
FPGA Emulation for Critical-Path Coverage
Analysis

by

Kyle Balston

B.A.Sc., Simon Fraser University, 2010

A T H E S I S S U B M I T T E D I N PA R T I A L
F U L F I L L M E N T

O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

Master of Applied Science

in

T H E F A C U LT Y O F G R A D U AT E S T U D I E S
(Electrical and Computer Engineering)

The University Of British Columbia
(Vancouver)

October 2012

© Kyle Balston, 2012

Abstract

A major task in post-silicon validation is timing validation: it can be incredibly

difficult to ensure a new chip meets timing goals. Post-silicon validation is the first

opportunity to check timing with real silicon under actual operating conditions

and workloads. However, post-silicon tests suffer from low observability, making

it difficult to properly quantify test quality for the long-running random and di-

rected system-level tests that are typical in post-silicon. In this thesis, we propose

a technique for measuring the quality of long-running system-level tests used for

timing coverage through the use of on-chip path monitors to be used with FPGA

emulation. We demonstrate our technique on a non-trivial SoC, measuring the cov-

erage of 2048 paths (selected as most critical by static timing analysis) achieved

by some pre-silicon system-level tests, a number of well-known benchmarks, boot-

ing Linux, and executing randomly generated programs. The results show that the

technique is feasible, with area and timing overheads acceptable for pre-silicon

FPGA emulation.

ii

Preface

Preliminary work related to this thesis has been published in a conference paper

and a journal paper. The work itself will be published as an invited conference

paper. The first paper, Post-Silicon Code Coverage Evaluation with Reduced Area

Overhead for Functional Verification of SoC, was published as [33]. In this paper

we manually added on-chip monitors to extract statement and branch coverage in-

formation from a uniprocessor LEON3 system running on a Xilinx FPGA. Mehdi

Karimibiuki implemented the coverage monitors as well as designed and carried

out the experiments with the help of Kyle Balston. The paper was written collabo-

ratively with the help of Dr. Alan Hu and Dr. André Ivanov.

The second paper, Post-Silicon Code Coverage for Multiprocessor System-

on-Chip Designs, was published as [6]. In this paper we extended [33] to target

a multiprocessor LEON3 system and collected data showing how statement and

branch coverage was achieved with respected to processor cycle count. For this

paper, Kyle Balston took the lead on the design and execution of the experiments.

The paper was written collaboratively by Kyle Balston and Mehdi Karimibiuki

iii

with the help of Dr. Alan Hu, Dr. André Ivanov and Dr. Steve Wilton.

The work that forms the basis of this thesis will be presented in a third paper,

Emulation in Post-Silicon Validation: It’s Not Just for Functionality Anymore [5].

Kyle Balston performed the research, data collection, data analysis, and writing

under the supervision of Dr. Steve Wilton and Dr. Alan Hu with industry guidance

from Amir Nahir of IBM.

iv

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . v

List of Tables . x

List of Figures . xi

Glossary . xiv

1 Introduction . 1

1.1 Motivation . 1

1.2 Historic Design Errors . 2

1.3 ASIC Design Flow . 3

v

1.3.1 Differences Between Pre- and Post-Silicon Validation . . . 5

1.3.2 Emulation — Bridging Pre- and Post-Silicon Validation . . 7

1.3.3 FPGA Devices . 8

1.3.4 FPGA-based Emulation 8

1.3.5 Conventional Emulation Goals 10

1.4 Research Objective and Contributions 11

1.5 Research Approach . 12

1.6 Thesis Organization . 13

2 Background and Related Work . 14

2.1 ASIC Design Flow . 14

2.1.1 Stages of ASIC Design 15

2.1.2 Pre-Silicon Validation . 18

2.1.3 Post-Silicon Validation 22

2.1.4 Manufacturing Test & Speed Binning 23

2.2 Pre-Silicon Coverage Metrics . 26

2.2.1 Types of Pre-Silicon Coverage 26

2.2.2 An Example of Statement and Branch Coverage 28

2.3 Post-Silicon Coverage Metrics 29

vi

2.3.1 Related Work — On-Chip Coverage Monitors 30

2.4 Timing Validation . 31

3 Proposed Flow . 34

3.1 Problem Statement . 35

3.2 Overall Flow . 36

3.3 Instrumentation . 38

3.4 Chapter Summary . 42

4 Implementation . 47

4.1 Approximated Flow . 47

4.1.1 Automated Integration of Coverage Monitors Using Xilinx

Description Language (XDL) 49

4.2 XDL to VHSIC hardware description language (VHDL) Converter 52

4.2.1 Automatically Generating Java Objects from Xilinx Libraries 54

4.2.2 XDL Instances Requiring No Changes 55

4.2.3 XDL Instances Requiring Simple Attribute Name Translation 55

4.2.4 XDL Instances Requiring Fixed Locations 55

4.2.5 XDL Instances with Ports Offset Compared to VHDL In-

stances . 57

vii

4.2.6 XDL Instances Composed of Upper and Lower VHDL In-

stances . 57

4.2.7 XDL Instances Composed of Many VHDL Instances . . . 58

4.3 Coverage Monitor Instrumentation 58

4.4 Reading Coverage Information Off-Chip 60

4.5 Chapter Summary . 61

5 Results . 62

5.1 Test Setup & Benchmarks . 62

5.2 Results . 65

5.2.1 Coverage . 65

5.2.2 Area Overhead . 70

5.2.3 Frequency Overhead . 73

5.3 Chapter Summary . 74

6 Conclusion . 75

6.1 Dissertation Summary . 75

6.2 Limitations . 76

6.2.1 Reliance on XDL . 76

6.2.2 Toolflow . 77

viii

6.2.3 Register Retiming . 78

6.2.4 Non-Determinism . 79

6.2.5 Area Optimizations . 79

6.3 Future Work . 79

6.4 Public Distribution . 80

Bibliography . 81

ix

List of Tables

Table 4.1 Characteristics of XDL Instances 56

Table 5.1 LEON3 Configuration . 63

Table 5.2 IP Blocks under Test . 65

Table 5.3 Post-Silicon Validation Tests Used in Experiments 66

Table 5.4 Path Coverage Results (2048 Most Critical Paths) 70

Table 5.5 Coverage Achieved by One Test but not by Another 71

Table 5.6 Area Overhead to Monitor 2048 Critical Paths 73

Table 5.7 Frequency Overhead for 2048 Monitors 74

x

List of Figures

Figure 1.1 ASIC design flow. 3

Figure 1.2 Mask production cost by process technology. 6

Figure 1.3 Ease of debug and performance comparison of validation tech-

niques. 7

Figure 2.1 ASIC design flow. 16

Figure 3.1 Toolflow for adding path coverage monitors to the FPGA pro-

totype of an ASIC design. Each stage’s output is shown in

parentheses. 38

Figure 3.2 Example of a critical path, a), instrumented to monitor cov-

erage by b) for bolded path f initiated by a rising or falling

transition on input A. 43

xi

Figure 3.3 Example of a critical path, a), instrumented to monitor cover-

age by b) for bolded path f initiated by a rising transition on

input A. 44

Figure 3.4 Example of a critical path, a), instrumented to monitor cover-

age by b) for bolded path f initiated by a falling transition on

input A. 45

Figure 3.5 Example of a critical path, a), instrumented to monitor cover-

age by b) for bolded path f through input A with additional cir-

cuitry allowing for error injection whenever coverage is achieved. 46

Figure 4.1 Toolflow used in this thesis to automatically add path coverage

monitors to an FPGA design. Each stage’s output is shown in

parentheses. 50

Figure 5.1 LEON3 SoC running on a Virtex-5 FPGA shown booting Linux. 64

Figure 5.2 Coverage achieved over time for the DDR controller (ddr2spa). 68

Figure 5.3 Coverage achieved over time for the floating-point unit (grfpwx). 68

Figure 5.4 Coverage achieved over time for the integer unit (iu3). 69

Figure 5.5 Coverage achieved over time for the memory management unit

(mmu). 69

Figure 5.6 Coverage achieved over time for the multiplier (mul32). 72

xii

Figure 5.7 Area overhead per path shown as the number of targeted paths

increases. 72

xiii

Glossary

ASIC Application-Specific Integrated Circuit

BRAM Block Ram

DRC Design Rule Check

DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

IC Integrated Circuit

LUT Lookup Table

NCD Native Circuit Description

SoC System-on-Chip

SSTA Statistical Static Timing Analysis

STA Static Timing Analysis

xiv

VHDL VHSIC hardware description language

XDL Xilinx Description Language

xv

Chapter 1

Introduction

1.1 Motivation

Integrated Circuit (IC) complexity continues to increase as predicted by

Moore’s Law [52], allowing chip designers to deliver more functionality on a

given die, at lower manufacturing cost and at smaller power windows. However, it

also makes it increasingly difficult to detect and fix design errors simply due to the

sheer number of transistors on a single chip. Today, modern chips contain upwards

of 3 billion transistors [58], which together can form an entire computing system,

often called a System-on-Chip (SoC) design. Before being fabricated, these multi-

billion transistor SoC designs are verified to be correct in model-based verification

without a physical chip, known as pre-silicon verification, and after fabrication,

with a release-candidate physical chip in post-silicon verification. Together these

two styles of testing dictate when a chip is ready to go to manufacturing, and

1

into the hands of consumers. However, proper testing of these chips is imperative

as even a single error escaping to manufacturing can cost a company millions in

product recalls and irreparably tarnish a company’s reputation.

1.2 Historic Design Errors

One of the most well-known examples of a design error that made it into

a consumer processor is the infamous FDIV bug in Intel’s P5 microarchitecture

[57]. The bug caused certain floating-point operations and operand combinations to

produce incorrect results (e.g., the result returned for 4195835
315727 was incorrect beyond

four digits). Unfortunately, the bug was not discovered until the processor was in

widespread use and only exhibited errors under rare conditions (approximately 1 in

9 billion operand pairs would result in an error at double-precision [14]). Because

of this, Intel was initially hesitant to issue product recalls until it became highly

publicized. In total, this cost Intel an estimated $475 million [68]. However the

damage to their reputation was also substantial (particularly among the scientific

computing community). More recently, Intel’s 2011 recall of the Cougar Point

chipset due to an issue with its SATA ports cost Intel an estimated $700 million

[20]. AMD, another large semiconductor company, is not without its own share

of issues. In 2007, an error in the translation lookaside buffer (TLB) of the B2

stepping of their Barcelona processors could lead to system lockup [16], until AMD

disabled it altogether in a BIOS update, causing some workloads to experience a

5-20% performance penalty. These design errors escaped to production, costing

many times more than if they were detected during pre- or post-silicon validation.

2

Specification

Design

Pre-Silicon
Validation

Physical
Implementation

Post-Silicon
Validation

Manufacturing

Figure 1.1: ASIC design flow.

1.3 ASIC Design Flow

To illustrate how integrated circuit designers verify their designs and identify

design errors, this section gives a high-level overview of the Application-Specific

Integrated Circuit (ASIC) design and verification process. A more in-depth analy-

sis of the ASIC flow can be found in Section 2.1.

An ASIC design typically starts with specifying the functional and non-

functional properties of the design, shown as ‘Specification’ in Figure 2.1. Note

3

that, at this stage, a module’s underlying implementation details are not specified.

Specification is often followed by the implementation stage, shown as ‘De-

sign’ in Figure 2.1. In the design stage, designers write code (usually VHDL or

Verilog) to implement the design or module while conforming to the specification

detailed in the previous stage.

Throughout the implementation process, pre-silicon validation is performed

at the block level. Once the design has been fully implemented, top-level pre-

silicon validation is started, shown as ‘Pre-Silicon Validation’ in Figure 2.1. Ide-

ally, all design errors would be discovered at or before this stage, however this is

often impossible to accomplish. Pre-silicon validation makes use of simulation,

static timing analysis, formal verification, and emulation to verify the correctness

of the design. Pre-silicon simulation is performed throughout the ASIC flow: simu-

lating the hardware description language directly (RTL simulation), after synthesis

(gate simulation) and after place and route (timing simulation). In general, RTL-

level simulation is used more extensively than other forms of simulation because

it runs quicker and can more easily determine the root cause of detected design

errors. However, lower level simulations such as timing simulation are also com-

mon because they can more accurately model the system in exchange for reduced

throughput. Formal verification techniques can be used to mathematically prove

a property of a design, however these techniques suffer from scalability problems

for large designs. Emulation uses prefabricated programmable hardware devices

such as Field-Programmable Gate Arrays (FPGAs) to act as a stand-in for the fab-

4

ricated chip. These devices run orders of magnitude faster than simulation but do

not provide full visibility of internal signals [28, 46]. These pre-silicon techniques

are further detailed in Section 2.1.2.

The physical implementation stage follows, where the placement and routing

of a design is determined. This physical description is then given to a foundry,

which produces a number of silicon prototypes.

Post-silicon validation tests the prototype chips at normal operating speed

under expected operating conditions. Unlike simulation, post-silicon techniques

generally suffer from poor visibility into the system state during execution. Since

chips which are physically larger are more expensive to fabricate, on-chip moni-

toring logic must be minimized in order to reduce cost. Often it takes more than

one silicon iteration to produce a production-ready chip.

Once the chip passes post-silicon validation, it is ready to be sent to manufac-

turing for mass production. Each produced chip is subject to manufacturing tests

to ensure each chip is functional and speed binning to categorize produced chips

by their maximum operating frequency. Manufacturing tests check for fabrication

issues related to specific dies (e.g., manufacturing defects) and not systemic issues

(e.g., design errors).

1.3.1 Differences Between Pre- and Post-Silicon Validation

In general, pre-silicon techniques are slow and/or approximate but have high ob-

servability into the system state. Conversely, post-silicon techniques have very

5

180 130 90 65 45 32
Process Technology (nm)

0 M

2 M

4 M

6 M

8 M

10 M

12 M

14 M

C
o
st

 (
U

S
D

)

0.1 M 0.1 M
1.0 M

3.0 M

9.0 M

12.0 M

Mask Cost by Technology

Figure 1.2: Mask production cost by process technology [29].

low visibility into the system state but run at or near the design’s native operating

frequency.

Unfortunately, relying on post-silicon validation to find bugs is expensive

due to increasing mask development costs. As shown in Figure 1.2, mask costs

now represent a significant cost to IC development. Worse still, typical fabrica-

tion processes can easily take four to eight weeks to complete [44], slowing the

throughput of post-silicon validation and increasing time to market. To mitigate

these costs, it is important to perform as much validation as possible in pre-silicon

(before fabrication) and to maximize the number of design errors found with each

iteration of the fabricated chip. Commercial tools are available to accelerate this

6

1010100 102 104 106 108

Performance (Hz)

Ea
se

 o
f D

eb
ug RTL Simulation

FPGA Emulation

Silicon

Gate & Timing Simulation

Figure 1.3: Ease of debug and performance comparison of validation tech-
niques (performance data from [23]).

process [3, 62, 71].

1.3.2 Emulation — Bridging Pre- and Post-Silicon Validation

Emulation has become an important technology for the validation of large ICs.

Although designers make extensive use of software simulation when verifying

their designs, simulation runs approximately eight orders of magnitude slower than

actual silicon [53]. At this speed it would take more than three years to simulate

just one second of silicon execution. For example, during pre-silicon validation

of the Pentium 4 processor, Intel found that in a two year period between initial

RTL system-level integration and A-step tapeout, their compute farm (which by

the end of the project was several thousand nodes large) had accumulated only

230 billion simulation cycles [9], approximately two minutes of execution on a

7

1.5 GHz processor.

1.3.3 FPGA Devices

FPGAs are ICs that have been fabricated to contain flexible programmable logic.

This programmable logic allows FPGAs to implement arbitrary logic, albeit at a

slower speed and higher unit cost (at high volume production) than can be pro-

vided by a fixed-function IC. In contrast, they do not require lengthy fabrication

turnaround times or expensive mask costs, making them ideal for low-volume ap-

plications. As fixed-function ASIC validation has become more costly, one such

low-volume application for FPGAs has emerged: FPGA-based emulation of ASICs

for validation and prototyping purposes.

1.3.4 FPGA-based Emulation

FPGA-based emulation technology allows for much higher validation coverage in

pre-silicon testing by allowing designers to re-target their designs to one or more

FPGAs and ‘execute’ the design at orders of magnitude faster than simulation.

For example, Intel’s Atom processor (composed of 47.2 million transistors) was

mapped to a single FPGA running at 50 MHz [66], and their performance-oriented

i7 Nehalem processor (transistor count ranges from 177 to 1170 million transistors

[17]) was mapped to five FPGAs running at 520 kHz [60]. While slower than the

fixed-function chip, these speeds are fast enough to perform common validation

tasks such as booting an operating system — tasks which are infeasible in simula-

8

tion. In fact, even at 520 kHz, all 230 billion simulation cycles accumulated before

tapeout for the Pentium 4 processor could be covered in just over five days by a

single FPGA emulation system.

Because the underlying implementation is so different between the inte-

grated circuit and the FPGA-based emulation, emulation typically captures only

the functional behaviour of the design. Due to this difference, FPGA emulation is

not typically appropriate for designs which make heavy use of asynchronous or

analog circuits. When designers re-map their digital circuits to one or more FP-

GAs, they must compile their designs using the FPGA vendor’s tools, which may

make different optimization decisions than the ASIC synthesis tools. In addition,

the pre-fabricated nature of an FPGA means that certain structures (e.g., memories,

multipliers) may be implemented very differently on an FPGA than on an ASIC.

Furthermore, the physical implementation of a Lookup Table (LUT) is radically

different from a standard cell or full-custom gate; this means important properties

like timing, critical paths, robustness to process and environmental variation, noise

margins, etc. are all different in the emulated design.

An obvious example of such a property is timing. Designers often need to

know the maximum operating frequency of the chip and if there is any way of

increasing performance by modifying the frequency or shortening critical paths

that limit speed improvements. Designers regularly employ pre-fabrication timing

verification techniques such as Static Timing Analysis (STA) and Statistical Static

Timing Analysis (SSTA). These techniques provide valuable information regard-

9

ing potential timing problems in a design, but are only approximate — the paths

predicted to be critical do not correlate perfectly with the true critical paths [7],

hence the need for expensive (but also more accurate) post-silicon timing valida-

tion [51].

Many of the aforementioned physical properties (e.g., tolerance to voltage

and temperature variations, accelerated aging, etc.) can be tested via timing tests,

by varying some parameter and measuring at what frequencies the chip still be-

haves correctly (e.g., the classic ‘shmoo’ plot obtained by running the chip at

different voltages and measuring what frequencies give correct behaviour). This

indicates that post-silicon tests related to timing are useful for covering many types

of properties that are not well tested in pre-silicon.

1.3.5 Conventional Emulation Goals

Traditionally, emulation has only been used for validation of functional behaviour;

the conventional wisdom dictates that emulation cannot help with validating other

properties, particularly properties which are the focus of post-silicon validation

such as timing. In this dissertation, we show otherwise — emulation can be used as

an important tool to assist validation of more than just functional behaviour. In par-

ticular, we focus on timing validation and the task of quantifying the critical-path

coverage of a validation plan. We define the critical-path coverage of a validation

plan as the proportion of the critical and near-critical circuit paths that are exercised

during the execution of the plan. As will be discussed in Section 3.2, measuring

10

this quantity is essential, both to guide the creation of suitable post-silicon valida-

tion tests, and to determine how thoroughly a design has been validated before it is

put into high-volume production. Our technique involves adding a small amount of

instrumentation (coverage monitors) in strategic locations. Rather than add mon-

itors to the actual silicon (which would have significant area overhead), we add

them to an FPGA-based emulation of the design. By measuring coverage during

emulation, we can obtain a metric for the timing coverage of our verification plan

when applied to the actual chip during post-silicon validation. A key challenge is

that the critical paths of the original ASIC will likely be different than the critical

paths of the emulated version.

Note that our approach does not replace post-silicon timing validation, but

instead complements it by measuring how effectively it is being done. Nor are

we performing timing analysis of FPGAs themselves [43], which would give little

insight into the timing of the ASIC. Instead, we are measuring the quality of the

post-silicon timing tests, by using FPGA emulation.

1.4 Research Objective and Contributions

To summarize the previous section, the goal of this research is to show

how FPGA-based emulation can be used to measure non-functional properties

of integrated circuits, concentrating on critical-path delay coverage. The main

contributions of this dissertation are as follows:

1. We propose a general toolflow for using FPGA-based emulation to support

11

validation of post-silicon properties.

2. We instantiate a specific instance of this flow: using emulation to measure

critical-path coverage of post-silicon validation tests.

3. We demonstrate this instance on a complex SoC using common post-silicon

validation tests, including booting Linux and running long random instruc-

tion streams.

4. We report critical-path coverage data for these post-silicon validation tests.

5. We describe the academic tools developed to implement this methodology

and release them for use by the research community.

1.5 Research Approach

To address the above objectives, we designed and implemented a system

to automatically instrument the open-source LEON3 SoC design [2] with path

coverage monitors for the paths deemed most critical by the Xilinx Timing Ana-

lyzer [73]. We ran various typical pre- and post-silicon tests against the SoC, and

recorded the coverage reported by our coverage monitors.

Due to the limited interoperability of the Xilinx toolflow with non-standard

processes (e.g., many of the Xilinx tools are not re-entrant so a partially placed-

and-routed design cannot be integrated back into the toolflow), we developed a tool

to generate a structural VHDL description from a placed-and-routed Xilinx design,

allowing us to easily instrument paths described structurally by the STA tool for

12

coverage. We integrated our coverage monitors as VHDL into this description

and resynthesized the design with the Xilinx tools, allowing us to easily monitor

signals specified by the Xilinx Timing Analyzer as timing critical. The tool allows

for integration of arbitrary VHDL code alongside a structural description of the

original design.

1.6 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents an

overview of background topics and related work. Chapter 3 describes the ideal cov-

erage monitor instrumentation flow and gives an example of a coverage monitor

targeting a critical path. Chapter 4 presents the toolflow used in this dissertation’s

research to approximate the ideal flow shown in Chapter 3 and details the XDL to

VHDL converter developed to allow automatic integration of coverage monitors.

Chapter 5 demonstrates the feasibility of coverage monitors in emulation systems

by performing critical-path coverage instrumentation on a LEON3 SoC and re-

porting coverage achieved for common post-silicon tests. Chapter 6 concludes the

dissertation by providing a summary and discusses limitations for the toolflow

presented as well as future work that could be used to address these limitations.

13

Chapter 2

Background and Related Work

In this chapter, we first give a high level overview of the ASIC design flow in

Section 2.1, followed by a discussion of pre- and post-silicon coverage metrics in

Sections 2.2 and 2.3, respectively. Section 2.4 describes how the work done for

this dissertation differs from previous work.

2.1 ASIC Design Flow

As discussed in Section 1.2, design errors in ASIC designs can be very costly.

As such, verification is central to the ASIC design process; before a chip is sent

to the foundry, it is imperative that it has been tested as thoroughly as possible.

Ideally, the first fabricated iteration of the chip, ‘first silicon’, would be bug-free

and be ready to send to manufacturing. Unfortunately, increasing chip complexity

has caused the number of first silicon successes to decline from 39% in 2002, to

14

33% in 2004 and 28% in 2007 [69]. Estimates for the total amount of design time

and resources spent on verification vary (55% [69], 80% [39], 90% [59]), but they

all agree that verification (pre- and post-) is critical to the ASIC design flow and

important for reducing the number of silicon iterations required before sending a

design to manufacturing.

2.1.1 Stages of ASIC Design

This section gives a high-level overview of the ASIC design process detailed in

Figure 2.1. Each stage of the design process is shown on the left in bold, followed

by its description.

Specification details the functional and non-functional properties of the design.

It should be at sufficient granularity to ‘pass’ or ‘fail’ a given HDL imple-

mentation without dictating how it must be implemented. For example, a

specification could state that on every clock cycle, a module will take an A

and B input, and output C, which is A + B.

HDL is a VHDL, Verilog or other hardware description of the specification. This

stage is responsible for transforming the specification into a design by con-

verting it to RTL code. It details how the specification is functionally imple-

mented (but not the underlying transistor technology). For example, it could

describe C = A + B as a simple ripple-carry adder, or a more complicated

carry-lookahead adder.

15

Pre-Silicon
Validation

RTL
Simulation

Formal
Verification

Emulation

Static
Timing

Analysis

Timing
Simulation

Gate
Simulation

Specification

HDL

Netlist

Synthesis

Implementation

Physical
Description

Place and Route

Silicon
Prototype

Fabrication Post-Silicon
Validation

System
Validation

Compatibility
Validation

Silicon
Product

Manufacturing
Manufacturing

Test

Manufact-
uring Test

Speed
Binning

Figure 2.1: ASIC design flow.

16

Netlist files comprise the logic connections between a set of gates defined by a

standard cell library. Synthesis converts the HDL code into these gates while

preserving the functional behaviour of the RTL and continuing to satisfy

design constraints.

Physical Description is usually divided into two main stages: placement and rout-

ing. The placer determines the placement of standard cells, described by the

netlist, onto a region representing the ASIC. The router determines a set

of connections between these placed cells. The resulting layout will be val-

idated with a Design Rule Check (DRC) and other physical verification

checks to ensure it conforms to the foundry’s design rules.

Pre-Silicon Validation ensures the design is functionally correct using a combi-

nation of simulation, formal verification and emulation-based techniques.

Pre-silicon validation is discussed in more detail in Section 2.1.2.

Silicon Prototype chips are received from the foundry for use with post-silicon

validation. Fabrication is an expensive and time-consuming process, costing

upwards of $10 million USD for a modern 32 nm process (as shown in

Figure 1.2), making it imperative that the number of silicon iterations be

minimized.

Post-Silicon Validation involves validating a hardware design after fabrication,

but before large-scale manufacturing, with a physical chip. Post-silicon val-

idation generally has low visibility into system signals. However, it runs at

17

full chip execution speed and can validate all aspects of the design (since

the chip is a release-candidate). Post-silicon validation is discussed in more

detail in Section 2.1.3.

Silicon Product is the final product that will be shipped to end-users.

Manufacturing Test includes conventional manufacturing test, which checks for

defects caused by the manufacturing process; and speed binning, which cat-

egorizes chips based on their performance characteristics. These two types

of manufacturing test are described in further detail in Section 2.1.4.

2.1.2 Pre-Silicon Validation

Pre-silicon validation is the problem of finding design errors without using a phys-

ical chip. It forms the backbone of IC validation and is responsible for detecting

most design bugs. The most common forms of pre-silicon testing are simulation,

formal verification and emulation.

Simulation

Simulation is employed to validate all but the simplest designs (and usually even

those too). It involves supplying a series of test vectors, often generated from con-

strained random parameters, to a testbench that will verify functional correctness

of a design (or a design’s modules) compared to the designer’s expected output. It

allows for complete visibility into all signals of the design and can detect a devia-

tion from expected top-level ports and internal signal values the instant they occur.

18

Complete visibility allows for full signal traces leading up to any deviation. These

traces make diagnosing and fixing bugs much easier than it would be otherwise

(and indeed, this visibility is a primary advantage of pre-silicon techniques over

post-silicon). However, simulation is very slow compared to real-chip execution,

requiring tests to be very short and therefore not representative of real-world use.

Furthermore, simulation models are usually slow and/or approximate for complex

electrical interactions and timing behaviours.

There are three main types of simulation: RTL, gate, and timing. RTL sim-

ulation of the design ensures the implemented design functionally conforms to

the specification by simulating the HDL written by designers. It allows for full

visibility into system signals during execution but runs much slower than real-chip

execution and does not take into account detailed implementation information

(such as timing). Gate simulation ensures that the implementation inferred by the

synthesis tools still conforms to the specification, and is functionally equivalent

to the functional implementation. It allows for full visibility into system signals

during execution (however these gate-level signals can be non-trivial to map back

to the original RTL signals) but runs slower than RTL simulation. Timing simula-

tion ensures that the placed-and-routed implementation of the design conforms to

the specification under realistic timing conditions. It allows for full visibility into

system signals during execution (however as in gate-level simulation, these signals

can be non-trivial to map back to the original RTL signals). Timing simulations

runs slower than gate-level simulation because it includes additional timing, place-

ment and routing information. In all cases, these techniques are only approximate

19

and may not match the behaviour seen on the physical chip.

Coverage, as will be discussed in Section 2.2, is integral to simulation.

Achieving coverage closure, the point at which 100% of one’s coverage goals1

have been met, is one of the most important milestones for the pre-silicon ver-

ification team [1]. This exemplifies how coverage-driven verification is already

understood to be an important part of silicon validation.

Formal Verification

Formal verification is the process of validating a design by ensuring design in-

tent (expressed through specifications) is preserved through to implementation

[19, 22, 34, 54]. Once a design or block is successfully verified (as in [32, 37]),

it is mathematically guaranteed to satisfy the validated properties. Before a com-

plicated design (or perhaps a module in the design) is formally verified, it has to

be converted into a simpler, verifiable format which is representative of the unit

as a whole. However, even when the design is converted to this verifiable format,

formal verification still often suffers from capacity limits. Furthermore, there are

often questions about the completeness of the specifications and accuracy of the

constraints.
1This is not necessarily the same as reaching 100% coverage which, depending on the circuit

design and coverage metric, may be impossible.

20

Static Timing Analysis

Static Timing Analysis (STA) is a method for computing the worst- and best-case

timing performance of a circuit without performing rigorous circuit simulation

[27, 36, 40, 48, 50]. STA relies on conservative delay modelling of gates and

interconnect valid for a range of operating conditions and die variation. It allows

the analysis to scale with the size of the circuit, however it relies heavily of the

accuracy of the delay models and cannot determine if detected paths are false

(i.e., it cannot determine if some of the detected paths cannot occur during circuit

operation) [10].

Emulation

As pre- and post-silicon validation costs continue to increase [30, 35, 56], emula-

tion has steadily increased in popularity. In modern IC development, it is common

for a design to be converted to run on an FPGA for testing and prototyping pur-

poses (e.g., [24, 47, 60, 64, 65, 66]). The development of the FPGA system is

usually supported by commercial tools for creating on-chip debugging infrastruc-

ture (e.g., [3, 63, 71]). This FPGA design will run orders of magnitude faster than

simulation, usually quickly enough to be plugged into a working system in place

of the not-yet-fabricated IC. Here it can be validated against live data from other

devices and long-running system-level tests which are not feasible in simulation.

However, FPGA emulation is not without limitations. While ASIC and

FPGA designs share a common language to describe logic (e.g., VHDL and Ver-

21

ilog), there are many ASIC constructs which do not map well to FPGAs (and

vice-versa). These differences require the HDL of an ASIC design to be modified

before it can target an FPGA (as described in [60, 66]). If not done carefully, this

may change functional behaviour of the design and substantially reduce the value

of emulation.

2.1.3 Post-Silicon Validation

Obviously, all errors are ideally caught before fabrication, but as discussed in Sec-

tion 2.1.2, pre-silicon validation has a few fundamental limitations. The biggest of

these, pre-silicon execution speed compared to real-chip execution and the diffi-

culty of properly modelling complex electrical effects, can be addressed by post-

silicon validation where designers test their chips post-fabrication, in situ, allowing

for much more extensive and realistic tests [11, 30, 51].

However, post-silicon validation is not without its own limitations: it has

challenges related to observability and controllability of internal signals. Com-

mercial tools have emerged to aid in post-silicon debug at modest area overhead

(e.g., [62]), however there is still room for improvement. Limitations in post-silicon

validation are in large part due to cost-savings; ideally no debug or validation logic

would be present on the final chip since it does not add any value for the user and

adds to the overall fabrication cost of the chip (by requiring additional chip area)

though in some cases this additional cost is seen as necessary for risk mitigation.

Unfortunately, even with modern pre-silicon techniques, at least some debug and

22

validation logic is required to enable and increase the effectiveness of post-silicon

validation. One solution is to fabricate a ‘debug version’ of a chip with a large

amount of validation logic to be used only during testing. However, increasing

mask costs (shown in Figure 1.2) make it important that validation be achieved

as close as possible to, and ideally at, first silicon. Furthermore, it would still be

imperative to validate the production chip before it is handed off to manufacturing.

Many bugs caught in post-silicon validation are pure functional errors that

could have been caught pre-silicon. Other bugs, however, relate to electrical or

physical properties of the chip that can only be truly validated in silicon because

these behaviours are too complex to be modelled with perfect accuracy in pre-

silicon. Even in the ideal case where pre-silicon validation detects all functional

errors, post-silicon validation would almost certainly be required before large-

scale manufacturing. Regardless of the tools and techniques used to exercise the

fabricated chip, it is often very difficult to quantity the effectiveness of post-silicon

tests.

2.1.4 Manufacturing Test & Speed Binning

It is important to distinguish our approach from delay fault testing for manufactur-

ing test [38]. Many underlying concepts (e.g., path delay, sensitizability, critical

paths, etc.) are the same, but the application is different. In high-volume manufac-

turing test, the design is assumed to be functionally correct and the goal is to catch

manufacturing defects which vary from chip-to-chip. Manufacturing test usually

23

uses scan-chain based techniques which load test vectors into registers deep in the

design and later verify that the output of the circuit at another scan-chain register

contains the correct value given that test vector. Post-silicon validation usually

focuses on techniques which interact with the system through its top-level ports

whereas manufacturing test usually does not usually extend well to this type of

top-level testing and is usually focused on testing at a much lower level.

In manufacturing test, unlike post-silicon validation, test time per die must

be kept extremely low. In contrast, in post-silicon validation, the goal is to catch

subtle design errors that escaped pre-silicon validation, so extremely long-running

tests (e.g., trillions of cycles of running OS and application software), with the die

in an actual system, are used. Our goal is to be able to assess the quality of such

long-running tests.2

Speed binning refers to the testing process used to quickly but conserva-

tively estimate performance of a physical SoC [15] by estimating its maximum

operating frequency, often through scan-chain based techniques [8]. This allows

IC producers to sell a range of processors that are the same silicon design, but with

differing performance characteristics due to fabrication variation. Superficially,

speed binning seems very related to the problem which this dissertation seeks to

address. Although tests used in speed binning are usually functional, they are also

very short and have been designed to exercise the most delay sensitive parts of

2 Of course, in post-silicon validation, short targeted tests are also run on automated test equip-
ment, but such tests are typically generated with coverage information known by construction, and
therefore are not the focus of this thesis.

24

a design. Furthermore, since speed binning tests are short, their coverage can be

pre-computed using simulation. In some cases, however, manufacturing tests may

be sufficiently extensive such that simulation may not be feasible. In post-silicon

validation, the tests are almost always longer running than manufacturing tests

and exploratory in nature. Since the achievable cycle-count is so much higher

in post-silicon validation than in pre-silicon simulation (due to slow simulation

speed) or in manufacturing test and speed binning (since each fabricated chip must

be tested, reducing testing time directly corresponds to cost-savings), the amount

of designer effort devoted to generating effective (but short) tests in post-silicon

validation is lower. In general, post-silicon tests make use of the increased cycle

count by employing constrained random tests. As such, this dissertation focuses

on how emulated platforms can provide additional insight into post-silicon test

characteristics and allow for effective test generation without requiring the amount

of tester effort currently needed to design test suites for manufacturing test and

speed binning.

As coverage-based techniques for generating effective post-silicon tests ma-

ture, it may be possible to use them to help design speed binning tests. However,

for large production runs, it would likely be difficult to match the reduced test-

ing times of a designer-crafted test suite. Since these savings are multiplied by

every fabricated chip, the sunk engineering cost of test design is usually a good

investment.

Recently, there has been renewed interest in reducing the effort required to

25

design speed binning tests by using structural scan chain-based tests [49] but the

time required to load scan chains with test vectors is non-trivial, increasing overall

testing time.

2.2 Pre-Silicon Coverage Metrics

There are many metrics by which test coverage can be measured. Many have

been designed to be specific to a certain stage of silicon validation: pre-silicon,

post-silicon, or manufacturing test. In general, however, coverage-based techniques

are in wide use in pre-silicon simulation and manufacturing test, but are used less

commonly at other stages of validation.

Code coverage and functional coverage are extensively used during pre-

silicon validation to evaluate the effectiveness of testing. Ideally, designs must

reach 100% statement, branch and functional coverage, however exceptions are

made if it is known that a given coverage point is unreachable or not important.

2.2.1 Types of Pre-Silicon Coverage

In this section, we will briefly discuss seven types of coverage that are often used

in simulation:

Statement Coverage: reports what fraction of HDL statements are executed. In

most coding styles, each line corresponds with a statement. However, this

is not strictly required. An example of statement coverage is illustrated in

Section 2.2.2.

26

Branch Coverage: reports what fraction of branches created by decision state-

ments such as if → elsif → else → end if and case blocks

are executed (note that an if → end if block has an implied empty

else branch). An example of branch coverage is shown in Section 2.2.2.

Condition Coverage: reports what fraction of boolean sub-expressions in a deci-

sion statement (e.g., if) that have evaluated to both true and false val-

ues. For example, “if (var_a = ‘1’ and var_b = ‘2’) then” has

two sub-expressions: “var_a = ‘1’” and “var_b = ‘2’”.

Path Coverage: reports what fraction of combinations of branches have been

executed. For example, a block with two if statements, one after another

has four paths since each if statement has two possible values, true and

false.

Functional Coverage: reports what fraction of user-configured signal values,

statements, properties, or cross products of these coverage points are ex-

ecuted. It is used extensively in industry. However, to be effective it requires

careful implementation by a designer with deep domain knowledge into the

module under test.

Mutation Coverage: reports on the percentage of tests which detect an error

which is intentionally inserted into RTL [55, 70]. For example, a mutation of

the original RTL may include referencing the wrong variable or modifying

operators. A test is said to have ‘killed’ the mutation, if it successfully de-

tects the change. A test that detects many mutations (i.e., one that has high

27

mutation coverage) is likely more comprehensive and thorough than one

with low mutation coverage. Unfortunately, mutation coverage relies heavily

on the quality of the mutations generated and it is complicated to implement

effectively.

Tag Coverage: reports what fraction of signal assignments have an effect on out-

put signals (i.e., how many signal assignments are observable at the output)

[18, 21, 45]. For every signal assignment, a tag signal corresponding to that

signal is also updated, allowing the propagation of signal assignments to be

traced. A test with high tag coverage would cause many signal assignments

to be detected at the module’s output. This type of coverage, while similar

to statement coverage, is much more difficult to attain because the effect

of many statements will only be reflected in a module’s output under very

limited circumstances.

2.2.2 An Example of Statement and Branch Coverage

For example, in Figure 2.1, if a = 0 and b = 0, statement coverage would be

4/6 = 67% because statements 1, 2, 3, and 6 were executed. The process for branch

coverage is similar but instead of counting statements, it counts branches created

by conditionals (such as if and case). The branch coverage for the code in

Figure 2.1 would only be 2/4 = 50% since branch 1 (the main program branch)

and branch 2 were the only branches executed.

28

1 setup () ; / / Statement 1 & Branch 1
2 i f (a == 0) { / / Statement 2 & Branch 2
3 do_something () ; / / Statement 3
4 } e lse i f (b == 1) { / / Statement 4 & Branch 3
5 do_something_else () ; / / Statement 5
6 } / / There i s an imp l ied e lse branch here
7 / / e lse { } Branch 4
8
9 teardown () ; / / Statement 6

Listing 2.1: Simple example which illustrates statement and branch coverage
techniques

2.3 Post-Silicon Coverage Metrics

The design of effective coverage metrics for physical chip-based validation

techniques such as pre-silicon emulation or post-silicon validation is still an open

research problem. As such, coverage techniques for these platforms are not nearly

as established as they are in pre-silicon simulation or manufacturing test (where

the limited per-chip testing time allows coverage to be pre-computed using simu-

lation). Furthermore, the coverage metrics used in manufacturing test are not well

suited for chip-based verification due to their focus on detecting manufacturing

faults, which vary from chip to chip, and not functional bugs, which are systemic

to the design itself. Instead, coverage metrics common in simulation (e.g., code

coverage, assertion coverage, and mutation coverage) are often used in post-silicon

verification. Since these techniques are used extensively in pre-silicon verification,

they could be used to provide a universal view of coverage from pre- to post-silicon

verification.

29

2.3.1 Related Work — On-Chip Coverage Monitors

Most coverage research has largely focused on how coverage metrics can be used

in simulation and emulation, and not on how coverage monitors can be effectively

implemented in silicon. In [11], however, the authors implemented on-chip cover-

age monitors for use during post-silicon validation of Intel’s Core 2 Duo processor

family. They focused on monitoring important, as dictated by a designer with

insight into the chip, functional coverage points that were difficult to achieve in

pre-silicon. Unfortunately, due to the constraints of minimizing on-chip monitoring

overhead, only very minimal coverage information was extracted. It is interesting

to note that in order to reduce area overhead, the coverage monitor data was ac-

cessed through the performance monitor registers already present on the processor.

These performance monitors are normally used to monitor important performance

metrics such as cache misses, power states, and instructions per cycle [61].

In [1], the authors add coverage monitors to their emulated design for use

with the post-silicon test suite. During pre-silicon emulation, a constrained random

post-silicon test suite (which is much too long to be simulated) is executed, and the

coverage is recorded. This coverage is expected to match the coverage achievable

by the same tests during post-silicon validation. Using this system, a team can tune

the post-silicon tests to guarantee high coverage before the processor is fabricated.

As in [11], the tests were limited to functional coverage. Furthermore, the area

overhead for implementing these monitors was not evaluated and some details

were considered proprietary and not disclosed.

30

In [33], we manually added coverage monitor flags alongside targeted IP

cores, and extracted statement and branch coverage. Unfortunately, we found the

monitoring system imposed a large area overhead on the design. To mitigate this,

we used state-of-the-art software coverage analysis techniques to losslessly reduce

the overhead of our monitors. These area optimizations were successful and pro-

vided an area decrease of up to 28% at no quality cost. Even with these optimiza-

tions, we hypothesized that the system would not be feasible for implementation

on an ASIC due to area constraints.

In [6], we extended the work done in [33] to a multiprocessor SoC design.

The coverage monitor system was improved such that the logic analyzer used

could record a timestamp along with our coverage information, allowing us to

analyze how coverage changed over time between the two processors of our SoC

as they were booting Linux. Additionally, some optimizations were made in how

our coverage monitors were implemented which resulted in some area savings. We

used Synopsys Design Compiler to estimate the area overhead for the coverage

monitor system on an ASIC. As expected, we confirmed the coverage monitor area

overhead was too high for implementation on an ASIC.

2.4 Timing Validation

The work done for this dissertation, while similar the work done in [6] and

[33], is focused on solving a fundamentally different problem: timing validation.

Timing validation is a substantially different problem than functional coverage,

requiring non-functional properties to be validated. Furthermore, the previous work

31

focused on the feasibility of integrating coverage monitor into ASIC chips, whereas

this work primarily focuses on coverage monitor implementation for pre-silicon

FPGA emulation.

In this dissertation, we focus on critical-path coverage, which considers a

circuit path (from the output of a terminating primitive like a flip-flop to the input

of a terminating primitive) covered when the path has been exercised under input

vectors for which it will experience worst-case timing conditions. Since we are

only interested in paths which may cause the circuit to exhibit incorrect behaviour

under suboptimal timing conditions (i.e., paths with a lot of timing slack can take

longer than expected without any ill effect), we only consider paths which we

believe are on or near the critical-path (as dictated by a STA tool).

The research done for the dissertation seeks to explicitly quantify the cover-

age of specific timing paths in a design. In order to ensure correct timing behaviour,

it is necessary to ensure that the critical paths of a circuit are adequately exercised

post-silicon. Our method quantitively measures the effectiveness of post-silicon

verification plans in exercising paths which have been identified as at or near the

critical path with pre-silicon timing analysis. Due to inaccuracies in pre-silicon

timing analysis and die-to-die manufacturing variation, it is not possible to deter-

mine which subset of these paths will be critical on a given physical chip. The

overall goal is: given a chip that has been fabricated, and a verification plan (soft-

ware to run on the processor and other realistic input stimuli), determine to what

extent the timing-critical paths of the circuit are exercised. More precisely, we

32

seek to measure a coverage metric which we define to be the proportion of the n

longest paths which have been exercised at least once during the execution of the

verification plan. (In our experiments in Section 5.2, n = 2048, but n can be chosen

arbitrarily.)

33

Chapter 3

Proposed Flow

This chapter describes an idealized toolflow for automatic integration of critical-

path coverage monitors. Although our techniques could be applied to any large

integrated circuit, we focus on large processor-based SoCs since the interaction

between hardware and software provide significant verification challenges. We

begin in Section 3.1, where we motivate critical-path coverage monitors through a

discussion on timing validation. In Section 3.2, we highlight the role FPGA-based

emulation can play in obtaining critical-path coverage information of a post-silicon

test suite. In Section 3.3, we describe the composition of the coverage monitors and

discuss how the fundamental implementation differences between the ASIC and

FPGA versions of the chip do not pose a significant barrier to extracting coverage

information. Section 3.4 summarizes the chapter.

34

3.1 Problem Statement

The performance of ICs is in large part dictated by its maximum operating

frequency. This maximum operating frequency describes the shortest clock period

that a design can reliably use. If a design is running faster than this frequency, a

circuit path’s output may not have resolved by the time it is read by a flip-flop

or other memory device (i.e., a setup time violation). Or, in the case of a hold

time violation, the input signal to a flip-flop may change too soon after a clock

transition, causing an incorrect value to be read. In either case, the output may be

erroneously recorded by the device, likely causing incorrect functional behaviour

in the design [12]. Unfortunately, determining this frequency is non-trivial due

to the variation between given fabricated chips as well as the limitations of tim-

ing analysis techniques. Ignoring variation in fabrication for now, the maximum

operating frequency of a chip for a given voltage and temperature pair could be

determined using exhaustive circuit simulation. This approach quickly becomes

infeasible for all but the smallest designs. Instead, Static Timing Analysis (STA)

techniques are used to conservatively estimate the expected timing of a chip with-

out requiring simulation. If the design has already been placed-and-routed, STA

can take into account this information for a more accurate estimate. A variant of

STA, Statistical Static Timing Analysis (SSTA), replaces the timing values used

in STA with probabilistic distributions, allowing the tool to report a probabilistic

distribution of possible circuit outcomes.

STA techniques are only approximate; to ensure timing performance, vali-

35

dation must be done with the physical silicon. Furthermore we cannot simply use

STA techniques to determine the single most critical path to be targeted during

post-silicon validation because variation in fabrication may cause other paths to

become more critical. Post-silicon timing validation is further complicated because

it is not simple for tests to target specific timing-critical paths. This is particularly

true for post-silicon tests because they are almost always too long to be simulated.

Coverage monitors could be added to the ASIC design to aid in targeting paths,

but this poses a substantial (and usually untenable) area cost.

3.2 Overall Flow

One way to determine whether a path has been covered in hardware vali-

dation is to add small coverage monitors to each path of interest; during the run,

these coverage monitors could trip if the corresponding path is exercised, and at

the end of execution, the state of these monitors could be read, and the coverage

metric calculated. The problem with this approach is the area overhead of the cov-

erage monitors. Although these coverage monitors could be removed in the release

version of the chip, doing so would change the timing and electrical behaviour of

the chip, perhaps leading to different paths becoming critical, nullifying the value

of the results.

Our approach takes advantage of the prevalence of FPGA-based emulation.

In the following discussion, we use the term ASIC version of the design to refer

to the version of the design before emulation (the version that will eventually be

implemented as a chip and shipped) and the term emulation version of the design to

36

refer to the version of the design that has been re-mapped to FPGAs for validation

and prototyping purposes.

Our flow uses the emulation version to determine the timing coverage met-

ric of the ASIC version. More precisely, our approach is as follows. Using STA

techniques, we identify the n longest paths in the ASIC version. If information re-

garding false paths is available, those paths can be discarded at this stage. Similarly,

if there are other paths of particular interest to the design and validation engineers,

they can be added at this stage. Once we have identified the paths of interest in the

original design, we create the emulation version by mapping the circuit to FPGAs

(e.g., as described in [60, 66]). We then instrument the emulated design, as will

be described in Section 3.3. This instrumentation monitors the targeted paths, and

determines when each has been exercised. At the end of the run, the coverage

information can be read from the instrumentation, and an overall timing coverage

metric calculated. This is the coverage that is expected when the same verification

plan is run on the ASIC version of the design. The proposed flow is shown in

Figure 3.1.

In the above flow, it is important that the paths be determined using the orig-

inal design, since once the design has been re-targeted to an FPGA for emulation,

the paths that are critical may change. It is very possible that the paths we target

are not the critical paths during emulation, but they are the ones we care about,

since they are the critical paths of the chip that we intend to ship.

37

ASIC
Design
(HDL)

Synthesize with
ASIC Tools

(Physical ASIC
Description)

Convert for
Emulation

(HDL)

Perform
Timing Analysis
(Critical Paths)

Integrate
Coverage
Monitors
(HDL)

Synthesize with
FPGA Tools

(Bitfile)

Test with
FPGA Prototype
(Path Coverage)

Figure 3.1: Toolflow for adding path coverage monitors to the FPGA proto-
type of an ASIC design. Each stage’s output is shown in parentheses.

3.3 Instrumentation

Key to the flow described in Section 3.2 is the instrumentation that is added

to the emulation version of the circuit. Because we are adding our instrumentation

to the emulation version of the circuit only, the area and delay overheads do not

translate to the shipped chip. However, minimizing overhead is still important,

since the overhead directly relates to the size of the FPGA emulation system and

38

the speed at which emulation tests can be run.

As described in Section 3.2, we obtain a set of timing-critical paths from

the static timing analysis of the ASIC version of the circuit, and then instrument

these paths in the FPGA version of the circuit. The instrumentation is designed

to record whether, for each path, the path has been exercised. A monitored path is

considered exercised, and therefore covered, when a transition on the input of the

path causes there to be a transition along every element of the path. To instrument

a path, we add:

a) A transition detector at the start of the path,

b) Boolean difference [13] logic to calculate the sensitization condition [4] for

each logic element along the path,

c) A bit to record whether the path has been entirely sensitized.

An example is shown in Figure 3.2, where the logic function, f , is (A+B+C) ·

(A+B). From this logic, its sensitization function can be calculated to be B ·C.

This makes intuitive sense as when B = ‘1’ the upper OR gate’s B input will be ‘0’,

allowing signal A to control that gate’s output. This is similarly true for the final

AND gate; when C = ‘1’ its lower input will be ‘1’, allowing the targeted path

to control the value of f . Figure 3.2(a) shows the original path, and Figure 3.2(b)

shows the instrumented circuitry, including the logic to compute the sensitization

condition. Figures 3.3 and 3.4 demonstrate how the coverage monitor shown in

Figure 3.2 can be modified to be sensitized only for rising or falling edges, respec-

tively. This is achieved by modifying the comparator which detects the transition

39

on the first element of the path.

Further modifications could be made to allow detection of fault observability

by selectively injecting errors whenever the path has been exercised (i.e., whenever

coverage is achieved) as shown in Figure 3.5. If the injected error is found to be

observable, it should be similarly observable on an ASIC system with a timing

fault affecting that path (though in the case of multiple faults, the fault may not

be observable). However, to be practically useful, this modification would have

to be extended to allow error injection to be enabled on a per-path basis since

the fault may only be observable many clock cycles after the error is injected. In

this thesis, we sensitized the coverage monitors for rising and falling edges (i.e.,

the monitoring circuitry shown in Figure 3.2), and did not instrument for error

injection.

It is important that we add instrumentation circuitry to the RTL represen-

tation of the circuit, before it is optimized and mapped by the FPGA tools. It is

very possible that after mapping to the FPGA, the original paths either do not exist

(because of the optimizations performed by the FPGA tools) or because parts of

the original paths have been encapsulated into hard blocks (such as DSP blocks

which are common in all modern FPGAs). Note, however, that the inclusion of

this instrumentation does not prevent the FPGA tool from optimizing the original

circuit as it sees fit. In the example of Figure 3.2, once the instrumentation has been

added to the RTL version of the circuit, the tool is free to optimize the original path

in any way (including removing it from the circuit entirely). The instrumentation

40

circuit will still record whether the path would be exercised in the ASIC version

of the circuit, even if that path does not exist in the emulation version.

The area overhead of this instrumentation is proportional to the number of

paths instrumented and the length of each path. For each segment along the path,

the sensitization function is guaranteed to require no more lookup tables than a

gate-level implementation of the original path, since the sensitization function at

each stage requires fewer inputs than the original function at each stage. However,

in some cases, it may be that the original function can be optimized effectively by

the FPGA CAD tools (for example, a multiply function may be efficiently mapped

to an embedded DSP block), while the instrumentation logic cannot be optimized

as efficiently. In the worst case, if the instrumentation circuitry requires signals

that would otherwise have been encapsulated inside a DSP block, then the circuitry

generating these signals will have to be replicated in the FPGA soft logic. If this

occurs, it may tend to increase the overhead of our instrumented circuit compared

to the same circuit without instrumentation beyond that which would be expected

due to the extra logic. However, as we will show in Section 5.2, experimentally,

this rarely occurs.

The delay overhead in the emulation version is very small. Although some

signals will have increased fanout, because FPGA interconnect is typically fully

buffered [42] the overall timing impact will be small. The specific frequency over-

heads are quantified in Section 5.2.3.

41

3.4 Chapter Summary

This chapter described the ideal flow for integration of critical-path coverage

monitors into emulated designs. Section 3.1 began by introducing and motivating

the problem this dissertation addresses. Section 3.2 highlighted the value FPGA-

based emulation can provide for post-silicon validation. In Section 3.3, we de-

scribed the coverage monitors themselves and discuss the challenges posed when

using emulated systems to provide information on the silicon product.

42

a)

b)

D Q

D Q

D Q

A

B

C

f
D Q

D Q
D
CE

Q

R

Flag

Previous Input
Comparator Sensitization Function Coverage Value

Figure 3.2: Example of a critical path, a), instrumented to monitor coverage by b) for bolded path f initiated
by a rising or falling transition on input A.

43

a)

b)

D Q

D Q

D Q

A

B

C

f
D Q

D Q
D
CE

Q

R

Flag

Previous Input
Comparator Sensitization Function Coverage Value

Figure 3.3: Example of a critical path, a), instrumented to monitor coverage by b) for bolded path f initiated
by a rising transition on input A.

44

a)

b)

D Q

D Q

D Q

A

B

C

f
D Q

D Q
D
CE

Q

R

Flag

Previous Input
Comparator Sensitization Function Coverage Value

Figure 3.4: Example of a critical path, a), instrumented to monitor coverage by b) for bolded path f initiated
by a falling transition on input A.

45

a)

b)

D Q

D Q

D Q

A

B

C

f

D Q

D Q
D
CE

Q

R

Flag

Previous Input

Selective
Error Injection

Comparator Sensitization Function Coverage Value

Figure 3.5: Example of a critical path, a), instrumented to monitor coverage by b) for bolded path f through
input A with additional circuitry allowing for error injection whenever coverage is achieved.

46

Chapter 4

Implementation

In this chapter we introduce the toolflow implemented to automatically instrument

hardware designs with critical-path coverage monitors. We describe the toolflow

used to approximate the ASIC emulation process and describe our implementation

of the XDL to VHDL converter used to facilitate automatic coverage monitor

integration, including a detailed characterization of the six main classes of XDL

instances encountered.

4.1 Approximated Flow

Because the focus of this work is the design and implementation of the

coverage monitors introduced in Section 3.3, as well as the investigation of the

coverage achieved for some common post-silicon tests, and not the verification of

a processor-centric SoC per se, we have shortened the proposed verification flow

47

in two ways:

a) by starting with a design that is already known to be synthesizable to FPGA,

b) by integrating coverage monitors into the design at the gate-level, not the

RTL level.

This modified flow is shown in Figure 4.1. After synthesis, we perform

timing analysis on the placed-and-routed circuit description. The timing analyzer

reports the slowest n paths to the converter tool from which path coverage monitors

are generated. These coverage monitors are integrated into a new structural VHDL

description generated from the placed-and-routed XDL description of the circuit.

This new VHDL description is then synthesized using the full Xilinx toolflow. All

constraints on top-level ports, signals or instances should still apply to the structural

circuit description, however constraints for signals or instances deep in the design

hierarchy may need to be modified to account for differences in generated names.

Starting with a design that is already synthesizable to an FPGA, particularly

one that can be fabricated to ASIC technology, is a very good approximation

to using an FPGA-emulated ASIC design. However, it causes our flow to differ

in one significant way: there is no ASIC design from which to obtain timing

paths. Instead, we use timing results from the design natively synthesized for the

FPGA. While it is expected that these timing paths will differ in content from those

derived for an ASIC version, they should not differ substantially in composition.

The FPGA timing paths used in our approximated flow could be easily exchanged

for ASIC timing paths. It is important to highlight that this simplification was made

48

to facilitate our experimentation; in a ‘real’ application of the flow, ASIC timing

paths would be used.

We integrated our coverage monitors at the gate-level because, to the best

of our knowledge, there are no full-featured, open-source VHDL parsers available

for adaptation to our uses. In contrast, the two biggest FPGA vendors, Altera and

Xilinx, both provide toolkits which allow experimental integration with their tools.

For this thesis, we used the RapidSmith API from Brigham Young University [41]

for parsing and iterating over the Xilinx Description Language (XDL) format,

Xilinx’s human readable gate-level circuit description. Parsing XDL is much easier

than parsing VHDL because it is a simple, structural description of a circuit written

by an automated tool and not a language created for circuit designers to write

directly.

4.1.1 Automated Integration of Coverage Monitors Using
XDL

A key aspect of our ideal and approximated flows is the two CAD tool passes: the

design first must be synthesized, placed, and routed (ideally, with the ASIC tools)

for static timing analysis to determine likely critical paths of the ASIC version;

then this design is instrumented for coverage and processed a second time by the

FPGA tools to create the emulation version. Accordingly, to automate the flow, we

need a mechanism to extract the output from the first step, add instrumentation,

and then input this into the FPGA tools for the second step.

49

FPGA
Design

(VHDL)

Synthesize with
FPGA Tools

(Physical FPGA
Description)

Perform
Timing Analysis
(Critical Paths)

Generate
Coverage
Monitors
(VHDL)

Convert to Xilinx
Description
Language

(XDL)

Generate
Structural

Description of
Design Using

XDL to VHDL
Converter
(VHDL)

Synthesize with
FPGA Tools

(Bitfile)

Test with
FPGA Prototype
(Path Coverage)

Figure 4.1: Toolflow used in this thesis to automatically add path coverage
monitors to an FPGA design. Each stage’s output is shown in parenthe-
ses.

50

Xilinx provides unofficial support for an interface to export their proprietary

Native Circuit Description (NCD) files to a human-readable XDL file in terms of

their fundamental FPGA primitives and the nets that connect them. This allows de-

signs to be imported and exported freely between the major FPGA synthesis stages:

mapping, placement and routing. However, in recent versions of the Xilinx tools,

the mapping and placement stages have been integrated, making import/export

after mapping but before placement impossible. In these versions, it is possible to

export a placed description and discard the placement information, but there is no

way to pass a mapped-but-unplaced description to the Xilinx placer.

XDL can describe an unplaced, a placed-but-not-routed, or a placed-and-

routed physical description of a circuit on a Xilinx FPGA. These XDL files are

composed of instances which represent the Xilinx building blocks such as slices,

input/output buffers, DSPs and Block Rams (BRAMs), and nets which describe

how they are connected together. Listing 4.1 shows a sample instance with net

connections for a combinational slice which implements the A5 ·A6 function in the

A lookup table (described by the slice’s A6LUT attribute).

We use this netlist information to generate an equivalent VHDL description

of the XDL file alongside additional monitoring logic. This new VHDL descrip-

tion will be functionally equivalent to the original design but will include our

coverage monitors. This task is made possible by instantiating Xilinx FPGA prim-

itives through the VHDL libraries provided by Xilinx. However, in most cases the

XDL describes the FPGA primitives differently than can be directly instantiated in

51

VHDL. For example, XDL describes combinational logic in terms of lookup table

attributes within a slice instance, but the Xilinx libraries must instantiate slices

in terms of their components (such as lookup tables, muxes, and carry chains).

Similarly, the BRAM primitives that XDL describes include pins which are held at

GND or VCC but the BRAM instances that can be instantiated in VHDL only in-

clude ports which are used. For example, a RAMB18X2SDP instance’s RDADDR

and WRADDR vectors are 6 signals wider as described in XDL than can be in-

stantiated in VHDL. These differences are further described in Section 4.2.

In general, this process is fairly mechanical. However, it requires careful

analysis to ensure that each instance is converted correctly. We used an industrial

formal equivalence tool to ensure that the VHDL description generated from the

XDL was equivalent to the original circuit.

4.2 XDL to VHDL Converter

After converting our placed-and-routed NCD to XDL as discussed in Sec-

tion 4.1.1, we found that the XDL contained fourteen types of instances. Ideally,

converting these XDL instances to the Xilinx VHDL components would be triv-

ial but as shown in Table 4.1, this is not often the case; three of these fourteen

XDL components are identical to their VHDL counterpart (shown as “No Changes

Required”) but nine differ marginally (shown as “Attribute Translation”, “Fixed

Location” and “Ports Offset”) and two differ greatly (shown as “Composed of

Many VHDL Instances”). The techniques for converting these classes of XDL

instances are described in Sections 4.2.2 through 4.2.7.

52

1 inst "ddrsp0.ddrc0/ddrc/ddrc/dr.refctr_3" "SLICEL",
2 placed CLBLM_X1Y87 SLICE_X1Y87,
3 cfg "
4 // shared slice attributes
5 CEUSED::#OFF // no chip enable
6 CLKINV::CLK // clock is not inverted
7 COUTUSED::#OFF // carry chain Cout is not used
8 PRECYINIT::#OFF // carry chain Cin is not used
9 REVUSED::#OFF // no reverse set/reset signal

10 SRUSED::#OFF // no set/reset signal
11 SYNC_ATTR::ASYNC // has asynchronous reset and clear
12
13 // attributes for lookup table (LUT) A
14 A5LUT::#OFF // slice is not in dual 5LUT mode
15 A6LUT:ddrsp0.ddrc0/ddrc/ddrc/ndr_refctr(0)1:#LUT:O6=(A5*A6)

// logic is (A5 and A6)
16 ACY0::#OFF // no AX pin passthrough or 5LUT needed
17 AFF:ddrsp0.ddrc0/ddrc/ddrc/dr.refctr_0:#FF // flip-flop (FF

) is enabled
18 AFFINIT::INIT0 // initial value of FF is ’0’
19 AFFMUX::O6 // input to FF is output of 6LUT
20 AFFSR::SRLOW // set/reset signal in normal mode
21 AOUTMUX::#OFF // no additional AMUX signal needed
22 AUSED::#OFF // output pin which bypasses FF is not used
23 ’;
24
25 net "ddrsp0.ddrc0/ddrc/ddrc/ndr_refctr_share0000(0)" ,
26 outpin "ddrsp0.ddrc0/ddrc/ddrc/Madd_ndr.refctr_share0000_cy

(3)" AMUX ,
27 inpin "ddrsp0.ddrc0/ddrc/ddrc/dr.refctr_3" A5 ,
28 ; // other inpins are omitted for brevity
29
30 net "ddrsp0.ddrc0/ddrc/N63" ,
31 outpin "ddrsp0.ddrc0/ddrc/ddrc/dr.refctr_10" A ,
32 inpin "ddrsp0.ddrc0/ddrc/ddrc/dr.refctr_3" A6
33 ; // other inpins are omitted for brevity

Listing 4.1: Representation of a SLICEL instance in XDL along with its nets.

53

1 -- ddrsp0.ddrc0/ddrc/ddrc/dr.refctr_3 logic=(A5*A6)
2 ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_3_lut_A6_output <= (

ddrsp0_ddrc0_ddrc_ddrc_ndr_refctr_share0000(0) and
ddrsp0_ddrc0_ddrc_N63);

3
4 -- SLICEL ddrsp0.ddrc0/ddrc/ddrc/dr.refctr_3
5 ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_0_inst : FDCPE
6 generic map (
7 INIT => ’0’) -- initial value of FF is ’0’
8 port map (
9 Q => ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_0,

10 C => clkml, -- clock is chip-level clkml signal
11 CE => ’1’, -- chip is always enabled
12 D => ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_3_lut_A6_output,
13 CLR => ’0’, -- never in clear state
14 PRE => ’0’ -- never in preset state
15);

Listing 4.2: VHDL snippet translated from XDL shown in Listing 4.1

4.2.1 Automatically Generating Java Objects from Xilinx
Libraries

RapidSmith object definitions are automatically generated from the VHDL li-

braries included with a default Xilinx installation using a Python script devel-

oped for this research. Those object definitions allow instances that are identically

described in XDL and the Xilinx VHDL libraries to be converted without pro-

grammer intervention. Additionally, these definitions provide a basis for a user

to describe how unknown XDL instances can be converted to equivalent VHDL

instances. Official Xilinx documentation for these VHDL instances can be found

in the Virtex-5 Libraries Guide for HDL Designs [72].

54

4.2.2 XDL Instances Requiring No Changes

Three XDL instances, DCM_ADV, RAMB36_EXP and TIEOFF, can be directly

converted to VHDL instances by the XDL to VHDL script because they do not

require any of the special handling described in Table 4.1.

4.2.3 XDL Instances Requiring Simple Attribute Name
Translation

Some XDL instances types, such BSCAN and BUFG, are very nearly directly com-

patible with their VHDL counterparts. In these cases, they simply require a simple

attribute name translation. For example, the BUFG’s input port is named I in XDL,

but I0 in the VHDL library (though in general they are not this trivial). The com-

plete list of the seven XDL instance types that require attribute translation can seen

in the “Attribute Translation” column of Table 4.1.

4.2.4 XDL Instances Requiring Fixed Locations

The XDL to VHDL converter tries to ensure that top-level signal and instance

names for its generated VHDL will be identical to those in the original design.

This allows the design’s constraint files (which, among other things, specify where

individual pieces of logic should be placed and specific timing requirements for

nets) to be equally applicable to the original design and the converter-generated

VHDL. However, some XDL instances must be constrained to specific locations

even if this behaviour has not been specified in the constraints file. This can

55

Table 4.1: Characteristics of XDL Instances

Instance
No

Changes
Required

Attribute
Translation

Fixed
Location

Ports
Offset

Composed
of Upper
& Lower
VHDL

Instances

Composed
of Many
VHDL

Instances

BSCAN 3 3

BUFG 3

DCM_ADV 3

IDELAYCTRL 3

ILOGIC 3 3

IOB 3 3

IODELAY 3

OLOGIC 3 3

RAMB18X2 3 3 3

RAMB18X2SDP 3 3 3

RAMB36_EXP 3

SLICEL 3

SLICEM 3

TIEOFF 3

56

be because those locations may have direct connections to other instances (e.g.,

IDELAYCTRL), logic may have been added which relies on predetermined bus

positions (e.g., BSCAN) or because that location has a known delay to another loca-

tion (e.g., IODELAY). These three XDL instance types have their other behaviours

documented in Table 4.1.

4.2.5 XDL Instances with Ports Offset Compared to VHDL
Instances

Some XDL instances such as RAMB18X2SDP and RAMB18X2 have their port

values offset relative to the VHDL instances (e.g., the signal with index six of

the RDADDR and WRADDR signals of the RAMB18X2SDP module index corre-

spond with the port at index zero of the VHDL instance.

4.2.6 XDL Instances Composed of Upper and Lower VHDL
Instances

These XDL instances are composed of two VHDL instances of the same type. This

is done because these hardware primitives are fracturable (e.g., BRAM primitives

such as RAMB18X2 and RAMB18X2SDP can be 36 Kb in size, or split into two

separate 18 Kb BRAMs). These instances add a suffix, usually ‘_U’ or ‘_L’, to the

attribute names to distinguish between the upper and lower instances.

57

4.2.7 XDL Instances Composed of Many VHDL Instances

Some XDL instances types such as ILOGIC, IOB, OLOGIC, SLICEL and

SLICEM are composed of many different VHDL instances. For example, a

SLICEL instance is composed of 4 six-input LUTs, 4 flip-flops, 3 dedicated mul-

tiplexers, a 4-bit carry chain logic block, and sufficient routing to connect these

blocks in various ways. The configuration for the blocks in the SLICEL and the

description of the instance’s interconnect is described by XDL attributes, but the

behaviour of these attributes is undocumented and often not intuitive. The com-

plicated nature of these XDL instances posed a significant challenge during the

implementation of the XDL to VHDL converter.

4.3 Coverage Monitor Instrumentation

The critical-path coverage monitors implemented for this dissertation are

very similar to the idealized coverage monitors described in Section 3.3. A sample

coverage monitor instantiation is shown in Listing 4.3. This monitor instruments a

path which begins at the Q output of lookup table A for the slice instance previously

shown in the XDL and VHDL snippets of Listings 4.1 and 4.2.

When the sensitization condition (SENSITIZATION_CONDITION(1600))

is satisfied, we know that a transition on the input (INPUT(0)) will be reflected

along every circuit connection between every element in the targeted path. This

transition, since it begins at the head of the critical path and propagates through

every element along the critical path, reflects the worst-case delay for that path.

58

1 -- Coverage Monitor Instantiation
2 pathCoverageUnit1600 : PathCoverageUnit
3 -- id=126291 delay=2.255
4 generic map (WIDTH => 1)
5 port map (
6 INPUT(0) => ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_0, -- net

name is ddrsp0.ddrc0/ddrc/ddrc/dr.refctr_0
7 CLK => clkml,
8 RESET => gpioi_din(8), -- coverage can be reset with a

pushbutton
9 COVERED => TIMING_PATH_COVERAGE(1600),

10 TRIGGER => TRIGGER(1600),
11 SENSITIZATION_CONDITION => SENSITIZATION_CONDITION

(1600)
12);
13
14 SENSITIZATION_CONDITION(1600) <= ((((not (’0’) and (

ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_3 and not
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_0))) xor ((not (’1’)
and (ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_3 and not
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_0))))) and ((((not
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_5 and (
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_7 and (not
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_4 and (not
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_2 and (
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_6 and (’0’))))))) xor
((not ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_5 and (
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_7 and (not
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_4 and (not
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_2 and (
ddrsp0_ddrc0_ddrc_ddrc_dr_refctr_6 and (’1’))))))))

15);

Listing 4.3: Sample coverage monitor for VHDL instance shown in
Listing 4.2

59

Once this has occurred at least once, we mark the path as exercised. The path will

remain covered until explicitly reset by the tester.

Obviously the logic for the coverage monitor sensitization function could

be optimized, particularly where signals have been ANDed with constant ‘0’ or ‘1’

values. However, we found that the FPGA CAD tools easily optimized the unopti-

mized logic function. As such the overall circuit quality was identical regardless of

the quality of the sensitization function, though admittedly, this may affect overall

CAD tool runtime.

4.4 Reading Coverage Information Off-Chip

We used Xilinx’s logic analyzer, Chipscope [71], to read our coverage in-

formation off-chip. The logic analyzer data is composed of the coverage flags, as

well as the current processor cycle count. This allows us to pinpoint the processor

cycle at which an individual coverage point is achieved.

In order to easily gather coverage information from all the coverage monitors,

we added an additional ‘trigger’ signal to the monitors which would activate for

a single clock cycle once the coverage monitor achieved coverage. The OR of

all coverage monitor trigger signals acted as the trigger for the logic analyzer;

whenever the trigger signal is high, the coverage and current clock cycle needs to

be recorded by the analyzer.

60

4.5 Chapter Summary

This chapter presented the toolflow we used to automatically instrument

a hardware design with critical-path coverage monitors. We began by detailing

the key differences between the ideal and implemented toolflows, and describing

the reasons why these approximations are appropriate for our research. We then

described the XDL to VHDL converter used in our toolflow and discussed the

differences discovered between the XDL and VHDL instances when describing

the same FPGA primitive. We showed the VHDL used to implement a coverage

monitor for a given critical path and describe how the Xilinx logic analyzer was

used to read coverage information off-chip.

61

Chapter 5

Results

This chapter presents the test setup used to validate the coverage monitor system.

We describe the SoC design targeted by our coverage monitors, and the benchmarks

evaluated by these monitors. We discuss the area and frequency overheads of

these monitors and show how the coverage achieved by benchmarks varies during

benchmark execution.

5.1 Test Setup & Benchmarks

The system-on-chip which we have used is composed of the open-source

LEON3 SPARCv8 processor, provided by Aeroflex Gaisler, and various peripher-

als supplied by the open-source community. The system configuration is detailed

in Table 5.1. It is roughly comparable to a netbook or tablet device and can be

fabricated to 0.13 µm ASIC technology at a speed of 400 MHz. Its maximum oper-

62

Table 5.1: LEON3 Configuration

System Frequency 70 MHz

Hardware Multiplier 5-cycle (pipelined)

Hardware Divider 35-cycle (pipelined)

Floating-point Unit IEEE-754 compliant GRFPU

3-cycle add/subtract/multiply (pipelined)

16-cycle divide (not pipelined)

24-cycle square root (not pipelined)

Instruction Cache 16 kB; 2-way set associative; 32B lines; LRU

Data Cache 8 kB; 1-way set associative; 16B lines; LRU

MMU Combined instruction/data TLB

Incremental replacement scheme

8 TLB entries; 4 kB page size

DDR2 SDRAM Controller 190 MHz; 130 ns tRFC

DDR2 SDRAM Capacity 256 MB

Ethernet 100 Mbit/s

SVGA 1024x768 resolution

ating frequency on our Virtex-5 XC5VLX110T FPGA device is 70 MHz, a typical

frequency for FPGA-based designs. The processor is fast enough to boot Linux

and run the X11 windowing system, the board can see be seen booting Linux in

Figure 5.1.

We selected the five IP blocks shown in Table 5.2 to instrument for timing-

63

Figure 5.1: LEON3 SoC running on a Virtex-5 FPGA shown booting Linux.

64

Table 5.2: IP Blocks under Test

IP Block
Lines of

RTL
Description

ddr2spa 1924 DDR2 Controller

gwfpwx Netlist Only IEEE-754 Compliant FPU

iu3 3131 7-stage Pipelined Integer Unit

mmu 1929 Memory Management Unit

mul32 24477 (Un)signed 32-bit Multiplier

path coverage. All IP blocks were available in VHDL except for the floating-point

unit (FPU) which was only available in a netlist format. One advantage of the

XDL-based coverage monitor integration (as opposed to integrating monitors at

the RTL level) is that it allows us to instrument designs that do not have their

source available.

5.2 Results

5.2.1 Coverage

Path coverage results for the five IP blocks shown in Table 5.2 were obtained for

the top 2048 most critical paths, as determined by the Xilinx Timing Analyzer, for

the tests shown in Table 5.3. These tests were chosen to be representative of what is

generally run during the post-silicon stage of testing: various long-running system-

65

Table 5.3: Post-Silicon Validation Tests Used in Experiments

Name Description

dhry Dhrystone [67] is a synthetic integer benchmark used to calculate
general processor performance that does not stress cache
performance

hello The classic ‘Hello, World’ program consisting of a single printf
statement

linux Booting an embedded operating system (built using Buildroot
2012.02 with version 3.0.4 of the Linux kernel)

random A series of 10,000 random programs generated by Csmith [74]

stanford Eight small benchmarks gathered by John Hennessy and modified
by Peter Nye, including integer matrix multiply, sorting, and
permutation algorithms [26]

systest Pre-silicon system-level tests for the LEON3 processor, supplied
by Aeroflex Gaisler

level tests, random tests, and application software. Included for comparison is the

set of pre-silicon system-level tests supplied by Gaisler for the LEON3 processor.

Table 5.4 shows the coverage achieved for each test on each block, and Fig-

ures 5.2–5.6 plot the coverage obtained over time on these blocks. The dominant

overall trend is that more cycles translate into better coverage, hence emphasizing

the value of long-running post-silicon tests. For example, the linux benchmark

tends to achieve the highest coverage, but the long-running random benchmark

gradually catches up. We also see that coverage often comes in bursts, when an

66

application starts a new phase of computation that performs different operations.

There are also some peculiarities, e.g., the random benchmark does particularly

well on the DDR controller. We believe this is because the benchmark is loading

in a series of programs one-after-another from memory, so it exercises the DRAM

extensively very early on. Similarly, the stanford benchmark does particularly

well on the multiplier, presumably due to the matrix multiplication program in the

benchmark suite. The FPU core has particularly low coverage for all tests. This is

because many of the benchmarks used do not focus on floating-point arithmetic,

and due to the complexity of the core, the number of elements in a timing path

is very large (the average number of elements is 24.2, as shown in Table 5.6). It

is interesting to note that this is the only test in which the pre-silicon systest

outperforms all other tests. For a tester, this indicates that it would be useful to

create a constrained random test based on the pre-silicon test. These results also

confirm past work which indicates that testing floating-point units is very difficult,

and that formal verification may be the best way of verifying such a core [25, 31]

Beyond overall coverage, the monitors give detailed path-level coverage in-

formation — we know exactly which paths were covered, and when. For example,

an obvious question a validation engineer would ask is whether any test is domi-

nated by the others. The coverage monitors allow us to answer this question. For

example, Table 5.5 shows, for each test, how many paths were covered by that test,

but not by some other test. For example, looking at the first row, second column,

we see that dhry covered 945 paths that hello did not. Conversely, in the second

row, first column, hello covered 24 paths that dhry did not. The last row and

67

Figure 5.2: Coverage achieved over time for the DDR controller (ddr2spa).

Figure 5.3: Coverage achieved over time for the floating-point unit (grfpwx).

68

Figure 5.4: Coverage achieved over time for the integer unit (iu3).

Figure 5.5: Coverage achieved over time for the memory management unit
(mmu).

69

Table 5.4: Path Coverage Results (2048 Most Critical Paths)

IP Core dhry hello linux random stanford systest

DDR Controller 807 785 811 807 831 824

FPU 3 0 0 0 1 6

Integer Unit 225 135 330 257 231 201

MMU 1210 508 1431 1351 1288 1063

Multiplier 175 71 271 325 334 247

column compare each test to all the others. For example, the last row, first column

shows that all the tests except for dhry covered 556 paths that dhry missed. Sim-

ilarly, the first row, last column shows that linux, random and systest all

covered paths which all other tests missed. In practice, this information is invalu-

able because it gives testers insight into the effectiveness of their tests and allows

them to prioritize their test suites accordingly.

5.2.2 Area Overhead

Table 5.6 shows the area overhead of our instrumentation, in FPGA LUTs. It is

also useful to visualize the area overhead per monitored path as the number of

monitored paths increases. We generated monitors for 512, 1024, 1536, as well as

2048 paths, with the area overheads shown in Figure 5.7. From the figure, we see

that the area per monitored path is roughly constant, as predicted. Indeed, it tends

70

Table 5.5: Coverage Achieved by One Test but not by Another

...which was not achieved by this test

dh
ry

he
llo

lin
ux

ra
nd

om

st
an

fo
rd

sy
st

es
t

A
ll

O
th

er
s

Coverage
achieved
by this
test...

dhry 0 945 7 24 56 366 0

hello 24 0 2 1 9 110 0

linux 443 1359 0 185 263 594 101

random 368 1266 93 0 132 517 30

stanford 301 1175 72 33 0 458 10

systest 270 935 62 77 117 0 14

All 556 1477 120 212 311 652

to drop off slightly, due to a combination of shorter paths as we monitor less critical

paths, and greater sharing and optimization between paths being monitored. This

shows that we can always scale back the number of paths monitored if emulation

area overhead becomes problematic or conversely, we can scale up the number of

monitored paths to make use of unused FPGA resources.

71

Figure 5.6: Coverage achieved over time for the multiplier (mul32).

Figure 5.7: Area overhead per path shown as the number of targeted paths
increases.

72

Table 5.6: Area Overhead to Monitor 2048 Critical Paths

IP Block
Average Path Length
(Xilinx primitives)

Area Overhead
(Slices)

DDR Controller 2.5 2654

FPU 24.2 2580

Integer Unit 7.4 1430

MMU 3.2 1946

Multiplier 14.6 2918

5.2.3 Frequency Overhead

The delay overhead imposed by our coverage monitors, although small, has been

quantified in Table 5.7, ranging from no overhead to 1.94% . This overhead is

due to the increased fanout on monitored signals. We believe that increasing the

effort level of the Xilinx place and route tools would decrease this overhead. Al-

ternatively, monitoring one fewer element along a timing path should reduce the

frequency overhead further at a cost of slightly overestimating coverage. It is im-

portant to note that these monitors are much less costly on an FPGA than on an

ASIC because FPGA interconnect is typically fully buffered [42].

73

Table 5.7: Frequency Overhead for 2048 Monitors

IP Block
Instrumented

Maximum
System Frequency

None 70.12 MHz

DDR Controller 69.84 MHz

FPU 68.64 MHz

Integer Unit 69.24 MHz

MMU 70.19 MHz

Multiplier 70.18 MHz

5.3 Chapter Summary

In this chapter, we demonstrated the feasibility of coverage monitors for

the emulated version of a small but industrial-sized System-on-Chip design for a

post-silicon-style test suite (as well as with pre-silicon tests provided by Aeroflex

Gaisler, the SoC’s industrial backer). We show how coverage is achieved over time

on each IP core for every test, and show that in no case did the coverage achieved

by a single test dominate all other tests. In addition, we presented the area and

frequency overheads for these coverage monitors on our design.

74

Chapter 6

Conclusion

6.1 Dissertation Summary

This thesis presents a novel coverage-monitor-based approach for assessing

the quality of post-silicon timing validation tests based on instrumenting a pre-

silicon emulation version of the design. Our approach does not require a fabricated

chip before beginning the creation and evaluation of post-silicon tests. Quantita-

tively evaluating post-silicon tests is important because it reduces the number of

fabrication iterations in the post-silicon testing cycle and reduces the likelihood

of emergency hotfixes or product recalls due to design errors because it allows

post-silicon test quality to be increased with respect to an objective measurement.

In our experiments, we demonstrate the ability of our approach to measure

the coverage achieved by a variety of typical post-silicon validation tests on a

75

non-trivial System-on-Chip design. The timing overhead (impacting the speed of

emulation) of the approach is small, between no overhead and 1.94%, depending on

the IP core instrumented, and the area overhead is controllable, being proportional

to the number of paths monitored. In general, the coverage achieved for our test

suite was low, indicating that the tests evaluated are not very well suited for testing

ASIC timing paths. Alongside sets of well-known software packages such as these,

sets of constrained-random tests are usually designed to specifically exercise the

critical paths in the system. The coverage information itself is useful because it

shows which parts of the tests achieved coverage and provides a foundation for

generating constrained random or directed tests that make use of this information.

6.2 Limitations

In this section, we identify a number of limitations of the research described

in this dissertation. For each limitation, we propose how it could be addressed in

future work.

6.2.1 Reliance on XDL

Ideally, this research would make use of a VHDL or Verilog parser to identify

possible coverage points as well as integrate coverage monitors into the design.

However, there are no robust open-source parsers of this kind available to the

academic community. If such a tool were made available, it could easily be used

to extend this body of work to coverage monitors integrated at the HDL level.

Most importantly, it would allow this research to easily target any FPGA vendor’s

76

products. This research, as it stands, is reliant on Xilinx tools to provide a particular

circuit-level description which is only supported by Xilinx and which, due to its

unofficial status, may not be supported in the future.

In industry, however, an open-source parser would not be necessary. If a

CAD provider wanted to design a tool to include coverage monitors into emulated

designs, they could make use of their existing infrastructure for interacting with

HDL.

6.2.2 Toolflow

Our current toolflow has a few limitations which can be addressed by future work.

Firstly, the flow only has support for the Virtex-5 series of FPGAs. While it would

not be difficult to port the existing flow to another Xilinx FPGA, it would be ideal

if it could be generalized to support an architecture file that would describe the

FPGA architecture (e.g., how to map XDL instances to VHDL instances). Unless

the generated XDL instances fundamentally change1, an architecture file would

allow FPGAs which are similar to current FPGAs to be supported without requiring

changes in the XDL-to-VHDL converter itself.

Furthermore, the generated VHDL description is in a single file. For our

trivial example bundled with the converter, the generated VHDL description is

only 508 lines, however the generated VHDL for the LEON3 SoC is over 200,000

lines, resulting in longer synthesis times than normal. Dividing the VHDL descrip-

1While it is possible for Xilinx to change the XDL instances generated by their xdl tool, it is
unlikely given that these instances have remained stable for the last ten years.

77

tion into different files based on the hierarchy inferred from the XDL description

would reduce file sizes and decrease CAD runtime, although it would complicate

the converter and make it more difficult to debug designs which were generated

incorrectly.

6.2.3 Register Retiming

Some circuit optimizations, such as register retiming, cause the circuit paths de-

scribed by the ASIC RTL (before optimization) and the final circuit description

(after optimization) to differ. If the circuit used for FPGA emulation is generated

from the ASIC RTL description, the paths described by the STA tool will not be the

same as those on the FPGA. One possible solution to this problem is to generate

the FPGA circuit from the post-optimization ASIC description, similar to what

was done in this thesis. However, to reduce tool runtime and increase circuit perfor-

mance, it would be ideal to synthesize the FPGA description from behavioural RTL

and not from a structural ASIC description. Another possible solution is to modify

the coverage monitors to measure coverage across FPGA register boundaries when

ASIC retiming is performed, however this would require additional flip-flops and

a way to map post-optimization paths back to paths in the RTL. Retiming of the

FPGA registers can be done without risk of affecting coverage because the retim-

ing will only be done when it will not affect the top-level functional behaviour of

the circuit.

78

6.2.4 Non-Determinism

Non-determinism during silicon validation is a major detriment to effective testing

because it can make it difficult to identically reproduce specific test cases. To

mitigate non-determinism, post-silicon tests are usually ran many times over a long

period of time. In our case, non-determinism makes it more difficult to correlate

coverage achieved during FPGA emulation with expected coverage on the ASIC.

During this research we found that the final coverage values achieved by a given

test did not vary, however, we did find there to be some small variation in the cycle

count during which specific coverage points were achieved while booting Linux.

6.2.5 Area Optimizations

There are several straightforward but time consuming optimizations that could

be made to our current toolflow to reduce area overhead. These optimizations

include compression of coverage information, the use of lightweight monitors

accompanied with a controller to unify data and handle off-chip data transfer, or

the use of lossy sensitization functions. If recording the specific clock cycle in

which coverage is achieved is not critical, this additional area overhead, albeit

small, could be eliminated.

6.3 Future Work

We believe that this dissertation shows that coverage monitors in emulation

systems can be used to complement post-silicon validation without additional over-

79

head in the final product. However, there is little research into the development of

coverage metrics specifically tailored for post-silicon validation (particularly those

which can be effectively implemented on an emulation system). Given the value

that coverage monitors in emulation can provide at low cost, it would be useful to

identify coverage points appropriate for post-silicon validation that could be used

to complement the functional coverage points currently specified by designers.

Specifically for timing validation, there are several promising avenues for

further research. First, it would be useful to prune the paths reported by the static

timing analyzer for functional reachability. This would make the coverage metric

more accurate and reduce the number of coverage monitors which have sensitiza-

tion conditions that will never be satisfied. Secondly, the current coverage monitor

implementation provides a pessimistic view of coverage, since there are conditions

under which the worst-case delay is experienced but the sensitization function

is not satisfied. It may be useful to develop an alternative coverage monitor that

provides a more optimistic view of coverage, with the true coverage lying some-

where between. Thirdly, our current monitors record only whether a path has been

sensitized; additional monitors could be added to record whether the result is ob-

servable. Finally, coverage information could be used as a feedback mechanism to

help develop better tests, e.g., via genetic algorithms.

6.4 Public Distribution

The XDL translation scripts have been made publicly available and can be

found at http://ece.ubc.ca/~kyleb/files/xdl_translation_scripts.zip.

80

http://ece.ubc.ca/~kyleb/files/xdl_translation_scripts.zip

Bibliography

[1] A. Adir, A. Nahir, A. Ziv, C. Meissner, and J. Schumann. Reaching
coverage closure in post-silicon validation. In Proceedings of the 6th
International Haifa Verification Conference (HVC), pages 60–75. Springer,
2011. → pages 20, 30

[2] Aeroflex Gaisler. LEON3 multiprocessing CPU core.
http://www.gaisler.com/doc/leon3_product_sheet.pdf, 2012. Accessed
July 2012. → pages 12

[3] Altera. SignalTap II embedded logic analyzer.
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf, 2012.
Accessed May 2012. → pages 7, 21

[4] D. B. Armstrong. On finding a nearly minimal set of fault detection tests for
combinational logic nets. Transactions on Electronic Computers, EC-15(1):
66–73, February 1966. → pages 39

[5] K. Balston, A. J. Hu, S. J. E. Wilton, and A. Nahir. Emulation in post-silicon
validation: it’s not just for functionality anymore. In Proceedings of the
2012 High Level Design Validation and Test Workshop (HLDVT) [invited
paper]. IEEE, 2012. To be published. → pages iv

[6] K. Balston, M. Karimibiuki, A. J. Hu, A. Ivanov, and S. J. Wilton.
Post-silicon code coverage for multiprocessor system-on-chip designs.
Transactions on Computers, 99, 2012. → pages iii, 31

[7] P. Bastani, B. N. Lee, L.-C. Wang, S. Sundareswaran, and M. S. Abadir.
Analyzing the risk of timing modeling based on path delay tests. In
Proceedings of the 2007 International Test Conference (ITC). IEEE, 2007.
→ pages 10

81

http://www.gaisler.com/doc/leon3_product_sheet.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf

[8] D. Belete, A. Razdan, W. Schwarz, R. Raina, C. Hawkins, and J. Morehead.
Use of DFT techniques in speed grading a 1 GHz+ microprocessor. In
Proceedings of the 2002 International Test Conference (ITC), pages
1111–1119. IEEE, 2002. → pages 24

[9] B. Bentley. Validating the Intel Pentium 4 microprocessor. In Proceedings
of the 38th Design Automation Conference (DAC), pages 244 – 248, 2001.
→ pages 7

[10] J. Bhasker and R. Chadha. Static timing analysis for nanometer designs: a
practical approach. Springer Verlag, 2009. → pages 21

[11] T. Bojan, M. Arreola, E. Shlomo, and T. Shachar. Functional coverage
measurements and results in post-silicon validation of Core 2 Duo family. In
Proceedings of the 2007 International High Level Design Validation and
Test Workshop (HLVDT), pages 145–150. IEEE, 2007. → pages 22, 30

[12] T. Chaney and C. Molnar. Anomalous behavior of synchronizer and arbiter
circuits. Transactions on Computers, 100(4):421–422, 1973. → pages 35

[13] A. C. L. Chiang, I. S. Reed, and A. V. Banes. Path sensitization, partial
boolean difference, and automated fault diagnosis. Transactions on
Computers, 21(2):189–195, February 1972. → pages 39

[14] T. Coe, T. Mathisen, C. Moler, and V. Pratt. Computational aspects of the
Pentium affair. Computational Science & Engineering, 2(1):18–30, 1995.
→ pages 2

[15] B. Cory, R. Kapur, and B. Underwood. Speed binning with path delay test in
150-nm technology. Design & Test of Computers, 20(5):41–45, 2003. →
pages 24

[16] DailyTech. Understanding AMD’s TLB processor bug.
http://www.dailytech.com/Understanding++AMDs+TLB+Processor+
Bug/article9915.htm, 2007. Accessed June 2012. → pages 2

[17] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz. CPU DB:
recording microprocessor history. Communications of the ACM, 55(4):
55–63, April 2012. → pages 8

[18] S. Devadas, A. Ghosh, and K. Keutzer. An observability-based code
coverage metric for functional simulation. In Proceedings of the 1996

82

http://www.dailytech.com/Understanding++AMDs+TLB+Processor+Bug/article9915.htm
http://www.dailytech.com/Understanding++AMDs+TLB+Processor+Bug/article9915.htm

International Conference on Computer-Aided Design (ICCAD), pages
418–425. IEEE Computer Society, 1997. → pages 28

[19] R. Drechsler. Advanced formal verification. Springer, 2004. → pages 20

[20] EETimes. Intel finds design error in chip. http://www.eetimes.com/
electronics-news/4212699/Intel-finds-design-error-in-chip, 2011.
Accessed June 2012. → pages 2

[21] F. Fallah, S. Devadas, and K. Keutzer. OCCOM-efficient computation of
observability-based code coverage metrics for functional verification.
Transactions on Computer-Aided Design, 20(8):1003–1015, 2001. → pages
28

[22] A. Goel and W. Lee. Formal verification of an IBM CoreConnect processor
local bus arbiter core. In Proceedings of the 37th Design Automation
Conference (DAC), pages 196–200. ACM, 2000. → pages 20

[23] J. Goodenough and R. Aitken. Post-silicon is too late: avoiding the $50
million paperweight starts with validated designs. In Proceedings of the
47th Design Automation Conference (DAC), pages 8–11. ACM/IEEE, 2010.
→ pages 7

[24] M. Gschwind, V. Salapura, and D. Maurer. FPGA prototyping of a RISC
processor core for embedded applications. Transactions on Very Large Scale
Integration (VLSI) Systems, 9(2):241 –250, April 2001. → pages 21

[25] J. Harrison. Floating-point verification. Formal Methods, pages 631–631,
2005. → pages 67

[26] J. Hennessy and P. Nye. Stanford integer benchmarks. 1988. → pages 66

[27] R. B. Hitchcock, G. L. Smith, and D. D. Cheng. Timing analysis of
computer hardware. IBM Journal of Research and Development, 26(1):
100–105, January 1982. → pages 21

[28] E. Hung and S. J. E. Wilton. Scalable signal selection for post-silicon debug.
Transactions on Very Large Scale Integration (VLSI) Systems, (99):1, 2012.
→ pages 5

[29] J. Hurtarte, E. Wolsheimer, and L. Tafoya. Understanding fabless IC
technology. Newnes, 2007. → pages 6

83

http://www.eetimes.com/electronics-news/4212699/Intel-finds-design-error-in-chip
http://www.eetimes.com/electronics-news/4212699/Intel-finds-design-error-in-chip

[30] D. Josephson and B. Gottlieb. The crazy mixed up world of silicon debug.
In Proceedings of the 2004 Custom Integrated Circuits Conference (CICC),
pages 665 – 670, October 2004. → pages 21, 22

[31] R. Kaivola and N. Narasimhan. Formal verification of the Pentium 4
floating-point multiplier. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), page 20. IEEE Computer Society,
2002. → pages 67

[32] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav,
A. Slobodová, C. Taylor, V. Frolov, and E. Reeber. Replacing testing with
formal verification in Intel Core i7 processor execution engine validation. In
Proceedings of the 2009 Conference on Computer Aided Verification (CAV),
pages 414–429. Springer, 2009. → pages 20

[33] M. Karimibiuki, K. Balston, A. J. Hu, and A. Ivanov. Post-silicon code
coverage evaluation with reduced area overhead for functional verification
of SoC. In Proceedings of the 2011 High Level Design Validation and Test
Workshop (HLDVT), pages 92 –97. IEEE, November 2011. → pages iii, 31

[34] C. Kern and M. Greenstreet. Formal verification in hardware design: a
survey. Transactions on Design Automation of Electronic Systems
(TODAES), 4(2):123–193, 1999. → pages 20

[35] J. Keshava, N. Hakim, and C. Prudvi. Post-silicon validation challenges:
how EDA and academia can help. In Proceedings of the 47th Design
Automation Conference (DAC), pages 3–7. ACM, 2010. → pages 21

[36] T. Kirkpatrick and N. Clark. PERT as an aid to logic design. IBM Journal of
Research and Development, 10(2):135–141, 1966. → pages 21

[37] B. A. Krishna, A. Sullerey, and A. Jain. Formal verification of an ASIC
ethernet switch block. In Proceedings of the 2010 Conference on Formal
Methods in Computer-Aided Design (FMCAD), pages 13–20. IEEE, 2010.
→ pages 20

[38] A. Krstić and K. Cheng. Delay fault testing for VLSI circuits, volume 14.
Springer, 1998. → pages 23

[39] H. Krupnova and G. Saucier. FPGA-based emulation: industrial and custom
prototyping solutions. Field-Programmable Logic and Applications: The
Roadmap to Reconfigurable Computing, pages 68–77, 2000. → pages 15

84

[40] Y. Kukimoto, M. Berkelaar, and K. Sakallah. Static timing analysis. Logic
Synthesis and Verification, pages 373–401, 2002. → pages 21

[41] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings. Rapid
prototyping tools for FPGA designs: RapidSmith. In Proceedings of the
2010 International Conference on Field-Programmable Technology (FPT).
IEEE, December 2010. → pages 49

[42] G. Lemieux, E. Lee, M. Tom, and A. Yu. Directional and single-driver wires
in FPGA interconnect. In Proceedings of the 2004 International Conference
on Field-Programmable Technology (FPT), pages 41–48. IEEE, 2004. →
pages 41, 73

[43] J. Levine, E. Stott, G. Constantinides, and P. Cheung. Online measurement
of timing in circuits: for health monitoring and dynamic voltage &
frequency scaling. In Proceedings of the 2012 Conference on
Field-Programmable Custom Computing Machines (FCCM), pages
109–116. IEEE, 2012. → pages 11

[44] M. Lin. Introduction to VLSI Systems: A Logic, Circuit, and System
Perspective. CRC Press, 2011. → pages 6

[45] P. Lisherness and K. Cheng. An instrumented observability coverage
method for system validation. In Proceedings of the 2009 High Level
Design Validation and Test Workshop (HLDVT), pages 88–93. IEEE, 2009.
→ pages 28

[46] X. Liu and Q. Xu. Trace signal selection for visibility enhancement in
post-silicon validation. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), pages 1338–1343, 2009. → pages 5

[47] S. L. L. Lu, P. Yiannacouras, R. Kassa, M. Konow, and T. Suh. An
FPGA-based Pentium in a complete desktop system. In Proceedings of the
2007 International Symposium on Field-Programmable Gate Arrays
(FPGA), pages 53–59. ACM/SIGDA, 2007. → pages 21

[48] G. Martin, J. Berrie, T. Little, D. Mackay, J. McVean, D. Tomsett, and
L. Weston. An integrated LSI design aids system. Microelectronics, 12(4):
18–22, 1981. → pages 21

[49] T. McLaurin. Creating structural patterns for at-speed testing: a case study.
Design & Test of Computers, (99):1, 2012. → pages 26

85

[50] T. McWilliams. Verification of timing constraints on large digital systems.
In Proceedings of the 17th Conference on Design Automation (DAC), pages
139–147. IEEE, 1980. → pages 21

[51] S. Mitra, S. A. Seshia, and N. Nicolici. Post-silicon validation opportunities,
challenges and recent advances. In Proceedings of the 47th Design
Automation Conference (DAC), pages 12–17. ACM, 2010. → pages 10, 22

[52] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38:114–117, April 1965. → pages 1

[53] A. Nahir, A. Ziv, and S. Panda. Optimizing test-generation to the execution
platform. In Proceedings of the 17th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 304 –309, February 2012. →
pages 7

[54] A. Nordstrom. Formal verification — a viable alternative to simulation? In
Proceedings of the 1996 International Verilog HDL Conference (IVC), pages
90–95. IEEE Computer Society, 1996. → pages 20

[55] A. Offutt and S. Lee. An empirical evaluation of weak mutation.
Transactions on Software Engineering, 20(5):337–344, 1994. → pages 27

[56] P. Patra. On the cusp of a validation wall. Design & Test of Computers, 24
(2):193–196, 2007. → pages 21

[57] D. Price. Pentium FDIV flaw — lessons learned. In Micro, volume 15,
pages 86 –88. IEEE, April 1995. → pages 2

[58] R. Riedlinger, R. Bhatia, L. Biro, B. Bowhill, E. Fetzer, P. Gronowski, and
T. Grutkowski. A 32 nm 3.1 billion transistor 12-wide-issue Itanium
processor for mission-critical servers. In Proceedings of the 2011
Solid-State Circuits Conference Digest (ISSCC), pages 84 –86. IEEE,
February 2011. → pages 1

[59] C. Rowen. Reducing SoC simulation and development time. Computer, 35
(12):29–34, 2002. → pages 15

[60] G. Schelle, J. Collins, E. Schuchman, P. Wang, X. Zou, G. Chinya, R. Plate,
T. Mattner, F. Olbrich, P. Hammarlund, R. Singhal, J. Brayton, S. Steibl, and
H. Wang. Intel Nehalem processor core made FPGA synthesizable. In
Proceedings of the 2010 International Symposium on Field-Programmable

86

Gate Arrays (FPGA), pages 3–12. ACM/SIGDA, 2010. → pages 8, 21, 22,
37

[61] B. Sprunt. The basics of performance-monitoring hardware. Micro, 22(4):
64 – 71, July/August 2002. → pages 30

[62] Tektronix. Clarus SoC post-silicon validation solution.
http://www.tek.com/embedded-instrumentation/
clarus-soc-post-silicon-validation-solution, 2012. Accessed July 2012.
→ pages 7, 22

[63] Tektronix. Clarus prototyper: multi-FPGA debug suite.
http://www.veridae.com/index.php/products/clarus.html, 2012.
Accessed May 2012. → pages 21

[64] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Panainte. The MOLEN polymorphic processor. Transactions on
Computers, 53(11):1363 – 1375, November 2004. → pages 21

[65] H. Wang, X. Gao, Y. Chen, D. Tang, and W. Hu. A multi-FPGA based
platform for emulating a 100m-transistor-scale processor with high-speed
peripherals. In Proceedings of the 2010 International Symposium on
Field-Programmable Gate Arrays (FPGA), pages 283–283. ACM/SIGDA,
2010. → pages 21

[66] P. Wang, J. Collins, C. Weaver, B. Kuttanna, S. Salamian, G. Chinya,
E. Schuchman, O. Schilling, T. Doil, and S. Steibl. Intel Atom processor
core made FPGA-synthesizable. In Proceeding of the 2009 International
Symposium on Field-Programmable Gate Arrays (FPGA), pages 209–218.
ACM/SIGDA, 2009. → pages 8, 21, 22, 37

[67] R. Weicker. Dhrystone: a synthetic systems programming benchmark.
Communications of the ACM, 27(10):1013–1030, 1984. → pages 66

[68] C. Williams. Intel’s Pentium chip crisis: an ethical analysis. Transactions on
Professional Communication, 40(1):13 –19, March 1997. → pages 2

[69] Wilson research group. IC/ASIC functional verification study. 2010. →
pages 15

[70] M. Woodward and K. Halewood. From weak to strong, dead or alive? An
analysis of some mutation testing issues. In Proceedings of the 1988

87

http://www.tek.com/embedded-instrumentation/clarus-soc-post-silicon-validation-solution
http://www.tek.com/embedded-instrumentation/clarus-soc-post-silicon-validation-solution
http://www.veridae.com/index.php/products/clarus.html

Workshop on Software Testing, Verification, and Analysis, pages 152–158.
IEEE, 1988. → pages 27

[71] Xilinx. ChipScope pro. http://www.xilinx.com/tools/cspro.htm, 2012.
Accessed May 2012. → pages 7, 21, 60

[72] Xilinx. Virtex-5 libraries guide for HDL designs (UG621).
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_
4/virtex5_hdl.pdf, 2012. Accessed July 2012. → pages 54

[73] Xilinx. Timing analyzer overview. http://www.xilinx.com/support/
documentation/sw_manuals/xilinx13_1/pta_c_overview.htm, 2012.
Accessed July 2012. → pages 12

[74] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understanding bugs
in C compilers. In Proceedings of the 32nd Conference on Programming
Language Design and Implementation (PLDI), pages 283–294.
ACM/SIGPLAN, 2011. → pages 66

88

http://www.xilinx.com/tools/cspro.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/virtex5_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/virtex5_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/pta_c_overview.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/pta_c_overview.htm

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	1 Introduction
	1.1 Motivation
	1.2 Historic Design Errors
	1.3 ASIC Design Flow
	1.3.1 Differences Between Pre- and Post-Silicon Validation
	1.3.2 Emulation — Bridging Pre- and Post-Silicon Validation
	1.3.3 FPGA Devices
	1.3.4 FPGA-based Emulation
	1.3.5 Conventional Emulation Goals

	1.4 Research Objective and Contributions
	1.5 Research Approach
	1.6 Thesis Organization

	2 Background and Related Work
	2.1 ASIC Design Flow
	2.1.1 Stages of ASIC Design
	2.1.2 Pre-Silicon Validation
	2.1.3 Post-Silicon Validation
	2.1.4 Manufacturing Test & Speed Binning

	2.2 Pre-Silicon Coverage Metrics
	2.2.1 Types of Pre-Silicon Coverage
	2.2.2 An Example of Statement and Branch Coverage

	2.3 Post-Silicon Coverage Metrics
	2.3.1 Related Work — On-Chip Coverage Monitors

	2.4 Timing Validation

	3 Proposed Flow
	3.1 Problem Statement
	3.2 Overall Flow
	3.3 Instrumentation
	3.4 Chapter Summary

	4 Implementation
	4.1 Approximated Flow
	4.1.1 Automated Integration of Coverage Monitors Using XDL

	4.2 XDL to VHDL Converter
	4.2.1 Automatically Generating Java Objects from Xilinx Libraries
	4.2.2 XDL Instances Requiring No Changes
	4.2.3 XDL Instances Requiring Simple Attribute Name Translation
	4.2.4 XDL Instances Requiring Fixed Locations
	4.2.5 XDL Instances with Ports Offset Compared to VHDL Instances
	4.2.6 XDL Instances Composed of Upper and Lower VHDL Instances
	4.2.7 XDL Instances Composed of Many VHDL Instances

	4.3 Coverage Monitor Instrumentation
	4.4 Reading Coverage Information Off-Chip
	4.5 Chapter Summary

	5 Results
	5.1 Test Setup & Benchmarks
	5.2 Results
	5.2.1 Coverage
	5.2.2 Area Overhead
	5.2.3 Frequency Overhead

	5.3 Chapter Summary

	6 Conclusion
	6.1 Dissertation Summary
	6.2 Limitations
	6.2.1 Reliance on XDL
	6.2.2 Toolflow
	6.2.3 Register Retiming
	6.2.4 Non-Determinism
	6.2.5 Area Optimizations

	6.3 Future Work
	6.4 Public Distribution

	Bibliography

