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Global patterns of soil loss are poorly understood.   While recent research has explored the 

physical processes that drive soil erosion, through the study of sediment transport, few spatial analyses of 

these processes have been conducted.  One major reason why the spatial element of sediment dynamics 

has not been studied is a lack of data: datasets are often expensive and difficult to obtain.  To meet this 

need, this thesis proposes the construction of a Global Sediment Database, which will be freely available 

to all.  The Database will be updatable, and will contain a detailed Data Quality Report so researchers can 

determine the most effective use of the data.  The Data Quality Report will also quantitatively summarize 

the error and uncertainty of each dataset. This thesis will also demonstrate how the Database can be used 

to conduct spatial analyses of sediment processes using Geographic Information Systems (GIS).  To this 

end, various spatial interpolation methods will be explored and evaluated, using the Yellow River as an 

example. 
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Chapter 1 Introduction 

1.1 Motivation 
Soil is an essential natural resource (Walling, 2005; Montgomery, 2007): thus, the 

continuing depletion of the world’s soil is a major threat to humanity.  Yet soil is arguably the 

most undervalued element to our survival: oil, gas, and minerals get much of the attention and 

resources (Cooke & Doornkamp, 1990; Montgomery, 2007).  Although soil loss has been a 

recognized problem since at least the late 1800’s (examples cited in Cooke & Doornkamp, 

1990), the issue remains problematic even now, well into the twenty-first century. 

Rainfall, runoff and wind are responsible for much of the world’s soil loss from year to 

year (e.g., Jansson, 1981; Church et al., 1999; Walling & Fang, 2003; Church, 2006).  However, 

focusing on these processes is too narrow a perspective, as human activities greatly increase a 

landscape’s vulnerability to erosion.  For example, deforestation is contributing to soil erosion, 

as vegetation acts to keep soil in place.  Another example is intensive agriculture. 

As a result of logging, soil is no longer bound up in the root structures of the trees and 

shrubs, logging roads have likely been cut into the landscape, and the surface itself has been 

disturbed through the action of felling and removing trees.  All these factors increase the 

likelihood of subsequent severe soil erosion (e.g., Cooke & Doornkamp, 1990; Montgomery, 

2007). 

Agriculture is also a major factor in soil erosion.  The westward American push across 

North America throughout the mid to late 1800’s, was spurred, to a significant degree, by soil 

loss (summarized in Montgomery, 2007). As valleys and slopes were cleared for farming, little 

attention was paid to soil retention, so overland runoff could often cause a decrease in arable 

land, as once fertile soil was washed downstream.  Rather than address the issues, farmers would 



2 
 

move farther west, and repeat their mistake (Montgomery, 2007).  Likewise, cash-cropping 

practices in the Amazon jungle jeopardize the forest ecosystem, as more and more areas are 

cleared, exacerbating soil erosion (Montgomery, 2007). 

Though soil-erosion processes are relatively well-understood there is still not a collective, 

global consensus regarding appropriate conservation strategies (Cooke & Doornkamp, 1990).  

The task of adequately measuring soil loss can be difficult, expensive, and time-consuming, and 

few countries possess the resources do so effectively over the long term.  Despite calls from 

conservationists as early as the late 19
th

 century (i.e. George Marsh, 1864, cited in Cooke & 

Doornkamp, 1990), soil erosion continues to be a concern in many parts of the world.   Most 

responses to this problem have taken one of the following four approaches (Montgomery, 2007).  

First, scientific research has been conducted to understand and predict soil-erosion dynamics.  

Second, engineers have developed technology to help mitigate or prevent soil loss.  Third, 

attempts have been made to apply research results to land management policies.  Finally, reviews 

of all these actions have been conducted, in order to assess the usefulness of various potential 

solutions (Montgomery, 2007).  These efforts can be strengthened by understanding the spatial 

patterns of sediment yield in the landscape.  Understanding how soil loss occurs is only part of 

the question: knowing where and how much sediment is moved is important, so researchers can 

maximize the effectiveness of their soil conservation strategies.  The fact that few studies having 

systematically investigated the spatial concerns of sediment dynamics and soil loss underscores a 

more pressing concern: data is often expensive and difficult to acquire, and thus the availability 

of such information is low. 
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To reach a global awareness of where soil loss occurs, large spatially representative 

datasets are needed.  While datasets exist for some parts of the world, there are no standard 

methods for collecting, processing, and documenting such data.   While there has been a greater 

emphasis on the consideration of spatial scale in sediment yield analyses (especially Church et 

al, 1999; and Hassan et al, 2008), a detailed investigation into which specific tools might be best 

for spatial sediment analyses has yet to be published.  Both Church et al. (1999) and Hassan et al. 

(2008) use interpolation to conduct their spatial analyses of sediment patterns, but there are 

dozens of ways of interpolating spatial data.  Which is most suitable? 

The thesis proposes to fill both these gaps.  First, we will build a Global Sediment 

Database, which will incorporate previously published datasets into an organized, easy-to-use 

format.  Second, we will examine and evaluate methods of spatially analyzing sediment data.  

Both these goals will incorporate data quality analysis.  For the Database, each data source will 

be quantitatively assessed enabling potential users to see at-a-glance how reliable a dataset might 

be.  In investigating methods of spatial analysis, an example dataset—the Yellow River, in 

China—will be processed using Geographic Information Systems (GIS).  To evaluate the 

appropriateness of the interpolation method, statistical measures of error values will be analyzed.  

This process of evaluating data quality, and systematically selecting the most appropriate 

analytical interpolating tools, can serve as a template for other researchers, a kind of step-by-step 

guide for effectively using the data that will be contained in the Global Sediment Database. 

First, however, we need to take a step back and explore the data that will be used to 

create the Global Sediment Database. Sediment yield will be the primary component of the 

Database.  A three-part literature review will examine background information that is necessary 

to understand why spatial analysis of sediment yield is important, and how such research can be 
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conducted with the available data.  In the first section we will introduce basic concepts of 

sediment transport and yield and why these values are important; second, we will review the 

main controls on the spatial and temporal patterns of global sediment yield; third, we will 

demonstrate that considering the spatial pattern of sediment processes is essential in 

understanding sediment dynamics in the landscape.   We will also demonstrate that data quality 

is important to evaluate when investigating sediment yield, as data quality is a major hurdle in 

creating the Database, and has prevented progress on this topic. Investigating these topics 

provides the motivation for this project: to build a Global Sediment Database, and to investigate 

methods for spatial sediment yield analysis and extrapolation.    

 

1.2 Literature review 

 Few long-term data records for measuring and quantifying sediment processes exist for 

most parts of the world, since it is difficult to obtain such data.  For example, installing and 

operating monitoring stations is expensive in terms of equipment, transportation to remote 

locations, and labour.  For manually sampled data, there is a risk of drowning, while for 

automatically gathered data, instruments can be damaged or displaced by severe events.  

Difficulties can also arise from the data samplers themselves. The sample and recording of 

sediment (both bedload and suspended) is limited to the sample capacity or to the quality of the 

turbidity sensors. Accounting for the danger and difficulty of sampling extreme events is 

expensive: equipment must be reinforced, repaired or replaced; field researchers must be sent in 

groups, and with proper training; and extra sampling days should be planned, to account for lost 

data. 
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Once logistics have been arranged there is the issue of landscape complexity. Deciding 

where to place stations is not straightforward, nor is it possible to guarantee complete 

representativeness.  A consequent problem is that the sensitivity of basin sediment dynamics to 

environmental change is not fully known, despite the comparatively extensive datasets regarding 

other hydrological and meteorological parameters, such as runoff, river floods, and precipitation 

(e.g., Church et al., 1989; Walling, 2005).  Even though these fundamental processes are well-

understood, this knowledge does not fully alleviate the comparatively unmonitored sediment 

processes of a basin.  Further, the reliability of the few long-term sediment databases is open to 

question, given the persistent problem of obtaining accurate estimates of sediment loads 

(Walling & Webb, 1981, 1987, 1988; Leeks, 2005). 

Nevertheless, progress has been made.  Well-established, well-documented data sources 

exist in the USA and in China, organized by national governments, with ongoing monitoring at 

hundreds of sites.  Typically, such data stations report sediment concentration, sediment load and 

sediment yield (excluding dissolved material and bedload).  To represent temporal patterns in 

sediment dynamics, there is a need for long term datasets. By using long-term datasets, we can 

create standards for data quality analysis and metadata documentation Thus, the Global Sediment 

Database will become a model for data collection and processing strategies. 

 

1.2.1 Sediment Transport   

Rivers and the watersheds they drain are the fundamental components of the landscape. 

Fluvial processes dominate land denudation, and therefore control the shape of the earth’s 

surface. The physical processes that control the erosion, transport, and deposition of material 

from catchment surfaces and within river channels have been well-documented (e.g., Walling, 

2005; Church, 2006).   Sediment of different calibres moves in different ways through a stream 
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and forms distinctive deposits which influence channel form. Fine material (wash load), 

generally less than about 0.125mm, moves in suspension (figure 1.1) and is deposited overbank 

in floodplains, or in backwaters, to form vertically accreted sediment bodies. Medium to coarse 

sand moves intermittently in suspension (bed material load) or in traction and forms vertically 

and laterally accreted bedforms within the channel.  Gravel moves in traction (bed material load, 

or bedload) and is deposited in laterally accreted bars within the channel. This classification of 

fluvial sediments differs from the customary one based upon mode of transport and measurement 

(e.g., Church, 2006), but is more meaningful from both morphological and sedimentological 

viewpoints.  

 

Figure 1.1 The components of sediment yield (modified from Church, 2006). 

 Walling (2005) claimed that measuring all components of sediment yield is impractical.  

Even in non-flood conditions, it is often difficult to separate bedload, saltation, and suspended 

load, as these processes often intermingle. Measuring bedload is also problematic (see Church, 

2006).  Pit traps are perhaps the most representative way to sample bedload, but collecting the 

data (potentially thousands of tons of sediment) is expensive and difficult, and they are too small 

relative to the amount of sediment that passes through a system, resulting in full traps, which 
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renders their data useless (Leeks, 2005).  With these two components being difficult to measure 

reliably, researchers tend to turn to the suspended load, which can be measured continuously 

throughout the year using manual or automatic samplers (Walling, 2005). 

 Despite the lack of bedload data, measurements of only suspended sediment yield can 

still be useful, because most sediment moves in suspension.  Several studies have attempted to 

quantify what percentage of total sediment yield is bed load vs. suspended load.  While these 

estimations have varied, they have typically been in the range of ~10% for bedload (Walling & 

Fang, 2003; Leeks, 2005; Church, 2006). This is one reason why suspended sediment data are 

often used in research—the other reason being the logistical challenges of measuring bedload, as 

mentioned above (Church et al., 1989; Nearing et al., 2005; Walling, 2005).  More detail on 

measuring suspended sediment yield can be found in Milliman & Meade, 1983; Jansson, 1988; 

Dedkov & Mozzherin, 1992; Walling & Fang, 2003; and de Vente et al., 2007).   

 

1.2.2 Sediment Yield  

 Sediment yield (SY) represents the suspended load of a river, but is typically used to 

represent the integrated yield from the relevant contributing watershed.  However, the sediment 

that is eroded will not all necessarily be completely transported through to the terminus of a river 

network: some sediment will remain stored in the watershed, albeit in a different location.  

Again, the term Sediment Delivery Ratio (which compares the material that is delivered to a site 

with the material that is evacuated from it) is used to describe the fraction of material that 

reaches a particular point in a river system.  Typically, less sediment leaves a system than is 

eroded: deposition within a watershed is thus usually greater in large basins, due to the increased 

storage potential. 
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The relative quantities of sediment erosion, transport, and deposition are not always well-

known.  Often it is assumed that there is a correlation between yield and the size of a basin 

(Walling, 1977; Church et al., 1989; de Vente et al., 2007), whereby larger basins present greater 

opportunities for storage, thus limiting delivery to the ocean. The next section will more 

thoroughly explore the significant controls on sediment dynamics. 

 

1.2.3 Controls of Sediment Processes 

 At the continent or landscape scale, climate is one of the main dominant controls of 

sediment dynamics, in addition to topography and human activity. Two examples are presented in 

the studies by Langbein and Schumm (1958) and Wilson (1973) of sediment yield in the U.S. 

Langbeing & Schumm (1956) related SY to mean annual precipitation (P), and showed that it 

reaches a peak at about 300 mm (semiarid climate).  Their model states that SY declines for P < 

300mm because there is too little runoff to erode much material, and declines for P > 300mm 

because of the impact of vegetation.  Wilson (1973) showed that in the U.S. a peak in SY occurs at 

about  P ~ 380 mm, and that there is a second peak at P 1,500-2,000 mm in seasonally wet climates 

(Mediterranean and tropical wet/dry climates).  This peak is higher than that at P = 380 mm because 

vegetation becomes attenuated during the dry season, and virtually all the rain occurs in just a few 

months of the year.  These models, however, are too simplistic, because they do not include other 

factors than control sediment yield. Langbein and Schumm (1958) in particular did not consider the 

role of landuse, geology, or landscape history on sediment yield. 

The Langbein & Schumm model was explored by Milliman & Meade (1983), who 

explored discharge as a key factor in explaining sediment yield magnitude.  Walling (1977) 

similarly noted peaks in suspended sediment transport shortly after heavy precipitation, and that 

annual precipitation rates are also significant.  Using a similar model to Langbein & Schumm 
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(1958), Walling (2005) argued that moderate rainfall leads to the highest sediment yields, 

between 300 and 500mm per year.  However, not all data support this model; monsoon regions, 

for instance, have rainfall well in excess of 500mm per year, and have extremely high annual 

suspended yield.  Jansson (1988) concluded that global trends of sediment yield could be 

categorized based on broader climatic variables, such as overall temperature, dryness, and 

continentality. 

In another case, Yair & Enzel (1987, cited in Goude, 1995) examined streams in the 

Negev desert in Israel, which is in an arid/semi-arid climate.  Under these conditions, the authors 

concluded that there was a simple linear relationship between runoff and SY, and also that 

topography played an equally important role. However, the reliability of this study is 

questionable, since it was based on only two data points.  

The effects of topography on sediment yield are evident in the high SY values for 

mountainous parts of the world.  Steeper terrain leads to higher rates of erosion in these areas, 

whereas flatter topography like plains has lower erosion, and a greater likelihood of deposition. It is 

the landscape topography that determines how a river network flows: concavities tend to trap 

sediment longer than sloped surfaces. 

Indeed, different topographic features of the landscape vary in their ability to trap or store 

sediment.  In a similar way, different locations along a river system will store different amounts 

of sediment (Church, 2006).  Flatter areas, like floodplains and alluvial fans, tend to store 

material, while banks and channel slopes tend to be more effective transport zones.  Typically, 

material stored within the channel itself remain stored for less time than material in the 

floodplain or alluvial fans, as annual floods are effective in mobilizing such in-stream deposits, 

especially ones comprised mainly of medium or fine sediment. This interaction between 



10 
 

hydrology and topography is circular: a river channel tends to exist in the landscape because a 

slope is sufficiently steep for water to flow continuously.  Flowing water helps dig a deeper 

channel, which then feeds eroded sediment into the river system.  As the river shapes the 

surrounding topography, so the slopes, valleys, and ridges of the watershed guide the river’s 

path.  It is the topography, hydrology, and sediment supply, which control sediment storage 

locations (Leeks, 2005); higher supply and flatter topography generally lead to more storage.   

In terms of erosion and transport, higher slopes are associated with both, and local 

topography will in particular determine the path transported material will take as it travels; for 

instance, from the hillslope towards the stream network (Church, 2006; Slaymaker, 2006). 

Landscape history is important to consider in studies of sediment yield.  At the broadest scale, as 

demonstrated by Church et al. (1989) and Church & Slaymaker (1989), regions such as British 

Columbia, Canada, that are still influenced by their glacial history behave very differently from 

non-glaciated basins.  The authors investigated the spatial pattern of specific fluvial clastic 

sediment yield (SSY) in BC, and found a positive correlation overall with drainage basin area 

(Ad) for basins up to 30,000 km
2
. When plotted, glaciated basins were close to the upper 

envelope of their data.  These findings are in contrast with previous research of predominantly 

agricultural basins, where declining sediment has been reported in response to an increase in 

area, as larger basins provide more opportunities for sediment storage.   

In BC, however, glacial sediment deposits were left along valleys; these deposits are a 

secondary sediment source for the current fluvial regime (Church et al., 1989; Church & 

Slaymaker, 1989).  The evacuation of these sediments from valley bottoms is a significant factor 

in the positive relationship found by Church et al. (1989) for basins smaller than 30,000 km
2
. On 

the other hand, the decline in sediment yield for larger basins was due to barriers that prevented 
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the sediment from entering the river system.  This implies that BC’s landscape has not recovered 

from the legacy of glaciation (Church & Slaymaker, 1989). 

While topography and landscape history may determine pattern of sediment yield (or 

channel dynamics), geology affects the rate at which material may be eroded. SY is positively 

correlated with the erodibility of the surficial rocks. The Yellow River (Huanghe) in China is a 

striking example.  The highly erodible loess material in its middle reach contributes to the high 

amount of sediment yield produced by the river (Wang et al., 2006; Hassan et al., 2008). The 

erodibility of surficial material is thus an important geologic control on sediment yield (Church 

et al., 1989; Slaymaker & Church, 1989; De Vente et al., 2007).  In small basins, local variations 

in surficial material can produce a wide range of values (Church et al., 1989), which again 

suggests caution in examining basins of differing size (Milliman & Meade, 1983; Church et al., 

1999; Walling & Fang, 2003).  The geology of larger basins also needs to be considered. Smaller 

basins are likely to be more homogeneous in terms of lithology. Larger basins are more likely to 

be complex in terms of climate and geology.  Larger basins are thus more likely to exhibit a 

complex response in terms of sediment yield.  De Vente et al. (2007) presented summary data for 

hundreds of rivers from around the world.  They defined geologic categories for these rivers: 

basins with harder rocks (e.g., classified as “Crystalline Mountain”, “Crystalline Volcanic”, etc.) 

had lower sediment yields than other basins in similar regions.  Regions in other geologic 

classifications—those with moderately hard or softer rocks—did not show a clear trend.  De 

Vente et al. (2007) cite Romanian data from Rãdoane & Rãdoane (2005) as another example: in 

examining the Romanian basins, the authors similarly found lower sediment yield values for 

basins with volcanic or crystalline surficial materials. Geologic faults also play a role in sediment 
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yield, as the presence of a fault can affect the entrenchment or confinement of a river channel.  

This was a factor in the analysis of British Columbia data in Church et al. (1989). 

 Another factor that influences sediment yield values is vegetation, which is related to 

climate.  Cooke & Doornkamp (1990) asserted that vegetation is a significant deterrent to soil 

erosion and thus sediment yield.  Walling & Fang (2003) similarly found strong correlations 

between the type of vegetation cover and the magnitude of sediment transport, with forested areas 

often reporting the lowest sediment yield.  Vegetation prevents soil erosion in four ways (Cooke & 

Doornkamp, 1990): it interrupts rainfall and stemflow; plants consume water, which further reduces 

waters flow; roots help keep soil in place, and conduct water away from soil surfaces; and the 

increased surface roughness provided by vegetation reduces runoff velocity and the resultant erosive 

potential. All these processes, however, are dependent on climate, and changes in climate will 

similarly result in vegetative changes. 

 Vegetation type, however, is not the only relevant factor that controls how plants affect 

sediment transport.  Cooke & Doornkamp (1990) noted that canopy density, plant height, degree of 

cover, root density, water consumption, and level of mulch all need to be considered.  Further, as 

noted by Goudie (1995), the effect of vegetation changes with the time of year, with climate, and 

with fire history.  Fires are particularly important, and in some regions, such as northern California 

(Cook & Doornkamp, 1990), sharp increases in sediment yield occurred soon after severe fires: not 

only did the removal of vegetation leave surfaces vulnerable, but the charred, hydrophobic organic 

matter that remained actually increased the likelihood of erosion.   

Severe weather events have a short-term, albeit important, role in sediment dynamics.  

Milliman & Meade (1983) reported that especially in dry, continental basins, upwards of 80% of 

the annual sediment yield can occur from severe events alone (in some cases, from only a single 
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event).   Meade et al. (1990) likewise analyzed the effects extreme events had on two rivers in 

the USA.  For the Eel River, in California, almost 170 million tons of sediment was transported 

in three days; under normal conditions, it would have taken 10 years to move that much material.  

For the Juniata River in Pennsylvania, Hurricane Agnes moved three or four years’ worth of 

sediment.  Yet despite the potentially extreme rates of sediment transport that can occur as a 

result of extreme weather, such values are often omitted from broad-scale sediment dynamics 

studies, such as those conducted by Jansson, 1988; Church et al., 1989 and 1999; Walling & 

Fang, 2003; and Walling, 2005. 

In each of these studies, data points that were strongly affected by severe storms were 

either omitted or given “less weight” (Church et al., 1989). More frequently, values for storm 

days may be missing, or unreliable, because it can be dangerous, difficult, and expensive to 

gather such data (Walling, 1977).  It has been suggested (Church et al., 1989) that considering 

consecutive years may help reduce the potential influence of extreme events.  Church et al. 

(1989) recommended analyzing the temporal variability of a dataset, so that when data records 

are too short, they are compensated for, or simply omitted.  This thesis adopts a similar 

perspective. 

 In addition to the natural forces that affect sediment yield described above, anthropogenic 

forces are also significant. The Yellow River is again a good example, as the changes in 

agricultural practices there have had a dramatic effect on sediment yield (Wang et al., 2006). 

Hassan et al. (2008) further note that changes in soil conversation practices and dam construction 

in the Yellow River watershed both resulted in significantly reduced sediment yields over time.  

The intensive agriculture in the small basins of the Loess plateau had led to some of the highest 

annual sediment yield values in the world (Walling, 2005), although values have declined in the 
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past few decades (Wang et al., 2006).  Walling & Fang (2003) similarly argued that agricultural 

practices remove vegetation and disturb the soil, both of which make the surface more 

susceptible to runoff erosion.  There has been much study regarding the issue of soil loss and 

agriculture.  Indeed, as noted below, traditional sediment yield trends are not always applicable 

since the vast majority of sediment yield data has been focused on heavily cultivated basins 

(Church et al., 1989; Leeks, 2005; de Vente et al., 2007).  Finally, Walling (2005) estimated that 

a majority of the world’s sediment yield is initiated by human activity. 

 Dam construction represents another key anthropogenic factor in sediment dynamics. 

Walling and Fang (2003), in their global study of sediment yield, ranked dams as the most 

important anthropogenic factor for sediment dynamics.  Their qualitative assessment of 145 

rivers demonstrated that dams and reservoirs disrupt about twice as much sediment as landuse 

changes and climate change, combined.  Another global study by Milliman & Meade (1983) 

presented a historical analysis of anthropogenic effects on sediment dynamics.  Up until the 

Industrial Age, these authors cited the glacial legacy as a prime factor in determining the fluvial 

regime of much of the northern hemisphere, which in turn dictated sediment processes.  Starting 

in the mid-twentieth century, however, Milliman & Meade (1983) argued that dam and reservoir 

construction became a more important factor, because of sediment starvation downstream of 

dams, and the vast accumulation of material behind dams.  Walling (2005) similarly reported that 

lakes, reservoirs, and dams collectively are responsible for up to 80% of the anthropogenic 

influence on sediment dynamics. 

 Meade & Moody (2009), in their long-term study of the Missouri-Mississippi River 

system, found that dams trap roughly 100-150 million tons per year, and that the overall 

sediment transport of the system has declined from about 400 million tons per year before 1900 
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to only about 145 million tons per year in the last few decades (1987-2006).  However, the 

authors assert that only half of this decline was caused by dam construction.  Part of the decline 

in sediment yield resulted from a fundamental change in the watershed, from being a transport-

limited system to a supply-limited system.  This demonstrates that human influences have the 

potential not only to alter the sediment regime, but to alter the fundamental way a river system 

operates. 

An extensive study of anthropogenic changes to sediment is presented by Chu et al. 

(1999).  These authors examined nine major rivers in China, and found that over about 50 years, 

the total sediment flux from these rivers decreased by ~5.0 x 10
10

 tons.  They attributed about 

half of this decrease to dams, and the rest to soil and water conservation, increased water 

consumption, and in-channel sand mining. 

The conclusions of the research summarized above suggest that human activities can 

greatly influence sediment yield (e.g., Milliman & Meade, 1983; Chu et al., 1999; Walling, 

2005).  How substantial are such changes compared to average global levels of sediment yield?  

An excellent summary of global values for annual sediment yield is found in Leeks (2005).  

These values range from 8.3 to 51.1 billion tons per year, with an average of about 20 billion 

tons per year.  Similar values are reported in Walling & Fang (2003) and de Vente et al. (2007).  

An account of the sediment yield of Europe is reported by Owens & Batalla (2003): about 2 

billion tons per year are eroded from Europe, about 700 million tons of which reach the ocean.   

Millliman & Farnsworth (2011) made a similar estimate – about 2.5 billion tons for Europe, and 

about 27 billion for the world.  With so much material being removed from the landscape, rivers 

are indeed a highly significant factor in determining our landscapes’ forms.  Further, the 

variability of these values highlights the importance of creating the Global Sediment Database. 
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1.3 Research Questions 
 There were two goals of the above literature review: to document the factors that control 

sediment processes and to demonstrate the role of spatial scales in sediment yield analysis.  It is 

clear from examples such as Church et al. (1989) and Hassan et al. (2008) that considering the 

spatial scale is important to understanding watershed-scale trends in sediment yield. 

Understanding sediment processes is important because of its role in landscape evolution, soil 

erosion, and nutrient fluxes, and because human activities are threatening to greatly disrupt these 

processes on a global scale (e.g., Chu et al., 1999; Rãdoane & Rãdoane, 2005; Wang et al., 

2006). It is because these global sediment processes are not well-understood that the Global 

Sediment Database needs to be created. 

 Regarding data quality, issues of temporal resolution and the spatial distribution have 

been discussed.  A related topic to data quality is metadata – or ‘data about data’.  Namely, how 

data were collected, by whom, when, and under what standards.  Even in looking just at the few 

examples provided in the preceding section, it is clear that there is not sufficient consistency 

from study to study to attempt to truly understand the complexities of global sediment dynamics. 

 To address this problem we propose to compile a Global Sediment Database of 

previously published data sources, and explicitly document the data quality and metadata of all 

inputs.  Specifically, data quality will be numerically scored for each entry in the database.  To 

aid in a continued understanding of world sediment processes, this database will be made 

available to the public.  Ideally, this database will serve as a foundation to which more data can 

be added over time, so that information from all over the world can be easily and reliably 

compared. 

 Furhter, different interpolative GIS (Geographic Information Systems) techniques will be 

employed in creating these sediment maps.  This will reinforce the idea that data quality and 
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metadata documentation matter, as not all methods are appropriate for all data.  In addition to 

Yellow River sediment maps, error maps will be produced, and quantitative statistical measures 

for each interpolation method will be employed to evaluate which is more suitable for the data. 

 By building a Global Sediment Database, quantitatively evaluating data quality, 

documenting methodological choices, and investigating interpolation and visualization methods, 

this thesis will explore the possibilities in examining the global sediment system. The database 

will be a tool for future researchers to employ, as we try to understand how and why sediment 

dynamics are changing around the world.  
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Chapter 2 Methods 
 

 The global sediment database compiles existing datasets.  Currently, over 7,000 data 

points have been processed and entered into the database.  The plan is to continue to update these 

datasets and make them available to researchers. Since this is the first database of its kind, no 

template or standard methodology exists to guide data processing and data quality evaluation of 

the datasets.  So at this stage it is important to establish a clear structure for the database; as it 

expands over time, newly added data can be easily inserted into the database.  The first part of 

this section will describe the template of the global sediment database, and will also present a 

method of evaluating and recording the quality of each dataset stored in the database.  The 

second half of this section documents how the datasets were used in calculating sediment yield, 

and how those values used to interpolate sediment maps using Geographic Information Systems 

(GIS). 

 

2.1 Database Structure and Organization 
An initial problem with building the Database is what kind of information to include.  

Some datasets contain exhaustive information, with decades of data for hundreds of points.  

Others only document a handful of measurements, with only average values, taken from just a 

few years of sampling.  For consistency in comparing and contrasting the rivers it would be 

helpful for the Global Sediment Database to report the same information for each measuring 

station, and the same variables from river to river.  By enabling Database users to compare 

information from different rivers, a greater understanding of fluvial process should be fostered. 

To help narrow the scope of the Database, this thesis focuses primarily on suspended 

sediment data, with some additional data from dams.  Bedload data are difficult to obtain, and 
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rarely reported in the literature; therefore, the focus for this thesis is on suspended load.   Most of 

the suspended sediment data used in this thesis to build the Global Sediment Database was 

obtained from published sources, or downloaded from governmental agencies.   

Table 2.1 Example entries from the Global Sediment Database (showing the Yellow River). 

Station River or 

tributary 

Longitude 

(DD) 

Latitude 

(DD) 

Area 

(km
2
) 

Elevation 

(masl) 

SSY 

(T/km
2
/yr) 

Batan Bagou R. 100.5500 35.2500 3483 2557.956039 732.571501 

Qushi'an Qushi'an R. 100.1000 35.3333 5721 1045.090216 181.250693 

Laqu Mangla R. 100.7500 35.5833 1717 773.47944 446.132464 

Tongren Longwu R. 102.0167 35.5167 2832 610.047472 213.268881 

Longwuhekou Longwu R. 102.1000 35.8333 4959 1554.023216 311.646142 

Shuangcheng Daxia R. 103.0500 35.4833 6144 1124.171848 181.408992 

Fengjiatai Daxia R. 103.2667 35.6500 6851 4324.315 630.052547 

Tangnailang Daxia R. 102.8500 35.1500 1509 660.160398 433.529091 

Wuchengyi Zhuanglang R. 103.1833 36.8667 2001 352.984984 172.478753 

Zhoujiacun Zhuanglang R. 103.4333 36.2167 3982 3006.676208 752.191413 

 

To help maintain data consistency, the Global Sediment Database will keep all points in 

the same format, so that users can easily search for the data they want.  The core of the Database 

will be the specific sediment yield (SSY) for all available years, station area, and station 

coordinates.  In addition, each entry in the Database will contain metadata, including data 

collection agency, country, river/tributary name, and station name (see table 2.1, above).  

Quantitative metadata will also be included, specifying the temporal attributes of each point: 

length of record, number of years recorded, and longest continuous period of data (see table 2.2). 
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By providing extensive metadata in the Database, users can assess the quality of 

individual data points.  However, the Database on its own does not assess the quality of entire 

datasets.  For example, how accurate are the coordinates for the Yellow River?  How many 

points are there in total?  And is the data from this source reliable overall? To answer these 

questions a Data Quality Report will be created which will quantitatively evaluate the data 

quality of each dataset.  To understand how data quality was measured, however, it is necessary 

to explore how data were acquired and processed.   

Table 2.2 Further detail on example database (Yellow River; same entries as table 2.1). 
Country Watershed Station No. years Length of record Longest continuous data 

China Yellow River Batan 20 28 16 

China Yellow River Qushi'an 18 21 6 

China Yellow River Laqu 12 12 12 

China Yellow River Tongren 6 6 6 

China Yellow River Longwuhekou 22 22 22 

China Yellow River Shuangcheng 18 22 8 

China Yellow River Fengjiatai 19 22 8 

China Yellow River Tangnailang 18 22 8 

China Yellow River Wuchengyi 20 22 8 

China Yellow River Zhoujiacun 19 22 7 

 

2.2 Data 
 This section describes data collection and data quality evaluation.  Data were gathered in 

several formats: published lists of sites, tabularized spreadsheets of data, and maps showing data 

station locations.  For each dataset, values were processed and formatted using Microsoft Excel 

2010.  Additional rows were simply added as more datasets were entered. For this section, the 

Yellow and Yangtze Rivers will be used as the main examples, with other datasets referenced as 

needed.  

2.2.1 Data Gathering 

Data sources consisted of two parts: location information for the data stations 

(coordinates or maps), and tabular or numerical data of the sediment yield values of those 
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stations.  Most datasets were collected from previously published research, which meant that 

these data had to be digitized before they could be added to the Database.  For the location 

information, if coordinates were given, they could be directly entered into a GIS.  When maps of 

station location were provided (e.g., figure 2.1), these images were georeferenced into an 

existing spatial coordinate system, and the points were then digitized.  For numerical data, most 

sources published data tables (as in table 2.3), which were manually entered into MS Excel.  

Table 2.3 Example of published tabular data (modified from Lu & Higgit, 1999). 

No. Tributaries Stations Basin area (km
2
) Years 

1 Jinsha-Yalong Zimenda 133,704 28 

6  Shigu 232,651 28 

16  Huatan (Qiaojia) 450,696 30 

23  Ninnan 3,074 25 

25  Qianxinaqiao 2,549 27 

29  Meigu 1,607 25 

30  Pingshand 485,099 31 

31  Hengjiang 14,781 25 

32  Zhutuo 694,725 26 

 

In a few cases, however, researchers provided their original datasets (e.g., data from 

Water Resources Canada, from Church et al., 1999; or data from Hassan et al., 2008, for China).  

These data were already processed in GIS or spreadsheet format, and could be added to the 

Global Sediment Database with minimal processing.  Similarly, data from the United States 

Geological Survey (USGS) was downloaded directly from the agency’s website and added to the 

Database.  
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The data that required the most processing were station locations.  In most cases, data 

station coordinates were not provided, so data points had to instead be digitized by hand, from 

maps such as those in figures 2.1 and 2.2. These were georeferenced to an existing spatial 

reference system (using GIS), and relative points were digitized from the georeferenced images.  

The quality (spatial accuracy) of these maps varied significantly.   

The Romanian example (from Radoãne & Radoãne, 2005) shown in figure 2.1 was one 

of the better examples.  The map is clear, well-symbolized, and shows secondary information 

such as rivers and towns to help georeference the points.  Figure 2.2 shows a map of Bolivia 

from Aalto et al. (2006) that is of lower quality.  It does not have many candidates for strong 

georeferencing control points, and even once the map was rectified, its low resolution reduced 

the precision of digitizing the data points.  Map quality was one major consideration in 

Figure 2.1 Map of sediment yield in Romania (Radoane & Radoane, 2005). 
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evaluating data quality (discussed in detail below).  In some cases, such as data from Africa, 

neither maps nor coordinates were available.  Instead, only station names were listed.  Reference 

maps were used to find nearby landmarks for georeferencing. 

  

 

 

 

 

2.2.2 Data Quality 

The spatial data (maps of station points) from published sources were not the only data of 

inconsistent quality.  The distribution of these points, and the tabular data associated with the 

station locations (sediment yield values, temporal information) also varied.  For example, data 

from the Yellow River in China records yearly sediment yield values, as well as information on 

hydrologic network, and how far a data point is from the mouth of the river.   The Romanian data 

from Radoãne & Radoãne (2005), however, records only a long-term average value. Given the 

wide range of data quality, a numerical system of evaluating each dataset was established.  These 

rankings form the core of the Data Quality Report.  Three metrics were used: spatial precision, 

Figure 2.2 Data stations in Bolivia (Aalto et al., 2006). 
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temporal resolution, and point density.  These are not the only possibilities: other factors, such as 

quality of metadata, precision of sediment data, and overall completeness could also have been 

used. Including too many metrics would make the date evaluation system too complicated, and 

hard to reproduce for other datasets.  Further, some these other metrics—especially metadata 

quality—are harder to quantify, and so are more difficult to assess consistently and objectively.

 More importantly, it became clear during the data gathering stage that the three factors 

we chose—spatial precision, temporal resolution, and point density—varied strongly from 

dataset to dataset, whereas other factors were more consistent. For example, since only yearly 

suspended sediment data was gathered, the precision of such data was similar for all datasets, 

whereas the length of record (temporal resolution) varied from as few as a handful of years for 

some points, to over a century’s worth of data for others.  Each of the three chosen metrics will 

be described in the following section, with data from the Yellow and Yangtze Rivers serving as 

examples.   

Evaluating Spatial Precision 

Each metric was ranked out of four, and then totaled for a score out of 12 for each data 

source (the higher, the better).  The following tables illustrate the criteria that determine each 

metric’s rank. Table 2.4 (below) summarizes how spatial precision was evaluated. 

In some cases, precise station locations are not available at all. A station name may be 

given, or a nearby tributary may be listed, but no coordinates or maps are available to locate the 

data point exactly.  In short, no reliable spatial data is available at all.  Such datasets get the 

lowest rank of 1.  Some datasets were accompanied by maps; not all of these were of excellent 

quality.  Lower-quality maps received a rank of 2, while higher-quality maps were ranked as 3. 

The Bolivian map from Aalto et al. (2006, see figure 2.2), received a rank of 2 because of its 
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limited use in mapping precise station locations.  The Romanian example from Radoãne & 

Radoãne (2005, figure 2.1), on the other hand, gives greater detail, which facilitates plotting the 

data points.  The Romanian map is ranked as 3.  Note the presentation of secondary features in 

the Romanian map, such as rivers, towns, and lakes.  These are easy to see and serve as 

guideposts for locating the data stations.  Even when a river is partially obscured by a data point 

or other feature, it is easy to see where the flow continues on afterwards. 

Table 2.4 Evaluating spatial precision. 
Rank Description 

4 Coordinates known and/or projected. 

e.g.,, ready-made GIS shapefile or spreadsheet, such as data from China or the USA 

3 Digitized from a high-quality map.  This means ≥6 easily matched control points with an overall 

root mean square error of <0.1 after geo-referencing.  Ex. data from Romania, Spain, or Italy 

2 Digitized from a low-quality map: control points uncertain, resolution low, and/or overall root 

mean square error of >0.1 after geo-referencing.  Ex. data from Scotland, South America,  or 

Siberia 

1 No coordinates, and no map available; but some geographic location is known, such as station 

name, nearby town, sub-basin name, etc.  Ex. Siret basin in Romania, data from Tunisia, Morocco 

 

In the Bolivian example, secondary features like rivers and towns are not easily visible.  

Instead, a shaded elevation maps underlies the data stations.  This is less useful in cross-

referencing station locations for three reasons.  First, using only an elevation map to locate 

points, especially in a mountainous region like Bolivia, is challenging in itself, as distinguishing 

one valley or peak from another is not always straightforward.  Second, the map itself is less 

clear, in terms of colour palette and feature clarity, so identifying individual features is difficult.  

Third, the white circles and lettering that indicate station location obscure the underlying 

elevation, adding an additional level of complexity to the task of locating data points. 

In addition to descriptive, qualitative evaluation of data station maps described above, a 

numerical evaluation was also incorporated.  When maps are georeferenced into a GIS, the 

precision of the control points used is analyzed to estimate the total root-mean-square (RMS) 

error of the georeferencing process.  In general, the more control points used, the better the fit 
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will be, and the lower the RMS error will be.  To qualify as rank 3 in terms of data station 

precision, georeferenced maps must have at least 6 control points and an overall RMS error less 

than 0.1.  Maps that fail to meet these criteria are ranked as 2. 

Precise latitude and longitude coordinate values are more useful than even high-quality 

maps.  Such datasets were ranked as 4, the highest level.  These points can easily be projected 

using our GIS, which eliminates the need of digitizing points by hand.  Ranks 1, 2 and 3 are 

more likely to have errors, not just from the original data source, but from the digitizing process 

as well. 

 

Evaluating Temporal Resolution 

The data quality evaluation for temporal precision is shown in table 2.5 (below).  The 

rationale for these criteria is motivated by Church et al. (1989). These authors concluded that a 

compromise must be made regarding the length of record for sediment yield data points.  If the 

limit is set too high (say, ten years of data), many points will be eliminated from consideration 

from a dataset.  If there are too few points, meaningful spatial analysis is impossible.  If the limit 

is set too low (at two years, perhaps), then the year-to-year variation in sediment yield values 

will overwhelm any long-term trend in the data. 

Table 2.5 Sample data stations from the Yangtze River: temporal resolution analysis. 
Station Name Years with data Total 

years of 

data 

Longest 

continuous 

record  (years) 

5-year 

average 

(T/km
2
/year) 

Average of all 

years 

(T/km
2
/year) 

Dong River 1963-1967; 1969-

1974; 

1976-1978 

14 6 370 401 

PaoJiang River 1965-1970; 1972, 

1973 

8 6 740 823 

YingQianShui 

River 

1964-1985 22 22 83 89 
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The compromise that Church et al. (1989) decided upon for their study of sediment yield 

in Canada was five years of continuous data.  This is a somewhat arbitrary limit.  As the authors 

themselves argued, some data stations were stable enough that even over three or four years of 

data the overall average was consistent, whereas at other stations longer records did not 

guarantee stable sediment yield values in the medium or long term.   Church et al. (1989) came 

to this conclusion by examining a sample of individual stations, and assessing how the long-term 

average sediment yield varied depending on how mean years were selected for that station.  A 

similar analysis was performed for this thesis.  Table 2.5 shows an example of three data points 

from the Yangtze River that were randomly selected and evaluated for temporal resolution. 

 For each data station in table 2.5 the years with data are shown.  Note that the Dong and 

PaoJiang river have multiple, non-overlapping records.  The total number of data years is also 

shown, and is the longest continuous stretch of data.  Note for the YingQianShui River there are 

no breaks in the data record, whereas for the other two stations at least one break exists.  Next, a 

five–year average of the sediment yield of each station was calculated.  For the Dong River, 

which had two stretches of data at least five years long, the earliest continuous period was used.  

Finally, the average sediment yield for all years is shown in the right-hand column.  For all three 

stations, the long-term average is not significantly different than the five-year average. 

 Similar analyses were performed for all datasets used in this thesis.  And since we 

adopted the recommendations of Church et al. (1989), we used a five-year continuous window of 

data as our standard.  This is a reasonable compromise that does not exclude too many points but 

nevertheless helps limit the effects of year-to-year variation. 

 Variation between data stations must also be considered.  For the three example points 

presented in table 2.5, two stations have 6 years of continuous data, while the third has 22 years 
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of continuous data.  How then, should the overall temporal resolution be evaluated for the 

Yangtze data? 

 This thesis documents temporal data quality in two ways.  First, point-by-point 

information on length of record, longest continuous period of data, and number of data years will 

be incorporated into the Global Sediment Database (e.g., the data shown in table 2.5).  Potential 

future users of the Database can select data points that meet their own criteria for temporal data 

quality.  Second, the data quality report for the Database will provide an overall evaluation of 

each dataset’s temporal data quality.  As discussed above, this will be based on Church et al.’s 

(1989) compromise of five years of continuous data.  Datasets will be ranked based on what 

proportion of their data span at least five continuous years.  If no temporal metadata is available, 

or if fewer than 5% of points in a dataset have five years of continuous data, that dataset is 

ranked as 1, the lowest level.  Likewise, datasets where between 6% and 25% of points meet the 

five-year criterion will be ranked as 2, and datasets where between 26% and 50% of points meet 

the five-year criterion will be ranked as 3.  The highest level, rank 4, will be awarded to datasets 

where more than half of the points have at least five years of continuous data (these rankings are 

summarized in table 2.6).  By providing both point-by-point and dataset-level temporal data 

quality evaluations, the Global Sediment Database will allow users to select the data that is most 

appropriate for their work. 

 

Evaluating Point Density 

Table 2.6 Evaluation of temporal precision using years of data available. 
Rank Temporal precision value 

4 >50% of stations have at least 5 continuous years of data 

3 26-50% of stations have at least 5 continuous years of data 

2 6-25% of stations have at least 5 continuous years of data 

1 0-5% of stations have at least 5 continuous years of data,  

or temporal resolution is unknown 
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The number of points in a dataset is also important for conducting reliable spatial 

analysis, such as interpolation (Bivand et al., 2008).  Most interpolation algorithms require 

between 5 and 12 nearby points when predicting values (ESRI, 2011).  For each point to have 

approximately that many neighbours, about 20-30 points would be needed.  With fewer than 20 

points, any points at the edge of the dataset will likely have very few nearby points, which would 

skew the interpolation.  To a certain extent, such ‘edge effects’ are potentially problematic no 

matter how many points there are (ESRI, 2011): the outermost ones will always have fewer 

neighbours than central points.  Nevertheless, the more points there are, the less significant such 

problems are likely to be. 

The sheer number of points, however, is not in itself sufficient to ensure adequate data 

coverage.  The distribution and density of the points also matter.  If there are large gaps between 

points, interpolations will be skewed, as the algorithms will have to rely more extensively on 

guesswork.  This is because interpolation methods generally assume a level of spatial 

autocorrelation (Bivand et al., 2008). That is, nearby points share a geographic similarity, while 

distant points are less similar.  Interpolation works by finding a balance between data value and 

data position.  If large areas exist with no data points, it is more difficult to account for 

autocorrelation, and the resultant kriging interpolation will be less reliable.  

As a simple method of determining whether a dataset has adequate coverage in a given 

basin, point density was used to approximate these spatial concerns.  Point density is defined as 

the number of points in a given dataset divided by the area encompassed by that data (shown in 

table 2.7).  While it does not give a measure of gaps in data it at least helps suggest which 

datasets might be more useful in developing statistical prediction models at all.  Point density 
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data quality information will be added to the Data Quality Report in the same manner as were the 

spatial and temporal precision metadata.  

Table 2.7 Evaluating point density. 
Rank Description 

4 More than 200 points per million km
2
 

3 100-199 points per million km
2
 

2 50-99 points per  million km
2
 

1 Fewer than 50 points per million per km
2
 

 

 Now that the three methods of evaluating data quality have been discussed, an example 

of how a dataset is scored overall will be presented.  As discussed above, data for the Yangtze 

River was available as GIS shapefiles, so precise decimal degree coordinates were known for 

latitude and longitude.  This ranks as 4/4 for data station precision. As demonstrated by the three 

example stations in table 2.5, there is variability in terms of temporal data quality within the 

Yangtze dataset.   All stations had at least five years of continuous data (stations with <5 years of 

data were removed before we obtained the data), while some had as many as 24 years of 

continuous data.  Since more than half of the data points have at least five years of continuous 

data, the Yangtze dataset gets 4/4 for temporal resolution, too.  In terms of point density, the 

Yangtze has 169 points, and its basin is 1,615,884 km
2
.  This converts to 104 points per million 

km
2
, which is rank 3/4 for point density.  Thus, the overall data quality of the Yangtze river is 

11/12 (i.e., 4+4+3).  This is the value that will be recorded in the entry for the Yangtze dataset in 

the Data Quality Report. Table 2.8 shows the data quality evaluation of the datasets mentioned in 

this section. 

Table 2.8 Data Quality Report for selected datasets. 
Dataset Station location 

precision (/4) 

Temporal resolution 

(/4) 

Point density 

(/4) 

Total (/12) 

Yellow R. 4 4 3 11 

Yangtze R. 4 4 3 11 

Romania 3 1 2 6 

Bolivia 2 1 1 4 
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However, it should be reiterated that this data quality evaluation is only one of many 

possible methods, and that its criteria, while based on an analyses of the datasets used in the 

Global Sediment Database, is somewhat arbitrary.  A numerical score out of 12 is a quick way of 

summarizing different data quality issues of a dataset.  But if other users of the Database have 

different standards for data quality, or require additional metadata, they can refer to the Data 

Quality Report, and make their own decision of how to rank the data.  For instance, users would 

see that the Yangtze dataset has coordinate information in decimal degrees, projected using the 

WGS 84 datum; 55% of its data has a record length of at least five continuous years; and that it 

has 335 points for a basin that is 1.6 million km
2
.   

If Database users need even more specific information, they can refer to the Database 

itself, and see which points have a record length of only six years, and which have more than two 

decades of data.  Since detailed metadata is provided in both the Global Sediment Database and 

the Data Quality Report, users can pick and choose which datasets, and even which data points, 

are most useful for their purposes. By providing metadata in both the Global Sediment Database 

and the Data Quality Report, users can compare the quality and potential usefulness of multiple 

databases.  For instance, the Yellow River has the same data quality rank as the Yangtze River 

(11/12), so researchers may decide that comparing the two would be worthwhile. 

 

2.3 Using the Global Sediment Database to Map Sediment Yield 
By providing an extensive Database that records the same variables for each dataset and 

for each data point, we hope that information from the Database can be applied to research 

projects.  As argued in the introduction section, making sediment maps is one possible use of 

suspended sediment data.  This section will explain the methodology used to create a sediment 

yield map for the Yellow River using the Global Sediment Database.  This involves several 
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steps: processing and checking specific sediment yield (SSY) data; establishing sediment rating 

curves for sub-basins within the Yellow River watershed; and finally interpolating the sediment 

data using Geographic Information Systems (GIS).  

First, as described in more detail in the introduction (see figures 1.1 and 1.2), recall that 

SSY is the amount of sediment, in tons per square kilometre, which is transported from a given 

location over a year.  The Database reports these values for the Yellow River.  In addition to 

considering the quality of the data points, other variables should be accounted for: contributing 

area (Ad), geology, land use, landscape history, hydrology, climate, vegetation, dams, and other 

anthropogenic factors can significantly alter the sediment dynamics of a basin (see, for example, 

Walling, 2005). Because watersheds are heterogeneous, in order to develop meaningful regional 

relations, it is recommended (Church et al., 1999; Hassan et al., 2008) that smaller, more 

homogeneous sub-basins be considered for analysis. 

First, sediment relations for each sub-basin within a dataset must be developed. For the 

example rivers (Yellow, Yangtze), there are relatively well agreed-upon sub-basins already 

established (see Hassan et al., 2008 for the Yellow, and Hassan et al., 2011 for the Yangtze), 

which will be used for the interpolation analysis of this thesis.  
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Figure 2.3 Example of a regional sediment relation (upper reach of the Yellow River). 

 

Once a watershed has been divided into approximately homogeneous units, a regional 

sediment relation is established by first plotting specific sediment yield versus contributing area 

(figure 2.3). A power-law relation is then calculated for this plot. The exponent from this 

equation, together with a data station’s specific sediment yield and area, is then used to back-

calculate the scaled specific sediment yield ks, using the equation below. 

         
  

L/A is the specific sediment yield (tons/km
2
/year); Ad is the contributing area (km

2
); and b is the 

exponent from the regression plot.  While the exponent, b, represents the regional trend, which 

we assume to be constant, ks represents the local variability of the sediment yield.  This 

variability is related to local conditions at each data station.   If the rating curve were used by 

itself, it would mask much of the local variability, producing an artificially smooth surface.  By 

instead back-calculating ks, we preserve an aspect of the local conditions at each site.  ks values 

are then used in the GIS interpolation. 
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2.4 Using GIS to Create Interpolated Sediment Maps 
 This section covers how the data from the Global Sediment Database are used to create 

sediment maps, using the Yellow River as an example.  This includes linking the tabular ks 

values to digitized, georeferenced point features; choosing the correct interpolation method and 

statistical semi-variogram; and the execution of the interpolation procedure.  The rationale of 

each step will be discussed below.  The outcome of these steps is a series of interpolated 

sediment yield maps, with accompanying maps predicting the errors of these interpolations. The 

procedure is summarized in the following list: 

1. Select appropriate data, based on desired data quality 

2. Obtain (or create) relevant geographic shapefiles (data stations, river network, watershed, 

sub-basins, etc.) 

3. Calculate ks values, and link to relevant point features 

4. Select and execute appropriate interpolations  

5. Produce the error surfaces associated with these interpolations 

6. Trim the interpolation and error surfaces to match the extent of the data 

7. Visualize the final results, for both interpolation maps and error maps 

 

First, we select appropriate data.  The Yellow River dataset is ranked as 11/12 in the Data 

Quality Report.  While this is almost an ideal ranking, it is worthwhile to examine its data quality 

more closely before proceeding.  Like the Yangtze River, the Yellow River scores 4/4 for both 

temporal resolution and data station precision (all data points have at least five years of data, and 

decimal degree coordinates are available).    In terms of point density, the Yellow River has 161 

points for an area that is 874,997km
2
, or 184 points per million km

2
.  This ranks as 3/4, hence 

why the Yellow River is rated as 11/12 overall for data quality.  The data quality is high enough 

that the entire dataset can be used without reservation. 

Second, we create the needed GIS shapefiles.  In addition to the sediment data from the 

Global Sediment Database, other spatial data are needed before interpolation can proceed.  
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Helpfully, the data provider for the Yellow River, Hassan et al., (2008) provided us with GIS 

shapefiles for station location, hydrologic network, watershed outline, and sub-basin polygons.  

Third, we calculated scaled sediment yield values (ks,) using Excel.  Since the coordinates 

were known precisely, as were the unique station names, the Excel data could be added directly 

to the GIS map document containing the spatial files from step 2.  The data are then projected 

into the same geographic coordinate system as the other shapefiles. 

 Fourth, we need to decide which interpolation algorithm is most suited to the data.  This 

is not a simple step, as there are dozens of options available, and not all of them are appropriate.  

Table 2.9, below, lists the basic factors that govern interpolations.  Considering how these factors 

relate to sediment yield data represents a first pass in eliminating inappropriate interpolation 

methods. 

Table 2.9 Factors of interpolation. 
Interpolation is… …or 

Global Local 

Exact Approximate 

Stochastic Deterministic 

Abrupt Smooth 

 

 Given sub-basins are being used in this thesis to back-calculate ks, global interpolations 

are not suitable.  The back-calculation procedure already helps account for variation within a 

sub-basin, so merging basins during interpolation is inappropriate.  Similarly, since ks represents 

the variability of sediment yield, which is itself related to local conditions at each data station, 

exact interpolation methods are preferable. This will ensure consistency between the 

interpolation surface and the original sediment yield relation.  In short, the process of dividing 

data into sub-basins, producing a sub-basin level sediment relation, and performing back-

calculations to help account for local conditions addresses the concerns of global vs. local and 
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exact vs. approximate.  Since these factors are already accounted for, they can be set aside for the 

interpolation. 

 In a similar way, there are several reasons why a stochastic interpolation method is 

preferable to a deterministic one.  First, as explained above, a stochastic method (using a power-

law fit to make the sediment yield relation) was already used in the back-calculation, so it is 

appropriate to continue in this direction as the underlying assumptions of stochastic and 

deterministic processes are different.  Since the back-calculation already implicitly assumes a 

stochastic component to sediment yield, there is little gain in adding a deterministic 

interpolation.  Further, a deterministic approach would require more knowledge about the key 

variables that affect sediment yield.  While we do possess some secondary information (such as 

slope, aspect, discharge, elevation, hydrologic network, or physiographic region), we do not 

know how to fully model these variables, and to attempt to do so would be in contrast with the 

earlier back-calculation approach.  

 Regarding the smoothness of the data, there are two things to consider.  First, it is again 

significant that the back-calculation has been performed at the sub-basin level.  It is thus 

expected that there would be abrupt demarcations between adjacent sub-basins.  In other words, 

the interpolation is not intended to predict across watershed boundaries.  Second, we have 

already assumed that the exponent, b, of the sediment relation is constant for a given sub-basin; 

this is how the back-calculation of ks was executed.  By using an interpolation method that 

allows for smooth surfaces, we can check this assumption against our interpolation surface.  

Therefore, the ideal interpolation for mapping sediment yield will be flexible enough to allow for 

both smooth and abrupt surfaces. 
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 Kriging interpolation meets all these criteria: it is exact and stochastic, and it can be 

adjusted to be either global or local, abrupt or smooth. In addition, kriging has several inherent 

strengths that are useful when interpolating riverine data: it considers spatial autocorrelation, it 

analyzes the overall statistical trend of nearby points, and it is less sensitive to changes in spatial 

scale.  Finally, and most importantly, kriging allows for the generation of error surfaces, so the 

interpolation predictions can be checked against the original data. 

 When data are spatially autocorrelated, data points are not exclusively independent.  That 

is, there is potentially a relationship between the value at point A and the value at point B (for 

instance, point B might be downstream from A, and thus should have a higher sediment yield 

than A).  Crucially, kriging does not immediately assume the directionality or magnitude of this 

relationship (as is the case with most other interpolation methods).  Rather, it examines both the 

overall spatial trend (i.e. of all points) and the local statistical distribution of points to assess 

what kind of relationship exists.  If the underlying pattern is known (for instance, that spatial 

autocorrelation follows an exponential pattern, or a linear pattern) specific statistical models 

(semi-variograms) can be selected to fine-tune the kriging process. 

 Kriging also allows one to fine-tune how the regional statistical pattern is assessed.  For 

example, one can specify the number of nearby points the regional statistical prediction should 

consider, or set a maximum distance (radius) of the regional statistical trend.  This combination 

of scalability and statistical flexibility makes kriging ideal for a variable such as sediment yield, 

which may exhibit inconsistent, and even contradictory, degrees of spatial variation.  

 Previously published sediments maps, such as for Canada (Church et al., 1999) and the 

Yellow River (Hassan et al., 2008) have used kriging to interpolate SSY.  Both these examples 

argue that kriging is the preferred method because it is equally capable of handling both large 
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and small scales, even within a single interpolation.  In other words, it is not as sensitive to the 

geometry of point distribution as other methods.  Further, the user can select from a variety of 

different semi-variograms, each one assuming a different model of spatial autocorrelation.  This 

customizability means kriging can be used in a wide variety of context, especially when auto-

correlation values are known. 

 
Figure 2.4 Graph showing simple and ordinary kriging (modified from ESRI, 2011). 

 

There are three basic kinds of kriging: simple, ordinary, and universal.   Each of these in 

turn has multiple semi-variogram options.  Kriging type has a strong influence on the way the 

overall interpolation surface is generated.  Semi-variograms tweak these overall trends to 

consider different patterns of auto-correlation. This section will examine these options, and 

narrow the possible interpolation methods given the kind of data under examination (suspended 

sediment yield). 

Simple and ordinary kriging are presented in figure 2.4 (above).   Both these methods use 

the formula Z(s) = µ + ε(s), where s is data point location, Z(s) is the measured value (the back-

calculated ks) at position s, µ is a constant function, and ε(s) is the difference between Z(s) and µ.  
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Significantly, in simple kriging µ must be known; in ordinary kriging, µ can be unknown. In 

other words, both methods assume that there will be a constant mean throughout the dataset.  

Simple kriging requires that this mean is known, while in ordinary kriging the mean is unknown.  

Note that µ does not represent the average of just the measured values, but of the entire 

landscape.  In other words, if you had data point for every square metre of a watershed, µ would 

be the average of those points.  Clearly, for sediment data, it is unreasonable to assume that µ is 

known. 

 But is µ constant?  Is it the same ubiquitously throughout the landscape? This question is harder 

to assess.  Even if µ turns out to be variable, it is still instructive to perform ordinary kriging.  

Not only may this help demonstrate whether µ is indeed constant, but ordinary kriging may 

highlight underlying spatial trends that can be useful in conducting more advanced interpolation 

techniques.  A second motive suggests the use of ordinary kriging.  Both of the previously 

published sediment maps (Church et al., 1999; Hassan et al., 2008) used ordinary kriging.  While 

this is not justification in itself, by using the same methods as these researchers, the effectiveness 

of ordinary kriging for sediment mapping can be assessed.  More importantly, the resulting maps 

may suggest whether or not µ is constant for each dataset.  

 If µ is indeed variable then universal kriging is appropriate.  Figure 2.5 illustrates the 

statistical model.  The equation describing universal kriging is a bit different from the equation 

for simple and ordinary kriging: Z(s) = µ(s) + ε(s).  In this equation, µ–the constant mean– has 

become µ(s), a function which describes a changing mean. The error term is again ε(s).  By 

examining both ordinary and universal kriging, this thesis will assess whether the example 

datasets exhibit constant or variable averages. Further, by exploring more than one interpolation 

method, this thesis will demonstrate that not all interpolation methods are equally valid.  Thus, 
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the choices made when executing a GIS analysis tool are significant, and should be fully 

documented in any published research.  An example of a universal kriging interpolation is shown 

in figure 2.6 (next page). 

 
Figure 2.5 Graph showing statistical model of universal kriging (modified from ESRI, 2011). 

 

Now that ks values have been interpolated, error surfaces can be created (step 5). Recall 

from figures 2.7 and 2.8 that the kriging formula is Z(s) = µ + ε(s), where s is data point 

location, Z(s) is the measured value (the back-calculated ks) at position s, µ is a constant 

function, and ε(s) is an error value, or the difference between Z(s) and µ.  These values can be 

mapped, as for each cell in a kriging interpolation a prediction value and an error value are 

created, using this formula.  The same statistical toolkit that produces the interpolation surface 

can be used to produce an error surface for that interpolation.  

Thus, for each interpolation method, there will be a corresponding error surface.  These 

pairs of maps (interpolation/error) can be analyzed in tandem to illustrate and evaluate the spatial 

pattern of the sediment maps. Figure 2.7 shows the error surface from the interpolation in figure 

2.6. 
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Figure 2.6 Map of the Yellow River, showing the rectangular kriging surface. 

 

 
Figure 2.7 Error surface for the Yellow River. 

 

 The interpolation and error surfaces described above should not immediately be mapped, 

however.  Interpolation and error surfaces are produced as rectangles, which correspond to the 

maximum extent of the input dataset.  Thus, we need to trim these surfaces to fit the boundaries 

of the watershed’s boundary (step 6).  Figure 2.8 shows a screen capture of this, again showing 
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the Yellow River.  By extracting only those portions of the interpolation surface that fall within 

the watershed boundary, a more reliable map can be produced.  

 
Figure 2.8 Yellow River interpolation surface, trimmed to watershed boundary. 

 

This thesis goes farther than making sediment maps and error surfaces.  As each kriging 

method has different statistical models available (different semi-variograms), this thesis will also 

explore these options.  Each one describes the kind of fit—µ, or µ(s)—that is applied to the input 

data.   Further, both error surfaces and interpolation surfaces can be statistically compared.  

Thus, by comparing successive pairs of maps, the most ideal interpolation method for our dataset 

can be established. 

 To ensure the comparability of these maps, the visualization techniques for each 

interpolation (step 7) need to be consistent.  The colour scheme presented for the prediction 

surfaces in figure 2.6 and 2.8, for instance, will remain constant for similar maps.  Further, the 

class breaks need to remain consistent so that the same shade of brown in figure 2.6, representing 

2,501–5,000 T/km
2
/yr, is exactly the same hue, for the same range of values, in figure 2.8.  A 
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consistent visual scheme will also be used for the error maps.  Finally, as discussed above, it is 

important to keep in mind that kriging interpolation is most accurate closest to the data points—

hence why the surface in figure 2.6 was clipped to match the watershed boundary, resulting in 

figure 2.8.  The data points and the hydrologic network were thus added to these maps to help the 

reader orient the prediction surface in the landscape.  

This section described the methodology used in creating the Global Sediment Database 

and the Data Quality Report.  The process of gathering data, evaluating data quality, calculating 

sediment yield, and creating sediment yield maps was also presented.  The next section will 

expand on the topics of data quality and metadata explicitly, through a series of prediction and 

error maps depicting the Yellow River.  By comparing statistical measures, prediction surface, 

and error surfaces from different kriging variations, the most appropriate interpolation method 

will be determined. 
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Chapter 3 Analysis & Discussion 
 

3.1 Background Information on the Yellow River 
 To evaluate the different kriging interpolation methods that were used to develop the 

sediment yield maps of the Yellow River, it is important to discuss some background 

information on the Yellow River basin.  Geology, physiology, and climate will be described, and 

regional sediment yield relations (like those presented in Chapter 2) for individual homogenous 

sub-basins and the overall watershed will be analyzed. 

 
Figure 3.1 Yellow River reference map. 

 Figure 3.1 shows the overall layout of the Yellow River and its main tributaries.  It flows 

from west to east, with a delta at the Bohai Sea. The entire basin is approximately 750,000 km
2
, 

and Hassan et al. (2008) defined 10 homogenous sub-basins within the basin.  A desert region, 

found in the middle of the watershed, was not included in a sub-basin, as it is generally assumed 

(Wang et al., 2006; Hassan et al., 2008) that the desert is not hydrologically connected to the rest 
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of the region—it drains internally, and does not connect to the main stem.  We thus exclude the 

desert from further analysis. 

 The Yellow River can also be divided into three physiographic regions: the Tibetan 

Plateau, the Loess Plateau, and the North China Plain (figure 3.1). The description of these 

regions in the following three paragraphs is based on published material (e.g.,, Long & Chien, 

1986; Xu & Yan, 2005; Wang et al., 2006; and Hassan et al., 2008).  The uppermost regions 

(basins 1-3 – figure 3.1) are part of the high Tibetan plateau, where the main stem is deeply 

incised into the underlying bedrock.  The middle regions (basins 4-8) from the Loess Plateau.  

Loess material is the primary sediment source for the Yellow River, and is between 100m and 

200m thick in this area.  Overall, Loess sediment covers ~37% of the Yellow River watershed.  

The lower sub-basins (basins 9 and 10) flow through the North China plain.  This section of the 

river is confined by levees, and there are few tributaries here. 

 Much of the Yellow River basin is semi-arid (including the dry Loess regions), with an 

annual precipitation of 478mm (this does not include the excluded desert region, mentioned 

above).  Despite low rainfall, the Yellow River is known for some of the highest sediment yield 

values in the world, due to the high erodibility of the Loess sediments.  The historic hydrological 

regime has been substantially altered, as more than 180 large dams are present within the basin 

(>10,000,000 m
3
 in volume).  The construction of these dams may be one reason why sediment 

yield has been much lower in recent years (Walling, 2006).  Other potential factors include soil 

conservation practices and changes in land use along the river. 

 Such changes in sediment dynamics are not uniform throughout the basin.  Overall, the 

uppermost sub-basins (1-3) have remained more consistent, while the Loess regions (sub-basins 

4-7) have varied more substantially over time.   The analysis of these changes is based on the 
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work of Hassan et al. (2008), who created regional sediment relation for each sub-basin. As 

described in Chapter 2, Hassan et al. (2008) struck a balance between sub-basin level consistency 

and individual station variation.  The regional sediment relation exponent, b, was assumed to be 

constant for each sub-basin.  The back-calculation procedure used both b and each station’s 

sediment yield data to produce scaled ks values at each station.  

The statistical details on the power relations established for the 10 sub-basins of the 

Yellow River appears in table 3.1.  These values are from Hassan et al. (2008), and the following 

statistical discussion is based on these values.  The sign of b (positive or negative) indicates 

whether the basin is aggrading or degrading: a positive b means sediment yield increases with 

area, while a negative b means sediment yield decreases with area.  When b is close to zero (e.g., 

sub-basins 1, 6, and 8), there is no scale effect. 

 

Table 3.1 Sediment relation details for Yellow River sub-basins. 

Modified from Hassan et al., 2008. Original values are in log units; those here are back-transferred. 
Sub-basin ks intercept 

(T/km
2
/yr) 

Confidence 

 interval of ks 

b (exponent) Confidence  

interval of b 

r
2
 

1 464.52 79.6 –0.036 0.536 0.001 

2 58,210.3 10.4 –0.677 0.292 0.59 

3 3.92 4.12 2.029 0.983 0.86 

4 751.6 2.28 0.251 0.025 0.49 

5 10.09 3.37 0.813 0.176 0.51 

6 1,570.4 10.6 –0.026 0.320 0.00 

7 101,624.9 1.97 –0.290 0.087 0.35 

8 1,888.0 2.24 0.002 0.104 0.04 

9 223.9 2.34 0.184 0.106 0.25 

10 3,614.1 2.12 –0.230 0.095 0.84 

 

The confidence interval of each of these values is also shown.  For nine sub-basins, the ks 

is larger than the corresponding confidence interval.  This indicates a high degree of reliability. 

For sub-basin 3, however, the confidence interval of the ks intercept is larger than the value itself 

(Table 3.1).  This is because there are only five measurements within the sub-basin, which are 

widely scattered.  But the r
2
 is still high (0.86), because the sub-basins spans a wide range of 
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contributing area. It warrants examining this region on the maps that will be presented later in 

this section. 

In the case of b, four sub-basins (1, 2, 6, and 8) have a confidence interval larger than b 

itself, although these were reported as statistically significant at α = 0.1 by Hassan et al. (2008).  

If the kriging interpolation for these regions shows anomalies, these statistics may need to be 

considered. If the kriging surface suggests a different spatial pattern of sediment values for these 

regions, they might need to be analyzed separately.  For region 1, the lack of data points is one 

reason the confidence interval of b is so high.  However, b itself is close to zero, so the overall 

effect on the back-calculated ks is minimal.  Sub-basins 6 and 8 similarly have b which is close to 

zero, so their wide confidence intervals for b are not as significant. 

 
Figure 3.2 Yellow River sediment relations. 

  

Moving from the individual sub-basins to the watershed as a whole, we find that for the 

majority of the Yellow River there is no relationship between sediment yield and basin area.  Out 

of 161 data plotted in Figure 3.2,  33 lie along the main stem of the Yellow River, and have been 

plotted separately (in blue). The main stem stations, however, show a  steep increasing trend with 

drainage basin area implying that they differ from the rest of the stations located on the 
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landscape.   As Hassan et al. (2008) pointed out, this significant trend in the main stem data 

suggests that sediment yield from the land surface increases systematically as one moves 

downstream from the confined headwaters to the Loess Plateau and into the Northern Plains. In 

short, there is no overall scaling effect for the Yellow River, considered as a whole.  Using the 

exponent (b) values in table 3.1, and after examining the overall data distribution (shown in 

figure 3.2), Hassan et al. (2008) proceeded with the back-calculation procedure.  Having 

similarly checked that the values from the Global Sediment Database match those of Hassan et 

al. (2008) our examination of the Yellow River’s data quality is complete.  The ideal kriging 

algorithm can now be determined. 

 

3.2 Rationale for Selecting Kriging Algorithms 
Recall from Chapter 2 that kriging is a spatial interpolation method for estimating values 

of a variable at locations where those values are not specifically known.  Kriging computes 

statistical relations between known data points to predict data values across a landscape.  There 

are many possible kriging algorithms that could be used to interpolated sediment yield values for 

the Yellow River, but which is best?  Each of the kriging options explored in this section (kriging 

type; range, nugget, and sill; semi-variogram) can be combined in different ways to produce 

literally dozens of kriging algorithms.  Most of these will be unsuitable.  For this thesis, the 

“best” option means the most accurate, and most suited to represent the spatial pattern of our 

data.  To determine the most accurate kriging algorithm the overall error values of possible 

methods will be examined.  Each possible algorithm is called a semi-variogram (Armstrong, 

1998).  From the 10 possible options outlined as possibly appropriate in Chapter 2, the four with 

the smallest error will be examined in greater detail, by analyzing how the shape of each model 
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fits the source data.  After these two rounds of elimination, two final semi-variograms will be 

compared.  Sediment yield prediction and error maps will be created for both, so that the 

underlying spatial patterns of sediment yield and error values can be assessed.   In this way a 

single kriging semi-variogram will be identified as the most suitable for the Yellow River data. 

Following the analysis of the Yellow River maps, two other example datasets from the 

Global Sediment Database will be briefly analyzed for comparison purposes.   This will help 

suggest a decision-making scheme so that the best kriging semi-variogram can be determined for 

any sediment yield dataset. 

Before examining kriging options in detail, let us review how the data were first 

processed.  As the preceding section demonstrates, using ‘raw’ data from the Global Sediment 

Database without first examining data distribution, statistics, and quality, is not recommended. 

The flowchart in figure 3.3 summarizes how data are prepared for analysis. 
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Figure 3.3 Flow chart—preparing data for spatial analysis. 

 

The first steps—selecting a dataset from the Global Sediment Database, and investigating 

its data quality—were described in the first part of this Chapter.  More detailed procedures are 

not outlined in figure 3.3 because different projects will have different goals, and different 

thresholds for data quality. Recall that the Data Quality Report that accompanies the Global 
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Sediment Database contains detailed and summary data quality information, so users can put as 

much detail into their metadata analyses as needed.   In most cases the data quality check at the 

beginning of this flow chart will require several iterations to ensure adequate data quality. 

The remaining sections of the flow chart follow two branches, dealing with spatial data 

and sediment data.  Evaluation, analysis, and processing of sediment data was discussed in 

Chapter 2 and the earlier part of this Chapter (creating regional sediment relations, back-

calculating ks, and so on).  Regarding spatial data, the discussion on the evaluation of spatial 

precision (Section 2.2.2) summarizes how to deal with the main challenge of spatial data 

processing: obtaining accurate data point GIS files, and determining the ideal spatial coordinate 

system.  For this thesis, the data files and coordinate system used by Hassan et al. (2008) were 

adopted.   

Given the variability of the SSY data for the Yellow River, it is important to consider the 

appropriateness of the kriging algorithm.  As discussed in Chapter 2, there are three possible 

methods of kriging: simple, universal, and ordinary.  Simple kriging is not appropriate for 

sediment data, so we have the various semi-variograms of universal and ordinary kriging to 

choose from.  Several parameters need to be considered.  First, the basic kriging features—range, 

nugget, and sill—will be examined.  Next, the various semi-variogram options will be 

considered.  By discussing these factors, we will narrow the possibilities of appropriate kriging 

algorithm for the Yellow River to four candidates.  These four will be subject to further 

evaluation. 
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3.2.1 Range, Nugget and Sill 

 
Figure 3.4 Range, nugget, sill, and partial sill in kriging (modified from ESRI, 2011). 

 

Figure 3.4 illustrates the first of these parameters: range, nugget, and sill (ESRI, 2011; 

Negreiros et al., 2010; Armstrong, 1998); it is a hypothetical graph of a kriging algorithm.  A 

data point is located at the origin (0,0) and as distance from that point increase (x-axis), the 

variable y likewise increases.  At a certain point, the kriging graph levels off—that is, there is no 

further change in y with increasing distance x. This y-value at this point is called the sill.  The 

range is the distance away from the origin at which this leveling off occurs.  Data points farther 

away than the range are not considered to be spatially autocorrelated (as the kriging equation 

would continue as almost a horizontal line).   Larger ranges mean that more of the landscape is 

subject to autocorrelation.  Larger sills mean that the magnitude of the autocorrelation is high.  

The nugget is the vertical offset of the kriging equation from the origin.  This represents the 

minimum autocorrelation value.  In other words, even at an infinitesimally small distance from 

our origin point, there is some change in our variable as a result of spatial autocorrelation.   

Finally, a partial sill is also sometimes reported: this is simply the sill minus the nugget. 
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Unless one has specific mathematical knowledge about how a spatial variable changes 

with distance, it is not possible to predict these values ahead of time.  That is, one cannot 

‘measure’ the sill or range of an expected interpolation directly from the landscape.  Once a 

kriging algorithm has been applied, however, one can examine how well the interpolation ‘fits’ 

the data, and evaluate whether the range, nugget, and sill values match the data (see figure 3.5). 

 
Figure 3.5 Example kriging algorithm of the Yellow River, with statistical details (see text).   

 

In this example, ordinary kriging was used.  The y-axis shows the variation in sediment 

value, while the x-axis is the distance from the data point being interpolated.  This graph shows 

an increasing trend, with higher values occurring farther away from the data station.  The red 

dots represent other data stations’ location (x-position), and how each of these stations compares 

to the target station (y-position).  Further, averages for these data stations (red dots) are binned at 

equal intervals, with the average of each bin shown as a blue cross.  Figure 3.5 thus shows the 

surrounding data stations in three ways: in terms of real positions and sediment value deviations 
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(red dots); spatially-averaged values, moving away from the target station (blue crosses); and an 

overall trend line (blue line). The range, nugget, and partial sill are highlighted in the inset table, 

which shows the statistical properties of this algorithm.  There is a great deal of scatter in this 

example and the algorithm seems to underestimate the sill: the high degree of scatter in the 

upper-right of the graph is not accounted for by this algorithm.  This would suggest that this 

model is less accurate farther away from the target station; specifically, interpolated values will 

be too as compared to positions closer to the target station. 

 

3.2.2 Considering Error Values 

 In addition to examining the graph of the kriging algorithm, the error values of the 

interpolation can be examined.  When the kriging algorithm is generated, the software produces 

several statistical measures that describe the overall reliability and potential errors of the model.  

Figure 3.6 uses the data from figure 3.5, and shows a graph of predicted values (on the y-axis) 

vs. measured values (on the x-axis).  The blue line is the regression function, while the green line 

is the same function, but forced through the origin (i.e. with a nugget of zero). Several statistical 

values are computed using these regression functions, which are discussed below. 
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Figure 3.6 Kriging error values—predicted values (y-axis) vs. measured values (x-axis). 

 

By examining these values we will assess the accuracy of this interpolation algorithm and 

compare it with other algorithms to decide which is most appropriate.  According to the 

documentation accompanying this kriging tool (the Geostatistical Wizard within ESRI’s ArcGIS, 

ESRI 2011), the mean error and mean standardized error should both be as small as possible, the 

root-means-square standardized error should be as close to 1.0 as possible, and the average 

standard error and root-mean square error should be approximately equal.  To demonstrate how 

such values can be used to decide between two kriging options, consider table 3.2.  On the left, 

y-axis: Predicted values x10
5
 

x-axis: Measured values x10
5
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we see the error details for the same kriging function seen in figure 3.4 and 3.5: ordinary kriging, 

with a stable semi-variogram.  On the right, we see the same details for a different kriging 

function: universal kriging, again with a stable semi-variogram. Each of these will be described 

in turn, to asses which kriging interpolation is more accurate. 

Table 3.2 Comparing error values of ordinary and universal kriging. 
Error Statistic Ordinary kriging Universal kriging 

Mean error 650.4 301.3 

Root-mean-square error 28,362.7 30,243.0 

Mean standardized error 0.00955 0.000269 

Root-mean-square standardized error 0.9379 0.9628 

Average standard error 33,120.9 31,988.7 

 

 As discussed in Chapter 2, kriging algorithms produce interpolated values based on an 

equation, where the predicted value equals the measured value plus an error term.  The mean 

error is simply the average difference between predicted values and measured values: lower 

values are preferred.  The mean standardized error computes the error term at each data point, 

and then divides it by that data point’s value.  In other words, if point x has a ks value of 1,000 

T/km
2
/yr, and an error value of 50 T/km

2
/yr, then the mean standardized error would is 0.05 (50 / 

1,000 = 0.05).  Again, lower values are preferred here.  The root-mean-square standardizes error 

(also known as the RMS standardized error, or R
2
) describes how well the kriging function fits 

the data.  A perfect R
2
 or 1.0 would mean that all variation within the data is explained by the 

kriging function.  An R
2
 substantially less than 1.0 means that values are systematically under-

estimated; while an R
2
 substantially more than 1.0 indicates systematic over-estimation. 

 The remaining statistics, root-mean-square error and average standard error, should be 

approximately equal.  The RMS error indicates how closely the predicted values match the 

measured values, while the average standard error is computed based on error terms alone.  If 

there is a substantial amount of measurement error, these two values are less likely to be equal.  

Such a situation suggests a systematic error or bias of the measured data. If the values are 
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approximately the same, then the errors produced by the kriging algorithm are assumed to be 

stochastic, not deterministic.  This is the preferred outcome. 

 In considering table 3.2 again, the error statistics all indicate that the universal kriging 

algorithm is more accurate than the simple kriging algorithm.  The universal method has lower 

mean error, lower mean standardized error, and RMS-standardized error close to 1.0, and RMS 

and average standard error that are approximately equal.  For the ordinary kriging, these values 

were 33,120.9 vs., 28,362.7–a difference of 3,758.2.  For the universal kriging, the difference 

was only 1,745.7 (31,988.7 vs. 30,243.0). 

 This analysis of universal and ordinary kriging error values suggests that universal 

kriging may be more appropriate for the Yellow River data.  We will see whether this is true for 

other basins in section 3.4, when data from the Yangtze River and from Romania are examined.  

But given the comparison between universal and ordinary kriging in section 2.4, the preferred 

suitability of universal kriging for the Yellow River makes sense. Recall that ordinary kriging 

requires a constant, unknown mean, while universal kriging allows the mean to vary.  We are 

already assuming that sub-basins within the Yellow River are different from each other by 

creating regional sediment relations and back-calculating ks. It follows that average sediment 

yield values might similarly vary in different parts of the watershed.  Despite the slight 

advantage that universal kriging has at this point, however, ordinary kriging should not be 

excluded until semi-variography is considered. 

3.2.3 Semi-Variography 

Semi-variograms allow for different mathematical functions to be used as kriging 

algorithms.  Some of these may reflect the data better than others as different models will result 

in different predicted values.  This is especially true when the model differs significantly from 
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the data near the origin.   Further, the steeper the model is near the origin, the more influence the 

data points closest to the target data station will have on the output interpolation. In other words, 

a stronger localized bias in autocorrelation occurs with semi-variograms that are steep near the 

origin. Figure 3.7 shows example semi-variograms.  Note how most are somewhat similar farther 

away from the origin, but differ more substantially (in steepness and shape) close to the origin.  

 

 
Figure 3.7 Kriging semi-variogram options (modified from ESRI, 2011). 
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Spherical, circular, and exponential semi-variograms differ more in range than they do in 

shape.  The spherical semi-variogram reaches its sill value quite quickly, whereas the other two 

are more gradual.  The Gaussian option is the only one that curves inwards at first; it then 

reverses its shape and reaches its sill at about the same place as the circular semi-variogram.  The 

linear semi-variogram is the simplest, but perhaps the most divergent from its data.  

In order to evaluate which of these semi-variograms is best suited to the Yellow River 

data, each of these five semi-variograms will be compared, for both universal and ordinary 

kriging (10 semi-variograms in total).  The error values will be compared, as in table 3.2.  The 

two best semi-variograms from each kriging method will be analyzed in more detail: the shape of 

these four semi-variogram graphs will be examined, to further refine which is most suitable. 

After these two rounds of eliminating less-suitable algorithms, the semi-variograms with 

the best fits will be used to generate sediment maps and error maps.  These maps will be further 

analyzed in the hopes that a single kriging algorithm emerges as the best choice for mapping the 

sediment data of the Yellow River. 

Table 3.3 Yellow River ordinary kriging error values. 
Error type* Circular Spherical Exponential Gaussian Linear 

Mean Error 777.22 827.39 1,086.16 301.33 853.87 

RMS Error 28,669.3 28,558.0 28,598.5 30,243.0 28,479.3 

Mean Std. Error 0.010687 0.011987 0.016473 0.000269 0.012404 

RMS Std. Error 0.95097 0.94708 0.96046 0.98283 0.94672 

Avg. Std. Error 32,754.2 32,866.6 34,731.4 31,988.7 33,121.16 

Avg. Std. – RMS Error 4,084.9 4,308.6 6,132.9 1745.7 4,641.9 

* RMS = root mean square; Std. = standard; Avg. = average. 

Bolded values are the best fit; underlined are the second-best fit. 

 

 Table 3.3 shows the various error statistics from the five ordinary kriging semi-

variograms.  Using the rationale described above, the best semi-variogram for each metric was 

evaluated.  Note that more decimal places were kept than are probably statistically significant; 

error values will be rounded once the ideal kriging algorithm has been determined.  Also note the 
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use of abbreviations in table 3.3, and that the final row shows the difference between the average 

standard error and the root-mean-square error.  As noted above, these values should be 

approximately equal.  So the semi-variogram with the smallest difference in these error values is 

more accurate than the others. 

 The Gaussian semi-variogram was the most ideal based on all five error measures (these 

have been bolded in table 3.3).  The second-best error values have been underlined. Four of 

these second-place error values are from the circular semi-variogram: mean error, RMS error, 

mean standard error, and average standard error.  The RMS standard error of the circular semi-

variogram is only third-best, at 0.95097.  The exponential semi-variogram, however, reports an 

RMS standard error of 0.96046.  However, the other values from the exponential semi-variogram 

do not fare as well: in fact, for all other error values, the exponential semi-variogram is the worst 

option.  Thus, the Gaussian semi-variogram, as the clear winner, and the circular semi-

variogram, as the runner-up, will be examined in more detail.  First, however, we repeat the 

elimination process with the universal kriging semi-variograms (table 3.4). 

Table 3.4 Yellow River universal kriging error values. 
Error type* Circular Spherical Exponential Gaussian Linear 

Mean Error 771.30 855.80 1,230.68 513.06 914.47 

RMS Error 28,638.0 28,492.1 28,607.6 30,318.2 28,478.4 

Mean Std. Error 0.011623 0.013827 0.020226 0.0075560 0.0153084 

RMS Std. Error 0.95070 0.95945 0.96005 0.98659 0.94473 

Avg. Std. Error 32,725.4 32,848.5 34,722.8 31,962.5 32,291.0 

Avg. Std. – RMS Error 4,087.4 4,356.4 6,115.2 1,644.3 3,812.6 

* RMS = root mean square; Std. = standard; Avg. = average. 

Bolded values are the best fit; underlined are the second-best fit. 

 

 The Gaussian semi-variogram is again the most ideal (values, as in table 3.3, are in bold).  

The RMS Standard error is even closer to 1.0 than the ordinary Gaussian semi-variogram 

(0.98659 for the universal, 0.98283 for the ordinary), and the difference between the average 

standard error and the RMS error is also smaller (1,644.3 for the universal, and 1,745.7 for the 
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ordinary).   The mean error and mean standard error are also lower.  A second-best semi-

variogram is less simple to identify, as was the case with the ordinary semi-variograms.  

Whereas the ordinary circular semi-variogram was second-best in nearly every error statistic, the 

universal circular semi-variogram does not rank as highly.  The mean error and mean standard 

error are indeed only second to the Gaussian semi-variogram, but the RMS standard error is only 

better than the linear semi-variogram.  Oddly, though the linear semi-variogram has the RMS 

standard error furthest from 1.0, at 0.94473, its RMS error and average standard error are closer 

to each other than all the other options, save the Gaussian semi-variogram.  So which model is 

second best overall?  Table 3.5 helps narrow the decision. We created a ranking for each 

universal semi-variogram error statistic, where 1 is the best value and 5 is the worst value.  That 

means the lowest mean error would rank as 1, and the highest (worse) as 5.  Likewise, the 

difference between the average standard error and the RMS error should be as small as possible; 

the best value always gets assigned a rank of 1. 

Table 3.5 Yellow River universal kriging error ranking. 
Error type* Circular Spherical Exponential Gaussian Linear 

Mean Error 2 3 5 1 4 

Mean Std. Error 2 3 5 1 4 

RMS Std. Error 4 3 2 1 5 

Avg. Std. – RMS Error 3 4 5 1 2 

* RMS = root mean square; Std. = standard; Avg. = average. 

Bolded values are the best fit; underlined are the second-best fit. 

 

 Depending on which statistical measure of error we emphasize, different semi-

variograms may seem suitable as second-best.  RMS standard error, for instance, is a simple 

metric that summarizes how well the kriging function accounts for variation within the predicted 

results. The exponential semi-variogram has the second-best value (0.96005), which means the 

‘fit’ between the data and the semi-variogram is reasonably strong.  However, this semi-

variogram ranks as the worst for all three of the other statistical measures.  The circular or 
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spherical semi-variograms are more balanced; some errors statistics rank well, others poorly.  Of 

these two, the circular semi-variogram performs the best, as it is the only semi-variogram to have 

two second-place error statistics.  The circular semi-variogram, then, along with eh Gaussian 

semi-variogram, will be selected as the two best universal semi-variograms, and will be 

subjected to further analysis. 

 

3.2.4 Comparing Universal and Ordinary Semi-Variograms 

 As explained above, the shape of a semi-variogram is important, especially when close to 

the data point in question. In other words, there is a significant amount of statistical weight put 

on the function close to the origin.  If the fit between the semi-variogram and the data is not 

sufficiently accurate, then the whole assumption of kriging—that interpolated values vary in 

some predictable way in accordance with their spatial autocorrelation—is false, and the resultant 

prediction map is unreliable. 

 Figures 3.8 through 3.11 show graphs of the four semi-variograms identified in the 

previous section that were determined to be most ideal for creating a sediment map of the Yellow 

River.  These are the circular and Gaussian semi-variograms for both universal and ordinary 

kriging.  For each figure, the x-axis is the distance away from the data point, and the y-axis is the 

back-calculated ks. 
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Figure 3.8 Ordinary circular kriging semi-variogram. 

 

 The red dots in Figure 3.8 of the ordinary circular option show neighbouring data points, 

while the blue crosses show the average ks value at various distance intervals from the origin.  

The blue line is the semi-variogram itself.   Note the region circled in orange.  It lies close to the 

origin, and highlights a cloud of data points that lie substantially below the semi-variogram’s 

curve.  The right-hand side of the graph shows a dispersed cloud of point, with the semi-

variogram passing approximately through the middle of this cloud.  When one considers the 

average points, however, there is an odd dip in the region circled in purple.  A dense cluster of 

data points (in red) have pulled that region’s average values (blue crosses) down, so that the 

semi-variogram overestimates this region.  While the discrepancies highlighted by the orange 

and purple circles are not extreme, they highlight a more significant concern: the semi-

variogram’s curve does not fit the overall shape of the data very well.  The circular semi-

variogram is just too simple.  The shape of the average points (blue crosses) suggests a more 

undulating equation. 
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Figure 3.9 Ordinary Gaussian kriging semi-variogram. 

 

The ordinary Gaussian semi-variogram appears in figure 3.9.  Its curve fits the shape of 

the data points more closely at the lower end of the graph (orange circle), even though it still 

under-represents the middle region (purple circle), just as the circular semi-variogram did.  In 

fact, the two semi-variograms are relatively similar in this region.  At its furthest values, the 

Gaussian semi-variogram fits the average data values (blue crosses) slightly better than the 

circular semi-variogram.  Overall, the shape of the Gaussian semi-variogram more closely 

matches the shape of the data points and, especially, the average values.  This supports the earlier 

statistical analysis (table 3.3), which found that the ordinary Gaussian semi-variogram was the 

best statistical match. 
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Figure 3.10 Universal circular kriging semi-variogram. 

 

We now consider the universal kriging examples.  Figure 3.10 shows the circular semi-

variogram.  There are again two main regions where the semi-variogram curve does not match 

the data, just as was the case with the two previous examples. The circular semi-variogram does 

not fir the slight curve of the data near the origin (orange circle), nor does it match the average 

values.  And in the same vein as the previous semi-variograms, the middle region is again under-

estimated by the semi-variogram’s curve.  Two regions of the Gaussian semi-variogram in figure 

3.11 need consideration.  Near the orange circle, the prediction values match the shape of the 

data better than the circular semi-variogram in figure 3.10.  But neat the purple circle, there is a 

potentially significant deviation in the prediction curve, although it is slightly less pronounced 

than in the circular semi-variogram. 
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Figure 3.11 Universal Gaussian kriging semi-variogram. 

 

The conclusion is the same with universal kriging as it was with ordinary kriging: the 

Gaussian semi-variogram is the best fit, both in terms of statistical measures (table 3.4 and 3.5), 

and in comparing the shape of the algorithm’s curve to the interpolated data (figures 3.10 and 

3.11).  These two options—universal and ordinary Gaussian kriging—will be analyzed 

cartographically in the next section to finally determine which single method is most suitable to 

creating a sediment map of the Yellow River. 

 

3.3 Analyzing Sediment Maps and Error Surfaces 
Each sediment map (figures 3.12 and 3.14) is accompanied by its corresponding error 

surface (figures 3.13 and 3.15), derived from its kriging equation (interpolated value = measured 

value + error), using the Gaussian semi-variogram. The symbology for these maps is consistent.  

Since sediment values varied from less than 100 to over 200,000 T/km
2
/yr, a semi-log 

classification scheme was used, so that it was easy to visually identify each order magnitude on 
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the maps.  Class breaks occurred at each half log interval, plus the first quarter log interval (e.g., 

100, 250, 500, 1,000).  The final classification scheme has twelve classes, ranging from a 

minimum of 0 to a maximum of over 230,000 T/km
2
/yr.  Given the maximum value did not quite 

reach the next quarter-log mark of 250,000 T/km
2
/yr, a lower class break of 150,000 T/km

2
/yr 

was used instead. 

 Variation in chroma is generally the preferred method for visualizing quantitative 

variables like sediment yield, but since these maps require spanning five orders of magnitude, it 

would be too difficult to see the subtle changes a monochromatic colour scheme would require.  

Our chosen palette instead is thematically linked to sediment yield, with blue vales representing 

low yield (‘clear’ water) and progressively yellow and brown colours representing higher 

sediment yield (‘cloudy’ water).  This hue progression scheme allows for map clarity across the 

whole range of sediment values. 

For the error maps, the same number of classes (twelve) as used in the sediment maps 

was employed, so that the level of detail would remain consistent between them. If one map had 

far fewer class breaks, it might suggest to the map reader that the data quality or precision was 

different; since both maps derive from the same kriging interpolation, visually communicating 

the same level of accuracy is important. Since the range of values for the error maps was more 

narrow than the sediment maps (about 1,000 – 7,000 T/km
2
/yr) different classification and colour 

schema were used.  An equal interval scale (every 500 T/km
2
/yr) defined the class breaks, while 

a single colour progression, from white to red, suggested decreased reliability (since red has 

negative connotations). 

To provide reference information to the map reader, the river network of the Yellow 

River was overlaid on both the sediment and error surfaces.  The course of the main stem is 
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particularly relevant to the later discussion of patterns in both maps, hence why the main stem is 

thicker and bolder than the tributaries.  Data station locations were also added, as these are 

particularly useful in analyzing the error surface maps.  Errors values increase significantly as 

one moves farther and farther away from a data point.  As noted in Chapter 2, the desert region 

was also highlighted, as it is assumed that minimal sediment flows in or out of that region.  

Finally, the city of Beijing was added to help users orient themselves to the maps’ location. 

We begin by discussing the ordinary kriging maps (figures 3.12 and 3.13). 

 
Figure 3.12 Sediment map of the Yellow River: ordinary Gaussian kriging. 
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Figure 3.13 Error surface map of the Yellow River: ordinary Gaussian kriging. 

 

Two regions of the sediment map (figure 3.12) immediately stand out.  A central, north-

south strip shows ks values in the hundreds of thousands of tons per km
2
 per year.  Referring to 

figure 3.1 at the very beginning of this chapter, we see that this high-yield area corresponds 

roughly to sub-basin 7.  Indeed, this agrees with the results of Hassan et al. (2008), who, in their 

sediment map (figure 4), also found this region to have very high sediment yield.   The other 

region of the Yellow River with very high sediment yield corresponds to sub-basin 2, in the 

western part of the basin. 

The shape of both these high-yield region generally matches the river network.  In 

particular, the highest values of the central region (>100,000 T/km
2
/yr) can be seen to diminish 

moving upstream, first northwards, to moderately high values (10,000-50,000 T/km
2
/yr); then, 

moving west and then south, as the predicted ks values taper to less than 5,000 T/km
2
/yr.  This 

makes sense, as this region is the Loess Plateau, and it is generally agreed (e.g., Long & Chien, 

1986; Yu & Xan, 2005; Hassan et al., 2008) that these highly erodible  sediments are a major 

factor behind why the Yellow River has such extremely high sediment yield values over time. 
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With the exception of the high predicted sediment yield values in sub-basin 2, much of 

the upper reaches show very low yield values.  Since the river in this region is confined, as it 

incises into bedrock, low values are to be expected.  The lower reaches similarly have lower 

yield values—below 2,500 T/km
2
/yr, except for a small region about 500 km from the river 

mouth, where values spike to about 10,000 T/km
2
/yr. 

The error surface map is relatively uniform, which indicates that there is not systematic 

skewing of the data based on the semi-variogram properties.  Error values are lowest near data 

points, ranging from 1,000 to 2,000 T/km
2
/yr for most of the basin.  The upper- and lower-most 

regions yield slightly higher error values, in the range of 3,000 to 4,000 T/km
2
/yr.  Only in 

regions far removed from any data points do we see the highest error values, greater than 5,000 

T/km
2
/yr, at the very edge of the interpolated error surface.  As noted in the previous section 

(table 3.3), the overall fit of this semi-variogram is good: RMS standard error of 0.98283, the 

best of all the algorithms presented in this thesis.  The relatively low error values present in most 

of figure 3.13 further indicate the reliability of this data, which was ranked in the Data Quality 

Report as 11/12. 

Despite these encouraging indications from the error surface map (figure 3.13) that the 

sediment yield map (3.11) is reliable, there are some warning signs—certain regions that are less 

trustworthy than others.  The southernmost part of the Yellow River (roughly equivalent to sub-

basin 5) shows very low interpolated sediment yield values (<500 T/km
2
/yr), yet the error values 

are at least double this (between 1,000 and 2,000 T/km
2
/yr).  Some areas of the high Tibetan 

plateau are similarly problematic; this is likely because there are only a few data station in this 

region.  Areas outside of sub-basin 2 (where sediment yield values are more than 10,000 

T/km
2
/yr and the error values are less than about 3,000 T/km

2
/yr) have very low sediment yield, 
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and  yet moderate levels of error (errors as high as 4,000 T/km
2
/yr and sediment yield values 

mostly less than 1,000 T/km
2
/yr).  These patterns suggest that the regions of figure 3.12 with the 

highest sediment yield values are the most reliable, as the errors in these regions are several 

orders of magnitude smaller.  Since the error values are rarely above 4,000 T/km
2
/yr in figure 

3.13, we can consider any prediction values above that threshold to be reliable.  The magnitude 

of the error values in figure 3.13 is a reflection of the data quality of the Yellow River dataset, 

and of the specific kriging algorithm used. 

 In regions of moderate sediment yield (5,000 – 25,000 T/km
2
/yr), reliability is still high, 

but in regions below 5,000 T/km
2
/yr (and certainly below 1,000 T/km

2
/yr) error values are often 

equal to (if not greater than) the interpolated sediment yield values.  This is because error values 

are most strongly influenced by proximity to a data station, not data station value (Armstrong, 

1998).  In other words, high sediment yield value does not necessarily mean high error value.  So 

for low- or high-yield points close to a data station, error will likely be smaller than the sediment 

value; this means the prediction is reliable.  For low-yield regions far away from a data station, 

the error will be higher, because of the distance factor; if the error exceeds the predicted value, 

the predicted value is not reliable.  High-yield regions, on the other hand, may still be reliable 

even outside of the immediate vicinity of the data points, as in the increased error values are less 

than the increased sediment value. 
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Figure 3.14 Sediment map of the Yellow River: universal Gaussian kriging. 

 

 
Figure 3.15 Error surface map of the Yellow River: universal Gaussian kriging. 

 

Why is this the case?  First, in looking back at our interpolation methods, regional trends 

(in the form of sub-basin level sediment relations) and local conditions (from the back-

calculation) both play a role in generating the sediment map. Thus, we would expect the 

interpolated kriging surface to vary quite significantly from sub-basin to sub-basin, as the 
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physiography, climate, land use, etc. of the Yellow River varies.  The error values, however, are 

more dependent on the statistical algorithm and semi-variogram chosen.  As we saw from the 

error statistics in table 3.3, the ordinary Gaussian semi-variogram was quite consistent. Looking 

at the graph of this semi-variogram (figure 3.9) note that the semi-variogram’s curve matches the 

data quite well close to a data point, but less well as distance from the data point increases.  This 

explains the smooth, consistent error surface of figure 3.13.  Clearly, the distance from a data 

point has a stronger effect on the error value than the underlying sediment yield value, or we 

would expect much more variation in the error surface. 

 Figure 3.14 show the universal Gaussian prediction interpolation for the Yellow River.  

Its overall spatial distribution is very similar to figure 3.12, which showed the ordinary Gaussian 

interpolation. The central region of the Loess Plateau still has the highest sediment yield, with 

values tapering upstream, to the edge of the Tibetan Plateau. Another peak in sediment yield is in 

sub-basin 2, although in figure 3.14 this high-yield region is somewhat larger than it was in 

figure 3.12.  The Tibetan Plateau is another region that diverges slightly from the ordinary 

kriging interpolation.  In figure 3.12, moderate sediment yield levels occurred in the west part of 

this region, with very low values elsewhere.  In figure 3.14, the situation is reversed, with values 

of 5,000-10,000 T/km
2
/yr in the east of the region, and low values everywhere else (<1,000 

T/km
2
/yr). 

 The most significant difference between these two maps lies just east of the main, 

high-yield central region.  A small tributary (sub-basin 8) runs parallel to the main stem here, 

eventually finding a confluence near the southern edge of the basin.  Ideally, a kriging 

interpolation would recognize a sharp distinction between these areas, as the main stem feeds off 

Loess material, and thus has much higher sediment yield values than the tributary.  Indeed, on 
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the ordinary Gaussian sediment map, there is a relatively sharp break that runs roughly parallel to 

both the main stem and the tributary.  In the universal Gaussian sediment map, however, this 

boundary is more blurry, and moderately high sediment yield values can be found in the 

tributary’s sub-basin.  

 Figure 3.15 shows the error surface of the universal Gaussian kriging.  It is nearly 

identical to figure 3.13, the error surface of the ordinary Gaussian kriging.  This corroborates the 

previous discussion: most of the error values result from proximity to data points, rather than 

inconsistencies or error within the source data, or problems and biases from the semi-variograms.  

Some slight changes to the error surface in figure 3.15 can be seen in the central region of the 

Loess Plateau, just south of the region of very high sediment yield.  The error values seem to be 

a bit lower (maybe by around 500 Tons/km2/year) than they were in figure 3.12. 

 Overall, the sediment yield maps and error surfaces from these two kriging methods 

are very similar. There is a slight argument to be made in favour of the ordinary Gaussian semi-

variogram, as its error statistics (table 3.3) were slightly better than the universal semi-

variogram, and the ordinary Gaussian sediment yield map showed watershed boundaries a bit 

more clearly.  Nevertheless, both methods show strong results, and demonstrate that high quality 

data from the Global Sediment Database can be used to create meaningful maps. 

 

3.4 Comparing Kriging Results of Other Rivers 
 While the ordinary Gaussian semi-variogram was arguably the best kriging method for 

the Yellow River, other datasets will likely require a different algorithm.  Using the same kind of 

error statistics employed in section 3.2.3, data from the Yangtze River in China and from the 
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Danube River in Romania will be briefly examined  (data sources Hassan et al., 2010 and 

Radoãne & Radoãne, 2005, respectively). 

 The Yangtze River, being immediately adjacent to the Yellow River, is a natural 

choice for comparison.  The physiography of the basins is similar, although the Yangtze lacks 

the copious Loess material found in the Yellow River Basin.  There are more data stations in the 

Yangtze as compared to the Yellow River (389 vs. 161), and they are more evenly distributed 

throughout the basin.  The westernmost part of the watershed (the Tibetan Plateau), however, has 

fewer points overall, just as in the Yellow River’s case.  The Yangtze River scored just as high 

on the data quality report as the Yellow River, with 4/4 for data station location, 4/4 for temporal 

resolution, and 3/4 for point density (total: 11/12).  Detailed sediment analyses of the Yangtze 

can be found in Hassan et al. (2010 and 2011). 

Table 3.6 Yangtze River ordinary kriging error values. 
Error type* Circular Spherical Exponential Gaussian Linear 

Mean Error 294.3 287.1 432.0 510.8 461.9 

RMS Error 527.4 529.4 546.0 523.2 539.2 

Mean Std. Error 0.0026 0.0028 0.0055 0.0061 0.0057 

RMS Std. Error 1.055 1.071 1.142 1.036 1.1089 

Avg. Std. Error 503.5 499.7 491.5 511.1 495.2 

Avg. Std. – RMS Error 23.9 29.7 54.5 12.1 44.0 

* RMS = root mean square; Std. = standard; Avg. = average. 

Bolded values are the best fit. 

 

 Both ordinary and universal kriging semi-variograms are considered for the Yangtze 

River.  The statistical measures of error presented here are the same ones used in the analysis of 

the Yellow River.  As before, the values with the best fit are bolded.  For the Yangtze River, the 

RMS error, RMS standard error, and average standard error were most ideal when using the 

Gaussian semi-variogram.  This mirrors the ordinary kriging of the Yellow River.  The mean 

standard error is lowest with the circular semi-variogram, while the mean error is lowest with the 
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spherical semi-variogram.  A similar situation is found in table 3.7, which presents the results of 

the universal kriging semi-variograms.  The Gaussian again is the best for the RMS error, RMS 

standard error, and average standard error.  This time, however, it is the linear semi-variogram 

with the lowest mean standard error, and the exponential semi-variogram with the lowest mean 

error. 

Table 3.7 Yangtze River universal kriging error values. 

Error type* Circular Spherical Exponential Gaussian Linear 

Mean Error 485.2 484.0 460.3 830.0 458.8 

RMS Error 528.7 531.4 546.5 525.6 539.9 

Mean Std. Error 0.0066 0.0066 0.0063 0.0125 0.0060 

RMS Std. Error 1.057 1.073 1.1419 1.042 1.1095 

Avg. Std. Error 503.4 499.4 491.4 510.9 495.3 

Avg. Std. – RMS Error 25.3 32 55.1 14.7 44.6 

* RMS = root mean square; Std. = standard; Avg. = average. 

Bolded values are the best fit. 

 

 The similar statistical results from the Yellow and Yangtze Rivers suggest that something 

about the spatial pattern of sediment yield is similar in both watersheds.  While the distribution 

and number of data points is quite different, the Gaussian semi-variogram shows the lowest 

overall error values in both cases, for universal and ordinary kriging.  From an interpolation 

point of view, the similarities appear to be stronger than the differences between these two 

basins. 

 The Romanian data from the Danube is quite different from the Chinese data from the 

Yellow and Yangtze Rivers.  Given how Romania and China are in such different parts of the 

world, with different climate, geology, land use, and so on, such variation in the kriging 

algorithms is expected.  The exponential semi-variogram is the clear winner for ordinary kriging 

(table 3.8), while the universal semi-variograms are divided between the linear and circular 

options (table 3.9). 
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Table 3.8 Danube River ordinary kriging error values. 
Error type* Circular Spherical Exponential Gaussian Linear 

Mean Error 811.6 773.0 779.9 798.7 810.4 

RMS Error 7,227.0 7,210.0 7,087.5 7,285.7 7,198.5 

Mean Std. Error 0.0285 0.0209 0.0188 0.0279 0.0211 

RMS Std. Error 1.259 1.254 1.226 1.275 1.252 

Avg. Std. Error 5,500.0 5,507.2 5,552.2 5,473.5 5,510.3 

Avg. Std. – RMS Error 1,727.0 1,702.8 1,535.3 1,812.2 1,688.2 

 

Table 3.9 Danube River universal kriging error values. 
Error type* Circular Spherical Exponential Gaussian Linear 

Mean Error 823.0 921.4 866.7 812.2 840.9 

RMS Error 7,326.0 7,338.2 7,503.7 7,361.5 7,313.5 

Mean Std. Error 0.0171 0.0235 0.0230 0.0267 0.0225 

RMS Std. Error 1.238 1.377 1.268 1.278 1.369 

Avg. Std. Error 5,488.9 5,496.5 5,545.5 5,462.8 5,500.3 

Avg. Std. – RMS Error 1,837.1 1,841.7 1,958.2 1,898.7 1,813.2 

* RMS = root mean square; Std. = standard; Avg. = average. 

Bolded values are the best fit. 

 

 Two conclusions are suggested by the Danube kriging examples.  First, there is a 

different underlying spatial geometry in the Danube than there was in the Yellow or Yangtze 

Rivers.  Second, no single semi-variogram will always be most ideal; it is important to 

investigate the statistical measures of error in each case to assess which kriging model is most 

appropriate for a given data set.  To conclude our exploration of these alternate datasets, consider 

the flowchart in figure 3.16, which summarizes how to select the best kriging semi-variogram.  It 

continues from the flowchart in figure 3.3, which reviewed how to prepare sediment data and 

spatial data for use in kriging interpolation. 
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Figure 3.16 Flow chart detailing selection of best kriging semi-variogram. 

 



79 
 

 

 First, it must be noted again that the GIS details in this chapter are based on using ESRI’s 

ArcMap 10.0 and that it is assumed that similar procedure can be followed with other software.  

The directions in the semi-variogram selection flowchart (figure 3.16) are thus somewhat 

generalized.  The two key points of these flow charts are the ‘checks’.  Once the statistical 

measures of error for each semi-variogram have been examined (e.g., like tables 3.6 to 3.9 for 

the Yangtze and Danube Rivers, respectively), how well does each semi-variogram perform?  Is 

one algorithm clearly superior to the others? If so, it is safe to proceed with checking the graph 

of that semi-variogram.  If more than one semi-variogram seems possible, or if they all seem 

equally inaccurate, the source data should be double-checked, and perhaps the kriging 

parameters should be modified. 

 The second ‘check’ in figure 3.16 is to investigate how well the overall shape of the 

semi-variogram matches the data, using graphs like those found in figures 3.8 to 3.11.  Within 

ArcMap, these graphs appear during the kriging selection process within the Geostatistical 

Wizard, and the graphs—with accompanying statistics, and regression lines—can be exported 

for more detailed consideration.  If the match between the best semi-variogram and its data is not 

suitable, the 2
nd

-best semi-variogram can be considered (just as the best two semi-variograms 

were considered for the Yellow River in this Chapter).  If this still does not produce a 

satisfactory result, especially near the origin (0,0) of the graph, then the dataset as a whole 

should be re-evaluated and possibly re-analyzed to ensure that the quality of the data is 

sufficiently high to proceed with kriging interpolation. 

One conclusion for this Chapter is that the maps created for the Yellow River using the 

ordinary Gaussian semi-variograms are the best representations we could make with the data and 
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statistical tools available to us.  More importantly, even with the brief examples of the Yangtze 

and Danube Rivers, it is clear that ‘one size fits all’ is not an appropriate analytical methodology 

when considering spatial interpolation.  The true goal of this Chapter was to provide a 

methodological framework, so that potential users of the Global Sediment Database can make 

well-reasoned decisions about the kinds of GIS analyses they might perform.  
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Chapter 4 Conclusions 
 

This thesis has demonstrated how the Global Sediment Database can be created, and how 

it can be used to explore the spatial pattern of sediment yield in the landscape.  The remaining 

question is how to make the Database and the Data Quality Report available to other 

researchers?  The ongoing work of updating the Database and evaluating data quality must be 

done in a consistent way.  Further, the Database itself needs to be tested in peer-reviewed 

literature.  Material from this thesis, including data from the Database, will hopefully be used as 

the basis for further work.  Once our framework for collecting, processing, and documenting data 

has been vetted by the scientific community, we will make the Database and the Data Quality 

Report available to all. 

At that point, we hope that the data analysis framework presented in Chapters 2 and 3 can 

serve as a starting point for researchers who wish to use the Database.  The step-by-step 

discussion of how to process, evaluate, analyze and interpolate sediment data can be applied to 

any part of the Database, or indeed to any sediment yield dataset.  By linking methodological 

decisions to underlying data quality we have shown how a systematic analysis of spatial and 

attribute data can produce a result with a known level of confidence.  This attention to data 

uncertainty is expressed in the kriging error maps that accompany our analysis, and in the 

statistical exploration of the various kriging methods.  Still, it is clear that no one method is ideal, 

so comparison between datasets is going to be essential in developing these methods. 

The goals of this thesis were to build the Global Sediment Database and to present a 

method for choosing the best tool for spatially analyzing sediment yield data.  Neither of these 

goals has an endpoint: our aim is for the Database to continue to grow over time, and for even 
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more interpolation methods to be compared and contrasted for use with sediment data.  Progress 

on these goals has at least begun, and that is an accomplishment. 

A third goal has also emerged from this discussion of finding the best interpolation 

method.  GIS has often been described as a ‘black box’ —data are thrown in, and analyses are 

spat out.  The analysis of various kriging methods in this thesis has helped to crack open that 

black box, and illustrate that there is much to be gained in exploration of the nuances of your 

data, and the many, many analysis options available.  As we progress into the 21
st
 century and 

more parts of our world become geo-tagged, linked to GPS, or uploaded to the ‘cloud’, it is 

important that we, as geographers, maintain our critical gaze on the new media and tools that are 

being created.  The scientific, social, and environmental implications of spatial data will change 

as large datasets like the Global Sediment Database become the norm.  Issues of data quality and 

reliably will have to be considered, and the urge to produce results quickly—by using the black 

box of GIS, for instance—must be resisted.  Justification and documentation must be provided at 

every step.  If patience, diligence, and attention to detail can be incorporated into the analysis of 

these new data frontiers, then the knowledge of these new technologies can benefit everyone.   
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