−2

of gates (partitions) for two markers is shown in Figure 3.1(a). Notably, the Ki-67+

population was rare (< 5% of the total number of cells), and could not be identified
by flowMeans. Therefore, for this marker, historical negative controls provided

a static gate to partition the cells. The appropriateness of gate was confirmed

manually, by visual inspection of each participant’s data.

3.2.4 Predictive Analysis

To measure the predictive power of each immunophenotype, a CPHR was used to

calculate the correlation between the measured phenotypes’ cell frequencies (the
number of cells in that immunophenotype divided by the total number of T-cells)

and the clinical outcome (survival time) [14]. Next, the immunophenotypes with
a statistically significant correlation to the survival time were identified by the

logrank test [52], after multiple testing correction using the Bonferroni method.
The sensitivity of the predictive power (measured by coefficient of determina-

tion (R2) as the effect size of the logrank test) was determined using a bootstrapping
procedure that tested the phenotypes of different subsets of the cohort [53]. Specif-

ically, for a given vector S of subjects, a 95% Confidence Interval (CI) for the effect
size can be calculated using the following procedure:

(1) Repeat for 104 times: from S, draw a uniform random sample of size |S| with

replacement, fit the CPHR model and record R2.

(2) Report the 2.5th and 97.5th percentiles of the distribution of R2 values from
Step 1 as the lower and upper bounds of the CI, respectively.

Thus, if an immunophenotype was measured over 104 subsets of the cohort and

every subject’s probability of selection (as defined in Equation 3.1) Pselection = 0.63,
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then in 95% of the trials the R2 (and therefore the p-value) would have been within

the range of the CI.

Pselection = 1−
(
|S|−1
|S|

)|S|
≈ 1− 1

e
≈ 0.63 (3.1)

3.2.5 Phenotype Extraction

Many of the cell populations identified were subsets of others (e.g.,

CD28+CD45RO− cells are also CD28+), and therefore could be redundant. We
used an approach known as complete linkage hierarchical clustering to find ho-

mogeneous groups of immunophenotypes that are similar to each other [35]. Let

fi, i ∈ {1,2, ...,59049} be the vector of cell frequencies across all subjects for
immunophenotypes. For the hierarchical clustering, we used the distance func-

tion disti, j = cor( fi, f j), where i and j are immunophenotype numbers, and cor

is the Pearson correlation coefficient. The output of this procedure consists of

several groups of immunophenotypes; however, the immunophenotypes in each
group were highly correlated and likely to be subsets of the same parent cell type.

Therefore, two additional steps were employed to identify the cell populations un-
derlying these overlapping immunophenotypes.

Marker Selection

This step was designed to identify the markers that had a positive impact on the
predictive power of a group of immunophenotypes. To investigate this, we let the

impact of a marker be the absolute difference between a) the means of CPHR R2

goodness-of-fit scores for the given groups of immunophenotypes and b) the scores

after forcing that marker to be neutral. The impact value reflected the increase in
the error of the CPHR model when that specific marker was excluded. To identify

the markers with impacts significantly higher than zero, the same bootstrapping
procedure described in the predictive analysis section was applied to given groups

of immunophenotypes (see Figure 3.3). Combining these markers identified the
candidate cell population representative of the immunophenotypes in the respective

group.
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Backward Marker Elimination

In the previous step, we selected the markers that, on average, had a positive
impact on the predictions of the respective groups of immunophenotypes. The

next step was to identify the markers that were redundant (i.e., were uninformative
in presence of others). For each immunophenotype, we sequentially removed

markers starting with the one with lowest impact. At every step, the p-value of
the logrank test was calculated and evaluated (false discovery date = 0.05 after

adjustment). The last statistically significant cell population was selected. This
cell population could define the immunophenotypes in the respective group with a

minimum number of markers.

3.2.6 Sensitivity Analysis

The pipeline is an exploratory analysis tool that outputs a list of immunophenotypes
(and not a multivariate predictive model). Therefore, cross-validation or holdout-

validation (i.e. keeping a test-set) are not meaningfully applicable. Instead, we

used the following bootstrapping procedure to assess the generalizability of the
selected immunophenotypes to previously unseen data:

(1) Repeat for K times: from the given set of subjects, S, draw a uniform random

sample of size |S| with replacement, run the pipeline and record the selected
immunophenotypes;

(2) Report the proportion of iterations in step (1) in which each immunopheno-

type was selected,

where K is the number of iterations, set manually by considering the amount

of variation in the data and the computing resources available. To measure
the sensitivity of the pipeline to different subsets of the cohort, this procedure

detemines the proportion of trials on subsets of the subjects in which a given
immunophenotype was selected by the pipeline. Like the previous bootstrapping

step, it can be shown that the probability of every sample being included in the
subset is 0.63. Therefore, phenotypes that are selected in a high proportion of

trials (with different subject compositions of 37% on average) are not sensitive to
variations within the cohort of subjects.
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3.3 Results

3.3.1 Identification of Cell Subsets Related to Clinical Outcome

Cell populations were identified (as described in the Methods section) and the
frequencies of the 59049 immunophenotypes were calculated (Figure 3.1(a)).

Next, these immunophenotypes were related to each patient’s time to AIDS/death
by CPHR analysis (Figure 3.1(b)). 101 of these immunophenotypes were revealed

as candidate correlates of HIV disease progression by the predictive model; these
were analyzed in two ways. First, we examined the correlations between cell

frequencies using a clustered heat map, shown in Figure 3.1(c). The “correct”
number of clusters (as in any other clustering algorithm) is subjective; our

choice to use three groups is justified later in this section. Second, all 101
immunophenotypes were listed, using the order determined by the heatmap

clustering (see Table 3.2). To make it easier to observe patterns among the
immunophenotypes represented, the immunophenotype names are illustrated with

a heat map in Figure 3.4. The dendrogram and the side-bar are identical to Figure
3.1(c). The immunophenotype names in Figure 3.4 are consistent with the clusters

of immunophenotypes identified in Figure 3.1(c) based on correlation between
cell frequencies. These figures show that closely correlated immunophenotypes

have similar combinations of markers. This process allowed us to define the
immunophenotypes that exhibited high correlation (i.e., describe almost identical

cell types).

Table 3.2: Statistically significant immunophenotypic correlates of survival
of HIV+ subjects are predicted by flowType. The p-values of the log rank
tests, 95% confidence intervals calculated using bootstrapping, adjusted
p-values using Bonferroni’s method, coefficients and R2s of the Cox
proportional hazards regression models, and the frequency of the cells
are provided as columns of the table.

# Phenotype p-value p-value, CI adjusted CPHR R2 Cell
p-value Coefficient Frequency

1 CD28-CD45RO+CD57-CCR5+ 5.3e-07 (4.3e-14, 1.3e-02) 2e-02 20.5 0.056 0.03048
2 CD28-CD8+CD57-CD127- 2.5e-07 (2.3e-14, 3.8e-04) 1e-02 12.3 0.060 0.05975
3 CD28-CD45RO+CD57-CCR7- 5.1e-07 (2.3e-14, 6.1e-04) 2e-02 15.7 0.057 0.03829
4 CD28-CD45RO+CD4-CD57- 3.5e-07 (2.3e-14, 1.1e-03) 1e-02 13.2 0.058 0.04357
5 CD45RO+CD4-CD57-CD127- 2.7e-07 (1.2e-13, 7.1e-03) 1e-02 12.8 0.059 0.05062
6 CD28-CD45RO+CD57-CD127- 4.7e-08 (1.7e-14, 6.8e-04) 2e-03 16.0 0.067 0.03732
7 CD45RO+CD4-CD27-CD127- 4.4e-07 (5.8e-14, 1.1e-03) 2e-02 14.3 0.057 0.04830
8 CD28-CD45RO+CD57- 5.6e-07 (4.4e-14, 4.1e-04) 2e-02 12.4 0.056 0.05015
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Table 3.2: Statistically significant immunophenotypic correlates of survival
of HIV+ subjects are predicted by flowType. The p-values of the log rank
tests, 95% confidence intervals calculated using bootstrapping, adjusted
p-values using Bonferroni’s method, coefficients and R2s of the Cox
proportional hazards regression models, and the frequency of the cells
are provided as columns of the table.

# Phenotype p-value p-value, CI adjusted CPHR R2 Cell
p-value Coefficient Frequency

9 CD45RO+CD4-CD127- 6.5e-07 (4.7e-15, 2.9e-03) 2e-02 9.6 0.056 0.07176
10 CD28-CD45RO+CD4-CD127- 3.1e-07 (0.0e+00, 5.7e-03) 1e-02 11.7 0.059 0.05300
11 CD28-CD45RO+CD57-CCR5+CD27-CCR7+CD127- 4.7e-07 (5.7e-14, 7.7e-03) 2e-02 171.4 0.057 0.00315
12 CD28-CD45RO+CD4-CD57-CCR5+CD27-CCR7+CD127- 4.5e-07 (1.8e-13, 3.9e-04) 2e-02 176.2 0.057 0.00294
13 CD28-CD57-CD127- 3.3e-07 (3.4e-15, 8.0e-03) 1e-02 8.0 0.058 0.12341
14 CD28-CD4-CD57- 8.8e-07 (2.2e-15, 2.9e-03) 3e-02 7.2 0.054 0.15525
15 CD57-CD27-CD127- 6.2e-08 (2.4e-14, 4.7e-03) 2e-03 9.5 0.065 0.12173
16 CD4-CD57-CD27-CD127- 4.7e-08 (4.2e-14, 3.3e-03) 2e-03 9.7 0.067 0.09721
17 CD28-CD57-CCR7-CD127- 2.8e-07 (9.7e-15, 1.0e-02) 1e-02 9.8 0.059 0.08417
18 CD28-CD4-CD57-CD127- 3.3e-08 (2.0e-12, 5.7e-04) 1e-03 9.1 0.068 0.10852
19 CD4-CD57-CCR7-CD127- 6.5e-07 (3.8e-15, 2.3e-03) 2e-02 8.8 0.056 0.09501
20 CD45RO-CD4-CD57+CCR5-CD27+CCR7-CD127- 6.1e-07 (1.2e-12, 2.6e-03) 2e-02 498.4 0.056 0.00097
21 CD28-CD45RO-CD4-CD57+CCR5-CD27+CCR7-CD127- 2.5e-07 (0.0e+00, 7.7e-03) 1e-02 561.2 0.060 0.00074
22 CD45RO-CD8+CD57+CCR5-CD27+CCR7-CD127- 1.2e-07 (4.6e-14, 3.3e-04) 5e-03 638.6 0.063 0.00068
23 CD45RO-CD8+CD4-CD57+CCR5-CD27+CCR7-CD127- 1.2e-07 (5.1e-14, 2.0e-03) 5e-03 638.6 0.063 0.00068
24 CD28-CD45RO-CD4-CD57+CCR5-CD27+CD127- 5.7e-07 (1.1e-13, 2.3e-03) 2e-02 298.3 0.056 0.00099
25 KI-67+CD28-CCR5+ 1.0e-11 (2.9e-13, 2.8e-03) 4e-07 96.1 0.101 0.00547
26 KI-67+CD28-CCR5+CD27- 8.7e-12 (1.5e-14, 8.9e-04) 3e-07 115.3 0.102 0.00453
27 KI-67+CCR5+ 1.3e-11 (2.4e-14, 7.0e-03) 5e-07 53.4 0.100 0.01192
28 KI-67+CD28+CD45RO+CD57-CCR7-CD127- 4.2e-09 (5.6e-16, 3.0e-03) 2e-04 241.3 0.077 0.00209
29 KI-67+CD45RO-CD4-CD27-CCR7-CD127- 1.2e-09 (2.0e-14, 4.4e-03) 4e-05 161.9 0.082 0.00297
30 KI-67+CD28-CD45RO-CD8-CD4- 5.0e-09 (2.9e-12, 1.7e-03) 2e-04 176.0 0.076 0.00225
31 KI-67+CD8-CD4- 8.1e-09 (6.1e-13, 4.5e-02) 3e-04 58.1 0.074 0.00738
32 KI-67+CCR5+CD27-CCR7- 2.0e-11 (3.8e-14, 6.0e-04) 8e-07 109.8 0.099 0.00532
33 KI-67+CD8-CCR5+CCR7- 1.3e-10 (3.1e-13, 2.0e-03) 5e-06 147.3 0.091 0.00392
34 KI-67+CD28-CD8-CCR5+CCR7+CD127- 2.6e-09 (1.6e-14, 1.1e-02) 1e-04 625.8 0.079 0.00061
35 KI-67+CD28+CD45RO+CD8+CD57-CD27+CCR7+ 6.7e-07 (3.8e-13, 1.5e-03) 3e-02 585.4 0.055 0.00051
36 KI-67+CD28+CD45RO+CD8+CD4-CD57-CD27+CCR7+ 6.7e-07 (1.1e-16, 4.7e-03) 3e-02 585.4 0.055 0.00051
37 KI-67+CD8+CD27-CCR7-CD127- 4.7e-11 (1.3e-13, 1.4e-03) 2e-06 141.3 0.095 0.00292
38 KI-67+CD8+CD4-CD27-CCR7-CD127- 4.7e-11 (1.3e-13, 1.3e-03) 2e-06 141.3 0.095 0.00292
39 KI-67+CD28-CD8+CD27-CCR7-CD127- 2.7e-11 (1.0e-13, 7.6e-04) 1e-06 164.5 0.097 0.00241
40 KI-67+CD28-CD8+CD4-CD27-CCR7-CD127- 2.7e-11 (2.7e-13, 1.4e-03) 1e-06 164.5 0.097 0.00241
41 KI-67+CD28-CD8+CCR7-CD127- 6.6e-11 (5.6e-14, 1.5e-02) 3e-06 132.9 0.094 0.00293
42 KI-67+CD28-CD8+CD4-CCR7-CD127- 6.6e-11 (1.2e-14, 8.4e-04) 3e-06 132.9 0.094 0.00293
43 KI-67+CD45RO+CD8+CD27-CCR7- 1.2e-09 (4.0e-12, 2.8e-03) 5e-05 143.6 0.082 0.00216
44 KI-67+CD45RO+CD8+CD4-CD27-CCR7- 1.2e-09 (1.0e-12, 1.2e-02) 5e-05 143.6 0.082 0.00216
45 KI-67+CD28-CD45RO+CD8+CD27-CCR7- 1.0e-09 (1.9e-15, 7.3e-04) 4e-05 188.5 0.082 0.00155
46 KI-67+CD28-CD45RO+CD8+CD4-CD27-CCR7- 1.0e-09 (1.7e-13, 2.0e-03) 4e-05 188.5 0.082 0.00155
47 KI-67+CD45RO+CD8+CD27-CD127- 7.1e-10 (1.2e-14, 6.8e-03) 3e-05 152.4 0.084 0.00221
48 KI-67+CD45RO+CD8+CD4-CD27-CD127- 7.1e-10 (3.4e-14, 1.5e-03) 3e-05 152.4 0.084 0.00221
49 KI-67+CD28-CD45RO+CD8+CD27-CD127- 5.0e-10 (6.0e-13, 3.1e-03) 2e-05 201.3 0.085 0.00163
50 KI-67+CD28-CD45RO+CD8+CD4-CD27-CD127- 5.0e-10 (4.6e-14, 2.7e-03) 2e-05 201.3 0.085 0.00163
51 KI-67+CD28-CD45RO+CD8+CD127- 1.0e-09 (1.2e-15, 3.2e-03) 4e-05 150.5 0.083 0.00222
52 KI-67+CD28-CD45RO+CD8+CD4-CD127- 1.0e-09 (1.5e-11, 3.6e-03) 4e-05 150.5 0.083 0.00222
53 KI-67+CD45RO+CD8+CD4-CD127- 2.2e-09 (2.8e-13, 2.1e-03) 9e-05 99.8 0.079 0.00362
54 KI-67+CD28-CD45RO+CD8+CD4-CCR7- 8.0e-09 (2.7e-12, 7.2e-04) 3e-04 133.6 0.074 0.00209
55 KI-67+CD28-CD45RO+CD57-CCR7+CD127- 5.9e-08 (4.0e-15, 4.5e-03) 2e-03 376.6 0.066 0.00075
56 KI-67+CD28-CD45RO+CD4-CD57-CCR7+CD127- 5.0e-08 (4.8e-13, 3.9e-03) 2e-03 409.6 0.066 0.00070
57 KI-67+CD57-CD27-CD127- 5.9e-10 (3.2e-14, 2.7e-03) 2e-05 44.9 0.085 0.00806
58 KI-67+CD28-CD27-CD127- 4.8e-10 (7.3e-15, 2.5e-03) 2e-05 50.6 0.086 0.00711
59 KI-67+CD4-CD127- 1.3e-10 (4.4e-16, 9.7e-03) 5e-06 37.1 0.091 0.01159
60 KI-67+CD28-CD127- 4.9e-10 (1.1e-12, 1.4e-03) 2e-05 41.4 0.086 0.00823
61 KI-67+CD4-CD27- 5.6e-09 (2.1e-14, 2.6e-03) 2e-04 28.6 0.075 0.01122
62 KI-67+CD28-CD4-CD27- 1.8e-09 (3.6e-13, 5.3e-03) 7e-05 40.2 0.080 0.00785
63 KI-67+CD27-CD127- 1.3e-09 (9.8e-15, 1.1e-03) 5e-05 33.0 0.082 0.01052
64 KI-67+CCR7-CD127- 6.5e-11 (1.4e-15, 9.6e-04) 2e-06 47.3 0.094 0.00947
65 KI-67+CD4-CD27-CCR7- 9.6e-11 (1.1e-16, 1.5e-03) 4e-06 52.1 0.092 0.00764
66 KI-67+CD4-CCR7- 1.7e-10 (3.0e-14, 1.0e-02) 7e-06 41.4 0.090 0.00987
67 KI-67+CD45RO+CD57-CCR7- 1.4e-09 (6.6e-13, 1.2e-03) 5e-05 49.6 0.081 0.00695
68 KI-67+CD45RO+CD57-CD27-CCR7- 9.1e-10 (8.6e-12, 2.5e-03) 3e-05 66.4 0.083 0.00505
69 KI-67+CD45RO+CD4- 2.0e-09 (8.0e-13, 2.5e-03) 8e-05 45.3 0.080 0.00851
70 KI-67+CD28-CD45RO+ 1.3e-08 (1.2e-12, 2.4e-03) 5e-04 54.9 0.072 0.00525
71 KI-67+CD45RO+CD127- 1.1e-09 (4.4e-16, 1.5e-02) 4e-05 42.5 0.082 0.00834
72 KI-67+CD45RO+CD57-CD127- 2.9e-10 (1.5e-14, 6.4e-04) 1e-05 55.0 0.088 0.00719
73 KI-67+CD28-CD45RO+CD8+CD27- 9.2e-09 (2.6e-15, 2.3e-03) 4e-04 138.0 0.073 0.00201
74 KI-67+CD28-CD45RO+CD8+CD4-CD27- 9.2e-09 (1.0e-15, 4.6e-03) 4e-04 138.0 0.073 0.00201
75 KI-67+CD8+CD4-CD57-CD27-CD127- 1.9e-09 (5.9e-14, 7.0e-03) 7e-05 113.8 0.080 0.00274
76 KI-67+CD28-CD45RO+CD8+ 9.3e-09 (5.9e-13, 1.4e-03) 4e-04 102.7 0.073 0.00279
77 KI-67+CD28-CD45RO+CD8+CD4- 9.3e-09 (0.0e+00, 1.6e-03) 4e-04 102.7 0.073 0.00279
78 KI-67+CD45RO+CD8+ 2.1e-08 (6.9e-15, 6.8e-04) 8e-04 59.1 0.070 0.00512
79 KI-67+CD8+CCR7- 3.0e-08 (7.7e-13, 2.8e-03) 1e-03 49.5 0.068 0.00530
80 KI-67+CD8+CD27-CCR7- 8.3e-09 (1.0e-13, 3.6e-03) 3e-04 70.7 0.074 0.00377
81 KI-67+CD4- 2.8e-08 (1.0e-13, 2.3e-03) 1e-03 17.1 0.069 0.01627
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Table 3.2: Statistically significant immunophenotypic correlates of survival
of HIV+ subjects are predicted by flowType. The p-values of the log rank
tests, 95% confidence intervals calculated using bootstrapping, adjusted
p-values using Bonferroni’s method, coefficients and R2s of the Cox
proportional hazards regression models, and the frequency of the cells
are provided as columns of the table.

# Phenotype p-value p-value, CI adjusted CPHR R2 Cell
p-value Coefficient Frequency

82 KI-67+CD28-CD4- 1.1e-08 (5.9e-14, 4.0e-03) 4e-04 26.7 0.073 0.00950
83 KI-67+CD127- 2.7e-08 (1.2e-12, 2.1e-03) 1e-03 19.1 0.069 0.01460
84 KI-67+CCR7- 8.4e-08 (3.4e-15, 2.3e-03) 3e-03 18.3 0.064 0.01311
85 KI-67+CD27-CCR7- 3.5e-08 (1.7e-13, 1.2e-03) 1e-03 25.2 0.068 0.00998
86 KI-67+CD45RO+CD27- 7.5e-07 (5.4e-13, 1.8e-03) 3e-02 24.0 0.055 0.00862
87 KI-67+CD45RO+CD57- 1.2e-07 (2.1e-13, 3.1e-03) 5e-03 22.9 0.062 0.01123
88 KI-67+CD4-CD57- 1.3e-08 (3.8e-15, 2.1e-03) 5e-04 25.3 0.072 0.01209
89 KI-67+CD28-CD4-CD57- 9.7e-09 (5.5e-12, 1.2e-03) 4e-04 37.7 0.073 0.00698
90 KI-67+CD57-CD127- 3.3e-09 (1.3e-13, 3.3e-03) 1e-04 28.1 0.078 0.01128
91 KI-67+CD45RO+CCR7- 4.2e-09 (7.8e-15, 2.5e-03) 2e-04 37.5 0.077 0.00819
92 KI-67+CD57-CCR7- 2.7e-08 (2.8e-13, 2.8e-03) 1e-03 26.6 0.069 0.01008
93 KI-67+CD57-CD27-CCR7- 1.2e-08 (4.9e-13, 2.6e-03) 5e-04 36.8 0.072 0.00762
94 KI-67+CD28-CCR7- 3.3e-09 (4.6e-14, 5.7e-03) 1e-04 37.7 0.078 0.00739
95 KI-67+CD28-CD27-CCR7- 3.3e-09 (2.6e-14, 6.5e-04) 1e-04 43.0 0.078 0.00647
96 KI-67+CD28- 1.9e-07 (4.0e-15, 2.7e-03) 7e-03 18.3 0.061 0.01053
97 KI-67+CD28-CD27- 7.1e-08 (1.5e-12, 8.6e-04) 3e-03 26.3 0.065 0.00874
98 KI-67+CD28-CD8- 8.3e-08 (5.5e-14, 2.5e-03) 3e-03 44.2 0.064 0.00523
99 KI-67+CD45RO+ 8.9e-07 (1.9e-13, 2.5e-03) 3e-02 15.4 0.054 0.01343

100 KI-67+CD8+CD57- 1.1e-06 (4.4e-14, 3.1e-03) 4e-02 28.3 0.053 0.00648
101 KI-67+CD8+CD27- 6.4e-07 (2.3e-14, 1.1e-02) 2e-02 35.2 0.056 0.00560

Next, we identified the minimum set of markers necessary to describe each of
the three groups of immunophenotypes. This helped define the clinically relevant

cells using the simplest possible immunophenotype, which described the most
general cell population of those measured. As described in the previous section,

this process was carried out in two steps: 1) selection of the markers with a positive
impact on the predictive power; 2) elimination of the redundant markers.

3.3.2 Impact of Individual Markers

For each immunophenotype group, we selected the markers that had a positive

impact on the immunophenotype, as measured by the changes in mean effect size
(Figure 3.1(d)). 95% confidence intervals were calculated using bootstrapping

(over the patient cohort). Thus, for the three groups of immunophenotypes, the
predictive power depended on the combination of different markers included in

the measurements (Figure 3.1(d)). It is important to note that the impact value
depends on the effect-size (R2) of the original immunophenotypes in a given

group. Different immunophenotype groups had different mean R2 (and p-values);
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therefore, impact values cannot be compared across multiple groups.

We used the impact value to confirm that the heat map clustered by frequency
described three groups (and not two or four; Figures 3.5 and 3.6). With only

two groups, a mix of positive and negative labels was observed, suggesting
that the groups consisted of heterogeneous subpopulations. When the impact

values for four groups were analyzed, two had very similar marker impacts,
suggesting that we had bisected a single homogeneous cell population into two

populations artificially. Finally, those markers with impacts significantly higher

than zero, as indicated by the confidence intervals (Table 3.3), were selected as
representatives of each phenotypic group, in order to define the most clinically

relevant immunophenotype. By selecting markers that, on average, had a positive
impact on the predictions of the respective groups of immunophenotypes, we

narrowed down the list of potential immunophenotypes to three (Table 3.3).

Table 3.3: The representative immunophenotypes. The markers within Fig-
ure 1(d) with a positive impact on the predictive power were combined
to form these immunophenotypes.

Immunophenotype p-value p-value CI Adjusted CPHR R2 Cell
p-value Coefficient Frequency

1 Ki-67+CD4−CCR5+CD127− 1.7×10−10 (0, 1.0×10−5) 6.5×10−6 78 0.090 0.00704
2 CD45RO−CD8+CD4−CD57+

CCR5−CD27+CCR7−CD127−
1.2×10−7 (0, 7.7×10−5) 4.6×10−3 639 0.063 0.00068

3 CD28−CD45RO+CD4−CD57− CD27−CD127− 6.5×10−8 (2.2×10−16, 1.9×10−5) 2.4×10−3 22 0.065 0.02456

Marker Elimination

Next, we identified the markers that were uninformative in the presence of others.

For each of the immunophenotype groups, we removed the markers one at a time,
starting with the one with lowest impact, until only the marker with the highest im-

pact remained. Figure 3.1(e) lists the p-values after every removal step. The first
phenotypic group was originally described as Ki-67+CD4−CCR5+CD127− (Panel

(a)). However, the iterative removal of markers only affected the p-value when
CD4 and CCR5 were removed from the analysis, indicating that the relationship

to disease progression in this immunophenotype is driven by Ki-67 and CD127.
For the second phenotypic group, the p-value remains significant for a combination

of eight markers (CD45RO−CD8+CD4−CD57+ CCR5−CD27+CCR7−CD127−).
Finally, the representative immunophenotype of the third group was simpli-
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fied from CD28−CD45RO+CD4−CD57− CD27−CD127− to CD28−CD45RO+

CD57−. The most frequent cell population with a p-value higher than the thresh-
old determined by multiple comparisons adjustment (i.e., the statistically signif-

icant immunophenotype with minimum number of markers) was reported as the
representative immunophenotype of the respective group (Table 3.1).

3.3.3 Confirmatory Analysis

We performed several experiments to confirm the results obtained by the pipeline.

We manually identified CD28−CD45RO+CD57− cells using conventional meth-
ods (polygon gates on two scatter plots as demonstrated in Figure 3.7) and con-

firmed the relationship between frequencies of these cells and survival time (p =

7 × 10−6). This result is similar to that obtained with the automated pipeline

(p = 5× 10−7); any difference is likely due to minor variations in the data that
cannot be captured using the manual analysis. A second confirmatory analysis

was performed by using the three identified immunophenotypes to partition the
patients into two groups by thresholding the cell frequencies; these groups had

different survival patterns (Figure 3.1(f)), confirming the ability of the automated
pipeline to identify clinically meaningful cell populations. Finally, the sensitivity

of the automated pipeline was determined based on 100 bootstrap iterations, which
required nearly 2000 CPU days. The immunophenotypes selected in the first and

third groups were clearly dominant as demonstrated in Figure 3.7 panels (d), (e),
and (f). However, the second phenotypic group could be labelled CD4− or CD8+,

according to this analysis. Importantly, these populations likely overlap signifi-
cantly, as expression of CD4 and CD8 are usually mutually exclusive on T-cells in

the peripheral blood. Thus, the CD4− label includes primarily CD8+ T-cells [62].

3.4 Discussion
We described a computational approach to analyze a high dimensional clinical flow
cytometry dataset that was previously investigated through laborious manual in-

spection. The findings from our analysis both replicate and extend the original
analysis by human experts, revealing the T cell subsets and markers most highly

correlated with HIV progression. The pipeline consists of five steps: 1) automated
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identification of positive and negative populations for each marker, 2) quantifica-

tion of subsets defined by every combination of markers, 3) identification of those
cell subsets whose frequency is most highly associated with clinical outcome, 4)

calculation of the impact of each individual marker, and 5) identification of the
minimal set of markers needed to describe significant cell populations.

The first step in the pipeline delineates positive and negative populations for
every channel. This step uses a clustering tool that was developed exclusively

for PFC data [2]. Many such tools have been developed for identifying cell

populations in a multidimensional setting, but several limitations have kept
these algorithms from replacing manual analysis. Firstly, the use of these

algorithms (as any other clustering tool) is highly subjective and complicated
– often, the concept of what comprises a cluster/cell population is not well-

defined. Clustering tools are also limited in their ability to find rare cell
populations. Furthermore, meta-clustering of candidate clusters must be performed

to identify clinically relevant immunophenotypes; however, for this, clusters must
be linked to subjectively-defined categories of cells. It is also difficult to visualize

and interpret results because clusters cannot be described using marker names.
Lastly, biological information is rarely incorporated into the clustering process.

The algorithm presented here overcomes these limitations by partitioning cells
one marker at a time and by using combinations of the partitions to extract

immunophenotypes/features for predictive analysis.
A potential shortcoming of this approach is the underlying assumption that

every channel has only two well-separated cell populations (i.e., expression is
either on or off). However, some cellular proteins exhibit a continuum of

expression across a cell population, with cells that lack expression, others with low
levels of expression, and some with very high levels of expression. Furthermore,

for some markers these differences are known to be biologically meaningful; CCR7
expression is high on naı̈ve T-cells, but low on more differentiated central memory

T-cells [42]. Thus, a potential limitation of our approach is that CCR7bright and
CCR7dim cells would be classified as a single cell population, or conceivably,

that the CCR7dim would be grouped with the CCR7−. To address this limitation,
the pipeline could be modified to support automatic gating of more than two cell

populations. This will become particularly important for bar-coded samples (where
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dozens of different populations are represented by the bar-code [64]), although

in this case the problem is lessened by having prior knowledge of the number
of populations present. Nevertheless, because these cells differ in expression of

other markers, the populations may be resolved when the complete phenotypic
combinations using the rest of markers are created [107].

The second step lists all possible combinations of markers, and assesses the fre-
quency of each immunophenotype within patient samples. By designating positive

and negative populations for each of the 10 markers studied, 210 (1024) terminal

immunophenotypes were identified. Thus, every subset, defined by any combina-
tion of markers, was examined. However, this assumes that every marker is relevant

to clinical outcome, which is unlikely. To examine immunophenotypes defined
both by combinations of all markers, and by combinations of all subsets of mark-

ers, our algorithm allowed markers to be neutral. It is thus possible to measure the
frequency of each of the parent populations as well as the terminal ones. For exam-

ple, our algorithm identified and quantified not only CD4+CD45RA−CCR7+Ki-
67+CD57−CD27+ cells, but also cells in the CD4+CD45RA−CCR7+ parent pop-

ulation (i.e., CD4+CD45RA−CCR7+Ki-67NCD57NCD27N , where N marks the
neutral state). This ability to allow neutral markers is important to discovery ef-

forts, since it enables researchers to include markers in their experimental design
without knowing ahead of time whether they are clinically relevant. This process

resulted in the identification of 310 (59049) immunophenotypes, defined by all
combinations of positive and negative populations over all combinations of the 10

markers.
The third step determines whether the frequency of each of these immunophe-

notypes is associated with the clinical outcome by CPHR and the log rank test.
Because of the high number of candidate immunophenotypes, adjustment for mul-

tiple comparisons is critical. We chose the conservative approach of using Bon-
ferroni’s method, knowing that the level of false positives would be low, at the

cost of some statistical power. Alternatively, less conservative approaches used in
other high-dimensional biological assays [87] could be employed. At this step, the

pipeline identified 101 phenotypes with a statistically significant relationship with
the clinical outcome (time to AIDS/death).

However, since the second element of the algorithm allows for inclusion of
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parent populations, some of the phenotypes identified are overlapping and highly

correlated. To unravel relationships that are driven by parent populations from
uniquely important cell subsets, the fourth step of our pipeline calculates the impact

of each individual marker. This is determined by clustering the immunophenotypes
based on the Pearson correlation between them, and then assuming that each cluster

of immunophenotypes represents a single cell type, uniquely related to the clinical
outcome. In the dataset presented here, we find three distinct populations of cells

that predicted time to AIDS/death.

Finally, the fifth step of the pipeline simplifies the cell populations with the
strongest relationship to clinical outcome by identifying the minimal set of markers

that can be used to define them. Unlike subjective methods that are based on
a researcher’s assessment of which markers are important, this step is based on

“impact” values calculated by the algorithm. One disadvantage of this method is
that it is a greedy approach, capable of finding the subtractively minimal marker

set, but potentially not the globally optimal markers. In future, graph theory [86] or
graphical modeling tools could be developed both to visualize connections between

the cell populations that affect clinical outcome, and to find globally optimized
marker sets defining them. Nevertheless, even in its current form, the algorithm

can distill the complexity of a multivariate data set into immunophenotypes that
can be assessed in resource-poor or clinical settings.

The three cell populations defined by the algorithm included one closely re-
lated to the CD8+ Ki-67+ (proliferating) cells identified in previous analysis [42].

However, our computational pipeline showed that the presence of these cells in
both the CD4+ and CD8+ T-cell compartment had predictive value. Moreover,

the pipeline refined the definition of these cells to include only those that were
lacking a receptor involved in homoeostatic proliferation (CD127−). These cells

may represent antigen-experienced memory and effector cells, proliferating in re-
sponse to the immune activation that occurs during HIV infection. A second pop-

ulation identified by the algorithm was CD45RO−CD8+CD57+ CCR5−CD27+

CCR7−CD127−. Interestingly, this cell type could not be defined by fewer mark-

ers (i.e., it was not flagged as redundant by the backward elimination algorithm
in step five, thus demonstrating the importance of multiparametric measurements.

The immunophenotype of these cells is consistent with highly differentiated (termi-
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nal) effector T-cells, which have re-expressed CD45RA -not measured- and CD27.

Notably, these cells represent the polar opposite of naı̈ve cells, which were found to
have slight predictive power in the manual analysis. The number of markers neces-

sary to define these cells likely reflects the expression of markers of terminal effec-
tor cells (like CD57) within other memory cell populations. Thus, the automated

algorithm has honed in on the best possible definition of this cell type. Finally,
the algorithm identified CD28−CD45RO+CD57− cells as clinically relevant. This

population likely includes cells capable of strong effector function, which have not

yet lost the ability to proliferate or differentiate. The biological function of these
cells is not well understood, but the predictive value of this immunophenotype sug-

gests that studies to further characterize these cells is necessary. In the future, cell
ontology approaches may be developed to define a consistent nomenclature for the

subsets identified in PFC analysis, particularly those that have unique clinical im-
portance. Such efforts would facilitate our understanding of the underlying biology

and would allow simpler meta analysis of data across studies [7, 113]. Following
this direction, it will be possible to connect PFC studies to the existing efforts of

system biologists [89].
Importantly, all three cell subtypes are rare after removing the redundant

markers (Table 3.1); this highlights another major advantage of this pipeline over
standard methods: manual or computational identification of rare cell subtypes is

challenging [4, 28]. However, a large number of rare cell subtypes exist in the
human immune system, and it is well established that rare cells play an important

role in the immune system (e.g., HIV [40], stem cell research [88], and cancer
[130]).

We allowed the automated pipeline to search for clinically relevant subsets
from the entire T-cells, rather than within only CD4+ or CD8+ T-cell compartments

(as is typically done with standard methods). This approach has two advantages.
First, it limits the preliminary gates that are needed to prepare the data, making

the analysis easier and less susceptible to error or subjectivity. Second, some of
the immunophenotypes identified may be relevant to both CD4+ and CD8+ T-cell

biology, as is the case for immunophenotypes where the algorithm identified that
the CD4 and CD8 markers are irrelevant. Given the stark differences between

CD4+ and CD8+ T-cell biology in HIV (one cell type is infected and depleted,
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Table 3.4: The identified phenotypes, projected into the Cytotoxic and Helper
T-cell compartments.

Phenotype p-value p-value CI adjusted CPHR R2 Cell
p-value Coefficient Frequency

Original Phenotypes:
1 KI-67+CD127- 2.7e-08 (0.0e+00, 7.3e-06) 1e-03 19.1 0.06886 1e-02
2 CD45RO-CD8+CD57+CCR5-CD27+CCR7-CD127- 3.1e-07 (1.7e-13, 3.4e-03) 1e-02 633.0 0.05869 6e-04
3 CD28-CD45RO+CD57- 5.6e-07 (1.2e-14, 2.6e-04) 2e-02 12.4 0.05620 5e-02

Projected to the Cytotoxic Compartment (CD8+CD4-):
4 KI-67+CD8+CD4-CD127- 6.4e-08 (4.2e-14, 2.7e-05) 2e-03 43.6 0.06528 6e-03
5 CD45RO-CD8+CD4-CD57+CCR5-CD27+CCR7-CD127- 3.1e-07 (5.6e-14, 2.7e-03) 1e-02 633.0 0.05869 6e-04
6 CD28-CD45RO+CD8+CD4-CD57- 2.6e-06 (2.2e-10, 2.9e-03) 1e-01 15.3 0.04982 3e-02

Projected to the Helper Compartment (CD8-CD4+):
7 KI-67+CD8-CD4+CD127- 2.7e-04 (2.4e-12, 1.2e-03) 1e+01 31.9 0.03023 3e-03
8 CD45RO-CD8-CD4+CD57+CCR5-CD27+CCR7-CD127- 4.3e-01 (5.7e-03, 9.3e-01) 2e+04 -163.1 0.00144 5e-05
9 CD28-CD45RO+CD8-CD4+CD57- 6.3e-01 (1.4e-02, 9.4e-01) 2e+04 4.7 0.00054 7e-03

while the other expands), immunophenotypes that are clinically relevant and shared
between the two compartments may be particularly interesting for future study.

Table 3.4 shows the projection of these populations into the cytotoxic and helper
populations. The table shows that the cytotoxic compartment has a stronger

predictive power than the helper compartment, which confirms the findings of
previous manual analysis [42]. In addition, similar results were reported in a recent

comparison of these cells against other components of the immune system (i.e.,

natural killer (NK) cells and B-cells) in SIV infection [31].

Although much of our effort was geared toward development of an computa-
tional pipeline, we embedded a number of opportunities for users to integrate their

biological knowledge into the analysis, with the aim of producing a more robust
system. For example, biological knowledge could be used to exclude irrelevant

cells (e.g., B-cells, dead cells and debris cells, and doublets); therefore, we al-
lowed manual identification of live, CD3+ T-cells. In addition, for low frequency

populations (e.g., Ki-67+ cells), we offered the ability to set a threshold gate based
on a negative control. Finally, the number of phenotype groups reported by the

algorithm could be limited, based on the investigator’s biological knowledge.
In summary, our pipeline allows the identification of a large number of rare

populations associated with clinical outcome and then characterizes these cell
types using only the most impactful markers. Although it was applied to an

HIV dataset in this work, it can be used in its current form to analyze any PFC

study, across a wide variety of disciplines (including but not limited to studying

malaria, tuberculosis, autoimmune diseases and various blood cancer subtypes). In
particular, this computational approach holds significant potential for: 1) detailed
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exploratory analysis of the immune system (using a high number of markers to

parse the cell populations), 2) analysis of large cohorts of subjects (e.g., clinical
studies and vaccine/drug trials), and 3) screening studies to identify appropriate

marker panels for further clinical investigation.
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Figure 3.1: The computational pipeline for discovering correlates of HIV protection using
PFC. (A) 59069 cell populations were identified for 466 patients; a CPHR model
was used to select the immunophenotypes with significant predictive power; (C) the
correlation between the immunophenotypes suggested 3 internally correlated groups,
shown in the side-bar colors and circumscribed by the bright yellow squares on the
diagonal; (D) each group was represented by a specific combination of markers.
The markers that were consistently positive or negative across all immunophenotypes
are colored yellow and red, respectively, the markers with a mix of positive and
negative values are grey; (E) the redundant markers were removed without affecting
the predictive power; (F) the resulting immunophenotypes were used to partition the
patients to two groups with different survival patterns.
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Figure 3.5: (a) Hierarchical clustering of phenotypes. The red dashed line
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Figure 3.6: (a) Hierarchical clustering of phenotypes. The red dashed line
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Figure 3.7: Confirmatory analysis. (A,B) The CD28−CD45RO+CD57−

immunophenotype was identified by manual analysis of all samples.
(C) Kaplan-Meier curves confirm the predictive power of the manually
measured immunophenotype. (D,E, and F) The immunophenotypes
originally selected by the pipeline were dominant in bootstrapping-
based sensitivity analysis of the entire pipeline.
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Chapter 4

RchyOptimyx: Cellular
Hierarchy Optimization for Flow
Cytometry

4.1 Introduction
Recent advances in FCM instrumentation and reagents have enabled high-

dimensional analyses to identify large numbers of cell populations with potentially
significant correlations to an external outcome (see, e.g., 4). However, studies of-

ten fail to characterize the complex relationships between the markers involved in
the identification of these cell populations. Revealing this information can pro-

vide additional insight into the biological characteristics of the populations identi-
fied. The choice of markers for new panels has been a source of ongoing debate,

including efforts such as the Human Immuno Phenotyping Consortium (HIPC),
the Federation of Clinical Immunology Societies Federation of Clinical Immunol-

ogy Societies (FOCIS) sponsored Flow Immunophenotyping Technical Meetings
(FITMAN), and the Optimized Multicolor Immunophenotyping Panels (OMIPS) ar-

ticles [13, 25, 32, 39, 66, 75, 76, 81, 95, 104, 124, 131]. Understanding the relation-
ships between the markers involved in identification of the target cell population

and the characteristics of that cell population (e.g., its correlation with a clinical
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outcome) is fundamental to the design of effective marker panels. For example,

one could use a high-dimensional flow or mass cytometry assay to measure a large
list of candidate markers. However, this can result in parsing the cells into (e.g.,

clinically) redundant subsets [12]. Excluding these redundancies (e.g., markers
less important for prediction of a clinical outcome) will result in a panel of the

most clinically relevant markers.
High dimensional FCM data is usually analyzed using a laborious sequential

manual analysis (see, e.g., [43, 92]). However, manual gates provide little insight

into the relative importance of each gate to the final results. For example, consider
a six color assay with markers named 1 to 6. If the expression of each marker is

considered to be on, off, or don’t care (e.g., markers named 1, 2, and 3 in phenotype
1+2−, respectively), a total of 36 = 729 cell populations can be distinguished based

on these markers. A given immunophenotype involving all six of these markers
(e.g., 1+2−3+4−5+6−) can have 26 = 64 parent populations (e.g., 1+, 1+2−).

Quantifying the relationship between the cell population of interest and these
parent populations is fundamental to our understanding of the importance of the

markers for different gating strategies. The order in which the gates are applied
to the data is not important, as long as all of the gates are used (i.e., sequential

gating is commutative). However, to decrease the size of the marker panel,
the relative importance of the gates should be determined. For example, the

measurement of the phenotype mentioned above using only five colors requires the
determination of the importance of each marker to identify and remove the least

important one (i.e., the identification of the parent population with five markers
that is most similar to the original phenotype). This is further complicated by the

fact that some cell populations can be identified using more than one combination
of markers and gating strategy; therefore, each marker can be used in different

positions in the gating hierarchy and can have different priorities, depending on
the choice of the gating strategy. For example, the 3+ gate is involved in both

1+2−3+ and 3+4−5+, both parents of the 1+2−3+4−5+6− phenotype described
above. However, depending on the amount of redundancy between marker 3 and

others, this marker can have different levels of importance for these two parent
populations.

Another use–case for measuring the importance of the markers is the investi-
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gation of a large number of closely related phenotypes (e.g., those identified by

bioinformatics pipelines) by identifying their common parent populations. Sev-
eral computational tools have been developed for automated identification of cell

populations (e.g., [2, 11, 20, 38, 70, 85, 97, 99, 101, 117, 128]) and recent studies
have used these tools to identify novel cell populations that correlate with clinical

outcomes (e.g., [3, 9, 27, 105, 129]). In addition, the results of the FlowCAP-II
project (see Chapter 5) and also the results presented in Chapter 3 have shown

that several algorithms can accurately and reproducibly identify cell populations

correlated with external outcomes. However, these algorithms provide limited in-
formation regarding the importance of the markers involved in defining the cell

populations [3, 21].
This situation is even more complicated than sequential manual gating, since

most of these bioinformatics pipelines work based on multivariate classifiers,
and as a result, more than one cell population can be responsible for the final

predictions. Therefore, markers can have different relative importance in defining
the multiple cell populations within the multivariate model. Quantifying the

markers for each phenotype involved in the multivariate model can provide
additional insight into the differences between closely related cell populations.

For example, if two phenotypes 1+2−3+4−5+ and 1+2−3+4−6+ are identified
as correlates of a disease, and if markers 5 and 6 (which are the only differences

between them) are the least important markers for the former and latter phenotypes,
respectively, then these two phenotypes are likely to correspond to the same cell

population (as far as the correlation with the disease is concerned). However, if
markers 5 and 6 are the most important for the phenotypes, these can correspond

to two biologically different cell populations.
To address these problems, we developed RchyOptimyx, a computational tool

that uses dynamic programming and optimization techniques from graph theory to
construct a cellular hierarchy, providing the best gating strategies to identify target

populations to a desired level of purity or correlation with a clinical outcome, using
the simplest possible combination of markers.
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4.2 Materials and Methods
Our methodology builds on the flowType pipeline described in Chapter 3. flowType

comprehensively identifies cell populations defined by all possible gating strategies
(hierarchies) in the data set using a partitioning strategy (e.g., clustering algorithm

like flowMeans [3]) and scores them by a statistical test (e.g., the log rank test
for difference in survival distributions). Given the list of all cell populations and

their scores, RchyOptimyx uses a dynamic programming approach to find the best
cellular hierarchy within a reasonable time (i.e. less than 2 minutes for 30 color

data), as well as a number of best suboptimal hierarchies, to enable mining of the
space of best gating strategies and purities for a given target cell population.

4.2.1 Terms and Definitions

Let M be the set of m markers of interest (e.g., M = {KI–67,CD28,CD45RO}),
a single marker phenotype be a phenotype having only one marker (e.g., CD28+),

a phenotype P be a set of single marker phenotypes (e.g., P = KI–67+CD28−),
and M be a phenotype of size m that involves all of the markers (e.g. M = KI–67+

CD28−CD45RO−). The power set of M, P(M), is of size 2m and contains every
possible subset of M. The scoring function S(.) assigns a score to each member of

P(M), such that higher values are assigned to more important phenotypes (e.g.,
those with a stronger correlation with a clinical outcome).

Given an arbitrary M, the directed acyclic graph (DAG) GM has m+ 1 levels
from 0 to m, each level i including every member of P(M) of size i. Node s is

connected to node t with a directed edge (s, t) if and only if |t|= |s|+1 and the two
associated sets of s and t differ only in one single phenotype marker (i.e., t is an

immediate parent of s). Let the weight of the edge (s, t) be −S(t) (so that paths with
maximum score can be found by searching for paths with minimum total weight).

The node with 0 markers is the root (or source) node, and the node with
the complete set of markers is the sink node. A path from source to sink is

called a hierarchy path, or simply a hierarchy. An example of graph GM for
M = KI–67+CD4−CCR5+CD127− is illustrated in Figure 4.1.
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Figure 4.1: A complete cellular hierarchy for prediction of HIV clinical outcome using KI67+CD4−CCR5+CD127−

T-cells. The color of the nodes shows the significance of the correlation with the clinical outcome (p-value
of the logrank test for the cox proportional hazards model) and the width of each edge (arrow) shows the
amount of change in this variable between the respective nodes. The positive and negative correlation of each
immunophenotype with with outcome can be shown by the arrow type leading to the node, however as all
correlations are negative in this hierarchy, only one arrow type is shown.
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The graph GM has |P(M)|= 2m nodes, one node for each parent phenotype of

the phenotype of interest. The number of edges is equal to the number of markers
(m), times the number of edges that have the specified marker. Each marker appears

in 2m−1 nodes, therefore the number of edges is m×2m−1.
Intuitively, comparing two hierarchies, the one which goes through nodes with

higher score nodes is better. On our graphs, to ensure “better” hierarchies get lower
scores, we define the weight of each path to be the score of the respective hierarchy.

Modeling this intuition. The score of a hierarchy, thus, can be written as follows:

T (H ) = ∑
(s,t)∈EH

W (s, t)

= ∑
(s,t)∈EH

−S(t)

= ∑
t∈VH \source

−S(t)

(4.1)

in which H is the hierarchy, EH is the set of edges of hierarchy H , VH is the set
of vertices of same hierarchy, and source is the first node in the hierarchy.

4.2.2 Dynamic Programming to Identify the Best Hierarchy

For cell populations characterized by m markers, finding the best hierarchy by
searching through all possible hierarchies would require time O(m!) , which is

impractical for even moderately large m. To make this problem tractable using
dynamic programming, we define best total score function T ∗(.), which computes

the score of the best hierarchy leading to the given phenotype. T ∗(.) is defined
recursively as follows:

T ∗(Pk) =

{
−S(Pk) if k = 1

min{T ∗(Pk \Pk
i )−S(Pk)|i = 1, . . . ,k} otherwise

, (4.2)

where Pk is a cell population defined by k single marker phenotypes, and Pk \Pk
i

is Pk with the ith single marker phenotype removed. For example, if P3 =

KI–67+CD28−CD45RO+, then P3 \P3
1 =CD28−CD45RO+. In other words, there
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is an edge from Pk \Pk
i to Pk in GM , where Pk is a subset of M. Also note that

−S(Pk) is the weight of the edge (Pk,Pk \Pk
i ) in GM .

Using dynamic programming, we calculate the value of T ∗(.), iterating from

level 0 to m on GM. Calculating each node’s score requires a number of constant–
time operations equal to the number of edges entering the node. Therefore, the

total number of operations is proportional to total number of edges (m× 2m−1),
and the overall time complexity of our programming procedure for determining

T ∗(.) values for all phenotypes in the graph is O(m×2m−1). An illustration of the

dynamic programming space for m = 3 as well as two paths in that space is shown
in Figure 4.2.

4.2.3 Search for Near-Optimal Hierarchies

The hierarchy selected by the dynamic programming algorithm is the best gating
strategy for a given cell population. However, we would also like to identify

alternate gating strategies with slightly worse scores. To find these near-optimal
paths, we reformulate the problem as identification of a desired number of

minimum weight paths: In GM , the minimum weight path from source to sink
is the best hierarchy (identical to the one generated by dynamic programming).

To generate additional, sub-optimal hierarchies, a list of the next minimum weight
paths must also be generated. These paths can be identified using the method by

Eppstein detailed in [33]. Briefly, this method uses the minimum spanning tree of
GM and computes a heap structure for each node; it then merges the heaps in an

efficient way to construct a 4-heap data structure. Using this 4-heap and a given
arbitrary number l (the number of desired paths), it generates l-minimum weight

paths in time O(e+ v+ l) for a DAG with e edges and v nodes (see Theorem 4 of
[33] for details).

Hence, the time complexity of our algorithm can be calculated by plugging
the number of edges and nodes into the time complexity of the l-minimum weight
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Figure 4.2: Dynamic programming algorithm for two cell populations de-
fined by 3 markers. The best paths for each of the cell populations are
shown in red and blue, respectively. As an example, the red path ends at
CD4+CCR5+CD127+. Three markers are available to be added. First,
CD4 is added (changes from don’t care to positive). Then, two options
will be available for the next step (CD127 and CCR5). After selection of
CCR5, only one option will be left for the final step (CD127). Therefore
for three markers, 3·(3−1)

2 = 6 comparisons were required. Left: A hier-
archy for the two paths. The label of an edge is the name of the single
marker phenotype that is the difference between its head set (s) and its
tail set (t). Right: the dynamic programming space for the 3 markers.
Black spheres mark the nodes in the dynamic programing space used
by the two paths. The colors of the nodes on the left match that of the
square tori on the right and correspond to the relative score of each cell
population.

paths method:

O(e+ v+ l) = O(m×2m−1 +2m + l)

= O(m×2m−1 +2×2m−1 + l)

= O((m+2)×2m−1 + l).

(4.3)
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For example, the number of operations with our approach on a dataset with

m = 10 markers would be ≈ 104 compared to ≈ 3×106 for the exhaustive search
approach. Our method therefore takes ≈ 0.23 CPU seconds vs ≈ 69 CPU seconds

for exhaustive search, run under 64 bit Linux (version 3.3) on a 2.93GHz Intel
Xeon CPU with sufficient memory (proportional to 2M). For a phenotype involving

m = 20 markers, these numbers increase to ≈ 1.2 CPU seconds vs ≈ 1011 CPU
seconds (more than 4000 years), respectively. Even for a phenotype involving

m = 30 markers, measured by a CyTOF assay (mass spectrometry-flow cytometry

hybrid device [11, 22, 90]), RchyOptimyx remains feasible, with a runtime of
≈ 102 CPU seconds, while the brute-force method would take ≈ 1022 CPU

seconds. The final output of RchyOptimyx is the corresponding subgraph of GM

that includes all calculated paths (i.e., the optimized hierarchy, e.g., Figure 4.3).

4.2.4 Datasets

We validated RchyOptimyx on two high-dimensional datasets, produced by mass
and polychromatic flow cytometry.

Mass cytometry analysis of bone marrow cells from normal donors

In this dataset, 31 parameters were measured for mononuclear cells from a healthy
human bone marrow (see [11] for details). We used the results of three assays

on samples subject to ex vivo stimulation by IL7 (measured by pSTAT5), BCR
(measured by pBLNK), and LPS (measured by p-p38) as well as an unstimulated

control. 13 surface markers were included in the analysis: CD3, CD45, CD45RA,
CD19, CD11b, CD4, CD8, CD20, CD34, CD33, CD123, CD38, and CD90.

Singlets were gated manually, as described by Bendall et al., [11].

Polychromatic flow cytometry analysis of HIV+ patients

As described in Chapter 3, this dataset consists of 13 color PFC assays of 466
HIV+ subjects enrolled in the Infectious Disease Clinical Research Program’s

HIV Natural History Study. Basic demographic characteristics of this dataset are
described elsewhere [125]. Peripheral blood mononuclear cells stored within 18

months of the date of seroconversion were analyzed using PFC as described by
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Ganesan et al. [42]. The cohort included 135 death/AIDS events, as defined by

1993 guidelines [19]. The date of the last follow-up or initiation of highly active
anti-retroviral therapy (HAART) was considered a censoring event. CD14 and

V-amine dye were used to exclude monocytes and dead cells, respectively, CD3
was used to gate T-cells. Using the staining panel and flowType, we enumerated

various subsets of naive and memory T-cells, defined by CD4, CD8, CD45RO,
CD27, CD28, CD57, CCR5, CCR7, CD127, and KI-67. Using a log rank test with

Bonferroni’s multiple test correction, we scored each subset (cell population) in

terms of its correlation with HIV progression [3].

4.3 Results

4.3.1 Designing a Panel to Detect a Population Expressing an
Intracellular Marker using Surface Markers

In this use–case, our goal was to identify cell populations that are affected by
different stimulations in the mass cytometry dataset. We used flowType to identify

a list of populations that had a high overlap with either the IL3+, BCR+, or LPS+

populations (determined manually - see Figure 4.9). For each cell population, this

value was calculated as the difference in its intersection with the IL3+, BCR+,

or LPS+ compartments between the stimulated and unstimulated sample. For
example, for a given cell population CP, the overlap with IL3+ was defined as:

OverlapIL3+(CP) =
(

# IL3+cells in CP
# cells in CP

)
stim

−
(

# IL3+cells in CP
# cells in CP

)
unstim

(4.4)

The immunophenotypes with a high overlap, as identified by flowType, are
listed in Tables 4.1, 4.2, and 4.3. These immunophenotypes were analyzed

using RchyOptimyx (e.g., Figure S1 for BCR) and then merged into a sin-
gle graph, shown in Figure 4.5. This graph suggests that T-cells (CD3+) fol-

lowed by cytotoxic T-cells (CD3+CD4+) are the main parent populations af-
fected by IL7 stimulation (panel A). As expected, BCR stimulation affected B-

cells (CD19+ CD20+CD3−), and LPS stimulation increased the proportion of
CD19−CD33+CD3− cells (Panels B and C, respectively). These results are gen-

erally consistent with those reported by Bendall et al. (Figure 2 and panel C of

56



Figure 3 of [11]).

Table 4.1: The phenotypes with a high overlap with the BCR(pBLNK)+ com-
partment as identified by flowType. The table includes the cell proportion
of these immunophenotypes (second column) and the differences in the
cell proportion of BCR(pBLNK)+ cells in the stimulated and unstimu-
lated assays (third column).

Phenotype Name Cell Proportion BCR+
(stim−unstim)

CD19+CD4-CD8-CD34+CD20+CD123+CD38-CD3- 0.001 0.160
CD19+CD4-CD34+CD20+CD123+CD38-CD3- 0.001 0.160
CD19+CD4-CD34+CD20+CD123+CD3- 0.001 0.155

Table 4.2: The phenotypes with a high overlap with the IL7(pSTAT5)+

compartment as identified by flowType. The table includes the cell
proportion of these immunophenotypes (second column) and differences
in the cell proportion of IL7(pSTAT5)+ cells in the stimulated and
unstimulated assays (third column).

Phenotype Name Cell Proportion IL7+
(stim−unstim)

CD19-CD4+CD8+CD20+CD33+CD38-CD3+ 0.008 0.364
CD19-CD4+CD8+CD20+CD33+CD3+ 0.008 0.366
CD19-CD4+CD8+CD34+CD33+CD38-CD3+ 0.008 0.366
CD19-CD4+CD8+CD34+CD33+CD3+ 0.008 0.368
CD19-CD4+CD8+CD34+CD20+CD33+CD38-CD3+ 0.006 0.399
CD19-CD4+CD8+CD34+CD20+CD33+CD3+ 0.006 0.402
CD4+CD8+CD20+CD33+CD38-CD3+ 0.011 0.365
CD4+CD8+CD20+CD33+CD3+ 0.011 0.371
CD4+CD8+CD34+CD33+CD38-CD3+ 0.011 0.366
CD4+CD8+CD34+CD33+CD3+ 0.011 0.371
CD4+CD8+CD34+CD20+CD33+CD38-CD3+ 0.008 0.399
CD4+CD8+CD34+CD20+CD33+CD3+ 0.009 0.405
CD19+CD4+CD8+CD20+CD33+CD38-CD3+ 0.003 0.364
CD19+CD4+CD8+CD20+CD33+CD3+ 0.003 0.378
CD19+CD4+CD8+CD34+CD33+CD38-CD3+ 0.003 0.359
CD19+CD4+CD8+CD34+CD33+CD3+ 0.003 0.372
CD19+CD4+CD8+CD34+CD20+CD33+CD38-CD3+ 0.002 0.397
CD19+CD4+CD8+CD34+CD20+CD33+CD3+ 0.002 0.409
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Table 4.3: The phenotypes with a high overlap with the LPS(p-p38)+ com-
partment as identified by flowType. The table includes the cell proportion
of these immunophenotypes (second column) and differences in the cell
proportion of LPS(p-p38)+ cells in the stimulated and unstimulated as-
says (third column).

Phenotype Name Cell Proportion LPS+
(stim−unstim)

CD19-CD4-CD8-CD34-CD20-CD33+CD123-CD38-CD3- 0.008 0.474
CD19-CD4-CD8-CD34-CD20-CD33+CD123-CD3- 0.008 0.473
CD19-CD4-CD8-CD34-CD20-CD33+CD38-CD3- 0.009 0.466
CD19-CD4-CD8-CD34-CD20-CD33+CD3- 0.009 0.465
CD19-CD4-CD8-CD34-CD33+CD123-CD38-CD3- 0.022 0.460
CD19-CD4-CD8-CD34-CD33+CD123-CD3- 0.022 0.459
CD19-CD4-CD8-CD34-CD33+CD38-CD3- 0.022 0.452
CD19-CD4-CD8-CD34-CD33+CD3- 0.022 0.451
CD19-CD4-CD8-CD34-CD20+CD33+CD123-CD38-CD3- 0.013 0.450
CD19-CD4-CD8-CD34-CD20+CD33+CD123-CD3- 0.013 0.449
CD19-CD4-CD8-CD20-CD33+CD123-CD38-CD3- 0.023 0.453
CD19-CD4-CD8-CD20-CD33+CD123-CD3- 0.023 0.452
CD19-CD4-CD34-CD20-CD33+CD123-CD38-CD3- 0.011 0.456
CD19-CD4-CD34-CD20-CD33+CD123-CD3- 0.011 0.455
CD19-CD8-CD34-CD20-CD33+CD123-CD38-CD3- 0.012 0.462
CD19-CD8-CD34-CD20-CD33+CD123-CD3- 0.012 0.461
CD19-CD8-CD34-CD20-CD33+CD38-CD3- 0.012 0.454
CD19-CD8-CD34-CD20-CD33+CD3- 0.012 0.454
CD4-CD8-CD34-CD20-CD33+CD123-CD38-CD3- 0.011 0.462
CD4-CD8-CD34-CD20-CD33+CD123-CD3- 0.011 0.461
CD4-CD8-CD34-CD20-CD33+CD38-CD3- 0.011 0.454
CD4-CD8-CD34-CD20-CD33+CD3- 0.011 0.454
CD8-CD34-CD20-CD33+CD123-CD38-CD3- 0.015 0.450
CD8-CD34-CD20-CD33+CD123-CD3- 0.015 0.449
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Figure 4.3: An optimized cellular hierarchy for prediction of HIV’s clinical
outcome using KI67+CD4−CCR5+CD127− T-cells. The color of the
nodes shows the significance of the correlation with the clinical outcome
(p-value of the logrank test for the cox proportional hazards model)
and the width of each edge (arrow) shows the amount of change in this
variable between the respective nodes.
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Figure 4.4: All immunophenotypes ordered by their overlap with the cell
population of interest. The red dashed lines demonstrate the cutoffs
used for selected the immunophenotypes with “high overlap”.
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Figure 4.5: Three optimized hierarchies for identification of cell populations with maximum response to IL7, BCR,
and LPS measured by pSTAT5, pBLNK, and p-p38, respectively. The colour of the nodes and the thickness of the
edges indicates the proportion and change in proportion of cells expressing the intracellular marker of interest,
respectively.
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4.3.2 Simplifying Gating Strategies

Here we use RchyOptimyx to demonstrate an example of the use case of estab-
lishing a simpler combination of markers that can be used to identify a target

population at a desired level of purity. For analysis of the PFC dataset, Gane-
san et al. used a strict, but potentially redundant definition for naive T-cells, of

CD28+CD45RO−CD57−CCR5−CD27+CCR7+, within the CD3+CD14− com-
partment [42]. The purity of a given parent cell population (CP) of this target

was defined as its mean purity for the strictly-defined naive T-cells:

Purity(CP) =
∑ # CD28+CD45RO−CD57−CCR5−CD27+CCR7+ cells

# cells in CP
# Samples

(4.5)

Figure 4.6 shows the results of analysis with RchyOptimyx where a combina-
tion of only three markers (CD45RO−CCR5−CCR7+) identified the strict naive

T cell population to 95% purity (within the CD3+CD14− compartment). The
range of available purities and determination of an appropriate cutoff are exper-

iment dependent (e.g., on the range of available markers, biological question being
researched).

4.3.3 Characterization of a Large Number of Immunophenotypes

In this section, we use RchyOptimyx to demonstrate an example of the use-case

of summarizing a large list of immunophenotypes of interest (as identified by a
bioinformatics pipeline) into a single hierarchy using their most important common

parent populations.
In a previous study of the PFC dataset in Chapter 3, we identified 101 im-

munophenotypes (Table 3.2) in HIV+ patients that had a statistically significant
correlation with HIV’s progression [3]. The score of each population was calcu-

lated as −log10(p) where p was the p-value of the logrank test before adjustment
for multiple testing (higher values represent a stronger correlation with the clin-

ical outcome). The 101 immunophenotypes were analyzed using RchyOptimyx,
and the resulting hierarchies were merged into a single graph (Figure 4.7). This

graph indicated three groups of immunophenotypes that were significantly cor-
related with HIV’s outcome (left, center, and right branches). The left branch

consisted of KI-67+CD4− CCR5+CD127− T-cells. These cells were thought to
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Figure 4.6: An optimized cellular hierarchy for identifying naive T-cells. The
color of the nodes and the thickness of the edges shows the purity and
change in purity of the original naive phenotype within the given cell
population, respectively.

be statistical significant, mainly because they are long-lived (CD127−) T-cells

with high proliferation (KI-67+). RchyOptimyx showed that the significance of
this population is related to the KI-67+CCR5+ compartment and not CD127−

(Figure 4.7, the left branch), as the CD127 marker is not needed to achieve the
approximately the same score. This is in agreement with the results of two re-

cent studies [46, 58]. The terminal node of the center branch consisted of seven
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markers (CD45RO−CD8+CD57+CCR5− CD27+CCR7−CD127−). RchyOpti-

myx revealed that its most important parent population is CD8+CCR7− CD127−,
with a weaker correlation with the clinical outcome. Finally, the right branch

(CD28−CD45RO+CD4−CD57−CD27− CD127−) suggests several parent popu-
lations with minimal overlap and strong correlation with the clinical outcome (e.g.,

CD28− CD4− CD57− CD127− and CD45RO+CD4−CD127−).
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Figure 4.7: An optimized hierarchy for all three populations correlated with protection against HIV. The color of the
nodes indicates the significance of the correlation with the clinical outcome (p-value of the logrank test for the cox
proportional hazards model) and the width of each edge (arrow) indicates the amount of change in this variable
between the respective nodes. The positive and negative correlation of each immunophenotype with outcome can
be seen from the arrow type leading to the node, however, as all correlations are negative in this hierarchy, only
one arrow type is shown.
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4.4 Discussion
Sequential analysis of the markers involved in manual or automated identification

of cell populations is fundamental to our understanding of the characteristics of the
cell population. In sequential gating, the order in which the gates have been applied

does not affect the final results. However, ordering the gates by their relative
importance has two use-cases: 1) identifying a cell population of interest, using

the smallest possible panel of markers; 2) summarizing a long list of closely related
(and perhaps overlapping) immunophenotypes by identifying their most important

common parent populations. However, increasing the number of markers quickly
renders this approach unfeasible. (e.g., Figure 4.8 for only six markers).

To address this challenge, we developed RchyOptimyx, a computational tool
that automatically characterizes the complex findings of high dimensional ex-

ploratory FCM studies. RchyOptimyx sorts all parent populations of an im-
munophenotype of interest into hierarchies, and selects those hierarchies that are

better able to maintain the characteristics of the immunophenotype of interest (e.g.,

correlation with a clinical outcome). This reveals the best order in which markers

can be excluded from an immunophenotype. RchyOptimyx uses dynamic pro-
gramming and efficient tools from graph theory to make the problem tractable us-

ing the computing resources readily available in most laboratories.
Since most cells can be described using more than one combination of markers,

there usually are several alternative cellular hierarchies associated with every
population. RchyOptimyx is able to find all these “paths” and merge them

into a single hierarchy, starting from “all cells”, or any arbitrary point in a
hierarchy, and finishing at the terminal population of interest. This reveals the

relationships between different gating strategies and how they differentiate, and
also facilitates the reproduction of high–dimensional exploratory studies using

low–color instruments. The ability to suggest multiple panels is particularly
important when designing new panels, because the choice of markers depends

on a large number of external parameters including, but not limited to, reagents
available through vendors, potential spectral overlaps, the instruments available,

and budget limitations.
Another important use-case for RchyOptimyx is in the interpretation of
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Figure 4.8: A complete cellular hierarchy for identifying naive T-cells. The
colour of the nodes and the thickness of the edges have been removed
to facilitate visualization of the complex graph.

the findings obtained from bioinformatics pipelines. While these pipelines
have recently been very successful in identifying cell populations correlated

with clinical outcomes, their results can be difficult fo understand for two
reasons: 1) they usually rely on high-dimensional clustering of the data and

therefore cannot propose gating strategies for reproduction of their results; 2)
their predictive power often relies on a large list of immunophenotypes. Some

of these immunophenotypes are closely related (e.g., refer to close or overlapping
cell populations) while others are not. RchyOptimyx addresses the first problem by

suggesting optimized gating hierarchies for identification of these cell populations
to a desired level of purity or correlation with clinical outcome. The latter problem

is addressed by summarizing closely related immunophenotypes using their most
important common parents.
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In evaluating RchyOptimyx, we combined its functionality with the automated

gating functionality provided by flowMeans and flowType. However, RchyOpti-
myx can be built upon the results of any cell population identification method,

including manual analysis, provided all intermediate cell populations (i.e., each
layer, removing one marker at a time) from the cell population of interest up to the

desired start of the hierarchy are provided to the algorithm.
We evaluated RchyOptimyx for three use-cases, using a small, but high–

dimensional mass cytometry dataset and a clinical dataset of high-dimensional

conventional FCM assays of 466 patients, previously analyzed by both manual and
automated analysis. First, we constructed cellular hierarchies for identification

of cells that were produced in response to different stimulations. This use-
case represents the problem of designing panels of surface markers (primarily

for sorting) for cells that can only be defined using their intra-cellular signature
(possibly after proper stimulation). For example, plasmacytoid dendritic cell

(PDC)s are known to express the toll-like receptor 9 (TLR9) in response to
stimulation using CpG [63]. A large number of surface candidates were recently

proposed for PDCs [18, 77, 110, 119]. An interesting direction to extend this work
would be to measure all these markers in a single panel, subject to CpG stimulation

(using appropriate controls) to design a panel of surface markers for PDCs. In this
case, TLR9 could be used as the external variable for optimization.

Second, we demonstrated that RchyOptimyx can be used to simplify existing
gating strategies (e.g., the identification of naive T-cells previously defined using

a complex panel of six markers to a 95% purity using only three). This proof-
of-concept use-case is relevant when a subset of markers needs to be selected for

reproduction of the results using fewer colors. For certain biological use–cases,
purities higher than 95% can be required. For such use–cases, a larger number of

markers for exclusion of non-naive T-cells should be included in the panel.
Third, we showed that RchyOptimyx, together with a complex bioinformatics

pipeline, can analyze a large high-dimensional clinical dataset, to reveal correlates
of a clinical outcome, hidden from previous manual and automated analysis of

the same dataset. In addition, RchyOptimyx suggests the best gating strategies and
marker panels for reproduction of these results in low-color settings. By identifying

the best cellular hierarchies, RchyOptimyx allows the user to make an informed
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decision about the trade-off between the number of markers and the significance of

the correlation with the clinical outcome. This feature is particularly important in
hypothesis generating studies that need to be further validated using large clinical

studies.
For the third example, it is important to note that the correct measurement for

the amount of correlation with a clinical outcome is an effect size (such as the
root squared error of the estimated proportional hazard). However, such effect

size does not provide any information about the significance of the correlation. As

RchyOptimyx is intended to be a decision support tool, and in this case the decision
is the degree to which a cell population can be generalized while maintaining the

statistical significance of the correlation, we decided that the p-values of the log-
rank tests are more appropriate for optimization of the hierarchies. To support

this decision, we empirically investigated the differences between the p-values and
effect sizes of the cox proportional hazard models (Figure 4.9) and concluded that

these values are highly correlated (which is not surprising, given the large size of
our cohort).

The concept of computationally extracting cellular hierarchies from FCM data
has previously been introduced by the SPADE algorithm [11, 101]. SPADE

generates a large number of multidimensional clusters and then connects them to
each other using the distance between their mean/median fluorescence intensities.

These are then manually annotated by biologists with domain knowledge. This
makes SPADE useful for identification and visualization of a large number of

clusters, particularly when expression of markers change gradually (e.g., cell-
cycle analysis and some intracellular studies). However, the hierarchies generated

by SPADE are logically and conceptually different from those generated by
RchyOptimyx and have different use cases. For example, the results of the mass

cytometry dataset presented here are very close to results previously obtained from
SPADE analysis. However, SPADE required manual annotation of the results by

a human expert, using different plots demonstrating the expression of different
surface markers and the intra–cellular marker of interest (Figure 2 and panel C

of Figure 3 of [11]). More complicated relationships that involve several markers
cannot be easily identified by these manual annotations. In addition, SPADE is

limited in that the relationships between cell populations is exclusively defined
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Figure 4.9: The correlation between effect sizes and p-values of the log rank
tests for the cox proportional hazards models for each immunopheno-
types. Pearson’s correlation test: Correlation coefficient: 0.997, p-value
< 2.2e−16.

using the multidimensional distances between them. However, two cell populations
that are close to each other in the multidimensional space can be far in terms of

specific markers (which can be the most important ones). The cellular hierarchies
generated by RchyOptimyx are based on parent-child relationships, guided by an

external variable (cell populations that have common parents with similar patterns
of correlation with a clinical outcome or intracellular response to stimulation are

grouped together). This enables RchyOptimyx to automatically annotate a large
number of cell populations identified by other methods (e.g., manual gating or

SPADE) in terms of the importance of the markers involved and summarize them
in a single hierarchy.
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There are several directions in which this work can be extended. RchyOptimyx

provides no information about the robustness of the hierarchies. Bootstrapping
strategies could be used to produce confidence intervals for the tree structure

and increase generalizability to previously unseen data [118]. Also, our current
implementation of RchyOptimyx assumes that every marker can be partitioned

into a positive and negative population. While the underlying theory does support
additional (e.g., dim, bright, or low) populations, parts of the software package

would need to be modified to accommodate these cases.
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Chapter 5

FlowCAP: Critical Assessment of
Automated Flow Cytometry Data
Analysis Techniques

5.1 Introduction
Beginning in 2007 there has been a renaissance in the development of computa-

tional methods for FCM data in an effort to overcome the continued limitations in
manual gating-based analysis with successful results reported in each case (see,

e.g., Chapter 2, 3, and [2, 3, 5, 11, 27, 38, 44, 70, 85, 97, 99, 101, 102, 105, 116,
117, 128, 129]). However, it has been unclear how the results from these state–of–

the–art approaches compared with traditional manual gating results in general, how
they could be used to discover new cell populations of interest, and how these com-

putation methods compared with each other, as every new algorithm was assessed
using distinct datasets and evaluation methods. To address these shortcomings,

members of the algorithm development, FCM user, and software and instrument
vendor communities initiated the Flow Cytometry: Critical Assessment of Pop-

ulation Identification Methods (FlowCAP) project. The goal of FlowCAP is to
advance the development of computational methods for the identification of cell

populations of interest in FCM data by providing the means to objectively test and
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compare these methods, and to provide guidance to the end user about how best

to use these algorithms. Here we report the results from the first two FlowCAP-
sponsored competitions, which evaluated the ability of automated approaches to

address two important use cases - cell population identification and sample classi-
fication.

5.2 Cell Population Identification

5.2.1 Structure of the Challenges

Algorithms competed in four challenges for cell population identification:

1. Completely Automated: The goal of this challenge was to compare

automated gating algorithms for exploratory analysis. Software used in this
challenge either did not have any tuning parameters, or if there were tuning

parameters, the values were fixed in advance and used across all datasets.

2. Manually Tuned: The goal of this challenge was to compare semi-
automated gating algorithms that were permitted to have manually adjusted

parameters (i.e., participants were allowed to supply results from their
algorithm with parameters tuned for individual datasets).

3. Assignment of Cells to Populations with Pre-defined Number of Popula-
tions: The goal was to compare the ability of the algorithms to assign correct

labels to cells when the number of expected populations was known.

4. Supervised Approaches Trained using Human-Provided Gates: In this
challenge, 25% of the files with manual gates (i.e., membership labels) were

provided to participants for training/tuning their algorithms for each dataset.
The results were evaluated using the complete dataset.

Five datasets were used for these challenges (the markers evaluated are listed
in Table 5.1):

1. Diffuse Large B-cell Lymphoma (DLBCL) The DLBCL dataset consists

of data from 30 randomly selected lymph node biopsies from patients treated
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at the British Columbia Cancer Agency between 2003 and 2008. These

patients were histologically confirmed to have diffuse large B-cell lymphoma
(DLBCL). This dataset was provided by the BCCRC1.

2. Symptomatic West Nile Virus (WNV) Samples are human peripheral blood
mononuclear cells from patients with symptomatic West Nile virus infection

stimulated in-vitro with peptide pools representing different regions of the
WNV polyprotein. This dataset was provided by McMaster University2.

3. Normal Donors (ND) The investigators examined differences in the re-

sponse of a variety of cell-types to various stimuli for a set of healthy donors.
For the samples used here, the time-periods were relatively short, such that

the surface cell-type markers would not be expected to change. The staining
panel contains antibodies to surface markers and intracellular proteins. Note

that these experiment were done with phosflow-fixed cells, and thus some
of the populations are not as distinct or clean as would be seen with other

processing methods. This dataset was provided by Amgen Inc.3 .

4. Hematopoietic Stem Cell Transplant (HSCT) This dataset contains data

from 30 randomly selected samples derived from hematopoietic stem cell
transplant experiments done in the Terry Fox Laboratory. This dataset was

provided by the BCCRC 4.

5. Graft versus Host Disease (GvHD) Twelve FCM samples for finding
cellular signatures to predict or correlate with early detection of GvHD. This

dataset was provided by the BCCRC and Treestar Inc.5 and Treestar Inc.6.

The following pre-processing steps were applied to these datasets before
providing them to the participants: (1) compensation (to account for the overlap

of emission spectra from antibody fluorescent labels); (2) transformation to linear

1Andrew P. Weng: aweng@bccrc.ca
2Jonathan Bramson: bramsonj@mcmaster.ca
3Hugh Rand: rand@amgen.com
4Connie Eaves: ceaves@bccrc.ca
5Ryan Brinkman: rbrinkman@bccrc.ca
6Jill Schoenfeld: jill@treestar.com
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Table 5.1: Summary of the description of the datasets.

Dataset #Samples #Events Analyte Detector Reporter Provided By
GvHD 12 14,000 CD4 Anti-CD4 FITC BCCRC

CD8b Anti-CD8b PE &
CD3 Anti-CD3 PerCP TreeStar
CD8 Anti-CD8 APC

DLBCL 30 5,000 CD3 Anti-CD3 CY5 BCCRC
CD5 Anti-CD5 FITC
CD19 Anti-CD19 PE

ND 30 17,000 Proprietary FITC Amgen
Proprietary PerCPCy5
Proprietary PacificBlue
Proprietary PacificOrange

CD56 Anti-CD56 Qdot605
Proprietary APC

CD8 Anti-CD8 Alexa700
Proprietary PE

CD45 Anti-CD45 PECy5
CD3/CD14 Anti-CD3/CD14 PECy7

WNV 13 100,000 IFNγ Anti-IFNγ PEA McMaster
CD3 Anti-CD3 PECy5
CD4 Anti-CD4 PECy7
IL17 Anti-IL17 APC
CD8 Anti-CD8 AlexaFluor700

Free Amines NA CFSE
HSCT 30 10,000 CD45.1 Anti-CD45.1 FITC BCCRC

Ly65/Mac1 Anti-Ly65/Mac1 PE
Dead Cells NA PI

CD45.2 Anti-CD45.2 APC

space (to scale data appropriately for visualization); (3) pre-gating for removal of

irrelevant cells (e.g., dead cells as performed by the human analysts).
For these challenges, cell population membership defined by each algorithm

was compared against cell population membership defined by manual gating
performed by the data set provider in order to compare algorithm results with the

current standard practice for FCM data analysis. The F-measure statistic (see the
Methods section for a detailed description) was used for this comparison in order to

consider both sensitivity and specificity of the automated method. An F-measure
of 1.0 indicates perfect recapitulation of the manual gating result with no false

positive or false negative cells.

5.2.2 Clustering F-measure

F-measure is the harmonic mean of the sensitivity and specificity of an algorithm.
It can be written as F = (2 · Se · Sp)/(Se + Sp), where Se (sensitivity) is the

number of cells correctly assigned to a cluster divided by all the cells that should
have been assigned to that cluster, and Sp (specificity) is the number of cells

correctly assigned to a cluster divided by the total cells assigned to that cluster.
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Given a correct set of reference clusters C = {c1,c2, ...,cn} and a clustering

result K = {k1,k2, ..,km}, the number of matches between combinations of C

and K is a matrix, M = [ai j], where i ∈ {1, ...,n} and j ∈ {1, ...,m}. Then

Se(ci,k j) = ai j/|k j| and Sp(ci,k j) = ai j/|ci|, where |ci| denotes the number of
elements in ci. The F-measure to compare one cluster to another is then F(ci,k j) =

2 · Se(ci,k j) · Sp(ci,k j)/(Se(ci,k j)+ Sp(ci,k j)). To calculate the F-measure of an
entire clustering result, for each cluster c j in the reference, a set of F-measures

against every predicted cluster k j is calculated, and the largest F-measure (best

match), normalized by the size of k j is reported. The sum of these scores produced
a total F measure, defined as F(C,K) = ∑ci∈C

|ci|
N ·max

k j∈K
{F(ci,k j)}. F-measure

values are always in the interval [0,1], with 1 indicating a perfect prediction. See
[1] for a comparison of F-measure versus other metrics for evaluation of clustering

algorithms.
While mean F-measures can be used to assess the performance of each of the

algorithms on each dataset, the significance of the difference in the F-measures
values must be be accounted for in order to truly rank the algorithms. Therefore,

to measure how significant these differences were (i.e., how sensitive they are to
this specific set of samples), bootstrapping was used to compute 95% confidence

intervals. Algorithms with overlapping CIs were subsequently considered tied
(bolded in Table 5.3).

5.2.3 Rank score

To derive an overall ranking of the algorithms, we used their rank score calculated

as the sum of fractional rankings of each algorithm across different datasets.
Fractional ranking is based on the Borda count strategy [30]: For N algorithms,

the top algorithm scored N points, the second one N − 1 points, and so on. The
last algorithm scored 1 point. The average number of points was used in case of

ties (i.e., overlapping CIs). For D datasets, rank score values are in the [D,N ×D]

interval; an algorithm that scored first in every dataset would have a rank equal to

N ×D.
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5.2.4 Algorithm Performance

FlowCAP received a total of 36 submissions from 14 research groups (Tables
5.2 and 5.3). Not all algorithms competed in all challenges. For example,

supervised classification methods, like Radial SVM, require training data to
establish classification rules, and therefore were not appropriate for Challenges

1–3. In each challenge, the submitted algorithms were sorted by their rank score
(described in the Methods section). Many algorithms performed well in multiple

challenges on multiple datasets, with F-measures exceeding 0.85. Some of the
algorithms were always in the top group (i.e., were not significantly different from

the top algorithm), some were in the top group for some of the datasets, and some
were never in the top group.
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Table 5.2: Brief description of the methodologies used by the algorithms, their software platforms (if applicable), as
well as citations.

Algorithm Name Availability Brief Description Ref
Cell Population Identification

ADICyt Commercially
Available

Hierarchical clustering and entropy–based merging -

CDP Python source–code Bayesian non-parametric mixture models, calculated using massively
parallel computing on GPUs

[20]

FLAME R package Multivariate finite mixtures of skew and heavy-tailed distributions [97]
FLOCK C source–code Grid-based partitioning and merging [99]
flowClust/Merge Two R/BioC packages t-mixture modeling and entropy-based merging [38, 70]
flowKoh R source–code Self-organizing maps -
flowMeans R/BioC package k-means clustering and merging using the Mahalanobis distance [2]
FlowVB Python source–code t-mixture models using variational Bayes inference -
L2kmeans JAVA source–code Discrepancy learning [36]
MM, MM&PCA Windows and Linux executable Density-based misty mountain clustering [117]
NMF-curvHDR R source–code Density-based clustering and non-negative matrix factorization [85]
Radial SVM MATLAB source–code Supervised training of radial SVMs using example manual gates [102]
SamSPECTRAL R/BioC package Efficient spectral clustering using density-based down-sampling [128]
SWIFT MATLAB source–code Weighted iterative sampling and mixture modeling [83]
Ensemble
Clustering

R/CRAN package Combines the results of all of the participating algorithms [55, 56]

Sample Classification
2DhistSVM Pseudocode 2D histograms of all pairs of dimensions and support vector machines -
admire-lvq MATLAB source–code 1D features and learning vector quantization -
biolobe Pseudocode k-means and correlation matrix mapping -
daltons MATLAB source–code Linear discriminant analysis and logistic regression -
EMMIXCYTOM R source–code Skew-t-mixture model and KullbackLeibler divergence -
DREAM–A Pseudocode 2&3D histograms and cross-validation of several classifiers -
DREAM–B Pseudocode 1D Gaussian mixtures and support vector machines -
DREAM–C Pseudocode 1D gating and several different classifiers -
DREAM–D Pseudocode 4D clustering and bootstrapped t-tests -
FiveByFive Pseudocode 1D histograms and support vector machines -
flowBin R package High-dimensional cluster mapping across multiple tubes and support

vector machines
-

flowCore-flowStats R source–code Sequential gating and normalization and a Beta-Binomial model [49]
flowPeakssvm
Kmeanssvm

R package Kmeans and density-based clustering and support vector machines [44]

flowType FeaLect Two R/BioC packages 1D gates extrapolated to multiple dimensions and bootstrapped LASSO classification [3, 129]
JKJG JAVA source–code 1D Gaussian and logistic regression -
PBSC C source–code Multi-dimensional clustering and cross sample population matching using a relative distance order [99]
PRAMS R source–code 2D Clustering and logistic regression -
PramSpheres and CIHC Pseudocode Genetic algorithm and gradient boosting -
RandomSpheres Pseudocode Hypersphere–based Monte Carlo optimization -
SPADE, BCB MATLAB, Cytoscape, R/BioC Density-based sampling, kmeans clustering, and minimum spanning trees [101]
SPCA+GLM Pseudocode 1D probability binning and principal component analysis -
SWIFT MATLAB source–code SWIFT clustering and support vector machines [83]
team21 Python source–code 1D relative entropies -
uqs Pseudocode Skew–t-mixture models and KullbackLeibler divergence -
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Table 5.3: Mean and 95 percent CIs for the F-Measures, Rank Scores, and runtimes of the cell population identification
algorithms. In each dataset/challenge, the top algorithm (highest mean F-measure) and the algorithms with
overlapping CIs with the top algorithm are bolded. Algorithms are sorted by rank score within each challenge
(see methods for detailed description of the rank score). Runtime was calculated as time per CPU per sample.

F-measure Runtime Rank
GvHD DLBCL HSCT WNV ND Mean hh:mm:ss Score

Challenge 1: Completely Automated
ADICyt 0.81 (0.72, 0.88) 0.93 (0.91, 0.95) 0.93 (0.90, 0.96) 0.86 (0.84, 0.87) 0.92 (0.92, 0.93) 0.89 04:50:37 52
flowMeans 0.88 (0.82, 0.93) 0.92 (0.89, 0.95) 0.92 (0.90, 0.94) 0.88 (0.86, 0.90) 0.85 (0.76, 0.92) 0.89 00:02:18 49
FLOCK 0.84 (0.76, 0.90) 0.88 (0.85, 0.91) 0.86 (0.83, 0.89) 0.83 (0.80, 0.86) 0.91 (0.89, 0.92) 0.86 00:00:20 45
FLAME 0.85 (0.77, 0.91) 0.91 (0.88, 0.93) 0.94 (0.92, 0.95) 0.80 (0.76, 0.84) 0.90 (0.89, 0.90) 0.88 00:04:20 44
SamSPECTRAL 0.87 (0.81, 0.93) 0.86 (0.82, 0.90) 0.85 (0.82, 0.88) 0.75 (0.60, 0.85) 0.92 (0.92, 0.93) 0.85 00:03:51 39
MM&PCA 0.84 (0.74, 0.93) 0.85 (0.82, 0.88) 0.91 (0.88, 0.94) 0.64 (0.51, 0.71) 0.76 (0.75, 0.77) 0.80 00:00:03 29
FlowVB 0.85 (0.79, 0.91) 0.87 (0.85, 0.90) 0.75 (0.70, 0.79) 0.81 (0.78, 0.83) 0.85 (0.84, 0.86) 0.82 00:38:49 28
MM 0.83 (0.74, 0.91) 0.90 (0.87, 0.92) 0.73 (0.66, 0.80) 0.69 (0.60, 0.75) 0.75 (0.74, 0.76) 0.78 00:00:10 28
flowClust/Merge 0.69 (0.55, 0.79) 0.84 (0.81, 0.86) 0.81 (0.77, 0.85) 0.77 (0.74, 0.79) 0.73 (0.58, 0.85) 0.77 02:12:00 24
L2kmeans 0.64 (0.57, 0.72) 0.79 (0.74, 0.83) 0.70 (0.65, 0.75) 0.78 (0.75, 0.81) 0.81 (0.80, 0.82) 0.74 00:08:03 20
CDP 0.52 (0.46, 0.58) 0.87 (0.85, 0.90) 0.50 (0.48, 0.52) 0.71 (0.68, 0.75) 0.88 (0.86, 0.90) 0.70 00:00:57 19
SWIFT 0.63 (0.56, 0.70) 0.67 (0.62, 0.71) 0.59 (0.55, 0.62) 0.69 (0.64, 0.74) 0.87 (0.86, 0.88) 0.69 01:14:50 15
Ensemble Clustering 0.88 0.94 0.97 0.88 0.94 0.92 - 64

Challenge 2: Manually Tuned
ADICyt 0.81 (0.71, 0.89) 0.93 (0.91, 0.95) 0.93 (0.90, 0.96) 0.86 (0.84, 0.87) 0.92 (0.92, 0.93) 0.89 04:50:37 34
SamSPECTRAL 0.87 (0.79, 0.94) 0.92 (0.89, 0.94) 0.90 (0.86, 0.93) 0.85 (0.83, 0.88) 0.91 (0.91, 0.92) 0.89 00:06:47 31
FLOCK 0.84 (0.76, 0.90) 0.88 (0.85, 0.91) 0.86 (0.83, 0.89) 0.84 (0.82, 0.86) 0.89 (0.87, 0.91) 0.86 00:00:15 23
FLAME 0.81 (0.75, 0.87) 0.87 (0.84, 0.90) 0.87 (0.82, 0.90) 0.84 (0.83, 0.85) 0.87 (0.86, 0.87) 0.85 00:04:20 23
SamSPECTRAL-FK 0.87 (0.80, 0.94) 0.85 (0.81, 0.89) 0.90 (0.86, 0.92) 0.76 (0.71, 0.81) 0.92 (0.91, 0.93) 0.86 00:04:25 23
CDP 0.74 (0.67, 0.80) 0.89 (0.86, 0.91) 0.90 (0.88, 0.92) 0.75 (0.71, 0.78) 0.86 (0.85, 0.88) 0.83 00:00:18 19
flowClust/Merge 0.69 (0.53, 0.78) 0.87 (0.85, 0.90) 0.96 (0.94, 0.97) 0.77 (0.75, 0.79) 0.88 (0.81, 0.91) 0.83 02:12:00 18
NMF-curvHDR 0.76 (0.69, 0.82) 0.84 (0.83, 0.86) 0.70 (0.67, 0.74) 0.81 (0.77, 0.84) 0.83 (0.83, 0.84) 0.79 01:39:42 13
Ensemble Clustering 0.87 0.94 0.98 0.87 0.92 0.91 - 41

Challenge 3: Assignment of Cells to Populations with Pre-defined Number of Populations
ADICyt 0.91 (0.84, 0.96) 0.96 (0.94, 0.97) 0.98 (0.97, 0.99) 0.95 00:10:49 26.2
SamSPECTRAL 0.85 (0.75, 0.93) 0.93 (0.91, 0.95) 0.97 (0.95, 0.98) 0.92 00:02:30 26.2
flowMeans 0.91 (0.84, 0.96) 0.94 (0.91, 0.96) 0.95 (0.93, 0.96) 0.93 00:00:01 23.4
TCLUST 0.93 (0.91, 0.96) 0.93 (0.91, 0.95) 0.93 (0.90, 0.95) 0.93 00:00:40 23.4
FLOCK 0.86 (0.79, 0.93) 0.92 (0.89, 0.94) 0.97 (0.95, 0.98) 0.92 00:00:02 22.2
CDP 0.85 (0.77, 0.92) 0.92 (0.89, 0.94) 0.76 (0.72, 0.81) 0.84 00:00:21 16.9
flowClust/Merge 0.88 (0.82, 0.93) 0.90 (0.86, 0.94) 0.83 (0.79, 0.88) 0.87 00:49:24 15.9
FLAME 0.85 (0.79, 0.91) 0.90 (0.86, 0.93) 0.86 (0.82, 0.91) 0.87 00:03:20 15.9
SWIFT 0.90 (0.84, 0.95) 0.00 (0.00, 0.00) 0.88 (0.84, 0.92) 0.59 00:01:37 11.9
flowKoh 0.85 (0.80, 0.90) 0.85 (0.82, 0.88) 0.87 (0.84, 0.91) 0.86 00:00:42 9.5
NMF 0.74 (0.69, 0.78) 0.84 (0.80, 0.88) 0.80 (0.76, 0.84) 0.79 00:01:00 7.5
Ensemble Clustering 0.95 0.97 0.98 0.97 - 35.0

Challenge 4: Supervised Approaches Trained using Human-Provided Gates
Radial SVM 0.89 (0.83, 0.95) 0.84 (0.80, 0.87) 0.98 (0.96, 0.99) 0.96 (0.94, 0.97) 0.93 (0.92, 0.94) 0.92 00:00:18 21
flowClust/Merge 0.92 (0.88, 0.95) 0.92 (0.89, 0.94) 0.95 (0.92, 0.97) 0.84 (0.82, 0.86) 0.89 (0.88, 0.90) 0.90 05:31:50 19
randomForests 0.85 (0.78, 0.91) 0.78 (0.74, 0.83) 0.81 (0.79, 0.83) 0.87 (0.84, 0.90) 0.94 (0.92, 0.95) 0.85 00:02:06 15
FLOCK 0.82 (0.77, 0.87) 0.91 (0.89, 0.93) 0.86 (0.76, 0.93) 0.86 (0.82, 0.89) 0.86 (0.77, 0.92) 0.86 00:00:05 13
CDP 0.78 (0.68, 0.87) 0.95 (0.93, 0.97) 0.75 (0.71, 0.78) 0.86 (0.84, 0.88) 0.83 (0.80, 0.86) 0.83 00:00:15 11
Ensemble Clustering 0.91 0.94 0.95 0.92 0.94 0.93 - 26

79



Allowing participants to tune algorithm parameters did not result in much

improvement, as the highest overall F-measure did not increase (0.89 for both
completely automated and manually tuned algorithms); only three of the six

algorithms that participated in both Challenge 1 and Challenge 2 demonstrated an
improvement in overall F measure, and these improvements were modest. In some

cases the F-measures actually decreased after human intervention (e.g., FLAME).
In contrast, providing the number of cell populations sought in Challenge 3 made

predictions more accurate for seven of the eight algorithms that participated in

both Challenge 1 and Challenge 3, with five algorithms achieving overall F-
measures greater than 0.9. In addition, providing a set of example results for

algorithm training and parameter tuning in Challenge 4 improved the results of
flowClust/Merge by 0.13. With example results for training, the Radial SVM

approach outperformed the algorithms used in Challenge 1 in four of the five
datasets. Taken together, these results suggest that estimating the correct number

of cell populations (as defined by manual gates) remains a challenge for most
automated approaches. Providing several examples as a training-set improves this

situation. However, not many of the existing algorithms can support training-sets;
hence, the low number of participants in Challenge 4.

The “Runtime” column of Table 5.3 shows the estimated runtimes per sample
of the algorithms on single core CPUs or GPUs (for CDP only). Runtimes

ranged from 1 second to more than 4 hours per sample. ADICyt, which had
the highest rank score in the first three challenges, also required the longest

runtimes. flowMeans, FLOCK, FLAME, SamSPECTRAL, and MM&PCA needed
substantially shorter runtimes and still performed reasonably well in comparison

with ADICyt. Note that, due to hardware and software differences, these numbers
may not be precisely comparable; the information is provided here to give

some sense of the differences in time requirements of these specific algorithm
implementations.

5.2.5 Combining Predictions

Similar to other data analysis settings (see [126] for a review), combining results
from different cell population identification methods provides improved accuracy
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over any individual method. The last row of each challenge’s section in Table 5.3

shows the results obtained by combining the results of all the submitted algorithms
(Ensemble Clustering). For all four challenges, this ensemble method resulted in

a higher overall F-measure and rank score than any of the individual algorithms
(Table 5.3).

Methods

The consensus clustering problem is defined as follows: given a set of partitions

(the ensemble), find a new partition P that minimizes the dissimilarity between P

and participating partitions. A partition M is defined as a binary matrix with each

column corresponding to a class label. The dissimilarity between a partition P and
a partition element of the ensemble Q is defined as

d(P,Q) = min
Π

||P−Q×Π||p

where || · ||p is the entry-wise p-norm. The permutation matrix provides a mapping
between corresponding classes. For example given three observations x,y,z, one

partition may label the observations as x ∈ A,y ∈ B,z ∈ C and another may label
the observations (with independent labels) as y ∈ α,x ∈ γ,c ∈ γ . The partitions are

in fact the same if we consider the classes as A = γ,B = α,C = γ . The permutation

matrix Π determines how the classes in P correspond to the classes in Q. When
p = 1, the measure is known as the Manhattan distance. This distance can be

calculated efficiently using linear programming methods. Once a dissimilarity
measure is defined, in our case, the Manhattan distance with p = 1, we must solve

the harder problem of finding the partition P∗ that minimizes the distance for all of
the partitions Q in the ensemble E.

P∗ ∈ argmin
P

∑
Q∈E

min
Π

||P−QΠ||1.

This is a known NP-hard problem (Multi-dimensional Assignment) so we used a
heuristic method, described by Hornik [56], that provides approximate solutions

for the consensus partition problem. The clue package [55] includes an
implementationl of this heuristic.
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Results

For all of the four challenges, this ensemble method resulted in a higher overall
F-measure and rank score than any of the individual algorithms (Figure 5.2). In

addition, ensemble clustering gave a higher F-measure for each of the individual
datasets in each challenge, with only three exceptions in Challenge 4 (Figures 5.1,

5.2, and 5.3).
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Figure 5.1: Rank scores of all individual algorithms (box plots) compared
with the ensemble clustering (red dots) in each dataset and challenge.
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Figure 5.2: Rank scores of all individual algorithms (box plots) are compared
with the ensemble clustering (red dots) across all challenges.

Ablation Analysis

We also investigated whether all of the algorithms are required to be included

in the ensemble clustering to ensure a high F-measure. Figure 5.4 shows the
change in F-measure as each algorithm was removed from the ensemble cluster

in order of their relative contribution, with the algorithm contributing the least to
the ensemble clustering results removed first. For example in Challenge 3, when
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only 4 algorithms were included in the ensemble (i.e., TCLUST, ADICyt, FLAME,

and SWIFT), the F-measure was still close to 0.95. Including two more algorithms
to the set resulted in a minor improvement, and after that, no improvements were

observed. Similar patterns were observed in the other challenges.
Although the absolute order differed in the ablation analysis, algorithms with

higher F-measures tended to be removed later (i.e., they contributed mroe to the
ensemble). For example, in Challenge 1 and 2 the top 2 algorithms were removed

last. Interestingly, in the 8th iteration, where only 5 algorithms are left in the

ensemble, the F-measure dropped dramatically indicating that even algorithms that
individually perform rather poorly can contribute to a good ensemble result.

We also performed the ablation analysis in the reversed order (i.e., the
algorithm with maximum contribution was removed first). Figure 5.5 demonstrates

the results. As expected, the algorithms with a higher F-measure tend to be
excluded earlier (confirming that they have contributed more to the ensemble).

5.2.6 Results with Refined Manual Gates

Without detailed guidance on the goals of FlowCAP, the data providers tended
to focus gating only on those populations of interest for their work and therefore

provided incomplete population delineation in many cases. In addition, by relying
on the single set of gates completed by the data providers, inconsistencies in

manual gating by different analysts were not taken into account. To address these
deficiencies, the HSCT and GvHD datasets were provided to eight individuals from

five different institutions who were instructed to try and identify all cell populations
discernible from the available data. These datasets were selected since they had

the highest and lowest overall F-measures across all algorithms representing the
best/worst cases for the algorithms.

A reference for evaluation of the algorithms was generated using a consensus of
all manual gates using ensemble clustering was calculated. Consider the mean F-

measure of each population in the consensus (across all of the manual gates). This
score provides a measurement for the amount of agreement among human experts

on every cell population in the consensus. Prevalent cell populations, in terms of
both absolute cell count and proportions, tended to have higher F-measures. Rare
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cell populations were more variable in classification consistency between manual

gaters. However, the cell populations with a high score also included a wide range
of cell frequencies (Figures 5.6, 5.7, and 5.8).

The consensus of manual gates was used to rank the algorithms. Comparison
of the algorithms started by the cell population in the entire dataset with the

best match across all manual gates and then gradually expanded to more cell
populations with a weaker match across the human analysts (Figure 5.9). Including

the cell populations with lower agreement across the human experts resulted

in a gradual reduction in F-measures of both manual gates and algorithms,
suggesting that certain populations were more difficult to resolve by both manual

and automated analysis, especially for the GvHD dataset. However, the overall
performance of algorithms for both datasets using these multiple sets of exhaustive

gates was generally consistent with our initial results (Table 5.3).
As an alternative to the overall F-measures, the reference clusters were used in a

per-population analysis to determine if certain cell populations were responsible for
high or low F-measures for the algorithms. Human consensus results were matched

across samples to the sample with maximum number of populations. Then, the
human consensus for each sample was used as a reference for matching of the

automated results of that sample. Pairwise F-measures between all algorithms and
manual gates for the HSCT dataset are shown in Figure 5.10. The dendrograms

were calculated using the complete-linkage clustering algorithm and the Euclidean
distance between the F-measures [114]. These results can be used to identify cell

populations that are responsible for high (or low) F-measures for further visual
investigation. For example, cell population #3 of Figure 5.10 demonstrates high

pairwise F-measures between all of the algorithms and manual gates, suggesting
that this cell population was correctly identified by most of the algorithms and

manual gates (Figure 5.11).
Panel B of Figure 5.12, however, represents a cell population that has only

been identified by manual gating. Figure 5.13 shows that this population (colored
in red) is generally identical to the cyan population in every channel but has a

lower FSC. This emphasizes the importance of designing methodologies that can
use background biological knowledge in the clustering process. In this case, the

human experts used their knowledge about the scatter channels to partition these
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cells into two different populations despite their similarity in every other channel.

The per-population analysis suggested that some algorithms had better matches
with the manual analysis for each population, but importantly, the best-matching

algorithms were not always the same for each population. This suggests that
different algorithms may have different abilities to resolve populations depending

on the exact structure of the data, which is not surprising given the wide range
of strategies utilized by the different algorithms. This may also explain why the

ensemble analysis matched the manual consensus more closely than any of the

individual algorithms for all cell populations.

5.3 Sample Classification

5.3.1 Structure of the Challenges

Another important use case for FCM analysis is the use of biomarker patterns in

FCM data for the purposes of sample classification. We assembled a benchmark
of three datasets in which the subjects/samples were associated with an external

variable that could be used as an independent measure of truth for sample
classification. The benchmark consisted of three datasets for: (1) studying the

effect of HIV exposure on 44 African infants using 6 tubes of 8 color assays (HIV-
exposed in utero, but uninfected (HEU) vs. unexposed (UE)); (2) diagnosis of acute

myeloid leukemia (AML) using 8 tubes of 5 color assays on 359 subjects provided
by a reference laboratory (AML vs. non-AML); (3) discriminating between two

antigen stimulation groups of post-HIV vaccine T-cells using two tubes of 8 color
assays on 48 subjects (Gag-stimulated vs. Env-stimulated): For each dataset,

half of the correct sample classifications were provided to the participants for
training purposes. The other half of the data was used as an independent cohort

for testing/validation. For the AML dataset, additional results where submitted
through the DREAM (Dialogue for Reverse Engineering Analysis and Methods)

[17, 79, 96, 115] initiative.
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Challenge 1: HIV-Exposed-Uninfected versus Un-exposed

The goal of this challenge was to find cell populations that can be used to
discriminate between HEU (n = 20) and UE (n = 24) infants. Blood samples were

taken at 6 months after birth and were left unstimulated (for control) or stimulated
with 6 Toll-like receptor molecules. In addition to raw FCS files, half of the subject

labels were provided for training purposes. Algorithms had to use this data to label
the rest of the samples. These labels were then used to evaluate your algorithms

performance.

Challenge 2: Acute Myeloid Leukaemia

The goal of this challenge was to find cell populations that can be used to

discriminate between AML positive (n = 43) and healthy donor (n = 316) patients.
Peripheral blood or bone marrow aspirate samples were collected over a 1 year

period using 8 tubes (tube #1 is an isotype control and #8 is unstained) with
different marker combinations. In addition to raw FCS files, half of the subject

labels were provided for training purposes. Your algorithm must use this data to

label the rest of the samples. These labels will be used to evaluate your algorithms
performance.

Challenge 3: Identification of Antigen Stimulation Group of Intracellular
Cytokine Staining of Post-HIV Vaccine Antigen Stimulated T-cells.

The goal of this challenge was to correctly label the antigen stimulation group
of post-HIV vaccine T-cells. The data set contains samples from 48 individuals

(column pub-id in the metadata). Each individual received an experimental HIV
vaccine. Samples were collected approximately 10 months later and T-cells

challenged with two antigens ENV-1-PTEG and GAG-1-PTEG, column antigen
in the metadata). The response of CD4+ and CD8+ T-cells was measured by

flow cytometry for each of these groups. The cells were found to respond
differently to the two antigen stimulations. This was essentially a classification

challenge. For training purposes we provided data from 24 individuals within
each group. The antigen stimulation label was provided (column antigen in the

metadata). The testing data (n = 24) did not have an antigen stimulation group
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label. Participants had to correctly identify the antigen stimulation group of the test

data. The complete data set consisted of 240 FCS files. The data was compensated,
transformed and partially gated (gated for singlets, live cells and lymphocytes).

We note that the data set contained positive and negative controls (sebctrl, negctrl)
which were not part of this challenge, and do not need to have an antigen group

label assigned to them to complete the challenge. Only the metadata rows where
the antigen code is missing had to be labelled correctly.

5.3.2 Classification F-measure

F-measure for classification is defined as the harmonic mean of sensitivity and

specificity (the additional “matching” step for clustering F-measure is not re-
quired). Sensitivity was defined as T P

T P+FN and specificity is defined as T N
T N+FP ,

where T P, T N, FP, and FN are true positives (e.g., and AML predicted as AML),
true negatives, false positives, and false negatives, respectively.

5.3.3 Algorithm Performance

A total of 43 submissions we received (as noted in Table 5.2). Fourteen of
these submissions were through the DREAM project. The sensitivity, specificity,

accuracy, and F-measure values on the testset (Table 5.4)show that for two of
the datasets (AML and HIV Vaccine Trials Network (HVTN)) many algorithms

were able to perfectly predict the external variables even under very conservative
conditions (i.e., using an independent test set as large as the trainingset). In the

first challenge, despite mostly accurate predictions on the trainingset, none of the
algorithms performed strongly on the testset.

5.3.4 Outlier Analysis

In all datasets, the misclassifications were uniformly distributed across the testsets,
except for one sample from the AML dataset. This suggests that no systematic

problem was causing the misclassifications. The only exception (sample #340
of the AML dataset) is illustrated in Figure 5.15(a). Visualization of the outlier

FCM data against typical AML and non-AML subjects suggests that the outlier,
like typical AML cases, had a sizable CD34+ population. However, the forward
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Table 5.4: Performance of algorithms in the sample classification challenges
on the validation cohort. Not all algorithms participated in all challenges.
Particularly, a large number of algorithms participated through the
DREAM project that only included the AML dataset.
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Challenge 1: HEUvsUE Challenge 2: AML Challenge 3: HVTN
FlowCAP

2DhistsSVM 0.091 0.91 0.50 0.17 0.95 1.00 0.99 0.97
BAD 1.00 1.00 1.00 1.00
EMMIXCYTOM 0.95 0.99 0.99 0.97
flowBin 0.000 0.91 0.45 0.00 0.30 1.00 0.92 0.46
flowCore-flowStats 0.455 0.64 0.55 0.53 1.00 1.00 1.00 1.00
flowPeakssvm 1.00 1.00 1.00 1.00
flowType 0.636 0.55 0.59 0.59 0.95 0.99 0.99 0.97 0.71 0.90 0.81 0.80
flowType-FeaLect 0.273 0.45 0.36 0.34 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Kmeanssvm 1.00 1.00 1.00 1.00
PBSC 0.545 0.55 0.55 0.55 0.75 0.97 0.94 0.85 0.95 0.95 0.95 0.95
PRAMS 1.00 1.00 1.00 1.00
PramSpheres 0.364 0.36 0.36 0.36 0.90 0.90 0.90 0.90
RandomSpheres 0.95 0.99 0.99 0.97
SORT 1.00 1.00 1.00 1.00
SPADE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SWIFT 0.545 0.73 0.64 0.62 1.00 1.00 1.00 1.00

DREAM
admire-lvq 1.00 1.00 1.00 1.00
bcb 1.00 1.00 1.00 1.00
biolobe 1.00 1.00 1.00 1.00
cihc 0.95 1.00 0.99 0.97
daltons 1.00 1.00 1.00 1.00
DREAM–A 0.95 0.99 0.99 0.97
DREAM–B 0.85 1.00 0.98 0.92
DREAM–C 0.85 1.00 0.98 0.92
DREAM–D 0.95 0.99 0.99 0.97
fivebyfive 1.00 0.99 0.99 1.00
jkjg 1.00 1.00 1.00 1.00
SPCA+GLM 0.85 0.99 0.97 0.91
team21 1.00 1.00 1.00 1.00
uqs 0.95 1.00 0.99 0.97

scatter values of this population overlap with normal lymphocytes (Figure 5.15

panels (B) to (G)). Obtaining additional information on this patient was not
possible. However, independent analysis of the FCM assays by a hematopathologist

suggested two possibilities that would explain why this patient was an outlier: The
forward scatter (roughly proportional to the diameter of the cell) of the blasts was

lower than that of the other AML patients. The size of leukemic blasts shows wide
variations from patient to patient and even within a given patient, being medium to

large in size in most [6], and very small “microblastic” cells in rare patients (e.g.,

[72, 120]). The other possibility is that given the lower blasts frequency (16.7%),
this patient may have been diagnosed with a high grade myelodysplasia (blasts 10-

19%), a preleukemic condition, rather than AML, which requires a blast count of
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>20% for diagnosis. Alternately, the patient may have AML by morphological

blast count, but flow cytometry may be underestimating the blast frequency. This
can result from hemodilution of the bone marrow specimen or presence of cell

debris or unlyzed red blood cells [94].

5.3.5 Automated Methods Select Cell Populations Identified as
Predictive Through Manual Analysis

Previous manual gating and analysis of the HVTN data identified the CD4+/IL2+

T–cell subpopulation as discriminative between Env- and Gag-stimulated samples,
with the proportion of CD4+/IL2+ cells in the Env-stimulated samples systemati-

cally higher than the proportion of CD4+/IL2+ cells in the Gag- stimulated sam-
ples. This effect was not observed in manually gated placebo data, suggesting it

is vaccine specific, and is consistent with the gp120 Env protein boost (the only
protein component of this vaccine) given to individuals participating in this study.

Interestingly, examination of the features selected by automated gating methods
for prediction between Env- and Gag-stimulated samples revealed that, of the eight

methods that could directly identify predictive features, four selected features con-
taining the CD4+/IL2+ phenotype. Furthermore, the flowStats/flowCore method,

which was designed to be directly comparable to the manual gating scheme, iden-
tified the exact same CD4+/IL2+ population as predictive of stimulation with ac-

curacy comparable to that of manual gating and like manual gating, failed to detect
the effect in the placebo group in a post–hoc analysis. The sample classifications

using the CD4+IL2+ population gated manually were slightly less accurate than

the automatic results obtained from the same population. Post-hoc examination of
the data revealed that several of the control and stimulated samples in the data set

were matched from different experimental runs, suggesting a possible run–specific
effect. When these samples were filtered out of the analysis, manual gating was

able to perform as accurately as the algorithms, suggesting that algorithmic ap-
proach was more robust to the technical variation.
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5.4 Discussion
Two sets of benchmark FCM data were assembled through the FlowCAP project.

These benchmark data sets were used to evaluate automated gating methods based
on their ability to either recapitulate cell populations defined through manual

gating by human experts, or their ability to classify samples based on external
variables. Seventy-seven different computational pipeline/challenge combinations

were evaluated through these efforts.
In the population identification challenges, pre-defined populations identified

by human experts using traditional manual gating approaches were used as the
current best practice for evaluating the performance of the current state–of–the–art

automated gating algorithms for multi–dimensional FCM data. Although there was
general agreement between populations identified by the top algorithms and the

results from manual analysis, as illustrated by high F-measure values, it was not
possible to identify a single top performing algorithm across all data sets.

In general, demonstrating superiority of a clustering method is difficult due
to lack of a ground truth [103]. In the cell population identification challenges,

populations identified using traditional manual gating by the data providers were
used to establish the reference data for the initial comparison, since it represents

the current best practice for the analysis of FCM data. However, manual gating is
known to be subjective and potentially error-prone even in the hands of domain

experts [73]. Therefore, to increase the robustness of the results, eight sets of
additional manual gates by independent experts were produced. The GvHD and

HSCT datasets (the datasets with the lowest and highest F-measures, respectively)
were chosen for this experiment. The human experts were directed to perform

”exhaustive” manual gating (i.e., attempt to identify as many cell populations as
possible, subject to extensive back-gating). The results were generally consistent

with those of the initial manual analysis. For example, the top four algorithms for
the HSCT dataset were FLAME, ADICyt, flowMeans, and MM&PCA for both the

initial and the refined manual gates.
For the GvHD dataset, there was significant disagreement between the algo-

rithms as well as between the manual gates produced by different analysts. How-
ever, the results were still consistent with the original results with only minor vari-
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ations. Per-population analysis of this dataset revealed cell populations that were

merged by most of the algorithms to other cell populations with generally similar
marker expression patterns but separated by the manual gates based on a subset

of the markers. This emphasizes the importance of designing methodologies that
can use background biological knowledge in the clustering process. In this case,

human analysts used their knowledge about the scatter channels to partition these
cells into two different populations despite their similarity in every other channel.

The mean F-measure values and rank scores showed that the combined

predictions obtained by ensemble clustering were more accurate than the results
from individual algorithms. This is particularly important for computational

analysis, because in practice it may not be feasible to hire multiple experts to carry
out multiple manual gating; however, it is realistically possible to run automated

ensemble methods at minimal cost. The ablation analysis confirmed that increasing
the number of algorithms in the ensemble resulted in improved predictions up to

a certain point (perfect F-measure was never achieved). When algorithms with
high scores were more frequent, the ensemble clustering performed better and was

less sensitive to the exclusion of several of the algorithms (challenges 1 and 3
in contrast to 2 and 4). This suggests that having a number of good algorithms

is necessary to obtain good ensemble results, but there might be a point after
which adding more algorithms does not significantly improve the results. Similar

results were observed using the refined manual gates. Particularly, when a large
number of algorithms with high F-measures were available (the HSCT dataset

and the top 50 most consistently identified populations in the GvHD dataset), the
ensemble clustering out-performed the individual algorithms. When the individual

algorithms were performing poorly (the remaining cell populations in the GvHD
dataset), the ensemble clustering’s performance decreased as well.

In the sample classification challenges external variables were used as a
reference for evaluation of the algorithms. Many of the algorithms were able to

achieve a high performance in discriminating between AML and non–AML and
between Env- and Gag-stimulated samples suggesting that automated methods

performed extremely well for these sample classification use cases. In the HEU
vs. UE study, the algorithms were not able to correctly label the majority of

the test/validation set. Manual analysis of this dataset by expert flow cytometry
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analysts did not identify any statistically significant differences [112]. This is

not surprising, since all samples were derived from HIV-negative newborns, with
HEU samples from individuals that had been exposed to HIV in utero but were

uninfected, and UE samples from individuals that had never been exposed. In a
way, this negative example provides further support for the effectiveness of these

automated approaches, since they did not generate positive classification results
when none likely exist. In the AML challenge, one sample was identified as an

outlier as it was misclassified by approximately half (12) of the methods, while

most samples were misclassified by only one or two methods. This case was
then compared to typical AML and non–AML cases by a clinical expert and was

confirmed as a clinically outlier case, potentially with pre-leukemia. A post-hoc
analysis of the HVTN dataset was performed to compare the features selected by

manual gating against those selected by some of the automated gating methods.
Additional confirmation for these findings was provided by comparison against

placebo samples that were not available to the participants. The results of this
post-hoc study demonstrated that automated gating can perform as well as manual

gating, and even exceed the performance of manual gating in some cases, as
evidenced by the ability of automated gating to maintain accuracy in presence of

technical variations that affect manual gating results.
Every approach to automated flow cytometry published in the last five years,

as well as several unpublished methods, participated in at least one of the
FlowCAP challenges. Participation by the flow informatics community was

not only widespread, it was also collaborative. This collaboration included the
sharing of ideas, and the distribution of work to avoid unintended duplication of

efforts. The development of flow informatics coincided with the expansion in
the open source software philosophy, and this mindset has been widely adopted

by the flow informatics community. This open access philosophy has most
certainly contributed to the rapid maturation of these novel methods. One of

the challenges of the second competition was organized in collaboration with
the DREAM (Dialogue for Reverse Engineering Analysis and Methods) initiative

[17, 79, 96, 115]. As FlowCAP does with the flow cytometry community, DREAM
aims at nucleating the systems biology community around important computational

biology problems. Given the growing use of flow cytometry data in systems
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biology research, the collaboration between DREAM and FlowCAP was a natural

and fruitful one.
Taken together, the data presented here suggest that the current state of the art

FCM analysis algorithms perform very well. However, our ability to make stronger
evaluations is limited by two specific shortcomings in the challenges. First, for

sample classification, instead of probabilities of each subject belonging to each
class, the participants were asked to provide discrete outputs (class names). This

made it impossible to perform receiver operating characteristic (ROC) analysis

and potentially decreased the robustness of the study. Second, for cell population
identification, the data provided to the participants was pre-processed, which could

potentially be a source of bias. For example, in some datasets the analysis was
limited to the lymphocyte population, and other cells were manually excluded. In

some cases, for consistency with manual gating, algorithms were forced to process
data that was improperly transformed. This was disadvantageous to the algorithms

when, for example, artifactual clusters of cells were introduced [80, 100]. For
example, in some cases the log transformation was used rather than the logicle

resulting in a large number of events on the axes [80].
We identified several challenges that remain to be addressed in the future: 1)

Many of the algorithms evaluated in the sample classification challenges relied on
matching cell populations across multiple samples. Several alternatives for this

process have been proposed (e.g., see [67, 97]), but the performances of population
matching methods have never been compared objectively. 2) In retrospect, the data

used for the sample classification challenges appeared to be overly challenging
(HEU vs. UE) or overly simple (AML and HVTN) for the algorithms. The

analysis of these algorithms should be extended to evaluation using datasets
with correlation structures that can be more challenging for these algorithms to

reveal their potential shortcomings in more details. 3) Our preliminary results
(post-hoc analysis of HVTN) suggest that computational methods can outperform

humans in handling technical variation. This needs to be investigated in more
detail by providing benchmarks of cross–institutional datasets with standardized

panels (e.g., those produced by the human immunology project [75]) to design
computational pipelines that are more robust to technical variation. 4) The runtimes

in the cell population identification challenges were measured using different
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hardware and software environment. While this provides some estimate of the

time requirements, direct comparison was not possible. In the sample classification
challenges, the situation was further complicated by having separate training and

testing procedures which often included visual exploration of the data by the
algorithm developers. In future challenges, we intend to address this problem

by introducing standardized interfaces and data-formats between the participating
software and the evaluation pipeline so that the evaluation can be performed

in a unified hardware/software setting. In addition to providing an objective

comparison of time requirements, this will also facilitate independent reproduction
of the results.

5.4.1 Availability

The display items presented here can be fully reproduced using the scripts provided
on the FlowCAP website7. Annotated raw data using MIFlowCyt descriptions [68]

is available through a public repository sponsored by the International Society for
Advancement of Cytometry (FlowRepository.org) using the following experiment

IDs: FR-FCM-ZZY2 (GvHD), FR-FCM-ZZYY (DLBCL), FR-FCM-ZZY3 (WNV),
FR-FCM-ZZY6 (HSCT), FR-FCM-ZZYZ (ND), FR-FCM-ZZZU (HEUvsUE), FR-

FCM-ZZYA (AML), and FR-FCM-ZZZV (HVTN).

7http://flowcap.flowsite.org/codeanddata
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Figure 5.3: Rank scores and runtimes (per CPU per sample) for each algo-
rithm/challenge. The runtime of the ensemble clustering methods is not
included, but it would be close to the sum of the runtimes of all other
algorithms.
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Figure 5.4: Ablation analysis results. The algorithm are listed in order
of impact, from lowest to highest, on the F-measure value for each
challenge, and the respective F-measure of the combined predictions
indicated on the y-axis. Ensemble clustering for less than 3 algorithms
is undefined for the CLUE package, therefore, the last two steps (where
2 and 1 algorithms are left, respectively) are not shown in this figure.
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Figure 5.5: Reversed Ablation analysis results. The algorithm with maxi-
mum contribution at each step of the ablation analysis (for each chal-
lenge) and the respective F-measure of the combined predictions are
listed from highest to lowest. Ensemble clustering for less than 3 algo-
rithms is undefined for the CLUE package. Therefore, the last two steps
(where 2 and 1 algorithms are left, respectively) are not shown in this
figure.
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Figure 5.6: Correlation between F-measure value and cell population size.
These plots show the average F-measures versus the size of the cell
population across the samples in the two datasets for all eight sets of
manual gates. Generally, these data suggest that there is a stronger
consensus among humans when the cell population is larger. Agreement
among independent human gaters can also be found for some small cell
populations but not for others.

Absolute Cell CountM
ea

n 
P

er
−

P
op

ul
at

io
n 

R
ef

er
en

ce
 F

m
ea

su
re

 A
cr

os
s 

A
ll 

H
um

an
s

    0  5000 10000 15000 20000 25000

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(A) GvHD
Absolute Cell CountM

ea
n 

P
er

−
P

op
ul

at
io

n 
R

ef
er

en
ce

 F
m

ea
su

re
 A

cr
os

s 
A

ll 
H

um
an

s

   0 2000 4000 6000 8000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(B) HSCT

Figure 5.7: Same as Figure 5.6 using absolute cell count instead of cell
proportion.

99



log(Cell Proportion)M
ea

n 
P

er
−

P
op

ul
at

io
n 

R
ef

er
en

ce
 F

m
ea

su
re

 A
cr

os
s 

A
ll 

H
um

an
s

−10  −8  −6  −4  −2   0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(A) GvHD
log(Cell Proportion)M

ea
n 

P
er

−
P

op
ul

at
io

n 
R

ef
er

en
ce

 F
m

ea
su

re
 A

cr
os

s 
A

ll 
H

um
an

s

−8 −6 −4 −2  0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(B) HSCT

Figure 5.8: Same as Figure 5.6 on a log scale.
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Figure 5.9: Comparison of algorithms and manual gates using the consensus
of humans expert manual gates. For the (A) GvHD and (B) HSCT
datasets, the few reference populations that match all of the manual
gates strongly (left) resulted in high F-measure values. Adding more
cell populations with lower consistency among manual gates decreased
the F-measures gradually.
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(E) HSCT Reference Cell Population #5

Figure 5.10: Per population pair-wise comparisons of manual gating and algorithm results.
Average F-measures of all pairs of results for the cell populations across all samples
in the HSCT dataset was determined (i.e., one heatmap for every cell population in
the reference). The manual gate consensus for each sample was used as a reference
for matching of the automated results of that sample. Pair-wise F-measures between
all algorithms and manual gates for the HSCT dataset are shown. The dendrogram
groups the algorithms/manual gates based on the similarities between their pair-wise
F-measures.
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Figure 5.11: Scatter plot of Sample 26 of the HSCT dataset (the sample with
maximum number of reference cell populations) for the third popula-
tion for which a relatively high agreement between all algorithms and
manual gates have been observed (Figure 5.10, Panel C). In this plot,
algorithm results are partitioned with green ellipses, and manual gating
results are partitioned with red ellipses.
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(C) GvHD Reference Cell Population #3
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(D) GvHD Reference Cell Population #4
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(E) GvHD Reference Cell Population #5

Figure 5.12: Similar to Figure 5.10 for the GvHD dataset.
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Figure 5.13: Scatter plot of Sample 1 of the GvHD dataset (the sample with
maximum number of reference cell populations). Colors are as follow
(can be matched to the panels of Figure 5.12): 1-black, 2-red, 3-
green, 4-blue, and 5-cyan. The red population has been consistently
missed by all of the algorithms and consistently identified by most of
the manual gates (Figure 5.12 Panel B). The only major difference
between the red and the cyan population is in the forward scatter
channel (FSC.H).
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Figure 5.14: Forward and side scatters of the sample visualized in Figure
5.13 to confirm the existence of two different cell populations (red and
cyan). Deadcells (low FSC.H) have been manually removed)
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Figure 5.15: Outlier AML subject, detected by the algorithms. (A) Total number
of misclassifications for each sample in the test-set (samples #180 #359) of
the AML dataset is presented. Sample #340 was frequently misclassified.
FSC/SSC (B-D) and FSC/CD34 (E-G) scatter plots of representative Normal
(B & E) and AML (C & F) samples and the outlier (D & G) are shown,
with the CD34+ cells highlighted in red (B) to (G). Cell proportions of the
CD34+ population are reported as Blast freq. percentages. The outlier sample
appears to be different from typical AML and normal samples in terms of both
the frequency of CD34+ cells and the MFI of forward scatter.
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Chapter 6

Conclusions and Future Work

6.1 Summary
High-dimensional flow cytometry is routinely used for exploratory analysis of

the immune system. However, in absence of proper data analysis methods,
hypothesis driven manual gating has been used for exploring a limited number

of immunophenotypes [71]. Thus, the value of these high-content technologies
has been largely wasted. While several computational pipelines existed [8], due to

several issues discussed in Chapters 2, 3, and 4 (including high time requirements,
lack of mechanisms for incorporating background biological knowledge and

dependence on subjective cluster matching) their application to real world datasets
were extremely limited [71].

In this work, I developed a computational pipeline for exploratory analysis
of high-dimensional FCM assays. The first step of the pipeline is a cell

population identification algorithm that combined the low time-complexity of K-
means clustering with the robustness of Gaussian mixture models to automatically

identify non-convex cell populations. The original K-means algorithm [69]
requires the number of clusters to be pre-identified, is very sensitive to the

initialization strategy, and is limited to spherical cell populations. More robust
statistical mixture models were used to address these issues at the cost of a

significantly higher runtime (to the extend that analysis of tens of parameters

measured across millions of cells was unfeasible). In Chapter 2, I presented
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results suggesting that a combination of K-means clustering and post-processing

using a statistical model (called flowMeans) can be as accurate as statistical
mixture modeling, yet significantly faster. One of the limitations of flowMeans

is the sensitivity of the final results to the initial number of clusters for K-means.
While this sensitivity is much lower than the sensitivity to the actual number of

cell populations or the initialization of K-means cluster centers, it can still be
problematic for some use-cases. Since the development of flowMeans, at least one

new cell population identification algorithm has been published [44], and more

will be published in the future. However, due to the subjective nature of the cell
population identification problem, at least one free parameter has to exist for each

of these algorithm to enable them to adjust to the requirements of the user. As
discussed in the next section, increasing the number of free parameters that control

different aspects of the cell populations and then automatically optimizing them is
a very interesting direction for future work.

Exploratory analysis of high-content FCM assays of large cohorts using multi-
dimensional clustering algorithms is limited by several factors: the cell populations

identified by these tools need to be matched across several samples extracted from
different sources (e.g., patients) in a subjective manner, incorporating human ex-

perts’ knowledge for identification of rare cell populations is difficult, and little in-
formation will be provided about the contributions of different markers to the final

results. In Chapter 3, I proposed a new cell population identification strategy based
on combining one-dimensional partitions for production of multidimensional cell

populations. Human experts’ knowledge of specific cell populations can be easily
incorporated into the one dimensional analysis and the meta-clustering problem

will be significantly easier to solve as cell populations are being matched in one
dimension at a time. In addition, when combining single dimensional gates to gen-

erate multidimensional immunophenotypes, this approach considered all possible
combinations including those that do not involve some of the markers. This enabled

our statistical analysis to study the effect of each marker on the characteristics of a
cell population of interest.

One of the main limitations of this approach is the assumption that the
markers can be analyzed independently. Biological relationships can exist between

these markers that would challenge this assumption. More importantly, spectral
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overlap between the fluorochromes conjugated to the antibodies can decrease

the independence of the measurements. To avoid these problems, proper panel
design, quality control, and compensation for spectral overlap is necessary for this

pipeline. Another limitation of this approach is the time and memory requirement
of analyzing a large number of markers. However, this can be controlled by

limiting the depth of the analysis (the maximum number of markers included in
an immunophenotype) depending on the availability of computational resources.

While considering all combinations of cell populations allowed a more com-

plete analysis than previously possible, it also resulted in a very large hit-list of po-
tentially interesting immunophenotypes (e.g., 101 in the study described in Chap-

ter 3). Because we allowed exclusion of certain markers, these cell populations
often overlapped in multiple complicated ways. For example, CD4+CD8− cells

were also CD4+. They also were very likely to have a significant overlap with
CD3+CD4+. In Chapter 4, I described the last step of the pipeline that character-

izes the immunophenotypes in terms of the markers involved, and organizes them
in a hierarchy using their most important (in terms of correlation with an external

outcome) parent population. This approach not only provided a better visualization
of the results, but also helped control the trade-off between the number of markers

required for measurement of an immunophenotype and the strength of the correla-
tion with the clinical outcome. This is particularly important in settings where the

complicated instruments for high-dimensional assays are not available including in
poor countries (particularly important for TB and HIV), highly regulated clinical

settings, and for identification of targets for new therapies.
This pipeline was primarily applied to a large dataset of 466 HIV+ subjects.

PBMCs were extracted at the time of infection and were analyzed by a 14 color
panel including 13 surface markers and KI-67. The final clinical outcome of the

patients (time to AIDS, death, or initiation of HAART) was also available. The goal
of the study was to find cell populations that could predict the clinical outcome.

The dataset was previously analyzed manually, resulting in identification of two
cell populations with a modest correlation with the clinical outcome. Using the

pipeline described above, not only we reproduced these two cell populations, but
also identified a hit-list of 101 immunophenotypes correlated with the outcome.

After analysis of the overlapping sets these were narrowed down to three main
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hierarchies of cell populations with statistically significant correlations with the

clinical outcome much stronger than those identified manually.
Before the development of this pipeline, for most new use-cases the devel-

opment of a new pipeline (or extensive customization of existing pipelines) was
necessary in most practical settings (e.g., [9]). The pipeline presented here, how-

ever, is very robust and flexible. For example, it can work with different types
of clinical or biological outcomes, different statistical tests, and any clustering al-

gorithm. In fact, currently it is being used extensively in the Brinkman lab for

analysis of a wide range of datasets, including HIV (in different settings in col-
laboration with different groups), several subtypes of Leukemia and Lymphoma,

Tuberculosis, Parkinson’s disease, kidney transplantation rejectors, and different
inflammatory diseases. In most cases, these studies resulted in identification of

novel cell populations missed by previous manual analysis by the labs that pro-
duced these datasets. In others, computational analysis was used as a preliminary

experiment to guide the manual gating strategy.
In most bioinformatics works on clinical data, designing a classifier that can

successfully label different clinical outcomes is one of the most challenging step in
exploratory analysis. For example, in gene expression analysis, once the important

features used by the classifier have been identified, a clear hit-list of differentially
expressed genes will be available for gene ontology analysis and confirmatory

studies. For analysis of FCM data, similarly, computational efforts have been
mostly focused on development of multi-variate models for cross-sample studies

(in addition to cell population identification compared against manual gates).
However, due to the hierarchical nature of cell types, identification of one or more

cell populations that can discriminate between groups of patients is insufficient for
interpretation of the results. The pipeline presented in this work, to the best of my

knowledge, is the only pipeline that focuses on characterization of the identified
cell populations in terms of the markers involved.

However, for cases where an accurate classification is more important than
identification of specific immunophenotypes, this pipeline can be used for multi-

variate supervised learning. For example, I used a classifier to combine the predic-
tive power of the single dimensional immunophenotypes to produce a more robust

multivariate model. The classifier used was a linear model with L1-constrains on
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the weights. FeaLect, a feature selection methodology developed in the Brinkman

group, was used for selecting the best immunophenotypes for the multivariate
model [129]. FeaLect is a wrapper function for the linear model (i.e., selects the

features based on combinations of their predictive powers as opposed to filter func-
tions that can only look at one feature at a time). As described in Chapter 5, this

pipeline resulted in perfect classifications of every single sample in both the HVTN
and AML datasets in FlowCAP-II.

FlowCAP is a highly collaborative project with two main goals: 1) to provide

guidance to the end users regarding the proper use of computational tools for
analysis of FCM data; 2) to identify the shortcomings of existing tools to facilitate

the development of new approaches by the informatics community. Chapter 5
includes the results of the first two FlowCAP competitions in 2010 and 2011.

In FlowCAP-I we focused on comparison of algorithms for identification of
cell populations. The evaluation was performed against the results of the current

best practice - cell populations identified by expert human analysts. Five different
datasets were used for the evaluation. We found that manual tuning of the free

parameters of the algorithms by the developers does not necessarily result in an
improvement. In fact, in some cases, after human intervention the similarities to

manual analysis decreased. We also found that generally, providing the expected
number of cell populations improved the results. However, this information is

usually not available in exploratory settings. Also, our results suggested that
providing a small subset of the manual gates to some of the algorithms as a training-

set can improve the accuracies significantly. Finally, we found that a consensus
of fully automated algorithms produced by an ensemble clustering algorithm out

performed every single one of the individual algorithms over a wide range of
datasets.

To investigate the sensitivity of these results to our human expert analysis,
we recruited eight additional analysts to manually gate parts of our dataset. The

consensus of these manual gates (again, produced using the ensemble clustering
algorithm) was used as our refined reference cell populations. Evaluation of the

algorithms using this new reference confirmed our initial results with only minor
variations.

While the comparison against manual gating has been helpful in demonstrating
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the practical utility of these algorithms, it is important to note that it will never

be a good gold standard for evaluation of these algorithms. Clustering (and cell
population identification) is a subjective and ill-defined problem. For example, a

very important rare cell population for one application can be considered noise in
another. Increasing the number of manual gates improves the robustness of these

evaluations but still penalizes the algorithms in cases where they have performed
better than the manual gates (e.g., algorithms might be penalized for identification

of a small cell population that has been missed by the majority of the expert

analysts). The only solution to this problem is an indirect evaluation using an
external biological or clinical outcome.

In the second FlowCAP competition, we therefore focused on evaluation of
computational pipelines in prediction of external variables. The project consisted

of three binary classification challenges based on real-world datasets. In each case,
the dataset were randomly and uniformly divided into a training- and a test-set.

The external variable was provided to the participants only for the training-set and
the test-set was used as an independent validation cohort.

Overall, the participating computational sample classification methods per-
formed stronger than expected. For example, one of the dataset included PBMCs

from a post-HIV-vaccination study. The goal of the challenge was to identify T-cell
population that could discriminate between two antigen stimulation groups (Env

and Gag). A large fraction of the algorithms were able to classify these samples
perfectly. These results were surprising since previous manual analysis of the same

dataset achieved a lower accuracy. Further inspection of the dataset revealed a tech-
nical bias in some of the assays which was contributing to the lower performance

of the manual analysis. Exclusion of these samples resulted in a perfect classifi-
cation by the manual analysts. These results suggest that computational methods

can match, and in some cases exceed, the ability of expert humans in exploratory
analysis of FCM data.

While FlowCAP is not the first project to report superiority of computational
analysis of FCM data in comparison to manual analysis, it is unique in four

aspects: First, the evaluation was performed by an independent group, ensuring
that all participants had equal access to the data. Second, a wide range of

dataset representing different real-world use-cases were used in the evaluation
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process. Third, the correct answers were provided to the participants only after the

submission of the final results to minimize the effect of over-tuning of parameters.
Fourth, the highly collaborative design of the project guaranteed the quality of the

submitted results as they were produced by the groups that originally developed
the respective software.

6.2 Future Work
This thesis was mostly focused on exploratory analysis of clinical data. However,
the pipeline presented here can be modified for a wide range of use-cases, including

diagnosis, marker panel design, and guiding Fluorescence-activated Cell Sorting
(FACS)-based sorting strategies:

The pipeline presented here can be used for design of accurate diagnosis tests
using multivariate classifiers. Some preliminary results were provided through the

flowType-FeaLect pipeline in FlowCAP-II, but much remains to be done in the
future. Particularly, numerous free parameters throughout the pipeline could be

optimized using automated parameter tuning approaches for a higher classification
accuracy [54].

For cell population identification, ensemble clustering algorithms specifically
optimized for FCM data remain to be designed, implemented, and tested. The

matching of cell populations across multiple samples, especially in presence of
technical variations [74] from multi-center studies which are becoming increas-

ingly more popular, is another important subject that can improve the quality of
computational methods for FCM data. Finally, as FlowCAP-I suggested, cell pop-

ulation identification algorithms that can learn from examples provided by human
experts can be significantly more accurate than unsupervised algorithms, particu-

larly when specific cell populations are of interest. However, very few algorithms
in FlowCAP were able to learn from manual gating examples, and there probably

is room for further improvements.
Another potential use-case for this pipeline is for designing marker panels.

Traditionally, FCM marker panels are designed based on the hypothesis of the
study and previously produced results from the literature. For example, for

studying T cells in HIV+ patients, based on previous biological knowledge,
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markers like CD3, CD4 and CD8 are very widely used. This is no longer feasible,

due to the exploratory nature of modern FCM analysis of complex cellular systems,
such as cellular signalling. High-dimensional FCM together with RchyOptimyx

can be used to design low-color panels guided by high-content experiments. We
believe this approach will be particularly useful for cell sorting applications. For

example, sorting based on intracellular markers for further in vivo or in vitro studies
is not currently possible. However, high-dimensional FCM and RchyOptimyx can

be used to design panels of surface markers for sorting specific cell populations,

guided by intracellular signatures. Several preliminary examples using a mass
cytometry dataset were provided in Chapter 4.

The FlowCAP project is an on-going work with several paths actively being
considered for future competitions. First, we will try to analyze more sample

classification datasets with more challenging clinical outcomes and a higher
number of dimensions and cells. Second, several other aspects of FCM data

analysis should be explored by FlowCAP including cross-sample cell population
matching, identification of specific cell populations, and data analysis in presence

of technical variation from multi-center studies. The long term plan for FlowCAP
is to convert it to a real-time and online resource for both computational and

biological scientists to access real datasets and find suitable software tools,
respectively.

To understand the pathogenesis of malignancies, the function of different
cellular phenotypes must be analyzed. For more complex cellular systems, such

as those involved in cancer, a very wide range of markers must be measured for
every single cell. In addition, automated high-throughput FCM will enable us to

perform several high-dimensional assays per sample. Although I provide a strong
pipeline for analysis of these datasets, these new technologies will produce datasets

even more complex than those discussed in this work in terms of the number
of markers, cells, patients, and time points. Only upon further improvement of

these computational tools these technologies can be used to their full potential, for
example, to characterize a wide range of drug effects on live cells for designing

personalized therapeutic strategies.
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