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Abstract

A new method is presented to generate ball-endnmitbol paths for the efficient three-axis
machining of sculptured surfaces. The fundamentakiple of the presented method is to
generate the tool paths according to a preferred érection (PFD) field derived from the
surface to be machined. In this work, the PFD gtgont on the surface is the feed direction
that maximizes the machining strip width. Theowdtig tool paths that always follow the
direction of maximum machining strip width at eachtter contact point on the surface

would maximize material removal, which leads to $hertest overall tool path length.

Scallops are generated when a surface is machsiad three-axis ball-end mills. There is
no redundant machining if the scallop height is aslsv maximized and the neighboring
machining strips do not overlap. Unfortunately,sin@verlaps commonly exist for tool paths
always following the preferred directions. Suchurdant machining can be reduced via iso-
scallop tool paths. Nonetheless, iso-scallop t@hg do not in general follow the preferred

feed directions.

To attain maximum machining efficiency via genargtthe shortest overall tool path length,
the presented method analyzes the PFD field ofstintace and segments the surface into
distinct regions with similar PFD’s by identifyirthe degenerate points and generating their
separatrices. The tool paths of each region arergted by the iso-scallop method to
mitigate redundant machining. Since a sequentipfageh is employed to generate the iso-
scallop tool paths, an initial tool path is selddte such a way that the growing deviations of
the subsequent tool paths from the PFD’s are goifgiant. The proposed method has been
validated with numerous case studies, showing ttietgenerated tool paths have a shorter

overall length compared with those generated beiigting methods.
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Nomenclature

C(1) Parametric expression of a curve.

é(t) Projection of a parametric cungt) on thex-y plane.
CAD Computer aided design.

CAM Computer aided manufacturing.

CC Cutter contact.

CL Cutter location.

CNC Computer numerical control.

du Hausdorff distance.

e Eigenvector.

F Pathline.

f Feed vector.

h Scallop height.

IGES Initial Graphics Exchange Specification.
n Normal vector.

Pcc Cutter contact point.

PcL Cutter location point.

PFD Preferred feed direction.

r Ball end radius.

S(u,v) Parametric expression of a surface.

SC Scallop curve.

T Tensor.

W Machining strip width.

u,v Variables in the parametric domain.

% Vector.
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1. Introduction

Sculptured surfaces have seen applications in nfealgs, especially in the aerospace,
automotive, electronic, medical, and even in thésta industry. These surfaces are
characterized by their smooth shape and may inctadtires such as valleys, mounts, or
blends to fulfill requirements such as an optimizeédiow or a desirable ergonomic shape.
Many computer aided design (CAD) programs contaiitt-in functions that allow for the
modeling and simulation of sculptured surfaceshm form of non-uniform rational b-splines
(NURBS), allowing the sculptured surfaces to gaimrenacceptance in the industry. In order
to manufacture components with sculptured surfaBesxis or 5-axis computer numerical
control (CNC) mills with a variety of tool ends amsed to machine either the desired part
itself or their corresponding mold. Although 5-agiBIC machines provide a higher versatility
and machining speed compared to their 3-axis copentis, the latter are still widely used due

to their lower costs, simplicity, and widespreaditability.

When machining a design surface on a workpiece aviBhaxis mill, scallops, also known as
cusps, will inevitably be left between tool pathike scallop height at each point of the scallop
curve depends on the adjacent distance betweepatid. A smaller scallop height requires a
shorter side-step between adjacent tool paths ansequently, a larger amount of tool paths
are required to cover the entire surface that gudoua longer overall machining tool path
length. Tool path overlapping occurs when the sigg- chosen creates a point on a scallop
curve with a height that is shorter than the spatifolerance. The effects of redundant tool
paths are illustrated in Fig. 1, whérés the scallop height requirement. It can be olethat
overlapping tool paths have a smaller side-step &hpart where the maximum scallop height

is always kept. A smaller side-step leads to aelaagnount of machining passes.



The finishing stages of a machining operation tHie longest time because the specified
profile tolerance for a finished surface is freqiyenery tight so that a smoother surface can
be obtained. This results in a large number of nmaalp passes. A constant feed rate is
commonly used during the finishing stages and tbezea longer tool path length will
inevitably lead to a longer machining time. Wayslexrease this overall tool path length has
been a topic of continuous research in the fielc@hputer aided manufacturing (CAM).
Methods would be proposed to mathematically deteentihe machining tool paths needed to
obtain the desired sculptured shapes under thefisgescallop height tolerance. Earlier
methods would require the user to input informafmman initial tool path from which the rest
of the overall tool paths would be generated onstiréace. These methods will be considered
in this work as conventional tool path generatiogthnds. The conditions of the initial tool
path would define the rest of the machining paaseistherefore, even one method for creating
the machining strategy of a surface may have anitefnumber of possible overall toolpaths.
Subsequent research would seek to find the glola@hming strategy that can optimize the
total tool path length. These strategies analyeeiriput surface with the goal of finding the
unique and ideal tool path that minimizes the nracdlgi length. The main objective of these
methods is to generate tool paths with as littlerlapping tool paths as possible, without the
need of the input of initial conditions of machigindeally, one optimal overall tool path will
be the best suited for a particular input surfécehis work, these methods will be known as

surface topology-based methods.



(b)

Figurel lllustration of the sidesteps when a) there is no redundant machining aticebe i
redundant machining.

1.1. Conventional Tool Path Generation M ethods

The conventional tool path generation methods earobghly categorized into iso-parametric,
iso-planar and iso-scallop. The iso-parametric wettis the earliest of these three methods
and was proposed by Loney and Ozsoy [1]. A dedigiase is a three-dimensional parametric
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surface expressed by two variablegndv. This method generates a cutter contact (CC) path
on the design surface by choosing an initial pateameariableu or v and keeping it constant
while increasing the value of the other parametadable that describes the surface. The
generated curves are known as iso-curves. The ty@mf using iso-curves is that these
curves do not intersect each other and recreateotm®ur of the parametric surface. The next
parametric variable would be chosen so that thd isexparametric curve would not have
points with a scallop height higher than the onec#jed. This method is mathematically
convenient and it ensures that the entire surfaasovered by machining passes. However,
depending on the surface, the tool paths genelstekis method may be very dense in some
zones, as pointed out by Elber and Cohen [2]. Adngorovement of the iso-parametric
method, their method proposes the use of iso-cuageSC tool paths with discontinuities in
regions where the iso-curves would be too denseerLmethods would also use the iso-
parametric method along with triangular meshes fdrihdaptive grids [12] to obtain larger
step-sizes between adjacent tool paths. Their aiainvas to obtain iso-parametric tool paths
that more closely resembled tool paths with theebienof the iso-scallop tool path method.
These methods still do not generate an optimizedtadivtool path with a shorter length than
the iso-scallop method because the iso-parameteihod does not ensure overlapping tool

paths would not occur at any point of the surface.

The iso-planar method was first proposed by Huamd @liver [3] as an improvement over

the iso-parametric method. This method consistsiging a series of parallel planes whose
intersections with the design surface would geeethe CC tool paths. The separation
between the intersection planes provides a bettetr@ on the resulting scallop height than

the iso-parametric method because the separatiotonsrolled by a Cartesian distance



between planes instead of using parametric cuiMes.advantage of the iso-planar method is
that it addresses the problem of regions with deoskpaths observed in the iso-parametric
method. However, the tool path generated by thel@oar method is still longer if compared

with the iso-scallop method because there will bel pairs of adjacent tool paths where the
scallop height is not maximized unless the surfacgmpletely planar. Improvements based
on the iso-planar method have been proposed. Famgbe Ding et al. [9] implemented an

adaptive iso-planar method, also called the isagmoethod. In their strategy, the design
surface was segmented in different regions accgridiloundaries determined by the slope of
the surface. The concept of segmenting the sudta®s from the fact that regions with a
larger slope require shorter side steps to fudfjiven scallop height compared to regions with
a smaller slope. However, this method still recuirgout from the user regarding the limits of
the slope used for surface segmentation. The isteplegions’ size would greatly vary

depending on the slope that was used as a threshséyment a surface.

A mathematical method that generated an iso-scatloppath was proposed by Suresh and
Yang [4]. The iso-scallop method relies on genagathe adjacent tool paths based on the
scallop curve created by the previous tool paths Tirethod ensures that the scallop height of
the points of the scallop curves remain as highhasspecified tolerance. This way, the
generated tool paths cause no redundant machiresglting in a tool path with a smaller
overall length than the tool paths generated byisleeparametric or iso-planar methods.
Methods have been proposed that improve on thailasilon efficiency (Lin and Koren [5])
and their accuracy by using swept profiles (Sarma @utta [6]). The important drawback of
these strategies is that these methods assumethéht&ngent vectors of the cutter location

path, the scallop curve, and the adjacent cuttation path are all parallel. This assumption



causes inaccuracies in the location of the poifite@scallop curve given an initial tool path.
The calculation methods proposed by Feng and Liaj] Tournier and Duc [8] provide a
scallop curve that is accurately calculated bec#useéangent vectors of the scallop, CC, and
CL paths are obtained according to their three-dsimal components. This strategy is
adopted in the present work to obtain the adjacsmscallop tool paths and explained in
section 3. Methods that would attempt to improve #peed of the three-dimensional
calculations would be proposed (Yoon [10]). The mosportant characteristic of the
conventional iso-scallop strategies is that théyrsqjuire the input of an initial tool path from
which the adjacent tool paths would be generated. & given surface, since an infinite
number of initial tool paths exist, there is alsoiafinite number of possible overall tool paths
that can produce a desired design surface fromwtir&piece. This leads to a direction of
research that attempts to analyze the topologhefstrface with the ultimate goal of finding

the overall tool path that minimizes the total magiy length.

1.2. Surface Topology-Based M ethods

Research by Quinsat et al. [17] and Vijayaraghastaal. [18] sought to find an optimized
orientation of the workpiece to find the iso-plagar raster) tool path that could minimize the
tool path length (in iso-planar methods, changihg plane orientation, or machining
direction, is the same as changing the workpie@ntation). The optimized orientation was
determined based on local parameters of the sutiftanfluenced the material removal rate
or by a metric such as the mean scallop heighttregdrom a particular machining direction.
However, these methods rely on using a single iapgp direction along the entire surface,
which in principle does not generate a minimizedralil tool path length because there will be

regions on the surface that will not benefit frdia thosen initial plane orientation.



Attempts have been made to find the optimal init@l path by analyzing regions of the
surface and machining them using the iso-scallofhaak The strategy proposed by Giri et al.
[15] used the curvature of the input surface tal fine loci of maximum convex curvature to
determine the Master Cutter Path (MCP) from whiahddjacent iso-scallop tool paths would
be generated. The maximum convex curvature locitlo& surface could provide a
visualization of possible MCP’s that could be ussdhe initial tool path. Their method then
compares pairs of loci and chooses as MCP’s atlpairis considered differing according to
their gradients of their line segments. This methway lead to inconsistencies based on the
input surface because segmentation heavily rehethe pairs of loci chosen to be compared.
Moreover, the method still requires the user to enakfinal decision on the boundaries

generated by the curvature loci in order to chaosaitial tool path.

It has been proposed by Kim and Sarma [14] to tieatoptimal machining directions on
sampled points on the input surface as compondnésvector field that can be fitted to a
continuous vector field function. The criteria t@tekmine the preferred direction also
incorporates the kinematic aspects of the millingchine. The side-step from tool paths is
also incorporated in the fitted function and theltpaths from each region can then be
determined to maximize the side-step by solving @utimization problem. Surface
segmentation was also carried out based on thetswhd inlets of the streamlines of the
fitted vector field. The most important drawbacktleis method is that the optimal directions
on a surface that lead to a greater material rehereaactually bi-directional (the preferred
direction is valid in both opposite directions)hie kinematic aspect is not considered. If the

field becomes bi-directional, then the idea of etstland inlets is no longer valid. A vector



field only considers one direction at each poird &rcannot represent certain properties of a

bi-directional field.

In this work, a method is proposed to determineaxi8 machining strategy that attempts to
decrease the overall tool path length with a gibafi-end radius and scallop height. The
method will not require input from the user regagdconditions for an initial tool path. The
fundamental principle of the presented method igdnerate the tool paths according to a
Preferred Feed DirectiofPFD) field that follows the directions of maximumachining strip
width, a metric that indicates the amount of materemoval. This ideal situation does not
happen in general because if all the tool pathsaywiollow the preferred direction, the
machining strips of these paths generally overfRgdundant machining can be attenuated by
using the iso-scallop method, but adjacent toohgaenerated from the iso-scallop method
tend to stop following the preferred directions.eThroposed method seeks to generate a
machining tool path that can benefit from bothdaling the preferred direction and avoiding
redundant machining. The strategy consists oniogeatdiscrete bi-directional field, or tensor
field, that indicates the preferred machining di@ts on the surface. The criterion to decide
the preferred machining direction is the machirstrgp width, which provides a measurement
of material removal during a very small tool pagke field is then analyzed and segmented
into regions with similar PED’s. Inside each regian initial tool path is chosen so the iso-
scallop tool paths are generated in a way thatetltes not deviate significantly from the
preferred directions. By using this proposed ihit@ol path, the deviation between the
preferred direction field and the iso-scallop pathdecreased. This results in a generated tool

path with a shorter overall length than using theventional iso-scallop method.



2. Preferred Feed Direction

In order to analyze a design surface, a metrieggired to determine what direction is the
preferred at a certain point on the design surfabe. criteria that indicate where would be a
preferred machining direction is a topic of curresgearch [19][25]. It is hypothesized that the
tool path that follows the direction that removée imost material will have the shortest
overall length. In this work, th&achining Strip Widthis chosen as a metric of material
removal. Its maximum defines the preferred direcaad the method to calculate it on a given
point on the design surface will be explained iwctise 2.1. The preferred direction is

determined for a number of sampled points on tase and the set of preferred directions

build a field on the surface. This is explainedgattion 2.2.

2.1. Machining Strip Width

The concept of the Machining Strip WidtW) was first proposed by Lee and Ji [20] as a way
to mathematically analyze 5-axis machining andrtd 6ptimal machining directions [13, 21].
W can still be calculated for a 3-axis machiningl&dermine a preferred direction [22-23] and

there are different ways to approximate it [24].

This section explains how is evaluated. Let the ball-end mill radius be dedi asr. The
scallop surfacas an offset of the design surface with a normsiathceh, also known as the
scallop height. In this section, it will be assuntledt the motion of the ball-end mill's center
is given as th€utter Location(CL) path that is represented as the trajectonptel by series
of point positions (B.) of the center of the ball-end mill. The tool nootican be represented
as a three-dimensional volume, called sheept volumehat subtracts the volume enclosed

between the design and scallop surface to createntichined finished volume. The swept



volume’s contact with the design surface is a cuwwmethe design surface called the Cutter
Contact (CC) path, which is constituted by CC poific). Every CC point has a matching
CL point. In the case of three-axis machining, @le point R, at a given CC point& is
calculated by multiplying the normal vectogc by the tool radius. That is, the CC point and

the CL point share the relation:

Pe (Uv) =Pec (UV) +necr (1)

At each CL point, three unit vectors are determimed, an extension adficc; fc, the tangent
vector of the CL path at the CL point; atgl, calculated as the unit vector of the cross

product ofnc. andfg,.

Mathematically, the expressionsmaf , fc, andtc, are the following. LeP (u,v) be a point

on the design surface ar@l(t) the parametric expression of the curve that remtsshe CL

path:
P, (u,v)xPg, (u,v)
n = = u Vv 2
- “ ‘PSu(u1V)XPSv(u'V)| ( )
dCL(t)
f. =CL'(t)= dt  _ CL(t+1)-CL(t) 3)
dCL(t)| |CL(t+1)-CL(t)
dt
n. xf
t - CL CL 4
cL —IHCL xiq| (4)

P, (uv) andPg,(u,v) are the partial derivatives & (u,v) with respect to the parameter

andv, respectively.
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The swept volume is the volume enclosed by theasartonstituted by the union of the swept
profiles, which are intersection curves derive@ath CL point. The tool volume of a ball-end
mill is made by the union of two volumes: a halfigge for the ball-end and a cylinder for the
tool flank. The half-sphere is intersected by thene created by thig, andnc. vectors at the
CL point. The generated intersection curve cortstihebottom swept profilethat contacts
the circle of the flank cylinder’s bottom at twoipts S and $. The vector between,&nd $
and the tool axizr create a plane that intersects the tool flankndgr and the resulting
intersection curve is théank swept profile The union of théottom swept profilend the

flank swept profileurves result in thewept profile

In three-axis machining with a ball-end mill, onhe bottom swept profile at the ball-end is of
interest. The flank swept profile is not required the calculation of the scallop curve points
because the flank is not supposed to perform thehimiaag operation. Hence, the bottom

swept profile will now be referred as theept profile

The swept profile can be calculated as the intéiseof a half-sphere with radiusby the
plane that goes through the sphere’s center ance&ed by the two vectorg, andtc,, as
detailed in section 2.1. The intersection curva ephere with radiuswith a plane that passes
through the sphere center is a circle that alsalraslius. The parametric equation of a circle

with radiusr on thex-zplane is the following:

r cosd

P...(0)= such tha® = [- 77,0] (5)

r sind
1
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The curve is translated to the CL point and rotatedhat it lies on the plane created by the

vectorsnc. andtc. using the translation and rotation matrices:

tXo, fXo NXgL
tyCL fyCL nyCL

= O O O

Rot =
tz,, fzo nzy
0 0 0
1 0 0 Pxg
010
Trans= e
0 01 Pz,
0 0O 1

The components of the rotation matRot are the components of the unit vectogs, fcL,

andtc, as follows:

—
(@]
-
|
—
<
(@]
-

tXc,

ter = Ye
tz,

The components of the rotation matiixans are the components of the CL poRy (t) on

the CL path as follows:
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PXCL(t)

Pe (1) =| Py (1)
Pz (1)

Then, the swept profile is obtained by:

Pswept( 9) = I:)i=1,..3 , P = Trans* ROt* I:)circle( 9) (6)

The swept profile intersects the scallop surfacevim points, B and B (an exception occurs
when the ball-end mill is near the boundaries ef diesign surface, where the swept profile
may intersect the scallop surface in only one poit any given point on the design surface

Ps (u,v), the corresponding scallop poiRt,, (u,v) can be obtained as follows:

I:)scall (U!V) = PS (U,V)+nsh

Wherengis the normal vector of the design surface caledlait the poin®Pg (u,v).

The points Rand B are obtained by solving the equation:

Pswept( 9) - I:)scall (U,V) = O (7)

This equation yields two sets of solutions &yru, andv.

This equation is not solved analytically for magtfaces. The reason is that the offset surface
of a complex parametric surface is not determinedlygically. Instead, the normal is
calculated at a point on the design surface and theltiplied by the offset. There are
different methods to numerically solve this equatiin this work, the Newton-Rhapson
method was applied and each of the two sets otisokiwas obtained by choosing different

initial values of@and using the values afandv of the CC point.
13



Given the two sets af andv obtained from the previous equatian, v,, such thai =12,

the pointsP, (u, v, )and P, (u, ,v, ) are obtained as follows:

Pa(ul ’Vl) = PS(ul ’V1)+nah

P, (U, v, ) =Ps(u,,v,)+n,h

n, andn_ are the normal unit vectors of the design surfasigithe pairs ofu andv

parameters from the solution:

— PSu(ul ’Vl ) X PSV(ul ’Vl )

= ®)
Pty ¥y ) X P, (U ;)
- PSu(UZ ’V2 )X PSV(UZ ’V2 )
b
IPsy (U, ¥, )% P (U, V, )
The projected distance betweemaRd B on thetc, vector results i
W = Pan [ﬂCL‘ (9)

Fig. 2illustrates the geometry of the swept profile amel thachining strip widthV.
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Figure2 Geometry of the Swept Profile and Machining Strigdilv.
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2.2. Preferred Feed Direction Field

For each point, the feed directions that providerttaximum machining strip widW become
the Preferred Feed Direction (PFD). It is importanhote that, a given CC point, a valueé/éf
will be the same whether the machining feed dioects positive or negative. For every CC
point sampled to find its preferred direction, theuill be two opposing vectorsfar and-fc,,
that have the same magnitudeWf By sampling different points on the design swfand
calculating the directions with the largest valde\sy a field of preferred directions can be
obtained. In three-axis machining, if the tool asishe globak coordinate, every point on the
surface, and thus each sampled CC point, will lrwmique pair of globat-y coordinates.
Each pair of vectors at each CC point can be prejeinto thex-y plane. This is illustrated in

Fig. 3.

It is useful to represent the preferred directignaascalar unit. In this case will be teed
angle ¢ and it is calculated as follows. A plane can bénee by its normal vector and a
point. The normal vector is chosen torle at the CC point &. The plane perpendicular to
Ncc at R is called thefeed plane The feed vectofcc lies on the feed plane. Next, a
reference feed vectdys , that lies on the feed plane, is evaluated astbss product of the
tool axiszr and the normal vector. The angle between theeaebter feed vectdr and the
feed vectorfcc is the feed angle. Since the preferred direction consists of two aspg

vectors, the feed angle can have a valug of ¢+ 72. If ¢ > 7, then 7 is subtracted frong .

Fig. 4 shows an example of a graph compavihgs ¢ .

The resulting PFD field contains two vectors onrgveampled point. It is because of this

reason a PFD field cannot be analyzed as a veeld; fvhere there is one single vector for

16



every point. In this work, the PFD field will be ayzed as a tensor field. A tensor is a
mathematical component that describes the veciofstmation and also their relations
between them. The importance of following the pmref@ direction can be exemplified with a
half-cylinder. This is illustrated in Fig. 5. Inishcase, the machining tool paths that follows
the direction of minimunW result in a noticeably longer overall length thiae tool paths that

follow the direction of maximuriV even if the iso-scallop height is kept at a maximu

Referring to the analogy of a vector field, whetegrating a vector field given an initial point,
the result is a curve known as a streamline. Irrélsearch of Delmarcelle and Hesselink [27],
the equivalent of a streamline for a tensor fieddai “hyperstreamline trajectory”. In a 2D
symmetrical tensor field, this curve grows in twicedtions at all times. In the present work,
these curves will be known &FD pathlines or simply pathlines. The methods to generate

the pathlines from a given PFD field will be detdilin Section 4.1.
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¢
Figure4 Graph comparingVvs ¢ on a CC point.
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(b)

Figure5 Tool paths with maximum scallop height followinggttlirection of a) maximum
strip widthW; and b) minimum strip widthi\..
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3. Iso-scallop Tool Path Generation

In this section, the method to obtain the adjagamscallop tool path of a given CC path will
be explained. The method is an implementation basetthe research by Feng and Li [7]. As
mentioned in section 1.1, the earliest method<tain an adjacent iso-scallop tool used two-
dimensional assumptions. The side step of a givenpGint would be calculated using the
local curvature. This assumption cannot be consiiéecause the input CC point, its two
scallop points Pand B, and the adjacent scallop point do not necesshelpn the same
plane. The reason for this is that the CC poirgsdf directionfcc, the tangent vector of the
scallop curve at Pand B, and the feed direction of the adjacent CC pduat shares the
scallop points Por R, with the previous CC point are not parallel. Esrgan arise on the
generation of the scallop curve by using two-din@ms assumptions and the resulting three-

dimensional CC paths may actually present overfapfmol paths.

Let an initial curve on the design surfaC€(t)be a curve that is constituted by CC points
Pec(u(t),W(t)) . The CL pathCL(t) is a curve that is constituted by CL points
P.. (u(t),v(t)). For each CL point, the scallop pointsadhd B are obtained as explained in
Section 2.1. Once the Pa and Pb points of all the@dints are calculated, the scallop curves
SC..(t)andSC, (t) are obtained. Since two scallop curves are forfrem one CL path

(except near or on the borders of the design seird@aegion of interest), two adjacent tool

paths are created, one for each scallop curve.

To obtain the adjacent tool path, the tangent @f skallop curve at a pointSC(t) is
calculated. If the CC and CL paths are discreten ttne scallop curves will also be discrete

and therefore their tangents are a linear vecmm{8C(t) to SC(t +1). Let that vector be
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fsar. The adjacent tool path’s CL point lies on the sgfane that contains the scallop point

SC(t) and is perpendicular to the vectgy. Let that plane be called the SC-lplane. The

adjacent CL poinCL _, (t)must satisfy two conditions: a) its distance to seallop point

adj
SC(t) must be equal to the ball-end mill radiysand b) its distance to the design surface

must also be equal to These two conditions can be met if a point isam®d by the

intersection of a circle lying on the SC-gjiplane with its center o8C(t)and the scallop

surface. This intersection point will become th@aent CL poinCL _,(t). Analytically, it is

adj

obtained as follows (for the case of the adjacemtpsingSC,,(t)):

Given thatP,(u, ,v; ) was obtained previously, then the vecirwas also evaluated. The

parametric curve of the circle is translated i@ plane created by the vectbgg, andn, in a
similar way explained in section 2.1. The curvetloé circle on the SC-Gl; plane is

expressed by:

PSC—CLadj (6)= Pi:l,..,3 . P= TranSSC—CLadj * Rot SC-ClLadj * Poie(6) (10)

The CL point lies on the offset surface of the gessurface with an offset distance equal to

the tool radius. Then,

P (UVv) =P (uv)+ngr (11)

wherengis the normal vector of the design surface caledlat the poinPg (u,v).

Theu andv parameters are then solved from the equation:

PSC—CLadj(e) =P (uv)=0 (12)
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Similar to the calculation of fand B, this equation yields two sets of solutions #&ru, and
v. The adjacent CL point is the solution that gitlee CL point location with the largest

distance from the original CL point.

The procedure is then repeated until a border e@fdsign surface or the region of interest is

reached. Then, the adjacent paths are obtained tnenscallop curvesC, (t), which is

composed by the yPscallop points of the original CC path. Fig. 6 whothe geometric
components of a CC and CL path, one of their spallarve, and their adjacent CC and CL

paths.

In the case an adjacent CC path does not reactdarbthe CC path is extended by creating a
plane with the normal and tangent vectors fromegithe start or end of the CC path and then
intersecting the plane with the design surfaces Wil help to ensure that there will be no

regions that are not machined when applying thescstlop method.
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4. Methodology

In this section, the method to generate efficient paths on a design surface according to its
PFD field will be explained in detail. Section 4kplains the concept afegenerate points
according to a tensor field representation. Alstitkd in this section is the concept dPBD
pathling and its relationship to the degenerate pointseltion 4.2, theegmentatiorof the
design surface is explained. The concept ofRhacipal Tool Pathas the initial iso-scallop
tool path chosen to decredse-scallop drift or deviation from the PFD field, is explained in

section 4.3.

An overview of the proposed method is as followke Btrategy consists on segmenting an
input sculptured surface into regions with simifD’s according to the separatrices of the
degenerate points of the PFD field. By segmentimg surface into regions with similar
directions, the iso-scallop tool paths, characeetiby having a similar direction, will tend to
follow the directions of maximum material removalsked on the machining strip width. The
principal tool path for each region is then deterol, and then used as the initial tool path for
the adjacent iso-scallop tool paths that coverréiggon. The reason to use the principal tool
path as the initial tool path is to decrease tifieceiso-scallop drift, which is the deviation of
the tool paths from the preferred directions. Thygrithm is repeated for all regions until the
entire input surface is covered. Fig. 7 showsowdhart depicting the steps of the proposed

method.
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Figure7 Flowchart of the proposed method.
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4.1. Degener ate Points

Tensor fields have been a subject of researcheiatda of mathematics and applied to various
research topics such as fluids and stress-stragihamécs. The study of components of tensor
topology has been introduced by Delmarcelle andselesc [26-27] as a need to visualize and

understand the information contained in tensod$&elTheir work introduced the concept of

degenerate pointand theirseparatricesas the basic constituents of a tensor field. Is thi

section, the concept and evaluation procedure efi¢igenerate pointen a 3-axis machined

sculptured surface will be explained.
4.1.1. Tensor Field Representation

In the case of a two-dimensional symmetrical terfs@d, each point has a corresponding
second-order tensor (a 2x2 matrix) from which theeadion of the two vectors can be
obtained. The direction information from the PFBIdi can be analyzed as two-dimensional
because, as pointed out earlier, each point hasigueix-y coordinate along with the
directions projected onto they plane. The component of the direction vector is not required
in the analysis because there is a unijoemponent vector for a giveay direction. It is also
important to note that the preferred direction doatscontain a scalar magnitude as in the case

of vectors because only the direction is of interes

Each sampled point contains a tensor in the form of

(13)

T(xy)= (Tll( Xy) T X1y)j

To(xYy) Tu(Xxy)
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For a given point with the vectors of preferrededtronsv,( x,y)and v,( x,y)=-v,( x,y),

the tensorT (X,y) is obtained as follows:

X2

T(xy) ={ Xy] (14)

Xy vy’

The feature of a tensdr(x,y)is that it is equivalent to two orthogonal eigerees of the

form:
Vi(xy) =4 (xy)e(xy), wherei = 1, 2. (15)
From the definition of eigenvalues and eigenvectors

T(X1y)ei (X1y) :Ai (X1y)ei (X1y) (16)

A are the eigenvalues df(X,y) and e their corresponding unit eigenvectors. As noted

before, the PFD field’'s components do not have gnitade because only the direction is of

interest.

Given a PFD field, each sampled point is then agsiga 2x2 matrixT (x,y). To obtain the
tensor matrixT (X,y) for any given point on the surface, bilinear ipt#dation of the tensor

components of the surrounding sampled points carsed.

The tensor component§(x,y) of can also be obtained by using bilinear interpota
Consider a point(x,y) inside a rectangular grid with four points, eaclvihg their own

tensor, as shown in Fig. 8, and its tensor malr{x,y) is to be determined.
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Figure8 Rectangular grid with tensor components.

The point(x,y)is enclosed by the grid formed by the poifss,y, ), (X,,y,), (X.,Y,), and

(X,,Y,), each with their tensor components, T,, T., and T, respectively. The

components of the tensdr are obtained using bilinear interpolations asoiod:

A +B, +C. +D.
Tijk= ik ik ik ik an
(Xz_xl)(yz_yl)

Aik =Tajk(X2 _X)( Y, _Y)

Bj :Tbjk(x_xl)( Y.=Y)

Cjk :chk(xz =X)(Yy-VY;)
29



Djk =dek(x—x1)(y—yl) )
where j =12and k =1, 2 corresponding to the components of the tensoriceat

Once the interpolated tensor matiix has been obtained, then the vectefsx,y) and

v,( X,y )of the preferred direction at the interpolated pdir,y) are obtained as:

AT
v,(xy)= Lig T (18)

Vo(%Y) ==Vvi(XY)

In this way, it is then possible to interpolate freferred direction on any point inside the grid

formed by the sampled points on the design surface.

4.1.2. PFD Pathlines

Pathlines in tensor fields are analogous to strie@wslin vector fields. To obtain a streamline,
the vector field function is integrated using arpoas a starting point or initial condition.
However, pathlines do not have only one directiballatimes, but rather two, as the result of
a second order symmetric tensor field having twposing directions. The pathlines are
theoretically created by taking an infinitesimalahstep in any of the directions, and the
directions in the tensor field are the tangentthefpathline and extended in both directions.
Because a PFD field is not fitted into a functitime creation of pathlines needs to be done
with a discrete (numerical) method. In a PFD figltere are two ways to create the pathlines
on a given surface: a) step-marching method, andrspr-interpolation method. Both will be

explained as follows.
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The step-marching method consists on evaluatingditextion of the maximum machining
strip width on every step of the pathline. Firssead pointP,( X,y,z)on the design surface is
chosen as the initial point from where the pathlwik grow. Then,W is evaluated at different
feed directiondcc and the feed direction with the largest magnitofi&V is chosen as the
preferred direction. Two vectors are obtaineidcgand-fcco, and the pathline needs to grow
on both directions. First, the directioricto is considered and a stefgis taken into that
direction. A new point i, (X,y,z)obtained, where the preferred direction is agaioseh
and two vectors are obtainedfcd: and -fcci. These two vectors are compared with the
previous feed vectorfeco as follows. A pair of vectord andB is compared by calculating

the cosine of the angj@between these two vectors. That is,

cosf = (19)

_AIB
|A 8]
This valuecosf, is also known as theosine similarityof two vectorsA andB and ranges
from -1 to 1. If the value of the cosine similansypositive, then that means that the vecfors
and B are not opposing each other. If the cosine siitylas negative, it indicates that the
vectorsA andB are opposing. Sincefde: and-fccy are opposite, comparing each one with
+fcco Will yield a positive and a negative value @dsf . The exception occurs when both are
perpendicular to ftco. In that casecosf will yield zero (since pathlines normally are
continuous, very rarelgosg will yield a value of zero if the step size is scintly small).

Either H#ccy or -fcci1is chosen whichever yields a positive cosine siityland the next point

with a stepds is obtained. This is repeated until a border ished. Once the pathline in the
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direction of #cco is finished, then the pathline in the direction-ffco is grown from the

original seed poin®,( x,y,z). This method is illustrated in Fig. 9.

The other method to create the pathlines is theoteimterpolation method. As in the case of

the step marching method, the pathline grows frben seed poinB,( x,y,z). The only

difference from the step-marching method is thataad of evaluating different values\fat
feed directions and finding the preferred feeddiom at each point, the two vectors at each
new point are obtained using the bilinear interpofausing the four surrounding points of the
grid where each point of interest is located. Téieepeated until the boundaries of the grid are

reached. In order to extend the pathline beyondjtitg the tangent of the pathline is used.

The main difference between both methods to gemgrathlines in a design surface’s tensor
field is the number of iterations and complexitytbé functions needed. The step-marching
method requires finding the value W at various feed directions, all requiring solviag
system of non-linear equations. On the other h#mal tensor-interpolation method requires
only linear interpolation and therefore requiresfeawver operations. The tensor-interpolation
method is applied when finding the principal toaltlp explained in section 4.3.2 because a
large number of pathlines need to be obtained tercthe region of interest. It should be
noted, however, that a grid of sampled points w&ilbw resolution will lead to greater errors
if the tensor-interpolation method is used. As shanvFig. 10, both methods provide a similar
pathline when using an adequate resolution andsitep A collection of pathlines covering a

sample surface is shown in Fig. 11.
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As mentioned earlier, if the pathlines of maximw are used as the machining paths,
overlapping of machining strip widths generally wgdeading to redundant machining. Fig.

12 shows overlapping 8 when sample pathlines are used as machining paths.

A pathline may also be used as the initial toohdadbm which iso-scallop tool paths may be
generated. However, as it can be observed in Bigthe adjacent tool paths eventually begin
to differ from the pathlines of preferred directidrhis effect is known aso-scallop driftand
will be explained in section 4.3.1. The need fogmsentation according to similar PFD
pathlines came from the concept that a singleainitiol path for an entire surface may not be

the best solution.

"""""""""""""" Grid
/ Point

Point

Figure9 lllustration of the bilinear interpolation method.
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4.1.3. Detection of Degener ate Points

Pathlines, similar to the case of streamlines m \thactor field, do not intersect each other
except at degenerate points. These points arenddegous of critical points in vector fields.

As explained in [27], at a degenerate poRyt..(Xy) the eigenvalues of the tensor
T(Pyegen (X,¥)) are equal. That iSA(Puegen(XY)) = A(Pyegen(X,Y)) . The tensor at a

degenerate point has the form:

A0
T( I:)degen (X’y)) = (0 /1] (20)

From eq. (2), the tensor's components satisfy theaditions:
T11(Paegen( %1Y)) = Too( Paegen( X,¥)) =0 (21)
T12( Pdegen ( X1y)) = O (22)

Mathematically, this means that any unit eigenveetacan be assigned to the value Aof

such thatT ( Pyegen( X, Y )& Puegen (X:Y)) = A(Pyegen (X, Y D& Pyegen( X,Y)) is fulfilled. That means

that at the degenerate point, there is an infimitenber of unit eigenvectors that can describe

the tensor.

In the case of 3-axis machining, a degenerate poirthe design surface corresponds to a CC
point where there is not one single preferred tima¢c because all directions will be the
preferred. Ideally, the value 9¥ will be the same for all directions at a degereeint. This
happens, for example, when the surface at that ppoompletely planar. A completely plane

will not have any preferred direction, sindéwill be the same for any direction at any point.
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In that case, it could be said that all points Budace are degenerate points. A simple method
to detect the vicinity of degenerate points isital the regions of the design surface where the
difference between the maximum valueVif Wya, and the minimum onéj\qn, is close to
zero. Fig. 14 illustrates a comparison betweenptitalines and the difference betwedh.x

andWnin on a sample design surface.

Degenerate points are detected using bilinearpatation of the grid of sampled points with
their respective tensor matrix. The region enclobgda grid of four sampled points is
evaluated in very small discrete steps. If at atpmside the grid the relative values of
equations (21) and (22) are below a threshold (gkrse to zero), then a degenerate point was
detected. For an improved accuracy, the grids wipessible degenerate points exist are
further divided in sub-grids from where the tensomponents are obtained by finding the
preferred direction. These sub-grids are analymdtle same way as the original grid to locate

the degenerate points.

Degenerate points can be further divided in two nmanategories according to the
characteristics of their surrounding pathlingsectorsandwedgesA trisector point has three
separatricesand a wedge point has only oseparatrix A separatrixis a pathline that
intersects a degenerate point or is infinitely elds it, analogous to the asymptotes of a
hyperbola, with the center of the hyperbola beimg degenerate point. However, in a tensor
field, a trisector point has three sectors of pa#id can be differentiated from their
separatrices and a wedge point contains one sifigl@’ from the pathlines towards the
separatrices. In a vector field, the occurrencetheflse three-sector or fold shapes from

streamlines is impossible, since that would meat Yector field streamlines would have
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opposing streamline directions. Fig. 15 illustraadsisector point with its separatrices and Fig.

16 illustrates a wedge point.

The type of degenerate point is identified by anialy the partial derivatives of the tensor

components of surrounding points. Consider thevalg coefficients:

q=10(1,"Ty) p=10(Tu=Ty) (23,24)
2 0x 2 oy ’
o= q=9T (25,26)

0X oy

For a discrete cas@x and dy can be substituted by a very small discrete gbeand 4y .

The tensor components are evaluated at points twéke steps and the derivatives can be

approximated.

A characteristic derived from these coefficientthis coefficientd , evaluated as:

0=ad-bc (27)

When the value ob is negative ¢ <0), then the surrounding pathlines have a pattern
consisting of three hyperbolic sectors divided byeé separatrices. This indicates that the
degenerate point is a trisector point. When theevaf J is positive ¢ > 0), the surrounding
pathlines have a pattern of one hyperbolic sedigitied by one separatrix, indicating that the
degenerate point acts as a wedge point. Matherhatioafs of these properties are explained

in detail in the referenced material [27-28].

A special case of degenerate point occurs wherD. This situation indicates that there are

two degenerate points that are very close and detexted as a single degenerate point. When
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two trisector points are very close, the separdlrat joins these two points is very small and it
results in a pattern that gives the impressionoair fdistinct regions. In that case, the two
trisector points are treated separately. When agdavedge points merge or are very close,
the surrounding pathlines create circular concetdops, and are treated as a separate case of
degenerate point, known as tinerged wedge poinas shown in Fig. 17. Once the degenerate
points are located and their type identified, tb&trstep is to evaluate the separatrices of each

of the degenerate points.
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Figure 14 Comparison between a design surface’s PFD pathdinéshe difference between
Whax andWq,, at sample points.
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4.2. Segmentation

The separatrices of degenerate points are pathtimas grow until a border or another
degenerate point is reached [27-29]. The reasorsdgmenting a surface according to the
separatrices of degenerate points is that the sjgas form a skeleton of the PFD field that
segments the entire surfaces into regions whergadhdines are similar or uniform. At the
location near the degenerate points, the flow mepred by the surface pathlines present a
behavior that can be described as a bifurcatioseitors), fold (wedges), or looping (merged
wedges). Iso-scallop tool paths share the charstiteof having a uniform flow based on the
initial tool path. In this section, the segmentatazcording to the type of degenerate point will

be explained.

4.2.1. Trisector Points

As mentioned earlier, trisector points have threyasatrices. Since separatrices are actually
pathlines that intersect degenerate points, thasebe evaluated by placing a seed point and

let it flow in both directions. To find the appragie seed points that will create the

separatrices at the trisector degenerate @jipi(x,y,z), the following method is proposed.

The trisector poin®, (X,y,z) treated as a CC point and is projected onto thet'pdeed

plane (explained in section 2.1). A two-dimensiociatle with a small radius is constructed
on thex-y plane around the degenerate trisector point. Tiekeds made of sampled points P
Since there is a uniquecoordinate for eaclk-y coordinate, every point on the projecteg
plane can be assigned a point on the three-dimeaisaesign surface and therefore their
preferred direction can be calculated. A veetaovith the degenerate point as the origin is built

for each of the circle’s points and then projeatedthe feed plane of the trisector point. At
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each point P the preferred direction, composed of two opposiagtors g and Vpydi, IS
calculated and projected on the feed plane. Theethectorsy; , +vpsdi, and ¥t , NOW lie on
the feed plane of the degenerate pdint (x,y,z) andv;is compared with Wyqi and Vprgi.
Two vectors are compared using the cosine of tlggegf between these two vectors, as

explained in section 4.1.2.

For each vectov; there will be a positive and negative valuecogf and the negative value
is discarded. Since; was projected onto the feed plane, a feed apgtan be assigned to
eachv;. When comparing the values obsf vs. ¢, in the case of a trisector there will be
three points whereosf equals 1 (or very close to 1). Each of the threel f@angles with the

cosf equals 1 is assigned a feed vector and therefagsequent CC point following the

feed vector can be determined. These CC pointsuaesl as the seed points for the

separatrices. This method is illustrated in Fig. 18

Each of the separatrices’ points are obtained usithggr a marching method, that determines
the preferred direction for each new point evaldate using a bilinear interpolation method
(explained in section 3.1.) until a border is reatlor the evaluated point becomes very close

to another degenerate point.
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4.2.1. Wedge Points

As pointed out earlier, wedge degenerate point® lmeNy one separatrix. The seed point for
the wedge separatrix is determined in a similar mearas the seed points for the trisector
separatrices. The only difference is that therel W& only one point with value for
cospf equaling 1 (or very close to 1) when compared whi feed anglgg and therefore,
there will be only one seed point. The separatepiveéd from the seed point is one finite curve
on a surface and therefore it cannot segment ttiacguinto different regions. For that reason,
in the case of wedge points, it is proposed to auather boundary that will be known as a
pseudo-separatrixThis special kind of separatrix is also intentiedeparate the surface into
regions with similar flow, as in the case of reguieparatrices. The prefpseudois used

because it will not be a pathline.

The pseudo-separatriat the wedge degenerate po)t,.{ x,y,z) is determined as follows.
Once the original separatrix of the wedge poR)t,  x,y,z) is obtained, the three-
dimensional tangent vector of this separatux,g iS computed at the wedge point
Puead %:¥,2). Thewedge planes obtained by using the tangent veatgrg as its normal at
the wedge poirR,.,.{ X,y,z). The design surfacBesig(u,v) is then intersected by the wedge
plane and the resulting curve is theeudo-separatriof the wedge poinP, ., x,y,z). If a

design surface has only one wedge point, its separand the pseudo-separatrix, that
intersect at the wedge point, will divide the sadanto three regions. Fig. IBustrates the

wedge point and its separatrix and pseudo-separatri

It is important to note that, since pseudo-sepaesrare not pathlines, they can intersect with

other separatrices. In that case, segments of pssmhratrices should be trimmed at those
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intersections especially if these segments reduoér oegions that were previously determined

by other separatrices.

4.2.3 Merged Wedge Points

In a PFD field where there are only two degenevatdge points and the method to obtain
their separatrix and pseudo-separatrice is apptieel,result would ideally be a separatrix
joining those two points and two pseudo-separariddeir surrounding pathlines show a
pattern of non-intersecting closed curves, or loéssthe distance between two wedge points
approximate zero, the pathline loops take a mariler shape if projected into tkxey plane.

If the distance between the two wedge points igitely small, then the length of the
separatrix would also be nearing zero and the tesugo-separatrices would unite into a

single pseudo-separatrix.

If two degenerate wedge points are merged into degenerate point at the middle of the
original wedge points, and the method describe2i2? is applied, it will be observed that the
value of cosf will remain nearly constant at a value approxintateero as shown in Fig. 20.
Because basically there are no maxima when congpaosf vs. ¢, there is no preferred
direction that might be used to determine a separs¢ed point because a seed point at any
preferred direction would just become a point ito@p. For this reason, there is no need to
evaluate separatrices for merged wedge point.drcéise of a design surface whose PFD field
indicate the presence of only one merged pointsthitace will not be segmented further and
will be treated as a single region. In the regidrere a merged wedge point or a pair of wedge
points exists, it is helpful to consider loop patbt as closed curves and it also further helps
to use a loop as an initial tool path rather thatiseontinuous curve. It should be noted that,

since a discrete-numerical method is used to crigetepathlines, the loops may not close
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completely, since errors might accumulate whileatng the pathline. In that case, a simple
smoothening algorithm is applied so that the pa¢htreates a closed curve that can be used

for further analysis, such as the initial tool pathe algorithm is explained as follows:

Let C(t) be a finite curve withP,_,(x(t),y(t),z(t)) and P, ( x(t),y(t),z(t)) as its end

points andP,

m

G(X(1),y(t),z(t)) is a point in the middle o€(t). If the distance between its
ends is under a threshold, then it is considered@ Let C~:(t)be the projection o€(t) into
thex-y plane, and contains the projectionRyf,,( x(t), y(t),z(t)), P, (x(t),y(t),z(t)), and
Pria(X(1), ¥(1),Z(1)) into Py (x(t), ¥(1)) , Peg(X(1),¥(t)) , and P (x(t).y(t)) .
respectively. A middle poinP_.( x,y) is created betwed?, . (x,y) andP,,.(x,y). The

distance betweer_ (x,y) and P, .(X,y)is projected along the normal vector étt)

atP,..( x,y), creating the distancgnorm_,, ... All points on C(t) betweenP, ,( x(t),y(t))

and P_.(X(t),y(t)) are translated in their normal direction in a lineegnitude from zero to
dnorm_, .- that is, the poinP, ,( x(t),y(t))is not moved and the rest of the points between
P.a(X(t),y(t)) and P, (X(t),y(t)) are translated along their normal gradually urtig t
point P,.(x(t),y(t)) is reached, which is translatethorm,_,, .. by along its normal. The
same is operation is repeated in the case,qf x(t),y(t)). Then, since every point in tixey

plane has its unique design surfacalue, they are translated into the design surface

The design surface can be segmented into regioimdesest once all degenerate points with
their respective separatrices have been identiffed.example of a segmented surface is

shown in Fig. 21.
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4.3. Principal Tool Path Evaluation

Once the design surface has been segmented intmsegpntaining similar or uniform flows,
the next step is to cover these regions with maaitool paths using the iso-scallop tool path
method. However, this method still requires theuinpf an initial tool path to generate the
adjacent tool paths. In this section, a methodeierhine the initial tool path based on the
region’s pathlines is proposed. This initial todlpacalled theprincipal tool path is chosen in

an attempt to reduce the effectigd-scallop driff and is explained in the following section.

4.3.1. | so-scallop Tool Path Drift

CC paths defined from the pathlines of the PFDdfiglll seldom share the property of tool
paths obtained from the iso-scallop tool path gatam, which is that adjacent tool paths will
share a common scallop curve. In the iso-scallap path generation method, sequential
adjacent tool paths are determined based on aalitobl path. The adjacent tool paths are
created on both sides of the initial tool path @&ntioned in section 3. If an initial tool path is
chosen from one of the boundaries of the segmamtgidns, it will be frequently observed
that the adjacent tool paths generated by thedatbep method will tend to stop following the
pathline pattern of a region as more adjacent patths are generated. The direction followed
by the adjacent iso-scallop tool paths will gratiudde more different than the preferred
direction. As a consequence, the actual machirtmg width at the generated iso-scallop tool
path points will be less than the maximum machirstrgp width that would be obtained if the
preferred direction was followed. The deviationtbé feed direction of the generated iso-
scallop tool paths from the preferred feed direcieoknown asso-scallop drift A method to
determine the initial tool path that can generat@aeent tool paths with reduced iso-scallop

drift is proposed and explained in the next section
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4.3.2. Principal Tool Path Evaluation Procedure

The purpose of the principal tool path is to seagethe initial tool path whose adjacent iso-
scallop tool paths present as little iso-scallogft @s possible. In the iso-scallop tool path
generation method, adjacent tool paths are genkfedm both sides of the initial tool path

until a border is reached. The adjacent tool patlessequential, that is, the next tool path
depends on the previous tool path generated. ihiéial tool path is chosen from one of the

pathlines of the PFD field, generally the more e€la tool paths are generated from one of
the two sides of the initial tool path, the moreviddon the generated tool paths will have

from the PFD pathlines until a border is reached.

The concept of the principal tool path stems fréw@ need of a pathline whose adjacent tool
paths cover the entire region of interest with itike ladjacent growth from either side. It is
proposed to use a middle pathline of the regiomdbas the initial tool path. In order to
identify the middle pathline from a set of pathBneovering a region, a measurement to

compare curves is needed.

A surface region is covered by a set of pathlineresiF, by creating a uniform grid of seed
points from which pathlines are generated withrttethod explained in section 4.1.2. All the
pathlines created in a region will act as candidadéhlines for the initial tool path. A
sufficient amount of seeds is required so thatpitiecipal tool path can represent the middle
of a greater number of possible candidate pathlifbe distance between seed points should
be small enough so that the region of interestoiered by a sufficiently high number of

pathlines.

A pair of curves can be compared using a distameasurement called the Hausdorff

distance d@4). Typically, the distance between two curv&sand B is calculated as the
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minimum distance between the set of points in c#vand the set of points in cung In
contrast, the Hausdorff distance between culvend curveB is the maximum of the
minimum distances computed for every combinatiothef points in curvé with the points
in curveB. The mathematical definition is the following [3Qt A be a curve made of points

a andB a curve made of points

d,(A,B)= max{r?uﬂxrg%gnd(a,b )'TD%XTDIAnd(a'b )} (28)

The Hausdorff distanagy is illustrated in Fig. 22.

Each pathlind=, is compared with every other pathliRg (such thaim=1, 2, ...n, m#Kk) and
their respective Hausdorff distandg xm (Fk, Fm) IS computed. Then, the mean Hausdorff
distance of all pathlineB, is calculated and assigned to its correspondiniglipa Fy. The
principal toolpath is the pathlirfé is the one that has the minimum mean Hausdortace
compared to the rest of the pathlines in the sag®m. This results in a pathline that lies in
the middle of two bordering pathlines if the deysif the sample pathlines is such that
pathlines cover most of the surface of the regibnnterest. It should be noted that this

procedure can also be applied to closed curvepg)oo

Fig. 23 illustrates an example of a principal tpath in a region covered by pathlines. Fig. 24
compares the adjacent iso-scallop tool paths getefeaom the border of a region and the
ones generated from the principal tool path aloity the region’s pathlines. The iso-scallop
tool paths generated using the principal tool @ethhe initial tool path follow the preferred

direction pathlines more closely than the ones ig#¢ad from the region’s border.
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5. Case Studies and Results Comparison

The proposed method was applied to generate thecaop tool paths on six design surfaces.
The ball-end radius was chosen to be 10 mm and the scallop héigbtbe 0.2 mm. All six
surfaces were generated using third degree NURB&i @ns using Unigraphics NX 6.0, and

then exported into IGES files. The method was imm@eted using Matlab 2010b.

Case study 1, shown in Figs. 25-28, analyzes a-likmaurface where no degenerate points
were identified and therefore, the whole surface wansidered as a single region with one
principal tool path. This surface does not havélasbifurcations or looping in their pathlines
and, similar to a half-cylinder, all pathlines hasesimilar flow. The proposed method
generated a tool path that was 39.6% shorter thansb-parametric method; 23.3% shorter
than the iso-planar method; 9.8% shorter than dm¥entional iso-scallop method using the
border, and 2.6% shorter than the conventionascadlop method using theborder. This last

method yielded a tool path that had a similar ftowhe overall pathlines in this surface.

Case study 2, shown in Figs. 29-32, analyzes asinvith one trisector degenerate point,
segmenting the surface into three regions of istettss PFD pathlines show one bifurcation.
The proposed method generated a tool path thatédd®o shorter than the iso-parametric
method; 20.4% shorter than the iso-planar methotlb6shorter than the conventional iso-
scallop method using theborder, and 5.1% shorter than the conventionascsdlop method

using thev border. Both conventional iso-scallop methods redjacent tool paths that tend to

differ from the preferred direction.

Case study 3, shown in Figs. 33-36, analyzes aceimvith two wedge degenerate points each
having one pseudo-separatrix and both sharing eparatrix. The input surface is segmented
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into four regions. The proposed method generatemblapath that was 9.0% shorter than the
iso-parametric method; 6.5% shorter than the isogol method; 5.1% shorter than the
conventional iso-scallop method using théorder, and 1.9% shorter than the conventional
iso-scallop method using theborder. Compared to the first two case studiesiettare no
regions where iso-curves are very dense. It isetmdited that the method using theorder

allowed for a larger side step in the vicinity bétoump’s left and right sides.

Case study 4, shown in Figs. 37-40, analyzes amainfvith one merged wedge degenerate
point. Similar to case study 1, the whole surfa@es wonsidered as a single region and one
principal path was computed. The proposed methaotkrgéed a tool path that was 16.9%
shorter than the iso-parametric method; 16.5% ehdtian the iso-planar method; 5.4%
shorter than the conventional iso-scallop methaisgueither thes andv border. This case
provided an example where loops were used instéagerical or horizontal tool paths

obtained from the conventional iso-scallop methods.

Case study 5, shown in Fig. 41-44, analyzes acisfath all types of degenerate point (three
trisectors, two wedges, and one merged wedge)t Eagions were identified and each had its
own principal tool path from where the adjacentssallop tool paths were generated. The
proposed method generated a tool path that wa%@3h@rter than the iso-parametric method,;
37.2% shorter than the iso-planar method; 7.2%tsehdhan the conventional iso-scallop
method using the border, and 8.2% shorter than the conventionatcsdlop method using
thev border. Using the iso-scallop method on eithedbpyield adjacent tool paths that will
tend to differ from the preferred directions, tleason being that the surface has a greater

number of valleys and mounts and each have therpreferred flow.
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The last case study, shown in Figs. 45-48, is atigal case where the surface consisted on
the mold of a bicycle seat. One trisector degergraint was identified along with two wedge
points, dividing the surface into five regions. Tv®@posed method generated a tool path that
was 48.9% shorter than the iso-parametric meth2d}% shorter than the iso-planar method;
12.7% shorter than the conventional iso-scallophogttusing thes border, and 3.3% shorter

than the conventional iso-scallop method usingvtherder.

The results are summarized in Table 1. In everg,cde proposed method generated a tool
path with a shorter length than the other conveafiomethods. The largest reduction
compared to the conventional iso-scallop method etserved in the practical method, where
the proposed method generated a tool path 12.7%eshban the iso-scallop method using
the u border. The case that observed the largest resucompared to both the iso-scallop
andv border was the fifth case study, with a tool patth a length 7.2% and 8.2% shorter,

respectively.
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CaseStudy 5:
Case Study 1: Case Study 2: Case Study 3: Case Study 4: Three Trisector, Practical Case
No Degenerate One Trisector Two Wedge OneMerged Two Wedge, One Study :
o Points Point Points Wedge Point Merged Wedge Bicycle Seat
Machining Points
Method
Tool Improve- Tool Improve- Tool Improve- Tool Improve- Tool Improve- Tool Improve-
path P path P path P path P path P path b
length moent length moent length moent length rrLent length rrLent length rrLent
[mm] [%] [mm] [%] [mm [%] [mm [%] [mm] [%] [mm] [%]
Iso-parametriq 10,424| -39.6%| 28,978/ -61.1%| 8,580 -9.0%| 13,722| -16.9%| 24,934| -37.6%| 18,464 -48.9%
Iso-planar 8,211| -23.3%]| 14,165| -20.4%]| 8,352 -6.5%| 13,658| -16.5%| 24,781| -37.2%]| 16,269 -42.0%
Iso-scallopu 6,978 -9.8%| 12,049 -6.4%| 8,227 -5.1% 12,050 -5.4%| 16,770 -7.2%| 10,810 -12.7%
Iso-scallopy 6,461 -2.6%| 11,887 -5.1%| 7,964 -1.9% 12,050 -5.4%| 16,949 -8.2%| 9,762 -3.3%
Proposed 6,294 - 11,277 - 7,810 - 11,403 - 15,565 - 9,436 -

Tablel Results comparison with proposed methiod 10 (mm)h = 0.2 (mm).

86



6. Conclusions

A new method has been proposed in this work to rgeaéso-scallop tool paths that attempt to
follow the preferred feed directions of a sculptusairface. The generated tool path has the
shortest overall tool path length for machiningigeg free-form surface, compared with all
existing tool path generation methods. The genératel paths attempt to follow the preferred

feed direction (PFD) at each CC point as closelgassible. This is achieved by:

a. segmenting the PFD field into regions of similatDPFbased on degenerative point

identification and analysis; and

b. using the principal tool path as the starting tpath for a segmented PFD region in

order to reduce PFD drift on the generated isokguabol paths.

As shown from the case studies, this method benigbin surfaces that have a large number
of features such as mounts and valleys, where esgibn may have a preferred flow. This
method is also useful for cases where the differdyetween the maximum and minimvkh
are notable. Such is the case as case studies @, avitere machining in a single flow may

always be contrary to the preferred direction, eféme iso-scallop method is applied.

This method does not require input from the usgaming an initial tool path; hence a
sculptured surface will have a single solution gsthis method. This method is also
applicable to the five-axis machining cases becauB&D field can also be generated. Also,
this method can be applied for cases wivgiis not the defining metric to define the preferred
direction in a sculptured surface. For example, @¥C machine’s kinematics may be

considered or the forces applied on the tool.
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There are some of the limitations when using tleppsed method. This method relies on the
resolution chosen for analyzing the surface thdinde the size of the grid of the sampled
points used to detect the PFD field’'s degeneratetpoComputation speed is lowered if the
resolution is too high. On the other hand, degeaepmints may not be detected if the
resolution is too low. An optimal resolution that suitable for a general case has not been
determined. Machining step resolution also affélogsflow of the separatrices and errors may
accumulate. Lastly, the method to find the initiabl path for each region depends on the
amount of pathlines that cover the region and ithatlso determined by an input resolution.
Finding the middle curve as the principal tool pdties not take into account the magnitude of
the machining strip width. This value may providéormation on finding an initial tool path

that may further reduce the overall length of t@eent tool paths.
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Appendix

Appendix A Bicycle CAD Model Renderings

These rendering images are from the bicycle CADehaded for Case Study 6.

Source: http://grabcad.com

Source: http://grabcad.com
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