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Abstract

In this work, we implement an inversion algorithm for airborne electromag-

netic (AEM) data in the frequency domain by using 2D conductivity models.

First, we discretize the 2.5D Maxwell’s equations on a staggered grid and test

the numerical accuracy of the forward solution. The inverse problem is then

solved by regularized minimization approach using the limited memory BFGS

variant of the quasi-Newton method. Next, EM responses from a synthetic

2D conductivity model are inverted to validate the algorithm. Finally, we

use the algorithm on an AEM field dataset from a RESOLVE survey and

compare the inversion results to those obtained from a well-established 1D

implementation.
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Chapter 1

Introduction

1.1 Inverse problems

The need to reconstruct a property of a system by using observations made

on the system arises in many fields of science and engineering: for exam-

ple geophysics, medical imaging, machine learning, remote sensing, particle

physics, astronomy and many more.

In many cases, despite the relative ease to conduct experiments on a sys-

tem we are interested in, acquiring enough information such that an property

can perfectly be predicted is usually not possible. This problem is most ap-

parent in physical systems, where usually only a fraction of the total number

of degrees of freedom is easily accessible, for example in a 3D system where

measurements can only be made on the boundaries. This lack of measurable

parameters makes the system under-determined: the number of variables in

the property that we wish to reconstruct is greater than the number of data

points available.

Parameter estimation for an under-determined system is essentially an

ill-posed problem, meaning that its solution space is infinitely large and a

unique solution does not exist. This type of problem is solved by reducing the

solutions to only those that are both good predictors of the observations and
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reasonable for the system according to some criteria. Information previously

learned about the system, or a priori information, is used to devise the

criteria to make educated guesses on the solutions.

Studies of these problems, known as inverse problems, have given us a

general framework to convert any type of observations on a system to infor-

mation about any type of properties of the system. But before any data can

be inverted, the forward solution has to be known. That is, given a prop-

erty model, we need to be able to predict the outcome of observations on

the model. Once the forward problem is solved, the inverse framework can

subsequently be employed to reconstruct the model. The goal of an inverse

algorithm is to rebuild the system property by choosing a model that both

best-fits to the observed data and satisfies the constraints formulated by a

priori information on the system. Solving inverse problems therefore involves

both solving systems of equations as well as optimizing objective functions

with constraints.

1.2 AEM system

In recent geophysical exploration projects, airborne electromagnetic (AEM)

surveys have become the method of choice for many mining companies to

determine the conductivity model under the area of investigation. The pop-

ularity of AEM systems comes from their ability to cover a large area in a

relatively short time while requiring only a small number of human opera-

tors. They are also ideal when the survey area has complicated terrain or is

not accessible by ground transportation.

In most AEM systems, horizontal coplanar loops (HCP) are used as trans-

mitters (Tx) and receivers (Rx) to detect conductivity contrasts in the earth.

In frequency-domain AEM systems, the loops are typically separated by 10

meters and they are housed in a bird that is towed behind and beneath an

aircraft at a height of 30-70 meters above the earth’s surface. To determine

the conductivity contrast, a time-varying current is passed through the trans-
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mitter loop to produce a magnetic dipole field. If a conductive body is buried

in the ground, the primary field will induce eddy currents in the conductor

and a secondary magnetic field will be generated as a result. This secondary

field changes the magnetic flux through the receiver loop and its magnitude

can be quantified by measuring the emf induced in the receiver (see Fig 1.1).

In this way, the AEM system probes the conductivity distribution next to

the loops by measuring the earth’s response to changing magnetic fields.

In typical frequency-domain AEM systems, each conductivity depth sound-

ing (mapping of conductivity as a function of depth) consists of magnetic field

measurements at five to six frequencies. The frequencies usually span over

three orders of magnitude and are spread logarithmically from hundreds of

Hz to hundreds of kHz. In this frequency range, the diffusion length of the

magnetic field, which is given by the skin depth

δ =

√
2

σωµ0

, (1.1)

is on the order of 1 to 100 meters. Thus, current can be induced from a

few meters up to a few hundreds of meters deep into the ground, and the

depth of penetration drops as the inverse square root of the frequency. The

relation between frequency and penetration depth allows AEM systems to

profile the conductivity distribution as a function of depth. To map the

horizontal direction, soundings are carried out at regularly spaced intervals

along a flight line. Typically, data are sampled every few tenths of a second

which is equivalent to a sounding every few meters along the line. To create

a pseudo-3D map of the conductivity of the survey area, multiple lines are

flown over the area. The line separation can range from tens to hundreds of

meters, depending on the size of the geological features under study.
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Figure 1.1: An AEM system and the magnetic response from a buried
conductor. The transmitter (Tx) and receiver (Rx) of the sys-
tem are housed in a bird which is towed behind and below a
helicopter. In the presence of a conductive body, the primary
field from the transmitter induces eddy currents in the conduc-
tor and a secondary field is produced as a result. The induced
field measured at the receiver loop is then used to determine the
conductivity of the body.
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1.3 Motivation and Goal

Inverse algorithms that are both reliable and fast enough to process an entire

AEM survey dataset are still challenges to many researchers at the moment.

The constant movement of the source over a large area of investigation means

a vast number of sources has to be solved in each forward modeling. It is

not unusual for an airborne survey to have more than hundreds of thousands

of different source locations. Compared to ground survey methods, this is

about two orders of magnitude more sources.

The first generation of inverse algorithms was built on a 1D conductivity

model that assumes the earth is made of layers of conductors stacked on top

of each other (see Fig. 1.2). An analytical solution to the 1D problem can be

obtained for HCP sources [18] and numerical implementations [4, 23] of the

solution have been extensively studied and they are well-established. This

simple layered earth model has been used in many surveys with good results

and on today’s processors the 1D algorithm is extremely fast to run. However,

the main shortcoming of the model is its simplicity. There are cases where

the 1D implementation has troubles resolving correctly 2D or 3D geological

structures that exhibit rapid lateral change in the immediate region under

the probes (e.g., [5, 14, 25, 27]). To obtain a more accurate description of

the earth, inversion techniques based on the full 3D conductivity model are

now widely being studied and tested.

At the moment, 3D inversion algorithms based on the finite volume (FV)

method [9] and the integral equation approach [3] are available. Although

the inversion of an entire AEM dataset is now possible with these algorithms,

they still face numerous problems. A full inversion with the FV method can

take hours to complete, and the amount of computational resources required

is still huge and expensive. Although the integral equation technique is faster,

it may not correctly resolve models with high conductivity contrasts.

To try to resolve some of the problems that existing 1D and 3D inversions

have, we tested and developed an inversion algorithm using a 2D conductivity

5



σ2

σ3

σΝ

σ1

h2

.

.

.

h1

h3

hΝ

Figure 1.2: A cross-sectional view of the layered earth model. The
model is made of layers of earth, each with a thickness of hi and
a conductivity of σi.

earth model(see Fig. 1.3). In AEM surveys, the spatial separation between

survey lines is often large, and the survey is done perpendicular to geological

strikes. As a result, each magnetic field measurement does not extend notice-

ably into the adjacent lines and so each flight line can effectively be inverted

independently without too much loss in resolution. This motivates the use

of 2D earth models to invert AEM datasets. Compared to 1D algorithms,

2D inversions have the advantage of enabling more precise interpretation of

conductive anomalies; and compared to 3D strategies, they require much

less computing resources and are relatively straightforward to parallelize for

multi-core CPUs.

Over the past decades, the well-known 2.5D formulation of Maxwell’s

equations has been used to design numerous 2D EM algorithms ([6, 20,
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σ3

Figure 1.3: A cross-sectional view of the 2D earth model. The model is
a function of both position along the flight direction and depth.
Each conductor has a conductivity of σi and its extent in the
strike direction is infinite.

22]). These algorithms, which have been applied to various airborne and

controlled-source EM problems (e.g., [1, 13, 15, 24]), are either based on fi-

nite element (FEM) or finite difference (FD) approaches. But none used the

finite volume method, which we have preferred over FEM or FD, due to its

simplicity in generating the matrix for the linear system, as well as its ability

to handle high conductivity contrast.

In this work, we used the finite volume approach to implement an algo-

rithm for inversion of frequency-domain AEM data. The algorithm, which

is developed in Matlab, was first tested on synthetic data generated by a 2D

model and later on a 3D AEM field dataset from a Fugro RESOLVE sur-

vey. Our 2D inversions on the dataset showed strong agreement with models

recovered by a well-established 1D algorithm.
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1.4 Outline of the thesis

The remainder of this thesis is divided into four chapters. In chapter two, we

formulate and solve the forward problem by discretizing the 2.5D Maxwell’s

equations in the frequency domain on a 2D orthogonal mesh. In chapter

three, we present the inversion framework by discussing and constructing

the objective function and the sensitivity matrix, followed by a look into the

technique used in optimizing the objective function. Finally, in chapter four,

we show the accuracy of the forward model and then present the results of our

2D inversions on both synthetic and field data. A conclusion and discussion

of future work can be found in the last chapter.
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Chapter 2

Forward Modeling

In this chapter, we start by presenting the well-studied 2.5D formulation of

the Maxwell’s equations. By assuming a 2D conductivity model that is in-

variant in the strike direction, 3D electromagnetic fields are rewritten as the

sum of 2D fields in the wavenumber domain by applying Fourier transfor-

mations w.r.t. the strike direction. Once the 2.5D Maxwell’s equations are

solved for an optimized set of wavenumbers, the inverse transformation is

used to obtain the 3D solution.

Subsequently, we will present a finite volume discretization of the elec-

tromagnetic field on a 2D staggered grid, followed by a discretization for the

CURL operator and the material averaging. Finally, the discrete system for

the 2.5D Maxwell’s equations is set up to compute the electromagnetic field.

2.1 Maxwell’s equations in 2.5D

Conventionally, measurement data in AEM surveys are presented as complex

numbers: the real component of the magnetic response, which is called in-

phase, and the imaginary part, called quadrature. The response is the ratio

between the secondary magnetic field and the primary field produced by the

transmitter in free space. For horizontal coplanar loops, the response is given

9



by

Resp =
~Hz(rtr)− ~Hp,z(rtr)

| ~Hp,z(rtr)|
, ~Hp,z(r) = − m

4πr3
(2.1)

where rtr is the transmitter to receiver separation, m is the magnetic moment

of the transmitter, ~Hp,z is the z-component of the primary field and ~Hz(rtr)

is the total field measured at the receiver.

To model the magnetic response due to harmonically changing electro-

magnetic fields, ~F (~x, t) = ~F (~x)e−iωt, we solve Maxwell’s equations in the

frequency domain:

∇× ~E − iωµ0
~H = ~Ms (2.2a)

∇× ~H − γ ~E = ~Js on Ω (2.2b)

n̂× ~H = 0 on ∂Ω (2.2c)

where we have imposed a vanishing magnetic field on the boundary of the

spatial domain Ω, which consists of both the earth and the air above it. In

these equations, ~E and ~H are the electric and magnetic fields, ω is the angular

frequency of the fields, µ0 the magnetic permeability of free space and ~Js and
~Ms denote the external electric and magnetic sources. The conductivity γ =

σ− iωε is complex valued, but for most applications in geophysics, where the

quasi-static condition ωε� σ usually applies [23], it can be simplified to the

real-valued conductivity σ. From now on, we will use σ for the conductivity.

To solve Maxwell’s equations, we decompose the total fields ~E, ~H into

primary and secondary parts:

~E = ~E0 + ~E1, ~H = ~H0 + ~H1, (2.3)

so

(∇× ~E0 − iωµ0
~H0) + (∇× ~E1 − iωµ0

~H1) = 0 (2.4a)

(∇× ~H0 − σ ~E0) + (∇× ~H1 − σ ~E1) = ~Js on Ω (2.4b)

10



where we have set ~Ms = 0, since only electric sources are used in our system.

This decomposition separates Maxwell’s equations into a primary problem,

∇× ~E0 − iωµ0
~H0 = 0 (2.5a)

∇× ~H0 = ~Js (2.5b)

and a secondary problem,

∇× ~E1 − iωµ0
~H1 = 0 (2.6a)

∇× ~H1 − σ ~E1 = σ ~E0 (2.6b)

Setting ~Js to the current in a HCP, the primary problem describes the field

due to the current loop in free space. With the source now replaced by

the induced current density evaluated on the entire conductivity model σ,

the secondary problem is the Maxwell’s equations for the induced magnetic

field. This secondary form enables the magnetic response to be computed

accurately which is otherwise very hard as the discretization error in com-

puting the total field dominates the induced field strength. From now on,

we will work with the secondary form and drop the secondary notation:
~E1, ~H1 → ~E, ~H.

In this work, we assume an isotropic 2D conductivity model that has

infinite extent in the strike direction y: σ = σ(x, z). Despite the 2D con-

ductivity, each field component remains 3-dimensional as the source field is

a three dimensional function. The advantage of using a 2D model is that

now the 3D Maxwell’s equations can be reduced to 2D equations by Fourier

transforming Eqn. (2.6) with respect to y. Since our system is invariant un-

der translation in the y-direction, all field components are either symmetric

or antisymmetric in y. Therefore, we can either use the sine or cosine integral
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for the transformation:

F̃ (x, ky, z) =

−i
∫∞

0
~F (x, y, z) sin(kyy)dy if ~F is anti-symmetric in y∫∞

0
~F (x, y, z) cos(kyy)dy if ~F is symmetric in y

(2.7)

where F̃ denotes ~F in the Fourier space which is parameterized by the

wavenumber ky. For antisymmetric functions, the sine transform is used,

while the cosine transform is applied to symmetric functions.

In the wavenumber domain, we have the following 2D Maxwell’s equations

for each ky:

∇̃ky × Ẽ − iωµ0H̃ = 0 (2.8a)

∇̃ky × H̃ − σẼ = σẼ0 (2.8b)

where ∇̃ky× is the 2.5D curl operator in the wavenumber domain and it acts

on the field F̃ as follows:

∇̃ky × F̃ =

−ikyF̃z − ∂zF̃y∂zF̃x − ∂xF̃z
∂xF̃y + ikyF̃x

 (2.9)

where F̃ = (F̃x, F̃y, F̃z). The Fourier transform of the source field, Ẽ0, can

be approximated by assuming a vertical dipole source and the formulation is

shown in the next section. Once a solution to (2.8) is obtained for each ky,

the 3D solution can be retrieved with the inverse Fourier transform:

~F (x, y, z) =

2i
π

∫∞
0
F̃ (x, ky, z) sin(kyy)dky if F̃ is anti-symmetric in ky

2
π

∫∞
0
F̃ (x, ky, z) cos(kyy)dky if F̃ is symmetric in ky

(2.10)

To evaluate these integrals, we approximate them using the discrete Fourier
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transforms:

~F (x, y, z) =

2i
π

∑N
j=1 F̃ (x, ky,j, z) sin(ky,jy)gj if F̃ is anti-symmetric in ky

2
π

∑N
j=1 F̃ (x, ky,j, z) cos(ky,jy)gj if F̃ is symmetric in ky

(2.11)

where gj is a weight associated with the j-th wavenumber ky,j. Later in the

chapter, we will show how the choice of the wavenumbers and weights can

be optimized for our problem in order to minimize the computational cost.

Now, we have seen how Maxwell’s equations in 2.5D are formulated. Not

only is the computing time reduced because of the smaller size of the problem,

the 2.5D implementation also makes the forward calculation easily paralleliz-

able as each 2D equation in (2.8) can be solved independently. Once the 2D

conductivity cross-section directly underneath each survey line is recovered,

interpolation between adjacent lines can be used to create a pseudo-3D model

of the survey area.

2.2 Fourier transform of the source term

The primary fields ~E0, ~H0 are the free-space electromagnetic fields due to the

current density in the source loop, ~Js:

∇× ~E0 − iωµ0
~H0 = 0 (2.12a)

∇× ~H0 = ~Js (2.12b)

Instead of solving (2.12) directly, the primary field ~E0 can be obtained by

modeling the transmitter loop as a vertical magnetic dipole source. For a

source centered at (xs, 0, hs) and oscillating at frequency ω, the electric field
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is given by the vector potential of the dipole, ~A [11]:

~E0(x, y, z) = −∂t ~A = iω ~A =
iωmµ0

4πr3

 −yx− xs
0

 (2.13)

where r =
√

(x− xs)2 + y2 + (z − hs)2.

For every source on the same survey line, the Fourier transform of ~E0 is

given by

Ẽ0(x, ky, z) =
iωµ0m

4π

 ikyK0(|ky|s)
|ky|K1(|ky|s)/s

0

 (2.14)

where s =
√

(x− xs)2 + (z − hs)2 and Kn is the n-th order modified Bessel

function of the second kind. It is worth mentioning that with this formula-

tion, vertical loops can easily be modeled as well by simply switching the x

and z coordinates.

2.3 Optimization of ky and g

Given a fixed number of wavenumbers to be used to solve (2.8), we seek the

optimum ky,j’s and the associated weights such that the error of approximat-

ing the Fourier transform (Eqn. (2.11)) is minimized. In this work, this is

done by finding the ky,j’s and gj’s that minimize the error in approximating

a vertical dipole field on the surface of a homogeneous half-space. The same

optimized values are then used to compute responses due to inhomogeneous

half-spaces. Since the receivers in most AEM systems are located in-line with

the sources (we will use yRx = yTx = 0), we only need to be concerned with

minimizing the error for the locations on the survey line. For this, we will

follow the optimization technique proposed in [17, 26].

We start by Fourier transforming the field due to a homogeneous half-

space. For the range of conductivities and frequencies typically found in
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AEM surveys, the low-frequency approximation applies, i.e., |kr| � 1, where

k =
√
−iσωµ0 and r is the distance from the center of the source. The

quasi-static field of a vertical dipole source on the surface of a half-space

with conductivity σ in this regime is given by [19]:

~H l
x(x, y, 0) = ~H l

y(x, y, 0) = 0, ~H l
z(x, y, 0) =

−m
4πr3

(
1− k2r2

4

)
(2.15)

where r =
√
x2 + y2 for a source centered at the origin. Substituting (2.15)

into the Fourier transform for symmetric functions (2.7) gives

H̃ l
z(x, ky, 0) =

−m
4π

(
|ky|
x
K1(|ky|x)− k2

4
K0(|ky|x)

)
(2.16)

Our objective is to minimize the relative error in approximating (2.15)

with the discrete Fourier cosine transform (2.11):

~H l
z(x, 0, 0) ≈ 2

π

∑
j

H̃ l
z(x, ky,j, 0)gj (2.17)

for a range of x. Given a location xi, the relative error εi is:

εi =
2

π ~H l
z(xi, 0, 0)

∑
j

H̃ l
z(xi, ky,j, 0)gj − 1 (2.18)

and so our objective function can be written in the matrix form:

Φ =
1

2
‖ε‖2

2 =
1

2
‖1−Mg‖2

2 (2.19)

where

Mij =
2H̃ l

z(xi, ky,j, 0)

π ~H l
z(xi, 0, 0)

, (2.20)

and g is a vector whose entries are gj and 1 is a vector of ones.

Notice that the objective function (2.19) is a function of both ky and g.
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To reduce it to a function that depends only on k, we optimize for g using

the normal equation of least squares,

g = (MTM)−1MT1 (2.21)

and substitute it back into (2.19) to obtain

Φ =
1

2
‖1−M(MTM)−1MT1‖2

2 =
1

2
‖1− v(ky)‖2

2 (2.22)

Since the function v(ky) is nonlinear in ky, we linearize it by expanding it in

Taylor series around a point k
(0)
y

v(ky) = v(k(0)
y ) +

∂v

∂ky
δky, δky = ky − k(0)

y . (2.23)

Now the least squares solution for the objective function

Φ =
1

2
‖1− v(k(0)

y )− ∂v

∂ky
δky‖2

2 (2.24)

gives the search direction δky:

δky = (JTJ)−1JT (1− v(k(0)
y )) (2.25)

where J = ∂v
∂ky

. At the i-th iteration, a new k
(i+1)
y is thus given by

k(i+1)
y = k(i)

y + αδk(i)
y (2.26)

where α is a line search parameter. This iterative procedure reduces v(ky)

at each iteration and is repeated until a certain error tolerance is reached.

At this point, the corresponding ky is used to compute g using (2.20) and

(2.21).

It should be noted that since we do not have an analytical expression for
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∂v
∂ky

, it has to be approximated by numerical differentiation:

J(i) =

(
∂v

∂ky

)(i)

=
[

∆v

∆k
(i)
y,1

. . . ∆v

∆k
(i)
y,N

]
, v(k(i)

y + ∆k(i)
y )− v(k(i)

y ) (2.27)

where we have set ∆k
(i)
y = 0.05k

(i)
y .

2.4 2D discretization of Maxwell’s equations

In this section, we discretize the 2.5D Maxwell’s equations on a 2D staggered

grid using a finite volume approach. The linear system to be solved is set up

by discretizing the field quantities on either the edges, nodes or cell-centers of

the staggered grid and then forming the discrete version of the curl operator

and the material averaging for these grid variables. The discretization of the

gradient, which appears in the regularization of the inverse problem, will also

be presented here.

2.4.1 Discretization of the physical quantities

To discretize the physical quantities in Maxwell’s equations, we consider an

m×n staggered grid. Each cell is labeled by the indices i and j and has a size

of hx,i by hz,j. To start, we put the electric fields Ẽx and Ẽz on the edges of

each cell, as shown in Fig. (2.1). This configuration places constraints on the

possible locations for the rest of the field quantities. To see this, we expand

(2.8) to obtain the system of differential equations for the field components:
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−ikyẼz − ∂zẼy − iωµ0H̃x = 0 (2.28a)

∂zẼx − ∂xẼz − iωµ0H̃y = 0 (2.28b)

∂xẼy + ikyẼx − iωµ0H̃z = 0 (2.28c)

−ikyH̃z − ∂zH̃y − σẼx = σẼ0,x (2.28d)

∂zH̃x − ∂xH̃z − σẼy = σẼ0,y (2.28e)

∂xH̃y + ikyH̃x − σẼz = σẼ0,z (2.28f)

Firstly, Eqns. (2.28a) and (2.28c) imply that the fields H̃x and H̃z should

be discretized at the same location as Ẽz and Ẽx, respectively. Secondly,

Eqn. (2.28c) places the x-directional derivative of Ẽy on the z-edges (edges

whose normal points in z-direction). And since the two-point formula is used

for the derivative, this configuration puts Ẽy midway between the z-edges in

the x-direction, namely on the nodes. Following a similar reasoning, but

now using the constraint set by Eqn. (2.28f), we can see that H̃y should be

discretized at the cell-centers.

Unlike the secondary fields, which can only be approximated numerically,

the source field Ẽ0 is continuous and its value is known everywhere. However,

although Ẽ0 is an electric field, we will not discretize it like Ẽ. The reason

is that Ẽ0 is singular at the center of a source, (x, z) = (xs, hs). And since

we would like to place the center on an z-edge, so that H̃z can be computed

at the receiver center without averaging, we should avoid discretizing Ẽ0 on

z-edges. As a result, we will evaluate Ẽ0 at the cell-centers instead, and then

use averaging to bring the current density, σẼ0, to the same mesh as the

electric field.

In our modeling, the conductivity is assumed to be piecewise constant

and therefore it should be discretized at the cell-centers. This discretization

assumes that conductivity is constant throughout a cell but jumps may occur

at the boundaries. This way, we can allow for highly varying and highly
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discontinuous conductivity which is usually the case in geophysical settings.

As required by the Maxwell’s equations, the conductivity has to be evaluated

at the other grid locations as well. For this, the material averaging matrix,

which is discussed later in this chapter, is used to transfer the cell-centered

conductivity to the desired locations.

An overview of the discretization of the physical quantities and the dis-

crete operators that act on them is given in Table 2.1.

2.4.2 Discretization of the differential operators

To construct the discrete version of the 2.5D curl operator (2.9), CURL,

and the gradient operator, GRAD, we discretize the difference operator ∂x

(discretization of ∂z is then found by symmetry). We begin by realizing

that for our 2D staggered grid, there are four types of difference operators.

Each of them can be characterized by one of the mappings shown in Table

(2.2). Next, we notice that the gradient operators that map edge→cell-

center or node→edge use the same 1D nodal difference which maps nodes to

cell-centers. And similarly, the edge→node and cell-center→edge mappings

follow the structure of the 1D cell-center differences. Moreover, the boundary

conditions (BC) given in (2.2c) require a Dirichlet type BC for the magnetic

field quantities, while the electric fields follow BC of Neumann type. From

this information, we can see that the 1D cell-center differences with Dirichlet

BC and the 1D node differences with Neumann BC are needed to build

CURL and GRAD. In this section, we will demonstrate how to discretize

the 1D differences and then how to use them to construct the discrete version

of the 2D operators ∂x and ∂z.

To build the matrices for the discrete operators, we will follow the column

vector convention. Let U be a M×N matrix whose entries, uij, are the values

of the function u(x, z) associated with the cell at (xi, zj), 1 ≤ i ≤ M, 1 ≤
j ≤ N . Instead of storing U as a 2D array, we vectorize it and store it in the

19



Table 2.1: Overview of the discretization of the physical quantities and
the operators used in the Maxwell’s equations

Quantity Notation Discretization

electric field

ẼxẼy
Ẽz

 z-edge
node

x-edge


magnetic field

H̃x

H̃y

H̃z

  x-edge
cell-center

z-edge


source electric field

Ẽ0,x

Ẽ0,y

Ẽ0,z

 cell-center
cell-center
cell-center


conductivity σ cell-center

Operator Notation Mapping

curl of electric field CURLẼ

z-edge
node

x-edge

→
 x-edge

cell-center
z-edge



curl of magnetic field CURLH̃

 x-edge
cell-center

z-edge

→
z-edge

node
x-edge


x-edge average Axe

cc cell-center → x-edge
nodal average And

cc cell-center → node
z-edge average Aze

cc cell-center → z-edge

Table 2.2: Mapping of the four types of gradient operator

Acts on Mapping

Ẽx, Ẽz edge → cell-center

Ẽy node → edge

H̃x, H̃z edge → node

H̃y cell-center → edge
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z

EyEx, Hz

Hy, σ Ez, Hx

~ ~ ~

~~ ~

(xi, zj)

(xi, zj+1) (xi+1, zj+1)

(xi+1, zj)

(xi+1/2, zj+1/2)

(xi+1/2, zj)

(xi, zj+1/2)

cell ij

Figure 2.1: Discretization of the electromagnetic field and the conduc-
tivity model on a 2D staggered grid. Black dots denote the loca-
tion of the nodes, boxes are the x-edges (defined as edges whose
normal points in the x-direction), diamonds are the z-edges and
crosses represent the cell-centers.
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column format such that:

U(k) = uij, k = (N − 1)× i+ j (2.29)

where U(k) is the k-th component of the column form of U . In this way, the

field quantities are stored as:

F̃ =

F̃x

F̃y

F̃z

 (2.30)

where each 2D field component is in the vector column form.

With this convention, the 2D operator that maps edges to cell-centers

and nodes to edges can easily be constructed from the 1D nodal difference

operator:

D1D
x,node→cell-center =


−1
hx,1

1
hx,1
−1
hx,2

1
hx,2
. . . . . .

−1
hx,m

1
hx,m

 , (2.31)

and the Kronecker product,

A⊗B :=


a11B a12B . . . a1,nB

a21B a22B
. . .

...
...

. . . . . . an−1,nB

an,1B . . . an,n−1B annB

 (2.32)

in the following way [10]:

Dx,x-edge→cell-center = In ⊗D1D
x,node→cell-center (2.33a)

Dx,node→z-edge = In+1 ⊗D1D
x,node→cell-center (2.33b)
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where In is the n × n identity matrix and we have used the second-order

two-point formula

d

dx
u(xi+ 1

2
, zj) =

u(xi+1, zj)− u(xi, zj)

hx,i
+O(h2

x,i). (2.34)

for the 1D derivative. It is easy to verify that the 2D difference matrices for

the z-direction are:

Dz,z-edge→cell-center = D1D
z,node→cell-center ⊗ Im (2.35a)

Dz,node→x-edge = D1D
z,node→cell-center ⊗ Im+1 (2.35b)

where D1D
z,node→cell-center is constructed by replacing the hx’s in (2.31) with

hz’s.

In a similar way, we use the 1D cell-center derivative,

D1D
x,cell-center→node =



1
hx,1
−2

(hx,1+hx,2)
2

(hx,1+hx,2)

. . . . . .
−2

(hx,m−1+hx,m)
2

(hx,m−1+hx,m)

−1
hx,m


,

(2.36)

to build the 2D difference matrices for the mappings edge→node and cell-

center→edge:

Dx,z-edge→node = In+1 ⊗D1D
x,cell-center→node (2.37a)

Dx,cell-center→x-edge = In ⊗D1D
x,cell-center→node (2.37b)

Dz,x-edge→node = D1D
z,cell-center→node ⊗ Im+1 (2.37c)

Dz,cell-center→z-edge = D1D
z,cell-center→node ⊗ Im (2.37d)

Note that the use of the matrices (2.31) and (2.36) ensures that the Neumann
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condition ∂n̂u = 0, and the Dirichlet condition, u(x, z) = 0, are imposed

automatically at the boundaries and so the boundary condition (2.2c) is

already taken care of.

Now, with all four types of derivatives in our arsenal, it is straightforward

to construct the curl operator that acts on the electric field Ẽ:

CURLẼ(ky) =

 0 −Dxe
nd −ikyI

Dcc
ze 0 −Dcc

xe

ikyI Dze
nd 0

 (2.38)

and the curl for the magnetic field H̃:

CURLH̃(ky) =

 0 −Dze
cc −ikyI

Dnd
xe 0 −Dnd

ze

ikyI Dxe
cc 0

 . (2.39)

For clarity, we have simplified DA→B to DB
A and abbreviated x-edge, z-edge,

node and cell-center with xe, ze, nd and cc, respectively.

It is worth mentioning that if all the cells are of the same size, then

D1D
x,nd→cc = −(D1D

x,cc→nd)T , and the two curl operators become adjoints of

each other:

CURLH̃ = CURLT
Ẽ
. (2.40)

And as a consequence, the resulting matrix of the system is also symmetric.

As we will see later, the regularization of the inverse problem requires the

gradient of the conductivity to be computed. To achieve this, we put the

cell-center→edge derivatives (2.37b) and (2.37d) together to obtain

GRADcell-center→edge =

[
Dxe

cc

Dze
cc

]
. (2.41)
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2.4.3 Discretization of the material averaging

In this section, we construct the material averaging matrix, which averages

the cell-centered conductivity and maps it to the edges and nodes where it

is evaluated. For this, we use the nearest neighbor extrapolation to obtain

the first-order 1D cell-center averaging:

σi,j+ 1
2

=
σi− 1

2
,j+ 1

2
hi + σi+ 1

2
,j+ 1

2
hi−1

hi−1 + hi
+O(h). (2.42)

However, when the conductivity has jumps at the cell boundaries where its

derivative is not defined, this approximation is only O(1).

To build the averaging matrix, we note that the 1D averaging has the

same sparsity pattern as the 1D cell-center difference. And so to obtain the

2D average, we use the sparsity pattern of Eqn. (2.36) to get

A1D
x,cell-center→node =



1
2

hx,2
(hx,1+hx,2)

hx,1
(hx,1+hx,2)

. . . . . .
hx,m

(hx,m−1+hx,m)

hx,m−1

(hx,m−1+hx,m)

1
2


,

(2.43)

and then use the Kronecker product like before to construct the 2D averaging

operator:

Acell-center→x-edge = In ⊗A1D
x,cell-center→node (2.44a)

Acell-center→z-edge = A1D
z,cell-center→node ⊗ Im (2.44b)

Acell-center→node = A1D
z,cell-center→node ⊗A1D

x,cell-center→node (2.44c)
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2.4.4 Matrix representation of Maxwell’s equations

For each combination in the set of parameters {xs, ω, ky}, the following dis-

crete 2.5D Maxwell’s equations have to be solved:

CURLẼ Ẽ− iωµ0H̃ = 0 (2.45a)

CURLH̃ H̃− diag(A1σ)Ẽ = A2(σ)Ẽ0 (2.45b)

where

A1 :=

Aze
cc

And
cc

Axe
cc

 (2.46)

and

A2(σ) =

Aze
ccdiag(σ) 0 0

0 And
cc diag(σ) 0

0 0 Axe
ccdiag(σ)

 . (2.47)

To solve the system, we can isolate for Ẽ in (2.45) and rearrange the equations

to obtain:

[CURLH̃CURLẼ + cdiag(A1σ)] Ẽ = −cA2(σ)Ẽ0 (2.48a)

H̃ = CURLẼẼ/−c (2.48b)

where c = −iωµ0. Once the matrix A = CURLH̃CURLẼ + cdiag(A1σ)

is set up, the system can conveniently be solved with the Matlab backslash:

Ẽ = A\(−cA2(σ)Ẽ0).

Using (2.48) to solve for all field components at once can be computation-

ally expensive when the mesh is dense. Another, simpler, way to a solution

is to express (2.45) in terms of the y-component of the electric and magnetic

fields. This approach reduces the size of the linear system to be solved. Once

a solution is found, the other field components can be computed straightfor-

wardly using numerical differentiation. To demonstrate, we start by writing
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out explicitly the matrices acting on each field component:

−ikyẼz −Dxe
ndẼy − iωµ0H̃x = 0 (2.49a)

Dcc
zeẼx −Dcc

xeẼz − iωµ0H̃y = 0 (2.49b)

Dze
ndẼy + ikyẼx − iωµ0H̃z = 0 (2.49c)

−ikyH̃z −Dze
ccH̃y − diag(Aze

ccσ)Ẽx = Aze
ccdiag(σ)Ẽ0,x (2.49d)

Dnd
xe H̃x −Dnd

ze H̃z − diag(And
cc σ)Ẽy = And

cc diag(σ)Ẽ0,y (2.49e)

Dxe
ccH̃y + ikyH̃x − diag(Axe

ccσ)Ẽz = Axe
ccdiag(σ)Ẽ0,z (2.49f)

Now, after some algebra, we can eliminate all field components except Ẽy

and H̃y from the equations and express the linear system for these remaining

unknowns as[
Ẽy

H̃y

]
=

[
S11 S12

S21 S22

]−1 [
ikyD

nd
ze Γ−1

ze I ikyD
nd
xe Γ−1

xe

−Dcc
zeΓ
−1
ze 0 Dcc

xeΓ
−1
xe

]
A2(σ)Ẽ0 (2.50)

Here, the blocks of S are defined as

S11 = Dnd
xe ΣxeD

xe
nd + Dnd

ze ΣzeD
ze
nd − diag

(
And

cc σ
)

(2.51a)

S12 = ikyD
nd
xe Γ−1

xe Dxe
cc − ikyDnd

ze Γ−1
ze Dze

cc (2.51b)

S21 = −iky
c

Dcc
xeΓ
−1
xe Dxe

nd +
iky
c

Dcc
zeΓ
−1
ze Dze

nd (2.51c)

S22 = Dcc
xeΓ
−1
xe Dxe

cc + Dcc
zeΓ
−1
ze Dze

cc − Im×n (2.51d)

where Γxe = diag (Axe
ccγ), Γze = diag (Aze

ccγ), Σxe = diag (Axe
ccσ) Γ−1

xe , Σze =

diag (Aze
ccσ) Γ−1

ze and γ = k2
y1 − cσ where 1 is a vector of ones. Once the

27



Eqn. (2.50) is solved, the remaining field components can be recovered from[
Ẽx

Ẽz

]
=

[
Γ−1

ze 0

0 Γ−1
xe

][
ikyD

ze
nd cDze

cc

ikyD
xe
nd −cDxe

cc

][
Ẽy

H̃y

]
+ c

[
Γ−1

ze 0 0

0 0 Γ−1
xe

]
A2(σ)Ẽ0,

(2.52)[
H̃x

H̃z

]
=

[
ΣxeD

xe
nd ikyΓ

−1
xe Dxe

cc

−ΣzeD
ze
nd ikyΓ

−1
ze Dze

cc

][
Ẽy

H̃y

]
+ iky

[
0 0 −Γ−1

xe

Γ−1
ze 0 0

]
A2(σ)Ẽ0.

(2.53)

Compared to solving for all components simultaneously, this method only

requires solving for two field components. Cutting the number of variables

by a third significantly improves the computation time as the number of

matrix entries is now shrunk to half of that in the full system. Additionally,

performing the elimination after the system is discretized preserves the order

of accuracy of the original approximation, as rearranging the matrices and

variables with algebra does not change the order of accuracy. On the contrary,

if the system is first reduced and then discretized, the order of accuracy of

the remaining field components is not guaranteed to be the same as that of

Ẽy and H̃y.

In this work, we have used Matlab’s backslash direct solver for the solution

of the matrix system. For many right hand sides like we have here, it is

more effective to use direct solving methods. However, iterative methods

like conjugate gradient (CG) and multigrid become necessary when dealing

with larger systems, for example when the fields are 3D functions.

2.5 Solving the adjoint problem

As we will see later, solving the inverse problem requires solving the adjoint

problem, which has the form:

ATx = rhs. (2.54)
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This problem is relatively easy if matrix A is small and Matlab’s backslash

is used to obtain the numerical solution, as the adjoint matrix AT can be

formed easily. However, if the reduced system is used for solution, the setup

of the problem becomes a bit more involved.

To set up the adjoint problem for the reduced system, we start by writing

out AT explicitly,

AT = CURLT
Ẽ
CURLT

H̃
− cdiag(A1σ)

=

 0 −Dxe
nd −iky

Dcc
ze 0 −Dcc

xe

iky Dze
nd 0


T  0 −Dze

cc −iky
Dnd

xe 0 −Dnd
ze

iky Dxe
cc 0


T

− cdiag(A1σ)

=

 0 (Dcc
ze)

T −iky
−(Dxe

nd)T 0 (Dze
nd)T

iky −(Dcc
xe)

T 0


 0 (Dnd

xe )
T −iky

−(Dze
cc)

T 0 (Dxe
cc)T

iky −(Dnd
ze )

T
0


− cdiag(A1σ) (2.55)

And now by noticing that the blocks of CURLT
Ẽ

and CURLH̃ have the same

sparsity pattern, as well as those of CURLT
H̃

and CURLẼ, we can now solve

the adjoint system by making the substitutions indicated in Table (2.3) to

the operators in Eqns. (2.50)-(2.53). If the grid is uniform in size, then

DB
A = −(DA

B)
T

for any type of mapping, and only the last substitution is

needed.

2.6 Solving for multiple RHS

Compared to other survey methods, the number of data points acquired for

each source is much smaller in AEM systems. Each source in a frequency

domain AEM survey is identified by its location and frequency. And for

each source, only one EM sounding measurement is made. If an iterative

method is used, this one to one ratio between the number of sources and
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Table 2.3: Substitution of operators for the setup of the adjoint prob-
lem

A → AT

Dze
cc → −(Dcc

ze)
T

Dnd
xe → −(Dxe

nd)T

Dnd
ze → −(Dze

nd)T

Dxe
cc → −(Dcc

xe)
T

Dxe
nd → −(Dnd

xe )
T

Dcc
ze → −(Dze

cc)
T

Dcc
xe → −(Dxe

cc)T

Dze
nd → −(Dnd

ze )
T

c → −c

the number of receivers can make the computation quite costly, as the total

number of forward solves (x = A−1rhs) or transposed solves (x = A−T rhs)

scales with the number of data points. However, using direct solver, mul-

tiple sources can be solved at about the same time as solving for a single

source. In this case, the majority of the computational effort goes into LU

factorizing the forward matrix and the cost of solving for each source with

forward/backward-substitution is only a fraction of the cost of the factoriza-

tion. However, to take advantage of this, the sources have to share the same

linear system. Namely, the mesh needs to be set up such that it contains all

source locations. With such a mesh, the number of forward solves required

does not scale linearly with the number of sources, but only with the number

of sounding frequencies Nω and the number of optimum wavenumbers Nky .

In Matlab, multiple right hand sides can be solved by concatenating the

different RHS column vectors into a RHS matrix. The matrix is passed to

backslash and the outputs are stored in a matrix whose columns are the

solutions of the corresponding columns in the RHS matrix.

A typical mesh generated for multiple source locations can be seen in Fig-
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Figure 2.2: An example of a mesh generated for AEM inversion. The
color shows the initial guess of the log of the conductivity model
and the crosses represent the source positions.

ure (2.2). The coarser padding cells, which are used to extend the core mesh

boundary so to reduce boundary effects, are not shown in the figure. In the

mesh, we can see that in order to incorporate the source altitudes accurately,

cells around the sources have a hz less than 1 meter. This high tolerance is

necessary, as a difference of a meter in the altitude of the source can affect

the computed response by a couple of percent, creating discretization errors

that could dominate other sources of error in the data. If the discretization

error is not carefully controlled, serious error underestimation can occur in

the inversion process. This can lead to unsuccessful inversions.

Now that we know how to predict the magnetic response from any given

conductivity distribution, we can proceed to apply the standard inversion

framework to build an algorithm to invert AEM data to conductivity models.
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Chapter 3

Inversion framework

The objective of an inversion algorithm is to convert observed data into a

model of a system property such that the data can be explained by the model.

But since most inverse problems are ill-posed, meaning that they are not well-

posed in the sense defined by Jacques Hadamard, it is necessary to restrict

the possible recovered solutions to the most probable and most reasonable

ones. What counts as a good recovered model depends on the application.

For example, in geophysical settings where physical properties of the earth

are recovered, a good model should show few features on a length scale longer

than the expected size of the anomalies, while the recovered anomalies should

have a size typical for structures created by similar geological formations. By

contrast, in image deblurring, a good reconstruction adds sharper contrasts

to the features of the image and makes it richer in details. In inverse prob-

lems, the different application dependent requirements on the solution can

be achieved by adding the appropriate regularizations to the data-fitting via

mathematical constraints.
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3.1 Objective function

Given the magnetic field response, dobs, observed above a survey line, the

goal of an EM inversion is to recover a smooth conductivity model that

minimizes the data misfit. Similar to other EM inverse problems, the log

of the conductivity m = log10(σ) is used and the data fitting is regularized

by incorporating a priori information into the objective function. Here, we

regularize with the most commonly used constraints in geophysical inversions:

we require that the model is smooth and close to a reference model. To

accomplish this, we add the Tikhonov regularization to the data misfit:

min
m

φ(m) = min
m

φd(m) + βφm(m) (3.1)

where

φd(m) =
1

2

∑
i

∥∥∥∥∥dpred
i (m)− dobs

i

σstd
i

∥∥∥∥∥
2

2

(3.2)

is the data misfit and i is an index for all combinations of ω and xs.

φm(m) =
1

2

(
αs‖m−mref‖2

2 + αx‖∂x(m−mref)‖2
2 + αz‖∂z(m−mref)‖2

2

)
(3.3)

is the model misfit and β is the regularization parameter. The predicted

data, dpred, is computed by extracting the secondary field due to σ = em at

the receivers using the measurement matrices Pi:

dpred
i = Pi

~H(xs, ω) = Pi

Nky∑
j

gjH̃(xs, ω, ky,j) (3.4)

The data misfit term is the squared sum of the misfit of the data points

normalized by the noise standard deviation σstd
i . The second term is the

smallness regularization and the corresponding parameter, αs, controls the

length scale of the details in the inverted model. The smoothness in x and

z-directions is controlled by the parameters αx and αz in the third and forth
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terms, respectively and minimizing them has the effect of reducing sharp

jumps in the solution so that a smooth model is produced.

3.2 Sensitivity matrix

As we will discuss later, the objective function is minimized by a quasi-

Newton optimization technique. In this section, we derive the gradient of the

objective function needed to compute the search step for the optimization.

To start, we discretize the objective function and obtain

φ(m) =
1

2
‖Q−1

(
dpred(m)− dobs

)
‖2

2

+
β

2

(
αs‖m−mref‖2

2 + αx‖Dx(m−mref)‖2
2 + αz‖Dz(m−mref)‖2

2

)
.

(3.5)

where Q = diag(σstd), and Dx = Dxe
cc and Dz = Dze

cc as shown in Chapter

2.4.2. Next, we differentiate the objective function with matrix calculus to

find the gradient:

∇φ(m) =

(
∂dpred

∂m

)T (
Q−2

(
dpred − dobs

))
+ β

(
αs(m−mref) + αxD

T
xDx(m−mref) + αzD

T
z Dz(m−mref)

)
=
∑
i

Nky∑
j

gjJ
T
i,jP

T
i Q−2

i (dpred
i − dobs

i )


+ β

(
αs(m−mref) + αxD

T
xDx(m−mref) + αzD

T
z Dz(m−mref)

)
(3.6)

In this equation, the sensitivity matrix Ji,j is given by the derivative of the

magnetic field with respect to the model:

Ji,j =
∂H̃

∂m
=
∂H̃

∂σ

∂σ

∂m
=

CURLẼ

−c
∂Ẽ

∂σ

∂σ

∂m
(3.7)
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where Ẽ = Ẽ(xs, ω, ky) is given by the forward solution:

Ẽ = A−1(−cA2(σ)Ẽ0) (3.8)

To find its derivative w.r.t to the conductivity model, we apply implicit

differentiation to (2.48):

∂

∂σ

(
[CURLH̃CURLẼ + cdiag(A1σ)] Ẽ

)
=

∂

∂σ

(
−cA2(σ)Ẽ0

)
(3.9)

A
∂Ẽ

∂σ
+ c

∂

∂σ

(
diag(A1σ)Ẽ

)
=

∂

∂σ

(
−cA2(σ)Ẽ0

)
(3.10)

Now by applying the property diag(a)b = diag(b)a twice, once on each side

of (3.10), we obtain:

A
∂Ẽ

∂σ
+ c

∂

∂σ

(
diag(Ẽ)A1σ

)
= −c ∂

∂σ


Aze

ccdiag(Ẽ0,x)

And
cc diag(Ẽ0,y)

Axe
ccdiag(Ẽ0,z)

σ

 (3.11)

A
∂Ẽ

∂σ
+ cdiag(Ẽ)A1 = −cA3(Ẽ0) (3.12)

∂Ẽ

∂σ
= −cA−1

(
A3(Ẽ0) + diag(Ẽ)A1

)
(3.13)

where we have defined

A3(Ẽ0) :=

Aze
ccdiag(Ẽ0,x)

And
cc diag(Ẽ0,y)

Axe
ccdiag(Ẽ0,z)

 . (3.14)

Now, by going back to Eqn. (3.7), we find that:

Ji,j =
∂H̃

∂m
= CURLẼA−1

(
A3(Ẽ0) + diag(Ẽ)A1

)
diag(ln(10)10m) (3.15)
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At last, we take the transpose of the sensitivity to obtain

JTi,j =

(
∂H̃

∂m

)T

= diag(ln(10)10m)
(
AT

3 (Ẽ0) + AT
1 diag(Ẽ)

)
(AT )

−1
CURLT

Ẽ

(3.16)

where Ẽ represents the complex conjugate of Ẽ. We plug this result back

into (3.6) to get the gradient of our optimization objective.

From Eqns. (3.6) and (3.16), we can see that each time the gradient

is evaluated, two forward solves are needed: one computes the secondary

electric field Ẽ by solving the regular forward problem given by Eqn. (3.8),

and the other solves the adjoint problem given by:

x = (AT )
−1

rhs (3.17)

rhs = CURLT
Ẽ

PT
i

dpred
i − dobs

i

σ2
i,std

(3.18)

Together with the evaluation of the misfit function in each line search iter-

ation, which we will discuss in the next section, the total number of solves

involving A and AT is 3NωNky if one assumes that the misfit function only

needs to be checked once for each new search direction.

3.3 Method of optimization

In this work, the objective function is minimized using the quasi-Newton

iterative method L-BFGS ([16]). This method finds the search direction by

approximating the inverse Hessian using updates of the argument and the

gradient. As in all iterative method, the optimization is initialized with

a starting guess m0. Then, in each subsequent iteration, a new model is

computed using

mn+1 = mn + α`δmn (3.19)
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where the line search parameter α` decreases exponentially with the line

search iteration number `: α` = const` , ` = 0, 1, ..., and δmn is the search

direction given by the quasi-Newton approximate Hessian Hn and the gradi-

ent:

δmn = −H−1
n ∇φ(mn). (3.20)

Using the L-BFGS algorithm to approximate the inverse Hessian has the

advantage that the sensitivity does not have to be computed explicitly but

instead only matrix-vector products involving the Jacobian:

JTi,jx, (3.21)

are needed [8]. In situations where the full Hessian is too costly to be eval-

uated, L-BFGS offers a cheap way to compute a good approximation to the

inverse Hessian. At each L-BFGS iteration, the search step δmn, is com-

puted from an initial guess of the Hessian, for which we use the Hessian of

the regularization term

Hm = αsI + αxD
T
xDx + αzD

T
z Dz, (3.22)

and the model and gradient updates

sl = ml+1 −ml (3.23)

yl = ∇φ(ml+1)−∇φ(ml) (3.24)

collected from the previous k iterations n − 1, ..., n − k. A history of only

k = 10 recent update vectors usually does a good job in obtaining a descent

search direction. For those interested, details on implementing the L-BFGS

algorithm can be found in [12].
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3.4 Implementation of the optimization

3.4.1 Data structures

In our inversion scheme, we seek to recover the 2D conductivity distribution

of the earth directly underneath a survey line by simultaneously inverting

soundings made along the line. Good data structures for storing the ob-

served data and the electromagnetic fields are important to making the code

readable and easy to run and maintain.

The observed data are characterized by the source position, xs and the

frequency ω. As an example, the data point measured with a source located

at position number s at w-th frequency can be retrieved in Matlab with:

dataObs(:, s, w).

The fields, which are stored as column vectors, are functions of the

wavenumbers ky as well. The most convenient way is to adapt a four di-

mensional array structure for the storage. The first dimension will have the

length of the stored variable: 1 for the observed data and the total number

of edges/nodes/cell-centers for the fields. The second dimension is used to

differentiate the sources, the third dimension separates the frequencies and

the fourth dimension the different wavenumbers. To extract the field Ẽx

computed for source number s, frequency number w and k-th wavenumber,

we type the command: Ex{w, k}(:, s) (the cell structure is used to allow for

storage of sparse matrices as Matlab does not support sparse matrices with

more than two dimensions).

3.4.2 Constrained optimization

By incorporating additional constraints into the optimization, the solution

space can be further confined and the recovered solution will resemble more

to a realistic real-world model. As mentioned earlier, constraints are de-

rived from a priori information and they can come in many different types.
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Most commonly, geophysical constraints come from borehole measurements,

physical properties of the survey area extracted from previous geological or

geophysical studies, and inversion results from other surveys.

In geological settings, the range of observed conductivity/resistivity can

span over eight orders of magnitude. Putting restrictions on the value of the

conductivity during the optimization is therefore very helpful in producing

a realistic model. In the algorithm, the restriction is implemented by the

projected gradient method [2]. The method confines the conductivity in

each cell of the recovered model to a given interval by applying a projection

function to the updated model at each iteration:

mn+1 = PΘ(mn + α`δmn) ,Θ = {m ∈ Rn : mmin ≤m ≤mmax} (3.25)

where

PΘ(m(xi, zj)) =

{
mmax(xi, zj) if m(xi, zj) > mmax(xi, zj)

mmin(xi, zj) if m(xi, zj) < mmin(xi, zj)
(3.26)

with mmin and mmax being the user-defined lower and upper bound model,

respectively. By bounding each cell individually, one can define the conduc-

tivity in those areas that one has confidence in. For example, conductivity

data from a drillhole sample can be used to narrow down the conductivity

distribution in the region immediately around the borehole core, soil/rock

samples on the surface can be used to make better inversion of the overbur-

den and regional geophysical surveys can be used to place a global bound on

the entire survey area.

In addition to the ability to restrict the conductivity to be within a range

of values, we can also define spatial regions in the model that can be up-

dated in each iteration. This option is implemented in our algorithm by

first defining an active region and then modifying the computed gradient as
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follows:

∇φ(mn)mod
k =

∇φ(mn)k if k ↔ (i, j) and cell ij is in the active area

0 otherwise.

(3.27)

By doing this, parameters outside the active region are not updated during

the optimization and are left the same as in the initial guess. The use of active

areas allows one to, for example, control the location in which a potential

target can be found. In addition, it also provides an easy way to test the

effect of placing a target in different locations on the data fitting.

3.4.3 Regularization parameter selection

Choosing the appropriate regularization parameter, β, is essential for a good

solution to the regularized minimization problem (3.1). Each strategy of

reaching a solution to the problem produces a different β. In geophysical

inversions, the most commonly used strategies are the discrepancy principle,

the L-curve and generalized cross-validation (GCV). The first approach is

usually used when the noise is Gaussian and its standard deviation is known.

When the noise level cannot easily be determined, as is often the case, one can

turn to the L-curve or GCV. In our algorithm, only the first two approaches

are implemented. (The GCV approach requires knowing the full Hessian

which is too computationally expensive to obtain for the size of our problem.)

The discrepancy principle recovers a model by selecting the β that con-

verges to a target data misfit, tmisfit, equal to

tmisfit := φd(β
∗,m∗) = Ndata (3.28)

where Ndata is the number of measurement points and the star ∗ denotes the

optimum value of the variable. Constraining the data misfit in this way can

be justified by the assumption of Gaussian noise and the fact that φd(m
∗)
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follows a χ2 distribution and its expected value is

E(φd(m
∗)) = Ndata. (3.29)

If β is too small, the minimization will try to reduce φd further, resulting

in a solution that fits the noise, i.e., over-fitting. On the other end, if β is

too large the optimization renders an under-fitted and featureless model as

only the model misfit is minimized and the recovery does not make much

use of the observed information. The effect of the regularization parameter

on the two misfits at convergence is illustrated by the well-known Tikhonov

curve (Fig. 3.1). To find the β that gives tmisfit, it is advised to start with

a large guess for β and then decrease its value in subsequent optimization

trials until the desired target misfit is reached within a defined tolerance.

This is because more iterations are required to reach convergence when φd

is the dominant term. Also, since φm changes logarithmically with β, it

is beneficial to generate a series of solutions for logarithmically spaced β’s.

The search for β can be automated and the time it takes reduced by using a

cooling strategy [7]. However, in the current version of the algorithm, β can

only be chosen manually.

In geophysical inversions, the errors come from uncertainties in the mea-

surements as well as error in the forward solution. Estimating the error

precisely can therefore be a tough task. In the cases where the noise level is

uncertain, one can account for the uncertainty in the estimation by multi-

plying the target misfit by a factor, chifact, such that the tmisfit is now

tmisfit = chifact×Ndata. (3.30)

Setting the chifact to above (below) 1 allows us to choose another model

that fits to a larger (smaller) error. Also, the same strategy can be used to

pick a model that underfits or overfits the current noise level.

In the occasions when the noise level is completely unknown or the un-
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β → ∞ 

β → 0 

φm

φd

φd(β∗,m∗)

Figure 3.1: Tikhonov curve. For large β, the model norm φm dom-
inates the objective and the data misfit is underrepresented.
The opposite happens when β is small. When the noise level is
known, the target misfit, φd(β

∗,m∗), can be used to determine
the regularization parameter.
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Figure 3.2: The L-curve. It can be used to select the regularization
parameter β when the noise level is unknown. In this strategy,
β is chosen at the point of maximum curvature of the L-curve.

certainty in determining it is too high, β is generally chosen at the point of

maximum curvature of the L-curve (see Fig. 3.2). The idea behind this is

that in the absence of a good estimate of the noise, we prefer a model that

both fits the data well and has a small model norm. In the current implemen-

tation of the inversion, this method can only be used by manually generating

a series of solutions for a range of β like in the discrepancy strategy.
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3.4.4 Stopping criteria

Once the quasi-Newton optimization is started, the inverted model is up-

dated at each iteration until a stopping criteria or a convergence condition

is reached. In our algorithm, the iteration is terminated when one of the

following conditions is met:

• the maximum number of quasi-Newton iterations, maxit, is exceeded

• the size of the search step is small enough; max(abs(α`δmn)) ≤ tol step

• the change in the objective function is small enough; |φ(mn+1)−φ(mn)|/|φ(mn)| ≤
tolφ

• the norm of the gradient is small enough; ||∇φ(mn+1)||/||∇φ(m0)|| ≤
tol
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Chapter 4

Results

To evaluate the numerical accuracy of our forward modeling, a known 1D

analytical solution was used to benchmark the 2.5D implementation. To

assess the reliability of our inversion, we tested the algorithm on synthetic

data and field data from a RESOLVE AEM survey. The inverted models

were compared to the synthetic 2D models and also to models from a well-

established 1D inversion supplied by Fugro.

4.1 Testing the forward solution

The numerical accuracy of our algorithm was tested by computing the re-

sponse from a synthetic layered earth model and then comparing the results

against the 1D analytical solution [4, 23]. The model is shown in Fig. 4.1;

it consists of a 20 m thick conductive layer of 10−1 S/m buried 30 m under

the surface of a 10−2 S/m half-space. Figure 4.2 shows the 2D inphase and

quadrature response. The frequencies used in the computation spanned a

range that is typically used in AEM systems and the response was computed

10 m away from the transmitter and 40 m above the ground.

Our results show that with only six optimized wavenumbers and a cell

size of 10 m × 5 m, the error in computing the 2D response can be reduced
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Figure 4.1: Schematic of the mesh and the conductivity model used to

test the 2D forward modeling.

to within 1% of the 1D analytical value. The response was also computed for

different cell sizes and the discretization errors are listed in Table 4.1. For

cell sizes under 10 m×10 m, the relative error averaged over all inphase and

quadrature responses was found to be less than 1%. Since the measurement

uncertainties in AEM systems are usually well above this level, these solution

errors are sufficiently small for the purpose of inversion.

Now that the forward problem can be accurately solved, we can proceed

to test the inversion algorithm.
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Figure 4.2: Comparison of 2D response with 1D analytical solution. a)
Computed responses from the synthetic model shown in Fig. 4.1.
Circles are the 1D analytical responses and the crosses are the
2D modeled responses. b) Relative error of the 2D responses.

Table 4.1: Solution error of the 2.5D forward modeling for different cell
sizes.

Cell size Max. Inphase error(PPM) Max. Quad error(PPM) Mean rel. error(%)
10×10 38.35(2.89%) 20.71(3.10%) 1.00
10×5 12.28(0.92%) 8.88(1.00%) 0.37
5×5 10.76(0.81%) 6.68(0.76%) 0.31

2.5×2.5 3.75(0.28%) 1.61(0.18%) 0.11
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4.2 Inversion of synthetic data

We next test our inversion code on synthetic data. Before inversions are

performed on actual geophysical datasets, it is always a good idea to test

the method on known solutions first. Using synthetic models that replicate

complex geological structures and topology can help in finding limitations

and shortcomings of the algorithm. Here, we tested our algorithm on a 200

m wide and 50 m deep conductive 2D prism that is buried inside a 0.01 S/m

half space (see Fig. 4.3). The prism has a conductivity of 0.1 S/m and is

buried 30 m under a 20 m thick overburden that is resistive (0.003 S/m) on

one half and conductive (0.03 S/m) on the other. Two small inclines were

added to the topology to mimic variations in the height of earth’s surface. In

order to avoid committing the “inversion crime”, the synthetic response was

generated using a twice denser mesh with cell size of 5 m×5 m. The response

10 m away from the transmitters was computed for 20 horizontal coplanar

sources and 5 logarithmically spaced frequencies. Each source-receiver pair

is separated by 20 m and is placed 40 m above the zero depth level. Gaussian

noise with a standard deviation of 5% of the response value plus a floor of

10−10 A/m was used to contaminate the data before the inversion.

In the inversion, the data were assigned a standard deviation of 8%+10−10

A/m and the mesh cell size of 10 m×10 m generates a forward system of

about 8000 variables. The other inversion parameters were Nky = 6, αs =

10−4, αx = αz = 4 × 10−2. The reference and initial model were set to a

0.01 S/m half-space. The inversion was run using the Parallel Computing

Toolbox in Matlab with 8 parallel processes and a laptop equipped with a

2.30GHz Intel i7-2820QM CPU. For a β of 1000 and a chifact of 1, the target

misfit of 100 was reached in 23 iterations and 20 minutes.

The results of inversion on the synthetic data are shown in Fig. 4.4. The

data misfit showed that the optimization converged to a model that pre-

dicted the majority of the observed response data to within the noise level,

except for several points near the first source which can be explained by the
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smaller data per parameter density on the edges. The recovered model re-

vealed three distinct regions of conductivity contrast in accordance with the

synthetic model. The relative position of the regions are consistent with the

true model, but the sizes and conductivities displayed some discrepancies.

A slightly better recovery was observed for the resistive half of the overbur-

den than the conductive half, while in total only about 60-70% of the area

of the true overburden was reconstructed with the correct property value.

This is actually a decent result considering that only about a third of the

length of the overburden was covered by the measurements. This finding is

evidence that the range of detection for conductors of similar conductivity

does not extend beyond 100 m at the frequencies tested, or in other words

the footprint of the AEM system setup is at most 100 m. As for the inverted

target, its conductivity plateaued at a value that is 6% less than the true

value. From the peak value, the conductivity dropped continuously until it

reached the reference value about two cells away from the edge of the true

target, which puts the uncertainty on the position of the edge at about 20

m. This uncertainty is the effect of regularizing with the mean-squared error

(Eqn. 3.3) which produces models with smooth edges by heavily penalizing

sharp jumps in the model. Although it is possible to reduce it with a differ-

ent regularizing function (such as the total variation), the uncertainty does

not pose major problems for mineral targeting purposes, as the dimension of

many economically viable ore deposits is often an order of magnitude larger.

With these results, we are now more confident that the algorithm is func-

tioning like a proper inversion is supposed to. However, before we can label

it as a working code, we need to test the inversion once more, but now on

a 3D field dataset. Details and results of this test are described in the next

section.
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Figure 4.3: Synthetic model used in testing the 2D inversion algo-
rithm. The model is 2D and it consists of a conductive prism
and an overburden that is conductive on one end and resistive
on the other. Responses were recorded 10 m away from the
sources and 40 m above the ground. Locations of the sources
are indicated by the red crosses.

4.3 Inversion of field data

To check the effectiveness of our algorithm in inverting field data, data from

a Fugro RESOLVE survey were inverted. Since a unique solution does not

exist, we can only verify the algorithm by comparing to results obtained with

other well tested inversions. For this purpose, we compared our results to

models from an established 1D inversion tool supplied by Fugro.

In the survey, a total of 684 line kilometers were flown over the Red Dog

mine site in Alaska. The survey lines were spaced 50 m apart and they
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Figure 4.4: a) Log of the recovered 2D conductivity model for the syn-
thetic data generated by the model shown in 4.3. b) Left: misfit
of predicted data normalized by noise standard deviation. Mid-
dle and right: The response curves are offset by 1000 ppm for
clarity. Crosses represent the synthetic inphase and quadrature
responses and solid curves are the predicted data.
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covered the site in two orthogonal directions: 13◦ and 103◦ azimuth. To map

the conductivity contrasts of the survey area, the AEM system measured the

magnetic response of the area in five frequencies at heights of 40-60 m above

the ground and 7.9 m away from the sources. The objective of the survey

was to use the conductivity detected in and around the mine’s tailing pond

to identify any possible leakage of tailings from the waste area located to the

east into the pond.

Here, instead of running a full inversion using every data point of each line,

the responses were resampled at 40 m intervals. Equivalently, the data were

decimated to 7% of the original sampling rate. The area of inversion had a

200 m depth extent and it was discretized with a mesh of 8 m× 8 m cells. The

paddings added 300 m to both ends of the line and 300 m to the depth of the

mesh. The data were assigned a noise standard deviation of 10%×dobs+10−9

A/m and a half-space of 10−3 S/m was used as the reference model. By

using a β determined from L-curve strategy and a convergence criteria of

tol step = 0.02, convergence was usually reached within 50 iterations of L-

BFGS with a history of 20 recent updates. Each L-BFGS iteration took

about 3 mins on a cluster node outfitted with two 6-core Intel Xeon X5660

CPUs at 2.8 GHz and 64 GB of memory.
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10300

Tailing pond

waste area

Figure 4.5: Satellite image of the Red Dog mine area in Alaska. Red
line: outline of the survey area. White line: outline of the waste
area. Blue line: outline of the tailing pond. Black lines: ore
deposits. Green lines: survey lines inverted. Image from [21].
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Figure 4.6: Predicted data misfit for the inversions on the lines shown
in Fig. 4.5: a)-b) Line 10300, c)-d) Line 20590. The curves are
offset by 1000 ppm for clarity. Solid lines: predicted response.
Crosses: observed data. Observed data are from [21].
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The two observables are strongly correlated.
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In the test, we inverted several 3 km long survey lines from both orthogo-

nal directions. As seen in Fig. 4.6, the observed responses are highly varying

between measurement points. A quick comparison of the length scale of

these changes and that of fluctuations observed in the height of the bird (see

Fig. 4.7) suggests that the variations are not due to instrument noise, but are

rather caused by the changing bird altitude. As a consequence, one would

expect the predicted data to exhibit the same fluctuations as in the observed

data if the forward modeling takes the varying altitude into account. This

was indeed the case: the predicted data showed a close fit to a large portion

of the observations and they reproduced the fluctuations caused by the flight

altitude.

Inversions for the two lines highlighted in Fig. 4.5 are shown in Fig. 4.8.

When compared to 1D inversions, our inverted models displayed the same

ability to resolve areas of high conductivity contrasts. The conductive re-

gions were found to be in the pond and on top of the waste dump area,

which respectively correspond to the water in the pond and the conductive

waste pile-up on the dump site. Features in the 1D models that are likely

contributed by conductive geological structures were all recovered in the 2D

models. However, most of these structures appeared smoother in our 2D

inversions. We relate this to our choice of large smoothness parameters αx

and αz, which have the effect of penalizing sharp features in the solution.

Despite the size of the anomalies showed some discrepancies, their conduc-

tivity values found in the 2D models were in good agreement with the 1D

results as well as their location and depth extent.

As for locating possible channels of tailing drainage, no clear evidence of

their presence was found in any of the lines inverted. But like every good in-

version work-flow will suggest, inversion should always be repeated multiple

times such that decisions are made based on a collection of models rather

than on a single model. Another run of inversion with better adjusted reg-

ularization parameters and smaller cell sizes is therefore necessary to obtain
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a more conclusive answer.

To summarize the test results, our implementation of the 2.5D EM for-

ward modeling and inversion scheme were successful when verified against

more established 1D counterparts. The forward modeling was able to com-

pute the magnetic response to a level of accuracy (±1%) that is sufficiently

high for inversion purposes. In addition, there is strong evidence that the

inversion algorithm is correctly resolving conductive anomalies at least as

accurately as a standard 1D inversion is doing.
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Chapter 5

Conclusion and future work

In this project, we developed an inversion algorithm to recover a 2D conduc-

tivity model of the earth from frequency domain AEM data generated by

horizontally coplanar vertical dipoles. We demonstrated that our implemen-

tation of the 2.5D EM problem can accurately predict the magnetic response

of a three layer model and the inversion scheme can successfully and reliably

be applied to field data to correctly locate and identify conductive anomalies.

However, the computation speed still poses a big problem and improve-

ments are necessary to give our algorithm a more definite edge over other

1D or 3D inversion tools that are now available. This could be done by

using adaptive meshes [10] which can greatly reduce the size of the linear

system. The technique saves computing time by starting out with a coarse

grid, which is then successively refined for only those regions in the grid that

are rich in details. Another solution to the problem is by speeding up the

matrix decomposition in the direct solve step. This can be achieved by using

parallelized sparse direct solver algorithms such as MUMPS and SuperLU.

Moreover, whether the inversion is effective in correctly resolving 3D

structures is still a question to be answered. As one might have quickly

noticed by inspecting the aerial map of the mine site in Chapter 4, the

conductive structures under the two inverted lines are rather 2D in nature.
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Therefore in the future, in order to make more correct interpretations of

higher dimensional geologies, our algorithm should also be tested on data

produced by strongly 3D structures, for example by a conductive block with

a strike extent comparable to the size of the AEM footprint.

For future work, a direct continuation of this project would be to imple-

ment the same 2.5D formulation but for time domain EM data. For this,

the same inversion scheme shown earlier can be applied once the forward

problem is solved. Solving time domain problems is however a little more

involved as it requires time stepping, which cannot be easily parallelized.

Alternatively, the time domain problem can be reformulated and solved in

the frequency domain by applying a Fourier transform. But this approach

is only advantageous if the number of frequencies required for an accurate

transformation can be kept small.
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