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Abstract

Metabolite essentiality is an important topic in systems biology and as such

there has been increased focus on their prediction in metabolic networks.

Specifically, two related questions have become the focus of this field: how

do we decrease the amount of gene knock-out work loads and is it possible to

predict essential metabolites in different growth conditions? Two different

approaches to these questions: interaction-based method and constraints-

based method, are conducted in this study to gain in depth understanding

of metabolite essentiality in complex metabolic networks.

In the interaction-based approach, the correlations between metabolite

essentiality and the metabolite network topology are studied. With the

idea of predicting essential metabolites, the topological properties of the

metabolite network are studied for theMycobacterium tuberculosis model. It

is found that there is strong correlation between metabolite essentiality and

the degree and the number of shortest paths through the metabolite. Welch’s

two sample T-test is performed to help identify the statistical significance

of the differences between groups of essential metabolites and non-essential

metabolites.

In the constraint-based approach, essential metabolites are identified in-
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Abstract

silico. Flux Balance Analysis (known as FBA), is implemented with the

most advanced in-silico model of Chlamydomonas Reinhardtii, which con-

tains light usage infomation in 3 different growth environments: autotrophic,

mixotrophic, and heterotrophic. Essential metabolites are predicted by

metabolite knock out analysis, which is to set the flux of a certain metabo-

lite to zero, and categorized into 3 types through Flux Sum Analysis. The

basal flux-sum for metabolites is found to follow a exponential distribution,

it is also found that essential metabolites tend to have larger basal flux-sum.
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Chapter 1

Introduction

Every cell is characterized by the presence of a complex network of metabo-

lites connected by chemical reactions. These reactions are catalyzed by spe-

cialized proteins called enzymes. There are usually thousands of reactions

inside the cell, and at the same time, there are thousands of metabolites

(Samal et al., 2006). It is well-known that certain reactions are vital to the

survival and maintenance of essential functions of a cell. These are called

“essential” reactions. Notably, the essentiality of reactions or metabolites

may change depending on the environmental conditions.

1.1 Metabolite Essentiality

The metabolites involved in the reaction network can be classified into two

categories: essential metabolites and nonessential metabolites. While cells

are known to be quite robust to perturbations in the reaction network, the

absence of essential metabolites could cause serious damage or even death.

On the other hand, recent investigations have shown that non-essential

metabolites cause very little or no impact on the living cells(Jeong et al.,

2003).
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1.1. Metabolite Essentiality

The study of essential metabolites has received significant interest from

the systems biology community due to several reasons:

First, the loss of essential metabolites will diminish cell viability. Most

drugs exert therapeutic effects by binding and regulating the activity of a

particular metabolite, set of proteins or nucleic acid targets in the pathogenic

microbes. Therefore identification of essential metabolites will be beneficial

to investigate new inhibitors of disease and potential drug targets as in-

hibitors, the identification and validation of essential metabolites compose

an important step in drug discovery process (Samala, 2006).

Second, analysis of essential metabolites will help researchers under-

stand the complex metabolite networks, which may yield better predictions

in in vivo cellular behavior, and have better insight into the complex re-

lationship between cell components and systems-level cellular phenotypes

(Jamshidi and Palsson, 2007).

Third, many drugs that are highly successful in human clinical use mimic

a substrate or product of essential metabolites. For example, folic acid is an

essential biomolecule, which needs to be synthesized de novo by many bac-

teria, and dihydropteroate synthase, an enzyme in the folic acid biosynthe-

sis pathway, synthesizes dihydrofolate from p-aminobenzoate.Sulfonamide-

based drugs are structural analogs of p-aminobenzoate and act by inhibiting

dihydropteroate synthase. Many bacterial infections are effectively treated

with sulfonamides, as they mimic an essential substrate and competitively

inhibit an essential enzyme. There are lots of other examples of inhibition of

essential metabolites by mimicking their substrates (Bermingham and Derrick,

2002).

2



1.2. Outline

Hence, the study of metabolite essentiality will be beneficial not only to

the understanding of systems biology (especially with complex metabolite

networks), but also is expected to play an important role in helping to

identify drug targets.

The systems biology approach, with its combination of computational,

experimental and observational enquiry, is highly relevant to drug discovery

and the optimization of medical treatment regimes. Particularly, computer

simulation and analysis, along with traditional bioinformatics approaches,

have frequently been proposed to significantly increase the efficiency of drug

discovery (Kitano, 2002).

Currently, the main drawback is due to the cost and time consumption

of the approaches taken to identify essential metabolites, which is mainly

gene knock-out experiments.

With the objective to reduce the time and cost of determining essen-

tial metabolites, we are going to study the correlation between metabolite

essentiality and metabolite network topology, and try to predict essential

metabolites using constraint-based modeling.

1.2 Outline

In Chapter 2, we will review recent progress made on the topic of corre-

lation between metabolite essentiality and network topology, the lethality-

centrality rule, and other findings. We will also discuss the importance of

choosing C.Reinhardtii, which is a model organism of microalgae, as our in-

3



1.2. Outline

vestigation object. Finally, the basic concepts of systems biology and linear

programming will be discussed here.

Figure 1.1: Interaction-based approach and constraints-based approach are
both implemented to study metabolite essentiality.

As indicated in Figure 1.1, two modeling approaches: interaction-based

approach and constraints-based approach are both implemented to study

metabolite essentiality.

In Chapter 3, interaction-based approachmodel iNJ661 ofMycobac-

terium tuberculosis is used to identify essential metabolites. First, we cat-

egorize the essential metabolites into 3 different types: Essential Unusual

Metabolites, Universal Metabolites, and Non-Essential Metabolites. Sec-

ondly, we introduce a method based on adjacency matrix to find the gaps

in the model and fill the model with GapFill, a method developed by Orth

Jeffrey to fill the gaps (Orth and Palsson, 2010). Finally, we study the

correlations between metabolite essentiality and the topology parameter of

metabolic networks. The metabolite degree, degree of neighbors, clustering

4



1.2. Outline

coefficient of each metabolite, and betweenness of the metabolite network is

discussed, respectively.

In Chapter 4, constraints-based approach model organism, Chlamy-

domonas Reinhardtii, is chosen to conduct the study of predicting essential

metabolites by constraints based modeling. With the light usage informa-

tion, we are able to predict essential metabolites in different growth con-

ditions, and find the common essential metabolites. We also propose the

categorization of essential metabolites by using Flux Sum Analysis.

In Chapter 5, we summarize the results and discuss possible future work.
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Chapter 2

Literature Review

At the core of our understanding of biological processes and underlying sys-

tems, is a characterization of function and interactions of their constituent

parts. Systems biology, which takes into account the key characteristics of

complex systems, including essentiality, emergence, robustness and modu-

larity, is one of the essential topics. Today, systems biology is established as

a fundamental interdisciplinary science that focuses on detailed studies of

the complex mechanisms, which orchestrate the interactions between various

biomolecules that compose life.

2.1 Systems Biology

Systems biology, broadly speaking, is a subject that attempts to investi-

gate the behavior and relations of all the ‘elements’ in a given functioning

biological system (Kitano, 2002). It aims at system-level understanding

of biological processes and biochemical networks as a whole. This “system-

oriented” new biology is shifting our focus from examining particular molec-

ular details to studying the information flow at all biological levels: genomic

DNA, mRNA, proteins, informational pathways, and regulatory networks

6



2.1. Systems Biology

(Price and Lee, 2010). Systems biology approaches seek to study the com-

plexity of life to help in understanding how the cellular networks work to-

gether. It requires a broad interdisciplinary knowledge of molecular and cell

biology, biochemistry, informatics, mathematics, computing, and engineer-

ing. It provides tools to understand the various functions and properties of

biological systems, and predicts systems behavior under various physiologi-

cal conditions.

2.1.1 Basic Steps in Systems Analysis

A widely used in silico quantitative systems biology tool to relate the geno-

type to the phenotype comprises of four steps:

1. Collection of information from ‘omics’ and literature data on

the target organism

Genome sequencing is the starting point for the systems analysis. Af-

ter that, the genome is annotated to define genes and transcribed

elements, and open reading frame (ORF)s are delineated. The most

challenging part of genome annotation, which is assigning molecular

function, can be done through comparison of related genes and pro-

teins with known functions, for instance, by predicting protein func-

tion based on sequence similarity with proteins of previously anno-

tated function in database such as Uniprot or Metacyc databases.

This approach generates a genome annotated with Enzyme Commis-

sion(EC) numbers which contains the catalytic information of the gene

product.(Francke et al., 2005)

7



2.1. Systems Biology

2. Reaction network model

After genomic sequencing,the reaction network reconstruction process

are performed. This process is carried out by assigning reactions to an-

notated genes using metabolic databases such as Kyoto Encyclopedia

of Genes and Genomes (KEGG). Reaction properties that include re-

versibility and localization to cellular compartments are also built into

the network model. Incomplete reaction pathways or lack of metabolic

functions are quite common in network models. Often, reorganization

of reactions is required to make the model consistent with the known

physiological and biochemical characteristics.

3. Mathematical description of the network model

The reaction network model is described by a set of reaction rate equa-

tions so as to allow quantitative analysis. Stoichiometric matrix is a

popular representation of the network model and is rather straight-

forward to generate. The large number of reactions in these models

makes it almost impossible to develop models manually. A variety of

software programs are available for automatically building the math-

ematical models based on reaction network information. Antimony is

one such software that generates a model in Systems Biology Markup

Language (SBML) (Smith et al., 2009).

4. Evaluation and refinement of the model

Metabolomic and transcriptomic data from high-throughput experi-

ments is used to evaluate and refine the model and iteratively improve

its capacity to predict phenotypes. Different types of analysis can

be performed on the refined model to optimize or predict the prop-

8



2.1. Systems Biology

erties of the network. In this context, constraint based modeling ap-

proaches such as flux balance analysis (FBA) have been widely studied

to predict flux through metabolic path ways, optimal growth media,

product yields, and other factors relevant to bioprocess design and

optimization (Hatzimanikatis et al., 2005; Hjersted and Henson, 2009;

Hucka, 2003; Kauffman et al., 2003; Krieger et al., 2004; Lee et al.,

2006; Meadows et al., 2010)

2.1.2 Systems Analysis of Metabolite Essentiality

Serval attempts, both in vivo or in silico, have been made to study the

metabolite essentiality. Among in silico methods, systems biology is the

most popular one. Rigoustos states that “Systems biology is an integrated

approach that brings together and leverages theoretical, experimental, and

computational approaches in order to establish connections among impor-

tant molecules or groups of molecules in order to aid eventual mechanistic

explanation of cellular processes and systems.” (Rigoutsos, 2007). Aiming

at a system-level understanding of biological systems, systems biology pro-

vides a tool to understand the various properties of biological systems and

predict system behavior under different physiological conditions (Palsson,

2009). Just as theoretical and mathematical biology deal with the mathe-

matical modeling of certain aspects of biology, systems biology deals with

the prediction of various function from the metabolic networks and provides

a mechanistic bridge between phenotype and genotypes.

Flux Balance Analysis (Ghim et al., 2005; Imieliski et al., 2005; Kim et al.,

2007; Li et al., 2011; Palsson, 2003) and Flux-sum analysis (Chung and Lee,

9



2.2. Interaction-based Approach

2009) are two popular systems biology approaches that are used in under-

standing metabolite essentiality. Metabolite essentiality is commonly deter-

mined in silico by monitoring cell growth while changing the concentration

of a given metabolite to zero.

An in vivo method for studying metabolite essentiality is to implement

wet-lab gene knock out experiments to find out the essential enzymes, and

determine the essential metabolites based on the knock-out results. These

experiments often provide more reliable models, however, there is usually

missing information about reactions or mechanisms in the in silico network

(Lamichhane et al., 2011).

2.2 Interaction-based Approach

2.2.1 Graph Theory in Systems Biology

Graph theory has been used for analyzing data for protein interaction net-

work, and is receiving more and more attention in predicting essential metabo-

lites.

Metabolite essentiality has gained enormous interest in the recent years.

One of the most intriguing questions in the study of metabolite essentiality

is to understand the connection between biological and topological impor-

tance of metabolite networks. One of the first attempts at studying this topic

was made in 2001 on the S. cerevisiae protein-protein interaction network

(Bro et al., 2006). It was also investigated under the topic “centrality and

lethality” by Jeong and colleagues (Jeong et al., 2001). Since then, many

10



2.2. Interaction-based Approach

efforts have been put into the protein-protein interaction network, the cor-

relation between protein-protein network topology and protein essentiality

was confirmed by many researchers (Coulomb et al., 2005; Hahn and Kern,

2005; Yu et al., 2004, 2007; Zotenko et al., 2008). The recent availability

of large protein interaction databases has fueled the analysis of protein in-

teraction networks and it has been demonstrated that protein essentiality

could be strongly related to some topological parameters of these networks.

For example, protein networks are found vulnerable when a highly con-

nected “hub” is removed (He and Zhang, 2006). Computational analysis

shows that removing hubs increases the proportion of unreachable pairs of

nodes(metabolites) and the mean shortest path length between all pairs of

reachable nodes in the network.(Albert et al., 2000)

However, not much work has been reported on the correlation between

metabolite essentiality and topology. Mahadevan et al(Mahadevan and Palsson,

2005) conjectured that low degree metabolites (metabolites connect with

small number of other metabolites) are just as likely to be recognized as

essential metabolites as high degree metabolites (metabolites connect with

large number of other metabolites). Areejit Samal generated a random ma-

trix to explain this phenomenon(Samal et al., 2006). Other graph driven

methods to analyze complex cellular networks are emphasized by many re-

searchers (Aittokallio and Schwikowski, 2006a).

Traditional methods to study the essential metabolites mainly rely on

creating random mutants of a gene and therefore require a large amount of

work. For in silico metabolite network predictions like flux balance analysis,

the complexity and integrity of the metabolite model would greatly affect

11



2.3. Constraints-based Approach

the accuracy of the prediction. Although a lot of progress has been made in

studying the topological and functional properties of metabolite networks,

very little effort has been put into understanding the correlations between

metabolite essentiality and topology. We are trying to involve more topo-

logical parameters of the metabolite network, which would help to increase

the accuracy of addressing essential metabolites, and to better understand

the metabolite network structures.

2.3 Constraints-based Approach

Another approach used in predicting essential metabolites is contraints-

based, in which Flux Balance Analysis(FBA) and other linear programming

based tools are implemented with biology mathematic models.

The development of high-throughput experimental techniques in recent

years has led to an explosion of genome-scale data sets for a variety of

organisms. Considerable efforts have yielded complete genomic sequences

and gene-annotation based metabolite models for dozens of organisms. A

prudent approach to gain biological understanding from these complex data

involves the development of mathematical models, simulation, and analysis

and techniques (Kim et al., 2008). In these complementary efforts, many

analytical tools have been developed to use these models in computational

investigations of model organisms. One method in particular, Flux Balance

Analysis (FBA), is a powerful mathematical approach to assess the ability of

an organism to grow on a particular substrate or in particular environment

and also be used to assess the effect of metabolic gene deletions under various

12



2.3. Constraints-based Approach

growth conditions (Palsson, 2009).

2.3.1 Flux Balance Analysis

Flux balance analysis is a widely used constraint based approach for study-

ing biochemical networks (Orth et al., 2010). A reaction network is as-

sumed to be at steady state in order to overcome the lack of knowledge

of metabolite concentration or details of enzyme kinetics of the system

(Edwards et al., 2001). It is difficult and in some cases impossible to pro-

vide real time metabolite concentration or enzyme kinetics using current

experimental techniques. The model of the steady state reaction network

is defined by a linear matrix equation that contains reaction stoichiometric

coefficients.

Constraints are typically of two types, one is the stoichiometry matrix,

which is generated from mass balance equations (Kauffman et al., 2003).

These matrix-based constraints ensure the total amount of any compound

being produced must be equal to the total amount being consumed at steady

state. The other type of constraints are given by the reactions, which define

the maximum and minimum allowable fluxes of the reactions.

However, the dynamics of the metabolic networks sometimes are too im-

portant to be neglected, Dynamic Flux Balance Analysis (DFBA), a widely

used approach for studying biochemical networks and phenotype optimiza-

tion method, was introduced to generate dynamic prediction of substrate,

biomass and concentrations in batch culture (Meadows et al., 2010). Many

tools have been developed to perform FBA and DFBA, for instance, FBA-

13



2.3. Constraints-based Approach

SimVis(Grafahrend-Belau et al., 2009), SurreyFBA((Gevorgyan et al., 2010),

and CobraToolbox(Becker et al., 2007).

With the network reconstruction data from Nanette R Boyle (Boyle and Morgan,

2009), and Kyoto Encyclopedia of Genes and Genomes (KEGG), DFBA

is utilized to predict the biomass production and lipid concentration of

C.Reinhardtii. (Hucka, 2003)(Becker et al., 2007), the simulation and opti-

mization results will be compared with existing experimental results (Smith et al.,

2009).

Linear programming(LP) is used to identify single or multiple optimal

solutions from constraints in constraints based modeling.

Linear Programming

Linear Programming (also known as LP, or Linear Optimization) is a math-

ematical method to determine the optimal solution (such as maximum or

minimum) in a given mathematical model with a list of constraints rep-

resented as linear relationships. The linear objective function, subject to

linear equality and linear inequality constraints is used to find the optimal

point. The optimal solution normally lies in a corner of the constraint poly-

tope. Occasionally, the objective function has the same value along a whole

edge and all the points on that edge are optimal values. In this rare case

the objective function is ”parallel” to the edge of the polytope.

The figure below represents a simple example of linear programming

problem.
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2.3. Constraints-based Approach

Solution space defined  

by constraints

 

Solution space defined 

Optimal Point 

Null Space 

Figure 2.1: Linear Programming

LP problems can usually written into form:

Maximize cTx

subject to Ax ≤ b

and x ≥ 0

where x represents the vector of variables, c and b are vectors of co-

efficients, A is the coefficient matrix. Most of the metabolic engineering

LP problems are convex under-determined. An under-determined system

means there are less equations than variables, while an over-determined sys-

tem means there are more equations than unknowns.
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2.4. Subjects of Applications

2.4 Subjects of Applications

Two modeling approaches, interaction-based and constraints-based , are ap-

plied on different model organisms.

Mycobacterium tuberculosis, model iNJ661, is used in the interaction-

based approach, with a list of essential metabolites from G.Lamichhane,

J.Freundlich et al. in 2011 through a wet-lab approach. The correlations

between metabolite essentiality and the topology parameter of metabolic

networks are being studied, to improve the accuracy of the essential metabo-

lites predication. The main reason to use this model is that it’s the first

organism with a full list of essential metabolites with wet-lab experiemental

results.

Constraints-based approach is applied on Chalmydomonas Reinhardtii,

model iRC1080, as it is the latest and only model with light usage, which

enable us to implement simulation under three different growth conditions.

Flux balance analysis is utilized to identify the essential metabolites, and

flux sum analysis is used to categorize the essential metabolites.
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Chapter 3

Metabolite Essentiality and

Reaction Network Topology

One of the most interesting questions in the study of metabolite essentiality

is to understand the connection between biological and topological impor-

tance of metabolite networks. In this chapter, we investigated the degree,

neighbor’s degree, clustering coefficient and betweenness of the essential

metabolites and unessential metabolites, try to find the correlation between

essential metabolites and reaction network topology.

3.1 Graph Theory and Essential Metabolites

Before we study the correlation between metabolite essentiality and reaction

network topology properties, the basic concepts of graph theory, and the

methodologies we used to classify essential metabolites are discussed.
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3.1. Graph Theory and Essential Metabolites

3.1.1 Graph Theory

Graph

A graph is a mathematical abstraction of structural relationships between

discrete objects. A graph usually refers to a collection of “nodes” and

“edges” that connect the vertices. An edge could be either directed, meaning

there is a distinction from one node to another or undirected, which means

there is no direction from one node to another. Several methods or data

structures can be used to describe the nodes and edges, an easy and widely

used one is adjacency matrix M . An adjacency matrix is an n by n matrix,

where n is the number of nodes in the graph. If there is an edge from node

x (in metabolite network, metabolite X) to node y (in metabolite network,

metabolite Y ), then the element M(x, y) is 1(or in general the number of

edges between x and y), otherwise it would be zero.

M(x, y) = n

n is the number of reactions in which metabolite X acts as a reactant

and metabolite Y is a product.

The representation of complex cellular networks as a graph has made

it possible to systematically investigate the topology and function of these

networks using well-understood graph-theoretical concepts that can be used

to predict the structural and dynamical properties of the underlying network

(Aittokallio and Schwikowski, 2006b).
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3.1. Graph Theory and Essential Metabolites

A simple biosystem, which consists of 4 reactions and 8 metabolites, is

constructed for demonstration:

A → B + C

B → E +D

G 
 C

D +G → E + F

While → means non-reversibility, the symbol 
 in the reaction indicates

it’s reversible. A pathway diagram representing this simple system is shown

as Fig 3.1,

A

C

E

G

F

D

B

Figure 3.1: Pathway diagraph from a simple biosystem consists of 7 metabo-
lites

The adjacency matrix X can be derived for the above reaction system

in a straightforward way. So the Figure 3.1 could be interpreted as :
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3.1. Graph Theory and Essential Metabolites

X
∆
=



A B C D E F G

A 0 1 1 0 0 0 0

B 0 0 0 1 1 0 0

C 0 0 0 0 0 0 1

D 0 0 0 0 1 1 0

E 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0

G 0 0 1 0 1 1 0



A very interesting and useful property of adjacency matrix is that the

(i, j) element of Xk gives the number of k-step edge sequences from node i

to node j (Jiang et al., 2009). For instance, element (2, 5) represents that

there are two 2-step edge sequences from node b to node e; as it is clear

that we can find in the graph that there are two 2-step edge sequences from

node b to node e: {b → c → e}, {b → d → e}

For a digraph with N nodes and an adjacency matrix X, the following

matrix

R = (X +X2 +X3 + · · ·+XN )

is defined as a connectivity matrix, the (i, j)th element of R indicates the

number of directed paths from node i to node j. In our research, we only

focus on two-step connections, which means,

R = X +X2 +X3
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3.1. Graph Theory and Essential Metabolites

The connectivity matrix for the digraph in Fig 3.1 is

X
∆
=



A B C D E F G

A 0 1 2 1 3 2 1

B 0 0 0 1 2 1 0

C 0 0 1 0 1 1 2

D 0 0 0 0 1 1 0

E 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0

G 0 0 2 0 2 2 1



X1, 3 = 2, it means from node A to node C, there are 2 pathways with

less than 2 nodes in between. The connectivity matrix is used to find the

gaps in our study, as well as to study the nature of metabolite reaction

network topology.

Stoichiometric and Adjacency Matrices For large systems, especially

complex metabolite networks, the adjacency matrix can be obtained from

the corresponding stoichiometric matrix. The stoichiometric matrix is widely

used in the computational systems biology, the matrix S stores the stoichio-

metric coefficients associated with each reaction flux in a network. In the

above formulation, both internal fluxes and boundary fluxes, which trans-

port material into or out of the system, are included in S. Typically,

a number of inequalities are introduced to constrain the boundary (also

called injection) fluxes depending upon the external media (Edwards, 2000)

(Beard et al., 2002). Stoichiometric matrix can be obtained from databases
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3.1. Graph Theory and Essential Metabolites

like MetaCyc(Caspi et al., 2010), CSB.DB (Kopka et al, 2005) quite easily.

More details about stoichiometric matrix can be found in chapter 4.

In the Stoichiometric matrix, the ith reaction A+B → C +D showing

that A and B will be consumed to produce C and D, so both A and B are

adjacent to C and D. For any metabolite X in stoichiometric matrix S,

jA is the row number of the metabolite X. For ith reaction, we define the

boolean equivalent of any reachability between any two metabolites A and

B as follows:

K(jA, jB) =


0, if S(jA, i) · S(jB, i) = 0,

1, if S(jA, i) · S(jB, i) ̸= 0,

For a system with i reactions, the adjacency matrix would be:

R(jA, jB) =
∑

K(jA, jB)#i

The MATLAB code can be found in the Appendix 6.

Network Topology Definitions and Notations

For a directed graph G, we shall write D(x) as the degree of a node x in

V (G), which is the total number of edges (both in- or out- of the vertex) of

x.
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3.1. Graph Theory and Essential Metabolites

Degree The degree of a certain metabolite in the metabolite network is

equal to the number of reactions it is included, either as a reactant or prod-

uct.

D(X) =
n∑

i=1

Mx,i +
n∑

j=1

Mj,x

The degree distribution of the metabolite network measures the propor-

tion of nodes in the network having degree k. We have

P (k) =
nk

n

where nk is the number of nodes in the network of degree k, and n is the

size of the network.

Neighbor’s Degree The sum of the degrees of a certain metabolite’s

neighbors, which reveal the numbers of metabolites connected to the metabo-

lite indirectly but very still very close to that metabolite, is also very im-

portant.

An interesting and useful property of adjacency matrix is: (i, j) element

of Xk gives the number of k-step edge sequences from node i to j. So

ND(X), the number of degrees of the neighbors of metabolite X is:

ND(X) =

x∑
i=1

M2
i,x +

x∑
i=1

M2
x,i
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3.1. Graph Theory and Essential Metabolites

The average of the neighbors’ degrees of metabolite X Avg ND(X) is

calculated as:

Avg ND(X) =
ND(X)

D(X)

Clustering Coefficient Next, in graph theory, clustering coefficient rep-

resents how the nodes tend to cluster together. Here we study the local

clustering coefficient for each node, which quantifies how close its neighbors

are to being a clique(a complete circle), is defined as the proportion of links

between the vertices within its neighborhood divided by the number of links

that could possibly exist between them. For a directed graph, eij is distinct

from eji and therefore for each node Ni there are ki(ki − 1) links that could

exist among the nodes within the neighborhood, here ki is the degree(in and

out) of the node.(Mason and Verwoerd, 2007)

Ci =
|{ejk}|

ki(ki − 1)

Betweenness Another important topological feature of the network has

received much attention - betweenness, which measures the total number of

nonredundant shortest paths going through a certain node or edge (Girvan and Newman,

2002). For node k, the betweentess can be defined as following:

Pk =
∑

Nij
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3.1. Graph Theory and Essential Metabolites

Nij =


0, if no shortest path through node k,

1, if the shortest path through node k,

Missing Information in the Biological Models

The genomes of several microorganisms have been completely sequenced and

annotated in the past decade, however, even the most complete genomes are

not perfect; they have missing information, which may lead to inaccurate

predictions of the model. A key challenge in the automated generation of

genome-scale reconstructions is the elucidation of the gaps and the subse-

quent generation of hypotheses to bridge them. This challenge has already

been recognized and a number of computational approaches have been un-

der development to resolve these issues.Feist et al. (2009); Oh et al. (2007);

Orth and Palsson (2010); Satish Kumar et al. (2007)

There are two types of missing information (Orth and Palsson, 2010):

� Gaps: Gaps are created by dead-end reactions. When a reaction that

consumes or produces a metabolite is missing, it creates a dead-end.

For instance, experiments reveal a producing reaction but no con-

suming reaction, or no producing reaction but a consuming reaction).

Example A in Figure 3.2 is a common type of gap. In FBA, these

reactions carry no fluxes and therefore can lead to wrong predictions.

There are several reasons for gaps in the metabolic network:
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3.1. Graph Theory and Essential Metabolites

1. Biological: An enzyme in a completed reaction pathway is missing

in the biochemical network. For example, iAF1260 for E.coli K-12

MG1655 (Edwards, 2000).

2. Scope: Metabolites produced in metabolism but then enter other

systems not included in the network models like transcription

and, translation may leave gaps in the models. For example,

tRNAs in iAF1260 (Chavali et al., 2008).

3. Knowledge: It is not known what biochemical reaction produces

or consumes a certain metabolite. A new biological discovery

must be made to fill this gap.

� Orphan reactions: There are two different types of orphan reactions:

1. Reactions known to exist but are catalyzed by unknown gene

product. They are the result of missing knowledge of the metabolism

of an organism, (which gene or genes code for their enzymes.)

2. Reactions catalyzed by gene products with unknown functions.

Even most well-studied organisms have many gene with unknown

functions, eg: E.coli K-12 MG1655 has 981 partially or fully un-

characterized. A database named ORENZA lists global orphan

reactions recently found.

Example B in Figure 3.2 shows one type of orphan reactions, which is cat-

alyzed by a unknown gene product.
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3.1. Graph Theory and Essential Metabolites

Figure 3.2: Examples of Orphan reaction and Gap. A: the missing reaction
(Gap) creates two dead-end reactions; B: the reaction catalyzed by unknown
gene product can be a orphan reaction (Reprinted from Orth, Jeffrey D,
2010(Orth and Palsson, 2010), with permission from 2010 Wiley Periodicals,
Inc.)

Identifying the Gaps in a Reaction Network

Gaps exist in almost every metabolic reaction network due to lack of in-

formation. In this thesis, a novel approach to find these gaps using what

is called an adjacency matrix is proposed. The adjacency matrix contains

information about interactions between metabolites. Gaps in metabolic re-
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3.1. Graph Theory and Essential Metabolites

constructions are defined as (i) metabolites which cannot be produced by

any of the reactions or imported through any available uptake pathways

in the model; or (ii) metabolites that cannot be consumed by any of the

reactions or exported by any secretion pathways in the network. The first

kind of metabolites are recognized as root no-production metabolite (e.g.;

metabolite A in Figure 3.3) and the second situation is recognized as root

no-consumption metabolites(e.g.; metabolite B in Figure 3.3). There will be

no flow through these metabolites at steady state due to their inability to

connect with the rest of the network. Consequently, the metabolites directly

related to them will be affected as well, which are defined as downstream

no-production metabolites (e.g.; metabolite C in Figure 3.3) and upstream

no-consumption metabolite (e.g.; metabolite D in Figure 3.3) respectively

(Satish Kumar et al., 2007).

Figure 3.3: Characterization of problem metabolites in metabolic networks
(Satish Kumar et al., 2007)

The root no-production metabolites and root no-consumption metabo-

lites are caused by the gaps in the system, while they introduce more down-

stream or upstream no flux metabolites simultaneously. In the connectivity

matrix, the value of elementX(i, j) shows the number of pathways from node

i to node j, if X(i, j) = 0, there is no flux from metabolite i to metabolite

j. Set
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3.1. Graph Theory and Essential Metabolites

Kj =

i=1,2...n∑
X(i, j)

Clearly, if Kj = 0, the jth metabolite is a root no-production metabolite.

Similarly, set

Ci =

j=1,2...n∑
X(i, j)

Ci represent the number of pathways producing metabolite i, so if Ci = 0,

it would be a root no-consumption metabolite.

Gaps could be filled by different methods like BNICE (Hatzimanikatis et al.,

2005), GapFill (Satish Kumar et al., 2007) , SMILY (Reed et al., 2006), etc.

Current gap-filling methods: In computational biology, gap-filling meth-

ods are quite useful as they improve the predictive capabilities of models by

making them more realistic by characterizing a previously unknown gene, a

model refinement tool.

� a) Computational methods: (to filling the gaps, reactions from database

, KEGG, etc are used)

1. GapFind and GapFill: minimize the total number of gaps in a

metabolic network model. Gapfind: a mixed integer linear pro-

gramming algorithm that can identify every gap in a network by

identifying blocked metabolites (cannot be produced or consumed

at steady-state under any conditions)

GapFill: another mixed integer linear programming(MILP) method
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3.1. Graph Theory and Essential Metabolites

to minimizing the gaps by reversing the existing reactions, adding

new reactions or transport reactions, or reactions between com-

partments, with minimal number of model modifications.

2. SMILEY: predicts reactions that are likely missing from a net-

work when the model predicts no growth but experiment predicts

growth (based on the OptStrain algorithm).

3. GROWMATCH: uses experimentally determined gene essential-

ity data to identify incorrect model predictions.

4. other methods. OMNI, for example.

� b) Experimental methods. Several experimental methods could also

be introduced to filling the gaps.

After refining the model by find and fill the gaps, we categorize metabo-

lites into 3 different types novelly: Universal Metabolites, Essential Unusual

Metabolites, and Non-Essential Metabolites.

3.1.2 Categories of Metabolites

In this study, the metabolites are divided into three groups:

Universal Metabolites (UM): Some inorganic or cofactor metabo-

lites, such as H2O, ATP, or NADP+, have been found to exist universally

more than 90% organisms whether they are prokaryotes or eukaryotes. These

metabolites are called universal metabolites.

Essential Unusual Metabolites (EUM): The metabolites whose ab-

sence will cause cell death, but are not UM are called Essential Unusual
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3.1. Graph Theory and Essential Metabolites

Metabolites. In order to find out the essential metabolites, a large amount

of transposon insertion mutants are created to represent the disruption and

therefore the loss of function of more than 2000 genes. UM and EUM are

usually seen as essential metabolites together, in most of the studies.

The list of EUM in M.Tuberculosis can be find in Appendix 1.

Non-Essential Metabolites(NEM): All other metabolites are called

non-essential metabolites.

The universal metabolites are usually treated as essential metabolites be-

cause most living matter cannot survive without the metabolites like H2O

and ATP. However, this definition could bring confusion and misunderstand-

ing in the research, especially in the drug target studies. For example,

metabolites as H2O and ATP are to be recognized as essential because very

few living cell can live without H2O and ATP, but they can hardly be used

as a drug target. (Martelli et al., 2009)

We are trying to find a method to predict the metabolites which are

not common metabolites, but still, the fact without them will significantly

eliminate the cell growth. A innovative idea is to filter all the common seen

metabolites, in other words, to pick out the Essential Unusual Metabolites

(EUMs).

Obtain EUM and UM With a database of 250 species of organism, we

define metabolites those could be found in more than 90% of the organisms

are universal metabolites. Some of the list of metabolites in different species

are obtained from a database investigated by Kim (Kim et al., 2007), other
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3.2. Application to Mycobacterium Tuberculosis

are from KEGG pathway database. The comprehensive list of the universal

metabolites are listed in Appendix 2.

All the UM metabolite are found to be essential metabolites in most of

the recent studies about essential metabolites in different organisms (Martelli et al.,

2009). The next main step is to study the correlation between the topol-

ogy of the metabolite network and the metabolite essentiality for each type.

Before that, it’s very important to refine the model we are going to use, as

there are missing information as gaps and orphan reactions.

3.2 Application to Mycobacterium Tuberculosis

A list of essential metabolites for Mycobacterium Tuberculosis(MTB) was

obtained from G.Lamichhane, J.Freundlich et al., (Lamichhane et al., 2011)

from a in vivo approach. 5126 independent, genotyped and archived mu-

tants with disruption in both intra- and intergenic regions were created,

followed by a statistical analysis to predict the essentiality of the genes.

The molecules produced by reactions encoded by essential enzymes are clas-

sified as essential metabolites. This is also the first comprehensive report of

a large number of essential molecules so far.(Duarte et al., 2004)

3.2.1 Mycobacterium Tuberculosis

Mycobacterium tuberculosis(MTB) is a pathogenic bacterial species in the

genus Mycobacterium and the causative agent of most cases of tuberculosis,

it was first discovered in 1882 by Robert Koch. However, with 1.77 million
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3.2. Application to Mycobacterium Tuberculosis

deaths from TB in 2007, this disease ranks second only to human immun-

odeficiency virus as a cause of death from an infectious agent. The estimate

that more lives may be lost in 2011 due to tuberculosis than in any year

in history is alarming. In 1993, the gravity of the situation led the World

Health Organisation (WHO) to declare tuberculosis a global emergency in

an attempt to heighten public and political awareness. Complete genome

sequence of the best-characterized strain of Mycobacterium tuberculosis has

been determined in 1998 by S.T. Cole, R.Brosch et al, (Cole et al., 1998a)

to enhance the understanding of the biology of the slow-growing pathogen

and to help the conception of new prophylactic and therapeutic interven-

tions. New-resistant tuberculosis appear almost every year, so new drugs

are needed to treat the infections caused, the attempt to determine essential

metabolites would benefit the drug target filtration. Gyanu, Joel, et al, iden-

tified essential metabolites and enzymes for M.tuberculosis using a genetics-

based approach,(Lamichhane et al., 2011) which provide a new blueprint for

developing effective chemical probes of M. tuberculosis metabolism.

The cell envelope of M. tuberculosis, contains an additional layer beyond

the peptidoglycan that is exceptionally rich in unusual lipids, glycolipids

and polysaccharides. Cell-wall components such as mycolic acids, myco-

cerosic acid, phenolthiocerol, lipoarabinomannan and arabinogalactan, are

generated by novel biosynthetic pathways, and several of these may con-

tribute to mycobacterial longevity, trigger inflammatory host reactions and

act in pathogenesis. Little is known about the mechanisms involved in life

within the macrophage, or the extent and nature of the virulence factors pro-

duced by the bacillus and their contribution to disease.(Cole et al., 1998b)

In addition to the mycolic acids, the cell envelope contains a wide array of
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3.2. Application to Mycobacterium Tuberculosis

distinctive lipids and glycolipids that confers extreme hydrophobicity to the

outer surface of the organism.(Sibley et al., 1988, 1990)

The model of Tuberculosis we used is iNJ661 for Mycobacterium tuber-

culosis H37Rv, developed by N. Jamshidi. (Jamshidi and Palsson, 2007)

3.2.2 Gaps in the Metabolite Network iNJ661

Using graph theory stated in 3.1, there are two different types of gaps found

in iNJ661 model for MTB. For the list of root no-production metabolites,

please see Appendix 3. For a comprehensive list of root no-consumption

metabolites, please see Appendix 4.

3.2.3 Metabolite Essentiality and Network Degree

It has been found that essential metabolites have higher degree than non-

essential metabolites in E.coli (He and Zhang, 2006). However, inM.tuberculosis,

we calculated the average degree of essential metabolites and non-essential

metabolites, respectively. The average degree of essential metabolites is

found to be 83, much higher than the non-essential ones, which is just 9.

It is mainly because the universal metabolites, which are counted as essen-

tial metabolites, usually have much higher degree than the others with a

noticeably average degree of 95.89.

In order to find out if there is statistically significant difference between

essential metabolites and non-essential metabolites, Welch two sample test

is implemented on the essential metabolites and non-essential metabolites,
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Figure 3.4: Probability distribution of degree of metabolites

with a p value of 0.00066. When comparing with the t-test result of EUMs

and NEMs, which has a p value of 0.1588 shows there is no statistically

significant difference existing if UMs are not included. It is concluded that

the the higher degree of UMs is the reason for the difference between EMs

and NEMs, and this supports He’s finding.

Another interesting fact is the fraction of essential metabolites among

the 10% most connected is 64.8% and there is no essential metabolites in

the least connected. However, it is interesting to see that the t-test shows

there is a significant difference between the downstream degree of EUMs

and NEMs, with a p-value of 0.00014, it means usually EUMs has smaller

downstream degree, so there is a higher possibility that a metabolite with

fewer products is EUM.
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Figure 3.4 is the degree distribution of iNJ661. The horizontal axis is

the degree of the metabolite, while the vertical axis is the probability of the

metabolite, so for any given spot, it shows the probability of metabolites

with a certain degree. It shows that essential metabolites have a higher

probability with higher degrees, especially larger than 20. It also shows that

most of the non-essential metabolites have degrees under 20, and barely any

NEMs larger than 20.

3.2.4 Metabolite Essentiality and the Degree of Neighbors

Figure 3.5: Probability distribution of neighbor’s degree

Here we examine the total degree of neighbors and the average degree

of neighbors for EM, EUM, NEM, respectively. The average sum of the

neighbor’s degrees for EM, EUM and NEM are shown in Figure 3.5.

With a Welch’s two sample t-test, it is clear that both EM and EUM
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Figure 3.6: Average sum of neighbor’s degrees for EM, EUM and NEM

have a distribution with larger degree of their neighbors compared to NEMs,

with p values of 0.0206 and 0.0003. The mean of EM is 12108, 8 times larger

than that of NEM, which has a mean of 1416. The main reason is that UM

has incredibly high indirectly-connected neighbors. The mean of EUM is

852, and we can see from Figure 3.6 that they have much higher probability

with neighbor’s degree larger than 10, and almost all the NEMs’s neighbor’s

degrees are under 20.

Interestingly, we found there is no significant statistical difference be-

tween both the average degrees of EM and NEM (p value = 0.3952), EUM

and NEM(p value = 0.9455), which means for all the metabolites, the av-

erage degrees of their neighbors are not related to the fact it’s essential or

not, statistically.
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3.2.5 Metabolite Essentiality and Clustering Coefficient

With the model of iNJ661, when it comes to clustering coefficient, we found

that there is no true difference between EM and NEMs (p value = 0.256),

the averages of them are also quite close, 0.272 for EM and 0.234 for NEM .

We observed that EUMs, the means of which is only 0.07, shows a visible

difference from the NEMs. t-test results show the EUMs do have a smaller

clustering coefficient, with a p-value of 0.0051. The fraction of metabolites

with 0 clustering coefficient is much higher in the EUMs than other 2 groups.

Figure 3.7 shows the prolixity distribution of clustering coefficient for all 3

type of metabolites, in which more EUMs have a clustering coefficient of 0.

This interesting result shows that we can reliably associate metabolite

essentiality with this parameter, but is just limited to EUMs, which is useful

as the UMs can be derived from the database straightforwardly. Small

clustering coefficient could be used as an indicator for the EUMs.

3.2.6 Metabolite Essentiality and Network Betweenness.

According to our investigation, both UMs and EUMs are shown to have

shortest path through, the means of which are 8924 and 1310, respectively,

while the average of NEMs is just 666, the p value for Welch’s two sample

t-test is 0.001 for UMs and NEMs. There is a significant difference between

UMs and NEMs. It’s important to note that NEMs have more shortest

path through them. According to Figure 3.8, it can be concluded that EM

and EUMs have great probability with higher betweenness. So the network
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Figure 3.7: Probability distribution of Clustering Coefficient

betweenness could also be used as an indicator for the metabolite essentiality.

Figure 3.8: Average betweenness of EM, EUM and NEM

Figure 3.9 is about the probability distribution of betweenness, we could
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Figure 3.9: Probability distribution of betweenness

find the distribution follows a exponential distribution, and when the be-

tweenness is larger than 3000, only probabilities of EM and EUM are above

0, and NEMs are all 0.

3.3 Conclusion

We looked systematically for correlations between the essentiality of genes

and their topological characteristics in interaction networks. We have found

that the metabolite essentiality is significantly related to the parameter of

the metabolite in the metabolic network. The EMs are usually with larger

degree, more neighbors’ degree and more shortest path through, notably,

the EUMs have smaller clustering coefficient.

While the essential metabolites are derived from the essential genes and
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approved by the experiments, it is possible that gene essentiality is also

related to metabolite topology parameters, this could be evaluated by future

studies.
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Chapter 4

Constraint Based

Identification of Essential

Metabolites

Flux Balance Analysis and Flux Sum Analysis are two alternate approaches

to graph theory that are often used to identify the essential metabolites.

Unlike graph theory, which is a generic statistical predication, the constraint

based approaches (Flux Balance Analysis and Flux Sum Analysis) identify

the essential metabolites in-silico, and would further decrease the amount

of wet-lab experiments for validating essential metabolites. With the most

advanced model of C. Reinhardtii, we identified essential metabolites under

three different growth conditions, and categorized the essential metabolites

using Flux Sum Analysis.
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4.1. Application: Microalgae

4.1 Application: Microalgae

Microalgae are ubiquitous sunlight driven cell factories in fresh water or ma-

rine systems, they convert CO2 to food, biofuels or other high value bioactive

products, and even cosmetic products (Spolaore et al., 2006). The number

of algal species have been estimated to be more than one million with a ma-

jority being microalgae (Metting, 1996). Among all the potential sources,

microalgae are now recognized as the only source of renewable biodiesel that

is capable of meeting the global demand for transport fuels.

Compared to the first generation sources of biofuel, microalgae have

greater potential as a reliable alternate energy source.Table 4.1 about oil

yield from algae and other sources below demonstrates the advantage of cul-

tivating microalgae. The higher concentration of lipid content in microalgae

is one reason for this, as lipid contains quite high energy. The lipid concen-

tration can often exceed 80% while 20%-50% are quite common.(Beer et al.,

2009) Moreover, the fast doubling time of microalgae makes it possible to

generate large quantities of biomass, which could be further processed to

get different types of biofuels.

Currently, several species of microalgae have gained public and scientific

attraction. However, for the following reasons there is still enormous scope

for engineering micro algae to increase their production:

1. Little experience with the development of closed large scale photo-

bioreactors.

2. High material costs for closed, highly efficient bioreactor systems.
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Crop Oil Yield(L/ha)

Corn 172

Soybeans 446

Jatropha 1892

Coconut 2689

Oilpalm 5950

Microalgae 5000-15000

Table 4.1: Oil yield from algae and from other sources,(Chisti, 2007)

3. High energy requirement for cultivation (e.g. mixing). Expensive har-

vesting (cells need to be separated from medium which is time and/or

energy consuming) (Metting, 1996).

4.1.1 Chlamydomonas Reinhardtii

Among many types of microalgae, green algae C. Reinhardtii is selected for

this study for the following reasons:

� C.Reinhardtii is a model organsim for the process of photosynthesis

in plants (Harris, 2001), and a model for photosynthetic hydrogen

production (Melis and Happe, 2004). Model organisms are simplified

representative systems whose study enables researchers to extrapo-

late their understanding to other complex organisms. A number of

efforts have been made on studying C.Reinhardtii and full nuclear

genome sequence has been assembled in 2007 (Merchant et al., 2007)

(Maul et al., 2002) (Vahrenholz et al., 1993) (Boer et al., 1985).
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4.1. Application: Microalgae

� C.Reinhardtii can be cultivated under different conditions, either au-

totrophic (from simple inorganic molecular and using energy from

light), auxotrophic (relying on organic acid and light) or heterotrophic

(with organic acids only).

� In addition, the time for C.Reinhardtii to grow to a mature individual

is 5 to 6 hours under laboratory conditions, with a total fatty acid

content of the isolated strain of 25%. The composition of fatty acids

in the species of microalgae was mainly docosanoic acid methyl ester,

tetradecanoic acid methyl ester, hexadecanoic acid methyl ester and

nonanoic acid methyl ester.

Cells of C. reinhardtii are oval-shaped, typically 10 µ m in length and 3 µ

m in width with two flagella at their anterior end. This algae contains several

mitochondria and a unique chloroplast which occupies 40% of the cell volume

and partly surrounds the nucleus(May et al., 2008). Figure 4.1 shows the

reconstructed metabolic network of C.Reinhardtii. This unicellular green

algae, closely related to photoreceptors of multicellular organisms, offers a

simple life cycle, easy isolation of mutants, and a growing array of tool

and techniques for molecular genetic studies (Li et al., 2010; Rupprecht,

2009). Recently, C. Reinhardtii have received more attention, because of its

potential to generate biofuel to meet the growing clean energy demands.

In our study, model iRC1080, the newly reconstructed genome-scale

metabolic network for C.Reinhardtii with a novel light-modelling approach

that enables quantitative growth prediction for a given light source, is chosen

to investigate the essential metabolites in C.Reinhardtii.

45



4.1. Application: Microalgae

Figure 4.1: Reconstructed metabolic network of C. reinhardtii, (Reprinted
from (Boyle and Morgan, 2009))

4.1.2 Biofuel from Microalgae

A biofuel is a solid, liquid or gaseous fuel derived from any biological carbon

source including treated municipal and industrial wastes. Biofuels can be

derived either from land-based crops or marina plants as microalgae. Three

main types of biofuels are now produced from microalgae: biohydrogen,

biodiesel, ethanol from fermentation of biomass.

Biohydrogen from Microalgae As a fuel, hydrogen causes less environ-

mental impact whether in stationary engines, gas turbines or automotive

vehicles. Microalgae have the genetic, metabolic and enzymatic charac-
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teristics for hydrogen which cannot be provided by any land-based plants.

During photosynthesis, the microalgae convert water molecules into hydro-

gen ions H+ and oxygen. The hydrogen ions are then converted into H2

by the enzyme hydrogenase (Hahn et al., 2004). The photosynthetic pro-

duction of O2 results in rapid inhibition of the enzyme hydrogenase and

the production of H2 is inhibited. Therefore, cultivation of microalgae

for the production of hydrogen must take place under anaerobic conditions

(Brennan and Owende, 2010).

Hydrogen production in Chlamydomonas has to take place at an effi-

ciency of 7% under outdoor conditions to be commercially viable. While

maximum efficiency for this process has been calculated to be between 6%

to 10%. (Rupprecht et al., 2006)

Biodiesel from Microalgae Microalgae has shown great potential in

the economical biodiesel production. Microalgae commonly double their

biomass within 24h, which makes it possible to produce enough biomass

for production of oil. There are two main large producing methods for

the biomass: raceway pond and photobioreactors. Photobioreactors provide

much greater oil yield compared with raceway ponds, but raceways ponds

are cheaper. Both are technically feasible.

Currently, some naturally isolated microalga Chlamydomonas (for in-

stance, sp MCCS 026) have been proven to be valuable candidates for

biodiesel production as they have high growth rate and lipid content. They

require a simple and comparatively low cost culture medium(Morowvat et al.,

2010). The oil content in different kinds of microalgae can be found in the
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Microalga Lipid content (%dry weight)

Botryococcus braunii 25-75

Chlorella sp. 28-32

Crypthecodinium cohnii 20

Cylindrotheca sp. 16-37

Dunaliella primolecta 23

Isochrysis sp. 25-33

Monallanthus salina N 20

Nannochloris sp. 20-35

Phaeodactylum tricornutum 20-30

Chlamydomonas Reinhardtii 30 - 60

Schizochytrium sp. 50-77

Table 4.2: Oil content from microalgae (Chisti, 2007)(Li et al., 2010)

table below:

Biomethane from Microalgae Microalgae has been investigated for

biomethane production for a long time, it can be grown in large amounts

(150 -300 tons per ha per year (Degen, 2001)), which leads to a theoretical

yield of 200, 000 - 400, 000 m3 of methane per ha per year. However, due to

the high cost of biomass, and the low production capacity compared to the

high demand of commercial gas, biogas is now usually a mixture of carbon

dioxide gas and biomethane (Schenk et al., 2008).

Despite the advantages of algae as a source of biofuels, there are still

significant challenges that must be addressed before algal biofuels can be
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widely used. One of the main concerns is the biodiesel from algae is not

yet economically competitive with fossil fuels or corn ethanol: the cost to

producing gasoline is about $ 1.86 per gallon (according to retail price in

2009 ), while for algal biodiesel, it will be $2.5 -$25( range depends on algae

productivity ) (Schmidt et al., 2010).

4.2 Flux Balance Analysis

Flux Balance Analysis(FBA) calculates the flow of metabolites (also known

as flux), and is widely used as a tool to predict metabolite behavior such as

growth rate of an organism or the rate of production of a bio-technologically

important metabolite. With the assumption that the system will reach a

steady state under any given environmental condition, the regulated metabo-

lite network is set to satisfy a set of feasible constraints. Once the constraints

and fluxes are identified, optimization techniques could be used to evaluate

the performance of the biological system under different conditions, such as

varying objective functions or bounds on certain reactions, growth on differ-

ent media, or of bacteria with different gene knockouts. FBA can be further

used to predict the yields of important cofactors such as ATP, NADH or

NADPH (Kauffman et al., 2003; Lee et al., 2006).

Flux Balance Analysis can be divided into 4 steps as follows:
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4.2.1 Mathematical Reconstruction of a Biochemical

Network

Metabolite network reconstruction is the fundamental step in FBA, it in-

volves generating a model that describes the system of interest. This process

can be further decomposed into three parts typically performed simultane-

ously during model construction: data collection, metabolic reaction list

generation, and gene-protein relationship determination .

After genome-scale metabolic reconstruction, a stoichiometric matrix S

could be generated from the metabolic reactions, S is an m × n matrix

of stoichiometric coefficients that captures the underlying reaction of the

biochemical network. The rows of S correspond to the compounds, while

the columns of S correspond to reactions. The entries in each column are

the stoichiometric coefficients of the metabolites participating in a reaction.

Negative elements of the matrix represent the consumption of compounds

and positives elements denote production, for the metabolites not participat-

ing in a particular reaction, the coefficient is zero (Palsson, 2003). Figure 4.2

shows the basic procedures for mathematically reconstruction of a biochem-

ical network. The reactions are obtained from the complex gene annotation

database, and then converted into stoichiometric matrix.

The genome-scale C.reinhardtii metabolic network used in this study

consists of 1080 genes, associated with 2190 reactions and 1068 unique

metabolites, and encompasses 83 subsystems distributed across 10 compart-

ments (Chang et al., 2011).
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Figure 4.2: Mathematically reconstruction of a biochemical network

4.2.2 Model Validation

Even the most complete models are not perfect; they might contain missing

information, which are called ”gaps”, the incomplete reconstructions may

lead to prediction of erroneous genetic interventions for a targeted over-

production or the elucidation of misleading organizational principles and

properties of the metabolic network. Several computational and experimen-

tal methods can be used to address the gaps to help make more realistic

predictions. As Figure 4.3 shows, the dead-end metabolites are identified.
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Figure 4.3: Model validation

4.2.3 Mass Balance

After the network matrix is reconstructed, mass balance can be defined

in terms of the flux through each reaction and the stoichiometry of that

reaction in the following form

∂x

∂t
= Sv

v is the vector of fluxes with elements corresponding to the fluxes in

given reactions. In steady state, the change amount of a metabolite x over

time t within the whole system becomes zero, yielding :
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Sv = 0

Figure 4.3 explains the basic mechanism of mass balance definition.

Figure 4.4: Mass balance definition

4.2.4 Constraints

One way to add additional constraints to the metabolic network and cal-

culate the fluxes in the network is to measure fluxes in the metabolite net-

work. Usually, it’s hard to measure the exact flux values, so ranges of al-

lowable flux values are incorporated as additional constraints. Constraints

could be physicochemical, topological or environmental. Physicochemical

constraints are physical laws like conservation of energy and mass; topolog-

ical constraints contains information of metabolites within different cellular

compartments; and environmental constraints include nutrient availability,
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pH and temperature that vary over time and space. The constraints im-

posed by the thermodynamics (e.g.effective reversibility or irreversibility of

reactions) and enzyme or transporter capabilities (e.g. maximum uptake or

reaction rates) are considered and incorporated into the model. It should

be emphasized that these constraints are based on what may be considered

“hard-wired” constraints the metabolic system must obey.

αi ≤ vi ≤ βi

The following constraints several of which are obtained from Roger Chang

and Nanette Boyle (Boyle and Morgan, 2009; Chang et al., 2011) are often

used:

1. Fluxes of all reversible reactions are left unbounded.

2. Irreversible reactions are given a lower bound of zero to preserve di-

rectionality.

3. Different environmental conditions are modeled by appropriately set-

ting reaction flux constraints in iRC1080. These reactions consist of

environmental exchanges, non-growth associated ATP maintenance,

O2 photoevolution, starch degradation, and light or dark-regulated

enzymatic reactions (Table 4.4).

4. Constraint values are derived from published sources unless otherwise

noted and imposed only under appropriate environmental conditions.

5. Minimal condition signifies a constraint that is used under all envi-

ronmental conditions. The appropriate biomass reaction was set as
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Metabolite A B C

Ex photonVis 0 lb

Ex CO2 0 lb

EX Oxygen(e) -10 lb -10 lb -10 lb

EX ac(e ) 0 lb -10 lb

EX starch(h) 0 both 0 both

PCHLDR 0 both 0 both

PFKh 0 both 0 both

G6PADHh 0 both 0 both

G6PBDHh 0 both 0 both

FBAh 0 both 0 both

H2Oth 0 ub 0 ub 0 lb

BIOMASS Chlamy auto 1.00

BIOMASS Chlamy hetero 1.00

BIOMASS Chlamy mixo 1.00

Table 4.4: Constraints for different growth conditions

the objective function for optimization depending on environmental

conditions.

For the list of constraints, please see below:

A(Autotrophic):light, aerobic, no acetate

B(Mixotrophic):light, aerobic with acetate

C(Heterotrophic):dark, aerobic, with acetate
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In addition, GLPThi, ATPSh, BFBPh, GAPDH(nadp), MDH(nadp)hi,

MDHC(nadp)hi, PPDKh, IDPh, PRUK, RBPCh, rRBCh, SBP are set to

be zero flux in the heterotrophic growth condition, as there are no photo-

synthesis reaction in this growth condition. In the light growth conditions

(autotrophic and mixotrophic), the light is assumed to have the same compo-

sition as solar light when measured from the surface of the earth. According

to the literature, the conversion rate from emitted energy (Em2s) to incident

(mmolgDWhr) is found to be 3.83.(Costa and de Morais, 2010)

4.2.5 Objective Function

The model is under-determined as the number of linear equations is far

less than the number of unknown reaction fluxes. Therefore, additional

constraints should be incorporated into FBA so as to optimize a particular

cellular objective. Objective functions usually take on a linear form

Z = cv

where c denotes the coefficient for weights indicating how much each re-

action (v) contributes to the objective. In practice, when only one reaction,

such as biomass production, is desired for maximization or minimization, c

is a vector of zeros with a value of 1 at the position of the reaction of inter-

est. Objective functions can take on many forms, commonly used objective

functions include:

Maximizing biomass: the objective is to simulate the optimal cell growth.
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Minimize ATP production: the objective is to deter mine conditions of

optimal metabolic energy efficiency.

Maximize metabolite production: this objective function has been used

to determine the biochemical production capabilities of Escherichiacoli. In

this analysis, the objective function was defined to maximize the production

of a chosen metabolite or desired product (e.g: lysine or phenylalanine)

According to the literature, the in silico predictions of the maximizing

biomass production are consistent 86% of the time for E.coli, and approx-

imately 60% of the time for Helicobacter pylori, approximately 91% for

the E.coli when transcriptional regulation was accounted for (Ibarra et al.,

2002)(Edwards et al., 2001).

Biomass Objective Function for C. Reinhardtii The biomass for-

mation equations used for Flux Balance Analysis were derived according

to previous methods (Chavali et al., 2008). The idea is to estimate the

proportion of dry weight biomass composed of protein, DNA, RNA, carbo-

hydrate, fatty acid, glycerol, lipids, chlorophyll, etc., using available liter-

ature. At first, concentration of DNA, RNA, retinal, chlorophyll and xan-

thophylls in the cell have been found in the literature to be about 0.40%

(Valle et al., 1981), 11.1%, 0.00002795%(Beckmann and Hegemann, 1991),

2.4% and 0.37%(Niyogi, 1997).

Then composition of the remaining cellular components was estimated

from previously published data, components reported at less than 0.1g/L

are omitted, the remaining components (carbohydrates, including starch;

57



4.2. Flux Balance Analysis

glycerol; lipid, including triglyceride; protein; and volatile fatty acids, repre-

senting the sum of acetic, propionic, butyric, and valeric acids) are obtained

from R.Chang in UCSD.

Finally, the data above are integrated into different full biomass equa-

tions for each growth condition. All the values are converted intommol/gDW

The biomass function for 3 different growth conditions can be found in

the Appendix 6.

4.2.6 Linear Program Solver

Linear programming is used to find the optimal solution derived from the ob-

jective function within the space defined by the mass balance equations and

reaction bounds and other constraints. Due to the under-determined nature

of the stoichiometric equations, the solution to the above optimization prob-

lem maybe non-unique (i.e, the optimal solution lies along an edge, plane,

or hyperplane, rather than simply lying at a vertex); thus, several different

sets of fluxes may achieve the same optimal objective. Please see Figure 2.1

for Linear Programming.)

In general, lots of computational tools can be implemented to solve the

LP problem that arises in FBA, even for large-scale systems.
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4.2.7 Identification of Essential Metabolites

With the flux distribution obtained from the initial Flux Balance Analysis,

essential metabolites are distinguished from a total of 1215 metabolites. The

metabolite essentiality can be found by metabolite knock-out analysis, which

is defined as the phenotypic effect on cell growth when the consumption rate

of a given metabolite M is set to zero.Only fluxes producing M are allowed,

so the constraints are applicable to all the outgoing fluxes that are set to

zero. The essentiality of metabolite is defined by the change in scale of cell

growth rate compared to the growth rate of wild type,

ME = (Basegrowth−Optimal Growth)/Base Growth

In this study, an essential metabolite is recognized when its absence leads

to decrease in cell growth rate that is at least half of that of the wild type,

which means, ME > 90%. We calculated the elimination caused by the

reduction of the flux of each metabolite to zero. With the model iRC1080,

which creatively contains metabolic light usage, we can simulate the growth

in three different conditions. The growth conditions includes:

Condition A (Autotrophic) : light, aerobic, no acetate, biomass as ob-

jective function.

Condition B (Mixotrophic): light, aerobic, with acetate, biomass as ob-

jective function.

Condition C (Heterotrophic): dark, aerobic, with acetate, biomass as

objective function.
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The same metabolite could exist in seven different compartments in this

model, including cytosol, chloroplast, mitochondria, glyoxysome, flagellum,

nucleus and extra-cellular. The metabolite essentiality are calculated sepa-

rately in different compartments. In other words, if a metabolite participates

in reactions in different compartments, the flux of that particular metabolite

is treated as two different fluxes in their respective compartments. When it

comes to analyzing the overall metabolite essentiality, we ignore the com-

partment difference, it is recognized to be essential as long as it is found to

be essential in any one of the compartments.

There are 1215 metabolites in total in C.R, in model iRC1080. Among

all the 1215 metabolites, 426 are found to be essential in Condition A ,

and 247 are found to be essential in Condition B , while 260 in Condition

C , this demonstrates for different growth conditions, the microalgae use

different metabolite pathways to fulfill the basic growth requirements. 189

metabolites show essentiality in all 3 growth conditions (Appendix 5), 38

metabolites are found to be essential in 2 growth conditions, 419 metabolites

show essentiality in 1 growth conditions. Less than 15% of metabolites are

found to be essential in all three growth conditions, this might be because

of the high robustness of biosystems because in different growth conditions

different pathways are activated to ensure cell growth.

Although essential metabolites have been identified, it is not yet clear if

all the essential metabolites exert the same influence on the biological sys-

tem. We are going to categorize essential metabolites by Flux Sum Analysis,

to better understand how essential metabolites influence the total growth

rate of biological systems.
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4.3 Flux Sum Analysis

A new variable ”flux-sum” is introduced by Bevan Kai Sheng Chung and

Dong-yup Lee in 2009 (Chung and Lee, 2009) to describe the absolute rate of

consumption and production of each metabolite. For a steady state system,

which is also the fundamental assumption of Flux Balance Analysis, flux-

sum Φi of the metabolite i can be derived from summing up all the incoming

and outgoing fluxes around the metabolite (Kim et al., 2007):

Φi =
∑
jεPi

Sijvj = −
∑
jεCi

Sijvj =
1

2
|
∑
j

Sijvj |

where Sij is the stoichiometric matrix, and Vj is the flux of reaction j.

Pi denotes the set of reactions producing metabolite i, while Ci represents

the set of reactions consuming metabolie i. For a system in steady state, in

order to maintain a constant concentration of a certain metabolite, the sum

of outgoing fluxes should be equal to the sum of incoming fluxes.

Flux sum analysis is known for its capability to help study the differences

among essential metabolites, a two-step approach is employed to carry out

the flux sum attenuation.

4.3.1 Procedure for Flux Sum Analysis

Step 1 : Evaluate basal flux-sum distribution The wild-type flux

distribution is defined as the flux distribution in the wild-type metabolite

model (without changing any elements of the mathematic model.) The
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basal flux-sum distribution is calculated from the wild-type flux distribution

out of FBA, under unperturbed condition. In this case, 3 different growth

conditions are simulated, respectively.

max vbiomass

s.t∑
j

Sijvj = 0

αj ≤ vj ≤ βj

The basal flux-sum distribution for metabolite i is achieved after solving

the above linear programming question:

ΦB
i ==

1

2
|
∑
j

Sijvj |

The basal flux-sum distribution for Chalmydomonas is listed in the Ap-

pendix V. We calculate the total basal flux-sum for the systems in 3 different

growth conditions same as Flux Balance Analysis. The total basal flux-sum

for mixotrophic growth (with light, with acetate) is found to be larger than

other 2 growth conditions. This result is consistent with current studies.

The total basal flux-sum for all the Universal Metabolites are also calcu-

lated, it’s found that the Universal Metabolites contributes to a very large

percentage of the system flux-sum (about 80% - 85%)(Figure 4.5).

It is also noticed that the probability of the basal flux-sum generically
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Figure 4.5: The total basal flux-sum for C.Reinhardtii in 3 different con-
ditions. The blue part represents the total basal flux-sum for Universal
Metabolites.

follows an exponential distribution (as shown in Figure 4.6).

y = ea+bx+cx2

y is the probability of a metabolite with basal flux-sum of 10x. With R2

larger than 0.99.

Step 2 : Manipulate flux-sum by attenuation Flux-sum of each

metabolite is manipulated to evaluate the corresponding metabolite essen-
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Figure 4.6: Probability distribution of metabolites with certain basal flux-
sum.

tiality: the basal flux-sum is considered as a starting point, followed by

examining the effects of decreasing the metabolite flux-sum. Same as above,

we simulated 3 different growth conditions for each metabolite.

max vbiomass

s.t

1

2
|
∑
j

Sijvj |≤ kattΦ
B
i
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∑
j

Sijvj = 0

αj ≤ vj ≤ βj

Biomass production values for different levels of flux-sum attenuation can

be obtained by solving this LP problem. katt control the levels of attenuation

of the flux-sum, we set katt = 1 initially and then decrease the value of it

until katt = 0.

While essential metabolites are usually associated with lethal reactions,

3 different types of essential metabolites are determined through the flux-

sum attenuation analysis according to the curve trend when we manipulate

the flux-sum of different metabolites in Figure 4.7.

Type AE: the most common essential metabolites found in the metabo-

lite network, the biomass production rate varies linearly to the flux-sum of

the metabolite.

Type BE: these type of metabolites are attributed to the existence of

alternate optimal solutions, which also demonstrates the highly robustness

of the bio-system, a small reduction of flux-sum can be compensated by

other ”equivalent” fluxes.

Type CE: these metabolites showed a rapid drop when the flux-sum was

attenuated and reach the 0 flux earlier than other essential metabolites.

With a relatively high threshold, the organism would not be able to pro-

duce any biomass under the threshold. These metabolites were found to be

involved in non-growth associated maintenance.
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Figure 4.7: 2 types of essential metabolites: Type AE and Type BE

With the model iNJ1080 for C.Reinhardtii, we carried out Flux Sum

Attenuation Analysis to study the type of all the essential metabolites in 3

different growth conditions. The table below show the number of different

type of essential metabolites in different growth conditions.

We could see from Table 4.5 and in Figure 4.8 that here are much more

Type A essential metabolites than Type B essential metabolites, and very

a few Type C metabolites. The two essential types, AE and CE, may serve

as promising drug targets since the attenuation of their flux-sum will lead
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Lna Lwac Da

Type AE 301 182 179

Type BE 122 65 79

Type CE 3 1 2

Total 426 248 260

Table 4.5: Number of different types of essential metabolites in different
growth conditions

to significant reduction in cell growth.

Figure 4.8: Number of different type of essential metabolites in different
growth conditions
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Biological Discussion

The result shows great consistency with B. Chung’s hypothesis that most of

the essential metabolites in the cell are type AE (Chung and Lee, 2009).

There are 189 metabolites found to be essential in all three different

kind of growth conditions, it demonstrated the high robustness of the bio-

logical systems. In different growth conditions, the mircroalgae will change

the metabolite pathway to meet the living requirements. We have found

that in autotrophic condition, photosynthesis, porphyrin and chlorophyll

metatabolism,phenylalanine, tyrosine, and tryptophan biosynthesis were the

most essential subsystems, and had most of the essential metabolites. While

for mixotrophic condition, phenylalanine, tyrosine, tryptophan biosynthesis,

porphyrin and chlorophyll metabolite pathways showed more essentiality

than other pathways.

When the simulation is running under the heterotrophic condition, in

the dark environment with acetate, photosynthesis pathway does not show

essentiality any more.Instead, glycolysis, starch metabolism, amino acids,

chlorophyll, and nucleotides still make up a high proportion of required

metabolites.

Expectedly, the fact that most of the essential metabolites are Type

AE, demonstrates that most of the essential metabolites contribute crucially

to the cell growth without any substitute. However, there are still some

essential metabolites(BE) that can find a alternative pathway to sustain cell

growth for a short period of time.
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4.3.2 Conclusion

In this chapter, we implement Flux Balance Analysis as the constraint

based modeling tool to identify the essential metabolites, the constraints

and biomass formation are conducted from literatures and other resources.

183 metabolites are found to be essential in all 3 growth conditions. This

is also the first comprehensive essential metabolites list for C. Reinhardtii

under all 3 growth conditions. By using Flux Sum Analysis, we categorized

all the essential metabolites into 3 different types according to the type of

impact when the total flux of a certain metabolite is decreasing. We found

that Type AE is the most common essential metabolites.

This study reveals that most of the essential metabolites exert equally

influence on the cell growth.
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Chapter 5

Conclusion

Understanding and identifying the essential metabolites is important as their

absence leads to cell death. The main objective of this study is to identify

the metabolite essentiality through two different approaches: an interaction-

based and a constraints-based.

In the interaction-based approach, a latest model with essential metabo-

lites from Lamichhane et al. (2011) for Mycobacterium tuberculosis is used

to study the correlations between metabolite essentiality and the metabolite

network topology. The metabolite degree, the degree of neighbors, the clus-

tering coefficient of each metabolite, and the betweenness of the metabolite

network is calculated, separately. Based on the statistical tests, we found

that the metabolite essentiality is significantly related to the topological

characteristics. The essential metabolites usually have larger degree, larger

sum of neighbors’ degree and smaller shortest path and the essential lite

metabolites have smaller clustering coefficient.

In the constraint-based approach, Flux Balance Analysis (known as

FBA) is implemented on the most advanced in-silico model of C. Reinhardtii,

which contains light usage reactions to make it possible to predict essential
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Chapter 5. Conclusion

metabolites in 3 different growth environments: autotrophic, mixotrophic,

and heterotrophic. 403, 223 and 206 essential metabolites were found in

these three growth conditions. Flux Sum Analysis is used afterward to clas-

sify the essential metabolites, it’s found that most of the essential metabo-

lites are Type A, and the distribution of flux sum for all the metabolites

tends to follow an exponential distribution and essential metabolites are

likely to have larger flux sum.

This work provides a good understanding of essential metabolites through

two different approaches. Future work could focus on

� experimental validation, to illustrate the prediction of essential metabo-

lites in C. Reinhardtii, the list of essential metabolites can be obtained

through gene-knockout experiments.

� further study of the correlations between metabolite topology and

metabolite essentiality in more model organisms.

� incorporating dynamic flux balance analysis(DFBA) to predict essen-

tial metabolites.

� implement these approaches on one same organism to find out the

correlations between the two different approaches.
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González-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., In-

wood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P. A., Lemaire,

S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag,

M., Mittelmeier, T., Moroney, J. V., Moseley, J., Napoli, C., Nedelcu,

A. M., Niyogi, K., Novoselov, S. V., Paulsen, I. T., Pazour, G., Purton,

S., Ral, J.-P., Riaño Pachón, D. M., Riekhof, W., Rymarquis, L., Schroda,

M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S. L., Allmer,

J., Balk, J., Bisova, K., Chen, C.-J., Elias, M., Gendler, K., Hauser, C.,

Lamb, M. R., Ledford, H., Long, J. C., Minagawa, J., Page, M. D., Pan,

J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M.,

Yang, P., Ball, S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N., Green,

80



Bibliography

P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre,

R. T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang,

Y. W., Jhaveri, J., Luo, Y., Mart́ınez, D., Ngau, W. C. A., Otillar, B.,

Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev,

I. V., Rokhsar, D. S., and Grossman, A. R. (2007). The Chlamydomonas

genome reveals the evolution of key animal and plant functions. Science

(New York, N.Y.), 318(5848):245–50.

Metting, F. B. (1996). Biodiversity and application of microalgae. Journal

of Industrial Microbiology & Biotechnology, 17(5-6):477–489.

Morowvat, M. H., Rasoul-Amini, S., and Ghasemi, Y. (2010). Chlamy-

domonas as a ”new” organism for biodiesel production. Bioresource tech-

nology, 101(6):2059–62.

Niyogi, K. K. (1997). The roles of specific xanthophylls in photoprotection.

Proceedings of the National Academy of Sciences, 94(25):14162–14167.

Oh, Y.-K., Palsson, B. O., Park, S. M., Schilling, C. H., and Mahadevan,

R. (2007). Genome-scale reconstruction of metabolic network in Bacillus

subtilis based on high-throughput phenotyping and gene essentiality data.

The Journal of biological chemistry, 282(39):28791–9.

Orth, J. D. and Palsson, B. O. (2010). Systematizing the generation of miss-

ing metabolic knowledge. Biotechnology and bioengineering, 107(3):403–

12.

Orth, J. D., Thiele, I., and Palsson, B. (2010). What is flux balance analysis?

Nature biotechnology, 28(3):245–8.

Palsson, B. (2003). Flux-balance analysis : Basic concepts. Systems Biology.

81



Bibliography

Palsson, B. (2009). Metabolic systems biology. FEBS letters, 583(24):3900–

4.

Price, N. D. and Lee, S. Y. (2010). Editorial: Systems biology for biotech

applications. Biotechnology journal, 5(7):636–7.

Reed, J. L., Patel, T. R., Chen, K. H., Joyce, A. R., Applebee, M. K.,

Herring, C. D., Bui, O. T., Knight, E. M., Fong, S. S., and Palsson, B. O.

(2006). Systems approach to refining genome annotation. Proceedings

of the National Academy of Sciences of the United States of America,

103(46):17480–4.

Rupprecht, J. (2009). From systems biology to fuel–Chlamydomonas rein-

hardtii as a model for a systems biology approach to improve biohydrogen

production. Journal of biotechnology, 142(1):10–20.

Rupprecht, J., Hankamer, B., Mussgnug, J. H., Ananyev, G., Dismukes,

C., and Kruse, O. (2006). Perspectives and advances of biological H2

production in microorganisms. Applied microbiology and biotechnology,

72(3):442–9.

Samal, A., Singh, S., Giri, V., Krishna, S., Raghuram, N., and Jain, S.

(2006). Low degree metabolites explain essential reactions and enhance

modularity in biological networks. BMC bioinformatics, 7:118.

Satish Kumar, V., Dasika, M. S., and Maranas, C. D. (2007). Optimization

based automated curation of metabolic reconstructions. BMC bioinfor-

matics, 8:212.

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug,

J. H., Posten, C., Kruse, O., and Hankamer, B. (2008). Second Generation

82



Bibliography

Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy

Research, 1(1):20–43.

Schmidt, B. J., Lin-Schmidt, X., Chamberlin, A., Salehi-Ashtiani, K., and

Papin, J. a. (2010). Metabolic systems analysis to advance algal biotech-

nology. Biotechnology journal, 5(7):660–70.

Smith, L. P., Bergmann, F. T., Chandran, D., and Sauro, H. M. (2009).

Antimony: a modular model definition language. Bioinformatics (Oxford,

England), 25(18):2452–4.

Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A. (2006). Com-

mercial applications of microalgae. Journal of bioscience and bioengineer-

ing, 101(2):87–96.

Vahrenholz, C., Riemen, G., Pratje, E., Dujon, B., and Michaelis, G. (1993).

Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the

ends of the linear 15.8-kb genome suggests mechanisms for DNA replica-

tion.

Valle, O., Lien, T., and Knutsen, G. (1981). Fluorometric determination of

DNA and RNA in Chlamydomonas using ethidium bromide. Journal of

Biochemical and Biophysical Methods, 4(5-6):271–277.

Yu, H., Greenbaum, D., Xin Lu, H., Zhu, X., and Gerstein, M. (2004). Ge-

nomic analysis of essentiality within protein networks. Trends in genetics

: TIG, 20(6):227–31.

Yu, H., Kim, P. M., Sprecher, E., Trifonov, V., and Gerstein, M. (2007). The

importance of bottlenecks in protein networks: correlation with gene es-

sentiality and expression dynamics. PLoS computational biology, 3(4):e59.

83



Bibliography

Zotenko, E., Mestre, J., O’Leary, D. P., and Przytycka, T. M. (2008). Why

do hubs in the yeast protein interaction network tend to be essential: re-

examining the connection between the network topology and essentiality.

PLoS computational biology, 4(8):e1000140.

84



Appendix

A.1 Appendix 1: ELM in Mycobacterium

Tuberculosis

No. Abbrev. Essential Metabolite Name

1 23dhdp 2,3-Dihydrodipicolinate

2 26dap-M meso-2,6-Diaminoheptanedioate

3 3dhq 3-Dehydroquinate

4 3dhsk 3-Dehydroshikimate

5 3mob 3-Methyl-2-oxobutanoate

6 3psme 5-O-(1-Carboxyvinyl)-3-phosphoshikimate

7 5aop 5-Amino-4-oxopentanoate

8 alaala D-Alanyl-D-alanine

9 chor chorismate
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A.2. Appendix 2: Universal Metabolites

10 glu-L L-Glutamate

11 glu1sa L-Glutamate 1-semialdehyde

12 hmbil Hydroxymethylbilane

13 ppbng Porphobilinogen

14 skm5p Shikimate 5-phosphate

15 sl2a6o N-Succinyl-2-L-amino-6-oxoheptanedioate

16 uaagmda Undecaprenyl-diphospho-N-acetylmuramoyl-

(N-acetylglucosamine)-L-ala-D-glu-meso-2,6-diaminopimeloyl-D-ala-D-ala

17 uaccg UDP-N-acetyl-3-O-(1-carboxyvinyl)-D-glucosamine

18 ugmda UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-2,6-

diaminopimeloyl-D-alanyl-D-alanine

A.2 Appendix 2: Universal Metabolites

No. Abbrev. Universal Metabolite Name

1 utp UTP

2 ump UMP
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A.2. Appendix 2: Universal Metabolites

3 udp UDP

4 tyr-L L-Tyrosine

5 trdrd Reduced thioredoxin

6 trdox Oxidized thioredoxin

7 thf 5,6,7,8-Tetrahydrofolate

8 ser-L L-Serine

9 pyr Pyruvate

10 pi Phosphate

11 phe-L L-Phenylalanine

12 nadph Nicotinamide adenine dinucleotide phosphate - reduced

13 nadp Nicotinamide adenine dinucleotide phosphate

14 nadh Nicotinamide adenine dinucleotide - reduced

15 nad Nicotinamide adenine dinucleotide

16 mlthf 5,10-Methylenetetrahydrofolate

17 his-L L-Histidine

18 h2o H2O

19 h H+
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A.2. Appendix 2: Universal Metabolites

20 gtp GTP

21 gly Glycine

22 glu-L L-Glutamate

23 gln-L L-Glutamine

24 gdp GDP

25 dttp dTTP

26 dgtp dGTP

27 dctp dCTP

28 datp dATP

29 ctp CTP

30 coa Coenzyme A

31 co2 CO2

32 atp ATP

33 asp-L L-Aspartate

34 amp AMP

35 adp ADP

36 accoa Acetyl-CoA
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A.2. Appendix 2: Universal Metabolites

37 val-L L-Valine

38 trp-L L-Tryptophan

39 thr-L L-Threonine

40 pro-L L-Proline

41 pep Phosphoenolpyruvate

42 met-L L-Methionine

43 ile-L L-Isoleucine

44 dump dUMP

45 dtdp dTDP

46 cys-L L-Cysteine

47 cmp CMP

48 arg-L L-Arginine

49 ala-L L-Alanine

50 lys-L L-Lysine

51 leu-L L-Leucine

52 gmp GMP

53 dhap Dihydroxyacetone phosphate
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54 amet S-Adenosyl-L-methionine

55 f6p D-Fructose 6-phosphate

56 dtmp dTMP

57 3pg 3-Phospho-D-glycerate

58 ru5p-D D-Ribulose 5-phosphate

59 3dhsk 3-Dehydroshikimate

60 3dhq 3-Dehydroquinate

61 13dpg 3-Phospho-D-glyceroyl phosphate

62 glyc3p Glycerol 3-phosphate

63 fad FAD

64 cdpc16c19g CDPdiacylglycerol (E coli) **

65 ACP acyl carrier protein

66 prpp 5-Phospho-alpha-D-ribose 1-diphosphate

67 e4p D-Erythrose 4-phosphate

68 gam6p D-Glucosamine 6-phosphate

69 g6p D-Glucose 6-phosphate

70 xmp Xanthosine 5’-phosphate
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71 imp IMP

72 dhpt Dihydropteroate

73 g1p D-Glucose 1-phosphate

74 dhf 7,8-Dihydrofolate

75 ribflv Riboflavin

76 o2 O2

77 oaa Oxaloacetate

78 akg 2-Oxoglutarate

79 aicar 5-Amino-1-(5-Phospho-D-ribosyl)imidazole-4-carboxamide

80 10fthf 10-Formyltetrahydrofolate

81 dpcoa Dephospho-CoA

82 aacoa Acetoacetyl-ACP

83 phpyr Phenylpyruvate

84 fmn FMN

85 34hpp 3-(4-Hydroxyphenyl)pyruvate

86 34hpp Phosphatidylglycerophosphate (Ecoli) **

87 hco3 Bicarbonate
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88 uacgam UDP-N-acetyl-D-glucosamine

89 tdeACP Tetradecenoyl-ACP (n-C14:1ACP)

90 malACP Malonyl-[acyl-carrier protein]

91 dnad Deamino-NAD+

92 ddca Dodecanoyl-ACP (n-C12:0ACP)

93 2obut 2-Oxobutanoate

A.3 Appendix 3: Root No-production

Metabolites in iNJ661

a23dhba c bmn c xyluD c pmcoa c

a2c25dho c cbi c fdxrd c ppal c

a2dglcn c cbl1 c fol c pre2 c

a2dr5p c cdpdodecg c glcn c psd5p c

a2mop c cl c glutrna c ptcys c

a2pglyc c clpn160190 c glyc-R c pyam5p c

a4h2opntn c cobalt2 c lald-L c pydam c
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a5dglcn c cobya c meoh c pydxn c

a5odhf2a c copre2 c mettrna c ru5p-L c

acgam c copre6 c mhpglu c s c

achms c dmbzid c mi3p-D c sdhlam c

ad c dtt c mi4p-D c selcys c

alpam c dttOX c mppp9 c seln c

amob c dxyl c mshfald c seramp c

apoACP c enter c ncam c thfglu c

appl c fc1p c no c thym c

applp c fdxox c pdx5p c trnaala c

uppg1 c

A.4 Appendix 4: Root No-consumption

Metabolites in iNJ661

a3ddgc c copre8 c omdtria c spmd c

a4hba c cpppg1 c pat c tat c
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a4hthr c crn c pdima c tmha1 c

a4mhetz c dttOX c peptido-EC c tmha2 c

a5mtr c enter c peptido-TB1 c tmha3 c

a5odhf2a c etha c peptido-TB2 c tmha4 c

Ac1PIM4 c fmettrna c pg160 c tmha5 c

Ac2PIM2 c gcald c pg190 c tmha6 c

acysbmn c gdptp c pheme c triat c

alatrna c glyb c PIM6 c trnaglu c

arabinanagalfragund c homtta c ptth c uaaAgtla c

btamp c hpglu c rhcys c uaaGgtla c

cl c maltpt c rmyc c uaagtmda c

cobya c man c seln c udpglcur c

copre5 c mcbts c sheme c ugagmda c

mfrrppdima c sl1 c xylD c
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A.5 Appendix 5: Common Essential Metabolites

in All 3 Growth Conditions

12dmpo argsuc glyc3p pgp1819Z160

1hdecg3p aspsa h2mb4p phpyr

1odec11eg3p B-DASH-ara1p h2o2 phytfl

1odec9eg3p ca hco3 phyto

1odecg3p cacoa hcys-DASH-L pi

1pyr5c caro hdeACP ppa

23dhdp cbasp hisp ppad

23dhmb cdp12dgr18111Z160 histd ppbng

23dhmp cdp12dgr1819Z160 hmppp9me ppgpp

25aics cdpea hom-DASH-L pphn

26dap-DASH-LL chlda hso3 ppi

26dap-DASH-M chldb imacp pppg9

2ahbut cmp lyc pq

2cpr5p coa malcoa pqh2

2dda7p ctp methf pram

2h3kmtp cys-DASH-L mg2 pran
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2ippm cyst-DASH-L mgdg1819Z160 prbamp

2kmb dcamp mgdg1819Z1619Z prbatp

2me4p dcaro mi3p-DASH-D prfp

2mecdp dghs16018111Z mlthf prlp

34hpp dghs1601819Z mppp9 protdt

3c2hmp dghs18111Z18111Z mppp9me pyr

3c4mop dghs18111Z1819Z nadp r5p

3dhq dghs1819Z18111Z norsp retinal

3dhsk dghs1819Z1819Z o2 retinal-DASH-11-DASH-cis

3hcvac11eACP dhor-DASH-S ocdca s7p

3hmop dkmpp ocdccoa skm

3mob dtmp ocdcea skm5p

3ocvac11eACP dump octeACP so4

3psme dxyl5p omppp9me sqdg18111Z160

4c2me eig3p orot5p sqdg1819Z160

4pasp etha pa succ

5aizc ethamp pa160 thdp
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5aop fdxox pa16018111Z thf

5mdr1p fgam pa1601819Z thmpp

5mdru1p fpram pa1801819Z trdox

5mthf fprica pa18111Z160 trnaglu

acg5p fum pa18111Z18111Z trp-DASH-L

acg5sa g3p pa18111Z1819Z tyr-DASH-L

acglu gal pa1819Z160 udp

ade gar pa1819Z1619Z udpg

adn gcaro pa1819Z18111Z udpgal

ahcys gdptp pa1819Z1819Z udpsq

aicar glu1sa pacoa udpxyl

amet glu5p pcdme ump

anth glu5sa pep val-DASH-L

aps glutrna pgp18111Z160 xu5p-DASH-D

zcaro
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A.6 Appendix 6: Biomass Function(Objective

Function) for Different Growth Conditions

The biomass function for autotropic:

Biomass =

273.7E3 · ala-L[c] + 150.2E3 · arg-L[c] + 67.8E3 · asn-L[c] +

67.8E3 · asp-L[c] + 2.4E3 · cys-L[c] + 81.2E3 · gln-L[c] +

81.2E3 · glu-L[c] + 103.0E3 · gly[c] + 1.2E3 · his-L[c] +

32.7E3 · ile-L[c] + 82.4E3 · leu-L[c] + 18.2E3 · lys-L[c] +

2.4E3 ·met-L[c] + 33.9E3 · phe-L[c] + 47.2E3 · pro-L[c] +

20.6E3 · ser-L[c] + 82.4E3 · thr-L[c] + 1.2E3 · trp-L[c] +

1.2E3 · tyr-L[c] + 59.4E3 · val-L[c] + 2.2E3 · datp[c] +

3.9E3 · dctp[c] + 3.9E3 · dgtp[c] + 2.2E3 · dttp[c] +

58.6E3 · atp[c] + 104.2E3 · ctp[c] + 104.2E3 · gtp[c] +

58.6E3 · utp[c] + 6.4E3 · starch300[h] + 328.4E3 ·man[c] +

524.1E3 · arab-L[c] + 697.0E3 · gal[c] + 28.4E3 ·mgdg1839Z12Z15Z1644Z7Z10Z13Z[h] +

3.2E3 ·mgdg1839Z12Z15Z1637Z10Z13Z[h] + 3.2E3 ·mgdg1839Z12Z15Z1634Z7Z10Z[h] +

269.4E6 · dgdg1839Z12Z15Z1644Z7Z10Z13Z[h] +

739.2E6 · dgdg1839Z12Z15Z1637Z10Z13Z[h] +

739.2E6 · dgdg1839Z12Z15Z1634Z7Z10Z[h] + 74.3E6 · dgts18111Z1819Z[c] +

74.3E6 · dgts18111Z18111Z[c] + 1.1E3 · dgts1601829Z12Z[c] +
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1.2E3 · asqdpa1819Z160[c] + 1.2E3 · asqdpa18111Z160[c] +

1.3E3 · tag16018111Z160[c] + 1.3E3 · tag1601819Z160[c] +

1.3E3 · tag1801819Z160[c] + 1.3E3 · tag18111Z18111Z160[c] +

1.3E3 · tag18111Z1819Z160[c] + 1.3E3 · tag1819Z18111Z160[c] + 37.1E3 · ac[c] +

30.0E3 · ppa[c] + 25.3E3 · but[c] + 12.1E3 · glyc[c] +

10.1E3 · chla[u] + 16.5E3 · chlb[u] + 1.0E6 · rhodopsin[s] +

504.2E6 · acaro[h] + 100.8E6 · anxan[u] + 1.4E3 · caro[u] +

655.4E6 · loroxan[u] + 1.3E3 · lut[u] + 554.6E6 · neoxan[u] +

352.9E6 · vioxan[u] + 302.5E6 · zaxan[u] + 29.9 ·ATP maintainance +

2.3E3 · pe1801835Z9Z12Z[c] + 1.9E3 · pail18111Z160[c] + 258.4E6 · pail1819Z160[c]

The biomass function for Mixotrophic:

Biomass =

279.3E3 · ala-L[c] + 93.7E3 · arg-L[c] + 69.5E3 · asn-L[c] +

69.5E3 · asp-L[c] + 12.2E3 · cys-L[c] + 91.8E3 · gln-L[c] +

91.8E3 · glu-L[c] + 113.9E3 · gly[c] + 12.7E3 · his-L[c] +

38.0E3 · ile-L[c] + 93.0E3 · leu-L[c] + 30.6E3 · lys-L[c] +

12.7E3 ·met-L[c] + 40.0E3 · phe-L[c] + 51.9E3 · pro-L[c] +

20.8E3 · ser-L[c] + 34.5E3 · thr-L[c] + 1.6E3 · trp-L[c] +

1.6E3 · tyr-L[c] + 64.3E3 · val-L[c] + 2.2E3 · datp[c] +
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3.9E3 · dctp[c] + 3.9E3 · dgtp[c] + 2.2E3 · dttp[c] +

58.6E3 · atp[c] + 104.2E3 · ctp[c] + 104.2E3 · gtp[c] +

58.6E3 · utp[c] + 6.4E3 · starch300[h] + 328.4E3 ·man[c] +

524.1E3 · arab-L[c] + 697.0E3 · gal[c] +

28.4E3 ·mgdg1839Z12Z15Z1644Z7Z10Z13Z[h] +

3.2E3 ·mgdg1839Z12Z15Z1637Z10Z13Z[h] +

3.2E3 ·mgdg1839Z12Z15Z1634Z7Z10Z[h] +

269.4E6 · dgdg1839Z12Z15Z1644Z7Z10Z13Z[h] +

739.2E6 · dgdg1839Z12Z15Z1637Z10Z13Z[h] +

739.2E6 · dgdg1839Z12Z15Z1634Z7Z10Z[h] +

74.3E6 · dgts18111Z1819Z[c] + 74.3E6 · dgts18111Z18111Z[c] +

1.1E3 · dgts1601829Z12Z[c] + 1.2E3 · asqdpa1819Z160[c] +

1.2E3 · asqdpa18111Z160[c] + 1.3E3 · tag16018111Z160[c] +

1.3E3 · tag1601819Z160[c] + 1.3E3 · tag1801819Z160[c] +

1.3E3 · tag18111Z18111Z160[c] + 1.3E3 · tag18111Z1819Z160[c] +

1.3E3 · tag1819Z18111Z160[c] + 37.1E3 · ac[c] +

30.0E3 · ppa[c] + 25.3E3 · but[c] + 12.1E3 · glyc[c] +

7.8E3 · chla[u] + 14.3E3 · chlb[u] + 1.0E6 · rhodopsin[s] +

4.0E6 · acaro[h] + 790.8E9 · anxan[u] + 11.1E6 · caro[u] +

5.1E6 · loroxan[u] + 9.9E6 · lut[u] + 4.3E6 · neoxan[u] +

2.8E6 · vioxan[u] + 2.4E6 · zaxan[u] + 29.9 ·ATP maintainance +

2.3E3 · pe1801835Z9Z12Z[c] + 1.9E3 · pail18111Z160[c] +

258.4E6 · pail1819Z160[c]
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The biomass objective function for Heterotrophic:

Biomass =

309.1E3 · ala-L[c] + 95.0E3 · arg-L[c] + 65.2E3 · asn-L[c] +

65.2E3 · asp-L[c] + 11.1E3 · cys-L[c] + 82.5E3 · gln-L[c] +

82.5E3 · glu-L[c] + 99.8E3 · gly[c] + 10.6E3 · his-L[c] +

33.3E3 · ile-L[c] + 81.3E3 · leu-L[c] + 19.7E3 · lys-L[c] +

10.6E3 ·met-L[c] + 35.4E3 · phe-L[c] + 46.9E3 · pro-L[c] +

23.0E3 · ser-L[c] + 92.9E3 · thr-L[c] + 6.0E3 · trp-L[c] +

6.0E3 · tyr-L[c] + 56.0E3 · val-L[c] + 2.2E3 · datp[c] +

3.9E3 · dctp[c] + 3.9E3 · dgtp[c] + 2.2E3 · dttp[c] +

58.6E3 · atp[c] + 104.2E3 · ctp[c] + 104.2E3 · gtp[c] +

58.6E3 · utp[c] + 328.4E3 ·man[c] +

524.1E3 · arab-L[c] + 697.0E3 · gal[c] +

28.4E3 ·mgdg1839Z12Z15Z1644Z7Z10Z13Z[h] +

3.2E3 ·mgdg1839Z12Z15Z1637Z10Z13Z[h] + 3.2E3 ·mgdg1839Z12Z15Z1634Z7Z10Z[h] +

269.4E6 · dgdg1839Z12Z15Z1644Z7Z10Z13Z[h] +

739.2E6 · dgdg1839Z12Z15Z1637Z10Z13Z[h] + 739.2E6 · dgdg1839Z12Z15Z1634Z7Z10Z[h] +

74.3E6 · dgts18111Z1819Z[c] + 74.3E6 · dgts18111Z18111Z[c] +

1.1E3 · dgts1601829Z12Z[c] + 1.2E3 · asqdpa1819Z160[c] +
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1.2E3 · asqdpa18111Z160[c] + 1.3E3 · tag16018111Z160[c] +

1.3E3 · tag1601819Z160[c] + 1.3E3 · tag1801819Z160[c] +

1.3E3 · tag18111Z18111Z160[c] + 1.3E3 · tag18111Z1819Z160[c] +

1.3E3 · tag1819Z18111Z160[c] + 37.1E3 · ac[c] + 30.0E3 · ppa[c] +

25.3E3 · but[c] + 12.1E3 · glyc[c] + 20.2E3 · chla[u] +

8.8E3 · chlb[u] + 1.0E6 · rhodopsin[s] + 79.7E9 · acaro[h] +

15.9E9 · anxan[u] + 223.3E9 · caro[u] + 103.7E9 · loroxan[u] +

199.4E9 · lut[u] + 87.7E9 · neoxan[u] + 55.8E9 · vioxan[u] +

47.8E9 · zaxan[u] + 29.9 ·ATP maintainance +

2.3E3 · pe1801835Z9Z12Z[c] + 1.9E3 · pail18111Z160[c] +

258.4E6 · pail1819Z160[c]

A.7 Appendix 7: Matlab Codes

A.7.1 Interaction-based Approach Code

Convert stoichiometric matrix to adjacency matrix and

Determine topology property of metabolites

1 %% Reachibility analysis and convert stoichiometric matrix to

2 % adjacency matrix get the stoichiometric matrix (which is

3 % saved as a .mat file),and get the

4 % varible stoi (double)
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5 % read a file, and load a file.

6 [filename, filepath] = uigetfile;

7 fullpath = [filepath filename];

8 load(fullpath);

9 siz = size(stoi.s);

10 % construct a reachiability matrix "Rm",and convert

11 % stoichiometric matrix to adjacency matrix.

12 Rm.m = zeros(siz(2), siz(2));

13 Rm.met = stoi.mets;

14 for i = 1:siz(1)

15 a=0;b=0;

16 for j = 1:siz(2)

17 if stoi.s(i,j) < 0

18 a = a+1;

19 met.reactant(a) = j; % get the reactant

20 else if stoi.s(i,j) > 0

21 b = b+1;

22 met.product(b) = j;

23 end

24 end

25 end

26 if stoi.rev(i) == 1

27 met.reactant =[met.reactant met.product];

28 met.product = met.reactant;

29 a = a +b;

30 b = a;

31 end

32 for k = 1:a

33 for m = 1:b

34 Rm.m(met.reactant(k),met.product(m)) = 1;

35 end

36 end

37 met.reactant = zeros;
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38 met.product = zeros;

39 end

40 % clear the self−linked reachibility error. and

41 % get the Rmˆ2, Rmˆ3

42 for i = 1:size(Rm.m)

43 Rm.m(i,i) = 0;

44 end

45 Rm.m2 = Rm.m * Rm.m;

46 for i = 1:size(Rm.m)

47 Rm.m2(i,i) = 0;

48 end

49 Rm.m3 = Rm.mˆ3;

50 for i = 1:size(Rm.m)

51 Rm.m3(i,i) = 0;

52 end

Find gaps in the metabolite networks

1 %% Find gaps in the metabolite networks.

2 % this program is to convert the matrix from SBML into double

3 % stoichimometric matrix. 761 and 932 and be replaced by the actual

4 % size of the model.

5 initCobratoolbox;

6 sto = model.S;

7 stoi = model;

8 stoi.s = zeros (size(sto));

9 stoi.s = full(sto);

10 stoi.rev = model.rev;

11 stoi.s = stoi.s'; %need to get a matrix with same row same reaction.

12 %%
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13

14 % get the stoichiometric matrix (which is saved as a .mat file),

15 %and get the varible stoi (double)

16 % read a file, and load a file.

17 % [filename, filepath] = uigetfile;

18 % fullpath = [filepath filename];

19 % load(fullpath);

20 siz = size(stoi.s);

21 % construct a reachiability matrix "Rm",

22 Rm.m = zeros(siz(2), siz(2));

23 Rm.met = stoi.mets;

24 Rm.count = zeros(siz(2));

25 Rm.revmet = zeros(siz(2));

26 for i = 1:siz(1)

27 a=0;b=0;

28 for j = 1:siz(2)

29 if stoi.s(i,j) < 0

30 a = a+1;

31 met.reactant(a) = j; % get the reactant

32 Rm.count(j)= Rm.count(j)+1;

33 else if stoi.s(i,j) > 0

34 b = b+1;

35 met.product(b) = j;

36 Rm.count(j)= Rm.count(j)+1;

37 end

38 end

39 end

40

41 for k = 1:a

42 for m = 1:b

43 Rm.m(met.reactant(k),met.product(m)) =

44 Rm.m(met.reactant(k),met.product(m))+1;

45 end
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46 end

47 met.reactant = zeros;

48 met.product = zeros;

49 end

50 % if it's a reversible reaction.

51 for i = 1:siz(1)

52 a=0; b = 0;

53 if stoi.rev(i) ˜= 0

54 for j = 1:siz(2)

55 if stoi.s(i,j) > 0

56 a = a+1;

57 Rm.revmet(j) = 1;

58 % revmet counts the metabolites in the reversible rxns.

59 met.reactant(a) = j; % get the reactant

60 else if stoi.s(i,j) < 0

61 b = b+1;

62 met.product(b) = j;

63 Rm.revmet(j) = 1;

64 end

65 end

66 end

67 for k = 1:a

68 for m = 1:b

69 Rm.m(met.reactant(k),met.product(m)) =

70 Rm.m(met.reactant(k),met.product(m))+1;

71 end

72 end

73 end

74 met.reactant = zeros;

75 met.product = zeros;

76 end

77

78 % clear the self−linked reachibility error. and get the Rmˆ2, Rmˆ3
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79 for i = 1:size(Rm.m)

80 Rm.m(i,i) = 0;

81 end

82 Rm.m2 = Rm.m * Rm.m;

83 for i = 1:size(Rm.m)

84 Rm.m2(i,i) = 0;

85 end

86 Rm.m3 = Rm.mˆ3;

87 for i = 1:size(Rm.m)

88 Rm.m3(i,i) = 0;

89 end

90

91 % find out the dead−end in the reversible reactions.

Determine clustering coefficient

1 %% Determine clustering coefficient for each metabolite.

2 % Bioinformatics toolbox is used here.

3 siz = 8;

4 Rm.m = sparse(Rm.m);

5 Rm.pcount = zeros(1,siz);

6 Rm.path = num2cell(zeros(siz,siz));

7 for i = 1: siz;

8 [Rm.dist(i,:),Rm.path(i,:),PRED] = GRAPHSHORTESTPATH(Rm.m,i);

9 end;

10 for i = 1: siz;

11 for k= 1: siz;

12 if ˜isempty(Rm.path{i,k});

13 n = length(Rm.path{i,k});

14 for ks = 2 : n−1;
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15 r = Rm.path{i,k}(ks);

16 Rm.pcount(1,r) = Rm.pcount(1,r)+1;

17 end;

18 end;

19 end;

20 end;

21 Rm.pcount = Rm.pcount − 1;

A.7.2 Constraint-based Approach Code

Flux Balance Analysis to determine the metabolite essentiality

1 %% Flux Balance Analysis to determine the metabolite essentiality.

2 % Note: To use this code, first load iRC1080 into the COBRA

3 % toolbox in Matlab as a variable named "model".

4 % Then this code can work.

5

6

7 % Measures and constants.

8 DW = 48*10ˆ(−12);

9 % avg. dry weight of log phase chlamy cell = 48 pg (Mitchell 1992)

10 CPerStarch300 = 1800;

11 % derived from starch300 chemical formula

12 ChlPerCell = (13.9+4)/(10ˆ7);

13 % 13.9 +− 4 micrograms Chl/10ˆ7 cells (Gfeller 1984)

14 starchDegAnLight = (4.95+1.35)*(1/1000)*(1/CPerStarch300)*

15 (ChlPerCell/1000)*(1/DW);

16 % approx. SS rate of anaerobic starch degradation in light

17 = 4.95 +− 1.35 micromol C/mg Chl/hr (Gfeller 1984)

18 starchDegAerLight = (2/3)*starchDegAnLight;
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19 % approx. SS rate of aerobic starch degradation in light =

20 2/3 of anaerobic rate (Gfeller 1984)

21 starchDegAnDark = (13.1+3.5)*(1/1000)*(1/CPerStarch300)*

22 (ChlPerCell/1000)*(1/DW);

23 % approx. SS rate of anaerobic starch degradation in dark =

24 13.1 +− 3.5 micromol C/mg Chl/hr (Gfeller 1984)

25 starchDegAerDark = (2/3)*starchDegAnDark;

26 % approx. SS rate of aerobic starch degradation in dark =

27 % 2/3 of anaerobic rate (Gfeller 1984)

28 dimensionalConversion = 3.836473679;

29 % from emitted microE/mˆ2/s to incident mmol/gDW/hr

30 effectiveConversion = 0.037532398;

31 % from incident mmol/gDw/hr to effective mmol/gDw/hr

32

33

34 %% set constraints.

35 % %%% light, aerobic, no acetate, biomass objective

36 modelLna = model;

37 % The single PRISM reaction being used has to be commented−out

38 %below.

39 modelLna = changeRxnBounds(modelLna,{...

40 % 'PRISM solar litho',...

41 'PRISM solar exo',...

42 'PRISM incandescent 60W',...

43 'PRISM fluorescent warm 18W',...

44 'PRISM fluorescent cool 215W',...

45 'PRISM metal halide',...

46 'PRISM high pressure sodium',...

47 'PRISM growth room',...

48 'PRISM white LED',...

49 'PRISM red LED array 653nm',...

50 'PRISM red LED 674nm',...

51 'PRISM design growth',...
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52 },0,'b');

53 modelLna = changeRxnBounds(modelLna,{'EX o2(e)'},−10,'l');

54 modelLna = changeRxnBounds(modelLna,{'EX ac(e)'},0,'l');

55 modelLna = changeRxnBounds(modelLna,{'EX starch(h)'},0,'b');

56 modelLna = changeRxnBounds(modelLna,'STARCH300DEGRA',

57 starchDegAerLight/2,'u');

58 modelLna = changeRxnBounds(modelLna,

59 'STARCH300DEGR2A',0,'u');

60 modelLna = changeRxnBounds(modelLna,

61 'STARCH300DEGRB',starchDegAerLight/2,'u');

62 modelLna = changeRxnBounds(modelLna

63 ,'STARCH300DEGR2B',0,'u');

64 modelLna = changeRxnBounds(modelLna,

65 {'PCHLDR'},0,'b');

66 % the light−independent protochlorophyllide reductase is not

67 % expressed in light due to translational inhibition caused by

68 % chloroplast redox state [Cahoon 2000]

69 modelLna = changeRxnBounds(modelLna,{'PFKh'},0,'b');

70 % plastidic PFKh inactivated by light (Plaxton 1996)

71 modelLna = changeRxnBounds(modelLna,{'G6PADHh','G6PBDHh'},0,'b');

72 % light inhibits G6PDHh of oxidative pentose phosphate

73 % pathway (Plaxton 1996)

74 modelLna = changeRxnBounds(modelLna,{'FBAh'},0,'b');

75 % light inactivates FBAh (Lemaire 2004; Matsumoto 2008)

76 modelLna = changeRxnBounds(modelLna,{'H2Oth'},0,'u');

77 % there is a high h2o requirement in [h]; however,

78 % experiments show that h2o in general goes from [h] to

79 % [c] in light and from [c] to [h] in dark (Packer 1970)

80 modelLna = changeRxnBounds(modelLna,

81 {'Biomass Chlamy mixo','Biomass Chlamy hetero'},0,'b');

82 modelLna = changeObjective(modelLna,'Biomass Chlamy auto');

83

84 % Base growth.

110



A.7. Appendix 7: Matlab Codes

85 solutionLna = optimizeCbModel(modelLna,'max','one');

86

87

88 %% to get the flux sum.

89 solution = solutionLna;

90 siz = size(model.S);

91 sizem = siz(1); % number of mets.

92 sizer = siz(2); % to get the number of rxns.

93

94 %% Identify the essential Metabolites.

95 % find the rxn in which metabolite i is a reactant. r : reactant, p:

96 % product.

97 modeld = modelLna;

98 for i = 1 : sizem;

99 for j = 1: sizer;

100 if modeld.S(i,j) > 0;

101 modeld.lb(j,1)= 0;

102 modeld.ub(j,1) =0;

103 elseif modeld.S(i,j) < 0;

104 modeld.ub(j,1) =0;

105 modeld.lb(j,1)= 0;

106 end

107 end

108 solution x = optimizeCbModel(modeld,'max','one');

109 s effectr(i,1) = solution x.f − solutionLna.f;

110 s effectr(i,2) = −s effect(i,1)/solution.f;

111 end

Obtain basal flux-sum in different growth conditions
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1 % To obtain basal flux−sum in different growth conditions.

2 % Note: To use this code, first load iRC1080 into the COBRA

3 % toolbox in Matlab as a variable named "model". Then this code can be run.

4

5

6 % Measures and constants.

7 DW = 48*10ˆ(−12);

8 % avg. dry weight of log phase chlamy cell = 48 pg (Mitchell 1992)

9 CPerStarch300 = 1800;

10 % derived from starch300 chemical formula

11 ChlPerCell = (13.9+4)/(10ˆ7);

12 % 13.9 +− 4 micrograms Chl/10ˆ7 cells (Gfeller 1984)

13 starchDegAnLight = (4.95+1.35)*(1/1000)*(1/CPerStarch300)*

14 (ChlPerCell/1000)*(1/DW);

15 % approx. SS rate of anaerobic starch degradation in light

16 = 4.95 +− 1.35 micromol C/mg Chl/hr (Gfeller 1984)

17 starchDegAerLight = (2/3)*starchDegAnLight;

18 % approx. SS rate of aerobic starch degradation in light

19 = 2/3 of anaerobic rate (Gfeller 1984)

20 starchDegAnDark = (13.1+3.5)*(1/1000)*(1/CPerStarch300)

21 *(ChlPerCell/1000)*(1/DW);

22 % approx. SS rate of anaerobic starch degradation in

23 dark = 13.1 +− 3.5 micromol C/mg Chl/hr (Gfeller 1984)

24 starchDegAerDark = (2/3)*starchDegAnDark;

25 % approx. SS rate of aerobic starch degradation in dark

26 = 2/3 of anaerobic rate (Gfeller 1984)

27 dimensionalConversion = 3.836473679;

28 % from emitted microE/mˆ2/s to incident mmol/gDW/hr

29 effectiveConversion = 0.037532398;

30 % from incident mmol/gDw/hr to effective mmol/gDw/hr

31

32

33 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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34 % %%% light, aerobic, no acetate, biomass objective

35 modelLna = model;

36 % The single PRISM reaction being used has to be commented−out below.

37 modelLna = changeRxnBounds(modelLna,{...

38 % 'PRISM solar litho',...

39 'PRISM solar exo',...

40 'PRISM incandescent 60W',...

41 'PRISM fluorescent warm 18W',...

42 'PRISM fluorescent cool 215W',...

43 'PRISM metal halide',...

44 'PRISM high pressure sodium',...

45 'PRISM growth room',...

46 'PRISM white LED',...

47 'PRISM red LED array 653nm',...

48 'PRISM red LED 674nm',...

49 'PRISM design growth',...

50 },0,'b');

51 modelLna = changeRxnBounds(modelLna,{'EX o2(e)'},−10,'l');

52 modelLna = changeRxnBounds(modelLna,{'EX ac(e)'},0,'l');

53 modelLna = changeRxnBounds(modelLna,{'EX starch(h)'},0,'b');

54 modelLna = changeRxnBounds(modelLna,'STARCH300DEGRA'

55 ,starchDegAerLight/2,'u');

56 modelLna = changeRxnBounds(modelLna,'STARCH300DEGR2A',0,'u');

57 modelLna = changeRxnBounds(modelLna,'STARCH300DEGRB

58 ',starchDegAerLight/2,'u');

59 modelLna = changeRxnBounds(modelLna,'STARCH300DEGR2B',0,'u');

60 modelLna = changeRxnBounds(modelLna,{'PCHLDR'},0,'b');

61 modelLna = changeRxnBounds(modelLna,{'PFKh'},0,'b');

62 modelLna = changeRxnBounds(modelLna,{'G6PADHh','G6PBDHh'},0,'b'); )

63 modelLna = changeRxnBounds(modelLna,{'FBAh'},0,'b');

64 modelLna = changeRxnBounds(modelLna,{'H2Oth'},0,'u');

65 modelLna = changeRxnBounds(modelLna,

66 {'Biomass Chlamy mixo','Biomass Chlamy hetero'},0,'b');
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67 modelLna = changeObjective(modelLna,'Biomass Chlamy auto');

68

69 % Base growth.

70 solutionLna = optimizeCbModel(modelLna,'max','one');

71

72 modelabs = abs(model.S);

73 fluxsum(1,:) = modelabs * solutionLna.x*0.5 ;

74

75

76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

77 %%% light, aerobic, w/ acetate, biomass objective

78 modelLwac = model;

79 % The single PRISM reaction being used has

80 %to be commented−out below.

81 modelLwac = changeRxnBounds(modelLwac,{...

82 % 'PRISM solar litho',...

83 'PRISM solar exo',...

84 'PRISM incandescent 60W',...

85 'PRISM fluorescent cool 215W',...

86 'PRISM metal halide',...

87 'PRISM high pressure sodium',...

88 'PRISM growth room',...

89 'PRISM white LED',...

90 'PRISM red LED array 653nm',...

91 'PRISM red LED 674nm'...

92 'PRISM fluorescent warm 18W'...

93 'PRISM design growth',...

94 },0,'b');

95 modelLwac = changeRxnBounds(modelLwac,

96 {'EX o2(e)','EX ac(e)'},−10,'l');

97 modelLwac = changeRxnBounds(modelLwac,

98 {'EX starch(h)'},0,'b');

99 modelLwac = changeRxnBounds(modelLwac,
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100 'STARCH300DEGRA',

101 starchDegAerLight/2,'u');

102 modelLwac = changeRxnBounds(modelLwac,

103 'STARCH300DEGR2A',0,'u');

104 modelLwac = changeRxnBounds(modelLwac,'STARCH300DEGRB',

105 starchDegAerLight/2,'u');

106 modelLwac = changeRxnBounds(modelLwac,

107 'STARCH300DEGR2B',0,'u');

108 modelLwac = changeRxnBounds(modelLwac,{'PCHLDR'},0,'b');

109 modelLwac = changeRxnBounds(modelLwac,{'PFKh'},0,'b');

110 modelLwac = changeRxnBounds(modelLwac,

111 {'G6PADHh','G6PBDHh'},0,'b');

112 modelLwac = changeRxnBounds(modelLwac,{'FBAh'},0,'b');

113 modelLwac = changeRxnBounds(modelLwac,{'H2Oth'},0,'u');

114 modelLwac = changeRxnBounds(modelLwac,

115 {'Biomass Chlamy auto','Biomass Chlamy hetero'},0,'b');

116 modelLwac = changeObjective(modelLwac,'Biomass Chlamy mixo');

117

118 % Base growth

119 solutionLwac = optimizeCbModel(modelLwac,'max','one');

120

121 fluxsum(2,:) = modelabs * solutionLwac.x*0.5 ;

122 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

123 %%% dark, aerobic, w/ acetate, biomass objective

124 modelDa = model;

125 modelDa = changeRxnBounds(modelDa,'EX photonVis(e)',0,'l');

126 modelDa = changeRxnBounds(modelDa,{'EX o2(e)'},−10,'l');

127 modelDa = changeRxnBounds(modelDa,'EX co2(e)',0,'l');

128 modelDa = changeRxnBounds(modelDa,

129 'STARCH300DEGRA',0,'u');

130 modelDa = changeRxnBounds(modelDa,

131 'STARCH300DEGR2A'

132 ,starchDegAerDark/2,'u');
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133 modelDa = changeRxnBounds(modelDa,

134 'STARCH300DEGRB',0,'u');

135 modelDa = changeRxnBounds(modelDa,

136 'STARCH300DEGR2B'

137 ,starchDegAerDark/2,'u');

138 modelDa = changeRxnBounds(modelDa,{'GLPThi'},0,'u');

139 modelDa = changeRxnBounds(modelDa,{'ATPSh'},0,'b');

140 modelDa = changeRxnBounds(modelDa,{'GAPDH(nadp)hi'},0,'b');

141 modelDa = changeRxnBounds(modelDa,{'MDH(nadp)hi',

142 'MDHC(nadp)hr'},0,'b'); % inactive in dark (Buchanan 1980)

143 modelDa = changeRxnBounds(modelDa,{'PPDKh'},0,'b');

144 modelDa = changeRxnBounds(modelDa,{'IDPh'},0,'b');

145 modelDa = changeRxnBounds(modelDa,{'PRUK'},0,'b');

146 modelDa = changeRxnBounds(modelDa,{'RBPCh','RBCh'},0,'b');

147 modelDa = changeRxnBounds(modelDa,{'SBP'},0,'b');

148 modelDa = changeRxnBounds(modelDa,{'H2Oth'},0,'l');

149 modelDa = changeRxnBounds(modelDa,

150 {'Biomass Chlamy auto','Biomass Chlamy mixo'},0,'b');

151 modelDa = changeObjective(modelDa,'Biomass Chlamy hetero');

152

153 % Base growth

154 solutionDa = optimizeCbModel(modelDa,'max','one');

155 fluxsum(3,:) = modelabs * solutionDa.x*0.5 ;

Flux Sum Analysis for Cobratoolbox

1 %% Replace the optimizeCbModel in CobraToolbox with this code to

2 % obtain flux sum attenuation analysis.

3 if (nargin < 2)

4 osenseStr = 'max';
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5 end

6 if (nargin < 3)

7 primalOnlyFlag = true;

8 end

9 if (nargin < 4)

10 minNormFlag = false;

11 end

12 if (nargin < 5)

13 verbFlag = false;

14 end

15

16 % LP solution tolerance

17 if exist('CBTLPTOL','var')

18 tol = CBTLPTOL;

19 else

20 tol = 1e−6;

21 end

22

23 % Figure out objective sense

24 if (strcmp(osenseStr,'max'))

25 LPproblem.osense = −1;

26 else

27 LPproblem.osense = +1;

28 end

29

30 % All constraints are equalities

31 LPproblem.csense = [];

32 %LPproblem.csense = zeros(1707,1);

33 %LPproblem.csense(1707,1) = 'L';

34

35 % Fill in the RHS vector if not provided

36 if (˜isfield(model,'b'))

37 LPproblem.b = zeros(length(model.mets),1);
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38 else

39 LPproblem.b = model.b;

40 end

41 % Rest of the LP problem

42 LPproblem.A = model.S;

43 LPproblem.c = model.c;

44 LPproblem.lb = model.lb;

45 LPproblem.ub = model.ub;

46

47 %% Solve initial LP

48

49 LPsolution = solveCobraLP(LPproblem,primalOnlyFlag);

50 time1 = 0;

51

52 %% Solve secondary LP to minimize |v |

53

54 if (LPsolution.stat ˜= 1)

55 if (verbFlag)

56 warning('Optimal solution was not found');

57 end

58

59 FBAsolution.f = 0;

60 FBAsolution.x = [];

61 else

62 % Store results

63 FBAsolution.f = LPsolution.obj;

64 FBAsolution.x = LPsolution.full;

65 if (˜primalOnlyFlag)

66 FBAsolution.y = LPsolution.dual;

67 FBAsolution.w = LPsolution.rcost;

68 end

69

70 % Minimize the absolute value of fluxes to avoid
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71 % loopy solutions

72 if (minNormFlag)

73 if (strcmp(osenseStr,'max'))

74 FBAsolution.f = floor(FBAsolution.f/tol)*tol;

75 else

76 FBAsolution.f = ceil(FBAsolution.f/tol)*tol;

77 end

78 if (FBAsolution.f ˜= 0)

79 [nMets,nRxns] = size(model.S);

80 % Set up the optimization problem

81 % min sum(delta+ + delta−)

82 % 1: S*v1 = 0

83 % 3: delta+ >= −v1

84 % 4: delta− >= v1

85 % 5: c'v1 >= f (optimal value of objective)

86 %

87 % delta+,delta− >= 0

88 LPproblem2.A = [model.S sparse(nMets,2*nRxns);

89 speye(nRxns,nRxns) speye(nRxns,nRxns)

90 sparse(nRxns,nRxns);

91 −speye(nRxns,nRxns) sparse(nRxns,nRxns)

92 speye(nRxns,nRxns);

93 model.c' sparse(1,2*nRxns)];

94 LPproblem2.c = [zeros(nRxns,1);ones(2*nRxns,1)];

95 LPproblem2.lb = [model.lb;zeros(2*nRxns,1)];

96 LPproblem2.ub = [model.ub;10000*ones(2*nRxns,1)];

97 LPproblem2.b = [LPproblem.b;zeros(2*nRxns,1);FBAsolution.f];

98 LPproblem2.csense(1:nMets) = 'E';

99 LPproblem2.csense((nMets+1):(nMets+2*nRxns)) = 'G';

100 LPproblem2.csense(nMets+2*nRxns+1) = 'G';

101 LPproblem2.csense = columnVector(LPproblem2.csense);

102 LPproblem2.osense = 1;

103 % Re−solve the problem
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104 time1 = LPsolution.time;

105 LPsolution = solveCobraLP(LPproblem2,primalOnlyFlag);

106 %[f,x,y,w,solStatus] = solveLPStm(A,b,c,lb,ub,

107 1,columnVector(csense));

108 if (LPsolution.stat > 0)

109 FBAsolution.x = LPsolution.full(1:nRxns);

110 else

111 FBAsolution.x = [];

112 end

113 end

114 end

115 end

116

117 FBAsolution.stat = LPsolution.stat;

118 FBAsolution.solver = LPsolution.solver;

119 FBAsolution.time = LPsolution.time+time1;

Draw figures for flux sum attenuation to categorize metabolites

1 %%This is to draw figures for each metabolite with the flux sum attenuation

2 %%data to categorize them.

3 for i = 1 : 22;

4 xaxis(i) = 0.05*i;

5 end

6

7 for j = 1:1;

8 for i = 1: 100;

9 if MECR(i,2*j)> 0.5;

10 %if average(fsaatt(1,i,:)) > 0.02;

11 figure(i);
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12 fq(1:22) = fsaatt(j,i,1:22);

13 plot(xaxis(1:22),fq(1:22));

14 m = num2str([j i]);

15 print(m,'−djpeg')

16 close(i);

17 %end

18 end;

19 end;

20 end;

Flux sum attenuation

1 %%%%%

2 % Manipulate flux−sum by attenuation

3

4 %%set model, and set the first FBA growth conditions.

5 %% set constraints.

6 % %%% light, aerobic, no acetate, biomass objective

7 % The single PRISM reaction being used has to be commented−out below.

8 modelLna = changeRxnBounds(modelLna,{...

9 % 'PRISM solar litho',...

10 'PRISM solar exo',...

11 'PRISM incandescent 60W',...

12 'PRISM fluorescent warm 18W',...

13 'PRISM fluorescent cool 215W',...

14 'PRISM metal halide',...

15 'PRISM high pressure sodium',...

16 'PRISM growth room',...

17 'PRISM white LED',...

18 'PRISM red LED array 653nm',...
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19 'PRISM red LED 674nm',...

20 'PRISM design growth',...

21 },0,'b');

22 modelLna = changeRxnBounds(modelLna,{'EX o2(e)'},−10,'l');

23 modelLna = changeRxnBounds(modelLna,{'EX ac(e)'},0,'l');

24 modelLna = changeRxnBounds(modelLna,{'EX starch(h)'},0,'b');

25 modelLna = changeRxnBounds(modelLna,

26 'STARCH300DEGRA',starchDegAerLight/2,'u');

27 modelLna = changeRxnBounds(modelLna,

28 'STARCH300DEGR2A',0,'u');

29 modelLna = changeRxnBounds(modelLna,

30 'STARCH300DEGRB',starchDegAerLight/2,'u');

31 modelLna = changeRxnBounds(modelLna,'STARCH300DEGR2B',0,'u');

32 modelLna = changeRxnBounds(modelLna,{'PCHLDR'},0,'b');

33 modelLna = changeRxnBounds(modelLna,{'PFKh'},0,'b');

34 modelLna = changeRxnBounds(modelLna,{'G6PADHh','G6PBDHh'},0,'b');

35 modelLna = changeRxnBounds(modelLna,{'FBAh'},0,'b');

36 modelLna = changeRxnBounds(modelLna,{'H2Oth'},0,'u');

37 modelLna = changeRxnBounds(modelLna,

38 {'Biomass Chlamy mixo','Biomass Chlamy hetero'},0,'b');

39 modelLna = changeObjective(modelLna,'Biomass Chlamy auto');

40

41 %% Base growth.

42 solutionLna = optimizeCbModel(modelLna,'max','one');

43

44 %% add a flux sum constraints to implement flux sum attenuation

45 % analysis

46 for i = 1 : 1706; %sizem;

47 if MECR(i,2)> 0.5;

48 modelLnax = modelLna;

49 modelLnax.S(1707,:) = abs(modelLnax.S(i,:));

50 for att = 1 : 20;

51 modelLnax.b(1707) = att/20*fluxsum(1,i)*2;
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52 %because we times 0.5 when get the flux sum.

53 solutionLnax = optimizeCbModel(modelLnax,'max','one');

54 fsaatt(1,i,att) = solutionLnax.f

55 %xaxis(i) = att/20;

56 % end

57

58 end

59 end
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