
The Iterated Carmichael Lambda
Function

by

Nicholas Harland

B.Sc., The University of Manitoba, 2003
M.Math., The University of Waterloo, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate Studies

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2012

c© Nicholas Harland 2012



Abstract

The arithmetic function λ(n) is the exponent of the cyclic group (Z/nZ)×.
The kth iterate of λ(n) is denoted by λk(n). In this work we will show the
normal order for log(n/λk(n)) is (log logn)k−1 log log log n/(k− 1)!. Second,
we establish a similar normal order for other iterate involving a combination
of λ and φ. Lastly, define L(n) to be the smallest k such that λk(n) = 1. We
determine new upper and lower bounds for L(n) and conjecture a normal
order.
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Chapter 1

Introduction

1.1 History and Results

The Carmichael lambda function λ(n), first introduced by Carmichael [5],
is defined to be the order of the largest cyclic subgroup of the multiplicative
group (Z/nZ)×, that is, the smallest postive integer m such that

am ≡ 1 (mod n)

for all integers a which are coprime to n. It can be computed at odd prime
powers to be the same as φ(pk) = pk−1(p − 1). As for even prime powers,
λ(2) = 1, λ(4) = 2, and λ(2k) = φ(2k)/2 = 2k−2 for k ≥ 3. By the Chinese
Remainder Theorem, if (a, b) = 1, then λ(ab) = lcm{λ(a), λ(b)}, which
allows the calculation of the function for all positive integers.

In addition to being an interesting arithmetic function to study, the
Carmichael lambda function has a connection with some primality testing
algorithms [1], [15]. In [1], the authors create a prime testing algorithm. It
is shown that the running time of the algorithm is connected to finding an
upper bound of λ(N) for specially created numbers N. In [15], the primality
test involves looking at Carmichael numbers. That is numbers which satisfy
an−1 ≡ 1 (mod n) for all (a, n) = 1. It is well known that composite numbers
satisfy this conguence if and only if λ(n) divdes n− 1. Miller uses this idea
to help create his algorithm to test primes.

Several properties of λ(n) were studied by Erdős, Pomerance, and Schmutz
in [9]. One of those results is the following. For an explicitly defined constant
A,

λ(n) = n exp
(
− (log log n)(log log log n+A+O

(
(log log log n)−1+ε

))
(1.1)

as n→∞ for almost all n. Martin and Pomerance showed in [16] that

λ(λ(n)) = n exp

(
− (1 + o(1))(log log n)2 log log log n

)
(1.2)

as n→∞ for almost all n.
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1.1. History and Results

Applications of this function included the power generator of pseudoran-
dom numbers

un ≡ uen−1 (mod m), 0 ≤ un ≤ m− 1, n = 1, 2, . . . .

This generator has lots of cryptographic applications (see [11]), and se-
quences of large period given by λ(λ(m)) are quite important. In [16], the
authors provided lower bounds on the number of cycles of the power gener-
ator for almost all m by relating that number to λ(λ(m)) and then use their
estimate.

This thesis studies the asymptotic properties of the following two func-
tions.

Definition 1.1. The k–fold iterated Carmichael lambda function is defined
recursively to be

λ0(n) = n, λk(n) = λ(λk−1(n)) for k ≥ 1.

We define φk(n) similarly. Next we study a related function.

Definition 1.2. For a positive integer n, let L(n) denote the smallest k
such that λk(n) = 1.

Throughout this work we are interested in finding normal orders for the
preceding arithmetic functions. Next we define the meaning of normal order.

Definition 1.3. Let f(n) be an arithmetic function. We say f(n) has
normal order g(n) if for all ε > 0,

(1− ε)g(n) < f(n) < (1 + ε)g(n) (1.3)

for almost all n. By “for almost all n” we mean the proportion of n ≤ x for
which (1.3) does not hold goes to 0 as n→∞.

In [16] it is conjectured that

λk(n) = n exp

(
− 1

(k − 1)!
(1 + ok(1))(log log n)k log log log n

)
for almost all n. Our first result is the proof of that conjecture.

Theorem 1.4. For fixed positive integer k, the normal order of log n
λk(n)

is
1

(k−1)!(log log n)k log log log n.
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1.1. History and Results

Note that Theorem 1.4 has been proved for k = 1 in [9]. Therefore from
now on we will assume that k 6= 1. We’ll prove the theorem in Chapter 3 in
the following slightly stronger form. Let ψ(x) be a function which satisifes
the following two properties.

1. ψ(x) = o(log log log x) and

2. ψ(x)→∞ as x→∞.

We will show

log

(
n

λk(n)

)
=

1

(k − 1)!
(log log n)k

(
log log log n+Ok

(
ψ(n)

))
for all but O(x/ψ(x)) integers up to x.

The proof of Theorem 1.4 involves breaking down n/λk(n) in terms of
the iterated Euler φ function by using

n

λk(n)
=

(
n

φ(n)

)(
φ(n)

φ2(n)

)
. . .

(
φk−1(n)

φk(n)

)(
φk(n)

λk(n)

)
. (1.4)

Estimates for all but the last term are known. Hence log(n/λk(n)) can be
written as a sum of the logarithms on the right side of (1.4). It will be
necessary to analyze the term log(φk(n)/λk(n)).

Our second result is an asymptotic formula involving iterates involving
λ and φ. Banks, Luca, Saidak and Stănică in [4] showed that for almost all
n,

λ(φ(n)) = n exp(−(1 + o(1))(log log n)2 log log log n) and

φ(λ(n)) = n exp(−(1 + o(1))(log log n) log log log n).

As a corollary to Theorem 1.4 we will obtain asymptotic formulas for higher
iterates involving λ and φ. Specifically we prove the following.

Theorem 1.5. For l ≥ 0 and k ≥ 1, let g(n) = φl(λ(f(n))), where f(n) is
a (k− 1) iterated arithmetic function consisting of iterates of φ and λ. The
normal order of log(n/g(n)) is 1

(k−1)!(log log n)k log log log n.

An example of the use of this theorem is for φφλφφλλφ(n). Since l =
2, k = 5, we get that the normal order of log n

φφλφφλλφ(n) is

1

24
(log log n)5 log log log n.

3



1.1. History and Results

3691

2 3

2

5

2

41

2 5

2

Figure 1.1: The Pratt tree for the prime 3691

A result by Erdős, Granville, Pomerance and Spiro in [8] established
that n/φk(n) does not have a normal order. That result combined with
Theorem 1.5 completes the picture of how all iterates of λ and φ relate to
n. However it doesn’t show how they relate to each other. For example
log n

λφφλλφ(n) ∼ log n
λ6(n)

for almost all n, but is there a normal order for

log λφφλλφ(n)
λ6(n)

? Kapoor [14] found results for k = 2, but the problem remains
open for higher iterates.

We then turn our attention to L(n). In order to study this function, we
use the Pratt tree for a prime p which is defined as follows. The root node
is p. Below p are nodes labelled with the primes q such that q | p − 1. The
nodes below q are primes dividing q− 1 and so on until we are left with just
2. For example, if we want to take the prime 3691, the primes dividing 3690
are 2, 3, 5 and 41. Then we take the primes dividing one less than each of
these and obtain the tree in Figure 1.1. In 1975, Pratt [19] introduced these
trees to show that every prime has a short certificate (proof of primality).
The Pratt tree is of interest to us because the way the primes go down a
branch of the tree is similar to how those same primes divide iterates of
λ(n). The height of the Pratt tree H(p) is the length of the longest branch.
That height is related to L(n).

Since λ(n) is either even or 1, and λ(n) ≤ n/2 for even n, we easily
see that L(n) ≤ blog n/ log 2 + 1c. By considering when n is a power of 3
we can note that L(n) ≥ 1 + (1/ log 3) log n for infinitely many values of n.
As for upper bounds, Martin and Pomerance [16] gave a construction for
which L(n) < (1/ log 2 + o(1)) log log n for infinitely many n. The number
of such n ≤ x have asymptotic density 0. It is conjectured that for a set of
positive integers with asymptotic density 1, that L(n) � log logn however
no previous results have shown L(n) = o(log n) for almost all n.

It’s easy to see thatH(p) ≤ L(p), so any lower bound onH acts as a lower
bound on L. Bounds for the height of the Pratt tree H(p) were obtained
in a 2010 paper by Ford, Konyagin and Luca [10]. The bound depends

4



1.1. History and Results

on the exponent arising from the Elliot–Halberstam conjecture. Recall the
Bombieri–Vinogradov Theorem [7, Chapter 28] implies∑

n≤Q
max
y≤x

∣∣∣∣π(y;n, 1)− li(y)

φ(m)

∣∣∣∣� x(log x)−A (1.5)

holds for any Q ≤ x1/2(log x)−B and any A > 0, where B = B(A). The
Elliot–Halberstam conjecture says that (1.5) holds for Q = xθ for any θ < 1.
Let θ′ be such that (1.5) holds for Q = xθ

′
. In [10] Ford, Konyagin and Luca

showed for any c < 1/(e−1 − log θ′),

H(p) > c log log p (1.6)

for all butO
(
x/(log x)K

)
primes p, for someK > 1.Under Elliot–Halberstam,

we can take any c < e, but unconditionally, Bombieri–Vinogradov gives any
c < 1/(e−1 + log 2).

In Chapter 5 we show that if n =
∏
pαii , then

L(n) = max
i
{L(pαii )} (1.7)

and
L(pα) = α− 1 + L(p) ≥ L(p). (1.8)

These two equations imply L(n) ≥ L(p) for any p | n. This motivates the
following theorem which will be proved in Chapter 5

Theorem 1.6. There exists some c > 0 such that

L(n) ≥ c log logn

for almost all n ≤ x.

For an upper bound, in [10] it was shown that

H(p) ≤ (log p)0.95022 (1.9)

for all p ≤ x outside a set of size O
(
x exp(−(log x)δ

)
for some δ > 0. We

extend this to a result about L(n).

Theorem 1.7. If H(p) ≤ (log p)γ for almost all p ≤ x outside a set of size
O
(
x exp(−(log x)δ)

)
for some δ > 0, then for some function η,

L(n)� (log n)γη(n)

for almost all n as n→∞.

5



1.1. History and Results

The function η(x) can be taken to be as small as O(log log log x). Equa-
tion (1.9) yields the following corollary.

Corollary 1.8. For almost all n,

L(n)� (log n)0.9503.

In [10], the authors also came up with a nice probabilistic model which
suggested a conjecture that the normal order forH(p) is e log log p. Assuming
this conjecture, we give some evidence to suggest a related conjecture for
L(n).

Conjecture 1.9. The normal order of L(n) is e log logn.

6



Chapter 2

Notation and Required
Estimates

2.1 Notation

The following notations and conventions will be used throughout this the-
sis. The letters p, q, r, s and their subscripts will always denote primes. In
Chapters 3 and 4, k ≥ 2 will be a fixed integer. In Chapter 3 any implicit
constant may depend on k, otherwise the constants are absolute. Let vp(n)
be the largest power of p which divides n, so that

n =
∏
p

pvp(n).

Let the set Pn be {p : p ≡ 1 (mod n)}. The notation q ≺ q′ is defined to
mean that q′ ∈ Pq. In Chapter 3 we will assume x > ee

e
. The function

y = y(x) is defined to be log log x. Also let ψ(x) be any function going to
∞ such that ψ(x) = o(log y) = o(log log log x). Whenever we use the phrase
“for almost all n ≤ x” in a result, we mean that the result is true for all
n ≤ x except a set of size o(x). In Chapter 3 the exceptional set will be
O(x/ψ(x)).

2.2 Required Estimates

The following estimates will be used throughout this thesis. Let Λ(n) be the
Von–Mangoldt function defined by

Λ(n) =

{
log p n = pl

0 otherwise.

We use the Chebyshev bound∑
n≤x

Λ(n) =
∑
pl≤x

log p� x. (2.1)

7



2.2. Required Estimates

Also define the related function

θ(x) =
∑
p≤x

log p.

It follows from (2.1) that
θ(x)� x. (2.2)

We also require a formula of Mertens (see [17, Theorem 2.7(b)])∑
q≤x

log q

q
= log x+O(1). (2.3)

We use partial summation on (2.2) to obtain some tail estimates.

Lemma 2.1. For all x > 2, we have the following sums over primes.

(a) ∑
q>x

log q

q2
� 1

x
. (2.4)

(b) ∑
q>x

1

q2
� 1

x log x
. (2.5)

Proof. Equation (2.5) follows from (2.4) since log x < log q. As for Equation
(2.4), ∑

q>x

log q

q2
=

∫ ∞
x

d(θ(t))

t2

=
2θ(x)

x3
+

∫ ∞
x

2θ(t)dt

t3

=
2θ(x)

x3
+O

(∫ ∞
x

dt

t2

)
� 1

x
.

Given m,x ≥ 2, let A be the smallest a for which ma > x. We can then
manipulate the sums

∑
a∈N

P (a)

ma
=

1

m

∞∑
a=0

P (a)

ma
and

∑
a∈N
ma>x

1

ma
� 1

x

∣∣∣∣ ∞∑
a=A

1

ma−A

∣∣∣∣ =
1

x

∣∣∣∣ ∞∑
a=0

1

ma

∣∣∣∣
8



2.2. Required Estimates

for any polynomial P (x). Then by noting that
∑∞

a=A
P (a)
ma �P 1 uniformly

for m ≥ 2 and A ≥ 0 we obtain the estimates∑
a∈N

P (a)

ma
�P

1

m
,
∑
a∈N
ma>x

1

ma
� 1

x
. (2.6)

From [17, Corollary 1.15] we get∑
s≤x

1

s
= log x+O(1) (2.7)

We will also make frequent use of the Brun-Titchmarsh inequality [17, The-
orem 3.9] which says for all n ≤ t,

π(t;n, a)� t

φ(n) log(t/n)
. (2.8)

By partial summation on (2.8) we can obtain∑
p≤t
p∈Pn

1

p
� log log t

φ(n)
. (2.9)

Whenever n/φ(n) is bounded, as it will be whenever n is a prime, prime
power or a product of two prime powers, we can replace (2.9) with∑

p≤t
p∈Pn

1

p
≤ c log log t

n
(2.10)

for some absolute constant c. We include the c because occasionally we
require an inequality as opposed to an estimate. From [18, Theorem 1] we
obtain the asymptotic∑

p∈Pn
p≤t

1

p
=

log log t

φ(n)
+O

(
log n

φ(n)

)
. (2.11)

Equation (2.11) easily implies∑
p∈Pn
p≤t

1

p− 1
=

log log t

φ(n)
+O

(
log n

φ(n)

)
, (2.12)

9



2.3. Early Results

since the difference is

∑
p∈Pn
p≤t

1

p(p− 1)
≤
∞∑
m=1

1

mn(mn+ 1)
<

1

n2

∞∑
m=1

1

m2
� 1

n2
.

The Bombieri–Vinogradov Theorem [7, Chapter 28] implies∑
n≤Q

max
y≤x

∣∣∣∣π(y;n, 1)− li(y)

φ(m)

∣∣∣∣� x(log x)−A (2.13)

with Q ≤ x1/2(log x)−B for any A > 0 and B = B(A). We will use this
repeatedly in Chapter 3 with Q = x1/3. We also often use the Cauchy–
Schwarz inequality in the following form. If f(n) and g(n) are arithmetic
functions, then for any t ≥ 1,∣∣∣∣∑

n≤t
f(n)g(n)

∣∣∣∣2 ≤∑
n≤t
|f(n)|2

∑
n≤t
|g(n)|2. (2.14)

2.3 Early Results

In Chapters 3 and 5 we will require the following technical lemma.

Lemma 2.2. Fix a prime q and positive integers k, α. The number of n ≤ x
such that there exists p, q1, . . . , qk−1 satisfying qα | qk−1 − 1, qk−1 | qk−2 −
1, . . . , q1 | p− 1 and p | n is at most

x(cy)k

qα

for some absolute constant c.

Proof. By repeated uses of Equation (2.10), the number of such n is bounded

10



2.3. Early Results

by ∑
n≤x

∑
p|n

∑
q1|p−1

· · ·
∑

qk−1|qk−2−1

∑
qα|qk−1−1

1

=
∑

qk−1≡1 (mod qα)

∑
qk−2≡1 (mod qk−1)

· · ·
∑

p≡1 (mod q1)

∑
n≤x

n≡0 (mod p)

1

≤
∑

qk−1≡1 (mod qα)

∑
qk−2≡1 (mod qk−1)

· · ·
∑

p≡1 (mod q1)

x

p

≤
∑

qk−1≡1 (mod qα)

∑
qk−2≡1 (mod qk−1)

· · ·
∑

q1≡1 (mod q2)

xcy

q1

≤ · · · ≤
∑

qk−1≡1 (mod qα)

x(cy)k−1

qk−1

≤ x(cy)k

qα
.

In our proofs of Propositions 3.13 and 3.14 we will see that M1(x) and
M2(x) will reduce to summations involving π(x; p, 1). We will be using some
sieve techniques to bound these sums and those will require some bounds
on sums on multiplicative functions involving φ(m). The following involves
the estimation of the latter sums.

Lemma 2.3. For any non-negative integer L we have

∑
m≤t

mL

φ(m)L+1
�L log t. (2.15)

Proof. If f(n) is a non-negative multiplicative function, we know that

∑
n≤t

f(n) ≤
∏
p≤t

∞∑
r=0

f(pr). (2.16)

11



2.3. Early Results

Applying (2.16) with nL

φ(n)L+1 yields

∑
m≤t

mL

φ(m)L+1
≤
∏
p≤t

(
1 +

∞∑
r=1

prL

(pr − pr−1)L+1

)

=
∏
p≤t

(
1 +

∞∑
r=1

pL−r+1

(p− 1)L+1

)

=
∏
p≤t

(
1 +

1

(p− 1)L+1

pL

1− 1
p

)

=
∏
p≤t

(
1 +

pL+1

(p− 1)L+2

)

≤ exp

(∑
p≤t

log

(
1 +

pL+1

(p− 1)L+2

))

= exp

(∑
p≤t

(
pL+1

(p− 1)L+2
+OL

(
1

p2

)))

= exp

(∑
p≤t

(
1

p
+OL

(
1

p2

)))
�L log t

using (2.3).

Lemma 2.4. Let L be a nonnegative integer and γ a positive real number.
Given a positive integer C ≤ tγ and non-negative integer L we have

∑
m≤t

(Cm+ 1)L

φ(Cm+ 1)Lφ(m)
�L,γ log t. (2.17)

Proof. It will suffice to show

∑
m≤t

(Cm+ 1)2L−1

φ(Cm+ 1)2L
�L,γ

log t

C
(2.18)

12



2.3. Early Results

as then by Cauchy–Schwarz (2.14) we can get that(∑
m≤t

(Cm+ 1)L

φ(Cm+ 1)Lφ(m)

)2

≤
∑
m≤t

(Cm+ 1)2L−1

φ(Cm+ 1)2L

∑
m≤t

(Cm+ 1)

φ(m)2

�L,γ

(
log t

C

)
C log t

�L,γ log2 t

by using Lemma 2.3 and (2.18). Let

G(t) =
∑
m≤t

(Cm+ 1)2L

φ(Cm+ 1)2L
.

We show Equation (2.18) by first showing G(t) �L,γ t. This implies Equa-
tion (2.18) since

∑
m≤t

(Cm+ 1)2L−1

φ(Cm+ 1)2L
<

1

C

∑
m≤t

(Cm+ 1)2L

mφ(Cm+ 1)2L

=
1

C

∫ t

1−

d(G(u))

u

=
1

C

(
G(t)

t
+

∫ t

1−

G(u)

u2

)
�L,γ

1

C

(
1 +

∫ t

1−

1

u

)
�L,γ

1

C
(log t)

To show Equation (2.18) we start by defining s(n) to be the multiplicative
function defined by

n2L

φ(n)2L
= 1 ∗ s =

∑
d|n

s(d).

Testing at prime powers, we can easily see that

s(1) = 1, s(p) =

(
1− 1

p

)−2L
− 1 and s(pk) = 0 for all k ≥ 2.
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2.3. Early Results

Hence ∑
m≤t

(Cm+ 1)2L

φ(Cm+ 1)2L
=

∑
n≤Ct+1

n≡1 (mod C)

n2L

φ(n)2L

=
∑

n≤Ct+1
n≡1 (mod C)

∑
d|n

s(d)

=
∑

d≤Ct+1

s(d)
∑

n≤Ct+1
d|n

n≡1 (mod C)

1

=
∑

d≤Ct+1

s(d)

(
t

d
+O(1)

)

= t
∑

d≤Ct+1

s(d)

d
+O

( ∑
d≤Ct+1

s(d)

)
.

We require some estimates on s(d). For the sum of the multiplicative function
s(d)/d,

∑
d≤Ct+1

s(d)

d
≤

∏
p≤Ct+1

(
1 +

(1− 1/p)−2L − 1

p

)

≤
∏

p≤Ct+1

(
1 +OL

(
1

p2

))

= exp

( ∑
p≤Ct+1

log

(
1 +OL

(
1

p2

)))

= exp

( ∑
p≤Ct+1

OL

(
1

p2

))
= exp(OL(1))

�L 1.
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2.3. Early Results

For the sum of s(d),∑
d≤Ct+1

s(d) ≤
∏

p≤Ct+1

(
1 + (1− 1/p)−2L − 1

)
=

∏
p≤Ct+1

(1− 1/p)−2L

= exp

( ∑
p≤Ct+1

log

(
1 +OL

(
1

p

)))

= exp

( ∑
p≤Ct+1

OL

(
1

p

))
= exp

(
OL(log log(Ct+ 1))

)
� exp

(
OL,γ(log log t)

)
� (log t)OL,γ(1)

�L,γ t

Therefore

G(t) = t
∑

d≤Ct+1

s(d)

d
+O

( ∑
d≤Ct+1

s(d)

)
�L,γ t

as needed.

The following sum seems more complicated. However, we can handle it
using repeated applications of Lemma 2.4.

Lemma 2.5. For positive integers C1, C2, . . . , Cr ≤ tγ and non-negative
integers L1, L2, . . . , Lr we have

∑
m≤t

(C1m+ 1)L1(C2m+ 1)L2 . . . (Crm+ 1)Lr

φ(C1m+ 1)L1φ(C2m+ 1)L2 . . . φ(Crm+ 1)Lrφ(m)
�L1,...,Lr,γ log t.

(2.19)

Proof. We proceed by induction. The case r = 1 is covered by Lemma 2.4.
Suppose

∑
m≤t

(C1m+ 1)L1(C2m+ 1)L2 ...(Crm+ 1)Lr

φ(C1m+ 1)L1φ(C2m+ 1)L2 . . . φ(Crm+ 1)Lrφ(m)
�L1,...,Lr,γ log t.

15



2.3. Early Results

By Cauchy–Schwarz (2.14), we get that(∑
m≤t

(C1m+ 1)L1(C2m+ 1)L2 . . . (Cr+1m+ 1)Lr+1

φ(C1m+ 1)L1φ(C2m+ 1)L2 . . . φ(Cr+1m+ 1)Lr+1φ(m)

)2

≤
∑
m≤t

(C1m+ 1)2L1(C2m+ 1)2L2 . . . (Crm+ 1)2Lr

φ(C1m+ 1)2L1φ(C2m+ 1)2L2 . . . φ(Crm+ 1)2Lrφ(m)

·
∑
m≤t

(Cr+1m+ 1)2Lr+1

φ(Cr+1m+ 1)2Lr+1φ(m)

�L1,...,Lr+1,γ log2 t

by the induction hypothesis and Lemma 2.4, completing the proof.

Now here is the lemma that we will use in Section 3.7.

Lemma 2.6. For positive integers C1, C2, ..., Cr ≤ tγ and non-negative in-
tegers L1, L2, ..., Lr, L we have

∑
m≤t

(C1m+ 1)L1(C2m+ 1)L2 ...(Crm+ 1)LrmL−1

φ(C1m+ 1)L1φ(C2m+ 1)L2 . . . φ(Crm+ 1)Lrφ(m)L
�L1,...,Lr,L,γ log t.

(2.20)

Proof. Once again we’ll use Cauchy–Schwarz (2.14) and the previous lem-
mas.(∑

m≤t

(C1m+ 1)L1(C2m+ 1)L2 . . . (Crm+ 1)LrmL−1

φ(C1m+ 1)L1φ(C2m+ 1)L2 . . . φ(Crm+ 1)Lrφ(m)L

)2

≤
∑
m≤t

(C1m+ 1)2L1(C2m+ 1)2L2 . . . (Crm+ 1)2Lr

φ(C1m+ 1)2L1φ(C2m+ 1)2L2 . . . φ(Crm+ 1)2Lrφ(m)

·
∑
m≤t

m2L−2

φ(m)2L−1

�L1,...,Lr,L,γ log2 t

by Lemmas 2.3 and 2.5.
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Chapter 3

Iterated Carmichael Lambda
Function

3.1 Required Propositions and Proof of Theorem
1.4

As mentioned in Chapter 1, the main contribution to log(n/λk(n)) will come
from log(φk(n)/λk(n)). Estimating this term will involve a summation over
prime powers which divide each of φk(n) and λk(n). It turns out that the
largest contribution to this term will come from small primes which divide
φk(n). By small, we mean primes q ≤ (log log x)k = yk. We will split the
sum into small primes and large primes q > yk. To prove Theorem 1.4 we
will require the following propositions. The first summations deal with the
large primes which divide φk(n) and the second involves the large primes
whose prime powers divide φk(n). We will show that the contribution of
these primes to the main sum is small and hence it will end up as part of
the error term.

Proposition 3.1.∑
q>yk

νq(φk(n))=1

(νq(φk(n))− νq(λk(n))) log q � ykψ(x)

for almost all n ≤ x.

Proposition 3.2. ∑
q>yk

νq(φk(n))≥2

νq(φk(n)) log q � ykψ(x)

for almost all n ≤ x.

Since the main contribution will come from small primes dividing φk(n),
the next proposition will show that the contribution of small primes dividing
λk(n) to the main sum can also be merged into the error term.

17



3.1. Required Propositions and Proof of Theorem 1.4

Proposition 3.3. ∑
q≤yk

νq(λk(n)) log q � ykψ(x)

for almost all n ≤ x.

That will leave us with the contribution of small primes dividing φk(n).
Recall the following definition of an additive function.

Definition 3.4. An arithmetic function f(n) is called additive if for all
(m,n) = 1, f(mn) = f(m) + f(n). If in addition f(pk) = f(p) for all k ≥ 1,
then f(n) is called strongly additive.

We will use a strongly additive function to approximate the remaining
sum. Let hk(n) be the strongly additive function defined by

hk(n) =
∑
p1|n

∑
p2|p1−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

νq(pk − 1) log q.

The following proposition shows that the difference between the sum involv-
ing the small primes dividing φk(n) and the term hk(n) is small.

Proposition 3.5.∑
q≤yk

νq(φk(n)) log q = hk(n) +O(yk−1 log y · ψ(x))

for almost all n ≤ x.

That leaves us with log(φk(n)/λk(n)) being approximated by hk(n). The
last proposition will obtain an asymptotic formula for hk(n). From there we
will have enough armoury to tackle Theorem 1.4. Since hk(n) is strongly
additive, we use the Turan–Kubilius inequality (Corollary A.2) which will
show the final proposition.

Proposition 3.6.

hk(n) =
1

(k − 1)!
yk log y +O(yk)

for almost all n ≤ x.
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3.1. Required Propositions and Proof of Theorem 1.4

Proof of Theorem 1.4. We start by breaking down the function log(n/λk(n)).

log

(
n

λk(n)

)
= log

(
n

φ(n)

)
+ log

(
φ(n)

φ2(n)

)
+ · · ·+ log

(
φk−1(n)

φk(n)

)
+ log

(
φk(n)

λk(n)

)
.

(3.1)

Using the lower bound φ(m)� m/ log logm from [17, Theorem 2.3] we have
that

log

(
n

φ(n)

)
+ log

(
φ(n)

φ2(n)

)
+ · · ·+ log

(
φk−1(n)

φk(n)

)
� log log log n. (3.2)

Inserting equation (3.2) into equation (3.1) yields

log

(
n

λk(n)

)
= log

(
φk(n)

λk(n)

)
+O(log log log n).

In fact we could have used a more precise estimate for φi(n)/φi+1(n) for
i ≥ 1 which can be found in [8] but the one we used is good enough. Next
we break down the remaining term into summations. We will break it up
into small primes and large primes.

log

(
φk(n)

λk(n)

)
=
∑
q>yk

(νq(φk(n))− νq(λk(n))) log q

+
∑
q≤yk

(νq(φk(n))− νq(λk(n))) log q

=
∑
q>yk

νq(φk(n))=1

(νq(φk(n))− νq(λk(n))) log q

+
∑
q>yk

νq(φk(n))≥2

(νq(φk(n))− νq(λk(n))) log q

+
∑
q≤yk

νq(φk(n)) log q −
∑
q≤yk

νq(λk(n)) log q.

Note that if a | b, then λ(a) | φ(b) since λ(a) | φ(a) | φ(ma) for any integer
m. This quickly implies that λk(n) always divides φk(n) for all k and so we
get

0 ≤
∑
q>yk

νq(φk(n))≥2

(νq(φk(n))− νq(λk(n))) log q ≤
∑
q>yk

νq(φk(n))≥2

(νq(φk(n)) log q.
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3.2. Prime Power Divisors of φk(n)

Using Propositions 3.1,3.2,3.3 and 3.5 we get

log

(
n

λk(n)

)
= hk(n) +O

(
ykψ(x)

)
for almost all n ≤ x. Finally by using Proposition 3.6 we get

log

(
n

λk(n)

)
=

1

(k − 1)!
yk log y +O

(
ykψ(x)

)
for almost all n ≤ x, finishing the proof of Theorem 1.4.

3.2 Prime Power Divisors of φk(n)

For various reasons thoughout this paper, we are concerned with the number
of n ≤ x such that qa can divide φk(n). We will analyze a few of those
situations here:

Case 1: q2 | n. Clearly the number of such n is at most x
q2
.

Case 2: There exists p1 ∈ Pq2 , p2 ∈ Pp1 , p3 ∈ Pp2 , ..., pl ∈ Ppl−1
where

pl | n. By using Lemma 2.2 we know the number of such n ≤ x is Ol(xy
l/q2).

Cases 1 and 2 deal with any case where p ∈ Pq2 , we are just left with
the possibilities not containing any powers of q. Unfortunately these cases
still allow for many possibilities which we will display in an array. There
are lots of ways for a prime power qa to divide φk(n). We now define various
sets of primes that are involved in generating these powers of q, and we will
eventually sum over all possibilities for these sets of primes. The set Lh,i
will denote a finite set of primes. To begin, the set L1,2 will be an arbitrary
finite set of primes in Pq and let L1,1 be empty. That is:

Case 3:

Level (1,2)
L1,2 ⊆ Pq.

Level (2,1) (Obtaining the primes in the previous level)
L2,1 is any set of primes with the property that for all p ∈ L1,1 ∪ L1,2,

there exists a unique prime r ∈ L2,1 such that r ∈ Pp. In other words p will
divide φ(r) and hence the primes in L2,1 will create the primes in L1,1∪L1,2.

Level (2,2) (New primes in Pq)

L2,2 ⊆ Pq.
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3.2. Prime Power Divisors of φk(n)

In general for all 1 < h ≤ k we have for all p ∈ Lh−1,1 ∪ Lh−1,2 there exists
a unique prime r ∈ Lh,1 such that r ∈ Pp,Lh,2 is an arbitrary subset of Pq,
and

r ∈ Lk,1 ∪ Lk,2 ⇒ r | n.

Some description of the terms are in order including some helpful defi-
nitions.

Definition 3.7. An incarnation I of Case 3 is some specified description of
how the primes in a lower level create the primes in the level directly above.

For example, for k = 3, an incarnation I for which q4 | φ3(n) would be
s1, s2, s3, r3, r4 ∈ Pq where r1 ∈ Ps1 , r2 ∈ Ps2s3 , p1 ∈ Pr1r2 , p2 ∈ Pr3r4 , with
p1p2 | n.

Definition 3.8. An subincarnation of I is an incarnation with added condi-
tions. In other words if J is a subincarnation of I and an integer n satisfies
incarnation J, then it will also satisfy incarnation I.

For example, I is a subincarnation of the incarnation s1, s3, r3, r4 ∈ Pq
where r1 ∈ Ps1 , r2 ∈ Ps3 , p1 ∈ Pr1r2 , p2 ∈ Pr3r4 , with p1p2 | n.

Let p be a prime in Lh,i which we need to divide φk−h+1(n). The def-
inition of Lh,i ensures that there is a unique prime r dividing φk−h(n) for
which p | r− 1. The primes in levels (k, 1), (k, 2) dividing n are for the base
case of the recursion, so that each prime divides φ0(n) = n. When i = 2 we
are introducing new primes to get greater powers of q in φk(n). Note that
it’s not necessary to have any primes on the levels (h, 2). In fact the “worst
case scenario” that we will see has no primes on these except Level (1,2).

Now that we’ve described the way to get qa | φk(n), what is our exponent
a? Let mh,i = #Lh,i. From the recursion above we can see that qmk,2 | φ(n)
and so do the primes in Lk−1,1. For the second iteration of φ, qmk,2−1+mk−1,2 |
φ2(n) and so do the primes in Lk−2,1. Hence the power of q which divides
φk(n) is

max
1≤j≤k

(m1,1 +
∑

2≤h≤j
(mh,2 − 1)) (3.3)

where the sum can be empty if there are no primes in the second level (j, 2)
or there are not enough to survive, i.e. mj,2 < j−1 and hence q - φj(

∏
Lj,2 p).

Without loss of generality, we can assume the former, since the later is a
subincarnation of the former.

Now we’ll introduce some notation to be used in future propositions. For
any fixed incarnation of Case 3, let M be the total number of primes, N be
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3.2. Prime Power Divisors of φk(n)

the total number of new primes introduced at the levels (h, 2) and H be the
maximum necessary level (h, 2). Specifically

M =
∑
h

(mh,1 +mh,2) N =
∑
h≤H

mh,2

and H yields the maximum value in (3.3). Note that under this notation,
qN−H+1 | φk(n). For example, in the incarnation I above,

L1,2 = {s1, s2, s3},L2,1 = {r1, r2},L2,2 = {r3, r4},L3,1 = {p1, p2},L3,2 = ∅

as well as

m1,2 = 3,m2,1 = 2,m2,2 = 2,m3,1 = 2,m3,2 = 0.

Hence M = 9, N = 5, H = 2 and so the power of q which divides φ3(n) is
5− 2 + 1 = 4 as expected.

Now that we’ve described Case 3, how many possible n are in that case?

Lemma 3.9. The number of n ≤ x satisfying any incarnation of Case 3 is

O

(
cM

xyM

qN

)
where c is the constant from equation (2.10).

Proof. Let Lh = Lh,1 ∪ Lh,2. We use Brun-Titchmarsh (2.10) for all the
primes at each level of Case 3, so the number of n is

∑
n≤x

∑
p1∈L1

∑
p2∈L2

· · ·
∑
pk∈Lk

1 =
∑
p1∈L1

∑
p2∈L2

· · ·
∑
pk∈Lk

∑
pk|n
n≤x

1

�
∑
p1∈L1

∑
p2∈L2

· · ·
∑
pk∈Lk

x∏
pk∈Lk pk

.

Note that we have repeatedly counted the same primes in the sum as we can
reorder the primes in each level. It won’t be important here, but will need
to be more carefully addressed later. Since the primes in level (k, 1) gave us
some pk ∈ Ppk−1

for all the primes in Lk−1, and for p ∈ Lk,2 we have p ∈ Pq.
By Brun–Titchmarsh (2.10) we get that the above sum is

�
∑
p1∈L1

∑
p2∈L2

· · ·
∑

pk−1∈Lk−1

x(cy)mk,1+mk,2∏
pk−1∈Lk−1

pk−1q
mk,2

.
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3.3. Large Primes Dividing φk(n)

Once again we get mk−1,1 + mk−1,2 new applications of Brun-Titchmarsh
giving the new primes in level k − 2 as well as mk−1,2 new powers of q.
Continuing along in this manner we get:

�
∑
p1∈L1

x(cy)
∑

2≤i≤k(mi,1+mi,2)∏
p1∈L1 p1q

∑
2≤i≤kmi,2

� x(cy)
∑

1≤i≤k(mi,1+mi,2)

q
∑

1≤i≤kmi,2
=
x(cy)M

qN
.

The last thing we’ll consider in this section about the ways to obtain
φk(n) is to determine the number of possible incarnations of Case 3. We
note that there are lots of incarnations which are subincarnations of others.
We will develop a concept of minimality.

Definition 3.10. An incarnation of Case 3 is minimal if it does not contain
any strings of p1 ∈ Pp2 , p2 ∈ Pp3 . . . pk−1 ∈ Ppk where pk | n.

Note that any incarnation of Case 3 is a subincarnation of a minimal
one. We now use this concept to show the number of necessary incarnations
of Case 3 is small.

3.3 Large Primes Dividing φk(n)

In this section we will prove the two propositions dealing with q being large.
We’ll start with the proposition where νq(φk(n)) = 1.

Proof of Proposition 3.1. It suffices to show∑
n≤x

∑
q>yk

νq(φk(n))=1

(νq(φk(n))− νq(λk(n))) log q � xyk

as then there are at most O
( xyk

ykψ(x)

)
= O

(
x

ψ(x)

)
such n where the bound

for the sum in Proposition 3.1 fails to hold. We examine the cases where
νq(φk(n)) = 1. Using the notation in Lemma 3.9 we have two subcases for
Case 3, whether N = 1 or N > 1.

Suppose N = 1, then H = 1, m1,2 = 1 and mh,2 = 0 for 1 < h ≤ k.
Since mh,1 ≤ mh−1,1 + mh−1,2 we get mh,1 ≤ 1 for all 1 ≤ h ≤ k. Hence
mh,1 = 1 for all h ≤ k. Therefore we are left with the case
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3.3. Large Primes Dividing φk(n)

p1 ∈ Pq, p2 ∈ Pp1 , p3 ∈ Pp2 , . . . , pk ∈ Ppk−1

where pk | n. However in this case we also get νq(λk(n))) = 1 giving us no
additions to our sum.

Suppose N > 1, then by repeatedly using mh,1 ≤ mh−1,1 + mh−1,2 we
have M =

∑
h(mh,1 + mh,2) ≤ k

∑
hmh,2 = kN. The number of cases we

get are

O

(
cM

xyM

qN

)
� cMxykN

qN
� cMxy2k

q2

since y > qk. Since vq(φk(n)) = N −H + 1 and H ≤ k, we conclude N ≤ k
implying that M ≤ k2. Hence cM is bounded as a function of k. Also since
M is bounded in terms of k, there are Ok(1) possible incarnations of Case 3,
and the bound already absorbs the possiblities from Cases 1 and 2. Hence
we have

∑
q>yk

∑
n≤x

νq(φk(n))=1

(νq(φk(n))− νq(λk(n))) log q ≤
∑
q>yk

∑
n≤x

νq(φk(n))=1
N>1

log q

�
∑
q>yk

xy2k log q

q2

� xyk

by (2.4).

We turn our attention to vq(φk(n)) > 1. We have to be more careful here
since we can’t guarantee that the number of incarnations of Case 3 is Ok(1).
We’ll start by proving a lemma which can eliminate a lot of those cases.

Lemma 3.11. Let q > yk and Sq = Sq(x) consist of all n ≤ x such that
Case 1,2 or Case 3 where M ≤ k(N − 1) occurs. Then

#Sq �
xyk

q2
.

Proof. There are clearly Ok(1) incarnations of Cases 1 and 2 and each yield
at most O(xyk/q2) such n. By Lemma 3.9 for each incarnation of Case 3,
we get at most

O

(
cMxyM

qN

)
� cMxyk

q2
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3.3. Large Primes Dividing φk(n)

such n since M ≤ k(N − 1) and q > yk. It remains to show we only require
Ok(1) such incarnations. Suppose n satisfies an incarnation with M ≤
k(N − 1). Then it also satisfies a minimal incarnation with M ≤ k(N − 1)
since removing a string of p1 ∈ Pp2 , p2 ∈ Pp3 . . . pk−1 ∈ Ppk , would decrease
N by 1 and M by k leaving the inequality unchanged. Secondly we can
assume that n also satisfies an incarnation where k(N −2) < M ≤ k(N −1)
since we can keep eliminating primes in the Li,2, which decrease N by 1, but
M by at most k. This must eventually produce an incarnation where k(N −
2) < M ≤ k(N − 1) since if we eliminate all primes in the Li,2 but 1, then
M > k(N − 1). Also note that the condition mh,1 ≤ mh−1,1 +mh−1,2 forces
M ≤ kN. If M is bounded between k(N −2) and kN and the incarnation is
minimal, we get that N is bounded by 2k since eliminating a prime in Li,2
can only shrink M by at most k − 1 since our incarnation is minimal.

Therefore n satisifies an incarnation where N and hence M are bounded
functions of k. Since there are only Ok(1) such incarnations, we get our
result, noting that cM can be absorbed into the constant as well.

Proof of Proposition 3.2. Let S = S(x) =
⋃
q>yk Sq. Using Lemma 3.11 we

have

#S ≤
∑
q>yk

#Sq �
∑
q>yk

xyk

q2
� xyk

∑
q>yk

1

q2
� xyk

log(yk)yk
� x

ψ(x)

by (2.5). As for the n with n /∈ S and a = νq(φk(n)) > 1, the only remaining
case is that M > k(N − 1). Recall that a = N + H − 1. If H = 1, then
N = m1,2 = a. This implies m2,1 = a− 1 or a, since otherwise for k ≥ 2,

M =
∑
h

mh,1 ≤ a+(k−1)m2,1 ≤ a+(k−1)(a−2) = k(a−1)−k+2 ≤ (k−1)N

leading to a contradiction. If H > 1, then we again wish to show that
m2,1 ≥ a− k.

M =
∑
h

(mh,1 +mh,2)

≤ km1,2 + (k − 1)
∑
h>1

mh,2

= m1,2 + (k − 1)N

= k(N − 1)−N + k +m1,2
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3.3. Large Primes Dividing φk(n)

which implies m1,2 > N − k and so
∑

h>1mh,2 = N −m1,1 < k. Therefore
if m2,1 < a− k, then

M =
∑
h

(mh,1 +mh,2)

≤ m1,2 + (k − 1)m2,1 + (k − 1)
∑
h>1

mh,2 ≤ a+ (k − 1)(a− k − 1) + (k − 1)(k − 1)

= ak − 2k

≤ k(N − 1)

as N > a again leading to a contradiction. Hence m2,1 ≥ a − k and so we
conclude

∑
n/∈S
n≤x

∑
q>yk

νq(φk(n))>1

(νq(φk(n)) log q ≤ 2
∑
n/∈S
n≤x

∑
q>yk

νq(φk(n))>1

(νq(φk(n))− 1) log q

�
∑
q>yk

log q
∑
a≥2

a
∑
n≤x
n/∈S

νq(φk(n))=a

1.

Unfortunately, just blindly using the Brun-Titchmarsh inequality in (2.10)
won’t be good enough as we must sum over all a. Let g(a, k) = (a − k)! if
a ≥ k or 1 otherwise and note that since we have m1,2 ≥ a− k, we have at
least g(a, k) permutations of the same primes. Thus by using Lemma 3.9
we get

a
∑
q>yk

log q
∑
n≤x
n/∈S

νq(φk(n))=a

1� a
x(cy)M

qNg(a, k)
� ack(a+k−1)xy2k

q2g(a, k)

using the assumption that q > yk and M ≤ kN ≤ k(a + k − 1). Hence we
get that our sum is

∑
n/∈S
n≤x

∑
q>yk

νq(φk(n))>1

(νq(φk(n)) log q �
∑
q>yk

log q
∑
a≥2

ack(a+k−1)xy2k

q2g(a, k)

= xy2k
∑
q>yk

log q

q2

∑
a≥2

ack(a+k−1)

g(a, k)
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3.4. Small Primes Dividing λk(n)

However the latter sum converges to some function depending on k, and so
we get

� xy2k
∑
q>yk

log q

q2
� xyk

by (2.4).

3.4 Small Primes Dividing λk(n)

We now turn our attention to the bound involving λk(n) in the summand.
Just like when we were dealing with the number of cases where qa | φk(n),
we will need a lemma to deal with the number of cases where qa | λk(n).
Fortunately this case is much simpler as the only two ways for qa | λ(n) is for
qa+1 | n or for there to exist p | n with p ∈ Pqa . Note that these conditions
aren’t sufficient, but are necessary when q = 2.

Lemma 3.12. The number of positive integers n ≤ x for which qa | λk(n)

is O(xy
k

qa ).

Proof. We’ll proceed by induction on k. If k = 1, then qa | λ(n) if qa+1 | n
or p ∈ Pqa with p | n. The number of such n is at most∑

n≤x
qa+1|n

1 +
∑
n≤x
p∈Pqa
p|n

1� x

qa+1
+
∑
p∈Pqa

x

p
� x

qa+1
+
xy

qa
� xy

qa
.

using (2.10). Suppose the number of n ≤ x for which qa | λk−1(n) is

O(xy
k−1

qa ). If qa | λk(n), then either qa+1 | λk−1(n) or p ∈ Pqa with p |
λk−1(n). Hence the number of such n is bounded by

∑
n≤x

qa+1|λk−1(n)

1 +
∑
n≤x
p∈Pqa

p|λk−1(n)

1� xyk−1

qa+1
+
∑
p∈Pqa

xyk−1

p
� xyk−1

qa+1
+
xyk

qa
� xyk

qa

as needed.

Proof of Proposition 3.3. Like in the proof of previous propositions, we’ll
show ∑

n≤x

∑
q≤yk

νq(λk(n)) log q � xyk.
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3.5. Reduction to hk(n) for Small Primes

The left hand side is equal to∑
n≤x

∑
q≤yk

νq(λk(n)) log q =
∑
n≤x

∑
q≤yk

log q
∑
a∈N

qa|λk(n)

1

≤
∑
n≤x

∑
q≤yk

log q
∑
a∈N
qa≤yk

1 +
∑
n≤x

∑
q≤yk

log q
∑
a∈N

qa|λk(n)
qa>yk

1.

The first sum is∑
n≤x

∑
q≤yk

log q
∑
a∈N
qa≤yk

1 =
∑
n≤x

∑
m≤yk

Λ(m)�
∑
n≤x

yk � xyk,

using the definition of Λ(m) and equation (2.1). Using Lemma 3.12, the
geometric estimate in (2.6) and equation (2.1) the second sum becomes

∑
n≤x

∑
q≤yk

log q
∑
a∈N

qa|λk(n)
qa>yk

1�
∑
q≤yk

log q
∑
a∈N
qa>yk

xyk

qa
�
∑
q≤yk

log q
xyk

yk
� xyk.

3.5 Reduction to hk(n) for Small Primes

The small primes dividing φk(n) are what contributes to the asymptotic
term of log(n/λk(n)). In this section we show that the important case is the
supersquarefree case of p dividing φk(n) which is when

p ≺ p1 ≺ p2 ≺ · · · ≺ pk, pk | n.

For this reason we will approximate the sum
∑

q≤yk vq(φk(n)) log q with

hk(n) =
∑
p1|n

∑
p2|p1−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

νq(pk − 1) log q. (3.4)

Proof of Proposition 3.5. For any fixed prime q, we know that

vq(φ(m)) = max{0, vq(m)− 1}+
∑
p|m

vq(p− 1),
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3.5. Reduction to hk(n) for Small Primes

which implies∑
p|m

vq(p− 1) ≤ vq(φ(m)) ≤ vq(m) +
∑
p|m

vq(p− 1).

Repeated use of this inequality for m = φl(n) where l ranges from k − 1 to
0 yields

∑
p|φk−1(n)

vq(p− 1) ≤ vq(φk(n))

≤
∑

p|φk−1(n)

vq(p− 1) +
∑

p|φk−2(n)

vq(p− 1)

+ · · ·+
∑
p|φ(n)

vq(p− 1) + vq(n).

(3.5)

A prime p divides φk−1(n) either in the supersquarefree case (ssf), or not in
the supersquarefree case (nssf), yielding

∑
ssf

vq(p− 1) ≤
∑

p|φk−1(n)

vq(p− 1)

≤
∑
ssf

vq(p− 1) +
∑
nssf

vq(p− 1).

Combining this inequality with (3.5) yields∑
ssf

vq(p− 1) ≤ vq(φk(n))

≤
∑
ssf

vq(p− 1) +
∑
nssf

vq(p− 1) +
∑

p|φk−2(n)

vq(p− 1)

+ · · ·+
∑
p|φ(n)

vq(p− 1) + vq(n).

Subtracting the sum over the supersquarefree case, multiplying through by
log q and summing over q ≤ yk yields
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3.5. Reduction to hk(n) for Small Primes

0 ≤
∑
q≤yk

νq(φk(n)) log q − hk(n)

≤
∑
q≤yk

∑
nssf

vq(p− 1) log q +
∑
q≤yk

∑
p|φk−2(n)

vq(p− 1) log q

+ · · ·+
∑
q≤yk

∑
p|n

vq(p− 1) log q

where we get hk(n) from (3.4). It suffices to show that the sum on the right
side becomes our error term. For the sum

∑
n≤x

∑
q≤yk

∑
p|φm(n)

vq(p− 1) log q =
∑
n≤x

∑
q≤yk

∑
p|φm(n)

∑
a∈N
qa|p−1

log q

=
∑
n≤x

∑
q≤yk

log q
∑
a∈N

∑
p∈Pqa
p|φm(n)

1,

we’ll split the sum over values of p ≤ yk−1 and p > yk−1. For p ≤ yk−1 we
uniformly get for all n that

∑
q≤yk

log q
∑
a∈N

∑
p∈Pqa
p≤yk−1

p|φm(n)

1 ≤
∑
q≤yk

log q
∑
a∈N

π(yk−1; qa, 1)

�
∑
q≤yk

log q
∑
a∈N

yk−1

φ(qa)

� yk−1
∑
q≤yk

log q

q

� yk−1 log y

using the geometric estimate (2.6) and the prime number theorem for arith-
metic progressions. As for p > yk−1 we fix an M and N from case 3 for which
p | φm(n), of which there are at most Ok(1) such M,N since vp(φ(m)) = 1.
Therefore

30



3.5. Reduction to hk(n) for Small Primes

∑
n≤x

∑
q≤yk

log q
∑
a∈N

∑
p>yk−1

p∈Pqa
p|φm(n)

1�
∑
q≤yk

log q
∑
a∈N

∑
p∈Pqa
p>yk−1

xyM

pN

≤
∑
q≤yk

log q
∑
a∈N

∑
p∈Pqa

xyM−(k−1)(N−1)

p

�
∑
q≤yk

log q
∑
a∈N

xyM−(k−1)(N−1)+1

qa

�
∑
q≤yk

xyM−(k−1)(N−1)+1 log q

q

� xyM−(k−1)(N−1)+1 log yk

� xyM−(k−1)(N−1)+1 log y.

Since the M,N were chosen for φm(n) we know that M ≤ mN where equal-
ity holds if and only if we are in the supersquarefree case. Now either
m ≤ k − 2 or m = k − 1 and we are not in the supersquarefreecase. In the
former case we have an error of

O(xy(k−2)N−(k−1)(N−1)+1 log y) = O(xyk−N log y) = O(xyk−1 log y)

since N ≥ 1, or in the latter case

O(xy(k−1)N−1−(k−1)(N−1)+1 log y) = O(xyk−1 log y).

Thus we get

∑
n≤x

( ∑
q≤yk

∑
nssf

vq(p− 1) log q +
∑
q≤yk

∑
p|φk−2(n)

vq(p− 1) log q + . . .

+
∑
q≤yk

∑
p|n

vq(p− 1) log q

)
� xyk−1 log y

and so
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3.6. Reduction to the First and Second Moments

∑
q≤yk

∑
nssf

vq(p− 1) log q +
∑
q≤yk

∑
p|φk−2(n)

vq(p− 1) log q + . . .

+
∑
q≤yk

∑
p|n

vq(p− 1) log q � yk−1 log y · ψ(x)

for almost all n ≤ x as required.

3.6 Reduction to the First and Second Moments

The Turán-Kubilius inequality, which is discussed further in the appendix,
asserts that if f(n) is a complex strongly additive function, then there exists
an absolute constant C such that∑

n≤x
|f(n)−M1(x)|2 ≤ CxM2(x) (3.6)

where M1(x) =
∑

p≤x|f(p)|/p and M2(x) =
∑

p≤x|f(p)|2/p. Since hk(n) is
strongly additive we apply this inequality where M1(x) =

∑
p≤x hk(p)/p,

M2(x) =
∑

p≤x hk(p)
2/p. We will need to find bounds on M1 and M2 there-

fore it’s our goal to prove the following two propositions:

Proposition 3.13. For all x > ee
e
,

M1(x) =
1

(k − 1)!
yk log y +O(yk)

Proposition 3.14. For all x > ee
e
,

M2(x)� y2k−1 logk−1 y.

These will lead to a proof of Proposition 3.6.

Proof of Proposition 3.6. Let N denote the number of n ≤ x for which
|hk(n) −M1(x)| > yk. The contribution of such n to the sum in (3.6) is at
least Ny2k. Thus Proposition 3.14 implies N � x logk−1 y/y and so Propo-
sition 3.13 implies that hk(n) = 1

(k−1)!y
k log y+O(yk) except for a set of size

O(x(log y)k−1/y).

32



3.7. Summations Involving π(t, p, 1)

3.7 Summations Involving π(t, p, 1)

The proofs of Propositions 3.13 and 3.14 involve multiple summations over
primes. Those sums can be re–written as sums including terms such as
π(t, p, 1). A lot of these summations will involve sieving techniques. This
section will be split into proofs of two lemmas involving the summations
required for the sums arising from the Propositions 3.13 and 3.14.

Lemma 3.15. Let b, k, l be positive integers with 2 ≤ l ≤ k. Let t > ee be
a real number and let constants α, α1, α2 satisfy 0 < α < 1/2 and 0 < α1 <
α2 < 1/2.

(a) If b > tα, then

∑
pk∈Pb

∑
pk−1∈Ppk

· · ·
∑

p2∈Pp3

π(t; p2, 1)� t log t(log log t)k−2

b
. (3.7)

(b) If b ≤ tα1 , then

∑
pl∈Pb
pl>t

α2

∑
pl−1∈Ppl

· · ·
∑

p2∈Pp3

π(t; p2, 1)� bl−1t

φ(b)l log t
. (3.8)

(c) If b ≤ tα1 , then

∑
pl∈Pb

∑
pl−1∈Ppl

· · ·
∑

p2∈Pp3

π(t; p2, 1)� t(log log t)l−1

φ(b) log t
. (3.9)

The implicit constants in (a)− (c) depend on the choices of the α.

Proof. For (3.7) we just use the trivial estimate π(t; p2, 1) ≤ t/p2 and several
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3.7. Summations Involving π(t, p, 1)

uses of Brun-Titchmarsh (2.10) to get∑
pk∈Pb

∑
pk−1∈Pk

· · ·
∑
p2∈P3

π(t; p2, 1) ≤
∑
pk∈Pb

∑
pk−1∈Pk

· · ·
∑
p2∈P3

t

p2

� t
∑
pk∈Pb

∑
pk−1∈Pk

· · ·
∑
p3∈P4

log log t

p3

� t
∑
pk∈Pb

(log log t)k−2

pk

≤ t
∑

m≡1 (mod b)
tα≤m≤t

(log log t)k−2

m

≤ t log t(log log t)k−2

b

where m > 1 and m ≡ 1 (mod b) imply that m > b and by using (2.7). As
for (3.8) we get∑
pl∈Pb
l>tα2

∑
pl−1∈Pl

· · ·
∑
p2∈P3

π(t; p2, 1)

=
∑
pl∈Pb
l>tα2

∑
pl−1∈Pl

· · ·
∑
p3∈P4

#{(m1, p2) : p2 = 1 (mod p3), p2 > tα2 ,

m1p2 + 1 ≤ t, p2,m1p2 + 1 prime}

=
∑
pl∈Pb
l>tα2

∑
pl−1∈Pl

· · ·
∑
p4∈P5

#{(m1,m2, p3) : p3 = 1 (mod p4), p3 > tα2 ,

m1(m2p3 + 1) + 1 ≤ t, {p3,m2p3 + 1,m1(m2p3 + 1) + 1} prime}
= #{(m1,m2, . . . ,ml−1, pl) : pl = 1 (mod b), pl > tα2 ,

m1(m2 . . . (ml−2(ml−1pl + 1) + 1) + · · ·+ 1 ≤ t, {pl,ml−1pl + 1,

ml−2(ml−1pl + 1) + 1, . . . ,

m1(m2 . . . (ml−2(ml−1pl + 1) + 1) + · · ·+ 1} prime}

≤
∑

m1...ml−1≤t1−α2
#{pl < t/m1 . . .ml−1 : pl = 1 (mod b),

{pl,ml−1pl + 1,ml−2(ml−1pl + 1) + 1, . . . ,

m1(m2...(ml−2(ml−1pl + 1) + 1) + · · ·+ 1} prime}.
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3.7. Summations Involving π(t, p, 1)

From here will need to use Brun’s Sieve method (see [12, Theorem 2.4]) to
get that

#{pl <t/m1 . . .ml−1 : pl = 1 (mod b), {pl,ml−1pl + 1,ml−2(ml−1pl + 1) + 1,

. . . ,m1(m2 . . . (ml−2(ml−1pl + 1) + 1) + · · ·+ 1} prime}

� El−1

φ(E)l−1
bl−1

φ(b)l−1
bc1 . . . cl−1

φ(bc1 . . . cl−1)

t/m1 . . .ml−1b

(log t/m1 . . .ml−1b)l

where the ci and E are

E =

( l−1∏
i=1

m
i(i+1)/2
i

)
(1 +m1 +m1m2 + · · ·+m1 . . .ml−3)(1 +m2 +m2m3

+ · · ·+m2 . . .ml−3) . . . (1 +ml−3)(1 +m1 +m1m2 + . . .

+m1 . . .ml−4)(1 +m2 +m2m3 + · · ·+m2 . . .ml−4)

. . . (1 +ml−4) . . . (1 +m1)

and for 1 ≤ i ≤ l − 1,

ci = 1 +mi +mimi+1 + · · ·+mi . . .ml−2, cl−1 = 1.

Using φ(mn) ≥ φ(m)φ(n) and m1 . . .ml−1b ≤ t1+α1−α2 where 1+α1−α2 < 1
we get

� El−1

φ(E)l−1
bl−1

φ(b)l
c1

φ(c1)
. . .

cl−1
φ(cl−1)

t

m1 . . .ml−1(log t)l
.

Using
mL

φ(mL)
=

m

φ(m)
,

we get the sum is

∑
m1...ml−1≤t1−α2

El−1

φ(E)l−1
c1

φ(c1)
. . .

cl−1
φ(cl−1)

1

m1 . . .ml−1

=
∑

m1...ml−1≤t1−α2

(E∗)l−1

φ(E∗)l−1
c1

φ(c1)
. . .

cl−1
φ(cl−1)

1

m1 . . .ml−1

where

35



3.7. Summations Involving π(t, p, 1)

E∗ =(1 +m1 +m1m2 + · · ·+m1 . . .ml−3)(1 +m2 +m2m3 + · · ·+
m2 . . .ml−3) . . . (1 +ml−3)(1 +m1 +m1m2 + · · ·+m1 . . .ml−4)

(1 +m2 +m2m3 + · · ·+m2 . . .ml−4) . . . (1 +ml−4) . . . (1 +m1).

We have that every factor in E∗ as well as the ci are of the form 1+Cmi for
some i or of the form mL

i . Hence using l−1 applications of Lemmas 2.3, 2.5
or 2.6 we can pick off the factors of the form (1 + Cmi) one at a time. Let

E(e), c
(e)
i denote the E∗ and ci terms with the factors of the form 1 + Cm1

through 1 + Cme removed.

∑
m1...ml−1≤t1−α2

El−1

φ(E)l−1
c1

φ(c1)
...

cl−1
φ(cl−1)

1

m1 . . .ml−1

�
∑

m2...ml−1≤t1−α2

(E′)l−1

φ(E′)l−1
c′1

φ(c′1)
. . .

c′l−1
φ(c′l−1)

1

m2 . . .ml−1
(log t)

�
∑

m3...ml−1≤t1−α2

(E′′)l−1

φ(E′′)l−1
c′′1

φ(c′′1)
. . .

c′′l−1
φ(c′′l−1)

1

m3 . . .ml−1
(log2 t)

� · · · � (log t)l−1.

Note that the C are at most 1 + t+ t2 + · · ·+ tk−3 ≤ tk−2 and l ≤ k so the
implied constant only depends on k. Therefore

∑
pl∈Pb
l>tα2

∑
pl−1∈Pl

· · ·
∑
p2∈P3

π(t; p2, 1)� tbl−1

φ(b)l(log t)l
(log t)l−1 =

tbl−1

φ(b)l log t
.

As for part (c), first note that b/φ(b)� log log b, so for pl > tα2 , we get that
part (b) implies our bound. As for pl ≤ tα2 we’ll split it into cases where p3
is less than or greater than tα2 . If p3 ≤ tα2 , then
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∑
pl∈Pb
pl≤tα2

∑
pl−1∈Pl

· · ·
∑
p2∈P3
p2≤tα2

π(t; p2, 1)�
∑
pl∈Pb
pl≤tα2

∑
pl−1∈Pl

· · ·
∑
p2∈P3
p2≤tα2

t

φ(p2) log t/p2

�
∑
pl∈Pb
pl≤tα2

∑
pl−1∈Pl

· · ·
∑
p2∈P3
p2≤tα2

t

p2 log t

�
∑
pl∈Pb

t(log log t)l−2

pl log t

� t(log log t)l−1

φ(b) log t

If p3 > tα2 , then since b ≤ tα2 there is a minimum m such that pm ≤ tα2 .
So using part (b) with l = m we get

∑
pl∈Pb
pl≤tα2

∑
pl−1∈Pl

· · ·
∑
p2∈P3
p2>tα2

π(t; p2, 1)�
∑
pl∈Pb
pl≤tα2

∑
pl−1∈Pl

· · ·
∑

pm+1∈Pm+2

(pm−1)
m−1t

φ(pm−1)m log t

�
∑
pl∈Pb
pl≤tα2

∑
pl−1∈Pl

· · ·
∑

pm+1∈Pm+2

t

pm−1 log t

� t(log log t)l−m

φ(b) log t

� t(log log t)l−1

φ(b) log t

since m ≥ 2 and by using Brun-Titchmarsh (2.10) which finishes part (c)
and the lemma.

As for the summations requires for the second moment, we’ll note that
we need twice as many sums due to hk(p)

2. However the techniques required
are similar.

Lemma 3.16. Let t > ee and 0 < 2α1 < α2 < 1/2. Then

(a) If b1 > tα1 or b2 > tα1 then∑
p2∈Pb1
r2∈Pb2

π(t; p2r2, 1)� t log2 t

b1b2
. (3.10)
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3.7. Summations Involving π(t, p, 1)

(b) If neither b1 nor b2 exceeds tα1 , then

∑
pk∈Pb1
rk∈Pb2
pkrk>t

α2

...
∑

p2∈Pp3
r2∈Pr3

π(t; p2r2, 1)� t(log log t)k−1bk−12

φ(b1)φ(b2)k log t
+
t(log log t)k−1bk−11

φ(b2)φ(b1)k log t
.

(3.11)

(c) If neither b1 nor b2 exceeds tα1 , then

∑
pk∈Pb1
rk∈Pb2

...
∑

p2∈Pp3
r2∈Pr3

π(t; p2r2, 1)� t(log log t)2k−2

φ(b1)φ(b2) log t
. (3.12)

(d) If neither b1 nor b2 exceeds tα1 , then

∑
pk∈Pb1
rk∈Pb2

...
∑

p3∈Pp4
r3∈Pr4

∑
s∈Pp3∩Pr3

π(t; s, 1)� t(log log t)2k−2

φ(b1)φ(b2) log t
. (3.13)

Again the implicit constants depend on our choice of the α.

Proof. (a) is similar to part (a) of Lemma 3.15. For part (b) we first assume
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that pk ≤ rk, then∑
pk∈Pb1
rk∈Pb2
pk≤rk

pkrk>t
α2

...
∑

p2∈Pp3
r2∈Pr3

π(t; p2r2, 1)

=
∑

pk∈Pb1
rk∈Pb2
pkrk>t

α2

· · ·
∑

p3∈Pp4
r3∈Pr4

#{(m1, p2, r2) : p2 = 1 (mod p3), r2 = 1 (mod r3),

r2p2 > tα2 ,m1r2p2 + 1 ≤ t, p2,m1r2p2 + 1 prime}

=
∑

pk∈Pb1
pk≤rk

∑
pk−1∈Pk

· · ·
∑
p2∈P3

∑
rk∈Pb2
pkrk>t

α2

∑
rk−1∈Prk

· · ·
∑

r4∈Pr5

#{(m1,m2, r3) :

r3 = 1 (mod r4), r3p2 > tα2 ,m1p2(m2r3 + 1) + 1 ≤ t,
{r3,m2r3 + 1,m1p2(m2r3 + 1) + 1} prime}

=
∑

pk∈Pb1
pk≤rk

∑
pk−1∈Pk

· · ·
∑
p2∈P3

#{(m1,m2, . . . ,ml−1, rl) : rl = 1 (mod b2),

p2rk > tα2 ,m1p2(m2 . . . (mk−2(mk−1rk + 1) + 1) + · · ·+ 1 ≤ t,
{rk,mk−1rk + 1,mk−2(mk−1rk + 1) + 1, . . . ,

m1p2(m2 . . . (mk−2(mk−1rk + 1) + 1) + · · ·+ 1} prime}

≤
∑

m1...ml−1≤t1−α2

∑
pk∈Pb1
pk≤rk

∑
pk−1∈Pk

· · ·
∑
p2∈P3

#{rk < t/p2m1...mk−1 :

rk = 1 (mod b2), {rk,mk−1rk + 1,mk−2(mk−1rk + 1) + 1, . . . ,

p2m1(m2 . . . (mk−2(mk−1rk + 1) + 1) + · · ·+ 1} prime}

Just like in Lemma 3.15 we use Brun’s Sieve. However, notice that we have
almost the same set, except with m1 replaced with m1p2. Hence we have

#{rk < t/p2m1 · · ·k−1 : rk = 1 (mod b1), {rk,mk−1rk + 1,mk−2(mk−1rk + 1)

+ 1, . . . , p2m1(m2 . . . (mk−2(mk−1rk + 1) + 1) + · · ·+ 1} prime}

� Ek−1

φ(E)k−1
bk−12

φ(b2)k−1
b2c1 . . . ck−1

φ(b2c1 . . . ck−1)

t/p2m1 . . .mk−1b2
(log t/p2m1 . . .mk−1b2)k
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3.7. Summations Involving π(t, p, 1)

where the ci and E are

E = p2

( l−1∏
i=1

m
i(i+1)/2
i

)
(1 + p2m1 + p2m1m2 + ...+ p2m1 . . .mk−3)

(1 +m2 +m2m3 + · · ·+m2 . . .mk−3) . . . (1 +mk−3)

(1 + p2m1 + p2m1m2 + · · ·+ p2m1 . . .mk−4)(1 +m2

+m2m3 + · · ·+m2 . . .mk−4) . . . (1 +mk−4) . . . (1 + p2m1)

and for 2 ≤ i ≤ k − 2,

c1 = 1 + p2m1 + p2m1m2 + · · ·+ p2m1 . . .mk−2,

ci = 1 +mi +mimi+1 + · · ·+mi . . .mk−2,

ck−1 = 1.

By the same methods as Lemma 3.15, using that p2/φ(p2) is bounded and
noting that

t

p2m1...mk−1b2
>
rk
b1
> tα2/2−α1 = tε

for some ε > 0 since α2 > 2α1, we get that

∑
pk∈Pb1
rk∈Pb2
pkrk>t

α2

· · ·
∑

p2∈Pp3
r2∈Pr3

π(t; p2r2, 1)� tbk−12

φ(b2)k log t

∑
pk∈Pb1

∑
pk−1∈Pk

· · ·
∑
p2∈P3

1

p2

� tbk−12

φ(b2)k log t

∑
pk∈Pb1

(log log t)k−2

pk

� t(log log t)k−1bk−12

φ(b1)φ(b2)k log t
.

The case for rk ≤ pk is similar. As for part (c), first note that bi/φ(bi) �
log log bi for i ∈ {1, 2}. taking care of the case where pkrk > tα2 . As for
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∑
hk(p) to Small Values of pk

pkrk ≤ tα2 we get∑
pk∈Pb1
rk∈Pb2
pkrk≤tα2

· · ·
∑

p2∈Pp3
r2∈Pr3

π(t; p2r2, 1)�
∑

pk∈Pb1
rk∈Pb2
pkrk≤tα2

· · ·
∑

p2∈Pp3
r2∈Pr3

t

φ(p2r2) log t/p2r2

�
∑

pk∈Pb1
rk∈Pb2
pkrk≤tα2

· · ·
∑

p2∈Pp3
r2∈Pr3

t

p2r2 log t

�
∑

pk∈Pb1
rk∈Pb2
pkrk≤tα2

t(log log t)2k−4

pkrk log t

� t(log log t)2k−2

φ(b1)φ(b2) log t

using Brun-Titchmarsh (2.10), finishing part (c). As for part (d) we note
that∑
p3∈Pp4
r3∈Pr4

∑
s∈Pp3∩Pr3

π(t; s, 1)

=
∑

p3∈Pp4
r3∈Pr4

#{(m1, s) : s = 1 (mod p3r3),m1s+ 1 ≤ t, s,m1s+ 1 prime}

=
∑

p3∈Pp4

#{(m1,m2, r3) : r3 = 1 (mod r4),m1(m2p3r3 + 1) + 1 ≤ t,

{m2p3r3 + 1,m1(m2p3r3 + 1) + 1 prime}

and so on, yielding a similar sieve as part (b).

3.8 Reduction of
∑
hk(p) to Small Values of pk

We will be using Euler Summation on the sum
∑

p≤t hk(p) in our efforts to
find our estimate for M1(x). It will turn out that the large primes do not
contribute much to the sum. The sum will involve estimating π(t; p, 1) by
li(t)/p− 1. The following lemma will deal with those errors and will involve
the Bombieri–Vinogradov Theorem (2.13).
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3.8. Reduction of
∑
hk(p) to Small Values of pk

Lemma 3.17. For all 2 ≤ l ≤ k, x > ee
e

and v > ee,∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

(
π(v, pk−l+2, 1)

− li(v)

pk−l+2

)
� v log y

log v
+ li(v)(log log v)l−2.

Proof. Let E(t; r, 1) = π(t; r, 1)− li(t)
r−1 . Then we have∑

q≤yk
log q

∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

. . .

∑
pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

(
π(v, pk−l+2, 1)− li(v)

pk−l+2 − 1

)

=
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

E(v; pk−l+2, 1)

�
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

|E(v; pk−l+2, 1)|.

Let Ω(m) denote the number of divisors of m which are primes or prime
powers. We use the estimate Ω(m)� logm to get
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∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

|E(v; pk−l+2, 1)|

≤ log(yk)
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

|E(v; pk−l+2, 1)|
∑

pk−l+3|pk−l+2−1
p3≤v1/9

∑
pk−l+4|pk−l+3−1
pk−l+4≤v1/27

· · ·
∑
q≤yk

∑
a∈N

qa|pk−1

1

≤ log(yk)
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

|E(v; pk−l+2, 1)|
∑

pk−l+3|pk−l+2−1
p3≤v1/9

∑
pk−l+4|pk−l+3−1
pk−l+4≤v1/27

· · ·
∑

pk≤v1/3
k−1

pk|pk−1−1

Ω(pk − 1)

� log y
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

|E(v; pk−l+2, 1)|
∑

pk−l+3|pk−l+2−1
p3≤v1/9

∑
pk−l+4|pk−l+3−1
pk−l+4≤v1/27

· · ·
∑

pk≤v1/3
k−1

pk|pk−1−1

log v.

Continuing in this manner we obtain∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

|E(v; pk−l+2, 1)|

� log y(log v)l−1
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

|E(v; pk−l+2, 1)| � v log y

log v

using Bombieri–Vinogradov (2.13). As for the difference between∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

li(v)

pk−l+2 − 1
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and ∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

li(v)

pk−l+2
(3.14)

we get that it is∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

li(v)

pk−l+2(pk−l+2 − 1)

≤
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∞∑
i=1

li(v)

(ipk−l+3 + 1)(ipk−l+3)

�
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+3∈Ppk−l+4

pk−l+3≤v1/9

li(v)

p2k−l+3

�
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+3∈Ppk−l+4

pk−l+3≤v1/9

li(v)

pk−l+3qa

�
∑
q≤yk

log q
∑
a∈N

li(v)(log log v)l−2

q2a

�
∑
q≤yk

li(v)(log log v)l−2 log q

q2

� li(v)(log log v)l−2.

The estimate used the Brun–Titchmarsh inequality (2.10), the inequality
pk−l+3 ≥ qa and noting that the sum over q converges.

Lemma 3.18. For all x > ee
e

and t > ee,∑
p≤t

hk(p) =
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤t1/3
k−1

∑
pk−1∈Ppk

pk−1≤t1/3
k−2

· · ·
∑

p2∈Pp3
p2≤t1/3

π(t; p2, 1)

+O

(
t1−1/3

k
log t(log log t)k−2yk +

t(log log t)k−2 log y

log t

)
.
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Proof. For a prime p,

hk(p) =
∑
p1|p

∑
p2|p1−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

νq(pk − 1) log q

=
∑
p2|p−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

νq(pk − 1) log q

since the only prime which can divide p is p itself. Hence

∑
p≤t

hk(p) =
∑
p≤t

∑
p2|p−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

νq(pk − 1) log q

=
∑
p≤t

∑
p2|p1−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

∑
pk∈Pqa
a∈N

log q

=
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

∑
pk−1∈Ppk

· · ·
∑

p2∈Pp3

∑
p≤t
p∈Pp2

1

=
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

∑
pk−1∈Ppk

· · ·
∑

p2∈Pp3

π(t; p2, 1).

We wish to approximate π(t; p2, 1) by li(t)
p2−1 and use the Bombieri-Vinogradov

Theorem to deal with the error. However this approximation only allows
primes up to say t1/3. So we use the estimations in Lemma 3.15 to bound
these errors. We will see that the main contribution comes from pi ≤ t1/3

i−1

and qa ≤ t1/3k .
Using Lemma 3.15, we get for large qa

∑
q≤yk

log q
∑
a∈N

qa>t1/3
k

∑
pk∈Pqa

∑
pk−1∈Ppk

· · ·
∑

p3∈Pp2

π(t; p2, 1)

�
∑
q≤yk

log q
∑
a∈N

qa>t1/3
k

t log t(log log t)k−2

qa
.

By geometric estimates, if a∗ is the smallest a where qa > t1/3
k
, then we get

that the above is bounded by
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O

(
t log t(log log t)k−2

∑
q≤yk

log q

qa∗

)
� t1−1/3

k
log t(log log t)k−2

∑
q≤yk

log q

� t1−1/3
k

log t(log log t)k−2yk.

Now suppose qa ≤ t1/3k . Let l be the last index (supposing one exists) where
pi > t1/3

i−1
By using (3.8) where l ranges from 2 to k, we can bound the

large values of the pi.

∑
q≤yk

log q
∑
a∈N

qa≤t1/3k

∑
pk∈Pqa

pk≤t1/3k−1

· · ·
∑

pl+1∈Ppl+2

pl+1≤t1/3
l

∑
pl∈Ppl+1

pl>t
1/3l−1

∑
pl−1∈Ppl

· · ·
∑

p2∈Pp3

π(t; p2, 1)

�
∑
q≤yk

log q
∑
a∈N

qa≤t1/3k

∑
pk∈Pqa

pk≤t1/3
k−1

· · ·
∑

pl+2∈Ppl+3

pl+2≤t1/3
l+1

∑
pl+1∈Ppl+2

pl+1>t
1/3l

pl−1l+1t

φ(pl+1)l log t

�
∑
q≤yk

log q
∑
a∈N

qa≤t1/3k

∑
pk∈Pqa

pk≤t1/3
k−1

· · ·
∑

pl+2∈Ppl+3

pl+2≤t1/3
l+1

∑
pl+1∈Ppl+2

pl+1>t
1/3l

t

pl+1 log t

since pl is prime and l ≤ k. By Brun-Titchmarsh (2.10) we get

�
∑
q≤yk

log q
∑
a∈N

qa≤t1/3k

t(log log t)k−l

qa log t

�
∑
q≤yk

t(log log t)k−l log q

q log t

� t(log log t)k−2 log y

log t
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by (2.3) and since l ≥ 2. Hence we get∑
p≤t

hk(p) =
∑
q≤yk

log q
∑
a∈N

qa≤t1/3k

∑
pk∈Pqa

pk≤t1/3
k−1

∑
pk−1∈Ppk

pk−1≤t1/3
k−2

· · ·
∑

p2∈Pp3
p2≤t1/3

π(t, p2, 1)

+O

(
t1−1/3

k
log t(log log t)k−2yk +

t(log log t)k−2 log y

log t

)
finishing the lemma.

3.9 Evaluation of the Main Term

Now we’ll deal with the main term from Lemma 3.18. We will deal with
estimating the individual sums recursively. Hence we wish to make the
following definition.

Definition 3.19. Let 2 ≤ l ≤ k and 2 ≤ u ≤ t. Then define

gk,l(u) =
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤u1/3
l−1

∑
pk−1∈Ppk

pk−1≤u1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤u1/3

π(u; pk−l+2, 1).

Note that gk,k(t) is the summation in Lemma 3.18. Next we’ll exhibit a
recursive formula satisfied by the gk,l.

Lemma 3.20. Let 3 ≤ l ≤ k, then

gk,l(v) = li(v)

∫ v1/3

2

1

u2
gk,l−1(u)du+O

(
v(log log v)l−2 log y

log v

)
. (3.15)

Proof. We’ll proceed by approximating π by li and then use partial summa-
tion to recover π. Using Lemma 3.17 we get

gk,l(v) =
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

π(v; pk−l+2, 1)

=
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

li(v)

pk−l+2

+O

(
v log y

log v
+ li(v)(log log v)l−2

)
.
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We use Euler summation on the inner sum to get

∑
pk−l+2∈Ppk−l+3

pk−l+2≤v1/3

1

pk−l+2
=
π(v1/3; pk−l+3, 1)

v1/3
+

∫ v1/3

2

π(u; pk−l+3, 1)

u2
du.

Our function then becomes

gk,l(v) = li(v)
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

. . .

∑
pk−l+3∈Ppk−l+4

pk−l+3≤v1/3

(
π(v1/3; pk−l+3, 1)

v1/3
+

∫ v1/3

2

π(u; pk−l+3, 1)

u2
du

)

+O

(
v log y

log v
+ li(v)(log log v)l−2

)
.

We trivially estimate π(x; q, 1) by x/q inside the sum and then use Brun–
Titchmarsh (2.10) to get

∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+3∈Ppk−l+4

pk−l+3≤v1/3

π(v1/3; pk−l+3, 1)

v1/3

�
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa

pk≤v1/3
l−1

∑
pk−1∈Ppk

pk−1≤v1/3
l−2

· · ·
∑

pk−l+3∈Ppk−l+4

pk−l+3≤v1/3

1

pk−l+3

�
∑
q≤yk

log q
∑
a∈N

(log log v)l−2

qa

�
∑
q≤yk

log q
(log log v)l−2

q

� (log log v)l−2 log y.

Multiplying through by li(v) finishes the lemma.

We now require a lemma to find the asymptotic formula for hk using the
previous recurrence relation.
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3.9. Evaluation of the Main Term

Lemma 3.21. Let 2 ≤ l ≤ k.

gk,l(u) =
ku(log log u)l−1 log y

(l − 1)! log u
+O

(
u(log log u)l−1

log u
+
u(log log u)l−2 log2 y

log u

)
which implies

∑
p≤t

hk(p) =
kt(log log t)k−1 log y

(k − 1)! log t
+O

(
t(log log t)k−1

log t

+
t(log log t)k−2 log2 y

log t
+ t1−1/3

k
log t(log log t)k−2yk

)
.

Proof. The second formula is derived from the first by setting l = k, u = t
and using Lemma 3.18. We’ll proceed with the first formula by induction
on l. Using the estimates we obtained via Bombieri–Vinogradov (2.13) in
Lemma 3.17, we have for l = 2

gk,2(u) =
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa
pk≤u1/3

π(u; pk, 1)

= li(u)
∑
q≤yk

log q
∑
a∈N

∑
pk∈Pqa
pk≤u1/3

1

pk
+O

(
li(u) +

u log y

log u

)
.

We then use (2.12) and

log log(u1/3) = log log u+O(1)
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3.9. Evaluation of the Main Term

to get

gk,2(u) = li(u)
∑
q≤yk

log q
∑
a∈N

(
log log u1/3

φ(qa)
+O

(
log(qa)

φ(qa)

))
+O

(
u log y

log u

)

= li(u)(log log u+O(1))
∑
q≤yk

log q
∑
a∈N

(
1

qa

+O

(
1

qa+1

))
+O

(
li(u)

∑
q≤yk

log2 q
∑
a∈N

a

qa

)
+O

(
u log y

log u

)

= li(u)(log log u+O(1))
∑
q≤yk

(
log q

q
+O

(
log q

q2

))

+O

(
li(u)

∑
q≤yk

log2 q

q
+
u log y

log u

)

= li(u) log log u log(yk) +O

(
li(u)(log y + log log u+ log2 y) +

u log y

log u

)
=
ku log log u log y

log u
+O

(
u log log u

log u
+
u log2 y

log u

)
,

using equation (2.3), completing the base case. Now using Lemma 3.20 we
get

gk,l(v) = li(v)

∫ v1/3

2

1

u2
gk,l−1(u)du+O

(
v(log log v)l−2 log y

log v

)
= li(v)

∫ v1/3

2

1

u2

(
ku(log log u)l−2 log y

(l − 2)! log u
+O

(
u(log log u)l−2

log u

+
u(log log u)l−3 log2 y

log u

))
du+O

(
v(log log v)l−2 log y

log v

)
= li(v)

∫ v1/3

2

(
k(log log u)l−2 log y

(l − 2)!u log u
+O

(
(log log u)l−2

u log u

+
(log log u)l−3 log2 y

u log u

))
du+O

(
v(log log v)l−2 log y

log v

)
=
k li(v)(log log v1/3)l−1 log y

(l − 1)!
+O

(
li(v)(log log v1/3)l−1

+ li(v)(log log v1/3)l−2 log2 y +
v(log log v)l−2 log y

log v

)
.
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3.10. The Proof of the First Moment

Once again by using

log log v1/3 = log log v +O(1)

we get

kv(log log v)l−1 log y

(l − 1)! log v
+O

(
v(log log v)l−1

log v

+
v(log log v)l−2 log2 y

log v
+
v(log log v)l−2 log y

log v

)
=
kv(log log v)l−1 log y

(l − 1)! log v
+O

(
v(log log v)l−1

log v
+
v(log log v)l−2 log2 y

log v

)
,

completing the induction.

3.10 The Proof of the First Moment

We now are in a position to prove the proposition for the first moment.

Proof of Proposition 3.13.

M1(x) =
∑
p≤x

hk(p)

p

=
∑
p≤ee

hk(p)

p
+

∑
ee<p≤x

hk(p)

p

= O(1) +
∑

ee<p≤x
hk(p)

(
1

x
+

∫ x

p

dt

t2

)
= O(1) +

1

x

∑
ee<p≤x

hk(p) +

∫ x

ee

dt

t2

∑
ee<p≤t

hk(p).

Using t = x in Lemma 3.21 we get that∑
ee<p≤x

hk(p)�
xyk−1 log y

log x
.

Since ∑
ee<p≤t

hk(p) and
∑
p≤t

hk(p)

differ by a constant, we get that
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3.11. The Proof of the Second Moment

M1(x) = O(1) +
1

x
O

(
xyk−1 log y

log x

)
+

∫ x

ee

dt

t2

(
kt(log log t)k−1 log y

(k − 1)! log t

+O

(
t(log log t)k−1

log t
+
t(log log t)k−2 log2 y

log t

+ t1−1/3
k

log t(log log t)k−2yk
))

using Lemma 3.21. Noting that∫ x

ee

dt

t2
t1−1/3

k
log t(log log t)k−2yk

=

∫ x

ee

ykdt

t1+ε

� yk,

we conclude that M1(x) is

O(yk) +O

(
yk−1 log y

log x

)
+

∫ x

ee

dt

t2

(
kt(log log t)k−1 log y

(k − 1)! log t
+O

(
t(log log t)k−1

log t

+
t(log log t)k−2 log2 y

log t

))
= O(yk) +

k(log log x)k log y

k(k − 1)!
+O

(
(log log x)k + (log log x)k−1 log2 y

)
=
yk log y

(k − 1)!
+O(yk)

as needed.

3.11 The Proof of the Second Moment

We now turn our attention to the second moment. Our first lemma will
bound the case where p3 = r3 and then we’ll use the summations from
Lemma 3.16 to take care of the rest.

52



3.11. The Proof of the Second Moment

Lemma 3.22.∑
q1,q2≤yk

log q1 log q2
∑

a1,a2∈N

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

· · ·
∑

p3∈Pp4
r3∈Pr4

∑
s∈Pp3∩Pr3

∑
p≤t
p∈Ps

1

� t1−εyk log y +
t(log log t)2k−2

log t
log2 y

for some ε > 0.

Proof. Our sum is∑
q1,q2≤yk

log q1 log q2
∑

a1,a2∈N

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

· · ·
∑

p3∈Pp4
r3∈Pr4

∑
s∈Pp3∩Pr3

∑
p≤t
p∈Ps

1

=
∑

q1,q2≤yk
log q1 log q2

∑
a1,a2∈N

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

· · ·
∑

p3∈Pp4
r3∈Pr4

∑
s∈Pp3r3

π(t; s, 1).

We split up into two cases. If qa11 q
a2
2 > tα, then suppose qa11 > tα/2. (the

other case is analogous) Thus p3r3 > tα/2. Hence Lemma 3.15 part (a) yields∑
q1,q2≤yk

log q1 log q2
∑

a1,a2∈N
q
a1
1 >t

α
2

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

· · ·
∑

p3∈Pp4
r3∈Pr4

∑
s∈Pp3r3

π(t; s, 1)

�
∑

q1,q2≤yk
log q1 log q2

∑
a1,a2∈N
q
a1
1 >t

α
2

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

· · ·
∑

p3∈Pp4
r3∈Pr4

t log t

p3r3

�
∑

q1,q2≤yk
log q1 log q2

∑
a1,a2∈N
q
a1
1 >t

α
2

t log t(log log t)2k−4

qα1
1 qα2

2

.

using Brun–Titchmarsh (2.10). By letting A = min{a|qa11 > t
α
2 } we get

�
∑

q1,q2≤yk
log q1 log q2

t log t(log log t)2k−4

qA1 q2

≤ t1−
α
2 log t(log log t)2k−4

∑
q1≤yk

log q1
∑
q2≤yk

log q2
q2

� t1−εyk log y
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3.11. The Proof of the Second Moment

by equations (2.1) and (2.3). If qa11 q
a2
2 ≤ tα, then by Lemma 3.16 part (d)

we get∑
q1,q2≤yk

log q1 log q2
∑

a1,a2∈N
q
a1
1 q

a2
2 ≤tα

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

· · ·
∑

p3∈Pp4
r3∈Pr4

∑
s∈Pp3r3

π(t; s, 1)

�
∑

q1,q2≤yk
log q1 log q2

∑
a1,a2∈N
q
a1
1 q

a2
2 ≤tα

t(log log t)2k−2

qa11 q
a2
2 log t

�
∑

q1,q2≤yk
log q1 log q2

t(log log t)2k−2

q1q2 log t

=
t(log log t)2k−2

log t

( ∑
q≤yk

log q

q

)2

� t(log log t)2k−2

log t
log2 y

by (2.3), completing the lemma.

We now have enough to finish the second moment which is the final piece
of the puzzle.

Proof of Proposition 3.14.

∑
p≤t

hk(p)
2 =

∑
p≤x

(∑
p1|p

∑
p2|p1−1

· · ·
∑

pk|pk−1−1

∑
q≤yk

νq(pk − 1) log q

)2

=
∑

q1,q2≤yk
log q1 log q2

∑
a1,a2∈N

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

· · ·
∑

p2∈Pp3
r2∈Pr3

∑
p≤t
p∈Pp2
p∈Pr2

1

since the condition p1 | p only occurs if p1 = p. We then split up the sum
according to whether or not p2 = r2. Lemma 3.22 deals with the part where
s = p2 = r2 leaving us with
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3.11. The Proof of the Second Moment

∑
q1,q2≤yk

log q1 log q2
∑

a1,a2∈N

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

...
∑

p2∈Pp3
r2∈Pr3
p2 6=r2

∑
p≤t
p∈Pp2
p∈Pr2

1

+O

(
t1−εyk log y +

t(log log t)2k−2

log t
log2 y

)
.

The sum becomes∑
q1,q2≤yk

log q1 log q2
∑

a1,a2∈N

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

· · ·
∑

p2∈Pp3
r2∈Pr3

π(t; p2r2, 1).

If qa11 > tα1 , then so is p2, and hence by (3.10) we get

∑
q1,q2≤yk

log q1 log q2
∑

a1,a2∈N
q
a1
1 >tα1

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

· · ·
∑

p3∈Pp4
r3∈Pr4

t log2 t

p3r3

�
∑

q1,q2≤yk
log q1 log q2

∑
a1,a2∈N
q
a1
1 >tα1

t log2 t(log log t)2k−4

qa11 q
a2
2

� t1−α1 log2 t(log log t)2k−4
∑

q1,q2≤yk
log q1 log q2

∑
a2∈N

1

qa22

� t1−α1 log2 t(log log t)2k−4
∑

q1,q2≤yk

log q1 log q2
q2

� t1−α1 log2 t(log log t)2k−4(yk log y).

We similarly get the same bound if qa22 > tα1 . If neither of qa11 , q
a2
2 exceed

tα1 , then by (3.12) and using that for bi = qaii

bi
φ(bi)

� 1,
1

φ(bi)
� 1

bi
,
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3.11. The Proof of the Second Moment

we get ∑
q1,q2≤yk

log q1 log q2
∑

a1,a2∈N
q
a1
1 ,q

a2
2 ≤tα1

∑
pk∈Pqa11
rk∈Pqa22

∑
pk−1∈Ppk
rk−1∈Prk

. . .

∑
pi∈Ppi+1
ri∈Pri+1

∑
pi−1∈Ppi
ri−1∈Pri

· · ·
∑

p2∈Pp3
r2∈Pr3

π(t; p2r2, 1)

�
∑

q1,q2≤yk
log q1 log q2

∑
a1,a2∈N

q
a1
1 ,q

a2
2 ≤tα1

t(log log t)2k−2

qa11 q
a2
2 log t

� t(log log t)2k−2

log t

∑
q1,q2≤yk

log q1 log q2
q1q2

� t(log log t)2k−2 log2 y

log t
.

The above gives us

∑
p≤t

hk(p)
2 � t1−εyk log y +

t(log log t)2k−2 log2 y

log t
.

Using partial summation we have

M2(x) =
∑
p≤x

hk(p)
2

p
=
∑
p≤ee

hk(p)
2

p
+

1

x

∑
ee≤p≤x

hk(p)
2 +

∫ x

ee

dt

t2

∑
ee≤p≤t

hk(p)
2

� 1 +
1

x

(
x1−εyk log y +

x(log log x)2k−2 log2 y

log x

)
+

∫ x

ee

(
t−1−εyk log y +

(log log t)2k−2 log2 y

t log t

)
dt

� y2k−2 log2 y

log x
+ x−εyk log y + (log log x)2k−1 log2 y

� y2k−1 log2 y

completing the proof of Proposition 3.14 and hence Theorem 1.4.
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Chapter 4

Iterates Between φ and λ

We now turn our attention to the proof of Theorem 1.5. It will be necessary
to use the following upper bound for the Carmichael function of a product.

Lemma 4.1. Let a, b be natural numbers, then

λ(ab) ≤ bλ(a). (4.1)

Proof. We first note that it suffices to show the inequality whenever b is
prime, because if

b = p1 . . . pk

where the pi are not necessarily distinct, then repeated use of the theorem
where b is prime yields

λ(ab) = λ(ap1 . . . pk) ≤ p1λ(ap2 . . . pk) ≤ · · · ≤ p1 . . . pkλ(a) = bλ(a).

If b is a prime which divides a, then for some e > 0

a = bepe11 . . . pekk and ab = be+1pe11 . . . pekk .

Therefore

λ(ab) = lcm

(
λ(be+1), λ(pe11 ), . . . , λ(pekk )

)
≤ lcm

(
bλ(be), λ(pe11 ), . . . , λ(pekk )

)
≤ b ∗ lcm

(
λ(be), λ(pe11 ), . . . , λ(pekk )

)
= bλ(a)

where the first inequality is in fact an equality if be = 4. (Also note that
in this case, it would not be hard to show that λ(ab) | bλ(a).) If (a, b) = 1,
then e = 0 and
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Chapter 4. Iterates Between φ and λ

λ(ab) = lcm

(
b− 1, λ(pe11 ), . . . , λ(pekk )

)
≤ (b− 1) lcm

(
λ(pe11 ), . . . , λ(pekk )

)
< bλ(a),

ending the proposition.

Suppose that g(n) is an arithmetic function of the form φ(h(n)) where
h(n) is a (k − 1)–fold iterate involving φ and λ. Note that if a | b, then
λ(a) | φ(b) since λ(a) | φ(a) | φ(ma) for anym. More easily we see λ(a) | λ(b)
and φ(a) | φ(b). Inductively we can therefore show λk(n) | g(n). Thus we
can use equation (4.1) to get

λl+k(n) ≤ λl(g(n)) = λl

(
g(n)

λk(n)
λk(n)

)
≤ λl+k(n)

g(n)

λk(n)
.

Since g(n) ≤ n we have that

g(n)

λk(n)
≤ n

λk(n)
= exp

(
1

(k − 1)!
(1 + ok(1))(log log n)k log log log n

)
by Theorem 1.4 for almost all n. Hence

λl+k(n) ≤ λl(g(n))

≤ λl
(
g(n)

λk(n)
λk(n)

)
≤ λl+k(n) exp

(
1

(k − 1)!
(log log n)k(1 + ok(1)) log log log n

)
for almost all n. From the fact that

λl+k(n) = n exp

(
− 1

(k + l − 1)!
(1 + ol,k(1))(log log n)k+l log log log n

)
we get

λl(g(n)) = n exp

(
− 1

(k + l − 1)!
(1 + ol,k(1))(log log n)k+l log log log n

)
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Chapter 4. Iterates Between φ and λ

for almost all n. As for φ(g(n)) we note that unless g(n) = φk(n), g(n) can
be writen as φl(h(n)) where h(n) is a (k − l)–fold iterate beginning with a
λ. From above we can see that

h(n) = n exp

(
− 1

(k − l − 1)!
(1 + ok(1))(log log n)k−l log log log n

)
and so φ(h(n)) is bounded above by h(n) and below by

h(n)

eγ log log h(n) + 3
log log h(n)

=
h(n)

eγ log
(

log n− 1
(k−l−1)!(1 + ok(1))(log log n)k−l log log log n

)
=

h(n)

eγ log log n−O
(

1
(k−l−1)! logn(1 + ok(1))(log log n)k−l log log log n

)
= h(n) exp

(
O(log log log n)

)
which is within the error of h(n). Hence any string of φ will not change
our estimate. Therefore if j(n) is a k–fold iteration of φ and λ which is not
φk(n), but which begins with l copies of φ, then

j(n) = n exp

(
− 1

(k − l − 1)!
(1 + ok(1))(log log n)k−l log log log n

)
yielding our theorem.

59



Chapter 5

Bounds on L(n)

In this chapter, we will be showing upper and lower bounds for the arithmetic
function L(n). Recall L(n) is the smallest k such that λk(n) = 1. The height
of the Pratt Tree is H(p). Our goal is to prove Theorems 1.6 and 1.7. The
former says there exists some c > 0 such that L(n) ≥ c log logn for almost
all n ≤ x. The latter says if H(p) ≤ (log p)γ for almost all p ≤ x outside a
set of size O

(
x exp(−(log x)δ)

)
for some δ > 0, then for some function η, we

have L(n) � (log n)γη(n) for almost all n as n → ∞. Finally we justify a
conjecture about the normal order of L(n).

5.1 Lower Bound for L(n)

We start with two lemmas which establishes that L(n) ≥ L(p) provided
p | n. This will be essential in our proof of the lower bound.

Lemma 5.1. For all natural numbers a, b,

λ(lcm(a, b)) = lcm(λ(a), λ(b)).

Proof. Let a = pα1
1 pα2

2 . . . pαrr and b = pβ11 p
β2
2 . . . pβrr where at least one of

αi, βi > 0. Then

lcm(λ(a), λ(b)) = lcm
(
λ(pα1

1 pα2
2 . . . pαrr ), λ(pβ11 p

β2
2 . . . pβrr )

)
= lcm(λ(pα1

1 ), λ
(
pα2
2 ), . . . , λ(pαrr ), λ(pβ11 ), λ(pβ22 ), . . . , λ(pβrr )

)
= lcm

(
λ
(
p
max(α1,β1)
1

)
, λ
(
p
max(α2,β2)
2

)
, . . . , λ

(
pmax(αr,βr)
r

))
= λ

(
p
max(α1,β1)
1 p

max(α2,β2)
2 . . . pmax(αr,βr)

r

)
= λ(lcm(a, b)).

Lemma 5.2. Given a positive integer n =
∏r
i p

αi
i ,
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5.1. Lower Bound for L(n)

(a) L(n) = maxi{L(pαii )}.

(b) L(pα) = α− 1 + L(p) ≥ L(p) for α ≥ 1.

Note that these two equations imply L(n) ≥ L(p) for all p | n.

Proof. We show both parts by induction. For part (a) we show

λk(n) = lcm
(
λk(p

α1
1 ), . . . , λk(p

αr
r )
)

(5.1)

for k ≥ 0. For k = 0, it is true by the definition of n. Suppose it’s true for
some k, then by Lemma 5.1

λk+1(n) = λ(λk(n)) = λ
(

lcm
(
λk(p

α1
1 ), . . . , λk(p

αr
r )
))

= lcm
(
λ
(
λk(p

α1
1 )
)
, . . . , λ

(
λk(p

αr
r )
))

= lcm
(
λk+1(p

α1
1 ), . . . , λk+1(p

αr
r )
)

proving the induction. Equation (5.1) implies part (a) since the least com-
mon multiple of a set is 1 if and only if each number in the set is 1.

For part (b), we prove this by induction on α. If α = 1 then the theorem
is clearly true. Suppose L(pα) = α− 1 + L(p) then for α+ 1,

λ(pα+1) = pαλ(p).

Since (pα, λ(p)), by part (a),

L(pαλ(p)) = max
(
L(pα), L(λ(p))

)
= max

(
α−1+L(p), L(p)−1

)
= α−1+L(p).

Therefore L(pα+1) = α+ L(p), completing the induction and the theorem.

For any p | n, we know that L(n) ≥ L(p), which implies that L(n) >
c log log p for almost all p. However, if all the primes p dividing n are small
relative to n, or if n is divisible by exceptional primes, this will not imply
that L(n) > c log log n. The proof of Theorem 1.6 therefore relies on showing
that not many n are composed entirely of small primes as well as dealing
with the exceptional set for which (1.6) doesn’t hold.

Proof of Theorem 1.6. Let Y = Y (x) ≤ x. Given c from equation (1.6),
define a set S(x) = S(x, Y ) = {p : p ≥ Y,H(p) < c log log p}. From [10,
Theorem 3] we have that #S(x) � x/(log x)K for some K > 1. If p | n for
some p /∈ S(x), and p ≥ Y,
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5.2. Upper Bound for L(n)

L(n) ≥ L(p) ≥ H(p) ≥ c log log p ≥ c log log Y.

Either there exists p ≥ Y, p ∈ S(x) such that p | n or else n is composed
entirely of primes less than or equal to Y. The number of n ≤ x where there
exists p | n with p ∈ S(x) is bounded by

∑
n≤x

∑
p|n

p∈S(x)

1 =
∑
p≤x

p∈S(x)

∑
n≤x

n≡0 (mod p)

1

≤
∑
p≤x

p∈S(x)

x

p

= x

∫ x

Y

d(S(t))

t

= x

(
|S(x)|
x

+

∫ x

Y

S(t)dt

t2

)
� x

logK x
+

∫ x

Y

dt

t logK t

� x

logK−1 Y

using partial summation. Let Ψ(x, z) be the number of n ≤ x composed of
primes p ≤ z and let z = x1/u. Let U > 0, and ρ(u) be the Dickman function
which goes to 0 as u→∞. By [17, Theorem 7.2],

Ψ(x, z)� xρ(u)

uniformly for 0 ≤ u ≤ U. Given ε > 0, choose Y such that log Y = (log x)1−ε.
Since Y < xγ for all γ > 0, this choice yields L(n) ≥ c(1− ε) log log x for all
but O

(
x/(log Y )K−1+Ψ(x, Y )

)
= o(x) such n ≤ x, completing the theorem.

5.2 Upper Bound for L(n)

The Pratt tree for a prime p describes the primes q where q ≺ · · · ≺ p.
This is useful in calculating L(p). However L(p) is also increased by prime
powers which the Pratt tree does not describe. The proof of Theorem 1.7
hinges on bounding the contribution of these large prime powers. We will
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5.2. Upper Bound for L(n)

show Theorem 1.7 is a corollary to the following main propostion, that the
difference between H(p) and L(p) cannot be too great.

Proposition 5.3. Let b > 0 and c be the constant from (2.10). Suppose
H(p) ≤ (log p)γ for all p ≤ x outside a set of size O

(
x exp(−(log x)δ)

)
and

let η(x) be a function such that

x(cy)(log x)
γ+1

2b(log x)γη(x)−2
= o(x). (5.2)

Then
L(n)� (log x)γη(x)

for almost all n ≤ x, for which the excluded n are divisible by at least one
prime p in the above excluded set.

Note that if η∗(x) is some function such that bη∗(x)(log x)γ − log(cy)→
∞ and η(x) > 1

b log 2 log(cy) + η∗(x), then

x(cy)(log x)
γ+1

2b(log x)γη(x)−2
=

x exp
(
((log x)γ + 1) log(cy)

)
exp

(
(bη(x)(log x)γ − 2) log 2

)
� x exp

(
log(cy)− bη∗(x)(log x)γ

)
= o(x).

Specifically we can choose η(x)�b log log log x. The proof of Propostion 5.3
begins by analyzing the ways that L(p) can be much larger than H(p) and
then showing in those cases that it cannot happen for many p.

Proof of Proposition 5.3. Let n =
∏
pαii be the prime factorization of n

where H(p) ≤ (log p)γ for all p dividing n. By equations (1.7) and (1.8),
L(n) = maxi{αi − 1 + L(p)}. Our first goal is to show that the number of
n for which there exists a large α with pα | n is small. Fixing a prime p
and α ≥ 2, the number n ≤ x such that pα | n is at most x/pα. Hence the
number of bad n is bounded by

∑
p≤x

x

pα
≤ x

x∑
m=2

1

mα
� x

∫ ∞
2

t−αdt =
x

(α− 1)2α−1
.

Therefore the number of bad n is bounded is o(x) for any choice of α = ξ(x)
with ξ(x)→∞. Therefore for almost all n ≤ x we can assume

L(n) ≤ max
p|n

(L(p) + ξ(x)) = max
p|n

(L(p) + o((log x)γ)
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5.2. Upper Bound for L(n)

by taking ξ(x) = o((log x)γ).
Let η(x) be a function satifying the hypothesis of the proposition. We

must determine how L(p) can be larger than H(p) and by how much. First
note that for any prime in the Pratt tree, the difference between the factors
of q − 1 and the primes in the Pratt tree are just the powers of that prime
which divide q − 1. Therefore, if we have a branch of the Pratt tree, 2 =
qk ≺ qk−1 ≺ · · · ≺ q1 ≺ q0 = p, then L(p) ≤ max{H(p) +

∑k
i=1(αi − 1)}

where qαii ‖qi−1 − 1 and the max is taken over all the branches of the Pratt
tree. The inequality qαii < qi−1 holds for all i which implies

2
∏k
i=1 αi < p.

Therefore we need to maximize the sum
∑k

i=1(αi− 1) subject to
∏k
i=1 αi <

log x/ log 2.
Suppose we have rs = tu, where 2 ≤ r, s, t, u ≤ M. The larger of r + s

and t+u will be where the two terms are further apart. Consequently if we
wish to maximize a sum subject a fixed product and number of terms, we
want some terms to be the lowest possible value, in this case 2, and the rest
to be the largest value, in this case M.

Suppose for the purpose of contradiction, that
∑k

i=1(αi−1)� η(x)(log x)γ ,
where 2 ≤ αi ≤M and M ≤ bη(x)(log x)γ for any constant b. By the above
reasoning we know the sum is bounded by 2(k − l) + lM for some l ≤ k.
However, M l ≤ log x/ log 2 implying l ≤ (log log x− log log 2)/ logM. Since
k � log log x, we conclude 2(k − l) + lM is bounded above by

O

(
log log x+M(log log x− log log 2)/ logM

)
= o
(
η(x)(log x)γ

)
,

contradicting the fact that the sum is � η(x)(log x)γ . As a result, either∑k
i=1(αi−1)� η(x)(log x)γ , completing the theorem, or M ≥ bη(x)(log x)γ .

In the latter case, there exists some αi ≥ bη(x)(log x)γ for some b > 0.
It remains to show that the number of n ≤ x such that there exists

qα | qk−1 − 1, qk−1 | qk−2 − 1, . . . , q1 | p − 1, p | n, with α ≥ bη(x)(log x)γ

is o(x). Note that k ≤ H(p) ≤ (log x)γ . By Lemma 2.2, the number of n is
bounded by

∑
α≥bη(x)(log x)γ

∑
k≤(log x)γ

∑
q

x(cy)k

qα
.
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5.2. Upper Bound for L(n)

Summing q over all integers at least 2 instead of primes as above and using
α ≥ 2 makes this

�
∑

α≥bη(x)(log x)γ

∑
k≤(log x)γ

x(cy)k

2α−1
.

Summing the geometric series under both α and k yields

� x(cy)(log x)
γ+1

2bη(x)(log x)γ−2
.

By the choice of η this is o(x) and hence for almost all n ≤ x,

L(n) ≤ o((log x)γ) + max
p|n

{
H(p) +

k∑
i=1

(αi − 1)

}
� (log n)γ + η(x)(log x)γ

� η(x)(log x)γ .

We are now in a position to prove Theorem 1.7. Proposition 5.3 yields
the theorem provided n wasn’t divisible by any primes for which (1.9) fails
to hold, so it remains to consider when n is divisible by such a prime.

Proof of Theorem 1.7. Let Y = Y (x) → ∞ such that log Y � (log x)γ . As
in the proof of Theorem 1.6 we know that the set of n ≤ x which are com-
posed entirely of primes less than or equal to Y has density 0. Therefore we
only need to consider values of n for which there exists a prime greater than
Y where H(p) > (log p)γ . Let S(x) be the set {Y < p ≤ x | L(p) > (log p)γ}.
Since L(p) > H(p), by (1.9) we know that #S(x) � x exp

(
−(log t)δ

)
. The

number of n ≤ x where n is divisible by a prime in S(x) is bounded by∑
n≤x

∑
p∈S(x)
p|n

1 ≤
∑

p∈S(x)

x

p

=
x|S(x)|
x

+ x

∫ x

Y

|S(t)|dt
t2

� x exp
(
−(log x)δ

)
+ x

∫ x

Y

exp
(
−(log t)δ

)
dt

t

� x exp
(
−(log x)δ

)
+

x

log x
+

x

log Y

using partial summation and exp(−(log t)δ)� (log t)−2. By our choice of Y
the number of n is o(x) completing the theorem.
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5.3. Conjecture for the Normal Order of L(n).

5.3 Conjecture for the Normal Order of L(n).

The purpose of this section is to justify Conjecture 1.9 assuming the conjec-
ture in [10, Conjecture 2] which says H(p) = e log log p− 3

2 log log log p+E(p)
for a slow growing function E(p), and for almost all p. Note that this im-
plies both that H(p) ∼ e log log p and that H(p) ≤ log log p for almost all
p. To justify our conjecture, we wish to analyze the difference L(p)−H(p)
to show that it is not too large. As we saw in the previous section, this
difference is created when a branch of the Pratt tree has pai | pi−1 − 1
where a > 1. Let Y = Y (x) ≤ x. Also let a branch of the Pratt tree be
p1 � p2 � · · · � pl � pl+1 � · · · � pk = 2 where paii ‖pi−1 − 1 and let l
be the largest index such that pl > Y. We will separate our arguments into
there parts. First is the trivial case to show there are not too many primes
after pl+1. Then we deal with i < l + 1, and i = l + 1, by some probability
arguments.

By the trivial estimate L(n) � log n we know L(pl+1) � log Y. By a
suitable choice of Y this will be made to be o(log log x).

For i ≤ l, we wish to know the probability that n has a factor pa, where
p > Y. We use the following lemma.

Lemma 5.4. The number of n ≤ x for which there exists p > Y where pa‖n
is O(x/Y a−1).

Proof. The number of n is bounded by∑
n≤x

∑
p>Y
pa‖n

1 ≤
∑
p>Y

x

pa
� x

Y a−1 .

By Lemma 5.4 we should expect a proportion of at most c/Y a. This
implies that the probability of paii ‖pi−1 − 1 where (a2 − 1) + (a3 − 1) +
· · · + (al − 1) = η(x) is bounded by cl/Y η(x). Since the number of possible
branches of the Pratt tree is trivially bounded by log x, the probability of
there existing such a string of ai is bounded by

1−
(

1− cl

Y η(x)

)log x

.

This bound will approach 0 provided log x = o
(
Y η(x)/cl

)
. Under the assump-

tion that H(p) ≤ e log log(p), we have l ≤ H(p) ≤ e log log(p). Therefore a
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5.3. Conjecture for the Normal Order of L(n).

choice of Y = exp((log log x)3/4) and η(x) = (log log x)3/4 makes the contri-
bution to L(p)−H(p) be o(log log x) for i 6= l + 1.

For i = l + 1, we have p
al+1

l+1 | pl − 1. The remaining contribution to
L(p) −H(p) is al+1 − 1, if pl+1 > 2 and d(al+1 + 1)/2e if pl+1 = 2. For the
al+1 to contribute a lot to L(p), it must be at the end of a long prime chain,
i.e. l � log log p, otherwise the conjectured value of H(p) being e log log p
would nullify the contribution. To show this is unlikely, we use a result from
[3] which implies that the number of primes at a fixed level n of the Pratt tree
is ∼ (log log p)n/n!. If we allow some dependence and use n = c log log p, for
0 < c < log log p we get roughly (e/c)c log log p = (log p)c log(e/c) primes at level
n. We show that the probability of none of these primes being congruent to
1 modulo p

al+1

l+1 goes to 1 provided p
al+1

l+1 is large enough.
Suppose we have N primes. The probability that any one of them is

congruent to 1 modulo ra for a prime r and positive integer a, is 1/φ(ra).
Assuming independence, the probability that none of the N primes are con-
gruent to 1 modulo ra is (

1− 1

φ(ra)

)N
.

Let η be a function going to infinity. Furthermore, let ra > Nη(N) be a
prime power. Since r is prime, we know φ(ra) ≥ ra/2. This bound implies
the probability is bounded below by(

1− 2

ra

)N
.

Using our lower bound on ra we get(
1− 2

ra

)N
≥ 1−

(
1− 2

Nη(N)

)N
→ 1,

since η(N)→∞.
We know wish to use the lower bound on ra to bound al+1 and therefore

our contribution to L(p)−H(p). Suppose ql+1 6= 2. If the level l ≈ c log log p,
for almost all p, we expect

al+1 ≤
log(N logN)

log ql+1
=
c log(e/c)

log ql+1
log log p+O(log3 p).

Combining all the contributions along any particular branch, we get

L(p) ≤
(
c+

c log(e/c)

log ql+1

)
log log p+ o(log log p). (5.3)
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5.3. Conjecture for the Normal Order of L(n).

If ql+1 = 2, since, λ(2a) = 2a−2 we get(
c+

c log(e/c)

2 log 2

)
log log p+ o(log2 p) =

(
c+

c log(e/c)

log 4

)
log log p+ o(log2 p).

Consequently, 3 is the value of ql+1 which yields the largest coefficient of
log log p in (5.3). Since c + c log(e/c)/ log 3 ≤ e for 0 < c < e, we conclude
that for almost all p ≤ x, L(p) ∼ e log log p. The reason that we can replace
p by n is the same reason as in Theorem 1.6.

It may seem obvious to conclude L(p) ∼ e log log p, sinceH(p) ∼ e log log p.

However, note that the function
(
c + c log(e/c)

log 2

)
does not yield a maximum

value of e, but instead has its maximum of 2/ log(2) at c = 2. This may
suggest if we had a function L′(n) similar to L(n) except that λ′(2a) = 2a−1

for all positive integers a, that we may get a different normal order, perhaps
even 2 log log n/ log(2).
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Chapter 6

Open Problems

Here is a list of open problems regarding λ(n), L(n) and H(p). Theorem 1.4
showed that the normal order of log n

λk(n)
is 1

(k−1)!(log log n)k log log log n.

Theorem 1.5 showed that if g(n) = φl(λ(f(n))), where f(n) is a (k − 1)
iterated arithmetic function consisting of iterates of φ and λ, then the normal
order of log(n/g(n)) is 1

(k−1)!(log log n)k log log log n. This is because g(n)

relates to n in the same way as λk(n). However this doesn’t explain the
relationship between g(n) and λk(n). The question has been solved for k = 2
by Kapoor [14].

Theorem 6.1. The normal order of log
(λ(φ(n))
λ(λ(n))

)
is log log n log log log n.

It would be interesting to see if a similar result could be proven for higher
values of k. Based on Theorem 6.1 is seems reasonable to think that if f1(n)
and f2(n) are compositions of λ and φ, then

log

(
λ(f1(n))

λ(f2(n))

)
∼ log

(
f1(n)

f2(n)

)
. (6.1)

For example the normal order of log λλφλλφ(n)
λ6(n)

is conjecturally

log
φλλφ(n)

λ4(n)
∼ 1

3!
(log log n)4 log log log n.

It would also be interesting to see if there can be a more precise result
of Theorem 1.4. In [9], for k = 1, there is an improved result. Instead of
simply log(n/λ(n)) = log log n(log log log n+O(ψ(n))), they more precisely
showed

log

(
n

λ(n)

)
= log log n

(
log log log n+A+O

(
(log log log n)−1+ε

))
(6.2)

for almost all n as n → ∞. There is no result like (6.2) even for k = 2.
For k = 1, the authors in [9] split up the primes q into four regions, namely
q ≤ y/ log y, y/ log y < q ≤ y log y, y log y < q ≤ y2 and y2 < q. On the
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other hand in Theorem 1.4, as well as the theorem of Martin and Pomerance
in [16], the values of q were only split up into the two regions q ≤ yk and
q > yk. Perhaps reasoning closer to [9] can obtain a more precise estimate.

Another improvement would be a more uniform result for Theorem 1.4.
The implicit constant is at least exponential in k, meaning the best uni-
form result wouldn’t even get k < log log log log n. It’s unlikely the methods
of Chapter 3 will produce a more uniform result even with more careful
consideration.

In [9], Erdős, Pomerance, and Schmutz obtained a lower bound for λ(n)
of exp

(
c1 log log n log log log n).With a different constant, they also obtained

an upper bound of the same form for infinitely many n. It would be interest-
ing to see if something similar could be done for λ(λ(n)) or more generally
λk(n). Naively inputting the lower bound into itself recursively can show a
lower bound to be

exp
(
ck logk+1(n) logk+2(n)

)
, (6.3)

where logk(n) is the k–th iterate of the log function. However, this may or
may not be the ”best” lower bound. Perhaps there are infinitely many n
with an upper bound of the form (6.3) for λk(n). If that is true, then it can
be shown that for those n,

L(n) = k + L(λk(n)) ≤ k +
log(λk(n))

log 2
+ 1�k logk+1(n) logk+2(n)

settling a conjecture given in [16]. Even showing this for k = 2 would yield
a better result than is currently known. If (6.3) is not a desirable lower
bound, perhaps a better one could be found, along with a sequence of n
which obtain that lower bound.

Another notable open problems regarding λ(n) is the analog of the fa-
mous Carmichael conjecture. In [6], R.D. Carmichael made the following
conjecture:

Conjecture 6.2. For any natural number m, the equation φ(n) = m does
not have exactly one solution.

The conjecture is open for both φ as well as λ, although it’s known
to be true for λ conditionally using the generalized Riemann hypothesis.
For λ, it is known from [2] that any counterexample is a multiple of the
smallest one. Much more is known see [2] about the (probably non–existent)
counterexample of the λ case.
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Appendix A

The Turan–Kubilius
Inequality

The Turán–Kubilius Inequality is a result in probabilistic number theor. It is
useful in finding normal orders of additive arithmetic functions. The theorem
was originally proved in a special case by Turán [21] to prove the following
theorem of Hardy and Littlewood. Let ω(n) be the number of distinct
prime divisors of n, and Ω(n) be the number of prime divisors including
multiplicity. For any δ > 0, the number of n ≤ x for which

ω(n) = log log n+O

(
(log log n)1/2+δ

)
fails to hold is o(x). The analagous result for Ω holds as well. The methods
of Turán were subsequently extended by Kubilius to more general additive
functions.

Theorem A.1 (Turán–Kubilius). For any complex additive function f we
have ∑

n≤x
|f(n)−A(x)|2 � xB(x)2 (A.1)

where

A(x) =
∑
pk≤x

f(pk)(1− p−1)
pk

, B(x)2 =
∑
pk≤x

|f(pk)|2

pk
.

For a strongly additive function, that is f(pk) = f(p) for all k ≥ 1, the
theorem reduces to the following corollary.

Corollary A.2. For any complex completely additive function f we have∑
n≤x
|f(n)−M1(x)|2 � xM2(x)2

where

M1(x) =
∑
p≤x

f(p)

p
, M2(x)2 =

∑
p≤x

|f(p)|2

p
.
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To see the redution to the corollary for strongly additive function, note
that we can replace B(x)2 by M2(x)2 because

B(x)2 =
∑
pk≤x

|f(p)|2

pk

≤
∑
p≤x
|f(p)|2

∑
k≥1

1

pk

�
∑
p≤x
|f(p)|2 1

p
.

As for A(x), the sum becomes

A(x) =
∑
pk≤x

f(p)(1− p−1)
pk

=
∑
pk≤x

(
f(p)

pk
− f(p)

pk+1

)

Using Cauchy–Schwarz (2.14) the difference between A(x) and M1(x) is at
most ∑

p≤x

|f(p)|
p2

≤
(∑
p≤x

1

p2

∑
p≤x

|f(p)|2

p2

)1/2

� B(x).

Therefore∑
n≤x
|f(n)−M1(x)|2 ≤ 2

∑
n≤x

(
|f(n)−A(x)|2 + |A(x)−M1(x)|2

)
� xB(x)2 � xM2(x)2.

Our proof of Theorem A.1 is taken mostly from [20, III.3 Theorem 1]. We
will prove it for f real and positive. Note that proof for f real can be done
by combining the positive and negative parts of f. The proof for f complex
can be done by combining the real and imaginary parts of f.

Proof of Theorem A.1. For notational convience, let A = A(x), B = B(x)
and S = S(x) be the sum in equation (A.1). Then

S =
∑
n≤x

f2(n)− 2A
∑
n≤x

f(n) + bxcA2 := S2 − 2AS1 + bxcA2. (A.2)
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Since f(n) is additive, f(n) =
∑

pk‖n f(pk). Inserting this into S1 yields

S1 =
∑
n≤x

∑
pk‖n

f(pk) =
∑
pk≤x

f(pk)

(⌊
x

pk

⌋
−
⌊

x

pk+1

⌋)
≥ xA−

∑
pk≤x

f(pk)

using bxc − byc ≥ x− y − 1. As for S2 we obtain

S2 =
∑
n≤x

(∑
pk‖n

f(pk)

)2

=
∑
n≤x

∑
pk‖n

f(pk)
∑
ql‖n

f(ql).

Splitting this up into the two cases where p = q or p 6= q yields

S2 =
∑
pk≤x

f2(pk)
∑
n≤x
pk‖n

1 +
∑
pk≤x
ql≤x
q 6=p

f(pk)f(ql)
∑
n≤x
pk‖n
ql‖n

1

≤ x
∑
pk≤x

f2(pk)

pk
+
∑
pk≤x
ql≤x
q 6=p

f(pk)f(ql)

(⌊
x

pkql

⌋

−
⌊

x

pkql+1

⌋
−
⌊

x

pk+1ql

⌋
+

⌊
x

pk+1ql+1

⌋)
≤ xB2 + x

∑
pk≤x
ql≤x
q 6=p

f(pk)

pk
(1− p−1)f(ql)

ql
(1− q−1) + 2

∑
pk≤x
ql≤x
q 6=p

f(pk)f(ql)

using bxc−byc ≤ x−y+1. Let the last sum be S3. Inserting these estimates
into (A.2) yields

S ≤ xB2 + 2A
∑
pk≤x

f(pk) + 2S3 +A2. (A.3)

Using Cauchy–Schwarz (2.14) on S3 yields

S3 ≤
( ∑
pk≤x
ql≤x

f(pk)f(ql)

pkql

∑
pk≤x
ql≤x

pkql
)1/2

� B2

(∑
n≤x

n

)1/2

� xB2.
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Using Cauchy–Schwarz (2.14) again yields

∑
pk≤x

f(pk) ≤
( ∑
pk≤x

f2(pk)

pk

∑
pk≤x

pk
)1/2

= B

( ∑
pk≤x

pk
)1/2

.

We would like to bound the sum by a sum over all n ≤ x like in our bound
for S3, however that would give us an estimate of Bx which is too large.
Instead we bound each term by x and bound the sum over prime powers by
π(x) + π(x1/2) + · · · � x/ log x. This bound implies

∑
pk≤x

f(pk)� B

(
x2

log x

)1/2

= B
x√

log x
.

As for A we use an estimate of Mertens [17, Theorem 2.7 (d)] and Cauchy–
Schwarz (2.14), implying

A�
∑
pk≤x

f(pk)

pk
≤
( ∑
pk≤x

f2(pk)

pk

∑
pk≤x

1

pk

)1/2

� B(log log x)1/2.

Putting all these estimates together with (A.3) yields

S � xB2+2

(
B(log log x)1/2

)(
B

x

(log x)1/2

)
+2xB2+B2(log log x)� xB2

completing the theorem.

It’s worth noting that the strongly additive condition is not necessary
for the replacement of B(x) with M2(x). See [13, Lemma 3.1] for a proof.
Also note that the function hk(n) in the proof of Theorem 1.4 is a strongly
additive function justifying our use of Corollary A.2.
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