
TOWARDS A HIGH-PERFORMANCE SCALABLE 

STORAGE SYSTEM FOR WORKFLOW 

APPLICATIONS 

 

by 

 

Emalayan Vairavanathan 

 

BSc.Eng (Hons), University of Moratuwa, 2006 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF APPLIED SCIENCE 

 

in 

 

THE FACULTY OF GRADUATE STUDIES 

 

(Electrical and Computer Engineering) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

 

(Vancouver) 

 

 

 

December 2012 

 

© Emalayan Vairavanathan, 2012 



 ii 

Abstract 

 

This thesis is motivated by the fact that there is an urgent need to run scientific many-task 

workflow applications efficiently and easily on large-scale machines. These applications run at 

large scale on supercomputers and perform large amount of storage I/O. The storage system is 

identified as the main bottleneck on large-scale computers for many-task workflow applications. 

The goal of this thesis is to identify the opportunities and recommend solutions to improve the 

performance of many-task workflow applications.  

To achieve the above goal this thesis proposes a two-step solution. As the first step, this 

thesis recommends and designs an intermediate storage system which aggregates the resources 

available on compute nodes (local disk, SSDs, memory and network) and provides a minimal 

POSIX API required by workflow applications. An intermediate storage system facilitates a high 

performance scratch space for workflow applications and allows the applications to scale 

transparently compare to a regular shared storage systems. As the second step, this thesis 

performs a limit study on workflow-aware storage system: an intermediate storage that is tuned 

depending on I/O characteristics of a workflow application.  

Evaluation with synthetic and real workflow applications highlights the significant 

performance gain attainable by an intermediate storage system and a workflow-aware storage 

system. The evaluation shows that an intermediate storage can bring up to 2x performance gain 

compared to a central storage system. Further a workflow-aware storage system can bring up to 

3x performance gain compared to a vanilla distributed storage system that is unaware of the 

possible file-level optimizations. The findings of this research prove that an intermediate storage 

system with minimal POSIX API is a promising direction to provide a high-performance scalable 

storage system for workflow applications. The findings also strongly advocate and provide 

design recommendations for a workflow-aware storage system to achieve better performance 

gain. 

 



 iii 

Table of Contents 

Abstract .................................................................................................................................... ii 

Table of Contents ................................................................................................................... iii 

List of Tables ........................................................................................................................... v 

List of Figures ......................................................................................................................... vi 

Acknowledgements .............................................................................................................. viii 

Dedication ............................................................................................................................... ix 

1. Introduction ......................................................................................................................... 1 

1.1 Motivation ............................................................................................................................. 2 

1.2 The Problem .......................................................................................................................... 4 

1.3 The Opportunities ................................................................................................................. 5 

1.4 Proposed Solution ................................................................................................................. 6 

1.5 Methodology ......................................................................................................................... 7 

1.6 Contributions ......................................................................................................................... 8 

1.7 Research Publications ........................................................................................................... 9 

1.8 Thesis Structure................................................................................................................... 10 

2. Background and Related Work ....................................................................................... 12 

2.1 Background ......................................................................................................................... 12 

2.1.1 Software Stack ................................................................................................................ 12 

2.1.2 Hardware Platform Example .......................................................................................... 14 

2.2 Related Work – Storage Systems ........................................................................................ 16 

2.2.1 Generic Distributed Storage Systems ............................................................................. 17 

2.2.2 Application-optimized Storage Systems ......................................................................... 17 

2.2.3 Highly Configurable Storage Systems ............................................................................ 18 

2.2.4 Co-designed Data Management Systems ....................................................................... 18 

3. An Intermediate Storage System: Alleviating the I/O Bottleneck................................ 20 

3.1 Intermediate Storage System Requirements ....................................................................... 21 

3.2 Intermediate Storage System Design and Implementation ................................................. 22 

3.3 Intermediate Storage Evaluation ......................................................................................... 24 

3.3.1 Synthetic Benchmark ...................................................................................................... 26 



 iv 

3.3.2 modFTDock .................................................................................................................... 27 

4. A Case for Workflow-Aware Storage Systems .............................................................. 28 

4.1 The Opportunities ............................................................................................................... 28 

4.2 Data Access Patterns in Workflow Applications ................................................................ 30 

4.3 Determining the Data Access Patterns ................................................................................ 34 

5. Workflow-aware storage system: An Opportunity Study ............................................ 36 

5.1 Hacks:  Customizing MosaStore ......................................................................................... 36 

5.2 Evaluation ........................................................................................................................... 38 

5.2.1 Micro Benchmark: The Impact of Locality .................................................................... 39 

5.2.2 Synthetic Benchmarks .................................................................................................... 41 

5.2.2.1 Pipeline Pattern Evaluation .................................................................................... 44 

5.2.2.2 Broadcast Pattern Evaluation ................................................................................. 46 

5.2.2.3 Reduce Pattern Evaluation ..................................................................................... 48 

5.2.2.4 Scatter Pattern Evaluation ...................................................................................... 50 

5.2.3 Workflow Applications .................................................................................................. 51 

5.2.3.1 Montage ................................................................................................................. 52 

5.2.3.2 modFTDock ........................................................................................................... 55 

6. Conclusion ......................................................................................................................... 57 

6.1 Future Work ........................................................................................................................ 58 

References .............................................................................................................................. 60 

Appendices ............................................................................................................................. 66 

Appendix A : MosaStore Functional and Design Specification ...................................................... 66 

 



 v 

List of Tables 

  

Table 1: Popular data access patterns generated by workflows. Circles represent 

computations. An outgoing arrow indicates that data is produced (through a temporary file) 

while an incoming arrow indicates that data is consumed (from a temporary file).  There may 

be multiple inputs and outputs via multiple files. We use a notation similar to that used by 

Wozniak et al. [9]. ................................................................................................................... 33 

Table 2: File sizes for different workflow patterns. ................................................................ 43 

Table 3: The characteristics of each stage for the Montage workflow ................................... 53 

 



 vi 

List of Figures 

 

Figure 1: Software stack to support workflow execution on large scale machines ................ 13 

Figure 2: Architecture of Blue Gene/P Supercomputer at Argonne National Laboratory ..... 15 

Figure 3: Intermediate storage system on supercomputers ..................................................... 20 

Figure 4: MosaStore storage system architecture. The figure highlights the three high-level 

components the system access interface (SAI) sitting at the client; the manager that stores all 

system metadata, and the donor nodes that store data chunks. ............................................... 23 

Figure 5: Pipeline .................................................................................................................... 26 

Figure 6: Pipeline runtime on BG/P........................................................................................ 26 

Figure 7: modFTDock runtime on BG/P ................................................................................ 27 

Figure 8: A case for workflow aware storage system ............................................................. 29 

Figure 9: I/O throughput when the storage node is backed by spinning-disk (left plot) and 

RAMdisk (right plot).  For each plot there are two sets of columns presenting the write and, 

respectively, the read performance.  Note that the axes use different scales in the two plots. 

Figures represent average throughput, and standard deviation in error bars, over 30 

reads/writes. ............................................................................................................................ 41 

Figure 10: Summary of synthetic benchmarks for pipeline, broadcast, reduce, and scatter 

patterns. Nodes represent workflow stages (or stage-in/out operations) and arrows represent 

data transfers through files.  Labels on the arrows represent file sizes for the ‗small‘ 

workload.  The other workload sizes are presented in Table 2. .............................................. 43 

Figure 11. Pipeline pattern – small files. Average execution time (in seconds) for small file 

sizes. Error bars represent standard deviation for all stages of the workflow (the entire 

experiment time). .................................................................................................................... 44 

Figure 12. Pipeline pattern – medium files. Average execution time (in seconds) for medium-

size file. Error bars represent standard deviations for the entire experiment. ......................... 44 

Figure 13. Pipeline pattern large files. Average execution time (in seconds) for large file 

sizes. ........................................................................................................................................ 45 

Figure 14: Average execution time for broadcast synthetic benchmark with medium 

workload. All storage systems are deployed on spinning disks. ............................................. 47 



 vii 

Figure 15. Average execution time for broadcast synthetic benchmark with large workload. 

All storage systems are deployed on spinning disks. .............................................................. 47 

Figure 16. Breakdown of broadcast benchmark for the ‗medium‘ workload. ........................ 47 

Figure 17: Reduce pattern. Average benchmark execution time (in seconds). ...................... 48 

Figure 18. Scatter pattern medium files. Average execution time (in seconds) and standard 

deviation for the scatter stage of the benchmark (medium file sizes)..................................... 51 

Figure 19: Scatter pattern large files. Average execution time (in seconds) and standard 

deviation for the scatter stage of the benchmark (large file sizes) .......................................... 51 

Figure 20: Montage workflow. The tags we use to indicate date usage patterns are presented 

in the figure. The characteristics of each stage are described in Table 3. Labels on arrow 

represent the data access patterns. .......................................................................................... 52 

Figure 21: Montage workflow total execution time. Note that, to better highlight the 

differences, y-axis does not start at zero. ................................................................................ 54 

Figure 22: Montage workflow per-stage execution time ........................................................ 54 

Figure 23: modFTDoc workflow. Labels on arrows represent the data access patterns. ....... 55 

Figure 24:  modFTDoc workflow total execution time. ......................................................... 55 

 

  

  



 viii 

Acknowledgements 

 

I would like to sincerely thank my advisor, Professor Matei Ripeanu, for his regular, 

sincere and insightful advice in the last three years. These past three years would not have been 

possible without his guidance and support. I could not have asked for a better supervisor, it has 

been a privilege to work with Dr. Ripeanu. 

At this time I would like to extend my thanks as well to my colleagues: Samer Al-

Kiswany, Mohammad H. Afrasiabi, Lauro B Costa, Abdullah Gharaibeh, Bo Fang, Hao Yang, 

Abmar Barros and Elizeu Santos-Neto for their technical discussions and feedback on my 

research. Thank you for enriching my learning and making graduate school an enjoyable and 

meaningful experience. 

I am grateful to Zhao Zhang, Daniel S. Katz, Michael Wilde, Justin M Wozniak and 

Ketan Maheshwari - collaborators at Argonne National Laboratory and University of Chicago – 

for helping me to integrate and evaluate the system with applications and complex software stack 

in Blue Gene/P. 

I wish to acknowledge my lecturers Prof. J. P. Karunadasa, Prof. Sisil P. Kumarawadu, 

Prof. J. Rohan Lucas and Dr. Thrishantha Nanayakkara at University of Moratuwa for their 

encouragement and igniting my interest in the engineering field during my undergraduate studies. 

Further I would like to thank Manoj Bandara, Umesh Wanigasekera, Akalanka Chandrasiri, 

Manoj Minor, Chinthaka Thilakarathna, Thirunathan.S and Abdul Carder at Millennium 

Information Technology for their support and insightful comments during my stay. 

The advice, encouragement and friendship provided by all my friends at UBC have been 

greatly appreciated. And last but not the least; I am grateful to my family who has been my first 

and foremost source of support and inspiration. I could not have come this far without my 

parents, Vairavanathan and Sarojinie for their unconditional love, for kindling my passion to 

learn and giving me the opportunity to come to Canada to do my Master‘s. 

Finally I would like to thank United States Department of Energy (DOE) for the financial 

support during my research.



 ix 

Dedication 

 

 

 

 

 

 

 

To my family and my teachers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

1.  Introduction  

Meta-applications that assemble complex processing workflows using existing applications as 

their building blocks are becoming increasingly popular. Examples include various scientific 

workflow applications (e.g., modFTdock [1], Montage [2], PTMap [3]) and even map-reduce 

applications [4]. Scientists in various fields like bio-chemistry, molecular-dynamics, geo-

technology use these workflow applications to run massive simulations in order to solve critical 

problems. These applications run on supercomputers with many thousands of cores (e.g.: 

Argonne BG/P with 163,840 cores) and perform large amount of storage-I/O.  

While there are multiple ways to support the execution of these workflows on large 

clusters, in the science area—where a large legacy codebase exists—one approach has gained 

widespread popularity: a many-task approach [5] in which application workflows are assembled 

from independent, standalone processes that communicate through intermediary files stored in a 

shared data-store or independently, on the local storage of the nodes where task execution takes 

place.  

The main advantages of this approach, adopted by most existing workflow runtime 

engines (e.g., Swift [6], Pegasus [7], Makeflow [8]) are simplicity, direct support for legacy 

applications, and natural support for fault tolerance. First, a shared storage system approach 

simplifies workflow development, deployment, and debugging: workflows can be developed on a 

workstation then deployed on a cluster without changing the environment. Moreover, a shared 

storage system simplifies workflow debugging as the state of an application is persisted via files. 

A programmer can inspect the intermediate computation state at runtime and, if needed, can 

collect the files for performance profiling or offline debugging. Second, most of the legacy 

applications that form the individual workflow stages are coded to read their input and write their 

output through the well-known POSIX API. Finally, compared to approaches based on message 



 2 

passing, communicating between workflow stages through a storage system that offers 

persistency makes support for fault-tolerance much simpler: a failed execution step can simply be 

restarted on a different compute node as long as all its input data is available in the shared 

storage.  

Although these are important advantages, the main drawback of this approach is 

decreased performance. The performance is reduced due to the various bottlenecks in both 

hardware and software stacks on the workflow platforms [9][10].  

The goal of this thesis is to identify the opportunities and recommend solutions to 

improve the performance of many-task workflow applications. To this end this thesis proposes 

and designs an intermediate storage system to increase the performance of workflow 

applications on large-scale machines. Further this thesis studies the feasibility of tuning the 

intermediate storage system depending on the application characteristics and proves that the 

intermediate storage system can be further optimized to match the high-level data access 

patterns of the workflow applications.  

This chapter is organized as follows. Section §1.1 describes the motivation behind this 

thesis by highlighting the benefits and the importance of this research. Section §1.2 explains the 

current problems faced by the workflow applications. Section §1.3 highlights the available 

opportunities and briefly discusses possible approaches to harness these opportunities.  Sections 

§1.4 and §1.5 present our solution and methodology respectively. Sections §1.6 and §1.7 

summarize the contribution and the list of publications resulted from this thesis. Finally section 

§1.8 presents the structure of the thesis. 

1.1 Motivation  

The many-task workflow approach is becoming more popular since it provides high flexibility, 

portability, a natural way to express parallelism and rapid application development.  



 3 

This thesis is motivated by the fact that there is an urgent need to run the scientific many-task 

workflow applications efficiently, reliably and easily on large-scale supercomputers. Taking the 

initiative to advance the many-task workflow applications‘ performance will provide multiple 

benefits. Firstly improving the application runtime will lead to better resource utilization and 

energy savings.  Secondly, present supercomputers are specially optimized to provide the best 

performance for MPI-based applications and such initiatives will eliminate the need for special 

costly hardware-level optimizations to run many-task workflow applications. Thirdly, 

considerable portion of supercomputers‘ time is occupied in running the workflow applications.  

The domain scientists run numerous scientific workflow applications on these machines to solve 

useful and challenging problems. Fourthly, providing better scalability and high performance for 

many-task workflow applications will help the domain scientists to solve larger problems more 

accurately than the problems solved presently. From this point onwards whenever we say 

workflows we only refer the many-task computing workflows.   

The following section summarizes three popular scientific workflow applications and their 

characteristics to emphasize above facts such as usefulness, efficiency, scale and amount of 

storage I/O. 

 ModFTDock: Is a popular protein docking application used in new drug designs [1]. It 

processes a set of protein molecule's 3D spatial properties and finds high affinity 

molecules towards a particular protein. ModFTDock is also used to dock RNA to protein 

molecules. Protein docking applications such as ModFTDock and OOPS typically runs at 

scales ranging up to 65,536 of CPUs and perform massive amount of storage IO (read 3.2 

PB and write 2 PB) [9].  

 Montage: Montage workflow [2] is an astronomy application that takes many input 

images, processes and produces a single output. The workflow is composed of multiple 



 4 

stages and has been used by scientists with parallel frameworks such as MPI, Pegasus [7], 

and Swift [6]. Montage typically runs on thousands of machines and applications of 

Montage includes but not limited to data analysis, quality assurance and scientific 

product generation [2]. 

 BLAST (The Basic Local Alignment Search Tool): Is a well adopted workflow 

application to solve sequence alignment problems such as protein structure prediction, 

pattern identification, phylogenetic analysis and etc. It uses a heuristic method and 

searches one or more nucleotide or protein sequences against a sequence database, and 

calculates similarities. Typical BLAST workflow application runs on thousands of 

machines and reads 3.5 PB of data and writes 150GB of data from / to the central storage 

system [9]. 

1.2 The Problem 

Workflow applications can be viewed as a graph of distinct tasks which communicate through 

files stored on a central storage system. Each task takes an input file from the central storage 

system and processes it and produces an output file on the central storage system.  The central 

storage system has been identified as the main bottleneck for the scientific workflow applications 

on the prevalent super computers such as Blue Gene/P and Jaguar [9][10]. Due to the limitations 

in both hardware and software, the storage performance drops severely when the workflow 

applications perform large number of storage IO operations.  

First, on the hardware side, the IO bandwidth between compute nodes and storage nodes 

is limited hence the IO throughput drops linearly with the volume of IO operations.  Second, 

POSIX file system abstraction has a strict semantic hence does not scale well at large scale and 

reduces the performance of workflow applications. Third, a traditional file system cannot use the 

information available at the level of the workflow execution engine to guide the per-object data 



 5 

placement or to optimize for various access patterns at per object granularity. Similarly, a 

traditional distributed storage system does not expose data-location information, which prevents 

the workflow runtime engine from exploiting opportunities for collocating data and computation. 

1.3 The Opportunities 

The nature of workflow applications and the current supercomputing infrastructures used to run 

these applications provide three opportunities.  

First, the compute nodes are underutilized and the compute node resources can be 

aggregated to produce a high performance shared storage space. The workflow based 

processing used by a large number of scientific applications [9], is generally composed of three 

main phases: stage-in input-data from central (and often external to the compute nodes cluster) 

storage to the compute nodes local storage, multiple computation stages that communicate 

through intermediate files, and stage-out the final results to the central storage. These three 

phases impose an intense workload on the central storage system. To reduce the load on the 

central storage applications can temporarily deploy and configure a shared intermediate storage 

to aggregate the storage resources available on the compute nodes (local disk, SSDs, memory) 

and use the storage system thus created as a high-performance scratch space to achieve better 

performance and resources utilization during runtime.   

Second, strong POSIX storage abstraction adopted by central storage systems is not 

required due to the nature of the workflow applications.  The costly locking protocol and the 

strict consistency guarantee provided by POSIX storage abstraction has been identified as the 

main scalability and performance bottleneck for parallel applications at the large scale [9].  In 

workflow applications, the workflow runtime has the entire knowledge of the workflow hence 

the file system consistency can be explicitly managed by the runtime and strong consistency 

provided by POSIX storage abstraction is not necessary. A storage system that covers the 



 6 

minimal POSIX semantics that are required by workflow applications is enough to support a 

large number of legacy workflow applications and will be a promising solution to meet the 

scalability and the performance demands of the workflow applications at the large scale.   

Third, workflow applications have regular data access patterns hence a storage system 

can be designed with special optimizations to speed-up these patterns [9][11]. Further an 

intelligent storage system / software stack can discover the data access patterns (either during 

application deployment time or runtime) of the workflow applications and harness these special 

optimizations depend on the patterns to provide better storage performance. 

1.4 Proposed Solution  

This work harnesses the opportunities described in section §1.3 and proposes a two-step solution 

to improve the performance of workflow applications.  

As a first step this thesis proposes an intermediate storage system:  A storage system that 

aggregate the storage resources available on the compute nodes (local disk, SSDs, memory) and 

provides the minimal POSIX API required by the workflow applications.  At the beginning the 

workflow manager will stage-in the data from central storage system to intermediate storage 

system. Then the application does perform all the computations by reading from / writing to the 

intermediate storage system. At the end, the workflow manager will stage-out the final result 

back to the central storage system. The intermediate storage system will reduce the pressure on 

the central storage system as the amount of data generated during the workflow execution is 

much larger than the data staged-in or staged-out. Further it provides better scalability and 

performance for workflow applications compare to a regular storage system due to the minimal 

POSIX support.  

As a second step the thesis investigates the viability of a workflow-aware storage system: 

that is, a storage system that is able to efficiently support the data access patterns generated by 



 7 

workflows through optimizations at the file or directory level. Further, the storage system 

exposes data placement information so that the workflow runtime engine can make data-aware 

scheduling decisions. The storage system can identify the data access patterns either during 

application deployment time or application runtime to drive the data layout (e.g., co-placement, 

replication levels, local-chunk placement) of a workflow application [12], [13], [14].  Storage 

system designers can incorporate the techniques that we study here in an intermediate storage 

system and can make it workflow-aware to provide an optimized storage performance for each 

application. 

1.5 Methodology 

To build an intermediate storage system, we derive the requirements of an intermediate storage 

system by analyzing popular workflow applications. Then we design and implement the storage 

system. Finally we integrate the intermediate storage system with workflow runtime engine [6] 

and quantitatively evaluate the performance of synthetic and real workflow applications on Blue 

Gene/P supercomputer [15].  

Then we systematically perform a limit study on workflow-aware storage system. We 

start from the previous characterization studies on workflow applications, extend the data access 

patterns by looking at the real workflow applications and identify the storage level optimizations 

to improve the regular data access patterns in the workflow applications. Then we quantitatively 

evaluate the impact of the optimizations on each data access pattern. We prove that a workflow-

aware storage system can bring significant gains and also provide evidence to show that these 

techniques can be incorporated in an intermediate storage system with minimal effort [16].  



 8 

1.6 Contributions 

This thesis makes several contributions under two themes: first, an Intermediate Storage System; 

second, A Workflow-aware Storage System. The following paragraphs describe each 

contribution. 

 

An Intermediate Storage System: A storage system that aggregates the resources of the 

computing nodes can provide temporary high-performance scratch space for the workflow 

applications. This thesis first, designs and implements an intermediate storage system. Second, it 

integrates the intermediate storage system with workflow runtime. Third, this study quantitatively 

evaluates the performance of intermediate storage system on a Blue Gene/P supercomputer [15] 

with synthetic and real workflow applications.  

The design and implementation of the intermediate storage have been collaboratively 

performed with Samer Al-Kiswany and with minor help from a few other students at NetSysLab 

[17]. I contributed to the design, implementation and integration of the entire system. Importantly 

I was the sole contributor for building the crucial components of an intermediate storage system 

for workflow applications on large scale machines. I designed and implemented mechanisms to 

support a set of POSIX APIs (random read and write), a part of metadata service, data 

placement policies, garbage-collection, chain and parallel replication, and client side caching of 

the intermediate storage system.  Section §3.2 highlights the significance of having these 

functionalities in an intermediate storage system designed to support workflow applications. 

Even though my sole contribution is a complex effort (30% of the entire code base which 

has more than 60,000 lines of code in total), this document does not present the entire design of 

the system to keep the thesis concise.  However an evaluation of the intermediate storage system 



 9 

is presented in Chapter 3. For reference please refer the relevant sections of MosaStore technical 

design document attached in Appendix A  .  

Further it is important to note that building an intermediate storage system is essential to 

study the potential benefits of a workflow-aware storage system. 

 

A Workflow-aware Storage System [16]: First, the thesis starts from previous workflow 

characterization studies, identifies new data access patterns by looking at some workflow 

applications and suggests corresponding storage-level optimizations to speed up each data flow 

pattern. Second it studies the viability of a storage system optimized for workflow applications: a 

storage system that can be optimized depending on the workflow application characteristics (i.e. 

based on data access pattern). It quantifies the potential performance benefits of a workflow-

aware storage system. These suggestions can be incorporated in an intermediate storage system 

to further improve the performance of workflow applications. These findings are published in 

CCGRID '12 [16] and also submitted for Elsevier FGCS Journal [18].  

In addition, these findings also motivated and informed the design of two research 

projects in the group: cross layer optimized storage system (Al-kiswany et al. [19]) and an 

automatically performance optimized storage system (Costa et al. [14]).   

1.7 Research Publications 

This work resulted in one refereed publication, one technical report, two conference submissions 

and one journal submission. These articles were written in collaboration with Samer Al-Kiswany, 

Lauro Beltrão Costa, Hao Yang, Abmar Barros, Gillies Fedak, Zhao Zhang, Daniel S. Katz, 

Michael Wilde, and Matei Ripeanu. The list of the articles is given below. 

 Emalayan Vairavanathan, Samer Al-Kiswany, Lauro Beltrão Costa, Zhao Zhang, 

Daniel S. Katz, Michael Wilde, and Matei Ripeanu. A Workflow-Aware Storage System: 



 10 

An Opportunity Study. In Proceedings of the 2012 12th IEEE/ACM International 

Symposium on Cluster, Cloud and Grid Computing (CCGRID '12). Acceptance rate: 

27% (83/302) - Nominated as one of the top 15 papers in the conference and invited for 

a special issue of Elsevier Future Generation Computer Systems Journal (impact factor 

1.978) [16]. 

 Emalayan Vairavanathan, Samer Al-Kiswany, Abmar Barros, Lauro Beltrão Costa, Hao 

Yang, Gilles Fedak, Zhao Zhang, Daniel S. Katz, Michael Wilde, and Matei Ripeanu. A 

case for Workflow-Aware Storage: An Opportunity Study using MosaStore. Submitted to 

special issue of Elsevier Future Generation Computing Systems Journal [18]. 

 Samer Al-Kiswany, Emalayan Vairavanathan, Lauro Beltrão Costa, Hao Yang and 

Matei Ripeanu. The Case for Cross-Layer Optimizations in Storage: A Workflow-

Optimized Storage System. Submitted to FAST '13 [19]. 

 Lauro Beltrão Costa, Abmar Barros, Emalayan Vairavanathan, Samer Al-Kiswany and 

Matei Ripeanu. Predicting Intermediate Storage Performance for Workflow Applications. 

Submitted to CCGRID '13 [14]. 

 Samer Al-Kiswany, Emalayan Vairavanathan, Lauro Beltrão Costa, Hao Yang and 

Matei Ripeanu. MosaStore functional and design specification (Technical Report) [17].  

1.8 Thesis Structure 

The rest of the thesis is organized as follows. In chapter 2, we present the software and hardware 

systems used by the workflow applications and explain the challenges faced by these 

applications.  In chapter 2, we also provide a short summary of the related work on storage 

systems. In chapter 3, we propose an intermediate storage system, derive the requirements for the 

intermediate storage system in the context of workflow applications and also present the 

intermediate storage system evaluation.  In chapter 4, we argue that there are still opportunities to 



 11 

optimize the intermediate storage depending on the workflow applications‘ data access patterns 

and build a case for a workflow-aware storage system. In chapter 5, we study the opportunity of 

building a workflow-aware storage system using synthetic and real workflow applications. 

Finally we summarize our findings in chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 12 

2.  Background and Related Work 

The chapter begins with a brief summary of a sample ecosystem that is used to support scientific 

workflow applications and the present challenges faced by these applications (§2.1). The chapter 

concludes with a high level summary of related work in storage systems (§2.2).  

2.1 Background 

Many-task workflows applications are composed of distinct executables with interdependencies 

and generally viewed as a graphs of dissimilar tasks  that communicates though files stored in a 

shared storage system via POSIX API [20]. This style of workflows is easy to develop, debug, 

optimize and have implicit fault tolerance as the program state is persisted in a shared storage. 

Further structuring the application as many-task often provides a natural way to express 

parallelism and makes development easy compared to other approaches such as message passing 

[20]. The following sections present one example of the software and hardware stack used to 

support workflow applications on current large scale platforms. 

2.1.1 Software Stack 

Running workflow applications efficiently, reliably, and easily on large parallel computers is 

challenging. The workflow runtime can be roughly divided into two parts: a front-end that which 

evaluates a user workflow program and generate tasks (often a dataflow script written in a 

parallel scripting language), and a back-end which distributes the tasks to workers using a task 

dispatching service. Even though there are many ways to develop many-task workflows, the 

parallel scripting is a popular approach among scientists [20]. In a parallel scripting language, the 

workflow is often written as a script which assembles distinct interdependent tasks with each task 

reading and writing from a shared storage system. Swift [6], Dryad [21], Skywriting [22] , and 

CIEL [23] are few examples for such systems.  



 13 

In this research we focus on Swift [6]. Swift is a scripting language designed for 

composing standalone executables into parallel applications that can be executed on compute 

nodes. Swift is widely used by domain scientists to write the workflow applications. Swift is 

responsible for the execution, composition, and coordination of the graph of tasks in a workflow 

application. Swift can automatically identify the task independencies and parallelize the 

programs to keep the resources utilization at high.  

 

 

Figure 1: Software stack to support workflow execution on large scale machines 

 

MapReduce [4] is another programming framework similar to Swift. Swift and 

MapReduce frameworks share a set of common design goals such as programmer productivity, 

implicit parallelism, transparent scalability, failure tolerance and load balancing. However 

comparing to MapReduce, Swift provides additional benefits such as portability, flexible data 



 14 

model and intuitive programming model. Further Swift also supports multiple data access 

patterns whereas map-reduce only supports map and reduce data access patterns.  

Figure 1 illustrates the software stack used by the workflow applications on large scale 

machines.  A workflow application written in Swift is converted to intermediate code by the 

Swift compiler and then processed by the Swift workflow runtime engine [6]. The workflow 

runtime engine applies several optimizations such as automatic parallelization, adding heuristics 

to harness data locality and schedules the tasks on the compute nodes using a task dispatching 

service and the workers deployed on the compute nodes (e.g. Coasters [24]).   The tasks read the 

input data from a shared storages system (generally the shared central storage system), process 

the data and write the output back to the shared storage system. Here it is important to notice the 

inter task communication is done through the files created on the shared storage system. 

The shared storage system used in large scale machines generally supports a strong 

POSIX file system semantics and often incapable of handling the I/O demands of the scientific 

workflow application.  For example GPFS starts to perform poorly when files are created under a 

same parent directory [10], [9] due to the strong consistency semantics and costly locking 

protocol.  

2.1.2 Hardware Platform Example 

Figure 2 illustrates the high-level architecture of BG/P super computers at Argonne National 

Laboratory (ANL) [15]. It has 160k compute cores, 640 I/O nodes (each with 4 cores) and 80 TB 

aggregated local memory and can provide 557TF aggregated peak performance [15], [25], [26]. 

Each compute node has 32 bit, 850 MHz 4 cores (IBM Power PC 450) and 2GB of memory.  

The compute nodes are connected to two different networks called the ‗torus‘ network 

and ‗tree‘ network. In BG/P inter connect (or process) traffic uses the torus network and each 

compute node are connected to 6 neighbors via 6 torus links each have 6.8 Gb/s (3.4 Gb/s uni-



 15 

directional).  I/O traffic uses the dedicated tree network and forwarded to designated IO nodes. 

Then the I/O nodes forward the I/O requests to the central storage system (e.g. GPFS / Lustre) 

often deployed on multiple storage nodes. 

 

 

Figure 2: Architecture of Blue Gene/P Supercomputer at Argonne National Laboratory 

 

Here we like to stress two important points.  

 First the architecture described above (incorporating compute nodes, I/O nodes and 

central storage via multiple high performance networks) is the defacto standard for large 

scale high performance computing systems.   

 Second the central storage system becomes a bottleneck due to the limited bandwidth 

between the compute nodes and the storage nodes. For this machine a network with 

1.28TB/s bandwidth connects the 160K computes nodes to the GPFS, resulting in only 

1MB/s storage bandwidth per core.   



 16 

During the execution of workflow application a large number of tasks use the central storage 

system for inter-task communication and the central storage systems are incapable of handling 

the volume and frequency of the file system access generated by these applications. Hence time 

spent in I/O proportionally increases with the number of concurrent tasks and leads to low system 

performance.  For example, Zhao et al. [27] characterize the Montage workflow execution time 

on BG/P super computers with 512 cores and the central GPFS storage system. The study shows 

that even at a very small scale 73.6% of total time is spent on performing I/O operations and 

waiting for I/O to complete due to I/O bottlenecks presents in the system. The actual processing 

time was 13.4% and the rest of the time (13.0%) was spent on other overheads such as 

scheduling.  

2.2 Related Work – Storage Systems 

The volume of past work on alleviating storage system bottlenecks is humbling. Distributed 

storage systems have been an active research topic for many years. This section limits itself to 

positioning a smaller number of projects that directly focus on alleviating the storage bottleneck 

for workflow applications. The rest of the section, first summarizes the work related to generic 

distributed storage systems for workflow applications (§2.2.1). Second, this section discusses the 

solutions optimized for a specific set of applications (§2.2.2). Third, this section summarizes the 

directions towards highly configurable storage systems (§2.2.3) – systems optimized for storage 

performance while preserving the shared storage system abstraction.  Fourth, this section presents 

the work related to co-designed data management systems (§2.2.4) – this approach holds the 

promise of higher performance yet it leads to a more complex and less portable design by 

breaking the layering between the storage and the workflow runtime which offers a natural 

abstraction and separation of concerns.  



 17 

2.2.1 Generic Distributed Storage Systems 

Generic storage systems are designed with ―one size fits all‖ philosophy to support all the 

applications. Examples for such storage systems include GPFS [28], Lustre [29] and Frangipani 

[30]. The design goal is to provide a transparent, reliable and secure storage abstraction to 

support most of the applications. Even though this approach has few advantages such as 

portability, security and ease of development, the main disadvantage is the limited performance. 

Storage abstraction provided by POSIX standard [31] is widely adopted in software systems. The 

POSIX storage abstraction was designed for single node file system and has severe scalability 

and performance bottlenecks when it is adopted by parallel file systems. The consistency 

semantics requires all the file system operation to be atomic; hence locking overheads 

exponentially increases at large scale with scientific workflow applications.   

2.2.2 Application-optimized Storage Systems 

Building storage systems geared for a particular class of I/O operations or for a specific access 

pattern is not uncommon. For example, the Google file system [32] optimizes for large datasets 

and append access, HDFS [33] which shares many design goals with GPFS-SNC [34], optimizes 

for immutable data sets, location-aware scheduling and rack-aware fault tolerance; the log-

structured file system [35]  optimizes for write intensive workloads, arguing that most reads are 

served by ever increasing memory caches and  storage systems implementing the MPI-IO API 

optimize for parallel access operations. BAD-FS [36] optimizes for batch workloads, Amazon 

Dynamo [37] optimizes for intensive put/get operations and TidyFS [38] is designed to increase 

the performance of a set of Dryad [21] and DryadLINQ [39] applications and it supports high 

throughput, write once sequential I/O. 

These storage systems and the many others that take a similar approach are optimized for 

one specific access pattern or set of applications and consequently are inefficient when different 



 18 

data objects have different patterns, like in the case of workflows. Another known problem with 

application-optimized storage systems are non-standard APIs which makes the applications less 

portable between different systems. 

2.2.3 Highly Configurable Storage Systems 

A few storage systems are designed to be highly configurable – and thus, after deployment-time 

(re)configuration, efficiently serve a wide set of applications. The versatile storage system [40] 

argues that storage systems should be specialized for the target application at deployment time. It 

aims to incorporate a broad set of optimization techniques, enable high configurability at 

deployment and/or run time, and support multiple applications through customized, per 

application deployment, all while still providing a standard POSIX API. In the same vein, Ursa 

Minor [41] offers deployment-time configurability to meet application access patterns and 

reliability requirements. While these storage systems can be configured to better support a range 

of applications, they are not designed to support workflows with different access patterns for 

different files. BFS [36] is an application optimized storage system yet it allows application 

instances to choose optimal caching, replication and consistency policies via a high level job 

scheduler. PPFS [42] is another configurable storage system which provides mechanisms to 

control the caching, pre-fetching, data layout and consistency semantics via a non standard API. 

2.2.4 Co-designed Data Management Systems 

A frequently adopted approach (Falkon [43][44], AME [45][27], Pegasus [7], GrADS [46], 

DAGMan [47]) for managing intermediate files in workflow runtime engines is to give up the 

shared storage system abstraction as well as the POSIX interface and redesign, from scratch, a 

minimal data store service coupled with the workflow runtime engine. The data store 

implemented gives up the shared namespace offered by a POSIX-compliant shared storage 

system and treats each participating node as an independent, fully functional storage element. An 



 19 

independent service keeps track of data location. The scheduler will use this service and attempt 

to submit jobs where data is already located, schedule explicit data moves so that data is available 

on the local storage of a node before a task starts executing, or provide a global metadata service 

such that each compute node can check the availability of, and copy to local storage node, the 

intermediate input files before executing the task. While this approach is likely to lead to higher 

performance (an observation that holds for designs that give up layering), we believe that its 

drawbacks are not negligible (higher system complexity and limited or failure to support large 

files that do not fit in the local storage of a single node), in addition to forfeiting most of the 

advantages of a layered design which we summarize in the introduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

3.  An Intermediate Storage System: Alleviating the I/O Bottleneck 

We propose a design for an intermediate storage system to alleviate the I/O bottlenecks faced by 

many-task workflows. An intermediate storage system aggregates the storage resources available 

on the compute nodes (local disk, SSDs, memory) and provides a high performance scratch space 

with minimal POSIX API (Figure 3).   

An intermediate storage is deployed per application and has a limited life-time. A 

workflow runtime deploys and configures the intermediate storage on the compute nodes 

allocated for an application. Afterward the workflow runtime stages-in the data from the central 

storage system and starts the workflow application. The application performs all the computation 

on the intermediate storage and then the workflow runtime stages-out the final result to the 

central storage system. Finally the workflow runtime terminates the intermediate storage 

deployment and release the compute nodes. 

 

 

Figure 3: Intermediate storage system on supercomputers 

 



 21 

Intermediate storage provides multiple benefits. First an intermediate storage system 

provides scalable and high performance storage as it can harness ample network bandwidth 

provided by the torus network.  Second, it reduces the pressure on the central storage system as 

the amount of data generated during the workflow execution is much larger than the data staged-

in or staged-out. Third, having a dedicated intermediate storage per application will reduce the 

interference from other users and also provide an opportunity to tune the storage system to 

achieve better performance. 

3.1 Intermediate Storage System Requirements 

There are multiple ways to design an intermediate storage system. For example Zhao et al. [27] 

give up the POSIX abstraction and uses a specialized interface for data management tasks. 

Providing a storage system with POSIX interface brings multiple benefits such as ability to 

integrate with legacy applications (without changing the applications), portability and rapid 

application development (POSIX is a well adopted standard). 

An ideal intermediate storage system has the following general requirements to efficiently 

support various workflow applications.  

 Easy to deploy: The storage system should be easy to deploy and mount by the workflow 

runtime during an application‘s initialization period (e.g., to support glide-in deployments 

[36] [48]). Further, ideally it should be transparently interposed between the application 

and the system central storage for automatic data pre-fetching or storing persistent data or 

results.  

 Easy to integrate with applications: Majority of the workflow applications perform 

standard file system operations such as file creation and deletion, sequential / random 

reads and writes, directory creation and deletion. They do not use other complex file 

system operations related to permissions and users, file system locking and memory 



 22 

mapping. A storage system that offers a partial POSIX-like API is adequate and can 

provide access to the aggregated storage space, without requiring changes to applications. 

Further strong consistency semantics is not required for an intermediate storage system as 

managing consistency can be moved to the workflow run-time. Offering additional, high-

performance APIs (e.g., HDF5, NetCDF) might be desirable. 

 Versatility and ability to configure: The storage system should provide several 

configuration knobs to support configurability for diverse applications. The system 

should be easy to configure and tune for a specific application workload and deployment 

environment. This includes ability to control local resource usage, in addition to 

controlling application-level storage system semantics, such as consistency and data 

reliability requirements. 

 Efficiently harness allocated resources to offer high performance and scalability: The 

storage system should efficiently use the node-local storage and networking resources to 

provide high performance access to the stored data. To this end we choose the object 

storage approach for the intermediate storage system as it decouples data from metadata 

and provides the ability to scale data and metadata independently.  

3.2 Intermediate Storage System Design and Implementation 

We designed and developed an intermediate storage system by adding functionalities to 

MosaStore to make it capable of supporting workflow applications on supercomputing 

deployment. MosaStore (Figure 4) is an experimental shared storage system. MosaStore is 

designed to harness unused storage space from network-connected machines to build a high-

performance, yet low-cost data store that can be easily configured for optimal performance in 

different environments. MosaStore aggregates distributed storage resources: storage space (based 

on spinning disks, SSDs, or memory) as well as the I/O throughput and the reliability of the 



 23 

participating machines. Further, MosaStore adopts an object-based distributed storage system 

architecture, with three main components: a centralized metadata manager, the storage nodes 

(donor nodes), and the client‘s system access interface (SAI) which uses FUSE [49] kernel 

module to provide a POSIX file system interface.  

 

 

Figure 4: MosaStore storage system architecture. The figure highlights the three high-level components 

the system access interface (SAI) sitting at the client; the manager that stores all system metadata, and 

the donor nodes that store data chunks. 

 

The metadata manager maintains the entire system metadata including but not limited to: 

donor nodes‘ status, file chunk distribution, access control information, and data object attributes. 

The metadata service is completely decoupled from the data service to provide high scalability. 

Each file is divided into fixed size chunks that are stored on the storage nodes. The mapping 

between a file and corresponding chunks are stored in the manager as a part of chunk 

distribution. Further, the Manager uses a round robin chunks placement policy hence when a new 

file is created on a stripe of n nodes the file‘s chunks are placed in a round robin fashion across 

these n nodes. 



 24 

The donor nodes contribute storage space (memory or disk based) to the system. Donor nodes 

serve clients‘ chunk store/retrieve requests and also interact with the manager by publishing their 

status using a soft-state registration process. 

The system access interface (SAI) is a collection of implemented FUSE call-backs that 

operate on a client node and provides a mechanism to access the storage space offered by the 

donor nodes. The SAI implementation supports a few important POSIX file system calls 

including sequential read and writes. 

To MosaStore, we added garbage collection using epidemic protocol (make it efficiently use 

the scarce storage space – otherwise the application / storage will crash in supercomputers due to 

lack of memory), mechanisms to support POSIX file API (importantly random reads and writes, 

flush, delete – real workflow applications use these APIs), and modules to support chain and 

parallel replication (to reduce the impact of hot spot files), data placement policy and client side 

caching in order to build an intermediate storage system. Further we also made the intermediate 

storage system more configurable by exposing control knobs in configuration files.  

Finally we successfully integrated the intermediate storage with workflow runtime and 

evaluated with synthetic and real workflow applications. The evaluation (§3.3) shows that the 

system successfully supports the workflow applications using all the above features in Blue 

Gene/P platform. 

This intermediate storage is currently used by several researchers in University of Chicago 

and Argonne National Laboratory.  

3.3 Intermediate Storage Evaluation 

The intermediate storage (i.e. enhanced version of MosaStore in §3.2 [17]) was integrated with 

the workflow runtime Swift [6] and evaluated with both synthetic and real workflow 



 25 

applications.  The synthetic application is fully data intensive and used to obtain an estimate on 

the upper bound on the achievable gain. Workflow applications are realistic and more complex; 

have both computation and storage I/O and uses variety of POSIX file system API (file creation / 

deletion, read, write and etc).  

The experiments were performed on a miniature version of Blue Gene/P experimental 

platform with 1024 nodes. This platform is exactly similar to the one described in section §2.1.2 

and has two dedicated central storage instances, one with PVFS and other with GPFS. In all the 

experiments the MosaStore manager was deployed on one of the compute nodes and the rest of 

the nodes are used to run the storage nodes, the MosaStore SAI, and application. During these 

evaluations the interference from other users was negligible since the machine was not used by 

other users.  

The ability to successfully run two complex workflow applications (Montage [2] and 

modFTDock [1]) and synthetic application with Swift [6] and the intermediate storage on Blue 

Gene/P with 128 node  validates that the intermediate storage works functionally correct. And 

implies the intermediate storage system can be deployed during application launch time, 

supports minimal POSIX API required by the workflow applications (otherwise applications 

would have failed) and also has a successfully functioning garbage collection (otherwise 

applications would have crashed due to lack of memory).  

We did a complete evaluation of the intermediate storage with synthetic benchmark 

(presented in §3.3.1) and modFTDock only (presented in §3.3.2). The evaluation presented in 

§5.2 validates that the intermediate storage function correctly with Montage and other synthetic 

benchmarks. 



 26 

3.3.1 Synthetic Benchmark 

The workload: We ran data-intensive application pipelines (proportional to number of compute 

nodes) in parallel (Figure 5) using Swift.  Each of these pipeline stages-in a common input file 

from the shared GPFS central storage system and then goes through three processing stages that 

read input of 10 MB from the intermediate store and write the intermediate output of 20MB to 

the intermediate store, then the final output of 1MB is staged out back to the central storage 

system.  

 

  

Evaluation Results: Figure 6 presents the performance of pipeline benchmark on Blue Gene/P. 

We compare the intermediate storage (labeled as MosaStore) with the central storage system 

PVFS [50]. Our intermediate storage performs 100% better than central storage system. The 

performance gain comes from both the ample network bandwidth available between compute 

nodes and the minimal POSIX file system interface implementation supported by the 

intermediate storage. Here it is important to notice that both systems have scalability issues with 

increasing number of nodes. Our investigation showed that in the case of intermediate storage 

Figure 5: Pipeline Figure 6: Pipeline runtime on BG/P 



 27 

system scalability issues come from two components: first the Swift runtime has scalability 

issues and second the single manager on MosaStore does have its own limitations. We believe 

that distributing the MosaStore manager will provide better performance and scalability at large 

scale.   Further it is important to notice that the benchmark is fully data-intensive and for real 

applications the performance gain may be less than the results reported here. 

3.3.2 modFTDock 

We ran modFTDock [1] at larger scale on BG/P to verify scalability and explore whether the 

performance gains are preserved when compared to much more powerful backend storage 

(GPFS) available on this platform.   Figure 7 shows the modFTDock runtime on BG/P while 

varying the number of nodes allocated to the application.  The workload size increases 

proportionally with the resource pool. 

On the one side, we notice a consistent 20-40% performance gain of our intermediate 

storage over GPFS. On the other side, we would like to highlight that modFTDock is a compute 

bound applications and an intermediate storage system with minimal POSIX support will bring 

much large gains than this for data intensive applications. 

 

Figure 7: modFTDock runtime on BG/P 

 



 28 

4.  A Case for Workflow-Aware Storage Systems 

This chapter explores one possible way to improve the performance of intermediate storage 

system for workflow applications. A workflow-aware storage system which permits specialized 

per-file optimizations and exposes data placement information can efficiently support the 

workflow applications as they generate regular data flow patterns.  

The rest of the chapter builds a case for a workflow-aware storage system by identifying 

the opportunities. The next chapter quantifies the benefits of a workflow-aware storage system 

with an experimental study.  

This chapter argues that there is still room left to improve the performance of workflow 

applications (§4.1) and provides evidence for data access patterns in workflows and recommends 

possible storage level optimizations for each pattern (§4.2).  Finally the chapter highlights 

multiple ways to identify the data access patterns and provides evidences to show that these 

optimizations can be incorporated in a storage system without increasing its complexity (§4.3). 

4.1 The Opportunities 

Two observations reveal that specializing an intermediate storage system will bring 

promising gains for workflow-based applications: First, the workflows are composed of basic 

data access patterns. These patterns render existing storage systems unable to harness all 

optimization opportunities as this often requires enabling conflicting optimizations or even 

conflicting design decision at the storage system level. Second, when scheduling, most workflow 

runtime engines make suboptimal decisions as they lack detailed data location information that is 

generally hidden by the storage system. 

An intermediate storage system that aggregates the resources of the computing nodes 

(e.g., disks, SSDs, and memory) provides two key advantages. First, it can be efficiently 



 29 

configured to support the data access patterns generated by workflows through the file or 

directory level optimizations. Second, an intermediate storage system can expose the data 

placement information so that the workflow runtime engine can make data-aware scheduling 

decisions (Figure 8).  

 

 

Figure 8: A case for workflow aware storage system 

To support specific data access patterns, the storage system will use hints [12] that will 

drive the data layout (e.g., co-placement, replication levels, chunk placement) that indicate the 

expected access pattern. Section §4.3 argues that such hints can be either provided directly by the 

workflow runtime engine, as it has full information about the data usage patterns; or inferred by 

the storage system itself based on historical information. In addition the extended POSIX 

interface can be used by the storage to expose the data placement information to a workflow 

runtime engine.   

Building a workflow aware storage system is indeed feasible and can bring significant 

performance gains. It is feasible, for two reasons: First, previous studies showed that workflows 

have a small set of common data access patterns, thus a small set of storage optimizations are 



 30 

enough to serve these patterns. Second, our study shows that these optimizations can be 

incorporated in a high-performance storage system without significantly increasing its 

complexity (§4.2).  

Finally it is important to state that a number of alternative approaches (§2.2) have been 

proposed to alleviate the storage bottleneck for workflow applications. They range from storage 

glide-ins (e.g., BADFS [36]) to building application-optimized storage systems (e.g. HDFS [33], 

BADFS [36]), to building a configurable storage system that is tuned at deployment time to 

better support a specific application [40], to offering specific data access optimizations (e.g., 

location-aware scheduling [51], caching, and data placement techniques [52]). Taken in isolation, 

these efforts do not fully address the problem the workflow applications face presently as they 

are either specific to a class of applications (e.g., HDFS for map-reduce applications), and 

consequently incapable to support a large set of workflow applications; or enable system-wide 

optimizations throughout the application runtime, thus inefficiently supporting applications that 

have different usage patterns for different files. The goal is to integrate lessons of the above past 

work in the context of workflow application and recommends a set of techniques to improve the 

performance of workflow applications. 

4.2 Data Access Patterns in Workflow Applications 

Several studies explore the data access patterns of workflow applications: data access patterns of 

large group of scientific workflows are studied and characterized by Wozniak et al. [9] (5 

applications), Katz et al. [20] (12 applications), Shibata et al. [53] (5 applications), Bharathi, et 

al. [11] (5 applications) and Ustunet et al. [54]. This section starts from the workflow data access 

patterns identified by the above studies. Further this section extends the already available data 

access patterns with a set of identified new data access patterns scatter, gather and distribute. 

Even though scatter, gather and distribute patterns already exist in several other areas such as 



 31 

MPI, it is important to notice that these patterns are new in the context of many-task workflow 

applications. Further it proposes the file-level / data-object level optimizations that a storage 

system needs to support to improve the performance of each pattern (summarized in Table 1). 

The rest of the section briefly presents the common data access patterns in the workflows and the 

opportunities for storage optimizations at the data-object level. 

 Pipeline: A set of compute tasks are chained in a sequence such that the output of one 

task is the input of the next task in the chain. An optimized storage system can store the 

intermediate files on the same machine as the one that executes the task (if space is 

available) to increase access locality and to efficiently use local caches. Ideally, the 

location of the cached copy is exposed to the workflow scheduler so that the task that 

consumes this data is scheduled on the same node.  

 Broadcast: A single file is processed by a number of compute nodes at the same time. 

An optimized storage system can create enough replicas of the shared file to eliminate the 

possibility that the node(s) storing the file become overloaded – resulting in a 

performance bottleneck. 

 Reduce: A single compute task processes a set of files that are produced by multiple 

different computations. Examples include a task that checks the results of previous tasks 

for a convergence criterion, or a task that calculates summary statistics from the output of 

many tasks. An optimized storage system can intelligently place all these input files on 

one node and expose their location information, thus creating an opportunity for 

scheduling the reduce task on that node and increasing data access locality.  

 Scatter: A single file is read by multiple compute nodes where each node accesses a 

disjoint ‗region‘ in the file. An optimized object storage system can configure the chunk 

size to be smaller than the region size (such that no two regions share a chunk) and 



 32 

optimize its operation by placing all the chunks that belong to a particular region on the 

same node, placing different file regions on different nodes, and by exposing chunk-level 

data placement to the application.  

 Gather: A single file is written by multiple compute nodes where each node writes to a 

disjoint region of the file. An optimized storage system can configure the chunk size to be 

smaller than that the region size (such that no two regions share a chunk) and to provide 

metadata support for multiple concurrent updates to a single file metadata, enabling 

parallel writes to all file regions. The data placement is optimized based on the next step 

in the workflow (e.g. single node for pipeline, or on multiple nodes for scatter). 

 Reuse: A single file is read multiple times by one or multiple tasks scheduled on the 

same compute node. An optimized storage system can replicate the file onto a storage 

node on the same machine as the one that executes the tasks (if such storage node 

exists and space is available) or cache a copy of the file at the same node. 

 Distribute: A collection of files is generated by a task is consumed by multiple tasks 

running on different compute nodes. An optimized storage system can use a smart data 

placement scheme to support distribute pattern. Such storage will spread the files in a 

balanced way across storage nodes and collocate the chunks belongs to a file on a single 

node or on minimal set of nodes. Also based on the application it may replicate the files. 

 

 

 

 

 

 



 33 

Table 1: Popular data access patterns generated by workflows. Circles represent computations. An 

outgoing arrow indicates that data is produced (through a temporary file) while an incoming arrow 

indicates that data is consumed (from a temporary file).  There may be multiple inputs and outputs via 

multiple files. We use a notation similar to that used by Wozniak et al. [9]. 

 

Pattern Pattern Details Optimizations 

Pipeline 

 

 Node-local data placement (if possible).  

 Caching.  

 Data-informed workflow scheduling.  

Broadcast   Optimized replication taking into account the 

data size, the fan-out, and the topology of the 

interconnection. 

 

Reduce   Reduce-aware data placement: co-placement 

of all output files on a single node. 

 Data-informed workflow scheduling. 

 

Scatter   Application-informed chunk size for the file.   

 Application-aware chunk placement. 

 Data-informed workflow scheduling. 

 

Gather 

 

 Application-informed chunk size for the file.   

 Application-informed chunk placement. 

 



 34 

Pattern Pattern Details Optimizations 

Reuse 

 

 Application-informed replication. 

 Application-informed caching. 

Distribute Input

Output files
 

 Application informed file and chunk 

placement. 

 Application informed replication. 

 

4.3 Determining the Data Access Patterns 

Information on the data access patterns is crucial to enable the ability of the storage system to 

optimize. Most of the applications use thousands of files and contain more than one pattern.  

Several approaches already described in past work can be used to provide such information to a 

workflow-aware storage system: the workflow runtime engine can provide this information as 

this information may be available in the workflow description, this information can be inferred 

by the storage system itself through monitoring, or inferred by profiling the application‘s I/O 

operations. This section briefly describes these approaches: 

 

Application analysis by the workflow runtime engine: Workflow runtime engine builds and 

maintains the data dependency graph and uses this graph to schedule the computation once the 

data become available. Thus, the runtime engine already knows the usage patterns and the 

lifetime of every file in the workflow execution. This information can be provided to the 

underling storage system to optimize its operations based on these hints. Santos-Neto et al. [12] 



 35 

propose using ‗tags‘ as the cross-layer communication mechanism through which the workflow 

runtime engine can provide hints to the storage system on data access patterns. These hints can be 

communicated as extended file attributes to comply with the POSIX API. In fact, file attributes 

can be used as a bidirectional communication channel. On one side, the workflow engine can 

pass data usage hints to the storage system; on the other side, storage system can expose per 

file/directory internal information (e.g., data location) that help workflow engine optimize its 

runtime decisions. 

 

Monitoring and auto-tuning: Although the dependency graph provides the usage patterns 

present in an application that can inform which optimization should be used (e.g., broadcast 

pattern indicates the need of replication), the storage system may need more information to fine-

tune the optimizations depending on the platform or the application (e.g., how many replicas is 

the optimal, what is the optimal cache size). Past work [55] uses a monitoring module to collect 

information on the access patterns and predicts the future ones. The storage system can 

automatically optimize its operations based on these predictions. Note that the auto-tuning is out 

of the scope of this paper and is an ongoing work in our group [13].  

 

Application profiling: Another approach to fine-tune the configuration is having the system 

administrator inferring the access patterns through application profiling or from a description 

provided by the application developer. The administrator then configures the storage system to 

optimize its operation for the frequently used access patterns. 

 

 

 



 36 

5.  Workflow-aware storage system: An Opportunity Study 

The previous chapter provided arguments that building a workflow aware storage system is 

indeed feasible. This chapter evaluates the potential gains a workflow-aware storage system can 

bring using micro-benchmarks, application-level synthetic benchmarks and scientific workflow 

applications.  

The goal with this opportunity study is to evaluate the performance benefits of a 

workflow-aware storage system before paying the full cost of prototyping it. To this end, the 

ability to expose data location through POSIX‘s extended file attributes was added to MosaStore 

storage system. This enables MosaStore to be integrated with a workflow runtime engine that 

supports data-aware scheduling. The chapter explains the hacks (customizations) introduced in 

MosaStore for each pattern (§5.1) followed by detail evaluation (§5.2). 

5.1 Hacks:  Customizing MosaStore 

A workflow-aware storage system should provide per-file configuration at run time to support 

high-configurability for diverse applications‘ access patterns. Further, the workflow-aware 

storage system should be workflow engine friendly. That is, it should expose internal per-

file/directory information (e.g. data location) that helps the workflow engine optimize its runtime 

decisions (e.g., data location aware scheduling). 

To mimic a workflow-aware storage system and to evaluate its performance the enhanced 

version of MosaStore (i.e. the intermediate storage system in §3.2) was customized according to 

the pattern. This section briefly presents these hardcoded customizations (described in more 

detail in §5.2.2 in the context of the evaluation experiments). The goal with these experiments is 

to better understand the potential performance gains that can be offered by a workflow-aware 

storage system before completely implementing one. Thus, for some of the customizations we 



 37 

make that are incompatible with each other in the current MosaStore implementation (e.g., 

different data placements schemes as they are, in the original MosaStore, system-wide policies 

rather than per-file policies) we enable/disable for each experiment some of these changes in the 

code, recompile the code, and redeploy the storage system. All optimizations described below 

harness the fact that MosaStore exposes data placement through POSIX-extended file attributes 

and assume that the workflow runtime engine can optimize its decisions using this information 

(i.e., the runtime engine can schedule computations close to where data is located). 

 Optimized data placement for the pipeline pattern. The MosaStore data placement 

module was changed to prioritize storing output files produced by a pipeline stage at the 

node where the task corresponding to that stage runs. If data does not fit on the local 

node, then the file‘s chunks are shipped remotely through the normal MosaStore 

mechanisms.  

 Optimized data placement for the reduce pattern. The MosaStore was changed to co-

locate all the output files of a workflow stage followed by a reduce stage on a single pre-

specified storage node. If data does not fit on the local node, file chunks are shipped 

remotely through the normal MosaStore mechanisms. 

 Replication mechanism optimized for the broadcast pattern. To avoid that the storage 

nodes for a file used in a broadcast pattern become a bottleneck, we increase the 

replication factor of these files. The default MosaStore lazy replication mechanism was 

changed to eager parallel replication: replicas are created eagerly while each chunk is 

written to storage.   

 Optimized data chunk placement for the scatter and gather patterns. Unlike other 

patterns described above that require optimizations at the file level, scatter and gather 

require chunk-level optimizations, as a single file‘s chunks are accessed by a number of 



 38 

compute tasks in parallel. Consequently, we set the MosaStore chunk size to match the 

application per-node access region size, and constrain the MosaStore data placement such 

that we can determine where each chunk of a file is placed. Further, we optimize the 

scheduling decision to run the compute task on the node that has the specific file chunk 

accessed by that task. 

In addition to the per-pattern customizations described below, one general optimization was 

applied in all the experiments: local file access was prioritized over the remote access to take 

advantage of access locality. The storage client was changed to prioritize reading chunks directly 

from the local storage node instead of reading from remote nodes (if a chunk is available). 

5.2 Evaluation 

The evaluation of workflow-aware storage system is done in three ways. First to quantitatively 

evaluate its impact in realistic settings we designed a micro benchmark to evaluate the cost of 

accessing local vs. remote storage node to serve application‘s data requests (§5.2.1). Second, the 

application-level synthetic benchmarks (§5.2.2) are designed to mimic the data access pattern of 

the scientific workflows. Since the real scientific workflows are complex and often have multiple 

I/O patterns with several stages (§4.2) using the synthetic benchmarks will be a good method to 

quantify the gains for each pattern. Finally, we use Montage [2] and modFTDock [1] – real 

applications to evaluate the workflow-aware storage system.  

The evaluation using synthetic benchmarks shows that a workflow-aware storage system 

can bring significant performance gains. Compared to a general distributed system that uses the 

same hardware resources, per-file optimizations and exposing data location enable 0.5x to 3x 

performance gains depending on the access pattern. Further, compared to a central NFS server 

deployed on a well provisioned server-class machine (with multiple disks, and large memory), a 



 39 

workflow-aware storage system achieves up to 16x performance gains. (NFS only provided 

competitive performance under cache friendly workloads due to it well provisioned hardware.) 

5.2.1 Micro Benchmark: The Impact of Locality 

Experiment setup: We deployed the MosaStore storage system with the manager, one storage 

node and one SAI in two different setups: First, to evaluate the cost of accessing a local file, we 

deploy the storage node and the SAI on the same machine. Second, to evaluate the cost of 

accessing remote files, we deployed the storage node and SAI on two different machines. In both 

setups the manager was deployed on a separate machine to keep the metadata cost constant 

across the experiments. Each machine has Intel Xeon E5345 4-core, 2.33-GHz CPU, 4-GB 

RAM, 1-Gbps NIC, and a 300-GB 7200-rpm SATA disks. 

Customizations: The default MosaStore system uses regular sockets [56] to communicate 

between the storage nodes and the SAI. The regular socket uses the standard network stack; 

hence, it adds an additional overhead when the SAI and the storage node are collocated on the 

same physical node. We changed the MosaStore to use domain sockets [56] and partially 

eliminate this overhead in this situation. The reason is that domain sockets use shared memory to 

communicate instead of the network stack, while, at the same time, support the standard socket 

APIs. 

The workload: The micro benchmark sequentially writes 30 files of 1 GB via a single SAI and 

then sequentially reads these files. We chose large files and write/read the files back to back to 

reduce the effect of caching especially when data reside on disk. The benchmark reports the 

write/read throughput. 

Evaluation results: We evaluated the achievable performance gain due to locality while having 

the data chunks stored on either RAMdisk or spinning-disk. We present, in Figure 9, the I/O 

throughput for the following configurations: the local storage node when using the domain socket 



 40 

(labeled ‗Domain‘ in the figure), the local storage node with regular socket (‗Regular’), and the 

remote storage node with regular socket (‗Remote’). Additionally, for comparison, we present the 

results of running the same benchmark when using the native file systems (ext3 on spinning-disk 

and tmp-fs on RAMdisk - labeled as ‗Local’ in the figure) which represent ideal baselines, and 

eliminate all MosaStore overheads. 

Figure 9 presents the I/O throughput when the storage node is backed by spinning-disk 

(left plot) and RAMdisk (right plot).  For each plot there are two sets of columns presenting the 

write and, respectively, the read throughput. We make the following observations. When data 

chunks are stored on spinning-disk, locality does not have a pronounced impact on the read 

throughput; the reason is that in this case the disk itself is the bottleneck (Figure 9). Locality, 

however, provides significant performance gains for writes, even when data chunks are stored on 

disk. This is because the writes often hits the file system cache hence the network becomes the 

bottleneck. When the storage node is backed by a RAMdisk, the network become bottleneck in 

both cases and both local read and writes are much faster than remote read and remote write. 

Further, in most cases, accessing local data through domain sockets offers a performance 

advantage.  Compared to accessing local data through the regular TCP sockets, domain sockets 

offer 27% - 47% (on RAMdisk) and 6%-10% (on spinning-disk) higher throughput in the four 

configurations we study. As expected, accessing data stored on a remote node leads to a 

throughput 52% to 84% lower (except in the read from spinning disk case mentioned above). The 

performance penalty is magnified when the storage nodes are backed by RAMdisk instead of 

spinning-disks.  

Finally, this experiment allows us to have a first estimate of the overheads added by 

MosaStore when compared to a local storage system.  While these overheads appear significant, 

we note that the comparison is not entirely fair: we compare a distributed file-system (deployed 



 41 

such that some components, the manager in our case, are indeed remote) with a local file-system.  

As expected when the storage node is backed up by the much faster RAMdisks the throughput 

loss is much more pronounced than when the storage node is backed up by spinning disk (up to 

5.2x throughput loss for RAMdisk vs. up to 1.06x throughput loss for spinning-disk).  

 

Figure 9: I/O throughput when the storage node is backed by spinning-disk (left plot) and RAMdisk (right plot).  

For each plot there are two sets of columns presenting the write and, respectively, the read performance.  Note 

that the axes use different scales in the two plots. Figures represent average throughput, and standard deviation 

in error bars, over 30 reads/writes.  

 

5.2.2 Synthetic Benchmarks 

We evaluate our approach using a set of application-level synthetic benchmarks. We designed the 

benchmarks to mimic the data access pattern of the scientific workflows. These benchmarks 

evaluate the impact of pattern specific storage optimizations. We evaluate the synthetic 

benchmarks on storage nodes supported by either spinning-disk or RAMdisks. 

Experiment setup: Current workflow processing often works as follows: workflow applications 

stage-in the input data from a backend storage system to an intermediate shared storage space, 

process the data in this shared space, and then stage-out the results, persisting them again on the 

back-end storage system. The intermediate shared storage is faster than back-end storage and 

provides a high performance scratch space to the application.  



 42 

Our experiment setup is similar to this scenario. Throughout the evaluation, we compare 

the performance of the following intermediate shared storage alternatives: a workflow-aware 

storage system (i.e., the data access pattern optimized MosaStore); a generic distributed storage 

system (we use an un-optimized MosaStore deployment); and an NFS server representing a back-

end storage system that often is found in large scale computing machines. We note that an un-

optimized MosaStore storage system is similar in architecture and design to a set of cluster 

storage systems such as Lustre. Further, although NFS is not typically used in large scale 

platforms, at our scale with the setup of 20 machines, it fairly approximates a well-provisioned 

shared back-end storage system. 

We ran our evaluation on a cluster of 20 machines. Each machine has Intel Xeon E5345 

4-core, 2.33-GHz CPU, 4-GB RAM, 1-Gbps NIC, and a 300-GB 7200-rpm SATA disks. The 

system has an additional NFS server that runs on a well provisioned machine with an Intel Xeon 

E5345 8-core, 2.33-GHz CPU, 8-GB RAM, 1-Gbps NIC, and a 6 SATA disks in a RAID 5 

configuration. The cluster is used to run one of the shared storage systems (MosaStore with either 

the default code or with the changes we have made to mimic a workflow-aware storage system) 

and the synthetic applications. One node runs the MosaStore manager and 19 run the storage 

nodes, the MosaStore SAI, and the application itself. With the NFS configuration we run NFS on 

the above mentioned server and the application on the other 19 nodes. 

The sets of synthetic application benchmarks fit the standard workflow application model 

(stage-in, workflow execution and stage-out) and are composed of read/write operations that 

mimic the file access patterns described earlier. The benchmarks are purely I/O bound and 

provide an upper bound on the achievable performance for each pattern. For this opportunity 

study, we looked at several real world workflow applications [10, 16, 17, 18, 19] and selected 

three workload types with different file sizes. Figure 10 summarizes these application 

benchmarks. 



 43 

 

Figure 10: Summary of synthetic benchmarks for pipeline, broadcast, reduce, and scatter patterns. Nodes 

represent workflow stages (or stage-in/out operations) and arrows represent data transfers through files.  Labels 

on the arrows represent file sizes for the ‗small‘ workload.  The other workload sizes are presented in Table 2. 

 

Table 2: File sizes for different workflow patterns. 

Data access 

patterns 

Workloads (file size for input, intermediate & output) 

Small Medium Large 

Pipeline  100KB,200KB, 10KB 100 MB, 200 MB, 1MB 1GB, 2GB, 10MB 

Broadcast  100KB, 100KB, 1KB 100 MB, 100MB, 1MB 1 GB, 1GB, 10 MB 

Reduce 10KB, 10KB, 200KB 10MB,10MB, 200 MB 100MB, 100MB, 2 GB 

Scatter 100KB, 190KB, 1KB 100 MB, 190MB, 1MB 1 GB, 1900MB, 10 MB 

 

The rest of this section presents, for each synthetic benchmark: pipeline, broadcast, reduce, and 

scatter, the detailed experiments we executed, the MosaStore customizations that support them, 

and the performance evaluation results. 



 44 

5.2.2.1 Pipeline Pattern Evaluation  

Customization: To efficiently support the pipeline pattern, the workflow-aware storage system 

changes the MosaStore data placement mechanism to place newly created files on the node that 

produces them. This change supports fast access to the temporary files used in the pipeline 

pattern as the next stage of the pipeline is launched on the same node.  

The workload (Figure 10 – A): We run in parallel 19 application pipelines similar to the ones 

described in the Figure 10.  Each of these pipelines stages-in a common input file from the shared 

back-end storage (i.e., the NFS server), goes through three processing stages, that read input from 

the intermediate store and write the output to the intermediate store, then the final output is 

staged out back to back-end (i.e., NFS).  The cluster is used to run the MosaStore storage system 

and the synthetic application. One node runs the MosaStore manager and 19 run the storage 

nodes, the MosaStore SAI, and application scripts.  

 

 

Figure 11. Pipeline pattern – small files. Average 

execution time (in seconds) for small file sizes. Error 

bars represent standard deviation for all stages of the 

workflow (the entire experiment time). 

 

Figure 12. Pipeline pattern – medium files. Average 

execution time (in seconds) for medium-size file. 

Error bars represent standard deviations for the entire 

experiment. 

 

 



 45 

 

Figure 13. Pipeline pattern large files. Average execution time (in 

seconds) for large file sizes. 

 

Evaluation Results: Figure 11, Figure 12 and Figure 13 present the performance of our systems 

for small, medium, and large workloads. The figures present distinctly (as stacked bars) the 

performance for data staging (stage-in time plus stage-out time) and the performance for the 

pipeline stages that touch the intermediate storage system. We experiment with four possible 

intermediate storage configurations: (1) a local file system (labeled ‗local‘ in the plots) which 

represents the best possible performance and is presented as a baseline for comparison; (2) NFS 

itself used as intermediate storage(labeled ‗NFS‘ in the plots); (3) MosaStore applying standard 

configuration and optimization techniques (labeled ‗MS RAM‘ or ‗MS DISK‘ depending on 

whether the storage nodes are backed by RAMdisk or spinning-disk); and (4) a MosaStore with 

modifications to become workflow aware (labeled ‗WFRAM‘ or ‗WFDISK‘). 

We note that we could not execute the ‗large‘ workload for three configurations:  The 

NFS crashes (or takes unreasonably long time) under this workload and there isn‘t enough space 

to execute this workload with RAM based storage nodes. For all scenarios, the workflow-aware 

system performs faster than NFS and MosaStore un-optimized, and is close to the performance of 



 46 

the local file system. The larger the file sizes, the larger the difference between the workflow-

aware setup and the other two alternatives of shared intermediate storage. For medium files, the 

workflow aware storage is 10x faster than NFS, and almost 2x faster than vanilla MosaStore. For 

large files (1GB), this difference is even larger, NFS is unable to properly handle the demand 

generated and we stopped the experiments after 200 minutes. Further with large files, we could 

not run the RAM disk experiments due to the memory limitation in our cluster and most part of 

the time is spent in staging phases. 

The local configuration presents the optimal data placement decision for the pipeline 

pattern, serving as a baseline. In both experiments the workflow aware storage (‗WFRAM‘ and 

‗WFDISK‘) lags behind the local storage due to added overhead of metadata operations and 

additional context switches and memory copies introduced by fuse user-level file system.  

5.2.2.2 Broadcast Pattern Evaluation 

Customization: To efficiently support the broadcast pattern for the workflow-aware system, we 

added eager replication to the MosaStore base system (the system originally supported lazy 

replication only). With eager replication replicas are created in parallel, while a file is written to 

the storage system (if replication is needed for that file). A broadcasted file will be eagerly 

replicated by the storage system thus reducing the likelihood of a bottleneck when a file is 

consumed by multiple concurrent workflow stages.  

The workload (Figure 10 – B): An input file is staged-in to the intermediate storage from the 

back-end storage (i.e., the NFS). Then the first stage of the benchmark reads the input file and 

produces a broadcast-file on the intermediate storage. In the second stage, the broadcast-file is 

read by 19 processes running in parallel on 19 different machines. Each of these processes writes 

its output independently on the intermediate storage. As a last stage, the output files are staged-

out to the back-end storage in parallel. 



 47 

Evaluation Results: Figure 14, Figure 15 and Figure 16 present the performance for this 

benchmark for ‗medium‘ and ‗large‘ workloads, while varying the number of replicas created. 

WF performs better than MStore (i.e., no replication), reaching the best performance for 8 

replicas for medium files and 4 replicas for large files. This result matches the expectation of the 

potential benefits of WASS approach.  

 

 

Figure 14: Average execution time for broadcast 

synthetic benchmark with medium workload. All 

storage systems are deployed on spinning disks. 

 

 

Figure 15. Average execution time for broadcast 

synthetic benchmark with large workload. All 

storage systems are deployed on spinning disks. 

 

 

 

Figure 16. Breakdown of broadcast benchmark for the ‗medium‘ workload. 

 



 48 

For more replicas than this optimal number, the overhead of replication is higher than the gains 

of adding more data access points. A similar pattern can be observed for small files; in this case, 

replication does not pay off at all. To better understand the trade-off between adding more access 

points and creating extra replicas, Figure 16 shows the breakdown of the benchmark phases. As 

the number of replicas increases, the time to process the data (the ‗workflow‘ line) decreases and 

the time to create the replicas increases.  

5.2.2.3 Reduce Pattern Evaluation 

Customization: To efficiently support the reduce pattern, for workflow awareness we change the 

MosaStore data placement such that all output files of one stage are co-located on a pre-specified 

storage node. The synthetic application using the reduce pattern runs the reduce application on 

the nodes storing all the files increasing file access locality. 

The workload (Figure 10 – C): During the stage-in phase 19 input files are staged-into the 

intermediate storage from the back-end storage. In the first stage of the benchmark 19 

executables, running in parallel on 19 different machines, each reads an input files and produce 

an intermediate file. In the next stage a single executable reads the intermediate files and 

produces the reduce-file (final output). The reduce-file is staged-out to the back-end store (the 

NFS). 

 

A. Small workload 

 

B. Medium workload 

 

C. Large workload 

Figure 17: Reduce pattern. Average benchmark execution time (in seconds). 

 



 49 

Evaluation Results: Figure 17:  shows the benchmark runtime for all three workloads and the 

five different configurations of the intermediate storage system (intermediate storage on NFS, 

MosaStore and the workflow aware system and, for the last two options, with storage nodes 

using RAMdisk and spinning disk) 

With spinning-disk configuration, for medium and large files, workflow-aware is between 

3.9x (with large files) to 3.4x (with medium files) faster than NFS and 1.2x (for large files) to 

2.25x (for medium files) faster than MosaStore default configuration. NFS performs relatively 

similarly to the other options for small files: this happens because the advantages offered by the 

faster intermediate system are cancelled by its additional overheads that start to dominate for 

small files.  

For the large workload, workflow time on WF DISK is longer compared to MS DISK. 

This happens because during the reduction phase the data is on the spinning-disk and the disk 

throughput becomes a bottleneck given the concurrency of several clients in parallel to write the 

data. However, WF RAM has significantly shorter workflow time since the entire data is on 

RAMdisk without the throughput bottleneck of spinning-disks. With RAMDisk configuration, 

workflow aware storage system achieves the highest performance with medium and large files 

workload, up to 2.6x times faster than MS_RAM and up to 1.9x faster than WF_DISK. This is 

mainly due to a significant reduction in the workflow execution time. This reduction in workflow 

execution time is due to the optimized data placement in workflow aware storage that increases 

the data locality. 

 

  



 50 

5.2.2.4 Scatter Pattern Evaluation 

Customization: To efficiently support the scatter pattern, we applied two modifications to 

MosaStore: first, we enable configuring the storage system‘s chunk size in order to match the 

application-level scatter ‗region‘ size (i.e., the region of the file that will be read by a single 

application), and second, we modify the MosaStore data placement to collocate all the chunks 

belonging to a particular file region on the same node. 

The workload (Figure 10 – D): Initially an input file is staged-in to the intermediate storage 

from the back-end storage (i.e., the NFS). The first stage of the workflow reads the input file and 

produces a scatter-file on intermediate storage. In the second stage, 19 processes running in 

parallel on different machines. Each process reads a disjoint region of the scatter-file and 

produces an output file. Finally, at the stage-out phase, the 19 output files are copied to the back-

end storage. 

Evaluation Results: In experiments with MosaStore and workflow-aware storage, the scatter 

benchmark spends equal amount of time in staging in the input file (12 seconds on average for 

the large workload) and creating the scatter file (27.5 seconds on average for the medium 

workload). The stage in time and file creation time are significant, amounting to 70-90% of the 

benchmark time. Staging time and scatter file creation time on NFS was significantly slower than 

the other systems. For clarity of the presentation we present only the runtime of the scatter stage 

(stage-2) in Figure 18 and Figure 19. Further, for small workload, the evaluation results were 

inconclusive due to high variance; hence we do not present them here. With spinning-disk 

configuration, for medium and large files, workflow-aware storage is around 8.1x faster than 

NFS and 1.5x faster than MosaStore default configuration. With RAMDisk configuration, 

workflow aware storage system achieves the highest performance with medium and large files 

workload, up to 10.4x times faster than NFS and 2x faster than MosaStore default configuration. 



 51 

This is mainly due to the application customized data placement in the workflow aware storage 

system that significantly increases data access locality. 

 

 

Figure 18. Scatter pattern medium files. Average 

execution time (in seconds) and standard deviation 

for the scatter stage of the benchmark (medium file 

sizes) 

 

Figure 19: Scatter pattern large files. Average 

execution time (in seconds) and standard deviation for 

the scatter stage of the benchmark (large file sizes) 

 

5.2.3 Workflow Applications 

The previous section demonstrated that the benefits of workflow-aware storage system approach: 

optimizing for data access patterns with synthetic benchmark provide significant performance 

over an un-optimized storage. This section evaluates the promising gains of workflow-aware 

storage using a significantly more complex real workflow applications Montage (§5.2.3.1) and 

modFTDock (§5.2.3.2).  

To run these experiments we used a set of 11 machines from the same cluster that we 

used in synthetic benchmarks. We deployed MosaStore/Workflow-aware storage manager on a 

dedicated node and used other 10 nodes to run the rest of the system (storage nodes and 

MosaStore SAI were co-deployed in all the 10 nodes).  We use a set of cross-layer mechanisms 

developed by Al-kiswany et al. [19] to optimize reduce patterns in these experiments.  



 52 

5.2.3.1 Montage 

The Montage [2] workflow is chosen for two reasons. First it is a complex and data intensive 

workflow and second it is a popular application used by many others to evaluate the many-task 

platforms [27], [45]. The Montage workflow is composed of 10 different processing stages with 

varying characteristics (Table 3). The workflow uses the reduce pattern in 2 stages and the 

pipeline patterns in 4 stages (labeled in Figure 20).  Nodes represent workflow stages and arrows 

represent data transfers through files. 

 

 

Figure 20: Montage workflow. The tags we use to indicate date usage patterns are presented in the figure. The 

characteristics of each stage are described in Table 3. Labels on arrow represent the data access patterns. 

 



 53 

The I/O communication intensity between workflow stages is highly variable (presented 

in Table 3 for the workload we use). The workflow uses pyFlow framework as the workflow-

runtime. Overall the workflow generates over 650 files with sizes form KB to over 100MB and 

about 2GB of data are read or written from storage. 

  

Table 3: The characteristics of each stage for the Montage workflow 

Stage Data #files File size Optimization 

stageIn 109 MB 57 1.7 MB -2.1 MB  

mProject 438 MB 113 3.3 MB - 4.2 MB Yes 

mImgTbl 17 KB 1   

mOverlaps 17 KB 1   

mDiff 148 MB 285 100 KB - 3 MB Yes 

mFitPlane 576 KB 142 4.0 KB Yes 

mConcatFit 16 KB 1   

mBgModel 2 KB 1   

mBackground 438 MB 113 3.3 MB - 4.2 MB Yes 

mAdd 330 MB 2 165MB Yes 

mJPEG 4.7 MB 1 4.7 MB Yes 

stageOut 170 MB 2 170 MB Yes 

 

Evaluation Results: Figure 21 shows the total execution time of the Montage workflow in five 

configurations: over NFS, and with MosaStore (labeled as MS-DISK / MS-RAM) and workflow-

aware storage (WF-DISK / WF-RAM) deployed over the spinning disks or RAM-disks of local 

nodes. The workflow-aware storage system achieves the highest performance when deployed on 

disk or RAM-disk. When deployed on disk the workflow-aware storage achieves 20% 

performance gain compared to NFS. Further the workflow-aware storage achieves up to 10% 

performance gain compared to MosaStore when deployed on disk or RAM-disk. When deployed 

on disk the workflow-aware storage achieves 20% performance gain compared to NFS. Further 



 54 

the workflow-aware storage achieves up to 10% performance gain compared to MosaStore when 

deployed on disk or RAM-disk. 

 

 

 

Figure 21: Montage workflow total execution time. Note that, to better highlight the differences, y-axis does not 

start at zero. 

 

 

 

Figure 22: Montage workflow per-stage execution time 

 



 55 

 

To quantify the amount of gain achieved by each optimization we analyzed the per-stage 

execution time (Figure 22). From Figure 22 we can clearly observes that the performance gain 

comes from the optimizations (optimizations for reduce pattern) used in mAdd and reproject 

stages. In all other stages workflow-aware storage system performs almost equal to MosaStore. 

Further investigations reveal this observation. The workflow-aware storage system may not bring 

performance gain for small files. This is because the cost of enabling the optimization and getting 

a file location from the workflow-aware storage may overweigh the achievable performance. 

5.2.3.2 modFTDock 

 

  

 

For modFTDock we use Swift to drive the workflow: Swift schedules each application stage, and 

tags the files according to the workflow pattern. As modFTDock combines the broadcast, reduce 

and pipeline pattern. The database is replicated (broadcast pattern) and the output of every dock 

stages is collocated on a single storage node that will execute the merge stage (reduce). The 

Figure 23: modFTDoc workflow. Labels on 

arrows represent the data access patterns. 

Figure 24:  modFTDoc workflow total 

execution time. 



 56 

merge output is placed on local storage node in order to execute the score stage on the same 

machine (pipeline pattern). 

modFTDock experiments were run on cluster with 10 dock processes process the input 

files (100-200KB) and a database (100-200KB). The storage nodes are mounted on RAM-disks. 

Figure 24 presents the total execution time for the entire workflow including stage-in and stage-

out times for MosaStore and workflow-aware storage. The workflow-aware storage optimizations 

enable a faster execution: modFTDock with Swift is 20% faster when running on workflow-

aware storage than on MosaStore, and more than 2x faster than when running on NFS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 57 

6.  Conclusion 

In this thesis we have demonstrated possible ways to improve the performance of 

workflow applications on large scale machines. In particular we have proposed a two-step 

solution to alleviate the performance of workflow applications and qualitatively evaluated the 

gains with both synthetic and real workflow applications. 

First, we proposed and designed an intermediate storage system to increase the 

performance of workflow applications on large-scale machines. An intermediate storage system 

aggregates the storage resources on compute nodes and supports a minimal set of POSIX API 

will provide high performance and scalable storage space compared to a regular shared storage 

system. Second we explore the viability of a workflow-aware storage system: the opportunity of 

tuning the intermediate storage system depending on the data access pattern of a workflow 

application. To this end, we discuss the feasibility of building a workflow-aware storage system 

that can provide per-file optimizations, and experimentally evaluate the attainable performance 

gains with a workflow-aware storage system.  

The evaluation with synthetic and real workflow applications highlights the significant 

performance gains achievable by both an intermediate storage system and a workflow storage 

system. An intermediate storage can bring up to perform 2x performance gain compare to a 

central storage system. A workflow-aware storage system (i.e. an intermediate storage optimized 

for application‘s data access pattern) can bring up to 3x performance gain for some data access 

patterns compared to a regular intermediate storage system. 

Our findings highlight that a workflow-aware intermediate storage system is a promising 

direction to provide a high-performance scalable storage system for workflow applications. 

 Our research has two implicit assumptions. First, the workflow applications are data-

intensive. Even though most of the many-task workflow applications are data-intensive, we 



 58 

would like to point out that an intermediate storage system or a workflow-aware storage system 

may not provide noticeable performance gain for compute intensive applications. 

Second, our workflow-aware system approach harness the fact that storage nodes and 

storage clients are always co-deployed on a cluster.  Although this assumption may not be true in 

some systems, we would like to highlight that this is the case for large scale computer systems 

such as Blue Gene/P and Jaguar [15]. 

6.1 Future Work 

Two research avenues are resulted from this research: First, one can build a workflow-

aware intermediate storage system to demonstrate the potential gains highlighted by this study 

and second, exploring the feasibility of determining the workflow applications‘ data access 

patterns. We are currently exploring two approaches for determining application access pattern: 

by extending workflow compilers and runtime engines, that have full information about the 

workflow ‗shape‘, to communicate file access patterns to the storage system through POSIX 

extended file attributes [19], and by building workload monitoring and access prediction 

components and using predictions for storage system auto-tuning [14]. 

Here we also would like to highlight a few implications of our future research. First, a 

workflow-aware storage system approach may add some level of complexity to a storage system. 

However our experience during the opportunity study highlights that the complexity added by 

workflow-awareness is manageable and actually pays-off. Second, in realistic settings a 

workflow-aware storage system may not bring noticeable performance gain for some 

applications. A workflow-aware storage system brings two additional overheads: the cost of 

enabling storage-level optimizations and the cost of accessing the location of files. In some cases, 

these overheads may overweigh the performance gain that can be brought by storage 



 59 

optimizations. However one can optimize these overheads and improve the performance of a 

workflow-aware storage system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 60 

References 

[1] ―modFTDock,‖ vol. 2012. . 

[2] A. C. Laity, N. Anagnostou, G. B. Berriman, J. C. Good, J. C. Jacob, D. 

S. Katz, and T. Prince, ―Montage: An Astronomical Image Mosaic 

Service for the NVO,‖ in Proceedings of Astronomical Data Analysis 
Software and Systems (ADASS), 2004. 

[3] Y. Chen, W. Chen, M. H. Cobb, and Y. Zhao, ―PTMap A sequence 

alignment software for unrestricted, accurate, and full-spectrum 

identification of post-translational modification sites,‖ Proceedings of the 
National Academy of Sciences of the USA, vol. 106, no. 3, 2009. 

[4] J. Dean and S. Ghemawat, ―MapReduce: Simplified Data Processing on 

Large Clusters,‖ in USENIX Symposium on Operating Systems Design 

and Implementation (OSDI), 2004. 

[5] I. Raicu, I. T. Foster, and Y. Zhao, ―Many-Task Computing for Grids and 

Supercomputers,‖ IEEE Workshop on Many-Task Computing on Grids 
and Supercomputers . 2008. 

[6] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. 

Foster, ―Swift: A language for distributed parallel scripting,‖ Parallel 
Computing, 2011. 

[7] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. 

Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S. 

Katz, ―Pegasus: a Framework for Mapping Complex Scientific 

Workflows onto Distributed Systems,‖ Journal of Scientific 
Programming, vol. 13, no. 3, pp. 219–237, 2005. 

[8] ―Makeflow,‖ vol. 2012. . 

[9] J. Wozniak and M. Wilde, ―Case studies in storage access by loosely 

coupled petascale applications,‖ Workshop on Petascale Data Storage, p. 

16, 2009. 

[10] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. Foster, and M. Wilde, 

―Design and Evaluation of a Collective IO Model for Loosely Coupled 

Petascale Programming,‖ Science, 2008. 



 61 

[11] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. 

Vahi, ―Characterization of Scientific Workflows,‖ Workshop on 
Workflows in Support of Large-Scale Science. 2008. 

[12] E. Santos-Neto, S. Al-Kiswany, N. Andrade, S. Gopalakrishnan, and M. 

Ripeanu, ―Enabling Cross-Layer Optimizations in Storage Systems with 

Custom Metadata,‖ in ACM/IEEE International Symposium on High 

Performance Distributed Computing (HPDC) - Hot Topics Track, 2008. 

[13] L. B. Costa and M. Ripeanu, ―Towards Automating the Configuration of a 

Distributed Storage System,‖ 2010. 

[14] S. A.-K. and M. R. Lauro Beltrão Costa, Abmar Barros, Emalayan 

Vairavanathan, ―Predicting Intermediate Storage Performance for 

Workflow Applications,‖ Submitted to CCGrid, 2013. 

[15] I. B. M. B. G. team, ―Overview of the IBM Blue Gene/P Project,‖ IBM 
Journal of Research and Development, vol. 52 , 2008. 

[16] E. Vairavanathan, S. Al-Kiswany, L. Costa, Z. Zhang, D. Katz, M. Wilde, 

and M. Ripeanu, ―A Workflow-Aware Storage System: An Opportunity 

Study,‖ in International Symposium on Clusters, Cloud, and Grid 
Computing (CCGrid), 2012. 

[17] H. Y. and M. R. Samer Al-Kiswany, Emalayan Vairavanathan, Lauro 

Beltrão Costa, ―MosaStore functional and design specification,‖ 2012. 

[18]  and M. R. Emalayan Vairavanathan, Samer Al-Kiswany, Abmar Barros, 

Lauro Beltrão Costa, Hao Yang, Gilles Fedak, Zhao Zhang, Daniel S. 

Katz, Michael Wilde, ―A case for Workflow-Aware Storage: An 

Opportunity Study using MosaStore,‖ Submitted to FGCS Journal. 

[19] H. Y. and M. R. Samer Al-Kiswany, Emalayan Vairavanathan, Lauro 

Beltrão Costa, ―The Case for Cross-Layer Optimizations in Storage: A 

Workflow-Optimized Storage System,‖ Submitted to FAST, 2013. 

[20] D. S. Katz, T. G. Armstrong, Z. Zhang, M. Wilde, and J. M. Wozniak, 

―Many-Task Computing and Blue Waters,‖ Technical Report CI-TR-13-

0911. Computation Institute, University of Chicago & Argonne National 
Laboratory. arXiv:1202.3943v1. 2012. 



 62 

[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, ―Dryad: distributed 

data-parallel programs from sequential building blocks,‖ in Proceedings 

of the 2nd ACM SIGOPS/EuroSys European Conference on Computer 
Systems 2007, 2007, pp. 59–72. 

[22] D. G. Murray and S. Hand, ―Scripting the cloud with skywriting,‖ in 

Proceedings of the 2nd USENIX conference on Hot topics in cloud 

computing, 2010, p. 12. 

[23] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. 

Madhavapeddy, and S. Hand, ―CIEL: a universal execution engine for 

distributed data-flow computing,‖ in Proceedings of the 8th USENIX 

conference on Networked systems design and implementation, 2011, p. 9. 

[24] M. Hategan, J. Wozniak, and K. Maheshwari, ―Coasters: Uniform 

Resource Provisioning and Access for Clouds and Grids,‖ in Proceedings 

of the 2011 Fourth IEEE International Conference on Utility and Cloud 
Computing, 2011, pp. 114–121. 

[25] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy, J. 

Rogers, P. Roth, R. Sankaran, J. S. Vetter, P. Worley, and W. Yu, ―Early 

evaluation of IBM BlueGene/P,‖ in Proceedings of the 2008 ACM/IEEE 
conference on Supercomputing, 2008, pp. 23:1–23:12. 

[26] V. Vishwanath, M. Hereld, K. Iskra, D. Kimpe, V. Morozov, M. E. Papka, 

R. Ross, and K. Yoshii, ―Accelerating I/O Forwarding in IBM Blue 

Gene/P Systems,‖ in Proceedings of the 2010 ACM/IEEE International 

Conference for High Performance Computing, Networking, Storage and 
Analysis, 2010, pp. 1–10. 

[27] Z. Zhang, D. S. Katz, J. M. Wozniak, A. Espinosa, M. Wilde, and I. 

Foster, ―Design and Analysis of Data Management in Scalable Parallel 

Scripting,‖ in Supercomputing, 2012. 

[28] F. Schmuck and R. Haskin, ―GPFS: A Shared-Disk File System for Large 

Computing Clusters,‖ in Proceedings of the 2002 Conference on File and 
Storage Technologies FAST, 2002, no. January, pp. 231–244. 

[29] ―Lustre website ,‖ vol. 2009. . 



 63 

[30] C. A. Thekkath, T. Mann, and E. K. Lee, ―Frangipani: a scalable 

distributed file system,‖ SIGOPS Oper Syst Rev, vol. 31, no. 5, pp. 224–

237, 1997. 

[31] ―POSIX.‖ 

[32] S. Ghemawat, H. Gobioff, and S.-T. Leung, ―The Google file system,‖ 

ACM SIGOPS Operating Systems Review, vol. 37, no. 5, p. 29, 2003. 

[33] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, ―The Hadoop 

Distributed File System,‖ 2010 IEEE 26th Symposium on Mass Storage 
Systems and Technologies MSST, pp. 1–10, 2010. 

[34] K. Gupta, R. Jain, I. Koltsidas, H. Pucha, P. Sarkar, and M. Seaman, 

―GPFS-SNC: An enterprise storage framework for virtual-machine clouds 

,‖ IBM Journal of Research and Development, 2011. 

[35] M. Rosenblum and J. K. Ousterhout, ―The design and implementation of a 

log-structured file system,‖ ACM Trans. Comput. Syst., vol. 10, no. 1, pp. 

26–52, Feb. 1992. 

[36] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. 

Livny, ―Explicit Control in a Batch-Aware Distributed File System,‖ 

SciencesNew York, pp. 27–27, 2004. 

[37] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. 

Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, ―Dynamo: 

Amazon‘s Highly Available Key-value Store,‖ in SOSP07, 2007. 

[38] D. Fetterly, M. Haridasan, M. Isard, and S. Sundararaman, ―TidyFS: a 

simple and small distributed file system,‖ in Proceedings of the 2011 
USENIX conference on USENIX annual technical conference, 2011, p. 34. 

[39] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda, and J. 

Currey, ―DryadLINQ: a system for general-purpose distributed data-

parallel computing using a high-level language,‖ in Proceedings of the 8th 

USENIX conference on Operating systems design and implementation, 

2008, pp. 1–14. 



 64 

[40] S. Al-Kiswany, A. Gharaibeh, and M. Ripeanu, ―The Case for Versatile 

Storage System,‖ in Workshop on Hot Topics in Storage and File Systems 
(HotStorage), 2009. 

[41] M. Abd-El-Malek, W. V Courtright II, C. Cranor, G. R. Ganger, J. 

Hendricks, A. J. Klosterman, M. Mesnier, M. Prasad, B. Salmon, R. R. 

Sambasivan, S. Sinnamohideen, J. D. Strunk, E. Thereska, M. Wachs, and 

J. J. Wylie, ―Ursa Minor: Versatile Cluster-based Storage,‖ in 

Proceedings of the 4th USENIX Conference on File and Storage 
Technologies FAST, 2005, pp. 59–72. 

[42] J. V Huber Jr., A. A. Chien, C. L. Elford, D. S. Blumenthal, and D. A. 

Reed, ―PPFS: a high performance portable parallel file system,‖ in 

Proceedings of the 9th international conference on Supercomputing, 

1995, pp. 385–394. 

[43] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde, ―Falkon: a Fast 

and Light-weight tasK executiON framework,‖ in SuperComputing, 2007. 

[44] I. Raicu, I. Foster, Y. Zhao, P. Little, C. Moretti, A. Chaudhary, and D. 

Thain, ―The Quest for Scalable Support of Data Intensive Workloads in 

Distributed Systems,‖ International symposium on High Performance 
Distributed Computing (HPDC). 2009. 

[45] Z. Zhang, D. Katz, M. Ripean, M. Wilde, and I. Foster, ―AME: An 

Anyscale Many-Task Computing Engine,‖ in Workshop on Workflows in 

Support of Large-Scale Science, 2011. 

[46] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. 

Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crumme, D. Reed, L. 

Torczon, and R. Wolski, ―The GrADS Project: Software Support for 

High-Level Grid Application Development,‖ International Journal of 

High Performance Computing Applications, vol. 15, no. 4, pp. 327–344, 

2001. 

[47] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger, ―Workflow 

Management in Condor,‖ Workflows for e-Science, 2007. 

[48] A. Hori, Y. Kamoshida, H. Matsuba, K. Ohta, T. Yasui, S. Sumimoto, and 

Y. Ishikawa, ―On-demand file staging system for Linux clusters,‖ in 



 65 

Cluster Computing and Workshops, 2009. CLUSTER  ’09. IEEE 

International Conference on, 2009, pp. 1–10. 

[49] ―FUSE: Filesystem in Userspace.‖ . 

[50] P. H. Carns, W. L. III, R. B. Ross, and R. Thakur, ―PVFS: A parallel file 

system for Linux clusters,‖ of the 4th annual Linux, vol. 2000, no. 

October, pp. 317–327, 2000. 

[51] I. Raicu, Y. Zhao, I. Foster, and A. Szalay, ―Accelerating Large-scale 

Data Exploration through Data Diffusion,‖ International Workshop on 
Data-Aware Distributed Computing. 2008. 

[52] A. Chervenak, E. Deelman, M. Livny, M.-H. Su, R. Schuler, S. Bharathi, 

G. Mehta, and K. Vahi, ―Data placement for scientific applications in 

distributed environments ,‖ IEEE/ACM International Conference on Grid 

Computing. 2007. 

[53] T. Shibata, S. Choi, and K. Taura, ―File-access patterns of data-intensive 

workflow applications and their implications to distributed filesystems,‖ 

International Symposium on High Performance Distributed Computing 
(HPDC). 2010. 

[54] U. Yildiz, A. Guabtni, and A. H. H. Ngu, ―Towards scientific workflow 

patterns,‖ Workshop on Workflows in Support of Large-Scale Science. 

2009. 

[55] G. A. Alvarez, E. Borowsky, S. Go, A. Veitch, and J. Wilkes, ―Minerva: 

An automated resource provisioning tool for large-scale storage systems,‖ 

ACM Transactions on Computer Systems (TOCS), vol. 19, no. 4, 2001. 

[56] B. Hall, Beej’s Guide to Network Programming. Jorgensen Publishing, 

2011.  

 

 

 

 



 66 

Appendices 

Appendix A  : MosaStore Functional and Design Specification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 

 

MOSASTORE FUNCTIONAL AND DESIGN SPECIFICATION 

Main contributors to this document: Samer Al-Kiswany, Lauro Costa, Matei Ripeanu, Emalayan Vairavanathan.  

Other contributors to the MosaStore project and to this document: Gabriel Bezerra, Abmar Barros, Abdullah Gharaibeh, 

Elizeu Santos-Neto, Thiago Silva, Sudharshan Vazhkudai 

1 Objective 

This document serves three purposes: First, it serves as an 

introduction to the MosaStore project. Second, it serves as a 

reference for the core MosaStore storage system 

functionality, architecture, and implementation.  Finally, it 

will serve as a roadmap for planned MosaStore extensions.  

MosaStore
1
 is an experimental storage system. 

MosaStore is designed to harness unused storage space from 

network-connected machines to build a high-performance, 

yet low-cost datastore that can be easily configured for 

optimal performance in different environments, and for 

different application data access patterns. MosaStore 

aggregates distributed storage resources: storage space 

(based on spinning disks, SSDs, or memory) as well as the 

I/O throughput and the reliability of the participating 

machines.  

We have two strategic goals with MosaStore: On the 

one side, MosaStore is meant to support fully fledged 

applications that are deployed in contexts where aggregating 

resources into a specialized storage system is advantageous. 

For example MosaStore can be used to support many-task 

applications [1-3], to provide a specialized, high-

performance scratch space [4], to support check-pointing 

[5], or as a glide-in data store [6], [7].   

On the other side, we will use MosaStore as a 

platform to explore and evaluate innovations in the storage-

system architecture, design, and implementation.  For 

example, we plan to extend MosaStore to explore the 

feasibility of cross-layer communication through custom file 

metadata [8][9][10], explore solutions to automate storage-

system configuration [11], to explore support for data 

deduplication [12], to explore the feasibility of a versatile 

storage system [13], [14], or to explore techniques to 

evaluate and minimize the energy footprint of the storage 

system [15]. These are only a few of the advanced research 

projects that will exploit (and hopefully contribute) to the 

MosaStore code base.  

The rest of this document is organized as follows: 

first it briefly presents a number of intended usage scenarios 

(Section 2), the requirements the MosaStore storage system 

aims to meet (Section 3), the functionality currently offered 

(Section 4), the current architecture (Section 5) and 

                                                           

1  Available at: http://netsyslab.ece.ubc.ca/wiki/index.php/MosaStore 

implementation details (Section 6). Section 7 summarizes 

gaps in the current system implementation and serves as a 

development roadmap of MosaStore. Finally, the 

appendixes provide links to other documents and details 

about installation and MosaStore internals. 

2 Background and Usage Scenarios 

2.1. Background 

Modern large-scale scientific applications span across 

thousands of compute nodes and have complex 

communication patterns and massive storage requirements 

[16]. They aggregate thousands of computing nodes to get 

ample computational power and storage space. For these 

applications, the storage system‟s throughput and scalability 

plays a key role in the overall application performance.  

Moreover, these applications exhibit highly 

heterogeneous storage requirements over multiple axes such 

as read vs. write workload composition, throughput, 

durability, response time, consistency and reliability 

guarantees. A typical distributed data store will struggle to 

efficiently satisfy the storage requirements of all these 

applications as application-specific storage system 

optimizations are difficult to design, configure, and deploy 

and, ultimately, may be conflicting among various 

applications. 

Distributed storage systems have been an active 

research topic for many years. The overarching goals have 

been to provide scalable, reliable, secure, and transparent 

storage.  Recent designs to support modern scientific 

applications include: Ceph [17], [18]; GPFS [19], Lustre 

[20], PVFS [21], Frangipani [22]. 

One trend to support scalability and performance is to 

enable high configurability (or versatility) of the storage 

system to support specialization for specific deployment 

environments and workloads. For example, Ursa Minor [13] 

is a versatile storage system which provides multiple data 

encoding schemes to exploit the tradeoffs between 

performance and fault tolerance in the context of various 

workloads.  

A second trend is specializing the storage system for a 

specific workload or deployment environment.  For 

example, Google file system [23] optimizes for large 

datasets and appending access; BAD-FS [6] optimizes for 

batch job submission patterns over wide area network 

connections, and Amazon Dynamo [24] optimizes for 

intensive objects put/get operations. The aforementioned 



68 

 

storage systems often optimize for one specific workload, 

provide limited configurability, and provide a non-standard 

API, requiring modifications to the application.  

MosaStore differs from these systems in its design and 

deployment goals. It aims to incorporate a broad set of 

optimization techniques, enable high configurability at 

deployment and/or run time, and support multiple 

applications through customized, per application 

deployment, all while still providing a standard POSIX API.  

2.2. Usage Scenarios 

MosaStore is designed to support two main deployment 

scenarios: 

 Limited-life deployments (a.k.a., storage system glide-in 

[6], [7]).  In this case, the storage-system is submitted 

together with a batch application, instantiated on all (or a 

subset of) the nodes allocated to the application, and has a 

lifetime coupled with the application lifetime. 

 Long-term storage system that aggregates node-local 

storage resources – for deployments in clusters or 

networks of workstations. 

Two of the limited-life deployment scenarios we envision 

(and already supported) for MosaStore are presented below. 

We plan to add more scenarios as we explore them.  

2.2.1 High-performance Scratch Space for Many-task Applications  

The workflow-based processing used by a large number of 

scientific applications [25], [26], is generally composed of 

three main phases: stage-in input-data from central (and 

often external to the compute nodes cluster) storage to the 

compute nodes local storage, multiple computation stages 

that communicate through intermediate files, and stage-out 

the final results to the central storage. These three phases 

impose an intense workload on the storage system. 

To reduce the load on the shared, system-wide storage 

system applications can temporarily deploy and configure 

MosaStore to aggregate storage resources available on 

allocated compute nodes (local disk, SSDs, memory) and 

use the storage system thus created as a high-performance 

scratch space to achieve better performance and resources 

utilization during runtime.  

 The application will have to deploy and configure this 

storage system at launch time; then import the necessary 

data. The storage system will then be used throughout the 

application‟s life time for input/output purposes (and the 

application may even be able to pass hints to optimize 

storage system performance). Finally, the end result of the 

application will be copied on the shared/central file system 

for persistence and the MosaStore temporary deployment 

terminated. MosaStore is optimized fast mounting and rapid 

data migration to support these requirements.  

As many other classes of applications, instances of 

different many-task scientific applications may differ 

regarding their data usage characteristics such as 

throughput, data life-time, read/write balance, data 

compressibility, locality and consistency semantics. 

MosaStore enables each application to configure the storage 

system to best support its own deployment. This application-

oriented tuning allows applications to optimize MosaStore 

operations for the target workload. 

2.2.2 Checkpointing 

Long-running applications periodically write large snapshots 

to the storage system to capture their current state. In the 

event of a failure, applications recover by rolling-back their 

execution state to a previously saved checkpoint. The 

checkpoint operation and the associated data have unique 

characteristics [27][28]. First, checkpointing is a write-

intensive operation. Second, checkpoint data is written once 

and often read only in case of failure. Finally, consecutive 

checkpoint images present the application state at 

consecutive time steps and, depending on a number of 

factors (e.g., checkpointing technique used, frequency) may 

have a high level of similarity.  

MosaStore uses two optimizations to improve the 

overall performance of checkpointing applications. First, it 

reduces the data transfers and storage space usage by 

detecting similarities between checkpoint images. Second, it 

absorbs the bursty checkpointing writes, and asynchronously 

writes the checkpoints to the central storage. (See evaluation 

by Al-Kiswany et al. [5]). 

3 Requirements  
To support the above usage scenarios, MosaStore 

requirements are:  

 Easy to deploy: The storage system should be easy to 

deploy and mount as part of an application‟s start-up 

script (e.g., to support glide-in deployments [6], [7]). 

Further, ideally it should be transparently interposed 

between the application and the system central storage for 

automatic data pre-fetching or storing persistent data or 

results.  

 Easy to integrate with applications: The storage system 

should offer a POSIX-like API to facilitate access to the 

aggregated storage space, without requiring changes to 

applications.  Offering additional, high-performance APIs 

(e.g., HDF5, NetCDF) might be desirable. 

 Versatility and ability to configure: The storage system 

should provide several configuration knobs to support 

configurability for diverse applications. The system 

should be easy to configure and tune for a specific 

application workload and deployment environment. This 

includes ability to control local resource usage, in addition 

to controlling application-level storage system semantics, 

such as consistency and data reliability requirements. 

 Efficiently harness allocated resources to offer high 

performance and scalability: The storage system should 

efficiently use the node-local storage and networking 

resources to provide high performance access to the stored 

data. We aim to support O(10,000) concurrent clients, 



69 

 

O(1000) donor nodes, O(1M) files (typical file size is 

between 1kB to 100 GB), O(50K) directories. 

 Offer efficient storage for partially similar data. The 

storage system should support optimizations for 

workloads producing partially similar outputs (e.g., 

checkpointing workloads) by supporting versioning and 

content-based addressability. 

Other requirements the storage system might support:  

 Tuneable security: Different deployments or different 

applications might lead to different security requirements. 

In the future, we plan to support a tuneable security levels 

in terms of access control, data integrity, data 

confidentiality, and accountability. Note that the security 

mechanism should be compatible with the security 

infrastructure deployed on exiting production systems. 

4 Functionality 
This section briefly presents the functionality offered by 

MosaStore. 

4.1. POSIX API Coverage  

MosaStore supports most of the POSIX file system calls that 

are frequently used by applications. Table 4 provides a 

detailed description for the support level planned for each 

system call and indicates the implementation status for the 

calls we do plan to support.  

System calls we do not plan to support in the future: 

To reduce the complexity of the system, MosaStore does not 

support system calls related to file system locking (fcntl()), 

and special file control (ioctl()). Also it does not support 

system calls related to I/O multiplexing (select() and poll()). 

Mounting system calls (mount() and unmount()) and quotas 

(quotactl()) might be supported in latter releases according 

to necessity. 

4.2. Support for Extended Attributes 

MosaStore enables adding custom <key, value> pair 

attributes to files and directories. These custom attributes 

can be used for: application specific custom metadata such 

data provenance information, or to enable cross layer 

optimizations [9][10][8]. MosaStore implements the Linux 

kernel extended attribute API [29] as the API to access and 

modify custom attributes.  

4.2.1 Namespace for Extended Attributes - Reserved Names  

The following are reserved custom attributes; i.e., these 

attributes are reserved for cross-layer communication. In 

some cases these attributes are read-only – i.e., applications 

are not allowed to set their values).  The list below is 

tentative and intended only to show possibilities: 

 location: is an custom attribute that exposes the file 

location in MosaStore (i.e. the list of nodes storing the 

specific file).  

 replication level: is a custom attribute through which an 

application indicates the desired replication level for a 

specific file (otherwise, the system-level value is used by 

default) 

 stripe-width: a custom attribute to control data 

placement, that is, on how many nodes the file data is 

stored  (see section 4.4). 

 data-placement: a custom attribute to indicate the data 

placement strategies. 

 deduplication-enabled: a custom attribute to control 

whether deduplication is enabled for a specific file. (in 

case MosaStore supports both modes in a single 

deployment). 

 versioning-enabled: a custom attribute to control 

whether versioning is enabled for a specific file (in case 

MosaStore supports both modes in a single deployment). 

 file closing modes: custom attributes that enables the 

application to specify the semantics of the close 

operation (i.e., optimistic vs. pessimistic) 

4.3. Content-addressable Storage   

MosaStore supports two data storage schemes: a partial 

content addressable storage (CAS) solution [27], [28], [30] 

and a traditional storage solution. CAS brings a number of 

benefits: e.g., smaller storage footprint and higher 

throughput for workloads where data objects have high 

content similarity; and an implicit ability to verify stored 

data integrity. The administrator can enable/disable CAS
2
.  

If CAS is enabled then the administrator can choose the 

scheme to detect block boundaries: fixed-block size or 

content-based block boundaries
3
, and can specify the 

parameters for each of these schemes. 

 The content addressable storage is partial in the 

sense that it only supports detecting content similarity 

among the multiple versions of the same file (it does not 

detect content similarities across files). 

Main use cases: checkpointing, workloads with high content 

similarity between successive versions of the same file.  

4.3.1 Support for Versioning  

Currently MosaStore supports versioning only if it is 

configured as a content addressable storage. The current 

(most recent) version of a file can be referred by the original 

file name and the user is expected to use an explicit file 

naming scheme (as described below) in order access the 

previous version of the file.  

For example: Suppose a user created a file named Hello.C 

Then its previous versions will be accessible by using their 

names as Hello.C_v1, Hello.C_v2 and so on. Hello.C will 

                                                           

2 Implementation status: the goal is to be able to support enabling/disabling 

of CAS dynamically. 

3 Implementation status: code for variable-size blocks and content-based 

block boundaries working but not yet integrated in the main branch 

(December 2010) 



70 

 

always refer to the latest version of the file. The user will be 

able to list all the available versions by using the list (“ls”) 

command, and can access the previous versions as regular 

files in a read-only mode
4
. 

4.4. Data Placement 

Two decisions need to be made when a new file is 

persistently stored:  Which (and how many) storage nodes 

should be used to write the file to? And, among these 

storage nodes, how to distribute the data?  

To answer these questions currently MosaStore uses two 

policies (described below at a high level):  

 To write a file the destination storage nodes are selected in 

a round robin fashion to load-balance. 

 Once a set of storage nodes is selected stripped writes are 

used to accelerate the writes. The stripe_width is a 

configuration parameter - setting the stripe width to 1 

results in writing the entire file on one storage node. 

4.5. Replication 

MosaStore employs data replication for fault tolerance and 

performance
5
. The replication level (i.e. the number of 

replicas maintained per data block) is configurable. 

4.6. Optimistic vs. Pessimistic Operation Semantics  

MosaStore supports operation semantics that can be 

characterized as pessimistic or optimistic. These manifest at 

multiple levels. For example: 

 Deciding when to return success after a request to 

replicate one chunk (optimistic/pessimistic replication).  

Optimistic chunk replication is declared successful after a 

request is successfully launched, while pessimistic 

replication is declared successful only after all replicated 

data has been accepted at all destination nodes. Writing 

the first replica of a chunk is always pessimistic.  

 Deciding when a close() call should return to application 

(optimistic/pessimistic file close). In a pessimistic 

configuration, a close() system call returns only after all 

chunks of the file have been successfully stored at the 

storage nodes (replicated or not depending on the 

replication level and on the optimistic/pessimistic 

replication scheme at the chunk level). For optimistic 

configuration, a close() operation returns immediately to 

the application. The storage system creates a thread to 

                                                           

4 Implementation status: The code does not currently enforce the read-only 

access to past versions.  A file will be corrupted if an old version is 
modified. (December 2010) 

5
 Implementation status: this is implemented, however, fault-tolerance is 

not implemented yet– that is, the chunks stored on a failed node are not 

recreated. (June 2011) 

complete the write operation and committing the final 

blockmap to the manager.  

The application developer or administrator is able to specify 

the type of replication and type of file-close semantics (e.g., 

via a configuration flag or via tagging).  

5 Architecture 
The MosaStore prototype consists of a logically centralized 

manager, multiple donor nodes and multiple clients as 

shown in Figure 1. 

Application

Chunk_4

info

Chunk_3

info

Chunk_2

info

Chunk_1

infoSystem Access

Interface - 1

Donor node - 1

Ext-3 file system

Donor node - 1

Ext-3 file system

Manager
Root

/project/file_1

Control messages

Data messages

Metadata

messages

 
Figure 1: Applications running on the client nodes access the 

storage system via the system access interface (SAI). 

 

Typically, each of the above three components is 

deployed on a different node (e.g., a Linux machine) and 

running as a user-level process. It is also possible to run the 

donor and the SAI on the same machine.  

The following sections present the key design decisions 

made (Section 5.1) and provide a high-level description of 

each MosaStore component (the manager §5.2, the donor 

nodes §5.3, the SAI §5.4), and finally presents the caching 

design §5.5. Finer-grain implementation details are provided 

in Section 6.  

5.1. Architectural Design Decisions  

5.1.1 Stateless Manager  

The Manager maintains only the persistent metadata 

information and does not maintain state regarding the 

operation in-execution by specific clients (e.g., the manager 

does not maintain a list of open files and neither it hands off 

leases). Similarly, the manager does not keep track of the 

cached data at specific clients. A stateless manager helps 

limit the system‟s complexity and improves the overall 

system scalability.  

5.1.2 Consistency Semantics  

For files MosaStore provides session semantics (a.k.a., 

open-to-close semantics): that is changes in a file will be 

visible only to clients that open the file after it was closed by 

the client modifying it. For example suppose a file is opened 

for reading by application A then, after some time, it is 



71 

 

opened by application B for writing (from a different node). 

Application-A will not be able see the modifications made 

by application-B. The application developer is expected to 

be aware about MosaStore‟s consistency model. 

For metadata operations, sequential consistency is 

provided. 

5.1.3 File Chunks 

Files are fragmented into chunks that are stripped across 

donor nodes for fast storage and retrieval. Chunks are the 

addressable data unit of storage.  For each file, there is a 

chunkmap mapping the file to its set of chunks and their 

storage location(s) (i.e., the donor node that stores them). 

5.1.3.1 Defining Chunk Boundaries 

MosaStore supports two schemes to define chunk 

boundaries: chunks of fixed size and chunk boundaries 

based on content
6
. The choice of the chunk boundary 

scheme is configurable (at present at compile time
7
).  

 In the fixed-size scheme, the size of the chunk is 

configured at deployment time and files are divided into 

equally sized chunks.  

 The content-based chunking used is similar to that 

described by [31]. The user can configure the 

mechanism to use SHA1, MD5 or Rabin fingerprints 

[32] to detect the chunks boundaries and can provide 

the other parameters that drive the characteristics of 

these schemes (e.g., average chunk size).  

5.1.3.2 Chunk Naming 

Chunk naming in MosaStore can be done in two ways: 

naming by sequence numbers (to support a traditional 

storage system) and naming-by-hash (to support content 

addressability). At present the choice is made at compile 

time. Specifically: 

 Sequence-based naming. This scheme generates a unique 

identifier for each chunk IDs in order to avoid naming 

conflicts between any two chunks in the system. A 

combination of IP address of node running the SAI that 

produced the chunk, the SAI process ID, and uniquely 

increasing sequence number (the time counter) is used to 

create the unique identifier ([IP-

Addresses]_[ProcessID]_[SequenceNumber]_[Timestam

p]).  

                                                           

6  Implementation status: Not yet in the main code trunk (June/2011). Used 

by StoreGPU project  

7 Note: Dynamic performance tuning functionality may require switching 

back and forth between these naming schemes in order to measure the 

performance trade-offs at runtime.  

 

 Content-based naming.  In this scheme the chunk 

identifier is the hash value obtained by hashing the chunk 

content using SHA or MD5 function.  

5.1.4 Detecting Chunk Similarity  

Similarity is detected based on chunk names (when CAS is 

enabled
8
): if the content of two chunks does not hash to the 

same value then chunks are decidedly different.  If two 

chunks hash to the same value they can be either further 

compared byte-by-byte (as [33] does) or, if one assumes low 

probability of hash collisions, the two chunks can be directly 

declared similar (this is the assumption made in the current 

implementation and is similar to the assumption made in 

[31]). Currently MosaStore chooses the later and relies on 

the collision resistant properties of the SHA-1 hash function 

[34].  

5.2. The Metadata Manager 

The metadata manager maintains the entire system metadata 

including: donor nodes‟ status, file chunk distribution, 

access control information, and data object attributes. The 

metadata service is decoupled (to the extent possible) from 

the data service. That is, clients access the data stored on 

donor nodes directly and not through the metadata manager.  

Since files are divided into chunks and each chunk is 

identified by its name. It is the role of the metadata manager 

to maintain the mapping between files and chunks (through 

a chunkmap associated with each file) in addition to the 

other file metadata. 

The Manager uses the NDBM library [35] to persist 

the metadata. NDBM uses a disk-based extendible hash 

table to store key-value pairs. The metadata spans across 

several database tables (the database schema is presented in 

Appendix 4). All database transactions are serialized using a 

synchronization mechanism (a single mutex) to provide 

thread safety.   

Figure 2 shows the thread level architecture of the 

Manager. There are four types of threads: 

  Main thread. It listens to a port and pre-processes the 

requests from donor nodes and SAIs. 

 Request processing threads. These threads are spawned by 

main thread to serve the requests from SAI and to process 

the periodic updates and heartbeats from donor nodes. 

 Garbage collector thread. This thread periodically gets 

the detail of deleted chunks from NDBM tables and 

forwards to a donor node for garbage collection. 

 Replication service thread. Donor nodes failures are 

monitored by replication thread and durability guarantees 

are preserved by creating new copies of chunks. 

                                                           

8 Implementation status: Present only in the SequentialIO module (and not 

in the GeneralIO) (June/2011) 



72 

 

per_Connection

Dynamic threads

Listening

socket

Manager

Main

 thread

Connection Handling

threadConnection Handling

thread

Request

processing

threads

MAN_SER

Garbage Collector

thread

Replication

Service thread
Disk

MetaData

Operations

Chunk

Info
Metadata

Operations

Created shortly Created shortly

 
Figure 2: Manager Architecture.  The listening socket is 

shown as a dark circle; the direction of the arrow shows the 

data flow.  The ‘garbage collector’ and the ‘replication’ 

service threads are spawned at module initialization.  

5.3. Donor Nodes 

The donor nodes contribute storage space (memory or disk 

based) to the system. Donor nodes interact with the manager 

by publishing their status using a soft-state registration 

process, serve clients‟ chunk store/retrieve requests, and 

participate in the garbage collection mechanism (based on 

an epidemic protocol).   

 

Update thread

Connection Handling

threadConnection Handling

thread

Request

processing

threads

per_Connection

Dynamic threads for

Disk IO requests

Garbage

Collection Request

Processing Thread

Donor

Main

 thread BEN_SER

Disk

Chunk

Get / Put

requests

Chunk

Delete

requests

Created shortly Created shortly

 
Figure 3: Donor Node Architecture. The listening socket is 

shown as a dark circle; the direction of the arrow implies 

that the request processing thread is spawned by the donor 

main thread.  The ‘garbage collection’ and the ‘update’ 

service threads are spawned at module initialization. 

 

Figure 3 shows the thread level architecture of the 

donor node. There are four types of threads: 

 Main thread. The main thread listens to a port for 

incoming connections. It receives the requests from 

connection and pre-processes it; garbage collection 

requests are passed to garbage collection request 

processing thread via transfer queues and disk IO requests 

are passed to request processing threads. 

 Request processing threads. Request processing threads 

are spawned dynamically by main thread for each disk IO 

requests (e.g: reading / writing chunks). 

 Garbage collection request processing thread. This thread 

is created during donor node start–up. Once it receives a 

garbage collection message, the space is reclaimed and the 

message is passed to the update thread via transfer 

queues. 

 Update thread. This thread has two functions: first, it 

sends periodic updates (heart-beats) to the manager (e.g., 

containing space left, health status); second, it implements 

the epidemic protocol that distributes the garbage 

collection messages to other donor nodes. 

5.4. The System Access Interface (SAI) 

The SAI (system access interface) is a user-level file system 

implementation on top of FUSE [36][37](Figure 4).  

FUSE introduction: The FUSE infrastructure (Figure 

4) consists of two parts: user space FUSE library (libfuse) 

and a FUSE kernel module. The FUSE library provides a 

framework through an exported API that is used to 

implement a user-space file system. The kernel module is 

composed of fusefs, and a character device interface 

exported through the pseudo device driver /dev/fuse. The 

kernel module and libfuse communicate through the 

character device; file system requests from the virtual file 

system are received by fusefs and transmitted through 

/dev/fuse to the library, where they are processed and the 

results are returned back to vfs through the character device 

to fusefs. 

User level file system

Implementation

libfuse

glibcglibc

Open(/tmp/fuse/test)

VFS

fusefs

Ext3

User Space

Kernel

Storage Space

Application

dev/fuse

 
Figure 4: Communication between Application and SAI 

The FUSE API [38] defines the interface (callbacks 

and their arguments) used by application developers to 

implement FUSE file systems in user space. The FUSE 

protocol defines the communication between the FUSE 

kernel module and the FUSE user space library. A detailed 

description of the FUSE protocol can be found in the FUSE 

Protocol Specification
9
. 

                                                           

9 See: http://fuse.sourceforge.net/ 



73 

 

Design: MosaStore‟s system access interface (SAI) is 

a collection of implemented FUSE callbacks that provides 

the mechanism to access the storage space offered by the 

donor nodes and provides client side optimizations that 

include caching and similarity detection. The SAI supports 

the most frequently used POSIX system calls (see section 

4.1) and provides easy integration with existing and future 

applications.  

The SAI has two modules, namely the sequential I/O 

module, and the general I/O module to serve file system 

calls. The sequential I/O module is highly optimized for 

sequential read and writes. The general I/O module serves 

random reads and writes. Depending on how a file is open, 

callbacks are dispatched to one of these two modules.   

At the thread-level, the SAI contains a permanent 

thread called SAI main thread
10

 plus dynamic threads are 

explicitly spawned by the SAI to process some of the 

callbacks associated with each of the above modules as a 

result of the file system calls to serve different tasks in 

parallel. More specifically: 

 [sequential I/O module] Get Chunk thread is spawned to 

fetch chunks while serving a file read request. It 

terminates after serving the read() request.  

 [sequential I/O module] Agent Run thread is spawned 

dynamically to send the chunks to donor nodes during a 

file write(). 

 [sequential I/O module] Commit and Free threads are 

used to update/send the metadata information to the 

Manager, once the file is closed after a write.  

 [general I/O module] General IO Send File thread is used 

to send the data and metadata of an optimistically opened 

file via the general IO module. 

5.5. Caching 

Caching can significantly improve performance. This 

section discusses caching issues at each of the three 

MosaStore components. Implementing a caching 

mechanism at the metadata manager itself is not a priority: 

The manager already takes advantage of the caching 

provided by NDBM library. Also implementing another 

caching layer on top of NDBM might be complex and the 

potential performance gains are not clear.  

Caching at donor nodes might not be necessary if the 

donor nodes are going to use DRAM based storage (e.g., for 

diskless nodes such as those of BG/P machine). 

Hence, MosaStore provides only client-based caching 

at the SAI. The current design caches metadata in order to 

reduce the burden on the manager. The cached metadata 

includes the list of files in a directory and their attributes. 

                                                           

10 If FUSE is configured as „multi-threaded‟ then multiple threads will be 

spawned by FUSE itself to process these callbacks.  

The cached metadata is invalidated after a configurable time 

period
11

.  

In the future, different caching and pre-fetching 

schemes for donor nodes and the metadata manager can be 

investigated and combined with dynamic performance 

tuning functionality. 

6 Implementation Details 
To provide a more detailed presentation of MosaStore 

internals, this section illustrates the most important 

workflows currently implemented in MosaStore prototype.  

The following section (Section 7) provides a detailed 

discussion on missing and planned additional functionality. 

In MosaStore file input/output operations can be performed 

either using SequentialIO module or GeneralIO module. 

SequentialIO is highly optimized to support high-throughput 

write-once and read-many workloads [16] while GeneralIO 

has few optimizations and designed to support workloads 

with append-only and random read/write patterns. 

These modules help MosaStore to better support IO-

optimizations with less implementation complexity. 

Currently MosaStore uses the flags passed-in a file-open call 

to identify the suitable IO module. In addition all the write 

operations to an already existing file are always forwarded 

to GeneralIO. The following sections (6.1 and 6.2) describe 

the read-many and write-once workflows of SequentialIO 

and the available special optimizations. The section 6.3 

explains random write and append-only workflows of 

GeneralIO module. 

6.1. File Read  

The processing steps during the read operations are the same 

regardless of the naming scheme (by sequence, or by hash) 

(Figure 5). 

                                                           

11 Implementation Status:  This functionality is to be implemented by 

Emalayan (November 2010) 



74 

 

SAI Manager Donor-1 Donor-2 Donor-n

GetBlockMap()

GetChunk()

GetChunk()

GetChunk()

Clean metadata

  
Figure 5: Read workflow for Sequential IO module (full 

arrows - synchronous communication; half arrow - asynchronous 

communication; name of the messages are indicated on top of an 

arrow)  

File read workflow 

1. Upon a file open request from an application, the SAI sends 

a request to the manager and downloads the relevant 

blockmap (blockmap: metadata information consists of file 

attributes and the file chunkmap, chunkmap: contains 

information about where each chunk is stored).  

2. The SAI updates its local metadata cache.  

3. According to the read request (based on the current reading 

location), the SAI downloads the corresponding data chunks 

from donor nodes (GetChunk()).  

4. Upon a file close request, SAI removes the blockmap from 

the metadata cache. 

 

Note: File read-open requests will not go through manager 

if the blockmap exists in the metadata cache. 

6.1.1 Read Ahead Optimization 

The SAI implements a read-ahead optimization. When a file 

is opened for read, the SAI spawns a pool of n reading 

threads that fetch data from donor nodes. The number of 

threads n is configurable. When the threads are created, they 

start prefetching the first n chunks of the file to the SAI read 

buffer. Once a chunk is completely read by the application, 

one of the threads will fetch a new chunk. 

6.2. Writing Files  

MosaStore performs a number of optimizations for files 

opened via SequentialIO module. This module only supports 

new files that are opened in write-only mode.  The steps 

performed during the write operations are slightly different 

for different naming schemes (by sequence or by hash) and 

depend on whether naming by content and versioning are 

enabled. The section starts with presenting the most basic 

workflow and extends it for various other configurations. 

The workflow for a sequential write is shown in Figure 6. 

SAI Manager Donor-1 Donor-2 Donor-n

GetChunkAllocation()

PutChunk()

PutChunk()

PutChunk()

CommitBlockMap()

CommitBlockMap()

Clean metadata

 
Figure 6: Write workflow for the SequentialIO module 

 

New file, sequential write workflow.   

Assumptions: - sequence-based naming, no replication, file 

versioning is disabled, sequential write 

1. When a file is opened for write, SAI gets the the chunkmap 

from the manager and instantiates a blockmap by combining 

the chunkmap and attributes. The manager creates a 

chunkmap by allocating the chunks in a round-robin fashion 

from the donor nodes. 

2. After opening the file for write, typically, multiple write() 

requests are issued by the application. The data is written 

into a temporary buffer by the SAI. 

3. When the size of the data written in the buffer reaches the 

size of a complete chunk, the data is sent to a donor node as 

a new chunk (PutChunk()). The new chunk metadata is 

added to the file blockmap. 

4. The current blockmap is committed at the manager 

(CommitBlockMap()) and the status of commit operation is 

returned to the application if a  flush() callback is received 

from the libFuse. 

5. Once the file is closed by application, the SAI commits the 

final blockmap at the manager and cleans the metadata 

cache. The libFuse always issues a flush() when application 

closes a file. 

 

Note 1: Using a content-based naming scheme. The write 

operation with content based scheme is similar to the write 

operation with sequence based scheme with the following 

additions.  (The step number corresponds to the step number 

in the workflow above): 

2  During the write operation the written data is written to a 

temporary buffer. When the temporary buffer reaches a 

defined size the buffer is processed to detect possible 

chunks boundaries.  

3.1 If a chunk boundary is detected then a new chunk is written 

to the donor nodes and the chunk metadata (including the 

chunk hash value) is added to the file chunk map. The 

chunk boundary can be detected either based on fixed-size 

or variable-size. The algorithm to detect variable-size 

chunk boundaries is described in [39], [40] 



75 

 

3.2 Else (a chunk boundary was not detected and the maximum 

buffer size is reached) an artificial chunk boundary is 

inserted.  

 

Note 2: Adding file versioning. Currently only in the 

content based naming scheme MosaStore supports 

versioning. The write operation with versioning (or with 

similarity detection) is similar to the write operation 

presented so far with the following changes (The step 

number corresponds to the step number in workflows 

above): 

1.  When the file is opened for write, the SAI retrieves the file 

blockmap (attributes and chunkmap) of the file‟s latest 

version from the manager. Then the SAI also creates a new 

blockmap for the new version of the file. 

3.  When a new chunk is detected (either through path 3.1 or 

3.2 of Note 1) and its hash is computed, the SAI will search 

for the chunk‟s hash value in the file‟s latest version 

blockmap before sending the new chunk to the donor node. 

If a matching hash value is found, the SAI copies the chunk 

metadata from the latest version to the new version and no 

data is transferred to donor nodes. If no matching hash 

value is found, the process continues as before.  

Note 3: Adding replication. If replication is enabled for 

a file
12

, chunks will be copied on multiple donor 

nodes.  Replication can be done either pessimistically 

or optimistically. An application will not be notified 

regarding the failure of optimistic replication. In this 

case metadata information of the file will contain some 

invalid donor node information and the SAI will 

transparently manage this failure by detecting invalid 

donor nodes and fetching the data from available 

donor nodes. The write operation of replicated 

(optimistic) file is similar to the original write 

operation with the following changes (Figure 7). 

                                                           

12 Currently, the replication level it is configuration parameter for the entire 

deployment (for all created files). In the current implementation it assigns 
the replication level defined in the configuration file to all files. In the 

future the replication level will be per file and communicated through the 

tagging mechanism (February‟11). 

SAI Manager Benefactor-1 Benefactor-2 Benefactor-p

PutChunk()

Status

GetChunks()

Chunk Allocation

Chunk and BenInfo
PutChunk()

 
Figure 7: Replication work flow of a file (replication-

semantics = 2 and replication-level = 3) 
 

1  When the SAI contacts the manager, it indicates the 

replication level and the manager replies with a larger 

space allocation (chunkmap). 

3.1 Then SAI chooses a benefactor from replicas list and 

forwards the chunk and the list of replicas to it.  This 

benefactor firstly stores the chunk in its local disk and 

forwards the chunk to the remaining benefactors. 

3.2 Then, it sends a status message to SAI to indicate whether 

the operation completed successfully or not.  

 

During pessimistic replication, an application is notified 

about the status of the replication during a file close 

operation. Two parameters: replication-semantics (used to 

vary the replication between pessimistic to optimistic) and 

replication-level (maximum number of replicas) are used to 

configure the replication. The SAI always pessimistically 

replicates the chunk in some number of replicas equal to 

replication-semantics and then optimistically replicates the 

chunk the chunk in other replicas (1 <= replication-

semantics <= replication-level). Further fault-tolerant 

service in the manager always monitors the failed donor 

nodes and replicates the data accordingly. 
 

Note 4: Using pessimistic/optimistic file close. Files can be 

opened through SequentialIO either in optimistic mode or 

pessimistic mode. In pessimistic mode SAI flushes all the 

buffered data and metadata to the manager and donor nodes 

and returns the status of the operation to the application 

during a file close (6.1 and 6.2 explain the operations in 

pessimistic mode). A successful close guarantees that the 

file is safely stored in the system. 

 

In optimistic mode, the SAI immediately return success to 

the application upon a file close and flushes the stored data 

and metadata asynchronously. The safety of the file is not 

guaranteed. All the above mentioned optimizations are 

supported in both modes. 



76 

 

6.3. Read/Write 

Read/Write operations through GeneralIO is different from 

read() only and, write() only workflows in SequentialIO: 

here an existing file is downloaded entirely by SAI and both 

read() and write() operations occur locally.  When a 

modified file is closed by an application, the file is stored in 

donor nodes and its metadata updated at the manager. 

Compared to previous implementations described in Section 

6.1 and 6.2 this approach is inefficient because during a file 

open call entire file is fetched and stored at the client side. 

 
GeneralIO also supports optimistic/pessimistic file close 

operations, content based naming scheme and replication. In 

contrast to SquentialIO, GeneralIO caches both data and 

metadata to better support applications. The caches are can 

be flushed either during a file close (pessimistic-close) or 

after configurable interval (optimistic-close). The read 

operation of a file is similar to the 6.1 with the following 

changes. 

1 SAI checks whether the file is available in the local cache 

and if the file is not available it download the blockmap 

from the manager. 

2  The SAI increases the reference-count of the file by 1. 
3 The SAI downloads all the chunks from the benefactors 

and creates a local file for read operations.  Then SAI 

updates its local data and metadata caches. All read 

operations are performed on this local copy. 

4 Upon a file close request, SAI reduce the reference count 

and return success to the application. The cached metadata 

and data is cleaned if reference-count is zero. 

 

Note: If a file is available in local SAI cache all the read operations 

will be served locally. And if a file is opened with optimistic close 

mode, SAI cleans both the data and metadata cache after a 

configurable interval. 

The write operation of file is similar to the 6.26.1 with the 

following changes. 

1 When a file is opened for write SAI communicate with 

manager to check whether the file is already available in 

the system. If the file is not available it creates a new file 

locally. 

2 All the writes are written to the local file by SAI. 

4 Upon a flush request, the SAI sends a request to the 

manager with the current file size and request for new 

chunk allocation and instantiates a blockmap. Then SAI 

sends the chunks to donor nodes and commit the blockmap 

at the manager. 

5 Once the file is closed, SAI again do the step-4.    

 

Note: If a file is available in local SAI cache all the write 

operations will be served locally. And if a file is opened with 

optimistic close mode, SAI flushes both the data and metadata 

cache after a configurable interval. 

6.4. File Deletion
13

 (unlink()) 
1. The SAI sends a message to the manager to delete the file. 

2. The manager replies back with the status of deletion 

operation. 

3. SAI removes this entry from its local metadata. 

6.5. Getting file attributes, reading directory information: 

getattr() and readdir() 
1. The SAI checks whether file metadata information is 

available in the local cache. If it is available, the request will 

be served from local metadata. If it is not available, it will 

send a message to the manager to download the metadata.  

2. The manager replies back with the metadata. 

3. SAI updates its local cached metadata and serves the request. 

6.6. File Standard Attributes, Extended Attributes and 

Directory Operations 

The workflows for implementing the standard file attribute 

operations (chmod(), access(), mtime()), extended attribute 

operations (setxattr(), getxattr(), removexattr(), and 

listxattr()) and directory operations (rename(), rmdir(), 

mkdir()) are similar. All these functions require 

communication with the manager only. As a result the 

workflow is:  

1. The SAI sends a request to the manager to update/download 

metadata.  

2. The manager replies back with the status of operation and 

the requested metadata (in case of getxattr()/listxattr()). 

6.7. Truncate  

Currently the system only supports truncate() to zero length 

files (a common use). For a detailed discussion of what‟s 

needed to fully support truncate see Appendix 6. 

6.8. Space Management or Garbage Collection 

This section explains the garbage collection mechanism 

used by MosaStore to reclaim the space after file deletion.  

 

For garbage collection; one approach is to let the manager to 

directly communicate with relevant donor nodes to recover 

the space. This will increase the manager‟s burden on larger 

deployments due to the large number of TCP connections 

and the number of messages to be sent. Another approach is 

to spread the list of deleted chunks among benefactors in an 

epidemic fashion. This will reduce the burden on Manager 

considerably with some challenges in establishing the 

epidemic protocol.  

 

We have implemented garbage collection using epidemic 

protocol in MosaStore. The garbage-collection supports the 

                                                           

13 Implementation Status: Currently (November 2010) MosaStore only 

removes the file‟s metadata at the manager. The actual data (chunks) in 

donor nodes are freed only the file is using sequence-based naming scheme. 

We are working on a garbage collection scheme. 



77 

 

both naming schemes. Each chunk has a reference-count 

which tracks the number of files shares the same chunk. 

Upon a file deletion reference count of the chunks are 

adjusted and the chunks with reference-count equal to zero 

are written to the database for deferred garbage collection. 

Important steps of the epidemic protocol are discussed 

below: 

 

 Bootstrapping the epidemic protocol and Spreading 

membership. 

Each donor nodes maintains the entire list of donor nodes in 

the system. The manager uses epidemic protocol to spread 

the information about the newly joined donor nodes to the 

rest of the donor nodes in the system. So the information 

about the new donor nodes are added to the manager‟s 

pending membership list and then later published with the 

garbage collection message in an epidemic fashion. After 

forwarding the membership information the manager cleans 

its pending memberships list. The manager forwards the list 

of all the active donor nodes in the system if a donor node 

joined newly. 

 Spreading garbage collection messages. 

The manager gets the chunks to be garbage collected from 

the database. Then the manager initiates the epidemic 

protocol by forwarding the garbage collection message to a 

randomly selected donor node. After forwarding the 

message, the manager removes the chunks name from 

database. 

Every donor node which receives a garbage collection 

message, forwards it to some other randomly selected 

donor-nodes. The message is spread to the rest of the system 

in this manner.  

 When to stop the protocol. 

Each garbage collection message has a non negative time-

to-live value. The manager calculates this value and 

forwards it with the garbage collection message. A donor 

node reduces this value by one before forwarding it to 

another donor node. If a donor node receives a garbage 

collection message with time-to-live value equals to zero, 

then it reclaims the storage space and stops the message 

spreading; basically the epidemic protocol is stopped. 

 Handling failed donor nodes and spreading failed node 

information. 

Each donor nodes is responsible to identify the failed donor 

nodes. If a donor node (node-A) cannot connect to another 

donor node (node-X) in several tries, then node-X is treated 

as failed and removed from node-A‟s membership list. 

 

Modeling of the epidemic protocol. 

 

The following section presents the mathematic model of the 

epidemic protocol. 

fan-out (f) - The number of donor nodes selected at a time 

to spread a garbage collection message. 

time-to-live (l) - Number of hops ( donor nodes)  that a 

garbage collection message can pass before termination. 

P - Probability of a donor node not getting garbage 

collection message 

N – Total number of nodes in the system 

 

Total messages in the system  

Therefore    =>    

 

       - Equation-1 

 

In MosaStore P is kept as a constant. The time-to-live value 

is calculated by the manager for a particular fan-out to 

satisfy probabilistic guarantee P using the Equation-1. 

MosaStore provides two configurable parameters namely 

“fan-out” and “garbage-collection-interval” to control the 

epidemic protocol. “garbage-collection-interval” determines 

the time period between two garbage collection messages. 

 

Epidemic protocol and manager failure: 

During a manager restart all the benefactors in the system 

will connect back, so the epidemic protocol can be 

established as explained above. 

7 Gap Analysis and Design Decisions 
This section discusses the gaps between the functional 

specification and the current working prototype of 

MosaStore. The goal of this section is to guide the 

MosaStore team in the planning (by enumerating the gaps) 

and development process (by providing detailed discussion 

of planned functionality).   

7.1. POSIX API 

Table 4 describes the current implementation status of the 

POSIX API support in MosaStore and outlines the calls that 

will be developed. To help with prioritization, the table also 

presents an estimate for the effort associated with 

implementing each system call.  

7.2. Caching 

SAI based caches should be invalidated after some 

configurable period. 

7.3. Support for glide-in usage scenario 

Since, in this scenario, MosaStore is deployed at the start-up 

of an application and used until application finishes, it is 

necessary to provide an efficient way to import and export 

data from/to other file systems (e.g., GPFS / Lustre). Here 

the challenges are that staging data in/out should be (ideally 

be) transparent to the application (or at least simple) while 

providing consistency, high performance and fault tolerance. 



78 

 

7.4. Fault Tolerance  

We need to deal with the failures of all three components of 

the system as well as with network failures (message loss 

and connectivity loss). 

7.4.1 Donor node failures  

A donor node may be unreachable due to software, machine, 

or network failures. In these cases, all the chunks stored in 

the donor node will be unavailable temporarily or 

permanently. A donor node will always validate its data if it 

connects to the file system after a failure.  The functionality 

to be implemented to provide fault tolerance is to restore on 

other donor nodes the chunks that were lost due to failure
14

:  

Fault detection: Donor nodes currently send regular 

heartbeat messages to the manager. With this information, 

the manager can detect failed donor nodes and mark them as 

dead (note to deal with temporary failures). 

7.4.2 Manager Failures 

The manager may fail and lead to an entire storage system 

malfunction due to software crashes, machine failures and 

network partition/failures. Current design will not address 

these problems and this task is scheduled for the next phase 

of the project that focuses on a complete metadata manager 

redesign to provide scalability and fault tolerance.  

7.4.3 Client node failures  

Need to argue that they do not leave in the wrong state. 

7.5. Security 

The security is currently relaxed in MosaStore since one of 

the main use cases is as an application-dedicated storage 

system and, generally, will be used in trusted network 

environments. We have explored designs that include 

configurable security levels in [ref] 

7.6. Inter-file similarity detection 

The current system does not support similarity detection 

across files (i.e., it supports only similarity detection across 

multiple versions of the same file.). We will carefully 

evaluate the potential gains from supporting this feature (as 

supporting it involves a complete metadata redesign)  

7.7. Other areas for improvement  

There are multiple additional areas to improve. Firstly, 

MosaStore extensively uses blocking socket calls for 

sending and receiving operations. Second, MosaStore 

creates one thread per open connection. Third, MosaStore 

uses temporary TCP connections to communicate among the 

manager, donor nodes and SAIs – reusing connections is 

feasible to improve performance. A better approach is to use 

                                                           

14 Implementation status (June/2011). Partially implemented - we had a 496 

project on this  

non-blocking or asynchronous I/O calls for socket I/Os with 

persistent TCP connections.  

 

7.8. Known Implementation Shortcuts 

This appendix lists known implementation shortcuts: 

 truncate()only supports truncate(path, 0). Here the file 

is deleted and a new file is created. 

 chmod() operation is ignored and all files have a 0x777 

access mode 

 chown() operation is ignored and all users can access all 

files 

 utimens() operation is ignored. The SAI returns 

modification_time and access_time 

 One useful exercise is to try to find „unsafe‟ library 

calls in the code (e.g., calls to routines that are not 

thread safe) and make sure there are no concurrency 

problems.  

 Issue with updates vs. insert/delete – leads to coarse 

granularity in the metadata and to wired interaction with 

garbage collection 

8 References 

[1] J. Yu and R. Buyya, “A taxonomy of 

scientific workflow systems for grid 

computing,” ACM SIGMOD Record, vol. 

34, no. 3, p. 44, 2005. 

[2] I. Raicu et al., “Towards Loosely-Coupled 

Programming on Petascale Systems,” 

IEEEACM Supercomputing 2008, 2008. 

[3] Z. Zhang, A. Espinosa, K. Iskra, I. Raicu, I. 

Foster, and M. Wilde, “Design and 

Evaluation of a Collective IO Model for 

Loosely Coupled Petascale Programming,” 

Science, 2008. 

[4] H. M. Monti, A. R. Butt, V. Tech, and S. S. 

Vazhkudai, “/ Scratch as a Cache : 

Rethinking HPC Center Scratch Storage,” 

ICS, 2009. 

[5] S. Al-Kiswany, M. Ripeanu, S. S. 

Vazhkudai, and A. Gharaibeh, “stdchk: A 

Checkpoint Storage System for Desktop 

Grid Computing,” 2008 The 28th 

International Conference on Distributed 



79 

 

Computing Systems, vol. 0, pp. 613-624, 

2008. 

[6] J. Bent, D. Thain, A. C. Arpaci-Dusseau, R. 

H. Arpaci-Dusseau, and M. Livny, 

“Explicit Control in a Batch-Aware 

Distributed File System,” SciencesNew 

York, pp. 27-27, 2004. 

[7] A. Hori et al., “On-demand file staging 

system for Linux clusters,” 2009 IEEE 

International Conference on Cluster 

Computing and Workshops, pp. 1-10, 2009. 

[8] E. Santos-Neto, S. Al-Kiswany, N. 

Andrade, S. Gopalakrishnan, and M. 

Ripeanu, “Enabling Cross-Layer 

Optimizations in Storage Systems With 

Custom Metadata,” Proceedings of the 17th 

international symposium on High 

performance distributed computing - 

HPDC, p. 213, 2008. 

[9] S. Narayan and J. A. Chandy, “ATTEST: 

ATTributes-based Extendable STorage,” 

Journal of Systems and Software, vol. 83, 

no. 4, pp. 548-556, 2010. 

[10] J. Stribling et al., “Flexible, wide-area 

storage for distributed systems with 

WheelFS,” in Proceedings of the 6th 

USENIX symposium on Networked systems 

design and implementation, 2009, pp. 43–

58. 

[11] L. B. Costa and M. Ripeanu, “Towards 

Automating the Configuration of a 

Distributed Storage System,” 2010. 

[12] A. T. Clements, I. Ahmad, M. Vilayannur, 

J. Li, and V. Inc, “Decentralized 

Deduplication in SAN Cluster File 

Systems.” . 

[13] M. Abd-El-Malek et al., “Ursa Minor: 

Versatile Cluster-based Storage,” in 

Proceedings of the 4th USENIX Conference 

on File and Storage Technologies FAST, 

2005, pp. 59-72. 

[14] S. Al-Kiswany, A. Gharaibeh, and M. 

Ripeanu, “The case for a versatile storage 

system,” SIGOPS Oper Syst Rev, vol. 44, 

no. 1, p. 10, 2010. 

[15] J. Kim, J. Chou, and D. Rotem, “Energy 

Proportionality and Performance in Data 

Parallel Computing Clusters,” SSDBM, 

2011. 

[16] J. Wozniak and M. Wilde, “Case studies in 

storage access by loosely coupled petascale 

applications,” Workshop on Petascale Data 

Storage, p. 16, 2009. 

[17] S. Sinnamohideen, R. R. Sambasivan, and 

J. Hendricks, “A Transparently-Scalable 

Metadata Service for the Ursa Minor 

Storage System,” Most, 2010. 

[18] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. 

Tian, “Scalable and Adaptive Metadata 

Management in Ultra Large-Scale File 

Systems,” 2008 The 28th International 

Conference on Distributed Computing 

Systems, pp. 403-410, 2008. 

[19] F. Schmuck and R. Haskin, “GPFS: A 

Shared-Disk File System for Large 

Computing Clusters,” in Proceedings of the 

2002 Conference on File and Storage 

Technologies FAST, 2002, no. January, pp. 

231-244. 

[20] P. J. Braam, “The Lustre Storage 

Architecture,” White Paper Cluster File 

Systems Inc Oct, vol. 23, 2003. 

[21] P. H. Carns, W. L. III, R. B. Ross, and R. 

Thakur, “PVFS: A parallel file system for 

Linux clusters,” of the 4th annual Linux, 

vol. 2000, no. October, pp. 317-327, 2000. 



80 

 

[22] C. A. Thekkath, T. Mann, and E. K. Lee, 

“Frangipani: a scalable distributed file 

system,” SIGOPS Oper Syst Rev, vol. 31, 

no. 5, pp. 224-237, 1997. 

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung, 

“The Google file system,” ACM SIGOPS 

Operating Systems Review, vol. 37, no. 5, 

p. 29, 2003. 

[24] G. DeCandia et al., “Dynamo: amazon‟s 

highly available key-value store,” ACM 

SIGOPS Operating Systems Review, vol. 

41, no. 6, pp. 205-220, 2007. 

[25] T. Oinn et al., Workflows for e-Science. 

Springer London, 2007, pp. 300 - 319. 

[26] I. Raicu et al., “Towards Loosely-Coupled 

Programming on Petascale Systems,” 

IEEEACM Supercomputing 2008, 2008. 

[27] A. Liguori and E. Van Hensbergen, 

“Experiences with Content Addressable 

Storage and Virtual Disks,” in Proceedings 

of the Workshop on IO Virtualization 

WIOV, 2008, vol. m. 

[28] P. Nath et al., “Design Tradeoffs in 

Applying Content Addressable Storage to 

Enterprise-scale Systems Based on Virtual 

Machines,” in Proceedings of the 2006 

USENIX Annual Technical Conference, 

2006, pp. 71-84. 

[29] R. Love, “Chapter 12. The Virtual 

Filesystem,” in Linux Kernel Development 

Second Edition, Sams Publishing, p. 432. 

[30] Z. Youhui and W. Dongsheng, “Applying 

File Information to Block-Level Content 

Addressable Storage,” Tsinghua Science 

and Technology, vol. 14, no. 1, pp. 41-49, 

2009. 

[31] A. Muthitacharoen, B. Chen, and D. 

Mazières, “A low-bandwidth network file 

system,” ACM SIGOPS Operating Systems 

Review, vol. 35, no. 5, p. 174, 2001. 

[32] M. O. Rabin, Fingerprinting by random 

polynomials, no. TR-15-81. 1981, pp. 15-

18. 

[33] S. Rhea, R. Cox, and A. Pesterev, “Fast, 

Inexpensive Content-Addressed Storage in 

Foundation,” in USENIX 2008 Annual 

Technical Conference on Annual Technical 

Conference, 2008, pp. 143-156. 

[34] D. Eastlake and T. Hansen, “US Secure 

Hash Algorithms (SHA and HMAC-

SHA),” no. 4634. IETF, 2006. 

[35] Berkeley, “New Database Manager 

(NDBM) library,” 1986. 

[36] “FUSE: Filesystem in Userspace.” . 

[37] A. Rajgarhia and A. Gehani, “Performance 

and extension of user space file systems,” 

Proceedings of the 2010 ACM Symposium 

on Applied Computing - SAC  ’10, p. 206, 

2010. 

[38] I. Sun Microsystems, “FUSE Kernel 

Operations Function Specifications,” 2006. 

[39] A. Z. Broder, “Some applications of 

Rabin‟s fingerprinting method,” Sequences 

II Methods in Communications Security 

and Computer Science, pp. 143-152, 1993. 

[40] A. Tridgell and P. Mackerras, “The rsync 

algorithm,” Imagine, no. TR-CS-96-05. 

1996.  

 



81 

 

 

Appendix 1: RELATED LINKS 
MosaStore website: http://mosastore.net or http://netsyslab.ece.ubc.ca/wiki/index.php/MosaStore  

Appendix 2: Installation instructions 
Download the MosaStore tar-ball and extract it in a local directory. MosaStore is composed of three main modules namely 

manager, benefactor and file system interface and the extracted MosaStore source code directory contains different 

directories for each module. Each module can be separately built using the Makefiles and further direction is provided in the 

“readme.txt” files available with each modules. Manager, Benefactor and SAI binaries should be started as mentioned below 

to deploy the MosaStore file system. 

 

Manager:  

Run the binary using “./manager  [port_number] [config_file]” where; 

[port_number]: is the port number through which the manager accepts incoming connections. 

[config_file]: is the path to the configuration file to be used.  

Benefactor:  

Run the binary using “./benefactor [config_file]” where; 

[config_file]: is the path to the configuration file to be used.  

 

SAI: 

Run the binary using “./mosastore -o direct_io -o sync_read -o allow_other -c [config_file] [mount_point]” where ; 

[mount_point]: is the mounting point (e.g. /tmp/mntpoint) and make sure that the mounting point is empty. 

[config_file]: is the path to the configuration file to be used.  

 

Note: Always [config_file] parameter is optional and if it is not provided the MosaStore File System will check the current 

directory for configuration file. If configuration file is not available in the current directory then binaries will terminate. 

 

Appendix 3: Configuration instructions 
This section presents the set of configuration options at each of the main three components of the system: the manager, the 

donor nodes, and the SAI. (Default values are provided together with the default configuration files used by MosaStore).  

Table 1: Manager Configurations 
Configuration Descriptions 

stripe_width This will determine the number of benefactors that the 

client will strip the data during file write operations. 

chunk_size The maximum size of a chunk. 

max_num_ben The maximum possible number of benefactors in the 
system 

log_mode Log mode could be : DEBUG, VERBOSE, ERROR, 

FATAL, RESULT, OFF (Optional) 

log_file Name of the log file (Optional). If log_file name is not 

specified and log_mode is not OFF, all the messages 

will be written to standard output. 

 

Table 2: Benefactor configurations 
Configuration Descriptions 

manager_name The hostname or the IP address of the manager. 

manager_port The manager port number. 

benefactor_path The path to the local directory where the benefactor stores the 

chunks. 

http://mosastore.net/
http://netsyslab.ece.ubc.ca/wiki/index.php/MosaStore


82 

 

aggregation_type Aggregation type which specifies the benefactor‟s chunk storage 

medium, this could be <DISK> or <MEMORY>.  

disk_space_size The donated disk space size in MB. 

memory_space_size The donated memory space size in MB, this is effective if 

aggregation type= MEMORY 

update_period Determines the time interval between two successive status update 

messages. Status update messages are used to inform the status of the 
benefactor to the manager. 

benefactor_address The local IP address the benefactor which should be used while 

creating listening sockets. (Optional – this is useful if a machine has 
multiple IP addresses).  

log_mode Log mode could be : DEBUG, VERBOSE, ERROR, FATAL, OFF 

(Optional) 

log_file Name of the log file. If not specified and the log_mode is not OFF, 
the log messages will be sent to standard output. 

 

Table 3: SAI configurations 

Configuration Descriptions 

manager_name The hostname or the IP address of the manager 

manager_port The manager port number. 

chunk_naming Naming scheme can be either SEQNUM or HASH and selected according to the workloads. 

For example high similarity workloads need HASH naming scheme to enable similarity 
detection. 

commit_scheme Commit scheme might be NOOVERWRITE or OVERWRITE or VERSIONING. 

NOOVERWRITE: writing a new file with the same name as an existing file will fail; 

OVERWRITE: system allows to create new file with an existing file name; VERSIONING: 
system stores  

num_reserve_chunks Specifies the capacity of chunk repository. Higher capacity will reduce the communication 

between SAI and the manager regarding chunk allocations.   

write_interface_type Used to select the write interface type. SLIDINGWINDOWWRITE:  Sliding window write 
interface, is the typical setting. 

 

memory_size The memory space allocated for the buffers in the write operations, in MB, effects Sliding 
window interface only. 

local_write_directory Specifies the path to the directory which is used by SAI to store all the temporary files. 

fbr_request_buffer_size Specifies the number of chunks allocated during a read request. 

num_threads_per_agent Specifies the number of threads per write agent (there is an agent per benefactor and at least 

this value should be one).    

cache_update_period Cache update period in seconds, if this value is set to 0 then the cache is disabled– Samer pls 

verify15 

log_mode Log mode could be : DEBUG, VERBOSE, ERROR, FATAL, RESULT, OFF (Optional) 

log_file Name of the log file 

 

Appendix 4: ER Diagram for Metadata 
MosaStore database schema consists of several normalized database tables which hold information regarding files and 

directories (Figure 8).  

TABLE_FILE_IDS and TABLE_DIR_IDS map all the files and, respectively, directories in the file system to 

unique integers called file Id and directory Id respectively.  

The directory Id is used as foreign key to access a directory‟s attributes, extended attributes, list of files and list of 

sub-directories which are stored in TABLE_DIR_ATTRS, TABLE_DIR_FILES, TABLE_DIR_XATTRS, and 

TABLE_DIR_SUBDIRS respectively.  

Similarly, the file Id is used as foreign key to access a files‟ attributes, extended attributes, chunk list, and benefactor 

list which are stored in TABLE_FILE_ATTRS, TABLE_FILE_XATTRS, TABLE_FILE_CHUNKS and 

TABLE_FILE_BENEFACTORS. 

 

                                                           

15
  This is not implemented yet. This is what we plan to implement.(February‟11) 



83 

 

TABLE_DIR_IDS

directory full
path

directory Id
(Integer)

TABLE_DIR_
FILES

directory Id

file list

TABLE_DIR_
XATTRS

directory Id

extended
attributes of

directory

TABLE_DIR_
SUBDIRS

directory Id

subdirectory
list

TABLE_DIR_
ATTRS

directory Id

attributes of
directory TABLE_FILE_

IDS

file name with
full path

file Id
(Integer)

TABLE_FILE_
CHUNKS

file Id

chunk list

TABLE_FILE_
BENEFACTORS

file Id

benefactor list

TABLE_FILE_
XATTRS

TABLE_FILE_
ATTRS

file Id

file attributes

extended
attributes of
directory

file Id

 
Figure 8: Entity-Relationship diagram of MosaStore Metadata 

 

Appendix 5: POSIX system calls 
 

POSIX call 
Current 

Status 

Implementation 

Effort 
Additional Note 

close() Yes   

unlink() Yes   

chdir() Yes   

lseek() Yes   

fstat() Yes   

rename() Yes   

mkdir() Yes   

rmdir() Yes   

chroot() Yes   

stat() Yes   

lstat() Yes   

dup() Yes   

dup2() Yes   

getdents() Yes   

fchdir() Yes   

sysfs() Yes   

read() Partially Moderate Random reads are not supported () 

write() Partially Moderate 

Random writes and file append is not 

supported 

open() Partially High Wide variety of file flags are not supported 

creat() Partially  See open() 

mknod() Partially High Some flags are not supported 

readv() Partially Low Dependency with read() function  

writev() Partially Low Dependency with write() function  

pread() Partially  Dependency with read() function  

pwrite() Partially  Dependency with write() function  

link() No Low  

chmod() No Low  

fchmod() No  See chmod() 

lchown() No Low  

fchown() No  See lchown() 

chown() No  See lchown() 

utime() No Low  

access() No Low  

sync() No Medium  

symlink() No Low  

readlink() No Low  



84 

 

truncate() No Medium See Appendix 6.1 

ftruncate() No  See truncate() 

statfs() No Medium  

fstatfs() No  See fstatfs() 

fdatasync() No   

fsync() No   

Table 4: Status of file system calls in current MosaStore implementation 

Appendix 6: Design Discussion 
This appendix discusses the design issues for some parts of MosaStore and details the shortcuts taken in the 

implementation. 

A. 6.1.  truncate() design 

API Details: truncate(file, new_size) will change the file size to new_size. 

If new_size < current_size  

then the extra data will be deleted and the file will have its size equal to new_size 

else the file will be padded with zeros until the file size is equal to new_size 

 

Often truncate() is called to delete the file content i.e., truncate(file, 0). 

 

Why a complete support of truncate needs elaborate implementation? The implementation is complex since 

truncate may have some complex special case (especially with name_by_hash): 

 if the new_size < current_size and the new_size is not on the chunk boundary here we need to delete the 

extra chunks, and also to copy the last chunk and create a truncated version of the last chunk, hash the new 

chunk and update the file blockmap (this is needed to support truncate for content addressablity) - (this 

involves new operations on the benefactor to compute the hash and update the file blockmap) 

 if new_size > current_size we need to pad the file with chunks filled with zeros. this involves developing 

new mechanism to create chunks filled with zeros of varying sizes and computing their hashes and update 

the file blockmap. 

 It is complex to support truncate for open files 

 

Possible optimization: 

One optimization is to create a special chunk (chunk_0) which is not stored on any benefactor. 

Adding this special chunk needs special processing in many places in the code: 

 read operation to create a buffer and fill it with zeros when chunk_0 is read 

 need to provide special implementation to support modifying existing files with chunk_0. 

 Garbage collection and replication to ignore this chunk 

 

Possible shortcuts: 

 Support truncate only when naming chunks by sequence number. this will cut 25% of the implementation 

but still we need to implement most of the mechanisms. 

 Larger shortcut: only support the most common truncate operation ( truncate(file, 0)) here we will delete 

the previous file and leave it empty. And return error for any truncate with new_size > 0 


