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Abstract

The standard cosmological model that has emerged in the last decades de-
scribes an acceleratingly expanding universe where the familiar baryonic
matter accounts for a very small fraction of the overall energy budget. The
vast majority of the energy content of the Universe appears to belong to an
elusive dark sector made up of dark matter and dark energy. In this thesis,
we explore the cosmological consequences of new physics that could govern
this unknown dark sector.

We first consider a model where dark matter can annihilate to Standard-
Model particles through a Breit-Wigner resonance. We show in this case
that the energy released by dark matter annihilating in the first proto-halos
is likely substantial. We determine that the bounds on the allowed en-
ergy injection into the primordial gas and the energy density of the diffuse
gamma-ray background strongly constrain the magnitude of the resonantly-
enhanced annihilation cross section.

We then perform a thorough analysis of a dark sector made of atom-like
bound states. This so-called Atomic Dark-Matter model predicts novel dark-
matter properties on small scales but retains the success of cold dark matter
on cosmological scales. We revisit the atomic physics necessary to capture
the thermal history of the dark atoms and discuss the required improve-
ments over the hydrogen calculation. To solve the perturbation equations,
we develop a second-order tight-coupling approximation and further discuss
its implications for the baryon-photon case. We compute the matter power
spectrum in this model and show that it displays strong dark-matter acous-
tic oscillations and a cutoff on small scales. Interestingly, we also identify
key cosmic microwave background signatures that distinguish the atomic
dark matter scenario from other dark matter theories. We determine that
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Abstract

astrophysical constraints on this model generally favour dark atoms that are
both more massive and have higher binding energies than standard atomic
hydrogen.

We finally consider how oscillations in the bispectrum of primordial fluc-
tuations affects the clustering of dark-matter halos. We discover that fea-
tures in the inflaton potential such as oscillations and bumps become im-
printed in the mass dependence of the non-Gaussian halo bias. This finding
opens the possibility of characterizing the inflationary potential with large-
scale-structure surveys.
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This thesis is partly based on three published papers and on a fourth
manuscript that is close to submission.

A version of chapter 2 has been published. I performed all the cal-
culations and analyses, made the plots and drafted the manuscript. Pro-
fessor Profumo provided the branching ratios for the different annihilation
channels. Professor Sigurdson performed a cross-check of our results with
a more detailed Press-Schecter analysis, and provided guidance and com-
ments on the manuscript. Sigurdson and I performed the final editing of the
manuscript.

A version of chapter 3 has been published. All calculations, analyses
and plots were made by me. I drafted the original manuscript. Professor
Sigurdson provided guidance and comments on the manuscript.

I led the study of dark atoms presented in chapters 4 and 5. I performed
all the analytical calculation, did the required analyses, produced all the
figures and wrote the manuscript. A preliminary version of the Boltzmann
code used in chapters 4 and 5 was provided by Dr. Antony Lewis. I heavily
edited this code. The dark-recombination code used to produce some of the
plots is based on a code initially written by Professor Douglas Scott. Again,
this code was heavily edited to suit our needs. The differential equations
were solved numerically with a stiff solver provided by Dr. Jens Chluba.
The recombination coefficients were computed using a code provided by
Dr. Yacine Ali-Häımoud.

A version of chapter 6 has been published. I carried out all calculations
and produced all the plots. I wrote the initial draft of the manuscript. Dr.
Schmidt included one paragraph in the introduction and added a section in
the conclusion. Schmidt and I performed the final editing of the manuscript.
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Chapter 1

Introduction

We live in a dark Universe. It should come as a humbling fact for human-
ity that despite centuries of scientific advances, mankind only understands
about five percent of the content of the Universe. While we do not yet fully
comprehend these dark constituents, astronomers do see light being bent by
vast amounts of unobservable matter, they notice galaxies rotating faster
than they should simply based on their visible mass, and they observe far-
away objects receding from us at an accelerating pace. The elegant names
“dark matter” and “dark energy” invented to catalogue these phenomena
are merely bookkeeping devices parametrizing our ignorance. Yet, the dark
sector plays a vital role in the evolution of the Universe. In the absence of
dark matter, galaxy formation would be implausible, altering dramatically
the possible development of intelligent life. Therefore, understanding the
nature of dark matter is intrinsically linked to lifting the mystery of our
own origins and of the structure around us. As a data-driven theoretical
cosmologist, my research is focused on shedding light on this conundrum.

A large part of this thesis focuses on exploring and constraining possible
new physics that could govern this unknown “Dark Sector” (DS) of the Uni-
verse. In this work, the cosmic DS encompasses all the new (non-baryonic)
particles and fields that are necessary to describe cosmological and astro-
physical observations. In particular, it comprises all the physics controlling
the elusive dark-matter (DM) sector. Current cosmological observations
point to a DM sector that is cold, collisionless and and which seems to be
interacting with the Standard Model (SM) particles only through the grav-
itational force. A key question for cosmologists is to quantify how much
departure from this simple cold-dark-matter (CDM) picture is allowed by
the current data.
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Chapter 1. Introduction

The core of this thesis is dedicated to the study of two different DM
scenarios incorporating new physics beyond the plain CDM paradigm. We
first present a short study (Chapter 2) of a DM model capable of annihilating
through a resonance. We then carry out in chapters 4 and 5 an in-depth
analysis of a scenario in which DM is made of atom-like bound states. This
atomic DM model constitutes a very general testbed for studying physics
beyond CDM since it can describe a plethora of possible DS phenomena
using a minimal set of ingredients. At the preliminary stage of this work,
it became clear that some of our early results concerning an approximation
used to solve the perturbed Boltzmann equations could be of interest to the
broader cosmological science community. We thus published those results
separately and we also present them here as an independent chapter (see
chapter 3).

While studying the fundamental nature of DM is an eminent research
question in itself, we can also learn a substantial amount of information
about the primeval Universe by examining how DM is distributed across the
cosmos today. Indeed, the very rich cosmological and astrophysical struc-
tures currently populating the Universe were seeded in the very first mo-
ments of its existence by quantum processes in an epoch called inflation1.
By carefully studying the statistics of how objects are distributed across
the cosmos, one can hope to extract useful information about the physics
governing the primordial inflationary epoch. This thesis addresses this im-
portant issue in chapter 6 by considering how the clustering of DM halos is
affected when the bispectrum of primeval fluctuations oscillates with scale.

Put concisely, the science goal of this thesis is to explore new physics
in the DS to unveil its potential tell-tale signatures in key cosmological
observables such as the CMB, the matter power spectrum and the scale-
dependent halo bias. This research is particularly relevant today since there
are so many DM or inflation models on the market that it is difficult to
separate the wheat from the chaff. Studying economical models that predict
new observable phenomena (such as atomic DM) is essential to advance our

1While inflation is by far the most discussed paradigm of the very early Universe, there
are competing theories such as the Ekpyrotic scenario and the Pre-Big-Bang Models.
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knowledge of cosmology.
We begin this thesis by reviewing the Standard Cosmological Model that

has emerged in the last three decades. We then give a broad overview of
the current state of affairs in DM science. In section 1.4, we review the key
cosmological observables that we use to explore and constrain new physics
in the DS. We finally give a brief synopsis of each thesis chapter.

1.1 The Standard Cosmological Model

In the last three decades, cosmology has transitioned from being a mostly
qualitative field of study to establishing itself as a data-intensive precision
science. Amazingly, various observations of physically distinct phenomena
on vastly different scales all seem to point to the same cosmological model.
This so-called “Concordance” or “Standard” cosmological model describes
an acceleratingly expanding Universe where the baryonic matter we are fa-
miliar with from our everyday experience only constitutes a very small frac-
tion of the overall energy budget of the Universe [1]. The remainder of the
energy is either in the form of cold non-baryonic dark matter or in the form
of a smooth unclustered fluid often called dark energy.

This model has not emerged overnight. It took the best part of the twen-
tieth century and the work of thousands of scientists to gradually develop
the currently accepted model of the Universe. The first step toward a uni-
fied and testable theory of the Universe was taken with the establishment
of general relativity by Einstein [2]. This development allowed physicists
to understand how the energy content of the Universe affects the fabric of
space-time. The discovery that the Universe is expanding by Edwin Hubble
in 1929 [3] brought us the first hint of the dynamical nature of the cosmos
surrounding us. Shortly after in 1933, Zwicky’s observation [4, 5] of the
Coma cluster gave us the first clue that a non-baryonic matter component
could play a major role in the Universe.

As evidence about the expansion of the Universe grew in importance, it
became relevant for physicists to reverse the arrow of time and ask about
the initial state of the Universe. From these considerations emerged the Big
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1.1. The Standard Cosmological Model

Bang picture in which the Universe originates from an initial singularity in a
hot and dense state [6–8]. The high temperature of the cosmic plasma a few
seconds after the Big Bang made possible the synthesis of the light nuclear
elements in roughly the right proportions to explain observations, hence
successfully establishing the theory of Big-Bang Nucleosynthesis (BBN) [9].
It was then postulated in the late 1940s that relic radiation from this early
hot epoch should still permeate the Universe today [10–12]. The discovery of
this cosmic radiation background by Penzias and Wilson [13, 14] established
the Big-Bang model as our main theoretical framework to understand the
Universe we live in.

Precise observations of galactic rotation curves by Rubin and Ford [15]
in the 1970s firmly established the existence of a non-baryonic matter com-
ponent in the Universe2. By the early 1980s, a somewhat coherent model
of an expanding universe populated by dark and baryonic matter as well as
photons and neutrinos was beginning to emerge. This so-called Friedmann-
Lemaitre-Robertson-Walker (FLRW) model was however plagued with some
serious problems. It was indeed realized that the CMB was very uniform
across causally disconnected patches of the sky, an observation that the
causally expanding FLRW Universe could not elucidate. This issue is usu-
ally referred to as the horizon problem [16]. Furthermore, to explain the
current state of the Universe, its energy density would have to be fine-tuned
to lie extremely close to the critical value at the Big Bang [17], an issue
known as the flatness problem.

An important step toward solving these problems was taken with the
introduction of cosmic inflation [18–22]. This paradigm postulates that the
Universe underwent an early period of exponential expansion, effectively
stretching small causally-connected regions of the cosmos to extremely large
sizes. The inflationary model naturally solves the horizon problem since
all regions of the sky were in causal contact before inflation. Moreover,

2Other physical mechanisms based on modified gravity have been able to successfully
explain the observed galaxy rotation curves. However, such theories have been so far
unsuccessful at correctly predicting the spectrum of the CMB and have therefore not gain
traction among the broader scientific community.
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the inflationary paradigm readily alleviates the flatness problem by bring-
ing the energy density of the Universe exceedingly close to its critical value.
Above all, inflation provides a mechanism for seeding the primordial inho-
mogeneities [23, 24] that eventually evolve into all the rich structures that
we observe in the Universe today.

Observations of the primary CMB anisotropies by the COBE satellite
[25] and other experiments have confirmed some of the basic predictions of
inflation, hence establishing this model as our leading paradigm for the very
early Universe. The next breakthrough in our understanding of the cosmos
came in 1998 when observations of distant Type Ia supernovae suggested
that the expansion of Universe is accelerating [26, 27]. Since then, many
independent measurements have confirmed this accelerated expansion and
determined that a majority of the energy in the Universe is made of an
unknown diffuse component often called “dark energy”.

At the dawn of the twenty-first century, many experiments corroborated
this emerging picture of an accelerating spatially-flat universe mostly filled
with DM and dark energy, most notably the WMAP satellite [28] which pro-
vided measurements of the key parameters describing our Universe with un-
precedented accuracy. In parallel, observations of the distribution of galaxies
(see e.g. [29]), the Lyman-α forest flux spectrum [30], the distribution of mat-
ter through weak lensing surveys [31–34], and the precise determination of
the Hubble expansion rate [35] all contributed to the rise of the concordance
cosmological model. To this day, evidence continues to accumulate toward
this standard cosmological model (commonly denoted as the ΛCDM model)
and it now forms the baseline from which theoretical physicists study more
extended cosmological scenarios.

1.2 Inflation

The theory of cosmic inflation was initially introduced [18–22] to solve the
horizon and flatness problems described above. The inflationary era de-
scribes a period during which small causally-connected regions of the early
Universe are stretched to large cosmological distances. This has for conse-
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quence of establishing large-scale correlations beyond the causal horizon of
the Universe. The rapid expansion of the Universe during inflation requires
the pressure and energy density to obey the following relation [36]

p < −ρ
3
, (1.1)

where p is the pressure and ρ is the energy density of the Universe. Such
negative pressure cannot be obtained from regular matter or radiation, and
we must therefore invoke new physics to explain this apparent period of ac-
celerated expansion. Most inflation models postulate that the energy density
of the early Universe is dominated by a scalar field ϕ, often referred to as
the inflaton. The energy density and pressure for an homogeneous scalar
field is given by [36]

ρϕ =
1
2
ϕ̇2 + V (ϕ), pϕ =

1
2
ϕ̇2 − V (ϕ), (1.2)

where ϕ̇ denotes the time-derivative of the scalar field, (1/2)ϕ̇2 is the kinetic
energy of the scalar field, and V (ϕ) is the potential energy of the scalar field.
If the kinetic energy is subdominant compared to the potential energy of the
scalar field, then the inequality given in Eq. (1.1) is automatically satisfied
since pϕ ' −ρϕ. Therefore, most single-field inflation models can be built by
specifying a potential V (ϕ) in which the scalar field evolves slowly such that
the kinetic energy is always subdominant. Such inflation theories are usually
referred to as slow-roll inflation models [21, 22]. We discuss in chapter 6
of this thesis a novel way to characterize the potential V (ϕ) responsible for
inflation.

Beside providing a mechanism to explain the causal structure of the Uni-
verse, inflation also gives rise to the primordial density fluctuations [23, 24]
that later evolve to form all the objects populating the Universe. Indeed,
quantum fluctuations of the scalar field ϕ that are spatially stretched to cos-
mological distances during inflation provide the necessary seeds for the den-
sity fluctuations observed in the Universe. The small perturbations seeded
by slow-roll inflation models obey Gaussian statistics [37], which implies that
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their statistical properties are completely specified by their two-point auto-
correlation function or its Fourier transform, the fluctuation power spectrum
PΦ(k), which is defined by the relation

〈Φ(k)Φ(k′)〉 = (2π)3PΦ(k)δ3(k− k′), (1.3)

where the angular brackets denote an average over all possible directions of
k and k′, and δ3(k) stands for the three-dimensional delta function. Here,
Φ is the gravitational potential perturbation. Most inflationary theories
predict a nearly scale-invariant spectrum of primordial fluctuations, that is,
one for which k3PΦ(k) is almost independent3 of k [36]. In slow-roll infla-
tion models, all higher-order correlation function (e.g. 〈ΦΦΦ〉, 〈ΦΦΦΦ〉, etc)
are either directly computed from PΦ (even correlators) or vanish entirely
(odd correlators). Current observations [1] indicate that the primeval fluc-
tuations obey Gaussian statistics to better than one part in 103. There is
nevertheless a large ongoing scientific effort devoted to the detection of pos-
sible small deviations from Gaussianity in the statistics governing primordial
fluctuations.

Indeed, the detection of a non-Gaussian signature in the statistics of
primeval perturbations could inform us about potential deviations from
slow-roll inflation in the early Universe. At first order, deviations from
Gaussianity is usually parametrized in terms of the three-point correlation
function

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ3(k1 + k2 + k3)BΦ(k1,k2,k3), (1.4)

where BΦ(k1,k2,k3) denotes the bispectrum. The delta function enforces
that the three momenta k1, k2, and k3 form a closed triangle in Fourier
space. This triangle can have different shapes which characterize the type
of non-Gaussianity present in the primordial density field. For instance, if

3The spectrum of primordial fluctuations is usually parametrized as k3PΦ(k) ∼ kns−1,
where ns is called the scalar spectral index. The case ns = 1 corresponds to a scale-
invariant spectrum of primordial fluctuations. Current observations seem to indicate that
ns is slightly smaller than 1 [1].
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the three-point function has a maximum when two of the momenta are much
larger than the third one, that is, k2, k3 � k1, then the bispectrum is said to
have a local or squeezed shape [38]. If the three-point function peaks when
the three momenta are similar, that is, k1 ∼ k2 ∼ k3, then the bispectrum
is said to have an equilateral shape [39]. Other possible shapes include the
orthogonal form [40] which is constructed such that it is orthogonal to both
the local and equilateral shapes, and the folded form for which k3 ≈ k1 + k2

[41]. More general shapes are also possible. For instance, in chapter 6 of
this thesis, we focus on bispectra displaying oscillations as the sizes of the
different momenta are varied. For all possible shapes, we emphasize that
the detection of a non-zero bispectrum of primordial fluctuations can pro-
vide us with a wealth of information about the physics governing inflation.
We discuss below in section 1.4.3 a possible way to detect a non-vanishing
bispectrum by observing the clustering of matter in the Universe.

1.3 Dark Matter

The standard cosmological model indicates that ∼ 25% of the energy density
is in the form of non-baryonic dark matter [1]. Phenomenologically, this
matter component is able to clump into large gravitationally-bound halos,
appears to be collision-less (no self-interaction), and only weakly couples (if
at all) with the regular SM particles. DM scenarios can roughly be classified
into three broad categories: cold, warm, and hot. Hot DM consists of ultra-
relativisitic particles that can free-stream over cosmological distances. A
prime example of hot DM is the neutrino4. A warm DM particle [43–46]
was relativistic in the past but is massive enough to become non-relativistic
before matter-radiation equality5. Sterile neutrinos with a mass in the keV
range fall into this category. In contrast, cold DM [47, 48] is made of particles
that have been non-relativistic since a very early epoch and are therefore
unable to free-stream over large distances. This last category has received

4The Standard-Model neutrinos cannot however form the bulk of the DM because they
violate the Gunn-Tremaine bound [42].

5The epoch of matter-radiation equality corresponds to the time at which the energy
density of relativistic radiation is equal to that of non-relativistic matter.
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the most attention in the last two decades since CDM can easily clump and
form the large halos surrounding galaxies and clusters. Particle candidates
for CDM includes the popular Weakly Interacting Massive Particle (WIMP),
the axion [49], as well as many models of asymmetric DM (see e.g. [50]).

It was rapidly realized that hot DM has too much pressure to form self-
bound structures in the Universe [51]. It is therefore unlikely that hot DM
can form the majority of the non-baryonic matter, even though it could
still make up a small fraction of its overall energy density. On the other
hand, warm DM could constitute most of the DM in the Universe. Since it
was relativistic in the recent past, warm DM had enough kinetic energy to
stream over a certain distance, effectively wiping out any inhomogeneities on
scales smaller than this free-streaming length. Warm DM thus modifies the
distribution of matter on small scales while sharing the properties of CDM
on larger scales. This indicates that observations of the DM distribution on
the smallest scales are crucial to solve the cold-versus-warm DM puzzle.

Beyond the cold and warm labels, DM could also have some self inter-
actions [52]. From a particle physics point of view, we naturally expect DM
particles to interact at some level [53]. For example, WIMPs are expected
to have weak-scale cross section that could lead to an annihilation signal
near the center of DM halos. However, observations of the apparent ellip-
ticity (see e.g. [54]) of DM halos and the analysis of images of the Bullet
Cluster [55] both severely constraint the size of the interaction cross section.
Again, this indicates that we must focus our attention on sub-galactic scales
to identify key signatures of possible interactions in the DM sector.

1.3.1 Possible Small-Scale Dark-Matter Anomalies

Intriguingly, observations of small satellite galaxies in the last decade have
provided us with possible hints about the nature of DM. First, numerical sim-
ulations of structure formation in a CDM model indicate that a Milky Way-
type galaxy should be surrounded by many faint satellite galaxies. While
we have indeed found a fair number of such satellites around our own and
other large galaxies, there is still a large discrepancy between the numerical
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predictions and the observations [56–58]. Detailed simulations of the star
formation efficiency and other feedback mechanisms inside these so-called
dwarf galaxies have somewhat alleviated the problem [59–66] but there is
still a fair amount of controversy about whether baryonic physics alone can
solve this “missing satellite” problem. In any case, there is no doubt that
modifying the properties of DM on short scales could bring the faint end of
the galaxy luminosity function in line with observations.

Second, measurements of the inner mass profile of dwarf spheroidal
(dSph) galaxies suggest that they are consistent with a constant-density
core while CDM-based simulations predict a steeper cuspy density profile
[67–69]. Again, baryonic physics feedbacks have been proposed to explain
this apparent discrepancy [70] although there is still no consensus about
whether these are sufficient to mitigate this issue [71]. Moreover, one should
keep in mind that there might be large systematics uncertainties in the
measurements of the inner density profile of dSphs galaxies [72] and that
the current data is still very sparse. Nevertheless, it has been shown that
self-interacting DM [73] can naturally predict a central core inside dSph
galaxies.

Third, it was recently realized that simulated CDM subhalos surrounding
large galactic halos are generally too dense to host any of the brightest
dwarf galaxies orbiting the Milky Way [74, 75]. Indeed, satellites of our
own galaxy attain their maximum circular velocity at larger radii than the
simulated halos, implying that the former are more diffuse than the latter.
Again, baryonic feedback has been proposed to alleviate this problem [76].
This might also indicate that galaxy formation is intrinsically stochastic in
low-mass halos [77], although such a large level of stochasticity is probably
incompatible with other observations [78]. Interestingly, it has been shown
that warm DM [79] and self-interacting DM [73] generally produce more
diffuse halos that can replicate those of the Milky Way satellites. Again, we
see that modifying the short-scale behavior of DM physics can economically
bring our theoretical predictions in line with the observations.
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1.3.2 Relic Abundance

The microphysics governing the DM sector not only affects astrophysical
objects at redshift zero but also largely determines its cosmological and par-
ticle physics properties in the early Universe. In particular, the fundamental
physics of the DS fixes the DM relic abundance, which has been precisely
measured by the WMAP satellite [1]. Various physical mechanisms could
be responsible for setting this primordial abundance of DM. For instance,
DM could have been in chemical equilibrium with the SM plasma through
reactions of the type χχ̄↔ ff̄ , where χ stands for a DM particle and f for
any SM fermion. Once the rate of this process became smaller than the ex-
pansion rate of the Universe, the annihilation reaction effectively froze-out,
leaving a relic abundance of χ and χ̄ particles. To accurately describe this
freeze-out process, one needs in general to solve the Boltzmann equation [36]
for the DM number density as a function of time. To a good approximation,
the relic abundance is given by [80]

ΩDh
2 ' 3× 10−27cm3/sec

〈σv〉 , (1.5)

where σ is the total annihilation cross-section, v is the relative velocity
of the DM particles and 〈. . .〉 denotes thermal averaging. Interestingly, if
the cross section has the magnitude of a typical electroweak scale process
(〈σv〉 ∼ 3 × 10−26 cm3/sec), then we automatically obtain the correct DM
relic abundance. This fact largely explains why WIMPs have garnered so
much attention in the literature [53].

There exists also a large class of DM models for which the density of
χ is not equal to that of χ̄, effectively mimicking the asymmetry in the
baryonic sector where there is slightly more baryons than anti-baryons. In
these asymmetric DM models [50], the symmetric part of the energy density
annihilates away completely, leaving only the excess of χ particle as the
relic DM density. Thus, in asymmetric DM models, the relic abundance is
completely set by the initial size of the asymmetry. For example, the atomic
DM model considered in this thesis falls in this category.
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1.3.3 Kinetic and Thermal Decoupling

After DM chemically decouples from the cosmic plasma, it can still maintain
thermal contact with the plasma through scattering reactions of the form
χf → χf . As long as such processes are in equilibrium (i.e. their rates are
much faster than the Hubble expansion rate), they transfer both energy and
momentum to the DM sector. As a consequence, the DM and the rest of
the cosmic plasma share a common temperature and the DM density fluctu-
ations are tightly-coupled to those in the plasma. DM density fluctuations
cannot significantly grow in this regime since the plasma pressure is very
effective at counteracting the gravitational pull on DM particles.

When the momentum-transfer rate between the plasma the DM falls
below the expansion rate, the DM particles effectively cease to be dragged
by the rest of the plasma and is said to have kinematically decoupled from
the rest of the particles. We define the kinetic decoupling temperature Tkd

as the temperature of the plasma when the momentum-transfer rate Γmt is
equal to the Hubble expansion rate

Γmt|Tkd
= H|Tkd

. (1.6)

After kinetic decoupling, DM density fluctuations are free to grow by grav-
itational infall. Thus, the time of kinetic decoupling (also called the drag
epoch) constitutes a very important period since it indicates when DM can
start forming over-densities that would eventually turn into cosmological
and astrophysical structures at late times. Moreover, the drag epoch also
defines a length scale below which no DM inhomogeneity persists. Indeed,
the plasma pressure can force DM particles to diffuse out of over-densities on
scales that enter the Hubble horizon before kinetic decoupling. Thus, the
Fourier mode with wavenumber kkd = H|Tkd

determines an approximate
cutoff scale below which we expect to find no self-bound structure. At late
times, this cutoff translates into a minimal DM halo mass [81]

Mmin '
4π
3
ρcritΩD

(
π

kkd

)3

, (1.7)
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where ρcrit is the critical density of the Universe and ΩD = ρD/ρcrit with ρD

being the energy density of DM.
When the energy-tranfer rate between the plasma and the DM falls below

the expansion rate of the Universe, these two constituents cease to share a
common temperature. We define the temperature of thermal decoupling Ttd

through the relation
Γet|Ttd

= H|Ttd
, (1.8)

where Γet is the energy transfer rate. Before thermal decoupling, the DM
temperature scales as TDM ∝ a−1, while after thermal decoupling, it scales
as TDM ∝ a−2, where a is the scale factor.

We note that in the special case where the DS is made of a single type of
particle (together with its anti-particle), then kinetic and thermal decoupling
happen simultaneously [81] , that is, Tkd = Ttd. This is usually the case
for WIMP DM. However, if the DS is made of a mix of light and heavy
particles, than thermal decoupling can be significantly delayed compared to
kinetic decoupling. A classical example is the baryon-photon plasma where
the baryons kinematically decouple from the plasma around zkd = 1020
but thermally decouple only at ztd ∼ 200 (see e.g. [36]). For most of its
parameter space, the atomic DM scenario considered in this thesis falls into
this latter category.

1.3.4 Direct-Detection

Our Milky Way galaxy resides in a large mostly-smooth DM halo. As the
solar system revolves around the galactic center, the Earth is continuously
being struck by DM particles from this smooth component of the halo. In
scenarios where DM interacts with SM particles, one could hope that some
of these particles could be detected as they make their way through the
Earth. In the last two decades, several detectors have been built with the
purpose of directly detecting DM in the laboratory. To this day, there has
been no unambiguous and uncontroversial detection of DM particles. In
the following, we give a summary of the current status of direct-detection
experiments.
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The oldest and perhaps most controversial claim of DM detection is from
the DAMA/LIBRA collaboration [82]. The collaboration claims a high-
significance detection of an annual-modulation signal with the right phase
and amplitude to be attributable to DM scattering in their NaI crystal. Un-
fortunately, other experiments, most notably CDMS-II [83] and XENON100
[84], were unable to reproduce this result and even excluded the region of
parameter space favored by the DAMA in the case of standard WIMP DM.
To confuse matter further, the CoGeNT experiment [85] also reported the
detection of excess events that could be interpreted as DM scattering in their
detector and even observed an annual modulation signal, but with a differ-
ent phase than the DAMA signal. This claimed detection is also in serious
tension with the CDMS-II and XENON100 results. Finally, the CRESST
collaboration [86] reported the detection of a significant number of events
that could be interpreted as WIMPs scattering in their detector. Again,
this last result is under serious stress when compared with the null results
of CDMS-II and XENON100.

We therefore see that there is currently a fair amount of confusion about
whether DM has been directly detected or not. In this thesis, we focus on
the cosmological aspect of DM and leave the couplings between the DS and
the SM unspecified. Thus, we do not further consider constraints from direct
detection.

1.3.5 Indirect-Detection

If DM is able to annihilate into SM particles, then we might be able to detect
the by-products of these annihilation events, giving us indirect evidence of
the particle nature of DM. Since the annihilation rate of DM particles scales
as the square of the local density, the largest signal is expected from regions
in the local Universe that have a large DM density like the Galactic centre
and dwarf galaxies. DM can either annihilate into a pair of SM fermions
or into two energetic photons. The key element for DM indirect-detection
is to be able to disentangle the DM signal from the large astrophysical
foregrounds and backgrounds.
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In the last few years, several collaborations announced the discovery of
peculiar signals that could be interpreted as DM annihilating in the galactic
center. For instance, PAMELA [87] reported an anomalously high ratio of
positrons over electrons at energies up to 100 GeV while the Fermi-LAT col-
laboration [88] revealed an unexpectedly large sum of positrons and electrons
all the way to the TeV scale. Interpreted as DM annihilation, these signals
however require unconventionally large astrophysical enhancement factors as
well as very specific leptophilic models of DM annihilation [89]. Moreover,
this signal could also be explained by standard astrophysical sources such
as pulsars or supernova remnants [90]. At present, the DM interpretation
of this anomaly cannot be completely ruled out, but there is considerable
tension with more recent data [91].

Perhaps the clearest signal from DM annihilation comes from gamma-ray
detection. Gamma rays provide a cleaner signal than charged fermions since
they generally have a low probability of scattering while traveling from their
emission point to the detector. This implies that they usually point back to
the region where DM annihilation is taking place, allowing us to target our
searches toward the most promising sources. The drawback is however that
the rate for DM to annihilate directly to photons is usually loop-suppressed.
In the last decade, numerous gamma-ray signal that could tentatively be
attributed to DM annihilation were reported. We give here a brief overview
of the most propitious signals. Data from the Fermi-LAT indicate a possible
excess in the gamma-ray flux at energies of a few GeV from an extended
region near the Galactic centre [92, 93]. It was proposed that this excess
could be explained by a 10 GeV DM candidate annihilating in the central
part of our galaxy. At the time of writing, this result has however not
been confirmed by the Fermi-LAT collaboration. More intriguingly, a sharp
feature in the gamma-ray spectrum in the energy range between 130 and
150 GeV was recently found in publicly-available Fermi data [94, 95]. This
feature was shown to be compatible with a narrow gamma-ray line or to be
the result of internal bremmsstrahlung, two signals that are easily explained
in terms of DM annihilation [96]. However, as this signal originates from the
Galactic centre, it is again very difficult to draw strong conclusions about
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the exact nature of this feature. As more data is accumulated, this situation
may however rapidly change [97].

Instead of considering the gamma-ray flux from a specific object or a
particular region of the sky, chapter 2 of this thesis puts constraints on DM
annihilation by considering the magnitude of the diffuse gamma-ray back-
ground from DM annihilating in the first protohalos that form at redshift
z ∼ 40. We also consider constraints on annihilating DM from the allowed
amount of energy that could have been injected in the primordial gas from
these annihilation processes. While these constraints do not allow the iden-
tification of tell-tale signatures of DM, they do provide conservative bounds
on the possible physics governing the DS.

1.4 Cosmological Observables

To explore and constrain new physics in the DS, this thesis makes great
use of three key cosmological observables. These are the CMB, the matter
power spectrum, and the halo bias. We briefly review here the essential
physics behind each of these measurable quantities.

1.4.1 Cosmic Microwave Background

To this day, observations of the CMB has provided us with the most precise
picture [1, 98, 99] of the Universe as it stood roughly 380, 000 years after
the Big Bang. At that epoch, photons cease to interact with the baryons
and can begin to free-stream over large cosmological distances. The expan-
sion of the Universe stretches their wavelength so that these photons appear
today as an almost-uniform background of low-energy microwave photons.
The fact that the microwave background is not totally uniform is essential
to extract crucial information about the early Universe. Indeed, small tem-
perature variations in the CMB inform us about the size and distribution
of primordial fluctuations. As we mentioned above, these tiny fluctuations
are thought to be the result of quantum processes that took place during
inflation [23, 24]. By studying the statistics of these fluctuations, we can
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learn a great deal about the physics governing the early Universe.
A key characteristics of the primeval fluctuations is that they have small

amplitude. This simple fact greatly simplifies the CMB analysis since it
implies that we can use linear perturbation theory to obtain accurate pre-
dictions (see e.g. [100]). To compute the theoretical CMB power spectrum,
we need to evolve forward in time the primordial fluctuations resulting from
inflation from early times until the photons decouple from the baryons, and
then follow their trajectory as they free-stream from that epoch to our de-
tectors today. In the following, we qualitatively describe the different ingre-
dients entering this calculation. We first discuss the background evolution
of the SM plasma (i.e. how its temperature and ionized fraction evolve) and
then turn our attention to the fluctuations about this background. This is a
particularly worthwhile exercise at this point since the atomic DM scenario
is governed by very similar physics and many concepts introduced here will
be discussed in that context in chapters 4 and 5.

Background Evolution

After electron-positron annihilation but prior to photon decoupling, the
Universe is composed of protons, electrons, helium nuclei and photons, all
tightly-coupled into an almost-perfect fluid. In addition, there are free-
streaming neutrinos that are decoupled from the plasma, and DM which we
assume here to be standard CDM. As the Universe cools down due to the
Hubble expansion, it become energetically favorable for the free electrons to
recombine with the helium nuclei and the free protons [101, 102]. As helium
has a higher binding energy, it recombines first. Hydrogen recombination6

follows shortly after at redshift z ∼ 1100. The end result is a mostly-neutral
gas of hydrogen and helium atoms that is kinematically decoupled from the
photon bath. The photons themselves effectively decouple from the plasma
shortly after the onset of hydrogen recombination [36].

The baryons and photons are thermally coupled via Compton scattering.
6As we will describe in details the recombination process of dark atoms (which is similar

to that of hydrogen) in chapter 4, we dot not include further details about recombination
at this point.
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This process alone keeps the baryon temperature close to the photon tem-
perature well after the end of recombination [102]. Indeed, due to the large
photon-to-baryon ratio, even the small relic fraction of free electron (∼10−4)
left after recombination is sufficient to maintain thermal contact between the
matter and the radiation. Once the energy-exchange rate through Compton
scattering falls below the Hubble expansion rate, adiabatic cooling takes
over and the matter temperature ceases to track that of radiation.

Perturbation Evolution

We now turn our attention to the small matter and radiation fluctuations
that evolve on top of this uniform background. The equations governing the
evolution of baryons, photons, neutrinos, and DM perturbations are listed in
appendix A.1. Heuristically, these equations describe the competing force
of gravity, which tends to make perturbations grow, and of the pressure,
which tends to prohibit the growth of fluctuations. These equations are
usually simultaneously solved numerically with initial conditions set at very
early time when all length scales of interest are frozen outside of the Hubble
horizon [100]. In this thesis, we only consider the adiabatic mode7, which
is observed to be the dominant mode in CMB data [1]. In the following, we
qualitatively describe the solutions of the perturbation equations for each
constituents.

Dark Matter : In the simple CDM scenario, DM does not interact with
the rest of the plasma and gravity is therefore the sole force acting on its
particles. During radiation domination, the gravitational potential is dom-
inated by photons and neutrinos which are unable to clump together due
to their relativistic motion. This causes the gravitational potential to decay
during this era. Paradoxically, the decaying potential boosts the amplitude
of the DM fluctuations as they enter the horizon. Once inside the horizon,
the DM fluctuations grow logarithmically with the scale factor until the pe-
riod of matter-radiation equality. At that epoch, DM fluctuations begin to
grow via gravitational infall at a much faster pace, that is, linear with the

7This mode of the cosmological perturbation equations takes the entropy per particle
to be constant. It is the mode excited in most simple inflationary scenarios.
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scale factor. DM is responsible for establishing the gravitational potential
wells that will eventually host baryonic objects such as galaxies at late times.
In chapters 4 and 5, we consider a model where DM is initially coupled to
a radiation bath of “dark” photons. As we shall see there, the evolution of
DM fluctuations described above is considerably modified in this case.

Neutrinos: Like CDM, neutrinos are also decoupled from the rest of
the plasma. They however experience a significant amount of pressure
due to their relativistic nature. As neutrino fluctuations enter the Hub-
ble horizon, they can immediately free-stream out of over-densities (and
into under-densities). Since neutrinos have a higher sound speed than the
baryon-photon plasma, their fluctuations can propagate further in a given
time interval, effectively establishing a gravitational potential perturbation
beyond the photon sound horizon. Moreover, the free-streaming of neutrinos
leads to the growth of anisotropic stress associated with the development of
a significant quadrupole moment (Fν2). These two effects combined lead to
a small phase shift of the baryon-photon acoustic oscillations and a small
reduction of their amplitude [103]. As we will discuss in chapter 5, this sub-
tle but important signature is key in distinguishing free-streaming radiation
from tightly-coupled “dark” radiation.

Photons and Baryons: Prior to recombination, the baryons and photons
form a tightly-coupled fluid. The important quantity to consider here is
the mean free-path τc of a photon between successive collisions with free
electrons. If τc is much smaller than the physical size of the fluctuation or a
Hubble time8, than the tight-coupling approximation holds and we can con-
sider the baryon-photon plasma as a single almost-perfect fluid. This regime
is however hard to capture numerically since the corresponding equations
are very stiff. The solution is usually to expand the equations to first order
in the small quantities kτc and τc/τ [104], where k is the wavenumber of the
fluctuation and τ is the conformal time. In this thesis, we develop for the
first time a second-order tight-coupling scheme which is shown in chapter 3
to be more accurate than the first-order approximation. In the opposite

8We take the speed of light to be equal to unity such that distance and time intervals
are equivalent.
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case, where τc is similar to the length scale of a fluctuations or is compa-
rable to a Hubble time, the tight-coupling approximation breaks down and
we need to consider the baryons and photons perturbations separately.

Photons: In the tightly-coupled regime, the solution to the baryon-
photon equations corresponds to sound wave propagating in the plasma.
As the mean free-path of the photons grows, photons are able to diffuse
out of the baryon perturbations, effectively smoothing out fluctuations on
scales shorter than this diffusion length [105, 106]. When photons begin
scattering on electrons less than once per Hubble time, they can escape the
baryons fluctuations and start to free-stream. Since finite time has elapsed
between horizon entry and this decoupling epoch, the plasma sound wave
can only propagate over a finite distance. This distance, called the sound
horizon at decoupling, remains imprinted on the photon density field, ap-
pearing as the mean separation between maximally-correlated photon fluctu-
ations. Once decoupled from the baryons, the photons must however escape
the gravitational potential wells established by the DM. Photons escaping
over-dense regions are effectively red-shifted while photons traveling out of
under-dense regions are blue-shifted compared to the smooth background
(a process known as the Sachs-Wolfe effect [107]). As the CMB photons
free-stream from their emission point to our detectors, they encounter var-
ious gravitational potential wells. If those are static, the photon energy is
unchanged as it falls and climb out of the potential wells (the blue-shift is
exactly canceled by the red-shift). However, if the potential wells decay with
time (i.e. because of radiation or dark energy), then the photons can expe-
rience a net blue shift. This last effect is called the Integrated Sachs-Wolfe
effect.

Baryons: Once the momentum-transfer rate falls below the Hubble ex-
pansion rate, the baryons cease to be pushed around by the photons. They
are then free to fall into the gravitational potential wells set by the DM. As
in the case of the photons, the size of the sound horizon at the drag epoch
remains imprinted as a key length scale in the baryon density field. At late
times, matter fluctuations separated by this so-called Baryon Acoustic Os-
cillation (BAO) scale display an enhanced correlation between themselves.
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Because of its universality, the BAO scale provides a standard ruler that
allows us to test the expansion history of the Universe. Since the distribu-
tion of baryons is mostly determined by the DM potential wells, studies of
the distribution of luminous baryonic objects in the Universe can inform us
about the fundamental properties of DM.

Temperature Power Spectra

Having described the essential physical processes taking place when photons
last-scatter around redshift z ∼ 1090, we now turn our attention toward the
statistical tools used to characterize the photon fluctuations. As the photons
escape the baryons and DM fluctuations and travel all the way to the current
epoch, they obtain small temperature fluctuations ∆T (n̂) compared to the
background blackbody spectrum. These temperature perturbations can be
expanded in terms of spherical harmonics Ylm as

∆T (n̂)
T

=
∞∑
l=1

l∑
m=−l

almYlm(n̂), (1.9)

where n̂ is a unit vector pointing in the direction of the incoming photons.
We are mainly interested in the two-point correlation function of these tem-
perature fluctuations which we can write as [108]

〈∆T (n̂)
T

∆T (n̂′)
T

〉 =
1

4π

∞∑
l=0

(2l + 1)CTT
l Pl(n̂ · n̂′), (1.10)

where the angular brackets denote an average over all possible directions of
n̂ and n̂′ and Pl stands the Legendre polynomial of order l. We note that
the two-point correlation function only depends on the angle separating
the two unit vectors n̂ and n̂′, a result that follows from the homogeneity
and isotropy of the primeval plasma. The Cl coefficients can be themselves
expressed as

CTT
l = (4π)2

∫
k2dkPp(k)|TTl(k)|2, (1.11)
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Figure 1.1: The CMB temperature angular power spectrum. We show the
data from the 7-year observations of the WMAP experiment [1] and from
the South Pole Telescope (SPT) experiment [99]. The blue solid line displays
the ΛCDM model currently favoured by the data.

where Pp(k) is the primordial power spectrum of fluctuations and TTl(k) is
the transfer function for the temperature anisotropies. The latter can be
obtained via the line-of-sight integral of the source function ST(k, τ) [108]

TTl(k) =
∫ τ0

0
ST(k, τ)jl[k(τ0 − τ)]dτ, (1.12)

where jl is the spherical Bessel function of order zero and τ0 is the conformal
time at the present epoch. All the physics described in the previous subsec-
tion is encoded in the source function. To compute the Cls, we therefore need
to solve numerically the perturbation equations given in appendix A.1, com-
pute the source functions and substitute it in the above equations. We dis-
play the currently-favoured CMB temperature power spectrum in Fig. 1.1.
A similar calculation applies to the polarization anisotropies, for which we
need to substitute the proper polarization source function in Eq. 1.12.
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By carefully measuring the CMB temperature and polarization angular
power spectra, we can determine many important cosmological parameters
such as the DM and baryon densities, the amplitude and slope of the pri-
mordial power spectrum, and the amount of relativistic species present at
photon decoupling. Subtle hints of new DS physics may lie hidden in the
CMB spectra and new high-quality data from the Planck satellite [109] will
be crucial in informing this question.

1.4.2 Matter Power Spectrum

The matter power spectrum describes the distribution of matter throughout
the Universe. More specifically, it is the Fourier transform of the two-point
correlation function of the matter density field. In terms of the Fourier-space
density fluctuations δm(k), the matter power spectrum Pm(k) is defined as

〈δm(k)δm(k′)〉 = (2π)3δ3(k− k′)Pm(k). (1.13)

The total matter fluctuations can be obtained from combining the DM and
baryons density perturbations

δm =
ρbδb + ρcδc

ρb + ρc
. (1.14)

Again, the baryon and DM density fluctuations are given by the solution
of the set of Boltzmann equations shown in appendix A.1. As we dis-
cussed above, DM fluctuations that enter the horizon during the radiation-
dominated epoch only grow logarithmically with the scale factor. Con-
versely, matter fluctuations crossing into the horizon during matter dom-
ination grow linearly with a. We thus expect the matter power spectrum to
display the following behaviour. On very large cosmological scales (small k),
fluctuations only entered the horizon recently and did not have a lot of time
to grow. As the wave-number is progressively increased, fluctuations had
more and more time to grow in amplitude and we thus expect the matter
power spectrum to have a positive slope on large scales. Fourier modes that
enter the horizon just after matter-radiation equality experience the largest
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Figure 1.2: The matter power spectrum for the ΛCDM paradigm. The
small oscillations around k ∼ 0.1hMpc−1 are due to the baryon acoustic
oscillations. Here, h stands for the reduced dimensionless Hubble parameter.

growth since they spend the most time in the linear growing regime. We thus
expect the matter power spectrum to have a maximum at keq, the Fourier
mode that enters the horizon at equality. Finally, length scales becoming
subhorizon while radiation is still dominating will be suppressed compared
to modes with k ∼ keq since they growth much more slowly. We thus expect
the matter power spectrum to have a negative slope for k & keq. We display
the CDM matter power spectrum in Fig. 1.2 where the features described
above are clearly visible.

Since ρc ' 5ρb, the matter power spectrum is most sensitive to the DM.
Thus, it could in theory provide a good probe of new physics in the DS.
One must however be careful as the predictions obtained by solving the
linear perturbation equations fail at short length scales (k & 0.2hMpc−1)
since non-linearities become very important for these modes. Nevertheless,
as we will briefly discuss in chapter 5, strong-lensing studies of galactic
substructures could be used to estimate the shape of the non-linear tail of
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the matter power spectrum.

1.4.3 Halo Clustering and Bias

The majority of the information we know about the distribution of mat-
ter through the Universe comes from the study of luminous objects such
galaxies and clusters of galaxies. Since most matter populating the cosmos
is actually dark, we may ask if these luminous objects are good tracers of
the overall matter density field. We show in this section that galaxies and
galaxy clusters (together with their surrounding DM halos) are actually bi-
ased tracers of the large-scale matter field [110]. This bias is very sensitive
to the statistical distribution of fluctuations in the density field and could be
used to extract a wealth of information about the statistics of the primordial
perturbations.

We divide the matter field into a small-amplitude long-wavelength contri-
bution δl having a coherence length ll and a high-amplitude short-wavelength
contribution δs correlated over a much shorter distance ls � ll. The total
matter field δm is the sum of these two components

δm = δl + δs. (1.15)

Let us consider a region of size l such that ls � l � ll. In this region, the
short-wavelength field displays many fluctuations while the long-wavelength
mode is approximately constant. Astrophysical objects such as galaxy clus-
ters form when the peaks of the short-wavelength density field exceed a
given threshold νσ, where σ is the rms density fluctuation. The threshold
ν therefore denotes the number of standard deviations separating a density
peak from the average density. We would like to calculate the probability
of finding such an object at position x in the region defined above. If this
region happens to be located near a maximum of the long-wavelength field
δl, then it is effectively over-dense compared to an averaged region of the
Universe. We intuitively expect such over-dense regions to contain more
collapsed objects. Conversely, if the above region lies near a minimum of
δl, then it is under-dense and we expect it to contain less collapsed objects
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compared to an average region of the Universe. Equivalently, we can say
the the critical density threshold necessary to form a collapsed astrophys-
ical objects is modulated by the long-wavelength density field δl such that
νeff = ν − δl(x)/σ.

The probability of having a collapsed object at position x is given by
[110].

P (> ν,x) = P (> ν − δl(x)/σ)

' P (> ν)
(

1− 1
P (> ν)σ

dP (> ν)
dν

δl(x)
)
, (1.16)

where P (> ν) is the probability that the overall matter density field δm

exceeds the threshold ν. Since dP (> ν)/dν is negative9, we see that the
probability of finding a collapsed object at position x is enhanced compared
to P (> ν) if δl(x) is positive (i.e. over-dense). We can absorb this enhance-
ment factor into the long-wavelength density field by defining a new density
contrast for the DM halos of collapsed objects [110].

δh(x) ≡ −
(
dP (> ν)/dν
σP (> ν)

)
δl(x). (1.17)

Defining the two-point correlation function as ξ ≡ 〈δ(x)δ(y)〉, we observe
that the correlation between halos is enhanced over the correlation present
in the large-scale density field

ξh(r) =
(
dP (> ν)/dν
σP (> ν)

)2

ξl(r). (1.18)

The factor multiplying ξl is called the bias. Note that it only depends on
the statistics of the underlying matter fluctuation field. The bias basically
measures the relative strength of halo clustering compared to that of the
matter field. In the case of a Gaussian density field (as describe in section
1.2), δs and δl are completely independent of each other and the above

9The probability of finding a region exceeding a given threshold shrinks as the threshold
is increased. This is reasonable: very massive objects (such as superclusters) are rather
rare while less massive objects (i.e. galaxies) are much more common.
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expression simplifies to [110, 111].

ξh(r) ≈ ν2

σ2
ξl(r), (1.19)

which is valid for ν � 1. We see that the most biased collapsed objects
are those with the highest collapse threshold, that is, the most massive. We
also note that for a Gaussian density field, the bias is independent of scale
(i.e. of the correlation distance r). In this thesis, we will mostly consider
the Fourier transform of Eq. (1.18)

Ph(k) = b2IPm(k), (1.20)

where bI is the Lagrangian bias and Ph(k) is the power spectrum of DM
halos.

If the density field is non-Gaussian, then the short-wavelength modes
δs are not independent of the long-wavelength modes δl. This last case is
particularly interesting and is the focus of chapter 6 of this thesis. There,
we focus on non-Gaussian fluctuations having a non-zero three-point func-
tion (see section 1.2). We show in chapter 6 that theories having a non-zero
bispectrum generally predict a scale-dependent halo bias [111–114]. This
implies that the detection of a scale-dependent bias can inform us about the
statistics of the primordial density fluctuations. In particular, since the sim-
plest inflation models predict an almost-Gaussian spectrum of perturbations
[37], the discovery of a scale-dependent bias could rule out a large swath of
inflation theories. Competitive bounds on the amount of non-Gaussianities
in primeval fluctuations have been obtained using this technique [113].

1.5 Structure of the Thesis

In the following sections, we provide a brief synopsis of each chapter included
in this thesis, emphasizing the main ideas and results.
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1.5.1 Protohalo Constraints to the Resonant Annihilation

of Dark Matter

DM annihilating into SM particles has been put forward [89, 92, 93] as an
explanation for the anomalous excess of charged fermions measured by cos-
mic ray experiments [87, 90, 115, 116]. If true, this interpretation requires
an annihilation cross section that is enhanced compared to that required to
obtain the correct thermal relic abundance (see e.g. [117]). It has been pro-
posed that the annihilation cross section may posses a low-energy resonance
that effectively boost the rate at which DM is converted to SM particles
[118, 119]. In chapter 2, we show that such resonance leads to a flash of
annihilation when the first DM protohalos collapse at redshift z ∼ 40. The
energy emitted by these annihilation events is either absorbed by the pri-
mordial gas or appears today as a diffuse gamma-ray background. In both
cases, astrophysical and cosmological observations strongly limit the amount
of energy that could have been injected by DM annihilation [120]. This is
turn gives rise to a bound on the low-energy resonant annihilation cross sec-
tion of DM. We discuss these constraints in the case where DM annihilates
mostly to e+e−, µ+µ− and τ+τ− pairs, as well as to an hadronic final state.
For each of these channels, we do a detailed analysis to determine which
fraction of the emitted energy is locally absorbed by the gas and which frac-
tion contributes to the gamma-ray background. We find that a resonant
DM annihilation cross section is in serious tension with observations, mak-
ing annihilating DM an unlikely source of the observed excess of charged
fermions.

1.5.2 Photons and Baryons before Atoms: Improving the

Tight-Coupling Approximation

Prior to recombination photons, electrons, and atomic nuclei rapidly scat-
tered and behaved, almost, like a single tightly-coupled baryon-photon plasma.
The equations of motion describing the evolution of fluctuations in this
regime are very stiff and therefore difficult to solve numerically. We inves-
tigate in chapter 3 the accuracy of the tight-coupling approximation [121]
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commonly used to numerically evolve the baryon and photon perturbation
equations at early times. By solving the exact perturbations equations with
a stiff solver starting deep in the radiation-dominated epoch we find the
level of inaccuracy introduced by resorting to the standard first-order tight-
coupling approximation. Most importantly, we develop a new second-order
approximation in the inverse Thomson opacity expansion and show that it
closely tracks the full solution, at essentially no extra numerical cost. We
find the bias on estimates of cosmological parameters introduced by the first-
order approximation is, for most parameters, negligible. Finally, we show
that our second-order approximation can be used to reduce the time needed
to compute cosmic microwave background angular spectra by as much as
17%. The new equations developed in this chapter are now a standard
staple of modern CMB codes such as CAMB [122] or CLASS [123]. While this
chapter focuses on the baryon-photon case, this work was initially motivated
by our study of atomic DM for which a similar analysis can be carried out.

1.5.3 The Theory of Atomic Dark Matter

In chapters 4 and 5, we perform a thorough analysis a DM model in which
the dark sector, due to a new U(1) dark force, is made of atom-like bound
states. This so-called “atomic” DM model [124–126] predicts novel DM
properties on small scales but retains the success of CDM on cosmological
scales. Moreover, this model takes fully advantage of all the atomic physics
that has been developed since the dawn of the quantum revolution. This
scenario naturally incorporates a dark radiation component which could
explain the seemingly large number of relativistic degrees of freedom cur-
rently seen by CMB experiments [98, 99]. Since dark atoms typically have
a large geometric cross section, this model constitutes an example of self-
interacting DM with a velocity-dependent cross section. As such, we show
that this model has the potential to address the current problems facing
the dwarf spheroidal galaxies (see section 1.3.1). In chapter 4, we revisit
the atomic physics necessary to capture the thermal history of the DS and
show significant improvements over the standard hydrogen calculation are

29



1.5. Structure of the Thesis

generally required to make accurate predictions. We solve numerically the
Boltzmann equations governing the evolution of cosmological fluctuations
in this model and discuss in details in chapter 5 the impact of the atomic
DM scenario on the matter power spectrum and on the CMB. We show that
this scenario introduces a new important length scale in the density field
corresponding to the size of the sound horizon at the epoch when DM kine-
matically decouples from the dark plasma. This “DAO” scale determines
the minimal DM halo mass at late times which is typically orders of magni-
tude larger than in a typical WIMP scenario. Interestingly, we identify key
CMB signatures that distinguish the atomic DM scenario from a standard
ΛCDM model containing extra relativistic degrees of freedom. We finally
discuss constraints on atomic DM from galactic dynamics, the Lyman-α for-
est data and BBN. We determine that the ellipticity of DM halos is the most
constraining observations for atomic DM.

1.5.4 Oscillating Bispectra and Galaxy Clustering

Many models of inflation predict oscillatory features in the bispectrum of
primordial fluctuations [41, 127–132]. Since it has been shown that primor-
dial non-Gaussianity can lead to a scale-dependent halo bias [111–114], we
investigate in chapter 6 the effect of oscillations in the three-point function
on the clustering of dark-matter halos. Interestingly, we find that features
in the inflaton potential such as oscillations (resonant non-Gaussianities) or
sharp steps get imprinted in the mass dependence of the non-Gaussian halo
bias. In both cases, we find a strong scale dependence for the non-Gaussian
halo bias with a slope similar to that of the local non-Gaussian model. In
the resonant case, we find that the non-Gaussian bias oscillates with halo
mass, a novel feature that is unique to this type of models. In the case of a
sharp feature in the inflaton potential, we find that the clustering of halos
is enhanced at the mass scale corresponding to the Fourier mode that ex-
ited the horizon when the inflaton was crossing the feature in the potential.
Both of these are new effects that open the possibility of characterizing the
inflationary potential with large-scale-structure surveys. We briefly discuss
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the prospects for detecting these non-Gaussian effects.
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Chapter 2

Protohalo Constraints to the

Resonant Annihilation of

Dark Matter

2.1 Introduction

Recent data reported by several experiments may suggest the existence of a
new source of cosmic ray positrons. Indeed, PAMELA [87] has reported an
excess in the positron fraction from 10 to 100 GeV while the ATIC [115] and
PPB-BETS [116] experiments have detected an overabundance of charged
leptons in the total positron-electron (e+e−) energy spectrum between 300
and 800 GeV (see also the Fermi LAT results [88]). A very interesting
explanation of these data invokes the annihilation of dark-matter particles
with a mass at the TeV scale in the Galactic halo. However, in conventional
models the dark-matter annihilation cross section needed to account for the
excess is much larger [by a factor O(100 to 1000)] than the value deduced
from the observed dark-matter relic abundance ΩDh

2 ' 0.11. To account for
this, Refs. [118, 119, 133, 134] propose that this “enhancement factor” can
be explained by a resonance in the dark-matter annihilation cross section.

In this chapter, we calculate the number and spectrum of photons and
e+e− pairs produced by the annihilation of dark matter to standard model
particles in the first protohalos that form at redshift z . 40. We find that
experimental constraints from the diffuse gamma-ray background and on
the amount of energy injection allowed into the primordial medium can be
difficult to reconcile with the large annihilation cross sections σ ∼ 10−6 to
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10−7 GeV−2 required to account for the observed Galactic lepton excess10.
While we focus here on models with a Breit-Wigner resonance in the

dark-matter annihilation cross section, our constraints to σ0, the low-velocity-
dispersion annihilation cross section, are model independent and apply to
any model in which dark matter annihilates predominately to standard
model final states (for instance, Ref. [117]). We briefly review the resonant
enhancement mechanism before deriving constraints on the cross section
from protohalo collapse. We then use current experimental bounds on dif-
fuse backgrounds and energy injection into primordial gas to constrain the
parameter space of the resonant cross section.

2.2 Breit-Wigner Resonance

We consider a model in which two dark-matter particles of mass m and
energy Ei=1,2 annihilate via a narrow resonance of mass M . This type of
resonance is very common in high-energy particle collisions such as those
taking place at the Large Hadron Colliders (LHC). The main difference
here is that the resonance occurs for low-energy collisions. Such low-energy
resonance requires a mild level of fine-tuning as the masses of the particles
involved in the annihilation process need to approximately obey 4m2 ≈M2.
We note however that such mass coincidence can naturally arise in Kaluza-
Klein dark-matter models [135]. Following Refs. [118, 119], we parametrize
this resonance using M2 =4m2(1−δ), |δ| � 1. For δ < 0, we have a physical
pole (particle state), while for δ > 0, we have an unphysical pole. In both
cases, the cross section times velocity takes the form

σ̂(z) ≡ 4E1E2σv ∝
(1 + z)γ2

(z + δ)2 + γ2
, γ ≡ Γ/M, (2.1)

where the Mandelstam variable sM = 4m2(1 + z) and Γ is the decay width
of the resonance, that is, the inverse lifetime of the resonance. The dimen-
sionless variable z represents the total kinetic energy of the colliding DM
particles, expressed as a fraction of their total squared mass. We note that

101 GeV−2 ' 3.88× 10−28 cm2 = 38.8 millibarn.
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2.2. Breit-Wigner Resonance

the cross section given in Eq. 2.1 is locally enhanced when z = −δ, hence
the name Breit-Wigner resonance. To calculate the relic abundance of dark
matter, we thermally average the annihilation cross section σ with respect
to a relativistic Maxwell-Boltzmann distribution,

〈σv〉T =
g2
i

n2
EQ

m4

8π4x

∫ ∞
0
dz
√
z σ̂(z)K1

(
2x
√

1 + z
)
, (2.2)

where x ≡ m/T and nEQ = (gim3/2π2)K2(x)/x. Here K1(x) and K2(x) are
modified Bessel functions and gi is the number of helicity states of a dark-
matter particle. In this chapter, we set c = kB = 1. Evaluating the integral
(2.2), we can write the thermal cross section as 〈σv〉T = σ0f(δ, γ, x), where
the function f encodes all the information about the resonance and has the
property f(δ, γ, x� 1) = 1. While there is no simple analytic expression for
f , it can straightforwardly be found numerically (see Fig. 2.1). To determine
the relic density, we solve the Boltzmann equation

dY

dx
= − λ

x2
f(δ, γ, x)(Y 2 − Y 2

EQ) (2.3)

for the dark-matter yield, Y = n/s, where n is the number density of
dark matter and s is the entropy density. Here, λ =

√
8π2g∗/45Mplmσ0

where g∗ is the number of relativistic degrees of freedom, Mpl is the reduced
Planck mass, and YEQ = (45/4

√
2π7/2)(gi/g∗)x3/2e−x is the equilibrium

dark-matter yield. In the usual nonresonant scenario with f→ 1, Y tracks
YEQ until the annihilation rate falls below the Hubble expansion rate and
the interactions freeze out. The freeze-out temperature Tf = m/xf is conven-
tionally determined when Y − YEQ ' O(YEQ) — when the yield Y deviates
substantially from equilibrium. The relic abundance is then given by the
solution for Y at late time, Y∞ ' xf/λ.

However, in the presence of a resonance, the annihilation process does
not freeze out when Y − YEQ ' O(YEQ) as f(δ, γ, x) is increasing with
x (for all δ > 0 and some cases with δ < 0). Instead, the dark matter
keeps annihilating until a much lower temperature Tb = m/xb � Tf, and
the relic abundance is given by the asymptotic solution Y res

∞ ' xb/λ. The
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Figure 2.1: The functional form of the resonance function f(γ, δ, x) for var-
ious δ and γ with gi = 2.

resonant case must have a higher λ (and thus σ0) to obtain a relic abundance
compatible with cosmological observations. In particular, if this higher σ0

leads to an important production of positron-electron pairs in the Galactic
halo, then one could explain the anomalous leptonic excess as was argued
in Ref. [118, 119].

2.3 Annihilation in Protohalos

After matter-radiation equality, perturbations in the dark matter start to
grow via gravitational instability and form protohalos — the first nonlinear
structures in the Universe. The formation of protohalos triggers a flash
of annihilation of dark-matter particles at redshift zf ∼ 40 [120, 136]. As
they have a small mass and a low velocity dispersion [137], the annihilation
cross section in these protohalos is given by σ0. If dark matter annihilates
into standard model particles, a significant fraction of the initial energy will
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be converted to high-energy photons and e+e− pairs. A photon generated
can either travel freely through the Universe if its energy is within the gap
between 0.1 MeV. Eγ . 0.3 TeV11 in which the Universe is essentially
transparent [138], or it is absorbed by the primordial gas. The e+e− pairs
produced rapidly inverse-Compton scatter off CMB photons resulting in
gamma rays that are similarly either absorbed by the primordial gas or
freestream if their energies are in the transparent gap. Experimental bounds
on the diffuse extragalactic background of gamma rays and on the energy
injection into the primordial gas constrain the number of e+e− pairs and
photons that could have been created in the first dark matter halos. As we
now show, this bounds the dark matter cross section to annihilate into e+e−

pairs.

2.4 Constraints from the Diffuse Background

As the density inside a virialized protohalo is ∼180 times higher than the
mean cosmological density at redshift zf, the average fractional annihilation
rate Γ̄ ≡ −〈ṅ〉/〈n〉 = B〈n〉〈σv〉T in protohalos is

Γ̄ ' 4.9× 10−6

(
Bσ0

GeV−2

)( m

TeV

)−1 ( zf

40

)3
Myr−1, (2.4)

assuming the present dark-matter density to be ΩDh
2 ' 0.11 and where n

stands for number density and 〈. . .〉 denotes spatial averaging over a pro-
tohalo. We have introduced the standard boost factor B ≡ 〈n2〉/〈n〉2 to
account for the nonuniform distribution of dark matter in these halos. Plau-
sible values for B range between 3 and 60 depending on the concentration
and density profile of the halos [139].

As the Universe expands nonlinear structures form via hierarchical col-
lapse and the total fraction of dark-matter particles bound in collapsed ob-

11A photon with an energy above the transparency window has a high probability of
scattering off a CMB photon or produce a particle-antiparticle pair of SM fermions. On the
other hand, a photon with an energy below the transparency gap is likely to photoionize a
neutral hydrogen or helium atom. In contrast, a photon emitted in the transparency gap
loses most of its energy by redshifting.
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2.4. Constraints from the Diffuse Background

jects increases [140]. Protohalos eventually merge into more massive halos
with a lower mean density and mean annihilation rate — although the dense
cores of first-generation halos likely continue to shine relatively brightly for
some time as dense substructures in larger halos.

We find the fraction Θ of dark-matter particles that annihilate in proto-
halos and other dense structures to be

Θ ' 3.9× 10−4

(
Bσ0

GeV−2

)( m

TeV

)−1 ( zf

40

)3/2
, (2.5)

where Θ'(1/3)Γ̄∆t|zf'40.We model dense structures that collapse at red-
shift z to annihilate efficiently for an expansion (e-folding) time ∆t be-
fore being disrupted so that annihilation shuts off. At redshift zf, ∆t ∼
2.4 × 102(zf/40)−3/2 Myr and the factor of 1/3 accounts for the facts that:
(i) only a fraction of the Universe has collapsed into nonlinear structure at
the redshifts of interest; (ii) structure forming at z . zf and z & zf also
contributes to the mean annhilation rate of the Universe. We find Eq. (2.5)
evaluated in the “flash approximation” at redshift zf is a good estimate
for detailed calculations of the mean annihilation rate using Press-Schecter
theory. The main uncertainties in these calculations, which could alter the
estimate by factors of order unity or less, are the form of the mass function
(which determines the collapse fraction) and estimates of the high-redshift
survival lifetime of dense structures.

If the photons generated are not absorbed by the primordial gas, then
they contribute to the diffuse background of gamma rays with energy density
ργ = ΘρcritΩD/zf , where ρcrit is the critical density of the Universe today
and we have accounted for the redshift of the photons. Using Eq. (2.5), we
find

ργ ' 1.1× 10−11

(
ΩBσ0

GeV−2

)( m

TeV

)−1( zf

40

) 1
2 GeV

cm3
, (2.6)

where Ω is the fraction of the initial energy that is converted to photons (or
electron-induced photons) whose energies lie inside the transparent gap. A
fit from EGRET [141] to the gamma-ray spectrum of unresolved astrophys-
ical sources yields the bound ρEGRET

γ ≈5.7×10−16(Eγ/GeV)−0.1 GeV cm−3.
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Assuming that this energy excess is entirely accounted for by annihilating
dark matter in the first structures, we obtain

σ0 .
5.0× 10−5

BΩ

( m

TeV

)( zf

40

)− 1
2

(
Eγ

GeV

)−0.1

GeV−2. (2.7)

This bound is a conservative upper limit on the annihilation cross section as
other contributions (e.g. blazars) to the gamma-ray background are likely
present.

Above we take the limit that all the photons with energies above ∼0.3
TeV are absorbed locally and therefore do not contribute to the diffuse
gamma-ray background. This places a lower limit on the contribution to the
diffuse gamma-ray background. For completeness, we also give gamma-ray
background constraints in the alternative limiting case in which all photon
energy (prompt and electron-induced) generated by dark-matter annihila-
tion contributes to the diffuse background.

2.5 Constraints on Energy Injection into

Primordial Gas

We now consider the case for which the energy released by the annihilating
dark matter is absorbed by the primordial gas. The absorbed energy heats
and ionizes the primeval gas which has for consequence of increasing its
opacity to CMB photons and leading to measurable changes in their fluctu-
ation power spectrum. Detailed modeling of CMB and large-scale-structure
data [142] yields a bound Θ . 3 × 10−10 on the fraction of the total rest
mass energy of dark matter that could have been injected in the primordial
gas when the age of the Universe was tf ∼ 67 Myr. Using Eq. (2.5), we then
find

σ0 .
7.6× 10−7

BΩ′
( m

TeV

)( zf

40

)− 3
2 GeV−2, (2.8)

where Ω′ is the fraction of the initial energy that is injected in the form
of photons whose energies lie above the transparent gap (i.e. photons with
Eγ & 300 GeV either generated promptly or via inverse-Compton scatter-
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ing). Forthcoming results from the Planck satellite are likely to strengthen
this bound.
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0

0.2

0.4

0.6

0.8

1

m (GeV)

Ω
,Ω

′

 

 

e+e−

µ+µ−

τ +τ−

Hadronic

Figure 2.2: Fraction of the initial energy that is converted to photons and
electron-induced photons with energies inside (Ω, solid lines) the transparent
gap (0.1 MeV. Eγ . 0.3 TeV) and outside (Ω′, dashed lines) the transparent
gap (Eγ & 0.3 TeV) as a function of the dark-matter mass for different
annihilation channels. We also give the values of Ω computed under the
assumption that all the energy released contribute to the diffuse gamma-ray
background (dash-dot lines).

2.6 Discussion

If the anomalous leptonic signal is accounted for by annihilating dark matter,
the value of the cross section to e+e− pairs in the Galaxy must be in the
range σe+e− ∼ 10−6 to 10−7 GeV−2. The total annihilation cross section
in the Galaxy today, σG, is related to σ0 by a transfer function g(δ, γ) ≡
σG/σ0 ' f(δ, γ, xG), where we take xG∼ 3 × 106 in the Galactic halo [118].
This function accounts for differences between σ0 and σG for very small γ
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Figure 2.3: The enhancement factor (≡ Y res
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and δ (δ, γ . 10−5). We find g ∼ 0.67 to 1 for 10−4 ≥ δ, γ ≥ 10−6 and
g ∼ 1 to 1.65 for −10−6 ≤ δ, γ ≤ −10−4 while for |δ|, γ & 10−4, we find
g(δ, γ)=1. As the cross section to e+e− pairs is necessarily smaller than the
total annihilation cross section, we have σe+e−≤ g(δ, γ)σ0.

To calculate the fraction of the total initial energy that is converted
to photons (and electron-induced photons) inside (Ω) and outside (Ω′) the
transparent energy gap, we use Monte Carlo simulations of the photon and
e+e− pairs spectra and yields obtained from DARKSUSY [143]. To accurately
determine the energy injected via electron-induced photons, we use the exact
photon distribution expected from high-energy inverse-Compton scattering
with a Klein-Nishina (KN) cross section (see Appendix A of Ref. [144]). This
is important because for electron energies Ee ∼TeV typical CMB photons
at z ∼ 40 have energies comparable to me in the electron rest frame and KN
corrections are significant.

We consider four fiducial cases in which the dark matter annihilates
either only into τ+τ−, µ+µ− or e+e− pairs, or only into hadrons, with
equal probability of annihilating into any of the q-q̄ pairs or to a gluon pair.
For the hadronic case, prompt photons dominate while electron-induced
photons contribute at most ∼ 40% to Ω or Ω′. Electron-induced photons
dominate for the muon channel while prompt photons dominate the tau
channel. In Fig. 2.2, we plot Ω (solid lines) as a function of the dark-matter
mass for the four channels. A realistic model might include a mixture of
hadronic and leptonic annihilations (although current Galactic data may
favor a leptophilic process) which would lead to an energy fraction 0.31 .

Ω . 1 for m = 200 GeV. Using the constraint Eq. (2.7) and taking B∼35,
m = 200 GeV, zf = 40, and Ω ∼ 0.6, we obtain

σ0 . 3.8× 10−7GeV−2, (2.9)

where we take Eγ ∼ 10 GeV, the energy with the highest flux for m = 200
GeV. This constraint is shown in Fig. 2.3 by the dash-dot line labeled “Dif-
fuse Background”. For the allowed values of δ and γ, g(δ, γ) is between 0.97
and 1.3, and therefore the constraint on the cross section to e+e− pairs is
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Figure 2.4: Upper bound on σ0B35 from (2.9) and (2.10) for both leptonic
and hadronic annihilation of dark matter (zf = 40). The regions above the
curves are excluded. The full lines show the diffuse background constraint
while the dashed show the energy injection constraint. We also display
the former constraint assuming that all the energy emitted by dark-matter
annihilation contribute to the gamma-ray background (thin dash-dot lines).
Note that B35 ≡ B/35.

σe+e−. (3.7−4.9)×10−7GeV−2. This bound excludes the resonant enhance-
ment mechanism as a solution for the positron fraction excess problem for
some of the plausible range for m and B (although for a low enough value
of B/m, a solution might still be found).

For m & 600 GeV, a stronger bound can be put on the cross section
to positron-electron pairs using Eq. (2.8). In Fig. 2.2, the dashed lines
show Ω′ as a function of m for the three leptonic cases and the hadronic
case. Again, a realistic model might involve some mixture of the two and
therefore 0.01 .Ω′. 0.34 at m = 2 TeV. With Ω′ ∼ 0.3, zf = 40 and B ∼ 35
in Eq. (2.8), we find

σ0 . 1.4× 10−7GeV−2. (2.10)
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This constraint is shown in Fig. 2.3 by the dash-dot lines labeled “Energy
Injection”. Equation (2.10) translates directly to a bound on σe+e− . Such
a cross section is not large enough to account for the e+e− excess observed
by the satellite experiments. One could weaken this constraint by allowing
for a smaller value of B/m.

Finally, generalizing Eqs. (2.9) and (2.10) gives the model-independent
upper bounds on σ0B35 shown in Fig. 2.4 (B35 ≡ B/35). We see that light
dark matter (m < 100 GeV) is excluded by the diffuse background constraint
if the anomalous leptonic signal is to be explained by dark matter annihi-
lating in the Galactic halo. The energy injection constraints for charged
lepton-pair production disfavor a dark-matter mass at the TeV scale.

Models have also been proposed where the pair annihilation of dark
matter proceeds through metastable scalar particles that subsequently de-
cay into lepton pairs, yielding a different electron-positron and gamma-ray
spectrum from final state radiation. Examples include the models discussed
in Refs. [117, 145]. Although we do not consider these models explicitly
here, the resulting spectra and constraints are very similar, though with
slightly softer spectra, to the case of one single lepton pair (see e.g. Fig. 4
in Ref. [146]).

2.7 Summary

We have shown that a resonant dark-matter annihilation cross section to
e+e− pairs large enough to explain the Galactic lepton anomalies is in ten-
sion with data from the diffuse gamma-ray background and limits on energy
injection into primordial gas. The high enhancement regions of the pa-
rameter space are difficult to reconcile with these bounds assuming that
protohalos are not exceptionally diffuse. Forthcoming data from the Fermi
satellite might detect telltale signatures of dark-matter annihilation or yield
even more stringent constraints to resonant annihilation models.
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Chapter 3

Photons and Baryons before

Atoms: Improving the

Tight-Coupling

Approximation

3.1 Introduction

The cosmic microwave background (CMB) radiation provides us with a pic-
ture of the Universe as it looked when the first atoms formed, about 380,
000 years after the big bang. At that time, photons and baryonic matter
practically ceased interacting and the Universe became transparent to ra-
diation, allowing CMB photons to free-stream through space. To extract
accurate cosmological information from CMB data it is crucial to under-
stand the evolution of the photon-baryon plasma before decoupling. This
involves solving the Boltzmann equations for both photons and baryons cou-
pled by a Thomson-scattering collision term [100, 121, 147–151]. However,
the large value of the Thomson opacity (τ−1

c ) before recombination renders
these equations stiff, and hence difficult to solve numerically. This difficulty
is usually circumvented by making use of the so-called “tight-coupling” ap-
proximation [121]. In this scheme, an alternative (approximate) form of the
equations is found and used to find the solution by systematically expanding
the problematic terms to first order in τc. At late times, once the Thom-
son opacity drops below a certain threshold, one switches back to the exact
equations to determine the final answer.
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Recently, it has been suggested that uncertainties in the cosmological
recombination process may lead to a bias in estimates of cosmological pa-
rameters [152–154]. Could the tight-coupling approximation also result in
such a bias and affect the final result of modern Boltzmann codes such as
CAMB [122] or CMBFAST [108]? In this chapter, we first investigate the accu-
racy of the tight-coupling approximation by directly solving the exact set of
equations at all times using a stiff integration scheme. This necessitates cal-
culating more accurate cosmological initial conditions than has been done in
the past. While not efficient, solving the exact equations allows us to deter-
mine the level of inaccuracy introduced by resorting to the tightly-coupled
limit at early times. We then design a higher-order expansion scheme and
show that at second order in kτc and τ̇c, the final solution very closely tracks
that obtained by solving the exact set of equations. We are then able to
compute the bias on cosmological parameter estimates introduced by re-
sorting to the first-order tight-coupling approximation and show that it is
indeed small for most cosmological parameters. Finally, and most impor-
tantly, we describe how our second-order expansion can be used to speed up
the computation of CMB power spectra without loss of overall accuracy.

3.2 Solution to the Exact Equations

The first step in testing the validity of the tight-coupling approximation is
to evolve the exact set of equations from early times. This requires the use
of a differential equation solver able to solve stiff systems with adaptive step
sizes. We utilize the LSODA [155] solver which is based on the backward dif-
ferentiation formula method. We find that the stiff integrator can solve the
exact Boltzmann equations provided suitably accurate initial conditions are
given. Indeed, the usual initial conditions for the perturbation variables used
by modern Boltzmann codes are valid only in the limit of perfect coupling
between photons and baryons [100, 156]. In this limit, the dipole moments
of the photon and baryon distributions are exactly equal to each other and
the photon quadrupole moment vanishes. However, in order to solve the
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exact equations at early times, one needs to initialize the relative dipole
moment (usually called the slip) between the photons and baryons and the
photon quadrupole moment to nonzero values. We describe our approach to
this problem in the next subsection. We then verify the convergence of the
solution obtained with the stiff integrator to ensure it is stable to changes
in the numerical tolerance and accuracy settings.

3.2.1 Initial Conditions

To find suitable initial conditions to the system of exact equations, we ex-
pand each perturbation variable in powers of kτ and ε ≡ τc/τ

∆(τ, ε) =
∑
m,n

(C∆)mn(kτ)mεn (3.1)

and substitute the result in the system of coupled differential equations (see
Appendix A.1 for details concerning the notation). Here k is the Fourier
wave number, τ is conformal time and ∆(τ, ε) stands for any of the following
perturbation variables: δc, δγ , θγ , Fγ2, δb, Sb ≡ θb−θγ , δν , θν , Fν2, and η (our
notation closely follows that of [100]). We then match coefficients of like
powers of kτ and ε to obtain a set of linear equations for the series coefficients
(C∆)mn. We solve these linear equations to find a global series solution,
demanding that the tightly-coupled solutions (adiabatic or isocurvature)
are retrieved in the limit ε→ 0. In principle, one could try to solve the full
recursion relation and obtain a closed-form expression for the (C∆)mn. In
practice however, finding the first few terms of the series is sufficient to set
accurate initial conditions. Using this method, we obtain the leading-order
contribution to the initial value of the slip between baryons and photons for
the adiabatic mode

Sb(τ) ≡ θb(τ)− θγ(τ) =
β1Rb

6(1−Rν)
ωk4τ4ε+O(ε2), (3.2)

where βl = 1− l(l+ 2)K/k2 is a normalization constant, Rν ≡ ρν/(ρν + ργ),
Rb ≡ ρb/ρm and ω = H0Ωm/

√
Ωr. Here, Ωm ≡ ρm/ρcrit, where ρm = ρc +ρb
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is the total energy density of non-relativistic matter and ρcrit is the critical
density of the Universe12. Similarly, Ωr ≡ ρr/ρcrit, where ρr = ργ + ρν is the
total energy density of relativistic radiation. The leading-order contribution
of the photon quadrupole moment of the adiabatic mode is

Fγ2(τ) =
[

16
9

+
(8Rν − 5)ωτ
3 (2Rν + 15)

]
4k2τ2ε

(4Rν + 15)
+O(ε2). (3.3)

We list the initial conditions for all of the relevant perturbation variables in
Appendix A.2.

3.2.2 Convergence of the Stiff Integration

We verify the convergence of the stiff integrator by running several compu-
tations with increasing accuracy and comparing the resulting angular power
spectra. In CAMB, the desired accuracy is usually selected by choosing the
appropriate “accuracy boost factors” which control, among other things, the
Fourier mode sampling of the CMB anisotropy sources, the time step of the
integrator, the number of multipoles kept in photon and neutrino hierarchies
and the sampling of the final angular power spectrum. See Ref. [157] for a
complete list. Here, we increase the accuracy boost factors to verify con-
vergence but we also vary independently the tolerance of the stiff integrator
to single out any error that is introduced by the solver itself. Throughout
this section, we use as a benchmark model the WMAP seven-year cosmo-
logical parameter best-values [1]. Figure 3.1 shows the fractional change in
both CTT

l and CEE
l as a function of the multipole moment l as the rela-

tive tolerance of the integrator is increased by an order of magnitude from
10−6 to 10−7. The average fractional change in the angular power spectra
is approximately 3 × 10−7, hence showing that the integration process has
converged. Figure 3.2 shows the fractional change in both CTT

l and CEE
l

as the three CAMB accuracy boost factors are increased from 5 to 6. We see
that the Cl computed with the stiff integrator have an accuracy of 0.01% or
better with the accuracy boost factors set to 5. We shall use this spectrum

12The critical density corresponds to the required energy density for the Universe to
have a flat (Euclidean) spatial geometry.
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Figure 3.1: Fractional change in CTT
l and CEE

l versus multipole moments as
the relative tolerance of the stiff integrator is varied from 10−6 to 10−7. Here
the CAMB accuracy boost factors are set equal to 5. The average change is
3.5× 10−7 for CTT

l and 3.3× 10−7 for CEE
l .

as our benchmark for testing the accuracy of our second-order tight-coupling
approximation scheme which we now present in the next section.

3.3 Second-Order Scheme

In the usual tight-coupling approximation, the photon and baryon dipole
moments are obtained by solving the two exact equations [158]

θ̇γ =
R

1 +R
k2

(
1
4
δγ − β1

Fγ2

2

)
+

1
1 +R

(
k2c2

sδb −
ȧ

a
θb − Ṡb

)
, (3.4)

θ̇b =
1

1 +R

(
k2c2

sδb −
ȧ

a
θb

)
+

R

1 +R

[
k2

(
1
4
δγ − β1

Fγ2

2

)
+ Ṡb

]
,(3.5)
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Figure 3.2: Fractional change in CTT
l and CEE

l versus multipole moments
as the three CAMB accuracy boost factors are increased from 5 to 6. The
maximum change is about 1× 10−4 for CEE

l and 6× 10−3 for CTT
l .

where a stands for the scale factor and dots represent derivatives with respect
to conformal time. The exactness of the solution to the above equations of
motion depends strongly on the accuracy at which we can determine both
Ṡb and Fγ2. Current CMB Boltzmann codes use a first-order expansion
in τc to approximate the photon-baryon slip and the photon quadrupole
moment. Here, we propose a method to obtain the second-order corrections
in τc to these quantities. See [159] for a related expansion in the context of
magnetogenesis.
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3.3.1 Photon-Baryon Slip

Our starting point is the exact equation for the slip obtained from combining
Eq. (A.8) and the time derivative of Eq. (A.11) [158]:

Ṡb =
1

1 + 2 ȧa
τc

1+R

{[
τ̇c

τc
− ȧ

a

2
1 +R

]
Sb +

τc

1 +R

[
− ä

a
θb − S̈b

−k2 ȧ

a

(
1
2
δγ − β1Fγ2

)
+ k2

(
c2

s δ̇b −
1
4
δ̇γ + β1

Ḟγ2

2

)]}
. (3.6)

Usually, one sets S̈b = Fγ2 = Ḟγ2 = 0 and neglect the prefactor on the right-
hand side of Eq. (3.6) since they contribute terms of order τ2

c and higher.
However, to obtain an equation for the photon-baryon slip valid at second
order in τc, an approximation for S̈b, Fγ2 and Ḟγ2 accurate to first order in
τc is necessary.

The second derivative of the photon-baryon slip is computed by taking
the time derivative of the right-hand side of Eq. (3.6). Here, we neglect
terms proportional to d3Sb/dτ

3 and F̈γ2. We then use the time derivative
of Eqs. (A.7) and (A.10) to eliminate the second derivatives of δγ and δb. ḧ
is eliminated by using the space-space component of the perturbed Einstein
equation

ḧ+ 2
ȧ

a
(2kσ − 6η̇)− 2k2β1η = −8πGa2

∑
i

3ρiwiδi, (3.7)

where σ = (ḣ+6η̇)/2k is the shear. We further eliminate θ̇γ using Eq. (A.8)
and set Fγ2 = Ḟγ2 = 0 since they contribute terms of order τ2

c to S̈b. We
finally substitute the time-evolution equations for the parameters R, c2

s , τc

and ȧ/a ≡ H:

Ṙ = −H(1− 3c2
s )R, ċ2

s = −Hc2
s

τ̈c = 2Ḣτc + 2Hτ̇c, Ḧ = −3HḢ −H3.
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Now armed with an expression for S̈b, we substitute it into Eq. (3.6) and
solve algebraically for Ṡb. The result is given in Appendix A.3.

3.3.2 Photon Quadrupole Moment

To obtain an expression for Fγ2 and Ḟγ2 accurate to second order in τc, we
use the recursion relation between higher photon multipole moments [100]

Ḟγl =
k

2l + 1
[
lFγ(l−1) − (l + 1)βlFγ(l+1)

]
− 1
τc
Fγl, (3.8)

which is valid for l ≥ 3. We begin by setting Fγ5 = 0 and solve Eq. (3.8)
with l = 4 for Fγ4. We then take the derivative with respect to proper time,
setting F̈γ4 = 0. We finally solve the resulting equation for Ḟγ4 and substi-
tute back the result in Eq. (3.8). This last equation leads to an expression
for Fγ4 valid to fourth order in τc (remembering that Fγ3 ∝ k2τ2

c and that
τ̇c ∝ τc/τ):

Fγ4 ' 4
9
kτcFγ3(1− τ̇c)−

4
9
kτ2

c Ḟγ3 +O(τ5
c ). (3.9)

Substituting the above in Eq. (3.8) evaluated at l = 3 and using a similar
procedure, we obtain an expression for Fγ3 valid to fourth order in τc

Fγ3 ' 3
7
kτcFγ2(1− τ̇c + τ̇2

c )− 3
7
kτ2

c Ḟγ2(1− τ̇c)

− 16
147

k3τ3
c Fγ2 +O(τ5

c ). (3.10)

The last step in deriving expansions for the quadrupole moment and its
derivative is to express the polarization multipole Gγ2 in terms of Ḟγ2 and
Fγ2. Similar to the above calculation, this is accomplished by using the
recursion relation for the polarization multipole moments [160]

Ġγl =
k

2l + 1

[
lGγ(l−1) −

(l + 3)(l − 1)
l + 1

βlGγ(l+1)

]
− 1
τc

[
Gγl −

2
15

(
3
4
Fγ2 +

9
2
Gγ2

)
δl2

]
, (3.11)
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where δij is the Kronecker delta. Again, we set Gγ5 = 0 and follow the
method outlined above to obtain

Gγ2 ' Fγ2

4
− 5

8
τcḞγ2

(
1− 5

2
τ̇c +

25
4
τ̇2

c

)
− 5

56
k2τ2

c Fγ2(1− 6τ̇c) +
15
27
k2τ3

c Ḟγ2, (3.12)

which is accurate to fourth order in τc. We now have all the necessary tools
to derive approximate expressions for Fγ2 and Ḟγ2. We substitute Eqs. (3.12)
and (3.10) in Eq. (A.9) and solve for Fγ2. We then take the derivative with
respect to conformal time and set F̈γ2 = 0. We finally solve for Ḟγ2 and
obtain

Ḟγ2 =
32
45
τ̇c (θγ + kσ)

(
1− 11

6
τ̇c

)
+

32
45
τc

(
θ̇γ + kσ̇

)(
1− 11

6
τ̇c

)
+O(τ3

c ). (3.13)

Substituting the above back in Eq. (A.9) we ultimately arrive at the desired
expression for the photon quadrupole moment

Fγ2 =
32
45
τc (θγ + kσ)

(
1− 11

6
τ̇c

)
+

32
45
τ2

c

(
θ̇γ + kσ̇

)(
−11

6

)
+O(τ3

c ). (3.14)

3.3.3 Computational Procedure

As we can see from Eq. (3.14), our second-order expression for the photon
quadrupole moment depends on θ̇γ . From a practical perspective, this is
problematic since it is the quantity that we are trying to determine in the
first place. We overcome this difficulty by computing each quantity order
by order in τc until the desired level of accuracy is reached.

The first step is to obtain an approximation to Fγ2 using Eq. (3.14)
but keeping only the terms linear in τc, which are independent of θ̇γ . We
then use this expression to calculate σ̇ to first order in τc using the traceless
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space-space part of the perturbed Einstein equation

kσ̇ + 2
ȧ

a
kσ − k2η = −8πGa2 (ρνFν2 + ργFγ2) . (3.15)

Next, we calculate a zeroth-order expression for θ̇γ using Eq. (3.4) with Ṡb

and Fγ2 set to zero. We then use our two formulas for σ̇ and θ̇γ to compute
Ḟγ2 to first order in τc using Eq. (3.13).

We now have all the necessary tools to calculate the photon-baryon slip
to second order in τc using Eq. (A.26). We finally use this last expression
to obtain a first order approximation to θ̇γ using Eq. (A.8) which in turn
is used to obtain Ḟγ2 and Fγ2 accurate to second order in τc.

3.3.4 Accuracy of the Second-Order Scheme

We test the accuracy of the second-order scheme by comparing the final
angular power spectrum with both the stiff integrator benchmark and the
usual first-order tight-coupling approximation. To isolate the effect of the
second-order terms in the equations of motion, we leave untouched the algo-
rithm that switches from the tightly-coupled equations to the exact system
of equations. Improvements to the switching criteria will be discussed in
Sec. 3.5. As mentioned above, all the results presented in this section are
valid for the WMAP seven-year best-fit values for cosmological parame-
ters. We find that at default accuracy setting (“accuracy boost” = 1) for
all three computations, the fractional difference between the second-order
scheme and the benchmark integration averaged over multipoles is about an
order of magnitude smaller than the average fractional difference between
the usual first-order tight-coupling approximation and the benchmark in-
tegration (see Fig. 3.3). Hence, the second-order scheme reproduces more
accurately the solution to the exact equations.

As the accuracy boost factors are increased, the second-order scheme
keeps providing, on average, a more accurate answer than the first-order
tight-coupling approximation. Figure 3.4 compares the angular power spec-
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Figure 3.3: Fractional difference of CTT
l between the usual first-order tight-

coupling approximation and the benchmark integration (full line), and
between the second-order approximation and the benchmark integration
(dashed line). Here, the three sets of Cls have been computed with default
accuracy. The average fractional difference is 6.6 × 10−4 for the first-order
approximation and 5× 10−5 for the second-order approximation.

tra from the two schemes with those found by integrating the exact system of
equations. Although, the difference between the two codes might be insignif-
icant for current CMB experiments, it illustrates that the next-to-leading-
order code is better capturing what is happening during the tightly-coupled
epoch, especially for the low multipoles. The key point however is that this
better accuracy comes at almost no additional computational cost, a point
that we shall emphasize in Sec. 3.5.

In summary, we have shown that the second-order tight-coupling ap-
proximation reproduces more closely the result found by solving the exact
equations, hence showing that the tight-coupling expansion is converging
toward the exact solution. For practical applications however, the percent-
age change in the angular power spectrum between the usual first-order
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Figure 3.4: Fractional difference of CTT
l between the usual first-order tight-

coupling approximation and the benchmark integration (full line) and the
second-order approximation and the benchmark integration (dashed line).
Here, all the Cls have been computed with the three accuracy boost factors
set to 5. The average fractional difference is 2.4 × 10−5 for the first-order
approximation and 3.5× 10−6 for the second-order approximation.

approximation and the exact solution is small and well within the quoted
precision from CAMB (0.3% at default accuracy). This implies that the first-
order tight-coupling approximation should be sufficient for most practical
purposes. Nevertheless, as we will describe in the next few sections, it is
possible to use our second-order expansion to reduce the potential bias on
cosmological parameter estimates and to speed up the code.

We mention in passing that the precision (i.e., the size of the numerical
noise) of individual Cl is almost unaffected by the introduction of the second-
order terms in the equations of motion. Indeed, the precision of the final
angular power spectrum is mainly determined by the number of k-modes
evolved by the code, the number of photon multipoles that are solved for,
as well as various interpolation errors. Since our new tight-coupling approx-
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imation does not modify any of the above, it is therefore natural to expect
that the precision of the second-order power spectrum to remain unchanged.

3.4 Bias on Cosmological Parameters

In today’s era of precision cosmology, the main purpose of CMB codes is
to generate theoretical spectra that are then compared with data for cos-
mological parameter estimation purpose. However, numerical errors in the
theoretical spectra could lead to a slight bias on estimates of cosmological
parameters [157]. Since our improved tight-coupling approximation scheme
leads to more accurate values of the power spectra, it is interesting to see
how the bias is affected. To answer this question, we need to compute the
effective χ2 between our theoretical spectra and a fiducial data set which we
take to have Planck-level noise. The effective χ2 is defined by [157]

χ2 =
∑
l

(2l + 1)fsky

[
Tr
(
C̃−1
l Ĉl

)
+ ln

|C̃l|
|Ĉl|

− 2

]
, (3.16)

where fsky is the observed sky fraction and C̃l = {CXX′l + NXX′
l } is the

theoretical covariance matrix. Here, X runs over temperature (T) and po-
larization (E). Ĉl is the data covariance matrix. If we assume that the
likelihood L = exp (−χ2/2) is a multivariate Gaussian and that the prior
probability densities are flat, then the bias on any cosmological parameter
cannot exceed

√
χ2 standard deviations. In practice however, this bound is

rarely saturated. Nonetheless, a small χ2 between the data and the theory
is still necessary to ensure a minimal bias.

We generate a fiducial data set up to l = 2500 using the method outlined
in Ref. [157] but with the Cl obtained from the stiff solver. Again, we use
the WMAP 7-year best-fit values for cosmological parameters. We take the
noise to be Gaussian and isotropic with power spectrum given by

NXX′
l = δXX′θ

2
beam∆2

X exp
[
l(l + 1)

θ2
beam

8 ln 2

]
, (3.17)
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Code χ2 Time (s)
CAMB accuracy = 1 2.3 4.8
2nd Order acc. = 1 1.3 4.8
CAMB accuracy = 2 0.17 18.2
2nd Order acc. = 2 0.091 18.2
Opt. CAMB acc. = 2 1.1 15.1

Opt. 2nd Order acc. = 2 0.10 15.1

Table 3.1: χ2 values between fiducial Planck data and theoretical spectra
gotten with the first- and second-order codes for different accuracy boost.
We also give the computational time needed to generate the theoretical spec-
tra in order to show that the greater accuracy comes at no extra numerical
cost. The computational times displayed here are for a single-processor ma-
chine.

where θbeam is the beam width and ∆X is the sensitivity per pixel. As an
example, we consider the 143 GHz channel of the HFI instrument aboard
Planck [109] which has θbeam = 7.1′, ∆T = 6.0µK and ∆E = 11.4µK,
assuming 14 months of integrated observation. We assume a sky coverage
of fsky = 0.65.

We list in Table 3.1 the values of χ2 computed between our fiducial
Planck data and our improved second-order code. For comparison, we also
give the χ2 values for unmodified CAMB at similar accuracy boost. We see
that the higher-order tight-coupling approximation leads to a better fit to
the fiducial data and therefore to a smaller theoretical maximal bias on cos-
mological parameters at no extra numerical cost. To estimate the real biases
on cosmological parameters, we run several Markov chains using both the
first- and second-order tight-coupling code together with the publicly avail-
able code CosmoMC [161]. We restrict ourselves to the “vanilla” 6-parameter
ΛCDM model and made sure that the Gelman-Rubin “R − 1” convergence
criteria [162] is smaller than 0.005 for all the parameters under consideration.

We list in Table 3.2 the biases between the results from our second-order
CMB code and the results from a code that used the same accuracy setting
as the fiducial spectra (mimicking an error-free analysis). For comparison,
we also give the biases for the usual first-order code. At default accuracy, we
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Code Ωbh
2 Ωch

2 θ τ ns ln (1010As)
CAMB accuracy = 1 0.24 0.15 0.31 0.11 0.40 0.19
2nd Order acc. = 1 0.25 0.16 0.15 0.12 0.33 0.15
CAMB accuracy = 2 0.02 0.006 0.03 0.013 0.03 0.03
2nd Order acc. = 2 0.03 0.003 0.01 0.016 0.017 0.015

Table 3.2: Biases of the 6-parameter ΛCDM model in unit of the standard
deviation. We contrast the first- and second-order tight-coupling approxi-
mation and give the value of the accuracy boost factors used for each com-
putation. Here, θ is the ratio of the size of the baryon-photon sound horizon
at decoupling to the angular diameter distance to the last-scattering surface,
τ is the reionization optical depth, ns is the scalar spectral index, and As is
the amplitude of primordial scalar fluctuations.

see that the difference between the two codes in terms of the bias is rather
slim, with θ being the most dramatically affected by the second-order code.
This stems from the fact that our second-order code better captures the po-
sition of the first peak, as can be seen from Figs. 3.3 and 3.4. We conclude
that the numerical errors due to the first-order tight-coupling approximation
does introduce a small bias to the estimate of θ at default accuracy, although
it is clear that other numerical errors (k-sampling, interpolation, etc) con-
tribute the most significant part to the biases of cosmological parameters
for both codes. As the accuracy of the codes is increased, the difference in
bias between the two codes becomes insignificant for parameter estimation
purposes. Therefore, if one sets the accuracy of the theoretical spectra to
be large enough that the bias from numerical errors other than the first-
order tight-coupling is small, then the usual tightly-coupled equations are
appropriate for cosmological parameter estimation.

3.5 Reducing the Computational Runtime

Up to this point, we have used the second-order expansion in τc to improve
the accuracy of CMB Boltzmann codes. In this section, we adopt a different
point of view and take advantage of our improved tight-coupling scheme to
reduce the computational time needed to evolve the perturbation equations.
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Indeed, the new O(τ2
c ) terms in the tightly-coupled perturbation equations

allow one to switch to the exact equations at a later time while keeping the
same accuracy as the usual first-order expansion. Since the approximate
tightly-coupled equations are easier to solve than their exact counterparts,
precious computational time can be saved. Moreover, the higher accuracy
of the second-order equations lets us use a larger minimal time step for the
numerical integrator, hence reducing the total number of steps taken by the
integrator and further cutting down the computational time.

Our approach here is to degrade the accuracy of the second-order code by
modifying the tight-coupling switching criteria, using larger time steps and
cutting down the photon hierarchy until the output from this “optimized”
code somewhat matches that of the unmodified first-order code. We then
compute the χ2 value between our fiducial Planck data and the output from
this optimized code and compare it to a similar calculation done with the
regular CAMB code. The results are shown on the two last rows of Table 3.1
where we see that we achieve a ∼17% computational time reduction while
still retaining the accuracy of the first-order code at accuracy boost 2.

Although this gain in computational efficiency is modest, it can sig-
nificantly reduce the amount of time necessary to run Markov chains for
cosmological parameter estimation. To demonstrate this, we run 8 chains
with our optimized second-order code at accuracy boost 2, generating 20000
samples per chain. We also run the similar chains with regular CAMB at
accuracy boost 2 and make sure to have R − 1 . 0.005. Figure 3.5 shows
that the results for the marginalized posterior distribution are very similar
between the two codes, with the distribution for θ being the most affected,
although very mildly (0.09 standard deviation). However, the most impor-
tant difference between the two results is that our optimized second-order
code took on average ∼ 16% less time to complete. Hence, our second-order
tight-coupling code, in addition to leading to more accurate angular CMB
spectra, can instead be used to speed up the computational time and make
more efficient use of computing resources.
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Figure 3.5: Marginalized posterior probability distribution for the vanilla
ΛCDM model. The full black line represents the result obtained using the
first-order code at accuracy boost 2 while the red dotted line was obtained
using our optimized second-order code.

3.6 Discussion and Conclusion

We have developed a second-order tight-coupling approximation to the photon-
baryon perturbation equations and shown that it closely reproduces the so-
lution to the nonapproximated equations. In practice, the main reason why
our second-order tight-coupling code produces more accurate power spec-
tra is that it better tracts the evolution of the photon perturbations. Fig-
ure 3.6 shows the residuals between the photon perturbation δγ computed
using the exact equations and the solutions obtained with the first- and
second-order tight-coupling approximation. We see that the second-order
scheme deviates much less from the exact solution then the usual first-order
scheme, leading to a more accurate value of the source term needed for the
line-of-sight integration [108]. We could in principle extend our analysis to
develop a third-order tight-coupling approximation scheme. However, the
long mathematical expressions associated with such a scheme are likely to
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Figure 3.6: Residuals (∆δγ ≡ δexact
γ −δapprox

γ ) between the photon perturba-
tion δγ computed using the exact equations and the solutions obtained with
the first- and second-order tight-coupling approximation.

lead to numerical inaccuracies that could overwhelm the accuracy gained by
including the third-order terms.

In conclusion, we have investigated the accuracy of the tight-coupling ap-
proximation by solving the exact equations at all times using a stiff numeri-
cal solver. We have shown that the first-order tight-coupling approximation
leads to a small accuracy lost compared to the exact solution and that this
change is well within the quoted precision of the angular power spectra. We
have discussed how our second-order code has a smaller maximal possible
bias on cosmological parameters than its first-order counterpart. We have
shown that the bias introduced by the first-order tight-coupling is insignifi-
cant for today’s cosmological experiments, unless CAMB’s default accuracy is
used. Finally, we have shown that the improved accuracy of our second-order
approximation allows one to optimize the tight-coupling switching criteria
and integration parameters in order to modestly reduce the computational
time of the code. Our second-order scheme has now been implemented in
the main code of publicly-available CMB software such as CAMB or CLASS.
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Chapter 4

The Theory of Atomic Dark

Matter I: Thermal History

and Evolution of

Fluctuations

4.1 Introduction

Although dark matter (DM) has been known to exist for several decades
[4, 5, 15], its physical nature remains one of the deepest mysteries of mod-
ern science. Observations show that DM is mostly cold, collisionless and
interacts very weakly (if at all) with Standard-Model (SM) particles. Many
models that fit this picture very well have been proposed through the years,
including the prominent weakly-interacting-massive-particle (WIMP) mod-
els. Distinguishing between these different scenarios is crucial if we have
any hope to pinpoint the nature of DM. In this respect, models incorpo-
rating new physics that predict novel observational signatures have a clear
advantage in disentangling the DM puzzle.

While the cold Dark-Matter (CDM) paradigm [47, 48] has been ex-
tremely successful at describing observations from cosmological scales to
galactic scales, recent observations of small nearby galaxies seem to be
in tension with the CDM scenario. In addition to the so-called “missing
satellite problem” [56–58] which refers to the apparent under-abundance of
light Milky-Way satellites, observations of the inner mass profiles of Dwarf
Spheroidal (dSph) galaxies indicate that they are consistent with a core
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while CDM simulations favor a cuspier profile [67–69]. Further, it has been
pointed out recently that the most massive galactic subhalos from CDM
simulations are too dense to host the brightest Milky Way satellites [74, 75].
While it is plausible that these problems could be alleviated by including the
appropriate baryonic physics in CDM simulations [59–66, 70, 77, 163, 164],
these observations may be pointing toward physics beyond the vanilla CDM
paradigm.

We adopt here the point of view that the above tensions between the
ΛCDM paradigm and the astrophysical observations may be resolved by
modifying the microphysics of the DM sector. Various scenarios have been
proposed along those lines in the literature, most of which could either be
classified as interacting DM models [52] or warm DM scenarios [43–46].
The former is tightly constrained by the observed ellipticity of DM halos
[165, 166] and by the apparent survivability of DM halos to evaporation in
clusters [167], while the latter is unlikely to be able to address all of the
CDM issues discussed above [168]. It was realized recently [73, 169, 170]
that interacting DM with a velocity-dependent cross section could avoid the
ellipticity and evaporation constraints while alleviating the tension between
the simulations and the Milky-Way satellites.

In this chapter, we investigate in detail the cosmology of a Dark Sector
(DS) made of hidden hydrogen-like bound states [124–126, 171]. This so-
called “Atomic Dark Matter” model retains the success of CDM on large
cosmological scales but modifies the DM dynamics on sub-galactic scales.
Similar to conventional atoms, atomic DM is kinematically coupled to a
thermal bath of “dark” radiation (DR) until late times, which significantly
delays the growth of matter perturbations on small scales. During the decou-
pling epoch, diffusion and acoustic damping substancially reduce the ampli-
tude of sub-horizon perturbations, effectively wiping out structures on scales
below this damping horizon, hence mimicking the effect of free-streaming.
This model thus naturally provides a way to suppress the faint end of the
galaxy luminosity function. After kinematic decoupling, the acoustic oscilla-
tions of the dark plasma remain imprinted on the small-scale matter power
spectrum. Note that these physical processes also take place in a canonical
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WIMP scenario [81, 137, 172]. The crucial difference here is that the kine-
matic decoupling of atomic DM typically happens much later than that of a
WIMP and therefore can have an impact on much larger, if not observable,
scales.

Beyond its effect on the matter power spectrum, the atomic DM scenario
also impacts the cosmic microwave background (CMB) through the effects
of the DR on the amplitude and phases of cosmological perturbations. We
identify a key CMB signature that distinguishes the atomic DM scenario
from a simple ΛCDM model incorporating extra relativistic degrees of free-
dom. Indeed, while models incorporating extra radiation always assume it
to free-stream like neutrinos, the DR in the atomic DM model can only start
free-streaming after it decouples from the DM. Cosmological modes entering
the Hubble horizon before the onset of the free-streaming display a slightly
different behavior than Fourier modes crossing the causal horizon after the
decoupling of the DR.

Since dark atoms have a much larger geometric cross section than point
particles, this scenario falls into the category of interacting DM models. In-
terestingly, the atomic physics naturally gives rise to a velocity-dependent
interaction cross section. It is therefore possible that atomic DM could ad-
dress some of the dSph-galaxy problems while evading the ellipticity and
evaporation constraints. In the following, we focus on the ellipticity con-
straint and show that while it strongly constrains the parameter space of
the model, there are plenty of parameter values for which the galactic dy-
namics is unaffected.

For clarity and completeness, it is important to mention that the term
“dark atoms” has been used in various contexts in the literature. For ex-
ample, dark atoms naturally appears in Mirror DM models [173, 174]. In
[175, 176], the term “dark atom” refers to a bound state between a new
stable particle charged under ordinary electromagnetism and a helium nu-
cleus. The authors of [177] explored a model in which dark matter is made of
supersymmetric dark atoms. In the present work, the phrase “dark atom”
is exclusively used to describe the bound state of two dark fermions (i.e.
neutral under the SM gauge group) oppositely charged under a new gauge
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U(1)D interaction.
This chapter is organized as follow. In section 4.2, we introduce the

atomic DM model and discuss the parameters necessary to describe the
theory. In section 4.3, we analyze the thermal history of atomic DM from
its initial hot plasma state to its cold and collisionless stage at late times.
We include a thorough discussion of the thermal and kinetic decoupling
epoch and present an in-depth analysis of the dark-recombination process.
In section 4.4, we solve the modified cosmological perturbation equations
and discuss the different regimes that a DM fluctuation encounters. The
cosmological and astrophysical implications of this model are discussed in
chapter 5.

4.2 The Model

The atomic DM model [124–126] is composed of two oppositely-charged
massive fermions interacting through a dark massless (or nearly massless)
U(1)D gauge boson13. In analogy with the regular baryonic sector, we call
the lighter fermion “dark electron”, the heavier fermion “dark proton” and
the massless gauge boson “dark photon”. In this work, we assume that the
DM relic abundance is set by some UV physics in the early Universe. Since
we are mostly interested in the late-time cosmological and astrophysical
impacts of atomic DM, we do not expect the details of this high-energy
completion to play any role in our results. See [126, 178, 179] for examples
of DM production mechanism that can lead to atom-like DM particles.

Four parameters are necessary to fully characterize the physics of the
DS in this model. These are the DM mass (i.e. the mass of the bound
state) mD, the dark fine-structure constant αD, the binding energy of the
bound state BD and the present-day ratio of the DR temperature to the
CMB temperature ξ ≡ (TD/TCMB)|z=0. Other combinations of parameters
are possible but this particular set is physically transparent since BD/ξ

13We note that dark atoms do not have to be made of two spin-1/2 fermions. For
instance, they could arise from a bound state of two scalar particles or from a bound state
of a spin-1/2 fermion with a scalar particle.
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fixes the redshift of dark recombination, mD fixes the number density of
DM particles and αD governs the microscopic interactions between the DS
constituents. These parameters are subject to the consistency constraint

mD

BD
≥ 8
α2
D

− 1, (4.1)

which ensures that me,p ≤ (mD + BD)/2. This bound is saturated when
the two fermions have equal masses. Here, me and mp stand for the dark-
electron mass and the dark-proton mass, respectively. We give their values
in terms of mD, BD, and αD in appendix B.1.

On a more general level, the atomic DM scenario can be considered
as a toy model of a more complete theory involving a dark plasma in the
early Universe. Indeed, atomic DM contains the all key ingredients of a
dark-plasma theory (dark radiation, multiple particles, kinetic and thermal
decoupling, modified growth of DM fluctuations, long-range and short-range
interactions, etc) with only minimal physical inputs. As such, the results
presented in this chapter should be understood in the broader context of a
generalized dark-plasma theory.

Interestingly, the atomic DM scenario naturally englobes the hidden
charged DM models discussed in [180, 181] as special cases. Moreover, in the
limit of very large atomic binding energy and large dark fine-structure con-
stant, dark atoms become basically undistinguishable from standard CDM
particles. Therefore, the atomic DM scenario is a rather general testbed for
physics beyond the vanilla WIMP/CDM paradigm.

4.3 Thermal History

In the early Universe, the DS forms a tightly-coupled plasma much like the
standard baryon-photon plasma. As the Universe cools down, three impor-
tant transitions need to carefully be taken into account. First, once the DS
temperature falls below BD, it becomes energetically favorable for the dark
fermions to recombine into neutral dark atoms. Second, once the momen-
tum transfer rate between the DR and the dark fermions falls below the

66



4.3. Thermal History

Hubble expansion rate (kinetic decoupling), the DM effectively ceases to be
dragged along by the radiation and can start to clump and form structures.
Finally, once the energy transfer rate between the DM and the DR falls be-
low the Hubble rate (thermal decoupling), the DM temperature TDM ceases
to track that of DR and start cooling adiabatically. Accurately capturing
these transitions and computing their impact on cosmological observables is
a major goal of this chapter.

We begin this section by determining the Big Bang Nucleosynthesis
(BBN) bound on the dark-photon temperature. We then discuss the recom-
bination of dark atoms and their thermal coupling to the DR, emphasizing
the differences between dark atoms and regular atomic hydrogen. We finally
present the solutions to the joint evolution of the dark-atom ionized fraction
and temperature.

4.3.1 BBN Limit on Dark-Sector Temperature

Observations of the relative abundance of light elements put a bound on the
possible number of relativistic degrees of freedom at the time of BBN. This
limit is usually quoted in terms of the effective number of light neutrino
species in thermal equilibrium at BBN; here we shall use the conservative
estimate Nν = 3.24 ± 1.2 (95% confidence) derived in Ref. [182]. More re-
cent estimates [183–187] of Nν are statistically consistent with this value.
Assuming that the DS contributes gBBN

∗,D relativistic degrees of freedom dur-
ing BBN and further assuming three species of SM neutrinos, we obtain the
bound

gBBN
∗,D ξ4

BBN ≤ 2.52, (4.2)

where ξBBN is the ratio of the DS and visible temperatures at the time
of nucleosynthesis. In the minimal atomic DM scenario considered in this
thesis, DM is totally decoupled from SM particles and therefore the entropy
of the DS and the visible sector are separately conserved

gBBN
∗S,Dξ

3
BBN

gtoday
∗S,D ξ

3
=
gBBN
∗S,vis

gtoday
∗S,vis

, (4.3)
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Figure 4.1: Effective number of DS relativistic degrees of freedom at the
time of nucleosynthesis as a function of αD and BD for dark atoms with
mass mD = 1 GeV. Here, we have fixed the ratio of the DR temperature
to the visible-sector temperature at BBN, ξBBN = 0.5. We also display the
consistency constraint given by Eq. 4.1 above which dark atoms do not exist.

where g∗S,D is the present-day effective number of degrees of freedom con-
tributing to the entropy of the DS, sD ∝ g∗S,DT

3
D. For the simplest model

of dark atoms considered here, we have gtoday
∗S,D = 2 (i.e. only dark photons

contribute). Similarly, g∗S,vis is the effective number of degrees of freedom
contributing to the entropy of the visible sector. For the particle content
of the SM, we have gBBN

∗S,vis = 10.75 and gtoday
∗S,vis = 3.94. During BBN, both

dark photons and dark electrons (together with their antiparticles) can con-
tribute to gBBN

∗S,D (we assume that the dark proton is massive enough to be
non-relativistic at the time of BBN). These dark components are kept in
thermal equilibrium through Compton scattering and we therefore always
have gBBN

∗S,D = gBBN
∗,D . Figure 4.1 shows the dependence of gBBN

∗S,D on αD and
BD for dark atoms with mass mD = 1 GeV and for ξBBN = 0.5. We see that
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there is a large parameter space for which dark electrons are relativistic at
BBN, leading to gBBN

∗S,D = 11/2 for these models. At late times, the ratio of
the DS and visible-sector temperatures is given by

ξ =

(
gtoday
∗S,visg

BBN
∗S,D

gBBN
∗S,visg

today
∗S,D

)1/3

ξBBN. (4.4)

Note that if gBBN
∗S,D = 11/2, that is, if the dark electrons and anti-electrons

annihilate after BBN, then ξ ≈ ξBBN since both the visible and dark sector
are reheated by the same amount in this case (assuming the dark electron is
a Dirac fermion). Substituting Eq. 4.4 into Eq. 4.2, we obtain the constraint

ξ

(gBBN
∗,D )1/12

. 0.71 (95% confidence). (4.5)

We display this constraint in Fig. 4.2 where we observe that ξ ≥ 1 is dis-
favored by at least 4 standard deviations if we consider BBN alone. Note
that atomic DM models generally predict a different number of effective rel-
ativistic degrees of freedom at BBN than at the time of hydrogen recombi-
nation. Given a choice of dark parameters (αD, BD,mD, ξ), we can compute
g∗,D(TD) using Eq. B.3. The evolution of the dark-radiation temperature is
then given by the implicit equation

TD(z) = T today
D (1 + z)

(
gtoday
∗,D

g∗,D(TD)

)1/3

. (4.6)

This equation can easily be solved iteratively by substituting the zeroth
order solution TD(z) = T today

D (1+z) into g∗,D(TD). In practice however, the
annihilation of dark electron and dark positron has very little effect on the
cosmological evolution and to a very good approximation, we can take ξ to
be constant.
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Figure 4.2: Joint BBN constraints on the present-day DS temperature and
on the effective number of DS relativistic degrees of freedom at the time of
nucleosynthesis. As indicated, we display contours corresponding to 1-, 2-,
and 3-σ constraints.

4.3.2 Dark Recombination

Once TD � BD, it becomes energetically favourable for the dark plasma to
recombine into neutral dark atoms. Letting ne and nD denote the number
densities of dark electrons and of dark protons (both free and those bound
in dark atoms) respectively, we can define the ionization fraction of the dark
plasma as xD ≡ ne/nD. Like regular hydrogen, dark atoms cannot directly
recombine to their ground state as this results in the emission of a dark
photon that can immediately ionize another dark atom [101]. Recombination
needs therefore to proceed through excited states of the dark atoms. Once
a dark electron has reached an excited state, it rapidly cascades down to
the n = 2 state. Dark electrons can then reach the ground state via the
2s–1s two-photon transition or by emitting a Lyman-α dark photon which
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redshifts out of the line wing. The recombination process is thus governed
by the rate of escape of the dark Lyman-α photons out of their resonance
line and by the rate of two-photon decay [101, 102]. While these two rates
are comparable for regular baryonic hydrogen, they may differ significantly
in the case of dark atoms.

To solve for the ionization history of the DS, we follow the Effective
Multi-Level Atom (EMLA) method presented in Ref. [188]. For our purpose,
we consider a four-level effective dark atom consisting of the two interface
states 2s and 2p, the ground state (1s), and a continuum. The recombination
process is then governed by a set of Boltzmann equations of the form

dxD
dz

=
x2
DnD(A2s

D +A2p
D )− B2s

D x2s − B2p
D x2p

H(z)(1 + z)
, (4.7)

dx2s

dz
=
B2s
D x2s − x2

DnDA2s
D +R2p,2s(3x2s − x2p)

H(z)(1 + z)

+
Λ2s,1s(x2s − (1− xD)e−

3BD
4TD )

H(z)(1 + z)
, (4.8)

dx2p

dz
=
B2p
D x2p − x2

DnDA
2p
D +R2p,2s(x2p − 3x2s)

H(z)(1 + z)

+
RLyα(x2p − 3(1− xD)e−

3BD
4TD )

H(z)(1 + z)
, (4.9)

where AnlD = AnlD (TDM, TD) is the effective recombination coefficient to the
interface state nl, BnlD = BnlD (TD) is the effective photoionization rate of the
interface state nl, H(z) is the Hubble expansion rate and z is the redshift
which we use here as a time variable. RLyα is the rate at which dark Lyman-
α photons escape the Lyα resonance due to the expansion of the Universe
[101]

RLyα =
(3BD)3H

(8π)2nD(1− xD)
. (4.10)

71



4.3. Thermal History

Here and in the remainder of this chapter, we set ~ = c = kB = 1. Λ2s,1s

denotes the rate of the forbidden two-photon transition between the 2s state
and the ground state. It is given by [189–191]

Λ2s−1s =
(
αD
αem

)6(BD
BH

)
8.22458 s−1. (4.11)

Here αem is the SM fine-structure constant and BH ' 13.6 eV is the binding
energy of regular hydrogen. R2p,2s is the effective transition rate between
the interface states 2s and 2p and is given by [188]

R2p,2s ≡
∑
nl

R2p→nlPnl→2s, (4.12)

where R2p→nl is the bound-bound transition rate between the 2p state and
the “interior” state nl (n > 2) and Pnl→2s stands for the probability that a
dark atom in a state nl will decay to the 2s state. Details of the computation
of R2p→nl and Pnl→2s can be found in [188].

Previous studies of atomic DM have used an approximate recombination
coefficient given by [100, 192]

AD(TDM) = 0.448
64π√
27π

α2
D

µ2
D

(
BD
TDM

)1/2

ln
(
BD
TDM

)
. (4.13)

This rate is problematic for three reasons. First, since it is only a function
of the DM temperature, it fails to take into account the contribution from
stimulated recombination which explicitly depends on TD. Second, it does
not take into account the effect of transitions among the high-n atomic states
(an approximately 14% correction). Finally, it is inaccurate for TDM & BD

and TDM � BD. To improve this situation and obtain an accurate picture
of dark recombination, we compute a new recombination coefficient using
the method outlined in Ref. [188]. Our recombination coefficient is given by

AnlD (TDM, TD) ≡ αnl +
∑
n′l′

αn′l′Pn′l′→nl. (4.14)
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Here, Pn′l′→nl stands for the probability that a dark atom in a state n′l′ will
decay to a state nl. The volumetric recombination rate to an atomic state
nl is

αnl(TDM, TD) =
(2π)3/2

(µDTDM)3/2

∫ ∞
0

e−BDκ
2/TDMγnl(κ) (4.15)

×
[
1 + fBB(BD(κ2 + n−2), TD)

]
d(κ2).

Here, κ denotes the momentum of the incoming dark electron in units of
αD/2BD and fBB(E, T ) ≡ (eE/T − 1)−1 is the dark-photon distribution
function at energy E for a blackbody spectrum at temperature T . The
details of the atomic physics are encoded in the γnl factor [188]

γnl(κ) ≡ 1
3πn2

α3
DBD(1 + n2κ2)3

∑
l′=l±1

max(l, l′)|g(n, l, κ, l′)|2 ,(4.16)

where g(n, l, κ, l′) denotes the bound-free radial matrix elements [193]. Nu-
merically computing the momentum integral in Eq. (4.15) for each state nl
and performing the sums in Eq. (4.14) up to nmax = 250 yield a recombina-
tion coefficient of the form

AnlD (TDM, TD) =
2
√

2πα3
D

3µ3/2
D

√
TDM

Gnl250(
TD
BD

,
TDM

TD
), (4.17)

where Gnl250 are universal dimensionless functions encoding the details of the
atomic physics and its interaction with the radiation field. These functions
are independent of the model parameters (αD, mD, BD, ξ) and therefore
need to be computed only once. For the purpose of numerical computation,
we tabulate G2s

250 and G2p
250 on a grid of TD/BD and TDM/TD values and

use an interpolation scheme to obtain accurate values of the effective re-
combination coefficients. The photoionization rates are related to the above
photorecombination coefficients through detailed balance

BnlD (TD) =
(
µDTD

2π

)3/2

e
− BD
n2TDAnlD (TDM = TD, TD). (4.18)
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In terms of the universal dimensionless functions, this reads

BnlD (TD) =
α3
DTD
3π

e
− BD
n2TDGnl250(

TD
BD

, 1). (4.19)

In Fig. 4.3, we compare the effective total recombination rateAD(TDM, TD) ≡
A2s
D (TDM, TD)+A2p

D (TDM, TD) with the approximate rate given by Eq. (4.13).
The top panel compares the recombination rate when the DM and the DR
are in thermal equilibrium with TDM = TD. We see that the approximate
rate (4.13) performs reasonably well over the temperature range where most
of the recombination is happening (0.007 . TD/BD . 0.02). Most of the
difference between Eq. (4.13) and our exact computation can be traced to
the fact that the former neglects the transitions between the high-n atomic
levels. As shown in Ref. [194], this could in principle be taken into account
by multiplying Eq. (4.13) by a fudge factor ∼ 1.14. We also show the recom-
bination rate derived in Pequignot et al. [195] corrected by this fudge factor
as used in Recfast [194]. Not surprisingly, this last rate is an excellent fit
to the exact rate over most of the important temperature range. However,
we see that both the Pequignot et al. and the rate given in Eq. (4.13) fails
at high temperature and to a lesser extent, at low temperature. For regular
atomic hydrogen, these errors are inconsequent since most of the baryonic
plasma is ionized until TCMB/BH ∼ 0.02 and has mostly recombined before
TCMB/BH ∼ 0.003. For weakly-coupled dark atoms however, these errors
can have a substantial effect on the late-time ionization fraction of the DS.

The lower panel of Fig. 4.3 compares the different recombination rates
when the DM temperature differs significantly from that of the DR. This
can happen for example for a weakly-coupled DS which thermally decouples
from the DR before the onset of or during recombination. In this case, both
the canonical rate (4.13) and that of Pequignot et al. fail to capture the
correct temperature dependence over most of the important temperature
range. This should not come as a surprise as these two rates are purely
functions of TDM and cannot therefore capture the contribution from stim-
ulated recombination which is a function on the DR temperature, TD. For
regular atomic hydrogen, this effect is unimportant since thermal decoupling
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of baryons happens well after recombination. Note that Eq. (4.13) systemat-
ically underestimates the recombination rate leading to an artificially large
late-time ionization fraction for weakly-coupled dark atoms. Given the sen-
sitivity of the recombination rate on the DM temperature, it is important
to accurately capture its evolution through the stage of thermal decoupling
which we discuss in the next section.

Without solving any differential equation, it is possible to obtain an esti-
mate for the late-time ionized fraction of the DS x̄D by solving the condition

x̄DnD(A2s
D +A2p

D ) ' H, (4.20)

which determines the ionized fraction when the recombination process goes
out of equilibrium. Using the above expression for the recombination rates
and evaluating them at TD/BD ∼ 0.007, we obtain

x̄D ∼ 2× 10−16 ξ

α6
D

(
ΩDh

2

0.11

)−1 ( mD

GeV

)(BD
keV

)
, (4.21)

where ΩD ≡ ρDM/ρcrit and h = H0/(100 km/s/Mpc) is the reduced Hubble
constant. While this expression is only accurate up to a factor as large as 10,
it illustrates how the relic ionized fraction scales with the dark parameters.

4.3.3 Thermal Decoupling of Atomic Dark Matter

In the early Universe, frequent interactions between the dark photons and
the dark fermions keep the DS in thermal equilibrium at a single tempera-
ture. Dark photons Compton scatter off dark electrons, hence transferring
energy to the DM gas. This energy is then redistributed among the DS
fermions through Coulomb scattering between the dark electrons and the
dark protons. The typical timescale for this process is [159]

τe-p =
√
µD T

3/2
DM√

2πα2
DnDxD ln Λ

(4.22)

' 3.8× 10−4ξ
3
2

α2
DxD ln Λ

(
0.11

ΩDh2

)( mD

GeV

)( µD
MeV

) 1
2

(
T

eV

)− 3
2

s,
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Figure 4.3: Comparison between recombination rates. We have chosen the
DS parameters such that they match those of regular atomic hydrogen. We
plot the approximate recombination rate given by Eq. (4.13) (green short-
dashed line) as well as our rate computed according to Eq. (4.17) including
all shells up to nmax = 250 (red long-dashed line). For comparison, we also
show the recombination rate given in Ref. [195] corrected by a fudge factor of
1.14 as used in Recfast [194] (black solid line). Top Panel: We compare the
rates when the DM and DR are in thermal equilibrium such that TDM = TD.
Lower Panel: Similar to the top panel but with TDM = 0.01TD.
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where we have assumed TDM = TD in going from the first line to the second
equality. This timescale should therefore be considered as an upper limit
since after thermal decoupling, we generally have TDM < TD. Here, ln Λ is
the Coulomb logarithm and is approximately given by

ln Λ ' ln

[
T

3/2
DM√

πnDxDα
3/2
D

]
, (4.23)

and has value ln Λ ∼ 30 − 60 over the parameter space of interest. The
Coulomb rate should be compared to the Hubble timescale during radiation
domination

τH ≡
1
2
H−1 ' 2.42× 1012√

3.36 + g∗,Dξ4

(
T

eV

)−2

s. (4.24)

For all interesting atomic DM parameter space, we always have τe-p � τH

and therefore, we can always assume that the dark fermions are in thermal
equilibrium among themselves at a single temperature TDM. The neutral
dark atoms maintain thermal contact with the dark fermions through elastic
collisions. To a good approximation, the cross section for a collision between
a dark electron of energy Ee and a dark atom in its ground state is given
by [196]

σe−H(Ee) ' 320α2
D

B2
D

1√
1 + γ(Ee/BD)2

, (4.25)

which is valid for Ee < BD and where γ ' 15.69 is a best-fit parameter.
Averaging this cross-section over the Maxwell-Boltzmann velocity distribu-
tion of the dark electrons and multiplying by the number density of neutral
atoms, we obtain the elastic collision rate between dark atoms and dark
electrons

Γe−H ' 5.3× 108α2
D(1− xD)(

1 + 15.07
(
TDM
BD

) 3
2

)0.576

(
TDM

me

) 1
2

(4.26)

×
(

ΩDh
2

0.11

)(
BD
eV

)−2 ( mD

GeV

)−1
(
T

eV

)3

s−1,
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which is valid for TDM/BD . 1. Again, the timescale associated with this
collisional process τe−H ≡ Γ−1

e−H is much shorter than the Hubble time over
most of the dark atom parameter space. We can therefore safely assume
that the whole DM sector (ions + neutral dark atoms) is always in thermal
equilibrium at a single temperature TDM. For the remaining of this chapter,
we thus focus our attention on the interaction between the dark fermions
and the DR.

Due to its steep dependence on the DR temperature, Compton heating
is always the dominant energy-transfer mechanism between DM and DR at
early times. The Compton heating rate is given by [102]

ΓCompton =

[
1 +

(
me

mp

)3
]

64π3α2
DT

4
D

135m3
e

xD
1 + xD

, (4.27)

where me and mp are the masses of the dark electron and dark proton,
respectively. The prefactor in the square bracket accounts for Compton
heating of both dark electrons and protons. For regular atomic hydrogen,
the large photon-to-baryon ratio ensures that Compton heating alone ef-
ficiently maintains thermal contact between baryons and the photon bath
well after the former recombine into neutral hydrogen and helium. For dark
atoms however, there is a large parameter space for which Compton heating
becomes inefficient at early times (i.e. for TD � BD). In this case, one
must consider other possible energy-exchange mechanisms between the DR
and DM. Before dark recombination, photo-ionization heating and photo-
recombination cooling are the most important mechanisms that can main-
tain thermal contact between DM and DR once Compton heating falls out
of equilibrium. Free-free (Bremsstrahlung) cooling and free-free heating are
also relevant energy-exchange mechanisms for dark atoms. Finally, dark
photons can exchange energy with neutral dark atoms through Rayleigh
scattering. The volumetric energy-exchange rates for these processes are (in
energy per unit time per unit volume, see Appendix B.3)

Πp−i(TD) =
α3
DT

2
D

3π
x2snDe

− BD
4TD Fp−i(TD/BD), (4.28)
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Πp−r =
2α3

D

√
2πTDM

3µ3/2
D

x2
Dn

2
DFp−r(

TD
BD

,
TDM

TD
), (4.29)

Πff ' 16α3
Dḡff

√
2πTDMx

2
Dn

2
D

(3µD)3/2

(
π2ε(1 + 2ε)− 6ζ(3)ε2

6

)
, (4.30)

ΠR '
430080ζ(9)α2

DnD(1− xD)T 9
Dε

π2B4
DmDm2

e

, (4.31)

where Πp−i, Πp−r, Πff and ΠR are the photo-ionization heating, photo-
recombination cooling, the net free-free heating rate, and the net Rayleigh
heating rate, respectively. Fp−i and Fp−r are universal dimensionless func-
tions parametrizing the details of the atomic physics and its interaction with
the radiation field. These functions are independent of the model param-
eters (αD, BD,mD, ξ) and therefore need to be computed only once. The
fractional temperature difference is denoted by ε ≡ (TD − TDM)/TD.

It is instructive to compare the relative magnitude of the different energy-
exchange mechanisms. The typical timescale required by the thermal pro-
cesses to transfer an O(1) fraction of the kinetic energy of the DM is given
by

τi ≡ Γ−1
i =

(
2Πi

3TDMnD(1 + xD)

)−1

, (4.32)

where we have assumed the equipartition of energy among all dark con-
stituents. Comparing Eqs. (4.29) and (4.30), we see that the free-free
processes and the bound-free processes have similar leading-order ampli-
tudes. Explicitly taking ratio of the Compton heating rate to that of photo-
recombination cooling, we obtain

ΓCompton

Γp−r
∼ 10−3α

2
D

xD

(
TDM

BD

) 1
2
(
mD

BD

)
ξ4(1 + z)
Fp−r

. (4.33)

We first notice that it is always possible to find a high-enough redshift
such that Compton heating dominates over the bound-free energy-exchange
channels. As the Universe cools down, the photo-heating can become the
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Figure 4.4: Comparison between the rates of different energy-exchange
mechanism. We display the rates for Compton heating (solid, black), photo-
recombination cooling (short-dashed, blue), and free-free cooling (dotted,
green). We also show the Hubble expansion rate (long-dashed, red). The
upper panel displays the evolution of the thermal rates for an atomic DM
model with ΥBF ∼ 700 and ΥR ∼ 6 × 10−6, while the lower panel has
ΥBF ∼ 280 and ΥR ∼ 400.
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Figure 4.5: Same as Fig. 4.4 but for a model with ΥBF ∼ 5 × 10−4 and
ΥR ∼ 4.

dominant energy-exchange mechanism for low values of αD, for a cold DS
(ξ � 1), or for a light DM candidate. Generally, photo-recombination cool-
ing, photo-ionization heating, and the free-free processes must be taken into
account when

ΥBF ≡ ΓCompton

Γp−r

∣∣∣
zdrec

' 5.6× 105α2
Dξ

3

(
0.11

ΩDh2

)( mD

GeV

)
. 1. (4.34)

Here, zdrec is the redshift at which dark atoms recombine. For standard
atomic hydrogen, we have ΥBF ∼ 102 and can therefore neglect any contri-
bution beyond Compton heating.

For relatively large values of the coupling constant αD, recombination
is generally very efficient, resulting in a considerably low ionized fraction
xD � 1 at late times. Consequently, thermal coupling mechanisms that
depend on the presence of free ions to proceed such as Compton heating
and free-free heating become relatively inefficient. When this happens, the
only remaining mechanism that can maintain thermal equilibrium between
the DR and DM for these models is Rayleigh heating. Generally, Rayleigh
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heating takes over Compton heating as the dominant heat-exchange channel
after dark recombination if the condition

ΥR ≡
ΓCompton

ΓR

∣∣∣
zdrec

' 5× 104xD
1− xD

(
mD

me

)
. 1, (4.35)

is satisfied. This indicates that only models with very small left-over ion-
ization fraction and moderate value of the ratio mD/me can obtain a non-
negligible contribution from Rayleigh heating. In Figs. 4.4 and 4.5, we
compare the rates for the four dominant energy-exchange mechanisms to the
Hubble rate. The upper panel of Fig. 4.4 shows a relatively strongly-coupled
dark-atom model with ΥR ∼ 6× 10−6 and ΥBF ∼ 700 where Rayleigh heat-
ing becomes the dominant thermal-coupling mechanism after the onset of
dark recombination. In the lower panel of Fig. 4.4, we illustrate a model
with ΥBF ∼ 280 and ΥR ∼ 400 where Compton heating is the only im-
portant mechanism until adiabatic cooling takes over at late times. Figure
4.5 displays an alternate scenario with ΥBF ∼ 5 × 10−4 and ΥR ∼ 4 where
photo-ionization heating and photo-recombination cooling dominate from
early times until adiabatic cooling takes over after recombination.

We therefore see that the thermal evolution of atomic DM strongly de-
pends on the specific choice of dark parameters. In contrast to regular
atomic hydrogen whose thermal history can be accurately captured by only
considering Compton heating, it is necessary in general to include com-
plementary thermal coupling channels to precisely determine the thermal-
decoupling temperature of dark atoms. Put differently, the thermal history
of the baryon-photon plasma represents only one possibility among all the
regimes that a plasma in an expanding universe can explore. In this respect,
it is interesting to realize that the thermal evolution of the baryon-photon
plasma is rather simple compared to what it could have been, had the pa-
rameters of SM been different.

Putting the different pieces together, the Boltzmann equation governing
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the evolution of the DM temperature is then [102]

(1 + z)
dTDM

dz
= 2TDM +

2(Πp−r −Πp−i −Πff + ΠR)
3kBnD(1 + xD)H(z)

+
64π3α2

DT
4
D

135m3
eH(z)

xD(TDM − TD)
1 + xD

[
1 +

(
me

mp

)3
]
, (4.36)

where the first term of the right-hand side corresponds to adiabatic cooling
due to the expansion of the Universe, the second term takes into account
the contribution from bound-free and free-free processes as well as Rayleigh
scattering, and the last term describes the Compton heating of the DM gas.
Note that we have neglected collisional processes such as collisional cooling14

in the above analysis. These processes are expected to be subdominant
compared to the radiative channels considered here, unless ργ,D/ρDM ∼
O(1), where ργ,D is the energy density of the DR.

4.3.4 Joint-Evolution of DM Temperature and Ionization

Fraction

The thermal history of the DS sector is specified by simultaneously solving
Eqs. (4.7), (4.8), (4.9), and (4.36) together with the initial conditions

xD(zi) = xD,Saha(zi) x2s(zi) = e
− 3BD

4TD (1− xD(zi))

x2p(zi) = 3x2s(zi) TDM(zi) = TD(zi),

where xD,Saha is the Saha equilibrium ionization fraction and zi is the initial
redshift. It is obtained by solving the Saha equation

x2
D,Saha

1− xD,Saha
=

1
nD

[(
mempTD

2πmD

)3/2

e−BD/TD

]
. (4.37)

14The collisional excitation of a neutral dark atom followed by the emission of a dark
photon. The result of this process is a net energy transfer from the DM gas to the DR
thermal bath, hence the name collisional cooling.
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These ionization and temperature evolution equations are extremely stiff at
early times and therefore require the use of a stiff solver. We assume that
adiabatic cooling dominates the evolution of the DR temperature such that

TD(z) = T
(0)
CMBξ(1 + z), (4.38)

where T (0)
CMB is the temperature of the CMB today. Note that dark recom-

bination always happens after the dark electrons and positrons annihilate15

and we have therefore neglected the change in the number of relativistic
species (see Eq. 4.6). Equation (4.38) is valid as long as we can neglect the
energy injected into the dark radiation bath in a Hubble time, that is

δργ,D
ργ,D

' Πp−rτH

ργ,D
� 1. (4.39)

In the above, we have only included the contribution from photo-recombination.
In practice, all mechanisms leading to a net energy transfer from the DM to
the DR should be included. Before DM recombination, the right-hand side
of Eq. (4.39) is almost a constant and is equal to

δργ,D
ργ,D

∼ 102α
6
D

ξ4

( mD

GeV

)−2
(
BD
eV

)−1

� 1. (4.40)

Models not respecting this bound are likely to require a more involved anal-
ysis since the DR field cannot be taken to be thermal in these cases. A full
solution to the energy-transfer problem is out of the scope of this thesis and
we therefore focus on models obeying Eq. (4.40).

We can now compare our improved treatment of the dark-atom recom-
bination and thermal decoupling to the “standard treatment” described in
Ref. [125]. The “standard treatment” combines Eqs. (4.7), (4.8), and (4.9)
into a single differential equation for xD and uses the approximate recombi-
nation rate given in Eq. (4.13). Its DM temperature evolution equation only
includes Compton heating and adiabatic cooling. In Fig. 4.6, we display the

15Since BD ' (1/2)α2
Dme and dark recombination takes place for TD � BD , we always

have TD � me at the onset of dark recombination as αD < 1.
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ionized-fraction and temperature evolution for a model with ΥR ∼ 6× 10−6

and ΥBF ∼ 700. We see that the redshift evolution of our improved ioniza-
tion calculation closely matches the standard treatment at early times. At
late times however, our improved calculation predicts an ionization fraction
that differs from the standard treatment by as much as 60%. The very good
agreement at early times follows from the fact that the ionized fraction of
the DS is initially mostly controlled by the Saha equilibrium condition, and
therefore insensitive to the exact value of the recombination coefficient. At
late times however, the Saha approximation breaks down and the ionized
fraction becomes sensitive to the recombination rates. As can be seen in the
lower panel of Fig. 4.6, the inclusion of Rayleigh scattering postpones the
thermal decoupling of DM, resulting in a DM gas that is hotter than one
would expect by considering only Compton heating. Since the recombina-
tion coefficient is very sensitive to the DM temperature, this explains the
somewhat large difference in xD at low redshift.

Figure 4.7 displays the ionization and temperature evolution of a dark-
atom model for which Compton heating is the dominant thermal coupling
mechanism until late times (ΥBF ∼ 2 × 105 and ΥR ∼ 102). In this case,
the usual calculation accurately captures the behaviour of both the ioniza-
tion evolution and the DM temperature. This is a not a surprise, since the
standard treatment was designed to capture this specific regime of the dark
plasma. The small difference in the ionization fraction (up to ∼ 12%) at late
times is entirely due to our more accurate recombination coefficient which in-
cludes the effects of high-n shells on the recombination process. In Fig. 4.8,
we display the ionization history (upper panel) and temperature evolution
(lower panel) for a model with ΥBF ∼ 5×10−4 (ΥR ∼ 4). Not only does the
standard calculation fail to predict the right recombination redshift, it also
underestimates the late-time ionization fraction by more than 50%. Since
the Saha equilibrium does not hold for these weakly-coupled models, their
ionization evolution is strongly determined by the value of the recombination
coefficient. In the lower panel, we see that the inclusion of the bound-free
and free-free processes delays the thermal decoupling of DM, hence post-
poning the onset of dark recombination. As the recombination coefficient is
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Figure 4.6: Comparison between our improved treatment of dark recom-
bination and the standard treatment. We display results for a relatively
strongly-coupled DS with ΥR ∼ 6× 10−6 and ΥBF ∼ 700. The upper panel
shows the evolution of the ionization fraction as a function of redshift while
the lower panel shows the corresponding evolution of the DM and DR tem-
peratures.
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Figure 4.7: Comparison between our improved treatment of dark recom-
bination and the standard treatment. We display results for a DS where
Compton heating always dominates the thermal coupling between the DR
and DM. Here, ΥBF ∼ 1.8× 105 and ΥR ∼ 102. The upper panel shows the
evolution of the ionization fraction as a function of redshift while the lower
panel shows the corresponding evolution of the DM and DR temperatures.
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Figure 4.8: Comparison between our improved treatment of dark recombi-
nation and the standard treatment. We display results for a weakly-coupled
DS with ΥBF ∼ 5 × 10−4 and ΥR ∼ 4. The upper panel shows the evolu-
tion of the ionization fraction as a function of redshift while the lower panel
shows the corresponding evolution of the DM and DR temperatures.
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very sensitive to the DM temperature (see Fig. 4.3), this delayed thermal
decoupling acts to suppress the recombination rate, hence leaving a larger
ionized fraction at late times.

In summary, the standard recombination treatment originally described
in [101] can only be accurately applied to dark-atom models for which both
bound-free and Rayleigh heating are negligible. For these scenarios, the late-
time difference between our improved calculation and the standard treat-
ment is almost entirely due our more accurate recombination coefficient,
which properly accounts for the effects of excited atomic states and for the
difference between the DM and DR temperature. On the other hand, the
standard treatment generally overestimates the thermal-decoupling temper-
ature for atomic DM models with ΥBF . 1 or ΥR . 1. As a consequence,
the standard treatment tends to underestimate the DM ionized fraction at
late times for these types of models.

4.3.5 Existence of Dark Atoms

As the dark fine-structure constant is decreased and the mass of the dark
proton is increased, it becomes progressively more difficult for oppositely-
charged dark fermions to find each other and form neutral bound states.
There exist critical values of the masses and coupling constants beyond
which dark atoms do not form and the dark plasma remains ionized even
for TD � BD. Generally, this happens if the recombination rate is smaller
than the Hubble expansion rate, when it becomes energetically favourable
to form dark atoms. Using Eqs. (4.17) and (4.24), dark atoms can form only
if the following condition is satisfied

α6
D

ξ

(
ΩDh

2

0.11

)( mD

GeV

)−1
(
BD
keV

)−1

& 1.5× 10−16, (4.41)

where we have used TD ' TDM ' 0.02BD which corresponds to the usual
DS temperature at the onset of dark recombination. Models violating this
bound are effectively hidden charged DM models similarly to those discussed
in Refs. [180, 181]. For standard atomic hydrogen, the left-hand side of
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Figure 4.9: Late-time ionized fraction as a function of mD and αD for a
dark-atom model with BD = 10 keV. The dashed line corresponds to the
bound given in Eq. (4.41), delimiting the mostly ionized models (below the
line) from the region of parameter space dominated by dark atoms at late
times (above the line).

Eq. (4.41) is equal to 2.4×10−12, which is well above the bound as expected.
We display the constraint (4.41) in Fig. 4.9 (dashed line) together with the
values of the late-time ionized fraction for a model with BD = 10 keV. We
see that Eq. (4.41) delimits very well the region where the DS is mostly
ionized at late times.
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4.4 Evolution of Dark-Matter Perturbations

Having determined the evolution of the background ionized fraction and
temperatures, we now turn our attention to the evolution of cosmological
perturbations in the atomic DM scenario. In this theory, the DM and DR
form a tightly-coupled plasma in the early Universe, much like the baryon-
photon fluid. Once modes enter the horizon, the pressure provided by the
relativistic dark photons gives rise to a restoring force opposing the gravi-
tational infall of DM, hence leading to dark acoustic oscillations (DAO) in
the plasma. Compared to a CDM model, the presence of these DAOs delays
the onset of DM fluctuation growth until the epoch of kinetic decoupling.
In addition, atomic DM fluctuations miss out on the kick due to the decay-
ing gravitational potential when they cross inside the Hubble horizon [81].
We therefore generically expect DM fluctuations to be suppressed on small
scales in atomic DM models.

We begin this section by giving the key equations describing the DM and
DR perturbations, emphasizing the new collision term between these two
constituents of the DS. We then discuss the different contributions to the
opacity of the dark plasma and study their impact on the kinetic decoupling
epoch. We then describe the various regimes that the perturbations in the
dark plasma encounter as they evolve through the cosmic ages. We finally
present numerical examples of these different regimes, both in Fourier space
and in configuration space.

4.4.1 Perturbation Equations

The equations governing the evolution of atomic DM fluctuations are very
similar to those describing the baryon-photon plasma. Special care must
however be taken to include all the relevant contribution to the opacity of
the DM to DR. The Boltzmann equations for DM are

δ̇D + θD − 3φ̇ = 0, (4.42)

91



4.4. Evolution of Dark-Matter Perturbations

θ̇D +
ȧ

a
θD − c2

Dk
2δD − k2ψ =

RD
τD

(θγ̃ − θD), (4.43)

where we closely followed the notation of Ref. [100] in conformal Newtonian
gauge. Here, δD is the DM density constrast, θD and θγ̃ are the divergence
of the DM and DR velocity, respectively; φ and ψ are the gravitational
scalar potentials, RD ≡ 4ργ̃/3ρD, cD is the sound speed of DM, k is the
wavenumber of the mode and τ−1

D is the opacity of the dark plasma. Here,
the subscript γ̃ always refers to the dark photons. The right-hand side of
Eq. (4.43) represents the collision term between the DM and the DR. At
early times, we generally have RD � 1 and τD � τH , implying that the DM
is effectively dragged along by the DR. The latter evolves according to the
following Boltzmann equations:

δ̇γ̃ +
4
3
θγ̃ − 4φ̇ = 0; (4.44)

θ̇γ̃ − k2(
1
4
δγ̃ −

Fγ̃2

2
)− k2ψ =

1
τD

(θD − θγ̃); (4.45)

Ḟγ̃2 =
8
15
θγ̃ −

3
5
kFγ̃3 −

9
10τD

Fγ̃2; (4.46)

Ḟγ̃l =
k

2l + 1
[
lFγ̃(l−1) − (l + 1)Fγ̃(l+1)

]
− 1
τD
Fγ̃l. (4.47)

Eqs. (4.44) and (4.45) describe the evolution of the dark-photon over-densities
(δγ̃) and of the dark-photon velocity, respectively. It is also necessary to
solve for the hierarchy of dark-photon multipoles (Eqs. (4.46) and (4.47))
to properly account for DR diffusion and its impact on DM perturbations.
Since our focus is to describe the clustering of DM in this model, we do not
solve for the DR polarization, which in any case has a negligible impact on
DM fluctuations.

During the radiation-dominated epoch, the energy density of the DR is
generally subdominant compared to the contribution from regular photons
and neutrinos (see Eq. (4.5)). Therefore, the time-dependence of the grav-
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itational potentials φ and ψ is very similar to the standard CDM case for
which we have [36]

φ ' −φp

[
sin (kτ/

√
3)− (kτ/

√
3) cos (kτ/

√
3)

(kτ/
√

3)3

]
, (4.48)

where τ stands for the conformal time and φp is the primordial amplitude.
Since the gravitational potential is an oscillatory function, Eqs. (4.42) and
(4.44) essentially describe driven harmonic oscillators where the driving force
is provided by the baryon-photon plasma. Indeed, taken as a whole, the
equations describing the dark plasma and the baryon-photon plasma in the
early Universe correspond to a system of coupled harmonic oscillators. Such
a system is known to exhibit resonance phenomena whenever the driving
frequency approaches the natural frequency of the oscillator. For the dark
plasma however, we always have

RD � R ≡ 4ργ
3ρb

, (4.49)

where ργ and ρb are the energy densities of regular photons and baryons,
respectively. As the sound speed of a plasma is approximately given by
cp = 1/

√
3(1 +R−1), Eq. (4.49) implies that the sound speed of the dark

plasma is always smaller than that of the baryon-photon plasma. Thus, the
dark plasma is never driven close to its resonance threshold16.

4.4.2 Dark Opacity and Kinetic Decoupling

The opacity of the dark plasma dictates the strength of the coupling between
DM and DR. Heuristically, τD can be considered as the mean free path a
dark photon travels between collisions with a dark ion or a dark atom. As
such, RD/τD is approximately the momentum-transfer rate between the DR
and the DM. As in the case of the thermal coupling of DM to DR, many
mechanisms contribute to the exchange of momentum between the two dark

16While resonant enhancement does not occur for the simple atomic DM scenario con-
sidered in this thesis, it is nevertheless possible to construct a model where such resonance
happens. This is an interesting possibility that we leave for future work
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component. In addition to the usually-considered Compton-scattering term,
we also include the contribution from Rayleigh scattering as well as the
contribution from bound-free processes. The opacity is then

τ−1
D = τ−1

Compton + τ−1
R + τ−1

p−i. (4.50)

The Compton scattering term is given by

τ−1
Compton = anDxDσT,D

[
1 +

(
me

mp

)2
]
, (4.51)

where σT,D ≡ 8πα2
D/(3m

2
e) is the dark Thomson cross section and a is the

scale factor. The factor in the bracket accounts for Compton scattering off
dark protons. The contribution from Rayleigh scattering can be written as

τ−1
R = anD(1− xD)〈σR〉 ' 32π4anD(1− xD)σT,D

(
TD
BD

)4

, (4.52)

which is valid for TD � BD. Here σR is the cross-section for Rayleigh
scattering (see Eq. (B.17)) and 〈. . .〉 denotes a thermal average with respect
to the Planck function describing the distribution of dark photons. Finally,
the photoionization contribution is

τ−1
p−i = a

∑
n,l

nnl〈σnl〉 (4.53)

' anDx2s
πα3

D

6ζ(3)T 2
D

e−BD/(4TD)G2s
250

(
TD
BD

, 1
)
,

where nnl and σnl are the number density and the photoionization cross-
section for dark atoms in quantum state nl, and ζ(x) is the Riemann zeta
function.

For most atomic DM models, the Compton scattering contribution to the
opacity dominates before dark recombination, with photoionization giving
a subdominant contribution for models with ΥBF . 1. Once a significant
number of dark atoms has recombined, Rayleigh scattering can become the
dominant source of opacity for models with ΥR . 1.
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The DR effectively begins free-streaming when its mean-free path be-
comes comparable to the size of the Hubble horizon, that is, τ−1

D ' H. In
a model for which Compton scattering dominates the interactions between
the DR and the DM, the onset of the free-streaming epoch is independent
of the temperature and only depends of the fraction of ionized dark atoms,

xD
∣∣Compt

dec
' min

[
1,

3.7× 10−10

α6
D

(
ΩDh

2

0.11

)−1(
BD
keV

)2 ( mD

GeV

)]
, (4.54)

where we have assumed that the DR decoupling happens in the radiation-
dominated epoch and have neglected the contribution from dark protons. If
the second argument in the min [.., ..] function is larger than unity, it indi-
cates that dark photons begin free-streaming at a very early epoch, making
them difficult to distinguish from massless neutrinos. For a strongly-coupled
DS which have ΥR . 1, the decoupling of dark photons happens much later
and is governed by Rayleigh scattering of dark photons off neutral dark
atoms. This leads to a decoupling temperature

TD
BD

∣∣∣∣∣
R

dec

' 7× 10−4

α
3/2
D

[(
ΩDh

2

0.11

)−1(
BD
keV

)2 ( mD

GeV

)] 1
4

, (4.55)

where we have taken the limit xD|dec � 1. It is important to note that for
most atomic DM scenarios, Compton scattering alone is responsible for the
DM-DR coupling.

The key quantity governing the size of the smallest DM structure in
the Universe is the temperature at which DM kinematically decouples from
the DR (i.e. the dark drag epoch). This temperature can approximately be
determined by solving the condition RD/τD ' H. For models dominated
by Compton scattering, this leads to a kinetic decoupling temperature given
by

TD
BD

∣∣∣∣∣
Compt

drag

' 5.8× 10−13

α6
Dξ

4xD|drag

(
BD
keV

)( mD

GeV

)
. (4.56)

This is effectively an implicit equation for the drag-epoch temperature since
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the right-hand side involves the ionized fraction of dark atoms evaluated at
that epoch. Taking xD|drag ∼ 1 leads to a lower bound on the temperature
at which DM ceases to be dragged along by the DR. If ΥR . 1, the kinetic
decoupling occurs when Rayleigh scattering becomes ineffective. In this
case, we obtain

TD
BD

∣∣∣∣∣
R

drag

' 7× 10−4

[
1

α6
Dξ

3

(
BD
keV

)( mD

GeV

)] 1
5

, (4.57)

where we have used xD|drag � 1, which is a necessary condition for Rayleigh
scattering to dominate over Compton scattering.

DM fluctuations on subhorizon length scales at the drag epoch have
a significantly different evolution than those of a standard ΛCDM model.
In particular, the suppression of small-scale power due to the dark-photon
pressure leads to a minimal halo mass at late times. We will discuss this
effect further in section 5.1.1.

4.4.3 Regimes of the Dark Plasma

We now turn our attention to the formal solutions to Eqs. (4.42) to (4.47).
These admits different regimes depending on the relative values of the opac-
ity, wavenumber, and Hubble expansion rate. These regimes are

1. Superhorizon Regime: This regime occurs when the wavelength
characterizing a mode is still larger than the Hubble scale, k < H.
As for the CDM case, cosmological perturbations do not significantly
evolve in this regime. We therefore do not discuss this case any further
since atomic DM is indistinguishable from standard CDM for these
modes.

2. Dark-Acoustic-Oscillation (DAO) Regime: Once modes cross
into the Hubble horizon, the microphysics governing the interaction
between the DM and the DR becomes effective. If the mean-free-
path of dark photons between collisions with dark fermions is much
smaller than the wavelength of a given mode (kτD � 1), then we can
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consider the DM and the DR to be tightly-coupled and to form an
almost perfect fluid at this scale. In this case, the DR pressure can
effectively counteract the pull from the gravitational potential, leading
to the propagation of acoustic oscillations in the dark plasma. This
DAO regime occurs for wavelengths larger than the diffusion length
scale of the dark photons, that is,

H < k < kD, (4.58)

where kD is diffusion damping scale and is defined by [36]

1
k2
D(τ)

=
∫ τ

0

τDdτ
′

6(1 +R−1
D )

[
1

R2
D +RD

+
8
9

]
. (4.59)

Heuristically, 1/kD corresponds approximately to the average distance
travelled by a dark photon in a Hubble time. Note that Eq. (4.59) is
the result of a first-order expansion in kτD of the dispersion relation of
DAOs and therefore is only accurate in the limit kτD � 1. In the DAO
regime, DM fluctuations undergo constant-amplitude oscillations

δD ∼ exp
{
ik

∫
dτ c̃p

}
, (4.60)

where c̃p = 1/
√

3(1 +R−1
D ) is the sound speed of the dark plasma.

Due to these oscillations, DM fluctuations entering the horizon in this
regime miss out on both the logarithmic growth and the horizon kick.
Thus, despite the absence of damping in the DAO regime (besides the
small contribution from Hubble expansion), DM perturbations still
generally display smaller amplitudes at these scales when compared to
a standard CDM model.

3. Diffusion-Damping Regime: Once the average distance travelled
by a dark photon during a Hubble time becomes comparable with the
wavelength of a given mode, DR can effectively diffuse out of over-
densities at these scales. If the momentum transfer rate between the
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DR and the DM is larger than the plasma oscillation frequency,

kD < k <
1
c̃p

RD
τD

, (4.61)

then DM is dragged along by the escaping dark photons, effectively
erasing DM fluctuations on these scales. The time-dependence of the
DM perturbations is then given by

δD ∼ exp
{
ik

∫
dτ c̃p

}
exp

{
− k

2

k2
D

}
, (4.62)

leading to an exponential damping on fluctuations on scale smaller
than the diffusion length. As before, we have assumed the dark plasma
is tightly-coupled (kτD � 1) in deriving Eq. (4.62). When this con-
dition ceases to be satisfied, the damping of DM fluctuations is no
longer exponential and Eq. (4.62) breaks down. Note that the diffu-
sion damping regime ends when kc̃p ∼ RD/τD, since DM ceases to be
dragged by the DR when this condition is satisfied.

4. Acoustic-Damping Regime When the mean-free-path of dark pho-
tons becomes comparable to the wavelength of a given mode (kτD & 1),
the dark plasma ceases to behave like a single perfect fluid. Due to
the slow reaction of DM to the motion of dark photons in this regime,
acoustic oscillations in the DM fluid start to significantly lag those
propagating in the DR fluid. This in turns leads to viscous dissipation
in the dark plasma resulting in the damping of DM fluctuations at
these scales. Note however that this acoustic damping is weaker than
the exponential damping characteristic of the tightly-coupled diffusion
regime. Generally, acoustic damping occurs for modes satisfying the
condition

H <
1
τD

< k <
RD
c̃pτD

. (4.63)

The last inequality ensures that a significant amount of momentum is
still transfered to the DM during acoustic damping. Physically, this
regime is characterized by the development of anisotropic stress in the
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dark fluid associated with a significant dark-photon quadrupole mo-
ment. As such, it is therefore difficult to obtain an analytical solution
to the evolution of DM fluctuations in this regime.

5. Gravitationally-Dominated Regime: When the momentum trans-
fer rate between the DR and atomic DM falls below the oscillation
frequency of the dark photons, that is

H <
RD
τD

< kc̃p, (4.64)

the dark plasma ceases to behave like a single fluid and we must con-
sider the DM and the DR fluctuations separately. In this regime, the
evolution of the DM perturbations is determined by a competition
between the gravitational potential dominated by the baryon-photon
plasma and the remaining pressure of the DR. Since both of these
contributions are oscillatory in nature, the evolution of the DM fluc-
tuations in this regime can be rather complex. Essentially, we can
view DM perturbations as forced oscillators driven by two distinct
forces oscillating with difference frequencies. Explicitly, the equation
governing the evolution of DM fluctuations is

δ̈D +
(
H +

RD
τD

)
δ̇D = SG(k, τ)− RD

τD
θγ̃ , (4.65)

where the gravitational source term is given by

SG(k, τ) = 3φ̈− k2ψ + 3φ̇
(
H +

RD
τD

)
. (4.66)

The dark-photon driving term can be obtained from rearranging Eqs. (4.45)
and (4.44)

θγ̃ = θD +
3τD

4

[
δ̈γ̃ +

k2

3
δγ̃ +

k2

6
Fγ̃2 − 4φ̇+

4
3
k2ψ

]
. (4.67)

In the limit that a DM fluctuation enters this regime after being expo-
nentially damped by the diffusion of dark photons, the evolution of DR
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perturbations is dominated by the gravitational potential. Neglecting
the small quadrupole moment of the dark photons, this implies that
the term in the square bracket of Eq. (4.67) is very close to zero. We
thus have θγ̃ ' θD in this limit and Eq. (4.65) reduces to

δ̈D +Hδ̇D = 3φ̈− k2ψ + 3Hφ̇. (4.68)

Eq. (4.68) is to the usual equation describing the growth of standard
CDM fluctuations. It implies that DM fluctuations grow logarithmi-
cally with the scale factor during the radiation-dominated epoch.

On the other hand, for modes that enter the gravitationally-dominated
regime before being substantially damped by photon diffusion, the
dark-photon driving term cannot be neglected in Eq. (4.65). In this
case, the dark-photon quadrupole moment is non-negligible in Eq. (4.67),
leading to an oscillatory pressure term with

θγ̃ ∼ e
ikτ√

3 . (4.69)

The gravitational potential contribution SG(k, τ) also oscillates, but
with a somewhat lower frequency ∼ k/

√
3(1 +R). As these oscilla-

tors can randomly go in-phase and out-of phase, some damping or even
some amplification can occur in this regime. However, since the mo-
mentum transfer rate RD/τD is decaying more rapidly than SG(k, τ),
the gravitational potential rapidly becomes the dominant contribu-
tion to the evolution of DM fluctuations. Indeed, while RD/τD ∝ τ−n
with n ≥ 3 (depending on which process dominates the calculation of
the opacity), SG(k, τ) ∝ τ−2. Therefore, the DM fluctuations rapidly
settle into the logarithmic growing mode.

6. Kinetically-Decoupled Regime: As the momentum transfer rate
between atomic DM and DR falls below the Hubble rate, RD/τD < H,
DM essentially stops interacting with the dark photons and begin be-
having like the standard CDM. Modes entering this regime during ra-
diation domination begin growing logarithmically with the scale factor
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Figure 4.10: Redshift evolution of an atomic DM fluctuation with k = 70
Mpc−1 in synchronous gauge (green solid line). We identify on the figure
the different regimes that the DM fluctuation encounters during its evolu-
tion. These are: (a) superhorizon; (b) DAO; (c) diffusion damping; (d)
gravitationally-dominated; and (e) kinetically-decoupled. For the case dis-
played here, the fluctuation enters the horizon while the dark plasma is
tightly-coupled and therefore undergoes acoustic oscillations. Once kD ∼ k,
the fluctuation becomes exponentially damped by dark-photon diffusion.
This damping ceases to be effective when the rate of momentum transfer
between the DR and DM falls below the oscillation frequency of dark-photon
fluctuations. When this happens, the fluctuation enters the gravitationally-
dominated regime where the perturbation rapidly settles into the logarithmic
growing mode. The sharp feature around (z+ 1)−1 = 3× 10−5 is an artifact
of plotting the absolute value of the fluctuation. For comparison, we also
show the behavior of a CDM fluctuation with the same wavenumber.

while modes entering during matter domination grow linearly with a.
In all cases, modes that enter the Hubble horizon after kinetic decou-
pling are undistinguishable from those of standard CDM.
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Ξ = 0.37
ΑD = 0.008
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Figure 4.11: Redshift evolution of an atomic DM fluctuation with k = 70
Mpc−1 in synchronous gauge (green solid line). We identify on the figure
the different regimes that the DM fluctuation encounters during its evolu-
tion. These are: (a) superhorizon; (b) DAO; (c) Acoustic damping; (d)
gravitationally-dominated; and (e) kinetically-decoupled. For the case dis-
played here, the fluctuation enters the horizon while the dark plasma is
weakly-coupled and therefore transitions to the acoustic damping regime
very rapidly. This damping ceases to be effective when the rate of momen-
tum transfer between the DR and DM falls below the oscillation frequency
of dark-photon fluctuations. When this happens, the fluctuation enters the
gravitationally-dominated regime where the perturbation is further damped
before it settles into the logarithmic growing mode. For comparison, we also
show the behavior of a CDM fluctuation with the same wavenumber.

4.4.4 Numerical Solutions

We solve numerically Eqs. (4.42-4.47) together with the standard Boltzmann
equations describing the evolution of baryons, photon and neutrinos [100].
We use a modified version of the publicly-available code CAMB [122] assuming
that all of the DM is made of dark atoms. We modify the perturbed Einstein
equation to include the new contributions from DM and DR. We use a flat
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background cosmology compatible with WMAP 7-year release [1]: Ωbh
2 =

0.0226, ΩDh
2 = 0.1123, H0 = 70.4 km/s/Mpc, ∆2

R = 2.3×10−9, ns = 0.963,
and τre = 0.088. We consider pure adiabatic initial conditions

δD(zi) = δb(zi) δγ̃(zi) = δγ(zi), (4.70)

θD(zi) = θγ̃(zi) = θγ(zi), (4.71)

Fγ̃l = 0, l ≥ 2. (4.72)

where zi is the initial redshift which is determined such that all modes are
superhorizon at early times, kτ(zi)� 1. We first pre-compute the ionization
and thermal history of the DS as described in section 4.3 and use the result
to compute the opacity of the dark plasma as given in Eq. (4.50) above.
The ionization history of the baryon-photon sector is pre-computed in the
usual way using RecFast [194]. The linear perturbation equations are then
evolved forward in time from zi to z = 0. At early times when kτD � 1 and
τD/τ � 1, Eqs. (4.43) and (4.45) are very stiff and we use a second-order
tight-coupling scheme similar to that used for the baryon-photon plasma at
early times [104, 197, 198].

In Fig. 4.10, we show the time evolution of a single Fourier mode for rela-
tively strongly-coupled dark atoms. We clearly identify the different regimes
that the fluctuation encounters from its horizon crossing to its late-time
growth. For the particular choice of parameters displayed here, this Fourier
mode enters the horizon in the DAO regime and oscillates until dark-photon
diffusion exponentially suppresses its amplitude. Once DR kinematically
decouples from DM, the fluctuation can start growing like regular CDM but
from a much-reduced amplitude.

To contrast, we show in Fig. 4.11 the redshift evolution of the same
Fourier mode for a weakly-coupled model of dark atoms. In this case,
kτD ∼ 1 shortly after the mode enters the horizon and therefore it only
briefly experiences the DAO regime. It then rapidly transitions to the acous-
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tic damping regime where its amplitude decays, though not as quickly or
strongly as in the diffusion damping regime. After kinetic decoupling, the
mode finally settles into the logarithmic growing mode.

4.4.5 Real-Space Evolution: DAO Scale

The Fourier-space description of cosmological fluctuations allows one to
qualitatively understand the different stages of their evolution and to ob-
tain accurate numerical solutions to their equations of motion. Ultimately
however, physical density fluctuations evolve in configuration space and it
is thus important to translate their Fourier-space behaviour into this latter
space.

In Figs. 4.12, 4.13, and 4.14, we display the configuration-space redshift
evolution of a Gaussian adiabatic density fluctuation. In the upper panel of
Fig. 4.12, we see both a dark-plasma and a baryon-photon plasma density
wave traveling outward from the initial over-density. Since the dark plasma
generically has a lower sound speed than the regular baryon-photon plasma,
density waves propagating in the former do not travel as far in a given
time interval as waves propagating in the latter. This results in the dark-
plasma density wave lagging behind its baryon-photon counterpart. The
upper panel of Fig. 4.12 also clearly shows the damping of the initial density
fluctuation at short length-scales resulting from the outward propagation of
acoustic waves.

The lower panel of Fig. 4.12 presents a snapshot of the outward-moving
waves shortly after dark photons cease to be tightly-coupled to the DM.
The upper panel of Fig. 4.13 further shows the DR diffusing out of the DM
fluctuation after they kinematically decouple from each other. After the
dark decoupling epoch, DM fluctuations begin to grow while DR continues
to propagate out of the initial overdensity, eventually overtaking the baryon-
photon sound horizon. Note that the sound horizon of the dark plasma
remains imprinted on the DM fluctuations, resulting in a preferred scales in
the late-time density field similar to the standard BAO scale. This so-called
DAO scale constitutes a tell-tale signature of the presence of a dark plasma
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distinct from the standard baryon-photon plasma in the early Universe. We
will discuss its cosmological implications in the next section.

The inset in the lower panel of Fig. 4.13 shows that the dark-photon
density wave can actually overtake the baryon-photon plasma wave after the
former decouples from the DM. As in the case of free-streaming neutrinos,
this effectively establishes gravitational-potential perturbations beyond the
sound horizon of the baryon-photon plasma. It has been shown [103] that
such supersonic gravitational-potential perturbations can have a measurable
impact on the CMB power spectrum. This indicates that DR fluctuations
could in principle have an impact on the CMB, which we consider chapter
5.

Fig. 4.14 shows the late-time decoupling of photons and baryons. As in
the standard CDM scenario, baryons fall in the gravitational potential wells
established by DM once they cease to be dragged along by the photons. In
the atomic DM scenario however, the DAO scale becomes imprinted on the
baryons as they fall toward DM in a process similar to how the BAO scale
is imprinted on the DM as it falls toward the baryons at late times.

In summary, compared to a vanilla ΛCDM cosmology, the atomic DM
scenario has an additional cosmological length scale corresponding to the size
of the dark-plasma sound horizon when the DR kinematically decouples from
the DM. Since the dark plasma decouples earlier and has a lower sound speed
than the baryon-photon plasma, this DAO scale is generically much smaller
than the BAO scale. Furthermore, the amplitude of density fluctuations on
length scales smaller than the DAO scale is severely suppressed, leading to
a minimal mass for the first objects that collapse at late times. We discuss
the cosmological implications of atomic DM in the next chapter.
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Figure 4.12: Redshift evolution of an initially Gaussian-shaped density fluc-
tuation in configuration space. We take the fluctuation to be adiabatic.
Here, αD = 0.08, BD = 1 keV, mD = 1 GeV, ξ = 0.37, and r stands
for the comoving spatial separation. We display the evolution of the DM
(dot-dashed, blue), DR (dashed, green), baryons (dotted, red), and photons
(solid, black). The upper and lower panels show the initial Gaussian density
fluctuation together with five snapshots of the outgoing density waves at
lower redshifts. Note the changing axes from panel to panel.
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Figure 4.13: Same as Fig. 4.12 but for later redshifts. Note the changing axes
from panel to panel. The inset in the lower panel focuses on the progression
of the baryon-photon sound horizon.
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Figure 4.14: Same as Fig. 4.12 but for later redshifts. The insets focus on
the progression of the baryon-photon sound horizon. At late times, two key
lengthscales emerge: the standard BAO scale at rBAO ' 147 Mpc and the
new DAO scale at rDAO ' 3.3 Mpc (for the model plotted here).
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Chapter 5

The Theory of Atomic Dark

Matter II: Cosmological and

Astrophysical Implications

In chapter 4, we have described the physics of dark atoms as well as the
solutions to the perturbed Boltzmann equations. We now turn our attention
to the impacts of atomic DM on cosmological and astrophysical observations.
In section 5.1, we present an analysis of the new features in the matter
power spectrum and in the CMB due to the dark atomic physics. We also
discuss the Lyman-α (Ly-α) forest bounds on the parameter space of atomic
DM. In section 5.2, we consider the stringent astrophysical constraints on
the model that are obtained by imposing that DM is effectively collisionless
inside galactic halos. We revisit in section 5.3 the direct-detection signatures
of atomic DM proposed in the literature in light of our new analysis. We
finally discuss our results in section 5.4 and point out possible new avenues
of research.

5.1 Cosmological Implications

The atomic DM scenario alters cosmological observables in two possible
ways. On the one hand, the presence of dark relativistic degrees of free-
dom modifies the cosmological expansion history of the Universe. On the
other hand, the gravity and pressure of the dark-photon perturbations im-
pacts the evolution of DM and baryon-photon fluctuations, hence affecting
late-time observables such as the CMB and the matter power spectrum.
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Unfortunately, the former case does not lead to unique effects on observ-
able cosmological probes since the background cosmology of atomic DM is
indistinguishable from that of a standard ΛCDM model that contains extra
relativistic species. As the impact of relativistic neutrinos on the CMB and
the matter power spectrum has been extensively studied in the literature
(see e.g. [103, 199]), we shall only briefly review their key effects in the two
following subsections.

Conversely, dark-photon perturbations can affect cosmological observ-
ables in a way that distinguish them from ΛCDM models containing extra
neutrinos. This stems from the fact that relativistic neutrinos can free-
stream from a very early epoch while dark photons can only do so after
they decouple from the DM. Cosmological modes entering the horizon while
the dark photons are free-streaming are expected to behave similarly to a
ΛCDM model with an equivalent number of relativistic neutrinos. On the
other hand, modes crossing the horizon while the dark photons are tightly-
coupled to the DM do not experience the damping and phase shift of acous-
tic oscillations [103] usually associated with the presence of extra radiation.
Therefore, we expect the atomic DM scenario to leave a distinct imprint
on the CMB if dark photons begin free-streaming when the length scales
relevant for this cosmological probe are crossing into the Hubble horizon. A
corollary of this statement is that a dark-atom model for which dark pho-
tons decouple very early is, as far as the CMB is concerned, indistinguishable
from a ΛCDM universe containing extra neutrinos.

Atomic DM itself alters cosmological observations through the modi-
fied growth of its density fluctuations. As explained in section 4.4.3, DM
fluctuations entering the horizon before kinetic decoupling in the radiation-
dominated era miss out on the amplitude boost due to the rapidly decaying
gravitational potential. Further, atomic DM perturbations on scales smaller
than the dark-photon diffusion length are strongly damped, leading to an
absence of cosmological structure at these scales. The acoustic oscillations in
the DM plasma which are one of the key feature of the atomic DM scenario
remain imprinted on the late-time matter power spectrum. In configura-
tion space, these oscillations point to an important length scale, the DAO
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scale, at which the clustering of DM is enhanced and below which it is sup-
pressed when compared with an equivalent ΛCDM model. For most atomic
DM models that are in agreement with current observations, the DAO scale
must lie today in the highly non-linear regime of cosmological fluctuations,
hence making its impact on cosmology difficult to observe.

5.1.1 Matter Power Spectrum

The most dramatic and distinct cosmological implication of the atomic DM
scenario is the modification of the small-scale matter power spectrum. Ul-
timately, this is a consequence of the relatively late kinetic decoupling of
atomic DM compared to a standard WIMP CDM model. Indeed, the de-
layed kinetic decoupling of the dark plasma considerably impedes the growth
of DM fluctuations for all subhorizon modes. Furthermore, fluctuations on
length scales shorter than the diffusion distance of dark photons are expo-
nentially damped compared to a CDM model, effectively prohibiting the
formation of any late-time structure at these scales. Subhorizon scales that
exceed the diffusion damping scale display acoustic oscillations that remain
clearly imprinted on the late-time matter power spectrum, since DM forms
the bulk of the non-relativistic matter. Fluctuations on length scales that
cross into the horizon after DM kinematically decouples have a growth his-
tory similar to that of a vanilla ΛCDM model and we therefore expect no
particular signature at these scales (see however a caveat at the end of this
subsection).

In Figs. 5.1 and 5.2, we show examples of late-time linear matter power
spectra for different models of atomic DM. The features discussed above are
clearly visible in the spectra. We also observe that as the binding energy of
the dark atoms is increased, the comoving wavenumber at which the power
spectrum significantly departs from the ΛCDM case is increased. This makes
sense since a higher binding energy implies an earlier dark recombination
and kinetic decoupling, therefore pushing the impact of the DM-DR coupling
toward higher comoving wavenumbers.

In the lowest panel of Fig. 5.1 and in Fig. 5.2, we keep the dark-atom
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Figure 5.1: Total linear matter power spectrum at z = 0 for two atomic DM
models. For reference, we also display the linear matter power spectrum for
a vanilla ΛCDM model.
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Figure 5.2: Total linear matter power spectrum at z = 0 for an atomic DM
model. For reference, we also display the linear matter power spectrum for
a vanilla ΛCDM model.

binding energy and mass constant but vary the dark fine-structure constant
αD. We observe that as αD is decreased, the smallest comoving wavenum-
ber affected by the DAOs moves toward higher values. At first, this seems
counterintuitive, as a higher value of the dark coupling constant generally
leads to a lower residual ionization fraction which in turns allows the dark
photons to rapidly decouple from the DM. We must however remember that
dark photons also interact with neutral dark atoms through Rayleigh scat-
tering. For a fixed binding energy and DM mass, the Compton-scattering
contribution to the dark-plasma opacity is roughly independent of αD since
xD(TD � BD) ∝ α−6

D and σT,D ∝ α6
D. On the other hand, the Rayleigh

scattering contribution to τD is a steep function of αD with τ−1
R ∝ α6

D after
the onset of dark recombination. Thus, an increase of the dark fine-structure
constant can considerably boost the Rayleigh-scattering contribution to the
opacity of the dark plasma, hence significantly postponing its epoch of ki-
netic decoupling.
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It is also instructive to consider the correlation function of matter fluc-
tuations in configuration space. The linear correlation function is related to
the linear matter power spectrum via a 3D Fourier transform which, after
simplification, can be reduced to

ξL(r) =
1

2π2

∫
dk k2 P (k) j0(kr), (5.1)

where j0(kr) is the Spherical Bessel function of order 0. In Fig. 5.3, we dis-
play the linear correlation function computed from the three matter power
spectra shown in Figs. 5.1 and 5.2 as well as the correlation expected from
a standard ΛCDM model. In all cases, the usual BAO scale is clearly vis-
ible around r ∼ 104h−1Mpc. In a similar manner, the novel DAO length
scale appears as a local enhancement of the correlation function at the scale
corresponding to the sound horizon of the dark plasma at dark decoupling.
On scales smaller than this sound horizon, the correlation function is signifi-
cantly damped compared to the ΛCDM case, a consequence of the damping
of small-scale fluctuations discussed above.

At late times, the key signature of these new features in the matter power
spectrum and correlation function is a minimal DM halo mass. Indeed, since
most of primordial fluctuations on scales smaller than the dark-plasma sound
horizon are effectively wiped out by the diffusion of dark photons, no self-
bound object can form at late times at these scales. The first regions that
can collapse into self-bound DM halos must then have a minimal initial
comoving size ∼ rDAO. Therefore, the first DM halos have a minimal mass
given approximately by

Mmin ≈
4π
3
r3

DAOΩDρcrit. (5.2)

In the hierarchical model of structure formation, these first halos are then
accreted into larger, more massive halos. While some of these minimal-mass
halos are destroyed through tidal stripping in larger halos, it is expected
that a certain fraction of them remains as discrete sub-halos in larger bound
objects such as galactic halos. These could potentially be detected through
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Figure 5.3: Linear correlation function for the three atomic DM models
plotted in Figs. 5.1 and 5.2.

strong-lensing studies of substructures inside galactic halos (see e.g. [200]).
Indeed, there is currently a growing scientific effort aimed at developing an-
alytical methods and experimental techniques geared toward the detection
of small-scale substructures inside galactic halos [201–207]. While current
results mostly point out the existence of individual massive subhalos in
galactic strong lenses [208–210], statistical analyses of multiple-image lenses
have the potential to lead to strong constraints on the possible minimal sub-
halo mass. Thus, it is not unreasonable to think that this tell-tale signature
of atomic DM might be detected in the near future.

Currently, the most stringent constraints on the small-scale matter power
spectrum come from the Ly-α forest data [30, 211, 212]. There is however
considerable systematic uncertainties in converting the Ly-α flux power spec-
trum to the actual linear matter power spectrum [213]. Most studies have
assumed a power-law spectrum with a running spectral index. Since atomic
DM predicts a much more complex shape of the matter power spectrum, it
is not straightforward to apply these constraints to this scenario. In reality,
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hydrodynamical simulations of the Ly-α flux power spectrum in the atomic
DM scenario will be required to derive the appropriate Ly-α constraints.
We can nevertheless use the current measurements to obtain rough guide-
lines. Ref. [214] has found no deviation from the standard ΛCDM scenario
on scales k < 2h Mpc−1, while [211, 215, 216] have determined that the
linear power spectrum is consistent with CDM on scales k . 5h Mpc−1.
Pending unforeseen physical effects, it is unlikely that atomic DM can have
a large impact on these scales while leaving the Ly-α flux power spectrum
unchanged. We therefore demand that the atomic DM linear power spec-
trum does not significantly deviate from that of a vanilla ΛCDM cosmology
on those scales. More precisely, we compute two constraints: kDAO > 1h
Mpc−1 and kDAO > 5h Mpc−1, where we have defined kDAO ≡ π/rDAO.
These bounds correspond to Mmin ≈ 1013M� and Mmin ≈ 9.3 × 1010M�,
respectively.

We show this constraint in Figs. 5.10, 5.11, and 5.12 where we display
countours of constant minimal halo mass (dotted white lines) in the αD−mD

plane for various values of the atomic binding energy. The dark and light
gray regions correspond to Mmin > 1013M� and Mmin > 9.3 × 1010M�,
respectively. We see that the Ly-α forest data only constrain models with
BD . 10 keV. For higher values of the atomic binding energy, the kinetic
decoupling of the DM happens very early (even for αD ∼ O(1)) and leads
to a minimal halo mass Mmin . 107 M� which is unconstrained by data.

To modify the faint-end of the galaxy luminosity function and bring it in
agreement with the data, atomic DM needs to modify the properties of halos
in the range 108M� . Mmin . 1010M� [170]. According to the constraints
in Figs. 5.10, 5.11, and 5.12, this is possible for model with BD ∼ 10 keV,
mD ∼ 100 TeV and αD ∼ 0.2. Detailed N -body simulations will be required
to assess how the atomic DM scenario exactly affects the halo mass function
and density profile, but it is clear that there are allowed values of the dark
parameters that can directly address some of the dwarf-galaxy problems.

For completeness, we also mention in passing that the dark radiation
has a small impact on the evolution of DM perturbations even for modes
that enter the horizon after dark kinetic decoupling in the radiation era.
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Indeed, the free-streaming dark radiation amplifies the DM fluctuations as
they enter the horizon due to their impact on the rapidly decaying gravita-
tional potential. To illustrate this effect, we must however be careful since
the presence of extra radiation shifts the epoch of matter-radiation equality
zeq and the angular scale of the CMB sound horizon at decoupling θs. Since
these quantities have been precisely measured by experiments, we should
keep them fixed as we vary the amount of dark radiation. This entails to
adjusting the physical DM density (ΩDh

2) and the Hubble constant to keep
the redshift of equality and the angular scale at decoupling unchanged. We
keep Ωbh

2 fixed throughout since the CMB tightly constrains its value.
We illustrate in Fig. 5.4 the linear matter power spectrum for different

values of the ratio of the DS temperature to the CMB temperature. We
clearly observe that as ξ is increased, the amplitude of Fourier modes cross-
ing into the Hubble scale in the radiation era are enhanced. In addition
to the previously mentioned effect caused by the decaying gravitational po-
tential, this enhancement is also caused by the larger DM density of model
with high values of ξ. Indeed, the matter fluctuation spectrum is sensitive
to the ratio Ωb/Ωm, since baryons are withheld from gravitational collapse
prior to hydrogen recombination. As the total matter density is increased
for a fixed amount of baryons, more matter can form gravitationally-bound
structure and the fluctuation spectrum is therefore enhanced. Ref. [103]
determined that about a third of the amplification comes from the increase
in the radiation density while the rest can be attributed to the larger DM
fraction.

5.1.2 Cosmic Microwave Background

We begin our study of the impact of the atomic DM scenario on the CMB
by considering how the modified evolution of cosmological perturbations al-
ter the spectra of temperature and polarization anisotropies. The CMB
features caused by changes in the fluctuation evolution are more interesting
than those resulting from the modified background cosmology since they are
potentially unique to the atomic DM scenario (or, more generally, to theo-
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Figure 5.4: Dimensionless linear matter power spectrum at z = 0 for a single
dark-atom model for different values of ξ. We plot k3P (k) to magnify the
small-scale region of the spectrum. Throughout the plot, we fix zeq, Ωbh

2,
and the angular scale of the CMB sound horizon at decoupling (θs).

ries incorporating dark plasmas). To isolate the impact of the fluctuations,
it is important to keep fixed quantities that only depend on the background
cosmology. These are zeq, θs, the dark energy equation of state parameter
w, the CMB acoustic damping scale rd, and physical baryon density Ωbh

2.
With these quantities fixed, we wish to determine if it is possible to distin-
guish an atomic DM model from a ΛCDM model containing an equivalent
number of relativistic degrees of freedom. As we discuss below, the answer
is positive.

To address the issue at hand, it is instructive to first review the impact of
relativistic neutrinos on the CMB in the radiation-dominated era. The key
point that distinguishes relativistic neutrinos from regular photons is their
free-streaming nature. Indeed, while photons can only begin free-streaming
after they decouple from the baryons at redshift z ∼ 1100, neutrinos are
generally assumed to have free-streamed since a very early epoch. This has
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two important consequences for the physics of the CMB [103]. First, the free-
streaming of neutrinos causes a phase shift of the acoustic oscillations upon
their entry into the horizon. Second, the impact of free-streaming radiation
on the gravitational potential generates a uniform suppression of the CMB
oscillation amplitude across all multipoles. Both outcomes can be traced
back to the facts that: (1) neutrinos propagate supersonically with respect
to the baryon-photon plasma and can thus establish metric fluctuations
beyond the sound horizon of the CMB; and (2) the free propagation of
neutrinos sources the growth of anisotropic stress on all scales (including
superhorizon modes), hence affecting the gravitational source terms in the
photon equations of motion.

We would like to determine how the above repercussions on the CMB
change when we substitute a dark photon for a relativistic neutrino. As with
the regular photons, the fundamental difference between the dark photons
and the neutrinos is that the former can only start free-streaming after
they decouple from the DM. This immediately suggests a possible way to
distinguish the atomic DM scenario from a ΛCDM model containing extra
relativistic neutrinos. Indeed, if the dark photons begin free-streaming while
the length scales relevant to the CMB are entering the horizon, then the
phase shift and amplitude suppression associated with the free-streaming of
radiation will not be uniform across all the CMB multipoles. Small-scale
modes entering the horizon while the dark photons are still coupled to the
DM will not be affected by the phase shift and amplitude suppression while
larger scales entering after dark-photon decoupling will be affected, as long
as they become subhorizon during radiation domination. These non-uniform
phase shifts and suppressions of power across multipoles constitute the tell-
tale signature of a relativistic degrees of freedom decoupling from the plasma
while the Fourier modes important to the the CMB are subhorizon.

In Figs. 5.5 and 5.6, we compare the temperature and polarization CMB
power spectra for atomic DM models having different binding energy. We
also show the CMB spectra of a ΛCDM model incorporating the same
amount of additional relativistic degrees of freedom as the atomic DM mod-
els such that all the spectra shown have the same cosmological background
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Figure 5.5: Comparison between the CMB angular power spectrum of
atomic DM and that of a ΛCDM model with an equivalent number of extra
neutrinos (Nν = 4.849 here). The various lines illustrate different values
of the atomic binding energy, BD. We fix all other dark parameters to the
values indicated on the plot. The upper panel displays the TT spectra while
the lower panel shows the fractional difference between the TT spectra of
atomic DM and that of the ΛCDM model containing extra neutrinos. All
other cosmological parameters are held fixed. Here, the helium fraction is
fixed to Yp = 0.24.
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Figure 5.6: Similar to Fig. 5.5 but for the CMB EE polarization spectra.

evolution. The upper panels show the spectra themselves while the lower
panels display the relative differences between the atomic DM spectra and
the corresponding ΛCDM model. We immediately notice that as the bind-
ing energy is increased, both temperature and polarization power spectra
converge toward the ΛCDM model containing extra neutrinos. Indeed, as
the binding energy of dark atoms is made larger, dark photons decouple
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earlier from the DM and can therefore begin free-streaming at an earlier
epoch, making them hard to distinguish from relativistic neutrinos.

For both temperature and polarization spectra, the key physical signa-
tures that distinguish dark photons from neutrinos are clearly visible. First,
let us discuss the amplitude suppression associated with the free-streaming
radiation. We see that, compared with the ΛCDM model containing extra
radiation, the amplitude of the CMB spectra for the atomic DM scenario
are less suppressed, with the high-l multipoles being the least affected by
the suppression. This is in line with our expectations since high multipoles
enter the horizon before the dark photons have the chance to significantly
free-stream and are therefore more immune to the suppression. The atomic
DM models with BD = 5 keV and 10 keV clearly display this behaviour.
On the other hand, the scenarios with the lowest binding energies (BD = 1
and 2 keV) exhibit a more complex l-dependence when compared with the
ΛCDM model. To understand this difference, we need to invoke the impor-
tant phase shifts between the atomic DM and ΛCDM models as well as the
different growth history of the DM fluctuations in the two scenarios.

The effect of the phase shift is most visible for the BD = 1 keV model.
Indeed, since dark photons in this model are just beginning to free-stream
when most Fourier modes contributing to the CMB enter the horizon, these
do not experience the same phase shifts as the ΛCDM model. This can be
most clearly discerned in the polarization spectrum (Fig. 5.6). There, we see
that the phase difference between the atomic DM models and the ΛCDM
containing extra neutrinos becomes progressively larger toward higher mul-
tipoles. This is exactly what we expect since the high multipoles enter the
horizon before they can be affected by dark-photon free-streaming, while
smaller multipoles experience a phase shift that progressively converges to-
ward the pure neutrino case as l is lowered. One of the key feature of
this drifting phase shift is that it converges toward constant values for both
l � ldec and l � ldec, where ldec corresponds to the multipole that crosses
into the horizon as dark photons begin free-streaming. This contrasts with
phase shifts caused by a change in the angular scale of the sound horizon
which act multiplicatively l → αl. We show in Fig. 5.7 the damping tail of
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Figure 5.7: Illustration of the constant phase shift between an atomic DM
model and a ΛCDM model containing an equivalent number of relativistic
species. We show here that, in the atomic DM scenario, multipoles that
enter the Hubble horizon before dark photons begin free-streaming do not
experience the constant phase shift toward smaller l that usually character-
izes models with extra relativistic degrees of freedom. To illustrate this, we
have shifted the atomic DM spectrum by ∆l = −8.5 and observed that the
phases of both spectra coincide.

the EE-polarization spectrum for the BD = 1 keV model. To illustrate the
constant phase shift at l � ldec(∼ 500 here), we have shifted its spectrum
by ∆l ∼ −8.5. We see that the phase of the shifted spectrum matches very
well that of the ΛCDM model containing extra relativistic neutrinos, hence
showing the phase shift does asymptote to a constant at high multipoles.

There is an important ramification to the above observations. Since the
CMB temperature anisotropies are sensitive to the DM-dominated gravita-
tional potential at the epoch of last scattering, any significant modification
to the growth history of DM density perturbations will be reflected in the
CTT
l power spectrum. As we discussed in section 4.4.3, DM fluctuations can-
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not grow as long as they are coupled to the DR. In the matter-dominated
era, growing DM fluctuations are usually responsible for establishing the
gravitational potentials that act as a restoring force to counterbalance the
pressure of the photons. If DM perturbations are prohibited to grow by their
coupling to the DR, then the gravitational potentials cannot be established
and the gravitational source term acting on photon fluctuations is much
weaker. Observationally, this has the consequence of altering the ratios of
the odd and even peaks of the CMB spectrum, with the odd peaks being
suppressed on scales where DM fluctuations cannot grow. Indeed, the odd
peaks correspond to gravity-driven compression waves which are very sensi-
tive to the size of the DM fluctuations. The lower panel of Fig. 5.5 clearly
shows the deep troughs associated with the damping of the odd CTT

l peaks
caused by the late kinetic decoupling of DM for the models with BD = 1
and 2 keV. Unfortunately, models displaying such significant suppression of
odd CTT

l peaks at high multipoles have very low values of σ8 and violate
the Ly-α bound on kDAO, and are therefore ruled out by observations.

We now turn briefly our attention on how the atomic DM scenario affects
the CMB through its impact on the background cosmology. Since atomic
DM modifies the background evolution by the presence of the DR, the effects
on the CMB are not unique but common to any theory incorporating extra
relativistic degrees of freedom. For completeness, we nevertheless discuss
their effects here. These include a modification of the primordial helium
abundance, a change to the angular scale of the sound horizon at decoupling,
a shift of the matter-radiation equality epoch, an enhanced early ISW effect
and a modified CMB damping tail.
Primordial Helium Abundance The impact of the relativistic dark compo-
nents on the expansion rate during BBN tends to increase the primordial
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helium fraction through the approximate relation [187]

Yp ≈ 0.2485 + 0.0016

[
(273.9 Ωbh

2 − 6)

+ 100

(√
1 +

4
43
gBBN
∗,D ξ4

BBN − 1

)]
, (5.3)

where we have used the relation

∆NBBN
ν =

8
7
gBBN
∗,D
2

ξ4
BBN (5.4)

between the number of additional neutrinos at BBN (∆Nν ≡ Nν − 3) and
the relativistic degrees of freedom of the DS at that epoch. Since helium
recombines before hydrogen at late times, a larger helium fraction leads to
a net decrease in the free-electron fraction around z ' 1100. Consequently,
the photons can diffuse more easily out of inhomogeneities and damp tem-
perature and polarization anisotropies on scales smaller than the diffusion
length. Therefore, we generically expect the CMB to display less power on
small angular scales for atomic DM scenarios predicting a large primordial
helium fraction [103, 199].
Angular size of Sound Horizon, Matter-Radiation Equality and Early ISW
The presence of the dark photons affects the size of the baryon-photon sound
horizon through its impact on the Hubble expansion rate prior to hydrogen
recombination. The sound horizon of the baryon-photon plasma is given by

r(b−γ)
s =

∫ a∗

0

c
(b−γ)
s da

a2H
, (5.5)

where a∗ is the scale factor at recombination and c
(b−γ)
s is the sound speed

of the baryon-photon plasma. Since the extra DR works to increase the
Hubble rate, the net effect is a smaller value of r(b−γ)

s . As the angular size
of sounds horizon is given by θs = r

(b−γ)
s /DA, where DA is the angular-

diameter distance to the last-scattering surface, we therefore expect the
CMB acoustic peaks to be shifted toward smaller angular scales (higher
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Figure 5.8: CMB angular power spectra in the atomic DM scenario for
different values of ξ. We fix all other dark parameters to the values indicated
on the plots. The upper panel displays the TT spectra while the lower panel
shows the EE polarization spectra. All other cosmological parameters are
held fixed. Here, the helium fraction is fixed to Yp = 0.24 to isolate the
effect from the changing sound horizon.

multipoles l). This effect is illustrated in Fig 5.8 where we display the
temperature and E-polarization spectra for different values of ξ. The shift
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of the acoustic peaks to smaller angular scales is clearly visible for both
types of spectra. Further, we see that the temperature anisotropies are
amplified around the first acoustic peak as ξ increases. This is the result of
the integrated Sachs-Wolfe (ISW) effect caused by the extra DR through its
impact on the changing gravitational potential after recombination. Indeed,
increasing ξ brings the epoch of matter-radiation equality closer to that of
recombination, hence increasing the impact of radiation on the gravitational
potential at late times.
Silk Damping Tail If we fix the epoch of matter-radiation equality, the pri-
mordial helium fraction and the angular scale of the sound horizon at decou-
pling, increasing the energy density of the dark photons leads to an enhanced
damping of the CMB anisotropies [199]. To understand the origin of this
effect, we need to remember that the photon diffusion distance scales as
rd ∝ H−0.5 (see Eq. (4.59)) while the angular diameter distance scales as
H−1. Thus, the damping angular scale θd ≡ rd/DA effectively increases
if the Hubble rate is sped up due to the presence of extra radiation. We
therefore expect that as the value of ξ is raised, the CMB spectrum will be
increasingly affected by Silk damping. This effect is shown in Fig. 5.9 where
we clearly observe the decline in amplitude associated with the increasing
DR density. In addition, if the primordial helium fraction was allowed to
vary according to Eq. (5.3), this would further increase the amount of Silk
damping. Therefore, it is clear that measurements of the CMB damping tail
provide strong constraint on ξ.

In summary, beyond the impact of the atomic DM scenario on the back-
ground cosmology caused by the DR, we have identified four key cosmologi-
cal signatures that distinguish the atomic DM scenario from a ΛCDM model
containing extra relativistic neutrinos. First, the emergence of the new DAO
length scale in the late-time density field results in a minimal mass for the
first DM protohalos that is generically larger than in the standard WIMP
paradigm. Also, as the dark photons transition from being tightly-coupled
to the dark plasma to a free-streaming state, they impart varying phase
shifts and amplitude suppressions to the CMB multipoles entering the hori-
zon. Importantly, these suppressions and phase shifts asymptote to constant
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Figure 5.9: CMB temperature power spectra in the atomic DM scenario
for different values of ξ. We fix all other dark parameters to the values
indicated on the plots. We keep fixed throughout the redshift of matter-
radiation equality and the angular size of the baryon-photon sound horizon
at decoupling. Here, the helium fraction is fixed to Yp = 0.24 to isolate the
effect from the changing damping scale.

values for l� ldec and l� ldec, a distinct feature of atomic DM that is not
easily reproduced in the ΛCDM scenario. Furthermore, we have shown that
the odd CTT

l peaks are suppressed on scales that enter the causal horizon
before DM kinematically decouples. It is therefore clear that precise mea-
surements on the CMB damping tail could provide meaningful constraints
on the parameter space of atomic DM. We should however keep in mind
that the modified evolution of DM and DR fluctuations can only affect the
CMB if the DS kinetic decoupling happens close enough to the epoch of last
scattering. As such, a non-detection of these signatures effectively puts a
lower bound on the redshift of kinetic decoupling which itself depends on a
combination of αD, BD, mD, and ξ.
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5.2 Astrophysical Constraints on Atomic Dark

Matter

As the Universe expands and cools down, non-linear structures begin to
emerge and eventually form present-day astrophysical objects such as galax-
ies and clusters of galaxies. The internal dynamics of these objects is deeply
influenced by the microphysics governing DM because the latter contributes
the vast majority of the mass inside these objects. Since the atomic DM
scenario naturally incorporates new interactions in the DS, it is important
to discuss its implications for the dynamics of DM halos on a wide range of
scales.

On one side, observations indicate that the DM halos of elliptical galaxies
and clusters display a triaxial ellipsoidal shape [54, 165, 217–224]. This
indicates that the relaxation (thermalization) time of their DM halos is much
longer than the typical dynamical time of these celestial objects. From this
observation, one can obtain a bound on the elastic collisional rate of DM
particles. Similarly, detailed studies of the Bullet Cluster provide direct
constraint on the self-interaction cross section of DM [55]. However, these
constraints have been shown to be weaker than those derived from the halo
ellipticity [181] and we therefore do not consider them here.

On the other side, due to the rich internal structure of dark atoms, the
atomic DM scenario inherently includes dissipation mechanisms that could
potentially have dramatic effects on the dynamics of DM halos. Indeed,
collisional excitations of dark atoms followed by dark-photon emissions pro-
vide a cooling mechanisms for DM that could drastically alter the internal
structure of halos. Further, the chemistry of the DS naturally provides
other heat-dissipation mechanisms such as molecular cooling. Fortunately,
demanding that DM particles be effectively collision-less to preserve the
structure of halos strongly hinder the efficiency of the atomic dissipative
processes, rendering them mostly irrelevant. Similarly, the requirement that
very few actual particle collisions take place in the DS most likely shut off
any chemical reactions inside halos. We therefore do not further consider
the possibility of dark chemistry.
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5.2.1 Ellipticity of DM Halos

Collisions among the different constituents of the DS lead to a redistribution
of the linear and angular momentum inside a DM halo. This tends to
erase velocity correlations on halo scales and brings the DM halo closer to
isothermality, effectively altering the halo structure and making it roughly
isotropic. Since observations indicate that halo iso-density contours are
elliptical and thus significantly deviate from isotropy, we conclude that the
DM thermalization time is much longer than the dynamical timescale of
halos. This in turns tightly constrains the rate of particle collisions in which
a significant amount of momentum is exchanged.

In the atomic DM scenario, we need to consider collisions between the
dark atoms, the dark electrons, and the dark protons. In total, this amounts
to six different types of collisions: H-H, H-e, H-p, e-e, e-p, and p-p. Here,
H stands for the dark atoms. Since we are most interested in DS that are
mostly neutral when non-linear structures form, the contribution from the
first three types of collision is expected to dominate. To compute the rate of
collisions with large momentum exchange, we need the momentum-transfer
cross-section which is defined by

σmt ≡
∫
dΩ

dσ

dΩ
(1− cos θ), (5.6)

where dσ/dΩ is the elastic differential cross-section. A detailed computa-
tion of the H-H, H-e and H-p momentum-transfer cross-section is beyond
the scope of this chapter, but we can use the extensive literature (see e.g.
[225]) on the corresponding visible-sector cross-sections to derive some gen-
eral properties. We refer the reader to appendix B.4 for further details. To
a good approximation, the H-H, H-p, and H-e momentum-transfer cross-
sections are

σH−H
mt (v) ≈ 30πα2

D

B2
Dv

1/4

[
µH

µD

mD

BD

]− 1
8

e
− µH
µD

mD
BD

v2

300 , (5.7)
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σH−e
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me

mD
e
− µH
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µDe
BD
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where µDe = mDme/(mD + me) ' me and v is the relative velocity of
the colliding dark ions or atoms. The ion-ion differential cross sections are
simply given by the Rutherford scattering cross-section. Performing the
integral in Eq. 5.6 leads to

σp−p
mt (v) =

8πα2
D

m2
pv

4
ln [csc2 (θp−p

min /2)], (5.10)

σe−e
mt (v) =

8πα2
D

m2
ev

4
ln [csc2 (θe−e

min /2)], (5.11)

σe−p
mt (v) =

2πα2
D

µ2
Dv

4
ln [csc2 (θe−p

min /2)], (5.12)

where θi−j
min is the minimum scattering angle. We take this angle to be given

by the Debye screening length λDe of the dark plasma through the relation

csc2 (θi−j
min/2) =

(
λDeµijv

2

αD

)2

+ 1, (5.13)

where

λDe '
√

µDv2

8παDne
, (5.14)

and where ne is the number density of free dark electrons inside a DM halo.
The momentum-loss rate of dark species i upon collisions with species j in
a DM halo is given by

ṗij = nj

∫
dv vf(v)σi−j

mt (v)∆pi, (5.15)

where nj = nj(r) is the number density of specie j inside a halo, v is the rel-
ative velocity of the collision, ∆pi is the momentum loss in a single collision
and f(v) is the velocity distribution which we take to be locally Maxwellian
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with velocity dispersion v0

f(v)dv =
4√
πv3

0

v2e−v
2/v2

0dv. (5.16)

The momentum lost by particle i upon colliding with particle j is

∆pi = pi
mj

mi +mj
. (5.17)

where pi is the momentum of particle i. Normally, the momentum loss is
weighted by a factor (1 − cos θ), but we have absorbed this factor into the
momentum-transfer cross section. The rate of momentum-changing colli-
sions between dark species i and j is defined as

Γij ≡
ṗij
p̄i
. (5.18)

where p̄i is the momentum of particle i averaged over the velocity distribu-
tion given in Eq. (5.16). With the help of the above momentum-transfer
cross sections, these collisions rates are
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In the above, Γ(x) is the Gamma function. The rates for the opposite
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processes are obtained by rescaling the above rates with the appropriate
mass densities

Γpe =
neme

npmp
Γep, (5.25)

ΓHe =
neme

nHmD
ΓeH, (5.26)

ΓHp =
npmp

nHmD
ΓpH. (5.27)

In the case for whichme � mp, mD, we see that Γpe � Γep and ΓHe � ΓHe

if the abundance of dark atoms and dark ions is roughly similar. This
is reasonable: a heavy dark proton needs to scatter off many light dark
electrons before its momentum is significantly affected. Conversely, a dark
electron’s momentum can be dramatically changed by a single collision with
a dark proton or a dark atom. However, since the dark electrons are usually
much lighter than the dark protons and therefore carry a small fraction of
the overall halo mass, these high-momentum-transfer collisions do not affect
the ellipticity of DM halos. Therefore, we do not consider any further the
scattering of dark electrons (that is, we neglect ee, ep and eH collisions). In
the case where the dark proton and the dark electron are nearly degenerate in
mass, constraints on dark-proton collisions naturally engulf the dark electron
constraints so we can still neglect them.

Detailed simulations of self-interacting DM halos have shown that DM
particles forming the bulk of the matter density can undergo up to 10 hard
scatters in a Hubble time before the ellipticity of halos is adversely affected
[226]. Therefore, the ellipticity of DM halos is preserved if we have

Γcoll < 10H0, (5.28)

where Γcoll is the overall hard-scatter rate of the dark sector. The total
collision rate inside a halo is the sum of the individual rates weighted by the
relative abundance of each dark species

Γcoll ' x̄DΓp + (1− x̄D)ΓH, (5.29)
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where
Γp = Γpp + ΓpH + Γpe, (5.30)

and
ΓH = ΓHH + ΓHp + ΓHe. (5.31)

To compute the above constraint, we need to specify the density profile of
both dark ions and dark atoms as well as the velocity dispersion v0(r). The
main difficulty here is that the actual density profile of each dark constituents
is itself determined by their collisional rates. For example, if the dark ions
undergo many hard scatters among themselves within the typical dynamical
time of a galaxy, they settle into their own isothermal density profile [126],
while the neutral dark atoms maintain their CDM-like profile. This implies
that the local ionized fraction inside a DM halo can vastly differs from the
background values computed in section 4.3.2 (by several order of magnitudes
in some cases). To complicate matters further, collisions between dark atoms
in the central region of halos likely lead to the formation of a cored density
profile. Therefore, it is clear that detailed N -body simulations would be
required to determine the actual density profile of each dark constituent.

We can nevertheless derive conservative constraints on atomic DM by
making some simple assumptions. We first assume halos to be locally neutral
such that ne(r) = np(r). We further assume the ionized component of the
DM follows the total density profile, that is, ne(r) = np(r) = x̄DnD(r).
Similarly, nH(r) = (1 − x̄D)nD(r). We take the halo ionized fraction (x̄D)
to be equal to the late-time ionized fraction of the background, that is
x̄D = xD(z = 0). It is important to emphasize that the above prescription
is not accurate since the ionized and neutral components generally have
different density profiles [126] and the ionized fraction inside halos may
significantly differ from the overall background cosmological values. As such,
the bounds derived from these assumptions should therefore be considered
as upper limits on how limiting the ellipticity constraint can be. The actual
bounds on the parameter space of atomic DM are potentially much less
constraining. Nevertheless, the above treatment is expected to be fairly
accurate for x̄D � 1 and x̄D ∼ 1.
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While it is true that the most stringent constraints on halo ellipticity (see
e.g. [181]) come from the inner part of galactic halos, it is unclear how these
bounds apply to atomic DM. Indeed, ellipticity constraints strongly depend
on the local DM density in the inner central region of halos. The latter is
usually obtained by fitting a predefined halo profile (e.g. NFW) to the data
[227]. Since atomic DM generally admits a different halo shape, we cannot
blindly apply these results to the atomic DM scenario. We therefore resort
to typical values of the DM density and velocity dispersion inside galactic
halos. Explicitly, we evaluate the above constraints using ρD ' 3, 1, and
0.3 GeV/cm−3. We take the velocity dispersion to be v0 ' 250 km/s. The
number density of DM particles is then given by nD = ρD/mD.

We display in Figs. 5.10, 5.11, and 5.12 the constraints on αD and mD for
six different values of the atomic binding energy. We display the three dis-
favored contours corresponding ρD ' 3, 1, and 0.3 GeV/cm−3. We observe
that for 10 keV . BD . 100 keV, there is little parameter space for which
the DS is mostly neutral and is not in tension with the ellipticity constraint.
As the binding energy is increased above this threshold, a large allowed
parameter space opens up since the atomic geometric cross section rapidly
decreases as the binding energy climbs up in value. Below 10 keV, another
unconstrained region opens up at large coupling constant values and masses.
This is caused by the collision energy approaching the excitation threshold
of the dark atoms. As this limit is approached, the momentum-transfer
cross-section for atom-atom scattering become more and more suppressed,
while the inelastic channels start to growth in importance. The inelastic
cross-sections are however much smaller than the elastic ones (∼ πa2

0,D in-
stead of ∼ 102πa2

0,D) and we thus do not expect these collisions to severely
affect the ellipticity of haloes.
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Figure 5.10: Halo ellipticity and Ly-α forest constraints on the parameter space of atomic DM. We display the
constraint for two values of the atomic binding energy. The allowed region (orange) is clearly indicated on the
plots. The blue, yellow and purple contours (outermost to innermost) display the disfavoured regions when
ρD ' 3, 1, and 0.3 GeV/cm−3, respectively. The light and dark gray regions correspond to minimal halo masses
Mmin > 9.3 × 1010 M� and Mmin > 10 × 1013 M�, respectively. The white dashed lines indicate contours of
constant minimal halo mass. We also show the contours (solid black) of constant background ionization fraction
for x̄D = 1% and x̄D = 99%.
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Figure 5.11: Same as Fig. 5.10 but for different values of the atomic binding
energy.
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Figure 5.12: Same as Fig. 5.10 but for different values of the atomic binding
energy.
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Overall, the ellipticity constraint unambiguously disfavours dark atoms
with mass mD . 1 TeV, unless BD & 1 MeV. We however reiterate that the
constraints shown in Figs. 5.10, 5.11, and 5.12 are conservative, especially in
the regions where 1% . x̄D . 99% for which detailed simulations of dark-
atomic halos will likely be required to assess the validity of the bounds.
Indeed, if the typical hard-scatter timescale of dark ions is shorter than
the dynamical time of a galaxy, we can safely assume that the dark ions
settle into a separate isothermal density profile [126]. In the presence of a
sizable population of neutral dark atoms, the overall DM halo can however
still display significant ellipticity if the dark atoms are themselves mostly
collisionless. Since the isothermal ionic halo is typically much more diffuse
[126] than the neutral one, ion-ion and ion-atom interactions are probably
much more suppressed than our naive estimate suggests. This is likely to
open up much of the parameter space for 1% . x̄D . 99%.

In the case where the dark ions form the majority of the matter den-
sity inside halos, the ellipticity constraints derived in the context of hidden
charged DM apply [180, 181]. In this scenario, dark ions cannot settle into
an isothermal profile without utterly violating the ellipticity of halos. Vi-
able models can nevertheless be constructed by suppressing the dark fine-
structure constant and by considering very large ions masses (such that the
number density is low). Fortunately, as αD is increased and mD is de-
creased, more and more ions are bound into dark atoms hence softening
the ion-scattering bound. In fact, since the early recombination rate scales
as ∼ α3

D while the ion-ion hard-scatter rates scale as ∼ α2
D, the ionized

fraction drops faster than the ion-ion momentum-transfer rate is increasing
as the the dark fine-structure constant is dialed up. Thus, the atomic DM
scenario naturally provides a way to evade the halo ellipticity constraints on
hidden-charged DM.

In summary, while detailed simulations of DM halo formation in the
atomic DM scenario are likely required to determine the exact constraints,
it is clear that dark atoms lighter than 1 TeV are likely to lead to collisional
DM that is in tension with the observed internal structure of halos, unless
BD & 1 MeV.
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5.2.2 Cooling of DM Halos

Collisional excitation of dark atoms followed by the emission of a dark pho-
ton provides a natural cooling mechanism for DM. Since DM is observed
to have very different properties than baryons (which are allowed to cool),
collisional cooling of dark atoms must be suppressed. The easiest channel
to excite a dark atom is through the hyperfine transition. The hyperfine
splitting is given by

Ehf ≈
4
3
gegpα

2
D

me

mp
BD, (5.32)

where ge ' 2 and gp ' 2 are the gyromagnetic ratio of the dark electron
and dark proton, respectively. This transition can be excited when a dark
atom in a spin singlet state collides with a dark ion or atom and undergoes a
spin-flip to the triplet state. The cross section for this process is somewhat
smaller than the elastic scattering cross section [225]. Therefore, it is most
likely that all regions of parameters space where hyperfine emission leads
to significant cooling are already ruled by the ellipticity constraint. To
verify this, we compute the typical timescale for a dark atom to lose an
O(1) fraction of its kinetic energy due to hyperfine emission. Assuming that
this process is approximately governed by the geometric cross-section, this
timescale is

τhf '
9mDBDmpv0

256
√
πα4

DmenD
. (5.33)

Demanding that this timescale be longer than the age of the Universe leads
to no new constraints beyond those already plotted in Figs. 5.10, 5.11, and
5.12.

Beyond the hyperfine transition, the other dissipative process that is rel-
evant for dark atoms is the 1s→ 2s, 2p collisional excitation. Heuristically,
such inelastic collisions can only happen when the timescale of the collision
is shorter than the typical timescale of the dark atoms (i.e. adiabaticity is
violated). The typical velocity of a dark electron inside an atom is ve ∼ αD,
leading to an atomic timescale τ̃D ∼ a0,D/ve. On the other hand, the colli-
sion timescale is of the order τcoll ∼ a0,D/v, where v is the relative velocity
of the collision. Taking τcoll < τ̃D, inelastic collisions are only possible when
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v & αD. (5.34)

According to Figs. 5.10, 5.11 and 5.12, all allowed regions of parameter space
displaying a large fraction of neutral dark atoms have αD & 10−2. Taking
v to be approximately equal to the typical velocity dispersion inside a DM
halo, we have v ∼ 10−3 for galactic halos while v ∼ 10−2 for galaxy clusters.
It is thus clear that inelastic collisions can play no major role inside galactic
halos while they could play a marginal role inside clusters. In the latter case
however, the small number density of dark atoms coupled with the typically
small inelastic cross-sections (see e.g. [228]) likely render inelastic collisions
completely negligible inside clusters. We therefore conclude that inelastic
processes do not constrain the atomic DM scenario beyond the regions of
parameter space already ruled out by the ellipticity and the matter power
spectrum bounds.

5.3 Direct Detection

Most previous works on atomic DM [125, 126, 171] have focused their at-
tention on the potential direct-detection signatures. Since atomic DM can
naturally scatter inelastically, it offers a mechanism to reconcile the annual
modulation seen by DAMA [82] and CoGeNT [85] with the null signal of the
CDMS [229, 230] and Xenon10 [231–233] experiments. The actual direct-
detection results strongly depend on how atomic DM couples to the SM. In
this section, we compare the atomic DM models which provide a good fit to
the direct-detection data to our cosmological and astrophysical constraints
derived above.

In Ref. [125], the authors considered a model in which dark fermions
are axially coupled to a broken U(1) which mixes with the SM hypercharge.
They found that dark atoms having an hyperfine splitting Ehf ' 100 keV,
70 . mp . 200 GeV and 2.2 & me & 1.6 GeV can provide a good fit to
the modulated spectrum of DAMA while evading the constraints from other
direct-detection experiments. This corresponds to an atomic DM scenario
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with 27 . BD . 45 MeV, 0.16 . αD . 0.24 and 72 . mD . 201 GeV.
Extrapolating the constraints shown in Fig. 5.12 to the appropriate binding
energies, we find that these values lie on the edge of the ellipticity bound
and are therefore marginally allowed by our constraints.

In Ref. [126], the authors considered a similar broken axial U(1) model
which mixes with the SM hypercharge. In this work, they show that an
atomic DM scenario with Ehf ∼ 5− 15 keV with dark fermion masses me ∼
mp ∼ 5 GeV could reconcile the CoGeNT data with the count rate seen by
the CRESST experiment [86]. This corresponds to an atomic DM scenario
with αD ∼ 0.03, BD ∼ 1 MeV and mD ∼ 10 GeV. This model is in serious
tension with the halo constraint shown in Fig. 5.12 and is therefore likely
to lead to collisional DM which would dramatically affect the structure of
halos.

In Ref. [171], the authors considered an atomic DM model where the
dark photon mixes with the regular photon. This effectively gives small
standard electromagnetic charges to the dark fermions. The authors con-
cluded that a scenario with αD ∼ 0.06, BD ∼ 5 MeV and mD ∼ 6 GeV
predicts the right cross section to explain the DM events recorded by the
CoGeNT collaboration. These values are however clearly in tension with
the halo ellipticity bound. Nevertheless, since they lie close to the boundary
with the allowed region and since our constraints are conservative, detailed
N -body simulations will be required to assess whether this model is ruled
out or not.

We observe that dark-atom models capable of explaining the current
direct-detection experiments are at best marginally allowed by our conserva-
tive astrophysical constraints. This stems from the fact that direct-detection
experiments generally favor mD ∼ 1−10 GeV while the halo constraint typ-
ically imposes mD > 1 TeV, unless BD & 1 MeV. From the point of view of
direct detection, the main challenge for building a successful atomic DM the-
ory is to avoid strong elastic scattering off nuclei while allowing for enough
inelastic collisions to explain both DAMA and CoGeNT. The study of atomic
DM models that could be in agreement with both the direct-detection data
and the astrophysical constraints are left for future work.

142



5.4. Discussion

5.4 Discussion

We have presented in this work a thorough study of a DS made up of atom-
like bound states. This model naturally incorporates extra relativistic de-
grees of freedom whose presence are currently favored by CMB experiments.
The observed primordial abundances of light elements constrain the temper-
ature of DR to be somewhat cooler than the CMB, with an upper bound
given approximately by TD/TCMB < 0.8 at z = 0. We have revisited the
atomic physics necessary to describe the processes of dark recombination,
thermal decoupling, and kinetic decoupling. We find that in some cases, the
inclusion of physics beyond that of standard atomic hydrogen is required to
properly describe these transitions. In particular, we find that bound-free
processes such as photo-ionization heating and photo-recombination cooling
are key to determine the thermal decoupling epoch of weakly-coupled atomic
models. For strongly-coupled dark atoms, we have shown that the addition
of Rayleigh scattering can significantly delay the kinetic and thermal decou-
pling of DM.

We have solved the linear cosmological perturbation equations, taking
into account the interaction between DM and DR and showed that atomic
DM can go through various regimes as time evolves and as the dark pa-
rameters are varied. In particular, the DR pressure leads to strong acoustic
oscillations for Fourier modes entering the Hubble horizon prior to the dark
drag epoch. Further, diffusion and acoustic damping severely suppress the
amplitude of DM fluctuations on scales shorter than the sound horizon at
kinetic decoupling. At late times, these features remain imprinted on the
matter power spectrum. Importantly, the atomic DM scenario introduces
the new DAO length scale in the density field which basically determines
the minimal DM halo mass. We have shown that observations of Ly-α forest
flux power spectrum put an upper bound on the size of the DAO scale and
rule out a large fraction of atomic DM models with BD . 1 keV.

We have performed a detailed study of the impact of the atomic DM
scenario on the CMB. We have determined that the largest impact on the
CMB in this model is due to the presence of dark photons. If dark pho-
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tons begin free-streaming at a very early epoch, their impact on the CMB
is likely indistinguishable from that of extra relativistic neutrinos. On the
other hand, if dark photons decouple from DM when Fourier modes relevant
for the CMB are inside the horizon, then the atomic DM scenario predicts
CMB signatures that are difficult to reproduce with only relativistic neu-
trinos. These signatures include non-uniform phase shifts and amplitude
suppressions of the temperature anisotropy power spectrum. The clearest
CMB signature of the atomic DM scenario is a non-uniform phase shift of
the polarization power spectrum that asymptotes to a constant at both large
and small scales.

These signatures can only be present if the dark photons form a sizable
fraction of the radiation energy density (ξ & 0.6) and if they decouple at a
late enough redshift, which usually requires BD . 10 keV. These relatively
low atomic binding energies are however strongly constrained by both the
Ly-α data and the halo ellipticity requirement. For the remaining allowed
parameter space, dark photons generically decouple too early to have an
impact on the CMB that is noticeably different from that of standard rel-
ativistic neutrinos. It is therefore unlikely that the CMB can be used to
learn about the simplest atomic DM model discussed here. Nevertheless, in
a more general model where dark radiation only couples to a certain frac-
tion of the DM, it is possible that the former could significantly affect the
CMB without modifying the small-scale matter power spectrum. This is an
intriguing possibility that we leave for future work.

The strongest constraint on atomic DM comes from requiring that DM
is effectively collision-less inside galactic halos. This stems from the fact
that atoms naturally have much larger geometric cross-sections than point
particles. Since this geometric cross section scales as B−2

D , the halo con-
straint favors a large binding energy, with models having BD & 10 MeV
largely unconstrained. Unsurprisingly, this corresponds to the regime where
atomic DM closely resembles a standard WIMP particle. For BD . 1 keV,
the ellipticity and Ly-α constraints favor a DS that is mostly ionized at all
times. Our constraints in these regions of parameter space are similar to
those found in Refs. [180, 181]. Importantly, we have shown that inelastic
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processes are inefficient at dissipating the energy of dark atoms in all the
regions that are not already ruled out by the halo and the small-scale power
spectrum bounds. Overall, it is clear that preserving the observed ellipticity
of halos severely limits the possible interactions between DM particles.

Since the atom-atom, ion-atom and ion-ion cross-sections are all veloc-
ity dependent, atomic DM can provide enough interactions to smooth out
the central region of small satellites galaxies while retaining the ellipticity
of large galactic and cluster halos. Furthermore, atomic DM scenarios pre-
dicting a minimal halo mass in the range Mmin ∼ 108 − 1010 M� have the
potential to affect the faint-end of the galaxy luminosity function and bring
it in line with observations. In addition, the presence of an ionized compo-
nent naturally makes the halo more diffuse and could potentially alleviate
the so-called “too big to fail” problem [74, 75]. Interestingly, an atomic
DM model with BD ∼ 5 keV, mD ∼ 80 TeV and αD ∼ 0.02 could possi-
bly address all three problems affecting dwarf galaxies. Indeed, this model
has a late-time global ionized fraction of x̄D ' 0.2, a minimal halo mass of
Mmin ' 8 × 108 M� and lie at the boundary of the collisional constraint,
meaning it could contain enough interactions to form cores in galactic halos
while retaining their overall ellipticity. A detailed numerical study will be
necessary to assess the success of this model.

Direct-detection data favor light atomic DM candidates which are in ten-
sion with the halo constraint. Nevertheless, the direct-detection signatures
strongly depend on how dark atoms couple to the SM. Whether a successful
model which agrees with both the halo and direct-detection constraint could
be constructed remains an open question. While an explicit model would
have to be specified in order to make quantitative predictions, we emphasize
that dark atoms are still a viable DM candidate from the point of view of
both astrophysics and direct detection.

One issue that we have not touched upon in this work is the possibility
of dark magnetic fields. These have the potential to significantly alter struc-
ture formation unless there is a mechanism that naturally suppress their
amplitude and range. The simplest way to achieve such suppression is to
break the U(1)D gauge force by introducing a small dark-photon mass. This
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is an intriguing possibility since it would considerably alleviate the halo con-
straint by shrinking the size of the atomic cross-section and by limiting the
range of ion-ion interactions. One would however have to revisit the atomic
physics described in section 4.3 to make quantitative predictions about the
thermal history of such a DS. We leave the study of such a model to future
work.
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Chapter 6

Oscillating Bispectra and

Galaxy Clustering: A Novel

Probe of Inflationary Physics

with Large-Scale Structure

In this chapter, instead of studying possible new physics governing the DM
sector, we use the distribution of DM and luminous matter in the Universe
to study the physics of inflation. As such, this chapter constitutes a signif-
icant change of pace compared to the previous chapters. It is nevertheless
completely aligned with the overall thesis goal of studying and constraining
new physics in the DS. The reader may want to review sections 1.2 and 1.4.3
where numerous concepts discussed in this chapter are introduced.

6.1 Introduction

Since the publication of the seminal inflation papers [18, 19], a plethora
of models have been proposed to explain why the Universe underwent a
phase of exponential expansion at early times. Since most models offer
very similar basic predictions, distinguishing between these models with
today’s data is not an easy task. One approach that has received a lot of
attention recently is to look for departures from Gaussianity (see section
1.2) in the primordial cosmological perturbations [234]. Indeed, while a
large class of models predicts that the non-Gaussian signature should be
undetectably small, there also exist a number of models for which departures
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from Gaussianity should be relatively large and observable [235]. Thus, any
detection (or absence thereof) of non-Gaussianity in the primordial spectrum
of perturbations could then rule out a large swath of inflation models.

Non-Gaussian signatures have been traditionally looked for in cosmic
microwave background (CMB) anisotropies [1]. However, it has recently
been shown that the initial departure from Gaussianity could be amplified
in the clustering of dark-matter halos [111, 112, 236] (see [114] for a review
and [237] for similar effects in another context). Indeed, mode coupling
in non-Gaussian models induces a dependence of the local power spectrum
on the long-wavelength potential perturbations. This can lead to a scale-
dependent halo bias (see section 1.4.3) on large scales which is observable in
large-scale-structure surveys, since galaxy clustering is closely connected to
halo clustering on large scales. Competitive upper limits on non-Gaussianity
have already been placed using this method [113].

While the non-Gaussian bias correction goes as k−2 in the local model,
it has been shown in [238, 239] that the scale dependence of other types
of non-Gaussian models can be significantly different. Furthermore, models
could also differ by how the bias varies with halo mass. Therefore, mea-
surements of the biasing of dark-matter halos could be used to distinguish
among different non-Gaussian scenarios. So far, the bispectrum shapes for
which large-scale-structure predictions have been worked out include the lo-
cal [38], equilateral [39], orthogonal [40], and folded [41] shapes, all of which
are scale independent. However, there are several classes of inflationary
models which predict bispectra that have strongly scale-dependent oscil-
latory features [41, 127–132, 240–243]. These models can circumvent the
tight limit on the bispectrum in the squeezed configuration [37] by break-
ing the slow-roll approximation. Since the squeezed triangle configuration
is what determines the scale-dependent halo bias, such models potentially
leave interesting signatures in halo clustering. The oscillatory bispectrum
shapes are generally nonfactorizable and are therefore very computationally
intensive to constrain with CMB data alone [244, 245]. We show here that
these models can also be constrained by calculating their impact on halo
clustering. Moreover, these models leave distinct features in the mass de-
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pendence of the non-Gaussian halo bias, which allow us to distinguish them
observationally from the smooth, scale-invariant shapes considered thus far.

In this chapter, we calculate the non-Gaussian correction to the dark-
matter halo bias for two different oscillatory bispectra. We focus on models
that display a sharp feature in their inflationary potential as well as models
that have periodic features in the potential. Models with features in the
potential have been invoked to explain deviations in the observed CMB
power spectrum from the smooth prediction. On the other hand, periodic
modulations of the potential are motivated by axion-monodromy models17

[130, 131]. While in both cases one obtains oscillatory three-point functions,
the physics responsible for these modulations is very different. Indeed, the
non-Gaussianities in the model with a feature are generated when the mode
exits the horizon while for the resonant model, the non-Gaussianities are
generated deep inside the horizon. As a consequence, we expect the two
inflationary scenarios to make distinct predictions about the clustering of
dark-matter halos. In particular, we anticipate that in the feature model,
the non-Gaussian effect should be the largest around the mass scale that
exited the horizon while the inflaton was crossing the feature. On the other
hand, we expect non-Gaussian effects to be important for a broad range of
scales in the resonant model since these were generated by causal physics
inside the horizon. Our results support these qualitative predictions and
most interestingly, they allow us to map properties of the inflaton potential
to features of galaxy clustering.

The structure of this chapter is as follows. We begin by briefly review-
ing halo biasing in the peak-background split formalism for general nonlocal
quadratic non-Gaussianity. We then calculate the scale-dependent correc-
tion to the halo bias for the two inflation models considered here, emphasiz-
ing the effect of the new term unveiled in Refs. [246, 247]. We finally discuss
our results in light of our qualitative predictions and physical expectations
and conclude with a discussion on how these new effects could be detected

17Axion-monodromy inflation models are string-theory inspired inflation scenarios where
the flatness of the potential is protected by a shift symmetry. Non-perturbative effects
break this symmetry and lead to small oscillations in the potential driving inflation.
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in large-scale-structure data.

6.2 Non-Gaussian Halo Bias in the

Peak-Background Split Formalism

6.2.1 Nonlocal Kernel

Following [239], we consider the case for which the Bardeen potential during
matter domination Φ is a general, nonlocal quadratic function of a Gaussian
field φ

Φ(x) = φ(x) + fNL

∫
d3y

∫
d3zW (y, z)φ(x + y)φ(x + z), (6.1)

where the kernel W (y, z) is symmetric in its arguments and only depends
on y ≡ |y| and z ≡ |z| as well as ŷ · ẑ, where ŷ = y/y. In Fourier space,
one can think of W̃ (k1,k2) as a scale-dependent coupling between different
modes. To conform to standard notation, we have pulled out an arbitrary
factor of fNL from the non-Gaussian kernel. Our results do not depend on
this particular choice as they are only sensitive to the product fNLW (y, z).
Deviation from Gaussianity is usually parametrized by the bispectrum,

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ3
D(k1 + k2 + k3)BΦ(k1, k2, k3), (6.2)

where δD is the Dirac delta function and k3 = |k1 + k2|. In terms of the
Fourier space kernel W̃ (k1,k2), the bispectrum amplitude is given by

BΦ(k1, k2, k3) = 2fNL

[
W̃ (k1,k2)PΦ(k1)PΦ(k2) + 2 perm.

]
, (6.3)

where PΦ(k) stands for the power spectrum of Φ. The two permutations
not written are the two remaining cyclic permutations of k1, k2, k3. Since
the kernel W̃ (k1,k2) is only required to be symmetric under the exchange
of its two vectorial arguments, Eq. (6.3) does not uniquely specify W̃ . One
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possible choice of kernel is

W̃ (k1,k2) =
1

2fNL

BΦ(k1, k2, k3)
PΦ(k1)PΦ(k2) + 2 perm.

, (6.4)

which has the nice property of being fully symmetric under the exchange of
the three momenta. For the halo bias calculation, we are mainly interested
in the squeezed limit of the kernel where k2, k3 � k1. In this limit, the
bispectrum uniquely defines the kernel via the relation [239]

W̃ (k1,k2) k2�k1−→ BΦ(k1, k2, k3)
4fNLPΦ(k1)PΦ(k2)

. (6.5)

Finally, to compute the dark-matter halo bias at late times, we need to
consider the processed kernel W̃0(k1,k2) defined via the transfer function
T (k),

W̃0(k1,k2) =
T (|k1 + k2|)W̃ (k1,k2)

T (k1)T (k2)
. (6.6)

In the squeezed limit, this reduces to

W̃0(k1,k2) k2�k1−→ 1
T (k1)

BΦ(k1, k2, k3)
4fNLPΦ(k1)PΦ(k2)

. (6.7)

Note that we define our fNL in terms of the Bardeen potential at last scat-
tering, conforming to the convention usually adopted in CMB analyses.

6.2.2 Halo Bias in Peak-Background Split

We work in the Lagrangian picture of halo biasing where halos are iden-
tified as high-density regions in the initial linear matter field. As such,
we focus here on deriving the Lagrangian halo bias bI which relates the
halo power spectrum to the linear matter power spectrum, Ph(k) = b2IP (k).
The late-time linear Eulerian bias relevant for observations on large scales
is simply given by bE1 = 1 + bI. In the Lagrangian picture, the number
density of halos per unit logarithmic mass (also called halo mass function)
is sensitive to the statistics of small-scale perturbations. In the Gaussian
case, each Fourier mode evolves independently and therefore the small-scale
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matter power spectrum P (ks) (at some initial early time) is the same ev-
erywhere. However, non-Gaussianity introduces mode coupling, resulting
in a dependence of the small-scale power spectrum on the local value of
long-wavelength fluctuations. Non-Gaussian initial conditions thus gener-
ally rescale the local small-scale variance of the density field smoothed over
a scale Rs, σ0s, according to [246]

σ̂2
0s ' σ2

0s + 4fNLφL(k)σ2
W (k), (6.8)

where the spectral moment σ2
W is

σ2
W (k) =

∫
d3ks

(2π)3
F 2
Rs

(ks)W̃0(k,ks)P (ks), (6.9)

and where φL(k) is a long-wavelength fluctuation of the gravitational poten-
tial. Here, FRs is the Fourier transform of a spherical top-hat with radius
Rs, P (ks) is the matter power spectrum, and the “hat” denotes quantities
that contain non-Gaussian contributions. Notice the appearance of the non-
Gaussian kernel which indicates how a mode with wave number ks couples
to the long-wavelength mode k. Note also that σ2

W is not positive definite,
as the sign depends on the shape of the non-Gaussian kernel. However, the
second term in Eq. 6.8 is always much smaller than the Gaussian variance
σ2

0s (since φL ∼ 10−5), so that σ̂2
0s is always positive.

Since the halo abundance n̂h generically depends on σ̂0s, this induces a
scale-dependent dark-matter halo bias of the form [239, 246]

bI(M, z; k) ≡ 1
ˆ̄nh

dˆ̄nh

dδL(k)

∣∣∣∣
δL=0

=
∂ ln ˆ̄nh

∂ ln ρ̄
+
∂ ln ˆ̄nh

∂ ln σ̂0s

∂ ln σ̂0s

∂δL(k)
, (6.10)

where M stands for the halo mass, z for redshift, ρ̄ is the average matter
density of the Universe, ˆ̄nh is the average number density of halos of mass
M and δL(k) is a long-wavelength density fluctuation. The halo mass M is
related to the smoothing scale Rs through M = (4π/3)ρ̄R3

s for a spherical
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tophat window function. In the following, we will drop the explicit z de-
pendence. The first term in Eq. (6.10) is the usual Gaussian bias b1 while
the second term is induced by the non-Gaussian initial conditions. This last
term can be expressed in a compact way when adopting a universal mass
function prescription,

ˆ̄nh =
ρ̄

M
f(ν)

∣∣∣∣∂ ln σ̂0s

∂ lnM

∣∣∣∣ , (6.11)

where ν = δc/σ̂0s is the significance, δc ≈ 1.686 is the linearly extrapolated
collapse threshold, and f(ν) is a multiplicity function which we do not need
to specify explicitly. A change in σ̂0s thus changes halo abundance through
a change in ν as well as a change in the Jacobian |∂ ln σ̂0s/∂ lnM |. The
non-Gaussian halo bias correction can then be written in terms of the non-
Gaussian kernel,

∆bI(M,k) = 2fNLM−1(k)
σ2
W (M,k)
σ2

0s(M)
[b1(M)δc + 2εW (M,k)], (6.12)

with

εW (M,k) ≡ ∂ lnσ2
W (M,k)

∂ lnσ2
0s(M)

− 1, (6.13)

whereM(k) = 2k2g∗(z)/(3(1+z)H2
0 Ωm). Here g∗(z) is the potential growth

function normalized to unity at last scattering. Since it is understood that
ks � k in Eq. (6.9), we see that the bias correction depends on the non-
Gaussian kernel evaluated in the squeezed limit. We note that the term
proportional to εW (M,k) had been previously neglected in the literature
until it was shown to be important in Ref. [246]. As we will see in the next
section, this term is crucial for models displaying oscillatory features in their
bispectrum. Examining Eq. (6.12), we observe that the scale dependence
of the halo bias is determined by the product of M−1(k) ∝ k−2 with the
leading k-dependent part of the processed non-Gaussian kernel evaluated
in the squeezed limit. We now turn our attention to bispectra showing
oscillatory behaviour and calculate the resulting scale-dependent bias. The
numerical results presented in this paper assume a flat ΛCDM universe [28]
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with h = 0.72, Ωm = 0.28, ns = 0.958 and σ8 = 0.8. The pivot scale
for the primordial power spectrum amplitude is kept at k∗ = 0.002Mpc−1

throughout.

6.3 Oscillatory Bispectra and their

Scale-dependent Bias

6.3.1 Resonant Non-Gaussianity

Resonant non-Gaussianity arises when periodic features in the inflationary
potential (see section 1.2) lead to an oscillatory coupling between modes,
which can trigger a resonance for modes oscillating with the same frequency
inside the horizon [128–132, 241]. Such features arise, for example, in certain
brane inflation models or in axion-monodromy inflation. For this class of
models, the bispectrum has the generic form [132]

Bres =
(

5
3

)
(2π)4f res

NL∆2
Φ

1
k2

1k
2
2k

2
3

(
sin (Cω ln (kt/kp))

+
1
Cω

cos (Cω ln (kt/kp))
∑
i 6=j

ki
kj

+O
(

1
C2
ω

))
, (6.14)

where ∆Φ is the amplitude of primordial scalar power spectrum, kt = k1 +
k2 + k3, kp is a pivot scale which introduces a phase, and Cω is related
to the frequency ω of the periodic features of the inflationary potential by
Cω = ω/HI. Here, HI stands for the Hubble parameter during inflation.
The leading factor of 5/3 comes from the conversion between the Bardeen
primordial potential Φ and the gauge invariant curvature perturbation ζ at
late times. Constraints from the matter power spectrum provide an upper
bound on the value of f res

NL. For the axion-monodromy scenario with a linear
zero-order potential, this bound reads [132, 245]

f res
NL . 10−3C5/2

ω , (6.15)
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where it is assumed that the pivot scale kp = 0.002 Mpc−1 exits the horizon
about 60 e-folds before the end of inflation. Other zeroth-order inflaton
potentials are likely to lead to a somewhat different constraint on f res

NL but
we shall use Eq. (6.15) as a rough upper limit for this type of model. The
resonant bispectrum can readily be evaluated in the squeezed limit [132]

Bres
ks�k−→

(
5
3

)
(2π)4f res

NL

Cω

2∆2
Φ

k3
s k

3
cos
{
Cω ln

[
2ks

kp

]}
. (6.16)

Note that the leading correction to this expression is suppressed by a factor
of k/ks, thus negligibly contributing to the bispectrum in the squeezed limit.
Using Eq. (6.5), we obtain the leading-order non-Gaussian kernel,

W̃ (k,ks) '
(

5
3

)
(2π)4

2Cω

(
k

k∗

)−ε
cos
{
Cω ln

[
2ks

kp

]}
×
(
ks

k∗

)−ε [
1− 1

2

(
k

ks

)3−ε
+ . . .

]
, (6.17)

where ε = ns − 1 and the ellipsis stands for terms that are higher order in
k/ks. We immediately see that the scale dependence of the non-Gaussian
bias is given by

∆bI,res(k) ∝ k−2−ε, (6.18)

that is, it is very similar to that of the local model. To calculate the am-
plitude of the bias correction, we first need to integrate Eq. (6.9) over the
small-scale modes to obtain the non-Gaussian spectral moment σ2

W (k). The
ks integral is of the general form

σ2
W ∝

∫
ksdksT

2(ks)
j2
1(ksRs)
R2

s

cos (Cω ln (2ks/kp)). (6.19)

For large values of the frequency Cω, the integrand is rapidly oscillating and
the resulting amplitude for the non-Gaussian bias is expected to be rather
small. For a small enough value of the frequency (Cω . 100), the integral
can be done numerically. To evaluate the second term in Eq. (6.12), we first
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Figure 6.1: Non-Gaussian correction to the halo bias for the resonant non-
Gaussianity model as a function of scale. We evaluate the bias for M =
1013M�/h at z = 0. We take f res

NL = 10−3C
5/2
ω and evaluate the Gaussian

bias b1 using the Sheth-Tormen mass function [248].

use the chain rule to write it as

∂σ2
W (M,k)
∂σ2

0s(M)
=
∂σ2

W (M,k)
∂ lnM

(
∂σ2

0s(M)
∂ lnM

)−1

. (6.20)

The derivatives on the right can be calculated numerically. For all numerical
computations, we use the complete expression for the bispectrum, Eq. (6.14).
In Fig. 6.1, we show the scale dependence of the non-Gaussian halo bias
correction for three values of Cω evaluated for a halo mass of 1013M�/h at
z = 0. We see that the non-Gaussian bias correction is small except for
the largest scales where the scale dependence of ∆bI,res(k) ∝ k−2−ε becomes
important. Interestingly, the non-Gaussian bias for these resonant models is
completely dominated by the term proportional to εW (M,k) in Eq. (6.12),
which was recently unveiled in Refs. [246, 247]. To understand why this new
term is crucial for our analysis, we plot in Fig. 6.2 the non-Gaussian spectral
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Figure 6.2: Non-Gaussian spectral moment σ2
W for the resonant model as

a function of halo mass. We evaluate this spectral moment for k = 10−3h
Mpc−1 at z = 0.

moment σ2
W as a function of halo mass for a fixed comoving scale. We see

that σ2
W strongly oscillates with halo mass, leading to a large contribution to

∂σ2
W /∂ lnM , especially toward small masses. This highlights the importance

of the newly discovered term for accurately predicting the non-Gaussian halo
bias. We will discuss the relevance of this result for observations in Sec. 6.4.

An interesting feature of resonant non-Gaussianity models is that they
predict a modulation of the halo bias with changing halo mass. In Fig. 6.3,
we show the non-Gaussian halo bias as a function of halo mass evaluated at
a scale k = 10−3h Mpc−1. Again, the bias is dominated by the second term
of Eq. (6.12) for M . 1015M�/h. We observe that the amplitude of the
non-Gaussian bias decreases with increasing Cω very rapidly and therefore
this effect is likely to be unobservable unless Cω is small. As expected, the
non-Gaussian features of the halo bias show coherent modulations over a
wide range of mass scales, an artifact of non-Gaussianities being produced
by causal physics deep inside the horizon for these models. To contrast the
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Figure 6.3: Non-Gaussian correction to the halo bias for the resonant non-
Gaussianity model as a function of halo mass. We evaluate the bias for
k = 10−3h Mpc−1 at z = 0. We take f res

NL = 10−3C
5/2
ω and evaluate the

Gaussian bias b1 using the Sheth-Tormen mass function. For comparison,
we also show the bias for local non-Gaussianity with f local

NL = 2.

resonant model with the more traditional local model of non-Gaussianity,
we also display the halo bias for a local model with f local

NL = 2. At moderate
halo masses (M∼1012−1014M�/h), the effect of resonant non-Gaussianity is
comparable to that of a local model with f local

NL of order unity, for the values
of Cω chosen.

6.3.2 Features in the Inflaton Potential

The presence of a sharp feature in the inflaton potential can induce large
primordial non-Gaussianities [127, 128, 240–242]. Indeed, modes that exit
the horizon while the inflaton is crossing the feature get a boost in their
three-point signal. Here, we shall focus on the case of a step in the inflaton
potential, but our analysis could also be applied to the case of a bump
in the potential. The exact form of the bispectrum can only be obtained
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numerically but the authors of [128] suggested an approximate form:

Bfeat(k1, k2, k3) ≈ −
(

5
3

)
(2π)4f feat

NL

∆2
Φkf

k3
1k

3
2k

3
3

(6.21)

×
{

2

∑
i 6=j kik

2
j

kt
sin
[
kt

kf

]
sin

[
kt∆kf
k2
f

]}
.

Here, kt = k1 + k2 + k3 and kf ±∆kf are the Fourier modes that exit the
horizon while the inflaton is crossing the feature (the sharper the feature in
the inflaton potential, the larger ∆kf becomes). We fixed the phases such
that Bfeat → 0 as kt → 0 which is physically motivated, since modes that exit
the horizon long before the inflaton encounters the feature should not show
significant non-Gaussianities. We choose the overall sign such that the non-
Gaussian bias is positive for the scale exiting the horizon when the inflaton
crosses the feature. In practice, this sign should be fixed by comparison to
numerical simulations. In the squeezed limit, the bispectrum reads

Bfeat
ks�k−→ −

(
5
3

)
(2π)4f feat

NL

∆2
Φ

k4
s k

2

(
kf
k

)
sin
(

2ks

kf

)
sin

(
2ks∆kf
k2
f

)
. (6.22)

For a narrow feature, we generally expect ∆kf/kf � 1 and thus the last
sinusoidal factor in Eq. (6.22) can be considered as an envelope function for
the first rapidly oscillating sine factor. From Eq. (6.22), we see that at fixed
ks, non-Gaussianity becomes more important for modes k smaller than kf

(remember that k is the scale at which clustering of halos is measured). The
non-Gaussian kernel can then readily be obtained as

W̃ (k,ks) ' −
(

5
3

)
(2π)4

4

(
kf
ks

)(
k

k∗

)−ε(ks

k∗

)−ε
× sin

(
2ks

kf

)
sin

(
2ks∆kf
k2
f

)
. (6.23)

Note that W̃ approaches zero for ks � kf and for ks � kf . This physically
makes sense, since modes with ks � kf are oscillating deep inside the horizon
when the inflaton crosses the feature, and we expect their non-Gaussianities
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to roughly cancel out. On the other hand, modes with ks � kf are outside
the horizon when non-Gaussianities are generated and we thus expect their
contribution to the kernel to be small. We immediately see that the scale
dependence of the halo bias is given by

∆bI,feat(k) ∝ k−2−ε, (6.24)

which, at first glance, is similar to the resonant model. However, as we
will see below, the two models predict very different behaviour for how the
amplitude of ∆bI varies with halo mass. From Eq. (6.23), it is straightfor-
ward to compute numerically the non-Gaussian spectral moment σ2

W . In
the feature model, the integral over small scale modes has the general form

σ2
W ∝

∫
ksdksT

2(ks)
j2
1(ksRs)
R2

s

(
kf
ks

)
sin
(

2ks

kf

)
sin

(
2ks∆kf
k2
f

)
. (6.25)

We see that for a given value of kf , there will always be a scale Rs for which
constructive interference between the first sine factor and the Bessel function
happens (again, the second sine factor is considered to be slowly varying).
Since the Bessel function peaks around ks ∼ R−1

s , we naively expect |σ2
W |

to have a maximum near Rs = Rf ∼ O(1)/kf or equivalently, near Mf ∼
O(1)(4π/3)ρ̄k−3

f . ForRs � Rf , the first sine factor is rapidly oscillating near
the peak of the Bessel function and thus the only nonvanishing contribution
comes from the low ks tail. In this limit, the integrand becomes independent
of Rs since j2

1(ksRs) ∝ k2
sR

2
s for ks � R−1

s . We thus expect σ2
W to asymptote

to a constant for small halo masses. On the other hand, for Rs � Rf , the
integrand approaches zero and we therefore expect σ2

W to vanish for large
halo masses.

Our numerical calculations support these qualitative conclusions. In-
deed, Fig. 6.4 shows the absolute value of the non-Gaussian spectral mo-
ment for two values of kf . The enhancement around Mf ∼ 1.5(4π/3)ρ̄k−3

f is
clearly visible in both cases and σ2

W (M) rapidly vanishes for M > Mf . The
latter point is expected on physical grounds since halos with M > Mf cor-
respond to scales (in the initial density field) that were outside the horizon

160



6.3. Oscillatory Bispectra and their Scale-dependent Bias

1010 1012 1014 1016 1018
0

10

20

30

M @M
�

�hD

ÈΣ
W2

HM
LÈ

k f = 0.2 hMpc-1

k f = 0.5 hMpc-1

Figure 6.4: Absolute value of the non-Gaussian spectral moment σ2
W for the

feature model as a function of halo mass. We evaluate this spectral moment
for k = 10−3h Mpc−1 at z = 0 and use ∆kf/kf = 0.01.

when the non-Gaussianities were generated. Therefore, the non-Gaussian
correction to the variance of the density field smoothed on these scales must
be somewhat suppressed.

We can now use Eq. (6.12) to compute the scale-dependent non-Gaussian
correction to the halo bias. From the functional form of σ2

W , we expect the
term proportional to εW to dominate around the feature at M = Mf since
∂ lnσ2

W /∂ lnM is largest there. To verify this, it is instructive to consider
the two distinct contributions to the bias as a function of halo mass. In
Fig. 6.5, we show both the contribution proportional to the Gaussian bias
b1, as well as the recently unveiled contribution proportional to εW for a
feature at kf = 0.5 hMpc−1. We observe that the εW term clearly displays
a feature at Mf ∼ 1.5(4π/3)ρ̄k−3

f ' 4 × 1012M�/h and that it dominates
the overall bias for halo masses M . 1014M�/h. This once again highlights
the importance of the εW term for models with strongly scale-dependent
bispectra [247].
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Figure 6.5: The two contributions to the non-Gaussian halo bias correction
as a function of mass for the model with a feature at kf = 0.5hMpc−1. We
evaluate σ2

W for k = 10−3hMpc−1 at z = 0 and use ∆kf/kf = 0.01. The
Gaussian bias b1 is derived using the Sheth-Tormen mass function.

In Fig. 6.6, we show the amplitude of the non-Gaussian bias correction
as a function of halo mass for three different values of kf . Note that while
we assumed a value of f feat

NL = 10 here, still within the allowed range of
power spectrum contraints [128], this parameter is in reality fixed for a given
inflation potential by the numerical calculation. For comparison, we also
plot the halo bias correction for local quadratic non-Gaussianity, ∆bI,local =
2f local

NL b1δcM−1(k). We immediately see that the bias correction for models
with a feature in the potential displays a large enhancement around M = Mf

when compared to the monotonic and featureless bias of a local-type model.
Observations of this tell-tale signature in large-scale-structure data provide
us with an exciting new window to probe microscopic inflationary physics
with observations of galaxy clustering on the largest scales.

For halo masses M �Mf , the bias becomes dominated by the first term
of Eq. (6.12) since b1 is large for very massive halos. In this limit, ∆bI is
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Figure 6.6: Mass dependence of the non-Gaussian correction to the halo bias
for the model with a feature in the inflaton potential. We evaluate the bias
for k = 10−3h Mpc−1 at z = 0 and use ∆kf/kf = 0.01. We take f feat

NL = 10
and evaluate the Gaussian bias b1 using the Sheth-Tormen mass function.
For comparison, we also show the bias for the local model of non-Gaussianity
with f local

NL = −10.

very sensitive to the small k behaviour of the bispectrum which may not be
accurately captured by our ansatz, Eq. (6.22). Thus, a complete numerical
computation of the bispectrum is likely to be required to accurately predict
the large-mass limit of the halo bias. We leave this for future work. How-
ever, since halos above M & 1015M�/h are very rare, especially at higher
redshifts, we do not expect the observational constraints to be dominated
by this mass range.

In Fig. 6.7, we show the absolute value of the non-Gaussian bias correc-
tion as a function of scale for three values of kf . We evaluate the amplitude
of the bias at M = Mf , that is, at the peak of the feature in εW . At this mass
scale, we see that the halo bias can reach a very wide amplitude on large
cosmological scales. The scale dependence proportional to k−2−ε derived
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Figure 6.7: Scale dependence of the non-Gaussian correction to the halo
bias for the model with a feature in the inflaton potential. We evaluate the
bias for M = 1.5(4π/3)ρ̄k−3

f at z = 0 and use ∆kf/kf = 0.01. We take
f feat

NL = 10 and evaluate the Gaussian bias b1 using the Sheth-Tormen mass
function. For comparison, we also show the non-Gaussian bias correction
from the local model evaluated at M = 1013M�/h and f local

NL = 100.

in Eq. (6.23) is readily visible. For comparison, we also plot the halo bias
correction for the local-model of non-Gaussianity which displays a similar
scale dependence but a much smaller amplitude even for f local

NL = 100.
We note in passing that varying ∆kf/kf corresponds to changing the

overall scale of the bispectrum. This can readily be seen from Eq. (6.22)
where ∆kf/kf only appears in the modulating envelope. For ∆kf/kf � 1
and 2ks . kf (i.e. for the modes that contribute most to σ2

W ), one can Taylor
expand the second sine factor to obtain, after simplification, Bfeat ∝ ∆kf/kf .
Therefore, the overall amplitude of the bias correction is determined by the
product f feat

NL (∆kf/kf ). This scaling agrees with the result of Ref. [127],
where it was shown that the overall amplitude of the bispectrum is inversely
proportional to the width of the step in the potential. To see this, we note
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that the sharper is the step, the more kinetic energy is acquired by the
inflaton and as a consequence, the longer slow roll is violated. Therefore,
we expect that the sharper is the step (corresponding to larger bispectrum
amplitude), the larger the band of Fourier modes affected (∆kf ), hence the
above result.

In summary, we have shown that the presence of a feature in the infla-
ton potential leads to a corresponding feature in the mass dependence of the
non-Gaussian halo bias. Ultimately, this is a consequence of non-Gaussianity
being generated at a specific scale during inflation in these models. Finally,
we reiterate that the numerical results presented in this section were com-
puted using the analytical expression for the bispectrum given in Eq. 6.21.
It is important to keep in mind that this expression is approximate. How-
ever, it most likely captures the important physics. As such, we expect our
conclusions to be robust to the inclusion of a more accurate bispectrum.

6.4 Discussion

We have analyzed the non-Gaussian halo bias resulting from two inflation
models displaying oscillatory bispectra. Even though the two models predict
the same scale dependence as local quadratic non-Gaussianity, we find that
they make very different predictions concerning how the amplitude of the
bias varies with halo mass. Indeed, while the resonant model predicts an
oscillatory amplitude as a function of halo mass, models with a feature in
the potential predict an enhancement of the bias for halos with mass that
corresponds to the scale that exited the horizon at the time when the inflaton
was crossing the feature in the potential. Ultimately, these very different
outcomes can be traced back to the distinct physics that is responsible for
generating non-Gaussianities in the first place.

For the resonant model, non-Gaussianity is generated well inside the
horizon, when the modes are rapidly oscillating. As explained in Ref. [128],
oscillations in the inflaton potential lead to an oscillatory coupling between
different Fourier modes. As the physical frequency of each mode k/a(t)
decreases, there will be a time when k/a(tres) ∼ ω and the oscillating mode
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can resonate with the coupling and generate a departure from Gaussianity.
As a large number of modes eventually passes through the resonance, we
naturally expect the non-Gaussian effects to be present on a broad range of
scales, as can be seen in Fig. 6.3. A crucial consequence of this subhorizon
generation mechanism is that the resulting modulation of the halo bias is in
phase over a broad range of masses. This is a tell-tale signature that could
be looked for in large-scale-structure data and used to put constraints on
these resonant-type inflation models.

For models with a feature in the inflaton potential, non-Gaussianity is
generated during slow-roll violation associated with the inflaton suddenly ac-
celerating as it crosses the step or the bump in the potential. Consequently,
different Fourier modes within a limited range of scales are coupled, hence
generating a nonvanishing three-point function. However, modes deep inside
the horizon are rapidly oscillating and we thus expect their non-Gaussian
signature to average out to zero. On the other hand, modes that exit the
horizon as slow roll is violated are frozen-in before causal physics could erase
their correlation with other Fourier modes. We thus expect the bispectrum
to be significant when at least one side of the triangle has k ∼ kf (and no side
has k � kf ). As a consequence, modes that exit the horizon during slow-roll
violation get an enhanced coupling to the long-wavelength perturbations, re-
sulting in an amplified clustering of halos at the corresponding mass scale.
Conversely, modes that are superhorizon when slow-roll is violated become
correlated with modes that have k ∼ kf . This induces a rescaling of the
variance of the density field according to Eq. (6.8), which results in a nonva-
nishing halo bias at these mass scales. As mentioned earlier, this rescaling
of the variance is very sensitive to the small-k limit of the bispectrum and a
complete numerical computation will be required to accurately predict the
halo bias for M �Mf . Nevertheless, since very massive halos are rare and
restricted to low redshifts, it is unlikely that observational constraints will
depend sensitively on the high-mass tail.

For both classes of models, we find that the term coming from the Ja-
cobian d lnσ0s/d lnM (see Ref. [246] for details) is an important and often
dominant contribution to the non-Gaussian halo bias. This term comes
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about because the non-Gaussian mode-coupling induces a modulation with
φL of the significance interval d ln ν = d lnσ0s that corresponds to a fixed
logarithmic mass interval d lnM . This term is strictly present because we
have assumed throughout that halos are selected by mass, which is appro-
priate e.g. when comparing to N -body simulations. In practice, however,
galaxies are selected by more complex criteria which are only indirectly
related to the host halo mass. If we divide the total galaxy sample into
different subsamples (e.g., by luminosity, colour, light profile, ...), then the
mass dependence shown in Figs. 6.3 and 6.6 will be observable as long as the
scatter in the mass-observable relation is not much larger than the width of
the features. Fortunately, the latter typically corresponds to a factor of 2 or
more in mass, which should make these features detectable for a wide range
of large-scale structure tracers. Note that the precise shape of ∆bI(M) de-
pends on the filter chosen for the small-scale density field. In principle, one
could use a filter matched to the Lagrangian profiles of dark-matter halos
[249]. We have tried replacing the top-hat filter with a Gaussian, and found
only relatively minor differences, at the 7% level for ∆bI(M) (see Fig. 6.8).

6.5 Conclusion

We have shown that measurements of galaxy clustering could potentially be
used as a probe of features in the inflationary potential. By computing the
non-Gaussian correction to the halo bias, we revealed that features in the in-
flationary potential such as oscillations, bumps, or steps get imprinted onto
the clustering properties of dark-matter halos. While we have restricted our-
selves to two generic models for which approximate forms of the oscillatory
bispectrum are known, we expect this effect to be robust to the inclusion
of more detailed bispectra. We note that this probe of primordial non-
Gaussianity is complementary to CMB constraints, as it probes very small
scales where the microwave background becomes foreground dominated. On
intermediate scales, the two approaches could be used in conjunction to cross
correlate a possible feature in CMB data with a corresponding attribute in
the clustering of dark-matter halos.
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Figure 6.8: Comparison between ∆bI(M) obtained with a spherical tophat
filter and with a Gaussian filter. We evaluate the bias for k = 10−3h Mpc−1

at z = 0 and use ∆kf/kf = 0.01 and kf = 0.5h Mpc−1. We take f feat
NL = 10.

While showing the same scale dependence ∝ k−2, the predictions of the
models considered here are strikingly different from the usually considered
local model. In particular, they show significantly stronger effects for mod-
erate halo masses (1012−1014 M�/h) than the local model, as compared to
the effect at the high-mass end (>1014 M�/h). Thus, focusing on the most
massive, highly biased halos might not in general be the best way to design
or optimize surveys for the search for primordial non-Gaussianity.

The non-Gaussian models discussed here also make other predictions
which are potentially observable with large-scale structure. While the study
of these effects is beyond the scope of this paper, it would be interesting
to correlate the non-Gaussian halo bias with features in the matter power
spectrum and in the mass function of dark-matter halos. The former could
in principle be probed by weak lensing observations, and the latter through
the abundance of galaxy clusters. The bispectrum of galaxies would also be
a precise, albeit more complex and computationally expensive, approach to
testing these inflationary models. The key advantage of the scale-dependent
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bias is, however, that it is a unique signature of primordial non-Gaussianity
which is not easily mimicked by other effects. We thus anticipate this ob-
servable to be a robust probe of features in the inflaton potential.
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Chapter 7

Conclusions

In this final chapter, we summarize the key results obtained in this thesis,
emphasizing their contributions to the field of theoretical cosmology.

In chapter 2, we have shown that the resonant annihilation of DM to
e+e− pairs is in tension with data from the diffuse gamma-ray background
and limits on energy injection into the primeval gas. We determined that the
regions of parameter space corresponding to the largest enhancements are
problematic and likely ruled out by these bounds. Our results contributed to
disfavouring DM annihilation as the main source of the positron excess seen
by cosmic-ray experiments. Other works have reached similar conclusions
[89, 250–252].

In chapter 3, we derived a second-order tight-coupling approximation
scheme. We showed that this second-order scheme leads to an improvement
in the accuracy of numerical computations and can be used to reduce the
speed of CMB Boltzmann codes. The equations derived in this chapter are
now implemented in common CMB codes such as CAMB and CLASS, for use
by the greater cosmological-science community. We have also derived the
higher-order terms in the initial-condition expansion and computed, for the
first time, the tight-coupling corrections to these initial conditions. These
higher-order term are required in order to solve the exact equations from
early times.

In chapters 4 and 5, we presented an exhaustive study of atomic DM.
This scenario naturally includes a DR component which could explain the
relatively high apparent number of relativistic species implied by recent
CMB data. We have determined that this DR needs to be cooler than the
CMB in order to leave the abundances of primordial elements unchanged.
We have revisited the atomic physics necessary to characterize the dark
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atoms and pointed out a few improvements that are required to accurately
described the thermal history of the dark sector. We have studied the solu-
tions to the Boltzmann equations in the atomic DM scenario and shown how
they differ from the vanilla CDM case. In particular, we have determined
that the growth of DM fluctuations is seriously impeded on scales that enter
the horizon before the epoch of DM kinetic decoupling.

In chapter 5, we have computed the linear matter power spectrum and
revealed that it displays strong acoustic oscillations and a cutoff on small
scales. In configuration space, these oscillations point to the DAO scale
which corresponds to the size of the DM sound horizon at the dark drag
epoch. We have shown that the DAO scale selects a minimal DM halo mass
which could potentially alleviate the current tension regarding the faint-end
of the galaxy luminosity function. We have similarly computed the CMB
angular power spectra and showed that it is sensitive to the dark-photon
decoupling epoch, if the latter happens close enough to the surface of last-
scattering of CMB photons.

We have presented a careful and realistic analysis of DM collisions inside
halos and showed that they constrain the parameter space of atomic DM. We
have determined that a viable atomic DM model is typically very massive
and has a binding energy that is much larger than that of standard atomic
hydrogen. We have finally identified a region of parameter space where
atomic DM could potentially mitigate the recent satellite-galaxy problems.
DetailedN -body simulations will be required to accurately determine wether
this latter model can successfully address this issue.

Essentially, we have shown in chapters 4 and 5 that the dark sector
can contain very rich physics and still obey all known cosmological and
astrophysical constraints. Despite a minimal set of ingredients, this model
displays a very complex phenomenology, of which we have only explored a
small subset. It would indeed be interesting to investigate other aspects of
the atomic DM scenario such as black-hole formation and possible couplings
to the SM in light of the constraints presented here.

In chapter 6, we have considered the impact of oscillations in the bispec-
trum of primordial fluctuations on the clustering of DM halos. Interestingly,
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we have identified a novel signature that had not been previously discussed
in the literature. Indeed, we have determined that features in the inflaton
potential such as oscillations or bumps become imprinted at late times on
the mass dependence of the halo bias. This finding could potentially open
up a new way of exploring and constraining the physics governing the very
early Universe.

The research presented in this thesis contributes to the larger ongoing
scientific effort aimed at improving our knowledge of the world we live in.
As our theoretical understanding of the Universe expands and as more data
becomes available, the physics governing the DS might be unveiled. In
particular, we believe that the next decade will certainly be crucial for our
understanding of DM physics.

For direct-detection experiments, the constantly increasing sensitivity
of detectors coupled with the experience accumulated in the last decade of
DM searches will either lead to a tell-tale detection of DM or will severely
constrain the WIMP hypothesis. Indeed, direct-detection experiments are
just beginning to probe the range of cross sections expected from a weakly-
coupled DM particle. An outright detection would directly inform us about
how DM couples to the SM of particle physics, which would constitute a
giant leap forward in our understanding of the Universe. Such detection
could also point us to possible particle-collider signatures that could be
looked for in the data, and used to cross-check the direct-detection signal
and possibly provide us with extra information about the properties of DM.
Conversely, a null detection would force us to rethink the vanilla WIMP
paradigm and focus our attention on more general DM scenarios. For this
latter outcome, cosmological and astrophysical observations become the only
way of inferring information about the physics governing DM.

The searches for a possible DM annihilation (or decay) signal in gamma-
ray and cosmic-ray data provide us with another window to explore the
physics of DM. Unfortunately, disentangling the DM signal from all the as-
trophysical foregrounds and backgrounds is a rather tricky business. Even
if a tell-tale signature of DM annihilation such as a sharp gamma-ray line
would be found in the data, one would have to carefully rule out all pos-
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sible standard astrophysical explanations for the signal before claiming a
discovery. However, if one could cross-correlate the potential DM signal
with another independent observation such as a direct-detection or collider
signal, this would considerably boost our confidence that we are closing in
on the nature of DM.

Beyond the direct and indirect DM searches, studies of the internal struc-
ture of DM halos and of their substructure content could provide us with key
information about interactions between DM particles. In particular, strong-
lensing studies of galactic halos have the potential to enlighten us about the
low-mass end of the halo mass function. The detection of a minimal subhalo
mass (such as that predicted by atomic DM) would constitute a tell-tale sig-
nature of the interactions taking place in the DM sector. It remains unclear
however if such observation could directly pinpoint the particle nature of
DM. Again, it might be necessary to cross-correlate any potential signal
with other cosmological observables such as the CMB or galaxy clustering
data to bring the nature of DM into focus.

In conclusion, the unambiguous identification of the physics governing
the DM sector will most likely require many complementary observations
that all point to the same DM paradigm. Given the large ongoing scien-
tific effort aimed at pinpointing the physics of DM and all the theoretical
knowledge accumulated in the last three decades, mankind may well be on
the verge of a discovery that could revolutionize our understanding of the
Universe. It is just a matter of time before we can shed light on the dark
sector of the Universe.
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[7] G. Lemâıtre, “Un Univers homogène de masse constante et de rayon
croissant rendant compte de la vitesse radiale des nébuleuses extra-
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Appendix A

Second-Order

Tight-Coupling Appendices

A.1 Perturbation Equations

In this Appendix, we list the perturbation equations used to solve for the
initial conditions found in Appendix A.2. We closely follow the notation
of Ref. [100]. Here, η and h stand for the synchronous gauge curvature
perturbation variables, a is the scale factor, K is the inverse of the squared
curvature radius, βl = 1 − l(l + 2)K/k2, ρi is the energy density of the ith

species, wi ≡ pi/ρi, where pi is the pressure, and a dot denotes differentiation
with respect to conformal time. The subscripts “c”, “ν”, “γ”, and “b” stand
for the CDM, the neutrinos, the photons, and the baryons, respectively.
δi stands for a perturbation in the energy density of species i, θi is the
divergence of the velocity and Fil the lth multipole moment of species i.

k2β1η −
1
2
ȧ

a
ḣ+ 4πGa2

∑
i

ρiδi = 0 (A.1)

k2β1η̇ −
Kḣ

2
− 4πGa2

∑
i

(1 + wi)ρiθi = 0 (A.2)

δ̇c +
1
2
ḣ = 0 (A.3)

δ̇ν +
4
3
θν +

2
3
ḣ = 0 (A.4)

θ̇ν −
k2

4
(δν − 2β1Fν2) = 0 (A.5)

Ḟν2 −
8
15
θν +

3
5
β2kFν3 −

4
5

(
ḣ

3
+ 2η̇

)
= 0 (A.6)

197



A.2. Initial Conditions

δ̇γ +
4
3
θγ +

2
3
ḣ = 0 (A.7)

θ̇γ −
k2

4
(δγ − 2β1Fγ2)− 1

τc
Sb = 0 (A.8)

Ḟγ2 −
8
15
θγ +

3
5
β2kFγ3 −

4
5

(
ḣ

3
+ 2η̇

)

− 1
τc

(
Fγ2 −

2
15

(
3
4
Fγ2 +

9
2
Gγ2

))
= 0 (A.9)

δ̇b + θb +
1
2
ḣ = 0(A.10)

Sb −
τc

1 +R

[
− ȧ
a

(Sb + θγ)− Ṡb + k2

(
c2

sδb −
1
4
δγ + β1

Fγ2

2

)]
= 0(A.11)

Here, R = (4/3)ργ/ρb. Our approach to solve these equations follow closely
that of Ref. [253]. We first use Eq. (A.1) to eliminate ḣ in favor of the cur-
vature perturbation η. For simplicity, we set c2

s = 0. We then approximate
the octupole moment of the neutrinos and photons as:

Fν3 ' kτ

7

(
1− 4

315
k2τ2

)
Fν2, (A.12)

Fγ3 ' 3
7
kτcFγ2. (A.13)

Finally, we eliminate the photon polarization moments from (A.9) using

Gγ2 '
1
4

(
Fγ2 −

5τc

2
Ḟγ2

)
. (A.14)

A.2 Initial Conditions

In this Appendix, we list the initial conditions obtained by the method out-
lined in Sec. 3.2.1. Here, Rν = ρν/(ρν + ργ), Rb = ρb/ρm, ω = H0Ωm/

√
Ωr,

ε = τc/τ , Sb(τ) ≡ θb(τ) − θγ(τ) is the velocity difference between baryons
and photons. Note that our convention for the normalization of perturba-
tions differs from Ref. [253] by β1 → −β1/2. Note also that what we label
β1 here is denoted by β2 in Ref. [253].
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A.2. Initial Conditions

1. Photons

δγ(τ) = −2β1

3
k2τ2 +

2β1

15
ωk2τ3

+
β1 (4β1Rν + 15β1 − 5)

27 (4Rν + 15)
k4τ4 − β1

24
ω2k2τ4 (A.15)

θγ(τ) = −β1

18
k4τ3 − 8β1

36Rν + 135
k4τ3ε+

β1 (1 + 5Rb −Rν)
120 (1−Rν)

ωk4τ4

− 2β1

(
2 (5Rb − 9)Rν + 75Rb + 8R2

ν + 10
)

15 (Rν − 1) (2Rν + 15) (4Rν + 15)
ωk4τ4ε

+
16β1 (6Rν + 181)

45 (2Rν + 15) (4Rν + 15)
k4τ3ε2 (A.16)

Fγ2(τ) =
64

9(4Rν + 15)
k2τ2ε+

4 (8Rν − 5)
3 (2Rν + 15) (4Rν + 15)

ωk2τ3ε

− 32 (6Rν + 181)
9 (2Rν + 15) (4Rν + 15)

k2τ2ε2

− 16 (2Rν (12Rν + 767)− 1855)
9 (2Rν + 15) (2Rν + 25) (4Rν + 15)

ωk2τ3ε2 (A.17)

2. Baryons

δb(τ) =
3
4
δγ(τ) (A.18)

Sb(τ) =
β1Rb

6(1−Rν)
ωk4τ4ε+

10β1Rb

3 (1−Rν) (4Rν + 15)
ωk4τ4ε2

− β1Rb (15Rb + 2Rν − 2)
96 (Rν − 1) 2

ω2k4τ5ε (A.19)

3. Cold Dark Matter

δc(τ) = −β1

2
k2τ2 +

β1

10
ωk2τ3 (A.20)

+
1
72
β1

(
− 10

4Rν + 15
+ 2β1 − 1

)
k4τ4 − β1

32
ω2k2τ4
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A.2. Initial Conditions

4. Neutrinos

δν(τ) = −2β1

3
k2τ2 +

2β1

15
ωk2τ3

+
1
27
β1

(
β1 −

1
4Rν + 15

)
k4τ4 − β1

24
ω2k2τ4 (A.21)

θν(τ) = −β1 (4Rν + 23)
18(4Rν + 15)

k4τ3 +
16β1 (1−Rν)

9 (2Rν + 15) (4Rν + 15)
k4τ3ε

+
β1

(
8R2

ν + 50Rν + 275
)

120 (2Rν + 15) (4Rν + 15)
ωk4τ4

− 16β1 (Rν − 1) (2Rν − 15)
15 (2Rν + 15) (2Rν + 25) (4Rν + 15)

ωk4τ4ε

+
32β1 (Rν − 1) (6Rν + 181)

45 (2Rν + 15) (2Rν + 25) (4Rν + 15)
k4τ3ε2 (A.22)

Fν2(τ)
2

=
4

12Rν + 45
k2τ2 +

(4Rν − 5)
3 (2Rν + 15) (4Rν + 15)

ωk2τ3

+
64 (Rν − 1)

9 (2Rν + 15) (4Rν + 15)
k2τ2ε

−28 (7β1 − 3)Rν + 5 (175β1 + 27β2 − 84)
189 (25 + 2Rν) (15 + 4Rν)

k4τ4

+
(4Rν (2Rν − 65) + 225)

24 (2Rν + 15) (2Rν + 25) (4Rν + 15)
ω2k2τ4

+
16 (Rν − 1) (2Rν − 15)

3 (2Rν + 15) (2Rν + 25) (4Rν + 15)
ωk2τ3ε

− 32 (Rν − 1) (6Rν + 181)
9 (2Rν + 15) (2Rν + 25) (4Rν + 15)

k2τ2ε2 (A.23)

Fν3(τ) =
4

7(12Rν + 45)
k3τ3 (A.24)

5. Curvature (synchronous gauge)
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A.3. Tight-Coupling Approximation to Second Order in τc

η(τ) = 2 +
(

5
12Rν + 45

− β1

6

)
k2τ2 (A.25)

+
80 (Rν − 1)

9 (2Rν + 15) (4Rν + 15)
k2τ2ε

+

(
16β1R

2
ν + 20 (9β1 + 5)Rν + 25 (18β1 − 5)

)
60 (2Rν + 15) (4Rν + 15)

ωk2τ3

A.3 Tight-Coupling Approximation to Second

Order in τc

In this Appendix, we give the key result of our improved tight-coupling
approximation scheme: the photon-baryon slip to second order in τc.

Ṡb =
[
τ̇c

τc
−H 2

1 +R

]
Sb +

τc

1 +R

[
− ä

a
θb − k2H

(
1
2
δγ − β1Fγ2

)
(A.26)

+k2

(
c2

s δ̇b−
1
4
δ̇γ+β1

Ḟγ2

2

)]
−

2R
(

3H2c2
s +(R+ 1)Ḣ−3H2

)
(R+ 1)3

Sbτc

+
τ2

c

(1 +R)2

[
ä

a

H
((

2− 3c2
s

)
R− 2

)
θb

(R+ 1)
+
Hk2(1− 3c2

s )θb

3(R+ 1)

+
ä

a

k2c2
sδb

(R+ 1)
+
k4(3c2

s − 1)c2
sδb

3(R+ 1)
+
k4R(3c2

s − 1)δγ
12(R+ 1)

+
ä

a

k2(2 + 3R)δγ
4(R+ 1)

+
H2k2

((
2− 3c2

s

)
R− 1

)
δγ

2(R+ 1)
+
Hk2c2

s (1 + (3c2
s − 2)R)δ̇b

R+ 1

+
Hk2

(
2 +

(
5− 3c2

s

)
R
)
δ̇γ

4(R+ 1)
+

2H(1− 3c2
s )k3σ

3
+
k4(3c2

s − 1)β1η

3

+2Hk2(3c2
s − 1)η̇ +

k2(1− 3c2
s )∆

6

]

+

[
4 äaθb − 4k2c2

s δ̇b + 2Hk2δγ + k2δ̇γ

2(R+ 1)2

]
τcτ̇c −

4HR
(R+ 1)2

τ̇cSb +O(τ3
c )

Here, ∆ = 8πGa2(ργδγ + ρνδν + 3c2
sρbδb).
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Appendix B

Atomic Dark-Matter

Appendices

B.1 Relations between Dark Parameters

In this appendix, we relate the dark electron mass me, the dark proton mass
mp, and the atomic reduced mass µD to the DS parameters. These relations
are obtained from the definition of the binding energy BD = (1/2)α2

DµD and
from the mass-balance equation me +mp −BD = mD.

µD =
2BD
α2
D

me =
µDmp

mp − µD
(B.1)

mp =
mD +BD +

√
(mD +BD)2 − 4(mD +BD)µD

2
(B.2)

B.2 Effective Number of Relativistic Degrees of

Freedom

The effective number of degrees of freedom contributing to the entropy den-
sity of the DS at a temperature TD is [254]

g∗S,D(TD) = 2 +
45
π4

[∫ ∞
ye

(u2 − y2
e)

1
2

eu + 1
du+

1
3

∫ ∞
ye

(u2 − y2
e)

3
2

eu + 1
du

]
, (B.3)

where ye ≡ me
TD

and the first term corresponds to the dark-photon contribu-
tion while the term in square brackets denote the dark-electron contribution.
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B.3. Thermal Rates

Performing the integrals, we obtain, to a very good approximation,

g∗S,D(TD) ' 2 +
7
2

(1 + y1.394
e )0.247e−0.277y1.384

e . (B.4)

B.3 Thermal Rates

In this appendix, we compute the rates governing the energy exchange be-
tween the DM and the DR.

B.3.1 Photo-Ionization Heating Rate

The photo-ionization heating rate is given by [102]:

Πp−i =
∑
n,l

nnlBD

∫ ∞
0

κ2γnl(κ)
eBD(κ2+n−2)/TD − 1

d(κ2), (B.5)

where the sum runs over all atomic states specified by the quantum numbers
n ≥ 2 and l ≤ n − 1, nnl represents the number density of dark atoms in
state nl and γnl(κ) is defined in Eq. (4.16). We do not include bound-free
transitions to and from the ground state since recombination directly to the
1s state results in the emission of an energetic photon that is immediately
reabsorbed by a nearby neutral atom, hence resulting in no net cooling or
heating. We assume that the occupations numbers of excited states are in
Boltzmann equilibrium with the 2s state

nnl = n2s
gnl
g2s

e−BD(1/4−n−2)/TD , (B.6)

where gnl is the degeneracy of the energy level with quantum numbers nl.
This approximation is valid as long as BD(TD) & H. Performing the mo-
mentum integration in Eq. (B.5) and computing the sum over atomic states
up to nmax = 250 yield a photo-ionization heating rate of the form

Πp−i(TD) =
α3
DT

2
D

3π
x2snDe

− BD
4TD Fp−i(TD/BD), (B.7)
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Fp−i(y) is a dimensionless universal function encoding the remaining of the
temperature dependence of the photo-ionization heating rate. It is shown
in Fig. B.1. This function is well-fitted by

Fp−i(y) =
3973.6 y−0.0222

(2.012 + y0.2412)6.55
, (B.8)

for 4× 10−4 . y . 102.
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Figure B.1: Universal dimensionless fitting functions Fp−i for the photo-
ionization heating rate, plotted as a function of TD/BD.

B.3.2 Photo-Recombination Cooling Rate

The rate of photo-recombination cooling is given by [102]

Πp−r =
∑
n,l

x2
Dn

2
D

(2π)3/2BD

(µDTDM)3/2

∫ ∞
0

e−BDκ
2/TDMκ2γnl(κ)

×
[
1 + fBB(BD(κ2 + n−2), TD)

]
d(κ2). (B.9)

As before, we do not consider recombination directly to the ground state.
Computing the momentum integral and summing over all atomic states up
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to nmax = 250 yield a photo-recombination cooling rate of the form

Πp−r =
2α3

D

√
2πTDM

3µ3/2
D

x2
Dn

2
DFp−r(

TD
BD

,
TDM

TD
), (B.10)

where Fp−r is a dimensionless universal function. We illustrate its behaviour
in Fig. B.2.
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Figure B.2: Universal dimensionless fitting function Fp−r for the photo-
recombination cooling rate, plotted as a function of TD/BD for 4 different
constant values of TDM/TD.

B.3.3 Free-Free Cooling and Heating

The free-free emission (absorption) process refers to the emission (absorp-
tion) of a dark photon by a dark electron due to its acceleration in the
Coulomb field created by a dark proton. For atomic DM, we are mostly
interested in the emission and absorption of dark radiation by thermal dark
electron obeying a Maxwell-Boltzmann velocity distribution. The rate for
thermal Bremsstrahlung cooling is [255, 256]

Πff−c =
16α3

Dḡff

√
2πTDMx

2
Dn

2
D

(3µD)3/2
, (B.11)
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where ḡff is the free-free velocity-averaged and frequency-averaged Gaunt
factor, which is of order unity. The inverse process of thermal free-free
absorption is characterized by the following absorption coefficient [256]

aff
ν (TDM) =

2α3
Dn

2
Dx

2
D(1− e−2πν/TDM)gff

ν

(3µD)3/2
√

2πTDMν3
, (B.12)

where gff
ν is the velocity-averaged free-free Gaunt factor and ν is the fre-

quency of the incoming dark photons. The total amount of energy absorbed
through free-free interactions per unit volume per unit time is then

Πff−h = 4π
∫ ∞

0
aff
ν (TDM)Bν(TD)dν (B.13)

' 25π
√

2πα3
Dḡffx

2
Dn

2
D

(3µD)3/2
√
TDM

∫ ∞
0

e−2πν/TDM
e2πν/TDM − 1
e2πν/TD − 1

dν,

where Bν(TD) is the Planck function. To evaluate this integral, we first
note that the integrand only depends on TDM itself and on the fractional
temperature difference between the DM and DR, ε ≡ (TD − TDM)/TD

e−2πν/TDM
e2πν/TDM − 1
e2πν/TD − 1

=
e−2πν/TDM − e−4πν/TDM

e−2πνε/TDM − e−2πν/TDM
. (B.14)

In the limit of quasi thermal equilibrium, ε� 1, we can expand the integrand
as a power series in ε and compute the frequency integral order-by-order in
the fractional temperature difference. This leads to∫ ∞

0
e−2πν/TDM

e2πν/TDM − 1
e2πν/TD − 1

dν ≈ (B.15)

TDM

12π
(6 + π2ε(1 + 2ε)− 6ε2ζ(3) +O(ε3)),

where ζ(x) is the Riemann zeta function. The net rate at which DM gains
energy due to free-free interactions, Πff ≡ Πff−h −Πff−c, is the given by

Πff ' 16α3
Dḡff

√
2πTDMx

2
Dn

2
D

(3µD)3/2

(
π2ε(1 + 2ε)− 6ζ(3)ε2

6

)
. (B.16)
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For numerical computation, we take ḡff ' 1.3.

B.3.4 Rayleigh Heating

After the onset of recombination, dark photons can transfer energy to the
DM sector via Rayleigh scattering off neutral dark atoms. The scattering
cross-section for this process is given by [257]

σR(ν) ≈ σT,D
81
64

(
ν

νLyα

)4

, (B.17)

where σT,D ≡ 8πα2
D/(3m

2
e) is the dark Thomson cross-section and νLyα

is the frequency of dark Lyman-α photons. This expression is valid for
ν � νLyα, which is realized for the large majority of dark photons after the
onset of dark recombination. The net rate of energy transfer between dark
photons and DM due to Rayleigh scattering is

ΠR = 2nD(1− xD)
∫
σR(ν)Bν(TD)∆ER

dν

ν
, (B.18)

where Bν(TD) is the Planck function and ∆ER is the average net energy
gained by a dark atoms in a Rayleigh scattering event. It is given by

∆ER =
2πν
mD

(2πν − wTDM) , (B.19)

where w = 75600ζ(9)/π8 is a constant that can be determined using detailed
balance. Substituting Eq. (B.19) into Eq. (B.18) and performing the integral
over frequency yields the effective heating rate

ΠR '
430080ζ(9)α2

DnD(1− xD)T 8
D(TD − TDM)

π2B4
DmDm2

e

, (B.20)

where ζ(y) stands for the Riemann Zeta function. This expression is valid
for TD � BD which is always realized when a large population of neutral
dark atoms is present.
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B.4 Atomic Cross-Sections

In this appendix, we justify the form of the cross sections used to describe
collisions of DM particles.

B.4.1 H-H Cross-Section

We consider the elastic scattering of two identical hydrogen-like atoms. This
problem requires one to solve for the joint wavefunction of the two atoms
interacting via the singlet gerade and triplet ungerade molecular poten-
tials [225, 258]. The elastic differential cross section for indistinguishable
hydrogen-like atom is given by

dσH−H
el

dΩ
=

1
4
dσH−H

s

dΩ
+

3
4
dσH−H

t

dΩ
, (B.21)

where the subscripts “s” and “t” refer to the singlet and triplet states,
respectively. The singlet and triplet contributions take the form [225]

dσH−H
s,t

dΩ
=

1
4
|fs,t(θ)± fs,t(π − θ)|2 +

3
4
|fs,t(θ)∓ fs,t(π − θ)|2, (B.22)

where the uppermost sign is for the singlet and the lower sign for the triplet.
Here, fs,t(θ) is the scattering amplitude for the centre-of-mass (CM) scat-
tering angle θ and is given by

fs,t(θ) =
1

2ik

∞∑
l=0

(2l + 1)(e2iδs,t
l − 1)Pl(cos θ), (B.23)

where k is the wavenumber in the CM frame, l is the orbital angular mo-
mentum, Pl(cos θ) is the lth Legendre polynomial, and δs,t

l is the scattering
phase shift from either the singlet or the triplet molecular potential. From
Eqs. (B.22) and (B.23), one can obtain the important result

σH−H
mt ≡

∫
dΩ

dσH−H
el

dΩ
(1− cos θ)

= σH−H
el , (B.24)
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where σH−H
mt and σH−H

el are the momentum-transfer and the total elastic
cross-section, respectively. This result can easily be proven using the or-
thogonality of the Legendre polynomial and follows from the symmetry of
scattering two identical atoms.

All the information about the atomic physics is encoded in the phase
shifts δs,t

l . These can be found by solving the Schrödinger equation[
d2

dR2
− l(l + 1)

R2
+ 2µ[E − V s,t(R)]

]
Rus,t

l (R) = 0, (B.25)

such that the asymptotic behavior at large R is

us,t
l (R) ' R−1 sin (kR− lπ/2 + δs,t

l ). (B.26)

Here, µ is the reduced mass of the colliding atoms, V s,t(R) is the interatomic
potential in the singlet or triplet state, E is the relative energy of the collision
and k =

√
2µE. In the semi-classical limit, the phase shift can be written

as [225, 259]

δs,t
l ≈

∫ ∞
R0

(
k2 − 2µV s,t(R)− l(l + 1)

R2

) 1
2

dR

−
∫ ∞
R′0

(
k2 − l(l + 1)

R2

) 1
2

dR, (B.27)

where R0 and R′0 are the outermost zeros of the respective integrands.
Now focusing on the atomic DM scenario, we would like to understand

how the phase shifts are affected when the dark parameters αD, BD and mD

are varied. These parameters enter the phase shifts through their contribu-
tions to the wave number k and to the molecular potentials V s,t(R). While
it is out of the scope of this appendix to compute the molecular potentials
of dark atoms, we can nonetheless extract general properties of these poten-
tials by studying the case of standard molecular hydrogen. To gain insights
into the scaling of the molecular potential with the dark parameters, let us
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briefly consider the Lennard-Jones potential [260]

V (R) = ε

[(
Rm

R

)12

− 2
(
Rm

R

)6
]
, (B.28)

where the first term accounts for the short-range repulsive force due to
Pauli blocking while the second term describes the long-range behaviour of
the interaction. Here, ε is a constant setting the depth of the potential well
and Rm is the distance where the potential admits a minimum.

On purely dimensional ground, the typical energy scale of the molecular
potential should be proportional to the atomic binding energy, that is, ε ∝
BD. Also, the typical atomic separation Rm should be of the order of the
dark atomic Bohr radius, Rm ∝ a0,D = 2αD/BD. We can thus write

VD(R/a0,D) ∼ BD
BH

VH(R/a0), (B.29)

where the “H” subscript stands for the standard atomic hydrogen. Defining
the dimensionless distance r ≡ R/a0,D, we can write Eq. (B.27) as

δl,D ≈
∫ ∞
r0

(
α2
DmD

B2
D

[E − VD(r)]− l(l + 1)
r2

) 1
2

dr

−
∫ ∞
r′0

(
α2
DmD

B2
D

E − l(l + 1)
r2

) 1
2

dr, (B.30)

where we have substituted the two-atom reduced mass µ = mD/2. We
therefore observe that the phase shifts only depend on two dimensionless
combinations of the dark parameters

δl,D = δl,D

(
α2
DmDE

B2
D

,
α2
DmDVD
B2
D

)
' δl,D

(
α2
DmDE

B2
D

,
α2
DmDVH

BDBH

)
, (B.31)

where we used Eq. (B.29) in the last line. Since VH/BH is known, once could
then use Eq. (B.30) to obtain the phase shifts for dark atoms. However,
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Eq. (B.31) suggests that one could obtain approximate δl,D directly from
the baryonic hydrogen phase shifts by rescaling the collision energy as

E →
(
αD
αem

)2 mD

mH

(
BH

BD

)2

E, (B.32)

where αem is the fine-structure constant of standard electromagnetism. Of
course, this is only an approximation since the molecular potential would
also have to be rescaled according to Eq. (B.31). Moreover, the molecular
potential itself depends non-trivially on αD and µD and would have to be
modified accordingly. Nevertheless, studies of deuterium, tritium [261] and
positronium [262] self-scattering support the above approximate rescaling.
We therefore take our atom-atom momentum-transfer cross section to be

σH−H
mt [E] ≈

(
a0,D

a0

)2

σH−H
mt

[(
αD
αem

)2 mD

mH

(
BH

BD

)2

E

]
, (B.33)

where the leading factor accounts for the change in the geometric cross
section. A numerical fit to the calculations found in Refs. [225, 261] leads
to

σH−H
mt (ECM) ≈ 102 πa2

0

(
ECM

BH

)− 1
8

e
− ECM

75BH , (B.34)

which is valid for 10−3 . ECM/BH . 10. At high energy, inelastic collisions
begin to dominate over the elastic channel and this explain the much steeper
energy dependence in that regime. Using Eq. (B.33), we can finally obtain
an approximate momentum-transfer cross section for the neutral dark atoms

σH−H
mt (E) ≈ 25πα2

D

B2
D

[
µH

µD

mD

mH

E

BD

]− 1
8

e
− µH
µD

mD
mH

E
75BD , (B.35)

where we have use the definition of binding energy to simplify the energy
rescaling. Here, µH is the reduced mass of the regular proton-electron sys-
tem. In terms of the relative velocity between the two dark atoms, the cross
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Figure B.3: Momentum-transfer cross-section for hydrogen [261] (pur-
ple squares) and positronium (Ps) [262] (blue disks) self-scattering. We
have rescaled the energy dependence of the H-H cross-section according to
Eq. (B.32) to compare it to the positronium cross-section. We also dis-
play the momentum-transfer cross-section we use for dark-atom scattering
(Eq. (B.35)).

section reads

σH−H
mt (v) ≈ 30πα2

D

B2
Dv

1/4

[
µH

µD

mD

BD

]− 1
8

e
− µH
µD

mD
BD

v2

300 , (B.36)

where we used E = mHv
2/4. In the limit where me = mp, Eq. (B.36)

agrees within a factor of order unity with the positronium (Ps) self-scattering
cross section [262] (see Fig. B.3). At very low velocities (v . 10−4), the
above expression likely overestimates the momentum-transfer cross section.
However, since very little energy is transfered in these low velocity collisions,
we do not expect this to have a large impact on our results.
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B.4.2 H-p and H-e Cross-Sections

When a dark proton collides with a neutral dark atom such that no atomic
transitions are excited, two distinct processes must be taken into account.
The dark proton can either collide elastically on the dark atom or it can
capture the dark electron in a symmetric charge transfer Similarly, when a
dark electron encounters a neutral atom at low energy, it can either scatter
elastically or eject the atomic dark electron and be captured by the atomic
nucleus. Since the final products of these two types of processes are indistin-
guishable, they both need to be taken into account to accurately calculate
the differential elastic cross section [225]

dσH−p,e
el

dΩ
=

3
4
|fd(θ)− fex(π − θ)|2 +

1
4
|fd(θ) + fex(π − θ)|2, (B.37)

where fd(θ) is the amplitude for the direct elastic scattering while fex(θ)
is the amplitude for the charge-exchange process. Quantum interference
between these two types of elastic scattering generally implies that σH−p,e

mt 6=
σH−p,e

el , in contrast to the symmetric atom-atom case.
Much of the above discussion for the atom-atom case applies here and

we can relate the dark proton-atom and electron-atom momentum-transfer
cross-section to that of standard proton-hydrogen and electron-hydrogen
scattering as

σH−p,e
mt [E] ≈

(
a0,D

a0

)2

σH−p,e
mt

[(
αD
αem

)2 µDp,e

µHp,e

(
BH

BD

)2

E

]
, (B.38)

where µDp,e = mDmp,e/(mD + mp,e) and similarly for µHp,e. From the
results presented in Ref. [225], we can obtain an approximate expression for
the proton-hydrogen momentum-transfer cross-section (obtained through a
numerical fit)

σH−p
mt (ECM) ≈ 240πa2

0

(
ECM

BH

)− 1
8

e
− ECM

100BH , (B.39)

again valid for 10−3 . ECM/BH . 10. In the case of electron-hydrogen
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scattering, the momentum-transfer cross-section is smaller by almost two
orders of magnitude

σH−e
mt (ECM � BH) ≈ 7πa2

0. (B.40)

The main reason for this large difference is that the electron-hydrogen dif-
ferential cross-section is strongly peaked in the forward direction, which im-
plies small momentum transfer. One the other hand, the proton-hydrogen
differential cross-section has a significant backward peak which contributes
substantially to the overall momentum-transfer cross-section. Phenomeno-
logically, we can take this into account by rescaling the cross sections by the
ratio of the masses of the two colliding bodies, that is

σH−e
mt (E) ≈

√
me

mH
σH−p

mt

(
mp

2me
E

)
, (B.41)

where we have used Eq. (B.32) to appropriately rescale the collision energy.
To obtain insight on the case me ∼ mp, we also consider the case of an
electron elastically scattering off positronium [263]. In this case, we expect
the low-energy cross-section to be somewhat suppressed since the first Born
approximation for the scattering amplitude exactly vanishes. Existing com-
putations support this fact and predict a roughly constant cross-section at
low energy. With this in mind, we conservatively neglect the small energy
dependence of the H-p cross-section at low energy and write

σH−p
mt (E) ≈ 60πα2

D

B2
D

√
mp

mD
e
− µH
µD

µDp
µHp

E
100BD , (B.42)

σH−e
mt (E) ≈ 60πα2

D

B2
D

√
me

mD
e
−8

µH
µD

µDe
µHe

E
100BD , (B.43)

or in terms of the relative velocity between the ions and the dark atom

σH−p
mt (v) ≈ 60πα2

D

B2
D

√
mp

mD
e
− µH
µD

µDp
BD

v2

200 , (B.44)

214



B.4. Atomic Cross-Sections

æ

æ

æ

æ

æ

æ

æ

à

à

à
à

à

à

à

à

à

à

ì
ì

ì ì ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

10-5 10-4 0.001 0.01 0.1

1.0

10.0

5.0

2.0

3.0

1.5

7.0

Ee-H�BH

Σ
m

t
@Π

a 0
2 D

Eq. B43
e-Ps HrescaledL
p-H HrescaledL
e-H

Figure B.4: Momentum-transfer cross-section for electron-hydrogen scat-
tering obtained from direct computation [264, 265] (purple squares), from
rescaling the proton-hydrogen cross-section [261] (blue disks), and from
rescaling the electron-positronium cross-section [263] (yellow diamonds). We
also display the momentum-transfer cross section we use for dark electron-
atom scattering (Eq. (B.43)).

σH−e
mt (v) ≈ 60πα2

D

B2
D

√
me

mD
e
− µH
µD

µDe
BD

v2

200 , (B.45)

where we have used E = µHe,pv
2/2. In Fig. B.4, we display the H-e

momentum-transfer cross-section, both from direct computation and from
rescaling the p-H and electron-positronium cross-sections according to Eq. (B.41).
We see that this rescaling is accurate up to a factor of order unity over the
energy range of interest and thus provide the correct order of magnitude for
the cross section. We also display in the figure our approximate expression
for the dark electron-atom cross-section Eq. (B.43).
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