
A Pursuit Method for Video Annotation
by

Zoltan Foley-Fisher

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

November 2012

c© Zoltan Foley-Fisher 2012

Abstract

Video annotation is a process of describing or elaborating on objects or
events represented in video. Part of this process involves time consuming
manual interactions to define spatio-temporal entities - such as a region of
interest within the video.

This dissertation proposes a pursuit method for video annotation to
quickly define a particular type of spatio-temporal entity known as a point-
based path. A pursuit method is particularly suited to annotation contexts
when a precise bounding region is not needed, such as when annotators draw
attention to objects in consumer video.

We demonstrate the validity of the pursuit method with measurements
of both accuracy and annotation time when annotators create point-based
paths. Annotator tool designers can now chose a pursuit method for suitable
annotation contexts.

ii

Preface

A pursuit method for video annotation has been a collaborative research
effort as part of the MyView project at the Human Communication Tech-
nologies Laboratory by Professor Sidney Fels, Dr. Gregor Miller, Visit-
ing Professor Daesik Jang, Ph.D. student Abir Al-Hajri, Master students
Michael Ilich and Matt Fong, visiting students Nicolas Pajnic, Löıc Duron,
Manual Fernandez, and me.

Some of the work reported in this thesis resulted in the following demon-
stration, for which I designed and developed the cross-platform annotation
software framework reported in Appendix G:

• Gregor Miller, Sidney Fels, Abir Al Hajri, Michael Ilich, Zoltan Foley-
Fisher, Manuel Fernandez and Daesik Jang. 2011. MediaDiver: View-
ing and Annotating Multi-View Video. In Proceedings of ACM CHI
Conference on Human Factors in Computing Systems Extended Ab-
stracts. ACM, New York, NY, USA.

Professor Fels and Dr. Miller actively supervised the research project
and contributed ideas on the development and evaluation of the annotation
framework. All content reported in this thesis was part of my research during
my participation in the project, including the implementation of the annota-
tion software framework and prototyping of the interaction techniques, the
design and execution of all pilot studies and formal user studies, and the
analysis of all data that resulted from the experiments.

Permission to reproduce some images in this thesis was kindly granted
by YouTube users iPix966, chandlerwantsahorse and SoccerXAcademy.

The MyView research project was funded by the Natural Sciences and
Engineering Research Council of Canada. All experiments reported in this
thesis have been approved by the UBC Behavioural Research Ethics Board
(Certificate Number H08-03006 and H09-00066).

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . viii

List of Figures . x

Acknowledgements . xv

1 Introduction . 1
1.1 Contributions . 3

2 Related Work . 4
2.1 Video Annotation Representations 4

2.1.1 Image and Video Media 5
2.1.2 Semantic Entities . 5
2.1.3 Spatio-Temporal Entities 6

2.2 User Interfaces To Create Point-Based Paths 10
2.2.1 Smith’s Taxonomy . 11
2.2.2 Wills’ Taxonomy . 14

2.3 Discussion . 18
2.3.1 Annotation Method Comparisons 18
2.3.2 Input Device Considerations 19

2.4 Conclusion . 19

3 Pursuit Method Definition . 21
3.1 Pursuit Method Interactions 21

3.1.1 Specify Start and End Times 22
3.1.2 Define a Sequence of Points 23

3.2 Pursuit Method Examples 23

iv

3.2.1 Handling Challenging Video Object Movements . . . 23
3.2.2 Integrating With Other Annotation Tasks 24

3.3 Informal Prototype Evaluation 25
3.4 Discussion . 27
3.5 Conclusion . 29

4 Peak Error Model for Pursuit Interactions 30
4.1 System Impulses . 31
4.2 Impulse Responses . 31
4.3 Peak Error Model . 33
4.4 Discussion . 35
4.5 Conclusion . 37

5 Pursuit Method Performance 38
5.1 Hypotheses . 38
5.2 Experiment Design . 40

5.2.1 Subjects . 40
5.2.2 Independent Variables 40
5.2.3 Dependent Variables 42
5.2.4 Task . 42
5.2.5 Apparatus . 42

5.3 Results . 43
5.3.1 Peak Error Model . 43
5.3.2 (H1) Annotation Time 45
5.3.3 (H2) Annotation Accuracy 46
5.3.4 (H3) Annotators Satisfaction 47
5.3.5 (H4) Annotation Method Preference 47
5.3.6 Additional Results . 48

5.4 Discussion . 49
5.5 Conclusion . 50

6 Design Guidelines . 51
6.1 Choosing Pursuit Methods 51

6.1.1 Pointing Interaction Speed-Accuracy Trade-Off 51
6.1.2 Pursuit Interaction Speed-Accuracy Trade-Off 51

6.2 Choosing Video Playback Rate 52
6.2.1 Playback Rate Formula 52
6.2.2 Prototype Example 53

6.3 Time-Shifting Paths . 55
6.4 Conclusion . 56

v

7 Conclusion . 57
7.1 Future Research on Pursuit Methods 58

7.1.1 Extended Model Study 58
7.1.2 Additional Video Conditions 58
7.1.3 Semi-Automated Pursuit Methods Study 59
7.1.4 Refinements to Pursuit Method Paths 59

Bibliography . 60

Appendices

A Annotation Metadata . 69

B Spatial Area Definition Methods 72
B.1 Selection Methods . 72
B.2 Placement Methods . 72
B.3 Brush Methods . 73
B.4 Lasso Methods . 73
B.5 Rubber-Band Methods . 74
B.6 Shape-Parameter Methods 75
B.7 Grouping Methods . 76

C Temporal Period Definition Methods 77
C.1 Spatially-Represented Methods 77
C.2 Synchronised Segmentation Methods 78

D Spatio-Temporal Volume Definition Methods 80
D.1 Keyframed Methods . 80
D.2 Track-Based Methods . 82
D.3 Sparse-Frame Methods . 85

E Annotator Interviews . 87

F Pursuit Model Study . 90
F.1 Related Work . 90
F.2 Experiment Tasks . 91

F.2.1 Part 1. Synthetic Paths 91
F.2.2 Part 2. Derived Paths 92

F.3 Subjects . 96
F.3.1 Synthesized Paths, Part 1 96

vi

F.3.2 Derived Paths, Part 2 97
F.4 Apparatus . 98
F.5 Analysis of Variance . 99

F.5.1 Synthesized Paths . 99
F.5.2 Derived Paths . 100

F.6 Questionnaire Analysis . 100
F.6.1 Questions . 100
F.6.2 Responses . 101

G Video Annotation Software Framework 104

H Video Annotation Design Guidelines 109
H.1 Guidelines for Annotators . 109
H.2 Guidelines for Tool Designers 110

vii

List of Tables

2.1 Interfaces to create point-based path annotations arranged by
degree of automation - either manual or automated. 12

2.2 Interfaces to create point-based path annotations arranged by
creation time - either realtime or offline. 14

2.3 Interfaces to create point-based path annotations arranged by
data dependency - either dependent or independent. 16

2.4 Interfaces to create point-based path annotations arranged by
existing paths - either memory-less or memory. 17

4.1 Parameters for predictive model of pursuit accuracy. When
subject trials are not averaged, the prediction explains 56% of
the variability in the data, but contains a substantial error rel-
ative to the sizes of the objects considered in our experiment.
When subject trials are averaged, the prediction explains 79%
of the variability in the data, suggesting that within subject
variability is a substantial source of variability. 36

5.1 Regression coefficients for the peak error model developed in
Chapter 4. The coefficient value for speed is similar to the
previous study (p >0.05), but coefficients for size and the
intercept are different (p <0.05). 46

F.1 Dependent and independent variables for both parts of the
experiment . 95

F.2 Codes derived from the questionnaire results with examples
for each code. 102

F.3 Codes derived from the questionnaire results with examples
for each code. 103

viii

G.1 Average insertion and interpolation times for the annotation
framework. The times reported are based on ten insertions
and interpolations for 10,000, 100,000 and 1,000,000 preexist-
ing keyframes each containing a single point. We randomly
spaced keyframes between 0 and 100 seconds to populate an
InterpolatedRegion. 106

ix

List of Figures

1.1 A point-based annotation to draw attention to a video object. 1

2.1 A spatio-temporal entity that can be imagined as a sausage-
like extrusion of a changing shape through time. 6

2.2 Comparison of three spatio-temporal entities - Purely Tempo-
ral, Purely Spatial and Spatio-Temporal - in terms of the in-
formation density of the entities. Information density is rela-
tive the quantity of media data annotated. A pursuit method
typically produces sequence or interpolated point-based paths. 8

2.3 Comparison of four methods to create a point in a single
frame for a point-based path. In A, the annotator positions
the mouse pointer and pushes the mouse button down. When
the mouse button is released in B, four different points result.
A data-independent method simply places the point at the
mouse pointer position. A data-dependent method - in this
case based on pixel colour - places a point at the center of an
area expanded around similar pixels. A memory-less method
also places a point at the mouse pointer, but has no effect on
existing points. A memory method updates an existing point
to lie at the mouse pointer position. 15

3.1 Video annotation with a pursuit method. (1) Two figures
are moving in video. (2) A sequence of points starts when
the annotator depresses the mouse button. (3) The sequence
follows the mouse as the annotator pursues the video object
(points in previous frames are illustrated for clarity with onion
skins). (4) The annotator releases the mouse button to end
the path. 22

x

3.2 An example of video object occlusion that automated meth-
ods find difficult. Both players are wearing similar clothing.
As one of the players is occluded, the players change direc-
tion. We manually annotated one of the players with a pursuit
method. 24

3.3 An example of video object shape change. To begin, the rider
is mounted on the horse. As the rider dismounts, her size
and shape changes. We manually annotated the rider with a
pursuit method. Given that the rider should be annotated, if
the point remained inside the shape of the horse, the distance
between the point and the shape of the rider would constitute
an error, since the point did not lie inside the rider shape. . . 25

3.4 A prototype interface to combine video object identification
with a pursuit method for video annotation. In this case, an
annotator creates point-based paths to correspond to dancers.
The interface indicates the presence of the object in video
segments with a green bar below the playhead. Infrequently
used functions such as metadata editing are normally hidden
and accessed from the presence bar below the timeline. In
addition to playback and timeline navigation, we provided
frame-by-frame navigation controls. The video shown was
recorded from a hand-held consumer camera. 26

3.5 An annotator draws attention to a video object with a touch
screen pursuit. This example illustrates an “offset tracking”
mechanism to avoid finger occlusion issues. 27

3.6 A video object pursuit illustrating adjustment to video play-
back rate. In this example, the annotator is placing a circular
visualisation on the point-based path. 27

4.1 Derived video object movement path from video on hockey
player movements. 31

4.2 Pursuit impulse responses for three object sizes and three
object speeds (dotted line: 35mm/s, dashed line: 25mm/s,
solid line: 15mm/s). The distances are in terms of ”input
space” - the distances moved by the users hand. The pursuit
target changes direction at Time = 0. Pursuit error appears
to change linearly with speed and target size. 32

xi

4.3 Peak error measured between 0.2 and 0.3 seconds into the
pursuit impulse response, with 95% confidence intervals. Dif-
ferences between speed and size conditions within both paths
of the experiment are statistically significant. Only three con-
ditions are significantly different between paths of the exper-
iment (indicated with red). 34

5.1 Interaction diagrams for both the pursuit and Hold-Pause
methods. The position of the pointer is repeatedly sampled
while the video plays in the pursuit interaction. In contrast,
only a single position point per pointer up event is stored for
the Hold-Pause method - the individual positions are joined
together into a point-based path with a linear interpolation.
Since the video is paused while points are positioned with the
Hold-Pause method, the points can be positioned more accu-
rately - although the linear interpolation may not follow the
object movements well. Furthermore, the Hold-Pause method
interrupts video playback, slowing down the annotation inter-
action. 39

5.2 Experiment subject sitting a typical distance from the exper-
iment apparatus. We also illustrate a typical screen image
during the experiment. 41

5.3 Error profiles for annotations created with a pursuit method
for the two of the video object paths in our study. The dotted
lines are for video objects moving at 3.225 mm/s, dashed lines
for video objects moving at 2.15 mm/s and solid lines for video
objects moving at 1.075 mm/s. 44

5.4 Average peak errors among annotators for both pursuit and
Hold-Pause interactions (with 95% confidence intervals). These
are not RMS errors, and are in terms of input space (user
hand movements). There is a significant effect of interaction
type on accuracy (p <0.05) with Hold-Pause producing more
accurate annotations for all conditions except the 1.25 mm,
1.075mm/s condition (p >0.05). 45

5.5 Average times to produce annotations for a second of video.
The video object path was 8 seconds long for video objects
moving at 2.15 mm/s, 16 seconds for 1.075 mm/s, and 5.33
seconds for 3.225 mm/s. 47

xii

6.1 Prototype pursuit method annotation interface to assist the
annotator to choose a video playback rate. (1) The annotator
identifies a video object size and location with a rubber band
bounding region. (2) The interface advances the video one
second and the annotator specifies the object’s new location.
With our model of human pursuit movements, the prototype
sets the video playback rate so that 50% of pursuits have
better than a required peak error. 54

6.2 Peak error reduces when annotation paths created with a pur-
suit method are shifted forward in time. Hold-pause does
not benefit from this adjustment. Only data from the 2.15
mm/s condition are presented. Dotted line: 1.25 mm objects,
dashed line: 0.625 mm objects and solid line 0 mm objects. . 55

D.1 Sequence of interactions to create a spatio-temporal volume
with keyframed methods. The red square is a projection of
the volume. 80

D.2 Sequence of interactions to correct a spatio-temporal volume
with track-based methods. The red square is a projection of
the volume. 83

D.3 Sequence of interactions to create a spatio-temporal volume
with sparse-frame methods. The red square is a projection of
the volume. 85

F.1 The target position is i1D(t) and is constrained to lie on a
horizontal line. The horizontal component of the distance
between the human controlled mouse cursor and the target
edge is e1D(t). When the cursor is inside the target, e1D(t) is 0. 92

F.2 The target position is i2D(t). The euclidean distance between
the human controlled mouse cursor and the target edge is
e2D(t). When the cursor is inside the target, e2D(t) is 0. . . . 93

F.3 Frame 3348 from a stationary camera recording of a college
ice-hockey game. 94

F.4 1. The trial starts when the subject holds the mouse cursor
stationary inside the white start region. 2. The green target
appears with a controlled speed and unpredictable movement
path. The cursor is also replaced with a tracking cursor. . . . 97

xiii

F.5 1. The trial starts when the subject holds the mouse cursor
stationary inside the white start region. 2. The subject moves
the mouse cursor to the green target and presses the mouse
button. 3. When the subject releases the mouse button, the
green target moves with a controlled speed and unpredictable
movement path. The cursor is also replaced with a tracking
cursor. 98

F.6 The experimental setup with a subject sitting at a typical
distance from the experiment screen. 98

G.1 Class diagram for the data model to support annotation re-
gions for multiview video. 107

G.2 Class diagram for the view and controller objects to view and
manipulate annotation regions. 108

xiv

Acknowledgements

My supervisors Prof. Sidney Fels and Dr. Gregor Miller challenged me
to contribute to the field of Human-Computer Interaction and provided
valuable insights, practical advice, proofreading and encouragement.

Thank you to Dr. Chris Oram, Abir Al Hajri and the HCT lab, Rock
Leung, Russ Mackenzie and the HCI Grad Research Forum for invaluable
feedback. Many thanks to Prof. Rodger Lea, Prof. Karon MacLean, and
Prof. Joanna McGrenere for important feedback and support. Thanks
also to Kenji Okuma, Wei-Lwun Lu and the LCI lab; Idin Karuei, Vin-
cent Levesque, Louise Oram and the MUX lab; and my friends Vincent
Tsao, Johnty Wang and the MAGIC lab. Thank you Victoria Jeffries for
encouraging me to pursue graduate studies.

This research would not have been possible without the support of my
family, particularly my parents Nigel and Barbara, and my wife Françoise
- you give me confidence, help me to understand, and reassure me that life
continues merrily.

xv

Chapter 1

Introduction

Each month on YouTube, people watch over three billion hours of streaming
video [4]. Every minute, mobile users upload three hours of video to the
service from handheld devices.

Finding people and events in this torrent of video is difficult. Photo
sharing services, like Facebook albums, provide quick techniques to iden-
tify people and so organise media collections [86]. Yet simple equivalent
techniques to organise video media are not yet commonplace.

Adding information to objects in video - such as tagging people as in
Figure 1.1 - is known as annotation. Annotation enables a range of exciting
opportunities such as finding interesting videos or sharing thoughts about
video objects.

Figure 1.1: A point-based annotation to draw attention to a video object.

Contemporary annotation of consumer video is typically a slow process.
Some automated annotation methods require time-consuming video pre-
processing [38]. Other methods hamper annotators by interrupting video
playback during annotation [8].

However, annotation presents a speed and accuracy trade-off in time
and space. The more dense an annotation - spatially and temporally - the
more time needed to create the annotation. At one extreme, tracking a single
point of interest reduces the time needed to accurately specify an annotation

1

- although at the cost of accurately specifying a region of interest.
Furthermore, for many annotation applications, a point of interest is

sufficient. For instance, annotators can draw attention to screen-based ob-
jects with a crosshair or a fixed-sized shape centered at a point [50]. Video
effects or interactive elements can be centered on point-based paths [38].
Annotators can also position points to identify objects, in a similar fashion
to fixed-sized Facebook photo tags. Additionally, a point of interest may
also be combined with computer supported region growing to provide fast,
accurate region of interest video annotation.

This thesis provides evidence that, with the appropriate interface, track-
ing a point of interest can be performed sufficiently accurately in realtime,
and - in some cases - faster than realtime. Thus we demonstrate that a pur-
suit approach for annotating single points of interest is a viable approach
for fast video annotation.

First, we present a predictive model of the accuracy of annotation paths
created with a pursuit annotation method. We derive the model for a hard
case of synthetic video object movements - when objects reverse direction.
We also assumed a pursuit with a mouse pointer, when objects change di-
rection near the limit of human reaction times.

Our model indicates that the speed and size of video objects explain
a substantial portion of the variability in the peak error during a pursuit.
Additionally, the model indicates a linear relationship between speed, size
and peak error.

Secondly, we present measurements of pursuit accuracy of more realis-
tic video object annotations. We compare the performance of the pursuit
method with an alternative video annotation technique - known as Hold-
Pause - that interrupts video playback during annotation.

Measurements of annotation path accuracy in the second study exhibit
the same linear relationship between speed, size and peak error. We show
that when video objects move at 1mm/s, pursuit interactions produce anno-
tations as accurate as the alternative technique (for video objects 1.25 mm
in diameter). But pursuit interactions produce the annotations faster, re-
quiring just 1.05 seconds of annotator time for each second of video - a 12%
reduction in annotation time (with a standard deviation of 5% reduction to
annotation time).

Moreover, we show how our model can be incorporated into a annota-
tion system so that by slowing down the video, an annotator can achieve
an arbitrary accuracy with a pursuit method. Alternatively, if objects are
moving slowly, the annotator can speed up video playback and the method
will produce predictably accurate paths - and faster than realtime.

2

At first glance, video annotation designers may be sceptical that tracking
a video object would be a viable annotation technique. We present quan-
titative evidence of the validity of a pursuit method for video annotation,
including measures of video annotator satisfaction. System designers can
now choose a pursuit method as a viable annotation method - and help
people to stay afloat in the rising tide of online video.

1.1 Contributions

The contributions of this work are

• A new manual method for video annotation. The method does not
require video to be paused during annotation. We provide evidence
that a pursuit method is suitable for tracking a point of interest on a
video object. For consumer video, the methods produce satisfactory
point-based paths with an accuracy that compares favourably with an
alternative method.

• A model of how pursuit accuracy is related to video object speed and
size, based on the results of a controlled experiment. With our the
model, we report how to both adjust video playback rate and time-shift
the paths annotators create so interaction designers can best apply a
pursuit method for video annotation.

3

Chapter 2

Related Work

Digital annotations were first conjectured in 1945 when Bush described a fu-
turistic table known as the Memex [18]. He imagined that the device would
assist a researcher to add marginal notes and comments to a trail of docu-
ments. At the Stanford Research Institute in 1968, Engelbart demonstrated
a working annotation system for knowledge workers - the oNLine System
(NLS) [33]. He joined a group of remote programmers to write software and
annotated blocks of code.

More recently, Harrison describes video annotation as simply “note tak-
ing” [42]. But Goldman elaborates that “video annotation is the task of
associating graphical objects with moving objects on the screen” [38]. In
this thesis, we adopt a definition of video annotation similar to Goldman: a
type of digital annotation to associate spatio-temporal entities with events
and objects in video.

A pursuit method sits within a broad field of video annotation research.
To contextualise the method, we first introduce video annotation represen-
tations and detail a particular type of annotation - the point-based path.
We then illustrate the space of methods to create and correct annotations,
providing a vocabulary for discussing annotation methods and identifying
some of the shortcomings of existing methods.

2.1 Video Annotation Representations

Four key elements comprise a video annotation: (1) video media, (2) seman-
tic entities, (3) spatio-temporal entities and (4) metadata. In this chapter,
we introduce video media, semantic entities and spatio-temporal entities.
Annotation metadata is discussed in Appendix A. The elements are based
on video annotation representations described in two taxonomies: MPEG-7
and SMIL.

The Moving Picture Experts Group (MPEG) developed the highly-detailed
taxonomy of video annotation representations known as MPEG-7 [62]. Sim-
pler taxonomies of graphical content, such as the Library of Congress The-
saurus for Graphic Materials, only represented a limited range of video anno-

4

tations [69]. MPEG-7 represents a broader range of annotations at different
“levels” of annotation with a Description Definition Language (DDL). The
levels bridge a “semantic gap” - low-level features, such as the edges of ob-
jects, are encoded with low-level Descriptors, while high-level features such
as events and objects are encoded with other high-level Descriptors.

The Synchronized Multimedia Integration Language (SMIL) is a sim-
pler alternative taxonomy to MPEG-7 [16, 46]. Developed as a format for
interactive multimedia presentations, the language groups video annotation
representations into modules of functionality. The Media Object module
details the playback and positioning characteristics of images and video.
The behaviour of “area” elements are described in the Linking module. The
Metadata module details the structure of information attached to multime-
dia elements. The simpler SMIL format is used for mobile applications such
as multimedia text messaging (MMS).

2.1.1 Image and Video Media

A video annotation is always relative to video media. Media can be (1)
copied, like a digital music file, (2) stored, like an x-ray or (3) transmitted,
like a newspaper story. Video media are the digital substrates that store or
communicate events and objects recorded in video.

In this thesis, we assume that an image is a two dimensional grid of
spatial elements, known as pixels. Each pixel has a colour that is uniformly
rendered by a display across the pixel area.

We further assume that video is a two dimensional grid of pixels - like
an image - but that the colour of each pixel is time dependent. A frame is
an image of pixel colour values for a particular time period. Frame pixel
colours are defined for discrete periods - determined by the video frame rate.
During video playback, a display renders pixel colour uniformly during the
frame period.

2.1.2 Semantic Entities

Semantic entities should not be confused with video media - when someone
annotates a soccer player, the object they are interested in is usually the
person, rather than the pixels portraying the player. MPEG-7 semantic
entities are the significant events or objects in video.

• Video Objects: Any entities that occupy space, such as a soccer ball
or a pool of milk. Objects usually change over time - a tree grows
slowly and sways in the wind. An object may be composed of smaller

5

parts, like a swarm of bees. Video objects with distinct boundaries,
such as people or vehicles, are particularly suited to annotation with
a pursuit method.

• Video Events: Abstract entities, such as a volcano eruption, a Christ-
mas sale or a car theft. The start and end of an event may not be
distinct - such as when a life starts and ends - but events can be or-
dered and measured relative to each other. Here, we assume that an
event has both a start and an end, relative to other events.

Some annotation tools specialise in annotation of particular objects, such
as the TrackMarks tool that only annotates the locations and identities of
people [27]. Other annotation tools, such as the Family Video Archive [5],
EVA [60], VANNA [42], Marquee [93] or CEVA [24] only support event
annotations.

Sometimes the semantic entities are ambiguous: when a newspaper ed-
itor underlines text, the semantic entity may be either details of a story
or a grammatical error. Given a compound video object, such as a person
wearing clothes, the semantic entity may be the person or their clothes, so
an annotation viewer plays a role in disambiguating an annotation.

2.1.3 Spatio-Temporal Entities

MPEG-7 region descriptions are spatio-temporal entities that correspond to
semantic entities. By spatio-temporal, we mean that the entites are defined
in units of space and time, relative to the spatial and temporal dimensions of
video. Spatio-temporal entities can be imagined as sausage-like extrusions
over time (Figure 2.1).

Figure 2.1: A spatio-temporal entity that can be imagined as a sausage-like
extrusion of a changing shape through time.

6

Spatio-temporal entities have a correspondence to semantic entities, and
a spatio-temporal entity should correspond to exactly one semantic entity.
The definition of the spatio-temporal entity should be accurate enough so
that the correspondence is clear. We define an annotation error as an unsat-
isfactory correspondence between a spatio-temporal entity and a semantic
entity. However, spatio-temporal entities can inaccurate - such as when a
newspaper editor draws a line under a sentence - and human perception de-
termines both the extent of the spatio-temporal entity and the corresponding
semantic entity.

Measures of spatio-temporal entity accuracy are often based on the de-
gree of overlap between a ground truth - known good entities - and annotator
created entities. The CLEAR MOT measure is an example of an overlap ac-
curacy measure [14]. However, in the case of point-based paths, annotation
accuracy can be measured with frame-wise geometric error between ground
truth paths and annotator paths.

Spatio-temporal entities have a visualisation independent of their defini-
tion. The visualisation determines how well people perceive the correspon-
dence between a spatio-temporal entity and a semantic entity. Sometimes, a
visualisation will “enclose” a semantic entity to indicate a correspondence.
For example, Facebook visualisations are located to identify faces in photos,
but rarely fit faces well [1].

There are a number of types of spatio-temporal entity, with different
densities, relative to the quantity of media data annotated. Dense spatio-
temporal entities have detailed definitions. In comparison, sparse spatio-
temporal entities have more rough definitions and are quicker to create and
transmit, and require less information storage space. Figure 2.2 arranges
three different spatio-temporal entities in terms of their temporal and spatial
density.

Purely Temporal Periods

Spatio-temporal entities can be purely temporal when corresponding to
events, such as to correspond to a song played during a concert. MPEG-
7 represents purely temporal entities with Video Segment Descriptors [62].
Purely temporal entities are found in video annotation tools for ethnogra-
phers, such as EVA [60] or VANNA [42] (see also Appendix C) and have
two different representations:

• Instantaneous. Those temporal entities that occur simultaneously with
a corresponding event, but without a duration, so relying on human

7

Figure 2.2: Comparison of three spatio-temporal entities - Purely Temporal,
Purely Spatial and Spatio-Temporal - in terms of the information density
of the entities. Information density is relative the quantity of media data
annotated. A pursuit method typically produces sequence or interpolated
point-based paths.

perception to infer the duration of the event. For example, a match
time can refer to a soccer goal even though the event involves game
play before and after the ball crosses the goal line.

• Segmented. Those temporal entities that enclose events, although per-
haps with rough boundary start and end times. In comparison with in-
stantaneous entities, they define an event duration, so are more dense.

Purely Spatial Areas

Similarly, spatio-temporal entities can be purely spatial when corresponding
to objects in images. Spatial entities have three different representations,
with increasing information density:

• Point-based. These entities only specify positions, such as (1) the
location of fixed shape visualisations like the Facebook face area [1], or
(2) simple point visualisations like a laser pointer dot or a pin location
on a map.

• Shape-based. Entities formed from parameterised shapes that regu-
larise areas. The shape is typically simpler than the corresponding

8

video object shape, so is a “lossy” representation of complex video ob-
ject shapes such as tree canopies. However, shape-based entities corre-
spond to objects better than point-based entities, and can be rotated
and scaled. Different shapes have a range of information densities:

– Simple forms. Ellipsoid or rectangular entities, with variable pa-
rameters such as radius or side length. SMIL represents rectan-
gular shape-based entities with an area element [16].

– Vertex-based. Vertices may be joined with simple straight lines
or with more complex paths, such as as Bezier paths [12]. MPEG-
7 represents vertex-based entities with Polygon Region Locator
Descriptors [62].

• Content-based. The most dense entities, typically formed from groups
of pixels. Alpha “mattes” are images that define groups of pixels -
sometimes created by chroma-keying - and can have “soft boundaries”
[22]. MPEG-7 represents content-based entities with Region-Based
Shape Descriptors [62].

Spatio-Temporal Volumes

A combination of spatial and temporal entities is typically required to cor-
respond unambiguously to semantic entities moving in video. Visualisations
of spatio-temporal entities can be both (1) spatial for particular times, and
(2) temporal for particular spaces (the basis of time-bars in video timelines).
Spatial and temporal entities are combined in two ways:

• Sequences. The most dense representations of spatio-temporal en-
tities are sequences of spatial entities explicitly defined for specific
video times. MPEG-7 represents these entities with groups of spatial
entities. Sequences of content-based mattes form the densest spatio-
temporal entities [22].

However, some sequences are sparse, so that entities are defined and
visualised for only a few frames of a video clip. Sparse sequences of
shape-based entities are used to index video, such as with the Semantic
Video Annotation Tool (SVAT) [75] and VideoAnnEx [56].

• Interpolated. Representations that are less dense than sequences, and
that rely on rules for entity definition between “keyframes”. The tech-
nique is similar to animation keyframing, where junior artists define

9

shapes for frames between keyframes drawn by senior keyframe artists
[17]. Interpolation improves the correspondence of a spatio-temporal
entity with a video object, with little increase of entity density other
than parameters to define the interpolation.

Point-based spatial entities can be interpolated into spatio-temporal
paths. MPEG-7 represents spatio-temporal paths with Spatio Tem-
poral Locator Descriptors [62]. Content-based spatial entities can be
positioned on spatio-temporal paths - similar to MPEG-4 motion vec-
tors [22].

Shape-based spatial entities can be interpolated by making shape pa-
rameters time dependent. MPEG-7 represents such parameter inter-
polations with the TemporalInterpolation Descriptors [62]. By using
different interpolations for shape-based entity parameters, entities can
change shape as well as appear to move with time. Some content-based
spatial entities can be interpolated with skeleton techniques [17].

Different interpolation schemes result in different entities. Interpo-
lation with simple linear functions introduces discontinuities in the
apparent shape change and movement of entities. More complex in-
terpolation with parametric curves results in smoother spatio-temporal
entity change with time, but at the cost of increased entity density.

Keyframes and interpolation are found in most video annotation tools
such as GALATEA [71], MediaDiver [63] and YouTube Annotations
[3], to name a only a few.

2.2 User Interfaces To Create Point-Based Paths

A pursuit method creates a point-based path - a specific type of spatio-
temporal entity for video annotation. We arranged spatio-temporal entities
by spatial and temporal density and noted that point-based paths have a
reduced spatial density.

Creating and correcting spatio-temporal entities is a particularly time
consuming task. However, methods to produce spatio-temporal entities with
a reduced spatial density should also have reductions to annotation time,
and so produce point-based paths quickly.

In this section, we compare a variety of methods to create point-based
paths. Even with a reduced spatial density, point-based paths are useful for
a number of reasons:

10

• Semantic Entity Identification: semantic entities are “tagged” for iden-
tification in subsequent viewings, such as with the Agora tool [89].
Point-based paths must only correspond unambiguously to video ob-
jects, and do not match the objects shape exactly.

• Attention Direction: annotation to draw attention to video objects,
such as in classrooms [11]. Point-based paths to draw attention are
typically of low spatial density and direct attention to one object in a
collection of objects.

• Video Navigation: annotations for subsequent navigation with video,
such as hyperlink anchoring [63]. Navigation point-based paths are
typically of low spatial density, since the paths are the basis for simple
interaction elements.

• Semantic Entity Analysis: annotation so video object behaviour can
be analysed, such as for player movement analysis [83]. Some analyses
can be made with point-based paths, such as horse racing performance.

• Video Effects: Point-based paths for can be the basis of highlights or
animations that follow video objects [38].

However, the MPEG-7 and SMIL taxonomies only address representa-
tions of video annotations, and don’t consider the process of creating or
correcting annotations. To arrange methods to create point-based paths,
we draw on two taxonomies of methods to create spatio-temporal entities.
We extend these taxonomies to describe user interfaces to create and correct
point-based paths for a wide variety of video annotations.

2.2.1 Smith’s Taxonomy

Smith developed a taxonomy of methods to create video hyperlinks [82].
Video hyperlinks can be considered as video annotations to support naviga-
tion among multimedia resources via “linkage areas” or “hotspots” of video.
Smith arranged methods to create hyperlinks along three axes: (1) man-
ual vs. automatic generation, (2) server vs. client-side generation and (3)
realtime vs. offline video. We consider methods to create spatio-temporal
point-based paths along the two most relevant axes - degree of automation
and creation time.

11

Table 2.1: Interfaces to create point-based path annotations arranged by
degree of automation - either manual or automated.

Manual Automated

Example Hold-Pause [47] TurfTrax [83]

Method An annotator stops
video playback by
holding a mouse button
down. When the mouse
button is released, a
point is added to an
interpolated path and
video playback resumes.

Before annotation,
technicians attach
positioning devices to
objects such as race-
horses. The annotation
system then aligns ob-
ject paths detected by
the positioning devices
with video records of
the objects.

Strength Handles consumer video
that is difficult for au-
tomation

Reduces number of
frames an annotator
manually edits

Weakness Very slow relative to au-
tomatic methods

Often customised to
particular video context

Degree of Automation

Automated object tracking systems often create point-based paths. The
TurfTrax system creates annotations of racehorses in broadcast video with
radio positioning devices aligned with video recording equipment [83]. Each
horse caries a transmitting tag to send a radio-frequency “chirp” to re-
ceivers around a race course track. The receivers relay details of the chirps
to a central server that produces position measurements of the horses for
video statistics and visualisations. While the system estimates horse position
and speed with similar accuracy to Differential Global Positioning System
(DGPS) devices, aligning tracking devices with video is time consuming and
expensive, and different tracking technology is needed for different sports
contexts.

Some automated systems create point-based paths from video data alone.
Amisco is a contemporary video system to generate coaching statistics of the
movements of soccer players with overhead camera video [80]. The Noldus
Ethovision tool measures animal movements with video recorded during
experiments in well-lit cages [84].

Automated systems to create point-based paths based on video analysis

12

alone often assume that objects move against an unchanging background
in recordings from stationary cameras. In complex video, such as consumer
video, automated methods introduce a variety of errors when creating point-
based paths due to challenging lighting conditions or unpredictable content.

In contrast, completely manual techniques can cope with more chal-
lenging video conditions, but with longer annotation times. Hold-Pause is
a completely manual technique to create point-based paths, based on an
interaction technique to improve moving target selection [47]. Using the
technique, the annotator navigates to a video time with a playhead and
timeline. The video starts playing automatically once the annotator has
specified the start location for a path with a mouse. Any subsequent mouse
button press pauses the video so that the annotator can accurately acquire
a moving target and define additional points on the path - interpolation be-
tween these annotator defined points forms the path. The path ends when
the annotator manipulates video playback controls such as the video pause
button or the video playhead.

Creation Time

Realtime annotations are created in time or very soon after video capture.
Alternatively, offline annotations, such as hyperlinks generated for police
surveillance video, are created sometime after the video is captured.

Annotators use some ethnographic tools to mark events in-time with
video capture, such as EVA [60], VANNA [42], Marquee [93] or CEVA [24].
The temporal annotations are useful to support navigation within video,
and can be refined into more accurate annotations. Pursuit methods extend
these temporal only methods to introduce a spatial dimension and create
point-based paths in-time with video capture.

A pursuit method produces temporally dense point-based paths in-time
with video playback. An annotator tracks the movement of video object in
time with playback. The method is described in detail in Chapter 3. The
method differs from a typical spatial brush method since a brush tracing
interaction is self-paced. With a pursuit method the annotator is under a
constraint to trace the path within a limited time. A pursuit method is
fast to create point-based path without stopping video playback, perhaps
suitable for “first-passes” for correction later.

Offline annotation - while video playback is paused - allows for a variety
of techniques to create spatial entities for annotations, including methods to
specify points for point-based paths (see Appendix B). Spatial entities can
be merged into a single spatio-temporal entity that corresponds to a video

13

Table 2.2: Interfaces to create point-based path annotations arranged by
creation time - either realtime or offline.

Realtime Offline

Example A pursuit method 3 Particle Tracking [38]

Method Track video object with
pointing device in time
with video playback
to produce temporally
dense point-based
paths.

Video is pre-processed
offline to determine
groups of particles.
An annotator selects
a group of particles to
grow a spatio-temporal
path so that the path
is on the center of the
group.

Strength Faster to produce paths
by avoiding interrupt-
ing video playback

Allows time to modify
existing paths while the
video is paused

Weakness Some video could be an-
notated faster than real-
time

Annotators under
less time-pressure to
complete annotations.
Needs additional time
to manipulate video
playback controls.

object more accurately. However, annotators typically spend more time to
produce more accurate spatio-temporal entities.

Some tools cut annotation time by reducing the number of video frames
available for annotation, so annotators only create a spatial entity for a
single frame for a thirty second video clip (VideoAnnEx [56, 82], SVAT [75]).
These tools could potentially create sparse point-based paths in realtime,
even though video playback is interrupted - but at the cost of annotation
temporal density.

2.2.2 Wills’ Taxonomy

Wills developed a general taxonomy of 2D selection methods [94]. His taxon-
omy includes both “data-dependent” or “data-independent” and “memory”
or “memory-less” methods. We extend the taxonomy to consider methods
to create and correct spatio-temporal point-based paths, and illustrate the
taxonomy in Figure 2.3.

14

Figure 2.3: Comparison of four methods to create a point in a single frame
for a point-based path. In A, the annotator positions the mouse pointer and
pushes the mouse button down. When the mouse button is released in B,
four different points result. A data-independent method simply places the
point at the mouse pointer position. A data-dependent method - in this
case based on pixel colour - places a point at the center of an area expanded
around similar pixels. A memory-less method also places a point at the
mouse pointer, but has no effect on existing points. A memory method
updates an existing point to lie at the mouse pointer position.

15

Data Dependency

Data dependent methods define point-based paths based on properties of
the underlying media data. Text selection is a well-known data dependent
method for defining areas - by dragging a pointer, areas are constrained to
conform to the positions and sizes of characters in the text.

Table 2.3: Interfaces to create point-based path annotations arranged by
data dependency - either dependent or independent.

Data-Independent Data-Dependent

Example Mark Corrections [12] Magic Wand [8]

Method Over a number of
frames, animators up-
date an existing path
by recreating a new
path. The update is
based on parameterised
curvatures of the paths.

Points for the path are
based on the centers of
a sequence of regions of
interest selected by an
annotator. The regions
of interest are based on
pixel colours detected in
video frames.

Strength Rough accuracy paths
may be good enough for
some annotation con-
texts

Reduces the number
of frames an annotator
manually edits

Weakness Doesn’t save time when
paths could be detected
from video

Annotator must review
annotations to detect
errors.

Magic Wand is a data-dependent method to expand a point into a
content-based region [8]. To grow an area, an annotator selects a point
on a video object image and an algorithm expands a content-based area
around the point. The algorithm can grow areas based on (1) the presence
of edges detected on the video object, (2) the presence of similar pixels to
the selection pixel (in colour or intensity), or (3) a hybrid approach that fills
“pools” within the image. Points of a path can be snapped to the grown
area - such as the center of gravity of the area.

In contrast, Khan et al. explored the affordances and design characteris-
tics of a data-independent “digital spotlight” to direct attention to objects
in realtime [50]. Without any dependency on the underlying media, the
spotlight was automatically stabilised on a large screen display - without
the “wobble” of a laser pointer. On wall-sized screens, viewers found ob-

16

jects illuminated by the spotlight up to 3.4 times faster than when attention
was directed to the object with a mouse cursor alone. While their evaluation
only considered illumination of stationary objects, pursuit methods could be
considered as an extension of their technique to follow moving objects.

Existing Annotations

Memory-less methods define point-based paths independently of previously
created paths. In contrast, memory methods perform operations such as
path intersection, addition or replacement.

Table 2.4: Interfaces to create point-based path annotations arranged by
existing paths - either memory-less or memory.

Memory-less Memory

Example Digital Spotlight [50] Constrained Optimisation [9]

Method Conference participants posi-
tion a spotlight visualisation
with pointing movements on
a large screen display. As
objects on the screen move,
the spotlight is repositioned.
Each repositioning is indepen-
dent of previous repositioning
of the spotlight.

An animator adjusts the in-
terpolation between keyframe
points by inserting points into
the path between keyframe
points. The path between the
points is interpolated based
on how well the interpolation
follows edges in the interven-
ing frames.

Strength Rough accuracy paths may be
good enough for some annota-
tion contexts

Corrections to errors on a
path can be quicker than
recreating the path

Weakness Even if path contains a small
error, must recreate path on
mistake

No time saving when there are
no existing paths

Baudel describes a technique to modifying existing paths with successive
paths [12]. Although developed for spatial paths, his technique could be ap-
plied to spatio-temporal paths. His technique is similar to adjusting a sketch
by repeating pen strokes - the technique transforms Bezier curves according
to successive curves drawn on an original. The advantage of the technique
is natural, fast and direct interaction with paths, instead of manipulating
“low-level” control points of a path.

Points of a path can be defined based the center of a group of particles -
image features that correlate with video object movements. Goldman devel-

17

oped a data-dependent method to select spatio-temporal volumes detected
by a particle tracking algorithm [38]. The research assumed that video is
pre-processed offline to determine groups of particles. To create a path, the
annotator selects a particle group and the center of the group defines the
path in each video frame. His work mentions situations when the particle
tracking “breaks down” - when the particle group no longer corresponds well
to video objects - but doesn’t investigate methods to address the situation.

Data-dependent also includes automated memory methods that are con-
strained by existing annotation paths. Agarwala et al [9] reframed roto-
scoping - an animation technique to trace the outline of objects represented
in video - as a semi-automated process similar to video annotation. With
the technique, an animator specifies waypoints in two keyframes, and an
algorithm creates paths by both interpolation between the waypoints and
optimising measures of how well the interpolation follows edges in the video.

2.3 Discussion

2.3.1 Annotation Method Comparisons

We have arranged methods to produce point-based paths and noted the
trade-offs between the methods.

Although fully automatic annotation systems reduce the number of frames
an annotator manually edits, they are often customised to particular video
contexts. Manual systems can handle consumer video that is difficult for
automation, although the methods are slow relative to automatic methods.

Realtime annotation systems avoid interrupting video playback. How-
ever, offline systems have the advantage of allowing annotators time to mod-
ify existing paths.

Data-independent methods can be useful in situations where rough ac-
curacy paths are good enough. In contrast, data-dependent methods often
reduce the number of frames an annotator manually edits, although they
may still require some supervision by annotators.

Similarly, memory-less methods can produce paths with sufficient accu-
racy for some applications. But if more accurate paths are needed, memory
methods have the advantage of correcting errors on a path quickly rather
than recreate the path.

In this thesis, we chose to focus on completely manual methods. How-
ever, manual methods can be combined with automated techniques. For
instance, point-based paths created by manual methods can constrain auto-
mated methods or select the results of automated methods. But as an initial

18

step to validate pursuit methods, we consider a completely manual method,
leaving work to combine pursuit methods with automation as interesting
research for the future.

2.3.2 Input Device Considerations

Although some automated systems assume specialist tracking hardware,
most methods to create and correct point-based paths typically rely on
pointing or tracking interactions. However, we note that our taxonomy does
not consider the range of input devices for methods to create point-based
paths in detail.

Some devices will significantly affect video annotations interactions. For
instance, touch screen devices typically do not combine interaction states -
such as defined with multiple buttons - with position measurements. In con-
trast, a computer mouse has buttons to control the properties of annotation
methods. An annotation system with a mouse based interface could add a
new path while the left mouse button is depressed, or modify an existing
path while the right mouse button is depressed.

Additionally, while is often performed in a quiet environment with a
desktop computer, annotation on mobile devices is become increasingly com-
mon. In mobile situations, some device specific issues impact video anno-
tation accuracy and the time to produce annotations - such as finger-touch
occlusions, distractions or the limited processing capabilities of both the
device and the annotator.

Although video annotation on mobile devices is an exciting avenue for
research, for most of this thesis, we consider annotations created with a com-
puter mouse. Mice devices are widely available when creating annotation
systems and many people are familiar with the device, making our results
relevant to wide audience.

2.4 Conclusion

Video annotation is often a slow process. The process should be quick to
support realtime video annotation, and quicker still if large archives of video
are to be repeatedly annotated for different annotation contexts.

To speed up the annotation process, we focused on methods to create and
correct point-based spatio-temporal paths. The paths trade spatial density
for reduce annotation time. The paths are useful for a number of reasons,
such as “first-pass” annotations, or to draw attention to video objects.

19

We organised methods to create point-based paths so annotation tool
designers can choose an appropriate method for their annotation context.
Additionally, our arrangement supports researchers by illustrating the anno-
tation method space, provides a vocabulary for discussing annotation meth-
ods and identifies some of the shortcomings of existing methods.

We considered a pursuit method as a realtime, manual, data-independent
and memory-less method - although the method could be combined with
automation in an semi-automated system. In the next chapter, we define
the pursuit method in more detail.

20

Chapter 3

Pursuit Method Definition

A pursuit method quickly creates point-based paths for video annotations
in-time with video playback. Other methods to create point-based paths typ-
ically interrupt video playback. Additionally, other methods require addi-
tional annotation time to control video playback and navigate between video
frames. Furthermore, some automated methods struggle with consumer
video conditions that are well supported by the manual pursuit method.

In this chapter, we clearly define the interactions of a pursuit method.
We illustrate how a pursuit method can produce paths for typical uses of
video annotations. We also present feedback from annotators using a pursuit
method prototype.

3.1 Pursuit Method Interactions

Most video annotation methods typically rely on pointing interactions to de-
fine paths. A pursuit method is based on a well known pursuit interaction,
previously studied for weapons research [52] and as a psychological perfor-
mance measure [77], although previously unexplored for video annotation.
Poulton describes pursuit interactions with two aspects: [72]:

• Target acquisition: Manual movements to reach a moving object, such
as reaching to touch a box on a conveyor belt.

• Target tracking: Manual movements to match the time dependent po-
sition of a moving object, such as following an aircraft with a search-
light. Poulton notes that pursuit is distinct from a self-paced tracing
interaction.

Video annotation methods to create a point-based path must satisfy two
requirements: (1) specify start and end times and (2) define a sequence of
points between the start and end times. Here we describe how a pursuit
interaction can satisfy these requirements, with illustrations in Figure 3.1.

21

Figure 3.1: Video annotation with a pursuit method. (1) Two figures are
moving in video. (2) A sequence of points starts when the annotator de-
presses the mouse button. (3) The sequence follows the mouse as the anno-
tator pursues the video object (points in previous frames are illustrated for
clarity with onion skins). (4) The annotator releases the mouse button to
end the path.

3.1.1 Specify Start and End Times

To specify the start time for a point-based path, an annotator uses a mouse
button action - the start of the path coincides with the currently displayed
frame when the mouse button is depressed.

To more accurately specify the start time of the path, video playback
can be paused. The annotator can navigate to the start time with a video
timeline and playhead. On depressing the mouse button, video playback
can resume for the pursuit.

Alternatively, video playback can be uninterrupted, and the annotator
can chase and acquire a video object before indicating the path start time
by depressing the mouse button. When video playback is not interrupted,
pursuit interactions would be suitable for realtime video annotation.

To specify the end time of the path, an annotator releases the mouse

22

button. On releasing the mouse button, video playback can be paused to
allow annotators to review or correct the path.

3.1.2 Define a Sequence of Points

Point locations are defined by sampling the position of the mouse during
the pursuit. The sampling rate can be less than the video frame rate if
interpolation provides locations between samples.

Ideally, the video object should be acquired before point sequence is
started. Pausing the video as described above allows the annotator to more
accurately acquire the video object.

The point is positioned on a portion the video object, such as the head
or torso of human object. The portion of the object typically has a complex
shape, although many annotation applications simply require that points
of the annotation path lie within the portion. This simplifies pursuits of
large objects, since the annotator may not have to frequently reposition the
mouse.

Annotators can handle object occlusions by positioning the pointer at
their estimate of the object position while occluded, or by ending the path
when the object disappears and resuming the path when the object reap-
pears - similar to situations when the object leaves the field of view.

The pursuit can be started with a mouse up event so that mouse move-
ments are sampled while the mouse button is released. However, such an
interaction would be unsuitable for touch screen devices.

3.2 Pursuit Method Examples

3.2.1 Handling Challenging Video Object Movements

We demonstrate how manual pursuit methods are useful in video conditions
that challenge automated methods.

Occlusion is difficult for automated methods because when the object
reappears, (1) the object may be difficult to recognise as the same object
and (2) the object can reappear in an unexpected location.

In the example presented in Figure 3.2, as two soccer players pass each
other, they also change direction. To make matters worse, the soccer play-
ers have a similar appearance. However, an annotator following the play
and using a manual annotation technique can often distinguish the object
movements and track the player with a pursuit method. In situations where
the occlusion is confusing, such as when team players quickly intersect and

23

Figure 3.2: An example of video object occlusion that automated methods
find difficult. Both players are wearing similar clothing. As one of the
players is occluded, the players change direction. We manually annotated
one of the players with a pursuit method.

separate, the video playback could be slowed down to allow annotators ad-
ditional time to distinguish the players.

Shape changes are also difficult for automated method since an object
can (1) divide - such as when a person removes clothing or (2) merge - such
as when a person climbs into a car.

In Figure 3.3, a “compound” video object is composed of a horse and
rider with similar colour characteristics. As the rider dismounts, she changes
pose from sitting to standing and her shape changes. Additionally, the
rider moves away from the horse. An annotator using a manual annotation
method is primarily interested in tracking the person rather than the horse
and can easily distinguish the two objects.

3.2.2 Integrating With Other Annotation Tasks

We demonstrate a pursuit method as part of a prototype annotation system
in Figure 3.4. The example also illustrates a number of the uses for point-
based paths.

To identify the video object once the point-based path has been created,
the annotator selects the spatio-temporal entity - by double-clicking in this
example - so that the point-based path forms an interactive element. A
popover is presented so the annotator can enter metadata for the video ob-
ject, including hyperlinks to additional information. Video object identifiers
are rendered to follow the video object while the object is selected.

The example also illustrates how the point-based paths can support sub-
sequent navigation within video. The timeline has been shaded to indicate

24

Figure 3.3: An example of video object shape change. To begin, the rider is
mounted on the horse. As the rider dismounts, her size and shape changes.
We manually annotated the rider with a pursuit method. Given that the
rider should be annotated, if the point remained inside the shape of the
horse, the distance between the point and the shape of the rider would
constitute an error, since the point did not lie inside the rider shape.

the presence of an object of interest, so an annotator can quickly jump to
the annotation time where the object appears with the playhead slider. Like
some other methods, a pursuit method provides a “top-down” approach to
annotation, so that paths can be quickly created for refinement later (Ap-
pendix H.

The path created by a pursuit method can be offset from the pointing
device, as illustrated in Figure 3.5. Additionally, video playback rate during
pursuits can be adjusted - both because objects are moving too slowly or
too quickly (Figure 3.6).

3.3 Informal Prototype Evaluation

We implemented both mouse and touchscreen interactions for the prototype
illustrated in Figure 3.4 and described in Section 3.2. Although our informal
evaluation of the prototype was on a touch device, annotators currently have
access to more mouse-based annotation systems and the remainder of this
thesis focusses on analysis of mouse-based pursuits. Although the findings
of our touch-based evaluation may not be directly comparable with results
in the remainder of the thesis, they served to refine the pursuit method and
raised important research questions.

We implemented pursuit and the Hold-Pause video annotation inter-
action described in Section 2.2. We automatically slowed down the video

25

Figure 3.4: A prototype interface to combine video object identification
with a pursuit method for video annotation. In this case, an annotator
creates point-based paths to correspond to dancers. The interface indicates
the presence of the object in video segments with a green bar below the
playhead. Infrequently used functions such as metadata editing are normally
hidden and accessed from the presence bar below the timeline. In addition
to playback and timeline navigation, we provided frame-by-frame navigation
controls. The video shown was recorded from a hand-held consumer camera.

during the pursuit interaction. We also included a third interaction - Auto-
Advance, similar to YouTube Annotations to create shape based spatio-
temporal volumes [3]. Auto-Advance automatically advanced the video be-
tween the equally spaced keyframes in which an annotator created a shape,
but otherwise paused video playback while the annotator created shapes.
Hold-Pause and Auto-Advance are alternative manual annotation methods
to create spatio-temporal entities.

We demonstrated each of the interactions to four computer interaction
experts (unaffiliated with the research) and asked the experts to use each
interaction in turn to position shapes to draw attention to specific dancers in
video from a hand-held consumer camera. After they annotated with finger

26

Figure 3.5: An annotator draws at-
tention to a video object with a
touch screen pursuit. This exam-
ple illustrates an “offset tracking”
mechanism to avoid finger occlu-
sion issues.

Figure 3.6: A video object pursuit
illustrating adjustment to video
playback rate. In this example, the
annotator is placing a circular visu-
alisation on the point-based path.

on a touch-screen, we asked for their preference between the interactions.
Two of the experts preferred the pursuit interactions. One explained

that the pursuit interaction had a greater sense of control, although he cau-
tioned that keeping his finger down during a long pursuit could get tiring.
One expert preferred Auto-Advance, and another preferred Hold-Pause, ex-
plaining that the interactions seemed to create paths as accurate as the other
interactions, but required “less work”.

All of the participants were experts in the field of computer interaction,
and would use computer interfaces on a daily basis - it is likely that they
would learn to use the interaction toolset quicker than novice computer
users. Additionally, participants preference for methods is subjective. In
the following chapters, we present more objective studies to measure the
time and accuracy of paths created by pursuit methods. However, we note
that none of the experts considered the annotations they created with a
pursuit method as inferior to annotations created by the other methods.

3.4 Discussion

We have defined and illustrated pursuit interactions for annotation tool de-
signers. In comparison with other interactions, a pursuit method supports
realtime path definition. A pursuit method usefully combines video play-
back control with simple interactions to quickly define spatial properties of
a point-based path.

27

Like some other methods, a pursuit method provides a “top-down” ap-
proach to annotation, so that paths can be created for refinement later,
perhaps with the curvature based merging described by Baudel [12]. Also
like other methods, they can “offset track” objects on touch screens.

Paths created by a pursuit method can both constrain automated an-
notation methods to create content-based paths - in conjunction with re-
gion growing techniques like Magic-Wand [8] - or select from automatically
generated path alternatives - like Goldman’s particle tracking system [38].
However, in this thesis we focus on a manual pursuit method and leave
computer vision assisted pursuit as an exciting area for further research.

The method could position a shape on the point-based path. However,
when positioning a shape, the annotator is more concerned with how the
shape encloses the video object, rather than where the point-based path for
the shape lies on the video objects. As a first step to demonstrating the
validity of pursuit methods, we focus on how accurately annotators position
points on video objects.

We prototyped the methods for a group of computer interaction experts.
They used both a pursuit method and Hold-Pause to create annotations of
dancers in consumer video. The experts found the pursuit method useful,
even preferring the method in some cases.

However, the best method for a point-based path definition task will de-
pend on a number of video content factors - such as the movements of video
objects or scene lighting conditions. Ideally, annotators should choose a
method for a particular video content. In the following chapters, we present
quantitative data to support designers choosing a pursuit method. Addi-
tionally, results from our studies can be incorporated into toolsets that au-
tomatically recommend and configure methods according to detected video
content.

In particular, the movements of video objects must be compatible with
manual tracking movements for a pursuit method to be effective. We also
note that movement speeds of a video object are related to video playback
rate. In the next chapter, we develop a model to explain how pursuit accu-
racy is related to video object speed. With our model, we can both determine
the feasibility of a pursuit method and also calculate how to adjust playback
rate to modulate pursuit accuracy.

28

3.5 Conclusion

We have defined and illustrated a pursuit method for video annotation. A
pursuit method for video annotation differs from other manual methods for
video annotation because video playback is not interrupted during annota-
tion. A pursuit interaction simply requires an annotator to track a moving
video object in-time with video playback.

Although annotation tool designers may expect a pursuit method to
be inaccurate for typical video object movements, our informal prototype
evaluation suggests that the methods are useful for video annotation in
consumer video contexts.

However, the evaluation raises some questions:

• Do the methods produce paths with similar accuracy to alternative
methods? Although annotation in-time with video playback may dis-
suade the annotator from superfluous refinements, pursuit may prove
too challenging for realistic video conditions.

• What video object movement factors affect path accuracy? Although
the methods may not be suitable in some conditions, it may be possible
to adjust video conditions so the methods become suitable. Addition-
ally, how should video playback be adjusted to best support the pursuit
method?

• Will annotators actually like a pursuit method? Even if the method
is viable, the method may be onerous for annotators.

In the next chapters, we provide empirical evidence to answer these ques-
tions and demonstrate the viability of a pursuit method for video annotation.

29

Chapter 4

Peak Error Model for
Pursuit Interactions

To investigate the important factors in pursuit accuracy, we followed a sys-
tem identification approach [57]. Full details of the experimental setup and
procedure are described in Appendix F. For clarity, we present a summary
and discussion of the experiment in this chapter.

Following a system identification, researchers first choose suitable im-
pulses for the system. We generated two impulse stimuli representative of
a hard pursuit condition - representative of situations when a video object
completely reverses direction abruptly and unpredictably.

Next, we examined the responses of the system. By assuming that the
system is linear, the responses of the system to more complex stimuli can be
expressed in terms of the responses to simple impulses. We present graphs
of the responses to simple impulses in Figure 4.2.

Finally, we attempted to deduce a dynamic model of the system from
the impulse responses. With such a model, the responses of the system
to a wide range of stimuli can be predicted. Unfortunately, we failed to
identify a simple dynamic system to explain the responses. However, there
are predictable characteristics of the responses, and we present one of the
characteristics - peak error - in Figure 4.3.

Robinson examined impulse responses of eye pursuit movements [77].
Additionally, researchers have examined moving target acquisition for point-
ing movements [41]. However, researchers have not yet investigated the ef-
fect of target size on impulse responses of human pursuit movements with
a manual pointing device. In this chapter, we present a model for peak
error during a pursuit that indicates that target speed and size explains a
substantial portion of pursuit accuracy.

30

4.1 System Impulses

We created two system impulses with target movements on two similar paths
- (1) a synthesised path and (2) a derived path based on hockey player
movements in video. The derived path is illustrated in Figure 4.1. We
transformed or otherwise randomised the paths so that target movements
along the paths were unpredictable. We report full details of the procedure
in Appendix F.

Video objects following these paths are hard to pursue since human
movements to track a moving target must decelerate and accelerate a limb
and a pointing device. An abrupt direction change to follow a target that
completely reverses direction requires more tracking force compared to path
changes in other directions.

Additionally, unpredictable movements are more difficult to pursue that
predictable movements. When the direction changes are unpredictable, an-
notators cannot prepare for the change.

Both paths contain an abrupt direction change, but otherwise a target
would move smoothly along the paths at a constant speed. The abrupt di-
rection change reverses the target direction and is effectively an acceleration
impulse at the time of the direction change.

Figure 4.1: Derived video object movement path from video on hockey player
movements.

4.2 Impulse Responses

We assume that human pursuit processes can be described as a linear time-
invariant system. Other researchers often assume a linear time-invariant

31

Figure 4.2: Pursuit impulse responses for three object sizes and three object
speeds (dotted line: 35mm/s, dashed line: 25mm/s, solid line: 15mm/s).
The distances are in terms of ”input space” - the distances moved by the
users hand. The pursuit target changes direction at Time = 0. Pursuit
error appears to change linearly with speed and target size.

32

(LTI) model of human motor systems. Plamondon argues for a log-normal
impulse response model for rapidly aimed hand movements [70]. Navas
investigated LTI models of rotary hand movements [66]. Even when re-
searchers caution that motor systems are non-linear, they also suggest that
linear models describe target acquisition movements well [44].

We gathered measurements of error between a mouse pointer and a video
object from ten subjects (described in Appendix F). Each subject pursued
video objects moving at three different speeds and with three different sizes
- nine conditions that were each repeated ten times. Averaged pursuit er-
ror impulse responses for each condition of speed and size are presented in
Figure 4.2. Approximately sixty samples per condition are presented in the
synthetic case due to our experiment configuration.

The measurements are plotted in terms of ”input space” - the distances
moved by the users hand when positioning the mouse pointer. The distances
are similar to those reported in studies of steering task performance [6].

After a direction change, the annotator initially “loses” the target. When
annotators make a choice for a new pursuit movement, the error falls as they
match the new video object direction (our measurement of error is described
in the next section). This is consistent with the average reaction times for
choices with few options as modeled by Hicks [43].

With increasing speed, the peak pursuit error also increases. With in-
creasing size, peak pursuit error decreases. The responses are not simple first
of second order responses. However, they do appear similar to log-normal
responses reported by Plamondon [70].

4.3 Peak Error Model

Peak error is the largest deviation of the tracking pointer from the pursuit
target. The measure is a more “honest” measure of accuracy than average
error during a pursuit since it captures the worse behaviour of a pursuit
method. We made a number of measurements per subject and condition so
that a particularly bad pursuits are balanced out.

To investigate the worst cases of pursuit error, we took the largest error
measurement between 0.2 and 0.3 seconds after the direction change and
present these peak errors in Figure 4.3.

With an analysis of variance, we confirmed that (1) as speed increases,
peak error increases (p <0.05) and (2) as size increases, peak error decreases
(p <0.05, reported in Appendix F). Although our experiment did not have
power to shed light on an interaction effect between target speed and size,

33

Figure 4.3: Peak error measured between 0.2 and 0.3 seconds into the pursuit
impulse response, with 95% confidence intervals. Differences between speed
and size conditions within both paths of the experiment are statistically
significant. Only three conditions are significantly different between paths
of the experiment (indicated with red).

Figure 4.3 suggests the effect of an interaction would be small relative to
the main effects.

Bonferroni post-hoc comparisons revealed significant differences among
all conditions (p <0.05) within paths. With Welch’s t-test to accommodate
uneven sample sizes, we determined that measures of peak error were sig-
nificantly different between experiment paths for only conditions of Size =
0.5 & Speed = 15 (t = -2.71, df = 76.4, p <0.05), Size = 3.5 & Speed = 15
(t = -4.46, df = 89, p <0.05), Size = 6.5 & Speed = 25 (t = -2.87, df =
83.8, p <0.05).

We hypothesised a linear model for the relationship between peak error
and video object speed and size. Assuming a linear human movement sys-
tem, increases to target speed will linearly increase peak error. Similarly,
increases to pursuit target size will linearly reduce peak error - a larger tar-
get size will simply reduce the distance from the edge of a target to the
pointing device:

34

PeakError = k1.Speed+ k2.Size+ c (4.1)

We fitted the linear model with a least squares technique to the data
and report the regression coefficients in Table 4.1. The coefficients are sig-
nificantly different from zero, indicating that target speed and size have a
significant effect on peak pursuit error. The R-squared values indicate that
speed and size explain 79% of the variance of peak pursuit error when within
subject variability is excluded.

For a target moving with speed 20 mm/s and with width 2 mm, our
model predicts peak pursuit error will be 0.23 × 20 − 0.69 × 2 + 2.60 = 5.82
mm on average. Additionally, when the speed of a the target increases by 1
mm/s, our model predicts that peak pursuit error will increase by 0.23 mm,
assuming target size is held constant.

4.4 Discussion

For a challenging target movement path, we have shown how peak pursuit
error (1) increases with target speed and (2) decreases with target size. A
linear model of peak pursuit error indicates that target speed and size have
a significant role in peak error.

However, the estimate standard error indicates there is substantial vari-
ability between model predictions and likely peak errors, relative to the sizes
of targets in our experiment - 95% of pursuits will have peak error within
2 × 1.32 = 2.6 mm of the predicted peak pursuit error. The source of the
variability may be the differences in starting position during the trials since
such an effect would both increase and decrease peak error.

Additionally, the regression indicates large intercepts relative to typical
peak errors. The source of the constant error may be variability in subject
reaction time to direction changes since such an effect would only increase
peak error. Furthermore, a Breusch-Pagan test revealed that the measures
of peak error were heteroscedastic (varying variance for different conditions)
- peak error varies more with increasing speed.

We also caution researchers that our study does not isolate confounding
effects of target speed and acceleration. During the experiment, although
we varied target speed, we also simultaneously varied target acceleration -
a confound that could be addressed in future studies.

Our model is only defined over a limited range of sizes and speeds -
further studies could extend the model to larger movements with studies
of pursuits on touch screens. For larger movements, reaction times will

35

R2 Estimate
Standard
Error
(mm)

Coefficient
Standard
Error

Subject Trials Not Averaged

Synthesized 0.45 2.59
k1 (1/sec) 0.20 0.01
k2 -0.66 0.05
c (mm) 3.21 0.41

Derived 0.64 2.03
k1 (1/sec) 0.25 0.01
k2 -0.73 0.03
c (mm) 2.01 0.24

Combined 0.56 2.27
k1 (1/sec) 0.23 0.01
k2 -0.70 0.02
c (mm) 2.43 0.21

Subject Trials Averaged

Synthesized 0.77 1.29
k1 (1/sec) 0.20 0.02
k2 -0.66 0.06
c (mm) 3.22 0.48

Derived 0.81 1.33
k1 (1/sec) 0.25 0.02
k2 -0.73 0.06
c (mm) 2.01 0.49

Combined 0.79 1.32
k1 (1/sec) 0.23 0.01
k2 -0.69 0.04
c (mm) 2.60 0.35

Table 4.1: Parameters for predictive model of pursuit accuracy. When sub-
ject trials are not averaged, the prediction explains 56% of the variability in
the data, but contains a substantial error relative to the sizes of the objects
considered in our experiment. When subject trials are averaged, the pre-
diction explains 79% of the variability in the data, suggesting that within
subject variability is a substantial source of variability.

still be similar, but movement accuracy variability increases with movement
distance as modeled by Schmidt [79].

Some video object paths may leave the annotation screen and then reap-
pear - in our experiment, we only examined pursuit once a video object is
acquired. Other research has addressed target acquisition, including moving
target acquisition [41].

36

Some subjects reported fatigue during the trials, but our experiment
could not shed light on how this affected pursuit method accuracy. Fur-
ther studies could establish how prolonged pursuits use may improve with
practice or decline with fatigue. We conducted our study with practiced
mouse users, but the regression coefficients would likely be larger for older
annotators or those with movement impairments.

Lastly, the study was for a particularly hard video object movement. For
video objects on smoother and more predictable paths, peak pursuit error
should be less than our model predicts.

4.5 Conclusion

Our study has shown that target speed and size has a significant effect
on peak pursuit error. Additionally, over the range of speeds and sizes
we considered, there is a linear relationship between target speed, size and
pursuit error.

Our model does not explain the full complexity of human pursuit move-
ment processes. Instead, the model indicates the substantial contribution of
target speed and size to pursuit peak error - an honest measure of pursuit
accuracy.

However, we raised a number of research questions:

• Is typical peak pursuit error acceptable for video annotation? Is a
pursuit method actually viable for realistic speeds and sizes of video
objects?

• Will the same relationship between video object speed, size and pursuit
accuracy be present for more realistic video conditions? Is the pursuit
model useful to adjust video playback speed?

In the next chapter, we develop a second study to demonstrate the va-
lidity of a pursuit method for a range of typical video object speeds and
sizes.

37

Chapter 5

Pursuit Method Performance

We demonstrate the validity of a pursuit interaction for annotating typical
consumer video with a controlled laboratory experiment.

Consumer video conditions vary considerably. For instance, in some
video objects occlude each other, while in other video, the objects move
on clearer paths. To control video object variability during other computer
interaction experiments, some video interaction researchers create synthetic
video [32]. However, we adopt another popular approach - we choose se-
quences of video with some consistent and controlled properties, but with
video objects that are more realistic than synthetic video [48].

We chose video of a basketball game as a compromise between con-
trolled and realistic video conditions. Objects in the video frequently oc-
clude each other. Furthermore, the video combines object movement with
camera movement. However, the video contains objects of roughly consis-
tent size, and the objects travel with similar speed on average - we focussed
on players either walking or slowly running.

In this chapter, we show how pursuit methods produce viable point-based
paths for these consumer video conditions. We report both (1) pursuit per-
formance for typical video conditions and (2) pursuit performance relative
to a similar alternative video annotation technique.

5.1 Hypotheses

We address four research questions:

• Is a pursuit method viable for typical speeds and sizes of video objects?

• Is the pursuit model from our earlier study useful for adjusting video
playback speed?

• How does a pursuit interaction compare with an alternative video an-
notation technique?

• Will annotators actually like a pursuit method?

38

We compare our interaction with the Hold-Pause method that requires
video pausing, introduced in Chapter 2. We chose Hold-Pause as a method
that creates similar point-based paths, with similar mouse based interactions
to pursuit. We represent the basic interactions of Hold-Pause in Figure 5.1.
However, Hold-Pause interrupts video playback and the path between points
is linearly interpolated.

Figure 5.1: Interaction diagrams for both the pursuit and Hold-Pause meth-
ods. The position of the pointer is repeatedly sampled while the video plays
in the pursuit interaction. In contrast, only a single position point per
pointer up event is stored for the Hold-Pause method - the individual posi-
tions are joined together into a point-based path with a linear interpolation.
Since the video is paused while points are positioned with the Hold-Pause
method, the points can be positioned more accurately - although the linear
interpolation may not follow the object movements well. Furthermore, the
Hold-Pause method interrupts video playback, slowing down the annotation
interaction.

• (H1) Pursuit interaction will be quicker than Hold-Pause for all con-
ditions.

We hypothesize that since pursuit will not interrupt video playback
during annotation, the method will be quicker than Hold-Pause.

• (H2) Both interactions will have the same annotation accuracy.

39

For slow video object speeds, we hypothesize that the corresponding
accuracy of the pursuit method will be low and sufficiently accurate
to compare favourably with Hold-Pause. At faster speeds, both Hold-
Pause and pursuit accuracy will suffer as annotators fail to match ob-
ject movements. Additionally, for video object movements combined
with camera movements, objects paths created with the Hold-Pause
method may not be captured well with a linear interpolation.

• (H3) Annotators will find the annotations created by both methods
equally satisfactory.

For typical video object speeds, we hypothesize that video annotation
accuracy with a pursuit method will be satisfactory. Additionally,
we hypothesize that annotations with a similar accuracy created with
Hold-Pause also be satisfactory - but annotators may be less satisfied
with the time needed to create the annotations.

• (H4) Annotators will prefer the pursuit interaction that does not in-
terrupt the video playback.

We hypothesize that pursuit will not be too challenging for realistic
video conditions. Annotation in-time with video playback may dis-
suade the annotator from superfluous refinements, and they may find
they create annotations more quickly than with Hold-Pause.

5.2 Experiment Design

5.2.1 Subjects

Ten novice annotators, two female, average age 28.8 years. All subjects
were right handed, with normal or corrected to normal vision, and none
reported colour deficient vision. Two subjects reported playing computer
games with a mouse more than an hour a day, two reported less than an
hour a week and two others less than an hour a month. Eight subjects
reported using a computer mouse more than an hour a day. We provided
a training period and regular breaks. Subjects were compensated CAD$10
for their participation and encouraged to annotate quickly and accurately.

5.2.2 Independent Variables

Conditions of interaction type (x2) crossed with video object speed (x3) and
video object size (x3) and video object path (x4). We refined speeds and

40

Figure 5.2: Experiment subject sitting a typical distance from the experi-
ment apparatus. We also illustrate a typical screen image during the exper-
iment.

sizes in pilot studies to realistic values for typical video object movements.
Sizes were 0 mm, 0.625 mm and 1.25 mm, speeds were 1.075 mm/s, 2.15
mm/s and 3.225 mm/s. Subjects completed a block of trials for a single
interaction, but with random speed and size condition order per measure
block. We counterbalanced interaction order between subjects.

We chose four different video object paths so that (1) objects on the
paths stay within the video frame for the duration of the annotation and (2)
the paths that were similar in duration, each eight seconds long. The objects
appearance and movements were similar, moving at 2.15 mm/s on average
when video playback speed was normal. We adjusted video playback rate
to 0.5 and 1.5 times normal to control video object speed.

Our video had manually created ground truth annotations describing
bounding boxes surrounding each player from a college basketball game. To
control for the size of the video objects, we overlaid circle visualisations of
three sizes on the ground truth path so that the visualisations coincided
with the basketball players - for the 0 mm condition, the visualisation was

41

a point. Subjects were instructed to keep their annotation paths within the
circles as accurately as they could. We also collected data for a number of
trials when no visualisations were provided.

5.2.3 Dependent Variables

We gathered two repeated measures of annotation time and annotation ac-
curacy from each subject for each experiment condition (144 measurements).

We derived ground truth paths from the bounding boxes centers so that
objects on the paths lay on the midriffs of players in the video. We measured
annotation accuracy with the error between the annotation path and the
ground truth - from annotation path points to the edges of the visualisations
centered on ground truth bounding box centers - sampled at video frame
rate.

We measured time to create the paths as the time from the first mouse
event of the trial until the last mouse event before the annotator indicated
they had completed the trial.

5.2.4 Task

The task for annotators was to create point-based paths for different in-
teraction conditions. Annotators were instructed to position a single point
inside video object circle visualisations, or as close as possible to the ”zero
size” objects (objects with a point visualisation centered on the object, see
above).

To correctly start each trial, the annotation point had to lie near the
video object. Subjects repeated trials that did not provide annotation for at
least 95% of the video. At the end of a trial, if these requirements were not
met, the apparatus would prompt the subject to repeat the trial. Subjects
required consistent experiment times - repeating approximately three trials
per experiment.

Each interaction type was clearly distinguished with a different cursor
style. We gave experiment subjects two second previews of the video paths
before annotation to indicate the object they should annotate and help im-
prove annotation when an object started moving.

5.2.5 Apparatus

Subjects sat approximately 75 cm from an Apple Cinema display 68.8 by
54.3 cm, with monitor resolution 2560 by 1600 pixels (Figure 5.2).

42

Subjects used a Microsoft Comfort mouse, mouse acceleration was dis-
abled and the control-to-display ratio was set to 0.092. This ratio is con-
sidered low, but provided acceptable control of the pointer and is similar to
ratios examined by Accot [6]. Like the measurement in the previous chapter,
error and distance measurements are plotted in terms of ”input space” - the
distances moved by the users hand when positioning the mouse pointer.

Enough desk space was provided to subjects to avoid mouse “clutching”.
We wrote the experiment software with UIKit for iOS 4.3. We hosted the
experiment on an iPad simulator on a Mac Pro with 16 GB of RAM, running
dual quad-cores at 3.2 GHz, and containing a NVIDIA Quadro FX 5600 with
1.5 GB of video RAM.

5.3 Results

Figure 5.3 presents error profiles for annotations created with the pursuit
interaction for video object paths in the study. Each of the profiles is an
average from the paths of all the subjects, each subject following the path
twice. Although the error profiles are not as “clean” as in the previous
study, peak error increases with video objects speed and decreases with
video object size.

To illustrate the relationship between peak error and video object speed
and size, for both pursuit interactions and the Hold-Pause keyframe inter-
action, we derived measures of the peak error for each path. In the analyses
that follow, each path is divided into two and we calculated the peak error
of each half for each trial. This yields 16 measures for peak error (4 paths
x 2 halves x 2 repeated measures) for each condition for each subject. We
plot the average peak errors in Figure 5.4.

5.3.1 Peak Error Model

We analysed the relationship between peak error and video object speed and
size for annotations created with a pursuit interaction (retaining between
subject variability in the peak errors). In Table 5.1, we present the results
of a linear regression with a model

PeakError = k1.Speed+ k2.Size

.
The coefficients are significantly different from zero, indicating that tar-

get speed and size have a significant effect on peak pursuit error. The

43

Figure 5.3: Error profiles for annotations created with a pursuit method for
the two of the video object paths in our study. The dotted lines are for
video objects moving at 3.225 mm/s, dashed lines for video objects moving
at 2.15 mm/s and solid lines for video objects moving at 1.075 mm/s.

R-squared values indicate that speed and size explain between 88% of the
variance of peak pursuit error, so we accept our model as a good description
of the data observed.

Null hypothesis: there is no difference between the correlation coefficients
in Chapter 4 and Chapter 5.

With Welch t-tests, with corrections to the degrees of freedom as de-
scribed in Glass [37], we determined no difference between coefficient for

44

Figure 5.4: Average peak errors among annotators for both pursuit and
Hold-Pause interactions (with 95% confidence intervals). These are not RMS
errors, and are in terms of input space (user hand movements). There is a
significant effect of interaction type on accuracy (p <0.05) with Hold-Pause
producing more accurate annotations for all conditions except the 1.25 mm,
1.075mm/s condition (p >0.05).

speed (df = 232, t = 0.1, p >0.05). However, we rejected the null hypothe-
sis for coefficient for size (df = 244, t = 5.33, p <0.05) and the intercept (df
= 179, t = 6.34, p <0.05).

Additionally, estimate standard error is lower in this second set of mea-
surements, possibly because targets speeds were lower so reaction time to
direction changes had less effect. For targets, 95% of pursuits will have peak
error within 2 × 0.11 = 0.22 mm of the predicted peak pursuit error. (Al-
though, like the previous results, the variance in peak error is heteroscedas-
tic, so the prediction accuracy will vary with speed.)

5.3.2 (H1) Annotation Time

Null hypothesis: there is no difference between annotation times for both
methods.

Repeated measures analysis of variance between the two conditions re-
vealed a significant effect of interaction type (df = 1, F = 106.87, p <0.05),

45

R2 Estimate
Standard
Error
(mm)

Coefficient
Standard
Error

0.88 0.11
k1 (1/sec) 0.23 0.01
k2 -0.45 0.02
c(mm) 0.38 0.03

Table 5.1: Regression coefficients for the peak error model developed in
Chapter 4. The coefficient value for speed is similar to the previous study
(p >0.05), but coefficients for size and the intercept are different (p <0.05).

and based on the confidence intervals illustrated in Figure 5.5, we accept
our hypothesis (H1) that pursuit interactions are quicker in all conditions.
(We assumed equal variances in annotation time for both interactions.)

For the slowest and largest video objects, we note that every second of
video annotated with a Hold-Pause method required 1.20 seconds of annota-
tor time (on average). In contrast, similar annotations created with a pursuit
method required just 1.05 seconds of annotator time - a 12% reduction in
annotation time (with a standard deviation of 5% reduction to annotation
time). This relationship between interaction method and annotation time
is illustrated in Figure 5.5.

5.3.3 (H2) Annotation Accuracy

Null hypothesis: there is no difference between accuracy of annotations made
with both methods.

With a repeated measures analysis of variance test between the two
conditions of interaction, we revealed a statistically significant effect of in-
teraction type (df = 1, F = 61.98, p <0.05), so we reject the null hypothesis.

Based on the confidence intervals and effect sizes in Figure 5.4, we re-
ject our hypothesis (H2) that both pursuit and Hold-Pause will have the
same annotation accuracy. However, with a t-test (assuming equal variance
between conditions of interaction with repeated measures of accuracy), we
determined that measures of peak error were not different for conditions of
Size = 1.25 & Speed = 1.075mm/s (t = -0.3832, df = 318, p >0.05).

46

Figure 5.5: Average times to produce annotations for a second of video.
The video object path was 8 seconds long for video objects moving at 2.15
mm/s, 16 seconds for 1.075 mm/s, and 5.33 seconds for 3.225 mm/s.

5.3.4 (H3) Annotators Satisfaction

We asked annotators “How satisfied were you with the accuracy of the an-
notations you made with the pursuit/Hold-Pause interaction?”.

On a seven point scale from “Very Dissatisfied” to “Very Satisfied”, sub-
jects were “Somewhat Satisfied” with both interactions (pursuit 4.9, Hold-
Pause 5.5, standard deviation in paired observations 1.65).

Null hypothesis: there is no difference between mean satisfaction for ei-
ther method (µPursuitSatisfaction = µHoldPauseSatisfaction).

Based on a pairwise t-test, there is no significant difference between
measures of satisfaction (df = 9, t = 1.09, p >0.05), although the power of
this test is low at 0.57. Nevertheless, our hypothesis (H3) that annotators
find the annotations created by both methods equally satisfactory is tenable.

5.3.5 (H4) Annotation Method Preference

We asked annotators “Which interaction did you prefer?”.
Six subjects preferred a pursuit method. They described how the pur-

suit interaction required less work in order to produce annotations, possibly
because they did not have to consciously decide when to create keyframes.

47

Some subjects preferred Hold-Pause because they felt it produced more ac-
curate annotations, despite needing more time to produce the annotations.

Null hypothesis: there is no difference in preference between method.
With a Chi-squared test for categorical variables, we determined that

there is no difference in preference for each method (df = 1, χ2 = 0.4, p
>0.05). Unfortunately, our data does not provide evidence that annotators
will prefer the pursuit interaction.

5.3.6 Additional Results

Repeated measures analysis of variance failed to show an effect of repetition
on accuracy (df = 1, F = 0.1, p >0.05) or time measures (df = 1, F =
2.37, p >0.05). Additional tests failed to show an effect of condition order
on accuracy (df = 1, F = 3.26, p >0.05). However, there is an effect of
condition order on time measures (df = 1, F = 7.35, p <0.05). Closer
examination revealed that annotators who used the pursuit method first
were 0.16 seconds faster on average with the Hold-Pause method.

For the slowest video objects, repeated measures analysis of variance
indicated an effect of visualisation on accuracy (df = 1, F = 25.0, p <0.05).
In the absence of visualisations, annotators are approximately 0.1mm less
accurate relative to our ground truth data. However, the analysis failed to
detect an interaction effect of method type on accuracy - annotators are no
more accurate without visualisations with Hold-Pause than pursuit (df = 1,
F = 0.026, p >0.05).

When creating annotations with the pursuit interactions, seven subjects
described either following or predicting target movements. Five subjects
mentioned concentrating to better track the video objects.

With the pursuit interaction, two subjects felt that the camera movement
affected their performance - the camera movements felt unpredictable and
rapid. One subject felt fatigue affected their performance, and three others
that they learned the player paths as the experiment progressed. Two sub-
jects explained that the type of player movement affected their performance
- sudden direction changes were harder to follow.

After using the Hold-Pause interaction, six subjects described pausing
the video when the target is moving quickly. Three subjects described how
pausing was unnecessary when the target was moving slowly. One subjects
described how they would repeatedly click regardless of movements, whereas
another explained how they clicked when the target was “stable”.

With the Hold-Pause interaction, one subject also felt fatigue affected
their performance. Another subject felt the Hold-Pause interaction required

48

more “effort”. Two subjects mentioned the target movement also affected
their performance - mentioning the camera movement again, and direction
changes.

5.4 Discussion

Our goal was to gather evidence that pursuit interactions are suitable for
quickly creating paths for consumer video annotations. We designed a con-
trolled lab study to (1) compare pursuit interactions with an alternative
interaction and (2) quantify the performance of pursuit interactions.

Our results provide additional support for the relationship between pur-
suit accuracy and video object speed and size from Chapter 4. The results
suggest that by slowing down video playback, pursuit accuracy can be pre-
dictable modulated.

However, in comparison with the study in Chapter 4, our results show a
different relationship between video object size and pursuit accuracy for typ-
ical video object movements. This may be explained by the irregular shapes
of video objects - particularly since the visualisation and non-visualisation
conditions differed in accuracy.

A pursuit interaction compares favourably with an alternative video an-
notation technique. A pursuit interaction outperforms Hold-Pause for 1.25
mm video objects moving at approximately 1mm/s. However, for smaller
video objects, or video objects moving faster than 2mm/s or 3mm/s, the
Hold-Pause technique produces more accurate annotations, although with
longer annotation times.

Although we have measured the performance of pursuit methods for
more realistic video conditions to Chapter 4, we have not accounted for
other video factors such as changing lighting conditions or changing video
object size. Further studies could introduce additional sources of variability
into the video and use our results in a comparison.

Annotators considered pursuit to be as satisfactory as Hold-Pause. How-
ever, satisfying annotations in one context may not be satisfying in another.
For instance, when many objects are in the video, point-based paths may
have to be more accurate to correspond unambiguously to an object. In this
instance, annotation tool designers could compare the expected peak error
for pursuits with the average distance between objects to determine if the
methods are suitable.

Although there is no clear preference for either interaction, annotators
considered pursuit a valid video annotation method. However, our subjects

49

were practiced mouse users, so further studies should investigate how a
pursuit method fares with people who use mice less than an hour a day.

5.5 Conclusion

The pursuit interaction created point-based paths faster than the alternative
method in all cases. However, the faster annotations came at the cost of
annotation accuracy - Hold-Pause produces annotations more accurately
than pursuit in all but one condition.

However, for 1.25 mm video objects moving at about 1 mm/s, a pur-
suit method not only produces paths as accurate and satisfactory as Hold-
Pause, it does so 12% faster. In these situations, a pursuit method is a vi-
able method for video annotation, and outperforms the alternative keyframe
technique.

Additionally, the results in this chapter provide further evidence of a
predictable relationship between peak error and video object speed during
a pursuit. In the next chapter we demonstrate how annotators can use this
relationship to modulate the accuracy of a pursuit method for video objects.

50

Chapter 6

Design Guidelines

In light of our model of pursuit accuracy, in this chapter we first compare
the performance of pursuit interactions with Hold-Pause interactions and
report our insights into the two methods.

Given that a pursuit method shows promise, we then present two guide-
lines on how to integrate the pursuit method into an annotation system.

The first guideline addresses situations when annotators want to slow
down video playback to improve pursuit method accuracy. The second
guideline is an optimisation for video annotation systems to address the
effect of annotator reaction time on the accuracy of a pursuit method.

6.1 Choosing Pursuit Methods

6.1.1 Pointing Interaction Speed-Accuracy Trade-Off

Hold-pause trades annotation time for accuracy in two ways: (1) by allowing
annotators time to perform accurate pointing movements at their own pace
and (2) allowing annotators to refine path properties with a sequence of
separate movements.

Annotators using Hold-Pause typically specify path properties with point-
ing movements. Although pointing movements are composed of a sequence
of sub-movements, only the final sub-movement determines the accuracy of
the entire pointing movement. However, the time for the pointing movement
is the total time for all the sub-movements of the sequence.

Video playback is interrupted while points are specified with Hold-Pause.
Annotators then specify path points with a number of movements per frame.
Since video playback is interrupted, annotators are not under any time con-
straint to specify path properties as quickly as possible.

6.1.2 Pursuit Interaction Speed-Accuracy Trade-Off

A pursuit method trades annotation speed for accuracy directly and pre-
dictably. For video objects moving quickly (or small video objects), annota-

51

tors have less time to react to movements - the relationship modeled in the
previous chapter.

Since the method has a predictable trade-off between video object speed
and path accuracy, the accuracy can be modulated by adjusting video play-
back rate. By reducing video playback rate, video objects can be slowed
down so annotators have more time to react and follow video objects.

Even if video playback rate is adjusted, a pursuit method doesn’t inter-
rupt video playback, and so the flow of video review is maintained. Although
the path accuracy may be rough, the method is suitable for realtime anno-
tation of slow video objects.

6.2 Choosing Video Playback Rate

For fast video objects, annotation accuracy could be improved by slowing
down the video playback. The playback rate should not be too slow that
annotators spend too much time creating needlessly accurate annotations.
With an appropriate playback rate, annotators can annotate in time with
video playback and avoid interruptions to video playback.

A guideline on how to choose playback rate would eliminate trial and
error choices of video playback rate, particularly for novice annotators.

For times when a pursuit method is not appropriate at all - perhaps
video objects are moving too unpredictably and at high speed - annotators
could be directed to alternative methods.

Additionally, annotators could spend less time annotating slow video
objects by speeding up the video playback.

6.2.1 Playback Rate Formula

With the model presented in this thesis, we can estimate the peak error
of mouse pursuits of video objects. If we assume that video objects are
moving with constant speed, we can control the video object speed with
video playback rate, and so modulate the accuracy of pursuits. Given a
requirement for peak error, annotators should adjust playback rate according
to the following formula, with constants (k1, k2 and c) from Chapter 5:

AveragePeakError > Rate.k1.Speed+ k2.Size+ c (6.1)

For example, consider a designer creating a tool for annotation with a
mouse-based pursuit method (with similar mouse characteristics as in the
previous chapter). If video annotated with the tool should contain less than

52

0.4 mm peak error for at least 50% of pursuits, and the video contains
objects of at least 0.625 mm in diameter, moving at 3.225 mm per second,
then the designer uses the following calculation:

0.4 > Rate× 0.23 × 3.225 − 0.45 × 0.625 + 0.38 (6.2)

In this case, video playback should be reduced to 41% of the original
playback rate and a pursuit method will produce acceptable results. Ev-
ery second of video annotated will require 2.44 seconds of annotation time,
comparable to the Hold-Pause technique in similar conditions.

In a similar case, but with objects of 2 mm in diameter, the video play-
back can be increased to 124% of the original playback rate and a pursuit
method will produce acceptable results. Moreover, annotators will produce
the paths quicker than if the video is playing at the original rate.

6.2.2 Prototype Example

To provide speeds and sizes of video objects for the formula above, an an-
notation system could pre-process video to extract approximate values. Al-
ternatively, the annotator could set the speed and sizes values explicitly.

Here, we describe a mixed-initiative [10] approach to prompt the anno-
tator to specify relevant object speeds and sizes. Such prompts could be in
response to the system detecting new video content or scene changes.

With our prototype, annotators adjust the pursuit playback rate either
explicitly with (1) a slider element or (2) by responding to prompts from a
playback rate assistant (invoked manually in this prototype). Based on sizes
and locations provided by the annotator, the assistant sets a playback rate
so that 50% of pursuits have better than a required peak error. A precise
video playback rate is indicated numerically above the slider.

The annotator specifies the size and location of an object of interest with
a rubber-band bounding region in a single frame. The system estimates
object size from the smaller dimension of the bounding region. The video is
advanced one second, and the annotator is prompted to specify the location
of the same object in a second frame. Based on the change in location
between the two frames, the system calculates a simple linear estimate of
object speed.

In an informal evaluation, annotators reported the interface was satis-
factory for creating point-based paths to direction attention to objects in
consumer video. However, estimates of speed and size the interface calcu-
lated could vary widely, so in practice, annotators may simply choose the

53

Figure 6.1: Prototype pursuit method annotation interface to assist the
annotator to choose a video playback rate. (1) The annotator identifies a
video object size and location with a rubber band bounding region. (2)
The interface advances the video one second and the annotator specifies the
object’s new location. With our model of human pursuit movements, the
prototype sets the video playback rate so that 50% of pursuits have better
than a required peak error.

54

playback rate directly once they become familiar with the playback rate
settings.

6.3 Time-Shifting Paths

Annotator reaction time to video object movements is a significant factor
in the accuracy of a pursuit method. Figure 6.2 illustrates how average
peak error falls as the annotation paths created by with a pursuit method
are shifted forward in time. An annotation tool designer can simply ad-
vance annotation paths by 0.1 seconds to improve the accuracy of a pursuit
method.

The time shift to achieve a minimum error agrees with the range of
perceptual processor times (100ms on average) reported by Card [21].

Figure 6.2: Peak error reduces when annotation paths created with a pursuit
method are shifted forward in time. Hold-pause does not benefit from this
adjustment. Only data from the 2.15 mm/s condition are presented. Dotted
line: 1.25 mm objects, dashed line: 0.625 mm objects and solid line 0 mm
objects.

55

6.4 Conclusion

A pursuit method combines video playback with interactions to define a
point-based path. The predictable relationship between pursuit accuracy
and video object speed and size allows designers to trade annotation accu-
racy for annotation time.

We showed how to adjust video playback rate to improve the accuracy
of a pursuit method. If video is to be annotated with less than 0.4 mm
peak error for at least 50% of pursuits, and the video contains objects of at
least 0.625 mm in diameter, moving at 3.225 mm per second, video playback
should be reduced to 41% of the original playback rate and a pursuit method
will still produce acceptable results.

We demonstrated an interface to assist annotators choosing a play-
back rate. While the interface may reduce the trial and error of playback
rate adjustment for novices, expert annotators will likely make quicker di-
rect choices for video playback rate based on their experience of a pursuit
method.

Additionally, we illustrated how peak error can be further reduced in
video annotation systems by time-shifting annotation paths to reduce the
effect of reaction time during a video object pursuit.

Annotation systems are likely to provide a number of methods in a
toolset for annotators, and a pursuit method should not be overlooked as
a viable option for creating point-based paths. The optimisations in this
chapter show how designers can best incorporate pursuit methods into an
annotation toolset.

56

Chapter 7

Conclusion

Video annotation can be a slow process, but by focusing on point-based
paths, we aimed to develop faster annotation methods - particularly for
consumer video. We noted that a completely manual annotation method
- once validated - could be further combined with automation to improve
video annotation.

A pursuit interaction has been explored in other contexts, but not yet
researched as a method for video annotation. Researchers has explored other
techniques to direct attention to stationary targets, and a pursuit method
could be considered as expanding that research to consider moving targets.

The feedback to our prototypes suggested that with the right optimisa-
tions a pursuit method should compare well with alternative methods that
interrupted video playback during annotation. However, gathering evidence
to demonstrate the validity of video interactions is difficult since an anno-
tator can encounter a wide range of video conditions.

We tackled this issue by gathered evidence from two different studies.
Our first study was designed to isolate two important factors affecting the
accuracy of pursuit methods - video object speed and video object size - by
tightly controlling video object movements. But to provide evidence that a
pursuit method would be suitable for typical consumer video, we designed
our second study with more realistic video conditions.

We found that a pursuit method is viable for typical speeds and sizes of
video objects. In some situations, a pursuit method even outperforms an
alternative keyframe technique - for 1.25 mm video objects moving at about
1 mm/s, a pursuit method produces paths as accurate and satisfactory as
Hold-Pause, and does so 12% faster.

Over a limited range of speeds and sizes, in both our studies we measured
a predictable relationship between peak pursuit error and video object speed
and size. This relationship allows designers to trade annotation accuracy for
reduced annotation time, since path accuracy is related to video playback
rate.

With our model, we showed how to adjust video playback rate to improve
the accuracy of a pursuit method. If video is to be annotated with less than

57

0.4 mm peak error for at least 50% of pursuits, and the video contains
objects of at least 0.625 mm in diameter, moving at 3.225 mm per second,
video playback should be reduced to 41% of the original playback rate so a
pursuit method will produce acceptable results.

Furthermore, we can time-shift the point based paths to further optimise
the accuracy of the pursuit method. This time-shift optimisation, together
with video playback rate adjustment, have been implemented in toolset that
video annotators have found useful.

7.1 Future Research on Pursuit Methods

Our controlled experiments found evidence that a pursuit method is a viable
technique for creating point-based paths. However, a number of shortcom-
ings of our studies should be addressed in future work.

7.1.1 Extended Model Study

From our model experiment, the most prominent shortcomings are (1) large
unexplained sources of variability and (2) the confounding effect of video
object acceleration.

To address the unexplained variability, future studies should control the
initial conditions of object movements more closely. Additionally, by vary-
ing the speed of targets before and after and acceleration impulse, future
research could isolate the effect of video object acceleration. Tighter control
of the experimental conditions would allow researchers to model the form of
pursuit impulses, in a similar fashion to Plamondon [70].

Furthermore, to address mobile device interactions, future experiments
should extend the range of experimental conditions to larger video object
speeds and sizes suited to touch screen interactions.

7.1.2 Additional Video Conditions

In our second study, even though we assessed the performance of pursuit
methods in realistic video conditions, future work should address a wider
range of video conditions.

Performance measures for the VideoAnnEx tool were based on annota-
tions of video “benchmarks” [56]. The benchmarks were of content typically
found in news broadcasts, and did not describe the video in terms of the
video properties, such as the number of objects in the video. However, future

58

studies that report the performance of pursuit methods on the benchmark
video sets would be more comparable between studies.

The differences between model coefficient in our two studies suggests
that new factors from additional video conditions should be addressed in
future models of pursuit method performance. Additionally, factors affect-
ing pursuit method performance in new mobile annotation contexts - such
distractions and vibrations - should be considered.

7.1.3 Semi-Automated Pursuit Methods Study

Although the pursuit method was less accurate in most conditions in the
second study, future research should examine how automation can improve
the accuracy.

A semi-automated pursuit method could select from spatio-temporal en-
tity suggestions, or constrain automated segmentation algorithms with pixel
values around the point-based path. Future research could use our model
as a benchmark to assess the accuracy of semi-automated pursuits.

Additionally, automation could help configure annotations tools or choose
the correct tool. Further research could examine how to detect when a pur-
suit method would be suitable, perhaps with optical flow measurements of
object speeds.

7.1.4 Refinements to Pursuit Method Paths

A pursuit method provides a “top-down” approach to annotation, so that
paths can be quickly created for refinement later (Appendix H). Even though
annotators must revisit video frames to annotate multiple objects, once a
path is created, it serves as a landmark to help annotators navigate within
the video to add additional paths.

Also, corrections to some common mistakes, such as paths that “run
long”, can be performed quickly with targeted interactions. Other correc-
tion techniques could include direct manipulation to correct splines as de-
scribed by Baudel [12] and could reduce the number of frames visited during
annotation and allow correction in-time with playback.

Research on these corrections by pursuit methods would particularly
relevant to distributed annotation contexts, where a number of annotators
collaborate and refine the annotations of others.

59

Bibliography

[1] Facebook, 2011. http://en.wikipedia.org/wiki/Facebook. 2.1.3,
2.1.3, B.2

[2] Telestrator, 2011. http://en.wikipedia.org/wiki/Telestrator. A

[3] Youtube, 2011. http://en.wikipedia.org/wiki/YouTube. 2.1.3, 3.3,
A, D.1, H.2

[4] Youtube, 2012. http://www.youtube.com/t/press_statistics/. 1

[5] G. D. Abowd, M. Gauger, and A. Lachenmann. The family video
archive: An annotation and browsing environment for home movies.
Proceedings of the 5th ACM SIGMM international workshop on Multi-
media information retrieval, 2003. 2.1.2, A, C.1, H.2

[6] Johnny Accot and Shumin Zhai. Scale effects in steering law tasks. In
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’01, pages 1–8, New York, NY, USA, 2001. ACM.
4.2, 5.2.5

[7] P. Ackermann. Direct manipulation of temporal structures in a multi-
media application framework. In Proceedings of the second ACM inter-
national conference on Multimedia, 1994. C.1

[8] R. Adams and L. Bischof. Seeded region growing. IEEE Trans. Pattern
Anal. Mach. Intell., 1994. 1, 2.3, 2.2.2, 3.4, B.1

[9] A. Agarwala, A. Hertzmann, D. H. Salesin, and S. M. Seitz. Keyframe-
based tracking for rotoscoping and animation. In ACM Trans. on
Graphics (Proc. SIGGRAPH), 2004. 2.4, 2.2.2, D.1, H.2

[10] J.E. Allen, C.I. Guinn, and E. Horvtz. Mixed-initiative interaction.
Intelligent Systems and their Applications, IEEE, 1999. 6.2.2

[11] Richard J. Anderson, Crystal Hoyer, Steven A. Wolfman, and Ruth
Anderson. A study of digital ink in lecture presentation. In Proceedings

60

http://en.wikipedia.org/wiki/Facebook
http://en.wikipedia.org/wiki/Telestrator
http://en.wikipedia.org/wiki/YouTube
http://www.youtube.com/t/press_statistics/

of the SIGCHI conference on Human factors in computing systems, CHI
’04, 2004. 2.2

[12] Thomas Baudel. A mark-based interaction paradigm for free-hand
drawing. In Proceedings of the 7th annual ACM symposium on User
interface software and technology, UIST ’94, 1994. 2.1.3, 2.3, 2.2.2, 3.4,
7.1.4

[13] R. A. Becker and W. S. Cleveland. Brushing scatterplots. Technomet-
rics, 29(2), 1987. B.3

[14] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object
tracking performance: the clear mot metrics. J. Image Video Process.,
2008, January 2008. 2.1.3

[15] S. T. Bryson. Effects of lag and frame rate on various tracking tasks. In
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, 1993. F.1

[16] D. Bulterman, J. Jansen, P. Cesar, S. Mullender, E. Hyche, M. De-
Meglio, J. Quint, H. Kawamura, D. Weck, X. Garcia Paneda, D. Me-
lendi, M. Hanclik, D. Zucker, and T. Michel. Synchronized Multime-
dia Integration Language (SMIL 3.0), 2008. http://www.w3.org/TR/

SMIL/. 2.1, 2.1.3

[17] N. Burtnyk and M. Wein. Interactive skeleton techniques for enhancing
motion dynamics in key frame animation. Commun. ACM, 19(10),
October 1976. 2.1.3

[18] V. Bush. As we may think. The Atlantic Monthly., 1945. 2

[19] P. Bzier. Emploi des machines commande numrique. Paris: Masson,
1970. B.6

[20] D. Cabral, U. Carvalho, J. Silva, J. Valente, C. Fernandes, and N. Cor-
reia. Multimodal video annotation for contemporary dance creation.
Proc. CHI Conf. Human Factors in Computing Systems, 2011. A, D.2

[21] S. K. Card, T. P. Moran, and A. Newell. The psychology of human-
computer interaction. Routledge, 1983. 6.3, F.2.1

[22] T. Chen, C.T. Swain, and B.G. Haskell. An approach to region coding
for content-based scalable video. In Image Processing, 1996. Proceed-
ings., International Conference on, 1996. 2.1.3, 2.1.3

61

http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/SMIL/

[23] Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H. Salesin,
and Richard Szeliski. Video matting of complex scenes. ACM Trans.
Graph., 2002. D.1

[24] A. Cockburn and T. Dale. Ceva: a tool for collaborative video analysis.
Proc. ACM SIGGROUP oup Work, 1997. 2.1.2, 2.2.1, A, C.2, H.1, H.2

[25] Antonio Criminisi, Toby Sharp, Carsten Rother, and Patrick P’erez.
Geodesic image and video editing. ACM Trans. Graph., 29, November
2010. B.3

[26] E. R. F. W. Crossman. The information-capacity of the human motor-
system in pursuit tracking. Quarterly Journal of Experimental Psychol-
ogy, 12(1):01–16, 1960. F.1

[27] Philip DeCamp and Deb Roy. A human-machine collaborative approach
to tracking human movement in multi-camera video. In Proceeding of
the ACM International Conference on Image and Video Retrieval, 2009.
2.1.2, A, D.2, H.2

[28] Nicholas Diakopoulos and Irfan Essa. Videotater: an approach for pen-
based digital video segmentation and tagging. In Proceedings of the 19th
annual ACM symposium on User interface software and technology,
UIST ’06, 2006. A, C.1, H.2

[29] Nicholas Diakopoulos, Sergio Goldenberg, and Irfan Essa. Videolyzer:
quality analysis of online informational video for bloggers and jour-
nalists. In Proceedings of the 27th international conference on Human
factors in computing systems, CHI ’09, 2009. A, C.1, H.2

[30] A. Dix, J. Finlay, G. D. Abowd, and R. Beale. Human-computer inter-
action. 1998. H

[31] D. Doermann and D. Mihalcik. Tools and techniques for video per-
formance evaluation. In Pattern Recognition, 2000. Proceedings. 15th
International Conference on, 2000. A, D.3, H.2

[32] Pierre Dragicevic, Gonzalo Ramos, Jacobo Bibliowitcz, Derek
Nowrouzezahrai, Ravin Balakrishnan, and Karan Singh. Video brows-
ing by direct manipulation. In Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems, CHI ’08,
2008. 5

62

[33] C. Engelbart, D. A conceptual framework for the augmentation of
man’s intellect. Vistasin Information Handling., 1968. 2

[34] Jerry Alan Fails and Dan R. Olsen, Jr. Interactive machine learning.
In Proceedings of the 8th international conference on Intelligent user
interfaces, 2003. D.2

[35] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: Abstraction and reuse of object-oriented design. 1993.
2

[36] Andreas Girgensohn, John Adcock, and Lynn Wilcox. Leveraging face
recognition technology to find and organize photos. In Proceedings of the
6th ACM SIGMM international workshop on Multimedia information
retrieval, MIR ’04, 2004. D.3

[37] Gene V. Glass and Kenneth D. Hopkins. Statistical methods in educa-
tion and psychology, Volume 1. Allyn and Bacon, 1996. 5.3.1

[38] D. R. Goldman. A framework for video annotation, visualization, and
interaction. PhD Thesis, 2007. 1, 2, 2.2, 2.2, 2.2.2, 3.4, A, D.2, H.2

[39] Rudinei Goularte, Renan G. Cattelan, José A. Camacho-Guerrero, Val-
ter R. Inácio, Jr., and Maria da Graça C. Pimentel. Interactive mul-
timedia annotations: enriching and extending content. In Proceedings
of the 2004 ACM symposium on Document engineering, DocEng ’04,
2004. A

[40] J. Grudin and D. Bargeron. Multimedia annotation: An unsuccessful
tool becomes a successful framework. Communication and Collabora-
tion Support Systems, 2005. H.2

[41] Abir Al Hajri, Sidney Fels, Gregor Miller, and Michael Ilich. Moving
target selection in 2d graphical user interfaces. In Proceedings of Inter-
act Conference on Human-Computer Interaction. Springer, September
2011. 4, 4.4

[42] B. L. Harrison and R. M. Baecker. Designing video annotation and
analysis systems. In Proc. Graphics Interface 92, 1992. 2, 2.1.2, 2.1.3,
2.2.1, A, C.2, H.1, H.2

[43] W. E. Hick. On the rate of gain of information. Quarterly Journal of
Experimental Psychology, 1952. 4.2

63

[44] Errol R. Hoffmann. Capture of moving targets: a modification of fitts’
law. Ergonomics, 34(2):211–220, 1991. 4.2

[45] Berthold K.P. Horn and Brian G. Schunck. Determining optical flow.
Artificial Intelligence, 17(1-3):185 – 203, 1981. D.2

[46] P. Hoschka. An introduction to the synchronized multimedia integra-
tion language, 1998. 2.1

[47] Michael Victor Ilich. Moving target selection in interactive video. 2009.
2.1, 2.2.1

[48] Thorsten Karrer, Moritz Wittenhagen, and Jan Borchers. Draglocks:
handling temporal ambiguities in direct manipulation video navigation.
In Proceedings of the 2012 ACM annual conference on Human Factors
in Computing Systems, CHI ’12, pages 623–626, New York, NY, USA,
2012. ACM. 5

[49] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Ac-
tive contour models. INTERNATIONAL JOURNAL OF COMPUTER
VISION, 1(4):321–331, 1988. B.6

[50] Azam Khan, Justin Matejka, George Fitzmaurice, and Gordon Kurten-
bach. Spotlight: directing users’ attention on large displays. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
CHI ’05, 2005. 1, 2.2.2, 2.4

[51] Michael Kipp. Spatiotemporal coding in anvil. In Language Resources
and Evaluation, 2008. C.1, H.2

[52] David L. Kleinman, Krishna R. Pattipati, and Arye R. Ephrath. Quan-
tifying an internal model of target motion in a manual tracking task.
Systems, Man and Cybernetics, IEEE Transactions on, 10(10):624 –
636, oct. 1980. 3.1

[53] G. E. Krasner. A description of the model-view-controller user interface
paradigm in the smalltalk-80 system. 1988. G

[54] Gordon Kurtenbach and Bill Buxton. Gedit: a test bed for editing by
contiguous gestures. 1991. B.7

[55] Francis C. Li, Anoop Gupta, Elizabeth Sanocki, Li-wei He, and Yong
Rui. Browsing digital video. In Proceedings of the SIGCHI conference
on Human factors in computing systems, 2000. C.1

64

[56] C.-Y. Lin, B. L. Tseng, and J. R. Smith. Video collaborative annotation
forum: Establishing ground-truth labels on large multimedia datasets.
TRECVID 2003 Workshop Notebook Papers, 2003. 2.1.3, 2.2.1, 7.1.2,
A

[57] Lennart Ljung. System Identification. John Wiley and Sons, Inc., 2001.
4

[58] David G. Lowe. Object recognition from local scale-invariant features.
In Proceedings of the International Conference on Computer Vision-
Volume 2 - Volume 2, ICCV ’99, 1999. D.2

[59] Huitao Luo and Alexandros Eleftheriadis. Designing an interactive tool
for video object segmentation and annotation. In Proceedings of the
seventh ACM international conference on Multimedia (Part 1), MUL-
TIMEDIA ’99, 1999. A, B.5

[60] W. E. MacKay. Eva: an experimental video annotator for symbolic
analysis of video data. SIGCHI Bulletin, 21(2), 1989. 2.1.2, 2.1.3,
2.2.1, A, C.1, C.2, H.2

[61] I. S. MacKenzie and W. Buxton. Extending fitts’ law to two-
dimensional tasks. Proc. CHI Conf. Human Factors in Computing Sys-
tems, 1992. B.1, B.2

[62] J. M. Martnez. Mpeg-7 overview (version 10). International Organisa-
tion for Standardisation, 2004. 2.1, 2.1.3, 2.1.3, 2.1.3, A

[63] Gregor Miller, Sidney Fels, Abir Al Hajri, Michael Ilich, Zoltan Foley-
Fisher, Manuel Fernandez, and Daesik Jang. Mediadiver: Viewing and
annotating multi-view video. Proc. CHI Conf. Human Factors in Com-
puting Systems, 2011. 2.1.3, 2.2, A, D.1, H.2

[64] S. Mizobuchi and M. Yasumura. Tapping vs. circling selections on pen-
based devices: evidence for different performance-shaping factors. Proc.
CHI Conf. Human Factors in Computing Systems, 2004. B.1, B.4

[65] E. N. Mortensen and W. A. Barrett. Intelligent scissors for image
composition. In ACM Trans. on Graphics (Proc. SIGGRAPH), 1995.
B.4

[66] Fernando Navas and Lawrence Stark. Sampling or intermittency in
hand control system dynamics. Biophysical Journal, 8(2):252 – 302,
1968. 4.2

65

[67] Merrill Noble, Paul M. Fitts, and Clause E. Warren. The frequency
response of skilled subjects in a pursuit tracking task. Journal of Ex-
perimental Psychology, 1955. F.1

[68] Sile O’Modhrain and Ian Oakley. Touch tv: Adding feeling to broadcast
media. In in proceedings of the European Conference on Interactive
Television: from Viewers to Actors, pages 41–47, 2003. A

[69] B. Parker, E. and H. Zinkham. Thesaurus for graphic materials. Wash-
ington, D.C.: Library of Congress., 1995. 2.1

[70] Rejean Plamondon and Adel M. Alimi. Speed/accuracy trade-offs in
target-directed movements. Behavioral and Brain Sciences, 20(02):279–
303, 1997. 4.2, 7.1.1

[71] M. J. Potel and R. E. Sayre. Interacting with the galatea film analysis
system. Proceedings of the 3rd annual conference on Computer graphics
and interactive techniques, 1976. 2.1.3, A, D.1, H.2

[72] E.C. Poulton. On prediction in skilled movements. Psychological Bul-
letin, 1957. 3.1

[73] Nathan C. Rahn, Youn-kyung Lim, and Dennis P. Groth. Redesigning
video analysis: an interactive ink annotation tool. In CHI ’08 extended
abstracts on Human factors in computing systems, CHI EA ’08, 2008.
A, H.1

[74] G. Ramos and R. Balakrishnan. Fluid interaction techniques for the
control and annotation of digital video. Proceedings of ACM symposium
on user interface software and technology (UIST), 2003. A, C.1

[75] H. Rehatschek, W. Bailer, H. Neuschmied, S. Ober, and H. Bischof.
A tool supporting annotation and analysis of videos. Recongurations.
Interdisciplinary Perspectives on Religion in a Post-Secular Society.,
2001. 2.1.3, 2.2.1, A, D.3, H.2

[76] Cameron N. Riviere and Nitish V. Thakor. Effects of age and disabil-
ity on tracking tasks with a computer mouse: Accuracy and linearity.
Rehabilitation Research and Development, 1996. F.1

[77] D. A. Robinson, J. L. Gordon, and S. E. Gordon. A model of the smooth
pursuit eye movement system. Biological Cybernetics, 55:43–57, 1986.
10.1007/BF00363977. 3.1, 4

66

[78] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: interactive fore-
ground extraction using iterated graph cuts. In ACM Trans. on Graph-
ics (Proc. SIGGRAPH), 2004. B.5

[79] R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, and J. T.
Quinn. Motor-output variability: A theory for the accuracy of rapid
motor acts. Psychological Review, 86(5):415 – 451, 1979. 4.4

[80] D. Setterwall. Computerised video analysis of football - technical and
commercial possibilities for football coaching. Masters Thesis, 2003.
2.2.1

[81] J. Sivic and A. Zisserman. Video Google: Efficient visual search of
videos. In J. Ponce, M. Hebert, C. Schmid, and A. Zisserman, editors,
Toward Category-Level Object Recognition, volume 4170 of LNCS, pages
127–144. Springer, 2006. D.3

[82] J. R. Smith and B. Lugeon. Visual annotation tool for multimedia
content description. In SPIE 4210, 2000. 2.2.1, 2.2.1, A, C.1, D.3

[83] A. J. Spence, H. Tan, and A. Wilson. Accuracy of the turftrax racing
data system for determination of equine speed and position. Equine
Veterinary Journal, 2008. 2.2, 2.1, 2.2.1

[84] A. J. Spink, R. A. J. Tegelenbosch, M. O. S. Buma, and L. P. J. J.
Noldus. The ethovision video tracking system - a tool for behavioral
phenotyping of transgenic mice. Physiological Behavior, 2000. 2.2.1

[85] Robert F. Sproull. Principles of interactive computer graphics (2nd
ed.). McGraw-Hill, Inc., New York, NY, USA, 1979. B.5

[86] Z. Stone, T. Zickler, and T. Darrell. Autotagging facebook: Social
network context improves photo annotation. In Computer Vision and
Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE Computer
Society Conference on, pages 1 –8, june 2008. 1

[87] I. E. Sutherland. Sketch-pad: a man-machine graphical communication
system. In Proceedings of the SHARE design automation workshop,
1964. B.5, B.6

[88] Zenonas Theodosiou, Anastasis Kounoudes, Nicolas Tsapatsoulis, and
Marios Milis. Mulvat: A video annotation tool based on xml-
dictionaries and shot clustering. 2009. A, H.2

67

[89] M. Topkara, S Pan, J Lai, S. P. Wood, and J. Boston. Tag me while
you can: Making online recorded meetings shareable and searchable.
IBM Technical Report., 2010. 2.2, H.1, H.2

[90] Timo Volkmer, John R. Smith, and Apostol (Paul) Natsev. A web-
based system for collaborative annotation of large image and video
collections: an evaluation and user study. In Proceedings of the 13th
annual ACM international conference on Multimedia, MULTIMEDIA
’05, 2005. A, C.1

[91] C. Vondrick and D. Ramanan. Video annotation and tracking with
active learning. Neural Information Processing Systems (NIPS), 2011.
D.2, H.2

[92] Carl Vondrick, Deva Ramanan, and Donald Patterson. Efficiently scal-
ing up video annotation with crowdsourced marketplaces. In Proceed-
ings of the 11th European conference on Computer vision: Part IV,
ECCV’10, 2010. A, D.1, H.1, H.2

[93] K. Weber and A. Poon. Marquee: a tool for real-time video logging.
Proc. CHI Conf. Human Factors in Computing Systems, 1994. 2.1.2,
2.2.1, A, C.2, H.1, H.2

[94] G. J. Wills. Selection: 524,288 ways to say this is interesting. Proceed-
ings of the 1996 IEEE Symposium on Information Visualization, 1996.
2.2.2

[95] P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, and H. Sloetjes.
Elan: a professional framework for multimodality research. Proceedings
of 7th Language Resources and Evaluation Conference, 2006. A, C.1,
H.2

[96] J. Yuen, B. Russell, C. Liu, and A. Torralba. Labelme video: building
a video database with human annotations. In Proc of ICCV., 2009. A,
D.1, H.2

[97] Shumin Zhai and Paul Milgram. Human performance evaluation of
isometric and elastic rate controllers in a 6 dof tracking task. In Proc.
SPIE Vol. 2057 Telemanipulator Technology and Space Telerobotics,
pages 130–141, 1993. F.1

68

Appendix A

Annotation Metadata

Metadata are any information associated with annotation semantic entities.
They can both describe and expand upon a semantic entity and are often
structured in a particular format, such as a formal grammar. MPEG-7
represents metadata with a Semantic Description Scheme that structures
the syntax and relationships between metadata [62].

Both static or dynamic metadata are useful. Goldman et al. describes
two dynamic alternatives: (1) “scribbles” - pen strokes placed on spatio-
temporal entities to move with semantic entities; and (2) “graffiti” - pen
strokes that deform and conform to the video object [38].

Metadata are not necessarily in the same medium as the semantic entity.
Sound annotations, such as choreographer commentary, may be associated
with dancers in a dance video. Vibrations have been added to some inter-
active television annotations [68].

Annotators sometimes use metadata to help disambiguate an annotation.
For example, if the metadata are instructions to a writer on how to reformat
text, then the semantic entity is likely a textual object for correction, rather
than an abstract idea in a document.

Metadata can be associated with more than one semantic entity, and
a semantic entity can have multiple metadata. Associations between a se-
mantic entity and metadata can be made or broken, be time dependent, and
are independent of the “original” semantic entity. An association between
metadata and a semantic entity is visualised in a number of ways:

• Inferred. An association based on metadata properties or content,
without any special treatment applied to spatio-temporal entity visu-
alisations, such as:

– Proximity. Metadata spatially and/or temporally close to recog-
nisable spatio-temporal entities, such as notes on the margin of
a page near underlined text, or the concept tags near video clips
in the EfficientVideoAnnotation system [90].

69

– Gradient. Metadata that appear to emanate from a particular
spatio-temporal entity, such as a sound or a smell that diffuses
from a spatio-temporal entity.

• Shared Properties. An association inferred from properties of both
spatio-temporal entities and metadata, such as:

– Colour. Metadata with the same colour as a spatio-temporal en-
tity visualisation - such as colour-coded tags for players in sports
video or spatio-temporal entity border colours in LabelMeVideo
[96].

– Symbolic. Metadata sharing textual or numerical symbols with a
spatio-temporal entity to indicate association - such as numbered
references in an academic paper.

– Activated. Metadata and spatio-temporal entities that change
simultaneously to indicate an association. Goldman describes
how video users can point to sensitive spatio-temporal entities to
reveal metadata added to semantic entities [38].

• Explicit. An explicit visualisation of an association between metadata
and a spatio-temporal entity, such as with the straight line connecting
player names with a player in MediaDiver [63].

Metadata can be created and edited in multitude of ways. The methods
can be arranged by the particular types of metadata they support, such as:

• Textual metadata creating and editing methods: Videolyzer [29], VideoAn-
nEx [56, 82], Vatic [92], VANNA [42], SVAT [75], Family Video Archive
[5], MuLVAT [88], ELAN [95], EVA [60], LabelMeVideo [96], CEVA
[24], Videotater [28]

• Audio metadata recording/editing methods: M4Note [39], Creation-
Tool [20]

• Graphical metadata creating/editing methods: LEAN [74], Marquee
[93], InteractiveInk [73], CreationTool [20], Telestrator [2], M4Note
[39], MediaDiver [63]

• Methods to create/edit interactive metadata elements: YouTube [3],
Goldman et al. [38]

70

• Minimal metadata (some annotation tools specialise in region creation
and correction, with minimal metadata): TrackMarks [27], Vatic [92],
Viper [31], VOSystem [59], GALATEA [71]

Methods to associate metadata and regions can also be organised into
distinct categories based on their visualisation or display:

• Metadata Manipulation: direct manipulation methods such as drag-
ging to position metadata visualisations “close” to regions to indicate
associations. Such associations are similar to margin annotations of
books - comments are associated with a section of text by the prox-
imity of the comments to the text. Some video annotation tools, such
as LEAN, implement both spatial and temporal positioning methods,
so that metadata appear and disappear over time [74].

• Association Manipulation: methods to directly manipulate an explicit
visualisation of the association, such as graphical lines dragged be-
tween visualisations of region and metadata in MediaDiver [63].

• Shared Property: methods to match metadata and region properties
to indicate associations. For example, “tag paint” dragging interac-
tions found in Videotater [28] and Marquee [93] matches the colours
of regions with metadata.

• Synchronised: methods to associate metadata with the time of region
creation, such as the multimodal techniques to record audio in time
with region creation provided by the M4Note annotation tool [39].

71

Appendix B

Spatial Area Definition
Methods

B.1 Selection Methods

To create a region with selection methods, an annotator selects a number of
sub regions by pointing with a mouse or finger.

Region selection methods are usually faster than lasso methods on region
definition tasks involving stationary sub-regions of three to six millimeters -
an exception being definition of “low complexity” regions of closely packed
sub-regions [64].

The time to select a two dimensional region is modeled by MacKenzie
[61]. For rectangular regions, the time to “acquire” each region is well
described as a function of the smallest dimension of the region and the
distance of the pointing device to the region center.

Data dependent selection methods include seed-based region growing
techniques, such as Magic Wand [8]. To grow a region, an annotator selects
a point on an object representation and an algorithm expands a complex
region around the point. The algorithm can grow regions based on (1) the
presence of edges detected on the representation, (2) the presence of similar
pixels to the selection pixel (in colour or intensity), or (3) a hybrid approach
that fills “pools” within the image. Parameterised regions can also be fitted
to the grown regions.

B.2 Placement Methods

Annotators place point-based regions - those inferred by a video viewer - by
pointing to the intended center of the new region with a mouse of a finger.

Parameterised regions, such as fixed dimension “cookie-cutter” regions
found in Facebook, can also be positioned with placement methods [1].

The time to place a region with a particular accuracy is modeled by
MacKenzie [61].

72

To move an entire region, an annotator can drag the area inside the
region. To rotate or rescale a region, additional draggable “handles” are
often provided.

However, alternative methods such as rubber-band methods (see below)
are typically used to adjust the shape or size of a region created with place-
ment methods.

B.3 Brush Methods

Brush methods can be thought of as applying paint to form a region from
painted sub-regions [13]. Instead of using a pointing technique, an annotator
creates a region by tracing a path to select sub-regions.

The sub-regions can range in size, from as small as individual pixels, to
larger regions formed by automatic sub-region detectors. The sub-regions
can be regular or irregularly shaped. Regions can be corrected with brush
modes that remove sub-regions from a larger region.

Data dependent brush methods include matting methods, such as Geodesic
Segmentation [25]. To create a region with a matting method, an annotator
specifies some foreground pixels, and perhaps some background pixels by
tracing a path over the pixels. An algorithm then expands a region around
the foreground pixels, by repeatedly fitting a model of both the foreground
and background pixels colours until the models are well separated and match
the image. The annotator can correct the expanded region - to some degree
- by using more brush strokes to refine the model, although the annotator
may have to reset the model.

Brush methods are useful to form a region with many small sub-regions,
rather than a few large sub-regions better grouped with selection methods.

B.4 Lasso Methods

Lasso methods create regions by encircling sub-regions. Annotators create
a region with a lasso methods by forming a complex region boundary along
a “trail” traced from a start point. Region creation is completed when the
annotator indicates an end point for the trail - typically, the end point is
joined to the start point so that a region is formed inside the trail [64].

The region created can be smooth or parameterised. Unlike rubber-band
methods, annotators cannot reposition the region while using a lasso method
to create the region.

73

To create a region with a data dependent lasso method, an annotator
could use “Intelligent Scissors” [65]. The annotator roughly traces a bound-
ary in an image from a start point. However, the actual region boundary cre-
ated adheres to edges in the image. An algorithm calculates paths through
pixels in the image, with measures of path “length” based on whether neigh-
bouring pixels form edges. The annotator effectively reveals optimal paths
back to the lasso start point. To help an annotator create a path, Intelligent
Scissors also “cools” older portions of the path so that they remain in place
while the annotator traces the region boundary. Additionally, “training”
techniques can be incorporated to help prevent the trail from jumping to
strong nearby edges.

To correct a region with lasso methods, additional regions can be joined
to an existing region or sub-regions can be removed. An annotator can
also drag the boundary of a region to include additional sub-regions.To edit
a region with the Intelligent Scissors, an annotator can drag the region
boundary to force a path to pass through or avoid particular pixels.

These methods are usually slower than selection methods when sub-
regions are large (relative to pixel sizes). But the methods are preferred
when region editing cannot be modeled as a selection task, such as when
sub-regions are as small as pixels.

Lassos allow annotators to specify region boundaries very precisely, but
at the cost of increased interaction time.

B.5 Rubber-Band Methods

Rubber-band methods create parameterised regions from lines, circles or
polygons. To create a region with a rubber-band method, an annotator
moves vertices of the parameterised regions [85, 87]. As the annotator moves
region vertices along a path, a region is dynamically created that deforms
like a rubber-band. Once the annotator chooses the final position for region
vertices, the region is completed.

Region vertices often define the corners of a rectangular region. But
if the region is circular, the vertices can define the center and radius of
the region. Polygonal regions can be formed from repeatedly adding line
segments to a region perimeter.

To correct a region with a rubber-band method, an annotator can re-
shape the region by dragging on vertices or edges of a region. Vertices can
also be added to or removed from polygonal regions.

Data dependent rubber-band methods are sometimes found in matting

74

tools such as Grab-Cut [78]. To create a region with Grab-Cut, an annotator
uses a rubber-band method to specify a rectangular seed region around an
object. A foreground model is fitted to pixels inside the region, with the
assumption that pixels immediately inside the seed region are background
pixels. The region formed is based on fitting a colour model to image pixels,
and can be adjusted with brush methods as described above.

Researchers have developed data dependent rubber-band methods sim-
ilar to data dependent lasso methods. With VOSystem video annotation
system developed by Luo et al., annotators create region boundaries by con-
straining an edge tracing algorithm with lines formed with a rubber band
method [59].

Rubber-band methods are perhaps the oldest methods to specify regions,
first developed by Sutherland for the SketchPad system [87]. Sketchpad was
presented as an alternative to command based computer interaction pre-
dominant in the 1960s. Instead, diagrams and problems could be “commu-
nicated” to a computer with a light pen, although the communication was
limited to two-dimensional topology.

Rubber band methods allow an annotator to adjust region vertices and
see changes to the region in realtime. This helps the annotator to both
position and reshape the region.

B.6 Shape-Parameter Methods

Similar to rubber band methods, but annotators create regions with shapes
by specifying parameters of the region - instead of the positions of vertices
composing the region. Such methods include Bezier-path techniques to ad-
just the curvature of region boundaries [19].

“Snakes” is a data dependent parameter method to fit boundaries to
edges in an image [49]. An annotator traces a path in the image to specify
a sequence of parameterised curves, and an algorithm moves the curves to-
wards edges in an image, forming a region inside the curves. An annotator
can correct the region by explicitly setting points that a curve must pass
though, but the curves forming a region are typically “simpler” than the
edges in the image. Parameterised regions are more compact region rep-
resentations, but may not follow complex edges in images, such as around
hair.

Sketchpad provided constraints to be specified on region parameters -
rectangles could be constrained to be horizontal, for example [87].

75

B.7 Grouping Methods

Regions can be created with methods that only operate on groups of regions.
Regions can be added to other regions or sub-regions can be removed. The
regions added or removed could be specified with a variety of other methods,
such as selection or brush methods.

Such grouping methods were provided in the GEdit tool [54]. Annotators
manipulated regions with gestures formed with a pointing device. The tool
recognised distinct gesture paths to manipulate groups of regions with lasso
methods. The researchers pointed out that (1) operations have to be learned
by annotators since they are not immediately apparent and (2) forming
gestures with a mouse was more difficult than with a stylus.

Grouping methods also include methods to deform region boundaries so
as to include or exclude sub-regions. An annotator could drag the bound-
ary of parameterised region - with a rubber band method for example - to
intersect it with another region.

76

Appendix C

Temporal Period Definition
Methods

C.1 Spatially-Represented Methods

Temporal regions are often represented spatially, so annotators often use
spatial region definition methods to create and correct temporal periods.

An early software framework developed in the early 1990s by Ackermann,
provided direct manipulation of spatially-represented temporal periods with
rubber-band methods [7]. Ramos et al. developed the LEAN video annota-
tion system that provided lasso methods to manipulate spatially-represented
temporal periods with a pen interface [74].

Kipp describes a speech and language research tool, called ANVIL, that
provided grouping methods to manipulate spatially-represented temporal
periods [51]. An ANVIL annotator used selection methods to specify periods
to merge into larger periods, while still preserving the details of the original
periods. The tool grouped periods from multiple media streams - in a similar
fashion to early video annotation tools, such as EVA [60].

Data dependent temporal methods use semantic entity detectors to cre-
ate period suggestions. Speech recognisers in audio annotation tool ELAN
create spatially-represented temporal periods around words and phonemes
in audio media [95]. Video analysis techniques detect scene changes within
video to create temporal periods in the Family Video Archive [5], VideoAn-
nEx [82], Videotater [28], Videolyzer [29] and the EfficientVideoAnnotator
[90].

Li et al. point out that special considerations must be made for spatially-
represented temporal periods that are either very short and very long [55].
The researchers developed a digital video viewing tool with adjustable video
playback speed to navigate more effectively within very long video sequences.

77

C.2 Synchronised Segmentation Methods

Synchronised segmentation methods are used to create periods without stop-
ping video playback. While the video plays, annotators press buttons or
perform other interactions in time with video playback to specify a period.

To correct periods created with synchronised segmentation methods, the
periods are typically arranged spatially in lists or on a timeline, and anno-
tators correct the periods with spatially-represented methods.

In the late eighties, most video was not digitised, and video annotation
research focussed on methods to annotate events on analogue video cas-
sette tapes. MacKay developed the experimental video annotator (EVA)
[60] to annotate “media streams” - video recorded from different angles,
audio recordings, scripts and button-press logs. The tool provided syn-
chronised segmentation methods to create periods. During media review,
an ethnographer pressed buttons corresponding to different event types to
create instantaneous temporal periods for editing later. She observed that
realtime video annotation was an intense process, but annotation time was
reduced by annotating events without pausing the video.

Based on a task analysis of video annotation and interviews with an-
notators, Harrison and Baecker developed a similar ethnographic tool: the
Video ANNotation and Analysis (VANNA) system [42]. The tool provided
synchronised segmentation methods to create periods - annotators pressed
customizable buttons for different predefined metadata in time with events
during video playback. Richer features were provided for editing periods
and metadata “offline”. VANNA provided direct-manipulation spatially-
represented temporal period methods, and annotation interface elements
were presented alongside elements to control video cassette playback. The
researchers found that system users adopted two distinctive annotation styles:
(1) realtime annotation, with frequent “loopbacks” to review annotations
and (2) slow motion annotation, with few loopbacks.

At Xerox Parc, Weber et al. developed a pen based video annotation tool
- Marquee - that recorded temporal periods on a vertical note taking “scroll”
[93]. The tool provided a synchronised segmentation method: to create a
period known as a “timezone”, the annotator drew a horizontal line across
the scroll, in time with a video playback event. The video playback time
coincident with the horizontal line defined the period start - the period end
was either the end of the video or the start of another period. Handwritten
metadata added below the line were associated with the period, and were
typically unstructured, although they could contain predefined “tags” for
navigation among events. Although period start and end times could be

78

corrected later, the work does not address how to create a period “out of
order”, to be inserted between other period.

Cockburn et al. noted that although video analysis is slow, it is often col-
laborative [24]. The researchers built the CEVA video annotation system to
support synchronised segmentation methods by co-located annotators. The
interface only supported temporal periods, representing them spatially, and
allowed for multiple overlapping periods to correspond to threads of activity
in the video. Metadata were either fixed iconic values or simple textual la-
bels. The system provided an interface controlled by two mice - to be shared
by either remote or co-located annotators. During an evaluation with four
co-located post-graduate computer science students, Cockburn found that
the students annotated silently during video playback, and avoided stop-
ping the video since it would disturb their partner. The students did discuss
their annotations during pauses in video playback. However, the researchers
didn’t compare the accuracy of annotations created during interrupted and
continuous video playback.

79

Appendix D

Spatio-Temporal Volume
Definition Methods

D.1 Keyframed Methods

An annotator pauses video at two successive keyframes. The annotator en-
closes a video object with a spatial region in both frames to create waypoints.
An interpolation algorithm generates spatial regions for times intervening
the waypoints.

Figure D.1: Sequence of interactions to create a spatio-temporal volume
with keyframed methods. The red square is a projection of the volume.

To correct a spatio-temporal volume, an annotator (1) corrects a way-
point region, and any interpolated projections are recalculated or (2) adds
or removes keyframe regions to alter the interpolation. Corrections with
keyframed methods change regions for times both before and after a keyframe
- so annotators typically check the interpolations are accurate by reviewing
the video around the keyframe.

80

YouTube spatio-temporal volumes, the basis of YouTube “speech bub-
bles”, are created and corrected with rubber-band methods [3]. The keyframe
regions are constrained to be rectangular and composed of horizontal or ver-
tical line segments. The annotation tool simply extends the spatial region
between two keyframes with a time-independent interpolation. Although
YouTube spatio-temporal volumes are quick to create and correct, the vol-
ume has the same region in all frames it appears in, so the volume is sta-
tionary and doesn’t follow moving objects.

Some annotation tools calculate volume extensions based on annotators
corrections in previous frames [96]. Linear predictions of extensions don’t
follow objects that move in complex paths, however. To address this, the
LabelMeVideo annotation tool, developed by Yuen et al., calculated exten-
sions based on a three dimensional model of camera position for non-linear
predictions that followed some objects more closely, although no measures
of improved annotator performance were reported.

With keyframed methods, annotators typically adopt a “follow-and-
check” approach during annotation (see E). They work on objects individ-
ually, creating waypoint regions in keyframes approximately every twenty
frames (in thirty frames per second video). Annotators only return to correct
interpolations when the object leaves the video. If they are satisfied with
the spatio-temporal volume, they proceed to another object. Expert anno-
tators using manual keyframed methods to annotate ten basketball players
identities and sizes take approximately an hour for every twenty seconds of
broadcast quality video.

Manual keyframed methods were provided in early spatio-temporal an-
notation tools, such as GALATEA [71], but are labour intensive. With
interpolation, the methods may be suitable for some consumer applications,
such as the MediaDiver [63], but to further reduce annotator labour, some
tools provide data dependent keyframed methods.

Data dependent keyframed methods typically rely on algorithms that
optimise how interpolated spatial regions fit video objects intervening the
keyframes, subject to constraints such as that spatio-temporal volumes change
smoothly. Although data dependent keyframed methods require fewer way-
points than data independent alternatives, annotators must still review video
frames to check volumes correspond to moving objects.

Agarwala et al. reframed rotoscoping - an animation technique to trace
the outline of objects represented in video - as an semi-automated pro-
cess similar to a data dependent keyframed method. An animator specified
spatio-temporal volumes by creating parameterised polygonal waypoint re-
gions in two keyframes with a rubber-band method, and an algorithm in-

81

terpolated projections between the waypoints to optimise measures of how
well edges of the projections followed edges in the video. The researchers
demonstrated the approach for three different video sequences, although no
measures of rotoscoping performance are reported [9].

Chuang et al. developed a rotoscoping tool that also created spatio-
temporal volumes with keyframed methods [23]. However, an animator us-
ing their tool specified two complex waypoint regions using a brush method.
The regions contained pixel colours belonging to a “foreground”. Spatial-
temporal volumes were then interpolated between the waypoint regions by
both (1) looking for similar pixels in frames between waypoints, and (2)
accounting for the optical flow of pixel values between video frames. Al-
though the approach was demonstrated on three sample videos, measures of
rotoscoping performance were not reported.

Vondrick et al. developed Vatic, a crowdsourcing video annotation tool
implementing keyframed methods [92]. They investigated how to best bal-
ance human and computer work when creating spatio-temporal volumes for
players in a sports video. (In their case, waypoint regions were constrained
to be rectangular.) Two different interpolation approaches were compared -
(1) simple linear interpolation and a (2) error minimisation technique based
on machine-learned weights for colour and edge features. The research re-
vealed that, for easy sports video with few occlusions, error minimisation
was accurate enough to reduce overall annotation costs. But for complex
video, linear interpolation performed as well as error minimisation, in which
case, it was more prudent to reduce automation costs, and spend the savings
on human labour.

D.2 Track-Based Methods

Track-based methods are useful for situations where spatio-temporal vol-
umes have already been created. An annotator creates a volume using a
method such as a pursuit method or keyframed methods. Alternatively,
automated methods can create volumes. The annotator uses track-based
methods to correct spatio-temporal volumes by (1) splitting, (2) merging or
(3) truncating the volumes.

Some data-dependent track-based methods use object-tracking algorithms
to suggest volumes. To create a spatio-temporal volume with a data de-
pendent track-based method, annotators first specify a purely spatial seed
region corresponding to a video object. Tracking algorithms then compare
pixels from inside the seed region with video pixels at times preceding and

82

Figure D.2: Sequence of interactions to correct a spatio-temporal volume
with track-based methods. The red square is a projection of the volume.

following the seed region and create spatio-temporal volumes based on op-
tical flow [45] or feature tracking techniques [58]. Additionally, “top-down”
constraints on the volumes, such as object motion models, can improve the
accuracy of the volumes.

However, tracking algorithms struggle to follow objects that are obscured
or that dramatically change shape and colour. Challenging lighting condi-
tions and camera movements also introduce tracking errors. Cabral et al.
reported that an annotation tool with data dependent track-based meth-
ods based on a continuously adaptive mean-shift tracking algorithm was
“unsuited” to tracking handheld video of dancers [20]. (Mean-shift is a
technique to adjust the size and location of a bounding box to maintain a
consistent distribution of color features within the box.)

In another annotation context, DeCamp et al. reports some success with
track-based methods optimised to deal with two common tracking issues:
(1) when an object reappears after an absence from a video, or (2) when
an object reappears after a momentarily occlusion [27]. The researchers de-
veloped the TrackMarks tool based on a realtime mean-shift tracker that
generated “tracklets” (similar to spatio-temporal volumes). The tool pro-
vided progress of the realtime tracking process to annotators. The tool

83

provided track-based methods to split and merge volumes. The researchers
reported that skilled annotators take about 108 minutes to specify long
volumes for a small set of objects in 60 minutes of video from stationary
cameras monitoring child-caregiver interactions.

Goldman et al. developed data-dependent track-based methods to select
spatio-temporal volumes detected by a particle tracking algorithm [38]. The
research assumed that video is pre-processed offline to determine groups of
particles - image features that correlate with object movements. To select a
volume, an annotator uses a brush method to select particles while the video
is paused, and a spatio-temporal volume is grown spatially and temporally
to contain similar particles in neighbouring frames. The work mentions
situations when the particle tracking “breaks down” - when the volumes no
longer corresponded well to video objects - but doesn’t investigate methods
to address the situations.

Vondrick and Ramanan developed a tool, based on “active learning”
techniques, that only displays volume suggestions that may need correc-
tions [91]. Without any reference to a ground truth, their approach is to
suggest frames to annotator where a change to the spatio-temporal volume
will maximise change to the volume in other frames. Their approach doesn’t
suggest frames when there is certainty in the volumes, gracefully degrades
when the tracker cannot localise objects at all, handles object deforma-
tion and occlusion, and doesn’t suggest frames for stationary objects. On
a benchmark surveillance video dataset, their dynamic programming algo-
rithm outperformed keyframed methods, reducing annotator mouse clicks
nearly ten-fold.

Fails and Olsen developed a volume detection tool based on brush meth-
ods [34]. Called Crayons, the tool allowed users to train a pixel classifier
without requiring advanced programming or image processing skills. Once
trained, the classifier suggested spatial regions in sequences of images that
could be joined into a volume. The researchers chose a decision tree ma-
chine learning technique that provided rapid feedback of the classifier train-
ing state, even with a large number of features. The researchers also used
“integral images” as fast and flexible features, although the features were
not based on temporal measures. In evaluations, five users each took less
than 10 minutes to train a classifier to detect volumes of an image set with
98% accuracy relative to a ground truth.

84

D.3 Sparse-Frame Methods

An annotator pauses video at a particular frame and encloses a video ob-
ject with a spatial region method. The annotation tool searches for other
frames containing similar video objects and presents suggested regions from
a multitude of times before or after the initial frame. Suggested regions
have been based on face detectors, text detectors, or distinctive image fea-
ture detectors. The annotator chooses a batch of suggestions to join into a
larger spatio-temporal volume in a single operation. The annotator rejects
false-positive suggestions that do not correspond to the correct semantic
entity.

Figure D.3: Sequence of interactions to create a spatio-temporal volume
with sparse-frame methods. The red square is a projection of the volume.

To correct the spatio-temporal volume formed suggested sub-regions, an
annotator can remove erroneous sub-regions or add regions from additional
searches. Region suggestions can be corrected with spatial region methods.
Track-based methods could also be used to correct volumes created with
sparse-frame methods. For example, a dancer may be wearing a shirt with
two distinctive patterns on the front and back, so two separate searches may
be merged to create a volume corresponding to the dancer.

Not all video frames need to be annotated with sparse-frame methods.
With VideoAnnEx, videos were first split into “shots” by an automatic
scene detection algorithm, and “representative frames” chosen from within
the shots [82]. Representative frames were presented to the annotator in a

85

scrollable horizontal list. An annotator used a rubber-band method to create
a seed region for a “key object” in the frame. When the annotator viewed
subsequent frames, the tool automatically extended the spatial region (at
the same location), and annotators moved and resized the volume to better
fit the key object as it appeared in subsequent frames. However, completely
manual annotation using temporally-extended methods is slow - annotators
took three hours on average to annotate key objects, scenes and events in
sparse keyframes for 30 minutes of newscast video.

The methods work with sparse keyframes from video. Since suggested
regions can be in distant frames, situations when a video object disappears
and reappears later can be accommodated.

Sparse-frame methods don’t work well with video of many similar se-
mantic entities, such as video of sports teams, since the technique presents
many erroneous suggestions to annotators.

Doermann and Mihalcik developed an annotation tool to detect regions
containing faces or text [31]. Once detected, suggested regions corresponding
to faces or text could be joined into a larger spatio-temporal volumes. The
annotator could also adjust the shape of region suggestions to better fit
video objects. Although the researchers discussed measures of annotation
accuracy, they don’t report measures of annotator performance that include
annotation time.

Suggestions can be arranged in a time-saving order for annotators. The
Rich Media Organiser tool developed by Girgensohn et al. grouped regions
surrounding similar faces [36] in photos. A user specified a face as a “pro-
totype”, and the tool sorted suggested regions for other faces according to
how similar the faces were to the prototype. The user then grouped multiple
suggestions, instead of finding and grouping individual faces. Using a library
488 photos, the researchers showed how state-of-the-art face detection and
recognition algorithms allowed a user to group suggestions containing 60%
of the 63 appearance of a face with just four operations - instead of 38
operations (60% of the 63 faces) on individual unordered photos.

Suggestions for regions have been based on image feature classification
algorithms. For analysis of theological video, Rehatschek et al. developed
the Semantic Video Annotation Tool (SVAT) [75], based on Sivic and Zisser-
man’s “Google Words” video search method [81]. Using SVAT, an annotator
uses a rubber-band method to specify a seed region containing image edge
features that form a “visual search word”. The tool then suggests frames
containing similar visual words by searching an index of keyframes for video
shots. The annotator could join the suggestions to create a spatio-temporal
region. The researchers don’t report any measures of annotator performance.

86

Appendix E

Annotator Interviews

To better understand the tasks of a video annotator, we interviewed and
observed two video annotators. Both annotators were doctoral students who
had constructed a video annotation system who spent two months creating
an annotation data set for a computer vision research. Neither annotator
was compensated for their answers. We asked the following semi-structured
questions to determine details of their annotation process:

• “What kind of video and video objects do you annotate?”

• “How long do you perform your annotation?”

• “Where do you perform your annotation?”

• “What tools do you currently use to annotate?”

• “What annotation tasks do you currently perform?”

• “What type of annotation regions are you interested in?”

• “What type of annotation metadata are you interested in?”

• “Can you describe a particularly troublesome annotation incident?”

• “What are the bottlenecks on your annotation process?”

• “What interface elements would you add to you annotation tool?”

• “What are the shortcomings with current annotation tools?”

Both annotators were male computer vision PhD students, aged 31 and
33. They used a custom-built annotation tool to annotate players in college
basketball and ice-hockey. They annotated wide angle video from a single
swiveling camera, taking about 1.5 to 2 hours to annotate 1000 video frames.
Both annotators performed annotation in an office on a large computer
monitor, although one described annotating on a plane to “kill time”.

87

The annotators used keyframed methods to specify spatio-temporal re-
gions for video objects. The annotators had tried track-based methods in
an early version of the tool, but found track-based methods cumbersome -
just as time consuming as keyframed methods, but without a fine degree of
control.

Their system had a sophisticated technique to interpolate the positions
and shapes of projections between keyframe waypoint regions. Before the
annotators began their work, the tool ran an off-the-shelf object detector,
the detection results were fed to a player recogniser tuned to shirt colours,
and then a tracking algorithm tried to match players from frame to frame.
When the annotators created regions, they defined a region around an object
in a starting keyframe, then skipped to a second keyframe about 20 frames
later to specify a region surrounding the same object, and their system used
the offline tracking results to calculate interpolated projections between the
keyframes.

Both annotators adopted a follow-and-check technique. Step 1: Add
bounding boxes every 10 to 20 frames (sometimes 30 depending on the
activity of the figures) and rely on interpolation to both fill in the other
frames and resize bounding boxes. Step 2: Go back and visually check the
interpolation results, correcting any errors, because there are no systems
that can verify the work.

Both annotators used rectangular two-dimensional bounding box region,
that could be resized both horizontally and vertically to closely fit to players.
They used a jersey within the bounding box rule of thumb to make the boxes
as compact as possible.

Both annotators were just interested in player IDs (full names) and team
membership. They first used a play-by-play dataset from the video provider
to determine who was on the court. They found that using a full name is
easier than a player ID, but suggested that may just be a personal prefer-
ence. They sometimes use temporary identities until the player is recognized.
During a line change, its often not clear who is on or off the ice.

Both annotator complained that they found it time consuming to recog-
nise players for annotation. One explained that a high level outline of events
in the video would be useful to focus annotation effort on portions of the
video. The other pointed out that recognising players is taxing work, unlike
“brainless” adding bounding box work.

Autosaving in their tool could be improved. Although their tool has
undo, one annotator wished it had a redo function. Their tool currently
has to run computer vision detection, recognition and tracking algorithms
offline. The tool is not web based.

88

Both annotators pointed out the problem of crowd-sourcing and cloud-
sourcing annotation. It may be better to have five good annotators, rather
than a thousand bad, since annotations must be manually verified. One
annotator wondered what instructions he would give to less savvy annotators
so they produced repeatable results. He thought that even if work could be
distributed to other annotators, techniques to check the work of the other
annotators would be needed.

An annotator is looking forward to a new feature they are developing
that will map player movements onto an overview of the basketball court -
he expects it will help him see errors in the annotations. He also expects that
as computer vision techniques improve, he will have to specify waypoints in
fewer frames.

89

Appendix F

Pursuit Model Study

Our study builds on other studies of pursuit task accuracy, but we go further
by providing evidence of how target size affects pursuit accuracy and by
examining pursuits of video object movements on typical video object paths
- paths that that are unpredictable but not entirely random.

In both parts of the experiment, we examine movements during mouse
pointer pursuits, since annotators will often use a mouse to annotate video.
We report video object movements in terms of relatively small movement
distances with the mouse - an experiment screen serves as a “magnifying
glass” on the mouse movements and also presents video objects for pursuits.

There are two parts to the experiment. The first part tightly controls
target movements in a one dimensional configuration to isolate the effects
of target size and speed on pursuit accuracy and to provide a benchmark
of accuracy. In the second part, we examine the effects of target speed
and size on pursuits along realistic video object paths in a two dimensional
configuration.

F.1 Related Work

Noble examined rotary one-dimensional pursuits of a target with a point-
ing device [67]. He describes a pursuit task as minimising an error e(t) =
o(t) − i(t) during a pursuit, where i(t) is the position of a target and o(t)
is the position of a human controlled pointing device. As a measure of
pursuit accuracy, he used a root mean square of e(t) over the course of a
pursuit. He measured increasing pursuit error with increasing target speed,
but did not propose a model of the relationship. Additionally, subjects in
his experiments pursued objects on predictable sinusoidal paths that do not
necessarily require visually guided movement choices during pursuits.

Crossman modeled the processes of perception and movement during
target pursuits as an information channel and tried to establish the capacity
of the channel [26]. He controlled the predictability of target movements,
by either showing or hiding future movements of a target. He found that
in the absence of preview of target movements, the rate at which subjects

90

transfer information from target movements to motor responses is limited
by a process constrained to approximately 5 bits/second. However, subjects
in Crossman’s studies only pursued targets with a one dimensional steering
wheel interface that simulated driving a car along a road.

Pursuit movements are used in contemporary studies of movements, such
as Riviere’s study of young, old and disabled subjects [76] or studies of device
performance [15, 97]. However, the studies typically use pursuit accuracy to
compare experimental conditions, and do not derive models of the pursuit
process. The experiments also use customised metrics that are difficult to
compare between studies. Furthermore, researchers often use predictable
sinusoidal target movements and do not investigate the effect of pursuit
target size.

F.2 Experiment Tasks

F.2.1 Part 1. Synthetic Paths

Targets with unpredictable but simple movements - infrequent direction
changes, with few angles - provide an benchmark for subsequent studies
of pursuit accuracy.

In the first part of our experiment, we constrain target movements to a
single horizontal dimension. The target position i(t) is synthesised so that
the target follows a path that is (1) unpredictable, (2) of constant speed
and (3) with controlled direction change frequency and (4) with controlled
direction change angle of 180 degrees. Since the path is unpredictable, sub-
jects must make visually guided corrections to their movements and don’t
learn the path during the experiment. Figure F.1 illustrates the target and
cursor positions in the first part of the experiment.

The task for experiment subjects is to minimise one dimensional error
e1D(t) from a mouse pointer to the edge of the target, although subjects can
move the mouse pointer in two dimensions.

We controlled the target direction changes by selecting paths generated
according to equation F.1 that contain three direction reversals. The direc-
tion changes are distributed uniformly over the trials by evaluating equation
F.1 at intervals of 0.5 seconds. The maximum direction change frequency
was chosen to be close to the limit of the human reaction times [21].

According to equation F.1, the target is more likely to return to the
screen center, and when the target is at the center of the screen, the target
is equally likely to travel right as to travel left. The likelihood of the target
traveling towards the right of the screen at time t is given by the following

91

Figure F.1: The target position is i1D(t) and is constrained to lie on a hor-
izontal line. The horizontal component of the distance between the human
controlled mouse cursor and the target edge is e1D(t). When the cursor is
inside the target, e1D(t) is 0.

equation, where i1D(t) is the position of the target relative to the center of
the screen and W is a parameter refined in pilot studies to be a third of the
screen width.

p = 0.5.(i1D(t)/W) + 0.5 (F.1)

F.2.2 Part 2. Derived Paths

Video objects typically move with complex direction changes (frequent, with
various direction angle and magnitude change), but on two-dimensional
paths that are not entirely random.

In the second part of the experiment, we adopt more realistic video ob-
ject paths to examine human pursuits of targets on ecologically valid paths.
However, to compare both parts of the experiment, we placed some restric-
tions on the paths. (1) They are approximately straight. (2) The paths
contain three abrupt direction changes that occur infrequently (although
the change is not an instantaneous 180 degree change as in Part 1). (3) The
paths are transformed so they are unpredictable.

We simplify target shapes to circles. Figure F.2 illustrates the target
and cursor positions in the second part of the experiment.

The task for experiment subjects is to minimise two dimensional error
to the edge of the target.

We derived targets paths from hockey player movements in video illus-

92

Figure F.2: The target position is i2D(t). The euclidean distance between
the human controlled mouse cursor and the target edge is e2D(t). When the
cursor is inside the target, e2D(t) is 0.

trated in Figure F.3. We chose a player path with movements that (1)
remained inside the video frame, (2) changed direction three times (includ-
ing starting “direction change”), and (3) otherwise remained smooth. We
further smoothed the movements so that a target travelling along the path
would move with constant speed. We centered a circular target on the path.

We randomly mirrored, rotated and translated the paths to make suc-
cessive trials different. This transform prevents experiment subjects from
learning the path - making the path unpredictable - but maintaining the
abrupt direction changes and the direction change frequency.

93

Figure F.3: Frame 3348 from a stationary camera recording of a college
ice-hockey game.

94

Part 1 - Synthetic Paths Part 2 - Hockey Player Paths
Dependent
Variable

Error Root mean square (RMS) of e1D(t) sam-
pled every 1/30 second while the target
is moving during experiment trials. We
automatically terminated trials after four
seconds. We calculate error during the
last three seconds of each trial to allow
subjects a period to adjust to the target
speed and acquire the target. We mea-
sured e1D(t) to the edge of the target,
e1D(t) is zero when the cursor is inside the
target.

Root mean square (RMS) of e2D(t) sam-
pled every 1/30 second while the target is
moving during experiment trials. We au-
tomatically terminated trials after the tar-
get travelled 105 mm. We measured the
euclidean distance e2D(t) to the edge of
the target, e2D(t) is zero when the cursor
is inside the target.

Independent
Variables

Speed Three speeds (15 mm/s, 25 mm/s, 35
mm/s) chosen as typical for mouse based
pursuits and refined in pilot studies.

Three speeds chosen to match the speeds
of the target in the first part of the exper-
iment. Targets follow the hockey player
path with constant speed.

Size Three sizes (0.5 mm, 3.5 mm, 6.5 mm)
chosen to correspond to typical video ob-
ject sizes (10, 70, 130 pixels) when dis-
played with a typical screen resolution,
mouse tracking and control-to-display ra-
tio. Also refined in pilot studies to spread
the dependent variable mean.

Three sizes chosen to match the sizes of
the target in the first part of the experi-
ment.

Table F.1: Dependent and independent variables for both parts of the experiment

95

F.3 Subjects

We recruited ten subjects from a local university, one subject was female.
Nine subjects reported using a computer mouse for more than an hour a
day. When asked how long they spent playing computer games with a
computer mouse, five subjects reported spending more than an hour a day,
but another four reported spending less than an hour a month. All subjects
were right-handed. No subjects reported colour deficient vision, but only
eight subjects reported normal or corrected-to-normal eye-sight. Subjects
were aged 22 years on average (standard deviation: 1.73 years).

An experiment session took less than sixty minutes. Subjects could
stop their participation at any time. Subjects were compensated CAD$10
for participation whether they completed the experiment tasks or not. We
presented subjects with printed instructions and clarified details if needed.
Subjects completed a questionnaire detailed below.

In both parts of the experiment, subjects pursued the green target by
keeping the purple tracking square inside the target as best they could. We
informed subjects that the trials were challenging, that they should not be
discouraged when it is hard to keep the square inside the target, and that
they should try their best to keep the tracking square inside the target.

During an initial training period, subjects completed twenty-seven train-
ing trails with three repetitions of each condition of size and speed in random
order. Subjects then completed ten analysis trials for each condition of size
and speed in random order, yielding ninety analysis trials. The randomised
order of each condition mitigated learning effects. Follow on studies to inves-
tigate learning effects or fatigue could administer trial blocks of nine trials
each, so that each condition of speed and size appears in each block. Halfway
through the analysis trails, subjects were encouraged to take a brief break,
to mitigate fatigue and boredom.

Both parts of the experiment have a balanced designs, with ten repeated
measures of each condition of speed and size within subject.

F.3.1 Synthesized Paths, Part 1

Subjects started each trial by holding a mouse pointer stationary inside a
white start bar in the center of the screen. The start bar disappeared after
the subject held the cursor stationary for one second, and a green moving
target and a purple tracking square appeared. The start bar is illustrated
in Figure F.4.

The purple tracking square was 10 pixels wide and centered on the cur-

96

Figure F.4: 1. The trial starts when the subject holds the mouse cursor
stationary inside the white start region. 2. The green target appears with
a controlled speed and unpredictable movement path. The cursor is also
replaced with a tracking cursor.

sor position to improve the visibility of the cursor and indicate the active
tracking state. The moving target was a vertical green bar, 300 pixels tall,
with controlled width and speed. The bar movements were confined to a
horizontal axis. A horizontal line ran across the screen to help subjects
align their mouse movements. The tracking square and moving target are
illustrated in Figure F.4.

F.3.2 Derived Paths, Part 2

To mitigate learning effects, half subjects completed Part 2 before Part 1.
Subjects started each trial by holding a mouse cursor stationary inside

a white start box in the center of the screen. The start box disappeared
after the subject held the cursor stationary for one second. The start box is
illustrated in Figure F.5.

The subject then moved the mouse cursor to a stationary green target
and depressed the mouse button when the cursor was over the target. When
the subject released the mouse button, a purple tracking square appeared
at the cursor position and the green target started moving.

We measured error while the target was in motion. Subjects pursued
the moving target for either 3, 4.2, or 7 seconds, depending on the speed
of target, so that each trial required subjects to follow the target over the
same distance of 105 mm.

97

Figure F.5: 1. The trial starts when the subject holds the mouse cursor
stationary inside the white start region. 2. The subject moves the mouse
cursor to the green target and presses the mouse button. 3. When the
subject releases the mouse button, the green target moves with a controlled
speed and unpredictable movement path. The cursor is also replaced with
a tracking cursor.

F.4 Apparatus

Figure F.6: The experimental setup with a subject sitting at a typical dis-
tance from the experiment screen.

We wrote our experiment software using the C++ annotation library
described in Appendix G, and OpenGL and the OpenGL Utility Toolkit
(GLUT). The experiment ran on Mac OS 10.6.8 on a Mac Pro with 8 GB

98

of RAM and two 3 GHz dual-core Intel Xeon processors. The computer
contained an ATI Radeon X1900 XT graphics card with 512 MB of video
RAM and was connected to a Dell 2405FPW screen (518 mm x 324 mm),
refreshed at 60 Hz, with a resolution of 1920 x 1200 pixels (0.270 mm/pixel
pitch).

Subjects used a Microsoft Comfort 3000 mouse, with enough desk space
to avoid “clutching”. Mouse tracking was same for each subject - 1000 pixels
for 50 mm of mouse movement. With the screen resolution described above,
the control-to-display ratio is 0.185. Mouse resolution was 1000 increments
per inch (DPI) or 39 increments per mm. Mouse acceleration was disabled
for the experiment. A subject using the mouse and sitting at a typical
distance from the monitor is illustrated in Figure F.6.

We verified records of mouse and target position records from the appa-
ratus with movement test patterns.

F.5 Analysis of Variance

Hypothesis 1: As speed increases, peak error also increases. Hypothesis 2:
As size increases, peak error decreases.

F.5.1 Synthesized Paths

There were approximately six repeated measures per condition and the fol-
lowing analyses were conducted with some missing measures. Additionally,
we caution that subjects were not equally represented in the synthesized
paths data set due to our experiment configuration.

We conducted Shapiro-Wilk’s tests and noted that distributions were not
normal (p <0.05). However, histograms of the conditions indicated rougly
normal distributions, and we assume that the results of the ANOVA tests
that follow are robust to this deviation. We conducted Mauchly’s sphericity
tests and accepted that variances in error measures among conditions were
equal (p <0.05).

With a general linear model (GLM) repeated measures analysis, we de-
termined there was a statistically significant difference among subject error
measures for speed (df = 2, F = 36.661, p <0.05) and size (df = 2, F =
35.674, p <0.05). We rejected null hypotheses for part 1. Estimated power
for effects of size and speed was 1, but fell to 0.292 for the interaction effect
of speed and size.

Bonferroni post-hoc comparisons revealed significant differences among
all conditions (p <0.05). Figure 4.3 illustrates the differences between con-

99

ditions. The trends illustrated lead us to accept both Hypothesis 1 and 2
for part 1.

F.5.2 Derived Paths

We conducted Shapiro-Wilk’s tests and noted that distributions were not
normal (p <0.05). However, histograms of the conditions indicated slightly
truncated normal distributions, but otherwise they appeared normal. We
assume that the results of the ANOVA tests that follow are robust to this
deviation. We conducted Mauchly’s sphericity tests and accepted that vari-
ances in error measures among conditions were equal (p <0.05).

With a second GLM analysis, we determined there was a statistically
significant difference between conditions of speed (df = 2, F = 107, p <0.05)
and size (df = 2, F = 82.1, p <0.05). We rejected null hypotheses for part
2. Estimated power for effects of size and speed was 1, but fell to 0.264 for
the interaction effect of speed and size.

Bonferroni post-hoc comparisons revealed significant differences among
all conditions (p <0.05). Figure 4.3 illustrates the differences between con-
ditions. The trends illustrated lead us to accept both Hypothesis 1 and 2
for part 2.

F.6 Questionnaire Analysis

F.6.1 Questions

Each subject completed a questionnaire after the experiment. For both parts
of the experiment, the subjects answered the following questions:

• What strategy did you use to pursue the target? (Was there a partic-
ular technique you used to follow the target?)

• Did any factors other than target speed or size affect your performance
during the experiment?

• How predictable was the path taken by the target? (100 = completely
predictable, 0 = not predictable at all)

• What factors affected your choice of predictability? (Do not include
speed or size of target)

100

F.6.2 Responses

Coded questionnaire results are reported in Table F.2, with examples of each
code.

When asked what strategy they used to pursue the target, all the subjects
described either predicting or reacting to target movements for both the first
and second part of the experiment.

Subjects mentioned three different factors that affected their perfor-
mance during both parts of the experiment - fatigue, direction changes and
apparatus issues. One subject mentioned predictability as additional factor
in the second part of the experiment.

Five subjects reported that the target paths during the second part of
the experiment were more predictable than in the first part.

Subjects pointed out that the target is likely to return to the screen
center when it approaches the edge of the screen in both parts of the exper-
iment (3 in part 1, 4 in part 2). When asked what factors determined the
predictability of the target path in the second part of the experiment, three
subjects reasoned smoothness and four subjects reported familiarity. Three
subjects reported the frequency of direction changes as a significant factor
of path predictability during the first part of the experiment. One subject
thought that two dimensional movements of the target in the second part of
the experiment made the target path less predictable, while three subjects
thought that the single dimension of movement in the first part was a factor.

101

Code Example

What strategy did you use to pursue the target?

Part 1
Predicting (4) “Anticipating the direction” “I pursued the target by seeing where it is

going and trying to get my cursor to that place at the same speed”
Reacting (5) “I just tried to react to the movement of the target.” “Attempt to catch

up with target rapidly, then adjust once within bounds.”
None (1) “None”

Part 2
Predicting (4) “Tried to anticipate the changes in directions of the green circle (as it

neared the edges of the screen).”
Reacting (5) “just followed said target as quickly as I could.” “For the smaller targets,

it was more of a chase.”
None (1) “No”

Did any factors other than target speed or size affect your performance during the experiment?

Part 1
Fatigue (3) “Exhaustion and seeing the same thing over and over again”
Direction Changes (2) “The direction that the target moved affected my performance. It is

easier to follow the target when it is not switching direction.”
Apparatus Issues (3) “Sensitivity of the mouse is not very good.” “Mouse sensitivity”

Part 2
Fatigue (2) “My arm was aching”
Direction Changes (1) “The angle of the direction changes and the time between changes of

direction affected my accuracy”
Predictability (1) “the boundary which a circle could go; the circles didn’t travel all the

way in the screen.”
Apparatus Issues (2) “The mouse sensitivity.” “It’s harder to see the smaller circles when

you’re overlapping it with the bigger square”

Table F.2: Codes derived from the questionnaire results with examples for each code.

102

What factors affected your choice of predictability?

Part 1
Edge of screen (3) “When it is on the edge of the screen, I know that it has to go in the other

direction.” “The rectangle seldom moved to the ends of the spectrum.”
Change frequency (3) “How much time it went in one direction before switching directions.”

“The number of turns the pattern made.”
Single dimension (3) “The rectangle only moved on a set axis.”

Part 2
Edge of screen (4) “It changes direction near the same area.” “When the green circle was

close to the edges of the screen, it’d have to change directions.”
Familiar paths (4) “The number of turns it made, the distance which it travelled.” “Know-

ing that the bar would move to the polar opposite side after reaching a
certain point.”

Smooth paths (3) “The target moves in similar looping path.” “It seemed a more natural
form of movement.”

Two dimensions (1) “Multiple dimensions made it difficult to predict.”

Table F.3: Codes derived from the questionnaire results with examples for each code.

103

Appendix G

Video Annotation Software
Framework

We developed a portable video annotation framework in C++. The an-
notation framework follows a Model-View-Controller design pattern [53] to
separate the concerns of data modeling from interactions.

Annotation model elements are illustrated in the class diagram in Figure
G.1. The framework retrieves and stores annotation model values in XML
files. The key elements of the annotation model are:

1. Projection: A structure to represent a “slice” of a spatio-temporal
region for a particular time.

2. AbstractRegion: An object to represent a spatio-temporal region.
Concrete subclasses implement purely virtual function “Projection-
ForTime” to return a Projection structure.

3. Shape: A polygonal primitive to represent a spatial-only region. Shapes
are used to represent slices of regions in Projection structures.

4. InterpolatedRegion: The InterpolatedRegion is a concrete subclass of
AbstractRegion. An InterpolatedRegion arranges Shape objects in a
self-balancing binary search tree to efficiently insert and interpolate
Projections for particular times. An InterpolatedRegion can also copy
periods from other InterpolatedRegions.

5. ShapeAndTime: A structure to represent keyframes in an Interpolat-
edRegion. The structure represents four types of keyframe - start,
continuous, disjoint and end - and can transform keyframes between
the different types.

6. BindingModel: An object to manage dictionaries of regions and marks,
keyed on RegionID and MarkID. The dictionary of regions represents
a number of overlapping spatio-temporal volumes. The model also
maintains a dictionary of bindings between regions and marks.

104

7. Binding: An object to represent a time-dependent association between
a region and a mark.

8. Mark: An object to represent metadata to be associated with a number
of regions. Marks are typically subclassed to add instance variables
for particular information types.

Different user interface frameworks such as iOS UIKit can draw on the
model. Here, view and controller elements for the Storm user interface
framework (developed in the HCT lab) are illustrated in the class diagram
in Figure G.2. The key elements of the annotation view hierarchy are:

1. FrameController: An object to coordinate annotation display and in-
teractions for a particular video time. On video updates, the controller
passes relevant Projection objects to an AnnotationLayer subclass for
display. The controller also implements interaction logic to update
the model on callbacks from the AnnotationLayer. For instance, the
controller maintains a “working region” to accumulate region portions
under construction before merging the newly constructed portions with
existing region portions.

2. AnnotationLayer: An abstract object to display a set of Projection
objects for a particular time. Concrete subclasses use a Flyweight
pattern [35] to render Projection objects - Appearance objects are
reused for Projections from the same region but different times. An
annotation layer also captures mouse events but does not have a di-
rect reference to the annotation model so relies on callbacks to the
controller to create or modify regions. Mouse events are transformed
into higher-level interactions such as shape creation or path creation
with state machines.

3. Appearances (SimpleProjectionUI or ProjectionUI): Flyweight objects
to encapsulate interactions with Projections, such as dragging vertices
of a polygonal Projection Shape. The objects also determine the style
of Projection rendering, such as selected state colour and visualisation
“tails”.

To evaluate the performance of the framework, we conducted tests of
keyframe insertion times and interpolation times on a MacBook Pro with
an Intel Core 2 Duo processor running at 2.16Ghz, with 2GB of RAM.
We report the results in Table G.1. Insertion times depart from a log(N)
relationship - future work should optimise the binary tree rebalancing.

105

Operation Keyframes
Present

Average
Time (us)

Standard
Deviation
(us)

Insertion 1e5 7 5
Insertion 1e6 20 17
Insertion 1e7 115 87

Interpolation 1e5 5 1
Interpolation 1e6 9 1
Interpolation 1e7 16 2

Table G.1: Average insertion and interpolation times for the annotation
framework. The times reported are based on ten insertions and interpo-
lations for 10,000, 100,000 and 1,000,000 preexisting keyframes each con-
taining a single point. We randomly spaced keyframes between 0 and 100
seconds to populate an InterpolatedRegion.

A known shortcoming of the annotation framework is the management
of interpolated Projections by the InterpolateRegion class. Interpolated
Projections must be explicitly deleted, typically by controllers - but the
programmer must take care to avoid invalidating Projections that may still
be referenced by other controllers and views. Future development could
provide mechanisms to notify dependents when Projections are deleted.

106

Figure G.1: Class diagram for the data model to support annotation regions
for multiview video.

107

Figure G.2: Class diagram for the view and controller objects to view and
manipulate annotation regions.

108

Appendix H

Video Annotation Design
Guidelines

The following design guidelines for video annotation tools have been drawn
from relevant literature, interviews with expert annotators (Appendix E), a
study of novice annotators and feedback on an annotation tool prototype.
The guidelines should “help the designer understand the trade-off for the
design that would result in following or disregarding some” [30].

H.1 Guidelines for Annotators

• Annotation should be an iterative process

Annotators should iterate on annotations [93]. Annotators can make
specific fixes on each pass, concentrating on the same task throughout.

During an initial “first pass”, annotators should annotate significant
events and provide landmarks for easy navigation later [42]. In this
way, annotators focus their efforts on significant portions of the video.

Iterations on annotations can be performed by different annotators.
Vondrick et al. developed the crowdsourced video annotation tool
- Vatic - for distributed annotation [92]. To improve the quality of
annotation with distributed annotation systems, the researchers report
that annotation should be split into two asynchronous phases: (1)
creation, and (2) review.

• Annotation should be a collaborative process

Cockburn et al. explored synchronous collaborative annotation with
an interface for both co-located and remote annotators, although only
co-located annotation was examined [24]. Their research suggests that
annotators discuss their annotations during pauses in video playback.

Rahn et al. point out that if techniques for resolving conflicting anno-
tations could be developed, then richer annotations could be created

109

from existing annotations - both synchronously and asynchronously
[73].

Topkara at al. argue that annotation metadata should be shared and
modified during collaborative annotations in the workplace [89]. Work-
ers can correct the mistakes of others, or reuse metadata to improve
the quality of workplace media annotations. However, expert annota-
tors we interviewed pointed out the complexity of verifying the work of
multiple annotators - particularly work from crowd-sourced annotators
(Appendix E).

H.2 Guidelines for Tool Designers

• Tools should visualise a range of annotation scales

MacKay proposed that tools visualise different levels of annotation
“granularity” [60]. Annotations can range from comments on quick
events such as sports goals, to detailed statistics on a player over the
course of a game.

Annotation overviews should (1) provide a map of where annotation
can be focussed, (2) reveal errors in the annotations, and (3) support
navigation within video. During our interviews, annotators recom-
mended visualising player paths on a rink overview - this would allow
them to see “breaks” in annotations that need additional work (Ap-
pendix E).

To use a sports example, coaches annotating ice-hockey footage are
not interested in the entire game - they prefer to see where players
performance is critical, such as during power plays or face-offs, and
avoid fights and when players are “killing time”.

• Tools should provide structured spatio-temporal entites and
metadata

A number of researchers advise structuring both spatio-temporal en-
tites and metadata, with sufficient flexibility to provide accurate an-
notations.

Topkara at al. argue that consistency in annotation metadata makes
annotation of workplace video more reliable [89]. But they also point
out that the metadata must to be adjustable to best describe or elab-
orate on objects in the video.

110

During user studies, Weber et al. noticed that annotators needed
metadata for (1) navigation and (2) to describe or elaborate on seman-
tic entities [93]. Cockburn et al. advises annotation tools designers to
allow searching within annotated video [24].

Annotations are often created for (1) further analysis or (2) to search
for objects and events within video, so annotators create spatio-temporal
entites and metadata that are structured and exportable (for example
ANVIL [51], ELAN [95], EVA [60], GALATEA [71]).

Grudin suggests that tools provide “universal annotation support” -
that any media can be annotated with any other media [40]. But the
flexibility of spatio-temporal entites and metadata should be appro-
priate for the context of annotation [5]. For example, the home user
will not spend a lot of time on video annotations, preferring simple -
yet quick - annotation tools such as YouTube Annotations [3].

• Tools should allow rich manipulation of media

MacKay suggests reordering video segments is useful for annotating
batches of events or objects [60]. Cockburn et al. suggests that video
segment reordering is useful for video presentation [24].

However, Grudin et al. highlight the challenge of sharing consistent
annotations among video annotators and viewers, while simultaneously
allowing annotators to rearrange the video [40].

Annotations can serve as indexes to manage libraries of videos - the
Family Video Archive managed home movies [5], SVAT managed the-
ological video [75], Videotater managed news reports [28], and ELAN
managed video for speech research [95].

Annotation tools can support multiple streams of media. The EVA an-
notation tool [60] and ELAN [95] supported annotations of keystroke
logs, audio recordings and video. Overview visualisations are espe-
cially important to help organise annotations in multi-stream media.

• Tools should support rich navigation within media

Potel et al. noticed that tools should allow video playback at any speed
and in any direction [71]. Expert annotators reviewing annotations
often review video backwards (Appendix E).

Harrison et al. and Cockburn et al. recommend that navigation con-
trols should be physically close to annotation controls because of the

111

tight relationship between creating and correcting annotations and
navigating within video [24, 42].

Tools should allow annotators to skip to portions of video previously
annotated, especially when annotating libraries of video. In early for-
mative studies we conducted, annotators suggested annotation tools
should provide onion-skin previews of neighbouring frames to reduce
navigation among frames.

The MediaDiver demonstrated how annotators can use previews of
multi-angled video to navigate between views of a sports game while
correcting shared annotations [63]. However, view changes should
avoid confusing the annotator.

Cockburn cautions that interruption to video playback during annota-
tion should be minimised, especially during synchronised collaborative
annotation [24]. This is also emphasised by MacKay, who points out
that annotation in time with video playback is a quick way to create
a “first pass” [60].

In some contexts, frame by frame annotation is not necessary. While
rotoscopers may want frame by frame navigation [9], home users would
find it unappealing to navigate to exact times to annotate video. The
Family Video Archive supports annotation on “scenes” - relatively
large video chunks that don’t require fine navigation [5]. Goldman et
al. developed computer vision assisted annotation methods to avoid
fine navigation within video while creating spatio-temporal entites [38].

• Tools should automate annotation when possible

Rehatschek et al. point out that many automation techniques can
speed up the annotation process, such as object and event detection
and segmentation [75]. The Viper tool supported face detection [31],
as did Videolyzer [29]. The Family Video Archive [5] and MuLVAT [88]
detected scenes within video. TrackMarks [27] and Vatic [92] tracked
objects within the video. Videolyzer [29] and ELAN [95] recognised
spoken words within video.

Other automatiion techniques that assist annotators include (1) video
stabilisation (LabelMeVideo [96]), (2) checklists of objects yet to be
found in video (Expert Interviews, Appendix E, (3) multiangle video
to help confirm object identities (MediaDiver [63] and (4) distributed
annotation (Vatic [92]).

Even when automation struggles with video of overlapping objects or

112

objects that disintegrate, active learning techniques can flag the issues
for manual annotation [91].

• No annotation tool can support all annotations

Grudin et al. argue that no single annotation tool can support all
video annotation contexts [40]. They propose that annotation system
designers consider annotation frameworks that support (1) interoper-
ability of annotations across task specific interfaces, (2) flexible struc-
tures for annotation spatio-temporal entites and metadata, and (3)
flexibility of annotation storage for distributed and single annotator
contexts.

Annotation system designers can tailor tools to particular annotation
contexts, however. The Family Video Archive focused on indexing
home movies [5]. The MediaDiver catered to annotators watching
multiangle sports video from an arena [63].

Alternatively, annotation system designers could create tools that are
customisable. Harrison et al. developed a customisable interface to
allow annotators to rearrange interface elements for particular anno-
tation contexts [42]. Topkara et al. developed a “mashable” interface
to be incorporated into existing workplace toolsets [89].

113

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Contributions

	Related Work
	Video Annotation Representations
	Image and Video Media
	Semantic Entities
	Spatio-Temporal Entities

	User Interfaces To Create Point-Based Paths
	Smith's Taxonomy
	Wills' Taxonomy

	Discussion
	Annotation Method Comparisons
	Input Device Considerations

	Conclusion

	Pursuit Method Definition
	Pursuit Method Interactions
	Specify Start and End Times
	Define a Sequence of Points

	Pursuit Method Examples
	Handling Challenging Video Object Movements
	Integrating With Other Annotation Tasks

	Informal Prototype Evaluation
	Discussion
	Conclusion

	Peak Error Model for Pursuit Interactions
	System Impulses
	Impulse Responses
	Peak Error Model
	Discussion
	Conclusion

	Pursuit Method Performance
	Hypotheses
	Experiment Design
	Subjects
	Independent Variables
	Dependent Variables
	Task
	Apparatus

	Results
	Peak Error Model
	(H1) Annotation Time
	(H2) Annotation Accuracy
	(H3) Annotators Satisfaction
	(H4) Annotation Method Preference
	Additional Results

	Discussion
	Conclusion

	Design Guidelines
	Choosing Pursuit Methods
	Pointing Interaction Speed-Accuracy Trade-Off
	Pursuit Interaction Speed-Accuracy Trade-Off

	Choosing Video Playback Rate
	Playback Rate Formula
	Prototype Example

	Time-Shifting Paths
	Conclusion

	Conclusion
	Future Research on Pursuit Methods
	Extended Model Study
	Additional Video Conditions
	Semi-Automated Pursuit Methods Study
	Refinements to Pursuit Method Paths

	Bibliography
	Annotation Metadata
	Spatial Area Definition Methods
	Selection Methods
	Placement Methods
	Brush Methods
	Lasso Methods
	Rubber-Band Methods
	Shape-Parameter Methods
	Grouping Methods

	Temporal Period Definition Methods
	Spatially-Represented Methods
	Synchronised Segmentation Methods

	Spatio-Temporal Volume Definition Methods
	Keyframed Methods
	Track-Based Methods
	Sparse-Frame Methods

	Annotator Interviews
	Pursuit Model Study
	Related Work
	Experiment Tasks
	Part 1. Synthetic Paths
	Part 2. Derived Paths

	Subjects
	Synthesized Paths, Part 1
	Derived Paths, Part 2

	Apparatus
	Analysis of Variance
	Synthesized Paths
	Derived Paths

	Questionnaire Analysis
	Questions
	Responses

	Video Annotation Software Framework
	Video Annotation Design Guidelines
	Guidelines for Annotators
	Guidelines for Tool Designers

