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Abstract

Dislocation lines affect the electrical and optical properties of semiconduc-

tors. In this research, the effect that the threading dislocation lines have

on the free electron concentration and the electron mobility within gallium

nitride and indium nitride is investigated. A formulation is developed for

obtaining the screening space charge concentration and the corresponding

electrostatic potential profile surrounding the dislocation lines. The resultant

electrostatic potential profile has then been used to compute the associated

electron mobility, limited by scattering from the charged dislocation lines.

As part of this research, a Gibbs factor formalism is also developed that can

readily obtain the occupation statistics of the defect sites associated with the

threading dislocation lines.
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Preface

This thesis, entitled “Electrical Properties of Dislocations within the Nitride

Based Semiconductors Gallium Nitride and Indium Nitride,” presents the

research performed by Erfan Baghani. This research was supervised by Dr.

Stephen K. O’Leary of The University of British Columbia.

A portion of the contents of Chapters 2 and 3 is published (Baghani and

O’Leary 2011) “Electron mobility limited by scattering from screened pos-

itively charged dislocation lines within indium nitride”, Appl. Phys. Lett.,

vol. 99, pp. 262106-1-3. These results were produced using an iterative pro-

cedure that was developed by the author of this thesis.

A version of the contents of Section 4.5 is published (Baghani and O’Leary

2011) “Occupation statistics of dislocations within uncompensated n-type

wurtzite gallium nitride”, J. Appl. Phys., vol. 109, pp. 113706-1-6. This

section includes the original work of the thesis author, on the development

and application of a Gibbs factor formalism to the problem of determining

the occupation statistics of the dislocation lines with an assumed dangling

bond dislocation core structure.

A version of the results presented in Section 4.6 is published (Baghani and

O’Leary 2011) “Occupation statistics of the VGa −ON dislocations within n-

type gallium nitride”, J. Appl. Phys., vol. 110, pp. 033509-1-6. This section
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includes the original work of the thesis author, on the application of a Gibbs

factor formalism to the problem of determining the occupation statistics of

the dislocation lines with an assumed VGa −ON dislocation core structure.
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Chapter 1

Introduction

1.1 Motivation for the study of the nitride

based semiconductors

The III-V nitride semiconductors, gallium nitride (GaN), indium nitride

(InN), and aluminum nitride (AlN), possess a number of interesting material

properties that make them suitable for a wide variety of important electronic

and optoelectronic device applications [1, 2, 3, 4]. In terms of electronics,

the wide energy gap of GaN, 3.39 eV at room temperature, makes it possible

to use this material in high-frequency and/or high-power electron device ap-

plications [5, 6]. In terms of optoelectronics, the direct nature of the energy
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gap associated with these materials, and the fact that ternary and quater-

nary alloys of these materials can be epitaxially grown, allows for their use

in optoelectronic device applications, ranging from the near-infrared to the

ultraviolet [7]. While initial attempts to fabricate electron devices with these

materials were hindered by growth difficulties, many of these problems have

now been solved. As a consequence, functional electron devices have been

fabricated using GaN, InN, and AlN, and alloys of these materials [7, 8, 9].

This has generated considerable interest in the III-V nitride semiconductors.

Pioneering investigations into GaN were performed in the early 1930s by

Johnson et al. [10]. The GaN samples considered in these early investigations

were prepared through the interaction of ammonia gas with metallic gallium

at elevated temperatures. Later, reactive sputtering was used in order to

grow thin films of this material. Workers, such as Hovel and Cuomo [11],

Malyutin et al. [12], Vesely et al. [13], Hariu et al. [14], Lakshmi et al. [15],

Matsushita et al. [16], and Kubota et al. [17], employed this approach in

order to understand the physical properties of this material. Unfortunately,

the materials produced were polycrystalline in nature and not of the high

quality crystalline form required for the electron device applications presently

envisioned for this material.

A successful means of epitaxially growing high quality crystals of GaN was
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found through the use of chemical vapor deposition (CVD). This approach

to growing crystalline GaN was first employed by Maruska and Tietjen in

1969 [18]. In their approach, HCl vapor was allowed to react with metallic

gallium, the resultant chemical species reacting with ammonia gas at the

substrate. A number of variations on this approach have been developed

through the years, including those by Pankove et al. [19], Crouch et al. [20]

and Adonin et al. [21]. CVD remains a popular means whereby crystalline

GaN may be fabricated.

Molecular beam epitaxy (MBE) may also be employed for the deposition

of crystalline GaN. Initially, it was thought that MBE would allow for growth

at lower temperatures than those required of CVD. In principle, this should

allow for greater control over the growth process, thereby permitting the

increased incorporation of nitrogen and reducing the unwanted high back-

ground electron concentration typically found in GaN. In addition, MBE

was viewed as a promising technique for the growth of nitride-based het-

erostructures. Unfortunately, the promise that MBE offered failed to meet

some of these lofty expectations, probably as a consequence of low reaction

rates. Nevertheless, MBE remains a popular means of depositing customized

devices fabricated with GaN.

Juza and Hahn [22] were the first researchers to synthesize InN. They
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grew their samples using the same deposition procedure as that employed by

Johnson et al. [10], i.e., through the interaction of ammonia gas with metallic

indium at elevated temperatures. It was not until the 1960s, however, that

research into InN was further pursued. Following the lead of GaN researchers,

reactive sputtering was used in order to grow thin films of InN. Researchers,

such as Pastrnak and Souckova [23], Hovel and Cuomo [11], and Tansley

and Foley [24] used this technique in order to explore the properties of InN.

Later, CVD and MBE were used in order to fabricate high quality samples

of crystalline InN [23, 25, 26].

A major breakthrough occurred in 2002, stemming from the much im-

proved quality of InN films grown through MBE. The bandgap of the re-

sulting epitaxial films was found to be 0.64 eV [27]; previous measurements

had suggested a bandgap value of about 1.89 eV at room temperature for

this material [28], although it should be noted that these previous measure-

ments were performed on powdered samples of InN [11, 28, 29, 30]. These

new results suggest that InN, and that alloys of InN with GaN, can be used

to fabricate a family of optical devices that span over a broad swath of the

electromagnetic spectrum, ranging from the near-infrared to the ultraviolet

regions [7]. This finding ignited tremendous interest in the material proper-

ties of the narrow-bandgap group-III nitride semiconductors.
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Unfortunately, a major obstacle for the further development of the ni-

tride based semiconductor device technologies remains the absence of a lat-

tice matched substrate for the epitaxial growth of these materials. Presently,

substrates, such as sapphire (A12O3) and silicon carbide (SiC), are commonly

used for the growth of high quality GaN films; it should be noted, however,

that there has been great recent interest in the growth of GaN-based ma-

terials on silicon (Si) substrates, offering not only low production costs but

also attractive opportunities to incorporate GaN-based electron devices into

Si-based technologies [31, 32]. One of the major challenges in depositing

GaN-based materials on any of these substrates is the large lattice mismatch

between the substrate and GaN-based materials, which inhibits high quality

crystal growth [32]. Therefore, a buffer layer, such as AlN, is often employed

in order to ameliorate this problem. Intensive studies have been carried out

to improve matters. Recently, an enhancement of InGaN film quality has

been reported by Kurouchi et al. [33] with the insertion of a thin InN buffer

layer. In another study, the film quality of InGaN was found to be improved

when zinc oxide (ZnO) is used as the substrate instead of sapphire [34].

Mismatches between the growing epilayer and the underlying substrate

lead to large concentrations of threading dislocation lines, i.e., between 107

and 1011 cm−2 [35, 36], these threading dislocation lines extending from the

5



substrate and/or buffer interface all the way into the deposited samples. In

Figure 1.1, a typical transmission electron microscope image of the thread-

ing dislocation lines within InN is shown, this figure being from Cimalla

et al. [37]. Dislocations are known to affect the electrical and the optical

properties of semiconductors [38]. As a result, the study of the threading

dislocation lines within group-III nitride semiconductors has been the fo-

cus of some attention in recent years. Electrically, it is known that within

GaN, electrons trapped by the threading dislocation lines diminish the over-

all electron mobility [39, 40]. Optically, the trapping level associated with

the dislocation defects can act as non-radiative recombination centers, and

thus, are responsible for shaping features observed in the optical absorption

and photoluminescence spectra [41].

In this thesis, the occupancy of the defect sites associated with the thread-

ing dislocation lines within GaN and InN will be examined. The way this

occupancy shapes the material properties of these semiconductors will also

be probed. The focus will be primarily upon those properties that have a

direct impact upon electron device performance. The case of AlN is not con-

sidered as its energy gap is so wide that it effectively acts as an insulator and

is thus electrically inert.
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Figure 1.1: A transmission electron microscope image of the threading dislo-

cation lines present within epitaxially grown InN. This image is from Cimalla

et al. [37].
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1.2 The crystalline structure of GaN and InN

Depending on the epitaxial growth conditions, GaN, InN, and related

alloys, have been successfully grown in both the zinc-blende and the wurtzite

crystal structures. In Figures 1.2(a) and (b), the atomic configurations

associated with the zinc-blende and wurtzite crystal structures have been

schematically depicted, respectively. The zinc-blende crystal structure can

be thought of as being similar to the crystal structure associated with a dia-

mond, with every other atom in the diamond crystal structure being replaced

by an atom of the second element. The wurtzite crystal structure, however,

is structurally closer to the graphite crystal structure. In order to distinguish

the associated honey-comb meshes within the wurtzite crystal structure de-

picted in Figure 1.2(b), this crystal structure has to viewed from the top. The

majority of work on GaN-based materials has been focused on the wurtzite

structure, as most III-V nitride semiconductors have been grown epitaxially

on sapphire substrates, resulting in wurtzite based nitride films [42, 43]. As

a result, for the purposes of the analysis presented in this thesis, the focus

will be on the electrical properties of the dislocation lines present within the

wurtzite crystal structures associated with both GaN and InN.
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(a) (b) 

Atom B 

Atom A Atom A 

Atom B 

Figure 1.2: (a) The zinc-blende and (b) wurtzite crystal structures.
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1.3 Material parameters associated with wurtzite

GaN and wurtzite InN

In Table 1.1, the material parameters, corresponding to wurtzite GaN

and wurtzite InN, are presented. The symbol, me, denotes the free electron

mass.

Table 1.1: The material parameters corresponding to wurtzite GaN and

wurtzite InN. These material parameters are drawn from the references indi-

cated within the square brackets. The bulk donor energy levels are provided

with respect to the valence band maximum.

Parameter Symbol GaN InN

Electron effective mass m∗e 0.2 me [44] 0.04 me [45]

Energy gap εg (eV) 3.4 [44] 0.7 [46]

Bulk donor energy level εd (eV) 3.39 [47] 0.69 [48]

Relative dielectric constant εr 8.9 [44] 15.3 [49]

c-lattice constant c (Å) 5.1 [50] 5.71 [51]

a-lattice constant a (Å) 3.16 [50] 3.53 [51]
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1.4 Atomic structure of the edge type dis-

locations within the wurtzite GaN and

wurtzite InN crystal structures

Dislocations are one dimensional defects embedded in the bulk of a crys-

tal structure. Structurally, dislocations can be pure edge, pure screw, or of

a mixed type. A schematic atomic configuration of such defects is depicted

in Figure 1.3 [52]. Experimental results, presented in the literature, have

shown that the majority of the dislocation lines within strained epitaxially

grown samples of the nitride based semiconductors are pure edge in charac-

ter [53, 54, 55, 56]. As a result, in this thesis, only edge type dislocations

for the core structure of the dislocation lines will be considered. Several

different atomic configurations, for the core structure of edge type disloca-

tions within the wurtzite crystal structure of GaN, have been suggested in

the literature [57, 58]. These include the 4-ring, the 5/7-ring, the 8-ring, the

gallium vacancy, and the nitrogen vacancy dislocation core structures. The

5/7-ring and the 8-ring core structures have alternatively been referred to as

the open core and full core dislocations, respectively.

The defect site associated with each of these dislocation core structures

is depicted in Figure 1.4. Parts (a), (b), and (c) of this figure are after Takie

11



 

Figure 1.3: A section of a cubic crystal lattice, including a pure edge (A) and

a pure screw dislocation (B). This figure is from Darling [52].
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 (a) (b) 

(c) (d) 

(e) (f) 

Nitrogen Gallium Nitrogen Gallium 

Nitrogen Gallium 

Figure 1.4: Schematic atomic configurations of the: (a) 4-ring, (b) 5/7-

ring, (c) 8-ring, (d) gallium vacancy, (e) nitrogen vacancy, and (f) VGa −ON

dislocation core structures within wurtzite GaN. Parts (a), (b), and (c) are

after Takie and Nakayama [59]. Parts (d) and (e) are after Lee et al. [57].

Part (f) is after You et al. [60].
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and Nakayama [59], while parts (d) and (e) are after Lee et al. [57]. Part

(f) is after You et al. [60]. The wurtzite lattice c-direction, along with the

[0001] crystallographic growth direction, runs out of the page for all parts of

Figure 1.4. Similar dislocation core structures have also been suggested for

the threading dislocation lines within wurtzite InN [59, 61].

Of particular importance in this thesis, is another dislocation core struc-

ture within the wurtzite crystal structure of GaN, depicted in Figure 1.4(f),

and henceforth referred to as the VGa −ON dislocation core structure. This

dislocation core structure can be obtained from the gallium vacancy dislo-

cation core structure through the replacement of the nitrogen atom at the

center of the gallium vacancy dislocation core structure with an oxygen atom.

In Section 4.6, the energy configuration, as well as the occupation statistics

associated with the VGa −ON dislocation core structure, will be discussed in

greater detail.

Regardless of the particular atomic configuration of the dislocation core

structure, in this thesis, the smallest repetitive structural unit of the dislo-

cation, along the direction of the dislocation line, will henceforth be referred

to as a dislocation defect site.
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1.5 Electrical properties of the threading dis-

location lines within GaN and InN

Dislocation lines within semiconductors were identified as possessing

electrical properties associated with them as early as the 1950s [62, 63]. It

was observed that after the introduction of dislocations through plastic de-

formation into samples of n-doped germanium and silicon, the free electron

concentration, as well as the overall electron mobility, decreased measurably

within these semiconductor materials. A thorough review article on the elec-

trical, as well as the optical properties of dislocations within germanium and

silicon, exists in the literature [64].

Within GaN and InN, it has also been observed that the electron mobility

is adversely affected by the presence of the threading dislocation lines [39,

40, 65, 66, 67]. Studies suggest that the threading dislocation lines affect the

free electron concentration of the associated semiconductor material differ-

ently within n-type GaN and n-type InN; within n-type GaN, experimental

results, obtained from the electron holographic mapping of individual thread-

ing dislocation lines, have shown the dislocation defect sites to be negatively

charged [68, 69, 70, 71]. In other words, within GaN, the dislocation defect

sites act to reduce the free electron concentration of the material by trap-
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ping some fraction of the free electrons from the conduction band. Within

n-type InN, however, several investigations suggest that the threading dislo-

cation lines contribute to the problem of the unintentional n-type nature of

this semiconductor material [59, 61, 66, 72]. In other words, within InN, the

dislocation defect sites donate electrons to the conduction band, thereby in-

creasing the free electron concentration within this semiconductor material.

The underlying reason for this difference in the contribution of the threading

dislocation lines to the free electron concentration within GaN and InN, is

the difference in the positioning of the dislocation defect energy level, εt, with

respect to the conduction band minimum for each case. Within GaN, the

dislocation defect energy level lies deep within the energy gap. In the case

of InN, however, the dislocation defect energy level is suggested to lie above

the conduction band minimum.

Several approaches have been pursued in the literature in order to deter-

mine the occupancy of the dislocation defect sites within n-type GaN. The

earliest modeling of the charge build up along a dislocation line is due to

Read [73]. The model of Read remains the most widely used model for the

treatment of the occupancy of the dislocation lines within semiconductors to

date. The model of Read [73] pictures a dislocation line within the diamond

crystal structure of germanium as being comprised of a row of identical and
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equally spaced dangling bonds; see Figure 1.5.

A revised electrostatic theory of charged dislocation lines within semi-

conductors has been formulated in this thesis. In addition to the screening

space charge distribution profile, this procedure also gives a computational

solution to the electrostatic potential surrounding the charged dislocation

lines. The electrostatic potential thus obtained enables a determination of

the electron mobility limited by scattering from the charged dislocation lines

with greater certainty than that which has previously been achieved in the

literature. In addition, the development of theoretical tools, that may be

more easily applied to such problems, has been a focus of study. The nature

of the screening mechanisms within these materials is also examined. Ulti-

mately, fresh insights into the nature of these charged defects, and how they

may influence the performance of GaN and InN related electron devices, have

been acquired.

This thesis is organized in the following manner. In Chapter 2, a for-

mulation for obtaining the most general screening space charge distribution

surrounding a dislocation line within a semiconductor will be developed.

Then this formulation will be applied to the specific case of dislocation lines

within GaN and InN. In particular, it will be shown that distinctively dif-

ferent screening space charge distribution profiles exist around the threading
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Figure 1.5: The atomic structure of a dislocation line within the diamond

crystal structure. This figure is after Read [73]. The direction of the dislo-

cation line is indicated with the dashed line in this figure. The symbol ⊥ is

frequently used in order to denote an edge type dislocation in the literature.
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dislocation lines within GaN and InN. In Chapter 3, the formulation for

electron scattering from charged dislocation lines will be presented. Both

the electron drift and Hall mobilities, limited by scattering from the thread-

ing dislocation lines within GaN and InN, will be computed. In Chapter 4,

the dislocation occupation statistics will be discussed. In particular, it is

suggested that a Gibbs factor formalism can be used to obtain the occupa-

tion statistics of the defect sites along threading dislocation lines within a

semiconductor. Finally, conclusions are drawn in Chapter 5 and recommen-

dations for future research are made.
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Chapter 2

Dislocation line charge

screening

2.1 Modeling the charge build-up along the

dislocation lines

As was mentioned in the previous chapter, the defect sites along the

threading dislocation lines within GaN and InN can be electrically active.

Taking charge neutrality considerations into account, a negative or positive

charge residing on the defect sites along threading dislocation lines should

be compensated by a spatial charge distribution of the opposite polarity
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and equal in magnitude surrounding each threading dislocation line. This

surrounding space charge distribution will henceforth be referred to as the

screening space charge distribution.

In this thesis, for computational simplicity, the screening space charge

distribution will be assumed to be invariant along the direction of the dislo-

cation lines. As a result, in cylindrical coordinates, a solely radial functional

form will be assumed for the screening space charge distribution. This in-

variance assumption is valid if (1) the dislocation lines are infinitely long,

and (2) the discrete charge residing at the defect sites along these dislocation

lines can be modeled with a uniform linear charge along the lines. In order

to avoid the electrostatic potential surrounding the dislocation lines from

becoming singular at r = 0, the core charge distribution will be considered

to be spread uniformly in a cylinder of radius, Rdc, which will henceforth be

referred to as the dislocation core radius.

For the purposes of this analysis, the basal lattice constant, a, in the

wurtzite crystal structures of GaN and InN will be taken as the dislocation

core radius, Rdc, for each case. As a result, in this chapter, the charge

build-up at each threading dislocation line will be modeled with two coaxial,

infinitely long, space charge cylinders, as shown in Figure 2.1. The threading

dislocation lines extend in the [0001] crystallographic direction of the wurtzite
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Figure 2.1: Modeling the space charge build-up around a threading disloca-

tion line. Rdc denotes the dislocation core radius. Rsc represents the screening

space charge cylinder radius. Rsc will be introduced subsequently.
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crystal structure for both GaN and InN.

The question as to whether the defect sites along the dislocation lines

within a given semiconductor material become predominantly positively or

negatively charged depends upon (1) the positioning of the dislocation de-

fect energy level, εt, within the energy band structure of the semiconductor

material, and (2) the bulk doping conditions of the semiconductor material.

For the purposes of this analysis, the primary focus is on n-type bulk dop-

ing conditions of the semiconductor material; it is experimentally observed

that most samples of GaN and InN are n-type doped in nature [66, 72]. It

has been suggested that within GaN, the dislocation defect sites introduce a

deep acceptor level within the energy gap of GaN. As a result, the dislocation

defect sites within GaN have a natural tendency to accept electrons, thereby

becoming negatively charged. This situation is schematically depicted in Fig-

ure 2.2. Within InN, however, the dislocation defect energy level, εt, has been

shown in the literature to lie above the conduction band minimum [59, 61].

As a result, the dislocation defect sites within InN have a natural tendency to

donate their electrons to the conduction band and thereby become positively

charged. This situation is schematically depicted in Figure 2.3.

In this chapter, a quantitative analysis of the screening space charge dis-

tribution surrounding a threading dislocation line is presented. The analysis
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Figure 2.2: Schematic diagram for the energy band bending around a thread-

ing dislocation line within GaN.
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Figure 2.3: Schematic diagram for the energy band bending around a thread-

ing dislocation line within InN.
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is cast within the framework of the aforementioned radial spatial charge dis-

tribution assumption. Following the presentation of a general formulation for

this problem, the dislocation line charge screening, specific to GaN and InN,

are then computed. The analyzes presented in the subsequent chapters will

be built upon the framework of the formulation developed in this chapter.

This chapter is organized in the following manner. In Section 2.2, a

general formulation for the screening of the dislocation lines within a semi-

conductor material will be developed. Then, in Section 2.3, this formulation

will be applied to the specific case of n-type GaN in order to obtain the

screening space charge distribution, as well as the associated electrostatic

potential function, surrounding the threading dislocation lines within this

semiconductor. In Section 2.4, the electrostatic potential obtained from this

formulation will be compared with existing electron holographic experimen-

tal data in the literature. In Section 2.5, the formulation will be applied to

the specific case of n-type InN.
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2.2 Formulating the screening space charge

distribution surrounding a dislocation line

In modeling the space charge distribution associated with a dislocation

line, it is useful to treat the charge accumulated on the defect sites along the

core of the dislocation line with a uniform space charge of constant concen-

tration, Ndc, confined to an inner cylinder of radius Rdc, i.e.,

ndc(r) =

{
Ndc, r ≤ Rdc

0, r > Rdc

. (2.1)

This space charge cylinder will henceforth be referred to as the dislocation

core charge cylinder. Assuming that the dislocation defect sites are separated

by the c-lattice constant associated with the relevant wurtzite crystal struc-

ture, c, and denoting the charge donated per dislocation defect site along

a dislocation line by f , the constant dislocation core space charge concen-

tration, Ndc, in units of the fundamental electron charge, q, can thus be

expressed as

Ndc =
f

πR2
dcc
. (2.2)

Surrounding each dislocation core charge cylinder is a screening space

charge cylinder of the opposite charge. For computational convenience, the

radius of this space charge cylinder, Rsc, will be assumed to be finite. Un-

der predominantly n-type bulk doping conditions, the contributions from the
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bulk acceptor and bulk hole concentrations to this screening space charge

concentration can be neglected. Thus, the screening space charge concentra-

tion, nsc(r), in units of the fundamental electron charge, q, may be written

as

nsc(r) =

{
n(r)−N+

d (r), r ≤ Rsc

0, r > Rsc.
. (2.3)

In this equation, N+
d (r) and n(r) represent the bulk ionized donor and free

electron concentrations, respectively, at a radial distance, r, from the dislo-

cation line core center.

Poisson’s equation may be expressed as

∇2ϕ = − ρ

εrε0
, (2.4)

where εr denotes the relative dielectric constant of the material, ε0 represents

the dielectric constant associated with free space, and ρ is the space charge

concentration. Within the framework of cylindrical coordinates,

∇2ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂ r

)
+

1

r2

∂2ϕ

∂φ2
+
∂2ϕ

∂z2
, (2.5)

and thus, Eq. (2.4) can be written as

1

r

∂

∂r

(
r
∂ϕ

∂ r

)
+

1

r2

∂2ϕ

∂φ2
+
∂2ϕ

∂z2
= − ρ

εrε0
. (2.6)

A cylindrical spatial charge distribution associated with a dislocation line

implies a cylindrically symmetric electrostatic potential. That is, within the
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present framework of the dislocation line charge modeling, ϕ(r) does not

depend on the φ and z coordinates. As a result, Eq. (2.6) further reduces to

1

r

∂

∂r

(
r
∂ϕ(r)

∂ r

)
= − ρ

εrε0
. (2.7)

Noting that the space charge concentration associated with a given threading

dislocation line may be expressed as the difference between the core space

charge concentration and the screening space charge concentration, i.e.,

ρ = q(ndc − nsc), (2.8)

Eq. (2.7) can be integrated to obtain the resultant electrostatic potential

ϕ(r) = − q

εrε0

∫ r

0

1

r′

∫ r′

0

r′′ [ndc(r
′′)− nsc(r

′′)] dr′′ dr′ + cint, (2.9)

where cint is a constant of integration that will ultimately be determined

through the requirement that ϕ(r ≥ Rsc) = 0.

The effect of the electrostatic potential, ϕ(r), in the neighbourhood of the

dislocation core is to shift all of the electronic energy levels by the amount

−qϕ(r) relative to the Fermi energy level, εF. For the bulk ionized donor

and free electron concentrations employed in Eq. (2.3), this can be achieved

by expressing

N+
d (r) =

Nd

1 + 2 exp [(εF − (εd − qϕ(r))) /kT ]
, (2.10)
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and

n(r) = Nc
2√
π

∫ ∞
0

√
x

1 + exp [x− (εF − (εc − qϕ(r)))/kT ]
dx, (2.11)

where εd and εc denote the bulk donor and conduction band minimum en-

ergy levels, respectively. Nd represents the bulk donor concentration and Nc

denotes the effective density of states of the conduction band, i.e.,

Nc ≡ 2

(
m∗ckT

2π~2

)3/2

, (2.12)

m∗c , k, ~, and T being the electron effective mass, Boltzmann’s constant, the

reduced Planck’s constant, and the temperature, respectively.

The position of the Fermi energy level, εF, can be obtained from the local

charge neutrality condition at distances far from the dislocation lines, where

the potential, ϕ(r), reduces to zero. That is

Nc
2√
π

∫ ∞
0

√
x

1 + exp [x− (εF − εc)/kT ]
dx =

Nd

1 + 2 exp [(εF − εd) /kT ]
.

(2.13)

It is seen that Eq. (2.13) is simply equivalent to saying that nsc(r) = 0, which

should be the case at distances far from the dislocation lines, i.e., for r ≥ Rsc.

In the present analysis, the space charge concentration, nsc(r), and the

electrostatic potential, ϕ(r), will be taken as the unknown variables of the for-

mulation. In order to simultaneously solve for nsc(r) and ϕ(r) from Eqs. (2.3)
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and (2.9), an iterative approach will be proposed that involves finding suc-

cessively more accurate solutions to the screening space charge distribution

function, nsc(r). The details of this iterative approach, for the cases of GaN

and InN, are provided in Appendices A and B, respectively.

2.3 Threading dislocation line charge screen-

ing within GaN

The screening space charge concentration profile, nsc(r), and the cor-

responding electrostatic potential function, ϕ(r), within GaN are plotted as

a function of the radius, r, for five different values of the negative charge

donated per dislocation defect site, f , in Figures 2.4 and 2.5, respectively.

The bulk donor concentration has been fixed to 1018 cm−3 for all of the curves

depicted in these figures. The GaN material parameters used in obtaining

these results are specified in Table 1.1. The radius of the dislocation core

charge cylinder has been set equal to the basal lattice constant of the wurtzite

crystal structure of GaN, a, i.e., 3.16 Å. The corresponding calculations are

all performed at 300 K.

The results presented in Figures 2.4 and 2.5 warrant the following obser-

vations:
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Figure 2.4: The screening space charge concentration of a threading disloca-

tion line within GaN. The bulk donor concentration, Nd, is set to 1018 cm−3

and the temperature set to 300 K for the purposes of this analysis.
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Figure 2.5: The magnitude of the electrostatic potential surrounding a

threading dislocation line within GaN. The bulk donor concentration, Nd,

is set to 1018 cm−3 and the temperature set to 300 K for the purposes of this

analysis.
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• it is observed that with increased values of f , more and more of the

bulk donor atoms at larger radial distances from the dislocation core

loose their donated electrons to the defect sites along the threading

dislocation lines

• due to the requirement of charge neutrality around each threading dis-

location line, the positive charge contained within the screening space

charge distribution, nsc(r), is directly proportional to the value of f ,

i.e.,

f ∝
∫ Rsc

0

nsc(r)2πr dr, (2.14)

for each curve depicted in Figure 2.4

• close to the dislocation line, the screening space charge concentration

reaches its maximum possible value of 1018 cm−3; however, as we start

to move away from the dislocation line, it is observed that screening

from free electrons gradually reduces the screening space charge con-

centration to zero at large radial distances from the dislocation line.

2.4 Comparison with experiment

Off-axis electron holography is an interferometric technique that can

measure the phase shift in an electron wave passing through an object. Since
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the phase shift in the electron wave function is sensitive to the local electro-

static potential within the sample, electron holography can be used to provide

quantitative information about potential variations with nanometer-scale res-

olution. The electrostatic potential associated with a charged dislocation

line within wurtzite GaN has been experimentally determined by Cherns

et al. [69]; through the use of electron holography, Cherns et al. [69] experi-

mentally determined the electrostatic potential associated with an individual

threading dislocation line within n-type wurtzite GaN. Their experimental

results are presented in Figure 2.6. For the bulk doping concentration found

by Cherns et al. [69], i.e., Nd = 6 × 1017 cm−3, a satisfactory fit to this ex-

perimental data may be achieved through the present analysis by setting the

negative charge donated per dislocation defect site to two, i.e., f = 2. This

best fit from the reults of the present analysis is also depicted in Figure 2.6.

2.5 Threading dislocation line charge screen-

ing within InN

Using the formulation developed in Section 2.2, the screening space

charge concentration profile, nsc(r), and the corresponding electrostatic po-

tential function, ϕ(r), within InN are plotted as a function of the radius, r,
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Figure 2.6: Comparison of the results from the present analysis with the

experimental data of Cherns et al. [69]. For this analysis, f is set to 2 and

the bulk doping concnetration, Nd, is set to 6 × 1017 cm−3, this being the

value measured by Cherns et al. [69].
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for different values of the negative charge donated per dislocation defect site,

f , in Figures 2.7 and 2.8, respectively. Similar to the computations for the

case of GaN, the bulk donor concentration has been fixed to 1018 cm−3 for

all of the curves depicted in these figures. The InN material parameters used

for these computations are specified in Table 1.1. The radius of the dislo-

cation core charge cylinder has been set equal to the basal lattice constant

of the wurtzite crystal structure of InN, a, i.e., 3.53 Å. The corresponding

calculations are all performed at 300 K.

The results presented in Figures 2.7 and 2.8 warrant the following obser-

vations:

• it is observed that with increasing values of f , the screening space

charge concentration increases rapidly at distances close to the dislo-

cation line

• due to the requirement of charge neutrality around each of the thread-

ing dislocation lines, the negative charge contained within the screening

space charge distribution, nsc(r), is directly proportional to the value

of f , i.e.,

f ∝
∫ Rsc

0

nsc(r)2πr dr, (2.15)

for each curve depicted in Figure 2.7
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Figure 2.7: Screening space charge concentration of a threading dislocation

line within InN. The bulk donor concentration, Nd, is set to 1018 cm−3 and

the temperature set to 300 K for the purposes of this analysis.
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Figure 2.8: The magnitude of the electrostatic potential surrounding a

threading dislocation line within InN. The bulk donor concentration, Nd,

is set to 1018 cm−3 and the temperature set to 300 K for the purposes of this

analysis.
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• unlike what was seen in the screening of the dislocation core charge

within GaN, within InN the screening close to the dislocation line is

provided predominantly by free carriers.

This free carrier screening constitutes a much more effective screening of

the dislocation core charge when compared with the screening of the dislo-

cation core charge offered by the ionized donors present within GaN. As a

result, it is seen that for the same value of f , the values for the computed

electrostatic potential function, ϕ(r), are much lower within InN than for the

case of GaN; compare Figures 2.5 and 2.8.

40



Chapter 3

Electron mobility limited by

scattering from charged

dislocation lines

3.1 The electron drift and Hall mobilities in

semiconductors

The electron mobility characterizes how quickly an electron can move

through a material under the action of an applied electric field. When an

electric field, E , is applied across a piece of a semiconductor material, the
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electrons respond by moving with an average velocity, vdrift, referred to as the

electron drift velocity. Within a given semiconductor material, the electron

mobility depends on the magnitude of the electric field, particularly at high

fields, when velocity saturation occurs. In the present thesis, however, the

focus is on low-field electron mobilities.

At low applied electric field strengths, the electron drift velocity is linearly

proportional to the applied electric field strength. That is

vdrift = −µdriftE , (3.1)

where µdrift denotes the electron drift mobility and the negative sign reflects

the fact that electrons are pulled in the opposite direction of the applied elec-

tric field. Electron mobilities are almost always specified in units of cm2/Vs.

The electron mobility arises as a consequence of imperfections within a

semiconductor material and as a result of the interaction of transiting elec-

trons with the atoms within the material, which naturally engage in vibra-

tions as a result of thermal processes. Each material system possesses crystal

defects, vacancies, dislocations, impurities, and other features which will act

to scatter transiting electrons. At elevated temperatures, due to their thermal

energy, the atoms within the crystal structure of a semiconductor material

will vibrate about their equilibrium lattice sites. The transiting electrons

will collide with such vibrating atoms, and, as a result, will be scattered.
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As with the molecules of a gas within a container, in the absence of

an applied electric field, the conducting electrons within a semiconductor

material move in random directions, with a wide range of different energies.

When an electric field is applied, a net average velocity is obtained, this

velocity being in the opposite direction of the applied electric field. The

average time it takes for an electron within a semiconductor material to move

between successive scattering events is denoted by 〈τ〉. The bracket notation

in this expression, 〈τ〉, is used to denote an averaging over all possible energies

of the incident electron. In the literature, the physical quantity, 〈τ〉, is often

referred to as the mean free time, or the relaxation time, of the electrons.

Under the action of an applied electric field, E , electrons will accelerate

at a rate equal to −qE/m∗e between the successive scattering events. Noting

that the force exerted on an electron by the periodic net positive charge of

the lattice atoms is already implicitly contained within the electron effective

mass term, m∗e, the electron drift velocity can thus be expressed as

vdrift = − qE
m∗e
〈τ〉 . (3.2)

That is, on average, an electron’s velocity in the opposite direction of the

applied electric field is proportional to the product of the applied electric

field strength and the average time between scattering events, and inversely

proportional to the electron effective mass. A comparison of Eq. (3.2) with
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Eq. (3.1), gives the following expression for the electron drift mobility

µdrift =
q 〈τ〉
m∗e

. (3.3)

Empirically, electron mobility is often measured through the use of a Hall

effect experiment. In the Hall effect experiment, in addition to the applied

electric field, E , the transport of the conduction electrons is affected by the

presence of a weak magnetic field, B, applied in a direction perpendicular to

that of the applied electric field. As a result, the experimentally measured

electron Hall mobility differs slightly from the electron drift mobility defined

earlier. Specifically, it can be shown that the electron Hall mobility is related

to the electron drift mobility through the following relationship

µHall =
〈τ 2〉
〈τ〉2

µdrift, (3.4)

where, once again, the bracket notation in the expressions for 〈τ 2〉 and 〈τ〉,

represents an averaging of the relaxation time squared and the relaxation

time over all of the possible energies of the incident wave vectors [74].

For multiple scattering mechanisms, the effective mean free time is derived

from the individual mean free times of the representative scattering events,

i.e.,

1

〈τ〉
=

1

〈τdis〉
+

1

〈τimp〉
+

1

〈τpiezo〉
+

1

〈τlattice〉
+ ..., (3.5)
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where 〈τdis〉, 〈τimp〉, 〈τpiezo〉, and 〈τlattice〉 denote the dislocation scattering

limited mean free time, the impurity scattering limited mean free time, the

piezoelectric scattering limited mean free time, and the lattice vibration

scattering limited mean free time, respectively. Multiplying both sides of

Eq. (3.5) by m∗e/q, one obtains the celebrated Matthiessen’s rule, relating

the overall electron mobility, µ, to the partial electron mobilities, i.e.,

1

µ
=

1

µdis

+
1

µimp

+
1

µpiezo

+
1

µlattice

+ ..., (3.6)

where µdis, µimp, µpiezo, and µlattice denote the dislocation limited, impurity

limited, piezoelectric limited, and lattice vibration limited electron mobilities,

respectively. It should be mentioned that Matthiessen’s rule is an approx-

imation and is not universally valid. This rule is not valid if the factors

affecting the mobility depend on each other, because individual scattering

probabilities cannot be summed unless they are independent of each other.

Among the different electron scattering mechanisms present within GaN

and InN, in this thesis, only the electron drift and Hall mobility limited by

scattering from the dislocation lines will be examined. Specifically, in the

present work, the dependence of the electron drift and Hall mobilities on the

threading dislocation line density, and the amount of charge accumulated

along the threading dislocation lines within GaN and InN, will be computed

separately.
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This chapter is organized in the following manner. In Section 3.2, the

formulation corresponding to the scattering of electrons from the dislocation

lines within semiconductors will be presented. Results for the electron drift

and Hall mobilities, limited by scattering from the threading dislocation lines

within GaN and InN, are then presented in Sections 3.3 and 3.4, respectively.

3.2 Formulation

The formulation presented in this section follows closely the formula-

tion developed in a paper by You et al. [60]. Similar to the other scattering

mechanisms present within semiconductors, scattering from the dislocation

lines should be treated quantum mechanically. In Figure 3.1(a), a repre-

sentative scattering event from a dislocation line is depicted. In this figure,

it is assumed that an electron, of a plane wave functional dependence, i.e.,

ψ(~k, ~r) = 1√
V

exp(i~k · ~r), is incident upon the dislocation line and is scattered

in a direction indicated by the wave vector, ~k′. The incident and the scattered

wave vectors, i.e., ~k and ~k′, can be decomposed into components parallel and

perpendicular to the dislocation line direction. The component parallel to

the dislocation line direction, denoted by ~k‖ and ~k′‖, will not change during

the scattering process, i.e., ~k‖ = ~k′‖. For the perpendicular components of
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Figure 3.1: (a) Scattering of a plane wave with a wave vector ~k⊥, from a

cylindrically symmetric potential, and (b) defining the wave vector difference,

~δ⊥.
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the incident and scattered wave vectors, k⊥ = k′⊥, i.e., elastic scattering will

be assumed.

In the Dirac bracket notation, the matrix element of the scattering po-

tential in the incident and scattered wave functions may be expressed as

M(δ⊥) = 〈ψ(~k, ~r) |ϕ(~r)|ψ(~k′, ~r)〉, (3.7)

where δ⊥ is the magnitude of the wave vector difference, ~δ⊥; see Figure 3.1(b).

The Dirac bracket notation can be expanded in terms of the associated inte-

gral over the volume of the semiconductor material, V , to give

M(δ⊥) =
1

V

∫
V

exp(i~δ · ~r)ϕ(~r) d3~r. (3.8)

Since the scattering potential, ϕ(~r), has a solely radial dependence in cylindri-

cal coordinates, this integration in cylindrical coordinates may be simplified,

leading to

M(δ⊥) =
1

V

∫ H

0

∫ 2π

0

∫ R

0

exp(iδ⊥r cos(φ))ϕ(r)r dz dφ dr. (3.9)

Performing the integrations over the z and φ coordinates of the cylindrical

coordinate system, the matrix element may thus be expressed as

M(δ⊥) =
2π

S

∫ R

0

J0(δ⊥r)ϕ(r)r dr, (3.10)

where S is the surface area of the semiconductor material and J0(δ⊥r) denotes

a Bessel function of the first kind of order 0, evaluated at δ⊥r. Ideally, the
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integration in Eq. (3.10) should be computed for the radius, R, approaching

infinity. In practice, however, since it is assumed that ϕ(r) = 0 for r > Rsc,

one need only take the radius, R, to be equal to Rsc.

In quantum physics, Fermi’s golden rule is the way to calculate the transi-

tion rate (probability of transition per unit time) from one energy eigenstate

of a quantum system into a continuum of energy eigenstates, due to a per-

turbation. According to Fermi’s golden rule, the probability of the incident

electron being scattered in the direction denoted by the wave vector, ~k′⊥, is

proportional to the square modulus of the scattering matrix element, i.e.,

|M(δ⊥)|2. The scattering rate is thus given by

W (~k, ~k′) =
2π

~
|M(δ⊥)|2δ(Ek − Ek′), (3.11)

where the δ in the δ(Ek − Ek′) term on the right hand side of Eq. (3.11),

denotes the Dirac delta function, not to be confused with the δ⊥ defined

earlier as the difference between the incident and scattered wave vectors in

the perpendicular direction.

The average time that it takes for an electron to be successively scattered

between the dislocation lines depends on the energy of the electron. For an

electron characterized by a plane wave with a wave vector, ~k, the kinetic
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energy of the electron can be written as

E(k) =
p2

2m∗e
. (3.12)

Substituting for the electron crystal momentum, p = ~k, into Eq. (3.12),

the energy of the electron becomes related to its wave vector through the

following relation

E(k) =
~2k2

2m∗e
. (3.13)

It can be shown that the relaxation time for the elastic scattering of

an electron with incident wave vector, ~k, is related to the scattering rate

W (~k, ~k′), through the following relationship [74]

1

τ(k)
=

∫
W (~k, ~k′)

[
1−

~v~k′ · ~E
~v~k · ~E

]
d3k′

(2π)3
, (3.14)

where ~v~k and ~v~k′ denote the incident and the scattered electron velocities,

respectively. As a result, in the present case of scattering from a cylindrical

potential function, and for an electric field, ~E , applied in a direction per-

pendicular to the direction in which the threading dislocation lines extend,

the relaxation time from one scatterer in a volume V , will be given by the

following relationship

1

τdis(k)
=

m∗e
2π~3k3

∫ 2k

0

|M(δ⊥)|2 δ⊥
2√

1− (δ⊥/2k)2
dδ⊥. (3.15)

In Eq. (3.16), the integration runs over all possible values of the wave vector

difference, δ⊥, i.e., it runs from the lower limit, 0, corresponding to negligible
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scattering, to the higher limit, 2k, corresponding to the complete backward

scattering of the incident plane wave.

If the density of the threading dislocation lines is σdis, then there are

σdisS scatterers in the volume. It will be assumed that these dislocation

lines are randomly placed and are well separated from each other so that the

scattering is incoherent. In this case, according to quantum mechanics, one

can simply sum the scattering rate from each scatterer. The total relaxation

time is thus

1

τdis(k)
=
σdism

∗
e

2π~3k3

∫ 2k

0

∣∣∣M̃(δ⊥)
∣∣∣2 δ⊥

2√
1− (δ⊥/2k)2

dδ⊥, (3.16)

where M̃(δ⊥) ≡ SM(δ⊥). The energy selective mean free time, τdis(E), has

to be integrated over all the energies of the incident wave vector in order to

obtain the energy averaged mean free time, i.e.,

〈τdis〉 =
4

3π(1/2)(kBT )5/2

∫ ∞
0

τdis(E)E3/2 exp(−E/kBT ) dE. (3.17)

In Eq. (3.17), the term E3/2 exp(−E/kBT ) in the integrand corresponds to

the distribution of energies of the electrons within a semiconductor, which

essentially acts as a weighting factor for the integration.

Similarly, the mean free time squared energy averaged, can be obtained

from the following relationship [60]

〈
τ 2
dis

〉
=

4

3π(1/2)(kBT )5/2

∫ ∞
0

τ 2
dis(E)E3/2 exp(−E/kBT ) dE. (3.18)
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Finally, substitution of the expressions for 〈τdis〉 and 〈τ 2
dis〉, from Eqs. (3.17)

and (3.18), into Eqs. (3.3) and (3.4), gives the associated dislocation scatter-

ing limited electron drift and Hall mobilities, respectively.

3.3 Electron mobility limited by scattering

from the charged threading dislocation

lines within GaN

Substituting the electrostatic potential profiles obtained earlier in Fig-

ure 2.5 for ϕ(r), in the formulation developed in Section 3.2, the electron

drift and Hall mobilities within GaN can be computed numerically. The re-

sultant dislocation limited electron drift and Hall mobilities are plotted as a

function of the value of the negative charge accumulated along the disloca-

tion lines, f , in Figures 3.2(a) and (b), respectively. The filled blue circles

in these figures correspond to the result of these computations. The same

GaN material parameters from Table 1.1, used earlier in obtaining the elec-

trostatic potentials of Figure 2.5, have also been utilized for the purposes

of the electron mobility computations in this section. Furthermore, since

the electrostatic potentials in Figure 2.5 were obtained at room temperature
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Figure 3.2: (a) The electron drift mobility and (b) the electron Hall mobility

limited by scattering from charged threading dislocation lines within GaN.
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and for a bulk donor concentration of Nd = 1018 cm−3, the same values of

T = 300 K and Nd = 1018 cm−3 have also been assumed in the computation

of the electron mobilities in this section. The electron mobilities presented

in Figures 3.2(a) and (b) have been plotted for a dislocation line density of

σdis = 1010 cm−2. Since, within the formulation developed in Section 3.2,

the electron mobilities are inversely proportional to the dislocation line den-

sity, σdis (recall Eq. (3.16)), deducing the values for the associated electron

drift and Hall mobilities at other dislocation line densities, from the results

depicted in Figures 3.2(a) and (b) would be straightforward.

If the electrostatic potentials depicted in Figure 2.5 were linearly propor-

tional to the value of f , Eqs. (3.10) and (3.16) suggest that the computed

electron drift and Hall mobilities would have a 1/f 2 functional dependence.

This 1/f 2 functional dependence of the electron mobility is depicted with

the dashed lines in Figures 3.2(a) and (b). However, from Figures 3.2(a) and

(b), it is observed that a best fit to the computed electron mobility results

is obtained for a 1/f 2.51 functional dependence. Since the negative charge in

the dislocation core cylinder scales linearly with the value of f , this overall

dependence of the electron mobility on the value of f suggests that the bulk

ionized donor screening occurring within GaN is less effective than a linear

screening with increasing values of f .
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3.4 Electron mobility limited by scattering

from the charged threading dislocation

lines within InN

In Figures 3.3(a) and (b), the dislocation limited electron drift and Hall

mobilites are plotted as a function of the positive charge accumulated along

the dislocation lines within InN, f . The electrostatic potentials obtained

earlier in Figure 2.8, along with the InN material parameters given in Ta-

ble 1.1, were used for the computation of these dislocation limited electron

mobility results within InN. Since the electrostatic potentials in Figure 2.8

were obtained at room temperature and for a bulk donor concentration of

Nd = 1018 cm−3, the same values of T = 300 K and Nd = 1018 cm−3 have

also been assumed in the computation of the electron mobilities in this sec-

tion. Furthermore, the electron mobilities depicted in Figures 3.3(a) and (b)

have been plotted for a dislocation line density of σdis = 1010 cm−2. Within

the framework of the formulation of Section 2.2, utilized in obtaining the

electron mobility results in this section, determining the dislocation limited

electron mobilities for other threading dislocation line densities would be

straightforward.

For the case of InN, from Figures 3.3(a) and (b) it is observed that a best
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Figure 3.3: (a) The electron drift mobility and (b) the electron Hall mobility

limited by scattering from charged threading dislocation lines within InN.
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fit to the computed electron mobility results is obtained for a 1/f 1.7 functional

dependence. Since the positive charge in the dislocation core cylinder scales

linearly with the value of f , this overall dependence of the electron mobilities

on the value of f suggests that the predominantly free electron screening of

the dislocation lines within InN is more effective than a linear screening with

increasing values of f .

Furthermore, in terms of the absolute electron mobility values, under the

same n-type bulk doping conditions, it is observed that the electron drift and

Hall mobilities within InN are much higher than those computed for the case

of GaN. This higher electron mobility within InN can be attributed to the

much stronger screening of the dislocation core charge within InN as well as

the lower value for the electron effective mass of InN.
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Chapter 4

Occupation statistics of the

dislocation defect sites

4.1 Different approaches for the determina-

tion of the dislocation defect site occupa-

tion statistics

In the previous two chapters, computations of the screening space charge

distribution functions, the scattering potentials, and the electron mobilities,

were reported for five different representative values of f , for the cases of

both GaN and InN. In general, however, the value of f can be kept as a
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variable of the formulation and determined as a function of the bulk donor

concentration. In fact, determining the value of f as a function of the free

carrier concentration and/or bulk doping concentration within n-type GaN

has been the subject of several studies in the literature [39, 60, 75, 76, 77].

In this chapter, theoretical means of determining the value of f from

knowledge of the free carrier concentration and/or the bulk doping concen-

tration within GaN and InN is developed. Initially, a survey of theoretical

formulations that are available in the literature is provided. Later, a simple

Gibbs factor formalism will be introduced, which allows for a determination

of the occupation statistics of multiple ionization states associated with a

dislocation defect site. Thus far, the treatment of multiple ionization states

associated with a dislocation defect site has only been achieved in the litera-

ture through the use of either detailed numerical density functional calcula-

tions [76] or through tedious energy minimization computations [60, 77]. The

formulation provided herein, represents a break from this tradition, allowing

for the presentation of intuitively appealing results.

Understanding the occupation statistics of the defect sites associated with

the dislocation lines within semiconductor materials has been the focus of

much attention over the years. The model of Read [73], developed in 1954,

remains the dominant approach used for the characterization of the occupa-
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tion of the defect sites associated with the threading dislocation lines within

semiconductor materials. The model of Read [73] pictures a dislocation line

within the crystal structure (as was initially applied to germanium) as being

comprised of a column of identical and equally spaced dangling bonds, as

was shown in Figure 1.5. Each dangling bond can potentially trap an extra

electron from a nearby donor atom. The model of Read [73] assumes that the

screening of the charge trapped by the dangling bonds along a dislocation

line is provided for by the complete ionization of the bulk donor atoms in the

immediate vicinity of the dislocation line, up to a certain radius, referred to

as the Read radius, R. The Read radius can be readily obtained in terms of

the charge trapped along the dislocation lines per dislocation defect site, f ,

and the bulk donor concentration, Nd, i.e.,

R =

√
f

πcNd

. (4.1)

As some of the dangling bonds trap an extra electron, an electrostatic po-

tential begins to build up, preventing the remaining dangling bonds from

becoming negatively charged. Read [73] determined the fraction, f , of dan-

gling bonds that would actually trap electrons by minimizing the electrostatic

energy within the space charge region formed about each dislocation line.

In 1998, Weimann et al. [39] employed the model of Read [73] as the basis

for obtaining the occupation statistics of the defect sites associated with the
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threading dislocation lines within GaN. For the purposes of their computa-

tions, Weimann et al. [39] assumed a simple dangling bond model for the

dislocation core structure. Gurusinghe and Andersson [75] also followed the

general approach presented by Read [73]. However, instead of minimizing

the electrostatic potential energy within the space charge cylinder, they min-

imized the corresponding Helmholtz free energy. You et al. [60] also followed

the energy minimization approach of Read [73]. However, instead of pictur-

ing each dislocation line as a simple column of dangling bonds, they assumed

a realistic VGa −ON core structure for the threading dislocation lines. Le-

ung et al. [76] obtained the occupation statistics of the threading dislocation

lines within GaN for a number of different dislocation core structures, for

both p-type and n-type doping conditions. Leung et al. [76] used a simu-

lated annealing approach, which is essentially a numerical density functional

calculation. Results obtained through the application of the proposed Gibbs

factor formulation presented in this thesis to the problem of determining

the occupation statistics of threading dislocation lines within GaN will be

compared with these other approaches in this chapter.

This chapter is organized in the following manner. In Section 4.2, the

general Gibbs factor formalism, and its formulation within semiconductor

materials, will be presented. In Section 4.3, the electrostatic potential at the
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site of a dislocation defect, resulting from the charge on the other dislocation

defect sites along the dislocation line, will be obtained. In Section 4.4, simple

analytical expressions will be proposed to approximate the actual screening

space charge distributions of the dislocation lines within GaN and InN, sep-

arately. In Section 4.5, the proposed Gibbs factor formalism will be applied

to the specific case of dislocation lines within GaN with an assumed dangling

bond dislocation core structure. In Section 4.6, the Gibbs factor formalism

will be applied to the problem of determining the occupation statistics of the

VGa −ON dislocation defect sites within GaN. In Section 4.7, a 5/7-ring core

structure will be assumed for the determination of the occupation statistics

of the dislocation defect sites within wurtzite InN.

4.2 Gibbs factor formalism

The probability of a quantum mechanical system, in thermal and dif-

fusive equilibrium with a reservoir, to exist in each of its different ionization

states is proportional to the corresponding Gibbs factor of the system in that

particular state. The absolute probability that the system will be found in

a state with N1 electrons, with an associated total energy of ε1, is given by

the Gibbs factor associated with that state, divided by the grand partition
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function, i.e.,

P (N1, ε1) =
exp [(N1µ− ε1) /kBT ]

Z
, (4.2)

where µ denotes the chemical potential of the system/reservoir. The grand

partition function, Z, is simply the summation of the Gibbs factors associated

with the different possible states of the quantum mechanical system, i.e.,

Z(εF, T ) =
∞∑

Ne=0

∑
s(Ne)

exp
[(
Neµ− εs(Ne)

)
/kBT

]
. (4.3)

In Eq. (4.3), the first summation runs over the number of electrons within the

quantum mechanical system. Even though in Eq. (4.3) this summation runs

from zero to infinity, in practice, only a few ionization states of the system

are most probable and thus, to a good approximation, this summation need

only be run over two or three electrons. The second summation, i.e., the

summation over s(Ne), is a summation that runs over all the different possible

quantum mechanical states of the system when it consists of Ne electrons.

In the context of semiconductor physics, the chemical potential associ-

ated with the electrons, µ, is referred to as the Fermi energy level, εF. Fur-

thermore, for the case of the dislocation lines within semiconductors, each

dislocation defect site serves the purpose of the quantum mechanical sys-

tem, and the bulk of the semiconductor material serves the purpose of the

reservoir with which the dislocation defect site should remain in thermal and
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diffusive equilibrium. In general, it is possible that for some dislocation core

structures, the associated defect sites introduce a multitude of energy levels

into the energy band structure of the semiconductor material. For example,

in Figure 4.1, the multitude of energy levels that the full core, the open core,

the gallium vacancy, and the nitrogen vacancy dislocation core structures in-

troduce into the energy band of GaN are depicted. However, under any given

bulk doping condition, most of those energy levels remain either completely

occupied or completely unoccupied, and thus, need not be included in the

evaluation of the grand partition function. As a result, in this thesis, it will

be assumed that each dislocation defect site introduces a single energy level,

εt, into the energy gap of the semiconductor. This energy level can exist in

any of the four different occupation states depicted in Figure 4.2.

According to the Gibbs factor formalism, the probability of the dislocation

defect site to exist in each of these states is given by

fs(0) =
1

Z
, (4.4)

fs(1↑) = fs(1↓) =
fs(1)

2
=

exp
[(
εs(1) − εF

)
/kBT

]
Z

, (4.5)

fs(2) =
exp

[(
εs(2) − 2εF

)
/kBT

]
Z

, (4.6)

with

Z = 1 + 2 exp
[(
εs(1) − εF

)
/kBT

]
+ exp

[(
εs(2) − 2εF

)
/kBT

]
, (4.7)
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Figure 4.1: The schematic diagram of energy levels in the band gap for four

different dislocation core structures within GaN. This figure is after Lee et

al. [57].
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Figure 4.2: The four possible occupation states of a dislocation defect site.
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εs(1) and εs(2) representing the total energy of the dislocation defect site in

the states labelled by s(1) and s(2) in Figure 4.2, respectively.

In order to relate the energies εs(1) and εs(2) to the dislocation defect

energy level, εt, it is recalled, from Section 2.2, that the effect of the elec-

trostatic potential, ϕ(r), in the neighbourhood of the dislocation core is to

shift all of the electronic energy levels by the amount −qϕ(r) relative to the

Fermi energy level, εF. For the single electron occupancy of a dislocation

defect site, i.e., in either of the s(1 ↑) or s(1 ↓) states, the energy of the

single electron residing in the dislocation defect site will thus be shifted by

the value of the electrostatic potential at the site of the dislocation defect,

ϕ0, multiplied by the charge of the electron, i.e.,

εs(1) = εt − qϕ0. (4.8)

If the electron-electron repulsion of the two electrons in the state s(2) is

neglected, the energy of the double occupancy of the dislocation defect site

will simply be twice that of the single occupancy of the dislocation defect

site, i.e.,

εs(2) = 2× εs(1). (4.9)

In general, however, this electron-electron repulsion causes the dislocation

defect energy level, εt, to split into two energies, ε
(1)
t and ε

(2)
t , much like
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the first and second ionization energies of a helium atom. In the case of a

dislocation defect site in the presence of inner electron-electron interactions,

ε
(1)
t will be the energy of the single electron in either of the states s(1 ↑) or

s(1 ↓). Due to the electrostatic repulsion from the first existing electron in

the state s(2), the energy of the second electron in the state s(2), ε
(2)
t , will

be higher than that of the single electron in the state s(1), i.e., ε
(2)
t > ε

(1)
t .

In the presence of electron-electron repulsions within each dislocation defect

site, the total energies of the defect site in its different occupation states

should thus be written as

εs(1) = ε
(1)
t − qϕ0, (4.10)

and

εs(2) = εs(1) +
(
ε
(2)
t − qϕ0

)
. (4.11)

The value of the electrostatic potential at the site of a dislocation defect,

ϕo, is due to the presence of (1) the charge accumulated on the other defect

sites situated along the dislocation line, and (2) the screening space charge

distribution. The contribution from these two charge build-ups will hence-

forth be denoted by ϕodc
and ϕosc , respectively. As a result, the electrostatic

potential at the site of a dislocation defect can be expressed as

ϕo = ϕodc
+ ϕosc . (4.12)
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Taking the discreteness of the charge residing on the dislocation defect

sites into account, in the following section, an approximate expression for ϕodc

will be derived. Then, in Section 4.4, simple analytical expressions will be

obtained for the electrostatic potential, ϕosc , by virtue of approximating the

actual screening space charge distributions, obtained earlier in Figures 2.4

and 2.7, by some alternative simple analytical functions.

4.3 Approximating the electrostatic potential

induced by the dislocation core charge

In this section, the aim is to obtain an approximate analytical expression

for the electrostatic potential, ϕodc
. Specifically, the discreteness of the charge

on the defect sites along the dislocation line will be taken into account and

the dislocation line will be assumed to have a finite height, h. Assuming the

distance between the successive dislocation defect sites to be equal to the c-

lattice constant associated with the wurtzite crystal structure of GaN/InN,

a total of h/c defect sites exist on the dislocation line. Consequently, the

number of defect sites residing in the four dislocation defect occupation states

s(0), s(1 ↓), s(1 ↑), and s(2), can be obtained from the following relations

Ns(0) =
hfs(0)

c
, (4.13)
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Ns(1↓) = Ns(1↑) =
Ns(1)

2
=
hfs(1↓)
c

=
hfs(1↑)
c

=
hfs(1)

2c
, (4.14)

and

Ns(2) =
hfs(2)

c
, (4.15)

respectively. Furthermore, it will be assumed that, in units of the funda-

mental electron charge, the dislocation defect site in each of the four states

s(0), s(1 ↓), s(1 ↑), and s(2), has a net charge of is(0), is(1↓), is(1↑), and is(2)

associated with it. The average charge per dislocation defect site, in units

of the fundamental electron charge, can thus be obtained from the following

relation

f =
∣∣is(0) ×Ns(0) + 2× is(1↓) ×Ns(1↓) + is(2) ×Ns(2)

∣∣ . (4.16)

Recall that in Chapters 2 and 3, five different representative values for the

average charge per dislocation defect site, f , were considered, i.e., 0.2, 0.5,

1, 1.5, and 2. In the context of the Gibbs factor formalism developed in this

chapter, however, from Eq. (4.16) and Eqs. (4.4) to (4.6), it is now seen how

the average charge per dislocation defect site, f , can be related to the value

of the electrostatic potential at the site of a dislocation defect.

For a dislocation defect site situated in the middle of a dislocation line of

height, h, one half of the other dislocation defect sites lie above this defect

site and one half lie below this dislocation defect site. As a result, taking the
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discreteness of the charge on the other dislocation defect sites into account,

the electrostatic potential due to the other defect sites along the dislocation

line, at the site of a defect in the middle of the dislocation line, can be

expressed as

ϕodc
= 2

ε0fs(0)is(0)

q

Ns(0)/2∑
n=1

1

n
+ 2

ε0fs(1)is(1)

q

Ns(1)/2∑
n=1

1

n
+ 2

ε0fs(2)is(2)

q

Ns(2)/2∑
n=1

1

n
,

(4.17)

where

ε0 ≡
q2

4πεrεoc
. (4.18)

In order to express the result of the summation,
∑N

n=1
1
n
, in a closed analyt-

ical form, Read [73] employed the approximation,
∑N

n=1
1
n
≈ ln (N) + 0.577,

which is valid for large values of N . In the present thesis, however, in order

to make a corresponding approximation, which will be valid for small values

of N as well, the following series expansion approximation will be made

N∑
n=1

1

n
≈ ln (N + 1) + 0.577, (4.19)

where the value, 0.577, is an approximation to Euler’s constant. In Fig-

ure 4.3, the value of the two expressions on the left and right hand side of

Eq. (4.19) have been plotted as a function of N , with the red and blue curves,

respectively.

Substituting the approximate expression for
∑N

n=1
1
n
, i.e., Eq. (4.19), into
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Figure 4.3: Comparison of the exact and the suggested approximation to the

value of the summation,
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n
, as a function of N .
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Eq. (4.17), the electrostatic potential, ϕodc
, can thus be finally written as

ϕodc
= 2

ε0

q

{
fs(0)is(0)

(
ln
(
Ns(0)/2 + 1

)
+ 0.577

)
+

fs(1)is(1)

(
ln
(
Ns(1)/2 + 1

)
+ 0.577

)
+

fs(2)is(2)

(
ln
(
Ns(2)/2 + 1

)
+ 0.577

)
}. (4.20)

4.4 Approximating the screening space charge

distribution function

In general, one would like to take the value of the charge per disloca-

tion defect site, f , as a variable, in addition to the two existing variables,

ns(r) and ϕ(r), and solve simultaneously for the three variables. However,

simple analytical expressions can only be obtained for the value of the elec-

trostatic potential, if the screening space charge distribution function, nsc(r),

is approximated with a simple analytical functional form.

In the case of the predominantly ionized bulk donor screening, the screen-

ing space charge distribution function may be approximated by a step func-

tion. In Figure 4.4, both the exact and the suggested approximation to the

screening space charge distribution functions have been depicted for the rep-

resentative case of GaN. The red curve in Figure 4.4 is identical to the exact
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screening space charge distribution result for the value of f = 1, obtained

earlier in Figure 2.4. In the suggested approximate screening space charge

distribution function depicted by the blue curve in Figure 4.4, the radius at

which the screening space charge distribution drops off to zero, has been set

to the Read radius, R, i.e., it is assumed that

nsc(r) ≈

{
Nd, r ≤ R

0, r > R
. (4.21)

When determining the radial functional form of the electrostatic potential

resulting from such a step function space charge distribution, Read [73] as-

sumed the corresponding space charge cylinder to be of a finite height, h,

and determined the corresponding electrostatic potential function, at mid-

point along the height of the cylinder to be

ϕsc(r) = f
ε0

q

{
1 + 2 ln

(
h

R

)
− r2

R2

}
, (4.22)

where f refers to the average negative charge per dislocation defect site.

Thus, at the site of a dislocation defect, i.e., at a radial distance r = 0 from

the dislocation line

ϕosc = f
ε0

q

{
1 + 2 ln

(
h

R

)}
. (4.23)

For the case of InN, the predominantly free electron screening will be

approximated by an exponential function, i.e.,

nsc(r) ≈ n0 exp(−r/λ). (4.24)

75



The parameter n0 in Eq. (4.24) can be obtained through the requirement

that the total negative charge subtended by the exponential function equals

the positive charge of f per dislocation defect site along the dislocation line,

i.e.,

n0 = 2f
ε0

qλ2
. (4.25)

In Figure 4.5, both the exact and the suggested approximation to the screen-

ing space charge distribution functions have been depicted for the representa-

tive case of InN. The red curve in Figure 4.5 is identical to the exact screening

space charge distribution result for the value of f = 1, obtained earlier in

Figure 2.7. It is observed that a best exponential functional fit to the exact

screening space charge distribution in Figure 4.5 is obtained for λ being set

to 2.6 nm.

In the case of an exponential screening space charge distribution function,

the resultant radial functional form for the electrostatic potential, midpoint

along a cylinder of height, h, can be obtained as

ϕsc(r) = 2f
ε0

q

{
exp (−r/λ) +

∫ r/λ

0

1− exp(−ξ)
ξ

dξ + ln

(
λ

h

)
− 0.577

}
,

(4.26)

where ε0 is the same as that defined earlier, i.e., in Eq. (4.18). The value of

the electrostatic potential resulting from the exponential charge distribution

at the site of a dislocation defect, i.e., at radial distance r = 0 from the
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dislocation line, can be readily obtained from Eq. (4.26), i.e.,

ϕosc = 2f
ε0

q

{
1− 0.577 + ln

(
λ

h

)}
. (4.27)

In Sections 4.5 and 4.6, the expression obtained for ϕosc in Eq. (4.23) will

be used in order to obtain the occupation statistics of the threading dislo-

cation lines within n-type GaN for two different dislocation core structures.

In Section 4.7, the expression obtained for ϕosc in Eq. (4.27) will be used in

order to obtain the occupation statistics of the threading dislocation lines

within n-type InN.

4.5 Occupation statistics of the dangling bond

dislocation core structure within GaN

In this section, the Gibbs factor formalism formulated in Section 4.2

will be applied to the problem of determining the occupation statistics of

the dislocation lines within GaN. For the sake of comparison with results

already published in the literature, the dislocation core structure, assumed

for the computations in this section, will be the same picture of dislocations

used by Weimann et al. [39], i.e., a column of identical and equally spaced

dangling bonds, with the distance between the successive dangling bonds
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being taken as the c-lattice constant, c, associated with wurtzite GaN. In this

and the following section, in order to take the effect of the charge trapped

by the defect sites along the threading dislocation lines on the free electron

concentration of the entire semiconductor material into account, the following

overall charge neatrality condition will be used

Nd = n+ f
σdis

c
. (4.28)

In writing Eq. (4.28), the bulk donor atoms have been assumed to be com-

pletely ionized, i.e., N+
d = Nd. The term, n, on the right hand side of

Eq. (4.28) is then the fraction of the electrons donated by the bulk donor

atoms which exist as free electrons, whereas the term, fσdis/c, will be the

fraction of the electrons donated by the bulk donor atoms which have become

trapped by the dislocation defect sites. Furthermore, the full degenerate re-

lation,

n = Nc
2√
π

∫ ∞
0

√
x

1 + exp [x− (εF − εc)/kT ]
dx, (4.29)

for the free electron concentration within a semiconductor material, can be

used along with Eq. (4.28) in order to obtain the position of the Fermi energy

level, εF, for known values of Nd and σdis.

For the dangling bond dislocation core structure, the neutral state of a

dangling bond corresponds to either of the states, s(1 ↓) or s(1 ↑), i.e., is(1↓) =
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is(1↑) = 0. As the dangling bond loses an electron, it becomes positively

charged and thus is(0) = +1. On the other hand, as each dangling bond

traps an extra electron, it becomes negatively charged and the occupation

state, s(2), corresponds to a state of charge is(2) = −1. For these ionization

states, the value of the electrostatic potential, ϕodc
, can be obtained from

Eq. (4.20) as follows

ϕodc
= 2

ε0

q

{
fs(0)

[
ln
(
Ns(0)/2 + 1

)
+ 0.577

]
− fs(2)

[
ln
(
Ns(2)/2 + 1

)
+ 0.577

]}
,

(4.30)

and, from Eq. (4.16), the average charge per dangling bond is given by

f = fs(2) − fs(0). (4.31)

The value of the electrostatic potential at the site of a dangling bond,

due to the screening space charge of ionized bulk donor atoms, was obtained

earlier in Section 4.4 as

ϕosc = f
ε0

q

{
1 + 2 ln

(
Ns(2)c/fs(2)

R

)}
, (4.32)

where in this relation, the equivalent expression, Ns(2)c/fs(2), has been re-

placed for the height h in Eq. (4.23). Finally, substituting for ϕodc
and ϕosc ,

from Eqs. (4.30) and (4.32) into Eq. (4.12), the value of the electrostatic

potential at the site of a dangling bond within wurtzite GaN, can be written
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as

ϕo = 2
ε0

q

{
fs(0)

[
ln
(
Ns(0)/2 + 1

)
+ 0.577

]
−

fs(2)

[
ln
(
Ns(2)/2 + 1

)
+ 0.577

]
+

fs(2) − fs(0)

2

[
1 + 2 ln

(
Ns(2)c/fs(2)

R

)]}
. (4.33)

The quantities, ε0, R, fs(0), fs(2), and Ns(0) in Eq. (4.33) were all given in

terms of the material parameters and/or other quantities, earlier in Eqs. (4.18),

(4.1), (4.4), (4.6), and (4.13), respectively. In particular, from Eqs. (4.4) and

(4.6), it is seen that fs(0) and fs(2) are expressed in terms of the energies,

εs(1), εs(2), and εF. As was mentioned at the outset of this section, for given

values of σdis and Nd, εF can be obtained from Eq. (4.28). Furthermore, for

the purposes of the computations in this section, the energies, εs(1) and εs(2),

will be related to ϕo and εt, through the use of Eqs. (4.8) and (4.9), i.e., the

inner-dangling bond electron-electron interactions will be ignored. The posi-

tion of the dislocation defect energy level, εt, will be set to 1.2 eV above the

valence band maximum, in agreement with the value adopted by Weimann

et al. [39] and Gurusinghe and Andersson [75]. For concreteness, the value

of Ns(2) will be set to 105, i.e., long dislocation lines will be assumed; as long

as the value of Ns(2) is sufficiently large, its value will not affect the electro-

static potential, ϕo, obtained. Thus, for any specific value of the bulk donor
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density, Nd, Eq. (4.33) can be solved for the single variable, ϕo, once all the

necessary substitutions have been made from the other equations.

After the electrostatic potential, ϕo, has been solved for from Eq. (4.33),

its value can be plugged into Eqs. (4.4) through (4.7) in order to obtain the

occupation probabilities, fs(0), fs(1), and fs(2), associated with a dislocation

dangling bond. In Figure 4.6, the fraction of the dislocation dangling bonds

in their different possible fs(0), fs(1), and fs(2) occupation states have been

plotted as a function of the bulk donor concentration; in order to emphasize

the charge residing on the dangling bonds, in Figure 4.6 the occupation

fractions, fs(0), fs(1), and fs(2), have alternatively been labelled as f+1, f0, and

f−1, respectively, these new subscripts representing the corresponding charge

states. The material parameters used for these computations are as specified

in Table 1.1. These calculations were performed at 300 K for a dislocation

line density of 108 cm−2. It is seen from this figure that, under bulk n-type

doping conditions, most of the dislocation defect sites are negatively charged.

However, at lower bulk donor concentrations, a non-negligible fraction of the

dislocation defect sites also become positively charged.

Experimentally, it has been observed that the threading dislocation lines

within GaN become positively charged under bulk p-type doping condi-

tions [69]. The proposed Gibbs factor formalism allows for the dislocation
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Figure 4.6: The fraction of ionized and neutral dislocation defect sites for a

dangling bond core structure of the dislocation lines within n-type GaN as a

function of the bulk donor concentration.
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defect sites to be positively charged as well. As a result, the proposed Gibbs

factor formalism can potentially be applied to p-type doping conditions as

well.

In Figure 4.7, the average charge per dangling bond, f , is plotted as a

function of the free electron concentration, n. Also plotted in this figure are

the results from Weimann et al. [39] and from Gurusinghe and Andersson [75]

for the same dislocation line density of σdis = 108 cm−2. From Figure 4.7,

it is observed that the results obtained from the application of the Gibbs

factor formalism in this work [78], clearly favour the results of Gurusinghe

and Andersson [75] over the results reported by Weimann et al. [39]. The

considerable difference between the reproduced result of Weimann et al. [39]

and the others depicted in Figure 4.7 are most likely a consequence of different

parameter value selections; through a detailed critical comparative analysis,

it is found that the results of Weimann et al. [39] may be exactly reproduced

by selecting a dislocation energy level, εt, of 2.02 eV above the valence band

edge, all other parameters being as set in Table I.
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Figure 4.7: The average negative charge per dislocation dangling bond as a

function of the free electron concentration within n-type GaN. The calcula-

tions were all performed at 300 K for a dislocation line density of 108 cm−2.
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4.6 Occupation statistics of the VGa − ON dis-

location core structure within GaN

In this section, another example of the application of the proposed

Gibbs factor formalism to the problem of obtaining the occupation statistics

of the threading dislocation lines within GaN is provided. In this section,

unlike the discussion in Section 4.5, a more realistic VGa −ON core structure

will be assumed for the threading dislocation lines. The particular atomic

configuration of this dislocation core structure was depicted earlier in Fig-

ure 1.4(f). It is noted, from Figure 1.4(f), that each of the two small black

nitrogen atoms lying beneath the larger white gallium atoms at the center of

the VGa −ON dislocation defect site, is missing a bonding to a neighbouring

atom. This missing bond is due to the gallium vacancy at the defect site,

hence the notation, VGa, in the VGa −ON dislocation core structure. These

two nitrogen atoms in Figure 1.4(f) are close enough in order to form bonding

and anti-bonding states [79]. The energy band configuration of this bonding

and anti-bonding energy formation at the VGa −ON dislocation defect site

is schematically depicted in Figure 4.8.

It is clear from Figure 4.8 that the N-N anti-bonding energy level is the en-

ergy level which is electrically active in the VGa −ON dislocation core struc-
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Figure 4.8: Bonding and anti-bonding energy formation from the two nitro-

gen dangling bonds within the VGa −ON dislocation core structure.
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ture within GaN. In its neutral state, depicted in Figure 4.8, this energy level

holds no electrons, i.e., is(0) = 0. When this energy level is occupied by one

electron, it becomes singly negatively charged, i.e., is(1↓) = is(1↑) = −1, and

when it is occupied by two electrons, it becomes doubly negatively charged,

i.e., is(2) = −2. For these ionization states, it can be readily shown that

the value of the electrostatic potential at the site of a VGa −ON dislocation

defect will be given by

ϕo = 2
ε0

q

{
−fs(1)

[
ln
(
Ns(1)/2 + 1

)
+ 0.577

]
−

2× fs(2)

[
ln
(
Ns(2)/2 + 1

)
+ 0.577

]
+

2× fs(2) + fs(1)

2

[
1 + 2 ln

(
Ns(2)c/fs(2)

R

)]}
. (4.34)

Similar to Eq. (4.33), Eq. (4.34) can be solved for the single variable, ϕo,

once all the necessary substitutions have been made from the other equa-

tions into it. In particular, the inner dislocation defect site electron-electron

interactions will be ignored and the value of the dislocation defect energy

level, εt, will be set to 1.2 eV above the valence band maximum.

After the electrostatic potential, ϕo, has been solved for from Eq. (4.34),

its value can be plugged into Eqs. (4.4) through (4.7) in order to obtain the

occuption probabilities, fs(0), fs(1), and fs(2) associated with a VGa −ON dis-

location defect site within GaN. In Figure 4.9, the fraction of the VGa −ON
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the VGa −ON core structure of the dislocation lines within n-type GaN as a
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dislocation defect sites in their different possible fs(0), fs(1), and fs(2) occupa-

tion states have been plotted as a function of the bulk donor concentration;

in order to emphasize the charge residing on the dislocation defect sites, in

Figure 4.9 the occupation fractions, fs(0), fs(1), and fs(2), have alternatively

been labelled as f0, f−1, and f−2, respectively, these new subscripts repre-

senting the corresponding charge states. The material parameters used for

these computations are as specified in Table 1.1. These calculations were

performed at 300 K for a dislocation line density of 108 cm−2. It is found

that in the case of the VGa −ON dislocation core structure, the Gibbs factor

formalism gives a notable computational advantage over the extension of the

model of Read [73], as has been pursued by You et al. [60, 77]. Furthermore,

the application of the Gibbs factor formalism gives a more physically satis-

fying picture for the occupation of the dislocation lines for this dislocation

core structure [79].

In Figure 4.10, the average charge per dislocation defect site, f , is plotted

as a function of the free electron concentration, n. For comparison, results

corresponding to You et al. [60] are also plotted in this figure. It is seen that

the overall trends in the two curves depicted in Figure 4.10 are similar. More

specifically, at low free electron concentrations, when most of the N-N anti-

bonding energy levels are singly occupied, the differences between the results
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Figure 4.10: The average negative charge per VGa −ON dislocation defect

site as a function of the free electron concentration within n-type GaN. Re-

sults corresponding to the energy minimization approach employed by You

et al. [60] for the same VGa −ON dislocation core structure are also depicted.

The results depicted correspond to a temperature of 300 K and a dislocation

line density of 108 cm−2. 91



obtained in this thesis and those of You et al. [60] are negligible. However, at

higher free electron concentrations, when a larger fraction of the N-N anti-

bonding energy levels are doubly occupied, differences between the results

are more pronounced. As a result, these differences may be attributed to the

fact that in the computations of this section, electron-electron interactions

within individual N-N anti-bonding energy levels have been neglected when

determining the energy associated with the fs(2) occupation state of the N-N

anti-bonding energy level.

4.7 Occupation statistics of the open core dis-

location core structure within InN

In this section, an open core structure will be assumed for the threading

dislocation lines within InN. The atomic configuration of this dislocation core

structure was depicted earlier in Figure 1.4(b). The energy band configura-

tion corresponding to this dislocation core structure within InN is depicted

in Figure 4.11.

It is clear, from Figure 4.11, that the N-N anti-bonding energy level is

the energy level which is electrically active in the open core dislocation core

structure within InN. In its neutral state, depicted in Figure 4.11, this energy
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Figure 4.11: Schematic energy band diagram of the neutral state of the open

core dislocation core structure within InN.
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level holds two electrons, i.e., is(2) = 0. When this energy level loses one of

its electrons to the conduction band, it becomes singly positively charged,

i.e., is(1↓) = is(1↑) = 1, and when this energy level holds no electrons it is

doubly positively charged, is(0) = 2. For these ionization states, the value

of the electrostatic potential at the site of the open core dislocation defect

within InN, ϕo, can be obtained as follows

ϕo = 2
ε0

q

{
fs(1)

[
ln
(
Ns(1)/2 + 1

)
+ 0.577

]
+

2× fs(2)

[
ln
(
Ns(2)/2 + 1

)
+ 0.577

]
−

2× fs(2) + fs(1)

2

[
1− 0.577 + ln

(
λ

Ns(2)c/fs(2)

)]}
. (4.35)

Note that due to the free electron screening of the positive charge on the

dislocation defect sites within InN, Eq. (4.27) has been used to replace ϕosc

when obtaining the above relation. Similar to Eq. (4.33), Eq. (4.35) can be

solved for the single variable, ϕo, once all the necessary substitutions have

been made from the other equations into it. For the case of InN, when

computing the position of the Fermi energy level, εF, the slightly different

overall charge neutrality condition,

Nd + f
σdis

c
= n, (4.36)

should be used, due to the fact that within this semiconductor material

the dislocation defect sites themselves donate electrons instead of trapping
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the electrons donated by the bulk donor atoms; compare Eq. (4.36) with

Eq. (4.28). The inner dislocation defect site electron-electron interactions

will be ignored. Density functional calculations of Takie and Nakayama [59]

have shown that in the open core dislocation core structure within InN,

the N-N anti-bonding energy level lies 0.25 eV above the conduction band

minimum. As a result, for the purposes of the computations in this section,

the dislocation defect energy level, εt, will be set equal to 0.25 eV above the

conduction band minimum.

After the electrostatic potential, ϕo, has been solved for from Eq. (4.35),

its value can be plugged into Eqs. (4.4) through (4.7) in order to obtain the

occupation probabilities, fs(0), fs(1), and fs(2), associated with an open core

dislocation defect site within wurtzite InN. In Figure 4.12, the fraction of the

open core dislocation defect sites in their different possible fs(0), fs(1), and

fs(2) occupation states have been plotted as a function of the bulk donor con-

centration; in order to emphasize the charge residing on the dislocation defect

sites, in Figure 4.12 the occupation fractions, fs(0), fs(1), and fs(2), have alter-

natively been labelled as f+2, f+1, and f0, respectively, these new subscripts

representing the corresponding charge states. The material parameters used

for these computations are as specified in Table 1.1. These calculations were

performed at 300 K for a dislocation line density of 108 cm−2. It is seen
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Figure 4.12: The fraction of ionized and neutral dislocation defect sites for the

open core structure of the dislocation lines within n-type InN as a function
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from this figure that, under bulk n-type doping conditions, the dislocation

defect sites are predominantly positively charged. In contrast, for the case of

n-type GaN, the dislocation defect sites were primarily negatively charged;

recall Figures 4.6 and 4.9.

In Figure 4.13, the average positive charge per dislocation defect site for

the open core dislocation core structure within wurtzite InN has been plotted

as a function of the free electron concentration. In comparison to the disloca-

tion defect occupation statistics results for GaN, obtained in Figures 4.7 and

4.10, it is observed that the average charge per dislocation defect site within

InN decreases with increasing free electron concentration. This distinction in

the general behavior of the curve depicted in Figure 4.13, when compared to

the curves depicted in Figures 4.7 and 4.10, can be attributed to the fact that

within n-type GaN, with increasing free electron/bulk donor concentration,

the position of the Fermi energy level tends to move away from the position

of the dislocation defect energy level. On the other hand, within n-type InN,

as the bulk donor concentration/free electron concentration increases, the

Fermi energy level moves into the conduction band, and thus, gets closer to

the position of the dislocation defect energy level within this semiconductor

material.
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Figure 4.13: The average positive charge per dislocation defect site for the

open core structure of the dislocation lines within n-type InN as a function

of the free electron concentration. The calculations are performed at 300 K

for a dislocation line density of 108 cm−2.

98



Chapter 5

Conclusions

In conclusion, a generalized electrostatic theory of charged dislocation

lines within semiconductor materials was developed in this thesis. Specifi-

cally, the generalizations involved, allow for a determination of the occupation

statistics of multiple ionization states of the defect sites along a dislocation

line. In addition, the formulation developed in this thesis allows for the

determination of the most general screening space charge profile associated

with the dislocation lines [80]. The materials considered in this analysis were

the nitride based semiconductors, GaN and InN, for which strained epitaxial

crystal growth results in the presence of a high density of threading disloca-

tion lines within their respective crystal structures.

It was found that the distinctively different positionings of the disloca-
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tion defect energy levels relative to the conduction band minimum in the

two semiconductor materials, GaN and InN, lead to distinctively different

profiles for the space charge distribution, screening the threading disloca-

tion line charge in each material; while within n-type GaN, the screening is

dominated by ionized bulk donor atoms, within n-type InN, this screening is

provided for by the free electrons donated by the defect sites situated along

the threading dislocation line itself. The recognition of this distinction in the

screening space charge distribution of the threading dislocation lines within

InN when compared to the case of GaN was missing in the literature and its

computation has thus been one of the original contributions of this research.

The dislocation limited electron drift and Hall mobilities within GaN and

InN were also computed as part of this research. Under the same n-type bulk

doping conditions, it was observed that the electron drift and Hall mobilities

within InN are much higher than those computed for the case of GaN. This

higher electron mobility within InN can be attributed to the much stronger

screening of the dislocation core charge within InN as well as the lower value

for the electron effective mass of InN. Current experimental data existing

in the literature on the threading dislocation line density dependence of the

electron Hall mobility within InN, differ by an order of magnitude [66, 67]

and furthermore, within each experimental data set, are much too scattered
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to enable a conclusive comparison with the theoretically computed values

in this thesis for the electron Hall mobility within InN. Nevertheless, in the

future, as the quality of the epitaxially grown layers of InN improve, and more

accurate experimental determinations of the electron Hall mobility within

InN are performed, it is expected that the theoretical results obtained in this

thesis will provide a conclusive answer as to how much charge is accumulated

along the threading dislocation lines. This is important, because of the fact

that the threading dislocation lines within InN have been blamed for the

high unintentional n-type conductivity of InN. This high unintentional n-

type conductivity is in turn hampering the successful p-type doping of this

important semiconductor material and thus, the fabrication of functional

electronic/optoelectronic devices from InN.

The application of the Gibbs factor formalism to the problem of deter-

mining the occupation statistics of the defect sites along a dislocation line

has been another original contribution of this work. It was shown that in

special cases the formulation essentially reduces to the model of Read [73]

for the treatment of the dislocation lines.

In continuation of the work presented in this thesis, several avenues for

future investigation are conceivable. These topics for further investigation

include the following:
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(1) In the literature, only limiting case analytical expressions have been

used in order to obtain the electron drift mobility limited by scattering from

the threading dislocation lines within GaN [39, 40, 75]. The scattering po-

tential that has been computed in this thesis, as well as experimental data

from the literature [69, 71], suggest that the actual scattering potential devi-

ates substantially from the simple limiting case analytical expressions used in

the literature for the purposes of computing the dislocation limited electron

mobility within GaN.

(2) In Section 3.2, when formulating the dislocation limited electron drift

and Hall mobilities, it was assumed that the dislocation lines are well sep-

arated from each other. Under high threading dislocation line density con-

ditions, i.e., when the screening space charge cylinders of nearby dislocation

lines start to overlap, this assumption of the formulation developed in Chap-

ter 3 will no longer be valid. Furthermore, under high dislocation line den-

sity conditions, the occupation statistics of the threading dislocation lines

obtained in Chapter 4 relies on the implicit assumption that the dislocation

lines are uniformly distributed within the semiconductor sample. Thus, in

the high dislocation line density limit, a more rigorous treatment of the effect

of non-uniformity in the distribution of the threading dislocation lines, on

both the free carrier concentration and the electron mobility, remains to be
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addressed.
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Appendices

Appendix A. Iterative procedure for solving

the screening space charge distribution within

GaN

The iterative procedure described in this and the following appendix,

is based upon finding successively more accurate solutions to the screening

space charge distribution function, nsc(r). For concreteness, in the example

solved in this appendix, the value of f has been fixed to 1, i.e., it is assumed

that on average, one electron is being trapped per dislocation defect site.

The bulk donor concentration, Nd, has been fixed to the representative value

of 1018 cm −3. The same procedure described in this appendix can be read-

ily applied in order to obtain an accurate approximation to the screening

space charge distribution function, nsc(r), for other values of f and Nd as
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well. Throughout this appendix, the dislocation core charge cylinder will be

assumed to be the same as that defined earlier, i.e., in Eq. (2.1).

In the case of the screening of the dislocation core charge within GaN, the

model of Read [73] provides us with a first approximation to the screening

space charge distribution function, nsc(r), i.e.,

nsc(r) ≈

{
Nd, r ≤ R

0, r > R
, (A.1)

where the Read radius, R, is defined in Section 4.3. This approximate screen-

ing space charge distribution function is depicted with the blue curve in

Figure A.1(a). Substitution of the approximate screening space charge dis-

tribution function from Eq. (A.1) into Eq. (2.9) and subsequently, the resul-

tant electrostatic potential into Eqs. (2.10) and (2.11), yields a new screening

space charge distribution function depicted by the red curve in Figure A.1(a).

If the screening space charge distribution suggested in Eq. (A.1) were the ex-

act simultaneous solution of Eqs. (2.3) and (2.9), the blue and red curves in

Figure A.1(a) would coincide.

From Figure A.1(a) it is noted that when compared with the blue curve,

the red curve in this figure is deficient in the amount of positive charge con-

tained within it. As a result, the space charge distribution function depicted

with the red curve in Figure A.1(a) does not meet the charge neutrality con-

dition, i.e., the total amount of positive charge contained within it does not
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Figure A.1: An iterative construction of the screening space charge surround-

ing a threading dislocation line within n-type GaN.
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exactly equal the fixed negative charge within the dislocation core charge

cylinder.

For the next suggested approximation to the screening space charge distri-

bution function, nsc(r), this deficiency in the net positive charge needs to be

remedied. In order to compensate for this deficiency, in the next suggested

approximation for the screening space charge distribution, part of the red

curve from Figure A.1(a) is replaced by an exponential tail at radial distances

above a truncation radius, rtrunc, indicated by the black line on the horizontal

axis in Figure A.1(b). In other words, for 0 ≤ r < rtrunc, the new suggested

approximation to the screening space charge distribution function, nsc(r), is

identical to the red curve in Figure A.1(a). For rtrunc ≤ r < Rsc, this new

suggested approximation is simply an exponential function, A exp(−r/λ).

The two variables, A and λ, can be uniquely determined by the requirement

that: (1) nsc(r) should remain continuous at rtrunc, and (2) the total negative

charge subtended by the newly suggested approximation to nsc(r) should be

equal to the fixed negative charge in the dislocation core charge cylinder. The

resultant screening space charge distribution is depicted by the blue curve in

Figure A.1(b). Subsequent substitution of the screening space charge distri-

bution depicted by the blue curve in Figure A.1(b) into Eqs. (2.9), (2.10),

and (2.11), yields the red curve depicted in Figure A.1(b).
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In Figures A.1(c) and A.1(d), the same process of replacing an exponential

tail to the red curve from the previous iteration has been repeated. The

radius at which the exponential tail is replaced in each iteration has been

chosen so that improved convergence between the blue and red curves in

successive iterations is maintained. It is observed that sufficient convergence

is reached in Figure A.1(d), i.e., a self-consistent solution to Eqs. (2.3) and

(2.9) has been found.
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Appendix B. Iterative procedure for solving

the screening space charge distribution within

InN

For concreteness, in the example solved in this appendix, the value of f

has been fixed to 1, i.e., it is assumed that on average, each dislocation defect

site donates one electron. The bulk donor concentration, Nd, has been fixed

to the representative value of 1018 cm −3. The same procedure described in

this appendix can be readily applied in order to obtain an accurate approxi-

mation to the screening space charge distribution function, nsc(r), for other

values of f and Nd as well. Throughout this appendix, the dislocation core

charge cylinder will be assumed to be the same as that defined earlier, i.e.,

in Eq. (2.1).

In the case of InN, the screening of the dislocation core charge is pro-

vided for by the free electrons donated by the dislocation defect sites. As

their name suggests, free electrons are free to aggregate around the positive

charge on the dislocation core charge cylinder. Consequently, the free elec-

tron concentration is expected to be higher near the dislocation core and

to drop off at radial distances further away from the dislocation line. The

process may thus be initiated by approximating such screening space charge
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distribution by a simple exponential function, i.e.,

nsc(r) ≈ n0 exp(−r/λ). (B.1)

Initially, the value of λ is set equal to the degenerate Debye length within the

bulk of InN, which for the free electron concentration of 1018 cm−3, equals

10.57 nm. The other unknown variable in Eq. (B.1), namely, n0, is uniquely

determined from the requirement that the total negative charge subtended

by the screening space charge distribution, nsc(r), equals the positive charge

within the dislocation core charge cylinder. This suggested screening space

charge distribution is depicted with the blue curve in Figure B.1(a).

Substituting the screening space charge distribution function, nsc(r), from

Eq. (B.1) into Eq. (2.9), the electrostatic potential resulting from this space

charge distribution, screening the dislocation core charge, can be obtained.

Substituting the resultant electrostatic potential function into Eqs. (2.10)

and (2.11), results in a new screening space charge distribution function,

depicted by the red curve in Figure B.1(a). It is seen from Figure B.1(a) that

the two screening space charge functions depicted deviate substantially. This

deviation is an indication that the initial screening space charge distribution

function, suggested by Eq. (B.1), is not a good approximation to the actual

self-consistent solution of Eqs. (2.3) and (2.9). The steepness of the resultant

red curve in Figure B.1(a) suggests that improved convergence might be
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Figure B.1: An iterative construction of the screening space charge surround-

ing a threading dislocation line within n-type InN.
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achieved by choosing a steeper exponential function than the initial guess for

nsc(r).

In Figure B.1(b), the same procedure as that used in obtaining Fig-

ure B.1(a) has been followed, however, this time, the value of λ has been

selected to be 4 nm, instead of the Debye length. Note that once the value

of λ is changed, the value for n0 should also change accordingly, in order to

maintain charge neutrality, i.e., equality of the negative charge subtended by

the newly suggested screening space charge distribution function with the

fixed positive charge in the dislocation core charge cylinder.

The next suggested approximation to the actual screening space charge

distribution function is depicted with the blue curve in Figure B.1(c). For

0 ≤ r < rtrunc, this suggested approximation is identical to the red curve

in Figure B.1(b). For rtrunc ≤ r < Rsc, this suggested approximation is

simply an exponential function, A exp(−r/λ′). The truncation radius, rtrunc,

is indicated with the black line on the horizontal axis in Figure B.1(c). The

two variables, A and λ′, can be uniquely determined by the requirements

that: (1) nsc(r) should remain continuous at rtrunc, and (2) the total negative

charge subtended by the newly suggested approximation to nsc(r), should be

equal to the fixed positive charge in the dislocation core charge cylinder.

In Figure B.1(d), the same procedure of replacing an exponential tail

127



to the red curve, obtained from the previous iteration, has been followed.

The radius at which the exponential function is replaced has once again been

indicated by the black line on the horizontal axis. It is observed that sufficient

convergence has been reached in Figure B.1(d), i.e., a self-consistent solution

to Eqs. (2.3) and (2.9) has been obtained.

128


