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Abstract

The arithmetic function A(n) is the exponent of the cyclic group (Z/nZ)*.
The kth iterate of A\(n) is denoted by Agx(n). In this work we will show the
normal order for log(n/Ax(n)) is (loglogn)¥~!logloglogn/(k — 1)!. Second,
we establish a similar normal order for other iterate involving a combination
of A and ¢. Lastly, define L(n) to be the smallest k such that \x(n) = 1. We
determine new upper and lower bounds for L(n) and conjecture a normal
order.
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Chapter 1

Introduction

1.1 History and Results

The Carmichael lambda function A(n), first introduced by Carmichael [5],
is defined to be the order of the largest cyclic subgroup of the multiplicative
group (Z/nZ)*, that is, the smallest postive integer m such that

a™ =1 (mod n)

for all integers a which are coprime to n. It can be computed at odd prime
powers to be the same as ¢(p¥) = p*~1(p — 1). As for even prime powers,
A(2) = 1,\(4) = 2, and A\(2F) = ¢(2F)/2 = 282 for k > 3. By the Chinese
Remainder Theorem, if (a,b) = 1, then A(ab) = lem{\(a), A\(b)}, which
allows the calculation of the function for all positive integers.

In addition to being an interesting arithmetic function to study, the
Carmichael lambda function has a connection with some primality testing
algorithms [1], [15]. In [1], the authors create a prime testing algorithm. It
is shown that the running time of the algorithm is connected to finding an
upper bound of A(N) for specially created numbers N. In [15], the primality
test involves looking at Carmichael numbers. That is numbers which satisfy
a1 =1 (mod n) for all (a,n) = 1. It is well known that composite numbers
satisfy this conguence if and only if A(n) divdes n — 1. Miller uses this idea
to help create his algorithm to test primes.

Several properties of A(n) were studied by Erdés, Pomerance, and Schmutz
in [9]. One of those results is the following. For an explicitly defined constant
A,

A(n) = nexp ( — (loglogn)(logloglogn + A+ O((log log log n)‘“‘e)) (1.1)
as n — oo for almost all n. Martin and Pomerance showed in [16] that

A(A(n)) = nexp ( — (1 + o(1))(loglog n)*log log log n) (1.2)

as n — oo for almost all n.
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Applications of this function included the power generator of pseudoran-
dom numbers

Up = uy_; (mod m), 0<wu,<m-—1, n=12....

This generator has lots of cryptographic applications (see [11]), and se-
quences of large period given by A(A(m)) are quite important. In [16], the
authors provided lower bounds on the number of cycles of the power gener-
ator for almost all m by relating that number to A(A(m)) and then use their
estimate.

This thesis studies the asymptotic properties of the following two func-
tions.

Definition 1.1. The k—fold iterated Carmichael lambda function is defined
recursively to be

Xo(n) =n, Ag(n) = A(Ak—1(n)) for k > 1.
We define ¢y (n) similarly. Next we study a related function.

Definition 1.2. For a positive integer n, let L(n) denote the smallest k
such that \g(n) = 1.

Throughout this work we are interested in finding normal orders for the
preceding arithmetic functions. Next we define the meaning of normal order.

Definition 1.3. Let f(n) be an arithmetic function. We say f(n) has
normal order g(n) if for all € > 0,

(1=e)g(n) < f(n) < (1+€)g(n) (1.3)

for almost all n. By “for almost all n” we mean the proportion of n < x for
which (1.3) does not hold goes to 0 as n — co.

In [16] it is conjectured that

Ap(n) = nexp <_(k'—11)!(1 + 0,(1))(log log n)* log log log n)

for almost all n. Our first result is the proof of that conjecture.

Theorem 1.4. For fixed positive integer k, the normal order of log %(n) 1

ﬁ (loglogn)*logloglog n.
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Note that Theorem 1.4 has been proved for k = 1 in [9]. Therefore from
now on we will assume that k # 1. We’ll prove the theorem in Chapter 3 in
the following slightly stronger form. Let 1(x) be a function which satisifes
the following two properties.

1. ¥(z) = o(loglog log x) and
2. Y(x) = 0o as r — 0.

We will show

n 1 k
log </\k(n)> = oD (loglog n) <log loglogn + Oy (¢(n)))
for all but O(z/v(z)) integers up to x.

The proof of Theorem 1.4 involves breaking down n/\i(n) in terms of
the iterated Euler ¢ function by using

no_ < n )<¢(n)> <¢k—1(n)> <¢k(n)> (1.4)
Ae(n)  \o(n) ) \a(n) ) "\ ¢k(n) J\e(n)/ '
Estimates for all but the last term are known. Hence log(n/Agx(n)) can be
written as a sum of the logarithms on the right side of (1.4). It will be
necessary to analyze the term log(¢r(n)/Ax(n)).
Our second result is an asymptotic formula involving iterates involving
A and ¢. Banks, Luca, Saidak and Sténica in [4] showed that for almost all
n?

Mo (n)) = nexp(—(1 + o(1))(loglogn)*log log log n) and
d(A(n)) =nexp(—(1+ o(1))(loglogn)logloglogn).

As a corollary to Theorem 1.4 we will obtain asymptotic formulas for higher
iterates involving A and ¢. Specifically we prove the following.

Theorem 1.5. For >0 and k > 1, let g(n) = ¢;(A(f(n))), where f(n) is

a (k — 1) iterated arithmetic function consisting of iterates of ¢ and \. The

normal order of log(n/g(n)) is ﬁ(log log n)* log log log n.

An example of the use of this theorem is for ¢pAPpPpANP(n). Since | =
2,k = 5, we get that the normal order of log WM is

1
o1 (loglog n)% log log log n.
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Figure 1.1: The Pratt tree for the prime 3691

A result by Erdds, Granville, Pomerance and Spiro in [8] established
that n/¢r(n) does not have a normal order. That result combined with
Theorem 1.5 completes the picture of how all iterates of A and ¢ relate to
n. However it doesn’t show how they relate to each other. For example
logm ~ logﬁ(n) for almost all n, but is there a normal order for

log A$EAG(n) Kapoor [14] found results for k£ = 2, but the problem remains
A6 (n)

open for higher iterates.

We then turn our attention to L(n). In order to study this function, we
use the Pratt tree for a prime p which is defined as follows. The root node
is p. Below p are nodes labelled with the primes ¢ such that ¢ | p — 1. The
nodes below ¢ are primes dividing ¢ — 1 and so on until we are left with just
2. For example, if we want to take the prime 3691, the primes dividing 3690
are 2,3,5 and 41. Then we take the primes dividing one less than each of
these and obtain the tree in Figure 1.1. In 1975, Pratt [19] introduced these
trees to show that every prime has a short certificate (proof of primality).
The Pratt tree is of interest to us because the way the primes go down a
branch of the tree is similar to how those same primes divide iterates of
A(n). The height of the Pratt tree H(p) is the length of the longest branch.
That height is related to L(n).

Since A(n) is either even or 1, and A(n) < n/2 for even n, we easily
see that L(n) < |logn/log2 + 1|. By considering when n is a power of 3
we can note that L(n) > 1+ (1/log3)logn for infinitely many values of n.
As for upper bounds, Martin and Pomerance [16] gave a construction for
which L(n) < (1/log2 + o(1))loglogn for infinitely many n. The number
of such n < z have asymptotic density 0. It is conjectured that for a set of
positive integers with asymptotic density 1, that L(n) =< loglogn however
no previous results have shown L(n) = o(logn) for almost all n.

It’s easy to see that H(p) < L(p), so any lower bound on H acts as a lower
bound on L. Bounds for the height of the Pratt tree H(p) were obtained
in a 2010 paper by Ford, Konyagin and Luca [10]. The bound depends
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on the exponent arising from the Elliot—Halberstam conjecture. Recall the
Bombieri—Vinogradov Theorem [7, Chapter 28] implies

; —M z(logz)™4
max m(y;n,1) am)| € (log z) (1.5)

n<Q

holds for any Q < x'/?(logz)~? and any A > 0, where B = B(A). The
Elliot-Halberstam conjecture says that (1.5) holds for @ = x% for any 6 < 1.
Let 6 be such that (1.5) holds for @ = 2. In [10] Ford, Konyagin and Luca
showed for any ¢ < 1/(e”! —1log#’),

H(p) > cloglogp (1.6)

for all but O(z/(log z)®) primes p, for some K > 1. Under Elliot-Halberstam,
we can take any ¢ < e, but unconditionally, Bombieri-Vinogradov gives any
c<1/(e7t +1log2).

In Chapter 5 we show that if n = []p{“, then

L(n) = max{L(p")} (1.7)

and
L(p*) = a—1+ L(p) = L(p). (1.8)

These two equations imply L(n) > L(p) for any p | n. This motivates the
following theorem which will be proved in Chapter 5

Theorem 1.6. There exists some ¢ > 0 such that
L(n) > cloglogn
for almost all n < x.
For an upper bound, in [10] it was shown that
H(p) < (logp)**"% (1.9)

for all p < x outside a set of size O(z exp(—(logz)°) for some § > 0. We
extend this to a result about L(n).

Theorem 1.7. If H(p) < (logp)” for almost all p < x outside a set of size
O(m exp(—(log m)‘s)) for some 6 > 0, then for some function n,

L(n) < (logn)’n(n)

for almost all n as n — oo.
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The function n(x) can be taken to be as small as O(logloglog ). Equa-
tion (1.9) yields the following corollary.

Corollary 1.8. For almost all n,
L(n) < (logn)?-9503,

In [10], the authors also came up with a nice probabilistic model which
suggested a conjecture that the normal order for H(p) is e log log p. Assuming

this conjecture, we give some evidence to suggest a related conjecture for
L(n).

Conjecture 1.9. The normal order of L(n) is eloglogn.



Chapter 2

Notation and Required
Estimates

2.1 Notation

The following notations and conventions will be used throughout this the-
sis. The letters p, q,r, s and their subscripts will always denote primes. In
Chapters 3 and 4, k > 2 will be a fixed integer. In Chapter 3 any implicit
constant may depend on k, otherwise the constants are absolute. Let vp(n)
be the largest power of p which divides n, so that

n = [p"™.
p

Let the set P, be {p : p = 1 (mod n)}. The notation ¢ < ¢ is defined to
mean that ¢ € P,. In Chapter 3 we will assume z > e?“. The function
y = y(z) is defined to be loglogx. Also let ¥ (z) be any function going to
oo such that 1 (z) = o(logy) = o(logloglog z). Whenever we use the phrase
“for almost all n < z” in a result, we mean that the result is true for all
n < x except a set of size o(x). In Chapter 3 the exceptional set will be

O(z /().
2.2 Required Estimates

The following estimates will be used throughout this thesis. Let A(n) be the
Von—Mangoldt function defined by

_Jlogp n=p
A(n) = { 0 otherwise.

[

We use the Chebyshev bound

Y A(n) =) logp < x. (2.1)

n<x pl<z
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Also define the related function

0(x) = Zlogp.
p<z
It follows from (2.1) that
f(z) < . (2.2)

We also require a formula of Mertens (see [17, Theorem 2.7(b)])

Z logg _ logz 4+ O(1). (2.3)
q<z

We use partial summation on (2.2) to obtain some tail estimates.

Lemma 2.1. For all x > 2, we have the following sums over primes.

(a) | ,
PPy (2.4)
q X
q>x
(b) X ,
Y 5« - (2.5)
il zlogx

Proof. Equation (2.5) follows from (2.4) since log z < log q. As for Equation

(2.4),
logg  [*°d(6(t))
Z q2 _/x +2

q>x

O

Given m,x > 2, let A be the smallest a for which m® > x. We can then
manipulate the sums

A2 n < =

ma m ma ma T

a€eN a=0 aeN

1
oz

1
Z moe—A

=1
2
a=0
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(a)

a=A nﬂ

for any polynomial P(z). Then by noting that > o°
for m > 2 and A > 0 we obtain the estimates

3 };ia) <p % Ll (2.6)

a
aeN aeN

< p 1 uniformly

From [17, Corollary 1.15] we get

Zé =logz + O(1) (2.7)

s<x

We will also make frequent use of the Brun-Titchmarsh inequality [17, The-
orem 3.9] which says for all n <t,

t
¢(n)log(t/n)’

By partial summation on (2.8) we can obtain

llt
jgj B (2.9)

p<t
p€73n

m(t;n,a) < (2.8)

Whenever n/¢(n) is bounded, as it will be whenever n is a prime, prime
power or a product of two prime powers, we can replace (2.9) with

1 loglogt
P (2.10)
p<t p "
PEPn

for some absolute constant c¢. We include the ¢ because occasionally we
require an inequality as opposed to an estimate. From [18, Theorem 1] we
obtain the asymptotic

1 loglogt logn
257 om +o(55) 210
p<t

Equation (2.11) easily implies

1 loglogt logn
2 5017 o ~o(505) (242

p<t
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since the difference is

3 1 <§: 1 1 = 1 <!
= pp—1) = = mn(mn+1) n? — m2 T n2’
p<t

The Bombieri—Vinogradov Theorem [7, Chapter 28] implies

m(y;n,1) — h(y)‘ < z(logz)~4 (2.13)

¢(m)

max
y<z
n<@

with Q < x'/2(logz)~B for any A > 0 and B = B(A). We will use this
repeatedly in Chapter 3 with Q@ = z!/3. We also often use the Cauchy-
Schwarz inequality in the following form. If f(n) and g(n) are arithmetic
functions, then for any ¢t > 1,

2
< DIl (2.14)

n<t n<t

> fn)g(n)

n<t

2.3 Early Results

In Chapters 3 and 5 we will require the following technical lemma.

Lemma 2.2. Fizx a prime q and positive integers k, a. The number of n < x
such that there exists p,qi,...,qx—1 satisfying ¢* | qx—1 — 1, qx—1 | qr—2 —
1,...,q1 | p—1 and p| n is at most

z(cy)
qOé

for some absolute constant c.

Proof. By repeated uses of Equation (2.10), the number of such n is bounded

10
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by

)3 DD DD SEND SEE

n<z pln qilp—1  qe—1lak—2—19%|qr—1—1

— Z Z Z Zl

qr—1=1 (mod ¢%) gx—2=1 (mod gx—1)  p=1 (mod g1) n<w

n=0 (mod p)
x
S S
qk—1=1 (mod ¢%) gy—2=1 (mod gx—1)  p=1 (mod q1)
rey
D N
qr—1=1 (mod ¢%) gx—2=1 (mod gx—1) g1 =1 (mod g2)
k—1
<... < Z M
_ o qk—1
qx—1=1 (mod ¢%)
< x(ci/)k
q

O]

In our proofs of Propositions 3.13 and 3.14 we will see that M;(z) and
M>(x) will reduce to summations involving 7(z; p, 1). We will be using some
sieve techniques to bound these sums and those will require some bounds
on sums on multiplicative functions involving ¢(m). The following involves
the estimation of the latter sums.

Lemma 2.3. For any non-negative integer L we have

L

m
— log t. 2.1
2 Gyt <108 (215)

Proof. 1If f(n) is a non-negative multiplicative function, we know that

S fm) <D f0). (2.16)

n<t p<t r=0

11
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Applying (2.16) with e )L+1 yields

S oy < (1+ 2 ey
(2 =)
(H L“lpL;)
(R
)
o (2 (L (7))
(2 (o (7))

using (2.3). O

:E[

exp

< logt

Lemma 2.4. Let L be a nonnegative integer and v a positive real number.
Given a positive integer C' < t7 and non-negative integer L we have

m L

Proof. 1t will suffice to show

Z (Cm +1)2L71 logt (2.18)

~ g(Cm T 1)2F ST

12
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as then by Cauchy—Schwarz (2.14) we can get that

(Cm +1)F 2 (Cm + 1)2E-1
<mz<t¢(0m—|—1)L¢(m)> < Z ¢0m+ 2L Z

m<t

1
<L Ly (()g) Clogt

<1~ log?t

by using Lemma 2.3 and (2.18). Let

Cm + 1)L
6) = 3 4G 17

We show Equation (2.18) by first showing G(t) <, t. This implies Equa-
tion (2.18) since

Z (Cm +1)2-1 Z (Cm+1

e d(Cm + 1)2L <C md)Cm—l—12L
_ 1 t d(G(u))
N C 1- u

(5[ 5)
b [ D)

1
S ol (logt)

To show Equation (2.18) we start by defining s(n) to be the multiplicative
function defined by

n2L

S =1lxs= Zs(d).

dln

Testing at prime powers, we can easily see that

1 2L
s(1) =1,s(p) = (1 — p) —1 and s(p*) =0 for all k > 2.

13
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Hence

Z Cm + 1 2L N Z n2L
(O 1 1)2L 2L
¢ Cm + 1 n<Ct+1 ¢(n)
n=1 (mod C)

= 2. 2.8

n<Ct+1  dn

n=1 (mod C)
= > s > 1
d<Ct+1 n<Ct+1
dln
n=1 (ILlodC)
t
= ) s(d)<d+0(1)>
d<Ct+1
s(d)
=t ) d+0< > s(d)>.
d<Ct+1 d<Ct+1

We require some estimates on s(d). For the sum of the multiplicative function

s(d)/d,

s(d) _ O V) it
P

p<Ct+1

< I (o))

(5 (e u(2)

—ow( 30 0u(53))

= exp(OL(1))
< L.

14
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For the sum of s(d),

Y ost< ] <1+ (1-1/p)2 —1>

d<Ct+1 p<Ct+1

=[] a-1yp~*

p<Ct+1

~on( 3 w(1v0u(2))
—on( 3 o))

= exp (Op(loglog(Ct + 1)))
< exp (Or,(loglogt))
< (logt)Pr~)

<Ly t
Therefore J
Git)y=t »_ ‘S(d) +O< > s(d)) Lpqyt
d<Ct+1 d<Ct+1
as needed. O

The following sum seems more complicated. However, we can handle it
using repeated applications of Lemma 2.4.

Lemma 2.5. For positive integers C1,Co,...,C, < t7 and non-negative
integers Ly, La, ..., L, we have

Z (Crm + 1) (Com + 1)E2 .. (Com + 1) Er
#(C1

logt.
m+ 1)L1¢(Com + 1)Lz ... ¢(Crm + 1)Lrp(m) <Ly,...Lyy logt

m<t

(2.19)

Proof. We proceed by induction. The case r = 1 is covered by Lemma 2.4.
Suppose

Cm+ Ll Cm+ L2._. Crm+1LT
20501 : L o ) LKLy, Ly log .

m+ 1)1 ¢(Com + 1)L ... ¢(Crm + 1)Erd(m)

15
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By Cauchy—Schwarz (2.14), we get that

< Z (Cim + 1) (Com + 1)L2 . (Crpam + 1) st >2
¢(Clm + 1)L1¢(02m + 1)L2 - ¢(Cr+1m + 1)Lr+1¢(m)

Z Clm + 1)2L1 (Cgm + 1)2L2 (CTm 4 1)2Lr
- d’ (Crm + 1)2L1¢(Coym 4 1)2E2 ... ¢(Crm 4 1)2Er §(m)

‘ (CT+1m + 1)2Lr+1
2 ¢(Cryam + 1)2Er+16(m)

m<t
2
<<L17~~~aLr+1»'Y ]'Og t
by the induction hypothesis and Lemma 2.4, completing the proof. O

Now here is the lemma that we will use in Section 3.7.

Lemma 2.6. For positive integers Cy,Co, ..., C, < t7 and non-negative in-
tegers L1, Ls, ..., L., L we have

Z (Cym + D)1 (Com + 1)E2. . (Com + 1) ErmE1
o(C

log .
T+ D) Eg(Com + DIz . g(Com + D) Erg(m)E Laobrliy 108

m<t

(2.20)

Proof. Once again we’ll use Cauchy—Schwarz (2.14) and the previous lem-
mas.

<Z (Cim + D)X (Com + 1) P2 .. (Crm + 1)ErmE—! )2
#(Crm + 1 Llcb(sz + 1)Lz ¢(Crm + 1)Lr p(m)E

Z (Ciym + 1?51 (Coym + 1)*2 . (Crom + 1)%E
= 2 5{Com + )P g(Com + 1252 . g{Crm + 12 ()
mQL—Q

<<L17---7LT7L7'Y 10g2 t

by Lemmas 2.3 and 2.5. O

16



Chapter 3

Iterated Carmichael Lambda
Function

3.1 Required Propositions and Proof of Theorem
1.4

As mentioned in Chapter 1, the main contribution to log(n/Ag(n)) will come
from log(¢r(n)/Ax(n)). Estimating this term will involve a summation over
prime powers which divide each of ¢r(n) and Ag(n). It turns out that the
largest contribution to this term will come from small primes which divide
é1(n). By small, we mean primes ¢ < (loglogz)* = y*. We will split the
sum into small primes and large primes ¢ > y*. To prove Theorem 1.4 we
will require the following propositions. The first summations deal with the
large primes which divide ¢(n) and the second involves the large primes
whose prime powers divide ¢p(n). We will show that the contribution of
these primes to the main sum is small and hence it will end up as part of
the error term.

Proposition 3.1.
(Vg(Pr(n)) — vg(Ar(n))) log g < ¥ ¢(x)

>y"
n))=1

v (¢ (
for almost alln < x.
Proposition 3.2.
> vl¢r(n)logg < yFu(x)

q>yk
vg(pr(n))>2

for almost all n < x.

Since the main contribution will come from small primes dividing ¢y (n),
the next proposition will show that the contribution of small primes dividing
Ak(n) to the main sum can also be merged into the error term.

17



3.1. Required Propositions and Proof of Theorem 1.4

Proposition 3.3.
D vg(Ak(n)) log g < yFp(x)
q<yk

for almost alln < x.

That will leave us with the contribution of small primes dividing ¢y (n).
Recall the following definition of an additive function.

Definition 3.4. An arithmetic function f(n) is called additive if for all
(m,n) =1, f(mn) = f(m) + f(n). If in addition f(p*) = f(p) for all k > 1,
then f(n) is called strongly additive.

We will use a strongly additive function to approximate the remaining
sum. Let hg(n) be the strongly additive function defined by

he)=> " > o > > vylpr—1)logg.
pilnpalpr—1  prlpk—1—1g<y*

The following proposition shows that the difference between the sum involv-
ing the small primes dividing ¢x(n) and the term hg(n) is small.

Proposition 3.5.

> vg(dr(n)) log g = hi(n) + O(y* " logy - ()

q<y*
for almost alln < x.

That leaves us with log(¢r(n)/Ax(n)) being approximated by hg(n). The
last proposition will obtain an asymptotic formula for hg(n). From there we
will have enough armoury to tackle Theorem 1.4. Since hgi(n) is strongly
additive, we use the Turan—Kubilius inequality (Corollary A.2) which will
show the final proposition.

Proposition 3.6.

for almost alln < x.

18



3.1. Required Propositions and Proof of Theorem 1.4

Proof of Theorem 1.4. We start by breaking down the function log(n/Ax(n)).

() () (22

et (A | (900)

(3.1)

Pr(n) Ak (1)

Using the lower bound ¢(m) > m/loglogm from [17, Theorem 2.3] we have
that

log (Jm) +log ((Z;(g)) 4+ +log (gbgzs;)) < logloglogn. (3.2)

Inserting equation (3.2) into equation (3.1) yields
n ¢k(n)>
log| ——= | =lo + O(logloglogn).
¢ (5t) = ox (X ) + Otostogtonn

In fact we could have used a more precise estimate for ¢;(n)/¢i+1(n) for
i > 1 which can be found in [8] but the one we used is good enough. Next
we break down the remaining term into summations. We will break it up
into small primes and large primes.

log (W”)) = 3 () — () log g

)\k(n) q>yk
+ ) (vg(dr(n) = vg(Ak(n))) log g
= > (waler(n) — vg(Me(n))) logq

ol (m))=1
+ Y (k) — vg(Ak(n) log g

>y*
Vq(¢k (n))>2
+ > vg(dk(n))logg — > ve(Me(n)) logq.
q<y* q<y*

Note that if a | b, then A(a) | ¢(b) since A(a) | ¢(a) | p(ma) for any integer
m. This quickly implies that Ag(n) always divides ¢y (n) for all k and so we
get

0< Y (weldw(n) —vg((m))logg < Y (vg(dr(n))logg.

>y~ a>yF
vq(Pr(n))>2 vg(pr(n))>2
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3.2. Prime Power Divisors of ¢y (n)

Using Propositions 3.1,3.2,3.3 and 3.5 we get

log (%) — hu(n) + O(ykwcc))

for almost all n < z. Finally by using Proposition 3.6 we get

NER R —

for almost all n < x, finishing the proof of Theorem 1.4. O

3.2 Prime Power Divisors of ¢(n)

For various reasons thoughout this paper, we are concerned with the number
of n < z such that ¢® can divide ¢x(n). We will analyze a few of those
situations here:

Case 1: ¢? | n. Clearly the number of such n is at most %.

Case 2: There exists p1 € Py2,p2 € Pp,,p3 € Pp,,...,p1 € Pp,_, where
p; | n. By using Lemma 2.2 we know the number of such n < z is O;(xy'/¢?).

Cases 1 and 2 deal with any case where p € Pj2, we are just left with
the possibilities not containing any powers of g. Unfortunately these cases
still allow for many possibilities which we will display in an array. There
are lots of ways for a prime power ¢ to divide ¢ (n). We now define various
sets of primes that are involved in generating these powers of ¢, and we will
eventually sum over all possibilities for these sets of primes. The set Ly, ;
will denote a finite set of primes. To begin, the set £ 2 will be an arbitrary
finite set of primes in P, and let £1; be empty. That is:

Case 3:

Level (1,2)
51’2 - Pq.

Level (2,1) (Obtaining the primes in the previous level)

L1 is any set of primes with the property that for all p € £11 U Ly 2,
there exists a unique prime r € £o1 such that r € P,. In other words p will
divide ¢(r) and hence the primes in L5 will create the primes in £1 1 UL 2.

Level (2,2) (New primes in Py)

Lo2 C P,
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3.2. Prime Power Divisors of ¢y (n)

In general for all 1 < h < k we have for all p € L£;_11 U Lj_1 2 there exists
a unique prime r € Ly, 1 such that r € P,, L, o is an arbitrary subset of P,
and

reLy1ULyy=1|n.

Some description of the terms are in order including some helpful defi-
nitions.

Definition 3.7. An incarnation I of Case 3 is some specified description of
how the primes in a lower level create the primes in the level directly above.

For example, for k = 3, an incarnation I for which ¢* | ¢3(n) would be
51, 82,53,73,74 € Py where 71 € Py, 12 € Psyss, P1 € Prirys D2 € Pryry, with
pip2 | n.

Definition 3.8. An subincarnation of I is an incarnation with added condi-
tions. In other words if J is a subincarnation of I and an integer n satisfies
incarnation J, then it will also satisfy incarnation I.

For example, I is a subincarnation of the incarnation s1, s3,73,74 € Py
where r1 € Ps,, 72 € Psg, D1 € Prirg, P2 € Pryry, With pipa | n.

Let p be a prime in £, ; which we need to divide ¢p_p41(n). The def-
inition of L, ; ensures that there is a unique prime r dividing ¢r_p(n) for
which p | » — 1. The primes in levels (k, 1), (k,2) dividing n are for the base
case of the recursion, so that each prime divides ¢o(n) = n. When i = 2 we
are introducing new primes to get greater powers of ¢ in ¢r(n). Note that
it’s not necessary to have any primes on the levels (h,2). In fact the “worst
case scenario” that we will see has no primes on these except Level (1,2).

Now that we’ve described the way to get ¢* | ¢x(n), what is our exponent
a? Let myp; = #Lp ;. From the recursion above we can see that ¢"*2 | ¢(n)
and so do the primes in £;_1 ;. For the second iteration of ¢, g2 R |
¢2(n) and so do the primes in £;_5 ;. Hence the power of ¢ which divides
or(n) is

1?%(”11,1 + Q;hgj(mhz 1)) (3.3)

where the sum can be empty if there are no primes in the second level (j, 2)
or there are not enough to survive, i.e. m;2 < j—1 and hence ¢ { gbj(l_[ﬁj’2 p).
Without loss of generality, we can assume the former, since the later is a
subincarnation of the former.

Now we’ll introduce some notation to be used in future propositions. For
any fixed incarnation of Case 3, let M be the total number of primes, N be
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3.2. Prime Power Divisors of ¢y (n)

the total number of new primes introduced at the levels (h,2) and H be the
maximum necessary level (h,2). Specifically

M=) (mpi+mp2) N=> mps
h h<H

and H yields the maximum value in (3.3). Note that under this notation,

gV ~H+1 | ¢1.(n). For example, in the incarnation I above,
L1 ={s1,52,83},La1 = {r1,r2},Log = {r3,74},L31 = {p1,p2}, L32 =10
as well as
mi2=3,mo1=2,Mmo2=2,m31=2,m32=0.

Hence M = 9, N = 5, H = 2 and so the power of ¢ which divides ¢3(n) is
5—2+41 =4 as expected.
Now that we’ve described Case 3, how many possible n are in that case?

Lemma 3.9. The number of n < x satisfying any incarnation of Case 3 is

M
o CMny>
( qN

where ¢ is the constant from equation (2.10).

Proof. Let L, = Lp1 U Ly 2. We use Brun-Titchmarsh (2.10) for all the
primes at each level of Case 3, so the number of n is

n<zp1 €LY p2E€LY PLEL p1€L1 p2€L2 PLELK p|n
n<x

P I I P -

p1€L1 p2€L2 PrELE Hpke’ck Pk

Note that we have repeatedly counted the same primes in the sum as we can
reorder the primes in each level. It won’t be important here, but will need
to be more carefully addressed later. Since the primes in level (k, 1) gave us
some py € Py, _, for all the primes in £;_1, and for p € L 2 we have p € P,,.
By Brun-Titchmarsh (2.10) we get that the above sum is

mg, 1+mg 2
<Y Yy e

p1€L1 p2€Lo Pr—1€LK_1 Hpkfleckfl Pr-19
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3.3. Large Primes Dividing ¢y(n)

Once again we get my_11 + my_12 new applications of Brun-Titchmarsh
giving the new primes in level k — 2 as well as my_1 2 new powers of q.
Continuing along in this manner we get:

x(cy)22§i§k(mi,l+mi,2)

=55

o T2
pP1ELY Hp1€£1 pquQSZSk '

2(cy) Drsih i) (oM

< qZISiSk mi,2 N qN

O]

The last thing we’ll consider in this section about the ways to obtain
¢r(n) is to determine the number of possible incarnations of Case 3. We
note that there are lots of incarnations which are subincarnations of others.
We will develop a concept of minimality.

Definition 3.10. An incarnation of Case 3 is minimal if it does not contain
any strings of p1 € Pp,,p2 € Ppy ... Pk—1 € Pp, Where py | n.

Note that any incarnation of Case 3 is a subincarnation of a minimal
one. We now use this concept to show the number of necessary incarnations
of Case 3 is small.

3.3 Large Primes Dividing ¢x(n)

In this section we will prove the two propositions dealing with ¢ being large.
We'll start with the proposition where v, (¢r(n)) = 1.

Proof of Proposition 3.1. It suffices to show

ST welr(n) — vg(Ae(n))) log g < ay*
" et

as then there are at most O(;fi) = O(i) such n where the bound
YRy (x) ¥(x)
for the sum in Proposition 3.1 fails to hold. We examine the cases where
vq(¢r(n)) = 1. Using the notation in Lemma 3.9 we have two subcases for
Case 3, whether N =1 or N > 1.
Suppose N = 1, then H =1, mi2 = 1 and mpo = 0 for 1 < h < k.
Since mp1 < mp—1,1 + mp—12 we get mp; < 1 for all 1 < h < k. Hence

mp,1 = 1 for all h < k. Therefore we are left with the case
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3.3. Large Primes Dividing ¢y(n)

p1 € Pmp? € Pp1ap3 € ,sza RN S Ppk,1

where p;, | n. However in this case we also get v4(Ax(n))) = 1 giving us no
additions to our sum.

Suppose N > 1, then by repeatedly using mp 1 < mp—11 + mp—12 we
have M = ), (mp1 + mp2) < kY, mp2 = kN. The number of cases we
get are

o (CM xy]y) - M xjgkN - M a:Qka
q q

since y > ¢*. Since v,y(¢r(n)) = N — H +1 and H < k, we conclude N < k

implying that M < k2. Hence ¢™ is bounded as a function of k. Also since

M is bounded in terms of k, there are O (1) possible incarnations of Case 3,

and the bound already absorbs the possiblities from Cases 1 and 2. Hence

we have

Yo Y k() — () logg < Y Y logg

>yk n<w >yk n<w
Y a(@n(n)=1 Y a(@nlm)=1
N>1
2%k
zy“* lo
< Z Yy - g4
>yk
k
<KL zy
by (2.4). O

We turn our attention to vy(¢x(n)) > 1. We have to be more careful here
since we can’t guarantee that the number of incarnations of Case 3 is Oy(1).
We'll start by proving a lemma which can eliminate a lot of those cases.

Lemma 3.11. Let ¢ > y* and S, = Sy(z) consist of all n < x such that
Case 1,2 or Case 3 where M < k(N — 1) occurs. Then

k
ry
#S, < -

Proof. There are clearly Og(1) incarnations of Cases 1 and 2 and each yield
at most O(zy*/q?) such n. By Lemma 3.9 for each incarnation of Case 3,

we get at most
M., M M.,k
crry crry
O( > <
v q°
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3.3. Large Primes Dividing ¢y(n)

such n since M < k(N — 1) and ¢ > y*. It remains to show we only require
Og(1) such incarnations. Suppose n satisfies an incarnation with M <
k(N —1). Then it also satisfies a minimal incarnation with M < k(N — 1)
since removing a string of p1 € Pp,,p2 € Ppy ... pr—1 € Pp,, would decrease
N by 1 and M by k leaving the inequality unchanged. Secondly we can
assume that n also satisfies an incarnation where k(N —2) < M < k(N —1)
since we can keep eliminating primes in the £; 2, which decrease N by 1, but
M by at most k. This must eventually produce an incarnation where k(N —
2) < M < k(N —1) since if we eliminate all primes in the £; 5 but 1, then
M > E(N —1). Also note that the condition mp 1 < mp_1,1 + mp_1 2 forces
M < EN.If M is bounded between k(N —2) and kN and the incarnation is
minimal, we get that N is bounded by 2k since eliminating a prime in £; 2
can only shrink M by at most k& — 1 since our incarnation is minimal.
Therefore n satisifies an incarnation where N and hence M are bounded
functions of k. Since there are only Og(1) such incarnations, we get our

result, noting that ¢™ can be absorbed into the constant as well. O
Proof of Proposition 5.2. Let S = S(x) = U s, S¢- Using Lemma 3.11 we
have
#S < Y #8 <<nyk<< "y L W o @
= 5 zy -
! ¢ ¢ " log(yF)yF T ()

g>yk g>yk g>yk

by (2.5). As for the n with n ¢ S and a = v4(¢r(n)) > 1, the only remaining
case is that M > k(N — 1). Recall that a = N+ H — 1. If H = 1, then
N = mq 2 = a. This implies ma1 = a — 1 or a, since otherwise for k& > 2,

M =Y mpy < at(k—1)moy < at(k—1)(a—2) = k(a—1)—k+2 < (k—1)N
h

leading to a contradiction. If H > 1, then we again wish to show that
m271 Z a—k.

M = Z(mh,l -+ mhg)
h

<kmig+ (k—1)> mao
h>1

:m1,2+(k—1)N
= k(N —1) = N +k +mi.2
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3.3. Large Primes Dividing ¢y(n)

which implies m12 > N — k and so Zh>1 mp2 = N —mq < k. Therefore
if mo1 < a— k‘, then

M = Z(th + mh’Q)

h
<Smig+(k—Dmor+ (k=1 mpas<a+(k—1)(a—k—1)+ (k—1)(k—1)
h>1
=ak — 2k
<k(N-1)

as N > a again leading to a contradiction. Hence ma; > a — k and so we
conclude

D> (lrn)logg<2> D> (ve(er(n)) —1)logg

ngs  g>yk ngs - g>y*

nET . (fg(n)>1 STy (fr(n)>1
<Y EaYa ¥ L
>k a>2 n<x

n¢sS
vq(¢r(n))=a
Unfortunately, just blindly using the Brun-Titchmarsh inequality in (2.10)
won’t be good enough as we must sum over all a. Let g(a, k) = (a — k)! if
a > k or 1 otherwise and note that since we have mi2 > a — k, we have at
least g(a, k) permutations of the same primes. Thus by using Lemma 3.9
we get

x(cy)M ack(aJrkfl)xy%
a log q 1<a <
2 2 qNg(a, k) 7*g(a, k)
a>y* nsz
né¢sS

vg(¢r(n))=a

using the assumption that ¢ > y* and M < kN < k(a + k — 1). Hence we
get that our sum is

ack(ath=1) 30 2k

oD (wldkn)logg < D logg )y

2
- = ey = Peak)
NET y (dr(n))>1
log ¢ ack(a+k71)
2k
:xy
2 2 g

>y* az2
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3.4. Small Primes Dividing A\x(n)

However the latter sum converges to some function depending on k, and so
we get

lo
<ay?t Y B gy
vk

by (2.4). O

3.4 Small Primes Dividing \;(n)

We now turn our attention to the bound involving A;(n) in the summand.
Just like when we were dealing with the number of cases where ¢* | ¢y (n),
we will need a lemma to deal with the number of cases where ¢% | \g(n).
Fortunately this case is much simpler as the only two ways for ¢® | A(n) is for
q®“*1 | n or for there to exist p | n with p € Pya. Note that these conditions
aren’t sufficient, but are necessary when q¢ = 2.

Lemma 3.12. The number of positive integers n < x for which q* | A\x(n)
is O(Z4).

Proof. We'll proceed by induction on k. If k = 1, then ¢® | A\(n) if ¢*T! | n
or p € Py with p | n. The number of such n is at most

X X x X x
21+21<<T+1+Z*<< a+1+7g<<7ay'
n<x n<x pEPga p q q q
q“tn PEP,a
pln

using (2.10). Suppose the number of n < x for which ¢* | Ag_1(n) is

k—1

O(xyq‘; ). If ¢ | M(n), then either g™ | A\y_1(n) or p € Py with p |
Ai—1(n). Hence the number of such n is bounded by

k—1 k—1 k—1 k k
Ty xy xy xy zy
SRR SETE N
n<z n<w pEPga
T A—1(n) PEPqa
plAk—1(n)
as needed. O

Proof of Proposition 3.3. Like in the proof of previous propositions, we’ll

show
Z Z vq(Ak(n))log g < zy".

nsw g<yk
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3.5. Reduction to hy(n) for Small Primes

The left hand side is equal to

S vwn))logg=>"> logg > 1

n<x quk n<x quk aeN
q*| Ak (n)
S ID I SEES 3 T S
n<x quk aeN n<lz quk aeN
q*<y* 7% Ak (n)

q*>y*
The first sum is
DD loga Y 1=3 > Am)< yf <ayh,
n<w g<yk aeN n<z m<yk n<z

@ <y®

using the definition of A(m) and equation (2.1). Using Lemma 3.12, the
geometric estimate in (2.6) and equation (2.1) the second sum becomes

k k
log q 1« log q < log g—— < xy”.
> Yss ¥ 1w Yioer ¥ %« ¥ oge™ <oyt

< k k k
n<z g<y qa(‘l)\e;j\gn) a<y qgg\jk a<y
q*>y*

3.5 Reduction to hi(n) for Small Primes

The small primes dividing ¢x(n) are what contributes to the asymptotic
term of log(n/Ak(n)). In this section we show that the important case is the
supersquarefree case of p dividing ¢ (n) which is when

p=p1=<p2=- =< pg,p | n
For this reason we will approximate the sum > _ » v4(¢%(n)) log ¢ with
hi(n) =3, > o XL D valpe—1)loga. (3.4)
pilnpelpi—1  prlpr—1—1q<y*

Proof of Proposition 3.5. For any fixed prime ¢, we know that

vg(¢(m)) = max{0, vg(m) — 1} + Y vg(p — 1),

plm
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3.5. Reduction to hy(n) for Small Primes

which implies

qu(p—l)qu(qb( ) < vg(m +qu —1).

plm plm

Repeated use of this inequality for m = ¢;(n) where [ ranges from k — 1 to
0 yields

Y vl — 1) < vy (n))

plor—1(n)
S Z ve(p—1) + Z vg(p— 1) (3.5)
plok—1(n) plor—2(n)
-+ Z vg(p — 1) + v4(n).
plo(n

A prime p divides ¢y_1(n) either in the supersquarefree case (ssf), or not in
the supersquarefree case (nssf), yielding

qu(p— 1) < Z vg(p — 1)

ssf plor—1(n)
<> wglp—1)+ D vglp—1).
ssf nssf

Combining this inequality with (3.5) yields

Y va(p—1) < vg(k(n))

ssf
< qu(P—1)+ qu(p— 1)+ Z vg(p— 1)
ssf nssf plor—2(n)
+o Y vg(p— 1) + ().
plé(n)

Subtracting the sum over the supersquarefree case, multiplying through by
log ¢ and summing over ¢ < y* yields
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3.5. Reduction to hy(n) for Small Primes

0< Y vy(¢r(n))logq — hi(n)

q<yk
ZZUq —llogq—i—z Z (p—1)logqg
q<yk nssf q<y* plor_2(n)

ok D> vglp—1)logg

q<y* pln

where we get hy(n) from (3.4). It suffices to show that the sum on the right
side becomes our error term. For the sum

ZZ Z Uq(p_l)longzz Z Z log g

<z g<y* plém (n) n<e g<yt plom(n) o€
q”|p—

=2 D loga), D L

n<lx quk aeN pEan
plom(n)

k—1

we’ll split the sum over values of p < y and p > yk_l. For p < yk_l we

uniformly get for all n that

Zlong Z 1<Zlong g 1)

qSy aeN pGP a qu aeN
p<y*~!
plpm(n)

< zlongw

q<yk a€N

- 12108;(1

g<y*
<y ogy

using the geometric estimate (2.6) and the prime number theorem for arith-
metic progressions. As for p > y*~! we fix an M and N from case 3 for which
p | ¢m(n), of which there are at most O (1) such M, N since v,(¢p(m)) = 1.
Therefore
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3.5. Reduction to hy(n) for Small Primes

ZZloqu Z 1« Zlong Z :Uy

n<z g<yk a€N p> k-1 q<y* a€N pePya
pEP a p>yk 1
P|¢m(n)
xyM—(k—l)(N—l)
<D loga), )
quk aeN pG’an p

M—(k—1)(N—1)+1

< Z long Y 7

g<y* aeN
M—(k=1)(N=1)+1]
x (0]
< Z Y p g4

q<y*

M—(k—1)(N—1

<L xy )+1 log y*

< oM =DV

)+1 logy.

Since the M, N were chosen for ¢,,(n) we know that M < mN where equal-
ity holds if and only if we are in the supersquarefree case. Now either
m < k—2orm=k—1 and we are not in the supersquarefreecase. In the
former case we have an error of

O(ayF=2N=(=DIN=DH 166 1) = O(2y* N logy) = O(2y" ' log y)
since N > 1, or in the latter case

O(:Uy(kfl)Nflf(k‘fl)(Nfl)+1 log y) — O(xykfl log y)

Thus we get

S (X S utp-nosa+ Y Yl iosa+

n<lz N g<yk nssf q<y* pl¢r—2(n)
T Z qu(p —-1) 10%Q> < zy*llogy
q<y* pln
and so
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3.6. Reduction to the First and Second Moments

Zqu —1logq+z Z (p—1)logqg+..

q<yk nssf q<y* plor_2(n)
+ D) uglp—1)logg < yFlogy - ¥(x)
q<y* pln
for almost all n < x as required. O

3.6 Reduction to the First and Second Moments

The Turan-Kubilius inequality, which is discussed further in the appendix,
asserts that if f(n) is a complex strongly additive function, then there exists
an absolute constant C' such that

> If(n) x)|? < CxMa(x) (3.6)

n<x

where My (2) = Xy, () /p and Ma(x) = Ty [F(0) /- Since hy(n) i
strongly additive we apply this inequality where M;j(z) = Zpga: hi(p)/p,

M(z) =3 <, hi(p)?/p. We will need to find bounds on M; and M, there-
fore it’s our goal to prove the following two propositions:

Proposition 3.13. For all x > e,

1
Mi(e) = Gy

Proposition 3.14. For all x > e,
My(z) < y**logh 1y
These will lead to a proof of Proposition 3.6.

Proof of Proposition 3.6. Let N denote the number of n < z for which
|h(n) — My (x)| > y*. The contribution of such n to the sum in (3.6) is at
least Ny2*. Thus Proposition 3.14 implies N < zlogh~! y/y and so Propo-
sition 3.13 implies that hi(n) = ﬁyk log y+ O(y*) except for a set of size

O(z(logy)*~1/y). 0
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3.7. Summations Involving 7(t,p, 1)

3.7 Summations Involving 7(¢,p, 1)

The proofs of Propositions 3.13 and 3.14 involve multiple summations over
primes. Those sums can be re—written as sums including terms such as
m(t,p,1). A lot of these summations will involve sieving techniques. This
section will be split into proofs of two lemmas involving the summations
required for the sums arising from the Propositions 3.13 and 3.14.

Lemma 3.15. Let b, k,l be positive integers with 2 <1 < k. Let t > e be
a real number and let constants «, aq, e satisfy 0 < a < 1/2 and 0 < aq <
g < 1/2.

(a) If b > t*, then

Z Z Z (5o, 1 tlog t(loiIOg t)k72. a7

PrEPL Pr— leppk p2€Ppg

(b) If b < t“1, then

b1t
S>> Y wtpe 1) < STost (3.8)

PIEPY pi—1€Pp, P2E€Ppg
pr>t2

(c) If b < 1, then

t(loglogt)—1!
SO Y 1) m (3.9)

PIEPL pi—1€Pp, p2€Ppg

The implicit constants in (a) — (¢) depend on the choices of the .

Proof. For (3.7) we just use the trivial estimate 7(¢; p2, 1) < t/p2 and several
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3.7. Summations Involving 7(t,p, 1)

uses of Brun-Titchmarsh (2.10) to get

)DED DD DERED DD DTS D

PkEPy Pr—1€Pk p2€P3 PrEPy Pk—1€Pk p2€7’3
loglogt
<ty Y ey E=E
PrEPy Pk—1€Pk p3EP,
(loglogt
<tY (loglog £)"~*
PkEP Pk
(loglog t)*—2
<t —_—
<t D -
m=1 (mod b)
t*<m<t

< tlogt(loglogt)k—2
- b

where m > 1 and m = 1 (mod b) imply that m > b and by using (2.7). As
for (3.8) we get

PIED DR DL

pI€EPy p1—1€P p2€P3
[>t>2

=Y > > #{(ma,p2) i p2 =1 (mod p3),pp > £,

pIE€EPy p1-1€P) p3€Py
[>t>2

mip2 + 1 < t,p2, mips + 1 prime}

_ Z Z Z #{(ml,mg,pg) ip3 =1 (mOd p4)7p3 > 12,

pIEPy p1-1€P; Ppa€Ps
[>t*2

mi(maops + 1) + 1 < t,{ps, maps + 1, m1(maops + 1) + 1} prime}
=#{(m1,ma,...,my_1,p;) : pr =1 (mod b), p; > t*?,
mi(ma ... (mg_2(mi_ipr+ 1)+ 1)+ -+ 1 <t {p,mi1p + 1,
mi—o(mi—ipr+1)+1,...,
mi(ma...(mi—2(my_1p;+1)+1)+---+ 1} prime}
< Z #{p <t/my...my_1:p;=1 (mod d),
my..my_q <tl—o2
{oe, mu—apr + 1Ly o (my—ipr + 1) + 1,
mi(ma...(mj—o(my—1p; + 1)+ 1) + -+ + 1} prime}.
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3.7. Summations Involving 7(t,p, 1)

From here will need to use Brun’s Sieve method (see [12, Theorem 2.4]) to
get that

#{p <t/my...my_1:p; =1 (mod b), {p;,mi_1pi + 1, my_o(my_1p; + 1) + 1,
cooyma(ma .. (my—o(my_1p; + 1)+ 1) +--- + 1} prime}
EXY bt bey ey t/my...my_1b
d(E) =1 (b)) ¢(bey ... cp—1) (logt/myq ... my_1b)!

where the ¢; and E are

<

-1
E:(Hmz(zﬂ)ﬂ)(l—i—ml—|—m1m2—|—~--+m1...ml3)(1+m2—|—m2m3
=1
+-o4+mo...mp—3)...(L+my_3)(L+mi +mima + ...
—i—ml...ml,4)(1+m2+m2m3+~--+m2...ml,4)
...(1—|—ml,4)...(1—|—m1)

and for 1 <i<1[—1,
ci=1+m;+mimi1+---+m;...mp_g,¢c—1 = 1.

Using ¢(mn) > ¢(m)¢p(n) and my ... my_1b < 1791792 where 1+a;—ag < 1
we get

< Ei-L 0 pi-d c1 Cl—1 t
d(E)=Lp(b) p(cr1)  pleg—1) my...my_1(logt)t
Using
mk _m
o(mb) — ¢(m)’

we get the sum is

where

35



3.7. Summations Involving 7(t,p, 1)

E*=(1+mp+mimo+---+my...m_3)(1+mg+momz+---+
ma...my—3)...(L4+mi_3)(1+my+mima+---+my...mj_yg)
(I4+mo+moms—+---+ma...mi_q)...(L+my_q)...(1+mq).

We have that every factor in £* as well as the ¢; are of the form 1+ Cm; for
some i or of the form m¥. Hence using [ — 1 applications of Lemmas 2.3, 2.5
or 2.6 we can pick off the factors of the form (1 4+ C'm;) one at a time. Let
E(e), cge) denote the E* and ¢; terms with the factors of the form 1 4+ Cmy
through 1+ C'm, removed.

El-1 c1 Cl—1 1
Z P(E) =1 p(c1)  dpler—1) ma...myy

m1...ml,1§t1*a2

(B 4 1 1
< X SENVT o) Ble_) ma . i (log?)

mo..mj_q<tt—2
1\L—1 i /!
(E") 1 C—1

1
< Z gb(E”)l*l ¢(C,1,) e QS(CELl) TS

mg...ml_1§t1*a2

< - < (logt)' =1,

Note that the C are at most 1 +¢ +t2+--- +tF3 <=2 and I < k so the
implied constant only depends on k. Therefore

tbl_l tbl_l

Z Z Z m(t;p2, 1) < W(bg@lﬂ _ OIS

pIE€EPy p1—1€EP; p2€P3
[>t*2

As for part (c), first note that b/¢(b) < loglogb, so for p; > t*2, we get that
part (b) implies our bound. As for p; < t*2 we’ll split it into cases where p3
is less than or greater than t®2. If p3 < t*2, then
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3.7. Summations Involving 7(t,p, 1)

PO S R A D DD DI Dl

pI€Py p1—1€P; p2€P3 pI€Py p1—1€P; p2€P3
pi<to? pa<to? pi<to? pa<to?

<Y ¥ % t

logt
pIEPy p1—1€P; p2€P3 p2208
pr<te2 p2<t"‘2

< Z log logt)i—
eSS logt
t(loglogt)!—!
¢(b)log t
If pg > t*2, then since b < t*2 there is a minimum m such that p,, < t*2.
So using part (b) with [ = m we get

?(p2) log é(pa) logt/pa

—1
(pm—l)m t
Do mEm )< Y Y e Y
¢(pm—1)"logt
PIEPy pi—1E€EP; p2€P3 PIEPy p1—1€P, Pm+1€Pm42
pr<t*2 p2>tY2 pr<t*2

<Y ¥ . ¥ t

-1 logt
PIEPy p1—1€P; Pm+1€EPm+2 Pm &

pr<t2
t(loglogt)—™
¢(b) logt
t(loglogt)—!
o(b) logt
since m > 2 and by using Brun-Titchmarsh (2.10) which finishes part (c)
and the lemma. O

As for the summations requires for the second moment, we’ll note that
we need twice as many sums due to hy(p)?. However the techniques required
are similar.

Lemma 3.16. Let t > e and 0 < 21 < ag < 1/2. Then
(a) If by >t or by > t*1 then

tlog? t

3 w(tpera 1) < 2 (3.10)
b1bo

p2€Py,

T2€Pb2
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3.7. Summations Involving 7(t,p, 1)

b) If neither by nor by exceeds t*!, then
(

t(log log t)*=1p5=1  t(loglog t)F—1pF~1
2 - 2 mlEmn 1)< Ez><bg )<;g(b>)k102t+gb?§ >(;sg<b)>klolt'
PLEPs, = 1 2 g 2 1 g
Tkepr T2€PT3
PETE>tY2
(3.11)

(¢) If neither by nor by exceeds t**, then

t(log log t)%+—2
Do Y wltpaers, 1) < Sba st 1)

Pk€Py,  P2EPp;
TR EPby T2€Prg

(d) If neither by nor by exceeds t**, then

t(1 1 t2k72
oY ¥ W(t;s’l)«m' (3.13)
PkE€EPy,  P3EPp, SE€EPp3MPry 1 2 ) 10g
TRE€Pyy  T3EPry

Again the implicit constants depend on our choice of the a.

Proof. (a) is similar to part (a) of Lemma 3.15. For part (b) we first assume
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3.7. Summations Involving 7(t,p, 1)

that py < ri, then

Z Z 7(t; pare, 1)

PLEPy, P2E€Ppg
Tk GPbQ 72 Epr3

PE<Tg
PrTE>t2
= Z Z #{(m1,p2,72) : p2 =1 (mod p3), 72 =1 (mod r3),
PLEPp, p3E€Pp,
TkEPb2 T3€Pr4
PETE>TY2

ropa > 192, mirops + 1 < £, pa, myrepe + 1 prime}

=Y Y Y Y Y Y e

Pk€Pyy Pk—1€Pr  p2€P3 1€Py, Tk-1€Pr,  T4€Prg
PEST) PrTE>E2

rg =1 (mod r4),r3pe > t*?, mipa(mers + 1) + 1 < ¢,
{rs,mars + 1,mipa(meors + 1) + 1} prime}

- Z Z Z #{(m1,ma,...,my_1,7) : 7y =1 (mod by),

Pr€Py, Pk—1€Pr  p2€P3
PE<Tk

parg > 1%, mapa(ma ... (mp—a(mp—1rp +1) +1) + - + 1 <1,
{ris mpg—are + 1, mp—o(me—1rp +1) + 1,
mipa(ma...(mg—o(mg—1rx +1)+1)+--- 4+ 1} prime}

< Z Z Z Z #{rk < t/mel...mk,l :

my..my_1 <t'=%2 prE€Py, Pr—1€Pk p2€P3
PE<Tk

T = 1 (IIlOd bg), {T‘k,mk_ﬂ“k + 1,mk_2(mk_17”k + 1) + 1, SN
pomni(ma. .. (mg_o(mg_1rx + 1)+ 1) + -+ + 1} prime}

Just like in Lemma 3.15 we use Brun’s Sieve. However, notice that we have
almost the same set, except with m replaced with m;p.. Hence we have

#{Tk < t/pgml cck—1 t Tk = 1 (mod bl), {Tk,mk_ﬂ’k + 1, mk_g(mk_lrk + 1)
+1,...,pomi(ma...(mg_o(mp_1rx +1)+ 1)+ --- + 1} prime}

Ek-1 bg_l bocy ... cp—1 t/p2m1 e Mp—_1bo
A(E)E=T p(ba)k=1 ¢(bacy . .. cj—1) (logt/pama ... mp_1b2)*

<
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3.7. Summations Involving 7(t,p, 1)

where the ¢; and E are

-1
E = p2<H m;(lJrl)/Q) (1 + pamq + pamimsa + ... + pamyq ... mk_g)
=1
(1+m2+m2m3+---+m2...mk_3)...(1+mk_3)
(1 +pama +pamama + -+ pama ... my—q) (1 + M2
+momg+ - +mg...mp—yq)...(14+mg_yq)...(1+ pamy)

and for 2 <i <k —2,

c1 = 1+ pomy + pomimg + -+ +pamy ... mp_2,
ci=1+mi+mimirs+---+m;...mg_g,

Ck—1 — 1.
By the same methods as Lemma 3.15, using that ps/¢(p2) is bounded and

noting that

ST e e
pami..mp_1b2 by

for some € > 0 since ag > 2ay, we get that

bk 1
Z Z (t;par2, 1) < (by)k logt Z Z Z o

PKEPp, P2EPps PkEPp; Pr—1€PK p2€773
rkEPb2 7‘26737«3
PrTE>tY2
¢kt log log t)*—2
< Giby) ot > o)
2 g = Pk
t(loglogt)k*1b§_1
¢ (b1)(b2)k logt

The case for 7, < py is similar. As for part (c), first note that b;/¢(b;) <
loglogb; for i € {1,2}. taking care of the case where pyrp > t“2. As for
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3.8. Reduction of Y hi(p) to Small Values of py,

PeTE < 192 we get

t
Z Z m(t;pare, 1) K Z Z & (par2) logt/pars

PrEPy, P2E€Ppg PrEPy, P2E€Ppg
TkEPbQ 7‘2673r3 TkGPb2 7’26737«3
PrTE<t*2 PrTE <tY2
t
PO D Y
PLEPy, P2€Pp;
Tkepbz T2€P’r3
DTk <t*2
t(loglog t)2k—4
< Z ( gr glo) t
PREPy, PETE l0g
TkGPb2
DT <t*2
t(log log t)*+—2
P(b1)p(b2) log t
using Brun-Titchmarsh (2.10), finishing part (c). As for part (d) we note
that
DR SRR

p3€Pp, SEPpsMPrg

T3€Pr4
= Z #{(m1,s) : s =1 (mod p3r3),mis +1 < t,s,mys + 1 prime}
P3E€Pp,
1“36737«4
- Z #{(m1,m2,73) : 73 = 1 (mod r4), m1(mapsrs + 1) +1 < ¢,
P3E€EPp,
{mopsrs + 1,mi(mgpsrs + 1) + 1 prime}
and so on, yielding a similar sieve as part (b). O

3.8 Reduction of > h;(p) to Small Values of py

We will be using Euler Summation on the sum qu hi(p) in our efforts to
find our estimate for M;(z). It will turn out that the large primes do not
contribute much to the sum. The sum will involve estimating 7 (¢;p,1) by
li(t)/p — 1. The following lemma will deal with those errors and will involve
the Bombieri-Vinogradov Theorem (2.13).
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3.8. Reduction of Y hi(p) to Small Values of py,

Lemma 3.17. For all2 <1<k, x > e and v > €°,

Z IquZ Z Z Z <7T(U,pk—l+2,1)

g<yk a€EN  pyEPga Pr—1€Pp,, Pr—142€Ppy_;1 5
pr<ot/3 T pp <182 Pr—142<v!/3
li(v vlogy . _
©) < + li(v)(loglog v)' 2.
Dk—1+2 logv

Proof. Let E(t;r,1) = 7(t;r, 1) — % Then we have

dlogad, > )

quk‘ aeN  pg E’an pk,1€'Ppk
PkS’Ul/slil Pk—1 Svl/3l72

> <7T(U7pk:—l+2, 1) — h(”)>

k—i+2 — 1
Pr—142€Ppy ;.5 Ph—1+

Pr—142<vl/3
= logg> > > > E(v; pr—i42, 1)
q<yk a€N pr€Pja  pr_1€Pp, Pr—1+2€Ppy_ 15
pr<ol/3 T g <01/ Pr—ip2<v!/?
< Y loggd > Yoo D | E(v; pr—is2, 1)
q<yk a€N pp€Psa  pr_1€Pp, Pr—1+2€Ppy_ ;.3
pr<ot/3 T p<o1/3 72 P12 <v!/3

Let ©(m) denote the number of divisors of m which are primes or prime
powers. We use the estimate Q(m) < logm to get
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3.8. Reduction of Y hi(p) to Small Values of py,

> logg) . Y > > |E(v; pr—i+2,1)]

q<yk a€EN  pr€Pya pkfleppk pk71+2€7)pk7l+3
pr<ol/3 T g <ot/ Pr—142<v!/3

< log(y*) Z |E(v; pk—1+2,1)] Z Z

Pe—14+2€Ppy_1 13 Pr—143|Pk—1+2—1Pr—14alPr—143—1
pk_l+2§v1/3 p3§U1/9 pkfl+4§v1/27
q<yk a€N
q%|pr—1

< log(y*) Z |E(v; pr—142, 1) Z Z

Pk—1+2€Ppy_y13 Pk—1+3|Pk—1+2—1 Pr—1+4|Pr—14+3—1
Pr_142<vl/3 ps<v!'/? Pr—ipa<vt/?7
§ Qpr — 1)
Pkﬁvl/?’k_l
Prlpr—1—1
< logy > |E(v; pk—i42,1)] > >
Pr—1+2€Ppy ;13 Pr—143|Pk—142—1 Pp—11alpp—143—1
pk—l+2§v1/3 p3§7}1/9 Pk—l+4§vl/27
E log v.
pkﬁvl/sk_l
Prlpr—1—1

Continuing in this manner we obtain

> loggy . > Yoo Y Bk, 1)

q<yk aeN  pr€Pya Pk—1€Pp,, Pr—142€Ppy 45
pr<ol/3 T p <o/ Pr—t42<0! /3
-1 vlogy
< logy(logv) > |E(v; pr—i+2,1)| < log v
pk*l+2€'Ppk,l+3
Pr—142<01/3
using Bombieri-Vinogradov (2.13). As for the difference between
li(v)
S Y Y Y M0
quk aceN kaan pkfleppk pk7l+2€7>pk7l+3
pr<ot/3 T p <o/ Pr—t42<0!/3
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3.8. Reduction of Y hi(p) to Small Values of py,

and

S Y Y oy W gy

Pr—i+2
q<yk a€N  pp€Pya Pr—1€Pp, Pr—14+2€Ppy ;13 +

pr<vt/3 T g <t /3 Pe—i42<v!/?

we get that it is

BECTD DD DI DRSS o

Dk—i+2(Dk—142 — 1)

q<yk a€N  pr€Pga Pr—1€Pp, pk—l+26ppk—l+3
-1 1-2
p<vl/3 T pp <t/ pk—l+2<vl/3
i(v)
<3 logg

(7 +1 7
a<g" aeN  prePya Ph_1EPp, —; \WPk—1+3 ) (ipr— l+3)

pre<ot/3 T <ot/

E L T OND DD DI S

g<y* a€N pkqula ) pk71€7’plk Pr—1+3€Ppy_ 114 Pi—i+3
p<v/3 py <ot/ - Pk—z+3§v1/9
li(v)
<Y loggd Y > > Ci(w)
a
q<y* aeN  pp€Pga Pr—1€Pp, pk—l+367)pk_l+4 Pk—1+39
pk<v”3l_1 peoa<ol/32 ppya<ol/O
(v)(loglog v)!—2
< Z log q Z o
q<y* a€eN
<) li(v) (log log v)'"* log ¢
P
q<y*

< li(v)(loglog v)! 2.

The estimate used the Brun—Titchmarsh inequality (2.10), the inequality
Pr—i+3 > q¢* and noting that the sum over ¢ converges. ]

Lemma 3.18. For all x > e and t > e,

D ohkp) =Y loggy > Yoo Y w1

p<t q<yk a€eN  pr€Pya Pr—1€Pp, P2€Ppg
Pk§t1/3k_1 pk71§t1/3k72 p2<tt/?

t(loglogt)*—2logy
log t ‘

+0 <t11/3k log t(loglog t)*~2y* +
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3.8. Reduction of Y hi(p) to Small Values of py,

Proof. For a prime p,

=> > o > > vyl —1)logg

pilpp2lpi—1  prlpk—1—1q<yk

oo > > velpk—1)logg

p2lp—1  prlpr—1—1q<yk

since the only prime which can divide p is p itself. Hence

Dbk =>_ D> - > D> valpe—1)logg

p<t p<t pa|p—1  pilpr—1—1q<y*

=22 2 > > loeg

p<tpalpi—1  prlpr—1—1q<y* PLEP,a

aeN
=2 logad, > D > D1
q<yk a€Npr€Pa py—1€Pp,  p2E€Ppg p<t
PEPpy
=2 logad, > D o0 ) mltpl)
q<y* a€ENpREPqa py—1€Pp,  P2EPp;

We wish to approximate 7(¢; p2, 1) by o (t) and use the Bombieri-Vinogradov
Theorem to deal with the error. However thls approximation only allows
primes up to say t'/3. So we use the estimations in Lemma 3.15 to bound
these errors. We will see that the main contribution comes from p; < ¢/ 3!
and ¢* < 1/3%,

Using Lemma 3.15, we get for large ¢*

Zlogq Z Z Z Z m(t;p2,1)

q<yk a€N  pr€Pya pr—1€Pp, p3€Pp,
qu>t1/3k
tlogt(loglogt)k—2
< Flogg ¥ Hestes
a<y* aeN
qa>t1/3k

By geometric estimates, if ¢* is the smallest a where ¢% > t/ 3k, then we get
that the above is bounded by
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3.8. Reduction of Y hi(p) to Small Values of py,

1
O(tlogt(loglogt)]’“_2 Z oag*q>
q<yk 1
< 13" log t(loglog t)¥~2 Z log g
q<y*k
< 13 log t(loglog t)* =2y~

Now suppose ¢* < #1/3" Let I be the last index (supposing one exists) where
pi > /3! By using (3.8) where [ ranges from 2 to k, we can bound the
large values of the p;.

dlogg D > D > ) o ) wtpn))

q<y* a€N — pp€Pga P141€Pp 5 PIEPD  PI-1€Py,  p2€Ppg

k k—1 _
qe<tl/3 pk<¢l/3 Pz+1§t1/3l pl>tl/3l 1

P P M P » T

HNogt
1 (o)
q<yk aeN PrEPga p1+2€73pl+3 Pl+1€7)pl (pl+ ) &
1/3k
ge<t!/ Pk <t1/3 Pl+2§t1/3 Pl+1>t1/3
t
< logg ) Z D D R
A piy1logt
q<y aeN PkEP a Pi42€Pp; 3 Pi41€Pp; 5

go<t1/3* 1/3k | ol
B p<tt/ prp2 <t/ prp>el/3

since p; is prime and ! < k. By Brun-Titchmarsh (2.10) we get

t(loglog )+~
<) logg ), T logt

q<y* aeN
q® <t1/3k

< Z t(loglogt)*~!logq
qlogt

q<y*

t(loglogt)*~2logy
logt
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3.9. Evaluation of the Main Term

by (2.3) and since [ > 2. Hence we get

dohp) =Y logg > Y oo > At

p<t quk aeN X ka'an pkfle'Ppk p2€'Pp3
gt/ st sk pypl/s

t(loglogt)*—2logy
logt

+0 <t11/3k log t(loglog t)*~2yk +

finishing the lemma. O

3.9 Evaluation of the Main Term

Now we’ll deal with the main term from Lemma 3.18. We will deal with
estimating the individual sums recursively. Hence we wish to make the
following definition.

Definition 3.19. Let 2 <[ < k and 2 < u < t. Then define

gr1(u) = Z long Z Z Z 7(W; Pr—i42, 1).

quk aeN pkepqa pk—leppk, pk—l+2€Ppk_l+3

pe<ut/¥ T g <ad3T pepasul/?

Note that gy () is the summation in Lemma 3.18. Next we’ll exhibit a
recursive formula satisfied by the gy ;.

Lemma 3.20. Let 3 <[ <k, then

1/3

vl log1 =2]
gr1(v) = li(v) / ﬁgk,lﬂ(u)du + O<v( oglog v) ogy>' (3.15)
2

log v

Proof. We’ll proceed by approximating 7 by li and then use partial summa-
tion to recover 7. Using Lemma 3.17 we get

gra(v) =D loggd Y > > (V3 Pr—1+42, 1)

q<yk aeN pkepqzl ) Pr—1€Pp, Pk—l+2€7’pk,l+3

pr<ot/3 T py <ol/3 2 Pr—112<v!/?

li(v
Yy Yy -y

quk a€eN kaan pkfle'Ppk pk*H’QGIPPk,H,g, pk—l+2

pkgvl/gl_l pk71§U1/3li2 Pr_1p2<vl/3

vlo i B

+O< loggvy +11(U)(10g10gv)l 2)
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3.9. Evaluation of the Main Term

We use Euler summation on the inner sum to get

1/3

Z 1 :W(Ul/3§pk—l+371) + v W(”%Pk—l+371)du.
vl/3 5 02

Pk—1+2
pk—l+2eppk,l+3 +
Pr—i42<vl/3

Our function then becomes

gr(v) = li(v Zlong Z Z

q<y* a€EN  prEPya Pr—1€Pp,

A e

/3.5, 1 v SO 1
Z <7T(U Jik +3 ) + / ﬂ-(u7pk: 2l+3> )du>
v /3 2 u

Pk—l+3€7>pk_l+4
Pr_1+3<v'/3

pr<v

log v

+0 <U logy + li(v)(log log v)l_z) .

We trivially estimate 7(x;q,1) by z/q inside the sum and then use Brun—
Titchmarsh (2.10) to get

1/3; _ .1
)SRTH D DENEED DENSINED DI (iR

q<yk aeN PkG'qua ) Pr—1€Pp, Pe—1+3€Ppy_ ;14
V3T <o/ Pr—i143<0!/?

<Yy XX X —

Pk—1+3
q<yk a€N  py€Pga Pk—1€Pp,, pk_l+3€73pk_l+4 +
p;€<vl/3l71 Pr— 1<v1/31_2 pk—l+3§U1/3

< Zlong loglogvl 2

q<yk a€eN

pr<v

-2
< Z log log log v)!
q<y*

< (loglogv) =2 logy.
Multiplying through by li(v) finishes the lemma. O

We now require a lemma to find the asymptotic formula for Ay using the
previous recurrence relation.
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3.9. Evaluation of the Main Term

Lemma 3.21. Let 2 <[ <k.

ku(loglogu)' ' logy 0 u(loglogu)'™!  wu(loglogu)—2log?y
(I —1)!ogu logu log u

gk (u) =

which implies

th kt(loglogt)*~1logy O(t(loglogt)k’_1

et (k—1)!logt log ¢

t(log log t)¥~210g?
+ (log Oglo)gt 08 Y | p-uyst logt(loglogt)kzyk).

Proof. The second formula is derived from the first by setting | = k, u =t
and using Lemma 3.18. We’ll proceed with the first formula by induction
on [. Using the estimates we obtained via Bombieri-Vinogradov (2.13) in
Lemma 3.17, we have for [ = 2

gro(u) = loggy > w(up,1

qu aeN kaPa
Pk<u1/3
ulo
WX toegY ¥ oo+ A,
q<y a€eN pkE'Pa &
pk<u1/3

We then use (2.12) and

log log(u'/?) = loglogu + O(1)
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3.9. Evaluation of the Main Term

to get
log log u*/3 (log(q“))) (ulogy)
= li(u lo ——=—— 40 +0
o PILDD ( D) ) logu
a<yk a
1
= li(u)(loglogu + O(1) Zloqu(a
q<yk a€eN
1 ulogy
wofm)) o Z ey ) - o)
q<yk aGN

1 1

= li(u)(loglogu + O(1)) Z ( 89 4 O( Ong)>

\ ¢ q

q<y
. log2q wulogy
+ O| li(u) Z +

q log u

q<y*

1
= li(u) log log u log(y*) + O ( li(u)(log y + loglog u + log? y) + ul ogy)
ogu

_ kuloglogulogy 0 uloglogu  wulog?y
N log u log u log u

using equation (2.3), completing the base case. Now using Lemma 3.20 we
get

vl/3 -2
. 1 v(loglogv)~=logy
k1 (v) = li(v) /2 3 9ki-1(u)du + O< og 0

_li(v) /”1/3 1 (ku(loglog u)!=2logy 0 u(loglogu)!=2
B 5 u? (I —2)logu logu

u(loglogu)!=3log?y du+ O v(loglogv)'~2logy
logu log v

L1/3 _ _
:h(v)/ k(loglogu)~2logy 0 (log log u)'—2
9 (Il —2)lulogu ulogu

1=3 102 1-2
N (loglogu)'—log y))du+0<v(loglogv) logy)

ulogu log v

_ kli(v)(loglog v!/3) "1 1ogy
N (I—1)!

+1li(v)(log log v'/3) =2 10g? y +

+0 ( li(v)(loglog v'/3)!=1

v(loglogv)—2logy
log v
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3.10. The Proof of the First Moment

Once again by using
log log v'/3 = loglog v + O(1)

we get

1

kv(loglogv)—1logy 0 v(loglogv)!~

(I —1)!logwv log v

v(loglogv)~2log?y  wv(loglogw)'—2 1ogy>
+ +
log v log v
kv(loglogv)' ' logy v(loglogv)'™!  w(loglogv)'~2?log?y

= +0 + :

(I —1!logwv log v log v

completing the induction. O

3.10 The Proof of the First Moment

We now are in a position to prove the proposition for the first moment.

Proof of Proposition 3.13.

M, (z) :ZM

p<z P

22M+ 3 hi(p)

p<e® p e¢<p<z p

—om+ ¥ mo(;+ [ %)

ec<p<z

—om+; Y i+ [ G mb)

ec<p<lz ec<p<t
Using ¢ = z in Lemma 3.21 we get that

zy*1lo
Z his(p) < ry~ o8y

ec<p<lz

Z hi(p) and th(p)

e <p<t p<t

log

Since

differ by a constant, we get that
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3.11. The Proof of the Second Moment

1 k=1] = dt [ kt(loglogt)F—11
Ml(x):0(1)+0<w’/>+/ ( (loglogt)™ " logy

x log x e t? (k—1)!logt
t(loglogt)*1  t(loglogt)k—2log?
+of oglogt)™™"  t(loglogt) 8"y
logt logt

4 i1/t log t(log log t)k_Zyk> >
using Lemma 3.21. Noting that

Tdt {_q/ak _
/ee t—2t1 1/3 log t(loglog t)¥~2yk

B T ykdt
- o tlte
<y,

we conclude that M (x) is

O + O(yk_l logy) /z dt (kt(log logt)*'logy (t(log logt)k—!

log x e 12 (k—1)!ogt logt
t(loglogt)F—21og? y> )
+
logt
k(loglog z)* 1
— o) + ™ Oi(zgj)l);ogy + 0((10g log )" + (loglog z)* " log? y>
k
y"logy K
= 0
as needed. O

3.11 The Proof of the Second Moment

We now turn our attention to the second moment. Our first lemma will
bound the case where p3 = r3 and then we’ll use the summations from
Lemma 3.16 to take care of the rest.
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3.11. The Proof of the Second Moment

Lemma 3.22.

D, logalogey > > 3 D > DI

ql,ngyk a1,a2€N pkE'P ay Pk— 1€'Ppk p3€7)p4 SE'PpSOPTS p<t
TkG’ang Te—1€Pr, r3€Pr, PEPs
2
_ log log t)?+—2
<t Y logy + Hloglog )™~ log® y
logt

for some € > 0.

Proof. Our sum is

> logalogg Y > Y o> > Y1

q1,q2<yk a1,a2€N kaP a1 Pk—1€Pp,, P3EPp, SEPpsMPry p%
TkGP a2 Tk— leprk TSEPT4 PEPs

= E log q1 log ¢ E E g g g m(t; s, 1).
q1,92<yk a1,a2€NpR€P a1 pr—1€Pp;,  P3€EPp, sE€Pp3ry

T’kEanQ Tk—1€Pr), r3€Pry
2

al a2

We split up into two cases. If ¢f'¢3? > t¢, then suppose ¢j* > /2, (the
other case is analogous) Thus psr3 > t*/2. Hence Lemma 3.15 part (a) yields

Z log q1 log ¢2 Z Z Z Z Z m(t;s,1)

q1,q2<y* alﬂQENPkEP 401 Ph— 1€Pp, P3EPp, 5€Ppyry
ql >t2 rkEP a2 Tk— 16Prk TBEPTAL

< > dogglogge Yo DY Y Y t;;)fgt

q1,92<y* al:a2€Npk€Pq’11 Pk—1€Pp,  P3EPp,
q1 >t2 Tke']) a2 Tk— leprk T3EP7'4

tlogt(loglog t)2k_4
< Z log q1 log q2 Z 808 _
qlquSyk al,azeN ql q2
@1>t%

using Brun-Titchmarsh (2.10). By letting A = min{alq* > t2} we get

tlogt(loglogt)?—4

< Y loggilogay T
q1,925Y

o 1
172 log t(loglog t) 24 Z log ¢1 Z ek
q2

q<yk q2<y*

< t'yFlogy
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3.11. The Proof of the Second Moment

by equations (2.1) and (2.3). If ¢{*¢3* < t®, then by Lemma 3.16 part (d)
we get

Z log q1 log q2 Z Z Z Z Z 7(t;s,1)

ql:q2§yk al:a2€N pkepqal Pk— leppk pSEPp4 Sepp3r3
q1 q2 <tO< rkePa T IGPTk 7”3677r4

t(log log t 2k—2
< Z log g1 log ¢ Z (Ogoglo)t
q1,92<y* araen 427108
aytay? <t®
log log t)2+F—2
< > loggilog g 08108 )
k q1q2 logt
q1,92<y
_ W( 3 Lo q>2
logt = q
t(loglog t)?k—2
o Woglog) ™%, (2
logt

by (2.3), completing the lemma.
O

We now have enough to finish the second moment which is the final piece
of the puzzle.

Proof of Proposition 3.14.

St =X (XY % X e iesq)

p<t p<z “pilpp2lpi—1  prlpk—1—1q<y*
= E log q1 log g2 E E E E E 1
q1,q2<yF a1,a2€NprEP a1 pr—1€Pp, P2€Ppg p7<3t
Th— 167)7"1@ 7"267)7‘3 J4S P2
rkEan2 PEPr,

since the condition p; | p only occurs if p; = p. We then split up the sum
according to whether or not ps = ro. Lemma 3.22 deals with the part where
s = p2 = ro leaving us with
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3.11. The Proof of the Second Moment

> loggilogge Yo Y. Y > Y1

q1,g2<y* a1,a2E€N pLeP (1 Pk—1€Pp,  P2EPp, 1677<3t
rREP ap Th—1€Pr,  T2€Pry pgpp2
92 p2Fry PEFry

t(log log t)?k—2
+ O <t1_5yk logy + (gloit) log? y) .

The sum becomes

S logqiloger > Y N 0 S altparn)

q1,92<y* a1,a2€NpLeP 401 Ph— 1€Pp,  P2€EPpy
TkquGQ Tk—1€Pry, r2€Pr;

If ¢{* > t®1, then so is p2, and hence by (3.10) we get

2
S loggilogge > Y Y > tlog”t

b33
q1,92 <y a17a26N PrEP a1 Pk—1€Pp;  P3EPp,
q1 I>go TkGPa Tk—1€Pr, r3€Pr,
tlog? t(loglog t)?k—*
< > loggilogg > s
1,92 <y* a1,a2€N I %
qil >t
< t171 log? t(log log t) 24 Z log ¢1 log g2 Z —
a1,q2<y* azeN 72
log g1 lo
< - log2 t(loglogt)%*‘l Z g 41108 q2
k a2
q1,92<y

<t 1log? t(loglog t)* 4 (y* log y).

We similarly get the same bound if ¢5* > tal If neither of g7, ¢5* exceed
t**, then by (3.12) and using that for b; = ¢}

bi g b L
B(b;) To(bi) by
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3.11. The Proof of the Second Moment

we get

> loggilogg > Y Y

q1,92<y* e azeN PrEP o1 Pk-1€Ppy,
ql 7QQ <t 1 T‘kEP a2 Tk— leprk

S Y Y i)

pzeppz+1 Pi— leppl p2€73p3
nEPTZ-H ri—1€Pr,; r2€Prg

)2k—2

t(loglogt
< Y logaloge 3 Aeeled

2 logt
q1,q2<y" “1’“2€N ql 12708

a1t s <tel

t(loglog )2 3 log g1 log ¢»

log t
& q1,q92<y* Nz

t(loglogt)?*~2log?y

logt
The above gives us

t(loglog t)%*~2log? y
logt

D hi(p)® <t yFlogy +
p<t

Using partial summation we have

M2(:):):th§3p)2:zm;p)2+l /dt > h(p)’

p<x p<le® e€<p<:p ee<p<t
1 1 1 2k— 21 2
<<1+<15k:10gy+ z(loglog z)***log y)
x log
T log log t 2k—21 2
+/ <t1€yklogy+ (log ogﬂ) og y)dt
e ogt
2k—2 12

< y o8y Tog xg y + x_eyk logy + (log log m)2k_1 log2 y

< yzk_l log2 Y

completing the proof of Proposition 3.14 and hence Theorem 1.4.



Chapter 4

Iterates Between ¢ and A

We now turn our attention to the proof of Theorem 1.5. It will be necessary
to use the following upper bound for the Carmichael function of a product.

Lemma 4.1. Let a,b be natural numbers, then
A(ab) < bA(a). (4.1)

Proof. We first note that it suffices to show the inequality whenever b is
prime, because if

b=p1...pk

where the p; are not necessarily distinct, then repeated use of the theorem
where b is prime yields

Alab) = A(aps ... px) <piX(apz...pk) < - < p1...ppA(a) = bA(a).
If b is a prime which divides a, then for some e > 0
a=bp{ ...pi* and ab = bT1pft .. plk.
Therefore

) =l (A AGE). . A6 )
< lem (b)\(be), A(pY), .-, A(pZ’“))
< bxlecm <)\(be), AP, -, )x(pZ"))
=bA(a)
where the first inequality is in fact an equality if b° = 4. (Also note that

in this case, it would not be hard to show that A(ab) | bA(a).) If (a,b) =1,
then e = 0 and
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Chapter 4. Iterates Between ¢ and A

A(ab) = lem (b — LA, .-, A(pik))

< (b—1)lem </\(pil), e A(pi’“))
< bA(a),
ending the proposition. O

Suppose that g(n) is an arithmetic function of the form ¢(h(n)) where
h(n) is a (k — 1)—fold iterate involving ¢ and A. Note that if a | b, then
Aa) | ¢(b) since A(a) | ¢(a) | ¢(ma) for any m. More easily we see A(a) | A(b)
and ¢(a) | ¢(b). Inductively we can therefore show Ag(n) | g(n). Thus we
can use equation (4.1) to get

)\l+k(n) < )\l(g(n)) =X <)‘\gk(83) Ak(”)) < )‘l—i-k(n) Q(n) .

Since g(n) < n we have that

g(n) n
M) = 2 (n)

by Theorem 1.4 for almost all n. Hence

1
= exp ((k—l)'(l + 0x(1))(loglog n)k log log log n>

N4k(n) < Ni(g(n))
<N (%M(W)

< Ayk(n)exp ( (log log n)*(1 + 0x(1)) logloglog n)

1
(k—1)

for almost all n. From the fact that

1
ANi+k(n) =nexp ( — m(l + o1(1))(log log n)* ' log log log n)
we get
Ai(g(n)) = nexp ( — m(l + o1(1))(log log n)* ' log log log n)
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Chapter 4. Iterates Between ¢ and A

for almost all n. As for ¢(g(n)) we note that unless g(n) = ¢r(n), g(n) can
be writen as ¢;(h(n)) where h(n) is a (k — [)—fold iterate beginning with a
A. From above we can see that

1
h(n) = nexp ( — m(l —+ Ok(l))(log log n)kfl log log log n)
and so ¢(h(n)) is bounded above by h(n) and below by
h(n)
€7 loglog h(n) + log 10:; h(n)
_ h(n)
e7log (logn — ﬁ(l + ox(1))(loglog n)k~log log log 1)
h(n)

evloglogn — O(——r—— (1 + 0x(1))(loglog n)*~! log log log n
=I—D)

!logn(
= h(n) exp (O(logloglogn))
which is within the error of h(n). Hence any string of ¢ will not change

our estimate. Therefore if j(n) is a k—fold iteration of ¢ and A which is not
¢r(n), but which begins with [ copies of ¢, then

j(n) =nexp ( - (k:—ll—l)'(l + 0x(1))(loglog n)* ! log log logn>

yielding our theorem.
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Chapter 5

Bounds on L(n)

In this chapter, we will be showing upper and lower bounds for the arithmetic
function L(n). Recall L(n) is the smallest k such that Ag(n) = 1. The height
of the Pratt Tree is H(p). Our goal is to prove Theorems 1.6 and 1.7. The
former says there exists some ¢ > 0 such that L(n) > cloglogn for almost
all n < z. The latter says if H(p) < (logp)” for almost all p < z outside a
set of size O (z exp(—(log x)‘s)) for some § > 0, then for some function 7, we
have L(n) < (logn)Yn(n) for almost all n as n — oo. Finally we justify a
conjecture about the normal order of L(n).

5.1 Lower Bound for L(n)

We start with two lemmas which establishes that L(n) > L(p) provided
p | n. This will be essential in our proof of the lower bound.

Lemma 5.1. For all natural numbers a, b,
A(lem(a, b)) = lem(A(a), A(b)).

Proof. Let a = p{"p3?...p¢" and b = pfpoQ ...pP" where at least one of

o, ;i > 0. Then

lem(A(a), A(b)) = lem (A(p§"p52 ... p27), A(PY p5* ... p))
= lem(A(p§"), A(D52), -, AP ), A, AP52), -, AE))
— lem <)\ (prlnax(mﬂﬂ) : )\(p;naX(az,ﬂz))’ o ,)\(pflax(a"’ﬁ"'))>

-\ <prlnax(a1,51)p12nax(a2,62) N .p?ax(ar,ﬁr))

= A(lem(a, b)).

Lemma 5.2. Given a positive integer n =[]} p3",

60



5.1. Lower Bound for L(n)

(a) L(n) = max;{L(p;")}.
(b) L(p*) =a—1+ L(p) > L(p) for a > 1.
Note that these two equations imply L(n) > L(p) for all p | n.

Proof. We show both parts by induction. For part (a) we show

Ak(n) = lem (Ap(pi"), -, Ak(py)) (5.1)

for kK > 0. For k = 0, it is true by the definition of n. Suppose it’s true for
some k, then by Lemma 5.1

A1 (n) = A (n)) = A(Tem (A (pfh). -, k(7))
=lem (A(Ar(p7))s - A (p27)))
= lem (Apy1(pf); -+ M (P07))

proving the induction. Equation (5.1) implies part (a) since the least com-
mon multiple of a set is 1 if and only if each number in the set is 1.

For part (b), we prove this by induction on «. If & = 1 then the theorem
is clearly true. Suppose L(p®*) = a — 1+ L(p) then for a + 1,

AP = p*Ap).
Since (p®, A(p)), by part (a),
L(p“N(p)) = max (L(p®), L(A(p))) = max (a—1+L(p), L(p)~1) = a—1+L(p).

Therefore L(p®*!) = o+ L(p), completing the induction and the theorem.
O

For any p | n, we know that L(n) > L(p), which implies that L(n) >
cloglog p for almost all p. However, if all the primes p dividing n are small
relative to n, or if n is divisible by exceptional primes, this will not imply
that L(n) > cloglogn. The proof of Theorem 1.6 therefore relies on showing
that not many n are composed entirely of small primes as well as dealing
with the exceptional set for which (1.6) doesn’t hold.

Proof of Theorem 1.6. Let Y = Y (z) < z. Given ¢ from equation (1.6),
define a set S(z) = S(z,Y) ={p:p > Y,H(p) < cloglogp}. From [10,
Theorem 3] we have that #S5(z) < x/(logx)X for some K > 1. If p | n for
some p ¢ S(x), and p >Y,
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5.2. Upper Bound for L(n)

L(n) > L(p) > H(p) > cloglogp > cloglogY.

Either there exists p > Y,p € S(x) such that p | n or else n is composed
entirely of primes less than or equal to Y. The number of n < x where there
exists p | n with p € S(x) is bounded by

22 1= > !

n<z  pln p<z n<w
peS(x) pES(x) n=0 (mod p)

x

<> =
p<z p
pES(z)

o [HE0

= g "

:x(\six)! +/: S(;)dt)

x —I-/x dt
logh y tloght

_r
logk—ly

<

<

using partial summation. Let W(z, z) be the number of n < x composed of
primes p < z and let z = /% Let U > 0, and p(u) be the Dickman function
which goes to 0 as u — co. By [17, Theorem 7.2],

U, z) < wplu)

uniformly for 0 < u < U. Given € > 0, choose Y such that log Y = (logz)!~.
Since Y < 27 for all v > 0, this choice yields L(n) > ¢(1 — €) log log z for all
but O(z/(log ) =1+ ¥(z,Y)) = o(x) such n < x, completing the theorem.

[

5.2 Upper Bound for L(n)

The Pratt tree for a prime p describes the primes ¢ where ¢ < --- < p.
This is useful in calculating L(p). However L(p) is also increased by prime
powers which the Pratt tree does not describe. The proof of Theorem 1.7
hinges on bounding the contribution of these large prime powers. We will
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5.2. Upper Bound for L(n)

show Theorem 1.7 is a corollary to the following main propostion, that the
difference between H(p) and L(p) cannot be too great.

Proposition 5.3. Let b > 0 and c be the constant from (2.10). Suppose
H(p) < (logp)? for all p < x outside a set of size O(zexp(—(logz)°)) and
let n(z) be a function such that

:L'(Cy)(lOg x)7+1

Shlog @ —2 — °l&): (5.2)

Then
L(n) < (log z)"n(z)

for almost all n < x, for which the excluded n are divisible by at least one
prime p in the above excluded set.

Note that if n*(x) is some function such that bn*(z)(log z)” — log(cy) —
oo and n(x) > @ log(cy) + n*(z), then

z(cy)loe®) 1 zexp (((logz)? +1)log(cy))
2b(og ) m(@)=2 " exp ((bn(z)(log z)7 — 2)log 2)
< wexp (log(cy) — by*(z)(logz)") = o(z).

Specifically we can choose n(x) < logloglogx. The proof of Propostion 5.3
begins by analyzing the ways that L(p) can be much larger than H(p) and
then showing in those cases that it cannot happen for many p.

Proof of Proposition 5.3. Let n = [[p;* be the prime factorization of n
where H(p) < (logp)? for all p dividing n. By equations (1.7) and (1.8),
L(n) = max;{a; — 1+ L(p)}. Our first goal is to show that the number of
n for which there exists a large a with p® | n is small. Fixing a prime p
and « > 2, the number n < x such that p® | n is at most z/p®. Hence the
number of bad n is bounded by

T

x 1 . x
DS pa<a | =
LSt e <, w102

Therefore the number of bad n is bounded is o(z) for any choice of o = £(x)
with {(z) — oo. Therefore for almost all n < z we can assume

L(n) < H;%X(L(p) +&(x) = H;&X(L(p) +o((logz)”)
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5.2. Upper Bound for L(n)

by taking &(x) = o((logz)7).

Let n(z) be a function satifying the hypothesis of the proposition. We
must determine how L(p) can be larger than H(p) and by how much. First
note that for any prime in the Pratt tree, the difference between the factors
of ¢ — 1 and the primes in the Pratt tree are just the powers of that prime
which divide ¢ — 1. Therefore, if we have a branch of the Pratt tree, 2 =
Gk < Quo1 < - < q1 < qo = P, then L(p) < max{H(p) + X% (2 — 1)}
where ¢;"||gi—1 — 1 and the max is taken over all the branches of the Pratt
tree. The inequality ¢;* < g;—1 holds for all ¢ which implies

21_[?:1 Q; < p

Therefore we need to maximize the sum Zle(ai — 1) subject to Hle a; <
log x/log 2.

Suppose we have rs = tu, where 2 < r,s,t,u < M. The larger of r + s
and t + u will be where the two terms are further apart. Consequently if we
wish to maximize a sum subject a fixed product and number of terms, we
want some terms to be the lowest possible value, in this case 2, and the rest
to be the largest value, in this case M.

Suppose for the purpose of contradiction, that 3-% | (a;—1) > n(z)(log z)",
where 2 < ; < M and M < bn(z)(logz)? for any constant b. By the above
reasoning we know the sum is bounded by 2(k — 1) + (M for some [ < k.
However, M! < logz/log?2 implying I < (loglog x — loglog2)/log M. Since
k < loglog x, we conclude 2(k — 1) + IM is bounded above by

O(log logz + M (loglog x — loglog2)/ log M) = o(n(m)(log :c)”),

contradicting the fact that the sum is > n(z)(logz)”. As a result, either
Zle(ai—l) < n(z)(log x)7, completing the theorem, or M > bn(z)(logz)?.
In the latter case, there exists some a; > bn(z)(logx)? for some b > 0.

It remains to show that the number of n < z such that there exists
“ | k-1 —Lge—1 | e—2—1,...,q1 | p—1,p | n, with a > bn(z)(log x)?
is o(z). Note that £ < H(p) < (logz)?. By Lemma 2.2, the number of n is
bounded by

M
¥

2.

a>bn(xz)(logz)Y k<(logz)Y @q
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5.2. Upper Bound for L(n)

Summing q over all integers at least 2 instead of primes as above and using
o > 2 makes this

z(cy)®

< Yy o

a>bn(z)(log z)7 k<(log )7

Summing the geometric series under both «a and k yields
x(cy)(logr)V-H
2bn(z)(logx)¥—2"

By the choice of 7 this is o(z) and hence for almost all n < z,

<

L(n) < o((logz)7) + max{ )+ Z }

< (logn)” + n(z)(logx)”
< n(x)(logx)7.
O

We are now in a position to prove Theorem 1.7. Proposition 5.3 yields
the theorem provided n wasn’t divisible by any primes for which (1.9) fails
to hold, so it remains to consider when n is divisible by such a prime.

Proof of Theorem 1.7. Let Y = Y (x) — oo such that logY < (logx)”. As
in the proof of Theorem 1.6 we know that the set of n < x which are com-
posed entirely of primes less than or equal to Y has density 0. Therefore we
only need to consider values of n for which there exists a prime greater than
Y where H(p) > (logp)?. Let S(x) be the set {Y < p < x| L(p) > (logp)}.
Since L(p) > H(p), by (1.9) we know that #S(z) < zexp (—(logt)®). The
number of n < x where n is divisible by a prime in S(z) is bounded by

PO IREID DN-

n<z peS(x) peS( x)
pln
_zS@)| | x/ [S(t)|dt
X Y t2
7 exp (—(logt)®)dt
<<xexp(—(logx)5)+x/ P (tg ')
Y
1 6 r

< zexp (—(logz)°) + Tog e + log ¥
using partial summation and exp(—(logt)®) < (logt)~2. By our choice of Y’
the number of n is o(x) completing the theorem. O
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5.3. Conjecture for the Normal Order of L(n).

5.3 Conjecture for the Normal Order of L(n).

The purpose of this section is to justify Conjecture 1.9 assuming the conjec-
ture in [10, Conjecture 2] which says H(p) = eloglogp— % log log log p+ E(p)
for a slow growing function E(p), and for almost all p. Note that this im-
plies both that H(p) ~ eloglogp and that H(p) < loglogp for almost all
p. To justify our conjecture, we wish to analyze the difference L(p) — H(p)
to show that it is not too large. As we saw in the previous section, this
difference is created when a branch of the Pratt tree has p¢ | pi—1 — 1
where a > 1. Let Y = Y (2) < z. Also let a branch of the Pratt tree be
PL = P2 = e = pr = pip1 = - = pip = 2 where pi|lpi—1 — 1 and let !
be the largest index such that p; > Y. We will separate our arguments into
there parts. First is the trivial case to show there are not too many primes
after p;y1. Then we deal with ¢ <+ 1, and ¢ = [ + 1, by some probability
arguments.

By the trivial estimate L(n) < logn we know L(p;+1) < logY. By a
suitable choice of Y this will be made to be o(loglog x).

For ¢ <[, we wish to know the probability that n has a factor p®, where
p > Y. We use the following lemma.

Lemma 5.4. The number of n < x for which there exists p > Y where p®||n
is O(x/Y 1),

Proof. The number of n is bounded by
x x
)SPILED PP
n<lx p>Y p>Y
p*n

O

By Lemma 5.4 we should expect a proportion of at most ¢/Y . This
implies that the probability of pi|p;—1 — 1 where (az — 1) + (a3 — 1) +
-4 (a; — 1) = n(z) is bounded by ¢!/Y"(*®). Since the number of possible
branches of the Pratt tree is trivially bounded by logx, the probability of
there existing such a string of a; is bounded by

Cl log x
- <1 - YM) .

This bound will approach 0 provided logx = o(Y”(w) / c ) Under the assump-
tion that H(p) < eloglog(p), we have [ < H(p) < eloglog(p). Therefore a
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5.3. Conjecture for the Normal Order of L(n).

choice of Y = exp((loglog £)*/*) and n(z) = (loglog )3/* makes the contri-
bution to L(p) — H(p) be o(loglogx) for i # 1 + 1.

For i+ = [ + 1, we have p?fll | pr — 1. The remaining contribution to
L(p) — H(p) is aj41 — 1, if pyp1 > 2 and [(aj+1 + 1)/2] if pio1 = 2. For the
a;+1 to contribute a lot to L(p), it must be at the end of a long prime chain,
i.e. [ > loglogp, otherwise the conjectured value of H(p) being eloglogp
would nullify the contribution. To show this is unlikely, we use a result from
[3] which implies that the number of primes at a fized level n of the Pratt tree
is ~ (loglogp)™/n!. If we allow some dependence and use n = cloglogp, for
0 < ¢ < loglog p we get roughly (e/c)¢°818P = (log p)¢1°8(¢/¢) primes at level
n. We show that the probability of none of these primes being congruent to
1 modulo p?_fll goes to 1 provided p?jfll is large enough.

Suppose we have N primes. The probability that any one of them is
congruent to 1 modulo r® for a prime r and positive integer a, is 1/¢(r%).
Assuming independence, the probability that none of the N primes are con-

gruent to 1 modulo r* is
1\
1-— .
( ¢(7““)>

Let 1 be a function going to infinity. Furthermore, let 7* > Nn(N) be a
prime power. Since r is prime, we know ¢(r®) > r®/2. This bound implies
the probability is bounded below by

=

Using our lower bound on r% we get

2\" 2 \V
1—-— >1—(1— —— 1
(-5%) == (- wm)
since n(IN) — oo.

We know wish to use the lower bound on 7 to bound a;4; and therefore
our contribution to L(p) — H(p). Suppose q;+1 # 2. If the level [ = cloglog p,
for almost all p, we expect

log(N log N clog(e/c
aj1 < &l g ) = Ble/ )loglogp—i-O(loggp).
log gi141 log qi 41

Combining all the contributions along any particular branch, we get

1
L(p) < (c + COg(e/C)> loglogp + o(loglog p). (5.3)
log q1+1
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5.3. Conjecture for the Normal Order of L(n).

If g1 = 2, since, A\(2%) = 2972 we get

ot clog(e/c)
2log2

clog(e/c)

log 4 > loglog p + o(logy p).

> loglogp+ o(log,y p) = <c +
Consequently, 3 is the value of ¢;11 which yields the largest coefficient of
loglogp in (5.3). Since ¢+ clog(e/c)/log3 < e for 0 < ¢ < e, we conclude
that for almost all p < x, L(p) ~ eloglogp. The reason that we can replace
p by n is the same reason as in Theorem 1.6.

It may seem obvious to conclude L(p) ~ eloglog p, since H(p) ~ eloglogp.
However, note that the function (c + 0101;57(62/0)) does not yield a maximum
value of e, but instead has its maximum of 2/log(2) at ¢ = 2. This may
suggest if we had a function L'(n) similar to L(n) except that \/(2%) = 2071
for all positive integers a, that we may get a different normal order, perhaps
even 2loglogn/log(2).
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Chapter 6

Open Problems

Here is a list of open problems regarding A(n), L(n) and H(p). Theorem 1.4
showed that the normal order of logﬁ(n) is ﬁ(log log n)* loglog log n.
Theorem 1.5 showed that if g(n) = ¢;(A(f(n))), where f(n) is a (k — 1)
iterated arithmetic function consisting of iterates of ¢ and A, then the normal
order of log(n/g(n)) is ﬁ(log log n)*logloglogn. This is because g(n)
relates to n in the same way as A;(n). However this doesn’t explain the
relationship between g(n) and A\x(n). The question has been solved for k = 2
by Kapoor [14].

Theorem 6.1. The normal order of log (igfgzgg) 1s loglognlogloglogn.

It would be interesting to see if a similar result could be proven for higher
values of k. Based on Theorem 6.1 is seems reasonable to think that if fi(n)
and fy(n) are compositions of A and ¢, then

s (e ) = () o

For example the normal order of log %(Af)(n) is conjecturally

oMp(n) 1

1
T um) 3l

(loglogn)*logloglog n.

It would also be interesting to see if there can be a more precise result
of Theorem 1.4. In [9], for & = 1, there is an improved result. Instead of
simply log(n/A\(n)) = loglog n(logloglogn + O(1(n))), they more precisely
showed

log <>\?)> = log logn<log loglogn + A + O((log log log n)1+6)> (6.2)
n

for almost all n as n — oo. There is no result like (6.2) even for k£ = 2.
For k = 1, the authors in [9] split up the primes ¢ into four regions, namely
q < y/logy, y/logy < ¢ < ylogy, ylogy < ¢ < y* and y* < ¢. On the
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Chapter 6. Open Problems

other hand in Theorem 1.4, as well as the theorem of Martin and Pomerance
in [16], the values of ¢ were only split up into the two regions ¢ < y* and
q > y*. Perhaps reasoning closer to [9] can obtain a more precise estimate.

Another improvement would be a more uniform result for Theorem 1.4.
The implicit constant is at least exponential in k, meaning the best uni-
form result wouldn’t even get k < loglogloglogn. It’s unlikely the methods
of Chapter 3 will produce a more uniform result even with more careful
consideration.

In [9], Erdds, Pomerance, and Schmutz obtained a lower bound for A(n)
of exp (cl log log nlogloglogn). With a different constant, they also obtained
an upper bound of the same form for infinitely many n. It would be interest-
ing to see if something similar could be done for A(A(n)) or more generally
Ai(n). Naively inputting the lower bound into itself recursively can show a
lower bound to be

exp (¢ loggy1(n)logy o(n)), (6.3)

where logy(n) is the k—th iterate of the log function. However, this may or
may not be the "best” lower bound. Perhaps there are infinitely many n
with an upper bound of the form (6.3) for Ag(n). If that is true, then it can
be shown that for those n,

log(Ax (1))

L(n) = b+ LOW(n)) < b+ =520

+ 1 <, loggy1(n) logyo(n)
settling a conjecture given in [16]. Even showing this for & = 2 would yield
a better result than is currently known. If (6.3) is not a desirable lower
bound, perhaps a better one could be found, along with a sequence of n
which obtain that lower bound.

Another notable open problems regarding A(n) is the analog of the fa-
mous Carmichael conjecture. In [6], R.D. Carmichael made the following
conjecture:

Conjecture 6.2. For any natural number m, the equation ¢(n) = m does
not have exactly one solution.

The conjecture is open for both ¢ as well as A, although it’s known
to be true for A conditionally using the generalized Riemann hypothesis.
For )\, it is known from [2] that any counterexample is a multiple of the
smallest one. Much more is known see [2] about the (probably non—existent)
counterexample of the A case.
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Appendix A

The Turan—Kubilius
Inequality

The Turan—Kubilius Inequality is a result in probabilistic number theor. It is
useful in finding normal orders of additive arithmetic functions. The theorem
was originally proved in a special case by Turdn [21] to prove the following
theorem of Hardy and Littlewood. Let w(n) be the number of distinct
prime divisors of n, and 2(n) be the number of prime divisors including
multiplicity. For any 6 > 0, the number of n < z for which

w(n) =loglogn + O ((log log n)1/2+5)

fails to hold is o(x). The analagous result for Q holds as well. The methods
of Turan were subsequently extended by Kubilius to more general additive
functions.

Theorem A.1 (Turdn—Kubilius). For any complex additive function f we
have

Y 1f(n) = A@@)]? < 2B(x)? (A1)

n<x

where
k(1 _ o—1
A= 3 10— ¥ e

For a strongly additive function, that is f(p¥) = f (p) for all k£ > 1, the
theorem reduces to the following corollary.

Corollary A.2. For any complex completely additive function f we have

> If(n (z))? < xMy(z)?
n<zx
where f |f
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Appendix A. The Turan—Kubilius Inequality

To see the redution to the corollary for strongly additive function, note
that we can replace B(z)2 by Ma(x)? because

Z|f

pk<z
<> I \Z
p<x k>1
<> |fp |21
p<lz

As for A(z), the sum becomes

1_
Zf )

CEee

Using Cauchy—Schwarz (2.14) the difference between A(z) and M;(z) is at
most

Zlf <Z er ’2)”2<<B<x>.

p<z p<x p<lz
Therefore
Y Ifn) = Mi(z))> <2 (If(n (@)[? + |A(z) = Mi(2)]?)
n<x n<z

< zB(z)? < xMs(z)?.

Our proof of Theorem A.1 is taken mostly from [20, III1.3 Theorem 1]. We
will prove it for f real and positive. Note that proof for f real can be done
by combining the positive and negative parts of f. The proof for f complex
can be done by combining the real and imaginary parts of f.

Proof of Theorem A.1. For notational convience, let A = A(z), B = B(x)
and S = S(z) be the sum in equation (A.1). Then

S=Y " f*n) =24 f(n)+ |x]A? ;= Sy — 248, + [z|A*.  (A.2)

n<x n<x
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Appendix A. The Turan—Kubilius Inequality

Since f(n) is additive, f(n) =3 f(p*). Inserting this into S; yields

- T = 5 10 (H—W)

n<z pk||n prF<x

> gA — Zf

using |z] — |y| > x —y — 1. As for Sy we obtain
2
=3 (X 56h) =X X r6H Y )
n<z " pkn n<w pkin d'In

Splitting this up into the two cases where p = q or p # q yields

=Y N> 1+ > rehre) Dot

pk<z n<x pF<z nlz

PkH” ¢ <z Pk””
q#p d'|In
f2(") N x
< o + Y f0M ) i
pF<wz pF<z
¢'<z
q#p

X T X
- phgltl o prtig + phtight

<zB’taz ) f;ﬂk)(l—p—l)f(ql) 1-ghH+2> o

p<z p<z
d'<z d'<z
q#p q#p

using |z | — |y] < x—y+1. Let the last sum be Ss. Inserting these estimates
into (A.2) yields

S<aB*+24 ) f(p¥) +255 + A% (A.3)

ph<z
Using Cauchy—Schwarz (2.14) on S3 yields

s<<zf zp) er(x

n<x

1/2
n> < xB?.

ql<ac ql<x
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Appendix A. The Turan—Kubilius Inequality

Using Cauchy—Schwarz (2.14) again yields

S o< (X 25 o p(

pk<z

)

pk<z pk<z pk<z

We would like to bound the sum by a sum over all n < x like in our bound
for S5, however that would give us an estimate of Bx which is too large.
Instead we bound each term by x and bound the sum over prime powers by
m(z) + 7(z'/?) + - -- < x/log x. This bound implies

a2 \ 2 x
> 16t L
log z log =

pk<z

As for A we use an estimate of Mertens [17, Theorem 2.7 (d)] and Cauchy—
Schwarz (2.14), implying

f f2 1) 12
AK Z < Z Z pk) < B(loglog z)"/~.

pk<az pk<z pk<z

Putting all these estimates together with (A.3) yields

S < xB2—|—2<B(log log x)1/2> <B > +2xB?+ B?(loglog ) < = B>

_r
(log 2:)1/2
completing the theorem. ]

It’s worth noting that the strongly additive condition is not necessary
for the replacement of B(z) with Ms(x). See [13, Lemma 3.1] for a proof.
Also note that the function hg(n) in the proof of Theorem 1.4 is a strongly
additive function justifying our use of Corollary A.2.
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