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Abstract

Field-Programmable Gate Arrays (FPGAs) are widely used to implement logic without going through

an expensive fabrication process. Current-generation FPGAs still suffer from area and power overheads,

making them unsuitable for mainstream adoption for large volume systems. FPGA companies constantly

design new architectures to provide higher density, lower power consumption, and faster implementation.

An experimental approach is typically followed for new architecture design, which is a very slow and

computationally expensive process. This dissertation presents an alternate faster way for FPGA architec-

ture design.

We use analytical model based design techniques, where the models consist of a set of equations that

relate the effectiveness of FPGA architectures to the parameters describing these architectures. During

early stage architecture investigation, FPGA architects and vendors can use our equations to quickly

short-list a limited number of architectures from a range ofarchitectures under investigation. Only the

short-listed architectures need then be investigated using an expensive experimental approach.

This dissertation presents three contributions towards the formulation of analytical models and the

investigation of capabilities and limitations of these models.

First, we develop models that relate key FPGA architecturalparameters to the depth along the critical

path and the post-placement wirelength. We detail how thesemodels can be used to estimate the expected

area of implementation and critical path delay for user-circuits mapped on FPGAs.

Secondly, we develop a model that relates key parameters of the FPGA routing fabric to the fabric’s

routability, assuming that a modern one-step global/detailed router is used. We show that our model can

capture the effects of the architectural parameters on routability.

Thirdly, we investigate capabilities and limitations of analytical models in answering design questions

that are posed by the FPGA architects. Comparing with two experimental approaches, we demonstrate
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that analytical models can better optimize FPGA architectures while requiring significantly less design

effort. However, we also demonstrate that the analytical models, due to their continuous nature, should

not be used to answer the architecture design questions related to applications having ‘discrete effects’.
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Chapter 1

Introduction

1.1 Motivation

Field-Programmable Gate Arrays (FPGAs) are pre-fabricated devices that can be used to implement logic

without going through an expensive fabrication process. FPGAs have evolved considerably since their

introduction in 1985. Originally used for prototyping and small glue logic replacement, these devices are

now used to implement entire systems containing memory, embedded processors, and other functional-

ity. Advanced manufacturing technologies provide an unprecedented number of transistors, and FPGA

vendors have used these transistors to create new logic, routing and embedded block architectures. Un-

like Application Specific Integrated Circuits (ASICs), FPGAs are pre-fabricated devices. This requires

the FPGA vendors to make FPGA devices suitable for a wide range of applications. Much of the im-

provement in FPGA technology is a result of improvements in FPGA architecture. The architecture of

an FPGA refers to the structure and interconnection of the configurable elements inside the device. New

architectures are designed to provide higher density, lower power consumption and/or faster circuit im-

plementations. FPGA manufacturers expend tremendous effort evaluating architectural enhancements for

every generation of their devices, and this activity shows no signs of diminishing [10, 188].

During the design of a new FPGA, each architectural enhancement has to be evaluated to determine

whether it should be incorporated in the new device. Typically-used evaluation metrics are area, delay,

power and routability. This evaluation is typically done using an experimental approach [21] with the

help of detailed area, delay, and power models [11, 21, 116, 119, 141]. Due to the presence of numerous

interacting architecture parameters, the experimental evaluation of FPGA architectures by sweeping the
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Figure 1.1: Fully Experimental Approach for New FPGA Architecture Design

parameters can be slow and computationally expensive, and limits the number of alternative architectures

that can be considered. The consequence of this is the limited ability of FPGA companies to explore new

structures that may lead to more efficient FPGAs.

Analytical models that describe some aspects of an architecture may complement the experimental

approach to accelerate the architecture investigation. Analytical models relate parameters describing an

FPGA architecture to area, delay, or power efficiency. Theseusually take the form of simple expressions,

and thus searching for efficient architectures can be fast and the need for time-consuming experiments

is reduced. The focus of this thesis is to accelerate the process of new FPGA architecture design by

using analytical models. More specifically, this dissertation develops analytical models to describe area

efficiency, delay efficiency and routability of FPGA architecture variants, as well as to investigate the

capabilities and the limitations of the developed models.

1.2 FPGA Architecture Design

Since the accelerated FPGA architecture design process is central to this thesis, we present a summary

of how new architectures are designed. We first present an overview of a typical experimental design

approach. The major aspects of analytical models are presented next along with the discussion about how

these models can accelerate architecture design process.

1.2.1 Experimental Approach

Figure 1.1 illustrates a typical experimental design flow. To design a new architecture using an experimen-

tal approach, FPGA architecture designers and/or FPGA vendors start with a set of prospective architec-

2



tures. These architectures are characterized by the parameters related to the logic fabric that implements

the circuit functions and the interconnect (routing) fabric that connects the elements. To evaluate each ar-

chitecture, the architects collect benchmark circuits, make required modifications to the Computer-Aided

Design (CAD) tools, and run the benchmark circuits through the CAD flow. The experimental results

are evaluated empirically to fine-tune the architectural parameters for the next iterations. Such empirical

evaluation demands a high number of experimental runs. There are several challenges associated with

such a fully experimental approach:

1. To properly exercise an architecture, many benchmarks are required. If the choice of benchmark

circuits is insufficient, it is possible to create an architecture that is tuned for specific circuits rather

than one suitable for a wide range of customers.

2. Each of the benchmark circuits must be mapped to all potential variants of the architecture under

investigation; each mapping can take several hours using modern CAD tools. This slow progress

limits the number of alternative architectures that can be considered, and thus limits the ability of

FPGA companies to explore new structures that may lead to more efficient FPGAs.

3. Optimizing the architectures by repeated iterations through a complete CAD flow is time-consuming

and computationally expensive. This is compounded by the fact that the designers often optimize

the architectures on an ad-hoc basis since they do not have any detailed insight about the behavior

of the architectures under investigation.

4. To investigate a set of new architectures, the architectsmay need to modify the existing CAD tools

for each architecture, which is a time consuming process.

1.2.2 Analytical Model-Based Approach

To accelerate the development of new FPGA architectures by addressing the challenges listed in Sec-

tion 1.2.1, there have been recent efforts to develop a set ofanalytical models that relate the architectural

parameters to each other, and to the evaluation matrix [41, 58, 59, 61, 70, 90, 104, 168].

Figure 1.2 presents a conceptual overview of analytical models. The inputs to these models are FPGA

architectural parameters. The architectural parameters may consist of logic fabric parameters as well as

the routing fabric parameters. The inputs also include a limited number of circuit parameters, such as Rent

3
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Figure 1.3: Analytical Model-Based Design of New FPGA Architectures

co-efficient1, and the number of two-input gates in the circuit. The modelsconsist of a set of equations

to relate these architectural parameters to the evaluationmetrics, such as area of implementation, critical

path delay, routability and power.

This thesis envisages that the analytical models to complement the traditional experimental approach,

and accelerate the architectural investigation in three ways:

1. Understanding the relationships between architecturalparameters enablesearly-stage architecture

development[70] in which the analytical models can be used to quickly search the design space.

This is illustrated in Figure 1.3, where the design space is first pruned using model equations.

Once a promising region of architectures has been identified, a traditional experimental approach

can be used to further fine-tune the short-listed architectures. This will significantly accelerate

the FPGA architecture design process, and will allow the study of a wider range of architectures,

1The Rent coefficient is a measure of the complexity of the interconnect pattern in a circuit, defined by the relationship
between number of logic gates and required input/output pins [107].
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Figure 1.4: Early Stage Architecture Investigation Using Analytical Models

since the designers do not require to develop or modify the CAD tools for each architecture under

investigation.

2. The FPGA architecture designers do not require benchmarkcircuits during early-stage architecture

investigation. Instead, they may use a range of representative values for the limited number of

circuit parameters that the model equations require.

3. The development of a body of theory describing the behavior of architectures will encourage an

understanding ofwhycertain architectures work well, and may eventually provide bounds on the

capabilities and efficiencies of programmable logic. Such insights will also help the designers to

better optimize the architectures using an experimental approach.

1.2.3 Example of Using Analytical Model Based Design Technique

Figure 1.4 uses fictitious results to illustrate how analytical models can be used to optimize an FPGA

architecture with respect to area and delay. Each data-point on this plot represents one particular archi-

tecture. Values on the horizontal axis and the vertical axisrepresent the critical path delay and the area of

implementation respectively. For each architecture, designers can use analytical models to quickly esti-

mate the values for area and delay. For the best area-delay trade-off, only the architectures on the bottom

left corner of Figure 1.4 that are enclosed by a circle will beidentified as the promising ones, and will be

experimentally evaluated to identify the best architecture with respect to design goals.

1.3 Research Approach

This section presents the assumptions and the guiding principles used in this thesis to develop and validate

the analytical models.

5



1.3.1 Assumptions

The models in this thesis assume a homogeneous clustered architecture. We also discuss the possibilities

of extending our models to capture the behavior of heterogeneous architectures with embedded blocks.

Furthermore, creating a complete analytical model that relates all architectural parameters is complex. To

make our task tractable, we employ the approach described in[61, 104], which parallels the step-by-step

CAD flow used in the FPGA design flow. For each CAD stage, we develop a stage model that isolates the

impact of the CAD stage on quantities related to the area and delay of the final implementation. These

stage models are then combined in an overall model. Following this construction, area and delay models

are divided into five stages, namely (1) technology mapping stage, (2) packing stage, (3) placement stage,

(4) routing stage and (5) physical design stage.

1.3.2 Guiding Principles

Three principles guide the development of the analytical models that we present in this dissertation:

1. We endeavor to develop models by deriving relations analytically, without relying on curve-fitting

or experimental techniques. This ensures that the models capture the essence of programmable

logic, and is not limited to a particular CAD flow or tool suite.

2. We wish to derive models that are as independent of the circuit (to be implemented on FPGA) as

possible. This makes the models of this dissertation different from estimation studies, in which the

goals are to predict the area, speed, or power for given circuits. That being said, it is impossible

to completely ignore the impact of specific circuits; hence afew circuit parameters are used by the

models. All of the circuit parameters used in this thesis areavailable during early stage evaluation

and do not require to run the circuit through any stage of an expensive CAD flow.

3. We attempt to balance complexity with accuracy. The simple model equations will provide more

insight into architectural trade-offs than complex expressions. Such insights will help designers to

effectively fine-tune an architecture under evaluation.

1.4 Research Contributions

To summarize the previous sections, the goal of this thesis is to develop the analytical models and to

investigate the capabilities and limitations of such models. This dissertation presents three contributions

6



towards this goal:

1. We develop analytical models that relate key FPGA architectures to the post technology mapping

and the post-clustering depth of the critical path as well asthe post-placement wirelength. Parts of

this work have been published in two conference proceedings[60, 168] and in a journal [61].

2. We develop an analytical model that relates key FPGA parameters to the fabric’s routability, as-

suming that a modern one-step global/detailed router is used. This work has been published in a

conference proceeding [58] and has been submitted for publication in a journal [57].

3. We investigate on the capabilities and the limitations ofanalytical models in answering design

questions that the FPGA architects are typically interested in. This work has been published in a

conference proceeding [59].

The next three subsections briefly discuss these three contributions. The details are presented as

individual chapters in this dissertation.

1.4.1 Analytical Models Relating FPGA Architecture to Areaand Delay

The first contribution of this thesis isdeveloping analytical models that relate key FPGA architecture

parameters to area and delay. More specifically, this thesis presents models for post-technology mapping

depth, post-packing depth and post-placement wirelength.These models can be used in conjunction with

the previously proposed models to quickly evaluate area anddelay performances of an FPGA architecture.

The challenges tackled in developing these models were to balance simplicity with accuracy and

to make the models independent of CAD tools and as independent of circuit parameters as possible.

Chapter 3 presents the details on derivation and validationof these models.

1.4.2 Analytical Model Relating FPGA Architecture to Routability

The second contribution of this dissertation isdeveloping an analytical model to relate FPGA logic and

routing fabric parameters to the consequent routability, when a modern single step global/detailed router

is used to map the circuits on FPGAs. We define routability as the probability that all nets can berouted

on a given FPGA device. Although a range of studies exist to estimate routability for both ASIC and

FPGA devices [25, 35, 68, 99, 120, 152, 163], to our knowledgeonly one of them [25] is focused on

relating FPGA architectural parameters to routability. The work of [25] models the FPGA routability for

7



the detailed stage of a two-stage router, where the routing paths for the detailed stage are pre-determined

by the global router. The novelty of our work is that we model routability for a single-step global-detailed

router, where many possible routing paths are simultaneously considered by the routing algorithm; such

a single-step router is most commonly used for modern FPGAs.

The major challenge in deriving our routability model was tocapture the effect of many possible rout-

ing paths that are not independent of each other. To tackle this challenge, we observe that our problem

is related to the problem of estimating the reliability of amulti-terminal stochastic network. For given

network constraints, the reliability of such a network is measured by the existence of at least one useful

communication path between the terminals (out of many possible communication paths). This is analo-

gous to our problem, which is to model the routability with given FPGA architecture constraints, while

assuming that the routing of the nets may use any of the many possible available paths.

Finding an exact solution for the reliability of a stochastic network isNP-hard [16], and earlier studies

use graph-theoric techniques to find bounds for the reliability of such a network [69, 142, 155, 156, 159].

In this dissertation, we also use graph-theoric techniquesin modeling the upper-bound of routability for

a single-step FPGA combined router.

Chapter 4 presents the details on derivation and validationof the routability model.

1.4.3 Accelerated FPGA Architecture Design: Capabilitiesand Limitations of
Analytical Models

The final contribution of this dissertationinvestigates the capabilities and limitations of analytical models.

This contribution has two parts, related to the use of analytical models in two stages of a design flow: (a)

the very initial “back-of-the-envelope” stage and (b) the “parametric sweep” stage.

During the initial stage, architects wish to identify the architectural parameters that will affect density

and performance of the resulting device. The first part of this contribution investigates whether analytical

models can provide such insight.

The second part investigates whether the analytical modelscan be effectively used during parameteric

sweep when the architectural parameters are swept to evaluate their effects on resulting area or delay.

Since analytical models can quickly evaluate architectural choices, use of analytical models in this stage

is expected to significantly reduce design time. The study ofthe second part is motivated by two issues

that are related to analytical model based design techniques:

8



1. First, studies on analytical modeling consider a limitednumber of architectural parameters in isola-

tion, and make important assumptions in deriving model equations. This issue motivates us to study

if the analytical models, when combined together, can effectively answer the architecture questions

that simultaneously evaluate a wide range of architecturalparameters with respect to multiple eval-

uation metrics. The significance of this issue is emphasizedby Yan et al. [191]. That work observes

that experimental techniques proposed by separate studiesmake a range of assumptions when es-

timating evaluation metrics for an FPGA implementation. Yan et al. finds that when these studies

are used simultaneously, resulting architecture conclusions are highly sensitive to the assumptions

made by each study.

2. Secondly, to our knowledge, the analytical models previously presented are continuous in nature.

The models therefore may not capture the effects of architecture choices when implementing the

applications having “discrete effects”. For instance, theBasic Logic Element (BLE) of an FPGA

is characterized by the number of inputs that it can take. A BLE with six inputs can efficiently

implement a multiplexer with four inputs and two select signals. However, in implementing such a

multiplexer, a BLE with five inputs will be inefficient and a BLE with seven inputs will not offer

additional benefits. The analytical models, due to their continuous nature, may not capture these

effects. This may limit the usefulness of analytical modelswhen designing an FPGA device that

targets selected domain(s) of applications.

The second part of the final contribution of this thesis investigates the effects of these two issues.

More specifically, we ask the following two architecture questions:

1. What are the optimal values of the architectural parameters for a general-purpose FPGA?

2. For an optimized application-specific FPGA architecture, what are the values of the architectural

parameters?

To investigate the effectiveness of analytical models, we compare the model results with two ex-

perimental techniques: a sequential optimization technique and a Design of Experiments (DOE)-based

experimentation technique. The first technique is often used for FPGA optimization while the second

one is used in a wide range of domains including manufacturing and agriculture. The focus of this work

is to determine if the model-based technique can identify similar (or better) architectural configurations,

9



with respect to area and/or delay, when compared with the experimental technique. If the conclusions

are similar (or better), the model-based technique will be avaluable addition to the architecture design

process, since it can evaluate a wide range of architecturesin significantly shorter period of time.

The investigation results from this contribution will helpthe architecture designers in understanding

the types of design questions that can be effectively answered by the analytical model-based techniques,

as well as the limitations of the analytical model-based techniques in answering certain design questions.

Chapter 5 presents details on this investigation.

1.5 Thesis Organization

Chapter 2 provides background information on FPGA architecture and CAD flow, and presents earlier

work related to our work. Chapter 3 presents our first contribution related to the development of analytical

models for area and delay. The second contribution, development of routability model while considering a

single-step combined router is presented in Chapter 4. Chapter 5 presents our third contribution, which is

to investigate the capabilities and limitations of analytical models in designing new FPGA architectures.

Finally, Chapter 6 summarizes the contributions, concludes this thesis and presents the short-term and

long-term avenues for future work.

10



Chapter 2

Background and Related Work

This chapter presents background of this dissertation and puts this dissertation into the context of earlier

work. In Section 2.1 and 2.2 respectively, we review the architecture of typical island-style FPGAs and

the CAD flow used to implement circuits on FPGAs. In Section 2.3.1, we review experimental techniques

that can be used for FPGA design space exploration. Section 2.3.2 presents the analytical models that

have been proposed for ASIC domain, and are relevant to the work presented in this dissertation. In

Section 2.3.3, we present the analytical models proposed byother researchers for the FPGA domain. The

objective of these models is to evaluate FPGA architectureswithout going through an experimental flow.

Section 2.3.4 presents previously published techniques that experimentallyestimate the area, delay and

routability for FPGA implementation. Finally, Section 2.4summarizes this chapter.

2.1 Review of FPGA Architecture

2.1.1 Island-style FPGA Architecture

The Island-styleFPGA architecture [21] is the most commonly used architecture both in academia and

industry. This architecture has been proven to scale with Moore’s Law [40] and has been used by leading

FPGA vendors, such as Altera and Xilinx. In this thesis, our models are developed for and validated for

island-style architectures. Figure 2.1 presents a typicalisland-style FPGA architecture. The architecture

consists of three fundamental components: configurable logic resources, a configurable interconnect fab-

ric, and I/O resources [21]. FPGA architecture parameters that we investigate are associated with these

components and are presented in Table 2.1.
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Figure 2.1: Typical Island-Style FPGA Architecture

2.1.1.1 Configurable Logic Resources

Configurable logic resources of an FPGA consist of Look-Up Tables (LUTs), Basic Logic Elements

(BLEs) and clusters. LUTs are characterized by the number ofinputs K. EachK-LUT is capable of

implementing a logic function having up toK inputs and a single output. AK-LUT can be configured to

implement a specific function by storing the corresponding truth table in the LUT’s configuration memory

bits. Together with a flip-flop at its output, a LUT forms aBLE.

Multiple BLEs are grouped intoclusters. Clusters are characterized by the number of BLEs that

they contain (N). Figure 2.1 shows a cluster withN=2. The BLEs within a cluster are connected by

Table 2.1: Architectural Parameters that We Investigate (Model Inputs)

Logic Fabric Parameters
K Lookup table size
N Cluster (logic block) Size
I Inputs per cluster
Routing Fabric Parameters
W Channel width (tracks per a routing channel)
Fcout Source connection box flexibility
Fcin Sink connection box (CB) flexibility
Fs Switch box flexibility
Nx FPGA grids in columns
Ny FPGA grids in rows

12



local interconnect, and we refer to these connections asintra-clusterconnections. The BLEs that are not

within the same cluster are connected by using a configurableinterconnect fabric, a description of which

will follow. We refer to such connections asinter-clusterconnections. Intra-cluster connections are much

faster than inter-cluster connections and incur less area overhead. Packing closely-connected BLEs into

clusters therefore minimize delay and reduce interconnectarea.

Configurable logic resources of island style architecturesare further broken down into two categories:

general logic blocks and embedded specialized blocks. Examples of embedded blocks are memory blocks,

Digital Signal Processing (DSP) blocks and embedded configurable CPUs. FPGAs containing only gen-

eral logic blocks are known ashomogeneous FPGA architectures. The termheterogeneous FPGA ar-

chitecturerefers to an architecture that contains embedded blocks in addition to general logic blocks.

Such blocks are also known ascoarse-grained logic blocks. Recent studies demonstrate that incorpo-

rating embedded blocks into an architecture can significantly save area [103]. In industry, Altera first

deviated from island-style homogeneous architecture by introducing hard-wired memory into an FPGA

architecture [7, 165]. Xilinx, Microsemi and Achronix havealso incorporated embedded blocks into their

products [1, 2, 189].

Finding the optimal number of inputs to each LUT is an active area of research. While earlier studies

found the optimal number of inputs to be four or five [5], recent studies reported the optimal LUT size

to be 6 for modern technology [122]. Altera introduced an adaptive logic module (ALM) that was based

on a large “fracturable” LUT with 6 inputs; the fracturable LUT could be partitioned into two smaller

LUTs [92, 115]. A fracturable LUT is parameterized by two parametersk andm, wherek represents the

size of the base LUT andm represents the extra inputs available for implemented smaller LUTs; a 6,2

fracturable LUT implements a 6-LUT with total 8 input pins [115].

The optimum number of LUTs in a clusterN and the number of inputs per clusterI have also gained

substantial attention [6, 116]. Comparing the experimental results for cluster size from 1 to 10, Ahmed

and Rose [6] found that the cluster size of 3 to 10 presented the best area-delay product for LUT size of

4 to 6. Li et al. [116] found that the power-delay product decreased as cluster sizeN increased. However,

this work also found that the logic power consumption increased with increasingN and this increase

became dominant beyondN=12; N=12 was identified as the optimal cluster size with respect topower-

delay product [116]. As for the optimal value of inputs per clusterI , Ahmed and Rose [5] presented an

13



R

S

T

U

V

R

S

T

U

V

R S T U V

R S T U V

WX WX

Y

Y

(a) Wilton switch block [182] (b) Typical connection block [70, 112]
(W = 5, Fs = 3) (W = 4, Fc in = 2, Fc out = 2)

Figure 2.2: Switch Block and Connection Block Detail

empirical relationship betweenN, K andI :

I = (K/2) · (N+1). (2.1)

In finding the optimal values forN, K andI , experimental approach was followed by the studies discussed

above.

2.1.1.2 Configurable Interconnect Fabric

Figure 2.1 illustrates the location of configurable interconnect (routing) fabric within an FPGA architec-

ture. The configurable routing fabric provides connectionsamong clusters and I/O resources, and consists

of wires, programmable switches and connection blocks.

The wire segments that connect the clusters are arranged in horizontal and verticalchannelssur-

rounding the logic clusters. Each routing channel containsW parallel tracks; we refer toW as thechannel

width. The width of channels in an FPGA device is typically consistent across the device and FPGAs

are typically manufactured with the worst-case channel-width requirement in mind. In this thesis, we

assume all channels to have the same width. One of the optimization goals of experimental CAD tools

is to reduce the number of tracks in FPGA routing channels. Several works have aimed at reducing the

channel-width requirement at the expense of an increased number of clusters [66, 176]. DeHon [66]

showed that under-utilization of clusters (packing less BLEs than are allowed by cluster size) reduced the

channel-width requirement at the expense of increased cluster-count. Tom and Lemieux [176] found that

under-utilization of clusters only in routing-congested regions could offer a ‘graceful trade-off’ between

channel-width and cluster-count.
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At the intersection of each horizontal and vertical channelis aswitch blockthat allows the wires to

go straight, to turn directions, or to terminate. Each switch block connects the input wire segments to the

wire segments in adjacent channels. The amount of connectivity in each switch block is quantified using

the parameterFs; Fs is the number of wires to which each input wire can connect. InFigure 2.2(a), wire-0

on the left side can connect to wire-0, wire-1 and wire-3 on right, top and bottom sides respectively. Thus

Fs = 3 in this example. Several types of switch boxes have been presented and analyzed, including the

Universal switch box [185], the Wilton switch box [182] and the Disjoint switch box [128]. Lemieux and

Lewis [111] presented a detailed study on these switch blocks.

Each logic cluster is connected to the neighbouring wires using input and outputconnection blocks.

The flexibility of these blocks is quantified by the parameters Fc in andFc out. Each of these parameters

indicate the proportion of the wires in the neighbouring channel to which each input (output) pin of the

cluster can be connected. In the example of Figure 2.2(b),Fc in andFc out are 50%.

To make our task tractable, we assume thesegment lengthof routing fabric to be 1, implying that

routing tracks span one logic block before being terminatedat switch blocks. Betz and Rose [20] observe

that routing architectures with higher segment lengths aresuperior in terms of both delay and routing

area. Modern FPGAs provide routing tracks that span more than one logic block before terminating.

For instance, Altera’s Stratix II family provides routing tracks with segment lengths of 1 and 4 for both

horizontal and vertical wires, segment length of 16 for vertical channels only and segment length of 24

for horizontal channels only [115].

2.1.1.3 I/O Resources

I/O resources on an FPGA provides the interface between the circuit mapped on the FPGA and the out-

side world. Modern FPGAs provide programmable I/O resources and optimize I/O resources with re-

spect to range of design goals. Programmable I/O features provided by Altera Cyclone series include

programmable current strength, programmable slew rate control and programmable delay [8]. Current

generation FPGAs from Xilinx group the I/O resources into banks that are independently able to support

different I/O standards; the Virtex-6 family FPGAs from Xilinx provide 9 to 30 I/O banks [189]. Actel

(Microsemi) optimizes the I/O features of their IGLOO PLUS family to meet the needs of I/O-intensive,

low-power applications [132]. The I/O frame of Achronix’s picoPIPE fabric ensures that Data Tokens

enter the asycnronous picoPIPE core at a clock edge; every Data Token leaving picoPIPE is also clocked
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out at a clock edge by the same I/O frame [1].

2.1.2 Application-Specific FPGAs (ASFPGAs)

The FPGA architecture explained above targets the implementation of a large range of applications (cir-

cuits). Such flexibility makes FPGAs ideal for prototyping and low-volume production. However, this

high degree of flexibility is associated with area and delay penalties. For circuits implemented by using

only LUTs and flip-flops, Kuon and Rose [102] found that FPGA implementations were 40X larger and

3.2X slower on average when compared to standard cell implementations. Recent works attempt to design

reconfigurable architectures that can target a specific application or a domain of applications. Such archi-

tectures will ensure less area and delay overhead at the expense of reduced flexibility. Holland and Hauck

investigated domain-specific CPLDs [88] and presented automated tool-flow to generate domain-specific

CPLDs [89]. Hammerquist and Lysecky [85] found that ASFPGAsprovided significant savings in terms

of area, delay and energy when compared to the FPGAs designedfor average benchmarks.

2.1.3 Other FPGA Architectures

FPGAs that differ from synchronous island-style architectures have also been proposed by vendors and

academic researchers. Microsemi (previously Actel) uses row-based architecture for its FPGAs [133].

They use Flash-memory based FPGA fabric [83]. Such an architecture has rows of programmable logic

cells separated by horizontal wiring channels; horizontalchannels provide the inputs to the cells. To mit-

igate the effects of latency and metastability owing to global clocks, Royal and Cheung [148] proposed

the Globally Asynchronous Locally Synchronous (GALS) FPGAarchitectures. Other academic studies

further investigated the feasibility of asynchronous FPGAarchitectures [97, 172]. In industry, Achronix

Semiconductor Corporation has used asynchronous architectures for FPGAs. Their architecture redefines

the concept of ‘Data-Token’ [1]. In contrast to conventional logic where a data-token is a logic value at

the clock edge, this asynchronous architecture combines data and clock edge to form a data-token. The

Spacetime Architecture proposed by Tabula Inc. increases the density and performance of 2D architec-

tures through time multiplexing [173]. The Spacetime hardware is capable of dynamically reconfiguring

itself to perform multiple operations in a single user clockcycle. A recent work from Grant et al. [82]

proposed theMalibu architecture that incorporated embedded blocks into homogeneous architectures.

Malibu architecture adds time-multiplexed coarse-grained processing elements to the typical fine-grained
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Figure 2.3: FPGA Design Flow

clusters; the original logic clusters and interconnect fabric are not time-multiplexed. By time-multiplexing

the coarse-grained elements, the area cost for these elements are divided over many cycles. Several works

in academia [3, 28, 177] have also proposed hierarchical architectures that are different from cluster-

based hierarchy that we have explained in previous sub-sections. In hierarchical architectures, the basic

level-1 block consists of a few logic blocks (LUTs) and I/O blocks [28]. Level-2 block consists of level-1

blocks, local routing for level-1 blocks and global routingfor connections to level-3 blocks. Upper level

blocks are formed in a similar way. Such hierarchical architectures are not widely used due to scalability

issues [40].

2.2 Review of FPGA CAD Flow

2.2.1 CAD Stages

Figure 2.3 shows a typical FPGA CAD flow, consisting of five stages: design entry, technology mapping,

packing (clustering), placement and routing. A brief summary of previous works on these stages is in-

cluded below. Further information can be found in the surveyon FPGA design automation by Chen et

al. [32].

2.2.1.1 Design Entry

The design entry phase is the first step in the CAD flow. During design entry, the user specifies the

circuit that will be implemented on the FPGA. Design entry methods can be broadly divided into two

categories: schematic capture based techniques and programming language based techniques [165]. The

schematic capture based techniques typically use a dataflow/synchronous dataflow paradigm. Program-

ming language based approaches include VHDL [14], Verilog [171], C, and MATLAB-based programs

[135, 137].
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2.2.1.2 Technology Mapping

In this phase, an optimized netlist is mapped into BLEs consisting ofK-LUTs and flip-flops. Many stud-

ies have focused on different aspects of technology mapping[18, 23, 30, 31, 34, 50, 52, 66, 76, 95, 174],

and the commonly used and referenced mapping algorithms include DAGMap [34], FlowMap [50],

DAOMap [31] and the ABC Mapping tool [18]. Different technology mapping tools target area of imple-

mentation, depth (delay), power consumption and routability. Despite extensive work on logic optimiza-

tion and technology mapping, for large circuits with ‘known’ optimal solutions for these stages, existing

techniques were found by Cong and Minkovich [51] to perform very poorly. That work argued that there

was still much room for research on FPGA synthesis algorithms.

2.2.1.3 Packing (Clustering)

During packing, the BLEs from the technology mapping phase are packed together to formclusters. Since

the intra-cluster connections are faster than the inter-cluster connections, packing algorithms attempt

to pack as many closely connected BLEs in a cluster as possible. Numerous studies have proposed

techniques for clustering to optimize density [17, 21, 127,162], speed [21, 53, 127, 158], power [141, 162]

and routability [162] of FPGA implementations.

2.2.1.4 Placement

The placement stage of a CAD flow positions the packed clusters from the packing stage on the FPGA

physical locations. Betz et al. [21] identified three major classes of placement algorithms that are used

in the FPGA domain: (a) partitioning-based min-cut approaches, (b) analytic approach followed by local

iterative improvement and (c) simulated annealing based approaches. To improve the resultant placement

solutions, several publications have attempted to incorporate early predictions for post-routing delay,

wirelength and routability into placement algorithms [15,124–126]. The run-time for placement is a

major concern for modern FPGAs since the order of run-time ofa placement stage grows faster than

linear with the growth in the number of clusters [40].

2.2.1.5 Routing

Finally, the routing stage determines which programmable switches in an FPGA need to be turned on to

connect all required input and output pins of the clusters [21]. A routing algorithm can be timing-driven
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or delay oblivious, targeting speed and routability respectively. Since the routing delay makes up the

majority of the overall delay of an FPGA implementation, timing-driven algorithms are usually preferred

over delay oblivious ones [21].

Two types of routers have been widely studied. The first type of router is atwo-step routerconsisting

of “global” and “detailed” steps. During the global routingstep, the router assigns sequences of channels

to route the nets. The detailed routing step finds a route using this sequence. Several studies have pro-

posed algorithms for global [145, 153] and detailed stages [24, 113] of two-step router. The second type

of router,single-step combined global-detailed routerroutes the nets between the post-placement logic

clusters in a single step [21]. A combined router considers all available routing resources simultaneously

and therefore provides more routing flexibility. Chapter 4 of this dissertation provides further details on

these two types of routers.

A recent work from Rubin and DeHon [149] argued that FPGA routing was not a solved problem

despite the quality of VPR/Pathfinder. That work found that variations in initial conditions in Pathfinder

might cause 17-110% variations in critical paths. Rubin andDeHon [149] proposed techniques to reduce

delay noise to 1-13%.

2.2.2 CAD Run-time

With shrinking process sizes, the capacity of FPGA devices is increasing and the CAD run-time is be-

coming a major concern for FPGA users. Several studies focuson improving the run-time of CAD tools.

The majority of these works focus on the most computationally expensive stages of a CAD flow: place-

ment and routing [39, 80, 81, 121, 151]. Sankar and Rose [151]demonstrated that 52X placement-time

improvement could be achieved for a 100,000-gate circuit atthe expense of a 33% area penalty. This

technique used multiple-level clustering and a constructive placement followed by annealing-based iter-

ative improvement. Chin and Wilton [39] showed that FPGA architectures could be designed in a way

that will reduce the time required for placement and routingstages. Ludwin et al. [121] detailed two

parallelization strategies used within Altera’s Quartus II FPGA placer. These two strategies benefit from

multi-core processors by using a pipelined and parallel-moves approach, and offer 1.3X speedup on a

two-core processor and 2.2X speedup on a four-core processor [121]. Wang and Lemieux [181] proposed

a timing-driven parallel placer based on simulated annealing algorithm that can produce deterministic

results. The proposed placer divides the FPGA into regions and each region is further divided into sub-
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regions. The threads investigating a cluster will sequentially iterate through all cluster-locations within

its own region to find a possible swap. Only one sub-region is placed at a time to ensure determinism.

Gort and Anderson [81] presented a new routing approach combined with a modified routing architecture

and reported a 34% reduction in router run-time while incurring 3% area overhead with no delay penalty.

The proposed router consists of two stages. Rather than assigning signals to single wire sigments as in a

typical router, the first stage assigns signals to agroup of wire segmentsusing the Pathfinder algorithm,

forcing Pathfinder to terminate early. The second stage usesa Boolean satisfiability solver (SAT) to assign

each signal to one specific wire segment contained within thecorresponding group.

Chin and Wilton [38, 42] also investigated the memory storage requirement for routing algorithms.

These studies take the advantage of regularity in FPGA architectures by dividing FPGA into tiles; rather

than storing the detailed routing resource graph (RRG) for adevice.

2.3 Related Work

This section puts this dissertation into the context of earlier studies. We first present earlier studies on

experimental design space exploration. We next present analytical models-based work in ASIC domain

that is relevant to this dissertation. Earlier analytical models for FPGAs are presented next. Finally, we

present the experimental techniques that have been previously proposed for estimating wirelength, delay

and routability of FPGA implementations. In subsequent chapters, when presenting our contributions, we

further differentiate our work from these earlier studies.

2.3.1 Experimental FPGA Design Space Exploration

This section presents previous work related to FPGA design space exploration (DSE). During design

space exploration, the architects aim to optimize FPGA architectural parameters with respect to one or

more design goals, such as area, delay and power. This section presents three experimental flow that may

be used to optimize FPGA architectures.

2.3.1.1 Versatile Place-and-Route (VPR)

The most commonly used academic CAD flow is the VPR flow. VPR wasdeveloped at the University

of Toronto [19, 21] and has been widely used by the research community. Although the original version

of VPR has been developed to investigate homogeneous architectures, the newer versions [122, 123, 147]
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can investigate architectures with embedded blocks.

The inputs to VPR are a technology mapped netlist and a text orXML file describing the architecture.

The architecture files describe an architecture and includearea and delay constants related to the logic

elements and the routing elements. VPACK, an associated tool in VPR, translates a technology mapped

design to a clustered netlist. VPR places this netlist on an FPGA using a simulated annealing based

method. VPR then performs either global routing or combinedglobal/detailed routing using the Pathfinder

[129] negotiated congestion algorithm.

In VPR, area is modeled by counting the number of minimum sizetransistors [21]. VPR uses the

Elmore delay modelto estimate the delay of a routed connection. Several studies have presented power

estimation and power reduction techniques for FPGAs [11, 12, 22, 26, 47, 78, 84, 105, 106, 116, 117,

141, 154, 178].

Hammerquist and Lysecky [85] demonstrated that VPR could also be used to optimize application-

specific FPGAs for a target domain of applications. The extended version of VPR, coined as Verilog-to-

Routing (VTR), can capture designs at higher level of abstraction (HDL or higher) and pass them through

synthesis stages to generate the routing solution for FPGA implementations [147].

2.3.1.2 Virtual Embedded Block (VEB)

The island-style architecture assumed in VPR only crudely approximates commercial FPGAs and ad-

vanced optimization features are not supported in VPR. To address these limitation, Ho et al. [87] pro-

posed a methodology to optimize the Embedded Blocks (EBs) into commercial devices. This new

methodology uses the concept of VEBs that may be virtually added to an existing FPGA architecture

for rapid assessment of the consequent effects. This methodhelps evaluate the impact of introducing new

embedded blocks even before the blocks are modeled in an experimental CAD tool.

In this methodology, prospective embedded blocks, such as multipliers, are captured into VEBs. Cir-

cuits containing VEBs are then placed and routed using the vendor tools; the VEBs are considered as black

boxes during synthesis. Post-routing performance resultsfrom vendor tools are then used to investigate

the impact of the embedded block. While Ho et al. [87] used VEBto capture the effects of multipliers,

this technique was later used to investigate the impacts of other embedded blocks. For instance, Chong

and Parameswaran [43] used this technique to investigate the performance of a flexible floating-point unit

on Xilinx Virtex-II FPGA.
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Figure 2.4: FPGA Architecture Evaluation Using Design of Experiments (DOE)-Based Technique

2.3.1.3 Design of Experiments (DOE)

Originally proposed by Ronald Fisher in 1926 for use in the agriculture sector [75], the DOE based

approach has been used in many other sectors [13, 157]. The goal of this approach is to understand the

behavior of theoutputs(responses) of aprocesswith respect to theinputs (factors). In the context of

FPGA architecture exploration, the FPGA architecture can be considered as a process, with architectural

parameters (such as LUT size, channel width) being the factors or inputs and evaluation metrics (such as

area, delay) being the responses or outputs. This conceptual framework is illustrated in Figure 2.4. DOE

essentially aims to evaluate the effects of inputs on outputs using a minimal number of experiments. DOE-

based techniques typically use a maximum of three levels (values) for each inputs: maximum, median and

minimum.

To our knowledge, the study by Sheldon and Vahid [157] has been the only one that uses DOE-based

technique for FPGAs. Sheldon and Vahid [157] used a DOE-based experimental technique to optimize

the parameters of the configurable components (such as cachewith configurable size or associativity)

that were incorporated into modern pre-fabricated FPGAs. In contrast to [157], we use a DOE-based

experimental technique in optimizing the design ofnewFPGA architectures.

2.3.1.4 Regression-Based Techniques

Several studies have explored the use of regression-based techniques in exploring the design space of

general-purpose computer architectures [109], Graphics Processing Units (GPUs) architectures [96] and

FPGA architectures [136]. These studies simulate a limitedpart of the full design space. Based on the

simulation results, estimators are developed for the target evaluation metrics. Such estimators can be

used to investigate the effects of the architectural choices on the evaluation metrics. For example, Lee
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and Brooks [109] derive application-specific performance and power models for applications executed

on microrpocessors. Jia et al. [96] uses a step-wise regression method to investigate the effects of GPU

parameters on the runtime of specific applications. Nepal etal. [136] uses regression based method to

investigate the effects of algorithmic and hardware parameters on the performance of FPGA accelerators

with the target domain of applications being real-time image processing. Each of these three previous

studies use simulations on a limited number of architectural configurations from a large design space

when deriving the models for the evaluation metrics.

The regression-based methods are dependent on applications (benchmarks) that they use for modeling.

For instance, Jia et al. found that it was necessary to fine-tune their model for a specific application (AES)

to address the application-specific issues. When designingnew architectures, the CAD tools need to be

in place to identify any such issues that may affect the quality of the developed models. Furthermore,

models developed using regression-based techniques are dependent on the results from the simulations

run on the existing architectures. This latter property mayprevent them from capturing the effects of

radically different architectures.

Chapter 5 of this dissertation demonstrates that analytical models have limitations in answering cer-

tain design questions, and advocates the use of analytical models as a supplement to the experimental

approach. Regression-based techniques can be used for experimentations in such cases.

2.3.2 Analytical Models for ASICs

Researchers in the ASIC community have created several analytical models, some of which have also

been used by the FPGA community. Many of these models use the well-known Rent’s rule that relates

the average number of pins per moduleT and average number of blocks per moduleG. Landman and

Russo [107] describes the following relationship betweenT andG for a partitioned circuit:

T = t ·Gp (2.2)

where in a given partition,T is the average number of pins per module and G is the average number

of blocks per module.t and p respectively represent the Rent coefficient and the Rent exponent. In

this formulation,T represents the number of internal pins in the partitioned design (as opposed to the

number of external pins). Details on Rent’s rule and the estimation of the Rent exponent may be found
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in [44, 46, 56].

El Gamal [68] presented a model for a non-programmable chip that related the area required for

routing to the total number of pins in the logic gates. This model was later used in designing FPGAs [146].

Other researchers have also presented models for RC and RLC interconnect that can be used for delay

modeling [33, 64, 65, 150].

In 1979, Donath presented a wirelength estimation model based on the hierarchical partitioning and

placement method [67]. Donath modeled an upper bound on the average wirelength. Feuer presented

a model that provided the wirelength distribution rather than the upper bound [73]. More recently,

Stroobandt enhanced Donath’s model to take into account thefact that an optimal placement favored

short interconnection paths in physical architectures as opposed to longer paths [169, 170]. Stroobandt’s

estimation method also incorporated multi-terminal nets,external connections and three-dimensional

physical architecture parameters. Studies by Davis et al. [62, 63] presented stochastic models for the

distribution of local, semi-global and global wiring requirements based on occupancy probability. In that

work, the circuit was divided into cells for wirelength modeling. Zarkesh-Ha et al. extended this latter

model for heteregenous architectures [196]. Several studies used these wirelength distribution models for

different purposes, such as efficient channel assignment for wires [98], determination of yield for wire

cuts and bridges [45] and defining the boundary for RC lines that might be replaced with transmission

lines [94]. In [46], Christie and Stroobandt presented a comprehensive study on Rent-based wirelength

distribution models presented above. A recent study by Lanzerotti et al. [108] evaluated the performance

of the wirelength models. Comaparing the model outputs withdata extracted from modern chips, [108]

found that although a few models exhibited a similar shape for the wirelength distribution graphs, they

typically underestimated the number of connections with large wirelengths.

In [4], Agrawal presented an analytical technique to model routability for Printed Circuit Boards

(PCBs) by showing that the Lee-Moore routing algorithm could be identified as apercolation process1.

Agrawal showed that percolation theories could be used to analytically estimate the probability of routing

nets through the cells on a PCB. In this study, each cell alongthe routing path was assumed to have a

pre-defined probability of blocking a connection through them (obstacles). This study has found that at

a certain blocking probability, routability from the source to the sinks (of the nets) suddenly drops from

1A percolation process is the one that is similar to the phenomenon, in which a liquid introduced to a porous medium (such
as stone) percolates through the atoms of the medium and attempts to fully wet the medium.
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very high value (close to 1) to zero.

2.3.3 Analytical Models for FPGAs

In this sub-section, we present previous work that use analytical models either to optimize FPGA ar-

chitectures or to relate architectural parameters to evaluation metrics. These works are different from the

estimationtechniques for implementation area, delay and routability; a summary of estimation techniques

will be presented in a later section.

2.3.3.1 Modeling Area and Routability

Fang et al. [70] related the routing parameters of an FPGA to the minimum expected channel width.

When deriving the model, this work assumed the average post-placement point-to-point wirelength to

be constant at 4.43 and incorporated a few empirical relations. Lam et al. [104] related the architectural

parameters to the number of LUTs, number of clusters and usedinputs per cluster required to implement a

design on an FPGA [104]. These two models are further discussed in Chapter 3. Gao et al. [77] proposed

models to relate area and delay to LUT size. This work can be used only for unclustered LUT-based

FPGAs. Brown et al. related the parameters describing the FPGA routing fabric to the routability of

a design [25]. For a two-step router, Brown et al. modeled theroutability for the detailed phase while

assuming that the paths for the nets had been pre-defined by the global phase. We further discuss this

model in Chapter 4.

2.3.3.2 Modeling Wirelength, Delay and Energy

Smith et al. [168] presented an analytical model for the post-placement wirelength for homogeneous

FPGAs and extended this model for heterogeneous FPGAs. The wirelength model for homogeneous

architecture is part of this dissertation and is presented in Chapter 3. This model is extended to heteroge-

neous FPGAs in [168] by considering three effects related toa heterogenous architecture: (a) placement

constraints in heterogeneous FPGAs, (b) existence of dead-blocks 2, and (c) higher number of pins in

embedded blocks as compared to the number of pins in logic clusters. Singh and Marek-Sadowska [161]

presented an interconnect planning technique based on Rent’s rule that could be used to allocate opti-

mal segment lengths (1 to 4) across an FPGA architecture. This technique attempted to match the Rent

coefficient of a clustered design (circuit) with the Rent coefficient of the underlying architecture. Their

2Dead-blocks are the blocks in an architecture that are left unused. [168]

25



work utilized previous works on circuit fanout and net-length distributions from the ASIC domain [196]3

to identify the optimized segment-length distribution foran architecture. Area-delay product for an ar-

chitecture derived using this study was reported to be 10% better than a Xilinx-like device. Feng and

Kaptanoglu [72] have used the concept of entropy to estimatean input interconnect block’s (IIB) rout-

ing flexibility. This work enables designers to analytically evaluate different IIBs without going through

an expensive place-and-route stage. Feng and Greene [71] has presented an interconnect entropy model

to bound the number of required programming bits. Hung et al.[90] presented a physical delay model

for FPGAs. Taking the process-dependent values for resistance and capacitance as well as FPGA archi-

tectural parameters as inputs, their work modeled intra-cluster delay and inter-cluster delay for a given

FPGA architecture. A recent work by Rajavel and Akoglu [144]has related the FPGA architectural pa-

rameters to the energy consumption of FPGA devices. The authors of [144] used models presented in this

dissertation as a basis for their model.

2.3.3.3 Modeling CAD Runtime

Using the characteristics of the CAD algorithms and the previously published analytical models, Chin

and Wilton [41] modeled the effects of architectural parameters on the runtime for the placement and

the routing stages of a CAD flow. They further demonstrated how designers could trade off the area of

implementation to reduce the place-and-route run-time foran FPGA implementation.

2.3.3.4 Architecture Optimization by Using Convex Programming Tools

Recent studies have used convex programming tools to utilize the analytical models in optimizing FPGA

architectures [164, 166, 167]. These studies use the analytical models presented in this dissertation and in

Lam et al. [104] with the physical area and delay models for fast early-stage architecture evaluation. More

specifically, these studies use a geometric programming (GP) framework to concurrently optimize both

high-level (architectural) and low-level (transistor sizing) parameters. These optimization studies express

the equation-based analytical models in the formats that are amenable to the GP framework [164].

3The work in [196] by Zarkesh-Ha et al. presented closed-formexpressions for fan-out distribution of a random logic
network.
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2.3.4 Experimental Techniques for FPGA Wirelength, Delay and Routability

This section presents the studies onestimatingthe FPGA evaluation metrics: wirelength, delay and

routability. These earlier studies estimated the evaluation metrics for given circuits implemented on given

architectures. In contrast, this thesis presents equation-based expressions for the relationship between

FPGA architectural parameters and evaluation metrics.

2.3.4.1 Wirelength and Interconnect Distribution

Several works estimate interconnect and wirelength for an FPGA implementation [15, 91, 131, 138]. For

a given circuit implemented on an FPGA with given logic fabric parameters, Balachandran and Bha-

tia [15] estimated: (a) the pre-placement average wirelength for all nets, (b) the individual wirelength for

nets and (c) the channel width required to route the circuits. Estimations of wirelength and maximum

channel width in [15] used the information on circuit characteristics. Pistorius and Hutton [139] used

Feuer’s model [73] to the post-placement wirelength. Usingpartial least squares regression and software

quality matrix on a high level C-like circuit description, Meeuws et al. [131] estimated the number of

interconnects and wirelength. Although the number of interconnects estimated by that work followed the

experimental results, the estimated wirelength was as muchas 31% higher. Meeuws et al. [131] argued

that the estimated wirelength was still acceptable, since the estimation had been made before the synthesis

stage and could therefore guide the synthesis and later stages of the CAD flow.

2.3.4.2 Routability

Several studies have attempted to predict the routability of an FPGA implementation [27, 35, 99, 120,

175, 194]. Some of these techniques have been initially proposed for ASIC domain, but can be used to

estimate FPGA routability as well. fGREP, presented by Kannan et al. [99], estimated the routability of

placed circuits by using the routing alternatives that wereavailable for each net. Logic block fanout was

used as the measure for the routing alternatives in [99]. RISA [35] was based on a wiring distribution

map. This map was used to analyze supply versus demand for routing resources that belonged to a region.

RISA can be used for FPGAs by considering routing channels asregions. Lou’s method [120] used a

stochastic model for nets in estimating routability. In this technique, the chip is divided into regions, and

the demand for routing the nets of a placed circuit is calculated for each region. For a region, the demand

for a net will be dependent on the ratio of the number of shortest paths within that region and the total
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number of shortest paths that the net can use. Demand for a netis restricted only for the regions that lie

within the bounding box of the net. To implement Lou’s methodfor FPGAs, a region can be mimicked by

an FPGA tile. Yang et al. [194] and Chan et al. [27] used Rent’srule to estimate routability of pre-placed

circuits. Yang et al. [194] argued that the use of estimated routability during placement would contribute

to a congestion-free layout.

2.3.4.3 Routing Delay

Techniques for estimating FPGA routing delay have been presented by several studies [100, 125, 126,

135]. These techniques focus onestimatingdelay that is dependent on a particular FPGA architecture

and/or a particular set of user circuits. Manohararajah et al. [125, 126] presented a simple early timing

model that used a lookup table with pre-recorded interconnect delays as a function of connection types.

Manohararajah et al. [125, 126] used this model for physicalsynthesis. They found that the criticality

values (for nets) computed from this model were ‘almost as good’ as the ones obtained from placement

results. Nayak et al. [135] presented an estimator for area and delay that could be used for applications

described in MATLAB.

2.3.4.4 Comments on Rent Co-efficient

While several analytical models and estimation techniquesrely on the Rent’s Rule for effectiveness, recent

studies have identified the difficulty in measuring the Rent coefficient and the Rent exponent. Dambre

et al. [56] finds that the Rent parameters can be measured in different ways, and the resulting Rent pa-

rameters may be far apart. For an FPGA implementation, Pistorius and Hutton [139] argued that the

pre-placement partitioning-based Rent parameter measurement might be biased and “less natural”, and

suggested to sample the final placement regions when measuring the Rent exponent.

2.4 Summary

This chapter first presents a short description of FPGA architecture and related CAD tools, and discuss

previously published studies aimed at improving differentcomponents of FPGA architectures and/or CAD

tools. We then discuss previous work related to the contributions of this thesis. We present previously

published studies on analytical models targeting FPGA implementations. We also present the analytical

models that have been proposed for ASIC implementations, and are relevant to our work. We further
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present previous works on experimentally estimating selected evaluation metrics. While presenting our

contributions in Chapter 3, 4 and 5, we will further detail some of these previous studies.
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Chapter 3

Analytical Models Relating Architecture to

Area and Delay

This chapter describes analytical models that relate the architectural parameters of an FPGA to area of

implementation and critical path delay. More specifically,the models relate the logic fabric of FPGA

architectures (cluster size, Look-Up Table (LUT) size and inputs per cluster) to the average wirelength

after placement as well as the circuit depth after technology mapping and clustering. We show that these

models, when combined with the previously published models[70, 90, 104], can be used to investigate

the effects of architectural choices on area and delay. We also present results to validate the effectiveness

of our models. Our models are validated using Versatile Place-and-Route (VPR) 5.0 [21, 122].

The remainder of this chapter is organized as follows. Section 3.1 presents the framework and as-

sumptions that we use. Section 3.2 and 3.3 respectively detail our works on modeling area and delay

respectively. Section 3.4 presents the validation resultsfor our models as well as a discussion of the

results. Finally, Section 3.5 summarizes this chapter.

The majority of this chapter has been published in [60, 61, 168].

3.1 Framework

We first describe the architectural and circuit assumptionsthat we make in this chapter and present the

flows for modeling area of implementation and critical path delay. We then present the logic utilization

model [104] that we use to develop the models in this chapter.Finally, we introduce the physical delay
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Table 3.1: Model Parameters

Model Inputs
Architectural Parameters: Logic Fabric
K Lookup table size
N Cluster (logic block) Size
I Inputs per cluster
Circuit Parameters:
p Rent coefficient
n2 Number of 2-LUTs in a given circuit
d2 Maximum depth of 2-LUT netlist of a given circuit
Inputs from Logic Utilization Model [104]
nk Expected number ofK-LUTs needed to implement a given circuit
nc Expected number of clusters needed to implement a given circuit
c Expected number of LUTs packed in each cluster (c= nk/nc)
i Expected number of inputs used in each cluster
o Expected number of outputs used in each cluster
Input from Physical Area Model [70]:
W Expected channel width required to map a circuit
Inputs from Physical Delay Model [90]
tintra Expected intra-cluster delay along critical path of a circuit implementation
tinter Expected inter-cluster delay along critical path of a circuit implementation
Other Input Parameters:
γ Average number of inputsnot used in each LUT*
fmax Maximum fanout of all nets in a circuit (From the work of [195])
favg Average fanout of all nets in a circuit (From the work of [195])

Model Outputs:
Implementation Parameters:
dk Expected post-technology mapping depth of a circuit implemented on FPGA
dc Expected post-packing depth of a circuit implemented on FPGA
lavg placed Expected post-placement average wirlength
* We detail later how we experimentally obtainγ .

models for area and delay [70, 90], which can be used with our models to estimate area of implementation

and critical path delay.

3.1.1 Architectural and Circuit Assumptions

We assume an island-style FPGA architecture, as detailed inChapter 2. Additionally, we make the fol-

lowing architectural and circuit assumptions in deriving our models:

1. We assume homogeneous FPGA architectures. In other words, we do not consider the presence

of embedded blocks when we derive the models. However, Smithet al. [168] show that our wire-

length model for homogeneous architectures can be extendedto model the post-placement average

wirelength of heterogeneous architectures.

2. While we aim to make our models as independent of circuit parameters as possible, we can not

completely ignore the circuit properties and our models usethree circuit dependent parameters.
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First, we find that the Rent coefficientp has significant impact on the implementation of a circuit

on FPGA. Secondly, to investigate the area efficiency of an FPGA implementation, we must assume

a value for the number of 2-input gatesn2 in the original circuit; we define area efficiency by the

ratio of the final area for an FPGA implementation and this parametern2. Finally, the estimation of

delay efficiency requires the critical path depth of the original circuit. We use the maximum depth

of 2-LUT netlist d2 to capture this information and define the delay efficiency asthe ratio of the

implemented circuit’s critical path depth andd2.

As mentioned above, we try to minimize the number of circuit parameters in our model. The

suitability of a general purpose FPGA architecture should not depend on circuit parameters, since

we want our FPGA to implement as wide variety of circuits as possible. However, it may be possible

to use our model to investigate application-specific FPGAs;in this case, the circuit parameters can

be used to investigate the suitability of an architecture over a restricted range of these parameters.

In Table 3.1, we list those parameters, used by the models in this chapter.

3.1.2 Stages of Area and Delay Models

From Chapter 1.3.1, we break up the task of modeling area and delay into five stages that mimic the

stages of a typical CAD flow: technology mapping, packing (clustering), placement, routing and physical

design.

3.1.2.1 Stages of the Area Model

Figure 3.1 presents the stages associated with modeling theimplementation area for an application that

is mapped on the FPGA architecture under investigation. Outof the stages shown in Figure 3.1, this

thesis models the expected post-placement average wirelength lavg placed and the routability of an average

application that is mapped on the FPGA architecture under investigation.1 We also investigate whether

the empirical relations can be used to model the post-routing critical path wirelengthlcp routed. We use

results from prior work [70, 104] for technology mapping andpacking stages and results from [70] for

physical model stage. The routability model is part of this dissertation and will be presented in Chapter 4.

1We use the term post-placement wirelength to refer to the distances of all connections in a placed circuit. The actual
wirelength after routing may be longer than this quantity due to routing congestion.
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Figure 3.1: Flow for Modeling Area of Implementation

3.1.2.2 Stages of the Delay Model

Figure 3.2 presents the stages that are used in modeling critical path delay. Critical path in an implemented

circuit defines the longest path and bounds the maximum clockfrequency that can be used. We specifically

develop analytical models for technology mapping and packing (clustering) stages. During technology

mapping stage, the basic gates of a circuit are mapped intoK-input LUTs. We develop model for the

post-technology mapping depthdk, which is the longest path on the technology mapped circuit in terms

of the number ofK-LUTs along the path. During packing stage, closely relatedK-LUTs are packed

into clusters with the goal of reducing area and/or delay of implementation. We develop model for the

post-packing depthdc. This parameter represents the longest path on the packing solution in terms of the

number of clusters that the nets of the critical path pass through. We also present the wirelength model

for the placement stage and the routability model for the routing stage, and investigate the applicability

of empirical relations in modeling the routed critical pathwirelength. We use results from an earlier

work [90] for the physical model stage.
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Figure 3.2: Flow for Modeling Critical Path (c.p.) Delay

3.1.3 Usage of Models from Prior Work

We now present summaries of the earlier works on analytical modeling [70, 90, 104] that we use in

conjunction with the models presented in this chapter.

3.1.3.1 Logic Utilization Model

Our equations require an estimate of the number of logic elements and clusters required to implement a

circuit. We use earlier work by Lam et al. [104] for this purpose. Table 3.1 lists the outputs of the Lam

model that are used as inputs to the models in this chapter. A brief summary of the models from [104] are

presented below.

Equation for number of K-LUTs needed to implement a circuit,nk Lam et al. [104] estimatesnk using

the following equation:

nk = n2 · p

√

3
K+1− γ

, (3.1)

where,n2, p andγ are as defined in Table 3.1.

Lam et al. [104] observed that during the technology mappingprocess, allK inputs are not always
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used in eachK-LUT and the difference between the available and used LUT-inputs can be modeled asγ .

The behavior ofγ as a function ofK is extremely consistent across the MCNC and the QUIP benchmarks,

and that there is a linear relationship betweenK andγ (γ = 1
4K− 1

2). Developing an analytical expression

for γ is left as future work.

Equation for number of clusters needed to implement a circuit, nc Two types of architectures are consid-

ered in [104] to estimatenc: N-limited architectures andI -limited architectures. The architectures with a

low value ofN and a high value ofI are referred to asN-limited architectures. InN-limited architectures,

all N slots in a cluster are typically filled. On the other hand, architectures with a low value ofI and a

high value ofN are referred to asI -limited architectures. InI -limited architectures, not allN slots in a

cluster can be filled due to constraints imposed by the numberof inputs to each clusterI .

The boundary betweenN-limited andI -limited architectures is defined by the following condition [104]:

I < Np · K+1− γ
1+ 1

favg

. (3.2)

Clustering isI -limited if Inequality 3.2 holds.

To calculate the average fanoutfavg in Equation 3.2, we first estimate the maximum fan-out of the

circuit fmax using a formula from the work of Zarkesh-Ha et al. [195]. Zarkesh-Ha et al. first describe the

expression for the fan-out distribution, which is the expected number of nets in a circuit that have a given

fan-out. This fan-out distribution is used to estimatefmax in that work [195]. We adopt this formula for

the FPGA implementation of a circuit:

fmax=
[

(I +N) · nk

N
· (1− p)

](1/(3−p))
=

[(

I
N
+1

)

·nk · (1− p)

](1/(3−p))

. (3.3)

In Equation 3.3,(I +N) represents the total number of pins (both inputs and outputs) for each cluster

andnk/N represents the minimum number of clusters required to implement the circuit. The required

number of clusters may be higher forI -limited clustering as shown later. Since Rent parameterp < 1,

Equation 3.3 tells us thatfmax will increase if we increase eithernk or the ratioI/N.
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The average fanoutfavg can then be calculated using the following expression [195]:

favg=
1− ( fmax+1)(p−1)

1− ( fmax+1)(p−2)−φ(p, fmax)
−1, (3.4)

whereφ(p, fmax) is:

φ(p, fmax) =
fmax

∑
j=1

j p

j2 · ( j +1)
. (3.5)

Using Equation 3.4, Zarkesh-Ha et al. [195] show that most ofthe nets in a circuit are 2- or 3-terminal

nets. Furthermore, Lam et al. [104] experimentally finds that favg from Equation 3.4 is only a weak

function of fmax, and the use of the minimum number of clusters in Equation 3.3leads to only a small

error.

Finally, usingnk and favg from above, Lam et al. [104] estimatednc for theN-limited andI -limited

architectures as:

nc =











nk
N for N-limited clustering

nk · p

√

K+1−γ
I ·(1+ 1

favg
)

for I -limited clustering
(3.6)

whereK, N, I andγ are model inputs as defined in Table 3.1.

Average number of inputs used in each cluster, iLam et al. [104] used the following expressions to

modeli:

i =











(K+1−γ)·Np

1+ 1
favg

for N-limited clustering

I for I -limited clustering
(3.7)

where, favg is as in Equation 3.4 and the other parameters are listed in Table 3.1.

3.1.3.2 Physical Area and Delay Models Usage

We use a model from Fang and Rose [70] to estimate the channel width requirement for a given circuit.

More specifically, we use the following equation to estimatethe minimum channel-width required to map

a circuit on a given FPGA architecture [70]:

Wmin model=
1
U

· i · lavg placed

2
, (3.8)
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where,U is the utilization factor that is empirically found to be 0.71 by Fang and Rose [70]. Average

used inputs per clusteri can be estimated by using Equation 3.7 above and we use our wirelength model

to estimatelavg placed. (Fang and Rose [70] used a fixed empirical value forlavg placed.)

We use the models from Hung et al. [90] to estimate: (a) the delay within a cluster for a net,tintra and

(b) the delay between the clusters for a net,tinter. That work uses a RC-based model and uses the Elmore

delay method to model delay across pass transistor chains. The values of capacitances and resistances

for buffers, level restorers and multiplexers are collected from HSPICE simulations. The intra-cluster

(within cluster) delay in that work is dependent on cluster-sizeN, LUT-sizeK and inputs per clusterI .

The inter-cluster (between clusters) delay is dependent onrouting fabric parameters such as channel width

W, connection box flexibilityFc in andFc out, switch box flexibility Fs and segment lengthL as well as

logic fabric parameterN. Both delay components are also dependent on the paramters related to process

technologies such as a transistor’s equivalent resistance, intrinsic capacitance and gate oxide capacitance.

We omit the equations from that work, but they can be found in Hung et al. [90].

3.2 Modeling Area of Implementation

We now describe the derivation of our model that relates FPGAarchitectural parameters to area. We first

present our models for post-placement average wirelength,and then show how this information can be

used in the area model.

3.2.1 Modeling Post-Placement Average Wirelength

In this sub-section, we derive a model for the expected pre-routing wirelength of nets for a circuit imple-

mented on a homogeneous FPGA. In Section 2.3.2, we present the earlier studies that model wirelength as

a function of the number of cells in a circuit that is implemented on an ASIC [62, 63, 73]. We observe that

these models can be used for FPGA implementations, by treating either Basic Logic Elements (BLEs) or

clusters as “cells”. (Section 2.1 introduces BLEs and clusters). In this dissertation, we treat the clusters

as cells. Clusters loosely represent the Logic Array Blocks(LABs) of Altera FPGA architectures and the

Clustered Logic Blocks (CLBs) of Xilinx architectures.
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We start with the wirelength model from Davis et al. [62, 63]:

lavg=

p−0.5
p −

√
G− p−0.5

6
√

G(p+0.5)
+ −p−1+4(p−0.5)

2p(p+0.5)(p−1)G
p

1+ −2p−1+2(2p−1)

2p(p−1)(2p−3)G
(p−0.5)− p−0.5

6p
√

G
− (p−0.5)

√
G

p−1

, (3.9)

where lavg represents the average wirelength for a two-pin connectionon any path,G represents the

number of cells in the circuit, andp represents the Rent coefficient of the circuit.

There are two types of nets in an FPGA implementation: (a)intra-cluster nets:nets that connect

the BLEs inside a cluster and (b)inter-cluster nets:nets that connect the clusters. Our model for post-

placement wirelength considers only the inter-cluster nets. For our applications, this makes sense, since

it is the inter-cluster net that determines the amount of routing area that is required in an FPGA as well as

the delay of an FPGA implementation.

We observe that the clusters of a post-packing (pre-placement) FPGA implementation are analogous

to the cells considered for ASIC implementation in the work of Davis et al. [62, 63]. This observation

leads us to use Equation 3.9 to model the average pre-routingwirelength for an FPGA implementation:

lavg(pin−to−pin) =

p−0.5
p −√

nc− p−0.5
6
√

nc(p+0.5) +
−p−1+4(p−0.5)

2p(p+0.5)(p−1)n
p
c

1+ −2p−1+2(2p−1)

2p(p−1)(2p−3)n
(p−0.5)
c − p−0.5

6p
√

nc
− (p−0.5)

√
nc

p−1

, (3.10)

wherelavg(pin−to−pin) represents the average wirelength for a two-pin connectionon any path andnc rep-

resents the number of clusters required to implement a circuit on a given FPGA architecture. We use

Equation 3.6 to estimatenc as a function of FPGA architecture parameters. In Section 3.4.2, we discuss

the limitations of this wirelength model. In Section 3.4.2.3, we simplify Equation 3.10 without signifi-

cantly affecting the accuracy.

3.2.1.1 Multi-Terminal Nets

Equation 3.10 models pre-routing wirelength for two-terminal nets. The nets of real circuits typically

have more than two terminals. We use a relationship from the earlier work by Davis et al.[62, 63] to

approximatelavg placed, the expected average post-placement wirelength for nets with more than one sink:

lavg placed= lavg(pin−to−pin) ·
4· favg

3+ favg
, (3.11)
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where the average fanoutfavg is from Equation 3.4.

3.2.1.2 Minimum Rectilinear Spanning Tree (MRST) Length and Minimum Rectilinear Steiner
Tree Length

In later sections, we validate our model by comparing the model results to the experimental results from

VPR. However, the wirelength models described above estimate the Steiner length for each net. Finding

the minimum rectilinear Steiner tree length is an NP-complete problem [101] and heuristic based methods

are available to approximate the Steiner tree length. A relationship from Hwang [93] gives us an upper

bound for the maximum deviation of a heuristic based Steinertree length from the minimum Steiner tree

length [170]. This relationship shows that the minimum rectilinear Steiner tree length is at least two-third

of the length of a MRST:

lrst ≥
2
3

lmst, (3.12)

where lrst represents the minimum rectilinear Steiner tree length andlmst represents the MRST length.

When validating our model in a later section, we use a technique from Wu and Chao [186] to ap-

proximate the Steiner tree length. For completeness, we also present the following relationship from

Stroobandt [170] that provides both upper and lower bounds for Steiner tree length:

2
3

lmst≤ lrst ≤ lmst. (3.13)

3.2.2 Estimating Area of Implementation

Using the wirelength model derived above in conjunction with the earlier models [70, 104], we now model

the area of implementation for a circuit on a given FPGA architecture. Our area metric is the total number

of programming bitsBprog, required to map an application on the FPGA under investigation.

If nc clusters are required to implement a circuit on a given FPGA architecture, the number of pro-

gramming bits can be expressed by:

Bprog = Numbero f Prog Bits per tile∗nc, (3.14)

wherenc can be obtained from Equation 3.6.

Numberof ProgrammingBits per tile can be found by adding three parameters: (a) programming
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bits per clusterBcluster, (b) programming bits per connection blockBCB and (c) programming bits per

switch blockBSB.

For a cluster with cluster sizeN and inputs per clusterI , the inputs to the multiplexer will be(N+ I).

For a LUT size ofK, the programming bits required for the cluster can be expressed by:

Bcluster= 2K +1+
[

N ·K ·
(⌈√

N+ I
⌉

+
⌊√

N+ I
⌋)]

, (3.15)

Inputs to the multiplexers of a connection block will beW ·Fcin for given architecture parameters. For

an architecture withI inputs per cluster, the programming bits required for connection blocks can then be

expressed by:

BCB = I ·
[⌈√

W ·Fc in

⌉

+
⌊√

W ·Fc in

⌋]

, (3.16)

Finally, since we assume that the connections are allowed oneach side of a cluster in both horizontal

and vertical directions (as in the experimental flow VPR [166]). The number of inputs to the switch block

multiplexers for connections to the clusters will then beN/2·Fcout; the multiplexer inputs for connections

to the next switch blocks will beFs. Total inputs to multiplexer switch blocks will be the summation of

these two terms and the programming bits required for switchblocks can be expressed by:

BSB=W ·
[

⌈

√

N ·Fc out

2
+Fs

⌉

+

⌊

√

N ·Fc out

2
+Fs

⌋

]

. (3.17)

Equation 3.8 gives us the minimum channel widthWmin required to implement a circuit. We increase

Wmin by 20% (W =Wmin∗1.2) while estimating the area of implementation.

3.3 Modeling Post-Routing Delay

Recall from Chapter 1 that we break up our delay model into stages that are analogous to a typical CAD

flow used for FPGA implementation. In this section, we first present two models: (a) a model for the

length of the critical path after the technology mapping stage and (b) a model for the length of the critical

path after the packing (clustering) stage. We then show how these models can be used to model the critical

path delay for an FPGA implementation.
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a) depth = 3 b) depth = 2

Figure 3.3: Two Possible Mappings forK = 4

3.3.1 Modeling Post-Technology Mapping Depth

We first describe a relation between the LUT size of an FPGA architecture, and the expected depth of a

circuit after technology mapping. The inputs to this part ofthe model are the LUT sizeK and the depth

of the circuit before technology mappingd2. (d2 is depth of the original circuit). The output is the depth

of the circuit after it is mapped intoK-input LUTs. This parameter is represented bydk. We now detail

how we derive the model fordk.

Assume that the portion of an original circuit being implemented consists of 2-input nodes. Most

technology mapping algorithms attempt to minimize the depth of the resulting implementation. However,

the actual pattern of nodes covered by a single LUT depends onthe structure of the original netlist of the

circuit. Figure 3.3 shows two possible scenarios in which 2-input nodes are mapped to a 4-input LUT.

The depth after the technology mapping stage for these two scenarios will be 3 and 2 respectively. For

a K input LUT, the extremes (for reduction in depth with respectto the depth of 2-input nodes) can be

generalized asK−1 andlog2(K). For a large netlist, we would expect the “average” depth to be between

these two extremes.

Recall from Section 3.1.3.1, typically not allK inputs to aK-input LUT are actually used and the

expected number ofun-used inputs in aK-LUT is represented by the parameterγ . Incorporatingγ , depth

values for the two possible extreme technology mapping solutions similar to ones shown in Figure 3.3 for

K=4 can be written asK −1− γ andlog2(K − γ). We approximate that the average of these two extrema

can capture the reduction of depth fromd2 to dk, giving us the expression fordk:

dk =
2·d2

K−1− γ + log2(K − γ)
. (3.18)

In Section 3.4.3, we will show that this simple expression matches the experimental results well.
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LE LE LE

Connections made local

Figure 3.4: Cluster with Three Lookup-Tables

3.3.2 Modeling Post-Clustering Depth

Logic elements (LEs) are usually grouped into tightly connected clusters. Connections within a cluster

are faster than connections between the clusters; the clustering (packing) stage attempts to include as

many LEs within a cluster as possible. In this sub-section, we derive a relation between the FPGA cluster

architecture and the depth of the circuits after they are mapped to clusters.

We derive this relation in two steps. First, we derive the expected proportion of all connections in a

circuit that are made local after clustering and denote it assckt. Intuitively, as cluster size is increased, more

connections can be made local and hencesckt is increased. Second, we determine the expected proportion

of connectionsalong the critical paththat are made local after clustering, which we will denote byscp.

These two steps allow us to compute the expected number of inter-cluster and intra-cluster connections

along the critical path of a given circuit.

Note that each connection in a circuit corresponds to one sink in a multi-terminal net, and represents

one input to an LE. Thus, in this thesis, we count connectionsby counting the number of input pins

of a LE, andnot the output pins. A LE withK − γ used inputs and one used output contributesK − γ

connections to the total connection count.

3.3.2.1 Proportion of Connections Made Local

Most clustering algorithms operate incrementally; that is, they choose a seed and iteratively add related

LEs until the cluster is full [21]. Each time an LE is added to the cluster, additional connections are

typically made local. These local connections can be one of two types: (1) those that are made local due

to the optimization algorithm, and (2) those that are made local “by chance”. We separately explain these

two types of local connections and derive equations for them.
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Consider a cluster consisting of a single LE withK − γ used inputs. In such a cluster, the only way

a net can be made local (becomes completely absorbed by the cluster) is if the output of the LE feeds

directly back to one of its own inputs. Experimentally we have observed that this rarely happens, so we

can approximate the number of local connections in this caseas 0. Now consider adding additional LEs

to the cluster. A timing-driven clustering algorithm wouldattempt to pack as many LEs along the critical

path into a cluster as possible. This often leads to clusterings as shown in Figure 3.4, in which each LE

receives an input from an LE that is already in the cluster. Thus, we have the number of connections made

local by designncktdesign as:

ncktdesign= c−1. (3.19)

Recalling from Table 3.1 that the notationc represents the average number of LEs (LUTs) in a cluster

nk/nc, if there arec LEs in the cluster, then the cluster has a total ofc(K − γ) connections. Of the

remainingc(K − γ)− (c−1) connections in the cluster, some will be global and some willbe local. We

assume that, apart from thec−1 connections described above, each connection in the implementation is

equally likely to be made local. If there arenk logic elements in the circuit, and ifc of these are packed

into each cluster, the probability that the logic elements for each connection is within the same cluster is

c/nk. This construction gives us the expected number ofadditionalconnections made local as

ncktchance=
c
nk

[c(K − γ)−c+1] . (3.20)

Combining Equations 3.19 and 3.20 leads to the expected number of local connectionsnckt as:

nckt = (c−1)+
c
nk

[c(K − γ)−c+1] , (3.21)

and since there arec(K − γ) total connections in each cluster, the expected proportionof the connections

made local after clusteringsckt can be expressed by:

sckt =
(c−1)+ c

nk
[c(K− γ)−c+1]

c(K − γ)
, (3.22)

wherec= nk/nc and can be written as a function of the architectural parametersN andI and the circuit

Rent coefficientp using the following results from [104]:
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Figure 3.5: Comparison ofsckt andscp from T-VPACK

c=















N if I ≥ Np K+1−γ
1+ 1

favg

p

√

I(1+ 1
favg

)

K+1−γ if I < Np K+1−γ
1+ 1

favg

(3.23)

where the average fanoutfavg is given by Equation 3.4.

3.3.2.2 Connections Along the Critical Path

Equation 3.22 gives us the expected number of connections that are made local in a circuit. We now seek

scp, which is the expected number of connectionsalong the critical paththat are made local after packing

(clustering). Intuitively, a timing-driven packing algorithm will attempt to make more paths along the

critical path local, compared to other paths, so we would expectscp > sckt.

We investigated this relation experimentally using two clustering tools: T-VPACK [21] and a replica

of iRAC [161]. Both of these are greedy algorithms that pack LUTs into a cluster based on the closeness

to the LUTs previously packed. iRAC uses less routing resources while nominally affecting the timing-

quality of T-VPACK [190]. As shown in Figure 3.5 (which was obtained using T-VPACK), the values of

scp andsckt are roughly the same for all values ofN. The results from iRAC were similar. Based on these

results, our model assumesscp = sckt.

The results of Figure 3.5 are counter-intuitive. We would expect the clustering algorithm to give

preference to paths that are critical. However, as clustering proceeds, the criticality of paths are changed.

Even if the criticality of a net is recalculated frequently,the problem of optimizing the wrong path during

the early stages of clustering will still exist. This suggests that T-VPACK and iRAC arenot optimizing

the critical path well and are optimizing all paths approximately equally.
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This suggests an interesting topic of future work: to find a better way to predict, ahead of time, which

paths are actually going to be critical. The clustering stage can then pack the logic blocks along the critical

path more efficiently. In such cases,scp is expected to be higher thansckt. Modeling the ratio ofscp and

sckt for such packing tools may be an interesting area of future research. Once such a model is available,

it can be readily used with our proposed model fordc.

Our model can be used for evaluating new packing algorithms as well. The equation that we present

for sckt assumes that some connections are made local by chance. If analgorithm can predict the final

critical path ahead of time, the value ofscp should be higher thansckt. In other words, our expression for

sckt can be used as a lower-bound for evaluating new packing algorithms.

3.3.2.3 Overall Model for Post-Clustering Depth

To summarize, the number of connections absorbed in the entire circuit sckt is equal to the number of

connections absorbed along the critical pathscp. Using the expression forsckt derived above, we can then

model the number of clusters on the critical path (the post-clustering inter-cluster depth)dc as,

dc = dk · (1−scp) = dk ·
[

1−
(c−1)+ c

nk
[c(K− γ)−c+1]

c(K − γ)

]

, (3.24)

wherec is given by Equation 3.23.

3.3.3 Modeling Critical Path Delay

Within each cluster, the critical path is expected to pass throughdk/dc lookup tables. If we have estimates

of the intra-cluster delaytintra and the inter-cluster delaytinter then the total critical path delay can be

estimated as:

tc.p. = dc

[

tinter +
dk

dc
tintra

]

= dc · tinter +dk · tintra. (3.25)

We can estimate the values oftinter and tintra in two ways. First, we can use the physical model

from the work of Hung et al. [90] to estimatetinter andtintra. In Chapter 5, we will discuss how we use

this technique to optimize architectures with respect to critical path delay. Secondly, we can follow the

technique detailed in Das et al. [60], which will allow us to use the results from our wirelength model and

the first phase of the timing-driven placement stage of a CAD flow (such as, VPR) to estimatetinter and
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Table 3.2: MCNC Benchmark Circuits

Circuit Name n2 d2 Inputs Outputs Rent Coefficient*
Non pad-constrained circuits
ex5p 1779 15 8 63 0.738
misex3 2557 13 14 14 0.714
apex4 2196 12 9 19 0.738
alu4 2732 14 14 8 0.662
tseng 1861 43 52 122 0.524
seq 2939 14 41 35 0.721
apex2 3165 17 39 3 0.743
diffeq 2556 39 64 39 0.554
s298 4272 32 4 6 0.560
spla 7438 19 16 46 0.726
frisc 6023 67 20 116 0.644
elliptic 5474 52 131 114 0.593
pdc 8408 19 16 40 0.748
ex1010 8020 17 10 10 0.749
s38584.1 12491 25 39 304 0.632
s38417 13656 25 29 105 0.591
clma 14253 40 383 82 0.726
Pad-constrained circuits
dsip 2531 10 229 197 0.527
des 2901 14 252 243 0.646
bigkey 2979 10 263 197 0.517
*Rent coefficients shown are representative values (estimated forN=8, K=4)

Table 3.3: QUIP Benchmark Circuits

Circuit Name n2 d2 Inputs Outputs Rent Coefficeint*
oc aescore inv 25724 33 260 129 0.670
oc aescore 18178 25 259 129 0.673
oc desdes3perf 78872 16 234 64 0.634
oc video compressionsystemsjpeg syn 78245 65 20 27 0.614
*Rent coefficients shown are representative values (estimated forN=8, K=4)

tintra. The first phase of a timing-driven placement is much faster when compared with the total placement

time. Since we prefer our model to evaluate delay without going through any stage of the CAD flow, we

use the first technique from Hung et al. in estimatingtinter andtintra. The interested readers may refer to

the work of Das et al. [60] for details on the second technique.

Table 3.4: MCNC Benchmarks, Used to Measureγ for Model Validation

Circuit Name n2 Inputs Outputs
C6288 1820 32 32
C7552 1781 207 107
i10 1668 257 224
apex3 1452 54 50
parker1986 1137 48 8
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Table 3.5: γ Values from Five MCNC Benchmarks

K 2 3 4 5 6 7
γ 0.000 0.279 0.427 0.898 1.278 1.648

3.4 Validation of Models

To evaluate the accuracy of different components of our analytical models, in this section, we compare

the model predictions to the experimental results, obtained using CAD tools. The first two sub-sections

present the evaluation results for area equations and delayequations for twenty large MCNC [192]

benchmark circuits listed in Table 3.2. The third sub-section examines the effects of the Rent coefficient

on the validation results. The last sub-section presents the validation results for four large QUIP [9]

benchmark circuits listed in Table 3.3.

Our model equations require an estimate of Rent parameter. Different techniques have been previ-

ously presented for estimating Rent parameters [139]. Pistorius and Hutton [139] compare some of these

techniques that uses the netlist after placement for calculation of the Rent parameter, and show that Rent

parameters estimated by using different techniques differin values. We use an inhouse tool,bcgen, to

estimate the Rent parameters.bcgenuses recursive bipartitioning technique to estimate the Rent parame-

ters. To estimate the Rent parameters for a clustered circuit, we use T-VPACK [21] to cluster (pack) the

circuit and use the post-clustering netlist as an input to bcgen.

For validation, we also need the values of unused LUT inputsγ , a closed form expression for which is

not yet available. We experimentally measure the set ofγ values by using five MCNC benchmark circuits

that are different from the 24 evaluation circuits listed inTable 3.2 and Table 3.3. These five MCNC

benchmark circuits and the estimated values forγ are listed in Table 3.4 and 3.5.

3.4.1 Validation of Wirelength Model

Figure 3.6 presents the validation results for our wirelength model presented in Section 3.2.1. We use our

model equations to estimate the post-placement average wirelength. We collect the experimental results

for wirelength from the placement stage of an academic CAD tool, VPR [21]. We use the version VPR

5.0 [122] for validation.

In Figure 3.6, we plot wirelength while sweeping three FPGA architectural parameters: cluster size

N, LUT sizeK and inputs per clusterI . The routing segment length is fixed at 1. In all cases, we find that

the model results underestimate the experimental results,but that the trends observed in the model results
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Figure 3.6: Verification of Wirelength Model for 20 MCNC Benchmarks

match the trends observed in the experimental results.

Our experimental setup reports minimum rectilinear spanning tree length (MRST). We use a heuristic-

based technique presented by Wu and Chao [186] to approximate the Steiner tree lengths. To adopt this

technique for our purpose, we start with the MRST reported byVPR and use the routing resources (such

as switch blocks) on the traversal path of MRST as prospective Steiner points. In Figure 3.6, we find

that the rectilineal minimum Steiner length is lower than MRST but is higher than the bound defined by

Hwang [93] and presented in Equation 3.12. Furthermore, themodel results are closer to the lower bounds

from Equation 3.12 (results not shown). We make similar observations for all wirelength results. For the

remaining sets of results, we only report the MRST length from VPR except for Figure 3.7(c). Due to the

effects of pad-constrained circuits that we discuss later,the first point of Figure 3.6(c) for Steiner length

is an outlier. Figure 3.7(c) will show that we do not have suchan outlier for non pad-constrained circuits.

3.4.1.1 Effects of Pad-Constrained Circuits

We have observed that the model results for the three pad-constrained circuitsdes, dsipandbigkey, do not

follow the experimental results as closely as for the other circuits. As we observe from Table 3.2, the ratio

of input/output pins and logic blocks is higher for the pad-constrained circuits. The device size for these

circuits is dictated by the I/O ring [15] and the nature of theI/O ring will affect the wirelength as well.
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Figure 3.7: Verification of Wirelength Model for 17 Non-Pad-Constrained Benchmarks

Our models do not capture the I/O ring limitations and is therefore not capable of accurately modeling the

wirelength for these circuits. Figure 3.7 shows the validation results for the set of seventeen circuits that

does not include pad-constrained circuits.

In Figure 3.8, we further investigate the effects of I/O rings on post-placement wirelength. We in-

vestigate experimental (VPR) wirelength with 3, 6 and 12 I/Os per I/O pad. We find that with higher i/o

capacity, the trends for the experimental results are closer to those for the model results; average wire-

length consistently decreases with increasingN andK. Since our model does not consider the effects of
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Figure 3.8: Effects of i/o Capacity on Wirelength for Twenty BenchmarksIncluding Pad-
Constrained Benchmarks; i/o Capacity is the Number of I/Os Contained in the I/O Pads [179]
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Table 3.6: Rent Co-Efficients, as a Function of LUT SizeK (Cluster size,N=8)

LUT Size K
Non pad-constrained circuits Pad-constrained circuits

ex5p misex3 s38584.1 s38417 clma dsip des bigkey
4 0.775 0.692 0.692 0.648 0.737 0.594 0.634 0.659
5 0.736 0.664 0.662 0.626 0.718 0.515 0.643 0.468
6 0.696 0.607 0.651 0.610 0.710 0.620 0.718 0.537
7 0.637 0.582 0.609 0.624 0.688 0.559 0.711 0.612

I/O rings, the plots in Figure 3.8 include only one set of model results.

The nature of pad-constrained benchmarks is further validated by investigating the Rent co-efficients

for these circuits. In Table 3.6, as a function ofK, we present Rent co-efficients for pad-constrained

circuits as well as representative non-pad-constrained benchmarks. We find that Rent co-efficients for the

pad-constrained benchmarks, in contrast to the others, do not monotonically decrease with increasingK.

Since the modeled wirelength is a function of Rent coefficient, the wirelength for increasingK will not

decrease as anticipated by our model.

3.4.1.2 Effects ofN- and I -Limited Architectures

The architectures considered in Figure 3.6(a-b) and in 3.7(a-b) areN-limited (as defined in Section 3.1.3.1).

Figure 3.6(c) and 3.7(c) include bothN-limited andI -limited architectures. We identify the boundary be-

tweenI -limited andN-limited architectures in these latter two figures. From thework of Lam et al. [104],

the number of clusters becomes approximately constant beyond this boundary for increasingI and fixed

N. We expect the estimated wirelength to be constant beyond this boundary. This is confirmed by the

results in Figure 3.6(c) and in 3.7(c).
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Figure 3.9: Verification of Wirelength forN=8 (Circuit by Circuit)
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3.4.1.3 Circuit by Circuit Verification

Figure 3.9 shows a plot of the measured versus estimated wirelength for seventeen non pad-constrained

benchmarks. ForN=8, we have shown three datasets, forK=4, K=6 andK=7. This plot shows that the

model results underestimate the experimental results. Furthermore, experimental results monotonically

decrease for increasing LUT size, except forfrisc.

While presenting the results for individual circuits, we note that the goal of our work is to capture the

effects of architectural changes on the expected evaluation metrics for atypicalapplication. Discrepencies

shown by pad-constrained benchmarks (dsip, desand bigkey) or the outlier of Figure 3.9 (frisc) will

therefore not affect the applicability of our model in early-stage architecture investigation.

3.4.1.4 Underestimation of Average Wirelength by Our Model

We find from Figure 3.6 and 3.7 that our model underestimates the experimental results in all cases. As

we explain in Section 3.2.1, the model equations use Steiner-tree based wirelength estimation. In contrast,

VPR estimates the wirelength based on minimum rectilinear spanning tree lengths. (Our Steiner length

calculation from experimental results was based on a heuristic based technique.) In the next sub-section,

we present a few other reasons that may contribute to the underestimation of average wirelength by our

model.

3.4.2 Discussion on Results for Wirelength Model Validation

Earlier studies find that the wirelength models proposed forASIC domain also typically underestimate

experimental results. Lanzerotti et al. [108] find that, when applied to IBM POWER4 chip, the wirelength

estimation techniques from Donath [67], Davis et al. [62] and Christie and Stroobandt [44] all underes-

timate the experimental results. Several earlier publications [54, 74, 108, 169, 193] discuss the reasons

behind such discrepancies. We now present the relevant findings from these studies with special focus on

Davis’ model that we use to derive our model.

3.4.2.1 Issues Related to Estimation of Rent Parameters

Earlier studies find that the estimation of Rent parameters substantially affect the estimated wirelength [55].

Yang et al. [193] observes that when using the Davis model, designers typically estimate thepartition-

level Rent parameters; we also use partition-level Rent parameters to validate our model. For IBM-
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PLACE benchmark suites, they show that the placement-levelRent parameters are larger than the partition-

level ones. They further demonstrate that the use of theplacement-levelRent parameters instead of the

partition-level Rent parameters significantly improves the quality of Davis’ model, and in some cases,

the modeled wirelength overestimates the experimental wirelength. For FPGA architectures, a later study

by Pistorius and Hutton [139] finds that even the placement-level Rent parameters may significantly vary

when the regioning methods for estimating Rent parameters are varied. ([139] presents three regioning

methods to estimate placement-level Rent parameters for the FPGA implementation of circuits).

We use the partition-level Rent parameters to validate our model since our model is designed for early

stage architecture design, in which designers will use our model to evaluate a wide range of architectures

without going through expensive placement stages. It is interesting to note that the Rent parameters that

we use for wirelength estimation is different from the Rent parameters that are used when deriving the

model for the number of clusters required to map a circuitnc, as the latter uses the Rent parameters of the

circuit when implemented by 2-input lookup tables before clustering. We note that this discrepancy is an

interesting issue that should be addressed for future architectural modeling techniques.

3.4.2.2 Other Issues with Wirelength Estimation Techniques

The earlier studies have found further issues with regards to using Davis’ model for wirelength estimation.

Lanzerotti et al. [108] and Stroobandt [169] observe that Davis’ model is derived on the basis of two-

terminal nets, and a linear net model is assumed from source to sink, where each net part is of equal

length. The correction factor assuming this linear model has been presented as Equation 3.11 in this thesis.

These studies [108, 169] observe that the assumption of a linear net model negatively affects the quality

of results from Davis’ model. Stroobandt [169] further observes that the use of a ‘fan-out distribution’

instead of the ‘average fan-out for all nets’ may improve thequality of Davis’ model. Lanzerotti et

al. [108] emphasised the necessity of considering rectangular regions along with square regions when

deriving wirelength models.

Despite these issues, we observe that the proposed wirelength model can still enable the designers to

evaluate the trends of the effects of architectural choiceson average wirelength, and can be a valuable

tool during early stage architecture investigation.
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Figure 3.10: Nominal Effects of Using Simplified Expression for Wirelength Modeling

3.4.2.3 Simplified Form of Wirelength Model

We observe that some terms of Equation 3.10 do not have significant effect on modeled wirelength.

Equation 3.26 presents a simplified form of Equation 3.10.

lavg(pin−to−pin) =
0.8∗np+0.5

c −nc
√

nc−1.5∗np
c − (p−0.5)

p−1 ∗nc

, (3.26)

In deriving Equation 3.26, we remove insignificant terms. For the remaining terms, we investigate whether

a representative value of Rent parameterp can capture the effects of varying Rent parameters for the

benchmarks. If that is the case, we usep=0.67 to further simplify the remaining terms. For instance,

the value 0.8 in Equation 3.26 has been obtained by usingp=0.67 on the expression−p−1+4(p−0.5)

2p(p+0.5)(p−1) in

Equation 3.10. Figure 3.10 shows model results for the expected average post-wirelength for nets for

multi-terminal nets for two cases: (a) wherelavg(pin−to−pin) is estimated by using the original form in

Equation 3.10 and (b) wherelavg(pin−to−pin) is estimated by using the simplified form in Equation 3.26.

We find that the results from these two cases are very close. (The results are averaged over twenty MCNC

benchmarks.)

3.4.3 Validation of Delay Models

To evaluate the accuracy of our delay model, we again comparethe model predictions to the results that we

obtain from academic CAD tools. We separately validate the models for post-technology mapping depth

dk and post-clustering depthdc. We use twenty large MCNC benchmark circuits, listed in Table 3.2.

Although the value ofN is typically between 4 and 16 in modern FPGAs, we validate ourdepth model
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Figure 3.11: Model Verification fordk (Circuit by Circuit)

Table 3.7: Standard Deviation of Estimatingdk for 20 Circuits

LUT-Size: 3 4 5 6 7
Std. Dev.: 3.45 2.15 2.87 2.57 2.35

for much higher values ofN to examine its applicability in future generations of FPGAs.

3.4.3.1 Validation of the Model for Post-Technology Mapping Depthdk

Measured results fordk are gathered by recording the maximum depth for each benchmark circuit after

it is technology mapped using Flow-Map [50]. Analytical results are obtained by using the measuredd2

and Equation 3.18. Thed2 values are measured from the 2-input netlist of the benchmark circuits and are

presented in Table 3.2.

Figure 3.11 shows a plot of the measured versus estimated depth for each of the twenty benchmark

circuits. We have shown two representative data sets, forK=4 and forK=6. The solid line with unit slope

in Figure 3.11 represents the points where the predicteddk values are equal to the measureddk values.

(Recall thatdk values are the number ofK-LUTs along the critical path after technology mapping.) Due to

close proximity of data values, some of the benchmarks overlap with each other both forK=4 andK=6 and

data points for all twenty circuits are not visible in this graph. We fit lines to the data-points forK=4 and

K=6. The slope for these two lines are 1.4 and 1.6 respectivelywith r2 value of 0.94 and 0.83 respectively,

wherer is the correlation coefficient. Figure 3.11 shows that the prediction loses some accuracy as depth

increases. Figure 3.12 plots the post-technology mapping depth along the critical path for different LUT

sizes. Each point in this graph represents the arithmetic mean of the depth values across the benchmark

suite. As these two graphs show, the analytical results track the experimental results closely.

We also examine the standard deviation of the differences between experimental and estimated val-

ues for different values ofK, results for which are presented in Table 3.7. The absolute error between
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Table 3.8: Absolute and % Absolute Difference Between Experimental and Estimated Values ofdk

LUT-Size: 3 4 5 6 7
Absolute Diff.: 2.39 1.83 2.21 2.06 2.15

% Absolute Diff.: 15.24 16.25 22.81 24.68 29.33

experimental and estimated values (averaged for 20 circuits) are presented in Table 3.8.

3.4.3.2 Validation of Model for Post-Clustering Depthdc

We first present validation results forsckt that represents the expected proportion of nets made local

during the clustering phase. Figure 3.13 illustrates the accuracy of our model in estimatingsckt for three

representative values ofK. We collected experimental results using two packing tools, T-VPACK [21] and

a local implementation of iRAC [161]. As the graphs show, ourmodel captures the experimental trends

of both. However, for small clusters, our model overestimates the number of local connections, while

for large clusters, our model underestimates. All of the cases in Figure 3.13 are forN-limited clustering,

whereI = (K/2) · (N+1). Discussion on these discrepancies will follow.

In all cases, however, the slopes for the results from our model are comparable to those for the ex-

perimental results, especially for higher values ofK. An interesting observation is that for a LUT size of

7, results from T-VPACK almost coincide with the results from our model. This makes us believe that

at this LUT-size, T-VPACK makes connections localby designand the rest of the local connections are

absorbed within clustersby chance.

Finally, Figure 3.14 compares our model for post-clustering depthdc to experimental results obtained

using T-VPACK.

55



Þßàá

Þßâá

Þßãá

Þ âÞ äÞ åÞ æÞ

çèéêëìí îïðìñ ò

ó
ôõ
ö
õ
ô÷
øõ
ù
úõ
û
ü
ú

û
õ
ù
ù
ý
û
÷ø
õ
ù
þ
ÿ
þ
û
�
÷

����������	
 �����

����������	
��������

����

����

����

����

�� !"#$ %&'#( )

*
+,
-
,
+
./
,
0
1,
2
3
1

2
,
0
0
4
2
./
,
0
5
6
5
2
7
.

� �� 8� 9� :�

;<=>?@A>BCDE F@GHIJ

;<=>?@A>BCDEFKLMNHIOJ

PQR>E

(a) K=4 (b) K=6

STUS

STVS

STWS

XYZ[\]^ _`a]b c

d
e
f
g
f
eh
if
j
kf
l
m
k

l
f
j
j
n
l
hi
f
j
o
p
o
l
q
h

S VS rS sS tS

uvwxyz{x|}~� �z����

uvwxyz{x|}~����������

���x�

(c) K=7

Figure 3.13: Verification of Equation forsckt

3.4.4 Discussion on Results for Delay Models Validation

The graphs of Figure 3.13 show that, for small clusters, our model overestimates the local connections,

while for large clusters, our model underestimates. These discrepancies can be partially explained as

follows. First, consider a small cluster withN = 2, K = 4 andI = 6. As shown in Figure 3.4, our model

assumes that the clustering algorithm will always find a second LE that can use the output of the first LE.

If the clustering algorithm chooses an LE with four inputs asthe seed, the second LE will use the output

from the seed and at most two more unique inputs. It seems likely that, often, the clustering algorithm

will be unable to find such an LE, so it would instead choose an LE that shared the appropriate number of

inputs, but not the output from the first LE. Our model then overestimates the local connections.

For large clusters, the situation is different. In such cases, it is possible that LEs may receive more

than one input from a local LE (so adding a LE creates more thanone new local connection). As a result,

the number of connections made local by design will be more thanc−1 that is assumed in Equation 3.19

and the experimental results will be higher than the predicted values.
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Figure 3.14: Verification of Equation fordc

3.4.5 Effects of Rent Coefficient

This thesis also investigates the effects of Rent coefficient on the results from our models as well as the

area models of Lam et al. [104]. We have examined the impact ofthe Rent coefficient’s effect by using

two sets of Rent coefficients for each circuit:

1. In the first case, for each circuit, we have used a fixed valueof Rent coefficientp. We do not change

this value with the changes in architectural parameters, such asN, K and I . We have listed these

values ofp for the MCNC and the QUIP benchmark circuits in Tables 3.2 and3.3 respectively.

This set of Rent coefficients have also been used to validate our model outputs.

2. In the second case, we measures the Rent coefficients for the packed circuits from T-VPACK by

using our inhouse toolbcgenthat uses a recursive bi-partitioning method. These measured values

of p may change with the architectural parameters.

The differences between the maximum and the minimum values of the Rent coefficients for the latter

range between 3% to 15% for all circuits except fors298, dsip and bigkey. We generate two sets of

model outputs by using the above two sets of Rent coefficientsseparately. Figure 3.15 shows the results.

Figure 3.15(a) to (c) show the effects of estimated Rent coefficients on the area models. In all cases,

we find neglible differences between these two sets of results. Our delay equations depend on the Rent
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Figure 3.15: Effects of Rent Coefficient on Area and Delay Equations

coefficient through the area parameters,nc and i. Consequently, the changes in Rent coefficients will

not have significant effects on on the estimated depth values. This argument is validated by the results

presented in Figure 3.15 (d).

As we discuss in Section 3.4.2, Rent coefficients may still have prominent effect based on whether

they are estimated from post-packing or post-placement netlist. Figure 3.15 however illustrates that the

effects of Rent coefficients on the model outputs can be assumed to be negligible for early stage archi-

tecture evaluation. More accurate Rent coefficients may be estimated to further evaluate the architectures

that are short-listed by early-stage evaluation.

3.4.6 Validation for Large QUIP Benchmark Circuits

We also validate our wirelength and delay models using four additional QUIP benchmark circuits that are

much larger than the MCNC benchmark circuits. The QUIP benchmark circuits are written in VHDL and

Verilog and are provided by Altera Corporation [9]. Table 3.3 lists the four circuits that we use, which are

the larger circuits in the QUIP suite.

Figure 3.16 illustrates the accuracy of our wirelength model for those larger circuits. Results represent

the average of the results for the QUIP circuits. Figure 3.16corresponds to Figure 3.6 and Figure 3.7 that

present wirelength results for the MCNC benchmarks. Figure3.17 and 3.18 illustrate the accuracies of the
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Figure 3.16: Verification of Wirelength Model for QUIP Benchmarks

post-technology mapping and post-clustering depth models; and correspond to Figure 3.12 and 3.14(a)

that present results for MCNC circuits.

For these large benchmarks, we find that the model results follow the trends of the experimental

results fairly well. Furthermore, the conclusions that we can draw for the QUIP benchmarks agree with

the ones drawn for the MCNC benchmarks. For instance, Figure3.16(c) presents average post-placement

wirelength with respect to inputs per clusterI for the QUIP circuits. Figure 3.6(c) and 3.7(c) present

similar plots for 20 MCNC circuits and 17 non-pad-constrained MCNC circuits, respectively. In all of

these cases, the trends of the model results are similar. Theboundary betweenI - andN-limited regions

is very similar for both sets of benchmarks. This demonstrates the depth model’s applicability for larger

benchmarks.

In Table 3.9, we present numerical comparison of accuracy for our depth models. Since the work of
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Figure 3.17: QUIP Benchmark Circuits: Model Verification fordk
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Table 3.9: Comparison of Accuracy

QUIP MCNC QUIP + MCNC
Model Exp. Model Exp. Model Exp.

Cluster SizeN: 8; LUT SizeK: 4, Inputs per ClusterI : 18
n2/nc 15.4 19.0 14.8 14.2 14.9 15.0
i 13.2 13.4 14.2 13.6 14.0 13.5
lavg placed 8.88 10.13 6.06 10.51 6.53 10.45
dc 11.9 9.3 8.5 7.4 9.0 7.7

Cluster SizeN: 24; LUT SizeK: 6, Inputs per ClusterI : 75
n2/nc 86.9 133.6 60.3 56.9 64.8 69.7
i 40.5 36.4 35.3 38.5 36.2 38.1
lavg placed 6.22 8.94 4.55 7.65 4.83 7.87
dc 9.3 5.8 8.0 8.0 8.3 5.1

Lam et al. [104] has been used to derive our depth models, we also present the comparison results for the

models from that work. Table 3.9 presents the numerical comparison for (a) QUIP benchmark circuits,

(b) MCNC benchmark circuits and (c) the combination of QUIP and MCNC benchmark circuits, for two

representative sets of values for{N, K, I}. We present the results for the total logic packed per cluster

(n2/nc), the total used inputs per cluster (i), the average post-placement wirelength (lavg placed) and the

depth after clustering (dc). The values are averaged over the corresponding number of circuits.

3.5 Summary

This chapter describedanalytical models that relate architectural choices to implementation area and

critical path delayfor FPGA implementations. The major challenges tackled in deriving the equations

were balancing accuracy with simplicity, and to understandthe impact of the parameters used by the

model, such as Rent coefficients. The models were validated against the commonly used academic CAD

tool, VPR. Despite making simplifying assumptions when deriving the models, validation results show
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that the models can capture the trends of the experimental results.

The models from this chapter are used in later contributionsof this dissertation presented in Chapter

4 and 5. We use the wirelength model as part of our routabilitymodel presented in Chapter 4. We use the

expressions presented in Section 3.2.2 for area of implementation and in Section 3.3.3 for critical path

delay in Chapter 5. We use these expressions to investigate the capabilities of the analytical model-based

design approach.
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Chapter 4

Analytical Model Relating Architecture

and Routability

This chapter presents an analytical model to relate an FPGA architecture to the routability of applications

mapped on that FPGA. While our model is focused on relating the FPGA routing fabric to routability, it

is also capable of capturing the effects of the FPGA logic fabric on routability. We define routability as

the expected proportion of the nets that can be successfullyrouted on a given FPGA architecture.

The implementation area and critical path delay that we model in Chapter 3 are dependent on both

logic fabric parameters and routing fabric parameters. Themodels presented in Chapter 3 for area and

delay assume that the circuits are routable for a given set ofparameters, and estimate area and delay based

on this assumption. However, a poorly designed FPGA routingfabric may not be flexible enough to route

some circuits. The focus of this chapter is to investigate the routability of applications on a given FPGA

architecture. Once an FPGA architecture is found to presentsufficient routability for a typical application,

the designers may use the models in Chapter 3 to investigate area and delay for that architecture. This

argument is in line with the flows for model-based architecture design that we present in Figure 3.1 and 3.2

of Chapter 3.

In a typical experimental approach for designing a new routing fabric, FPGA architects begin with a

large set of promising routing fabrics. They then change therouting parameters and run many iterations of

expensive experiments to investigate the effects of such changes. The experimental results are evaluated

empirically to fine-tune the routing parameters for the nextiteration. Such empirical evaluation demands
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a high number of experimental runs. Each of these experimental runs incur substantial CAD run-time.

It has been observed that as the number of circuit elements increases, the order of the run-time for the

placement stage grows faster than linear [29, 40]. This issue is further aggrevated if the architecture

designers are also interested in investigating the effectsof logic fabric (such as, LUT size, cluster size

etc.) on routability. In contrast to such an experimental approach, our work models the effects of a wide

range of architectural parameters on the expected routability for a typical user application (we also show

that our work can estimate the routability of individual applications fairly well). When used with the

analytical models discussed in Chapter 3, our model can estimate the effects of architectural choices on

routability, without going through the CAD flow. During early-stage architecture evaluation, this model

thus allows the architecture designers to quickly evaluatea wide range of promising logic and routing

fabrics.

The remainder of this chapter is organized as follows. Section 4.1 presents background for our model,

assumptions that we make in developing the model and a brief summary of the stages that we use for

model development. Section 4.2 details the development of our routability model. Section 4.3 discusses

how some approximations that we use in developing the model can be relaxed. We validate our model

results against the experimental results obtained from VPR5.0 in Section 4.4. Finally, Section 4.5 sum-

marizes the work presented in this chapter.

Parts of this chapter has been published in [58].

4.1 Overview of Routability Model

In this section, we first give a brief overview of algorithms that are typically used to route circuits on a

given FPGA. We next put our routability model into context ofthe other studies on FPGA routability. We

also present the approximations and assumptions made in deriving the routability model and finally give

a brief overview of the three stages of our routability model.

4.1.1 FPGA Routing: Two-Step and Combined Single-Step Routers

As we explain in Section 2.2 of Chapter 2, once the clusters are placed on a given FPGA architecture by

the placement stage of a Computer-Aided Design (CAD) flow, the nets are routed between these clusters

during the routing stage of the CAD flow. FPGA routers that route the nets may be categorized into two

types: two-step routers and single-step combined global-detailed routers [21]. We elaborate on these two
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(a) Step - 1: Global routing (b) Step - 2: Detailed routing

Figure 4.1: Behavior of a Typical Two-Step FPGA Routing (with Channel-Width W=3). CBs and
SBs Respectively Represent Connection Blocks and Switch Blocks

types of routers below.

4.1.1.1 Two-Step Router

A two-step router works in two phases:global anddetailed. Figure 4.1 illustrates these two phases. In

this example, a two-terminal net (connection) is routed from the source logic block to the sink logic block

through Connection Blocks (CBs), Switch Blocks (SBs) and routing channels. For brevity, we constrain

the available routing paths by the minimum bounding box, defined by the locations of source and sink

clusters. The global phase of a two-step router will assign asequence of channel segments to route the net

under consideration. In Figure 4.1(a), we assume that the global phase chooses the sequence of channels

that are marked by bold arrows.

The detailed phase considers only the tracks within the pre-defined sequence of channel segments.

Assuming the channel-width to be three, the routing tracks that a detailed router considers for our example

net are presented by solid (both bold-solid and light-solid) arrows in Figure 4.1(b). Dash-dotted arrows

in Figure 4.1(b) represent the routing tracks that are ignored by the detailed router even though they fall

within the minimum bounding-box. For completeness, Figure4.1(b) also shows the example final routing

solution from the detailed router (marked by bold-solid arrows).

4.1.1.2 One-Step Combined Router

Figure 4.2 illustrates a one-step router. This figure uses the same example net from Figure 4.1. In contrast

to the detailed phase of a two-step router, the combined single-step router of Figure 4.2 finds the complete

routing path in one step by considering all available tracks.
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Figure 4.2: Behavior of a Typical One-Step Combined Global/Detailed FPGA Router (with
Channel-WidthW=3). CBs and SBs Respectively Represent Connection Blocks and Switch
Blocks.

4.1.2 Context of our Routability Model

We now put our routability model for a combined router into the context of existing studies.

A number of publications present algorithms for two-step routers and one-step routers and several

studies compare the performance of these two types of routers [21, 110, 114, 183, 187]. The majority of

these studies find that the detailed phase of a two-step router is highly constrained by the pre-defined paths

from the global phase, and that the required channel width for such a router is higher when compared to a

combined router. Wu and Marek-Sadowska [187] illustrates how the detailed phase of a two-step router is

forced to increase the required channel width and introduces the termmapping anamolyto represent this

phenomenon. Furthermore, the global router does not have the details of routing obstacles or pre-routed

nets, an issue that is more serious in FPGA routing since the types of routing resources may greatly affect

a detailed router’s performance [32]. Due to these reasons,combined routers are typically used to map

circuits on modern FPGAs, both in academia and in industry.

From the above discussion, the routability of a circuit willbe higher when a single-step router is

used. The only previous model that relates architecture parameters to routability is from [25], which

assumes a two-step router. In contrast, our model assumes a modern single-stage router. As we will

show, this changes the formulation of the model significantly. In Figure 4.3(a), Brown et al. models

the routability using only the sequence of channels that is pre-determined by the global step, such as the

‘dark-solid’ channel segments. The detailed router and hence Brown’s model ignores the other potential

channel segments, such as the ‘light-dotted’ ones. To capture the properties of a combined router, we

consider all available paths as shown by dark-solid lines inFigure 4.3(b). As we will show, this changes

the formulation of the model significantly.
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Figure 4.3: Brown’s Model and Our Work

4.1.3 Approximations and Assumptions

We observe that our problem is related to the problem of estimating the reliability of a multi-terminal

stochastic network. For given network constraints, the reliability of such a network is measured by the

existence of at least one useful communication path betweenthe terminals (out of many possible paths).

This is analogous to our problem, which is to model routability with given FPGA architecture constraints

while assuming that the routing of the nets may use any of the many possible routing paths.

We make an important simplification by assuming that each nethas only one sink. Clearly, real nets

often have more than one sink, and the extension of our model to explicitly handle multi-sink nets is

an interesting avenue for future work. As we will show in the results, even with this simplification, we

get results good enough to short-list a set of interesting routing fabrics during early stage architecture

investigation. To simplify our discussion we also assume that all nets are routed using their shortest

path. We define the shortest path to be within the minimum bounding box found from the terminals of a

two-terminal net. In Section 4.3.1, we discuss how this constraint can be relaxed. We further assume an

island-style FPGA architecture that consists of an array ofclusters and ignore the existence of embedded

blocks.

4.1.4 Stages of the Routability Model

In this section, we give an intuitive introduction to the model; a detailed derivation is deferred to Sec-

tion 4.2.

The inputs and outputs of the model are listed in Table 4.1. InputsW, Fcout, Fcin , Fs, Nx andNy describe
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Figure 4.4: Overview of Routability Model

the architecture of the FPGA. Inputs|ψ |, lavg andlmaxdescribe the circuit to be implemented on the FPGA,

and outputPr[Rckt|comb] is the overall routability of the FPGA when routing the circuit.

Our model consists of three stages, as shown in Figure 4.4. Inthe first stage, we construct a set

of graphsG; each graphGl (V,E) ∈ G describes the routability of an FPGA when routing a net with

wirelengthl . Each node in the graph corresponds to a switch block or a connection block, and each edge

corresponds to a routing channel. Each edge (directed) is associated with a weight which represents the

probability that a net can be routed along the associated channel, given that it was successfully routed to

the preceding switch block. The key challenge in this stage is estimating the weights. As described in

Section 4.2, our estimations are based on the work by [25], with suitable modifications to account for the

fact that in a two-dimensional grid, there is more than one way a net can arrive at a given channel.

In the second stage of our model, we estimate the overall routability for a net through the two-

dimensional grid. We observe that our problem is related to the problem of estimating the reliability

of a multi-terminal stochastic network. For given network constraints, the reliability of such a network is

measured by the existence of at least one useful communication path between the terminals (out of many

possible paths). This is analogous to our problem, which is to model routability with given FPGA archi-

tecture constraints while assuming that the routing of the nets may use any of the many possible routing

paths.

In [16], Ball shows that finding the exact solution for the reliability of a stochastic network is an

NP-hard problem, and suggests to look for approximate answers, such as reliability bounds. Several

studies on the reliability problem use graph-theoric techniques to bound the reliability of communication

between the terminals of the network [49, 69, 142, 155, 156].As described in Section 4.2.2, we adapt the
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Figure 4.5: Two-dimensional Routing Problem and the Graph Representation.

technique from [155, 156] that uses the consecutive minimalcutsets of a stochastic network for bounding

the reliability of systems.

Finally, the third stage of our model estimates the routability of the entire circuit. As described in

Section 4.3, we do so by assuming that wirelengths in a circuit follow a geometric distribution.

Table 4.1: Model Parameters

Model Inputs - Architectural and Circuit Parameters
W Channel width (tracks per a routing channel)
Fcout (Fcin) Source (Sink) connection box flexibility
Fs Switch box flexibility
Nx (Ny) FPGA grids in columns (rows); total grids=Nx.Ny
|ψ | Number of two-terminal nets (interconnects),ψis
lavg

a Average post-placement wirelength of a circuit
lmax Maximum post-placement wirelength of a circuit

Model Outputs - Implementation Parameters
Pr[Rckt|comb] Expected routability of a circuit mapped on FPGA using a combined router

aIt may be noted that our wirelength model estimates pre-routing wirelength. It therefore does not need to consider the effects
of the routing fabric, i.e. routability of the given FPGA architecture.
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4.2 Model Formulation

4.2.1 Stage 1: Constructing the Routing Graphs

The first stage in our model is constructing a set of routing graphs. This stage is described in this subsec-

tion.

4.2.1.1 Graph Topology

We first construct the graphG(V,E) to represent the FPGA routing fabric that lies between the source and

sink of a given net. Figure 4.5(a) shows a region of the FPGA fabric upon which a net could be routed, and

Figure 4.5(b) shows a graph that corresponds to this region of the FPGA fabric (the distinction between

Type-1andType-2switch blocks will be explained later). Each nodevi ∈V represents a switch block in the

architecture. Source and sink nodes are also included to represent the source and sink connection blocks

of the net. Each directed edge inei, j ∈ E represents a routing channel that connects the switch blocks

represented byvi andv j . Each edge has an associated weight that will be described inthe subsequent

subsections.

Note that in constructing the graph, we have assumed a particular wire length for the net (by assuming

a particular start and end point on the grid). In the discussion in this section, we construct a graph for all

possible wire lengthsl for 1≤ l ≤ lmax. We will later show that it is possible to calculate routability using

a smaller number of graphs. We also assume that each net is routed from top-left to bottom-right; due to

the symmetry in FPGAs, this will not affect our overall routability estimation. Finally, we assume that

each net is routed using its shortest path and within its bounding box; in a later section we will relax this

assumption.

Each edgeei, j in the graph is assigned a weightpi, j which indicates the routability of the routing

channel between switch blocksi and j. More precisely, the weight for edgeei, j is the probability that

a net traversing the channelei, j would find at least one free track in the channel, given that itcould

be successfully routed to the input of the preceding switch block (vertexvi). The weight for the edge

esource,1 (which is the edge between the source node and the first switchblock) is the probability that the

net exiting the source logic block can find an available trackin the first channel, and the weight for edge

en,sink is the probability that the net can be connected to the sink logic block input pin given that it has

been successfully routed to the input of the last switch block (v12 in the example of Figure 4.5).
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These probabilities depend on the architecture parametersof the routing fabric. Intuitively, the prob-

ability of finding a successful connection through a channelis low in an FPGA with a small amount of

routing flexibility (small values ofFs andFc); as the amount of routing flexibility increases, the probability

of finding a successful connection increases. The probability of a connection also depends on the number

of other nets that are routed on the fabric; if there are many nets routed, it is possible that even if a track

is available, another net is using it. In the following discussion, we show how we estimatepi, j for all

edges in the graph as a function ofFs, Fc, and the distribution of the excepted occupancy of each track in

a channel.

4.2.1.2 Weight Estimation: Relevant Terminology

As described above, each weight of each edge corresponds to the probability that a connection can be

made between successive switch blocks. Consider routing a net ψi with lengthn+1 along one possible

routing path through switch blocksSB1, SB2, · · · , SBm−1, SBm, · · · , SBn−1, SBn. The channel on the

outgoing side ofSBm will containW routing tracks (W is termed the channel width). Successfully routing

throughSBm is aconditionalevent that the net will find at least one free track on the outgoing channel of

SBm. This event isconditionedby the net’s successful traversal through the source connection block as

well as the preceding switch boxesSB1, SB2, · · · , SBm−1. The probability of this conditional event can

then be represented byPr[Sm|Sm−1∩ ·· ·∩S1∩X1].

When routing through a switch block, not all of theW outgoing tracks may be available for two

reasons. First, some of the outgoing tracks ofSBm−1 may have been used by previously routed nets.

Secondly, the construction of routing resources may not allow the routing of the net using any of theW

tracks. For instance, if the connection block flexibility is0.5, no more than 50% of tracks can be used to

route a net through the source connection block and the subsequent switch blocks (assuming that a value

of Fs=3 is used).

As in [25], we use three quantities (a, d andk) to capture these effects when estimating the routability

through switch blockSBm (Figure 4.6). The quantitya is the number of outgoing tracks of the switch

block SBm−1 that can be used to route the netψi . In other words, any ofa tracks can be used to route the

net fromSBm−1 to SBm. The quantityd represents the outgoing tracks ofSBm that have been used by the

previously routed nets 1,2, · · · ,ψi−1. The router can not use these tracks to route the netψi throughSBm.

Finally, the quantityk represents the number of outgoing tracks ofSBm that the router can use to route the
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Figure 4.6: Parameters Related to Routing a Netψi Through Switch BlockSBm

netψi throughSBm towardsSBm+1. From the definition ofa above, when estimating routability through

SBm+1, k for the switch blockSBm will be equal toa for the switch blockSBm+1.

Figure 4.6 illustrates these quantities for routing a netψi through switch blockSBm. Incident tracks to

SBm are from switch blockSBm−1 on the left and the outgoing tracks fromSBm are to switch blockSBm+1

on the right. The channel widthW is 8 for this example and the tracks are numbered from 1 to 8. We

consider the switch box withFs = 3 constructed such that a track on the left is connected to a track with

the same numbering on the right (1 to 1, 2 to 2 etc.)

In this example, any of tracks 2, 4, 6, 7 on the left can be used to route the net fromSBm−1 to SBm. We

also find that three tracks on the outgoing side are used by previously routed nets. Out of these previously

used tracks, the current netψi could have used 2 and 7. From the definitions ofa andd above, we have

a= 4 andd = 2 for switch blockSBm. For the example in Figure 4.6, we have only two tracks to route

the net throughSBm to SBm+1 (tracks 4 and 6) . Thereforek= 2 for switch blockSBm. Sincea for SBm+1

equals tok for SBm, we know thata= 2 for switch blockSBm+1.

4.2.1.3 Weight Estimation: Source to First Switch Block Weight

Using an equation from the work of Brown et al. [25], we estimate the probability of a successful connec-

tion through the source connection box by:

Pr[X1] =
Fc out

∑
a=1

W

∑
d=0

p(λg,d) ·
dCFc out−a ·W−dCa

WCFc out−a ·W−(Fc out−a)Ca
(4.1)

In this equation,nCr =
(n)!

(r)!.(n−r)! and the architectural parameters are as listed in Table 4.1.The term

inside the summations represents that the probability thatexactlya different connections can be made

from the output pin of a logic block to a routing track in the first channel, given thatd tracks in that

channel have already been used. The summations sum over all legal values ofa andd, giving the overall
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probability that a connection between the source pin and a track in the first routing channel can be made.

For a detailed derivation of this equation, see [25].

In Equation 4.1,d represents the number of tracks in the first channel that havebeen used by the

previously routed nets. The Poisson distributionp(λg,d) models the effects of the number of tracks used

by previously routed nets, on routing the current net. Sincethe number of tracksd, used by previously

routed nets, changes after each net is routed, the parameterλg for p(λg,d) may be updated for the current

net j as [25]:

λψ j =
1

Nx.Ny

j−1

∑
k=1

Pr[ψk] (4.2)

and,λg=(λψ j · lavg)/2 with λψ0 =1/(Nx.Ny).

4.2.1.4 Weight Estimation: Switch Block to Switch Block Weights

We first make the distinction betweenType-1andType-2switch blocks. As shown in Figure 4.5(a), all

switch blocks on the top and left side of the grid will be referred to asType 1switch blocks, and the other

switch blocks will be referred to asType 2switch blocks. Type 1 switch blocks have the property that if

they are used in the path, the net can enter the switch block from only one side (either the top or the left

side, depending on its location in the grid). For Type 2 switch blocks, the net may enter the switch block

from either of thetwo sides, the top and the left. The corresponding outgoing channels from the switch

blocks are referred to as Type 1 and Type 2 channels. We calculate the routability of each type of switch

block differently.

Type 1: For Type 1 switch blocks, the net will arrive from only one direction. In other words, there will be

one set of incident tracks.Pr[RChm|Type−1] represents the conditional probability for the successfulrouting

along a Type 1 channelChm. Since there is only one set of incident tracks on a Type 1 switch block, it

is analogous to a switch block along a detailed routing path,as considered in [25]. Thus, we can use an

equation from Brown to estimate the routability of a channelat a distancem from the source connection

block:

Pr[RChm|Type−1] = Pr[RChm|(RChm−1 ∩ ·· ·∩RCh1)]

=
W

∑
k=1

W

∑
a=1

Pr[AChm−1
a ]

∑W
j=1Pr[AChm−1

j ]
·

W

∑
d=0

p(λg,d) ·
dCαa−k ·W−dCk

WCαa−k ·W−(αa−k)Ck
·αaCk

(4.3)

where, routing alongChm|Type−1 is possible with exactlyk tracks (1≤ k≤W) anda is the number of tracks
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Figure 4.7: A Type 2 Channel for Combined Router

incident to the preceding switch boxSm. Equation 4.3 gives us the weightspi, j ’s for Type 1 channels, such

ase1,2 ande1,3 in Figure 4.5. ForCh1, a and j will range from 1 toFcout.

Type 2:For a Type 2 switch block, the net may arrive on either the top or the left side of the switch block.

For the switch boxSB3,2 of Figure 4.7, there will be incident tracks from the switch boxesSB2,1 andSB2,2.

To model the probability of successful outgoing connections along the channel connectingSB3,2 andSB4,2

(marked by the ellipse), we need to consider incoming tracksonSB3,2 from bothSB2,1 andSB2,2.

For an arbitrary Type 2 switch block, consider the case when the net traverses through the two pre-

ceding switch blocks witha1 anda2 available tracks respectively. We modify Equation 4.3 to model the

routability through a Type 2 channel:

Pr[RChm|Type−2] = Pr[RChm|(RChm−1 ∩ ·· ·∩RCh1)]

=
W

∑
k=1

W

∑
a=1

Pr[AChm−1
a ]

∑W
j=1Pr[AChm−1

j ]
·

W

∑
d=0

p(λg,d) ·
dCαa′−k ·W−dCk

WCαa′−k ·W−(αa′−k)Ck
·αaCk

(4.4)

where,a′ = a1+a2 if a1+a2 ≤W anda′ =W otherwise. (The total number of incident tracks on a switch

block can not exceed the channel widthW). We use Equation 4.4 to calculate the values ofpi, j for Type

2 channels, such ase5,8 ande5,9 in Figure 4.5.

We make an approximation in deriving this equation. We assume that ifa1 anda2 tracks are incident

from either side, they will combinedly attempt to connect toa1 + a2 number of tracks on the outgoing

side. This may not be the case since some incident tracks fromthe horizontal and the vertical directions

may be connected to the same outgoing track of the switch box.Thus, our model may provide optimistic

values for routability. The other approximation that we make is that the conditional events of success for

the channels incident to a switch box are independent. The relaxation of these approximations may be an

interesting topic for future research.
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Figure 4.8: Example Two-Dimensional Routing Problem and Corresponding Graph

4.2.1.5 Weight Estimation: Final Switch Block to Sink Weight

We estimate the probability of successful connection through the sink connection box using:

Pr[X2|Sn∩Sn−1∩ ·· ·∩S1∩X1] =
W

∑
k=1

W

∑
a=1

Pr[ASn
a ]

∑W
j=1Pr[ASn

j ]
·

W−Fc inCa−k · Fc inCk
WCa−k ·W−(a−k)Ck

· aCk (4.5)

Equation 4.5 does not containd related term since the effect ofd (the previously routed nets) for the

channel connectingSBn and the sink connection box is considered when we estimate the probability of

successful connection throughSBn.

4.2.2 Stage 2: Overall Routability of a Single Net

The previous subsection constructs the routing graphG(V,E) describing the potential multiple routing

paths of a net and assigns weights to the edges of the graph. The next step is to use this graph to estimate

the overall routability of the net,while assuming a given length. If there was only one path from source

to sink, we could multiply all the weights (probabilities) along the path:

Pr[Rψi |l ] = Pr[X1∩S1∩S2∩ ·· ·∩Sn∩X2]

= Pr[X1] ·Pr[S1|X1] · · ·Pr[Sn|Sn−1∩ · ·∩X1] ·Pr[X2|Sn∩Sn−1∩ ·· ·∩S1∩X1]

Our case is more complicated since there are many potential paths from source to sink, and we want to

compute the probability when the net can useat least oneof these paths. Our approach is to use methods

from network reliability theory that bounds the reliability of a multipath network. Such techniques find

the probability of having at least one successful path between the source terminal and the sink terminal,

given that the failure rates of the links (edges) along the path are pre-determined. Our problem is similar

if we consider a “failed link” along a potential routing pathto consist of at least one channel segment that

is too congested to route a net. With this construction, the failure rates of the edges can be obtained from

the weightspi, j ’s that we have derived earlier.
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4.2.2.1 Supplementary Definitions

In the discussion that follows, we will consider the simple routing problem and the corresponding graph,

shown in Figure 4.8.

Probabilistic graph:The input to the network reliability theory is a probabilistic graph that represents the

communication links (edges) between the source and the sinknodes as well as the probability of operation

associated with each edge or node [48]. In our case, the graphthat we form in Stage 1 will be the input

probabilistic graph, with the probabilities of operation being associated with edges.

Pathset:A set of paths between the source and the sink nodes of a network (graph). In Figure 4.8, the

pathset will contain the set of all potential paths for routing, such as,{V1−V2−V4−V7−V9}, {V1−V2−

V5−V7−V9}, {V1−V3−V5−V8−V9} etc. By definition, the routing is successful when at least one of

the paths functions.

Cutset:A set of cuts between the source and the sink nodes of a graph. Each cut is a set of directed edges.

The removal of all edges of such a cutset will disconnect the source and the sink nodes. An example

cutset for the graph in Figure 4.8 is{e2,4,e2,5,e3,5,e3,6}. If we remove all four of these edges, the source

will be disconnected from the sink. In other words, the net becomes unroutable when all edges ofanycut

fails.

Minimal cutset: A set of minimal cuts for a graph. If any edge of a minimal cutset is removed, the

remaining edges no longer form a cut. The example cutset{e2,4,e2,5,e3,5,e3,6} above is a minimal cutset.

For instance, if we removee2,4 from this cut, the resulting sequence of channels{e2,5,e3,5,e3,6} is no

longer a cut. This is because even when the edgese2,5, e3,5 ande3,6 of this cutset concurrently fail, we

may still have successful routing through{e1,2,e2,4,e4,7,e7,9}. We may make similar observations for the

remaining edges of this cutset; this is consequently a ‘minimal’ cutset for the example graph.

Set of consecutive cutsets:An ordered set of cuts, for which any edge that belongs to cutsetsi andk (i ≤ k)

also belongs to cutsetj, for all i < j < k [156].

System with consecutive minimal cutsets:Any system for which the minimal cutsets can be ordered to

form a set of consecutive cutsets [156]. The detailed routing network of an island-style FPGA is such a

system.

75



������� ���� �� � 
!

�"
" # $"%&$' # $"%(�)$'* #+�",'-

./
�"

0 # $" % &$1 # +�",'2�",0-
�'

0 # $' % &$1 # +�",02�',1-
�0

0 # $0 % &$1 #+�',1-
./

������� 34�����
$" # +�",'2�",0-
$' # +�",02�',12�',5-
$0 # +�',12�',52�0,52�0,6-
$1 # +�1,62�',52�0,52�0,6-
.//

78
9:

7;

7<

9= 9>

9? 9@ 9A

9B9C9D7E

Figure 4.9: Examples of Consecutive Cutsets

4.2.2.2 Upper Estimate: Consecutive Minimal Cutsets of theRouting Graph

There are several ways to use cutsets to estimate the FPGA routability. Clearly if all edges in a cutset

are not routable, then the network itself is not routable. Therefore, one approach to estimating routability

would be to calculate a set of edge-disjoint cutsets, and determine the probability that all edges in any

of these cutsets fail. This would, however, significantly over-estimate the real routability. To understand

why this is so, consider Figure 4.8, in which{e1,2,e1,3} and{e2,4,e2,5,e3,5,e3,6} are two edge-disjoint

cutsets. If edgese1,2, e2,4 ande2,5 fail, our simple approach would conclude that the network isroutable.

However, from the figure, it can be seen that there is not a pathfrom source to sink.

To achieve a better estimate, we use a technique from Shantikumar [155, 156] which provides an

upper estimate for the routability of a net. To use this technique, we first determine the ordered set ofr

minimal cutsetsC (C ≡ c1,c2, · · · ,cr ) for G(V,E). The net is unroutable only when all the edges (FPGA

routing channels) in at least one of the consecutive minimalcutsets fail. We explain the technique below,

using Figure 4.9 as an example.

We first determine cut setsci for 0≤ i < N whereN is the number of nodes in the graph, excluding

the source and sink nodes. The cut setci represents the set of edges from nodes{v1,v2, ..,vi} to nodes

{vi+1,vi+2, ..,vn}, wherev1 andvn are connected to the source and the sink connection blocks. In Fig-

ure 4.9,n=9 andc4 = {ei, j ; where i ∈ {v1,v2,v3,v4}; and j ∈ {v5,v6,v7,v8,v9}}. The cut setc4 thus

represents the possible edges between{v1,v2,v3,v4} and{v5,v6,v7,v8,v9}; yielding c4 = {e2,5, e3,5, e3,6,

e4,7} whereei, j ∈ E.

We then computeDs
t which is the set of edges connecting the nodes{1, · · · ,s} and the nodes{s+

1, · · · , t +1}. This set is derived from the set of minimal cutsetsci :

Ds
t = cs∩ c̄t+1,s= 1, · · · , t; t = 1, · · · ,n−2 (4.6)
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where, ¯c is the set of edges that belong to the setE, but not toc; c̄= E−c.

Figure 4.9 lists some members ofDs
t for our example routing problem. For instance, from the defi-

nition above, we can define the sets of edgesc1 andc4 asc1 = {e1,2,e1,3} andc4 = {e4,6,e2,5,e3,5,e3,6}.

Then,c̄4 = {e1,2,e1,3,e2,4,e5,7,e5,8,e6,8,e7,8,e8,9}, and

D1
3 = c1∩ c̄(3+1) = c1∩ c̄4

= {e1,2,e1,3}∩{e1,2,e1,3,e2,4,e5,7,e5,8,e6,8,e7,8,e8,9}= {e1,2,e1,3}
(4.7)

For a set of edges inDs
t , we then findEs

t , which represents the events that the edges inDs
t will

not function, implying that the corresponding FPGA channels will not successfully route the net. The

probability of these failures is represented byβ s
t ; soβ s

t = Pr[Es
t ].

In our weighted routing graphG(V,E), recall that a weightpi, j represents the probability of successful

routing through a channel segment that is represented by theedgeei, j . We can therefore write the failure

rate of this channel,qi, j , asqi, j = 1− pi, j For a set of edgesDs
t , β s

t will be the product of the failure rates

for all edges that are member ofDs
t :

β s
t = ∏

(i, j)∈Ds
t

qi, j (4.8)

Finally, we computeQt which accumulates the effects of failure eventsβ s
t . For a set of consecutive

minimal cutsetsC(C≡ c1,c2, ....,ct), Qt captures the event when all edges of at least one of these minimal

cutsets fail. Since,β s
t estimates the probability of the failure of all edges in cutsets,Qt can be calculated

by using the value ofβ s
t from Equation 4.8:

Qt =
t

∑
s=1

(1−Qs−1)β s
t ; t = 1, ...,n−1 and Q0 = 0 (4.9)

Details of this formulation may be found in [155].

Similar to the technique presented by [156], we now use the expressions listed above, on our routing

graphG(V,E) to upper-bound the routability for our FPGA. A netψi with lengthl will require l −1 switch

blocks for routing along the shortest path. To calculate an upper estimate for the routability for this net,

we first consider the successful routing along thesel −1 switch blocks. This probabilityPr[Rψi |l−1] can

be expressed by:

Pr[Rψi |l−1]≤ 1−Qn−1 (4.10)
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wheren is the total number of switch blocks alongall of the possible paths for the net andQn−1 can be

estimated from Equation 4.9. (n is 9 in Figure 4.9).

Since we ignore the source and sink connection blocks while forming G(V,E), the length in the

subscript of the left side expression of Equation 4.10 is denoted by l − 1, rather than byl . We now

incorporate the probabilities of successful connections through these two connection blocks to model

Pr[Rψi |l ]:

Pr[Rψi |l |comb] = Pr[X1] ·Pr[X2] ·Pr[Rψi |l−1]≤ Pr[X1] ·Pr[X2] · (1−Qn−1) (4.11)

where Equations 4.1 and 4.5 give usPr[X1] and Pr[X2] respectively, representing a successful routing

through source and sink connection blocks.Qn−1 is from Equation 4.9.

The output of the second stage of our model isPr[Rψi |l ] that represents the upper bound of the proba-

bility of successfully routing a net with given lengthl .

4.2.3 Stage 3: Routability of a Circuit with Many Nets on a Given FPGA

We now have the routability for a single net with given wirelength. Stage 3 uses this information to find

the upper estimate of the routability for a circuit with manynets.

We first determine the routability for a netψ that may assume any length within the range (1,lmax),

with lmaxbeing the maximum possible wirelength for a net of the circuit being mapped on FPGA. Similar

to [25], we have:

Pr[Rψi ] =
lmax

∑
l=0

Pr[ψi |l ] ·Pr[Rψi |l |comb] (4.12)

where,Pr[ψi |l ] = p ·ql−1, with p = 1/lavg andq = 1− p. We can substituePr[Rψi |l ] of Equation 4.12

by the upper estimates from Equations 4.11 to determine the routability of a net that does not have a

wirelength constraint.

Earlier studies observe that wirelengths typically followa geometric distribution [160, 197]. In our

model, we also use a geometric distribution to estimatePr[Ll ]. In contrast, several studies use Rent’s rule

based techniques for wirelength distribution models [46].We compare the values ofPr[Ll ] obtained by

using these two approaches: (a) geometric wirelength distribution model that we use in our routability

model and (b) Davis’ model [62] that is a Rent’s rule based wirelength distribution model . We compare

the results from these two models and find that the values are comparable. We further find thatPr[Ll ]
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Table 4.2: Comparison ofPr[ψi |l ] Values for the Largest MCNC Benchmark:clma

Lengthl VPR Post-Placement Geometric Distribution Davis’ Model
1 0.091 0.114 0.672
2 0.283 0.101 0.226
3 0.182 0.089 0.118
4 0.120 0.079 0.073
5 0.079 0.070 0.050
6 0.056 0.062 0.037
7 0.040 0.055 0.028
8 0.027 0.049 0.022
9 0.023 0.043 0.018
10 0.017 0.038 0.015

Table 4.3: Values ofPr[ψi |L] for a Typical Circuit

lavg=4, pψ=0.25,qψ=0.75
Length,l 1 4 10 15 50 100
Pr[ψi |L] 0.25 0.105 0.004 2.5E-04 1.9E-07 1.1E-13

follows the post-placement wirelength distribution values from VPR 5.0. Table 4.2 presents comparison

results for the largest MCNC benchmarkclma for the first ten values ofl . That being said, as explained

in Chapter 3, accurate wirelength modeling is notoriously difficult; the goal of finding better wirelength

models continues to be an interesting area of future research.

We make a further observation here. Due to the geometric nature of the wirelength distribution, the

probability termPr[ψi |l ] diminishes with increasingl . Subsequently, in Equation 4.12, the impact of the

productPr[ψi |l ] ·Pr[Rψi |l ] will be negligible for higher values ofl . We can then ignore the higher values

of l when calculatingPr[ψi |l ] from Equation 4.12. This observation allows the designers to use a lower

value oflmax to speed up the routability estimation. For a typical circuit with lavg= 4, Table 4.3 shows the

diminishing nature ofPr[ψi |l ] as the length increases.

Finally, we model the routability of a circuit that containsmany nets. We express the routability of a

circuit with |ψ | number of two-terminal netsψi by Pr[Rckt|comb]:.

Pr[Rckt|comb] =
1
|ψ | ·

|ψ |

∑
i=1

Pr[Rψi ] (4.13)
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Figure 4.10: Consecutive Cutsets for the Extended Graph. Shaded Nodes Represent Additional
Nodes (Switch Blocks) When Shortest-Path Constraint is Removed.

4.2.4 Summary

For a netψi with given lengthl , we form the routing graphG(V,E) and assign weightspi, j ’s to the edges

by using Equations 4.3 and 4.4. ForG(V,E), we follow the techniques presented in Section 4.2.2.2 to

form the setscs andDs
t ; and the eventsEs

t . Using these sets and events, we calculateβ s
t andQt from

Equations 4.8 and 4.9 respectively. Equation 4.11 gives us the probability of successfully routing a net

with given length. Equation 4.12 models the routability of anet without imposing any length constraint.

Finally, we use Equation 4.13 to model the routability of thecircuit.

4.3 Plausible Extensions of Our Model

This section illustrates two examples of how our routability model can be extended to relax the assump-

tions that we make during model development. Further extensions to our model are left for future research.

4.3.1 Relaxation of the Shortest Path Constraint

When deriving the model, we have constrained the routing paths for a net by the minimum bounding box.

This constraint can be relaxed by extending the routing graph G(V,E). Figure 4.10 shows an example

of relaxing this constraint, wheres andt represent the switch boxes connected to the source and the sink

connection boxes respectively. The vertices with white background are within the minimum bounding

box. Removal of the constraints will give us additional vertices, shown by the shaded nodes. Compared

to Figure 4.9, we have additional and/or extended cuts for the routing graph in Figure 4.10. To model
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the routability, we need to consider these additional/extended cuts while using Equations 4.6 to 4.10.

Figure 4.10 shows some examples of additional / extended cutsets. Also shown are example members of

the set of edgesDs
t that have been determined using Equation 4.6.

It may be possible to relax the shortest-path constraint in stages. In such a case, we allow the model

to usemunits of length outside the minimum bounding box, and increment the value ofm in stages. This

will help evaluate to what extent the shortest path constraint must be relaxed in order to route a circuit

that is unroutable with the shortest-path constraint.

4.3.2 Non-Island Style Architectures

In Section 4.2, we use an island-style architecture to present our routability model. However, the graph-

theoric technique that we use to bound routability is not limited to island-style archtectures. Once a

routing fabric is represented by a graphG(V,E), our model can be used to model the consequent routabil-

ity. In other words, to model the routability of an innovative routing fabric, we will need to (a) reconstruct

the routing graphG(V,E) to represent the fabric and (b) apply the graph-theoric techniques on this new

graph.

4.3.3 Effects of Faulty Tracks

While designing a new FPGA routing fabric, it may be desirable to reserve some of the available tracks

for use by embedded blocks. An application not requiring embedded blocks may not use these tracks. We

further note that modern process technologies make the FPGAdevices more prone to failure than prior

technologies, and some of the tracks may not be available on afield-deployed FPGA device. These faulty

tracks will also be unavailable when routing a circuit. The architecture designers may need to investigate

the effects of such reserved and/or faulty tracks on routability; we suggest that our model can capture

these effects.

Since reserved or faulty tracks may not appear uniformly across the FPGA array, simply running

experiments with reduced channel width will not mimic the desired effects. However, we can readily

extend our model to incorporate the information about reserved or faulty tracks. We do this by redefining

d when using Equations 4.1, 4.3 and 4.4 (d is the number of tracks probabilistically used by the earlier
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routed nets). For instance, we can rewrite Equation 4.3 as:

Pr[RChm|Type−1] =
W

∑
k=1

W

∑
a=1

Pr[AChm−1
a ]

∑W
j=1Pr[AChm−1

j ]

W

∑
d1=0

p(λg,d1)
d2Cαa−k ·W−d2Ck

WCαa−k ·W−(αa−k)Ck
, (4.14)

whered1 accounts for the track usage by the current circuit andd2 is the sum of two values: (a) the tracks

used by the previously routed nets of the current application d1, and (b) the anticipated number of faulty

tracks.

4.4 Validation

In this section, we investigate the performace of our routability model with respect to an academic CAD

tool, VPR 5.0 [21, 122]. VPR uses the Pathfinder algorithm [130] for routing the nets. We use-route type

switch of VPR to ensure it uses combined global/detailed router.

We first use MCNC benchmarks [192] to compare the predictionsfrom our model to the experi-

mental results, obtained using T-VPACK and VPR 5.0. We also compare the predictions from Brown’s

model [25] to the experimental results for the combined router. We investigate the effects of varying rout-

ing and logic architecture parameters on both model resultsand experimental results. We also validate

our model against much larger QUIP benchmarks [9]. We finallypresent results to illustrate the impact

of relaxing the shortest path constraint.

4.4.1 Validation Methodology

This section presents the methodology that we follow to collect the experimental results and the model

results.

4.4.1.1 Obtaining Model Results Without Going Through any Experimental CAD Stage

Table 4.1 lists the input parameters required for our model.Rather than using experimentally values for

the input parametersNx, Ny, lavg, andlmax, we use previously published analytical models. This allows us

to use model without going throughanystage of a CAD flow and to compare purely analytical results to

experimental results.

Specifically, we assume the grid-sizeNxy =
√

nc, where the number of clustersnc is from [104].

We use the work of [168] to estimate average wirelengthlavg. Finally, we use an approximation for the

maximum wirelength using the work of [143], which models thecritical path wirelength as 2·Nx,y+(dc−
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Table 4.4: Model Inputs forspla

Parameters from the post-placement stage of VPR
Parameter Value

Grid sizeNxy (=Nx=Ny) 22
Avg. post-placemet wirelengthlavg 3.80
Max. post-placement wirelengthlmax 60
Input parameters obtained from earlier analytical models

Parameter Value
Grid sizeNxy=

√
nc [61] 22.9

Avg. post-placemet wirelengthlavg [168] 3.69
Max. post-placement wirelengthlmax [60] [143] 66.2

1) · lavg, wheredc is the post-packing critical path depth for a circuit and canbe obtained from [60, 61].

From Section 4.2.3, approximation oflmax will weakly affect the routability. In Table 4.4, we use these

model-based techniques to estimate model inputs (for the benchmarkspla), and compare them with the

results from VPR. We find that these two sets of values are fairly close.

To obtain the results for Brown’s model, we directly use thatwork’s equations.

4.4.1.2 Obtaining Experimental Results

We collect the experimental results in the following manner. We first attempt to route the circuit in VPR

using 50 iterations, and impose the minimum-path constraint in VPR by setting thebb factor flag to 0. If,

after 50 iterations, some nets are unroutable, we break up the multi-terminal nets into two-terminal nets.

We then iterate through these two-terminal nets to investigate the resources that they use. If the ‘occu-

pancy’ of any resource used by a net is higher than the ‘capacity’ of this resource, the corresponding net

is marked as unroutable. After iterating through all of the two-terminal nets, we calculate the proportion

(in %) of the nets that are routable for the given architecture.

This technique has some limitations. The ordering of the nets used to investigate the resource usages

may affect the routability value. The limited number of routing iterations will also affect the routability

values. Furthermore, the Pathfinder algorithm with VPR ripsup all of the nets following an unsuccessful

attempt (iteration). The results that we collect from the last unsuccessful iteration may not be the best one

in terms of routability. For these reasons, our model will tend to overestimate VPR results. Despite these

limitations, we believe that this definition of routabilityis sufficient for validating our model’s predictions.

While collecting experimental results, we set the placement seed of VPR at 1 and use a maximum of 50

iterations. Through experimentation, we have determined that these settings do not affect our overall

conclusions (results not shown).
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Table 4.5: Benchmark Circuits Used for Routability Model Validation

MCNC Benchmarks
# Circuit Two-Term # Circuit Two-Term

inal Nets inal Nets
1 ex5p 2,142 11 s298 3,237
2 misex3 2,688 12 bigkey 2,468
3 apex4 2,460 13 spla 7,233
4 alu4 2,730 14 frisc 6,107
5 tseng 1,638 15 elliptic 5,737
6 seq 3,373 16 pdc 9,292
7 apex2 3,755 17 ex1010 9,139
8 diffeq 2,335 18 s38584.1 8,461
9 dsip 2,346 19 s38417 9,058
10 des 3,090 20 clma 14,673

QUIP Benchmarks
# Circuit Two-Term # Circuit Two-Term

inal Nets inal Nets
1 oc aescore inv 21712 3 oc desdes3perf 55,683
2 oc aescore 16,681 4 oc video compressionsystemsjpeg 35,994

Both experimental and model results are averaged over the set of benchmarks.

The results from VPR’s placement algorithm may depend on some experimental settings such as the

placement seed [179] and maximum number of iterations [179]. While collecting experimental results,

we set the placement seed of VPR at 1 and use a maximum of 50 iterations. Through experimentation,

we have determined that these settings do not affect our overall conclusions (results not shown).

4.4.2 Validation Results - MCNC Benchmark Circuits

We first use twenty large MCNC benchmark circuits to validateour routability model. The circuits that

we use are listed in Table 4.5. Figure 4.11 presents the validation results for LUT sizeK=4, cluster size

N=8 and inputs per clusterI=18. ForI , we use the equationI = (K/2).(N+1), which gives the lowest

value forI for 98% utilization of logic blocks [6]. The segment lengthL is fixed at 1.

Figure 4.11 shows that our model predictions follow the trends of experimental predictions with re-

spect to routing parameters quite closely. We believe that this characteristic will help the FPGA architects

to quickly investigate the absolute and/or relative effects of each routing parameter (and/or the combina-

tions of multiple routing parameters), on the consequent routability. Figure 4.11 further shows that our

model is more accurate than the earlier model by Brown et al. [25] in most cases, especially for the highly

constrained architectures. We also find that the earlier model cannot properly capture the trends of the

experimental results with respect to the changes in routingfabric.

While validating the results with respect to one routing parameter (such as channel widthW), we fix
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Figure 4.11: Validation for 20 MCNC Benchmark Circuits withK=4, N=8 andI=18

the values of the other parameters. We investigate whether our model results are affected when different

sets of values are used to fix the parameters. For instance, both Figure 4.11(a) and Figure 4.11(b) present

routability results while sweepingW, albeit for different sets of values forFcin , Fcout andFs. We find that

our model can capture the trends of the experimental resultsin both cases. We make similar observations

when we compare the results in Figure 4.11(c) and 4.11(d). This further demonstrates our model’s ability

to follow the routability trends for different combinations of routing parameters.

From Figure 4.11, it is clear that our model overestimates the experimental results, especially for

the resource constrained architectures. From our discussion in Section 4.2 and 4.4.1, we identify three
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Figure 4.12: Impact of Logic Fabric: Results withK=6, N=16 andI=51

reasons for such over-estimation. First, since we use the upper bounds of the routing graphG(V,E) to

estimate the routability, the model is expected to over-estimate the experimental results. Secondly, while

deriving equations for Type 2 switch blocks, we assume that the switch box construction is such that two

sets of incident tracks will connect to the separate sets of tracks on the outgoing side of the switch block.

Finally, as we explain in Section 4.4.1.2, the last unsucessful iteration of Pathfinder that we use to collect

experimental results contributes to the over-estimation by the model results.

4.4.2.1 Impact of Logic Fabric on Routability

In Figure 4.12, we investigate to what extent our model can capture the impact of the logic fabric on

routability. The logic fabric parameters that we consider are LUT sizeK, cluster sizeN, and inputs per

cluster I . For this investigation, we setN, K and I respectively at 16, 6 and 511. The corresponding

results are presented in Figure 4.12. We compare the resultspresented in Figure 4.12 with the results in

Figure 4.11; results in Figure 4.11 are forN=8, K=4 andI=18.

We find that model results can capture the effects of changes in logic fabric parameters; and can

provide useful architectural conclusions with respect to these parameters. For instance, with higher values

of N, K and I , we expect each cluster to contain more logic blocks, requiring more routing tracks per

1We useN=16 to investigate the effects of using a cluster size that ishigher than the ones typically investigated by academic
studies.K=6 is a representative value for LUT-size and the formulaI = (K/2) · (N+1) [6] is used to setI at 51.
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Figure 4.13: Routability for Individual Circuits

Table 4.6: The Absolute Difference and the Standard Deviation of the Differences between the %
Model and the % VPR Routability (Based on Circuit-By-Circuit Results for MCNC Suite)

W-sweep [Fs = 3,Fcin = 90%,Fcout = 10%]
W: 20 30 40 50 60

Std. Dev.: 9.50 16.41 15.65 11.21 5.26
Abs. Diff.: 15.00 18.39 15.69 6.34 3.13

Fcout-sweep [W = 40,Fs = 3,Fcin = 25%]
% Fcout: 13 25 50 75 100

Std. Dev. (in %): 15.62 15.74 16.77 17.00 16.89
Abs. Diff. (in %): 15.16 15.94 17.17 16.92 16.78

channel segment (W) to route the nets between the clusters. Comparison betweenthe sets of results

presented in Figure 4.11(a) and 4.12(a) show that for largerN andK, VPR requires more routing tracks

per channel segment (W) to approach 100% routability. More importantly, we observe from these two

figures that our model can correctly predict this increased routing demand. This demonstrates our model’s

capability in capturing the effects of the FPGA logic fabricon the consequent routability.

4.4.2.2 Variation across Individual Circuits

Figure 4.13 compares our model results to the experimental results for selected individual circuits. For

brevity, we present results for six MCNC benchmark circuitsonly. Figure 4.13 demonstrates that the

model can capture routability trends for individual circuits in most of the cases. Out of the twenty MCNC

circuits, the model results over-estimate the experimental results in all cases except for only one circuit

s298, the results for which have been presented in Figure 4.13(a). For completeness, Table 4.6 presents

(a) the standard deviation of the differences and (b) the absolute difference, between the experimental

and the model results; forW-sweep andFcout-sweep. Results in Table 4.6 are averaged for 20 MCNC

benchmarks.
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Table 4.7: Range of Values for Routability and Corresponding Number ofCircuits (Out of Twenty
MCNC Benchmarks), for Channel WidthW-Sweep

N=8, K=4, Fcin=90%,Fcout=10%,Fs=3

W
Model Routability Experimental (VPR) Routability

< 80% 80% - 90% 90%-100% 100% < 80% 80% - 90% 90%-100% 100%

20 16 4 0 0 16 2 2 2

30 8 7 5 0 12 2 6 6

40 0 6 14 0 7 1 12 8

50 0 1 19 0 2 1 17 15

60 0 1 19 0 0 1 19 18

4.4.2.3 Routability for a Specific Routing Fabric

In the above sections, we have presented results pertainingto the goal of this project: investigation on how

the changes in routing fabrics affect the routability of typical applications. Accordingly, we have focused

on the capability of our model in capturing the trends of the effects of changing routing parameters. How-

ever, architects may ask whether our model can be used to investigate the capability of aspecificrouting

fabric in successfully routing all or most of the nets of typical applications. In Table 4.7, we attempt to

answer this question. In this table, we sweep channel-widthW while keeping the other parameters fixed.

For each of the values forW, we bin the circuits according to their routability. We present both model

and experimental results. Table 4.7 demonstrates that bothsets of results report similar number of circuits

within each routability bin. (The model results do not reach100% due to their probabilistic nature.) How-

ever, some discrepancies are found for individual circuits. For instance, VPR can route the benchmark

bigkeyeven withW=20; this contradicts the model, which reports 86.3% routability for this benchmark

atW=20. Whereas, the model reports 95% routability for the benchmarkpdcatW=60 in contrast to the

experimental routability of 81%. Investigation of discrepancies for these outlier benchmarks may be an

interesting area of future research.

We omit further results for brevity.

4.4.3 Validation Results - QUIP Benchmark Crcuits

To investigate whether our model can capture the routability trends of large circuits, we validate our model

using four QUIP benchmarks [9] that are much larger than the MCNC benchmark circuits. Table 4.5 lists

the QUIP benchmarks that we use.
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Figure 4.14: Validation for QUIP Benchmark Circuits with LUT-SizeK=4, Cluster-SizeN=8 and
Inputs per ClusterI=18

Table 4.8: Time Required (in Minutes) for QUIP Benchmarks

N=8, K=4, I=18,W=30,Fc in=0.9,Fc out=0.1
Net-Skip=100 for Model-Regular and Net-Skip=4000 for Model-Fast

Model-Regular VPR-Regular Model-Fast VPR-Fast

BM Time Routability Time Routability Time Routability Time Routability

(Mins.) (Mins.) (Mins.) (Mins.)

quip1 63.2 75% 97.5 76% 5.4 80% 12.4 63%
quip2 28.7 75% 84.2 71% 5.5 82% 7.3 56%
quip3 127.5 80% 557.2 50% 20.1 85% 164.5 38%
quip4 103.2 82% 524.4 65% 11.6 88% 114.5 50%

Figure 4.14 presents the validation results for the QUIP benchmark circuits. We again find that the

model results follow the trends of the experimental results. Comparing the results of Figure 4.11 and 4.14,

we find that for both MCNC and QUIP benchmarks, the model exhibits similar routability trends when

we vary the routing parameters. The above findings illustrate our model’s usefulness over a wide range

of benchmarks.
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4.4.3.1 Computation Time

Table 4.8 compares the computation time required to collectmodel results and VPR results using the

QUIP benchmarks. We present results for two modes of VPR 5.0 as well as our model:regular-mode and

fast-mode.

The architects can make some simplifications to accelerate the use of our model, especially during

early stage architecture evaluation. Most notably, Equation 4.2 requires us to update the value ofλg after

finding the routability for each net, whereas for a large circuit with thousands of nets, the changes inλg

after routing each net are negligible. In other words, the routability of the net# 101 of a large circuit will

be very close to the routability of the net# 200. This observation allows the architects to use the routability

value of net# 101 for the nets lying within the range of net# 101 and net# 200 while maintaining acceptable

level of quality. We use the termnet-skipto represent this range (net-skip=100 for the above discussion).

The results in Table 4.9 for the largest MCNC benchmark circuit clma verifies this argument for even

higher values ofnet-skip. The model results for the two modes (regular and fast) in Table 4.8 use different

values fornet-skip.

We find that model estimation is faster than VPR, especially for the larger circuits, such as, quip3

(oc desdes3perf), which contains 35,994 nets. We also investigate how closethe routability values from

the regular and the fast modes are. We find that the differences of routability from these two modes are

much smaller for our model in comparison with the results from the two modes of VPR. In other words,

either mode of our model can provide useful results much faster than VPR.

4.4.4 Relaxation of Shortest-Path Constraint

Figure 4.15 highlights an interesting observation. In thiscase, we have used a highly constrained ar-

chitecture, in whichFcin andFcout are set at 10%. Figure 4.15(a) shows the routability values when we

strictly constrain the nets by the minimum bounding box. Unlike the previous results, in this case, our

modelunderestimatesthe VPR results. The explanation for this is as follows. In collecting the model

Table 4.9: Effects of Skipping Nets to Accelerate Estimation

clma(2-Terminal Nets: 14673);W=20,fs=3,fc in=90%,fc out=10%
Skipped Nets 1 50 100 500 1000 2000 4000
% Routability 47.7 47.8 47.8 48.2 48.6 49.6 51.6
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Figure 4.15: Routability for Highly Constrained Architecture (Averaged over 20 MCNC Bench-
marks)

results, we assume that all nets are routed using the shortest path from source to sink. In the left-side of

Figure 4.15(a), this means that a net originating from aboveand to the left of the sink LB will connect to

the sink LB through one of the two shaded connection blocks.

For architectures in which the connection block flexibilityis low, however, it is conceivable that no

such connection is possible and a router will attempt to use one of the connection blocks on the “far”

side of the sink LB, represented by the dotted boxes in Figure4.15(b). For constrained architectures, such

connections occur often. Since the generic VPR router allows such connections (even when thebb f actor

flag is set to 0), model results in Figure 4.15(a) underestimates the VPR results.

We now investigate the effects of allowing these connections while collecting model results. We

slightly relax the minimum-path constraint to model such effects by following the technique presented in

Section 4.3.1. Doing so leads to the results in Figure 4.15(b). Clearly, this provides much more accurate

estimates for limited-flexibility architectures.

4.4.5 Effects of Faulty Tracks

For the QUIP benchmark circuitoc aescore, Figure 4.16 compares the model results with the experi-

mental results when some of the routing tracks are reserved or faulty. We generate the model and the

VPR results as in Section 4.4.1. However, we use Equation 4.14 when collecting the model results. In

collecting the experimental results, we modify the VPR module that initializes the routing resource graph

to randomly mark some of the routing tracks as faulty (‘used’), as a percentage of channel widthW.

From Figure 4.16, we find that although the absolute values for model and experimental results differ,

they follow the same trend.
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Figure 4.16: Investigation of Effects of Faulty Routing Tracks

4.4.6 Model Summary and Discussion on Results

4.4.6.1 Model Summary

We list here the major results of our model and the corresponding sections that present detailed derivation.

1. Section 4.2.2.2. The upper estimate of the routability ofthe ith net ψi with a given lengthl is

Pr[Rψi |l ] and is given by Equation 4.11:

Pr[Rψi |l ]≤ Pr[X1] ·Pr[X2] · (1−Qx) ,

where, the parameterQx is calculated by using the consecutive cutsets of the routing graphG(V,E).

Pr[X1] andPr[X2] are the routability through the source and the sink connection boxes, respectively.

2. Section 4.2.3.Pr[Rψi ] represents the probability of a net that may assume any length between 1 and

lmax, and is given by Equation 4.12:

Pr[Rψi ] =
lmax

∑
l=0

Pr[ψi |l ] ·Pr[Rψi |l ],

where,Pr[ψi |l ] = p.ql−1 represents the probability that a neti has the lengthl with p=1/lavg and

q= 1− p. Pr[Rψi |l ] is obtained from Section 4.2.2.2.

3. Section 4.2.3.Pr[Rckt|comb] represents the routability of a circuit that contains|ψ | netsψi ’s and that
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is mapped on an FPGA using a combined router. From Equation 4.13:

Pr[Rckt|comb] =
1
|ψ | ·

|ψ |

∑
i=1

Pr[ψi ].

4.4.6.2 Discussion on Results

We have presented validation results averaged over a set of applications as well as for individual appli-

cations. The results demonstrate that our model captures the effects of the changing routing fabrics, on

routing an average application as well as individual applications. We have made this observation for two

sets of benchmarks with a wide range of sizes. When investigating the effects of one routing parameter,

our model gives reliable estimates even when the values of the other parameters are changed.

4.5 Summary

This chapter described ananalytical model that relates architectural choices to routability for FPGA

implementations. The major challenge tackled in deriving the model was related to using a modern single-

step combined router; use of such a router allows the nets to take any of the many possible routing-paths

that are not independent. We use a graph-theoric technique to tackle this challenge. Since placement

and routing are the most time consuming stages of a CAD flow, designers will benefit from using our

model to quickly evaluate a wide range of routing fabrics with respect to routability. We validate our

models against the commonly used academic CAD tool, VPR. We show that despite the assumptions

made in deriving our model, it can effectively capture the trends of the effects of architectural choices on

consequent routability.
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Chapter 5

Applications of Analytical Models:

Capabilities and Limitations

The focus of this chapter is to investigate the capabilitiesand limitations of analytical models when eval-

uating new FPGA architectures. Despite the promises of significant reduction in design time, analytical

models are yet to be extensively used in the design flows used for commercial FPGAs. To make the

model-based design technique attractive to a wide audience, in-depth studies are required to investigate

whether the analytical models can effectively and correctly answer the questions that FPGA architects

ask during architecture development. Feedback from industry also motivated us to identify the categories

of design-questions that cannotbe correctly answered by analaytical models. This chapter provides such

an understanding. In this chapter, we use the termmodel-based design techniqueto represent a design

process that uses analytical models to evaluate new FPGA architectures.

Our investigation presented in this chapter consists of twoparts. First, we investigate whether during

the very initial “back of the envelope” design, the analytical models can provide intuition about which

architectural parameters have a more significant impact on the FPGA density and speed. Later stages

of architectural development involve “parameter sweeps” which involve estimating the area and delay of

an architecture for various values of architectural parameters. The second part of this chapter evaluates

the effectiveness of the model-based design technique in reaching useful conclusions during parameter

sweeps. We use two architecture design questions to illustrate the capabilities and limitations of the

model-based design technique. Table 5.1 presents the parameters that we use for our investigation.
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Table 5.1: Parameters Used to Optimize an FPGA Architecture

Inputs:
Architectural Parameters (Logic Fabric):
N Cluster size
K Lookup Table (LUT) Size
I Inputs per cluster
Architectural Parameters (Routing Fabric):
W Channel width (tracks per a routing channel)
Fcout Source Connection Block (CB) flexibility
Fcin Sink CB flexibility
Fs Switch Block (SB) flexibility
Nxy FPGA grid size with number of logic objects beingN2

xy
Circuit Parameters:
n2 Number of logic blocks for 2-LUT implementation
d2 Circuit depth for 2-LUT implementation
lmax Maximum post-placement wirelength of a circuit
p Rent parameter of a circuit

Outputs
nk Expected number of LUTs required for a circuit
nc Expected number of clusters required for a circuit
dk Expected maximum post technology mapping depth for a circuit
dc Expected maximum post-clustering depth for a circuit
Bprog Expected programming bits required to implement a circuit
Tcp Expected critical path delay for a circuit

This chapter is organized as follows. Section 5.1 presents our work related to the use of analytical

models during very initial stage of architecture development. Section 5.2 presents an overview of using

model-based design technique during parameteric sweep, which is the Part 2 of our investigation; this

section also introduces the design questions. Section 5.3 and 5.4 present our work related to Part 2;

these two sections illustrate the capabilities and limitations of model-based design technique. Finally,

Section 5.5 summarizes this chapter.

Parts of this chapter were published in [58, 59, 61].

5.1 Impact of Architectural and Circuit Parameters

During the very initial “back of the envelope” design, designers aim to identify the interesting parameters

that will have significant impact on the device performance.This could be done using experimental

techniques, however, experimental results using benchmark circuits often display experimental “noise”,

caused by second and third order effects, and often are a result of pathological mapping results of the

benchmark circuits [149, 191]. As an alternative approach,we investigate whether analytical models can

be effectively used to identify interesting architecturalparameters.
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The closed-form nature of our area and delay models allows usto calculate the derivative of the area

and delay characteristics of an FPGA architecture with respect to architectural parameters, and use this to

understand the impact of those parameters. This section evaluates this idea for our delay models as well

as the area models from Lam et al. [104].

5.1.1 Derivatives of Analytical Models

To illustrate the use of derivatives to identify the impactsof architectural parameters, consider the impact

of the LUT size on the values ofnk/n2 anddk/d2. Clearly, both quantities decrease asK increases, but

the rate at which each decreases as well as the impact of otherparameters on this decrease are not clear.

Differentiating Equations 3.1 and 3.18 with respect toK, we get:

∂ (nk/n2)

∂K
=−

p
√

4

p(K +2)
1+p

p

, (5.1)

and

∂ (dk/d2)

∂K
=−3

2





1+ 4
(ln2)(3K+2))

[

3K
4 − 1

2 + log2

(

3K
4 + 1

2

)]2



 , (5.2)

where the parameters are from Table 5.1. We omit the derivation of these expressions for brevity. When

deriving these expressions, we replacedγ with a linear approximation (γ = 1
4K− 1

2). We can calculate the

relative change indk/d2 due to a change∆K around pointK as follows:

f ′(K)

f (K)
·∆K, (5.3)

where f (K) = dk/d2 and f ′(K) = ∂ (dk/d2)/∂K. Similarly, we can find the relative change innk/n2.

The impact of the parameterN can be obtained similarly. ForN-limited clustering, by differentiating

Equations 3.6 and 3.24 with respect toN, we obtain:

∂ (dc/dk)

∂N
=− 1

K− γ

[

1
N2 +

K− γ −1
nk

]

, (5.4)

and
∂ (nc/nk)

∂N
=− 1

N2 . (5.5)

We can use the last two equations to calculate the relative change innc/nk and in dc/dk due to a
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Figure 5.1: Impact of Architectural and Circuit Parameters. (a) Impactof LUT Size on the Number
of Logic Blocks and the Post-Technology Mapping Depth. (b) Impact of Cluster Size on the
Number of Clusters. (c) Impact of Cluster Size on the Post-Clustering Depth.

change of∆N around pointN:

f ′(N)

f (N)
·∆N, (5.6)

where f (N) = dc/dk and f ′(N) = ∂ (dc/dk)/∂N. Similarly we can findf ′(N)/ f (N) · ∆N for f (N) =

nc/nk.

5.1.2 Results and Discussions

Figure 5.1(a) showsf ′/ f for both nk/n2 anddk/d2, as function of LUT sizeK. The Rent parameterp

is fixed at 0.67. The graph shows that increasingK by ∆K causes a 0.3∆K reduction innk/n2 for K = 4

and the reduction innk/n2 slightly changes for higher values ofK. Figure 5.1(a) also shows that for

K = 4, increasingK by ∆K causes a 0.25∆K reduction indk/d2. For larger values ofK, the impact on

dk/d2 is smaller. Taken together, these graphs show that for the values ofK > 4, the parameterK has a

much stronger impact on the total number of LUTs required to implement a circuit than the number of

LUTs along the circuit’s critical path. In other words, incresingK beyondK = 4 is expected to have more

significant impact on area than on critical path delay.

Figure 5.1(b) and (c) plotf ′/ f for nc/nk anddc/dk as a function of cluster sizeN for p=0.67. These

two plots represent the effects of clustering phase of CAD flow on the reduction in the amount of logic

and speed of logic. In Figure 5.1(c), we assumenk to be 3,000; we observe thatdc/dk is a weak function
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of nk. We also observe that, for smaller values ofN, the∆N change will have a significant impact on both

nc/nk anddc/dk. However for higher values ofN, the change inN, ∆N will not have a significant impact

on the number of clustersnc or the post-clustering depthdc. Figure 5.1(b) and (c) also show the relative

impact of the cluster sizeN on the density and the speed, where∆N affects density (function ofnc/nk)

more than speed (function ofdc/dk) by an order of magnitude.

The results illustrate that the derivatives of model equations can provide FPGA architects with insights

on which parameters will have significant impact on the amount and speed of logic implemented on

FPGAs. Such insight will help the architects to identify theparameters that need to be focused on during

parameteric sweeps.

5.2 Effectiveness of Analytical Models during Parameter Sweeps

In a typical experimental design flow, the very initial back of the envelope design is followed by parametric

sweeps. During a parameteric sweep, FPGA architects sweep architectural parameters to investigate

consequent effects on evaluation metrics, with the goal of identifying the best architectures. Table 5.1

lists examples of architectural parameters that are typically swept by architects.

As described in Section 1.2.3, we envisage that analytical models can be used to accelerate this process

by short-listing a small number of architectures for further experimental evaluation. Intuitively, pruning

potential architectures using our models should be effective, because we have shown that our models,

individually, correctly capture the impact of the relevantarchitectural parameters. However, there are two

potential issues that must be investigated:

1. Assumptions made in deriving the analytical models:In the derivations in the previous chapters,

several simplifying assumptions were made. In particular,each derivation focused on a small num-

ber of parameters, assuming the other effects of the other parameters were negligible. As shown

in Yan et al. [191], this assumption may not be correct. It is conceivable that when combining the

models, these assumptions may lead to misleading conclusions.

2. Continuous nature of analytical models:The models in the previous chapters are continuous. How-

ever, most parameters are limited to discrete values. As an example, consider optimizing the

lookup-table size for an FPGA tuned to implement multiplexer-intensive circuits. An architec-

ture consisting of 6-input lookup tables can effectively implement 4-input multiplexers, since such
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a multiplexer would have 4 inputs and 2 select line inputs. Increasing the size of each lookup table

to 7 inputs, however, provides little additional benefit when implementing such a circuit. Our model

would not capture this effect.

To investigate whether these issues impact the utility of our model-based design flow, we perform two

sets of experiments. We first consider the optimization of a general-purpose FPGA and determine whether

the architectural conclusions predicted by our model are inalignment with the architectural conclusions

presented by an experimental flow. These sets of experimentsare presented in Section 5.3. Second, in

Section 5.4, we consider the optimization of an FPGA tuned toimplement crossbar-intensive circuits that

contain a large number of multiplexers and potentially suffer from discrete effects that we describe above.

5.3 Design Question 1: Optimization of General Purpose FPGA
Architecture

In this section we optimize a general-purpose FPGA architecture. We consider five architecture param-

eters from Table 5.1:N, K, I , Fc in andFc out. In the experimental technique shown in Figure 1.1, archi-

tecture parameters are swept to identify the best values of those parameters for a range of benchmarks.

An exhaustive sweep that considers all possible combinations of parameter values requires too many in-

vokations of the CAD tool to make this approach feasible. Consider the case where designers want to

investigate five architectural parametersN,K, I ,Fc in,Fc out, with these parameters respectively having 25,

5, 20, 10 and 10 possible values (levels). Designers will require a quarter of a million runs to perform this

investigation by exhaustively sweeping the parameters.

Rather than using such an expensive exhaustive-sweep basedapproach, we use two alternative exper-

imental optimization approaches. We compare the conclusions from these two experimental approaches

to those obtained from an analytical model-based design flow. Each of these three design flows optimize

the architecture parameters separately with respect to twoevaluation metrics: the area of implementation

(captured by the number of programming bits) and the critical path delay. These three design flows are

introduced below:

1. Design flow 1:In the first design flow, we run experiments to sequentially optimize the five archi-

tectural parameters that we investigate. When optimizing aparameter in this flow, we fix the values

for the other parameters; this design flow mimics the traditional design flow often adopted for new
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Table 5.2: Design Space for Exploration

Architectural Parameters
N K I Fc in Fc out

Minimum Values for the Parameters 4 4 8 0.05 0.05
Maximum Values for the Parameters 20 7 64 0.55 0.55
Incremental Values for the Parameters2 1 4 0.10 0.10
Starting Values for the Parameters 8 6 28 0.25 0.25

Total possible architecture configurations: 19,440

architecture design. Extensive designers’ intuition is required in various stages of this flow such as

deciding the sequence that will be used to optimize the parameters. Section 5.3.1 details this flow.

2. Design flow 2:The second design flow uses a Design of Experiments (DOE) based approach. A

DOE-based flow is expected to significantly reduce the numberof experiments when compared

to the exhaustive-sweep based approach, while reducing thedependence on designers’ intuition

during the optimization process. This approach considers the interactions between the architectural

parameters and is expected to provide better quality when compared to a sequential optimization

flow. Section 5.3.2 details the DOE-based design flow.

3. Design flow 3:The third design flow will use our model equations for optimization. This flow is

purely analytical and will optimize the architecture parameters only by using the models presented

in Chapter 3 and 4 of this thesis, the channel-width model presented by Fang and Rose [70] and the

physical delay model presented by Hung et al. [90]. Section 5.3.3 details this design flow.

When optimizing the architectural parameters using these flows, we use the results for area and delay

averaged over twenty MCNC benchmarks [192]:ex5p, misex3, apex4, alu4, tseng, seq, apex2, diffeq,

dsip, des, s298, bigkey, spla, frisc, elliptic, pdc, ex1010, s38584.1, s38417andclma.

Each of these three flows explores an identical design space1. The design space that we use is given

in Table 5.2. The maximum values and the minimum values boundthe design space that we investigate.

We use the incremental values to investigate the values of the parameters lying within the design space.

For instance, while optimizingN, we investigate the results forN = 4,6,8, . . . ,20. A total of 19,440

architecture configurations may be formed using the maximum, the minimum and the incremental values

from Table 5.2 for the five architectural parameters that we investigate.

1We definedesign spaceby the range of values that we use for the parameters, i.e. themaximum and the minimum values as
well as the increments used to explore the values within the range.
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As we will explain in Section 5.3.1 and 5.3.2,starting valuesin Table 5.2 play a significant role in

both design flows 1 and 2. We use the same set of starting valuesfor both area and delay optimization.

In defining the starting values for architectural parameters, we use the values and thumb-rules that earlier

studies have found to be “good” for earlier generations of process technology and CAD tools. This allows

us to investigate how these conclusions are affected by the changes in process technology and CAD tools.

We now present the findings from earlier studies that we use todefine the starting values. The work

by Betz et al. [21] in 1999 finds the optimal value of cluster sizeN to be 6-8 with respect to area-delay

product (Figure 6.12, page 145 in [21]) and the optimal valueof connection box flexibilityFc to be 0.25

with respect to area when theWilton switch block is used (Figure 7.2, page 161 in [21]). It may be noted

that Betz et al. [21] usesFc = 0.25 while settingN = 4, LUT sizeK = 4 and inputs per clusterI = 10.

However, the work by Lemieux and Lewis [111] finds that critical path delay decreases significantly when

K is changed fromK = 4 to K = 6 (Figure 5.7a, page 96 in [111]); the decrease in critical path delay is

less significant whenK is changed from 6 to 7. We useK = 6 as the typical value for LUT size. Using

the rule of thumb for the optimal value of inputs per clusterI from the work of Ahmed and Rose [6], we

haveI = (K/2) · (N+1) = 27; we useI = 28 as the starting value for inputs per cluster.

5.3.1 Design Flow 1: Sequential Optimization Through Experimentations

In an experimental approach, FPGA architectures are typically designed by sequentially optimizing the

parameters under investigation. In this sub-section, we detail how we use such an approach to optimize

the five architectural parameters that we consider. We first detail the stages involved with this design flow

and then present results from this flow.

5.3.1.1 Stages of Design Flow 1

The first issue that we tackle is defining the order of the architectural parameters for optimization. We

need to identify the parameter that we will investigate first, the parameter that we will investigate next

and so on. We do not know of any previous study that recommendsan ordering for optimizing FPGA

architectural parameters. In ordering parameters, we use insights from earlier studies. These studies

investigate the effects of a single architectural parameter (or a set of architectural parameters). In the

cases where we have not found any study to provide such insight, we have used our intuition as well as

preliminary experimental results to order the parameters.
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Figure 5.2: Orders of Optimization (Both Area and Delay) for the Architectural Parameters

The ordering that we use for both area and delay optimizations is shown in Figure 5.2. We useN

as the first parameter to optimize based on the experimental results from Betz et al. [21] that shows

significant reduction in delay for varying cluster sizes (Figure 6.11, page 143). For ordering the remaining

parameters, we use the insights from the work of Lemieux and Lewis [111]. That work finds that the delay

is more dependent on LUT-sizeK as compared to the connection box flexiblitiesFc. We therefore give

preference toK overFc in Figure 5.2.

After setting the order of parameters, we sequentially optimize these parameters. To optimize a pa-

rameter with respect to an evaluation metric, we sweep the parameter within the design space defined

in Table 5.2. We use fixed values for the other parameters during this process. If any of the other

parameters has been previously optimized, we use the optimized value for that parameter; we use the

starting values from Table 5.2 otherwise. For instance, to optimize N for delay, we sweepN within

the spaceN = 4,6, . . . ,20 while using{K, I ,Fc in,Fc out} = {6,28,0.25,0.25}. We find thatN = 8 is

the most promising value forN with respect to delay. While sweepingK, we will then setN = 8 and

{I ,Fc in,Fc out} = {28,0.25,0.25}. In all cases, we fix the switch box flexibilityFs to 3 and the segment

lengthL to 1.

5.3.1.2 Methodology

In our experiments, we start with the netlist of the circuitsdescribed in.blif format and use T-VPACK [21]

to pack (cluster) these circuits while maintaining architectural constraints. We then run the VPR 5.0 [21,

122] place-and-route tool to place and route the circuits; we use timing-driven mode of VPR for our

experiments. VPR’s ‘binarysearchplaceand route’ routine has been used in experiments to estimate

the minimum channel-width required to route a circuit. We increase minimum channel-width by 20% to

mitigate the noise in VPR flow and to ensure ‘low-stress’ routing [21]; we use this increased channel-

width to route the circuits. The results for area and delay are collected after the circuits are placed and

routed.
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Result collection for area We capture the area of implementation by the number of programming bits

required to map a circuit on a given FPGA. We use the followingexpression to capture the the total

number of programming bitsBprog:

Bprog = Numbero f Prog Bits per tile∗nc, (5.7)

where,nc represents the total number of clusters. For our experiments, we obtain the values ofnc from

the output of T-VPACK.

From Section 3.2.2,Numberof ProgrammingBits per tile can be found by adding three parameters:

(a) programming bits per clusterBcluster, (b) programming bits per connection blockBCB and (c) program-

ming bits per switch blockBSB. These three parameters can be expressed by Equations 3.15 to 3.17. In

Equations 3.16 to 3.17, we set the channel widthW atW =Wmin∗1.2, whereWmin is obtained from the

binary-search routine of VPR.

For each sweep, the parameter value leading to the best area results is selected. Results are averaged

over twenty MCNC benchmarks that we use.

Result collection for critical path delayTo optimize the parameters with respect to delay, we collectthe

critical path delay from VPR. We again identify the minimum channel-width from VPR’s binary-search-

place-and-route routine and increase minimum channel width by 20% to route the circuits.

The critical delay values that we have collected from VPR areprocess-technology dependent values;

we usePredictive Technology Model (PTM) 45nmtechnology. We now explain how we use technol-

ogy dependent delay values in VPR. We use the process-dependent parameters (such as, capacitance of

minimum-size transistor) with the physical delay model from Hung et al. [90]. The work of [90] allows us

to estimate different delay parameters, such as, delay between cluster input pin and LUT input pin, delay

from one switch block to the next switch block and the delay between switch block to input connection

block. We incorporate values for these delay components into the VPR architecture files. We have also

made necessary modifications to VPR to ensure that VPR uses these values to calculate the critical path

delay.
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Table 5.3: Design Flow 1 Results : Sequential Optimization for the Number of Programming Bits

Parameter Best optimization Second best optimization

being optimized Parameter value Prog. Bits Parameter value Prog. Bits

N 14 2.65E+05 6 2.66E+05

K 6 2.65E+05 7 2.71E+05

I 32 2.60E+05 28 2.65E+05

Fc in 0.05 2.55E+05 0.15 2.56E+05

Fc out 0.05 2.33E+05 0.45 2.54E+05

No. of architectures explored: 40
(Each exploration requires running 20 benchmarks through VPR)

5.3.1.3 Results from Design Flow 1

Area results Table 5.3 presents the results related to the the sequentialoptimization of the five archi-

tectural parameters while following the optimization order shown in Figure 5.2. For each step, Table 5.3

presents the optimized value for the parameter that is investigated at that step. For each step, we also

present the value of the corresponding parameter that is thesecond best with respect to area. We report

these values to facilitate the discussion on results in a later sub-section; we do not use these values other-

wise. Figure 5.3 presents the same set of results and illustrate how the area requirement is changed while

we proceed through the optimization stages.

From Table 5.3 and Figure 5.3, the best architecture with respect to the number of programming bits

is identified as{N,K, I ,Fc in,Fc out} = {14,6,32,0.05,0.05} that requires 2.33X105 programming bits on

average.
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Figure 5.3: Design Flow 1: Number of programming Bits at the End of Each Optimization Stage
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Table 5.4: Design Flow 1 Results: Sequential Optimization for the Critical Path Delay

Parameter Best optimization Second best optimization

being optimized Parameter value Delay Parameter value Delay

N 8 6.15E-09 10 6.31E-09

K 6 6.13E-09 7 6.14E-09

I 28 6.13E-09 20 6.15E-09

Fc in 0.35 5.94E-09 0.25 6.13E-09

Fc out 0.05 5.22E-09 0.15 5.76E-09

No. of architectures explored: 40
(Each exploration requires running 20 benchmarks through VPR)

Delay results Table 5.4 presents the results related to the sequential optimization of five parameters

with respect to critical path delay. We again present the second-best values for the parameters being

optimized. Figure 5.4 illustrates the change in critical path delay while we sequentially optimize the

architectural parameters.

The best architecture with respect to critical path delay isfound to be{N,K, I ,Fc in,Fc out} =

{8,6,28,0.35,0.05}, which results in an average critical path delay of 5.22ns.

5.3.2 Design Flow 2: DOE-Based Experimental Technique

We next use a DOE-based experimental technique to optimize the five parameters that we consider. More

specifically, we use the DOE-based Pareto-point generation(DPG) technique, proposed by Sheldon and

Vahid [157]. That work’s objective is to optimize the configurable components of an existing FPGA

device, which is different from our objective of designing new FPGA architectures. We make several

modifications to the DPG technique to make it suitable for ourpurpose. In this sub-section, we first detail
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Figure 5.4: Design Flow 1: Critical Path Delay at the End of Each Optimization Stage
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the stages of DOE-based DPG technique that we follow and thenpresent the results from this approach.

We use the VPR framework to run experiments as required by this design flow. For collecting results from

T-VPACK and VPR, we follow the steps detailed in Section 5.3.1.2.

Explored design spaceDOE-based techniques typically use two or three levels (values) for each in-

put parameter, and these levels are traditionally identified by +1 (maximum), 0 (median, if any) and -1

(minimum). Use of a DOE-based technique therefore allows usto use a maximum of three values for

each architectural parameter. We use the values from Table 5.2 to represent these three levels. More

specifically, the maximum values, the minimum values and thetypical values of Table 5.2 respectively

represent level +1, level -1 and level 0 in our experimentations. We later explain how the DPG technique

can explore a larger range of values by using afill-in stage.

5.3.2.1 Stages of Design Flow 2

Phases of DPG The DPG technique has three phases. First, a minimal number of experiments are used

to generate a parameter interdependency graph [79, 157]. For a given evaluation metric (such as area), this

graph presents the interdependency between any pair of architectural parameters. For example, this graph

will tell us how much effect the designers will have on area, when they simultaneously change the values

of a pair of parameters (such asK andN) from minimum to maximum. In the second phase, based on the

information from the parameter interdependency graph, pairs of parameters are optimized sequentially,

starting with the pair that is expected to have the most significant effect on evaluation metrics. These first

two phases use three levels for inputs. Typical architectural parameters however will have many more

possible values. To address this, Sheldon et al. [157] uses the third phase (fill-in phase) to investigate

other promising values, after the first two phases are completed. In our work, while optimizing the

architectural parameters for a new FPGA architecture, we find that it is beneficial to perform the second

and third phases simultaneously.

We now detail each of these three phases.

Generation of the interdependency graphSince we optimize the architectures for area and delay sepa-

rately, we form two parameter interdependency graphs for these two evaluation metrics. Figure 5.5 shows

these two graphs, details on generation of which will follow. Each of these graphs will have five nodes
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(a) Number of programming bits (b) Critical path delay

Figure 5.5: Parameter Interdependency Graphs (Results Averaged over 20 MCNC Benchmarks)

representing the five architectural parameters that we consider. The edge between a pair of nodes is as-

signed with a weight that represents the interdependence between these two parameters with respect to

area or delay.

Parameter interdependency graphs could be formed by exhaustively sweeping the architecture param-

eters and observing the consequent effects on area or delay.Bounding the architecture parameters by the

maximum (+1) and minimum (-1) values only, we would then require 25 = 32 runs to form the graph.

To reduce the number of required runs, we use a technique presented by Plackett and Burmann [140].

This technique uses a set of limited number of experiments, known as Plackett-Burmann (PB) set of

experiments. Based on the results obtained from PB set of experiments, we first calculate theindependent

effect of each architecture parameter on an evaluation metric, while neglecting the interactions between

the remaining parameters. The estimated results for independent effects are then used to calculate the

interdependenteffects of a pair of parameters. We use the technique from Sheldon et al. [157] for this last

task. We now discuss these steps in more details.

Formation of the PB set of experiments For the five parameters that we investigate, the PB set

of experiments is formed using only the maximum and the minimum values. Several studies discuss

the formation of PB sets of experiments to properly capture the independent effects of the inputs on

the outputs. These studies propose a varying number of required experimental runs. At the minimum,

(F + 1)/(L− 1) runs can be used to measure the effects ofF factors (inputs) on a response (output),

with each factor havingL levels. Six experiments can therefore be used to measure theindependent
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Table 5.5: Plackett-Burman (PB) Matrix for Generating Interdependency Graphs

Levels for parameters Values for parameters
PB Runs N K I Fcin Fcout N K I Fcin Fcout

1 1 -1 1 -1 -1 20 4 64 0.05 0.05
2 1 1 -1 1 -1 20 7 8 0.55 0.05
3 -1 1 1 -1 1 4 7 64 0.05 0.55
4 1 -1 1 1 -1 20 4 64 0.55 0.05
5 1 1 -1 1 1 20 7 8 0.55 0.55
6 1 1 1 -1 1 20 7 64 0.05 0.55
7 -1 1 1 1 -1 4 7 64 0.55 0.05
8 -1 -1 1 1 1 4 4 64 0.55 0.55
9 -1 -1 -1 1 1 4 4 8 0.55 0.55
10 1 -1 -1 -1 1 20 4 8 0.05 0.55
11 -1 1 -1 -1 -1 4 7 8 0.05 0.05
12 -1 -1 -1 -1 -1 4 4 8 0.05 0.05

effects of five architectural parameters (F=5) on area or delay, with each parameter having two levels

(L=2). However, a study by Heyden et al. [86] shows that the effects of inputs are significantly aliased

(confounded)2 when using a very low number of experiments. We therefore usea twelve-run PB matrix

instead of using a lower number of experiments. Details of forming the PB matrix can be found in

several publications [86, 118, 140]. Table 5.5 presents thePB matrix of runs that we use to generate

interdependency graphs.

Estimation of independent effects of the parameters while neglecting interactions For each of

the runs in Table 5.5, we use the corresponding values of architectural parameters with T-VPACK and

VPR and collect the results for area (total number of programming bits) and critical path delay. These re-

sults are used to estimate the effect that an architectural parameter will have on area or delay, independent

of the other architectural parameters. To estimate these independent effects, we use techniques similar to

the ones presented in earlier studies by Plackett and Burman[140] and Heyden et al. [86]. As an example

of using this technique, consider the estimation of the effect of cluster sizeN. From Table 5.5, we find

that the maximum value (+1) forN appears in rows 1-2, 4-6 and 10, and the minimum value (-1) appears

in rows 3, 7-9 and 11-12. Representing the experimental results (from VPR) for area for theith row asAi,

2Aliasing: When the estimate of the effect of changing one factor (architectural parameter) is influenced by the effects of
other factors (usually by the higher order interactions between other factors).
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the independent effect ofN on area can be estimated as:

ENarea =
A1+A2+A4+A5+A6+A10−A3−A7−A8−A9−A11−A12

12
. (5.8)

In a similar fashion, representing the experimental results for delay for theith row asDi, the independent

effect ofN on area can be estimated as:

ENdelay =
D1+D2+D4+D5+D6+D10−D3−D7−D8−D9−D11−D12

12
. (5.9)

Estimation of edge-weights (interdependence) The DPG technique uses the estimated indepen-

dent effects from above in assigning edge-weights. We now give an example to illustrate how we follow

the guidelines from Sheldon and Vahid [157] to estimate the weight of the edgeI -Fc in in the interde-

pendency graph for critical path delay. The independent effects ofI andFc in on delay are estimated as

-1.6ns and -0.3ns respectively (from the PB set of experiments). This impliesthat changing the value

of I from 8 (level ‘-1’) to 64 (‘+1’) and the value ofFc in from 0.05 (‘-1’) to 0.55 (‘+1’) will reduce

delay by 1.6ns and 0.3ns respectively, when the other parameters are set at fixed values. If I andFc in

were truly independent; changingI and Fc in together would have reduced the critical path delay by

1.9ns. To investigate whether there is any interaction betweenI and Fc in, we run two experiments,

where the first experiment uses minimum values forI andFc in, and the second one uses maximum val-

ues. The other four architecture parameters are fixed. We runexperiments using{N,K, I ,Fc in,Fc out} =

{4,4,8,0.05,0.05} and{N,K, I ,Fc in,Fc out} = {4,4,64,0.55,0.05} and find the critical path delay to be

8.2ns and 6.8ns, respectively. In other words, changingI andFc in simultaneously reduces the critical

path delay by 8.2ns−6.8ns= 1.4ns, which is lower than 1.9ns. This implies that these two parameters

are inter-dependent and we represent this inter-dependence by assigning a weight to theI -Fc in edge; the

weight will be equivalent to 1.9ns−1.4ns= 0.5ns (which is 0 when normalized).

We follow this technique to measure the weights for each edgein parameter interdepency graphs. If

two parameters are independent of each other (if the edge weight is negligible), there will be no edge

between the corresponding nodes, such as theI -Fc in edge from the above example. A higher weight for

an edge will represent higher interdependency between the nodes connected by that edge. Figure 5.5

shows the parameter interdepency graphs for area and delay.

109



Optimizing the architectural parametersThe DPG technique starts architecture optimization by opti-

mizing the pair of parameters connected by the highest weighted edge. In Figure 5.5(a), the edge between

K andN has the normalized weight of 1.00. We therefore optimize these two parameters first for area

optimization. While optimizing a pair of parameters, we allow the parameters to have three values:−1, 0

and+1. These values correspond to the maximum, the typical and the minimum values in Table 5.2. We

need a maximum of nine runs for any pair of parameters, when the other parameters fixed.

After optimizing a pair of parameters, the edge between the parameters is removed from the graph

and the two nodes are merged into one. For instance, we find that the optimized values ofK andN to be

6 and 8. To investigate the remaining edges, we remove the edge K-N, and useK = 6 andN = 8 for the

remaining experiments. If an optimized parameter is a member node of the edge that we investigate at

a later stage, we use a fixed value for this parameter and the required runs to investigate this latter edge

is reduced from nine to three. Furthermore, we ignore an edgeif both of the edge-nodes (architectural

parameters) have been investigated earlier.

Fill-in phase While optimizing a pair of parameters, we may also use thefill-in stage, whenever re-

quired. For example, if delay forN = 20 differs significantly fromN = 8, we may either explore the

intermediate values forN such asN = 14,16,18 etc. or larger values forN such asN = 24,28 etc. To

keep the design space consistent across all design flow, during fill-in phase, we only explore the values

lying between the maximum and the minimum values.

Table 5.6: DPG Stages: Optimizing an Architecture for the Area of Implementation (No. of Prog.
Bits). Sequence of the Pairs is Determined from Figure 5.5a); Fs=3 in all cases

Optimized Parameters Minimum No. of Prog.
Stage No. Pair of Parameters 1st Parameter 2nd Parameter Bits after this Stage

1 PB-Stage – – 3.08X105

2 K,N K=6 N=8 2.72X105

3 N,Fc in N=8 Fc in=0.05 2.60X105

4 N,Fc out N=8 Fc out=0.05 2.55X105

5 I ,Fc in I=28 Fc in=0.05 2.55X105

6 Fill-in: N,K, I N = 10,K = 6, I = 36 2.52X105

Optimized architecture for area:{N,K, I ,Fc in,Fc out} = {10,6,36,0.05,0.05}
No. of architectures explored: 47
(Each exploration requires running 20 benchmarks through VPR)
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5.3.2.2 Results from Design Flow 2

Area results In Table 5.6, we present results collected from different stages of the DOE-based approach

when the architecture is being optimized for area; as before, we capture the area by the number of pro-

gramming bits required to implement a circuit. The first data-row represents the results from the exper-

iments using Plackett-Burman matrix. The remaining data-rows present data corresponding to the pair-

wise optimization stages. The second column of this table presents the pairs being investigated, starting

with the pair having the highest interdependency weight in Figure 5.5(a). The next two columns present

the optimal values for the corresponding parameters. Finally, the rightmost column presents the minimum

number of programming bits as reported upon completion of the corresponding stage. We find from Ta-

ble 5.6 that the required number of programming bits decreases consistently while we progress through

pair-wise optimization stages. For area optimization, we had to explore 47 architecture configurations in

DOE-based experimental flow.

Delay Results Table 5.7 presents the results from DPG-based design flow when the architecture is being

optimized for critical path delay. The construction of thistable is similar to that of Table 5.6. From the

rightmost column of Table 5.7, we find that as we progress through DPG stages, the critical path delay

conistenty goes down. We explore 49 architecture configurations to optimize architectural parameters

with respect to critical path delay.

Table 5.7: DPG Stages: Optimizing an Architecture for Critical Path Delay. Sequence of the Pairs
is Determined from Figure 5.5(b);Fs=3 in All Cases

Optimized Parameters Minimum Crit. Path
Stage No. Pair of Parameters 1st Parameter 2nd Parameter Delay after this Stage

1 PB-Stage – – 5.23 ns
2 K,Fc out K=7 Fc out=0.05 4.83ns
3 Fc in,Fc out Fc in=0.55 Fc out=0.05 4.73ns
4 N, I N=20 I=64 4.37ns
5 Fill-in: N, I ,Fc in N = 20, I = 64,Fc in = 0.25 4.24ns

Optimized architecture for critical-path delay:{N,K, I ,Fc in,Fc out} = {20,7,64,0.25,0.05}
No. of architectures explored: 49
(Each exploration requires running 20 benchmarks through VPR)
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5.3.3 Design Flow 3: Model-Based Optimization

In this section, we use analytical model-based approach to optimize the five architectural parameters with

respect to area of implementation and critical path delay. This design flow is purely analytical. We first

detail this design flow and then present the results. We againuse the design space presented in Table 5.2.

An architecture can be very quickly optimized using the analytical models (fraction of a second). This

allows us to exhaustively explore 19,440 possible architecture configurations from the design space.

5.3.3.1 Stages of Design Flow 3

In this sub-section, we detail how we use the analytical models to optimize the architectural parameters.

We first detail how we collect results for area and critical path delay.

Collecting results for area of implementationWe use Equations 5.7 to 3.17 to estimate area (number of

programming bits). In addition to the five architectural parameters that we investigate, these equations

require (a) the estimates of the number of clusters requiredto map a circuitnc, (b) the switch box flex-

ibility of an architectureFs and (c) the channel-width used to map a circuitW. For a given benchmark

implemented on a given FPGA architecture, we can estimatenc using the relation studied by an earlier

work [104] and presented in Equation 3.6 of this dissertation. Similar to the first two design flows, we set

the value ofFs at 3. We use the model from the work of Fang and Rose [70] to estimateW. The model

for minimum channel widthWmin model from [70] has been presented in Equation 3.8. We increase this

minimum channel-width by 20%, which gives usW = 1.2Wmin model. Estimation ofWmin model requires

the estimate of the average wirelengthlavg. We use our wirelength model for this purpose.

Collecting results for critical path delay To analytically model the critical path delayTcp, we use Equa-

tion 3.25 from Section 3.3:

Tcp = dc

[

tinter +
dk

dc
tintra

]

= dc · tinter +dk · tintra. (5.10)

We use our delay models from Chapter 3 to estimatedk anddc. We now detail how we estimatetintra and

tinter using our wirelength model and the physical delay model fromthe work of Hung et al. [90].
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Estimation of tintra tintra represents the delay incurred by a net while traversing through the logic

elements inside the clusters. This parameter consists of two components: (a) delay incurred by the logic

elements and (b) delay incurred by the interconnect networkwithin a cluster. We use the model of [90] to

estimate these two components and add them to estimate the corresponding values fortintra.

Estimation of tinter Hung et al. [90] provides the delay components for traversing a net through an

FPGA tile with given architectural parameters. Estimationof tinter further requires the average wirelength

for a circuit along the post-routing critical path. Our wirelength model gives us the average post-placement

wirelengthlavg placed. To estimatetinter, we do not directly use thislavg placed for two reasons. First, the

post-placement wirelength may be inflated during routing phase due to congestion. Increasing the channel

width by 20% as discussed above will mitigate this issue to some extent. Second, we observe that wires

along the critical path are typically longer than the “average wirelength”. This appears counter-intuitive.

We would expect a timing-driven placement algorithm to place cells so that wires along the critical path

are shorter than the average. However, the critical path after placement often is not the same path as the

one before placement. In fact, those nets that were deemed “not critical” before placement tend to be

longer than average, and paths using these longer segments are more likely to become critical. To account

for this, we assume that the wires along the critical path area factor ofβ slower than the average wire.

Experimentally, we find thatβ = 2 works well, and we use this scaling factor to computetinter. In other

words, we uselavg routed= 2· lavg placed andW = 1.2·Wmin model when estimatingtinter.

Optimization of architectural parametersThe two experimentation-based design flows that we present

earlier are constructed in a way such that the designers do not need to exhaustively search the design

space. However, evaluating an architecture using analytical models is very fast, so in Design Flow 3, we

exhaustively search the entire design space. For exhaustive sweep, we use Table 5.2 to define maximum,

the minimum and the incremental values for each parameter. We use an inhouse C-program to exhaus-

tively sweep architectural parameters using model equations. This inhouse program uses the techniques

presented above and generate the area and delay results.
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Table 5.8: Optimization for Area

1 2 3 4 5 6 7 8 9
Architectural Parameters No. of Prog. Bits (in 105)

No. Rank N: K: I: Fc in Fc out Model Results VPR Results

1 1 12 7 36 0.05 0.15 2.260 2.385
2 1 12 7 36 0.05 0.05 2.260 2.393

3 2 10 6 24 0.05 0.05 2.290 2.311

4 2 10 6 24 0.05 0.15 2.290 2.270

5 3 8 6 24 0.05 0.05 2.310 2.467

6 3 8 6 24 0.05 0.15 2.310 2.467

7 4 10 5 24 0.05 0.15 2.320 2.364

8 4 10 5 24 0.05 0.05 2.320 2.473

9 5 14 6 32 0.05 0.05 2.330 2.335

10 6 8 7 24 0.05 0.15 2.330 2.411

No. of architectures explored: 19,440
(Each exploration requires running 20 benchmarks through model-equations)

5.3.3.2 Results from Design Flow 3

Optimization of architectures for areaTable 5.8 presents the optimized architectures with respect to

area that we find by using purely model-based design flow. Column 2 of the table represents the rank

that we assign based on the position within sorted results (the model-based flow may report the same

area values for multiple architectures). Columns 3 to 7 present the values of the architectural parameters

that we investigate. Column 8 presents the model results. Wecollect experimental results for each of the

ten best architectures in Table 5.8 and present them in the rightmost column. Based on the experimental

validation results, we find the architecture with{N,K, I ,Fc in,Fc out} = {10,6,24,0.05,0.15} to be the most

promising one with the requirement of 2.27X105 programming bits on average.

Optimization of the architectures for the critical path delay Table 5.9 presents the optimized architec-

tures with respect to critical path delay that we find by usingpurely model-based design flow. Column 1

of the table represents the rank that we assign based on the position within sorted results. Columns 2 to 6

present the values of the architectural parameters that we investigate. Column 7 presents the model results

for critical path delay. Finally, we collect the results forcritical path delay from the VPR framework for

the architectures found to be optimal by model-based designflow and present these results in the rightmost
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Table 5.9: Optimization for Critical Path Delay

1 2 3 4 5 6 7 8 9
Architectural Parameters Critical Path Delay (in ns)

No. Rank N: K: I: Fc in Fc out Model Results VPR Results

1 1 16 7 64 0.05 0.05 4.600 4.500
2 2 16 7 56 0.05 0.05 4.610 4.647
3 3 16 7 64 0.15 0.05 4.610 4.431

4 4 16 7 60 0.05 0.05 4.610 4.381

5 5 16 7 56 0.15 0.05 4.620 4.409

6 5 18 7 64 0.05 0.05 4.620 4.447

7 6 16 7 64 0.25 0.05 4.620 4.439

8 7 18 7 60 0.05 0.05 4.630 4.201

9 8 16 7 60 0.15 0.05 4.630 4.237

10 8 16 7 52 0.05 0.05 4.630 4.595

No. of architectures explored: 19,440
(Each exploration requires running 20 benchmarks through model-equations)

column. Based on the results from VPR, the architecture with{N,K, I ,Fc in,Fc out} = {18,7,60,0.05,0.05}

is the best architecture with respect to critical path delay.

Discussion on results from design flow 3We find discrepencies when comparing model results with

experimental results both in Table 5.8 and 5.9. For instance, in Table 5.9, the ranked-7 architecture (row-

8) is found to be optimal by VPR when experiments are conducted on the ten short-listed architectures.

This supports our earlier argument that the short-listed architectures from model-based design flow needs

to be validated and fine-tuned using experimental results. We further note that the discrepancies that we

find in Table 5.8 and 5.9 are not significant.

5.3.4 Comparison of Results from Three Design Flows and Discussion

In the preceding three sub-sections, we optimize five architectural parameters using a sequential optimiza-

tion technique, a DOE-based optimization technique and a model-based optimization technique. In this

sub-section, we compare the optimization results generated by these three techniques.

Area of implementation We compare the area-optimization results presented in Table 5.3, 5.6 and 5.8

for Design Flows 1, 2 and 3 respectively. Table 5.10 presentsthe best architectures identified by each of
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Table 5.10:Comparison of Design Flows: Area of Implementation

1 2 3 4 5 6 7 8 9
Optimized Architecture Prog. Bits Architectures Exploration

Design Flow N: K: I: Fc in Fc out (Experimental) Explored Time (hours)

1: Sequential 14 6 32 0.05 0.05 2.335 X 105 40 30.00

2: DOE-based 10 6 36 0.05 0.05 2.515 X 105 47 35.25

3: Model-based 10 6 24 0.05 0.15 2.270 X 105 19440 7.25∗+

* Includes approx. 10 experimental runs to validate and fine-tune optimized architectures (7.0 hours)
+ Exploration of 19,440 configurations requires 13 minutes inmodel-based flow

these design flows, with respect to area. Columns 2 to 6 present the optimized architectures and column 7

shows the corresponding results for area from VPR. Column 8 shows the total number of architectures that

we explore for each flow. Finally, the time required to explore these architectures is presented in the right-

most column. The exploration of each architecture requiresrunning twenty MCNC benchmarks through

the VPR flow (for Design Flows 1 and 2) or through the model-based framework consisting of analytical

equations (for Design Flow 3). In our machine with 2.5GHz quad-core processor and 24GB memory, we

require 45 minutes on average to explore one set of architectural parameters in Flows 1 and 2. In a model-

based flow, our inhouse C program requires nominal amount of time to explore a potential architecture

(0.04 seconds). Model-based flow require experimentationsonly to identify the best architecture from the

short-listed architectures.

From Table 5.10, we find that the analytical model-based design flow finds a better architecture than

is found by the other two flows. This is because this flow allowsus to quickly sweep the entire design

space to identify a set of promising architectures.

Critical path delay Table 5.11 compares the results for optimized architectures with respect to critical

path delay. We again find that the model-based approach givesa better architecture than the other two

flows while requiring significantly less design-effort.

Table 5.11 shows that the sequential optimization flow reports the best value ofN to be 8 in contrast to

N = 18 reported by model equations. This illustrates a limitation of the sequential optimization approach.

When optimizingN for delay using sequential optimization approach, we setI = 28 andK = 6 (typical

values) and given these values, we findN = 8 to be optimal value for cluster size. When exploringK and

I at later stages, the value ofN is fixed at 8. In other words, we never explore the architectures, for which

116



Table 5.11:Comparison of Design Flows: Critical Path Delay

Optimized Architecture Crit. Path Delay Architectures Exploration

Design Flow N K I Fc in Fc out (Experimental) Explored Time (hours)

1: Sequential 8 6 28 0.35 0.05 5.221ns 40 30.00

2: DOE-based 20 7 64 0.25 0.05 4.239ns 49 36.75

3: Model-based 18 7 60 0.05 0.05 4.201ns 19440 7.25∗+

* Includes approx. 10 experimental runs to validate and fine-tune optimized architectures (7.0 hours)
+ Exploration of 19,440 configurations requires 13 minutes inmodel-based flow

¨ ©ª«¬ ©ª«®¯° ± ²

Figure 5.6: Area Optimization with Different Ordering of Parameters

N > 8 andK > 6 andI > 28.

Further discussion As we explained earlier, the designers’ experience and intuition are required in all

stages of the experimental design flows. In sequential optimization, we need designers’ experience in

setting the ordering of parameters for optimization; different ordering of parameters may yield differ-

ent values for architectural parameters. To demonstrate this, we use the ordering of parameters shown

in Figure 5.6, for area optimization. This ordering is different from the one that we have used for area

optimization in Section 5.3.1. Table 5.12 presents the optimization results for this new ordering. Com-

paring the results from Table 5.12 and Table 5.3, we find that the new ordering results into a degraded

architecture.

Furthermore, Figure 5.3 and 5.4 illustrate that when optimizing certain parameters (such as,K andI

in Figure 5.4), multiple architecture configurations may give very close area or delay results. A wrong

choice may have a negative impact on the optimization of the remaining parameters. We also observe

similar issues in DOE-based Design Flow 2.

Since the DOE-based flow considers the interactions betweenparameters and reduces some depen-

dence on designers’ intuition, such a flow is expected to perform better than sequential optimization. This

expectation is confirmed by the minimum critical path delay found by Design Flow 3 (4.24ns) that is

significantly lower than the one found by Design Flow 1 (5.22ns). However, during area optimization, the
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Table 5.12:Sequential Optimization for the Number of Programming Bitswith Different Ordering
of Parameters as Compared to Table 5.3

Parameter Best optimization Second best optimization

being optimized Parameter value Prog. Bits Parameter value Prog. Bits

N 14 2.65E+05 6 2.66E+05

Fcin 0.15 2.60E+05 0.05 2.62E+05

Fcout 0.05 2.43E+05 0.25 2.60E+05

I 28 2.43E+05 32 2.45E+05

K 6 2.43E+05 7 2.52E+05

Optimized{N,K, I ,Fcin ,Fcout} from Table 5.3={14,6,32,0.05,0.05}; Bits: 2.33E+05
Optimized{N,K, I ,Fcin ,Fcout} with new ordering={14,6,28,0.15,0.05}; Bits: 2.43E+05

DOE-based flow results in a sub-optimal architecture when compared to the sequential optimization. A

fill-in stage after optimizing theK-N pair (Table 5.7) might improve DOE’s performance at the expense

of increased experimental runs.

Furthermore, due to the extensive design effort that we require for experimental flows, we conserva-

tively choose the design space. For instance, we limit the maximum and the incremental values forFc in

to 0.55 and 0.10; whereas, setting these values at 1.00 and 0.05 might yield better architectures.

As we argue earlier in this dissertation, the model-based results should only be used to quickly short-

list a set of architectures that need to be further investigated using experimentation. The results that we

present in this section demonstrate that the model-based flow successfully performs this task and even

finds better architectures in comparison with the architectures experimentally optimized. The differences

in the ranks between model results and VPR results in Table 5.8 and Table 5.9 also highlights the signif-

icance of our statement that ‘the model-based flow should be used as a supplement to the experimental

flow, and not as the replacement’.

The above comparison results3 and discussion lead us to conclude that the model-based technique

can effectively optimize a general-purpose FPGA architecture while using a significantly lower number

of experimental runs.

3The comparison of results from three design flows would be more robust if we had a golden set of experimentally obtained
results for the 19,400 architectures that the model-based design flow investigates. However, we note that a single run through the
experimental CAD flow requires almost an hour and the investigation of 19,440 architectures will require more than two years
of computational time on a single processor machine.
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5.4 Design Question-2: Optimization of Application-Specific FPGA
Architecture (ASFPGA)

As described in Section 5.2, due to the continuous nature of our model, we anticipate our models may

not capture the “discrete effects” exhibited by some architectures and user circuits. In this section, we

show an example in which this is so, and hence illustrate an important limitation of the application of our

models.

5.4.1 Methodology

We consider the design of an Application-Specific FPGA architecture (ASFPGA) which is optimized

to implement crossbar-intensive circuits. Crossbar structures are common in communication switching

applications; such applications make up a significant shareof the FPGA market. A crossbar switch has

several input and output buses each output bus can be connected to any input bus. Such circuits contain

large multiplexers, and as described in Section 5.2, these types of circuits may not match our model

predictions closely. To illustrate the failure of our model, we consider the optimization of LUT sizeK for

such an ASFPGA.

In order to optimize such an architecture, we would use circuits from the target domain rather than the

more “general-purpose” MCNC circuits. Since we do not have such circuits available, we generate rep-

resentative crossbar circuits using a custom-written script. As shown in Table 5.13, we generate circuits

with different combinations of two parameters: (a) the number of ports, and (b) the data width of each

bus., These circuits are converted to BLIF format using Altera’squartusmaptool, and then processed by

SIS [134] using guidelines provided by the University of Wisconsin [180].

5.4.2 Results and Discussion

Using both the experimental and analytical techniques, we sweep the lookup-table size,K, from 4 to

12, and find the number of LUTs required to implement the circuit, nk. The experimental and analytical

Table 5.13:Parameters of the Investigated Crossbar Switches

Parameter Values used Total number of values
Number of Ports 2, 3, 4, 5, 6, ... 16, 20, 24, 32, 40, 48 20
Data-width 1, 2, 4, 6, 8, 10, 12 7
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Figure 5.7: Results to Investigate the Limitation of Model-Based Approach in Capturing the Re-
quired Number of LUTs,nk for Crossbar Switches

results are shown in Figure 5.7. For clarity, the results areseparated into four groups, since the magnitude

of nk varies considerably among the considered circuits. In all cases, the model results do not closely

match the experimental results. As expected, the model results are continuous, while the experimental

results show “breaks” at various values ofK. As an example, consider the crossbar switch with 7 ports and

a data width of 8 in Figure 5.7(b) represented by round-whitemarkers. For this crossbar, the experimental

results show thatnk changes abruptly whenK is changed from 4 to 6 and then remains almost constant

until K=9. In contrast, the model predicts a smooth change in this region. The impact of these “breaks”

would be important for an FPGA architecture to understand, yet our model does not capture them at all.

Model estimates for the other implementation parameters, such asnc anddc, depend on the values ofnk.

We would expect that our model can not adequately capture theeffects ofK on these parameters either.

The conclusions from these results is that our models have limitations when the underlying archi-

tecture or circuits exhibits “discrete effects”. However,it does not mean our model can not be used in

such cases. It is still possible to use our model to prune out portions of the architecture space that are

clearly poor. Experimental results would then be required to investigate architectures within the region not

pruned out. Thus, we expect that, in general, a combination of analytical models to prune the space, and
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experimental techniques, to select architectures within this space, may lead to the best overall solution.

5.5 Summary

This chapter analyzes the capabilitites and limitations ofmodel-based architecture design technique. We

present the capabilities of using analytical models: (a) during very initial back-of-the-envelope stage of

a design flow and (b) during later stages of the design flow thatrequire parameteric sweeps. We find

that the model-based design technique is effective in optimizing general-purpose FPGA architectures.

We use sequential optimization and DOE-based optimizationtechniques to compare the effectiveness of

analytical models with. We further show that the continuousnature of analytical models makes the model-

based technique ineffective in designing application-specific FPGA architectures for certain application

domains. We use the examples of applications having discrete effects for this purpose.
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Chapter 6

Conclusion

In this chapter, we first summarize the contributions presented in this thesis. We then discuss the limita-

tions of the research and describe future work required to address these limitations. Finally, we present

directions for long-term future research.

6.1 Dissertation Summary

The target audience of this thesis consists of FPGA architects and/or FPGA vendors. In recent years, there

have been significant improvements in FPGA architecture, and FPGA devices now provide higher density,

lower power consumption and faster circuit implementations. An experimental approach is typically

followed in designing new FPGA architectures. In an experimental approach, significant design-time is

incurred by the collection of a range of representative benchmark circuits, making required changes in

the existing CAD tools and running these benchmark circuitsthrough the CAD flow, for each architecture

under investigation.

This thesis addresses these issues by presenting a body of theory that the architects can use during

design space exploration. The analytical models presentedin this thesis take architecture parameters as

inputs and generate the evaluation metrics, such as area, delay and routability. We envisage the analytical

models to be used in early stage design space exploration, when designers do not have the luxury of mod-

ifying CAD tools and/or collecting benchmark circuits for each of the combinations of the architecture

parameters that they want to investigate. During early stages of architecture investigation, architects may

use our models to quickly short-list a set of interesting architectures; only these architectures need to be

experimentally evaluated. This dissertation makes three contributions towards building a model-based
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framework for designing new FPGA architectures.

Chapter 3 presents our first contribution. In that chapter, we present analytical models for the area

and delay of an FPGA implementation. We first present the wirelength model that relates the FPGA

architecture parameters and a few circuit parameters to theaverage post-placement wirelength. Since the

interconnect fabric is responsible for highest proportionof area in an FPGA device, the architects need

to evaluate whether the architecture under investigation can support the wirelength requirement of a wide

range of user circuits. Studies exist that estimate the wirelength of FPGA implementation [15, 131, 131].

The novelty of our work is that it identifies the effects of thearchitecture parameters on wirelength, rather

than estimating wirelength for a given circuit on a given FPGA. Insights from our model will be helpful

to the FPGA architects in understanding the effects of architecture choices on wirelength. Combined with

the works from Lam et al. [104] and Fang et al. [70], our model can quickly investigate such effects. Our

wirelength model has been published in [168].

In Chapter 3, we also present our work on modeling critical path delay. Specifically, we present

the models that relate architectural choices to the post-technology mapping depth and the post-clustering

depth. We show how these models can be used to quickly estimate the critical path delay of FPGA

implementations. In modeling critical path delay, we require knowledge of the intra-cluster and inter-

cluster delays. We obtain this information either from the analytical model presented by Hung et al. [90]

or from the early phase of a CAD tool’s placement algorithm [60]. Our depth models have been published

in [60, 61].

Our models in Chapter 3 were validated against the experimental results from an academic CAD flow,

VPR [21]. Through the validation results, we show that our models can effectively capture the effects of

architecture choices on wirelength and critical path depths.

In Chapter 4, we present a model for the routability of an FPGArouting fabric assuming that a

combined global/detailed router is used. Several earlier works proposed techniques to estimate routability

for FPGA and ASIC implementations [27, 35, 99, 120, 175, 194]. The works from ASIC domain can

also be used in FPGA domain. The focus of these earlier works was not to relate the architecture choices

to routability, a contrast to the objective of this thesis. The only work [24] that relates FPGA architecture

choices to routability models the routability for the detailed step of a two-step global-detailed router.

In such a router, the global step allocates channels segments to the nets and the detailed step assigns

individual wires within these pre-defined sequence of channels to each net. Our routability model is more
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representative of the algorithms that the modern routers use. To capture the existence of many possible

paths for routing a net, we use graph-theoric technique to model an upper-bound for the routability.

We validate our routability model against the experimentalresults from VPR. We find that our model

can capture the trend of the effects of logic fabric and routing fabric parameters on FPGA routability. Our

routability model has been published in [58].

In Chapter 5, we investigate the capabilities and limitations of our analytical models. We investigate

two stages of new architecture design: (a) the very initial back-of-the envelope design stage and (b) the

parameter sweep stage.

We show that analytical models can provide useful insights for the very initial back-of-the envelope

stage of new architecture design. For the parameter sweep stage, we specifically investigate two issues.

First, our derivations make several assumptions includingarchitectural assumptions. These assumptions

may affect the quality of architectural conclusions when a range of analytical models are combinedly used

for new architecture design. Secondly, the continuous nature of analytical models may not adequately

capture the behavior of applications having ‘discrete effects’.

Chapter 5 uses two design questions to investigate these twoissues relevant to the second stage of new

architecture design.First, we investigate whether results from more than one model can be combined to

optimize a general-purpose FPGA architecture with respectto area and critical-path delay. We compare

the results from the model-based approach with the ones fromtwo different experimental approaches: se-

quential optimization and DOE-based optimization. While the first one of these two approaches is often

used for FPGA architecture optimization, the second one is used in a wide range of domains (such as

automotive and agriculture) for optimization purpose. We find that the architectural conclusions drawn

by the model-based approach are better than the ones drawn bythese much more expensive experimen-

tal approaches; the run-time for the model-based approach is 75% to 80% faster than the experimental

approaches.Secondly, using the example of crossbar switches, we demonstrate that the analytical mod-

els may not be capable in drawing useful conclusions for applications having discrete effects. Our work

related to this contribution has been published in [59].

6.2 Limitations and Short Term Future Work

This section summarizes the limitations of the three contributions described in this dissertation and iden-

tifies the possible avenues of future work to address these limitations.
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6.2.1 Analytical Models Relating Architecture to Area and Delay

While presenting wirelength and depth models in Chapter 3, we assume a homogeneous FPGA architec-

ture. Smith et al. [166] shows that the wirelength model presented for homogeneous architectures can

be used to model average wirelength for heterogeneous architectures that contain different types of em-

bedded blocks. Further study is required to enable our models to capture the effects of heterogeneous

architectures on area and delay. Some other limitations of our area and delay models are listed below.

• In deriving our models, we fix segment length of the routing fabric to 1. Generalization of our

model is required to address this limitation.

• Our wirelength model does not work well for pad-constrainedbenchmarks. To address this issue,

our model needs to incorporate the I/O characteristics of anarchitecture. Due to the constrained

number of I/O ports, some of the blocks in an FPGA may remain unused when mapping pad-

constrained circuits. This effect can be captured by using atechnique presented in [168].

• Our depth model cannot accurately predict the proportion oflocal connections for higher cluster

sizes. This is primarily due to the simplified assumptions regarding the number of connections

shared during clustering. Our depth model further overestimates the post-technology mapping

depth values for high values of depth. One possible way to resolve these issues is to derive more

complicated expressions for the number of connections (along critical path) absorbed within clus-

ters by using the interconnect distribution model from Davis et al. [62, 63]. However, since simple

equations may provide designers with more insights about the effects of architectural trade-offs,

such detailed modeling should carefully balance complexity and accuracy.

6.2.2 Analytical Model Relating Architecture and Routability

Our routability model assumes a homogeneous architecture.In Section??, we discussed how we can

extend our model to capture the effects of embedded blocks onthe routability of the circuits that do not

use these blocks. Detailed model needs to be developed to capture the inherent characteristics of the

embedded blocks and the consequent demand that they place onrouting fabric. Our routability model

poses some more limitations as listed below.

• We consider two-terminal nets for modeling routability. Future work may extend the model to

multi-fanout nets by modifying the graph formation technique (Stage I).
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• We approximate a switch box construction in that we assume that incoming tracks from differ-

ent directions can connect to a separate set of outgoing tracks. We also assume that the events

describing the number of available tracks to each channel incident to a switch block are statisti-

cally independent. Further work is required to investigatethe effects of these assumptions on the

estimated routability.

• Finally, we assume a segment length of 1 to make the generatedrouting graph manageable. Ex-

tending the graph formation component of our work (Stage I) may address this issue.

Short-term work may also extend our model to capture the behavior of modern routing fabrics. For

instance, in the routing fabric that we consider, the connections from the switch boxes to the sink logic

blocks (clusters) are made through sink connection boxes. In contrast, modern FPGAs allows the switch

blocks to directly make connections to the sink logic blocks. To capture this behavior, we need to extend

the graph that we form in Section 4.2.1.

6.2.3 Applications of Analytical Models: Capabilities andLimitations

While investigating the capabilities and limitations of model-based design technique in Chapter 5, we

compare the architecture conclusions from the model-baseddesign approach and two experimental ap-

proaches. We consider identical design space for all of these approaches, and assume that the experimental

approach correctly identifies the optimized architectures. Further research needs to investigate whether

analytical models can identify optimized architectures that are not within the initial design space. For

this purpose, an additional stage may be used with model-based design technique. This additional stage

may follow the concept of the fill-in stage from [157] with thegoal of extending the design-space. To

demonstrate the limitations of analytical models, we investigate application-specific FPGAs only for the

applications that have discrete effects. The model-based design approach needs to be investigated for a

wide range of application domains to identify the applications for which models can (and can not) effec-

tively draw correct conclusions. Furthermore, we compare the results from two experimental techniques

when evaluating the capabilities of the analytical model-based design flow. It would also be possible to

evaluate the model-based design approach against other experimental techniques, such as the regression-

based techniques [96, 109, 136] as discussed in Section 2.3.1.4.
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6.3 Long-Term Directions for Future Work

The previous section presented short-term future work for addressing the limitations of the research pre-

sented in this thesis. This section presents long-term future research directions.

6.3.1 Analytical Models for Other Evaluation Metrics

The models presented in this dissertation target architecture optimization with respect to key evaluation

metrics: area, critical path delay and routability. A recent study by Rajavel and Akoglu [144] uses our

models to analytically relate architecture parameters to energy consumption. Further works may extend

our models and/or develop new models for more evaluation metrics, such as reliability of FPGA devices.

6.3.2 Analytical Models for Embedded Blocks

We have identified the limitations of our models in capturingthe effects of heterogeneous architectures.

Since the current generation FPGAs include embedded blockswithout exception, it is important to extend

our models for embedded blocks. We have mentioned the work ofSmith et al. [168] that extends our

wirelength model for heterogeneous architectures. Futureresearch may extend other components of area

and delay models for heterogeneous architectures.

While extending the other models for heterogeneous architectures, researchers may use the concept

of Virtual Embedded Blocks (VEB) from Ho et al. [87] that captures the effects of embedded blocks.

These VEB blocks are placed on a commercial FPGA as black-boxes in such a way as to match the

intended locations of real embedded blocks. This techniquethen estimates the required logic resources

of the target commercial FPGAs when the embedded blocks represented by the VEBs are incorporated.

For this purpose, estimates of area and of delay for ASIC implementations of VEBs are used. In a similar

fashion, when capturing the effects of embedded blocks on our model, area and delay of embedded blocks

can be first modeled separately. These models then can be incorporated into the models developed for

homogeneous architectures.

Studies may also find that due to high interactions between numerous FPGA architecture parameters,

it may not be possible to model heterogeneous architecturesusing closed-form expressions. In such a

case, a boundary needs to be defined, beyond which empirical expressions will be required to supplement

the analytically derived closed-form expressions. Futurework may also investigate the use of regression-

based methods in exploring design space beyond this boundary.
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6.3.3 Effects of Fabrication Issues

Our models use the physical area and delay models from Fang etal. [70] and Hung et al. [90]. These earlier

works can be further extended to investigate the effects of the transistor level choices on evaluation metrics

such as area and delay. To make the analytical models attractive to a wider audience, the issues related to

sub-lithographic variations may be incorporated into our models. A study from Wong et al. [184] may be a

good starting point for such an extension. While modeling chip level leakage and timing variations, Wong

et al. [184] considers variations in channel length, threshold voltage and gate-oxide thickess. Models for

leakage and timing variations are then used to model the yield of the FPGA chips. It may be interesting to

determine whether the results from this dissertation can beused with Wong’s models directly or through

extensions. For instance, Wong et al. used the work from Cheng et al. [36, 37] for modeling timing

variations. Cheng et al. [36, 37] modeled delay by using experimentally-obtained near-critical paths for

target applications. Future research may investigate whether our depth models (or their variants) can be

used to define such near-critical paths. In such case, combining our models with the works from Cheng et

al. [36, 37] and Wong et al. [184] can capture the effects of architecture choices on chip-level variations.

6.3.4 Optimization by Using Convex Programming Tools

Subsequent to the publication of our models, related work [164, 166, 167] have used our area and depth

models in a geometric programming framework to concurrently optimize FPGA architectures for area

and critical path delay. In a similar fashion, our routability model and any other model proposed by future

studies can be used in geometric programming framework.

6.3.5 Optimization of CAD Tools

Future research may investigate whether the insights from analytical models can be used to optimize or

enhance existing CAD tools. For instance, in Chapter 3, we found that the clustering stage optimize all

paths equally. Further work may find a way to predict the pathsthat are actually going to be critical. The

clustering stage can then pack the logic blocks along the critical path more efficiently.

6.3.6 Investigation of Radically Different Architectures

The models presented in this thesis are for island-style architectures. Further investigations are required

to investigate whether these models can be used for other types of FPGA architectures. Further work is
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also required to determine how to use analytical models in developing architectures that are different from

the typical FPGA architectures that are currently used in academia or industry.
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