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Abstract 

 

Power system simulation has become an integral part of power system planning, design and 

study today. Due to the vast array of power system disturbances that occur and the speed of 

their respective dynamics, simulation tools have traditionally been split into two types; 

Transient Stability type programs (TSP) which generally make simplifying assumptions to 

simulate longer electromechanical transients and Electromagnetic Transient type programs 

(EMTP) which require much greater detail in their models as they are generally used to 

simulate much faster transients that occur during electromagnetic disturbances. Several 

papers have been written and solutions have been proposed to come up with a solution that 

would combine these two different types of programs into one simulation tool that can be 

used to simulate both the slow electromechanical transients and fast electromagnetic 

transients that occur on power systems. One such method that has been proposed and is being 

thoroughly studied and showing promising potential for unified power system simulation is 

the concept of dynamic phasors. The dynamic phasor concept extends the traditional concept 

of steady state phasor representation used extensively in TSP programs by allowing these 

phasor quantities to change with time during transient events.  

 

This thesis focuses on the modeling of induction machines using the dynamic phasor 

concept. The induction machine is chosen as it represents a significant portion of power 

system loads and therefore plays an important role in power system stability and behavior. 

Several induction machine models have already been proposed using the dynamic phasor 

concept however none of which take into account the effects of saturation that often occurs 
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during induction machine operation. This thesis therefore focuses specifically on modeling 

the effects of main flux linkage saturation in induction machines using the concept of 

dynamic phasors. The proposed model is based on the flux correction method and extends 

this concept to representation in dynamic phasor quantities. This is done by first verifying the 

consistency of the unsaturated dynamic phasor induction machine model against well known 

conventional models and then implementing the proposed dynamic phasor saturation model 

and again verifying it’s consistency with conventional saturation model of the induction 

machine. The results obtained in this thesis show that the proposed saturation model using 

the dynamic phasor concept is consistent with conventional saturation models with 

reasonable accuracy and efficiency and therefore provides a good starting point for further 

research in machine saturation modeling using the dynamic phasor concept. 
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Chapter  1: Introduction 

 

1.1 Background 

The electric power system is often referred to as one of the most important infrastructure 

systems built by humankind. So important and fundamental in fact that many other systems 

that have been developed to progress the human race are dependent on electric power 

systems to allow them to operate. For example; communication, transportation, water supply 

and many other infrastructure systems are completely dependent upon the continuous reliable 

operation of the electric power system. Due to growing electricity demand and increased load 

and stress being added to an aging electric power system infrastructure, power system 

stability and security has become a major concern and area of focus for research and 

improvement [1]. Major blackouts in the USA, Europe and most recently in north eastern 

India for example; which caused an estimated 670 million people [2], or roughly 10% of the 

world’s population to be without power, have forced researchers to look closely at ways to 

increase the reliability and security of electric power systems to mitigate such catastrophic 

failures in the future. 

 

During planning and operation, power systems must be thoroughly analyzed and therefore be 

accurately modeled. Models and computer programs for power system analysis have become 

an essential part of power system planning and operation. Power system engineers perform a 

variety of system studies in order to plan effectively for system upgrades and changes and to 

reliably operate the power system. Some of the types of studies performed regularly are 

• short circuit (or fault) analysis 
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• electromagnetic transient analysis 

• power (or load) flow analysis, and 

• voltage and transient stability studies 

 

One of the major challenges in modeling and simulating the power system for the above 

studies is the fact that the dynamics of the system react at very different speeds depending on 

the type of disturbance to the system and the type of study being conducted. For example, 

Figure 1.1 illustrates the general time-frame in which many of the major power system 

disturbances occur. These disturbances can be generally classified into two different 

categories; electromagnetic transients and electromechanical transients. 

 

 

Figure 1.1  General time-frame for power system disturbances 
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Electromagnetic transient phenomena generally occur during sudden system topology 

changes. These changes can be attributed to many different types of disturbances such as 

lightning strokes, closing or opening of circuit breakers, high frequency switching of power 

electronic devices and faults that occur in the power system to name just a few. The effects of 

these types of disturbances are usually fairly localized in the surrounding system and usually 

have very fast transients associated with them. Electromagnetic transient disturbances 

therefore require a greater amount of detail in modeling the system components that are most 

affected and because of the speed of the transients require a much smaller time-step when 

performing simulations; usually of the order of tens of microseconds or smaller depending on 

the phenomena being studied. 

 

Electromechanical transients are generally associated with much slower disturbance 

phenomena such as mismatches between the mechanical energy present in rotating electric 

machines and the electric energy present in the electrical system that it is attached to. These 

types of slow transients can also occur during a power imbalance that occurs between two 

different areas of the power system; known as inter-area oscillations. The dynamics of this 

type of disturbance phenomena are much slower than those that occur in electromagnetic 

transients and therefore many simplifying assumptions are made to increase the efficiency of 

the simulation of these types of transients. For one, because of the timescales associated with 

these types of transient studies the electromagnetic transients are generally neglected and a 

quasi-steady state is assumed for simulation. This is generally achieved using the concept of 

steady-state phasor representation of system quantities around the system operating 

frequency. 
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Due to the vast difference in dynamic transient speeds that occur in the power system, 

traditionally two different types of simulators have been used to simulate transients in the 

power system depending on which type of study was being done. For the fast 

electromagnetic transient simulations, Electromagnetic Transient Program or EMTP type 

programs are used. These types of programs require a great amount of detail in the system 

component models and very small time-steps to simulate the fast dynamics that occur in 

these types of studies. The much slower transient stability studies are usually performed by 

Transient Stability Programs which require much less detail in the system component models 

and make simplifying assumptions to increase the efficiency of the programs as mentioned 

above. 

 

The Electromagnetic Transients Program (EMTP) [3] was first introduced in the late 1960’s 

by H. W. Dommel [4] and was quickly adopted as one of the standard industry tools used for 

the digital simulation of power system transients. Prior to EMTP, a system known as a 

Transient Network Analyzer (TNA) was used extensively to perform load flow, short-circuit 

analysis and stability studies on AC power systems.  The quick adoption of EMTP-type 

programs (PSCAD/EMTDC, ATP, MICROTRAN, etc.) [5-8] as the industry standard tools 

for transient analysis is partly due to several advantages that they have over the TNA. Firstly, 

these programs are fully digital simulators that are able to run on inexpensive desktop 

computers, whereas the TNA is an analog scale model of the system that is very expensive to 

build and requires a significant amount of space. Secondly, EMTP-type programs are able to 

provide much more accurate simulation results than the TNA at higher frequencies. This is 
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due to phenomena that are present at higher frequencies in the TNA model such as parasitic 

capacitances that can have significant impacts on the accuracy of the simulation results. 

 

One drawback to these EMTP-type simulators is that they require very small integration 

time-steps in order to accurately recreate all of the transient variables during simulations. 

Therefore, these types of programs work well with transient and mid-term stability studies; 

which contain faster dynamic phenomena, but become inefficient for use with long term 

stability problems and slow dynamic simulations of large systems that occur when studying 

problems such as voltage stability or inter-area oscillations. Other types of methods are used 

in this case, that make simplifying assumptions to increase the speed and efficiency of the 

program during simulation [9-11].  

 

One of the first attempts to unify the simulation of dynamic operating conditions in power 

systems is outlined in [12], in which the authors make use of an implicit variable-step 

algorithm to simulate the faster transients and slower long-term phenomena that occur in 

power system operation. The algorithm presented here is quite robust but is not capable of 

simulating the very fast electromagnetic transients. Another, more recent, attempt at unifying 

power system simulators using the concept of time varying phasors or dynamic phasors is 

presented by Venkatasubramanian in [13] and further extended in [14, 15]. The dynamic 

phasor concept as presented in these papers extends the concept of traditional phasor 

representation of sinusoidal signals; which are the standard tool for power system stability 

analysis and generally limited to quasi-stationary assumptions, to a time-varying phasor 

representation that can accommodate much faster transient speeds. The concept of dynamic 
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phasors allows for the efficient solution of both fast electromagnetic transients as well as 

slow electromechanical simulations due to the fact that their dynamics are much slower in 

time than the time-domain circuit quantities. During steady state dynamic phasor quantities 

do not change with time and reduce to the traditional phasor representation of power system 

quantities making them efficient for modeling longer term electromechanical transients. 

 

Since their early applications to averaging power conversion circuit behaviour for 

simulations [16], dynamic phasors have been used to successfully model many power system 

components and simulation phenomena. For example, system components such as HVDC 

converters [17-19], static var compensators (SVC) [20], unified power flow controllers 

(UPFC) [21] and synchronous machines [22] among others. The dynamic phasor concept has 

also been used to perform various system studies including analysis of balanced power 

system transients [13-15, 23] as well as unbalanced transients [24]. The concept of dynamic 

phasor estimates have also been applied to studying power system oscillations in [25-28]. 

 

1.2 Thesis Motivation 

Electric motors typically consume 60 to 70% of the energy supplied by a power system and 

therefore encompass a major portion of power system loads. The dynamics attributed to 

motors are usually the most significant contribution to power system load dynamic 

characteristics. In particular induction motors are the workhorse of modern electrical 

industry. From large industrial motors used in mills and manufacturing facilities to home 

appliances such as refrigerators, washing machines, dishwashers etc., induction machines are 

extensively used throughout many power systems. Thus it is very important to be able to 
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accurately and efficiently model induction motors for power system simulation and stability 

studies. 

 

Various dynamic phasor models of induction machines have been presented in literature. For 

example references [23] and [29] present a dynamic phasor model for an induction machine 

that is derived from dimension reduced (DR) induction machine model where the equations 

of stator, rotor and flux variables are reduced to those of only stator variables. The analysis in 

these papers however assumes only balanced machine operation and doesn’t take into 

account unbalanced conditions that may occur in induction machine operation. Reference 

[30] presents a dynamic phasor model of a doubly-fed induction machine that does take into 

account unbalanced machine operation. The model presented is derived from the 

conventional qd0 induction machine model in a synchronous reference frame. This model 

contains a dc component dynamic phasor that captures the positive sequence machine 

quantities as well as a 2nd harmonic dynamic phasor that captures the negative sequence 

machine quantities during unbalanced operation.   In reference [31] a dynamic phasor model 

for doubly-fed induction machines is derived from the complex space vector induction 

machine model with a stationary reference frame. This model contains a positive system 

frequency dynamic phasor to account for positive sequence machine quantities and balanced 

operation as well as a negative system frequency dynamic phasor that accounts for negative 

sequence quantities that arise during unbalanced machine operation. 

 

Although induction machines have been modeled successfully several different ways using 

the concepts of dynamic phasors, none of the models presented in the literature mentioned 
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include the effects of machine saturation. The effects of machine saturation have been a topic 

of significant research and study [32-43]. During operation, induction machines routinely 

face a number of operating conditions where the effects of saturation cannot be ignored. 

Therefore, in order to produce more accurate and reliable results during simulations the 

effects of saturation must be included in the machine models. The motivation behind this 

thesis therefore is to extend the dynamic phasor model of the doubly-fed induction machine 

to include the effects of main flux-linkage saturation. The dynamic phasor saturation model 

developed in this thesis is intended to be a starting point for further dynamic phasor model 

developments and research. 

 

1.3 Thesis Outline 

Following the introduction, the concepts of dynamic phasors are introduced to the reader in 

Chapter 2. In particular, Section 2.1 presents the concept and definition of the dynamic 

phasors and how they can be used to represent circuit quantities in single phase systems 

(Section 2.1.1). The concept of dynamic phasors is then generalized to include polyphase 

systems (Section 2.1.2), particularly the three-phase system that is commonly encountered in 

the modern day power system. Section 2.2 describes how dynamic phasors can be used to 

represent complex space vector quantities by first describing the concept of complex space 

vectors (Section 2.2.1) and how they are used to describe three phase systems and then 

describing how dynamic phasors can be used to express complex space vector quantities 

(Section 2.2.2). 
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Chapter 3 first presents some conventional time domain models that are used to model 

induction machines. These include the three-phase abc induction machine model (Section 

3.1.1), the two-axis qd0 induction machine model (Section 3.1.2) and finally the complex 

space vector induction machine model (Section 3.1.3). The dynamic phasor induction 

machine model is then presented in Section 3.2, followed by a few system studies in Section 

3.3 to illustrate the validity of the dynamic phasor induction machine model. 

 

Chapter 4 presents the method used to implement the effects of main flux linkage saturation 

into the dynamic phasor model. First however, a conventional time domain model for 

implementing the effects of main flux saturation is presented in Section 4.1 followed by its 

extension to the dynamic phasor model in Section 4.2. Once the models have been presented 

the dynamic phasor model is then verified in the saturation region of operation for both 

balanced and unbalanced machine operation in Section 4.3. 

 

In Chapter 5 the focus is on assessing the performance of the dynamic phasor induction 

machine model. Section 5.1 looks at the models performance using a fixed time-step and 

compares it to the performance of a conventional time domain model. Section 5.2 

investigates the dynamic phasor model performance using a variable time-step solver and 

compares the results to those obtained using a conventional time domain model. 

 

Finally, Chapter 6 concludes the thesis by highlighting the key contributions provided in this 

thesis along with recommendations for future research and model improvements. 
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Chapter  2: Dynamic Phasor Analysis 

 

2.1  Concept and Definition 

The concept of phasors is based on the property that a periodic (possibly complex-valued) 

time-domain waveform 𝑥(𝜏) with period 𝑇, that is 𝑥(𝜏) = 𝑥(𝜏 − 𝑇), can be expressed as a 

complex Fourier series [44] of the form  

 𝑥(𝜏) = � 𝑋𝑘 ∙ 𝑒𝑗𝑘𝜔𝑠𝜏
∞

𝑘=−∞

 (2.1)  

where 𝜔𝑠 = 2𝜋 𝑇⁄  and 𝑋𝑘 is the 𝑘𝑡ℎ Fourier coefficient in complex form. In this case, since 

𝑥(𝜏) is periodic, the Fourier coefficients 𝑋𝑘 are time invariant and can be expressed as 

 𝑋𝑘 =
1
𝑇
� 𝑥(𝜏) ∙ 𝑒−𝑗𝑘𝜔𝑠𝜏𝑑𝜏
𝑡

𝑡−𝑇
 (2.2)  

 

In power system studies, during steady-state analysis, these coefficients 𝑋𝑘 are also known as 

phasors and are extensively used as a tool to greatly simplify the study of steady-state power 

flow and system behavior. 

 

2.1.1 Single Phase Systems 

In power system dynamic situations, the waveforms are generally not strictly periodic but are 

nearly periodic. The idea now is to generalize equations (2.1) – (2.2) to accommodate 

arbitrary, nearly periodic types of waveforms. This is achieved by using the approach 

outlined in [45], where the Fourier coefficients are allowed to vary with time. Considering a 

window of length 𝑇 for a given waveform, and viewing that waveform to be periodic with a 
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duration of 𝑇, such that a Fourier analysis of the waveform 𝑥(𝜏) can be performed. The time 

evolution of the Fourier coefficients can then be calculated as the window of length 𝑇 

“slides” along the actual waveform. Figure 2.1 for example depicts the stator phase a current 

of an induction machine during and immediately following an unbalanced single phase fault 

along with the “sliding window” of length 𝑇. 

 

 

Figure 2.1  Illustration of “sliding” window of periodicity 

 

Now, for an arbitrary, possibly complex-valued time-domain waveform 𝑥(𝜏) with period 𝑇, 

the method considers the Fourier coefficients of 𝑥(𝜏) on the interval 𝜏 ϵ (�𝑡 − 𝑇, 𝑡]�. The 

Fourier series is now expressed in the form 
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 𝑥(𝜏) = � 𝑋𝑘(𝑡) ∙ 𝑒𝑗𝑘𝜔𝑠𝜏
∞

𝑘=−∞

 (2.3)  

where the 𝑘𝑡ℎ Fourier coefficient 𝑋𝑘(𝑡) is now time-dependent and can shift in both 

magnitude and phase as the window of periodicity “slides” over the waveform. These time-

dependent Fourier coefficients are referred to as dynamic phasors in many research papers 

and throughout this thesis and are expressed as 

 𝑋𝑘(𝑡) =
1
𝑇
� 𝑥(𝜏) ∙ 𝑒−𝑗𝑘𝜔𝑠𝜏𝑑𝜏
𝑡

𝑡−𝑇
= 〈𝑥〉𝑘(𝑡). (2.4)  

 

In many cases, a reasonable approximation of the waveform 𝑥(𝜏) can be achieved by 

considering only the Fourier coefficients 𝑋𝑘(𝑡) that are dominant in equation (2.3). That is, if 

we consider a subset {𝐾} containing only the dominant Fourier coefficients, we can 

approximate (2.3) as 

 𝑥(𝜏) ≈ � 𝑋𝑘(𝑡) ∙ 𝑒𝑗𝑘𝜔𝑠𝜏

𝑘 𝜖 {𝐾}

 (2.5)  

 

For the purposes of this thesis, we will only be considering the subset {𝐾} = {1,−1}; which 

corresponds to plus and minus the system frequency. For the system that is studied in this 

thesis, the system frequency is assumed to be 60 Hz and the above approximation looks only 

at the +60 Hz and -60 Hz components that are present in the system operation. 

 

Some useful properties of the Fourier coefficients that will be used in later chapters of this 

thesis will now be outlined. For example, the time derivative for the 𝑘𝑡ℎ Fourier coefficient, 

as expressed in equation (2.6), is obtained by differentiating equation (2.3) with respect to 
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time. This property is used extensively in the dynamic model of the doubly-fed induction 

machine model. 

 
𝑑𝑋𝑘
𝑑𝑡

= �
𝑑𝑥
𝑑𝑡
�
𝑘
− 𝑗𝑘𝜔𝑠𝑋𝑘. (2.6)  

 

Another important property is shown in equation (2.7) which illustrates that a product of two 

time domain signals is equivalent to a discrete time convolution of the two signals’ sets of 

dynamic phasors. 

 〈𝑥𝑦〉𝑘 = � �𝑋𝑘−𝑖𝑌  𝑖�
∞

𝑖=−∞

 (2.7)  

 

If the signal 𝑥(𝜏) is complex valued, the relationship between 𝑋−𝑘 and 〈𝑥〉𝑘 is given below in 

equation (2.8). 

 𝑋−𝑘 = 〈𝑥〉−𝑘 = 〈𝑥∗〉𝑘∗  (2.8)  

where 𝑥∗ represents the complex conjugate of 𝑥. In the case where 𝑥(𝜏) is real valued, 

equation (2.8) reduces to the form shown below in equation (2.9). 

 𝑋−𝑘 = 𝑋𝑘∗ (2.9)  

 

2.1.2 Polyphase Systems 

Our goal now is to extend the dynamic phasor concept to include polyphase systems. We 

begin by using the method of symmetrical components [46] which allows a set of 𝑛 

unbalanced phasors to be expressed as the sum of 𝑛 symmetrical sets of balanced phasors. 

Therefore, in the common three-phase (abc) power system, a set of three unbalanced phasors 

can be broken down into three sets of balanced symmetrical phasors which consist of; 
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• Positive-sequence components which are equal in magnitude, have an angular 

displacement of 120° from each other and have the same phase sequence as the 

original unbalanced set; 

• Negative-sequence components which are equal in magnitude, have an angular 

displacement of 120° from each other and have a phase sequence that is opposite to 

that of the original unbalanced set; 

• Zero-sequence components which are equal in both magnitude and phase. 

Figure 2.2 illustrates the three sets of balanced sequence components that add up to form the 

original unbalanced set. 

 

Figure 2.2  Resolution of unbalanced 3-phase quantities into balanced sequence components 
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The transformation from an unbalanced set of phasors to the sequence components is 

achieved by introducing the common operator 𝛼 = 𝑒𝑗(2𝜋 3⁄ ) which represents a phase of 

2𝜋 3⁄  in the complex plane. Using the operator 𝛼, we can express the phase quantities as 

shown in equation (2.10). 

 �
𝑥𝑎
𝑥𝑏
𝑥𝑐
� = �

1 1 1
𝛼2 𝛼 1
𝛼 𝛼2 1

�
���������

𝒜

�
𝑋𝑎,𝑝
𝑋𝑎,𝑛
𝑋𝑎,0

� (2.10)  

Where 𝛼2 = 𝑒𝑗(4𝜋 3⁄ ) = 𝑒−𝑗(2𝜋 3⁄ ). 

 

The inverse transformation is given as follows 

 �
𝑋𝑎,𝑝
𝑋𝑎,𝑛
𝑋𝑎,0

� =
1
3 �

1 𝛼 𝛼2
1 𝛼2 𝛼
1 1 1

�
�����������

𝒜−1

�
𝑥𝑎
𝑥𝑏
𝑥𝑐
� (2.11)  

 

Using the transformation in equation (2.10) and extending the single phase dynamic phasor 

principles outlined in Section 2.1.1 to the poly-phase system, we can express three phase 

time domain quantities in dynamic phasor form as shown in equation (2.12). 

 �
𝑥𝑎
𝑥𝑏
𝑥𝑐
� (𝜏) = � 𝑒𝑗𝑘𝜔𝑠𝜏

∞

𝑘=−∞

𝒜 �
𝑋𝑝,𝑘
𝑋𝑛,𝑘
𝑋0,𝑘

� (𝑡) (2.12)  

 

Note here that the subscript 𝑎 has been dropped from the Fourier coefficients on the right 

hand side of equation (2.12) to avoid clutter. Similar to the single phase case, the Fourier 

coefficients in equation (2.12) can be expressed as 
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 �
𝑋𝑝,𝑘
𝑋𝑛,𝑘
𝑋0,𝑘

� (𝑡) =
1
𝑇
� 𝑒−𝑗𝑘𝜔𝑠𝜏𝒜−1 �

𝑥𝑎
𝑥𝑏
𝑥𝑐
� (𝜏)𝑑𝜏

𝑡

𝑡−𝑇
= �

〈𝑥〉𝑝,𝑘
〈𝑥〉𝑛,𝑘
〈𝑥〉0,𝑘

� (𝑡) (2.13)  

 

The Fourier coefficients in equation (2.13) represent the dynamic phasors of the positive 

𝑋𝑝,𝑘, negative 𝑋𝑛,𝑘 and zero-sequence 𝑋0,𝑘 components of the time varying signals 

represented in equation (2.12) at a frequency of 𝑘𝜔𝑠.  

 

The same properties as those outlined in Section 2.1.1 for the single phase dynamic phasors 

can also be applied here to the poly-phase case since equation (2.12) is just a vector 

generalization of equation (2.3) for the three-phase case [31]. For example the time 

derivative of the time varying Fourier coefficients for the positive, negative and zero 

sequence components can be expressed in vector form as 

 
𝑑
𝑑𝑡
�
𝑋𝑝,𝑘
𝑋𝑛,𝑘
𝑋0,𝑘

� (𝑡) = 𝒜−1

⎣
⎢
⎢
⎢
⎢
⎢
⎡�
𝑑
𝑑𝑡
𝑥𝑎(𝜏)�

𝑘

�
𝑑
𝑑𝑡
𝑥𝑏(𝜏)�

𝑘

�
𝑑
𝑑𝑡
𝑥𝑐(𝜏)�

𝑘⎦
⎥
⎥
⎥
⎥
⎥
⎤

(𝑡) − 𝑗𝑘𝜔𝑠 �
𝑋𝑝,𝑘
𝑋𝑛,𝑘
𝑋0,𝑘

� (𝑡) (2.14)  

 

Also, for a complex valued signal we have the relationship between balanced sequence 

components as 

 �
〈𝑥〉𝑝,𝑘
〈𝑥〉𝑛,𝑘
〈𝑥〉0,𝑘

� = �
〈𝑥∗〉𝑛 ,−𝑘

∗

〈𝑥∗〉𝑝,−𝑘
∗

〈𝑥∗〉0,−𝑘
∗

� (2.15)  

 

In the case of real valued signals equation (2.15) can be expressed as 
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 �
𝑋𝑝,𝑘
𝑋𝑛,𝑘
𝑋0,𝑘

� = �
𝑋𝑛 ,−𝑘
∗

𝑋𝑝,−𝑘
∗

𝑋0,−𝑘
∗

� (2.16)  

 

2.2 Dynamic Phasors and Complex Space Vectors 

2.2.1 Complex Space Vector Representation of 3-Phase Variables 

In modern literature on electric machines and drive systems it is common to represent three 

phase variables as what are known as complex space vectors [47, 48]. The concept of 

complex space vectors involves a transformation of the three phase variables to a stationary 

complex reference frame. This transformation is almost identical to the common qd0 

reference frame transformation that is used extensively in rotating machine modeling [46, 

49], with the added abstraction that the variables are represented as complex vectors in the q- 

and d-axis. That is, the q-axis quantities represent the real part of the complex space vector 

and the d-axis quantities representing the negative imaginary part of the vector. 

 

To illustrate the concept of complex space vectors, Figure 2.3 depicts a simplified 

representation of a three-phase rotating machine. The stator consists of three windings that 

are sinusoidally distributed around the stator of the machine such that they are 120° apart 

spatially from one another. When a three phase sinusoidal current is supplied to the stator 

windings in the machine with positive current flowing into the crossed terminals and out of 

the dotted terminals, each phase will produce its own magneto-motive force (mmf ) which 

lies on the magnetic axis of that particular phase. If we consider the mmf produced by each 

particular phase as a vector in space, they can be added up to produce the resultant total mmf 
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that is produced within the machine which rotates inside the machine at a frequency equal to 

the supply frequency of the currents.  

 

 

Figure 2.3  Illustration of the rotating complex space vector 

 

We can define space vectors for the currents in each phase in a similar manner to lie on their 

respective magnetic axis as depicted for fluxes in Figure 2.3; from which we get 

 

𝚤𝑎𝑠 = 𝑖𝑎𝑠 

𝚤𝑏𝑠 = 𝛼𝑖𝑏𝑠 

𝚤𝑐𝑠 = 𝛼2𝑖𝑐𝑠 

(2.17)  

 

Note here that 𝛼 in equation (2.17) is the same as that defined previously in section 2.1.2 of 

this thesis, that is 𝛼 = 𝑒𝑗(2𝜋 3⁄ ). 

𝜆𝑎𝑠 

𝜆𝑏𝑠 

𝜆𝑐𝑠 

𝜆𝑎𝑏𝑐𝑠 
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Now, adding these currents and introducing a scaling factor of 2 3⁄ , we get the total current 

space vector that results from the three phase currents as follows. 

 𝚤𝑎𝑏𝑐𝑠 =
2
3

(𝑖𝑎𝑠 + 𝛼𝑖𝑏𝑠 + 𝛼2𝑖𝑐𝑠) (2.18)  

 

It is not difficult to see that if a balanced set of sinusoidal currents is applied to the terminals 

of the machine that equation (2.18) describes a phasor of constant magnitude that rotates in 

the complex plane with the same frequency as the supply frequency. 

 

It is important to note that the coefficient of 2 3⁄  is introduced here to conserve the 

magnitudes between the supply currents and the resultant space vector. Other scaling factors 

are also used for different purposes. For example, the scaling factor of �2 3⁄  is sometimes 

used which will equate power quantities between the two representations of the system [48]. 

 

There is an easy way to retrieve the phase currents from the space vector in the case where 

the sum of the phase currents is equal to zero. 

 𝑖𝑎𝑠 + 𝑖𝑏𝑠 + 𝑖𝑐𝑠 = 0 (2.19)  

 

In this case there will be no zero-sequence currents and the phase currents can be retrieved 

from the complex space vector by expanding it out into its complex form as follows. 

 

𝚤𝑎𝑏𝑐𝑠 =
2
3 �
𝑖𝑎𝑠 −

1
2

(𝑖𝑏𝑠 + 𝑖𝑐𝑠) + 𝑗
√3
2

(𝑖𝑏𝑠 − 𝑖𝑐𝑠)�             

= 𝑖𝑎𝑠 + 𝑗
√3
2

(𝑖𝑏𝑠 − 𝑖𝑐𝑠) 

(2.20)  
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From equation (2.20) it can be seen that the phase 𝑎 current can be retrieved by considering 

only the real part of the complex space vector, 𝚤𝑎𝑏𝑐𝑠. So we have  

 𝑖𝑎𝑠 = ℛℯ{ 𝚤𝑎𝑏𝑐𝑠 } (2.21)  

 

Similarly, we can retrieve the phase 𝑏 and phase 𝑐 currents by considering the real part of the 

complex space vector after it has been multiplied by 𝛼2 and by 𝛼, respectively. So we get  

 𝑖𝑏𝑠 = ℛℯ{ 𝛼2 𝚤𝑎𝑏𝑐𝑠 } (2.22)  

and 

 𝑖𝑐𝑠 = ℛℯ{ 𝛼 𝚤𝑎𝑏𝑐𝑠 } (2.23)  

 

It is important to note here that when zero sequence currents are present there will be an extra 

term that needs to be added to equations (2.21) through (2.23). 

 

2.2.2 Dynamic Phasor Representation of Complex Space Vectors 

We are now at a point where we can extend the dynamic phasor concept to represent 

quantities expressed in terms of complex space vectors as dynamic phasors. Using a similar 

procedure as that outlined by A. Stankovik [31], we utilize equations (2.12) and (2.18) from 

which we get 

 �⃑�(𝜏) = � 𝑒𝑗𝑘𝜔𝑠𝜏
∞

𝑘=−∞

𝑋𝑝,𝑘(𝜏) (2.24)  

 

Note here that equation (2.18) has been generalized from current quantities ( 𝚤 ) to general 

quantities ( �⃑� ) in order to include other circuit quantities such as voltage or flux. We also 
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note here that equation (2.24) contains all of the information for positive and negative 

sequence components since all phase quantities are real valued quantities and we have 

𝑋𝑝,−𝑘 = 𝑋𝑛,𝑘
∗  as outlined in section 2.1.2 of this thesis. In the special case when there are only 

positive and negative sequence components (𝑘 = ±1) and there are no zero sequence 

components present, equation (2.24) reduces to 

 �⃑�(𝜏) = 𝑋𝑝,1(𝜏)𝑒𝑗𝜔𝑠𝜏 + 𝑋𝑛,1
∗ (𝜏)𝑒−𝑗𝜔𝑠𝜏 (2.25)  

 

The space vector in equation (2.25) is illustrated conceptually in Figure 2.4 which shows that 

it can be broken down into a positive sequence space vector rotating in the anti-clockwise 

direction at an angular speed of 𝜔𝑠 rad/s and a negative sequence space vector that rotates in 

the clockwise direction at an angular speed 𝜔𝑠 rad/s.  
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Figure 2.4  Representation of rotating complex phasor  



 

 22 

Chapter  3: Induction Machine Modeling Based on Dynamic Phasors 

 

3.1 Time Domain Model of Doubly-Fed Induction Machine 

3.1.1 abc Phase Model of Doubly-Fed Induction Machine 

An induction machine is comprised of two three-phase circuits; a stationary stator circuit and 

a rotating rotor circuit that rotates at an angular velocity of 𝜔𝑟 rad/s with respect to the stator 

circuit as illustrated in Figure 3.1.  In this analysis, 𝜃𝑟 is defined as the angle by which the 

phase a axis of the rotor circuit leads that of the stator circuit in radians and is represented by 

equation (3.1).  

 𝜃𝑟 =  𝜔𝑟𝑡 (3.1)  

 

Figure 3.1  Illustration of the magnetic axis of a 2-pole induction machine 
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The voltage equations for both the stator circuit and the rotor circuit can be defined as 

follows; 

Stator voltage equations: 

 

𝑣𝑎𝑠 =  𝑟𝑠𝑖𝑎𝑠 +
𝑑
𝑑𝑡
𝜆𝑎𝑠 

𝑣𝑏𝑠 =  𝑟𝑠𝑖𝑏𝑠 +
𝑑
𝑑𝑡
𝜆𝑏𝑠 

𝑣𝑐𝑠 =  𝑟𝑠𝑖𝑐𝑠 +
𝑑
𝑑𝑡
𝜆𝑐𝑠 

(3.2)  

Rotor voltage equations: 

 

𝑣𝑎𝑟′ =  𝑟𝑟′𝑖𝑎𝑟′ +
𝑑
𝑑𝑡
𝜆𝑎𝑟′  

𝑣𝑏𝑟′ =  𝑟𝑟′𝑖𝑏𝑟′ +
𝑑
𝑑𝑡
𝜆𝑏𝑟′  

𝑣𝑐𝑟′ =  𝑟𝑟′𝑖𝑐𝑟′ +
𝑑
𝑑𝑡
𝜆𝑐𝑟′  

(3.3)  

 

In equations (3.2) and (3.3), λ represents the flux linkage of the winding denoted by its 

respective subscript, rs is the stator phase resistance, and 𝑟𝑟′ is the rotor phase resistance 

referred to the stator winding. 

 

The flux linkage of stator phase a winding can be written as 

 𝜆𝑎𝑠 =  𝐿𝑠𝑖𝑎𝑠 + 𝐿𝑀 �𝑖𝑎𝑠𝑐𝑜𝑠 𝜃𝑟 + 𝑖𝑏𝑠 cos �𝜃𝑟 −
2𝜋
3
� + 𝑖𝑐𝑠 cos �𝜃𝑟 + 2𝜋

3
�� (3.4)  

In the above equation 𝐿𝑠 represents the total phase a stator inductance and LM represents the 

maximum value of mutual inductance between the stator and rotor windings. 
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Similarly, the referred flux linkage of rotor phase a winding can be written as 

 𝜆𝑎𝑟′ =  𝐿𝑟′ 𝑖𝑎𝑟′ + 𝐿𝑀 �𝑖𝑎𝑟′ 𝑐𝑜𝑠 𝜃𝑟 + 𝑖𝑏𝑟′ cos �𝜃𝑟 −
2𝜋
3
� + 𝑖𝑐𝑟′ cos �𝜃𝑟 + 2𝜋

3
�� (3.5)  

where 𝐿𝑟′  represents the total phase rotor inductance referred to the stator winding and LM 

again, represents the maximum value of mutual inductance between the stator and rotor 

windings. Similar equations can be written for phase b and c stator and rotor flux linkages.  

 

To complete the induction machine model, the mechanical part of the system needs to be 

defined. We first do this by defining the electromagnetic torque that is developed within the 

induction machine in terms of the phase currents and inductances that are present in each of 

the windings. It can be shown that the electromagnetic torque developed in the machine can 

be expressed as [49] 

 

𝑇𝑒 = −�
𝑃
2�

𝐿𝑀 ��𝑖𝑎𝑠 �𝑖𝑎𝑟′ −
1
2
𝑖𝑏𝑟′ −

1
2
𝑖𝑐𝑟′ � + 𝑖𝑏𝑠 �𝑖𝑏𝑟′ −

1
2
𝑖𝑎𝑟′ −

1
2
𝑖𝑐𝑟′ �

+ 𝑖𝑐𝑠 �𝑖𝑐𝑟′ −
1
2
𝑖𝑏𝑟′ −

1
2
𝑖𝑎𝑟′ �� sin(𝜃𝑟)

+
√3
2

[𝑖𝑎𝑠(𝑖𝑏𝑟′ − 𝑖𝑐𝑟′ ) + 𝑖𝑏𝑠(𝑖𝑐𝑟′ − 𝑖𝑎𝑟′ ) + 𝑖𝑐𝑠(𝑖𝑎𝑟′ − 𝑖𝑏𝑟′ )] cos(𝜃𝑟)� 

(3.6)  

Where 𝑃 is the number of poles in the doubly-fed induction machine. The torque and rotor 

mechanical speed can be related by 

 𝑇𝑒 − 𝑇𝑚 − 𝐾𝑓𝑟𝑖𝑐𝜔𝑟𝑚 = 𝐽
𝑑𝜔𝑟𝑚
𝑑𝑡

= 𝐽
2
𝑃
𝑑𝜔𝑟
𝑑𝑡

 (3.7)  

where 𝜔𝑟𝑚 = 2
𝑃
𝜔𝑟, 𝐾𝑓𝑟𝑖𝑐 is the rotor friction coefficient and 𝐽 is the combined polar moment 

of inertia of the rotor and the connected load and 𝑇𝑚 is the mechanical torque applied to the 

shaft of the rotor. 
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It can be seen from equations (3.4) and (3.6) that a significant amount of coupling occurs 

between the phases due to the currents that flow in each of the three windings. This coupling 

complicates the analysis and simulation of the induction machine and can make it quite 

cumbersome. 

 

3.1.2 qd0 Model of Doubly-Fed Induction Machine 

The equations presented in section 3.1.1 can be greatly simplified if they are transformed 

from the stationary abc reference frame to a two axis, qd0 reference frame as illustrated in 

Figure 3.2. By projecting the abc phase quantities onto the two axis reference frame, the 

coupling that occurs in the abc phase model of the induction machine can be eliminated. It is 

assumed that the q-axis of this reference frame is 90⁰ ahead of the d-axis in the direction of 

rotation. The q-axis is chosen to coincide with the phase a axis at time t = 0.  

 

It is important to note here that in general, the qd0 reference frame is one that is defined as 

rotating synchronously with the rotor circuit of a rotating machine. For the sake of this thesis, 

the qd0 reference frame will be defined as a two axis reference frame that is rotating at an 

arbitrary speed which is not necessarily synchronous to the rotating circuit of an electric 

machine. 
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Figure 3.2  qd0 magnetic axis 

 

To make this transformation we use the commonly known Park’s Transformation which 

utilizes a transformation matrix K such that 

 
𝑥𝑞𝑑0 = 𝑲𝑥𝑎𝑏𝑐   

𝑥𝑎𝑏𝑐 = 𝑲−1𝑥𝑞𝑑0  
(3.8)  

Where 𝑥𝑎𝑏𝑐 = [𝑥𝑎 𝑥𝑏 𝑥𝑐]𝑇, 𝑥𝑞𝑑0 = [𝑥𝑞 𝑥𝑑  𝑥0]𝑇 and 𝑥 represents either voltage, current or 

flux linkage quantities for the stator or rotor windings. 

 

The stator transformation matrix, Ks and rotor transformation matrix, Kr of a rotating 

reference frame are defined as follows. 
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 𝑲𝑠 =
2
3
⎣
⎢
⎢
⎢
⎡cos(𝜃) cos �𝜃 − 2𝜋

3
� cos �𝜃 + 2𝜋

3
�

sin(𝜃) sin �𝜃 − 2𝜋
3
� sin �𝜃 + 2𝜋

3
�

1
2�

1
2�

1
2� ⎦

⎥
⎥
⎥
⎤
 (3.9)  

 𝑲𝑟 =
2
3
⎣
⎢
⎢
⎢
⎡cos(𝜃 − 𝜃𝑟) cos �𝜃 − 𝜃𝑟 −

2𝜋
3
� cos �𝜃 − 𝜃𝑟 + 2𝜋

3
�

sin(𝜃 − 𝜃𝑟) sin �𝜃 − 𝜃𝑟 −
2𝜋
3
� sin �𝜃 − 𝜃𝑟 + 2𝜋

3
�

1
2�

1
2�

1
2� ⎦

⎥
⎥
⎥
⎤
 (3.10)  

 

It can be shown that  

 𝑲𝑠
−1 =

⎣
⎢
⎢
⎡

cos(𝜃) sin(𝜃) 1
cos �𝜃 − 2𝜋

3
� sin �𝜃 − 2𝜋

3
� 1

cos �𝜃 + 2𝜋
3
� sin �𝜃 + 2𝜋

3
� 1⎦

⎥
⎥
⎤
 (3.11)  

 

In the above matrices, 𝜃 represents the angular displacement of the q-axis from its original 

position, 𝜃0 and is represented by the following equation. 

 𝜃 = 𝜔𝑡 + 𝜃0 (3.12)  

Where 𝜔 is the angular velocity of the qd0 reference frame in rad/s. 

The angle 𝜃𝑟 is the angular position of the rotor with respect to its original position 𝜃𝑟0 and is 

represented with the following equations. 

 𝜃𝑟 = 𝜔𝑟𝑡 + 𝜃𝑟0 (3.13)  

 

Applying equations (3.9) and (3.10) directly to (3.2) and (3.3) respectively, and assuming the 

machine is operated in a balanced three phase manner, we get the voltage equations for the 

qd0 reference frame. 
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Stator qd0 voltage equations: 

 

𝑣𝑞𝑠 = 𝑟𝑠𝑖𝑞𝑠 + 𝜔𝜆𝑑𝑠 +
𝑑
𝑑𝑡
𝜆𝑞𝑠 

𝑣𝑑𝑠 = 𝑟𝑠𝑖𝑑𝑠 − 𝜔𝜆𝑞𝑠 +
𝑑
𝑑𝑡
𝜆𝑑𝑠 

𝑣0𝑠 = 𝑟𝑠𝑖0𝑠 +
𝑑
𝑑𝑡
𝜆0𝑠 

(3.14)  

 

Rotor qd0 voltage equations: 

 

𝑣𝑞𝑟′ = 𝑟𝑟′𝑖𝑞𝑟′ + (𝜔 − 𝜔𝑟)𝜆𝑑𝑟′ +
𝑑
𝑑𝑡
𝜆𝑞𝑟′  

𝑣𝑑𝑟′ = 𝑟𝑟′𝑖𝑑𝑟′ − (𝜔 − 𝜔𝑟)𝜆𝑞𝑟′ +
𝑑
𝑑𝑡
𝜆𝑑𝑟′  

𝑣0𝑟′ = 𝑟𝑟′𝑖0𝑟′ +
𝑑
𝑑𝑡
𝜆0𝑟′  

(3.15)  

 

In equations (3.14) and (3.15), 𝜆𝑞𝑠, 𝜆𝑑𝑠,  𝜆0𝑠, 𝜆𝑞𝑟′ , 𝜆𝑑𝑟′ , and 𝜆0𝑟′  represent the stator and rotor 

flux linkages in the qd0 reference frame and are represented by the equations below. 

Stator qd0 flux linkages: 

 

𝜆𝑞𝑠 = 𝐿𝑠𝑖𝑞𝑠 + 𝐿𝑀�𝑖𝑞𝑠 + 𝑖𝑞𝑟′ � 

𝜆𝑑𝑠 = 𝐿𝑠𝑖𝑑𝑠 + 𝐿𝑀(𝑖𝑑𝑠 + 𝑖𝑑𝑟′ ) 

𝜆0𝑠 = 𝐿𝑠𝑖0𝑠 

(3.16)  

Rotor qd0 flux linkages: 

 

𝜆𝑞𝑟′ = 𝐿𝑟′ 𝑖𝑞𝑟′ + 𝐿𝑀�𝑖𝑞𝑠 + 𝑖𝑞𝑟′ � 

𝜆𝑑𝑟′ = 𝐿𝑟′ 𝑖𝑑𝑟′ + 𝐿𝑀(𝑖𝑑𝑠 + 𝑖𝑑𝑟′ ) 

𝜆0𝑟′ = 𝐿𝑟′ 𝑖0𝑟′  

(3.17)  
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As you can see in equations (3.16) and (3.17), the large amount of coupling that was present 

between the phases in equations (3.4) and (3.5) is no longer present. This greatly simplifies 

the induction machine model and reduces the computational burden that is present in the abc 

phase model of the Induction Machine. Figure 3.3 depicts the equivalent qd0 circuit of a 3-

phase symmetric induction machine in an arbitrary rotating reference frame. 

 

 

Figure 3.3  qd0 equivalent circuit of three phase induction machine 

 

To complete the transformation and develop all of the equations needed to implement the 

model, we need to define electrical torque in terms of the qd0 reference frame quantities. It 

can be shown that the electromagnetic torque developed in the qd0 reference frame can be 

expressed as follows.  
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 𝑇𝑒 =  �
3
2� �

𝑃
2�

�𝜆𝑑𝑠𝑖𝑞𝑠 − 𝜆𝑞𝑠𝑖𝑑𝑠� (3.18)  

 

The electromagnetic torque developed by the motor drives the mechanical load attached to 

the shaft of the motor. If there is a mismatch between the electromagnetic torque developed 

and the load torque applied to the rotor shaft, the torque will accelerate the rotor according to 

the following equation. 

 𝑇𝑒 − 𝑇𝑚 − 𝐾𝑓𝑟𝑖𝑐𝜔𝑟𝑚 = 𝐽
𝑑𝜔𝑟𝑚
𝑑𝑡

= 𝐽
2
𝑃
𝑑𝜔𝑟
𝑑𝑡

 (3.19)  

 

In equation (3.19), 𝐽 is the combined polar moment of inertia of the rotor and the connected 

load and 𝑇𝑚 is the mechanical torque applied to the shaft of the rotor. 

 

 

Figure 3.4  Y-connection of stator and rotor circuits of doubly-fed induction machine 
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In most cases, induction machines are wired in either a Y-connected configuration as 

illustrated in Figure 3.4 or a Δ-connected configuration. In either case, there is generally no 

access to the neutral point in the circuit. In such cases, there is no return path for zero-

sequence currents to flow and as such these components are zero. Therefore the zero-

sequence equations in equations (3.14) through (3.17) and the zero sequence circuit in Figure 

3.3 can generally be neglected. 

 

3.1.3 Complex Vector Model of Doubly-Fed Induction Machine 

We are now in a position to be able to express the induction machine model in terms of 

complex space vector. We do this by respectively letting the q-axis and d-axis in Figure 3.2 

correspond to the positive real and negative imaginary axis of the arbitrarily rotating complex 

reference frame. By doing this, we can express the stator circuit quantities as 

 𝑓𝑞𝑑𝑠 = 𝑓𝑞𝑠 − 𝑗𝑓𝑑𝑠 =
2
3
�𝑓𝑎𝑠𝑒−𝑗𝜃 + 𝑓𝑏𝑠𝑒

−𝑗�𝜃− 2𝜋3 � + 𝑓𝑐𝑠𝑒
−𝑗�𝜃+ 2𝜋3 �� (3.20)  

which can be expressed as 

 
𝑓𝑞𝑑𝑠 =

2
3
𝑒−𝑗𝜃[𝑓𝑎𝑠 + 𝛼𝑓𝑏𝑠 + 𝛼2𝑓𝑐𝑠]                                                          

= 𝑒−𝑗𝜃𝑓𝑎𝑏𝑐𝑠  

(3.21)  

Similarly, the rotor circuit quantities can be expressed in the arbitrarily rotating complex 

reference plane as 

 
𝑓𝑞𝑑𝑟 =

2
3
𝑒−𝑗(𝜃−𝜃𝑟)[𝑓𝑎𝑟 + 𝛼𝑓𝑏𝑟 + 𝛼2𝑓𝑐𝑟]                                         

= 𝑒−𝑗(𝜃−𝜃𝑟)𝑓𝑎𝑏𝑐𝑟 

(3.22)  
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Using equations (3.20) through (3.22) the qd0 model equations in Section 3.1.2 can be 

combined to represent the induction machine quantities in terms of complex space vectors as 

follows. The qd voltage equations for the stator circuit can be combined into the complex 

space vector form 

 �⃑�𝑞𝑑𝑠 = 𝑟𝑠𝚤𝑞𝑑𝑠 +
𝑑
𝑑𝑡
𝜆𝑞𝑑𝑠 + 𝑗𝜔𝜆𝑞𝑑𝑠. (3.23)  

Similarly, for the rotor circuit qd voltage equations we get 

 �⃑�𝑞𝑑𝑟′ = 𝑟𝑟′𝚤𝑞𝑑𝑟′ +
𝑑
𝑑𝑡
𝜆𝑞𝑑𝑟′ + 𝑗(𝜔 − 𝜔𝑟)𝜆𝑞𝑑𝑟′  (3.24)  

where 

 𝜆𝑞𝑑𝑠 = 𝐿𝑠𝚤𝑞𝑑𝑠 + 𝐿𝑀�𝚤𝑞𝑑𝑠 + 𝚤𝑞𝑑𝑟′ � (3.25)  

and 

 𝜆𝑞𝑑𝑟′ = 𝐿𝑟′ 𝚤𝑞𝑑𝑟′ + 𝐿𝑀�𝚤𝑞𝑑𝑠 + 𝚤𝑞𝑑𝑟′ �. (3.26)  

 

For completeness the zero sequence quantities can be included here but, as mentioned in the 

previous section they can generally be neglected due to the connection of the induction 

machine. The zero sequence components are exactly the same in the complex space vector 

representation as they are in the qd0 representation, equations (3.14) through (3.17) of the 

induction machine model. So for the zero sequence quantities we have 

 𝑣0𝑠 = 𝑟𝑠𝑖0𝑠 +
𝑑
𝑑𝑡
𝜆0𝑠 (3.27)  

and  

 𝑣0𝑟′ = 𝑟𝑟′𝑖0𝑟′ +
𝑑
𝑑𝑡
𝜆0𝑟′ . (3.28)  



 

 33 

where 𝜆0𝑠 = 𝐿𝑠𝑖0𝑠 and 𝜆0𝑟′ = 𝐿𝑟′ 𝑖0𝑟′  are the zero sequence flux linkages in the stator and rotor 

circuits, respectively. It is important to note here that the zero sequence quantities are not 

complex vectors but strictly real quantities. Figure 3.5 shows the equivalent circuit of the 

complex space vector representation of the doubly-fed induction machine including the zero 

sequence components of the model. 

 

 

Figure 3.5  Complex Space Vector equivalent circuit of 3-phase induction machine 

 

We now need to express the electrical torque developed in the machine in terms of the 

complex space vectors that have been defined. We know that the electrical torque is a real 

quantity so we need to manipulate the complex space vector quantities involved to give us 

the electrical torque in the same form as equation (3.18) which is defined in terms of the qd 

axis quantities. This can be done by multiplying the complex conjugate of the stator flux 

space vector with the stator current space vector; 

 
𝜆𝑞𝑑𝑠∗  𝚤𝑞𝑑𝑠 = �𝜆𝑞𝑠 + 𝑗𝜆𝑑𝑠��𝑖𝑞𝑠 − 𝑗𝑖𝑑𝑠�                                                                             

= 𝜆𝑞𝑠𝑖𝑞𝑠 + 𝜆𝑑𝑠𝑖𝑑𝑠 + 𝑗�𝜆𝑑𝑠𝑖𝑞𝑠 − 𝜆𝑞𝑠𝑖𝑑𝑠� 
(3.29)  
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It can be seen that the imaginary part of equation (3.29) is of the form that we need to express 

the electrical torque developed in the machine. That is, we can express the electrical torque 

developed in the machine using the complex space vector quantities by taking only the 

imaginary part of equation (3.29) as follows.  

 𝑇𝑒 =  �
3
2� �

𝑃
2�

ℐ𝓂� 𝜆𝑞𝑑𝑠∗  𝚤𝑞𝑑𝑠 � (3.30)  

 

It is important to note here that there are other ways to express the electromagnetic torque 

developed in the machine using different circuit quantities. Many of these are outline by 

Novotny [47]. The reason that the electromagnetic torque was chosen to be represented in 

terms of the stator circuit flux linkage and current is due to its independence of the 

magnetizing inductance 𝐿𝑀. The advantage of this will become more apparent in our 

discussion of induction machine saturation in Chapter 4. 

 

The mechanical equation for the complex space vector model is identical to that of the 

previous models as the quantities involved are all real valued quantities and so again we can 

express the equation for the mechanical and electric torque coupling as 

 𝑇𝑒 − 𝑇𝑚 − 𝐾𝑓𝑟𝑖𝑐𝜔𝑟𝑚 = 𝐽
𝑑𝜔𝑟𝑚
𝑑𝑡

= 𝐽
2
𝑃
𝑑𝜔𝑟
𝑑𝑡

. (3.31)  

 

3.2 Dynamic Phasor Model of Doubly-Fed Induction Machine 

We are now at a point where we can apply the concepts of dynamic phasors that were 

presented in Chapter 2 to the induction machine model. The dynamic phasor model of the 
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doubly-fed induction machine can be developed by applying equation (2.25) to the complex 

space vector quantities presented in Section 3.1.3. It is again noted here that there are only 

positive and negative sequence components present and the zero sequence quantities are 

equal to zero. Applying equation (2.25) to the stator voltage equation (3.23) we get the stator 

circuit quantities expressed in terms of dynamic phasors. 

 

𝑉  𝑝𝑠𝑒𝑗𝜔𝑠𝑡 + 𝑉  𝑛𝑠
∗ 𝑒−𝑗𝜔𝑠𝑡

= 𝑟𝑠�𝐼 𝑝𝑠𝑒𝑗𝜔𝑠𝑡 + 𝐼  𝑛𝑠∗ 𝑒−𝑗𝜔𝑠𝑡� +
𝑑
𝑑𝑡
�𝛬𝑝𝑠𝑒𝑗𝜔𝑠𝑡 + 𝛬𝑛𝑠∗ 𝑒−𝑗𝜔𝑠𝑡�

+ 𝑗𝜔�𝛬𝑝𝑠𝑒𝑗𝜔𝑠𝑡 + 𝛬𝑛𝑠∗ 𝑒−𝑗𝜔𝑠𝑡� 

(3.32)  

 

If the differentiation in equation (3.32) is carried out and like terms are separated, we get the 

dynamic phasor equations for the stator voltage of the induction machine dynamic phasor 

model.  

 
𝑉  𝑝𝑠 = 𝑟𝑠𝐼 𝑝𝑠 +

𝑑
𝑑𝑡
𝛬𝑝𝑠 + 𝑗(𝜔 + 𝜔𝑠)𝛬𝑝𝑠 

𝑉  𝑛𝑠
∗ = 𝑟𝑠𝐼  𝑛𝑠∗ +

𝑑
𝑑𝑡
𝛬𝑛𝑠∗ + 𝑗(𝜔 −𝜔𝑠)𝛬𝑛𝑠∗  

(3.33)  

where  

 
𝛬𝑝𝑠 = 𝐿𝑠𝐼 𝑝𝑠 + 𝐿𝑀�𝐼 𝑝𝑠 + 𝐼 𝑝𝑟� 

𝛬𝑛𝑠∗ = 𝐿𝑠𝐼  𝑛𝑠∗ + 𝐿𝑀�𝐼  𝑛𝑠∗ + 𝐼  𝑛𝑟∗ � 
(3.34)  

 

For the rotor circuit we have to consider the second harmonic of the rotor speed due to the 

torque ripple that is introduce into the machine during unbalanced operating conditions. The 

second harmonic torque ripple that is introduced into the system can be easily verified by 

doing a simple observation during simulation of the time domain models. For example, 
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Figure 3.6 illustrates the simulation of a typical 500 hp induction machine under a single 

phase unbalanced fault condition. It can be observed that under these circumstances a second 

harmonic ripple is introduced into the electromagnetic torque produced in the machine which 

in turn causes the rotor speed to have a small second harmonic torque ripple as well. 

 

 

Figure 3.6  Torque and speed ripple during unbalanced machine operation 

 

The torque ripple caused by unbalanced operating conditions is taken into account by 

considering both the dc component of the rotor speed and its second harmonic dynamic 

phasor, which are expressed as  𝛺𝑟,0 and 𝛺𝑟,2 respectively. It is important to note here that in 

this case 𝛺𝑟,0is real valued but for the sake of consistency it is expressed as a dynamic 

phasor. Applying equation (2.25) to the rotor voltage space vector equation (3.24) and taking 

into account the second harmonic dynamic phasor of the rotor speed we get 
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𝑉  𝑝𝑟𝑒𝑗𝜔𝑠𝑡 + 𝑉  𝑛𝑟
∗ 𝑒−𝑗𝜔𝑠𝑡

= 𝑟𝑟′�𝐼 𝑝𝑟𝑒𝑗𝜔𝑠𝑡 + 𝐼  𝑛𝑟∗ 𝑒−𝑗𝜔𝑠𝑡� +
𝑑
𝑑𝑡
�𝛬𝑝𝑟𝑒𝑗𝜔𝑠𝑡 + 𝛬𝑛𝑟∗ 𝑒−𝑗𝜔𝑠𝑡�

+ 𝑗�𝜔 − 𝛺𝑟,0 − 𝛺𝑟,2𝑒𝑗2𝜔𝑠𝑡 − 𝛺  𝑟,2
∗ 𝑒−𝑗2𝜔𝑠𝑡��𝛬𝑝𝑟𝑒𝑗𝜔𝑠𝑡

+ 𝛬𝑛𝑟∗ 𝑒−𝑗𝜔𝑠𝑡� 

(3.35)  

Which, after expanding and separating like terms we can get the dynamic phasor equations of 

the rotor circuit voltage. 

 
𝑉  𝑝𝑟 = 𝑟𝑟′𝐼 𝑝𝑟 +

𝑑
𝑑𝑡
𝛬𝑝𝑟 + 𝑗�𝜔 + 𝜔𝑠 − 𝛺𝑟,0�𝛬𝑝𝑟 − 𝑗2𝛺𝑟,2𝛬𝑛𝑟∗  

𝑉  𝑛𝑟
∗ = 𝑟𝑟′𝐼  𝑛𝑟∗ +

𝑑
𝑑𝑡
𝛬𝑛𝑟∗ + 𝑗�𝜔 − 𝜔𝑠 − 𝛺𝑟,0�𝛬𝑛𝑟∗ − 𝑗2𝛺𝑟,2

∗ 𝛬𝑝𝑟 

(3.36)  

where 

 
𝛬𝑝𝑟 = 𝐿𝑟′ 𝐼 𝑝𝑟 + 𝐿𝑀�𝐼 𝑝𝑠 + 𝐼 𝑝𝑟� 

𝛬𝑛𝑟∗ = 𝐿𝑟′ 𝐼  𝑛𝑟∗ + 𝐿𝑀�𝐼  𝑛𝑠∗ + 𝐼  𝑛𝑟∗ � 
(3.37)  

 

Note here that the prime symbol has been removed from the dynamic phasor rotor quantities 

to avoid clutter in the equations. However, they still represent rotor quantities that have been 

referred to the stator side circuit. 

 

Figure 3.7 shows the dynamic phasor equivalent circuit of the 3-phase doubly-fed induction 

machine. Notice here that the zero sequence components of the induction machine have been 

neglected for reasons outlined in the previous sections of this chapter. 
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Figure 3.7  Dynamic phasor equivalent circuit of 3-phase induction machine 

 

For the electromagnetic torque developed in the machine we have to also consider the second 

harmonic dynamic phasor as explained above. If we now apply equation (2.25) to the 

complex space vector equation (3.30) and take into account the second harmonic dynamic 

phasor to account for torque ripple we get the following equation for the electromagnetic 

torque developed in the machine in terms of dynamic phasors. 

 

𝑇 𝑒,0 + 𝑇 𝑒,2𝑒𝑗2𝜔𝑠𝑡 + 𝑇  𝑒,2
∗ 𝑒−𝑗2𝜔𝑠𝑡

= �
3𝑃
4 � ℐ𝓂��𝛬𝑝𝑠∗ 𝑒−𝑗𝜔𝑠𝑡 + 𝛬𝑛𝑠𝑒𝑗𝜔𝑠𝑡��𝐼 𝑝𝑠𝑒𝑗𝜔𝑠𝑡 + 𝐼  𝑛𝑠∗ 𝑒−𝑗𝜔𝑠𝑡�� 

(3.38)  

 

Expanding out the equation (3.38) and collecting like terms we get dynamic phasor equations 

for the dc and second harmonic components of the electromagnetic torque developed in the 

machine. 
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𝑇 𝑒,0 = �
3𝑃
4 � ℐ𝓂�𝛬𝑝𝑠∗ 𝐼 𝑝𝑠 + 𝛬𝑛𝑠𝐼  𝑛𝑠∗ � 

𝑇 𝑒,2 =
3𝑃
𝑗8
�𝛬𝑛𝑠𝐼 𝑝𝑠 − 𝛬𝑝𝑠𝐼 𝑛𝑠� 

(3.39)  

 

To couple the electrical quantities to the mechanical quantities we can express the 

mechanical equation for the doubly-fed induction machine in terms of dynamic phasors as 

follows. 

 
𝐽
𝑑
𝑑𝑡
�𝛺𝑟𝑚,0 + 𝛺𝑟𝑚,2𝑒𝑗2𝜔𝑠𝑡�

= �𝑇 𝑒,0 + 𝑇 𝑒,2𝑒𝑗2𝜔𝑠𝑡� − 𝑇𝑚 − 𝐾𝑓𝑟𝑖𝑐�𝛺𝑟𝑚,0 + 𝛺𝑟𝑚,2𝑒𝑗2𝜔𝑠𝑡� 

(3.40)  

 

Which can be expanded and separated into like terms and finally we get the dynamic phasor 

equations for the dc and second harmonic components of the mechanical rotor speed as 

follows. 

 

𝐽
𝑑
𝑑𝑡
𝛺𝑟𝑚,0 = �

3𝑃
4 � ℐ𝓂�𝛬𝑝𝑠∗ 𝐼 𝑝𝑠 + 𝛬𝑛𝑠𝐼  𝑛𝑠∗ � − 𝑇𝑚 − 𝐾𝑓𝑟𝑖𝑐𝛺𝑟𝑚,0 

𝐽
𝑑
𝑑𝑡
𝛺𝑟𝑚,2 =

3𝑃
𝑗8
�𝛬𝑛𝑠𝐼 𝑝𝑠 − 𝛬𝑝𝑠𝐼 𝑛𝑠� − �𝐾𝑓𝑟𝑖𝑐 + 𝑗2𝐽𝜔𝑠�𝛺𝑟𝑚,2 

(3.41)  

 

As in the previous induction machine models the rotor mechanical speed and the rotor 

electrical speed are related by the number of electromagnetic poles in the machine. 

 
𝛺𝑟,0 =

𝑃
2
𝛺𝑟𝑚,0 

𝛺𝑟,2 =
𝑃
2
𝛺𝑟𝑚,2 

(3.42)  
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We now have all of the dynamic phasor equations needed in order to implement the model 

and verify that it is representative of the induction machine dynamic behavior. 

 

3.3 Model Verification 

A series of tests are carried out in this section to verify that the dynamic phasor model is 

representative of the time domain electromagnetic transient model with considerable 

accuracy. The studies are carried out to represent different operating conditions and transient 

events to illustrate the behavior of the doubly-fed induction machine. These studies are 

carried out on a typical 500 hp induction machine with the machine parameters listed in 

Appendix A. 

 

The studies that are carried out cover a range of operating circumstances that might typically 

be faced by an induction machine. These studies include; machine start-up from standstill; a 

change in mechanical torque; balanced voltage dips; and unbalanced voltage dips. These 

operating studies are carried out in the following sub-sections. 

 

For comparison, the dynamic phasor model of the induction machine is compared to the dq0 

induction machine model to verify its accuracy. This is done by simulating both models 

using a very small time step to show that the dynamic phasor model results converge to the 

well know dq0 model results. The time-step used throughout the model verification studies in 

the following sub-sections is ∆𝑡 = 50 µs. Also, a stationary reference frame, 𝜔 = 0, is used 

in both the dq0 induction machine model and the dynamic phasor induction machine model.  
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3.3.1 Free Acceleration of Induction Machine 

The model verification begins at time t=0s when a rated voltage of 2300 VL-L is applied to 

the motor which is allowed to accelerate freely from standstill. The resulting waveforms for 

the stator phase a current 𝑖𝑎, electromagnetic torque 𝑇𝑒 and the mechanical rotor speed 𝜔𝑟𝑚 

are illustrated below in Figure 3.8, Figure 3.9 and Figure 3.10 respectively. These figures 

contain the time domain dq0 model quantities (EMT), the magnitude of the dynamic phasor 

quantities (DP) as well as the time domain result obtained using the dynamic phasor 

quantities (DP-EMT). 

 

 

Figure 3.8  Stator current during free acceleration (Δt=50µs) 

 

In Figure 3.8 it is observed the time domain result obtained using the dynamic phasor 

quantities matches very accurately the results obtained using the time domain dq0 induction 

machine model. Also, the magnitude of the dynamic phasor quantity illustrates that it acts as 
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an envelope for the time domain waveform. This can be advantageous in model simulations 

where current magnitudes are being studied and the actual details of the time domain 

waveforms are not the main focus of the study. For example, when one wants to determine 

the starting current magnitude of the induction machine, the dynamic phasor model can 

provide such information without having to determine all of the information of the time 

domain waveform. 

 

 

Figure 3.9  Electrical torque during free acceleration (Δt=50µs) 

 



 

 43 

 

Figure 3.10  Rotor speed during free acceleration (Δt=50µs) 

 

For the electromagnetic torque and the rotor mechanical speed in Figure 3.9 and Figure 3.10 

respectively, the dynamic phasor quantity is identical to the time domain result obtained by 

the dynamic phasor quantity. This is because under balanced operating conditions only the dc 

component of the electromagnetic torque and rotor speed is present and as mentioned 

previously, the dc components of these quantities are strictly real and contain no imaginary 

component. It is also observed that these quantities match with considerable accuracy the 

results obtained using the dq0 induction machine model. 

 

3.3.2 Mechanical Torque Change 

At time t=2.5s a rated motoring torque of 1980 Nm is applied to the motor and then at t=3s 

the torque is reversed to a rated load torque. The same quantities that were plotted in the 
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previous study are again plotted here in Figure 3.11, Figure 3.12 and Figure 3.13 depicting 

the dynamic phasor magnitudes and both of the time domain results obtained using the 

dynamic phasor quantities and the dq0 induction machine model. It is observed that again the 

time domain result obtained using the dynamic phasor quantities represents very well the 

results obtained using the dq0 induction machine model and that the magnitudes of the 

dynamic phasor quantity in Figure 3.11 acts as an envelope to the time domain waveform. 

 

 

Figure 3.11  Stator current during mechanical torque change (Δt=50µs) 

 

Again, the electromagnetic torque developed in the machine and the rotor mechanical speed 

contain only the dc component of the dynamic phasor as the machine is operating under 

balanced conditions where no second harmonic torque component is developed. The time 

domain result is also accurately represented as illustrated in Figure 3.12 and Figure 3.13 for 

both the torque and rotor speed respectively. 
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Figure 3.12  Electrical torque during mechanical torque change (Δt=50µs) 

 

Figure 3.13  Rotor speed during mechanical torque change (Δt=50µs) 
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3.3.3 Balanced 3-phase Voltage Dip 

At time t=4s of the simulation a balanced 30% voltage dip is applied to the terminals of the 

machine for 6 cycles and then cleared. The resulting phase a current, electromagnetic torque 

and rotor mechanical speed quantities are plotted below in Figure 3.14, Figure 3.15 and 

Figure 3.16, respectively. Again, it is observed that the dynamic phasor model results match 

the dq0 model results with considerable accuracy and the magnitude of the dynamic phasor 

current quantity provides an accurate representation of the envelope of the time domain 

current waveform. 

 

 

Figure 3.14  Stator current during balanced 3-phase voltage dip (Δt=50µs) 

 

Under balanced operation again, the electromagnetic torque developed in the machine as well 

as the rotor mechanical speed contain only the dc component as mentioned previously. 
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Figure 3.15  Electrical torque during balanced 3-phase voltage dip (Δt=50µs) 

 

Figure 3.16  Rotor speed during balanced 3-phase voltage dip (Δt=50µs) 
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3.3.4 Unbalanced Single Line-to-Ground Fault 

At time t=5s an unbalanced single phase-to-ground fault is applied to the terminals of the 

machine and cleared after 6 cycles. In the case of an unbalanced fault we have both positive 

and negative sequence quantities in the machine. With the dynamic phasor model the positive 

and negative sequence dynamic phasors are treated separately and can therefore be studied 

separately. For example, Figure 3.17 and Figure 3.18 show the real and imaginary parts of 

the positive and negative sequence stator current dynamic phasors respectively. 

 

 

Figure 3.17  Real and imaginary parts of positive sequence stator current dynamic phasor 
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Figure 3.18  Real and imaginary parts of negative sequence stator current dynamic phasor 

 

Using equations (2.21) and (2.25) the dynamic phasors can be combined to form the time 

domain result for the stator current as illustrated below in Figure 3.19. This figure also 

illustrates the comparison between the qd0 model results (EMT), the time domain results 

obtained from the dynamic phasor model (DP-EMT) and the magnitude of the current 

envelope using the dynamic phasor model (DP).  

 

When an unbalanced fault is introduced to the system it brings with it a slight error that 

propagates through the model as well. This error is difficult to notice in Figure 3.19 but 

becomes more apparent in the plot of the mechanical rotor speed in Figure 3.25. It is believed 

that this error is introduced to the model not by the introduction of the negative sequence 

current dynamic phasor but from the lack of higher frequency components that are not taken 



 

 50 

into account during the transient period of the simulation as mentioned by Stankovic [31] and 

explained in greater detail by Sanders [45]. The introduction of these higher harmonics 

during switching transients and other events would increase the accuracy of the dynamic 

phasor model however the complexity of the model would greatly increase as well. Further 

investigation is required however, as the errors do not occur in any of the balanced operating 

conditions and seem to be introduced into the model only when unbalanced operating 

conditions are introduced to the model. The source of the errors was not definitively located 

in the model and requires further investigation at the time that this thesis was written.  

 

 

Figure 3.19  Stator current during unbalanced fault (Δt=50µs) 

 

As in the case of current dynamic phasors, the electromagnetic torque produced in the model 

as well as the rotor mechanical speed are analyzed as separate harmonic dynamic phasors. 
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The difference in these cases is that these quantities in this particular model contain only the 

dc component and 2nd harmonic dynamic phasors as mentioned in the previous section.  

 

Figure 3.20 and Figure 3.21 respectively show the dc component and the real and imaginary 

components of the 2nd harmonic electromagnetic torque dynamic phasor developed in the 

machine model. These quantities can be recombined using the dynamic phasor equation (2.5) 

with 𝐾 = {0,2}. Note here that electromagnetic torque is a real valued quantity so we have 

𝑇 𝑒,−2 = 𝑇 𝑒,2
∗  so we can obtain the time domain result as 𝑇𝑒 = 𝑇 𝑒,0 + 2𝑅𝑒�𝑇 𝑒,2𝑒𝑗2𝜔𝑠𝑡�. The 

time domain result for the electromagnetic torque is shown in Figure 3.22 along with the 

result obtained using the dq0 model result for comparison. 

 

 

Figure 3.20  DC component of electrical torque dynamic phasor 
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Figure 3.21  2nd harmonic component of electrical torque dynamic phasor 

 

Figure 3.22  Electrical torque during unbalanced fault (Δt=50µs) 



 

 53 

Similarly, the rotor speed is illustrated as its separate dynamic phasor components (dc, and 

2nd harmonic) in Figure 3.23 and Figure 3.24, respectively. Also, as in the case of the 

electromagnetic torque, the mechanical rotor speed dynamic phasors can be combined to 

obtain the real valued time domain result using equation (2.5) with 𝐾 = {0,2}. Doing this we 

get the time domain result for the mechanical rotor speed as 𝜔𝑟𝑚 = 𝛺 𝑒,0 + 2𝑅𝑒�𝛺 𝑒,2𝑒𝑗2𝜔𝑠𝑡�. 

The time domain result for the mechanical rotor speed is illustrated below in Figure 3.25 

along with the results obtained using the dq0 model for comparison. 

 

 

Figure 3.23  DC component of rotor speed dynamic phasor 
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Figure 3.24  2nd harmonic component of rotor speed dynamic phasor 

 

 

Figure 3.25  Rotor speed during unbalanced fault (Δt=50µs) 
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As mentioned previously, there is a slight error that is introduced in the results of the 

dynamic phasor model during unbalanced operating conditions. These errors introduced into 

the model were studied and the results are presented here in Table 3.1 which illustrates the 

maximum errors introduced into the model quantities both in absolute values and in percent 

error from the results obtained using the dq0 induction machine model. The maximum errors 

that are introduced into the model are quite small and are within ± 1.9% and are well within 

range to validate the dynamic phasor model during unbalanced operating conditions. 

 

Table 3.1  Maximum error introduced by dynamic phasor model 

Variable 
Maximum Absolute 

Error 

Maximum Percent Error 

(%) 

𝒊𝒂𝒔 7.5162 (A) 1.8924 

𝑻𝒆 64.5221 (Nm) 1.4021 

𝝎𝒓𝒎 0.0987 (rad/s) 0.0541 
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Chapter  4: Modeling of Saturation in Induction Machines 

 

4.1 Time Domain Modeling of Induction Machine Saturation 

The induction machine models that were presented in Chapter 3 were based on the 

assumption that the main magnetizing flux linkage produced in the machine changed linearly 

with respect to the magnetizing branch current. In reality, the magnetizing flux does not 

follow such a linear relationship to the magnetizing current but instead starts to deviate from 

the linear relationship as the magnetizing current increases due to the effects of magnetic 

saturation in the induction machine [32-43]. Thus, there are some inaccuracies that occur in 

the models based on the linear magnetizing relationship. Saturation effects also occur in the 

leakage inductances present in each of the windings but are much more difficult to model so 

the analysis here will focus on saturation effects of the main magnetizing flux path. In order 

to produce a more accurate model the effects of saturation should be taken into account. 

 

In induction machine modeling, saturation is often applied to the magnetizing flux as it takes 

into account the cross-saturation effects between the q- and d-axis of the machine [36, 49]. 

One method of modeling main flux linkage saturation is to apply a flux correction term to the 

magnetizing flux quantity known as magnetizing flux correction [49, 50]. Figure 4.1 

illustrates the concept of the flux correction method. It depicts a typical saturation curve 

which is defined in terms of the magnitude of the magnetizing flux versus the magnitude of 

the magnetizing current. Along with the saturation curve there is also the linear relationship 

depicted along with the flux correction term ∆(𝜆𝑚). 
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Figure 4.1  Typical magnetization curve of an induction machine 

 

In the linear model the magnetizing flux is related to the magnetizing current by the 

magnetizing inductance 𝜆𝑚 = 𝐿𝑚𝑖𝑚. We can correct this term to take into account the effects 

of saturation by subtracting the flux correction term from the linear model as follows. 

 𝜆𝑚 = 𝐿𝑚𝑖𝑚 − ∆(𝜆𝑚) (4.1)  

 

Solving the above equation for ∆(𝜆𝑚) we get 

 ∆(𝜆𝑚) = 𝐿𝑚𝑖𝑚 − 𝜆𝑚 (4.2)  

 

We now need to express ∆(𝜆𝑚) in terms of qd quantities in order to implement it into the 

time domain qd0 induction machine model. Referring to Figure 4.2 and assuming again that 
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we are dealing with a symmetric induction machine we can express the magnetizing flux in 

the qd reference frame as follows. 

 𝜆𝑚 = �𝜆𝑚𝑞
2 + 𝜆𝑚𝑑

2  (4.3)  

And the qd quantities of ∆(𝜆𝑚) as 

 

∆(𝜆𝑚)𝑞 =
𝜆𝑚𝑞

𝜆𝑚
∆(𝜆𝑚) 

∆(𝜆𝑚)𝑑 =
𝜆𝑚𝑑

𝜆𝑚
∆(𝜆𝑚) 

(4.4)  

 

 

Figure 4.2  qd decomposition of flux correction term 

 

Now, to include the effects of saturation in the induction machine model we can simply 

subtract the qd quantities of ∆(𝜆𝑚) from the linear values of the qd quantities of 𝜆𝑚 as 

follows. 
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𝜆𝑚𝑞 = 𝐿𝑚�𝑖𝑞𝑠 + 𝑖𝑞𝑟′ � − ∆(𝜆𝑚)𝑞    

= 𝐿𝑚 �
𝜆𝑞𝑠
𝐿𝑠

−
𝜆𝑚𝑞

𝐿𝑠
+
𝜆𝑞𝑟′

𝐿𝑟′
−
𝜆𝑚𝑞

𝐿𝑟′
� − ∆(𝜆𝑚)𝑞  

= 𝐿𝑎𝑞 �
𝜆𝑞𝑠
𝐿𝑠

+
𝜆𝑞𝑟′

𝐿𝑟′
� −

𝐿𝑎𝑞
𝐿𝑚

∆(𝜆𝑚)𝑞 

(4.5)  

and 

 

𝜆𝑚𝑑 = 𝐿𝑚(𝑖𝑑𝑠 + 𝑖𝑑𝑟′ ) − ∆(𝜆𝑚)𝑑   

= 𝐿𝑚 �
𝜆𝑑𝑠
𝐿𝑠

−
𝜆𝑚𝑑

𝐿𝑠
+
𝜆𝑑𝑟′

𝐿𝑟′
−
𝜆𝑚𝑑

𝐿𝑟′
� − ∆(𝜆𝑚)𝑑  

= 𝐿𝑎𝑑 �
𝜆𝑑𝑠
𝐿𝑠

+
𝜆𝑑𝑟′

𝐿𝑟′
� −

𝐿𝑎𝑑
𝐿𝑚

∆(𝜆𝑚)𝑑 

(4.6)  

 

In equations (4.5) and (4.6) the terms 𝐿𝑎𝑞 and 𝐿𝑎𝑑 are equivalent inductance terms that are 

expressed as follows. 

 𝐿𝑎𝑞 = 𝐿𝑎𝑑 = �
1
𝐿𝑚

+
1
𝐿𝑠

+
1
𝐿𝑟′
�
−1

 (4.7)  

 

Equations (4.5) through (4.7) can now be used to implement the effects of magnetic 

saturation of the induction machine into the induction machine model.  

 

4.2 Dynamic Phasors Model of Induction Machine Saturation 

We can extend the concept of the flux correction method to dynamic phasors by considering 

that we can represent a complex space vector as a sum of dynamic phasors rotating at 

different harmonics as explained previously in Section 2.2.2. So, in the case of the induction 
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machine dynamic phasor model we can represent the magnetizing flux as the sum of the two 

positive and negative sequence magnetizing flux components. That is we have 

 𝜆𝑚 = 𝛬𝑚𝑝𝑒𝑗𝜔𝑠𝜏 + 𝛬𝑚𝑛
∗ 𝑒−𝑗𝜔𝑠𝜏 (4.8)  

 

We can also express the flux correction term in terms of its dynamic phasors as well which 

gives us 

 Δ(𝜆𝑚) = Δ�𝛬𝑚𝑝�𝑒𝑗𝜔𝑠𝜏 + Δ(𝛬𝑚𝑛
∗ )𝑒−𝑗𝜔𝑠𝜏 (4.9)  

Note here that the vector arrow and dynamic phasor under-bar have been dropped to avoid 

clutter in equation (4.9) and the rest of the equations in this section. 

 

In a similar fashion as in section 4.1, we can express the corrected magnetizing flux vector in 

terms of its positive and negative sequence dynamic phasors. 

 

 
𝛬𝑚𝑝 = 𝐿𝑚𝐼 𝑚𝑝 − Δ�𝛬𝑚𝑝� 

𝛬𝑚𝑛
∗ = 𝐿𝑚𝐼 𝑚𝑛

∗ − Δ(𝛬𝑚𝑛
∗ ) 

(4.10)  

So we get  

 
Δ�𝛬𝑚𝑝� = 𝐿𝑚𝐼 𝑚𝑝 − 𝛬𝑚𝑝 

Δ(𝛬𝑚𝑛
∗ ) = 𝐿𝑚𝐼 𝑚𝑛

∗ − 𝛬𝑚𝑛
∗  

(4.11)  

 

A problem that we run into here is the fact that saturation data is generally given in terms of 

the magnitudes of the magnetizing flux vector versus the magnitude of the magnetizing 

branch current as mention earlier. So we have to determine the total dynamic phasor 

magnitude as �𝜆𝑚�. This causes the model to lose some of its advantage as we have to 
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recombine the positive and negative dynamic phasors to determine the magnitude of the 

magnetizing flux vector. 

 

 

Figure 4.3  Saturation of main magnetizing flux linkage in terms of dynamic phasors 

 

Once we have done this however we can determine the correction values for the positive and 

negative sequence magnetizing flux dynamic phasors in a similar manner as before. Figure 

4.3 illustrates how we can break the rotating magnetizing flux vector down into its positive 

and negative sequence dynamic phasors and use them to graphically determine what the 

correction terms should be to include the effects of saturation in the dynamic phasor model of 

the induction machine. Doing this we get  

 

Δ�𝛬𝑚𝑝� =
𝛬𝑚𝑝

𝜆𝑚
Δ(𝜆𝑚) 

Δ(𝛬𝑚𝑛
∗ ) =

𝛬𝑚𝑛
∗

𝜆𝑚
Δ(𝜆𝑚) 

(4.12)  
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Once we have determined the correction terms we can implement them in the model by 

simply subtracting the correction terms from the linear model. So the positive and negative 

sequence dynamic phasors of the magnetizing flux can be expressed as  

 

𝛬𝑚𝑝 = 𝐿𝑒𝑞 �
𝛬𝑝𝑠
𝐿𝑠

+
𝛬𝑝𝑟
𝐿𝑟′
� − Δ�𝛬𝑚𝑝� 

𝛬𝑚𝑛
∗ = 𝐿𝑒𝑞 �

𝛬𝑛𝑠∗

𝐿𝑠
+
𝛬𝑛𝑟∗

𝐿𝑟′
� − Δ(𝛬𝑚𝑛

∗ ) 

(4.13)  

Where  

 𝐿𝑒𝑞 = �
1
𝐿𝑚

+
1
𝐿𝑠

+
1
𝐿𝑟′
�
−1

 (4.14)  

 

We now have all the pieces necessary to implement the effects of saturation into the dynamic 

phasor model. 

 

4.3 Saturation Model Verification 

A few studies are carried out in this section to verify that the modeling technique used to 

model the effects of magnetizing flux saturation in the dynamic phasor model are 

representative of the saturated qd0 induction machine model. We start by using the same 

machine parameters for a 500 hp induction machine contained in Appendix A. We then 

implement the saturation models outlined in sections 4.1 and 4.2 using the saturation data 

listed in Appendix B using a look-up table in Matlab/Simulink with the interpolation-

extrapolation look-up method enabled for data occurring between the data points listed in 

Table B.1.  
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To illustrate the effects of saturation in the induction machine the model is started from 

standstill at 70% of its rated voltage and is allowed to reach steady state. At steady state, the 

machine is operating in the linear region of the magnetization curve. At time t = 3.5s, the 

machine voltage is raised to its full rated voltage of 2300 VL-L which brings the machine into 

the saturation region of operation. The machine is then allowed to reach steady state in the 

saturation region. Figure 4.4 and Figure 4.5 illustrate the transition of the machine model 

from the linear region of operation to the saturation region of operation for the stator phase a 

current and the magnetizing flux respectively. Figure 4.4 and Figure 4.5 also provide a 

comparison between the unsaturated model quantities (EMT), the qd0 time domain saturated 

quantities (EMT Sat), the dynamic phasor saturated quantities (DP Sat) and the time domain 

results of the saturated dynamic phasor model (DP-EMT Sat). 

 

 

Figure 4.4  Stator current in saturation region 
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Figure 4.5  Magnetizing flux linkage in saturation region 

 

We can see from Figure 4.6 and Figure 4.7, which are zoomed in sections of Figure 4.4 and 

Figure 4.5 respectively, that the dynamic phasor model is quite accurate when compared to 

the time domain qd0 induction machine model during balanced operation. There is very little 

error between the time domain qd0 model results and the time domain results obtained using 

the dynamic phasor model. Also the magnitude of the dynamic phasor provides an accurate 

envelope curve to the time domain results obtained using both models. 
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Figure 4.6  Zoomed view of stator current in saturation region 

 

 

Figure 4.7  Zoomed view of magnetizing flux linkage in saturation region 
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The next study demonstrates the validity of the saturated dynamic phasor model during 

unbalanced machine operation. At time t = 4 s, an unbalanced single phase to ground fault is 

applied to the terminals of the machine for six cycles, at which time the fault is cleared and 

the machine is allowed to reach steady state in normal balanced operating conditions. Figure 

4.8 and Figure 4.9 illustrate the operation of the machine models in the saturation region 

during unbalanced supply conditions. They also provide a comparison between the 

unsaturated model quantities (EMT), the qd0 time domain saturated quantities (EMT Sat), 

the dynamic phasor saturated quantities (DP Sat) and the time domain results of the saturated 

dynamic phasor model (DP-EMT Sat). 

 

 

Figure 4.8  Stator current in saturation region during unbalanced fault 
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Figure 4.9  Magnetizing flux linkage in saturation region during unbalanced fault 

 

We can again zoom in to the curves, Figure 4.10 and Figure 4.11, to illustrate that again the 

results obtained using the dynamic phasor model closely match those obtained using the qd0 

induction machine model with little error. The error that is introduced during unbalanced 

machine operation is shown below in Table 4.1. From this we can see that the dynamic 

phasor model is again fairly representative of the qd0 induction machine model. 

 

Table 4.1  Maximum error introduced by saturated dynamic phasor model 

Variable 
Maximum Absolute 

Error 

Maximum Percent Error 

(%) 

𝒊𝒂𝒔 3.7327 (A) 2.1459 

𝝀𝒎 0.0136(Wb) 0.3162 
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Figure 4.10  Zoomed view of stator current in saturation region during unbalanced fault 

 

 

Figure 4.11  Zoomed view of magnetizing flux in saturation region during unbalanced fault 
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The studies performed in this section have validated the saturated dynamic phasor model and 

shown that it is quite representative of the well know qd0 induction machine model with little 

error. We are now in a position to be able to study the performance of the dynamic phasor 

model in terms of the time step that can be used in the model simulation while still producing 

reasonable results. The next chapter looks at the dynamic phasor model performance by 

conducting various studies using different time steps and analyzing the results obtained from 

the model. 
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Chapter  5: Induction Machine Dynamic Phasor Model Performance 

 

5.1 Fixed Time-Step Model Performance 

To test the performance of the dynamic phasor induction machine model we perform 

simulations using the same test cases that were used in Chapter 4 using different time steps. 

The simulations are performed in Matlab/Simulink using the ode4 (Runge-Kutta) fixed time-

step solver [51] which utilizes a fourth order Runge-Kutta formula to calculate the model 

states at each time-step. Three different time-steps were used in this study to show the 

accuracy of the model using small to large time steps which are; a small time-step of 

Δt=1.0ms, a medium time-step of Δt=2.0ms and a large time-step of Δt=3.5ms. The machine 

parameters in Appendix A   are utilized again here for the following studies. 

 

First, the machine is started from standstill by applying a rated voltage of 23 kV to the input 

of the machine and allowed to freely accelerate to steady state. At time t = 2.5s a rated 

generating torque of 1980 Nm is applied to the model input and then reversed to a rated load 

torque of 1980 Nm at time t = 3s. Once the machine has again reached a steady-state a 

balanced 3-phase to ground fault is applied to the input terminals of the model at time t = 4s 

and then cleared after 6 electrical cycles. Then finally, a single phase to ground fault is 

applied to the terminals of the machine at time t = 5s which is again cleared after 6 electrical 

cycles. Figure 5.1 through Figure 5.4 show the stator current results for the previous test 

cases respectively. They contain the stator current envelope results obtained using both the 

conventional qd0 and the dynamic phasor model at different time-steps along with the time 
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domain stator current results obtained using the conventional qd0 model with a very small 

time-step of 50 µs; which is assumed to be the accurate solution for these test cases. 

 

 

Figure 5.1  Stator current during start-up for fixed Δt studies 
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Figure 5.2  Stator current during load torque change for fixed Δt studies 
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Figure 5.3  Stator current during balanced 3-phase fault for fixed Δt studies 

 

 



 

 74 

 

Figure 5.4  Stator current during unbalanced fault for fixed Δt studies 

 

It can be seen from Figure 5.1 through Figure 5.4 that the results obtained using the dynamic 

phasor induction machine model are virtually identical to those obtained using the 
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convention qd0 model; even at a large time-step of 3.5 ms. Looking at Figure 5.4 however, 

we can see that the results obtained using the dynamic phasor induction machine model begin 

to deviate slightly from the results obtained using the convention qd0 induction machine 

model during unbalanced operation. The discrepancy becomes more pronounced at higher 

time-steps, but still the results are quite similar to each other.  

 

As before, the current results for the dynamic phasor induction machine model are obtained 

by combining the positive and negative sequence dynamic phasors which are shown below in 

Figure 5.5 and Figure 5.6, respectively. It can be seen from these two figures that the large 

time-step results are still fairly representative of the more accurate results obtained at smaller 

time-steps for both the positive and negative dynamic phasor stator current quantities.  

 

 

Figure 5.5  Positive sequence stator current dynamic phasor using different Δt 
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Figure 5.6  Negative sequence stator current dynamic phasor using different Δt 

 

Similar results can be obtained for the electrical torque developed in the machine. Figure 5.7 

illustrates the results for the electrical torque obtained using the dynamic phasor model at 

different time-steps. It can be seen from this figure that the results obtained using the larger 

time-step do deviate from the more accurate result. This is to be expected as the transient of 

the electrical torque contains both the dc component and the much quicker 2nd harmonic 

component which is changing at a rate of twice the system frequency, so when the dynamic 

phasor results are combined to form the results shown in Figure 5.7 the waveform becomes 

more distorted due to the error that is introduced at the higher time-steps. If we look at only 

the dynamic phasors themselves however, we can see from Figure 5.8 and Figure 5.9 that the 

results at larger time-steps are still quite consistent with those at the smaller time-step. 
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Figure 5.7  Electrical torque using different Δt 

 

Figure 5.8  DC component of electrical torque dynamic phasor using different Δt 
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Figure 5.9  2nd harmonic component of electrical torque dynamic phasor using different Δt 

 

Looking at the mechanical rotor speed in Figure 5.10 we can again see that the overall time 

domain result starts to deviate from the reference result at higher time-steps. This is again 

due to the 2nd harmonic component in the rotor mechanical speed similar to the 

electromagnetic torque which is a component that changes at twice the system frequency.  
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Figure 5.10  Rotor speed using different Δt 

 

If we look at the dc component and the 2nd harmonic dynamic phasor separately as shown in 

Figure 5.11 and Figure 5.12 we can again see that the dc component at larger time-steps is 

still quite representative of the results at the small time-step. However, looking at the 2nd 

harmonic positive and negative sequence dynamic phasors we can see that the transient in the 

waveform reaches a steady value much more quickly at larger time-steps than it does at the 

small time-step, this is the major contributing factor in the error present in the overall time-

domain result in Figure 5.10. 
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Figure 5.11  DC component of rotor speed dynamic phasor using different Δt 

 

Figure 5.12  2nd harmonic component of rotor speed dynamic phasor using different Δt 
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We can see from the above test cases that the dynamic phasor induction machine model 

provides a fairly accurate and comparable model to the conventional qd0 induction machine 

model and can be used to simulate the induction machine during fast transients that occur 

during balanced and unbalanced faults as well as slow mechanical transients that occur 

during load changes. For example, Figure 5.13 shows the stator current results from the 

dynamic phasor model and we can see that during the slow transients of a load change we 

can see that the dynamic phasor model can accurately reproduce the current envelope even at 

the very large time-step of 7.5 ms.  

 

Table 5.1 shows the CPU times for the simulation up to the 5 second point of the test case. 

We can see from this table that the dynamic phasor model is quite comparable to the 

conventional qd0 induction machine model with slightly faster CPU times for the simulation. 

It should be noted here that the CPU times presented for the dynamic phasor model reflect 

simulation during balanced machine operation only, meaning that there are no negative 

sequence phasors present. This reduces the total number of equations present in the dynamic 

phasor induction machine model to equal the number of equations in the qd induction 

machine model. With negative sequence dynamic phasors present the number of equations is 

doubled in the dynamic phasor model as presented in Section 3.2 of this thesis and the CPU 

times presented in Table 5.1 would be greater. 
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Table 5.1  CPU times for test case simulation 

Time-step Simulation Time 
qd0 

(saturated) 

Dynamic Phasor 

(saturated) 

Δt = 0.5 ms 5 0.5898 s 0.4636 s 

Δt = 1.0 ms 5 0.3620 s 0.2798 s 

Δt = 5.0 ms 5 0.1778 s 0.1584 s 

Δt = 7.5 ms 5 0.1650 s 0.1490 s 

 

 

 

Figure 5.13  Load change results using dynamic phasor model 
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5.2 Variable Time-Step Model Performance 

Due to the nature of dynamic phasor quantities; how their transient behaviour changes much 

slower with time and they reach a constant value at steady state, a real advantage in 

simulation can be achieved if variable time-step algorithms are used during simulation. To 

illustrate this, the dynamic phasor induction machine model is simulated in Matlab/Simulink 

using the ode45 (Dormand-Prince) variable time-step solver [51] which computes the models 

state at the next time-step using an explicit Runge-Kutta (4,5) formula, the Dormand-Prince 

pair for numerical integration. The maximum time-step parameter is set to 10 ms while the 

relative and absolute tolerances are set to 0.1 ms. 

The 500 hp induction machine parameters are used to simulate a 5 second simulation in 

which the model is started from standstill and allowed to freely accelerate to steady state at 

which time (t=2.5s) a mechanical rated load torque is applied to the model. At time t=3s the 

load torque is reversed to a generating torque and the model is again allowed to reach steady 

state. Then at time t=4s a balanced 3-phase to ground fault is applied to the supply voltage 

which is then cleared after 6 electrical cycles. This 5 second simulation is performed using 

the saturated dynamic phasor model as well as the saturated time domain qd0 model and the 

model performance results are compared. A reference result is obtained using the 

conventional qd0 time domain model with a very small fixed time-step of 50 µs; which is 

assumed to be the accurate result for comparison. Figure 5.14 through Figure 5.19 below 

show the results obtained for both the stator phase a current and the time-step used by the 

variable time-step solver for both the dynamic phasor induction machine model and 

convention qd0 induction machine model along with the reference solution for comparison. 
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Figure 5.14  Stator current during free acceleration using variable Δt solver 

 

Figure 5.15  Time-step results during free acceleration using variable Δt solver 
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Figure 5.16  Stator current during load torque change using variable Δt solver 

 

Figure 5.17  Time-step results during load torque change using variable Δt solver 
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Figure 5.18  Stator current during balanced fault using variable Δt solver 

 

Figure 5.19  Time-step results during balanced fault using variable Δt solver 
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Table 5.2 summarizes the CPU times and the average time-step needed for the dynamic 

phasor and the qd0 model simulations. It can be seen that the dynamic phasor induction 

machine model is approximately 13% faster than the conventional qd0 induction machine 

model to achieve comparable accuracy using the variable step solver in Matlab/Simulink. It 

is also observed that the average time-step used during the 5 s simulation time for the 

dynamic phasor induction machine model is approximately 16% larger than that of the 

conventional qd0 induction machine model. This is not a huge improvement in overall 

simulation efficiency but illustrates that some advantages can be gained when using the 

dynamic phasor model for simulation. 

 

The advantages of the dynamic phasor model over the conventional qd0 model are most 

evident during the faster transient sections of the simulation. For example, if we look at the 

time-step results of the simulation in Figure 5.15, Figure 5.17 and Figure 5.19 we can see that 

the time-step used by the dynamic phasor model is consistently greater than that used by the 

conventional qd0 model during the periods where the waveform is changing rapidly. Only 

when the waveforms have reached somewhat of a steady-state and the transient have slowed 

are the time-steps used by each comparable. This demonstrates that the dynamic phasor 

model does improve the efficiency of the simulation during transient periods but is fairly 

comparable to the convention qd0 model in efficiency during steady-state simulation. 
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Table 5.2  Model performance using variable time-step solver 

Model Simulation Time (s) CPU Time (s) Average Δt (ms) 

qd0 (saturated) 5 0.1760 3.9463 

Dynamic Phasor 

(saturated) 
5 0.1539 4.5914 
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Chapter  6: Conclusion 

 

6.1 Summary of Contributions 

The aim of this thesis was to extend the simulation functionality of the dynamic phasor 

model of doubly-fed induction machines by incorporating the effects of saturation of main 

flux linkage into the model. This was accomplished by extending the time-domain flux 

correction method into frequency domain dynamic phasor quantities and implementing them 

in the model using saturation data for a 500 hp induction machine and a look up table in 

Matlab/Simulink. The main contributions provided by this thesis are listed below. 

I. The theory and some key properties of dynamic phasors and frequency domain 

analysis are outlined and explained. 

II. Several conventional time-domain induction machine models are outlined and 

explained. The time-domain models being the 3-phase abc induction machine model, 

the two-axis qd0 model and the complex space vector induction machine model. 

III. The dynamic phasor model of doubly-fed induction machines is derived from the 

complex space vector induction machine model and then verified by comparing it to 

the conventional qd0 induction machine model. 

IV. An effective method for modeling the effects of saturation in the main flux linkage in 

terms of dynamic phasors is proposed; based on the flux correction method 

commonly used in time domain models of induction machines. The saturation model 

is also verified by comparing it to the convention time-domain flux correction 

method. 
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V. The dynamic phasor induction machine model performance is then studied for both 

fixed time-step and variable time-step solution algorithms and found to be quite 

comparable and slightly better in performance than the convention qd0 time-domain 

induction machine model. The dynamic phasor model was found to be quite accurate 

and efficient for simulation of slow transient situations of mechanical load changes as 

well as fast transient situations such as machine start-up and balanced and unbalanced 

faults that occur in the system. 

 

6.2 Future Research 

The purpose of this thesis was to provide an initial starting point for research into modeling 

the effects of saturation in induction machines using the concept of dynamic phasors. There 

are many paths that can be investigated to further the research into dynamic phasor modeling 

of induction machines as well as modeling the effects of saturation using the dynamic phasor 

concept. The following list is definitely not exhaustive but provides a few topics that could 

be a good direction for further investigation and research in the area of AC machine 

modeling and saturation modeling using the dynamic phasor concept. 

 

I. In modeling of the main flux linkage saturation in an induction machine it was 

assumed that the rotor is round and that the air-gap between stator and rotor is 

uniform. By making this assumption it is reasonably assumed that the saturation in 

the machine affects the q- and d-axis components in the same manner, making it 

fairly straightforward to model. For machines that do not have a uniform air-gap such 

as salient pole synchronous machine this assumption cannot be made as the saturation 
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will affect the q- and d-axis differently [52]. There are many papers on the modeling 

of saturation in salient pole machines and this would provide a good area of research 

to extend the dynamic phasor saturation model to include the effects of saturation in 

salient pole machines. 

 

II. In this thesis, the method of flux correction is used to calculate the effects of 

saturation in the main magnetizing flux. This method requires first the calculation of 

the unsaturated main flux and then corrects it based on the saturation characteristics 

of the machine as outlined in Chapter 4. This formulation is implicit and introduces 

an algebraic loop which must be solved iteratively at every time-step and therefore 

adds computation costs to the simulation. By formulating the calculation of the 

effects of saturation in an explicit manner this algebraic loop can be avoided and 

make the model much more stable and efficient. One such method of explicit 

calculation of main flux linkage saturation is presented in [53]. This paper derives a 

simple algebraically exact formulation of main flux saturation for the general purpose 

qd induction machine model by introducing intermediate variables which provide an 

explicit relationship for the calculation of the main flux linkage. A similar process 

could be used to implement an explicit relationship for the calculation of main flux 

linkage saturation using the dynamic phasor concept. By doing this it would be 

possible to further extend the robustness and utility of the dynamic phasor induction 

machine model. 
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III. In modeling of saturation of induction machines the effects of leakage flux saturation 

is generally ignored but can play an important part in the operation of induction 

machines, especially during transient operation [41]. The effects of leakage flux 

saturation are often ignored due to the fact that their saturation characteristics are very 

hard to determine experimentally and that data is often not available. Research in the 

area of leakage flux modeling using the concepts of dynamic phasors could be 

another rich area of research. 

 

IV. The dynamic phasor induction machine model that was presented in this thesis is 

based on the transformation of abc phase domain quantities to the stationary qd 

reference frame as it provides a much simpler starting point to base the dynamic 

phasor model off of. Despite the advantages of the reference frame transformation, 

when simulating the transformed qd induction machine model with an external an 

interface between the model and the external system is required as in many cases the 

external system is modeled in abc phase domain quantities. This interfacing can 

prove difficult and costly in many cases as a transformation back to abc phase domain 

quantities is required. Other difficulties can arise as well depending on which type of 

simulation tool you are using. 

 

One method suggested for providing a direct interfacing induction machine model to 

external networks in simulation is the use of voltage-behind-reactance (VBR) 

induction machine model [54-57]. The VBR induction machine model presented in 

these papers has the stator of the induction machine modeled in abc direct-phase 



 

 93 

coordinates as three-phase dependant emf sources behind an RL circuit, while the 

rotor is expressed in the qd coordinate reference frame. Modeling the machine in this 

manner provides a direct interface between the induction machine model and the 

external network. The VBR models could be extended to the dynamic phasor concept 

and would provide a good direction for research in extending the applications of 

dynamic phasors. 

 

V. Extending from further research IV, implementing the effects of magnetic saturation 

in the VBR models using the concept of dynamic phasors would be a good topic of 

research. Wang et al. [58] have presented a time domain model for the VBR 

induction machine which includes the effects of magnetic saturation.  Modeling of 

magnetic saturation in the main magnetizing flux path is achieved using a piece-wise 

linear approach which is suitable for EMTP type simulations, and by applying 

saturation to the main magnetizing flux path the effects of cross saturation are taken 

into account. The method presented here could be extended with the dynamic phasor 

concept and could provide a much more versatile and accurate dynamic phasor 

induction machine model.  
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Appendices 

 

Appendix A  -  500 HP Induction Machine Parameters 

Table A.1  500hp induction machine parameters [49] 

Rating: 500 HP 
Line-to-Line Voltage: 23 kV 

Poles: 4 
Rated Speed: 1773 rpm 

Rated Torque: 1980 N ∙ m 
Inertia of rotor: 𝐽 = 11.06 kg ∙ m2, 

Machine circuit parameters: 
𝐿𝑀 = 0.143 H 

𝑟𝑠 = 0.262 Ω 𝑟𝑟′ = 0.187 Ω 
𝐿𝑠 = 3.199 mH 𝐿𝑟′ = 3.199 mH 
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Appendix B  -  Saturation Data of 500 HP Induction Machine 

Table B.1  Saturation data for 500hp induction machine [59] 
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