
Power Estimation for Diverse Field Programmable
Gate Array Architectures

by

Jeffrey Goeders

BASc, University of Toronto, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Applied Science

in

THE FACULTY OF GRADUATE STUDIES
(Electrical and Computer Engineering)

The University Of British Columbia
(Vancouver)

October 2012

© Jeffrey Goeders, 2012

Abstract

This thesis presents a new power model, which is capable of modelling the power

usage of many different field-programmable gate array (FPGA) architectures.

FPGA power models have been developed in the past; however, they were de-

signed for a single, simple architecture, with known circuitry. This work explores

a method for estimating power usage for many different user-created architec-

tures. This requires a fundamentally new technique. Although the user specifies

the functionality of the FPGA architecture, the physical circuitry is not specified.

Central to this work is an algorithm which translates these functional descriptions

into physical circuits. After this translation to circuit components, standard meth-

ods can be used to estimate power dissipation.

In addition to enlarged architecture support, this model also provides support

for modern FPGA features such as fracturable look-up tables and hard blocks.

Compared to past models, this work provides substantially more detailed static

power estimations, which is increasingly relevant as CMOS is scaled to smaller

technologies. The model is designed to operate with modern CMOS technologies,

and is validated against SPICE using 22 nm, 45 nm and 130 nm technologies.

ii of 96

Results show that for common architectures, roughly 73% of power consump-

tion is due to the routing fabric, 21% from logic blocks and 3% from the clock net-

work. Architectures supporting fracturable look-up tables require 3.5-14% more

power, as each logic element has additional I/O pins, increasing both local and

global routing resources.

iii of 96

Preface

The work presented in this thesis will be published in the following conference

proceedings:

Jeffrey Goeders and Steven Wilton. VersaPower: Power Estimation for Diverse

FPGA Architectures. In International Conference on Field Programmable Tech-

nology, December 2012. Accepted. (Poster Presentation)

Portions of this publication are used in all chapters of this thesis. I was solely

responsible for the code development of this work, as well as performing the nec-

essary experiments. I am the primary author of this publication, and wrote the ma-

jority of the paper. I collaborated with my supervisor, Steve Wilton, in designing

this work, and he provided instruction and guidance throughout the development.

He also aided in revising and editing the above paper.

iv of 96

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . v

List of Tables . ix

List of Figures . x

Acronyms . xii

Acknowledgments . xiv

1 Introduction . 1

1.1 Motivation . 1

1.2 Contributions of this Work . 5

1.3 Challenges . 6

1.4 Overview of Results . 7

v of 96

1.5 Thesis Organization . 8

2 Background . 9

2.1 FPGAs . 9

2.1.1 Basic Architectures . 10

2.1.2 Modern Architectures . 15

2.2 FPGA Computer Automated Design (CAD) 17

2.2.1 CAD Flow Steps . 17

2.2.2 Verilog-to-Routing (VTR) 19

2.3 Power Estimation Techniques . 20

2.3.1 Abstraction Levels . 20

2.3.2 Simulation-Based Power Estimation 22

2.3.3 Probabilistic Power Estimation 23

2.4 FPGA Power Estimation Tools 25

2.4.1 The Poon Power Model 25

2.4.2 The Jamieson Power Model 26

2.4.3 The Li Model . 26

2.4.4 The Estimation Technique of this Work 27

3 System Design and Architecture Generation 28

3.1 Power Model Overview . 28

3.2 The Architecture Generator . 32

3.2.1 Global Routing . 33

3.2.2 Complex Logic Blocks 40

vi of 96

3.2.3 Clock Network . 50

3.2.4 Physical Size Estimation 52

3.3 Summary . 53

4 Power Estimation . 55

4.1 Low-Level Power Estimation . 55

4.1.1 Switching Power . 56

4.1.2 Short-Circuit Power . 57

4.1.3 Subthreshold Leakage Power 58

4.1.4 Gate Leakage Power . 59

4.2 Activity Estimation . 60

4.2.1 Algorithm . 61

4.2.2 Limitation: Black Boxes 62

4.3 Transistor Properties Generator 63

4.3.1 Transistor Node Capacitances 64

4.3.2 Subthreshold Leakage Current 64

4.3.3 Gate Leakage Current . 65

4.3.4 P/N Ratio Sizing . 65

4.3.5 Multiplexer Voltage Drop 66

4.3.6 Short-Circuit Buffer Factor 67

4.4 Summary . 68

5 Verification and Results . 70

5.1 Verification of Power Estimation 70

vii of 96

5.1.1 Verification Procedure 71

5.1.2 Verification Results . 72

5.2 Sources of Estimation Error . 75

5.2.1 Short-Circuit Current . 75

5.2.2 Transistor Node Capacitances 76

5.2.3 Gate Leakage Currents 77

5.3 Experiment 1: Component Breakdown 77

5.3.1 Methodology . 77

5.3.2 Results . 78

5.3.3 Analysis . 78

5.4 Experiment 2: Fracturable LUTs 80

5.4.1 Methodology . 81

5.4.2 Results . 81

5.4.3 Analysis . 83

5.5 Summary . 84

6 Conclusions . 86

6.1 Future Work . 87

6.2 Summary of Contributions . 89

Bibliography . 90

viii of 96

List of Tables

Table 1.1 Comparison of this work with past power models 6

Table 3.1 System modules . 30

Table 5.1 CMOS process characteristics 72

Table 5.2 Accuracy of high-activity power estimations 73

Table 5.3 Accuracy of zero-activity power estimations 74

Table 5.4 Power breakdown by component type 78

Table 5.5 Power usage, and breakdown by circuit 79

Table 5.6 Power of fracturable LUTs . 82

ix of 96

List of Figures

Figure 2.1 Taxonomy of PLD devices 10

Figure 2.2 2-input LUT . 12

Figure 2.3 Basic logic element (BLE) 12

Figure 2.4 Logic block containing 4 BLEs 13

Figure 2.5 FPGA architecture . 14

Figure 2.6 Heterogeneous FPGA architecture 16

Figure 2.7 Fracturing of a LUT . 17

Figure 2.8 FPGA CAD flow . 18

Figure 2.9 Circuit abstraction levels . 21

Figure 3.1 Modifications to the VTR flow for power estimation 29

Figure 3.2 Switch box component . 35

Figure 3.3 Connection box . 36

Figure 3.4 4:1 2-level multiplexer . 37

Figure 3.5 4:1 2-level multiplexer, decomposed into single-levels 37

Figure 3.6 Multi-stage buffer . 39

x of 96

Figure 3.7 Types of local interconnect 42

Figure 3.8 Local interconnect spanning distance 44

Figure 3.9 Wire length in a local interconnect structure 45

Figure 3.10 4-input LUT . 47

Figure 3.11 D Flip-Flop . 48

Figure 3.12 The clock network . 51

Figure 4.1 Subthreshold leakage in a multiplexer 60

Figure 4.2 Short circuit currents in inverters 67

xi of 96

Acronyms

ASIC application-specific integrated circuit.

BLE basic logic element.

CAD computer-aided design.

CLB configurable logic block.

FPGA field-programmable gate array.

HDL hardware description language.

ITRS International Technology Roadmap for Semiconductors.

LUT look-up table.

PLD programmable logic device.

PTM Predictive Technology Model.

RTL register-transfer level.

xii of 96

SPICE Simulation Program with IC Emphasis.

VLSI very-large-scale integration.

VPR Versatile Place and Route.

VTR Verilog-to-Routing.

xiii of 96

Acknowledgments

First and foremost, I would like to thank my family. My wife, Jessie, for her en-

couragement to complete this degree, and her support and patience during busy

times. My parents, for their examples, and their emphasis on the value of educa-

tion.

This work would not be possible without the guidence, instruction and exam-

ple of my supervisor, Steve Wilton. He is always generous with his time, provid-

ing ideas, editing papers, and answering questions.

I would also like to thank my labmates for their help and suggestions: Kyle

Balston, Assem Bsoul, Stuart Dueck, and Eddie Hung, as well as others who

answered questions, and gave advice: Jason Luu, Guy Lemieux, Jonathan Rose,

and the VTR team.

I would also like to thank NSERC and Altera for funding this research.

xiv of 96

Chapter 1

Introduction

1.1 Motivation

Power dissipation has become a first-class concern in the development of new in-

tegrated circuits. For the past 9 years, the International Technology Roadmap for

Semiconductors (ITRS) has identified power consumption as one of the top three

challenges facing semiconductor development [1], and in the latest report [2], it

states that power management will continue to be a grand challenge in the foresee-

able future. In the past, dynamic power was the primary concern, growing rapidly

as circuit operating frequencies increased. However, as transistor technologies

have scaled down, static power from leakage currents has become equally impor-

tant. In fact, the ITRS predicts that in the long-term, static power increases will

lead to a major industry crisis, threatening the survival of CMOS technologies [2].

1 of 96

The ITRS classifies devices into three types: 1) high-performance, 2) cost-

performance, and 3) portable, or battery-powered. Power is a major design factor

in all of these categories. In high-performance, such as desktop processors, the

power must not exceed the rate at which heat can be removed from the device.

In cost-performance, the goal is to reduce the energy cost per computation; for

example, in server farms [3]. In portable applications, an area of rapid growth,

power is minimized in order to extend battery life. In addition, the ITRS cites

the need to reduce global energy usage as a motivating factor in reducing power

consumption of electronic devices [1].

This work focuses on power consumption of one type of integrated circuit,

field-programmable gate arrays (FPGAs). FPGAs are a type of user programmable

computer chip. They contain many programmable logic blocks that can be used to

implement circuits with hundreds of thousands of logic gates. These logic blocks

are surrounded by a vast network of configurable routing segments. Together, the

logic and routing allow FPGAs to implement almost any type of digital circuit.

This flexibility has made FPGAs a popular choice in many different circuit

applications, including both high-performance [4] and cost-performance [5, 6]

scenarios. However, the flexibility comes at a cost; the generic logic and routing

in an FPGA have a large overhead, requiring a larger circuit and more power than

an application-specific integrated circuit (ASIC). One study found that FPGAs

require over 10 times the power of an equivalent ASIC [7].

The power usage of an FPGA depends on two main factors: 1) the FPGA

architecture, which includes how the FPGA is designed and which CMOS tech-

2 of 96

nology is used, and 2) the user circuit, including how the circuit is mapped to

the FPGA resources. This mapping of the user circuit to the FPGA is performed

by computer-aided design (CAD) tools. Recent years have seen numerous tech-

niques for creating power-efficient FPGA architectures [8, 9], power-aware CAD

algorithms [10, 11], and low-power applications [12]. As the capacities of FPGAs

continue to grow, the importance of power efficient operation will only increase.

In order to evaluate new FPGA architectures, or new CAD algorithms, re-

searchers need a customizable CAD flow that supports experimental architectures.

Furthermore, if researchers want to investigate how these architectures and algo-

rithms affect power dissipation, an accurate power model, typically integrated into

the CAD tools [13, 14], is required. Although vendor tools can quickly estimate

the power dissipation of an application on an existing FPGA, they cannot be used

to estimate the power of novel architectures or new low-level mapping algorithms.

Versatile Place and Route (VPR) [15], an academic, open source, FPGA CAD

tool has become the most popular tool used in the academic community to test

experimental FPGA architectures and CAD algorithms. When VPR was first re-

leased in 1997, it supported only basic FPGA architectures. Over time, new FPGA

architectures and algorithms have been developed by industry and academia, and

many have been integrated into VPR.

Throughout these years, there have been power models that have been devel-

oped, which integrate with VPR. These include the Poon model [13], the Jamieson

model [14], and the Li model [16]. These models use probabilistic power estima-

tion [17], as opposed to simulation, with a switch-level abstraction of the FPGA

3 of 96

circuit. This allows for fast power estimations that are sufficiently accurate to

evaluate architectural trade-offs. These models were integrated with VPR 4.3 and

VPR 5.0, which supported only simple FPGA architectures with a handful of con-

figuration parameters.

Recently, a new version of VPR has been developed, VPR 6.0. This new

version of VPR is a significant advance over its predecessors; among other im-

provements, it includes an overhaul of the types of FPGA architectures than can

be supported. The tool now supports an architecture description language that

users can leverage to test custom FPGA architectures, with support for complex

logic blocks. Users can define a hierarchy of block types, which can be used to

describe traditional FPGA architectures, as well as more modern features, such as

fracturable look-up tables (LUTs). In addition, user-defined heterogeneous hard-

blocks, such as memories and multipliers, are now supported. One demonstration

of functionality included the evaluation of a floating point unit within an FPGA

architecture [18].

This new tool opens the door for research into many more types of FPGA

architectures. However, its powerful architecture language requires a much more

flexible power model than any previously developed. The past power models,

while flexible enough to support different lookup-table sizes, cluster sizes, and

interconnect topologies, are not able to estimate the power dissipation for most

architectures that will be studied using the new CAD flow. This new CAD flow is

the door to the investigation of much more exotic architectures than ever before,

4 of 96

yet without an accompanying flexible power model, this potential will not be fully

realized.

Another issue with past power models is that they are outdated in the assump-

tions they make regarding CMOS technology. The power estimations made in

those models were targeted to technologies ranging in the hundreds of nanome-

tres. However, today’s technologies range in the tens of nanometres, and many of

the modelling techniques used in the past models are not accurate at this level.

1.2 Contributions of this Work

Although FPGA power models have been created in the past, they were designed

for a single, simple architecture, with known circuitry. This work explores a

method for estimating power usage for many different user-created architectures.

This requires a fundamentally new technique. Although the user specifies the

functionality of the architecture, the actual circuitry is not specified. These func-

tional descriptions of FPGA architectures must be translated into physical circuits.

After this translation to circuit components, power estimation can be performed.

We have implemented, verified, and used this new approach to FPGA power

modelling as follows:

1. We have devloped a power model, integrated into the VPR 6.0 CAD flow,

which is capable of providing power estimations for all architectures sup-

ported by the tool. In addition, we have added detailed static power esti-

mation, and support for fracturable LUTs, hard blocks, and modern CMOS

5 of 96

Feature Poon/
Jamieson
Models

Li Model This Work

Architectures Supported Traditional Traditional User-designed

CMOS Technologies 180 nm 100 nm 22-130 nm

Fracturable LUTs No No Yes

Hard Blocks No No Yes

Static Power Worst-case Worst-case Detailed

Autosizing of buffers and
interconnect

No No Yes

Transistor Properties User-provided User-provided Automatic

Table 1.1: Comparison of this work with past power models.

processes. Table 1.1 provides a comparison of this model to past FPGA

power models.

2. The power estimations of the model are verified against SPICE simulations.

Dynamic power estimates are within 20% and static power estimates are

within 5%.

3. The model is used to investigate power characteristics of different FPGA

architectures. This includes a breakdown of power beween FPGA compo-

nents, and a study of the power characteristics of fracturable LUTs.

1.3 Challenges

In undertaking these research goals, there are two major challenges that exist.

First, the new model must be flexible enough to process any architecture that

6 of 96

can be described using VPR 6.0’s architecture description language. Providing

such flexibility, while maintaining accuracy and ease-of-use is a significant chal-

lenge. The limited coverage of previous models meant that it was reasonable to ig-

nore some FPGA components that did not contribute greatly to the overall power,

such as local interconnect buffers, local wire capacitance, and internal multiplexer

nodes. However, to accurately cover the much enlarged design space, all of these

components must be accurately modelled.

Secondly, in past models, the most detailed estimations were performed for

the dynamic switching power, where switch-level estimation was performed on

every transistor. However, other contributers to power were estimated in less de-

tail. Subthreshold leakage was calculated using a simple worst-case estimate, and

short-circuit power was simplified to be 10% of dynamic power. However, when

modelling transistors into the tens of nanometres, these secondary power compo-

nents begin to play a greater role in the overall power dissipation. More detailed

estimation methods are necessary to obtain acceptable levels of accuracy.

1.4 Overview of Results

This thesis includes a new power model, designed to work with architectures in

versions 6.0 (and higher) of the VPR tool suite. The model is validated against

22 nm, 45 nm and 130 nm technologies. When compared to SPICE circuit simula-

tions, the estimates of our model were within 20% for dynamic power estimations

and within 5% for static power estimations.

7 of 96

Once verified, we use the model to study the power characteristics of different

architectures. In the first of two experiments we test the power breakdown be-

tween major FPGA components for the three different technologies. Results show

that for a 45 nm 6-LUT, 10 LUTs per CLB architecture, 73% of power usage is

due to the routing fabric, 21% due to logic blocks and 3% due to the clock network

(single clock). In the second experiment we study the effect of fracturable LUTs

on overall power usage. Of particular interest is the fact that modifying the archi-

tecture to support fracturable LUTs increases power consumption by 3.5-14%.

1.5 Thesis Organization

The thesis is organized as follows: Chapter 2 provides background information

on FPGAs, CAD tools, power estimation techniques, and power models. Chapter

3 provides an overview of our power model and details the architecture genera-

tor. The architecture generator creates the entire FPGA circuitry from the user-

supplied architecture description. Chapter 4 details the low-level power mod-

elling, which describes how power estimation is performed once the FPGA cir-

cuitry is known. Chapter 5 provides verification of the model, as well as experi-

ments that test the power characteristics of different FPGA architectures. Chapter

6 concludes the document.

8 of 96

Chapter 2

Background

This chapter provides background information on FPGAs, their architecture, and

their associated CAD tools. It also outlines different power estimation techniques,

including descriptions of the estimation methods used by past power models.

2.1 FPGAs

Programmable logic devices (PLDs) are electronic components that are programmed

by the user to implement a digital circuit. Unlike fixed logic devices, which are

manufactured for a specific function, PLDs are standard, off-the-shelf parts, that

can be used for a wide range of functions. PLDs offer many advantages over

fixed logic, such as shorter design times, lower non-recurring costs, and in some

devices the ability to be reprogrammed [19]. Figure 2.1 shows a taxonomy of

PLDs. This work focuses on power estimation for one type of PLD, SRAM-based

field-programmable gate arrays (FPGAs).

9 of 96

Programmable
Logic

Simple PLDs
High-Capacity

PLDs

FLASH

FPGAs CPLDs

EPROM EEPROM SRAM SRAM FLASH EPROM EEPROM FLASH

< 600 Gates > 600 Gates

Antifuse

Figure 2.1: Taxonomy of PLD devices, from [20].

Field-programmable gate arrays (FPGAs) are the largest devices in the PLD

family, containing thousands to millions of logic gates [20]. FPGAs consist of

many fined-grained logic elements, surrounded by a very large segmented routing

network. This design makes FPGAs highly flexible, and capable of implement-

ing virtually any digital circuit. Most FPGA architectures are programmed by

configuring a set of SRAM bits, which control the logic and routing of the chip

[21]. This allows the FPGA to be reprogrammed as needed. The size, flexibility,

and reprogrammability has led to the use of FPGAs in many applications, such

as ASIC prototyping, image processing, internet infrastructure, medical devices,

automotive, and others.

2.1.1 Basic Architectures

The first FPGAs were introduced by Xilinx Inc. in 1985. Early FPGA architec-

tures contained three main components: 1) logic blocks, 2) routing, and 3) I/O

blocks [22]. Logic blocks are responsible for performing the actual computation,

10 of 96

such as arithmetic or logical functions. Routing allows for data to be moved be-

tween logic blocks, and I/O blocks allow for data to be moved on and off the

FPGA chip [21]. The following sections describe the logic blocks and routing in

greater detail.

2.1.1.1 Logic Blocks

The basic functional unit within the FPGA is the look-up table (LUT). A k-input

LUT has 2k configuration bits, which are used to store the values of a k-input

truth table. The inputs to the LUT control a multiplexer which chooses between

the stored values (Figure 2.2). A k-input LUT can implement any k-input logic

function, since any logic function can be represented in truth table form [21].

Typically, LUTs are paired with a flip-flop, which saves state, and allows for im-

plementation of sequential circuits. The LUT and flip-flop, together with a multi-

plexer to select between the two outputs, are referred to as a basic logic element

(BLE) (Figure 2.3).

Multiple BLEs are combined to form a logic block, also known as a config-

urable logic block (CLB). FPGA architectures differ in the number of BLEs per

CLB. For example, the Altera Stratix V architecture uses 10 BLEs per block [23],

and the Xilinx Virtex 7 architecture uses 8 BLEs per block [24]. The logic block

also contains routing structures that connect the input and output pins of the logic

block to the BLEs, as well as connecting the BLEs to each other. These connec-

tions are referred to as local interconnect, and are often implemented as a single

11 of 96

0

0

1

1

in
0

in
1

out

Figure 2.2: 2-input LUT, implementing the XOR function.

FF
LUT

Figure 2.3: Basic logic element (BLE).

crossbar [25]. Figure 2.4 shows a logic block that contains 4 BLEs, with a local

interconnect crossbar.

2.1.1.2 Routing

Most FPGAs employ an island style architecture, where the logic blocks are ar-

ranged in a grid, and are surrounded by many horizontal and vertical routing seg-

ments. Modern FPGAs usually use unidirectional routing segments, while older

FPGAs used bidirectional routing [26, 27]. The routing segments are connected

to each other through a switch box, and the logic blocks connect to the routing

channels through connection boxes [28]. Figure 2.5 provides an illustration of a

12 of 96

BLE

BLE

BLE

BLE

C
ro

ss
b

ar

Logic Block

Figure 2.4: Logic block containing 4 BLEs.

simple, hypothetical FPGA architecture. Commercial FPGAs vary in their im-

plementation details, and sometimes the connection boxes and switch boxes are

combined into a single structure.

Switch boxes are located at the intersection of vertical and horizontal routing

segments. They contain programmable switches that allow each wire segment

to connect to multiple other wire segments, in order to route signals throughout

the FPGA. The topology of these connections depends on the FPGA architec-

ture [29, 30]. In addition, the architecture may be designed to contain longer wire

segments that bypass some switch boxes [26]. Figure 2.5 shows an architecture

than contains a combination of length-1 and length-2 wire segments.

13 of 96

Logic

Block

Switch

Box

CB

CB

Logic

Block
CB

CB

Logic

Block

Switch

Box
CB

Logic

Block

Switch

Box

CB

CB

Switch

Box

Logic

Block

Switch

Box

CB

Logic

Block

Switch

Box

CB

CB

Logic

Block

Switch

Box

CB

CB

Logic

Block

Switch

Box

CB

CB

Logic

Block

Switch

Box

CB

CB

CB

CB

Figure 2.5: Island-style FPGA architecture, containing logic blocks, switch
boxes and connection boxes. This architecture contains both length-1
and length-2 routing segments.

14 of 96

Connection boxes provide the connection between the routing segments and

the logic blocks pins. Each logic block pin connects to some of the neighbour-

ing routing channels, as illustrated in Figure 2.5. Real-world architectures may

contain routing channels that are hundreds of segments wide, so it is not feasible

for each pin to connect to all of the channels [27]. The pattern of connections is

determined by the FPGA vendor. Each connection is programmable, and can be

either enabled or disabled when configuring the FPGA.

2.1.2 Modern Architectures

Modern FPGA are much more complex than described above. They have evolved

from a homogeneous architecture, as described previously, to heterogeneous ar-

chitectures that contain many different types of blocks, and blocks with complex

features.

2.1.2.1 Heterogeneous FPGAs

In heterogeneous architectures, some logic blocks are replaced by memories and

multipliers, to more efficiently implement certain functions (Figure 2.6) [27].

There may be multiple types of logic blocks throughout the FPGA; for exam-

ple, some blocks may contain larger or smaller LUTs [31]. Additional hard cores

may also be built into the FPGA to accelerate some functions, such as ethernet in-

terfaces or SerDes functions [23]. Some FPGAs also contain built-in processors.

As an example, the Altera Cyclone 5 SoC FPGAs contain an ARM Cortex-A9

core [32].

15 of 96

Logic

Block

M
e

m
o

ry
Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

M
e

m
o

ry

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

M
e

m
o

ry
M

e
m

o
ry

Logic

Block

M
e

m
o

ry

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

M
e

m
o

ry

M
u

lt
ip

lie
r

M
u

lt
ip

lie
r

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Ethernet

Figure 2.6: Heterogeneous FPGA architecture (routing not shown).

2.1.2.2 Complex Logic Blocks

Modern logic blocks contain additional features, such as carry-chain logic and

fracturable logic. Carry-chain logic provides support for accelerating arithmetic

and logical operations [33]. Fracturable logic allows LUT hardware to be split

so that LUTs can implement two smaller logic functions, instead of a single

large function. This is accomplished by allowing the truth table to be shared

between two logic functions, splitting the multiplexer, and providing an extra out-

put. Figure 2.7 illustrates the modifications to enable fracturable LUTs. This work

provides power estimations of FPGA architectures containing fracturable LUTs;

however, carry-chains are not yet supported.

16 of 96

0
in
0

in
1

out

1

1

0

1

0

0

1

in
2

0

in
0

in
1

out1
0

0

1

0

1

1

1

Fractured

out2

Figure 2.7: Fracturing of a LUT. On the left is a 3-input LUT, implementing
a 3-input XOR function. On the right, the same hardware is used to
implement two 2-input functions. Out1 implements the AND function,
and out2 implements the OR function.

2.2 FPGA Computer Automated Design (CAD)

Modern FPGAs contain millions of configuration bits, making it impractical for

designers to manually implement their circuits. Instead, computer-aided design

(CAD) tools are used, which perform the steps required to translate a hardware

description language (HDL) circuit to a set of configuration bits used to program

the FPGA [34].

2.2.1 CAD Flow Steps

Figure 2.8 illustrates the steps of the FPGA CAD flow, and the following briefly

describes each step.

17 of 96

Circuit (HDL)

Logic Synthesis

Logic Optimization

Technology Mapping

Packing

Placement

Routing

FPGA Programming File

ODIN II

ABC

VPR 6.0

Figure 2.8: FPGA CAD flow [34], with associated tools [18].

• Logic Synthesis converts a circuit specified in register-transfer level (RTL)

format, such as Verilog or VHDL, to a gate-level representation [35].

• Logic Optimization, often called technology-independent optimization, re-

moves redundant logic and simplifies logic where possible [36].

• Technology Mapping converts the logic functions to fit within the LUTs. For

example, if the FPGA architecture uses 4-input LUTs, all logic functions

must be transformed into functions with four or less inputs.

• Packing groups the LUTs together into logic blocks.

18 of 96

• Placement decides where each logic block should be placed on the FPGA.

• Routing determines the configuration of the routing switches to provide con-

nections between the necessary logic blocks pins.

Upon completion of this flow, the CAD tools will have determined the config-

uration bits for the LUTs, the local interconnect switches, and the global intercon-

nect switches. These configuration bits are combined into a file called a bitstream,

which is used to program the FPGA.

2.2.2 Verilog-to-Routing (VTR)

FPGA power models are typically integrated into CAD tools because the power

estimation is dependent on placement and routing information [13, 14, 16]. In

addition, integration of CAD and power estimation allows for the development of

power-aware CAD algorithms, such as in [10].

The power model presented in this work is integrated with Verilog-to-Routing

(VTR), a recently developed, academic, open-source FPGA CAD suite [18]. VTR

is a collection of tools that are used to perform the full CAD flow. ODIN II [37]

is used for logic synthesis, and converts a Verilog circuit to a gate-level sum-of-

products representation. Next, ABC [38] performs logic optimization using logic

balancing and refactoring algorithms [39], followed by technology mapping us-

ing the WireMap algorithm [40]. Finally, VPR 6.0 performs packing, placement

and routing. Packing uses the AAPack algorithm [41], placement uses a simu-

lated annealing algorithm [15, 42], and routing is performed using the Pathfinder

19 of 96

algorithm [43]. Together, these tools allow researchers to test experimental FPGA

architectures that are not supported by commercial tools.

Past FPGA CAD tools, such as VPR 4.3 [15] and VPR 5.0 [44], supported

basic homogeneous FPGA architectures with some user-supplied parameters to

configure the architecture. The architecture space supported by VTR is dramat-

ically larger. It supports heterogeneous architectures, hard blocks and complex

logic blocks. The architecture is specified through a new architecture description

language, which users can leverage to provide a much more detailed specifica-

tion of the FPGA architecture. In the past users were restricted to the traditional

paradigm for logic block design; however, this new language allows users to fully

customize logic blocks. The language supports a hierarchical model, where logic

blocks are comprised of entities. Each entity can instantiate child entities, with

custom interconnect between parent and children. This allows for exotic FPGA

architectures with arbitrary complexity.

2.3 Power Estimation Techniques

Power estimation techniques for very-large-scale integration (VLSI) circuits can

be classified in two ways: 1) the level of abstraction, and 2) the method of estima-

tion, either simulation or probabilistic [17, 45, 46].

2.3.1 Abstraction Levels

Figure 2.9 provides the different circuit abstraction levels at which power esti-

mation can be performed [45]. More detailed circuit abstractions allow for more

20 of 96

Algorithm

System

Hardware Behaviour

Register Transfer (RTL)

Logic/Gate

Switch

Circuit/Transistor

Es
ti

m
at

io
n

 A
cc

u
ra

cy

C
o

m
p

u
ti

n
g

R
es

o
u

rc
es

Worst

BestMost

Least
Abstraction Levels

Figure 2.9: Circuit abstraction levels used for power estimation, and impacts
on accuracy and resources.

accurate power estimations, but at the cost of increased computation. Likewise,

higher abstractions allow for quicker estimations, but with reduced accuracy. Gen-

erally, power estimation tools operate at the gate-level or lower, as it is difficult to

obtain sufficient accuracy at higher levels [46].

The most commonly used abstraction levels are gate-level, switch-level, and

circuit-level. Circuit-level estimation requires detailed transistor models in order

to determine nonlinear voltages and currents. Switch-level simplifies the circuit

to a collection of nodes and transistors, where each node is modelled as a capac-

itance to ground, and each transistor is modelled as an on/off switch with finite

21 of 96

resistance. Gate-level further abstracts the design, grouping transistors into logic

cells, such as NAND, NOR, etc [47].

It is possible to model FPGA hadware at the lowest abstraction levels. The

GILES project [48] provides a tool for generating complete transistor layouts

based on VPR architectures. Although this level of detail allows for the most ac-

curate power estimations, it is rarely used for large circuits due to computational

requirements. For large circuits, such as FPGAs, it is more feasible to perform

power estimation at the switch-level or gate-level.

2.3.2 Simulation-Based Power Estimation

Power estimation through simulation is performed by providing a set of inputs to

the circuit, simulating the circuit for a predetermined number of clock cycles, and

measuring the power. Although simulation can provide accurate power estima-

tions, it suffers from being computationally intensive and being highly dependent

on circuit inputs, known as strong input-pattern dependence.

Simulation Program with IC Emphasis (SPICE) is the de facto tool for circuit-

level simulation and power analysis, and provides very accurate estimations. How-

ever, the level of detail of SPICE leads to long run times as circuits increase in

size, making SPICE unsuitable for very large circuits, such as FPGAs [46]. Other

approaches have performed simulation at higher abstraction levels, such as switch-

level or gate-level, to reduce the amount of computation [49–51].

However, even if computation can be reduced, the issue remains that the power

dissipation is highly dependent on the inputs provided to the circuit; inputs that

22 of 96

are more active will cause the circuit to consume more power. In order to provide

accurate estimation, realistic input vectors are required. It may be difficult to gen-

erate realistic input vectors, especially if the circuit is still under design [17]. One

solution to this problem is to use a statistical approach, which employs a Monte

Carlo simulation with randomly generated input vectors [52, 53]. This technique

involves repeatedly generating random input vectors, performing gate-level sim-

ulation, and measuring the power, until the result reaches a certain accuracy and

confidence level.

The statistical Monte Carlo method provides acceptably accurate estimates,

without substantial computation; however, the estimate is only of the total power.

It does not provide visibility to the gate level, or even groups of gates [17]. This

internal visibility is a desired property as it allows designers to determine the

power requirements of different architectural components. In [54], the Monte

Carlo method was modified to add internal visibility, but the increase to run time

was significant.

2.3.3 Probabilistic Power Estimation

The other method of power estimation is the probabilistic approach. The ma-

jor advantage over simulation is that it does not require actual input vectors, only

statistical properties of the inputs, and thus is characterized as being weakly input-

pattern dependent. The behaviour of the inputs is characterized using the follow-

ing two properties [17]:

23 of 96

1. The Signal Probability, P1, is the long-term probability that a signal is logic-

high. For example, a clock signal with a 50% duty cycle will have P1(clk) =

0.5.

2. The Transition Density (or switching activity), AS, is the average number of

times the signal will switch during each clock cycle. For example, a clock

has AS(clk) = 2.

Once the user provides the signal probability and transition density for the inputs,

activity estimation tools such as [13, 37, 55–57] can be used to determine these

properties for the internal nets. These tools use simulation, static analysis, or

a combination of both to determine these properties. Once these properties are

known for all nets, power estimation can be performed. For example, switching

power is directly proportional to the transition density, and leakage currents are

dependent on the signal probabilities [58].

Although the probabilistic method is faster than simulation, and less input

dependent, it is generally less accurate [45]. The signal properties used by the

probabilistic method assume certain statistical behaviour, which may not be true

of the actual input signals. The first assumption is that all signals are independent,

referred to as spatial independence [17]. In reality, signals may be correlated;

for example, two signals may never be logic high at the same time. Another

assumption is that signal values are independent from one clock cycle to the next,

referred to as temporal independence [17]. These behaviours cannot be captured

in the signal probability or transition density metrics.

24 of 96

Although the probabilistic approach is less accurate than simulation, it re-

quires much less computation resources, making it possible to use more detailed

abstraction levels [45]. This allows for finer-grained power details, with less run

time.

2.4 FPGA Power Estimation Tools

There have been three major power models developed for use with academic

FPGA CAD tools. They are outlined in the following sections, including a de-

scription of the approach used in this work.

2.4.1 The Poon Power Model

The Poon power model [13] was developed by Kara Poon at the University of

British Columbia in 1999. The tool was designed to work in conjunction with

the popular academic CAD tool VPR 4.3. It supports a traditional homogeneous

architecture with bidirectional routing, as described in Section 2.1.1. It includes

architecture parameter support for LUT suze, LUTs per logic block, and intercon-

nect topology. The model uses a probabilistic approach to power estimation and

switch-level circuit abstraction. This work also includes ACE-1.0 [13], a tool that

provides activity estimations of signals.

The Poon power model calculates switching power of all transistors in the

FPGA, based on the switching density of the signals. Short-circuit power is as-

sumed to be 10% of dynamic power. Subthreshold leakage is calculated using the

equation in [59]. A worst-case is assumed for subthreshold leakage where half of

25 of 96

all CMOS transistors, and all pass-transistors, are assumed to be leaking. Other

types of static power, such as gate leakage, are ignored.

2.4.2 The Jamieson Power Model

The Jamieson model [14] was developed by Peter Jamieson in 2009. This is

a modified version of the Poon model, designed to work in conjunction with

VPR 5.0. The main difference is that it supports more modern routing topologies,

the most significant being unidirectional routing. Also, this model uses ODIN II

[37] to perform activity estimation, instead of ACE-1.0. The model uses the same

techniques as the Poon model to calculate the dynamic and static power dissipa-

tion, and supports the same architectural parameters.

2.4.3 The Li Model

The Li model [16] was developed by Fei Li, et. al. in 2005, and was designed to

work in conjunction with VPR 4.3. Like the other models, it supports a traditional

architecture with basic parameters. Like the others, this model uses a probabilistic

approach to power estimation. Switch-level abstraction is used for the routing and

clock network. To reduce computation, a higher level abstraction is used for logic

blocks, where macro-modelling is used to estimate power dissipation of LUTs.

Like the other models, this model uses the signal activity to calculate switching

power. Short-circuit power estimation is more detailed, and is calculated by using

SPICE to simulate buffers of various sizes. A similar simulation approach is used

for subthreshold leakage estimation.

26 of 96

2.4.4 The Estimation Technique of this Work

This power model presented in this work also uses a probabilistic approach. This

was chosen as it allows for fine-grained estimation without the heavy computation

requirements of simulation. Although not as accurate as simulation, it is sufficient

to evaluate trade-offs during architecture design [46]. The majority of this work

uses switch-level abstraction, although in some cases more detailed modelling is

used. Since VTR supports arbitrary user-designed logic blocks it is not feasible to

use higher abstraction levels, as was done in the Li model.

The major difference between this model and past models is the type of ar-

chitectures supported. Past models only supported a traditional homogeneous ar-

chitecture, with limited parameters. This model supports many new features such

as heterogeneous architectures, hard blocks—such as memories and multipliers—

and complex logic blocks that contain fracturable LUTs. Furthermore, while the

past tools supported only a few architecture parameters, the architecture engine in

VTR allows for custom designed blocks with arbitrary complexity. This architec-

ture flexibility makes this model fundamentally different than past power models.

The following chapters explain this new power model.

27 of 96

Chapter 3

System Design and Architecture

Generation

This chapter begins by providing an overview of the new power model, and an

explanation of how the model is integrated into the VTR CAD flow. The remain-

der of the chapter details the architecture generator. This module is the largest

piece of the power model. It generates the entire FPGA circuitry based on the

user-described architecture.

3.1 Power Model Overview

The power model is integrated into VTR, an academic experimental FPGA CAD

flow [18]. This flow was designed to allow researchers to investigate novel FPGA

architectures and the associated CAD algorithms. New FPGA architectures (such

as new logic block or routing structures) can be described using an architecture

28 of 96

Low-Level
Power Estimator

Architecture
Description File

Activity
Estimator

VPR 6.0
(Packing, Placement

& Routing)

Architecture
Generator

ODIN
(Logic Synthesis)

Verilog HDL

ABC
(Logic Optimization)

Logic Netlist (BLIF)

Logic Netlist (BLIF)

Netlist
Activity

FPGA Circuitry
(Multiplexers,
Inverters, and

Wires)

Packing,
Placement,

and
Routing

SPICE CMOS
Technology File

Transistor
Properties
Generator

Power
Estimate

Transistor
Properties

Figure 3.1: Modifications to the VTR flow for power estimation.

29 of 96

description language, and the CAD tools will automatically adapt to the new ar-

chitecture. The original VTR flow contains detailed area and delay models which

can be used to evaluate the efficiency of benchmark circuits implemented on the

proposed architectures. Since the code is open-source, designers can also modify

the CAD tools themselves to investigate the effectiveness of new CAD techniques,

applied to novel or existing FPGA architectures.

The current VTR flow uses ODIN II [37] for Verilog synthesis, ABC [38] for

logic optimization and VPR 6.0 for packing, placement and routing. Our power

model adds multiple components which are integrated into the VTR flow as shown

in Figure 3.1. Table 3.1 provides a listing of the model components, their purpose,

and the relevant sections in this thesis.

Module Function Section

Architecture Generator Generates FPGA circuitry Section 3.2

Low-Level Power Estimator Estimates dynamic and static
power

Section 4.1

Activity Estimator Estimates behaviour of the
user circuit

Section 4.2

Transistor Properties Generator Extracts transistor properties
from SPICE simulation

Section 4.3

Table 3.1: System modules.

The first step in estimating power usage is to determine the actual FPGA cir-

cuitry. This is a difficult task, since VTR’s architecture description language al-

lows the user to create arbitrary architectures, with no limit on complexity. This

task is performed by the architecture generator, which reads the architecture de-

30 of 96

scription file provided by the user, and generates the circuitry of the entire FPGA.

This circuitry is a collection of inverters, simple multiplexers and wires, and in-

cludes details of the transistor sizes and wire lengths. All major components such

as flip-flops, LUTs, switch boxes, etc. are decomposed into these basic circuit

elements.

The FPGA power usage is also dependent on the behaviour of the user-provided

circuit. The activity estimator analyzes the user circuit to determine its behaviour,

which includes the transition density (AS) and the signal probability (P1) for each

net. The power usage also depends on how the user circuit is implemented in the

FPGA circuitry. These details are contained in the packing, placement and routing

information that is output by VPR.

Power estimation is also heavily dependent on the chosen CMOS technol-

ogy. The transistor properties generator uses SPICE simulation to automatically

extract the necessary transistor properties, which includes transistor sizes and ca-

pacitances, leakage currents, and other characteristics.

Once the information on the FPGA circuitry, the user circuit, and the transistor

properties are obtained, the actual power estimation can be performed. The low-

level power estimator uses standard equations to calculate the dynamic and static

power of each inverter, multiplexer and wire in the FPGA circuitry. It details

how much each component type, such as switch boxes, flip-flops and crossbars,

contribute to the overall power.

Our implementation combines VPR 6.0, the low-level power estimator, and

the architecture generator into a single executable. However, in this document

31 of 96

they are described as separate entities to clearly outline their roles in the overall

power estimation.

The remainder of this chapter will describe the architecture generator module.

The other modules will be detailed in the following chapter.

3.2 The Architecture Generator

Complete power estimation requires transistor-level details of the entire FPGA

circuitry in order to make power estimations. This includes the size and connec-

tions of every transistor, as well as wire length of all interconnect. Since there

are millions of transistors in a typical experimental architecture, it is infeasible

for the user to provide this information directly. The architecture generator an-

alyzes the architecture description file supplied by the user, and determines the

entire FPGA circuitry. All of the FPGA components (switch boxes, connection

boxes, LUTs, flip-flops, etc.) are decomposed into inverters, simple multiplexers,

and wires. The size of each transistor, and the length of each wire, is calculated

automatically.

Generating this information is challenging. The architecture language pro-

vided in VPR 6.0 is extremely flexible, allowing the user to specify a wide vari-

ety of architectures. CLBs can be arbitrarily complex, consisting of a hierarchal

collection of interconnect and logic elements (including facturable LUTs). The

global interconnect can consist of segments of different lengths connected using

different patterns. Transistor sizes, which have a first-order affect on power, de-

32 of 96

pend on the physical length and fanout of segments, which depends on, among

other things, the number of transistors in various components of the architecture.

VPR 6.0 contains an architecture generation engine which estimates many of

these low-level quantities based on the user-described architecture. However, the

existing engine is limited to generating parameters needed for timing analysis and

area estimation. Power estimation requires a much more complete set of quanti-

ties; buffers cannot be abstracted as delay elements, and accurate buffer sizes are

needed, even for those buffers not on the critical path. This work provides a sig-

nificantly enhanced architecture generation engine that provides the information

needed to make accurate dynamic and static power estimates.

It is important to note that previous models in [13, 14] also contain an archi-

tecture generation engine; however, the limited architectural space supported by

earlier versions of VPR means that the generator was far less flexible. Thus, these

previous generators are not suitable for our purpose.

Section 3.2.1 describes the methods used to decompose the global routing into

inverters, multiplexers and wires. Section 3.2.2 describes this decomposition for

the logic blocks, and Section 3.2.3 for the clock network. Transistor sizes for these

components depend on the physical dimensions of different entities in the FPGA.

Section 3.2.4 details the algorithm we use to approximate these dimensions.

3.2.1 Global Routing

A significant portion of the transistors in an FPGA are used to implement the flexi-

ble global routing network. This network consists of switch boxes and connection

33 of 96

boxes, as described in Section 2.1. The switch boxes and connection boxes are

comprised of buffers and multiplexers, the sizes and topologies of which depend

on architectural parameters supplied by the user.

3.2.1.1 Switch Boxes

Switch boxes, which lie at the intersection of horizontal and vertical channels in

an FPGA, are responsible for driving the global routing wires. There may be tens

to hundreds of global wires incident to each switch box. Each global wire is driven

by a multiplexer followed by a buffer [26]. The buffer drives a wire, which spans

one or more grid tiles of the FPGA. At the end of the wire, is a fan-out to other

switch boxes or connection boxes [60]. This is illustrated in Figure 3.2, and is

referred to in this thesis as a switch box component, as many of these comprise

a single switch box. The power usage of a switch box component is comprised

of the power dissipation in the multiplexer (See Section 3.2.1.3), the buffer (See

Section 3.2.1.4), and the wire.

The size of the multiplexer is determined by the number of fan-ins of the

routing channel. These fan-ins can come from other global wires, or from outputs

of logic blocks. The buffer size is a function of the capacitance it drives, which is

composed of the wire capacitance and the input capacitance of the fan-out. The

wire capacitance is a function of the wire length, which is determined using the

methods in Section 3.2.4.

34 of 96

1111

To Connection
Box

Figure 3.2: Switch box component, comprised of a multiplexer connected
to a buffer, driving a wire. The wire fans out to connection boxes and
other switch boxes.

3.2.1.2 Connection Boxes

Connection boxes provide the interface between the routing channels and the logic

blocks. They are comprised of buffers and multiplexers. There is one multiplexer

for each input pin of the logic block. A buffer connects each routing track to the

multiplexers, and is needed as the track may drive many pins.

Figure 3.3 provides an illustration of a simple connection box. In a real FPGA

architecture, there would be many more routing tracks, and many more CLB input

pins. This potentially causes large buffers and multiplexers.

The buffers are sized according to the capacitance they drive, which is deter-

mined by the number of multiplexers they connect to. Each routing track connects

to a fraction of the CLB inputs, represented by Fcin in the architecture description

file. Likewise, the number of inputs to each multiplexer is equal to Fcin multiplied

by the number of routing tracks.

35 of 96

s

in1

in0
out

outin
1

0

0

out

in0

in1

inN

S

N stages

1/2 Si/N

0 1

a

b

c

d

1 0

out(b)

e

f

a b c d

out

1

1

0

1

1

0

1

0 Q

D

clk

1111

Vdd Vdd

Vdd

Vdd-Vth

1

0

0

out

1

1

0

1

0

0

1

0

0

1

0

0

1

0

1

1

0

0

0

1

0

1

1

0

1111

0

1

0

1

1

0

a

b

c

d

out(b)

e

f

A

B

C

CLB

Routing
Tracks

Buffers Multiplexers

Figure 3.3: Sample of a connection box.

3.2.1.3 Multiplexers

The multiplexers in the switch boxes and connection boxes are built using NMOS

pass transistor logic, using minimum sized transistors [60]. By default, two lev-

els are used for any multiplexer with four or more inputs; however, the user can

override the number of levels or the transistor sizes by modifying the architecture

description file. Figure 3.4 shows a 4:1 two-level multiplexer.

Multi-level multiplexers are decomposed into a collection of single-level mul-

tiplexers. Figure 3.5 provides an illustration of this decomposition. It is conceiv-

36 of 96

0

1

0

1

1

0

a

b

c

d

out(b)

e

f

Figure 3.4: 4:1 2-level multiplexer.

A

B

C

Figure 3.5: 4:1 2-level multiplexer, decomposed into single-levels.

37 of 96

able that some architectures may contain very large multiplexers, which could

have many internal nodes, each having a large capacitance due to the number of

connected transistors. Consider the multiplexer in Figure 3.4. Input b is selected,

and any toggles on node b will also toggle nodes e and out. This was the extent

of modelling of past power models [13, 14]. However, toggles on input d will

still cause internal node f to toggle, consuming power. In Figure 3.5, although

only multiplexers A and C belong to the activated path, multiplexer B will still

consume power. For this reason, the architecture generator will include all three

multiplexers in the generated FPGA circuitry.

3.2.1.4 Buffers

Buffers in the connection boxes and switch boxes are built using multiple stages

of cascaded inverters, as illustrated in Figure 3.6. The first stage of the buffer is a

sense stage with size (W/L)P = 1, and (W/L)N = 2 . The sense stage is needed as

the input to the buffer may receive a weak-1 due to pass transistor logic [60, 61].

The NMOS transistors in the remaining N stages of the buffer are sized according

to Equation 3.1.

(W/L)N = S(i/N) (3.1)

S is the size of the final stage of the buffer, N is the total number of stages, ex-

cluding the sense stage, and i is the index of the stage being sized, such that

i ∈ [1,N]. The PMOS transistors are sized larger, according to the P/N ratio (See

Section 4.3.4).

38 of 96

s

in1

in0
out

outin
1

0

0

out

in0

in1

inN

S

N stages

1/2 Si/N

0 1

a

b

c

d

1 0

out(b)

e

f

a b c d

out

1

1

0

1

1

0

1

0 Q

D

clk

1111

Vdd Vdd

Vdd

Vdd-Vth

1

0

0

out

1

1

0

1

0

0

1

0

0

1

0

0

1

0

1

1

0

0

0

1

0

1

1

0

1111

0

1

0

1

1

0

a

b

c

d

out(b)

e

f

A

B

C

CLB

Routing
Tracks

Buffers Multiplexers

Figure 3.6: Multi-stage buffer, used in connection boxes and switch boxes.

The size of the final buffer stage, S, is found using Equation 3.2, which is

based on the logical effort model [58].

Sbu f =
1
4
∗CLoad

CINV
(3.2)

In this equation, CLoad is the total load capacitance driven by the buffer, and CINV

is the input capacitance of a minimum sized inverter. The number of stages is

chosen using N = logS
log4 , where N is rounded to the nearest integer [58]. This creates

a buffer where the size from one stage to the next grows by a factor close to 4.

This factor is commonly chosen when designing high-performance circuits, as

it minimizes the delay. For power efficient circuits a larger factor may be used,

resulting in slower, but smaller buffers [58]. The user may specify an alternative

value for this factor in the architecture description file.

39 of 96

3.2.2 Complex Logic Blocks

VPR 6.0 supports user-defined logic blocks, which allow for a much larger range

of architecture features than was possible in previous academic FPGA flows. This

flexibility is obtained through a hierarchical description of the entities within each

CLB. Each entity can:

• Instantiate multiple child entities, including children of different types.

• Define arbitrary interconnect between itself and children, or between mul-

tiple children.

• Operate in multiple modes. For example, a 6-LUT could operate as a single

6-LUT, or as two 5-LUTs.

Our model includes an algorithm which handles all of these features; any CLB

that can be described using the new architcture language can be handled by our

tool. Algorithm 1 provides pseudo code for the hierarchical power modelling al-

gorithm. The algorithm employs a recursive function, which calculates the power

usage for an entity. If the entity has children, the algorithm accounts for the power

usage of the circuitry connecting the parent to children, as well as interconnect be-

tween children. The function is then called recursively for the child entities. If the

entity does not have children it must be a primitive, such as a flip-flop, a LUT, or

some other hard-block. For these types, the primitive handler function is called,

which will determine the type of entity, and call the appropriate function. Each

component of this algorithm will be further described below.

40 of 96

Algorithm 1 Calculate power dissipation of a CLB recursively:
calc entity power(entity):

1: if entity has children then
2: // This is a parent mode, determine mode of operation
3: mode⇐ entity.mode
4: // Add interconnect power
5: for each interc in mode do
6: power⇐ power+ calc interc power(interc)
7: end for
8: for each child in mode do
9: power⇐ power+ calc entity power(child)

10: end for
11: else
12: // This is a leaf node such as a LUT or Flip-Flop
13: // Call the primitive handler
14: power⇐ power+ calc primitive power(entity)
15: end if
16: return power

3.2.2.1 Intra-CLB Interconnect:

For each entity within a CLB, the architecture description file must specify the

type of interconnect between itself and its children. This interconnect may be one

of three types: direct, many-to-one, or complete. Figure 3.7 provides a diagram of

a traditional logic block, and includes an example of each type of interconnect.

The architecture generator must decompose each interconnect into multiplex-

ers with known transistor sizes, and wires with known length. The wire length

depends on the physical spanning distance between parent and child entities, rep-

resented as Linterc. This distance is approximated using Equation 3.3. Figure 3.8

illustrates the derivation of this equation.

41 of 96

8
:9

 C
ro

ss
b

ar
 (

C
o

m
p

le
te

)

6-LUT

FF

BLE

2:1 (Many-to-One)

Clock (Direct)

5-LUT

5-LUT

CLB

Figure 3.7: Types of local interconnect.

42 of 96

Linterc = 0.5∗ (
√

AreaParent−
√

AreaChildren) (3.3)

An m-input, n-output interconnect structure contains (m+n) input/output wires,

where the length of each wire is approximated as 1/2 ·Linterc. This approximation

is illustrated in Figure 3.9.

This approach provides a very rough approximation, and assumes a square

topology with even spacing between the parent and child entities. In reality, this is

unlikely, and interconnect may span much more, or much less than this value. Un-

fortunately, it is difficult to provide a more accurate estimation without knowing

the transistor layout of the device, which is too complex to estimate automatically,

and too burdensome to require from the user. In addition, this model only con-

siders the wirelength of interconnect structures between parent and child entities.

The wirelength within a primitive, such as a LUT or flip-flop, is ignored.

The following describes modelling techniques specific to each interconnect

type:

Direct Interconnect This is a pure wire connection and requires no multiplexers.

The connection contains a single source input, which drives one or more sinks. In

Figure 3.7, the clock wires provide an example of this type of connection.

Many-to-One Interconnect This type is implemented as a single multiplexer. An

example of this pattern is a multiplexer that chooses whether the BLE output is

43 of 96

Parent Entity

Children
Linterc

Figure 3.8: Local interconnect spanning distance, Linterc, between parent
and child entities in a CLB.

driven by the LUT output or the flip-flop output, as shown in Figure 3.7. These

potentially large multiplexers are decomposed into single-level multiplexers, in

the same manner as the global routing multiplexers (see Section 3.2.1.3).

The architecture description file also supports the declaration of bus-based

multiplexers, which can be used for coarse-grained architectures. An m-input

many-to-one interconnect of n-wide buses is modelled as n instances of an m-

input multiplexer.

Complete Interconnect This type describes a fully populated m-input, n-output

crossbar. These crossbars are modelled as n number of m-to-1 multiplexers. Each

multiplexer is modelled as previously described. Figure 3.7 provides an example

44 of 96

𝐿𝑖𝑛𝑡𝑒𝑟𝑐

5
:4

 C
ro

ss
b

ar
 (

C
o

m
p

le
te

)

Parent Entity

Children

Figure 3.9: Wire length in a local interconnect structure. Shown here is a
5-input, 4-output complete interconnect, which results in 9 wires of
length 1/2 ·Linterc.

of an 8-to-9 crossbar connecting the inputs and outputs of the CLB to the inputs

of the BLEs.

3.2.2.2 Look-up Tables (LUTs)

LUTs are assumed to be implemented as a network of two-input multiplexers,

with level restorers used between every other stage [60]. Figure 3.10 provides an

illustration of a 4-input LUT. Calculating the power dissipation of this structure

requires the switching activity of internal nodes of the multiplexer. The activity

estimator, which will be described in Section 4.2, determines the activity of each

45 of 96

net, but not the activity within the LUTs themselves. These internal activities

are calculated as follows. The initial level of multiplexers is fed by SRAM bits,

making P1 (the long-term probability that a node is high) equal to the value of the

SRAM cell. P1 values are cascaded through the LUT levels using Equation 3.4 for

each 2-input mulitplexer, where s is the select signal.

P1(out) = (1−P1(s))∗P1(in0)+P1(s)∗P1(in1) (3.4)

AS(out) = (1−P1(s)) ·AS(in0)+P1(s) ·AS(in1)

+AS(s) ·P(in0 6= in1) (3.5)

AS values (the expected switching activity of each node) are calculated at the

output of each 2-input multiplexer using Equation 3.5, which is comprised of three

terms. The first two terms represent the case when the selected input toggles, caus-

ing the output to toggle. The third term, AS(s) ·P(in0 6= in1), represents toggles

on the output due to the selector toggling, which occurs only when the two inputs

are of different logic value. The probability of the two inputs being different is

calculated using Algorithm 2.

3.2.2.3 D Flip-Flop

A D Flip-Flop, contains a master and slave loop, each with two inverters and a two

input multiplexer. Figure 3.11 provides an illustration. The inverters are assumed

to be minimum sized, and the multiplexers are composed of two minimum size

46 of 96

Algorithm 2 Method of calculating the probability that the two inputs of a stage-n
multiplexer in a LUT have different logic values.

Ptotal = 0
for all {in1, in2, ...inn−1} | ini ∈ {0,1} do

// Check if SRAM values are diffent
if SRAM(in1, in2, ...,0) 6= SRAM(in1, in2, ...1) then

Pbranch = 1
// Sum probability of each branch
for i = 1→ (n−1) do

Pbranch = Pbranch ·P(inputi == ini)
end for
Ptotal+= Pbranch

end if
end for

s

in1

in0
out

outin
1

0

0

out

in0

in1

inN

S

n

1/2 Si/n

0 1

a

b

c

d

1 0

out(b)
e

f

a b c d

out

1

1

0

1

Figure 3.10: 4-input LUT.

transmission gates [58]. Like LUTs, the internal node activity must be calculated.

The behaviour of the master loop is assumed to be P1 = P1(D) and AS = (1−

47 of 96

1

0

1

0 Q

D

clk

Figure 3.11: D Flip-Flop.

AS(clk)) ∗ AS(D). The slave loop behaviour is assumed to be P1 = P1(Q) and

AS = AS(Q).

3.2.2.4 Undefined Hard Blocks (Black Boxes)

Our model does not estimate power of I/O pads, memories, multipliers, and other

hard blocks designed by users. I/O pads have intentionally been excluded due

to their complexity. If the user wishes to model memories, multipliers or other

custom hard blocks, he/she must provide parameters for the block. This can be

done in one of three ways:

1. Provide the absolute dynamic and static power of the block in the architec-

ture file. This is the simplest, but least accurate approach, as power esti-

mates are independent of the behaviour of input pins.

2. Provide the equivalent internal capacitance of the block in the architecture

file. The power model will average the switching activity (AS) across all

48 of 96

input pins to calculate dynamic power. Static power must still be specified

as an absolute in the architecture file.

3. Provide a coded function that can be called by the primitive handler. The

primitive handler will provide the signal probability (P1) and switching ac-

tivity (AS) of the input pins. The user provided function should use this

information to make more detailed power estimations, such as is done for

LUTs and flip-flops.

3.2.2.5 Static Power of Unused Blocks

One step of Algorithm 1 is to determine the mode of operation for each entity

in the CLB. For example, it is necessary to know whether the fracturable LUT is

operating in fractured or non-fractured mode. However, if an entity is unused, it

is not clear which mode it is operating in. This is needed to calculate static power

of the unused entity. To handle this scenario, the power model allows the user to

specify the default mode of operation in the architecture file. For example, the

user can specify that when unused, LUTs should be modelled as the non-fractured

type.

3.2.2.6 Limitations

There are several limitations in the way that the architecture description file spec-

ifies modes of operation. The file is designed to describe the functional behaviour

of entities, and not the actual hardware. For example, functionally a 6-LUT can

operate as two 5-LUTs. However, the actual hardware of the 6-LUT is not iden-

49 of 96

tical to the hardware of two distinct 5-LUTs. Unfortunately, there is no visibility

within VTR to distinguish between a normal 5-LUT and a 5-LUT that is actually

half of a 6-LUT. Thus when LUTs are fractured they are treated as multiple or-

dinary LUTs. This results in the input buffers to the LUTs being counted twice.

Our testing shows that this discrepancy should be limited to a 1-2% overestimate

in the overall power usage.

3.2.3 Clock Network

The clock network modelled is a four quadrant spine and rib design, as illustrated

in Figure 3.12. The design is similar to the topology used in a Xilinx Virtex II

Pro [62]. At this time VPR only supports a single clock; however, the power

model contains infrastructure to model multiple clocks, provided that each clock

is composed of the same topology as illustrated in the figure. Some FPGA multi-

clock networks are more complicated, with different clocks connecting to different

regions of the chip [62], but we do not model these more complex networks.

The model assumes that the entire spine and rib clock network will contain

buffers separated in distance by the length of a grid tile. As in Section 3.2.1.4,

the buffer is multi-stage with the final stage sized according to Equation 3.2. In

this case, the load capacitance is assumed to be the next clock buffer, plus the

capacitance of the wire connecting to it.

50 of 96

Figure 3.12: The clock network. Squares represent CLBs, and the wires
represent the clock network.

51 of 96

3.2.4 Physical Size Estimation

One benefit of this power model is that all of the components are automatically

sized. This includes routing buffers, clock buffers, and buffers within a CLB. The

size of these buffers depends on the capacitance of the wire that is driven by the

buffer. For this reason, the power model must be aware of the physical size of grid

tiles in the FPGA, as well as the size of entities within CLBs, such as LUTs, flip-

flops and multiplexers. The power model employs a transistor counting algorithm

to determine the physical size of the various parts of the FPGA. This algorithm

works with the architecture description file, so any user defined architecture is

supported.

Algorithm 3 provides the method used to calculate the FPGA grid tile size, as

well as the sizes of all CLB entities. Similar to the power estimation algorithm,

a recursive function traverses the CLB entity hierarchy, counting transistors at

each level. For entities that support multiple modes, the mode that requires the

largest transistor area is assumed. If the user introduces custom hard-blocks in the

design, they must also provide a function that returns the number of transistors in

the block.

In our estimations we assumed the area of an SRAM cell to be equivalent to

the layout area of 6 minimum-sized transistors [58]. The architecture description

file contains a parameter that allows the user to override this value.

52 of 96

Algorithm 3 FPGA physical size estimation.
calc FPGA tile length:

transistor cnt = cnt entity transistors(CLB)
transistor cnt = transistor cnt +2∗ cnt connection box transistors()
transistor cnt = transistor cnt + cnt switch box transistors()
return

√
(transistor cnt ∗ transistor unit area)

cnt entity transistors(entity):
max transistor cnt⇐ 0
if entity has children then

// Find the mode that requires the most transistors
for each mode in entity.modes do

transistor cnt⇐ 0
for each interc in mode do

transistor cnt⇐ transistor cnt + cnt interc transistors(interc)
end for
for each child in mode do

transistor cnt⇐ transistor cnt + cnt entity transistors(child)
end for
max transistor cnt = max of (max transistor cnt, transistor cnt)

end for
else

// This is a leaf node such as a LUT or Flip-Flop
// Call the leaf handler
max transistor cnt⇐ max transistor cnt + cnt lea f transistors(entity)

end if
// Store area of this entity for later use
entity.area⇐ max transistor cnt ∗ transistor unit area
return max transistor cnt

3.3 Summary

This chapter provided an overview of the components in our power model, and

the roles they play in power estimation. The chapter also detailed the architecture

generator, which is responsible for translating arbitrary FPGA architectures into

53 of 96

basic circuit components. This includes generating circuit information for the

global routing fabric, the CLBs, and the clock network. All transistors and wire

lengths in these circuits are automatically sized.

The architecture generator is able to process any user described architecture,

regardless of complexity, and produce a collection of inverters, single-level mul-

tiplexers and wires. Once the FPGA circuitry has been reduced to these simple

components, the other parts of the model are capable of estimating the dynamic

and static power of each component. This power estimation is outlined in the next

chapter.

54 of 96

Chapter 4

Power Estimation

This chapter describes the remaining components of our model: The low-level

power estimator, the activity estimator, and the transistor properties generator.

The architecture generator translates the entire FPGA circuitry into a collec-

tion of inverters, multiplexers and wires, after which the low-level power estima-

tor provides power estimates of these components. These estimates, described

in Section 4.1, depend on the signal behaviour and transistor properties. Signal

behaviours are determined by the activity estimator, as described in Section 4.2.

Transistor properties are generated by running SPICE simulations and extracting

the necessary values, as described in Section 4.3.

4.1 Low-Level Power Estimation

The power dissipated in the inverters, multiplexers and wires is comprised of both

dynamic and static power. Dynamic power includes both switching power and

55 of 96

short-circuit power. Static power consists of subthreshold and gate leakage. Other

sources of power are not significant and are ignored [58].

4.1.1 Switching Power

Switching power is the result of charging and dissipating energy stored in the ca-

pacitance of transistor nodes and wires, and is proportional to the frequency with

which the nodes toggle. The switching power dissipated by every wire, as well as

the source, drain, and gate of every transistor is estimated using Equation 4.1 [63].

Pdyn = α CVswingVDD f (4.1)

The parameters of the above equation are:

• α: The expected switching activity of the node. α = 1 represents a node

that toggles once, or switches twice, per clock cycle.

• C: The node or wire capacitance.

• VDD: The supply voltage.

• Vswing: The swing voltage, which is the voltage range of the node or wire.

• f : The operating frequency of the circuit.

In our implementation, transistor node capacitances are provided by the transistor

properties generator, which will be described in Section 4.3.1. Wire capacitances

are calculated by multiplying the wire length provided by the architecture genera-

tor with the unit-length wire capacitances provided in the architecture description

file. The activity factor, α , is calculated as α = AS/2, where AS is the transi-

56 of 96

tion density from the activity estimator, which will be described in Section 4.2.

The operating frequency, f , is provided by VPR 6.0. Typically, the swing volt-

age, Vswing, is equal to the supply voltage. However, in pass-transistor logic, there

may be voltage drop since NMOS transistors transmit a weak logic-1 [61]. This

voltage drop is estimated using techniques described in Section 4.3.5.

4.1.2 Short-Circuit Power

Short-circuit current occurs in CMOS logic during an input transition, as both the

pull-up and pull-down networks are simultaneously enabled for a short period of

time [58]. In the components handled by this model, short-circuit power occurs

only in inverters. It is highly dependent on the speed of the input transition; slower

input transitions lead to longer periods of short-circuit current. In cases where the

inverter is driven by a pass-transistor multiplexer, the input voltage must be pulled

up to VDD, creating a slow input transition, and increased short-circuit power [64].

If the input multiplexer is large, the input capacitance will be larger, further slow-

ing the input transition.

The model estimates the short-circuit power of all buffers as a factor of the

switching power. This factor is extracted from SPICE, as described in Section 4.3.6.

This factor depends on the size of the buffer, the type of logic driving the buffer,

and the capacitance at the input.

57 of 96

4.1.3 Subthreshold Leakage Power

Subthreshold leakage current occurs in transistors that are operating in the cut-off

region, but have a non-zero source-drain voltage (Vds). The amount of leakage is

highly dependent on Vds [58]. Subthreshold leakage occurs in both inverters and

multiplexers.

Inverters

In an inverter, the subthreshold leakage power, Pst , of the two transistors is:

Pst, PMOS =VDD ·P1 · Ist((W/L)P) (4.2)

Pst, NMOS =VDD · (1−P1) · Ist((W/L)N) (4.3)

Ist is the subthreshold leakage current of the transistor when Vds = VDD, which is

a function of the transistor size. It is determined automatically through SPICE, as

described in Section 4.3.2.

Multiplexers

For muliplexers, past power models [13, 14] used a simple worst-case analysis,

where all transistors were assumed to be leaking. We use a different approach,

analyzing the leakage behaviour of each transistor. In an m-input, single-level

multiplexer, there will always be one input that is selected. The voltage drop (Vds)

across the selected transistor is small, and the subthreshold leakage can be ig-

nored. However, the other m− 1 transistors in the multiplexer may experience a

more significant voltage drop and exhibit significant leakage [65]. The subthresh-

58 of 96

old leakage power of each of these transistors is:

Pst =Vdd ·P[V (i) 6=V (o)] · Ist(Vds) (4.4)

P[V (i) 6=V (o)] is the probability that the logic-value of the input is different than

the logic value of the output, and is determined using the signal probabilities (P1

values). Figure 4.1 provides an example of a three-input multiplexer, and illus-

trates how the leaking transistors depend on the values of the inputs. Ist is the

subthreshold current of a minimum-sized NMOS transistor, for a given voltage

drop, Vds. As mentioned earlier, the voltage drop across the multiplexer is a func-

tion of the size of the multiplexer, and the values of the inputs. SPICE simulations

are used to determine the leakage current for various Vds values, as described later

in Section 4.3.2.

4.1.4 Gate Leakage Power

Gate leakage occurs when currents tunnel through the transistor gate to the source-

drain channel. We found that gate leakage was only significant for large inverters.

The gate leakage power (Pg) of the two transistors in the inverter is calculated as:

Pg, PMOS =VDD · (1−P1) · Ig(W/LP) (4.5)

Pg, NMOS =VDD ·P1 · Ig(W/LN) (4.6)

59 of 96

1

0

0

0

1

1

1

(a) Output→Input

1

0

0

0

0

0

1

(b) Input→Output

Figure 4.1: Subthreshold leakage in a multiplexer, which can occur between
input and output in either direction. Leaking transistor shown with an
arrow.

In these equations, Ig is the gate leakage current of the transistor, and is a func-

tion of the transistor size. It is extracted from SPICE, as described later in Sec-

tion 4.3.3.

4.2 Activity Estimation

The dynamic and static power estimates described in the previous section are de-

pendent on the behaviour of the user-supplied circuit. For each net in the circuit,

the activity estimator determines:

• The Transition Density, or switching activity, AS.

• The Signal Probability, P1.

60 of 96

These values were described in greater detail in Section 2.3.3

4.2.1 Algorithm

Previous power models have used ACE-1.0 [13] and ACE-2.0 [55] to generate

these values. ACE-1.0 is fast, but is inaccurate for large and/or sequential circuits.

ACE-2.0 provides an improved algorithm that better handles sequential circuits.

Unfortunately, ACE-2.0 is built on the Berkeley SIS tool [66], which is obsolete.

SIS has been superseded by the Berkeley ABC circuit tool [38], which is more

robust, has better performance, and supports much larger circuits.

As part of this work, we have implemented the algorithms from ACE-2.0, us-

ing the ABC libraries. Our implementation consists of two phases: simulation

and static analysis. Although ACE-2.0 used three phases, the second phase was

an optimization, designed to improve run-time when estimating activity of large

circuits. Because of the improved performance of ABC, the second phase is no

longer necessary. The following describe the two phases of the activity estima-

tor, which correspond to the first and third stages of ACE-2.0. These phases are

described in greater detail in [55].

4.2.1.1 Stage 1: Simulation

In the first stage, the circuit is simulated for 5000 cycles. The user has the option

of providing a vector of inputs, or they may specify P1 and AS for each of the

input nodes. If neither is provided, the inputs are assumed to have the behaviour

P1 = 0.5 and AS = 0.2. These are the same values used by ACE-1.0 and ACE-

61 of 96

2.0. The overall power of the circuit is highly dependent on activity of the inputs.

Inputs with larger activity will directly increase the estimated dynamic power of

the circuit.

During circuit simulation, the logic values of each register are monitored. This

is used to calculate P1 and AS for each register in the circuit. The simulation phase

is necessary as the static analysis method is not accurate when there are sequential

loops present [55].

4.2.1.2 Stage 2: Static Analysis

The second stage is a static analysis of the behaviour of the combinational logic

nodes between the registers. It determines the probability of changes on the inputs,

and whether these changes will cause a change on the output. The algorithm also

provides an estimation of circuit glitching, using a low-pass filter approach as

described in [67].

4.2.2 Limitation: Black Boxes

ACE-2.0 was created to be used with older versions of VPR, which did not sup-

port heterogeneous FPGA architectures. The latest version of VPR allows for the

specification of hard-blocks, such as memories, multipliers, or other user-defined

functions. In the BLIF format, these functions are represented as black boxes,

with no definition of their behaviour.

A major limitation of the activity estimator is that it does not consider the

contents of the black boxes. It uses ABC to read the BLIF file, which removes

62 of 96

black boxes from the circuit. The outputs of the black box become primary inputs

to the circuit, and the black box inputs become primary outputs of the circuit. The

activity estimation then proceeds as usual. The outputs of the black box will be

assigned activity values, just as if they were an input to the circuit. This results

in activity information that does not reflect the functionality of the black box. It

is possible to work around this limitation by providing realistic activity values for

the black box outputs, just as can be done with primary inputs.

4.3 Transistor Properties Generator

Static and dynamic power calculations rely heavily upon the CMOS technology

being used. In past power models [13, 14] users were responsible for providing

many properties of the CMOS technology, such as capacitances, short-circuit be-

haviour, and other transistor parameters. The models used these parameters with

equations to approximate transistor capacitances and leakage currents. There are

two main disadvantages to this method. First, this technique does not scale well to

modern CMOS technologies. The equations used to estimate leakage currents in

older CMOS technologies are not accurate across modern technologies. Secondly,

this method places a burden on the user to determine all of these parameters prior

to using the power model.

Our model takes a different approach; it provides a script that performs multi-

ple SPICE simulations, extracts relevant transistor characteristics, and writes them

to a file. The user is only required to provide a transistor technology file, the op-

erating voltage, and the operating temperature. The entire process takes about 5

63 of 96

minutes to execute. This process needs to be performed only once, and the file

can be reused for subsequent executions of the power model. A new file needs to

be created only when changing CMOS technologies, operating voltage, or tem-

perature.

When performing SPICE simulations, the script uses the default parameters

included in the technology file. In addition, parameters are provided for the

source/drain areas and perimters (AS, PS, AD, PD). The width of the source and

drain regions is assumed to be equal to the width of the transistor. The length of

these regions is assumed to be 2.5 times the length of the transistor.

The following explains how the script determines relevant transistor charac-

teristics for the CMOS technology.

4.3.1 Transistor Node Capacitances

Transistor nodal capacitances are determined for both PMOS and NMOS minimum-

length transistors. The transistor sizes begin at the minimum width, and increase

by 5% until reaching 2000 times the minimum width, resulting in data for over

150 different transistor sizes. For each size, a SPICE simulation is performed on

a single transistor. The desired node (source, drain, or gate) is kept logic-high and

the voltages to the other two nodes are varied. The capacitance of the desired node

is measured and averaged across the simulation.

4.3.2 Subthreshold Leakage Current

Subthreshold leakage currents are required for two different scenarios:

64 of 96

1. For inverters, where transistor size varies, but Vds is always equal to VDD.

2. For multiplexers, where transistor size is always minimal, but Vds varies.

For the first case, where transistor size varies, the process is similar to that de-

scribed above. Over 150 different transistor sizes are simulated in SPICE, and the

subthreshold leakage current is measured. For PMOS transistors the source and

gate are set to VDD, and the drain is set to ground. The voltages are reversed for

NMOS transistors.

For the second case, where Vds varies, a minimum-sized NMOS transistor is

simulated. The gate is set to ground, the drain-source voltage is incremented from

1/2VDD to VDD, and the subthreshold current is measured.

4.3.3 Gate Leakage Current

To determine gate leakages, a similar process was followed. SPICE simulation

was performed for over 150 PMOS and NMOS transistor sizes. For PMOS tran-

sistors, the gate was set to ground, the source and drain were set to VDD, and the

current through the gate was measured. For NMOS transistors, the node voltages

were reversed.

4.3.4 P/N Ratio Sizing

In order to properly model transistor sizes, the P/N ratio must be determined. The

P/N ratio is the ratio of the width of the PMOS transistor to the width of the NMOS

transistor in an inverter, and depends on the CMOS process. SPICE simulation is

performed on a single inverter with a square input wave. The NMOS transistor is

65 of 96

sized such that W/L = 1, and the PMOS transistor is swept in size from W/L = 1 to

W/L = 5, by increments of 0.05. The P/N ratio is chosen to minimize the difference

in rise and fall delays, which is common design practise [58].

4.3.5 Multiplexer Voltage Drop

In pass-transistor multiplexers, when the output is logic-high, the output voltage

will always be less than VDD. This is because NMOS transistors transmit a weak

logic-1 [58]. Our testing showed that the output voltage depends on both the size

of the multiplexer, and the logic value of the non-selected inputs. Adding more

transistors to the multiplexer, or having more inputs that are grounded, cause the

output voltage to drop. This is because both scenarios decrease the equivalent

resistance between the output and ground. In addition, since multiplexers may be

stacked in series, the input voltage to a multiplexer may be less than VDD, further

decreasing the output voltage.

To determine the expected voltage drop across a multiplexer we simulated

many different multiplexers, varying both the size and the input voltage. For a

given size and input voltage, we simulate the multiplexer with all non-selected

inputs set to ground, and then with all inputs set to the input voltage. The results

are extracted and stored in a table. This allows the model to predict the output

voltage of a multiplexer based upon 1) the size, 2) the input voltage, and 3) the

expected logic-value of the inputs. Although this may seem excessively detailed,

it is necessary to make accurate static power estimates. Subthreshold currents are

66 of 96

ISW+ISC

ISC

ISC

ISW+ISC

Figure 4.2: Short circuit currents in inverters during input transitions. The
left-hand side shows an inverter experiencing a rising edge. The out-
put capacitance discharges through ground (ISW), and the short-circuit
current (ISC) enters from the supply and exits through ground. On the
right-hand side, a falling edge input is shown, where the output capac-
itance in charged.

highly dependent on Vds; even small changes to the multiplexer voltage drop can

cause large changes in static power dissipation.

4.3.6 Short-Circuit Buffer Factor

As described in Section 4.1.2, CMOS buffers experience short-circuit currents

during a switching of the input. The short-circuit currents are increased when the

buffer is driven by a pass-transistor multiplexer, as it takes time for the input to be

pulled up to VDD. If the input multiplexer is large, the pull-up takes longer due to

the increased capacitance.

67 of 96

To determine the effect of short-circuit power we used SPICE to automatically

simulate buffers of various sizes, driven by either CMOS logic, or pass-transistor

logic with various multiplexer sizes. We measured the currents from the supply,

and to ground, during rising and falling edges. When the input to an inverter ex-

periences a falling edge, the output experiences a rising edge, and the capacitance

at the output is charged. The current from the supply includes both the current

to charge the output, as well as the short-circuit current. The current to ground is

only the short circuit current. A similar, but reverse scenario occurs on the rising

edge of an input. Figure 4.2 illustrates the full behaviour. Using this technique we

can isolate the short-circuit current, and represent it as a factor of the switching

power.

4.4 Summary

This chapter detailed the low-level power estimator, activity estimator, and tran-

sistor properties generator. Together, these modules are able to estimate the static

and dynamic power of every inverter, multiplexer and wire that make up the FPGA

circuitry.

The activity estimator determines the behaviour of the user circuit, which di-

rectly influences the power estimates. The transistor properties generator uses

SPICE simulations to extract characteristics of the CMOS process, such as tran-

sistor capacitances and leakage currents, which are essential in making accurate

transistor-level power estimates. The low-level power estimator combines all of

this information, and calculates the static and dynamic power of the entire FPGA.

68 of 96

This chapter, together with the previous chapter, contain all of the implementa-

tion details of our model. The following chapter explains how the tool is verified,

as well as experimental results.

69 of 96

Chapter 5

Verification and Results

This chapter includes an evaluation of the accuracy of the power model estima-

tions, compared to those obtained from SPICE simulations, as well as experiments

performed using the model to estimate the impact of various FPGA architecture

parameters on power. The first experiment (Section 5.3) provides a breakdown of

power usage between major FPGA components for three CMOS processes. The

second experiment (Section 5.4) studies the effect of fracturable LUTs on overall

power usage.

5.1 Verification of Power Estimation

In order to verify that our model produces accurate power estimations, we com-

pared the power estimates from our model to results from SPICE simulations for

many different FPGA components.

70 of 96

5.1.1 Verification Procedure

SPICE circuits were created for various sizes of inverters and multiplexers, which

are the basic blocks of the FPGA circuitry. To test the interaction between these

basic components we also designed some larger components, which include multi-

stage buffers, LUTs, flip-flops and switch box components.

The circuits were simulated in HSPICE [68] for one clock cycle, with a 5 ns

period. For each component, we tested both high-activity and zero-activity sce-

narios. In the high-activity test, each input was toggled once during the clock

cycle, such that P1 = 0.5 (signal probability) and AS = 2 (activity factor). The

high-activity scenario verifies the accuracy of the dynamic power estimations, as

these large activity values will cause the dynamic power to dominate the overall

power usage. The second experiment simulates a zero-activity circuit. In this

case, the inputs are held at logic-high and are unchanged for the duration of the

simulation, thus P1 = 1 and AS = 0 for each input. This scenario tests the accuracy

of the static power estimations, as there is no dynamic power when the inputs do

not toggle.

The energy usage is estimated in SPICE by integrating the supply current over

the simulation time, and the result is compared to the estimate provided by our

power model. This comparison was performed for three different CMOS pro-

cesses: 22 nm, 45 nm, and 130 nm. The CMOS technology files were obtained

from the Berkeley Predictive Technology Model (PTM) [69], which are predic-

tions of real-world technologies. Table 5.1 lists characteristics of these CMOS

processes.

71 of 96

Process VDD
P/N

Ratio
NMOS PMOS

Cg (aF) Cs/d (aF) Ist (nA) Cg Cs/d Ist

22 nm 0.8 1.70 15 57 4.8 8 80 4.3
45 nm 1.0 1.75 53 118 2.3 28 182 0.5

130 nm 1.3 2.50 255 351 10.2 131 602 6.2

Table 5.1: CMOS process characteristics. All transistor values are shown
for a minimum-sized transistor. Ist is the subthreshold leakage current
when Vds =VDD. Parameters were extracted at 85◦ C.

5.1.2 Verification Results

Table 5.2 and Table 5.3 contain the results of the high-activity and zero-activity

tests, respectively. Each table lists the energy usage obtained through SPICE sim-

ulations, and the error percentages of our model.

The results show that for all component types, the high-activity estimation is

within 20% of SPICE results, which demonstrates the accuracy of the dynamic

power estimations. In the case of the zero-activity scenario, the estimations are

even more accurate, falling within 5% of the SPICE results. This demonstrates

the high accuracy of the static power estimations.

In general, our model provides good estimates of both dynamic and static

power usage for all component types. However, it should be noted that the to-

tal estimated FPGA power will still be significantly lower than if the power were

measured for a physical FPGA. This is because the model does not incorporate all

components of the FPGA, such as the I/O pads, the clock generator, and other spe-

cialized circuitry. Unlike power estimation algorithms integrated into commercial

CAD tools, the purpose of our model is not to provide absolute FPGA power es-

72 of 96

Component
Type Size 22 nm 45 nm 130 nm

Act.
(fJ)

% Est.
Error

Act.
(fJ)

% Est.
Error

Act.
(fJ)

% Est.
Error

Inverter

1 0.16 -6 0.5 -7 4 -16
8 1.06 -14 2.9 -12 26 -21

16 2.08 -14 5.7 -13 52 -21
32 4.15 -14 11.2 -13 102 -21
64 8.25 -14 22.3 -13 205 -22

Multiplexer

4 0.40 +1 1.4 -7 8 -16
8 0.74 +1 2.8 -6 14 -16

12 1.01 +3 3.4 -6 19 -14
16 1.34 +3 4.6 -8 25 -14
20 1.61 +3 5.4 -6 30 -13

Multi-Stage
Buffer

16 2.89 +3 8.0 +6 95 -15
25 4.37 -1 12.5 +1 156 -17
64 11.34 -3 31.9 -4 396 -21

LUT
2 1.59 +15 3.89 +17 28 0
4 6.70 +18 17.12 +14 115 -7
6 25.82 +20 67.56 +13 437 -10

D Flip-Flop - 1.15 -8 3.7 -9 26 -10

Switch Box
Component
(Mux./Buffer)

4/9 3.73 +4 8.8 +4 77 -14
8/9 4.32 -2 9.5 0 84 -15

12/16 6.80 -9 15.0 -8 143 -19
16/16 7.44 -12 15.6 -4 150 -19
20/25 10.79 -15 22.9 -13 229 -20
25/25 11.65 -18 23.8 -11 234 -19

Table 5.2: High-Activity energy estimation, versus SPICE simulation. Act.
shows actual energy (femtojoules), obtained through SPICE simulation,
for a single cycle (5 ns). % Est. Error shows the percentage difference
between our model estimation and the actual energy, where positive
percentages indicate overestimates. All inputs toggle twice during the
cycle.

73 of 96

Component
Type Size 22 nm 45 nm 130 nm

Act.
(fJ)

% Est.
Error

Act.
(fJ)

% Est.
Error

Act.
(fJ)

% Est.
Error

Inverter

1 0.03 0% 0.01 0% 0.11 0%
8 0.33 0% 0.05 0% 0.92 0%

16 0.66 0% 0.11 0% 1.84 0%
32 1.33 0% 0.21 0% 3.69 0%
64 2.68 0% 0.42 0% 7.38 0%

Multiplexer

4 0.01 +6% 0.01 +4% 0.08 +3%
8 0.02 +7% 0.02 +4% 0.15 +3%

12 0.02 +5% 0.02 +3% 0.19 +2%
16 0.03 +7% 0.03 +4% 0.22 +3%
20 0.03 +6% 0.03 +4% 0.26 +2%

Multi-Stage
Buffer

16 0.78 +1% 0.17 +2% 2.17 +3%
25 1.18 +1% 0.24 +1% 3.28 +2%
64 2.51 0% 1.16 0% 6.83 +1%

LUT
2 0.35 0% 0.12 +1% 1.16 +1%
4 0.92 -1% 0.39 -4% 3.22 -2%
6 2.26 0% 1.19 -1% 8.35 -2%

D Flip-Flop - 0.10 0% 0.04 -2% 0.37 -2%

Switch Box
Component
(Mux./Buffer)

4/9 0.48 0% 0.12 -1% 1.41 -1%
8/9 0.50 0% 0.14 -1% 1.52 -1%

12/16 0.83 0% 0.21 -1% 2.44 -1%
16/16 0.85 0% 0.22 -1% 2.51 -1%
20/25 1.26 0% 0.30 -1% 3.66 -1%
25/25 1.28 0% 0.31 -1% 3.73 -1%

Table 5.3: Zero-Activity energy estimation, versus SPICE simulation. Act.
shows actual energy (femtojoules), obtained through SPICE simulation,
for a single cycle (5 ns). % Est. Error shows the percentage difference
between our model estimation and the actual energy, where positive
percentages indicate overestimates. Inputs do not toggle.

74 of 96

timates. Instead, the purpose is to quantify relative improvements or degradation

in power efficiency as architectural or CAD parameters are changed. The results

show that the power model is scalable between small and large components, as

well as between small and large transistor technologies. The scalability of the

power model across different technologies and components makes it useful for

evaluating trade-offs during FPGA architecture and CAD design.

Although our model is sufficiently accurate for architectural evaluations, some

error still exists between estimates of our model, and the result from SPICE sim-

ulations. The following section provides explanations for these differences.

5.2 Sources of Estimation Error

The following outlines sources of error in our power model estimations, specifi-

cally in comparison to SPICE results for identical components.

5.2.1 Short-Circuit Current

The largest source of error is short-circuit currents, which are complex and diffi-

cult to estimate. All CMOS circuity experiences some short-circuit current; how-

ever, it is particularly significant when the CMOS logic is driven by pass-transistor

logic. This pattern occurs in both switch boxes and LUTs. For example, switch

box components (Figure 3.2) contain a multiplexer, made up of pass-transistor

logic, that drives the input of a multi-stage buffer. The pass-transistor logic can-

not produce a strong logic-1, so a weak PMOS transistor is added in a feedback

configuration, which pulls the input to VDD. However, this pull-up takes time,

75 of 96

resulting in a slow rising edge to the input and substantially larger short-circuit

currents than if the buffer were driven by CMOS logic.

This behaviour can be seen in Table 5.2, which shows that the power usage

of a switch box component is much larger than just the sum of the multiplexer

and buffer that compose it. For example, at 22 nm, a 12-input multiplexer re-

quires 1.0 fJ of energy per cycle, and a size-16 buffer requires 2.9 fJ. However,

when combined, resulting in the buffer being driven by pass-transistor logic, they

require 6.8 fJ of energy, an increase of 74%.

We do perform some estimation of this short circuit current, as explained in

Section 4.1.2. This has allowed us to reduce the error from 50% to within 20%.

More extensive short-circuit modelling would be required to improve accuracy

further.

5.2.2 Transistor Node Capacitances

Another source of error is our method of estimating transistor node capacitances.

In our power model they are extracted from SPICE simulation, as explained in

Section 4.3.1. Our model uses a single value that represents the average transistor

capacitance. In reality, transistor node capacitances are a function of the state of

the transistor, and vary based on the voltages present at the other nodes of the

transistor. We do not model this level of complexity, and this simplification is

likely responsible for some of the error in dynamic power estimations.

76 of 96

5.2.3 Gate Leakage Currents

Our model estimates gate leakage currents only for CMOS inverters, as described

in Section 4.1.4. We ignore gate leakage in multiplexers because 1) multiplexers

are built using small transistors, so the gate leakage is minimal, and 2) variations

in internal node voltages of multiplexers make accurate gate leakage difficult. This

simplification accounts for the error in static power estimations of multiplexers,

which is at most 7%.

5.3 Experiment 1: Component Breakdown

With the accuracy of the model verified, we now use it to study power characteris-

tics of different architectures. The first experiment provides a breakdown of power

usage between the major FPGA components, for different CMOS technologies.

5.3.1 Methodology

We executed the full VTR flow, and measured the power for the entire suite of

VTR benchmarks. The architecture file used resembles the architecture of an

Altera Stratix IV FPGA [70]. The architecture consists of 6-input LUTs arranged

in CLBs, where each CLB contains 10 LUTs and has 33 inputs. The CLBs are

connected using length-4 segments. The timing information is taken from the

iFAR FPGA architecture repository [71], and interconnect capacitances are taken

from the 2007 ITRS interconnect roadmap [72]. The transistor technologies used

are 22 nm, 45 nm, and 130 nm PTM [69] models, as described in the previous

section. Table 5.1 lists characteristics of these processes.

77 of 96

5.3.2 Results

Component 22nm 45nm 130nm
Avg % Min % Max % Avg % Avg %

Routing 83.8 61.9 87.2 72.7 68.2
Switch Box 73.2 33.7 64.6 46.4 47.7
Connection Box 8.8 7.8 30.3 17.8 12.6
Global Wires 1.0 1.2 11.6 5.6 5.9

CLBs 13.9 5.3 33.7 21.4 26.0
LUTs 9.0 2.2 14.8 7.7 10.9
Flip-Flops 1.0 0.9 6.3 2.6 4.9
MUXs / Crossbars 3.1 0.7 11.4 5.7 6.4
Local Wires 1.2 1.9 13.1 7.0 7.3

Clock 1.4 0.7 8.6 3.4 3.3
Buffers 1.2 0.6 5.8 2.4 2.2
Wires 0.2 0.1 2.9 1.0 1.1

Table 5.4: Power breakdown by component type.

Table 5.4 provides the breakdown of power usage between major components

for 22 nm, 45 nm and 130 nm technologies, where the results are averaged across

all VTR benchmarks. Table 5.5 provides a breakdown for each benchmark cir-

cuit for the 45 nm technology. As evident from the results, the total power, and

breakdown between components, is highly dependent on the benchmark circuit.

5.3.3 Analysis

The 45 nm results show that on average, 73% of the power consumption is due to

the routing fabric, 21% from CLBs, and 3% from the clock network. The results

show that routing is responsible for an increasing fraction of overall power as the

78 of 96

Benchmark Circuit 6-LUTs
Power
(mW)

Routing
% Total

CLBs
% Total

Clock
% Total

bgm 30089 78.6 70 28 2
blob merge 6016 10.3 73 23 4
boundtop 2921 6.6 67 27 6
ch intrinsics 413 2.1 66 26 9
diffeq1 434 2.2 72 25 3
diffeq2 277 2 79 18 4
LU8PEEng 21954 35.9 75 24 1
mcml 99700 109.3 75 24 1
mkDelayWorker32B 5580 32.8 83 13 5
mkPktMerge 226 18.2 87 5 8
mkSMAdapter4B 1977 5.5 72 22 6
or1200 2963 7.4 73 25 3
raygentop 2134 10.2 69 27 4
sha 2212 3.3 62 34 4
stereovision0 11462 36.9 64 29 7
stereovision1 10366 58.1 73 24 3
stereovision2 29849 227.4 82 17 1
stereovision3 174 0.9 52 36 12

Table 5.5: Power usage, and breakdown by circuit (45 nm).

technology is scaled down. From 130 nm to 22 nm the percentage of power due

to the routing network grows from 68% to 84%. This behavior is due to the fact

that the wire capacitance does not scale down at nearly the same rate as the tran-

sistor node capacitances. For example, the capacitance of routing segments from

45 nm to 22 nm drops by 57% due to shorter segments and lower wire capacitance

per length. However, the input capacitance of a minimum sized inverter between

45 nm and 22 nm drops by 71%, significantly more than the drop in wire capaci-

79 of 96

tance. According to Equation 3.2, the switch box driver strength will need to be

50% larger, requiring almost double the number of equivalent transistors.

The percentage of power that is attributed to the clock network is very small.

This is because the architecture contains only a single clock, wheras commercial

architectures typically contain several clocks [23, 24]. At this point, VPR only

supports single clock architectures. We expect that once VPR supports multiple

clocks, and the architectures are modified to reflect this, the clock network power

will increase substantially.

It should be noted that this architecture was optimized for the 45 nm tech-

nology. It is likely that a different architecture would be chosen for different

CMOS technologies. For example, the segment lengths may be reduced at 22 nm

to decrease the buffer sizes. Although this architecture may not be ideal for tech-

nologies other than 45 nm, the results are useful in illustrating the trends that oc-

cur between CMOS technologies. Understanding these trends is important when

designing architectures for future technologies. Furthermore, both the transistor

technologies and interconnect capacitances are based on predictive models, and

real world technologies may be different.

5.4 Experiment 2: Fracturable LUTs

The second experiment explores the effect of fracturable LUTs on total power

dissipation.

80 of 96

5.4.1 Methodology

The baseline architecture is the same 6-LUT design, as used in the previous exper-

iment. We modified the baseline architecture to support fracturable LUTs, so that

the 6-LUT can operate as two 5-LUTs. This allows two 5-input (or smaller) logic

functions to be packed into each LUT. However, in order for two logic functions

to be packed into a single LUT they must share some inputs. The parameter Fi

indicates the number of inputs available to the LUT. For example, when Fi = 7,

the two logic functions packed into the 5-LUTs must share three inputs.

The experiment tests Fi values of 6, 7 and 8. In addition, we test both scaling

the number of CLB inputs up with Fi, and leaving the number of inputs constant

at 33. Furthermore, this architecture can be modified to include either one or two

flip-flops for each LUT. If only a single flip-flop is used, the two outputs of the

fractured LUT are multiplexed before connecting to the flip-flop.

For this experiment we used the 45 nm technology model described in the

previous section, as well as the same interconnect capacitances.

5.4.2 Results

Table 5.6 lists the results of the experiment. This table includes the baseline, non-

fractured architecture, as well as architectures where we varied 1) the LUT input-

sharing flexibility, Fi, 2) the number of CLB inputs, and 3) whether there is one or

two flip-flops per LUT. The results show the change in total power compared to

the baseline architecture, as well as the change in total number of CLBs, average

power per CLB, average power per LUT, and total routing power.

81 of 96

Fi CLB
Inputs

Total
Power

CLBs Power /
CLB

Power /
LUT

Routing
Power

Non-fractured (Baseline)

6 33 13 mW 726 3.8 nW 0.14 nW 9 mW

Fractured, One Flip-Flop per LUT

6 33 +4.6% -7.8% +12.5% +7.5% +5.6%
7 33 +9.5% -8.8% +25.6% +8.8% +9.6%
8 33 +14.3% -9.9% +38.7% +9.5% +12.4%

Fractured, Two Flip-Flops per LUT

6 33 +3.5% -17.2% +23.5% +14.8% +4.5%
7 33 +6.8% -18.9% +39.3% +16.9% +5.5%
8 33 +10.9% -18.9% +52.6% +16.7% +8.2%

Fractured, One Flip-Flop per LUT, CLB inputs scale with Fi

7 39 +9.7% -9.6% +29.2% +8.9% +8.8%
8 44 +14.3% -10.9% +45.4% +9.7% +11.6%

Fractured, Two Flip-Flops per LUT, CLB inputs scale with Fi

7 39 +6.2% -19.2% +43.2% +16.7% +4.4%
8 44 +11.2% -19.6% +61.3% +17.5% +5.9%

Table 5.6: Power of fracturable LUTs.

82 of 96

One might expect that fracturing the LUTs will cause the power usage to de-

crease, since the circuit will require fewer CLBs. However, the results show the

opposite; adding the fracturable LUT feature actually increases power usage. The

total power usage increases by 3.5-14% depending on the type of fracturable LUT

architecture. Although the number of CLBs is decreasing, both the power con-

sumed per CLB and the routing power is increasing.

5.4.3 Analysis

By adding the fracturable LUT feature, we can pack more logic functions into

each CLB. Further modifying the architecture to increase either Fi and/or the num-

ber of CLB inputs will increase the likelihood of packing logic functions together.

The more logic functions that can be packed together, the fewer CLBs are required

to implement the circuit, allowing for a smaller FPGA. However, each of these

modifications require changes to the hardware that increase the power demand.

Fracturing LUTs: By adding the fracturable LUT feature, each LUT will now

have two output pins instead of one. This increases the CLB crossbar size, since

all LUT outputs are fed back into the crossbar. It also doubles the number of

CLB output pins, which leads to larger multiplexers in the routing switch boxes.

Additionally, LUTs that contain two logic functions will consume more dynamic

power than if they implemented just one of the logic functions. These behaviours

are evident in the results, as adding the fracturable LUT feature increases the

power per CLB, power per LUT, and global routing power.

83 of 96

Increasing Fi: Since the LUT inputs are fed by the CLB crossbar, increasing

Fi will cause a linear increase in the crossbar size. The results show that although

increasing Fi does reduce the number of CLBs by an additional 1 or 2%, the power

per CLB increases rapidly.

Increasing CLB inputs: Each of the CLB inputs is fed into the CLB crossbar.

Thus, increasing the number of inputs increases the crossbar size. Additionally,

the connection boxes will need to be larger to accommodate the increased number

of CLB input pins. The results show that increasing the number of CLB inputs

reduces the number of CLBs by an additional 1%, but at the cost of a large increase

to the power per CLB.

Flip-Flops per LUT: Adding a second flip-flop per LUT allows for many more

logic functions to be packed together, at only the power cost of the second flip-

flop. The results show that the increase in power over the baseline is a lower

penalty than when only using one flop-flop.

The lowest power penalty for a fracturable LUT architecture is when there are

two flip-flips per LUT, Fi = 6, and 33 CLB inputs. In this case the number of

CLBs is reduced by 17% over the non-fractured architecture, at a power cost of

only 3.5%.

5.5 Summary

This chapter outlined the verification of the power model, as well as experiments

performed with the model. When comparing against SPICE simulations, the

power model produces dynamic power estimates within 20%, and static power

84 of 96

estimates within 7% of SPICE simulations. The power estimates are accurate

across a wide range of component sizes and CMOS technologies. This makes

the power model suitable for evaluating trade-offs during architecture and CAD

design.

Two experiments were performed using the model. In the first experiment,

the VTR benchmarks were tested for a 6-input LUT, 10 LUTs per CLB architec-

ture. The results show that on average, for a 45 nm technology, 73% of the power

consumption is due to the routing fabric, 21% from CLBs, and 3% from the clock

network. In the second experiment we modified the architecture to add fracturable

LUTs. This resulted in a 3.5-14% increase in power consumption, depending on

the type of architecture. The best fracturable LUT architecture reduced the num-

ber of CLBs by 17%, at only a 3.5% increase in power.

85 of 96

Chapter 6

Conclusions

A new power model has been developed which can provide power estimates for

modern FPGA architectures, not supported by previous power models. This in-

cludes support for fracturable LUTs, hard-blocks, and user-defined logic blocks.

It is designed to operate with modern CMOS technologies, ranging into the tens of

nanometres. The model is integrated into VTR, the newest academic CAD flow.

This allows researchers to test the power characteristics of new architectures, as

well as new CAD algorithms.

Chapter 2 outlined FPGA architectures, their associated CAD tools, and power

estimation techniques. Like past models, this model uses a probabilistic approach

to power estimation. This allows for detailed estimation, without the high compu-

tation requirements of simulation.

Chapters 3 and 4 provided details of the new model. A new architecture gen-

erator is developed, which is capable of transforming arbitrary user-described

86 of 96

architectures into basic circuit components, comprised of inverters, multiplex-

ers and wires. Once decomposed into basic components, the power estimation

is performed. Estimates are made for dynamic power, consisting of switching

and short-circuit power, as well as static power, which consists of subthreshold

and gate leakage. These estimates depend on signal activities, determined using

the ACE-2.0 [55] tool, and transistor characteristics, which are automatically ex-

tracted from SPICE simulations.

Chapter 5 provides verification of the model, and results of experiments. The

model was verified against SPICE for a variety of circuit components, sizes and

transistor technologies. Dynamic power estimations are within 20% of SPICE,

and static power estimations are within 5%. This accuracy makes the model suit-

able for evaluating and comparing power requirements of different FPGA archi-

tectures. Once verified, we used the model to test power characteristics of com-

mon architectures. Results show that for a 45 nm 6-LUT, 10 LUTs per CLB archi-

tecture, 73% of power usage is due to the routing fabric, 21% due to logic blocks

and 3% due to the clock network (single-clock). Results also show that fracturing

LUTs increases power consumption by 3.5-14%. This is because fractured LUTs

add additional pins to the logic block, increasing both local and global routing

requirements.

6.1 Future Work

The power model presented in this work is built on the academic CAD suite,

VTR. VTR is an actively developed project, and the developers are constantly

87 of 96

working to add architectural support for more modern FPGA features. Currently

in development is support for carry chains and multiple clock networks. The

power model will need to be updated to support these features, as well as any

others that are developed in the future.

In [10], the CAD algorithms in VPR were modified to be power aware. This

work could be updated to support this new model. The results would be interest-

ing as some of the CAD algorithms have changed since the publication of [10].

Furthermore, VTR supports the full CAD flow, from synthesis to routing, while

VPR only supported the last steps of the flow. This makes it possible to perform

power optimizations at earlier stages, possibly reducing power even further.

Another area of development could be spatial or temporal power estimations.

Currently, the model estimates only the average power dissipation. Temporal

power estimation would expand power estimates into the time domain, giving

information about how power requirements change during circuit operation. It

would provide the minimum and maximum power, which are especially relevant

for embedded applications. Spatial power estimation would provide details about

power requirements for different areas of the FPGA. It could be used to isolate

areas of high power, and with modifications to the CAD algorithms, spread power

dissipation evenly across the chip, increasing reliability.

Most importantly, this work provides a method for other researchers to test

their own ideas for architectures or CAD algorithms.

88 of 96

6.2 Summary of Contributions

In summary, this work has made the following contributions:

1. A new FPGA power model, capable of performing power estimates for all

FPGA architectures supported in VPR 6.0. This includes features such as

fracturable LUTs and hard blocks. In addition, this model provides a more

detailed estimation of static power compared to previous models.

2. The model was verified against SPICE, achieving accuracy within 20% for

dynamic and 5% for static power estimates.

3. The model was used to test power characteristics of different architectures,

including a study showing that fracturable LUTs increase power by 3.5-

14%.

4. The model will be publicly available, and included in the next release of

VTR. This allows researchers worldwide to test new architectures and algo-

rithms.

89 of 96

Bibliography

[1] International Technology Roadmap for Semiconductors. 2010 Update
Overview. 2010.

[2] International Technology Roadmap for Semiconductors. 2011 Edition
Executive Summary. 2011.

[3] Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, 2009.

[4] Martin C. Herbordt, Tom VanCourt, Yongfeng Gu, Bharat Sukhwani,
Al Conti, Josh Model, and Doug DiSabello. Achieving High Performance
with FPGA-Based Computing. Computer, 40(3):50–57, March 2007.

[5] Seonil Choi, Ronald Scrofano, Viktor K. Prasanna, and Ju-Wook Jang.
Energy-Efficient Signal Processing Using FPGAs. In International
Symposium on Field Programmable Gate Arrays, pages 225–234, February
2003.

[6] Seonil Choi and Viktor K. Prasanna. Time and Energy Efficient Matrix
Factorization using FPGAs. In International Conference on Field
Programmable Logic and Applications, pages 507–519, September 2003.

[7] Ian Kuon and Jonathan Rose. Measuring the Gap Between FPGAs and
ASICs. Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 26(2):203–215, February 2007.

[8] Assem A.M. Bsoul and Steven J.E. Wilton. An FPGA Architecture
Supporting Dynamically Controlled Power Gating. In International
Conference on Field Programmable Technology, pages 1–8, December
2010.

90 of 96

[9] Fei Li, Yan Lin, Lei He, and Jason Cong. Low-power FPGA Using
Pre-Defined Dual-Vdd/Dual-Vt Fabrics. In International Symposium on
Field-Programmable Gate Arrays, pages 42–50, February 2004.

[10] Julien Lamoureux and Steven J. E. Wilton. On the Interaction between
Power-Aware Computer-Aided Design Algorithms for Field-Programmable
Gate Arrays. Journal of Low Power Electronics, 1(2):119–132, August
2005.

[11] Deming Chen, Jason Cong, and Yiping Fan. Low-Power High-Level
Synthesis for FPGA Architectures. In International Symposium on Low
Power Electronics and Design, pages 134–139, August 2003.

[12] Hoang Le and V.K. Prasanna. Scalable High Throughput and Power
Efficient IP-Lookup on FPGA. In International Symposium on
Field-Programmable Custom Computing Machines, pages 167–174, April
2009.

[13] Kara K. W. Poon, Steven J. E. Wilton, and Andy Yan. A Detailed Power
Model for Field-Programmable Gate Arrays. Transactions on Design
Automation of Electronic Systems, 10(2):279–302, April 2005.

[14] Peter Jamieson, Wayne Luk, Steve J.E. Wilton, and George A.
Constantinides. An Energy and Power Consumption Analysis of FPGA
Routing Architectures. In International Conference on Field
Programmable Technology, pages 324–327, December 2009.

[15] Vaughn Betz and Jonathan Rose. VPR: A New Packing, Placement and
Routing Tool for FPGA research. In International Conference on Field
Programmable Logic and Applications, pages 213–222, September 1997.

[16] Fei Li and Lei He. Power Modeling and Characteristics of Field
Programmable Gate Arrays. Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(11):1712–1724, November 2005.

[17] Farid N. Najm. A Survey of Power Estimation Techniques in VLSI
Circuits. Transactions on Very Large Scale Integration (VLSI) Systems, 2
(4):446–455, December 1994.

[18] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goeders,
Andrew Somerville, Kenneth B. Kent, Peter Jamieson, and Jason Anderson.

91 of 96

The VTR Project: Architecture and CAD for FPGAs from Verilog to
Routing. In International Symposium on Field-Programmable Gate Arrays,
pages 77–86, February 2012.

[19] Steven R. Carlough, Pete M. Campbell, Samuel A. Steidl, Atul Garg,
Cliff A. Maier, Hans J. Greub, John F. McDonald, and Matthew W. Ernest.
Programmable Logic Devices. John Wiley & Sons, Inc., 2001.

[20] CPLDs vs. FPGAs: Comparing High-Capacity Programmable Logic.
Altera, February 1995. Ver. 1.

[21] Scott Hauck and André DeHon. Reconfigurable Computing: The Theory
and Practice of FPGA-Based Computation (Systems on Silicon). Morgan
Kaufmann, 2007.

[22] XC3000 Series Field Programmable Gate Arrays (XC3000A/L,
XC3100A/L). Xilinx, November 2007. Ver 3.1.

[23] Stratix V Device Handbook, Volume 1: Device Interfaces and Integration.
Altera, June 2012. Ver 1.7.

[24] 7 Series FPGAs Overview. Xilinx, May 2012. Ver 1.11.

[25] Guy Lemieux and David Lewis. Using Sparse Crossbars Within LUT
Clusters. In International Symposium on Field Programmable Gate Arrays,
pages 59–68, February 2001.

[26] Guy Lemieux, Edmund Lee, Marvin Tom, and Anthony Yu. Directional and
Single-Driver Wires in FPGA Interconnect. In International Conference on
Field Programmable Technology, pages 41–48, December 2004.

[27] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA Architecture: Survey
and Challenges. Foundations and Trends in Electronic Design Automation,
2(2):135–253, February 2008.

[28] Guy Lemieux and David Lewis. Design of Interconnection Networks for
Programmable Logic. Springer, 2004.

[29] Herman Schmit and Vikas Chandra. FPGA Switch Block Layout and
Evaluation. In International Symposium on Field-Programmable Gate
Arrays, pages 11–18, February 2002.

92 of 96

[30] M. Imran Masud and Steven Wilton. A New Switch Block for Segmented
FPGAs. In Field Programmable Logic and Applications, pages 274–281.
August 1999.

[31] Jianshe He and J. Rose. Advantages of Heterogeneous Logic Block
Architecture for FPGAs. In Custom Integrated Circuits Conference, pages
7.4.1–7.4.5, May 1993.

[32] Cyclone V Device Overview. Altera, June 2012. Ver 2.0.

[33] Scott Hauck, Matthew M. Hosler, and Thomas W. Fry. High-Performance
Carry Chains for FPGAs. Transactions on Very Large Scale Integration
(VLSI) Systems, 8(2):138–147, April 2000.

[34] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and
CAD for Deep-Submicron FPGAs. Springer, 1999.

[35] Andrew Rushton. VHDL for Logic Synthesis. Wiley, 2011.

[36] Rrobert K. Brayton, Gary D. Hachtel, and Alberto L.
Sangiovanni-Vincentelli. Multilevel Logic Synthesis. Proceedings of the
IEEE, 78(2):264–300, February 1990.

[37] Peter Jamieson, Kenneth B. Kent, Farnaz Gharibian, and Lesley Shannon.
Odin II - An Open-Source Verilog HDL Synthesis Tool for CAD Research.
In International Symposium on Field-Programmable Custom Computing
Machines, pages 149–156, May 2010.

[38] Alan Mishchenko. ABC: A System for Sequential Synthesis and
Verification, 2009. URL http://www.eecs.berkeley.edu/alanmi/abc.

[39] Robert Brayton and Alan Mishchenko. ABC: An Academic
Industrial-Strength Verification Tool. In International Conference on
Computer Aided Verification, pages 24–40, July 2010.

[40] Stephen Jang, Billy Chan, Kevin Chung, and Alan Mishchenko. WireMap:
FPGA Technology Mapping for Improved Routability. Transactions on
Reconfigurable Technology and Systems, 2(2), June 2009.

[41] Jason Luu, Jason Helge Anderson, and Jonathan Scott Rose. Architecture
Description and Packing for Logic Blocks with Hierarchy, Modes and

93 of 96

http://www.eecs.berkeley.edu/alanmi/abc

Complex Interconnect. In International Symposium on
Field-Programmable Gate Arrays, pages 227–236, February 2011.

[42] Scott Kirkpatrick, C. Daniel Gelatt, and Mario Vecchi. Optimization by
Simulated Annealing. Science, 220(4598):671–680, May 1983.

[43] Larry McMurchie and Carl Ebeling. PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs. In International Symposium on
Field-Programmable Gate Arrays, pages 111–117, February 1995.

[44] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark
Fang, Kenneth Kent, and Jonathan Rose. VPR 5.0: FPGA CAD and
Architecture Exploration Tools with Single-Driver Routing, Heterogeneity
and Process Scaling. Transactions on Reconfigurable Technology and
Systems, 4(4):32:1–32:23, December 2011.

[45] Gary K. Yeap. Practical Low Power Digital VLSI Design. Springer, 1997.

[46] Gary K. Yeap. Low Power VLSI Design and Technology. World Scientific
Pub Co Inc, 1996.

[47] Michael John Sebastian Smith. Application-Specific Integrated Circuits.
Addison-Wesley Professional, 1997.

[48] Ian Kuon, Aaron Egier, and Jonathan Rose. Design, Layout and Verification
of an FPGA Using Automated Tools. In International Symposium on
Field-Programmable Gate Arrays, pages 215–226, February 2005.

[49] Robert Tjarnstrom. Power Dissipation Estimate by Switch Level
Simulation. In International Symposium on Circuits and Systems, pages
881–884, May 1989.

[50] Thomas H. Krodel. PowerPlay-Fast Dynamic Power Estimation Based on
Logic Simulation. In International Conference on Computer Design: VLSI
in Computers and Processors, pages 96–100, October 1991.

[51] F. Dresig, P. Lanches, O. Rettig, and U.G. Baitinger. Simulation and
Reduction of CMOS Power Dissipation at Logic Level. In European
Conference on Design Automation, pages 341–346, February 1993.

94 of 96

[52] C.M. Huizer. Power Dissipation Analysis of CMOS VLSI Circuits by
means of Switch-Level Simulation. In European Solid-State Circuits
Conference, pages 61–64, September 1990.

[53] Richard Burch, Farid N. Najm, Ping Yang, and Timothy N. Trick. A Monte
Carlo Approach for Power Estimation. Transactions on Very Large Scale
Integration (VLSI) Systems, 1(1):63–71, March 1993.

[54] Michael G. Xakellis and Farid N. Najm. Statistical Estimation of the
Switching Activity in Digital Circuits. In Design Automation Conference,
pages 728–733, June 1994.

[55] Julien Lamoureux and Steven J.E. Wilton. Activity Estimation for
Field-Programmable Gate Arrays. In International Conference on Field
Programmable Logic and Applications, pages 1–8, August 2006.

[56] Tan-Li Chou, Kaushik Roy, and Sharat Prasad. Estimation of Circuit
Activity Considering Signal Correlations and Simultaneous Switching. In
International Conference on Computer-Aided Design, pages 300–303,
November 1994.

[57] Abhijit Ghosh, Srinivas Devadas, Kurt Keutzer, and Jacob White.
Estimation of Average Switching Activity in Combinational and Sequential
Circuits. In Design Automation Conference, pages 253–259, June 1992.

[58] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective (4th Edition). Addison Wesley, 2010.

[59] Sung-Mo (Steve) Kang and Yusuf Leblebici. CMOS Digital Integrated
Circuits Analysis & Design. McGraw-Hill Science/Engineering/Math,
2002.

[60] Eddie Hung, Steven Wilton, Haile Yu, Thomas Chau, and Philip H.W.
Leong. A Detailed Delay Path Model for FPGAs. In International
Conference on Field Programmable Technology, pages 96–103, December
2009.

[61] Johnny Pihl. Single Ended Swing Restoring Pass Transistor Cells for Logic
Synthesis and Optimization. In International Symposium on Circuits and
Systems, pages 41–44, May 1998.

95 of 96

[62] Julien Lamoureux and Steven J. E. Wilton. FPGA Clock Network
Architecture: Flexibility vs. Area and Power. In International Symposium
on Field-Programmable Gate Arrays, pages 101–108, February 2006.

[63] David Hodges, Horace Jackson, and Resve Saleh. Analysis and Design of
Digital Integrated Circuits. McGraw-Hill Science/Engineering/Math, 2003.

[64] Harry J.M. Veendrick. Short-Circuit Dissipation of Static CMOS Circuitry
and its Impact on the Design of Buffer Circuits. IEEE Journal of
Solid-State Circuits, 19(4):468–473, August 1984.

[65] Keheng Huang, Yu Hu, Xiaowei Li, Bo Liu, Hongjin Liu, and Jian Gong.
Off-Path Leakage Power Aware Routing for SRAM-based FPGAs. In
Design, Automation, and Test in Europe, pages 87–92, March 2012.

[66] Ellen M. Sentovich, Kanwar J. Singh, Luciano Lavagno, Cho Moon, Rajeev
Murgai, Alexander Saldanha, Hamid Savoj, Paul R. Stephan, Robert K.
Brayton, and Alberto L. Sangiovanni-Vincentelli. SIS: A System for
Sequential Circuit Synthesis. Technical report, EECS Department,
University of California, Berkeley, 1992.

[67] Farid N. Najm. Low-pass Filter for Computing the Transition Density in
Digital Circuits. Transactions on Computer-Aided Design, 13(9):
1123–1131, September 1994.

[68] Synopsys. HSPICE - Accurate Circuit Simulation, July 2012. URL
http://www.hspice.com.

[69] Yu Cao. Berkeley Predictive Technology Model, 2008. URL
http://ptm.asu.edu/.

[70] Stratix IV Device Handbook Volume 1: Device Interfaces and Integration.
Altera, September 2012. Ver. 4.6.

[71] Ian Kuon and Jonathan Rose. Automated Transistor Sizing for FPGA
Architecture Exploration. In Design Automation Conference, pages
792–795, June 2008.

[72] International Technology Roadmap for Semiconductors. 2007 Edition
Interconnect. Technical report, 2007.

96 of 96

http://www.hspice.com
http://ptm.asu.edu/

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Contributions of this Work
	1.3 Challenges
	1.4 Overview of Results
	1.5 Thesis Organization

	2 Background
	2.1 FPGAs
	2.1.1 Basic Architectures
	2.1.2 Modern Architectures

	2.2 FPGA Computer Automated Design (CAD)
	2.2.1 CAD Flow Steps
	2.2.2 Verilog-to-Routing (VTR)

	2.3 Power Estimation Techniques
	2.3.1 Abstraction Levels
	2.3.2 Simulation-Based Power Estimation
	2.3.3 Probabilistic Power Estimation

	2.4 FPGA Power Estimation Tools
	2.4.1 The Poon Power Model
	2.4.2 The Jamieson Power Model
	2.4.3 The Li Model
	2.4.4 The Estimation Technique of this Work

	3 System Design and Architecture Generation
	3.1 Power Model Overview
	3.2 The Architecture Generator
	3.2.1 Global Routing
	3.2.2 Complex Logic Blocks
	3.2.3 Clock Network
	3.2.4 Physical Size Estimation

	3.3 Summary

	4 Power Estimation
	4.1 Low-Level Power Estimation
	4.1.1 Switching Power
	4.1.2 Short-Circuit Power
	4.1.3 Subthreshold Leakage Power
	4.1.4 Gate Leakage Power

	4.2 Activity Estimation
	4.2.1 Algorithm
	4.2.2 Limitation: Black Boxes

	4.3 Transistor Properties Generator
	4.3.1 Transistor Node Capacitances
	4.3.2 Subthreshold Leakage Current
	4.3.3 Gate Leakage Current
	4.3.4 P/N Ratio Sizing
	4.3.5 Multiplexer Voltage Drop
	4.3.6 Short-Circuit Buffer Factor

	4.4 Summary

	5 Verification and Results
	5.1 Verification of Power Estimation
	5.1.1 Verification Procedure
	5.1.2 Verification Results

	5.2 Sources of Estimation Error
	5.2.1 Short-Circuit Current
	5.2.2 Transistor Node Capacitances
	5.2.3 Gate Leakage Currents

	5.3 Experiment 1: Component Breakdown
	5.3.1 Methodology
	5.3.2 Results
	5.3.3 Analysis

	5.4 Experiment 2: Fracturable LUTs
	5.4.1 Methodology
	5.4.2 Results
	5.4.3 Analysis

	5.5 Summary

	6 Conclusions
	6.1 Future Work
	6.2 Summary of Contributions

	Bibliography

