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Abstract

We investigate the implications of a magnetic field in the late stages of stel-
lar evolution, in relation to the process of mass-loss via a stellar wind. We
develop the very first hybrid magnetohydrodynamic-dust-driven wind model
for intermediate-mass Asymptotic Giant Branch (AGB) stars. This model
consists of incorporating a canonical Weber-Davis magneto-centrifugal sce-
nario with the effects of radiation pressure on dust grains in the envelope of
an AGB star. This results in a dual-fluid description, the solution of which
is seen to possess traits of both types of winds. In this context, we addition-
ally investigate the implications of spots on the photosphere that alter the
location of dust formation and hence the wind solutions.

This model is adapted to tackle the case of the red supergiant Betelgeuse.
The underlying motivation is to delineate a new mechanism for solving the
problem of transport of stellar material from the photosphere out to the dust
formation radius, many stellar radii away. Various dust formation scenarios
are investigated and it is concluded that the simplest of such scenarios, with
silicate dust forming at a large distance, is the most viable one as well.

This theory is also applied to the low-mass end of AGB stars; the star
Mira. By applying a modified wind model we solve for a hybrid MHD-dust-
driven wind solution and find that the magnetic field required to model the
observed wind is about 4 G, well within the range of current estimates for
AGB stars. We also formulate a hot-spot model to rationalise dust shells at
a distance of several stellar radii.

Finally, we study the effects of a strong magnetic field in post-AGB com-
pact objects; magnetised white dwarfs and neutron stars. We develop a fast
and efficient solution for Hartree-Fock atoms in strong magnetic fields using
pseudospectral methods. The atomic structure package developed for this
purpose is seen to be many orders of magnitude faster than finite-element
based methods. We also obtain for the first time, estimates for the binding
energies of certain low-lying states of the lithium atom, that have not been
reported thus far in the literature.
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Chapter 1

Introduction

The late stages of stellar evolution are perhaps one of the most intrigu-
ing of the outstanding questions in the field of stellar astrophysics. Much
of our knowledge regarding the penultimate stages of stellar life cycles has
come from multi-wavelength observations of evolved stars, viz., red giant and
asymptotic giant branch (AGB) stars. The latter class of stars represent the
final stages in the lives of low- and intermediate-mass stars. The fate of our
own Sun can, in essence, be surmised using observations of different AGB
stars in various stages of evolution.

1.1 Historical Overview

The history of the discovery of AGB stars [e.g. 1] is a potpourri of serendip-
itous discoveries and insights coupled with advances in quantum mechanics
and latterly, observational techniques and computing capacity. Perhaps the
very first discoveries can be traced back to Ptolemy finding and characteris-
ing a certain star as being “ruddy” in colour and later Arabic astronomers
naming this red star, Betelgeuse, which although technically is not an AGB
star, the fact that it appears red to the naked eye, sparked much debate in
the scientific community all the way up to the early 1900’s. At the time, with
Planck’s theory coming into light, it became known that the redder stars are
cooler. It was around the same time that Hertzsprung [see 2] and Russell
[see 3] were independently working towards classifying stellar spectral types
correlated with luminosity. Their classifications however, further deepened
the mysteries surrounding these stars when it was realised that they were
also giants, which is about the time when the term was coined [e.g. 1].

Linked with these mysteries is the history relating the discovery of the
long period variables, or as they are popularly known, Mira-variables or
Mira-type stars. In ca. 1596 the German theologian and astronomer David
Fabricius from Frisia, discovered that a particular star in the constellation of
the Whale, Cetus, known today as the star Mira, “disappeared” from the sky.
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At the time, he dubbed it another “Stella Nova”, as the one that was seen
earlier in 1572 by Tycho Brahe. It was only a few decades later in ca. 1638
that another Dutch Frisian astronomer Holwarda, was able to unambiguously
determine that the star changed in brightness from low to high with an
approximate period of one year. He estimated it to be about 330 days which
is remarkably accurate considering current estimates put the number to be
at 331.9 days. Being perplexed by this behaviour he termed it “Stella Mira”
or “miraculous” or “amazing” star. In the following decades, several variable
stars like Mira were discovered by various astronomers. Incidentally, in ca.
1611 when David Fabricius’ son (Johannes) returned from university in the
Netherlands with telescopes, the pair started observing the stars including
the sun. At the crack of dawn Johannes was able to see spots on the surface
of the sun and during the day they would both observe the sun with the
telescope. Soon they adopted the “camera obscura” method to form inverted
images of the sun. They, along with the English astronomer Thomas Harriot,
were the first to observe sun spots with a telescope.

A deeper understanding of the variability of Miras had to wait until
1963, when Feast [see 4] surmised from observations that Mira variables
with shorter periods were older. However, it was only relatively recently in
1981, that Glass and Evans [see 5] established an empirical linear relationship
between the K-magnitude and the log of the period in Mira variables (see
Figure 1.1).

Somewhat parallel to the discovery of Mira variables and red giants, in ca.
1868, Father Secchi, a Vatican Observatory astronomer [e.g. 1, 6], classified
around 4000 stars using stellar spectrograms, and discovered that some of
the “red” stars were very different than the others. He remarked that they
showed similarities to the the light seen in carbon arcs, at the time. This
discovery led to the classification of “red” stars into eventually two broad
categories, as those having predominantly carbon lines and those without.
These are now understood (partly due to Russell in 1934 [see 7]) to be two
distinct types of AGB stars, namely carbon-rich and oxygen-rich giants. The
relative abundances of carbon and oxygen in these stars ultimately determine
the type of AGB star. The complicated physical nature of the interior of these
stars came to full light in 1975 when Iben [see 8] and Sugimoto & Nomoto [see
9] showed that a combination of not only the s-process but also the triple-
alpha process nucleosynthesis, with convective dredge-up of material in these
stars, leads to a sufficient increase in carbon, turning them into carbon-rich
stars. The evidence of this dredge-up, common to most Miras, comes chiefly
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1.1. Historical Overview

Figure 1.1: Empirical linear relationship between K-band magnitude and
log of the period (in days) of Mira variables in the Large Magellanic Cloud.
From [5]. Nature, 291:303, c©1981 Macmillan Journals Ltd., by permission.

from the lines of the s-process element technetium (Tc), which have been
seen in Mira stars [e.g. 10–12, see Figure 1.2].

However, on the theoretical side, understanding of the true nature of these
red giants did not start to emerge until the 1920’s and 1930’s. Eddington in
1926 proposed that probably hydrogen is converted to helium in the interiors
of stars but it was only in 1939 that Bethe [see 13] and von Weizsäcker in
1938 [see 14], using advances in nuclear physics, were able to propose the
pp-reaction and the CNO cycle, as the workhorses for energy production in
stars. However, even at the time, it was not known how the red giants in
the Hertzsprung-Russell (HR) diagrams came about. It was even surmised
by von Weizsäcker, that perhaps red giants were young stars that were still
contracting. This was not an unreasonable deduction, since young stars that
are still contracting do indeed lie close to the giant stars on the HR diagram
[e.g. 15]. The upshot of all this cumulative research was that red giant stars
were peculiar and as yet unexplained and that there seemed to be two distinct
categories of them.

It was only after the second World War, with the advent of more accurate
photometry, that Arp, Baum and Sandage in 1953 [see 16] discovered that
in a Hertzsprung-Russell diagram of a globular cluster that there appeared
to be a “bifurcation of the red giant branch” (see Figure 1.3). It was shortly
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Figure 1.2: The first detection of Technetium in Mira variables confirming
the occurrence of the s-process in AGB stars. From [11]. The Astronomi-
cal Journal, 84:13741383, September 1979. c©1979 American Astronomical
Society (AAS). Reproduced by permission of the AAS.

thereafter that these objects were termed “asymptotic giant branch stars”.
In 1952, inspired by the fact that the red giant branch in the Hertzsprung-
Russell diagram seemed to connect with the main sequence, Sandage and
Schwarzschild [see 17] did an extraordinary thing. They analysed these stars
not as young stars still contracting but rather as old stars that have exhausted
their hydrogen supply in their cores and completely converted the cores to
helium (see Figure 1.4). They were able to show with a set of hybrid models,
representing different time epochs in the late evolution of an old main se-
quence star, that as the core contracted, the surrounding hydrogen envelope
expanded by a large factor accompanied by an increase in luminosity. This
was the first explanation of a red giant star that was close to the actual pic-
ture. This heralded a slew of papers and thereafter Hoyle and Schwarzschild
in 1955 [see 18] showed that these stars evolved through the red giant branch
to a maximum luminosity and then down to the horizontal branch. These
discoveries were also among the first numerical models of the early part of
post-main-sequence stellar evolution. Understanding of the next part of the
evolution, after the horizontal branch, came about around a decade later.

Schwarzschild & Härm in 1965 [see 19] and Weigert independently in 1966
[see 20] saw what at first appeared to be numerical glitches in the models for
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Figure 1.3: “Bifurcation in the Red Giant Branch”. From [16]. The As-
tronomical Journal, 58:4, February 1953. c©American Astronomical Society
(AAS). Reproduced by permission of the AAS.

red giant stars. It turned out that what they had discovered were the He-shell
flashes that occur when the He-burning shell around the carbon-oxygen core
approaches the inner edge of the hydrogen envelope. At this stage an insta-
bility develops and He-shell flash occurs, which was later termed a “thermal
pulse”. In a few years time, Schwarzschild & Härm [see 21] were able to
show that after a number of such thermal pulses, a convective zone extend-
ing from the He-burning shell makes contact with the convective H-envelope
sitting atop it. At this stage a greater amount of mixing ensues, ensuring
that conditions become favourable for nucleosynthesis, as new elements may
be brought upwards. Shortly thereafter, Sanders [see 22] argued that the
s-process might work well under the conditions for He-shell burning.

The s-process, was first proposed by Burbidge, Burbidge, Fowler and
Hoyle in 1957 [see 23] in their seminal study of nuclear reactions under as-
trophysical conditions. They labelled one particular chain of reactions the
s-process, which involves a sequence of slow neutron capture events followed
by β-decay. After Sanders’ paper it was determined in a slew of papers that
the short but repeating high-energy conditions in the He-burning layer in
thermally pulsing (TP) AGB stars, appear to be efficient for nucleosynthesis
via the s-process. However a significant amount of modelling was needed to
delineate self-consistently, the conditions during a thermal pulse when the
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Figure 1.4: The first correct evolutionary models showing migration from
the main sequence after core contraction. From [17]. The Astrophysical
Journal, 116:463, November 1952. c©American Astronomical Society (AAS).
Reproduced by permission of the AAS.
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critical parts of the stellar structure were varying quite rapidly. These var-
ious models were in a large part made feasible primarily due the advent of
greater and greater computing power. It was with such models that eventu-
ally in 1975, the seminal work of Iben [see 8] and Sugimoto and Nomoto [see
9] came about showing the importance of not only the s-process but also the
3α-process during the dredge-up events from the He-burning layer.

During the 1960’s infrared astronomy really took-off in a big way, partic-
ularly in the United States, partly spurred by military interest. Gradually,
observations were made possible at longer and longer wavelengths. There
came a deluge of discoveries of strange objects with the landmark survey at
2.2µm; the IRC-survey by Neugebauer and Leighton in 1969 [see 24], where
they found about 5000 objects, many of which were red giants that were
“strangely” enshrouded in huge circumstellar envelopes (CSE) of dust. In
some of these discovered objects the surrounding dust has such a large opti-
cal depth that the majority of the stellar radiation is emitted at wavelengths
longer than 2.2µm. Thus it was seen that AGB stars came with CSE’s many
of which were carbon-rich. A little later in 1976, Price and Walker’s cata-
logue of more that 2400 point sources detected between 4 and 28µm found
even more fascinating, unique objects. These have been subsequently studied
with a variety of instruments and wavelengths, and are now established to
be post-AGB stars in various stages of evolution. Later the IRAS catalogue
found a few hundred thousand such sources, thus providing a window into
the future of perhaps the fate of our own sun, using observations of several
AGB and post-AGB objects.

Around the same time in the mid- and late 1960’s, radio astronomy was
also coming into the forefront of observational science. Wilson and Barrett in
1968 [see 25] found a circumstellar line of the OH molecule, when observing
the supergiant star NML Cyg at radio wavelengths. What was even more
perplexing was that the line was so strong that it could only be attributed
to maser emission. Contemporaneous observations found variability in such
line emissions from similar objects that showed a variability of 300 to 1000
days, thus establishing maser emission from long-period variables.

The push to study these objects at even longer wavelengths using submil-
limetre and millimetre astronomy was made possible with the development
of cryogenically cooled receivers and new high-precision antennae. The pri-
mary trouble being that at these wavelengths, the noise from thermal photons
of the instruments were quite significant, thus advances needed to wait for
reliable cryogenic technology to catch up. Using such instruments in the
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1970’s and 1980’s several observations were carried out and many different
molecules were detected. However, instrumental in furthering the knowledge
regarding AGB stars, was the first detection by Solomon et al. in 1971 [see
26], of vibrational-rotational thermal transitions of the CO molecule, at 2.6
mm from the carbon star IRC +10216. Further observations using greater
precision enabled estimates of the properties of the circumstellar envelopes,
in particular the expansion velocities. Since then analysis of the CO line
brightness maps from such stars, has become a very important tool in the
study of CSE’s of AGB stars and their mass-loss process.

The mass-loss process of stars was first proposed by Biermann in 1951
[see 27]. Later in 1967 Weber & Davis [see 28] and Mestel in 1967 [see 29]
arrived at similar magnetohydrodynamic (MHD) models explaining the mass
loss from our sun. The following chapter gives a brief chronological review
of the state of MHD models. However in evolved stars, the evidence of
circumstellar lines seen in M-type giants seemed to suggest that there must
occur some form of mass-loss, but the exact mechanism that could lead to
escape of material was not proven. The first evidence came as early as 1956,
when Deutsch [see 30] observed the binary system α−Her. His observations
led him to conclude that the gas extended as far out as 2× 105R⊙ from the
MII spectral type giant, many orders of magnitude greater than the then
suspected stellar radius of the object. He also found that the expansion
velocity of the gas was about 10 km/s, enabling him to arrive at an estimate
of the mass-loss rate of about 3 × 10−8M⊙ yr−1, approximately a million
times greater than the mass-loss rate of our sun.

In the early and mid-1960’s, there were several observations giving indi-
rect indications of mass-loss in stars, one such study was due to Auer and
Woolf in 1965 [see 31] who found that in the Hyades cluster there are many
white dwarfs below the Chandrashekhar limit of 1.4M⊙ and many main se-
quence stars that were about 2M⊙. Thus, presumably many such stars had
lost at least about 0.6M⊙, and Auer and Woolf’s argument was that they
should have been seen somewhere losing mass, but such stars had been missed
somehow in observations up to that point. The question they asked was, what
do stars look like when they are losing mass at a prodigious rate?

Following their observations in 1968, Gillett et al [see 32] and Woolf & Ney
[see 33] in 1969, unveiled perhaps one of the most significant milestones in our
understanding of AGB stars. They discovered for the first time an emission
band around 10µm in the spectra of M-type giants, as due to emission from
small particles of silicates (see Figure 1.5). After this seminal paper, came a
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Figure 1.5: Fitting the excess radiation from AGB stars with emission from
terrestrial mineral grains. The dashed line is the stellar spectrum. From
[33]. The Astrophysical Journal, Letters, 155:L181, March 1969. c©American
Astronomical Society (AAS). Reproduced by permission of the AAS.
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great many investigations revealing observations of dust around several giant
stars. From this cumulative evidence there began to emerge a picture that
there were largely two types of dust grains; one produced by M-type giants
and the other produced in carbon stars. These findings were instrumental
in inspiring and cultivating an entire industry devoted to dust formation
and dynamics in evolved stars. Nearly a decade after Auer and Woolf’s
initial findings, Reimers in 1975 [see 34] collected data on many giant systems
and arrived at an empirical relationship relating the mass-loss rate (Ṁ) to
the stellar luminosity (L), mass (M) and radius (R); Ṁ ∝ LR/M , which
would later come to be known as “Reimers’ relation”. Contemporary to
these discoveries, Wickramasinghe et al showed convincingly in 1966 [see 35]
that radiation pressure on graphite dust grains could not only drive dust
grains outwards due to radiation pressure, but also that the dust grains
would drag the surrounding gas along with them as they ploughed through
stellar atmosphere. Later in 1976, Elitzur, Goldreich and Scoville [see 36, 37]
developed the first spherical models for the CSE of an AGB star with matter
flowing through it. They also explained the existence of the OH masers as due
to infrared pumping of OH molecules that form from H2O photodissociation
in a thin molecular layer in the atmosphere of the star.

In 1981 Renzini and Voli [see 38] suggested that red giant stars experience
a mild wind that gets more prodigious as they evolve further. Finally in the
last TP-AGB phase a very dense “superwind” occurs, wherein they lose the
majority of their mass. Evidence for the latter also came from maser emission
revealing very high mass loss rates of about 10−4M⊙ yr−1 [e.g. 39, 40].

This represents the cumulative data and understanding of AGB stars
up to about thirty years ago. An excellent and oft quoted review of AGB
stars was carried out by Iben and Renzini in 1983 [see 41] and the reader
is referred to the same for further details. The following section relates the
current-state-of-the-art with regard to our understanding of AGB stars and
thus the work presented in the current thesis is motivated.

1.2 The Current State-of-the-Art in AGB

Star Physics

AGB stars are presently understood to be a complex laboratory where the
interplay of many kinds of physics governs the evolution of the star towards
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its ultimate end. These objects are now thought to have a degenerate carbon-
oxygen (C/O) core, surrounded by thin shells of nuclear burning of helium
and hydrogen. The more massive AGB stars are thought to have oxygen-
neon-magnesium cores [see 42]. AGB stars are now known to be efficient
factories for nucleosynthesis producing elements via the s-process and thus
play a crucial role in governing the metal enrichment of stellar systems and
the interstellar medium.

Modern day understanding of the evolution of these stars is shown in Fig-
ure 1.6, which shows the evolutionary track of a 2M⊙ star that turns off from
the main sequence as the supply of hydrogen in the core has been exhausted
and converted to helium. Next the core begins to contract and hydrogen
burning ignites in shells surrounding the He core. The star then evolves to
the base of the red giant branch in the HR Diagram shown in Figure 1.6.
While the core continues to collapse gravitationally, the energy released is
deposited in the layers surrounding it, further heating the surroundings of the
core. This results in an expansion of the giant on the whole and the luminos-
ity of the H-burning shell increases greatly with energy input from the core
and nuclear burning. Thereafter, the star proceeds upwards along the red gi-
ant branch (RGB) and during this time the envelope is convectively unstable.
As the core contracts, at some stage the temperature is high enough to ignite
He nuclear burning. Exactly when this occurs depends upon the initial mass
of the star; see Figure 1.7. It appears from simulations of stellar evolution
and structure that if the initial mass is less than approximately 1.8M⊙ then
the He core has become electron-degenerate when the star evolves to the tip
of the RGB. These stars experience a degenerate core He flash and settle
afterwards in quiescent He-core burning on the zero-age horizontal branch
(ZAHB). Initially more massive stars on the other hand, ignite He burning
in the core in a nonviolent mode and thereafter their evolution proceeds along
the horizontal branch [see 42].

Nuclear burning of He in the core leaves behind a C/O core that is sur-
rounded by layers in which He- and H-burning occurs. Once the C/O core
is formed, further evolution once more depends upon the mass of the star.
It turns out that if the initial mass of the star is less than about 8M⊙ then
carbon burning does not ignite, meaning that the temperature increase in the
contracting C/O core is not enough to initiate C-burning. The C/O core then
further contracts and becomes increasingly electron-degenerate, ultimately a
nascent white dwarf. On the other hand, for the more massive stars, numer-
ical simulations seem to indicate the C-burning is possible leading to further
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Figure 1.6: Stellar evolutionary track of at 2M⊙ star. The red and green stars
are the locations of the central stars of the planetary nebulae of the different
sub-tracks, red and blue respectively. These other tracks involve extra ther-
mally pulsing phases during the post-AGB phase. The evolution proceeds
upwards along the base of the RGB and then to the ZAHB. Afterwards the
star proceeds upwards on the RGB and then the AGB phase. Later it enters
the TP-AGB phase and after post-AGB evolution it finally forms a planetary
nebula. The central compact object, the white dwarf then continues cooling
downwards along the HR diagram. From [42]. Annual Reviews of Astron-
omy and Astrophysics, 43:435-479, September 2005, c©Annual Reviews, by
permission.
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Figure 1.7: Classification of stars by initial main sequence mass (lower part)
and AGB mass (upper part). Adapted from [42]. Annual Reviews of Astron-
omy and Astrophysics, 43:435-479, September 2005, c©Annual Reviews, by
permission.
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nucleosynthesis in the core.
At this stage the stellar evolution enters what is termed the early AGB

phase which is characterised by the He shell which dominates nuclear pro-
duction. This stage lasts a significant period of time (104 − 105 yrs) before
the star enters the so-called thermally pulsing phase.

The He-burning shell is convective and burning occurs outwards until it
it reaches the H shell surrounding it. Most of the inner He has been burned
and there remains a layer of He burning just underneath the H-burning layer.
Thus, nuclear energy release is dominated by the H shell. Since both the He-
burning and the H-burning regions are convective, and in contact, this is a
perfect breeding ground for instabilities. Thus, the predominant H-burning
is interrupted periodically by thermonuclear runaway He-shell flash events
that initiate a complex series of further convection and other mixing events
(see Figure 1.8) that lead to greater dredge-up. The reader is referred to an
article by Woosley, Heger and Weaver [see 43] for further details regarding
the modelling that has been able to establish the nature of these explosions
in relation to stellar evolution.

Finally as the star proceeds to evolve along the TP-AGB there occur
greater and greater thermal pulses that render the star more and more con-
vectively unstable. At some stage beyond the TP-AGB there ensues a “su-
perwind” which is responsible for prodigious mass-loss leading to the star
losing its envelope and it begins its post-AGB evolution. There exist many
debates regarding the nature, cause and influence of the superwind in the
final stages of AGB evolution. The reader is referred to the introduction of
Chapter 3 for a brief discussion of possible superwind mechanisms with the
relevant literature mentioned therein.

The brief description given above by no means does justice to the past
three decades of research that has gone into formulating self-consistent mod-
els for AGB evolution. The reader is referred to a review by Willson [see 44]
on the current understanding of the mass-loss process in AGB stars. Sim-
ilarly for a review detailing post-AGB evolution see van Winckel [see 45].
Finally for a review of the current state-of-the-art that is presently emerging
regarding the interior of AGB stars particularly in relation to the myriad
nucleosynthesis reactions, the reader is referred to a review by Herwig (2005)
[see 42]. The common thread tying all these different facets of an AGB star
is the underlying mass-loss that it is undergoing. Indeed it is also one of the
most important observable aspects, that gives us hints regarding the evolu-
tion of the AGB star itself. The mass loss process itself is tied to the wind
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Figure 1.8: Thermal pulses causing dredge-up events. The evolution proceeds
towards the right. The red solid line indicates the H-shell, while the yellow
solid line represents the He-shell, below which is the C/O core. The solid
green regions between the two shells are the zones of convection extending
from the He-shell to the convective envelope atop the H-shell. These convec-
tive events cause dredge-up of material. Adapted from [42]. Annual Reviews
of Astronomy and Astrophysics, 43:435-479, September 2005, c©Annual Re-
views, by permission.
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mechanism, which is closely related to the physics of the CSE and the inner
atmosphere and indeed, the interior processes that modulate the physical
conditions at the photosphere. For a brief chronological review of AGB star
winds, the reader is referred to Chapter 3. The picture that has emerged from
decades of simulations is that dust formation in the atmosphere is central to
driving a stellar wind which is what is needed for mass-loss, without which
an AGB star cannot evolve into a post-AGB planetary nebula and thence a
white dwarf.

1.3 Justification and Scope

Somewhat parallel to the development of stellar evolution models that have
succeeded in providing a detailed description of processes that govern the
RGB and AGB phases, has been the modelling of stellar winds of regular
main sequence, hydrogen burning stars. In recent years, many of the stellar
wind models have incorporated magnetic fields, and MHD modelling of winds
has made it possible to capture much of the non-linear dynamics at work in
stellar effluxes [e.g. 46–48]. Many of the stellar wind models pertain to hot
luminous stars, in which radiation pressure on the gas drives the wind [see
49, 50, for reviews]. The conditions for these winds require a hot plasma
and recent efforts have been in the direction of multi-dimensional modelling
with the effects of stellar magnetism incorporated self-consistently into the
governing equations for fluid flow [e.g. 51]. The majority of these studies
can trace their motivation back to numerical simulations of the complicated
physics of the solar interior and adaptation of such modelling to rationalise
observations of other stellar types has become an outstanding goal.

On the other hand, modelling the wind of cool evolved stars has focused
for the most part on the microphysics of the dust grains [e.g. 52, 53]. A
wealth of understanding has emerged not only from terrestrial experiments
with dust grain nucleation and growth [see 54, 55, for reviews], but also
from the immense efforts in both the theoretical and observational fronts for
discerning the astrophysical conditions for dust grain growth in stellar at-
mospheres [see 56, 57, and references therein]. In tandem, the modelling of
dust-driven winds has steadily progressed from simple spherically symmet-
ric models to the current-state-of-the-art 2D hydrodynamic axisymmetric
simulations that calculate radiative transfer on-the-fly through dusty shells
[e.g. 58, 59]. These latter models incorporate the effects of stochastic dust
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formation although grain growth is assumed to occur by a much simpler
mathematical prescription. There have also been efforts directed at simu-
lating non-spherical dust-driven winds that have complemented these efforts
significantly [e.g. 60]. The reader is referred to a summary of the literature
provided in Chapter 3 for details regarding the current state-of-affairs in this
field of study.

Furthermore, the study of stellar magnetism, a field unto itself, whose
history can be traced back to the study of sunspots and geo-magnetism [see
61, for a review], has played a key role in spurring observations of magnetic
fields in stars. These studies further inspired modelling the role that the
solar magnetic field may play in various aspects of solar phenomena such
as granulation of the solar surface, sunspot cycles and flares [see 61]. The
unequivocal and resounding inference that emerged from this cumulative
effort was that an understanding of magnetohydrodynamic processes was
key to unlocking several aspects of solar physics.

The search for solar-type activity in other stars yielded dividends with
the first discovered stellar magnetic fields in a late-type star other than the
sun by Robinson et al in 1980 [see 62]. Shortly thereafter came discoveries
of a magnetic field in a cool giant [see 63] and in a T Tauri star [see 64]. In
later years several objects were discovered to have magnetic fields based on
similar Zeeman observations. These discoveries were quite remarkable be-
cause they established a much sought after link. As early as 1969, Richards
and Comella [65] measured the rotation period of the pulsar NP 0532, and
this object was used to theorise the slow-down of rotating magnetised neu-
tron stars by Gold [66]. In that year, independently Pacini [67] had also
published a paper theorising similarly that the magnetic fields in neutron
stars were probably decaying with time, thus motivating the slow-down of
rotating pulsars. Within a year, strong magnetic fields were then found in
compact objects; circular polarization studies of magnetised white dwarfs
by Kemp et al in 1970 [see 68], revealing that some of these objects have
rather high magnetic fields ranging from 106 to a few 108 G, or more. Then a
few years later came conclusive evidence for even stronger fields in compact
objects which were found in neutron stars [see 69, 70]. Thus an important
part of the puzzle was then revealed, that the remnants of stellar evolution
can contain significantly high magnetic fields, and this naturally provoked
the question, do their progenitors, cool giant stars, then have dynamically
important magnetic fields as well?

An important step in this direction came in 1975 (incidentally, a year
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before OH masers were explained by Goldreich and Scoville [see 36]) when
Johnson and Clark [see 71] made the first complete SiO linear polarisation
observations of some evolved stars. This study gave hints that it is possible
to ascertain the existence of magnetic fields by studying polarised emission
from evolved stars. However, the breakthrough came only recently, when
Diamond and Kemball in 1997 [see 72] obtained the very first image of the
magnetic field of a star using circular polarisation arising from SiO masing
regions within a few stellar radii of the Mira-variable TX Cam. This study
unambiguously revealed that significantly strong magnetic fields may exist
in cool giants, with the detection of a 5 − 10 G field in inner atmosphere of
TX Cam, at a distance of about 5− 10 AU from the stellar photosphere.

Since then several maser polarisation studies have been carried out that
find a large variety of magnetic field strengths at the distances of all three
kinds of cool giant masers; OH, H2O, and SiO. The range of magnetic fields
inferred in these stars then ranges from a few milligauss to a hundred gauss
or so [e.g. 73–79, also see reviews in Chapters 3, 4 and 5]. Moreover, in a
recent study, Auriere et al [see 80, 81] have found unambiguous evidence for a
1 G field in the red supergiant Betelgeuse and there exist hints of a magnetic
field in the star Mira from SiO maser polarisation observations [e.g. see 82].

These findings show that magnetic fields are present in AGB stars. How-
ever, to the best of the author’s knowledge, there exist no investigations
in the literature that combine the effects of a magnetic field with the well
understood dust-driving mechanism for modelling the wind of an AGB star,
i.e., a hybrid MHD-dust-driven wind scenario. This represents a shortcoming
in the understanding of AGB star physics that this thesis hopes to address.
Here we investigate the implications of a stellar magnetic field on the dust-
driven stellar wind in not only low- and intermediate-mass AGB stars but
also at the high mass end; cool evolved supergiants. This covers the entire
spectrum of cool giants shown in Figure 1.6. The aim of the work is to as-
certain whether it is possible to have a hybrid wind scenario in which both
MHD effects and dust-driving can produce a combined outflow?

As discussed earlier, towards the end of the AGB phase the star is con-
vectively unstable and goes through a phase of frequent thermal pulsations,
just prior to the onset of the superwind. This stage of the AGB phase is
quite poorly understood, however, the aim of the current work is to provide
a hybrid mechanism at the early stages of the AGB, long before the onset
of the thermally pulsing phase. The hope is to lay the groundwork upon
which more complicated dynamical hybrid models may be constructed to
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ultimately enable the tackling of the TP-AGB phase.
To this end we develop, as a first approximation, the simplest possible

hybrid-MHD-dust-driven wind model (Chapter 3), by combining a classical
Weber-Davis type magneto-rotational wind with the standard dust-driving
picture, modelling a steady-state outflow. This general model is then applied
to particular stars. We chose to model the two stars that were in a large
part responsible for human interest in evolved stars; Betelgeuse (Chapter 4)
and Mira (Chapter 5), both of which come with their own accoutrements of
mysteries.

The final end product of the evolution of these two particular stars will
likely be a neutron star for Betelgeuse and a white dwarf star for Mira. The
run-of-the-mill neutron stars can have magnetic fields on the order of about
1011 G or more [e.g. 83], while white dwarf stars can have fields ranging
from 106 − 109 G or so [e.g. 83] such as in white dwarfs like PG 1031+234
and SDSS J234605+385337 where fields around 109G have been observed
[see 84–86, and references therein]. Figure 1.9 shows observations of the
object PG1015+014 by Euchner et al [see 87] and Figure 1.10 shows a greater
resolution spectrum of the same object obtained by Jeremy S. Heyl. This
white dwarf has a field of about 108G, which was inferred from the Zeeman
shift in the spectral lines [see 87].

In order to facilitate a proper examination of the spectra of such highly
magnetised objects it is necessary to have data for the structure of atoms in
strong magnetic fields. There exist only a few investigations in the literature
for atoms in strong magnetic fields, and only for the low-Z elements such
as H, He, Li etc. Even then, this data is limited to only a few states. For
example, there exist only a handful of studies in the literature for the Li atom,
and many of the tightly bound states in strong magnetic fields have not been
investigated, in particular the so-called negative parity states (see review in
Chapter 6). Moreover, in many cases the computational overhead is quite
high, particularly in terms of computing time, such as when using a finite-
element based approach for 2D atoms in strong fields [e.g. 88] or the method
of solution is burdened with many layers of computational complexity [e.g.
89, 90]. Therefore, a secondary goal of this thesis is to formulate a straight-
forward computationally fast and efficient method of solution for determining
the atomic structure of 2D atoms in the strong magnetic fields. The ultimate
aim is to facilitate spectral analysis of magnetised white dwarf stars and
neutron stars.

To this end a pseudospectral method based approach (see Chapter 6)
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1.3. Justification and Scope

Figure 1.9: The spectrum of magnetised white dwarf PG1015+014. The
quantity φ represents rotational phase of the object. Credit: Fabian Euchner
[87], Astronomy and Astrophysics, 451, pp 671-681, 2006, reproduced with
permission c©ESO.
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Figure 1.10: A greater resolution spectrum of the magnetised white dwarf
star PG1015+014. Courtesy Jeremy S. Heyl. The ordinate axis values are
scaled in units of 10−16 erg cm−2 s−1 Å−1. The quantity φ represents rota-
tional phase of the object.
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for solving the Hartree-Fock equations [e.g. 91] is formulated. This study
represents an extension of two earlier studies carried out by the author,
Refs. [88, 92] and investigates the atoms He and Li in strong magnetic fields.

Thus overall, this thesis aims to study the implications of a magnetic field
in the late stages of stellar evolution.

1.4 Thesis Outline

The work carried out as a part of this thesis is organised as follows. Chap-
ter 2 very briefly introduces the concepts of stellar winds in a rudimentary
manner. An isothermal stellar wind is considered and the chapter also pro-
vides the a short description of the topology of solutions, in particular the
critical point in the model. Thereafter chapter 3 describes a general hybrid
MHD-dust-driven wind model that is developed for intermediate-mass AGB
stars. As mentioned earlier, our aim is to ascertain whether it is feasible to
formulate such a hybrid picture. For this purpose the modelling adopts a
rather simplified prescription and we restrict our attention to an axisymmet-
ric wind in the equatorial plane. The formulation of the model is described
in detail in Section 3.2. The dust is treated in a simple manner, by assuming
that it forms at a certain distance from the photosphere where the temper-
ature falls below the dust condensation temperature. The details of forming
the dust and inclusion of a coupled dust momentum equation are again given
in Section 3.2. The numerical procedure that is developed for solving this
coupled system of gas and dust outflow alongside magneto-rotational effects
are described in detail in Section 3.3.

Thereafter in Section 3.4 we present the results of the hybrid-MHD-dust-
driven wind model and the key features of the modelling are discussed. The
entire topology of the family of solutions are discussed and compared with
standard dust-driven stellar winds as well as with magneto-rotational winds.
A discussion regarding the question of photospheric spots can also be found
therein. The contribution to the energy carried by the efflux by its different
components are also shown and discussed in length. Finally in Section 3.5
the findings of the study are summarised and a brief discussion is provided
with regard to the avenues for future work. The primary conclusions drawn
are that there are two types of hybrid models that are physically viable,
the first in which dust forms within a few stellar radii, and the second in
which dust forms at a great distance, a few tens of stellar radii away from
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the photosphere. We also discuss the possibility of forming dust in a more
realistic way (in-situ) and motivate the need for time-dependent modelling.
We also comment on the importance of pulsation and motivate the need for
including such effects in future models.

After having formulated a steady-state dual-fluid MHD-dust-driven wind
theory, we test the feasibility of the theory by applying it to particular stars;
we model the wind of the red supergiant star Betelgeuse in Chapter 4. In
doing so, we extend the framework of the theory to encompass high-mass
red giants; these have cool outer atmospheres with dust condensation. The
primary reason that makes Betelgeuse an interesting candidate is that ob-
servations indicate very little dust interior to about 30R0, where R0 is the
photospheric radius. Thus, our objective was to test the second type of
hybrid model derived in Chapter 3, in which dust forms a great distance
from the photosphere. A review of the literature focussing on the wind and
the atmospheric properties of Betelgeuse is provided in Section 4.1. The
salient features of the model that pertain to Betelgeuse, are then provided in
Section 4.2, with direct comparisons to intermediate-mass AGB stars. The
numerical optimisation method developed for modelling the wind of Betel-
geuse is provided in Section 4.3. Then in Section 4.4, different dust formation
scenarios are discussed for Betelgeuse, largely motivated by recent findings
that indicate the possibility of forming alumina close to the photosphere.
We additionally consider scenarios in which alumina both forms and later,
undergoes spallation in the wind. Finally in Section 4.5 the findings of the
study are summarised.

The hybrid MHD-dust-driven wind theory developed in Chapter 3 is then
applied to the star Mira in Chapter 5. Mira is a star in the early stages of the
AGB. It is a low-mass AGB star, thus modelling the wind of Mira, enables us
to extend the theory to the low-mass end of the spectrum of AGB stars. Thus
with this investigation we cover all three mass ranges shown in Figure 1.7.
Mira is a very different star in comparison to Betelgeuse, it is about 10 times
less massive, it is also thought to be spinning a little slower in comparison
and there are recent hints of magnetic activity in the atmosphere of the star.
In contrast to Betelgeuse, dust formation occurs within a few stellar radii of
the photosphere in Mira. Thus, one of our aims was to apply a hybrid wind
model of the first kind, described in Chapter 3, with dust forming in the
inner reaches of the atmosphere, close to the photosphere. A short review of
the relevant literature on the nature of the wind of Mira and its atmosphere,
is provided in Section 5.1. The details of the model for Mira’s wind alongside
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a brief description of the numerical methodology are described in Section 5.2.
The results of the modelling are discussed in Section 5.3. Since neither the
surface magnetic field strength nor the rotation rate are exactly known for
Mira, these were treated as variable parameters. Estimates are provided
for these variables that yield modelling results consistent with observations.
Thereafter the findings are concluded in Section 5.4.

Thus overall, Chapter 3 describes a novel hybrid stellar wind model, and
the findings indicate that two types of hybrid MHD-dust-driven winds are
possible. Each of these models are then tested by applying them to particular
stars; Betelgeuse and Mira, in Chapters 4 and 5 respectively. Thus the
feasibility of combining a dust-driven wind picture with magneto-rotational
effects is fully explored for different types of cool evolved red giant stars.

Chapter 6 then explores an altogether different question. As mentioned
earlier, the fate of Betelgeuse is likely a neutron star and that of Mira, is a
white dwarf. It is also known that these objects can be highly magnetised.
The lowest magnetic fields in neutron stars are seen in the so-called recycled
millisecond pulsars, and these objects can have fields upwards of about 108

G or so. While the most magnetised white dwarfs that are presently being
discovered, have fields well in excess of 109 G or so. As a result, observa-
tions of these objects that rely upon an analysis of their spectra, require
accurate estimates of the energy levels of various atoms in intense magnetic
fields. This would enable a correct interpretation of the different features
seen in the spectra of these objects. However, there are very few studies in
the literature for atoms with more than two electrons in intense magnetic
fields, namely Lithium, Beryllium, Boron etc. The studies that have been
carried out so far, merely restrict themselves to the so-called positive parity
states. In addition, many of these studies are computationally intensive and
burdened with approximations that add to the computational complexity of
the problem. Thus the aim of the study described in Chapter 6 is two-fold.
First, we formulate a fast and efficient method of solution of the problem
of low-Z atoms in intense magnetic fields employing pseudospectral meth-
ods. The key enabling advantage of this method is that is computationally
straight-forward and drastically reduces computational time without sacri-
ficing accuracy. Second, the prototype atomic structure code developed as
a part of this study, is compact and thus can be directly employed in at-
mosphere models of white dwarf stars and neutron stars. This would enable
computation of the energy levels of different atoms on-the-fly with little com-
putational overhead; the calculations would yield accurate results within a

24



1.4. Thesis Outline

matter of a thousand seconds or so.
Section 6.1 details the relevant literature in the field of atomic structure

in intense magnetic fields and motivates the study described in Chapter 6.
Thereafter, the particular 2-dimensional cylindrical form of the Hartree-Fock
equations are provided in Section 6.2 with definitions of different parameters.
The pseudospectral method is described in great detail in Section 6.3 with
explicit examples delineating the method of implementing boundary condi-
tions for both the one- and two-electron problem. The numerical details
for solving the resulting coupled algebraic eigenvalue problem is described
briefly in Section 6.4. The results obtained in the study are presented along-
side a discussion in Section 6.5. There we provide data for two states of the
lithium atom, that have not been studied thus far in the literature. Finally,
in Section 6.6 the findings are summarised and the avenues for improving
the prototype software are discussed in detail, with particular emphasis on
adopting a parallel implementation of the algorithm.

Finally, the entire body of work described in this thesis is summarised in
Chapter 7 and a brief version of all the different avenues for future work can
be found therein.
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Chapter 2

The Parker Wind

In this chapter a very brief introduction is provided to the topic of stellar
winds. Please note that the discussion that follows is in several textbooks
and is therefore intended as a description at a very rudimentary level. The
reader is referred to Ref. [93] for further details and references.

We shall restrict our discussion to a wind from a hypothetical star in which
the gas is assumed to be isothermal and is subjected to only two forces, the
gravity of the star that pulls the gas in towards the centre, and the gas pres-
sure that has a negative radial gradient, such that it opposes gravity. When
these two forces are equally balanced, then the situation resembles a hydro-
static atmosphere. Concordantly, when there is an imbalance, there occurs
a situation of either gravitational collapse, or one of an outflow of material
from the star − a stellar wind. We shall be interested in the latter. Fur-
thermore, we shall, for the sake of conveying a rudimentary picture, restrict
ourselves to a spherically symmetric one-dimensional model.

There are three basis conservation laws that can be imposed on the fluid
flow. Namely, conservation of mass, momentum and energy. Each of these
results in an equation that describes the relevant physical quantities in the
motion of the gas. For the case of a time-independent stellar wind with a
constant mass loss rate, we can write,

dM

dt
= 4πr2ρ(r)v(r). (2.1)

This equation conveys that the amount of gas passing through a spherical
shell at any given distance r is constant. The motion of the gas in a stellar
wind is given by Newton’s second law and can be written as,

f = ρ
dv

dt
, (2.2)

where f is the force per unit volume and therefore, f/ρ is the force per unit
mass residing in a unit volume. We can write a velocity gradient for the fluid
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element that is accelerated in a stellar wind as,

dv(r, t)

dt
=
∂v(r, t)

∂t
+
∂v(r, t)

∂r

dr

dt
= v(r)

dv

dr
. (2.3)

The last equality in Eq. (2.3) comes about because in a stationary time-
independent stellar outflow, the wind velocity at any given distance does not
change with time. Therefore the quantity ∂v(r, t)/∂t = 0 and, since we are
dealing with a spherically symmetric picture, we can replace ∂v(r, t)/∂r =
dv/dr and dr/dt = v(r). As mentioned earlier, the only forces at work in
this hypothetical star are those of gravity and the pressure gradient of the
gas itself; these two forces oppose each other. The imbalance of these two
forces is essentially the force on the gas accelerating it outwards. Therefore
we can write,

v
dv

dr
+

1

ρ

dp

dr
+
GM∗

r2
= 0. (2.4)

This equation describes momentum conservation in the flow and is there-
fore simply known as the momentum equation. The difference between the
pressure gradient (second term) and the gravity (third term) produces accel-
eration in the wind (first term).

Finally, the third basic concept, conservation of energy is embodied in
the simple equation,

T (r) = T = constant, (2.5)

since the thermal structure in the wind is assumed to be somehow maintained.
If we assume that the gas is also ideal, then we can employ an ideal gas
equation of state for closing the equations.

p = RρT/µ, (2.6)

where R is the gas constant and µ is the mean atomic weight of the gas
expressed in units of hydrogen mass. Using Eq. (2.6) the pressure gradient
can be expressed as,

1

ρ

dp

dr
= Rµ

dT

dr
+
RT

µρ

dρ

dr
=

(

RT

µ

)

1

ρ

dρ

dr
, (2.7)

where we have employed the conservation of energy equation (2.5) to elim-
inate the gradient of the temperature in Eq. (2.7). The unknown quantity
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dρ/dr can be expressed using the mass continuity equation in the form of a
derivative as,

1

ρ

dρ

dr
= −

1

v

dv

dr
−

2

r
. (2.8)

Substituting Eqs. (2.7) and (2.8) into (2.4) then yields,

v
dv

dr
+
RT

µ

{

−
1

v
−

2

r

}

+
GM∗

r2
= 0, (2.9)

which can be rearranged to give the velocity gradient as,

dv

dr
= v

{

2a2

r
−
GM∗

r2

}

/
{

v2 − a2
}

, (2.10)

where a is the speed of sound given by,

a = (RT/µ)1/2. (2.11)

Equation (2.10) above is the celebrated Parker stellar wind model. The
topology of the family of solutions of this differential equation are discussed
at length in several textbooks, here we shall provide a short description
of the salient features. There is a critical point in the phase-space of the
differential equation in Eq. (2.10), namely the sonic point. Upon examining
the equation it is evident that at a certain critical radius, r = rc, the velocity
of the wind becomes equal to the speed of sound, vc = a. This point is
unique in the phase-space as at this location (rc,vc), both the numerator and
the denominator of Eq. (2.10) identically vanish. The critical distance from
the photosphere at which this occurs is obtained by setting the numerator
equal to zero. We thus obtain rc = GM∗/2a

2.
The topology of solutions is shown in Figure 2.1. Of key interest is the

critical solution which starts off at the base of the wind, the photosphere,
sub-sonic. The wind then gets accelerated through the sonic point and then
emerges super-sonic at large distances from the star. The other solution that
passes through the sonic point is a Bondi-type solution, in which material
is in-falling; it starts off sub-sonic at large distances, gets slowly accelerated
until it passes through the sonic point. Thereafter it becomes super-sonic
rapidly and plunges into the photosphere at super-sonic speeds. The Bondi
solution cannot be interpreted as a wind solution, as a wind cannot be super-
sonic at the photosphere. The family of solutions just below the critical point
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Figure 2.1: Isothermal Parker wind model. The critical point is located at
the sonic point. cs = vc = a is the speed of sound in this model. The critical
point is an X-type singularity. Courtesy: Jeremy S. Heyl.
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that form inverted-U’s are the so-called failed wind solutions. These solutions
start off at the photosphere with speeds just slightly lower than that of the
critical solution. As a results they are unable to pass through the X-type
singularity. At the critical radius, they therefore have sub-sonic speeds and
are not able to escape the star. As a result the velocities of these wind
solutions diminish to zero in the limit of large radial distances.

The family of solutions above the critical point that form broadened-
U’s belong to a different set of unphysical solutions. These are generally
interpreted as either unphysical wind solutions that start off super-sonic at
the photosphere, get mildly decelerated but still leave the star super-sonic.
Once again such an interpretation is an unphysical wind, as a physically
viable wind cannot be super-sonic at the photosphere. The other possible
interpretation of these solutions is that it is an accreting solution, one in
which material is heading towards the star at super-sonic velocities, gets
mildly decelerated as it has to negotiate its way through the region in the
vicinity of the singular point, and thereafter gets accelerated to higher and
higher Mach numbers, before plunging into the photosphere.

The family of solutions in the region to the left of the critical points are
unphysical double-valued solutions. These solutions start off at the photo-
sphere sub-sonic, but still with velocities slightly greater than the critical
solution. As a result, they overshoot the critical solution, becoming super-
sonic inside the critical radius. However, since these are double-valued, they
cannot be interpreted as physical solutions. The same applies to the family
of solutions in the region to the right of the critical point.

Thus, we see that the topology of the solutions of the differential equation
for the gas velocity profile, in an isothermal stellar wind, is quite interesting.
The critical point is important because if a wind must leave the star then
it must become super-sonic at exactly the right distance from the star, the
critical radius rc. As a result, there is only one unique physical wind solution
and that is called the critical solution. The reader is asked to keep this
discussion regarding the topology of solutions in mind, since the following
chapter that details a hybrid AGB wind, is not only a generalisation of the
Parker stellar wind, but also incorporates magneto-rotational effects. As a
result, the topology of solutions has other critical points, in addition to the
sonic point that has been discussed here.

This concludes our brief introduction to the Parker stellar wind model.
In the following chapter, we shall provide a literature review of the topic of
stellar winds of AGB stars as well as magnetohydrodynamic wind models
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that incorporate magneto-centrifugal effects. Motivation is provided for the
need for combining magneto-rotational effects with that of radiation pressure
on the dust grains of an AGB star and thereafter a hybrid AGB wind model
is developed and the solutions and implications are discussed at length.
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Chapter 3

A Hybrid Steady-State

Magnetohydrodynamic

Dust-Driven Stellar Wind

Model for AGB Stars †

3.1 Introduction

In recent years several observations of evolved stars and planetary nebulae
have indicated that magnetic fields may exist in these objects [see for e.g.
73, 94–98]. The inferred magnetic fields in such objects, at the distances of
the masers, indicate a variety of field strengths ranging from a few milligauss
to a hundred gauss or so [see 74]. This in turn, may indicate a variety of
field strengths at the surfaces of such objects. The idea of studying the
effects of a magnetic field on the nature of the AGB wind has been carried
out mainly with regard to explaining the diversity of the observed shapes
of planetary nebulae [e.g. 99, 100, and references therein]. As a result, the
modelling of magnetic fields in these stars has focussed on the final stages of
the AGB phase, at the very tip of the AGB, or on the post-AGB phase itself,
employing the so called interacting wind scenario [see 101–103, for outlines
of the key points of interacting wind models].

It has therefore been argued that magnetic fields play a vital role in
shaping planetary nebulae by several researchers. Pascoli [104] investigated
a spherically symmetric time-independent model for the gas outflow, with
randomly generated frozen-in magnetic fields that obeyed a power-law dis-
tribution in the outflow. He found that it was possible to generate gas ejection
using such a mechanism. Later, the implications of having a magnetic field in

†Based on an article published in Monthly Notices of the Royal Astronomical Society,
Vol. 409 (4), pp. 1669−81, 2010. c© Anand Thirumalai & Jeremy S. Heyl. c© Royal
Astronomical Society.

32



3.1. Introduction

an AGB star were investigated at the very end of the AGB phase by Pascoli
[105], thereby affecting the morphology of the planetary nebula formed. The
origin of magnetic fields in circumstellar envelopes has also been investigated
employing a magnetic dynamo in the degenerate cores of AGB stars at the
very tip of the AGB [e.g. 106]. Additionally, three-dimensional steady-state
ideal MHD models have also been constructed to investigate production of
the superwind at the very end of the AGB phase [see 107]. Elsewhere, it has
been argued that magnetic fields may play a dominant role in shaping plan-
etary nebulae through magnetised wind bubbles [e.g. 108–110], where they
explore, within the framework of the interacting wind model, at the end of
the AGB phase, the idea that a shocked portion of the wind (a bubble) in the
envelope has an enhanced magnetic field and is responsible for shaping the
planetary nebula. Gardiner and Frank [103] and Garćıa-Segura et al. [111]
have studied magnetic collimation in the outflows of TP-AGB and post-AGB
stars using the magnetic wind blown bubble model. Meanwhile, full MHD
simulations for post-AGB stars have been carried out in two and three di-
mensions to include the effects stellar rotation and photo-ionisation of the
gas in an effort to produce collimated outflows [e.g. 112–117] for rationalising
the shapes of planetary nebulae with jets or ansae. Garcia-Segura et al. [118]
have also studied the effect of solar-like magnetic cycles on the slow wind of
an AGB star with the aim of producing concentric rings in the spherically
symmetric outflow, as have been observed around a few planetary nebulae
[e.g. 119]. Their simulations were able to qualitatively reproduce such fea-
tures. Matt et al. [120] have been able to show that, in AGB stars with
dipolar magnetic fields, it is possible to have disk formation, wherein the
plasma is deflected preferentially towards the equator. They find in their
MHD simulations, that dense equatorial disks are formed for dipole fields of
only a few gauss at the stellar surface. They argue that this may be relevant
for shaping planetary nebulae.

All of the above mentioned models advocate a more or less global dy-
namical role to the magnetic field, in shaping the outflow towards the end of
the AGB phase. Soker and co-workers, on the other hand, advocate a locally
enhanced magnetic field, such as in the magnetic-cool spots of the sun, to
play a key role in shaping asymmetric outflow [e.g. 121–126]. They find that
dust formation is enhanced locally above magnetic-cool spots and thus, mass
loss is facilitated due to radiation pressure on the dust, which in turn, has
formed closer to the stellar surface. Thus asymmetries arise in the mass loss
from an AGB star at the end of the AGB phase. It has also been shown
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that the presence of a binary companion to an AGB star can be crucial for
shaping planetary nebulae [see for e.g. 127–130].

Mastrodemos and Morris [131, 132] performed a quantitative study using
smooth particle hydrodynamics, exploring the question of the effect of a
binary companion on the winds of an AGB star. They found that they were
able to qualitatively reproduce many of the elliptical, bipolar and quasi-
spherical morphologies of planetary nebulae; however, the effects of magnetic
fields on the outflows were not included. Soker [133] examined the question
of whether accompanying planets can help form elliptical planetary nebulae.
He found that if the planet is large enough then it can deposit a significant
amount of angular momentum in the AGB star and spin it up, triggering
magnetic activity that will lead to the formation of magnetic-cool spots,
thus resulting in axisymmetrical mass loss. Additionally, Soker [134, 135]
investigated the effect of having solar-like cycles in an AGB star and the
results show that such magnetic activity will enhance spot formation, leading
to asymmetric mass loss and thus he is also able to rationalise the multiple
arcs and rings that are seen in some planetary nebulae. Soker [136] has also
studied the effect of density inhomogeneities, with regard to its effects on
radiative transfer in the later stages of the AGB phase. These effects result
in instabilities in the flow giving rise to inhomogeneities in the mass loss
process itself.

From the brief review presented above, it is clear that magnetic activity
in AGB stars is quite important, whether it plays a global or a local role is
not completely certain; however, both types of studies are able to reproduce
or rationalise many of the key features observed in the shapes of planetary
nebulae. However, none of the full 2- and 3-D MHD models described above
take into account the effect of radiation pressure on the dust grains in the
envelope of an AGB star. It is generally thought that the mass loss in AGB
stars is largely governed by this mechanism coupled with strong stellar pul-
sations [e.g. 93, 137–142]. However, to the best of our knowledge, there have
not been any investigations combining a standard dust-driven wind scenario
with MHD effects, in the literature. Such a study, given the importance of
magnetic activity in AGB stars, would help bring together two different sub-
classes of stellar winds. This is the aim of the current study; to investigate
the implications of combining magneto-rotational effects with a dust-driven
wind in AGB stars. It is to be mentioned that this would be applicable at the
early stages of the AGB phase, long before the interacting wind scenario be-
comes important, wherein the models described above would be more likely
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candidates for describing the outflows.
At this juncture, we conduct a brief survey of the available literature

with regard to both dust-driven winds and magneto-rotational equatorial
winds. However, the reader is referred to a review by Tsinganos [143, and
references therein] for MHD outflows and likewise, reviews by Dorschner
[144] and Habing and Olofsson [145] for historical reviews of AGB stars and
dust-driven winds. Thereafter, the model developed in the current study, is
elucidated.

With regard to magneto-rotational equatorial winds, seminal work was
carried out by Weber and Davis [28, hereafter WD]. They formulated a
steady state description for the radial and azimuthal components of the so-
lar wind’s momentum. Essentially the same results were also arrived at
independently, by Mestel [29]. These studies formed the groundwork upon
which further studies were conducted. Thereafter, magnetic braking by a
stellar wind was also investigated by Mestel [146] and later in greater detail
by Okamoto [147, 148], wherein the theory was extended to cover a variety
of field configurations with poloidal fields. The Weber and Davis equatorial
wind theory was extended by Goldreich and Julian [149] towards a relativis-
tic treatment of the wind, including the effects of pressure and gravitation.
Michel [150] carried out a similar analysis of the WD model but neglected
pressure and gravity and thus, relativistic magnetosonic critical points do
not appear in his model. The first effort to investigate the importance of the
interactions between the gas and the magnetic field, with regard to determin-
ing properties of the structure and dynamics of the solar corona, was carried
out by Pneuman and Kopp [151]. They found that the assumed dipolar field
configuration had a profound effect on the solar wind in creating streamers.
Yeh [152] conducted a parametric study of the mass and angular momentum
effluxes of magneto-rotational stellar winds and found that the mass efflux
would be large, if the mass of the star was small, with a large radius, pro-
vided the stellar corona was dense and hot. Simultaneously, he found that
the angular momentum efflux became greater when the magnetic field and
stellar rotation parameters were increased. Belcher and MacGregor [153]
revisited the Weber and Davis theory and identified two regimes; the so-
called slow and fast magnetic rotators, which are defined by the ratios of the
Michel and Parker velocities of the wind. The former is related to the ratio of
the magneto-rotational flux to the mass flux and the latter is related to the
squares of the sound speed, escape velocity and radial bulk gas velocity at
the surface. Presently, the reader is referred to Belcher and MacGregor [153]
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for mathematical expressions for these quantities. Belcher and MacGregor
were able to delineate the angular momentum evolution of the two types of
rotators on the main sequence. Barker and Marlborough [154] extended the
Weber-Davis theory for the case of non-zero photospheric mass loss, showing
that including a dimensionless constant corrected the original theory. The
original WD theory was also re-analysed elsewhere, with an effort to study
standing MHD shocks by Chakrabarti [155]. Various solutions of the WD
solution topology were studied and he found that many of them allowed for
MHD shock formation in both accretion and winds of a compact magnetised
object. With the advent of increased computational capabilities of comput-
ers in the 1980’s, Sakurai [156] successfully generalised the original Weber
and Davis theory to two dimensions. There appear the usual slow and fast
modes in his solution, as in the original Weber and Davis theory; however,
in this case, the momentum equation was found to be singular on an Alfvén
surface and regularising the solution on this surface alongside the boundary
condition at the photosphere uniquely determined the solution of the two-
dimensional problem. Keppens and Goedbloed [46, 47] have over the past
few years, developed two- and three-dimensional MHD models for investigat-
ing magento-rotational stellar winds. Their models have clearly shown that
the dipolar nature of the magnetic field structure is important for stellar
winds. At the same time they have shown that the poloidal component leads
to density enhancement along the equatorial region. They also find that
their trans-sonic wind solutions have been found to have dead zones which
have a latitudinal dependence, which can be traced back to the configura-
tion of the magnetic field. They have also investigated shock formation in
magneto-rotational outflows [see 48] and the nature and formation of Kelvin-
Helmholtz instabilities [e.g. 157]. These studies indicate that the mass efflux
from magneto-rotational outflows can be asymmetric in nature. Their models
also have been used to study the evolution of rotational velocity distribution
in late-type stars while on the main sequence. The stellar winds in these
stars were assumed to be WD-like steady-state winds [see 158].

Concomitant to the development of MHD winds, the field of dust-driven
winds in evolved stars has flourished as a separate research focus altogether.
The early models of dust-driven outflows from AGB stars were 1D models
and did not include radiative transfer through the dust-laden envelope and
dynamical dust formation [see 93, for a brief review]. Later one-dimensional
models involved dynamics of dust formation and growth in a time-dependent
manner building upon initial studies of C-type AGB stars [e.g. 159–161].
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These models revealed, that due to the dynamical interaction between dust
and gas and the radiation field, dust-laden shells were formed in the envelopes
of AGB stars [e.g 140] and dynamical instabilities in the flow also manifested
themselves leading to aspherical mass loss [see 60, 162, 163]. Models have
also been constructed that investigate dust grain drift through the gas which
modifies dust growth rates and the efficiency of the wind acceleration process
[see 164]. There have also been further improvements in treating the radia-
tive transfer in a frequency dependent way alongside detailed micro-physics of
molecular and grain opacities [e.g. 165, 166]. The reader is presently referred
to a recent review by Höfner [167] on the status of modern-day radiation-
hydrodynamical modelling of dust-driven winds of AGB stars. One of the
first models to capture the onset of instabilities in the outflow as arising from
effects of dust formation, albeit in spherically symmetric isothermal outflow
was due to Woodrow and Auman [168]. Following that, in recent years, the
modelling of dust-driven winds has been extended to more than one dimen-
sion, capturing the aspherical nature of the outflow in a very clear way [see
58, 59, 169–171]. These models incorporate hydrodynamics with radiation
pressure on the dust, equilibrium chemistry for the nucleation of dust in a
time-dependent way, and they take into account radiative transfer in a fre-
quency dependent manner. They were able to capture in their simulations,
many of the highly dynamical aspects of the outflow, including turbulent and
inhomogeneous dust formation and Rayleigh-Taylor flow instabilities that re-
sult in cloud-like structure formations in the efflux. With the help of such
models it has become clear that the winds in these stars are far more com-
plicated than simple one-dimensional (spherically symmetric) pictures and
may have an impact on shaping planetary nebulae due to their asphericity
[e.g. 172] or by having an impact on the superwind at the end of the AGB,
as is suggested by Lagadec and Zijlstra [173], with regard to the abundance
of carbon in the envelopes of some AGB stars. The latter suggests that the
effort to include complicated micro-chemistry of the dust grains, as is done in
modern AGB wind models, may prove to be a key factor in resolving issues
regarding the superwind in the late stages of the AGB phase. For a more
thorough description of AGB envelopes and the stochastic nature of dust
formation process itself, the reader is referred to Habing and Olofsson [145]
and to Dirks et al. [174] as well as references therein.

It has also been argued that asymmetric mass loss on the AGB may re-
sult in kicks and spin being delivered to the nascent white dwarf within [see
175]. More recently, the effect of kicks to white dwarfs has been investigated
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with regard to their impact on the dynamics of globular clusters and binaries
[see 176–181]. These studies indicate that the study of AGB winds in rela-
tion to asphericity is rather important. In the literature, hybrid equatorial
winds have only been considered for rotating hot stars [see 182–186]. MHD
stellar winds for AGB stars have been simulated for a coupled disk and star
system, clearly showing that magnetocentrifugal winds can occur in plane-
tary nebulae and AGB stars, at the tip of the AGB [see 187, and references
therein]. Other researchers have considered a hybrid wind for AGB stars by
coupling Alfvén waves with radiation pressure [see 188, 189], showing that it
is possible to obtain low-velocity mass efflux in supergiant cool stars through
such a mechanism. A similar study has also been carried out for Wolf-Rayet
stars [e.g 190], of course obtaining much faster winds. From the brief survey
of the literature conducted above, it is evident that winds from AGB stars
whether during the initial or final phases of the AGB can have asymmetries
that result in aspherical mass loss either due to purely MHD effects, or due
to the dynamics between the dust and gas and the radiation field. However,
present day dust-driven models still do not include magneto-rotational ef-
fects, particularly when more and more observations indicate the presence of
magnetic fields in these objects, and the pure MHD wind models do not in-
clude the effect of dust condensation and radiation pressure in the envelopes
of these stars. The aim of the current work is to investigate the implications
of including magneto-rotational effects with a simplified dust-driven model
in 1.5 dimensions; the azimuthal terms are determined entirely from their
dependence on the radial terms (the standard WD-picture). We shall how-
ever, for the sake of simplicity, be considering a steady-state case. It is to be
mentioned at the very outset, that the current model may only be valid at
the early phases of the AGB, long before the onset of the superwind at the
end of the AGB.

We present the underlying assumptions of the model in Section 3.2. In
Section 3.3 we present the numerical details, thereafter in Section 3.4 the
results are presented and discussed. Finally, in Section 3.5 the current study
is summarised and future avenues for development of the current model are
briefly discussed.
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3.2 The Hybrid Wind Model

We begin with the standard picture of a Weber-Davis (WD) equatorial wind ;
we shall be following their definitions and general derivation closely. However,
we shall be including the dust as a second fluid. As in the WD model we
shall assume complete axial symmetry and the customary explicit form for
the magnetic field within the equatorial plane,

~B = Br(r)r̂ +Bφ(r)φ̂, (3.1)

while the velocity of the gas and the dust can respectively, be written as,

~u = ur(r)r̂ + uφ(r)φ̂ (3.2)

and
~v = vr(r)r̂ + vφ(r)φ̂. (3.3)

As can be seen, the velocity fields are functions of the radial distance alone.
In addition, there is no time dependence, explicit or implicit, thus conforming
with the steady-state assumption. Accordingly, the continuity equation for
the gas and dust combined can be written as,

ρur2 + ndmdvr
2Θ(r − rd) = constant, (3.4)

where, ρ is the gas density in cgs units, nd is the number density of the dust
grains and md is the mass of a single dust grain. Θ(r − rd) is the standard
Heaviside function which is equal to unity for r ≥ rd. Prior to the dust
formation radius, there is only one fluid, namely the gas. Please note that
we have dropped the subscript r from the radial velocities for brevity and
future convenience. We are explicitly assuming, for the sake of simplicity,
that all dust formation occurs at a certain distance (rd) from the centre of
the star. Beyond this, there is no further condensation of dust. We shall also
assume that all the dust grains are identical and perfectly spherical with a
radius of a = 0.05µm and a mass density of ρd ≈ 2.25g/cm3 [e.g. 93]. This
yields the mass for an individual dust grain as, md =

4
3
πa3ρd.

In addition, we shall assume that the dust-to-gas ratio in the stellar wind
is given by,

ndmd

ρ
= δ ≤

1

200
, (3.5)

following Lamers and Cassinelli [93], in other words, ndmd ≪ ρ. The max-
imum value for this ratio is at the dust formation radius and it decreases
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monotonically thereafter. For deriving the momentum equations for the gas
and the dust, our starting point is the Euler equation, one for each of the
fluids. These equations essentially convey conservation of momentum for the
two fluids. For the gas we can write,

(~u · ~∇)~u+
1

ρ
~∇p+

GM∗

r2
r̂ −

1

ρc
~J × ~B −

nd

ρ
~fD = 0, (3.6)

where p is the gas pressure and ~J is the current density. It is assumed here
implicitly that there is no relative motion of the ions with respect to the
neutrals. The first and second terms are related to the velocity and pressure
gradients respectively, the third term is the gravitational acceleration on the
gas, the fourth term is the Lorentz force divided by the gas density and the
final term is proportional to the drag force that is experienced by the gas,
due to the dust grains moving through it. The current density must satisfy
Ohm’s law in the form,

~J = σ

(

~E +
1

c
~u× ~B

)

, (3.7)

where σ is the conductivity of the fluid. Assuming that the plasma is a
perfect conductor requires that σ be infinite, therefore, in order to keep the
current density finite, the Lorentz force term in Eq. (3.7) must vanish; i.e.,
force-free MHD. This yields,

~E = −
1

c
~u× ~B. (3.8)

Taking the curl of both sides of Eq. (3.8) and using Faraday’s law in steady-

state, that ~∇× ~E = −1
c
∂ ~B
∂t

= 0, we obtain,

~∇× (~u× ~B) = 0. (3.9)

Noting that the azimuthal component of Eq. (3.9) vanishes, we obtain the
usual relation,

r(uBφ − uφBr) = constant = −R2
0ΩBr,0, (3.10)

where, R0 is the stellar radius (radius of the photosphere), Ω is the rotation
rate of the star and Br,0 is the radial component of the magnetic field at the

stellar surface. Requiring that ~∇ · ~B = 0, yields the familiar relation

r2Br = R2
0Br,0. (3.11)
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Presently, let us turn our attention to the Euler equation for the second fluid,
viz., the dust grains. The rationale is that obtaining expressions for the drag
force components will allow us to re-write Eq. (3.6), the Euler equation for
the gas. The Euler equation for the dust grains can be written as,

(~v · ~∇)~v +
GM∗

r2
r̂ −

πa2QrpL∗

4πr2cmd
r̂ +

1

md

~fD = 0. (3.12)

In the above equation, Qrp is the radiation pressure mean efficiency [e.g. 93].
In the current study, since our aim is to present a simplistic picture we shall
not be calculating this term. L∗ is the luminosity of the star and c is the speed
of light. The first term in Eq. (3.12) is related to the velocity gradient of the
dust grains, the second term is the gravitational acceleration experienced by
the dust grain, the third term is the radiation pressure that the dust grain
experiences, that drives it outward and the final term is the drag force per
unit mass of the dust grain, as it moves through the surrounding gas. At this
stage, we can make the usual simplifying assumption that for a single dust
grain, the radiation pressure and the drag force terms in Eq. (3.12) dominate
completely over the other terms [e.g. 93] and balance each other. We can
then write,

πa2QrpL∗

4πr2cmd
r̂ −

1

md

~fD = 0. (3.13)

We can now write the radial and azimuthal components of Eq. (3.13) sepa-
rately. Each of these components must identically vanish. Thus we get for
the radial component,

πa2QrpL∗

4πr2c
= f r

D, (3.14)

where f r
D is the radial component of the drag force, defined as,

f r
D = πa2ρ(v − u)

√

(v − u)2 + a2th , (3.15)

where ath is the thermal speed given by ath =
√

2kT/µmu and µmu is the
mean molecular mass of the gas. Typically for AGB stars with nearly so-
lar abundance with pulsational shocks that extend the density structure we
can use µ ≈ 1.3 [e.g. 138]. From Eq. (3.13) we can immediately write the
azimuthal momentum equation for the dust grains as,

fφ
D

md
= 0, (3.16)
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where fφ
D, the azimuthal component of the drag force, implying that there is

no drag in the azimuthal direction. That is, the dust is co-rotating with the
gas. Having obtained expressions for the radial and azimuthal components
for the dust grains we can now re-visit the Euler equation for the gas. The
radial momentum equation for the gas can be re-cast in the form,

u
du

dr
−
u2φ
r

+
1

ρ

dp

dr
+
GM∗

r2
−

1

ρc
( ~J × ~B)r −

nd

ρ

πa2QrpL∗

4πr2c
= 0, (3.17)

where we have used the definition in Eq. (3.14). We can combine the fourth
and sixth terms of Eq. (3.17) into a single term and re-write Eq. (3.17) as,

u
du

dr
−
u2φ
r

+
1

ρ

dp

dr
+
GM∗(1− Γd)

r2
−

1

ρc
( ~J × ~B)r = 0, (3.18)

wherein, we have the usual definition that,

Γd =
nd

ρ

πa2QrpL∗

4πcGM∗

. (3.19)

Presently, the azimuthal momentum equation for the gas can be written as,

u

r

d

dr
(ruφ)−

1

ρc
( ~J × ~B)φ = 0. (3.20)

It is to be noted that the azimuthal component of the drag force does not
appear in Eq. (3.20) as it vanishes (see Eq. (3.16)). As is customary, we can
at this stage use Maxwell’s relation for the curl of the magnetic field to make
further progress and write,

1

ρc
( ~J × ~B)r = −

1

4πρ

(

Bφ

r

d

dr
(rBφ)

)

r̂ (3.21)

and
1

ρc
( ~J × ~B)φ =

1

4πρ

(

Br

r

d

dr
(rBφ)

)

φ̂. (3.22)

Substituting Eq. (3.22) into Eq. (3.20) we obtain after re-arranging terms,

ρur2
d

dr
(ruφ)− r2Br

d

dr
(rBφ) = 0. (3.23)

42



3.2. The Hybrid Wind Model

However, since the dust-to-gas ratio is small, i.e., ndmd ≪ ρ and since the
dust and gas velocities are expected to be on the same order with the dust
velocity exceeding the gas velocity by a small fraction of the gas velocity, it
is reasonable to make the approximation that ρur2 ≫ ndmdvr

2. This allows
us to further make the approximation that ρur2 = constant in Eq. (3.4).
Therefore, we can immediately simplify Eq. (3.23) and recover the usual
expression for the total specific angular momentum of the wind as,

ruφ −
Br

4πρu
rBφ = L. (3.24)

Using Eqs. (3.4) and (3.11) it can be easily verfied that,

Br

4πρu
=

Brr
2

4πρur2
= constant. (3.25)

Employing the definition that,

M2
A =

4πρu2

B2
r

, (3.26)

for the radial Alfvénic Mach number and using Eq. (3.10), we can obtain
an expression for the azimuthal velocity of the gas in terms of the angular
momentum of the wind and the Mach number, from Eq. (3.24) as,

uφ = Ωr
M2

ALr
−2Ω−1 − 1

M2
A − 1

. (3.27)

Requiring that the azimuthal gas velocity remain finite as the Mach number
approaches unity, immediately yields the conventional result that,

L = Ωr2A, (3.28)

where rA is the Alfvén radius, defined as the distance from the centre of
the star at which the radial magnetic energy density is equal to the kinetic

energy density, i.e., 1
2
ρu2 = B2

r

8π
. Using Eqs. (3.4), (3.11), (3.25) and (3.26)

and the approximation that ρur2 ≫ ndmdvr
2, we can re-express the Mach

number as,

M2
A =

ur2

uAr2A
=
ρA
ρ
, (3.29)
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where the subscript A refers to quantities at the Alfvén radius. This result
immediately enables us to re-write Eq. (3.27) as,

uφ =
Ωr

uA

uA − u

1−M2
A

. (3.30)

In addition we obtain an expression for the azimuthal magnetic field as,

Bφ = −Br
Ωr

uA

r2A − r2

r2A(1−M2
A)
. (3.31)

We shall also assume that the gas is an ideal gas and employ a polytropic
equation of state;

p = p0

(

ρ

ρ0

)γ

, (3.32)

where, p0 and ρ0 are the pressure and density, respectively, at the surface
of the star and γ is the polytropic index. After substituting Eq. (3.21) into
Eq. (3.18) and expressing ρ, uφ and Bφ in terms of u and r with the help
of Eqs. (3.29-3.31), we can easily obtain the expression for the gas velocity
gradient as,

dw

dx
=
w

x

N(w, x)

D(w, x)
, (3.33)

where, w = u/uA is the gas speed normalised using the Alfvén speed and
x = r/rA is the radial distance expressed in units of the Alfvén radius.
The quantities N(w, x) and D(w, x) are the numerator and denominator
respectively and are given by,

N(w, x) =

(

2γST (wx
2)1−γ −

SG

x
(1− Γd ·Θ(x− xd))

)

×(wx2 − 1)3 + SΩx
2(w − 1)

(

1− 3wx2 + (wx2 + 1)w
)

(3.34)

and

D(w, x) =
(

w2 − γST (wx
2)1−γ

)

(wx2 − 1)3 − SΩx
2 ×

(wx2)2
(

1

x2
− 1

)2

. (3.35)

In the above equations, the parameters ST = 2kTA

mpu2
A

, SG = GM∗

rAu2
A

and SΩ =
Ω2r2

A

u2
A

along with γ uniquely determine the locations of the critical points, and hence
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the morphology of the family of solutions of Eq. (3.33). The critical points
are, as usual, defined as the locations at which the both the numerator and
denominator vanish, thereby keeping the right-hand side of Eq. (3.33) finite;
the ratio of the numerator and denominator would approach some constant
value in the limit of the radius and the gas velocity, each approaching critical
values. The presence of the Heaviside function in Eq. (3.34) represents the
formation of dust at the location x = xd, the dust condensation radius in
units of the Alfvén radius. The critical wind solution of Eq. (3.33) will yield
the gas velocity profile and thereby enable determination of other dependent
variables, such as the dust velocity profile (to be discussed below), the Mach
number as a function of distance from the star, the azimuthal velocity of the
gas, the azimuthal component of the magnetic field, the temperature profile
and the density structure of the gas in the envelope of the AGB star.

As mentioned above, we can determine the dust velocity profile after
having determined u, the gas velocity as a function of radius, with the help
of Eqs. (3.14) and (3.15). This allows us to express the drift speed as (e.g.
[e.g. 93]),

(v − u)4 + (v − u)2a2th −

(

QrpL∗

4πr2ρc

)2

= 0. (3.36)

This yields the solution (after employing Eq. (3.19)),

v(r) = u(r) +









√

a4th + 4
(

ΓdGM∗

πa2ndr2

)2

− a2th

2









1/2

(3.37)

The dust grain number density nd, can be obtained from Eq. (3.5). In the
current study we are not solving for the dust velocity simultaneously with
Eq. (3.33). However, since the dust-to-gas ratio is already a small number
and decreases monotonically in the wind away from the star to become even
smaller, we shall therefore make the simplifying assumption that ndmd/ρ ≈
〈δ〉, the average dust-to-gas ratio in the wind and evaluate nd for different
values of 〈δ〉. This essentially implies that ndmd ≪ ρ, in the wind. This is a
consequence of the dust-to-gas ration being a small fraction.

Finally the energy flux per second per steradian can be determined by
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expressing Eq. (3.33) as a total derivative. This yields,

F

ρur2
=

(

u2

2
+
u2φ
2

+
γ

γ − 1

pA
ρA

(

ρ

ρA

)γ−1

−
GM∗(1− ΓdΘ(r − rd))

r
−
BφBr

4πρ

Ωr

u

)

. (3.38)

It is immediately evident upon inspecting Eq. (3.38) that the Heaviside func-
tion will present a discontinuity in the flux at the dust formation radius,
therefore, in order to preserve the constancy of energy flux across the dust
formation interface at r = rd, it becomes necessary to subtract a constant
term to the energy flux outside the dust formation interface, such that,

F (r)|r=rd−

ρur2
=
F (r)|r=rd+

ρur2
− constant. (3.39)

This constant is essentially the difference between the energy fluxes on either
side of the dust formation radius (r = rd) and is given by const = GM∗Γd/rd.
Such a constant term effectively redefines the gravitational potential, without
altering the dynamics; i.e., its derivative vanishes, since it is a constant and
thus, it does not change the solution topology of Eq. (3.33). Therefore we
can write,

F (r ≤ rd)

ρur2
=

(

u2

2
+
u2φ
2

+
γ

γ − 1

pA
ρA

(

ρ

ρA

)γ−1

−
GM∗

r
−
BφBr

4πρ

Ωr

u
+
GM∗Γd

rd

)

. (3.40)

Similarly, for r ≥ rd we obtain Eq. (3.38), thus we ensure that flux is constant
across the dust formation interface.

This completes our derivation of the governing equations for the hybrid
wind model. We see that once a solution of Eq. (3.33) is determined, i.e.,
the gas velocity profile, it in turn determines all the other relevant variables
including the dust grain velocity as given by Eq. (3.37) and the energy fluxes
given by Eqs. (3.38-3.40). In the following section we shall describe the
numerical treatment breifly and the results are presented and discussed in
Section 3.4.
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Table 3.1: Summary of the different parameters for modelling an AGB star
hybrid wind

Parameter Symbol Value and/or Comment
Mass M ∼ 5M⊙

Radius R0 ∼ 500R⊙

Mass loss rate Ṁ ∼ 1.6× 10−6M⊙ yr−1

Surface magnetic
field strength B0 ∼ 1 G

Bulk radial gas velocity
at the surface u0 ∼ 2× 10−8vesc,0

(vanishingly small)

Surface temperature (effective) T0 ∼ 3000K

Stellar rotation rate Ω ∼ 2× 10−10 rad/s

Surface escape velocity vesc,0 6.19× 106 cm/s

Polytropic exponent γ 1.06

3.3 Numerical Details

The ordinary differential equation (ODE) for the gas velocity gradient, given
in Eq. (3.33) was integrated as an initial value problem for a range of initial
conditions in the w − x phase space. The domain of integration was x0 ≤
x ≤ 5, where x0 represents the stellar surface. Table 3.1 summarises all
the physical parameters employed for a typical AGB star. The first step
in the numerical procedure is the determination of the critical points, this is
described below. It is to be mentioned in this regard, that we chose the value
of the polytropic exponent to be approximately mid-way between unity and
the values employed in current 2D-axisymmetric MHD codes, ≈ 1.13 [e.g.
46]. A value of unity represents an isothermal equation of state and since
the envelopes of AGB stars may be well-mixed due to convection, we chose
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a value slightly more than unity to resemble a sort of effective cooling.

3.3.1 Determination of critical points

The critical points are the locations in the w − x phase space at which both
the numerator (N(w, x)) and the denominator (D(w, x)) in Eqs. (3.34) and
(3.35), identically vanish. Once the values of the parameters ST , SG, SΩ and
γ are established, we then proceed to solve the system of non-linear algebraic
equations given by,

N(ws, xs) = 0 (3.41)

N(wf , xf ) = 0 (3.42)

D(ws, xs) = 0 (3.43)

D(wf , xf ) = 0, (3.44)

where, xs represents the distance from the photosphere (in units of rA) at
which the gas velocity is equal to the local sound speed, ws (in units of
uA). Similarly, the point (wf , xf ) represents the location in the phase space
at which the kinetic energy density of the gas is equal to the local total

magnetic energy density, i.e., 1
2
ρu2 =

B2
r+B2

φ

8π
; the so-called fast point. The

root finding is accomplished using a Levenberg-Marquardt medium-scale root
finding algorithm [e.g. 191]. Typical tolerances employed were about 10−15

in order to ascertain the zeros of the system of equations (3.41 - 3.44). This
procedure is carried out for parameters ST , SG and SΩ on both sides of the
dust formation interface. Across the interface the only change is that,

S+
G = S−

G(1− Γd), (3.45)

where S+
G represents the value of the parameter outside of the dust formation

interface, while S−
G represents the value inside the dust formation interface.

The remaining two parameters ST and SΩ are unchanged across the interface.
Presently, we describe the procedure employed for determining the location
of the radial Alfvén point and the dust parameter Γd.

3.3.2 Determination of the radial Alfvén point and

dust parameter Γd

We begin with a set of parameters ST , SG and SΩ that are chosen arbitrarily;
however, with the constraint that, for the given set of parameters, a critical
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solution is not physically possible. The rationale being that a purely Weber-
Davis wind is not possible for an AGB star. This will be explained in detail
later, when the results are discussed. Once the above mentioned parameters
are chosen, the remaining parameters uA and rA are continuously varied for
different values of Γd until we are able to achieve a physical critical solution.
The chief criterion for the latter being that the solution is continuous through
the radial Alfvén point and does not have a kink and is required to originate at
the base of the wind sub-sonic, pass through all three critical points, viz., the
sonic point, the radial Alfvén point and the fast point and subsequently leave
the star super-Alfvénic. The reader at this stage is referred to the sub-section
on determination of the critical solution for details (see sub-section 3.3.3.2).
Following an initial guess for the parameters (uA, rA) with Γd fixed to a
certain value, they are varied with typical step sizes of 10−6 until suitable
values are obtained. Once uA and rA are determined, the temperature at the
radial Alfvén point is determined according to,

TA = T0

(

u0R
2
0

uAr2A

)1−γ

, (3.46)

wherein, the parameters at the base of the wind (subscripted with 0) are given
in Table 3.1. We now turn our attention to the matter of integrating the ODE
in Eq. (3.33) after having determined the above mentioned parameters.

3.3.3 Integration of the ODE and determination of

the critical solution

3.3.3.1 ODE integration

Integration of the ODE was accomplished with the software package ODE-
PACK employing the subroutine DLSODE using backward difference for-
mulae and chord iteration with the Jacobian supplied [192, 193]. Initial
conditions were supplied at the beginning of the integration. Typical er-
ror tolerances for convergence testing that were employed were on the order
of 10−12 for both the absolute and relative errors [see 192]. For a typical
integration over the domain x0 ≤ x ≤ 5, a step size of 10−8 was employed,
resulting in typically 108-109 function evaluations. A hybrid stellar wind soft-
ware package was specifically developed for the current study and this was
constructed to be capable of reproducing self-consistently the entire family
of solutions beginning with an arbitrary choice of wind parameters. The
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entire code takes approximately an hour to execute on an AMD Opteron R©

844 1.8 GHz processor.

3.3.3.2 The critical solution

The critical solution is rather unique; it passes through all three critical
points. In the current study the critical solution was determined using a
tail procedure. For a given set of parameters γ, ST , SG and SΩ, forward
and backward integrations were carried out from the points (ws, xs) and
(wf , xf). The backward integration from (ws, xs) was carried out all the way
to the photosphere of the star and similarly, the forward integration from
(wf , xf) was carried out all the way to the outer boundary of the domain
at x = 5. In between the backward integration from (wf , xf) was matched
with the forward integration from (ws, xs). An initial guess was made for the
matching point to be half way between xs and xf defined by xm. The tails of
the forward and backward integrations were terminated at this location and
the values of the gas velocity w and the velocity gradient dw

dx
were compared

for the two tails to ensure that the conditions

∣

∣

(

∆w = w(xm)|x=xm
− − w(xm)|x=xm

+

)∣

∣ ≤ 10−7 (3.47)
∣

∣

∣

∣

(

dw

dx

∣

∣

∣

∣

x=xm
−

−
dw

dx

∣

∣

∣

∣

x=xm
+

)∣

∣

∣

∣

≤ 10−7, (3.48)

were both met. If the conditions in Eqs.(3.47) and (3.48) were not met,
then depending upon the sign of ∆w, the matching point xm was appro-
priately shifted either forward or backward by a small amount, typically by
∆xm = 10−6 and the tail procedure was re-iterated. Once the tail procedure
was successful the critical solution was considered to be determined. This
ensured that the critical solution was continuous through the radial Alfvén
point. The tolerance employed in Eqs. (3.47) and (3.48) was considered to
be sufficient given the fact that the integration step size was ∆x = 10−8. For
achieving a higher tolerance, a further reduction in the step size was found to
be necessary, rendering the the procedure needlessly lengthy and increasingly
cumbersome in a computational sense.

This completes our discussion of the numerical details regarding determin-
ing the complete family of solutions of Eq. (3.33). The results are presented
in the following section and are discussed therein.
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3.4 Results and Discussion

We present the results obtained by integrating the ODE in Eq. (3.33) to
obtain the family of solutions. In the current study, the following method-
ology was employed for calculating the hybrid wind. First, for a certain set
of arbitrary parameters {ST , SG, SΩ and γ}, Eqs. (3.41-3.44) were solved to
obtain the location of the slow and fast points, with the radial Alfvén point
located at (1, 1) in the w− x phase space. At this stage, the dust parameter
Γd was set equal to zero, meaning that there hasn’t been any dust formation
in the gas. The parameters are chosen such that a pure WD wind is not a
physical one, i.e., it is not continuous through the radial Alfvén point (see
Figure 3.3 and discussion thereof). The rationale being that for AGB stars, it
is not possible to have a mass efflux without dust formation in the envelope,
therefore a pure WD wind is explicitly required to not be a physical solution.
Second, the dust parameter was set equal to a fraction such that 0 ≤ Γd ≤ 1
and the procedure described in sub-section 3.3.2 for determing the Alfvén
velocity and radius is carried out in tandem with solving Eqs. (3.41-3.44)
to obtain the sonic point and the fast point. Each time this yields a set of
parameters {uA, rA, (ws, xs), (wf , xf )}. With these parameters, Eq. (3.33)
is integrated to obtain the critical solution according to the procedure de-
scribed in sub-section 3.3.3.2. If success is achieved in finding the critical
solution then the iterations are ceased and the resulting parameters are fixed
for the given value of Γd.

We then determine the temperature profile using the velocity profile of
the critical solution. This is achieved using the prescription,

T (r) = TA

(

uAr
2
A

ur2

)γ−1

, (3.49)

where, TA is the Alfvén temperature and is given by Eq. (3.46). Once the
temperature profile is known, it is possible to invert Eq. (3.49) to yield the
radius rd, at which the temperature falls below the dust condensation tem-
perature Td. The dust condensation radius rd is a derived quantity that is
determined based upon the temperature profile of the wind. Once the dust
condensation radius (rd) is determined, we then proceed to determine the
family of solutions to Eq. (3.33) such that integration from the photosphere
at r = R0 to r = rd is carried out with Γd = 0 and integration from r = rd to
the outer boundary at r = 5rA is done with Γd 6= 0. The same is then done
for the critical solution as well.
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Figure 3.1: Family of solutions of Eq. (3.33) with parameters uA ≈ 0.09vesc,0,
rA ≈ 63.93R0, Γd = 0.3 and remaining parameters as given in Table 3.1. The
dashed line at r ≈ 8.65R0 represents the dust formation radius.

As mentioned before, it is implicitly assumed, for the sake of analysing a
patently simple model, that beyond the dust condensation radius the value
of Γd is constant. Concordantly, all the dust forms at the condensation
radius and the dust-to-gas ratio is small and given by Eq. (3.5). The family
of solutions determined using the procedures described above are shown in
Figure 3.1. For the solutions shown therein, the dust parameter was fixed
at Γd = 0.3. It can be seen that the dust condensation radius is located
at rd ≈ 8.65R0. The temperature at this location was determined using
Eq. (3.49), to be approximately 1200K. The dust condensation temperature
was chosen somewhat arbitrarily to lie between 1000 − 1500K. Within the
dust condensation radius xd, the wind solution to Eq. (3.33) is a purely
Weber-Davis-type of wind, and thereafter it is a hybrid wind with dust grains
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Figure 3.2: Illustration showing the locations of the different types of solu-
tions of Eq. (3.33)
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included. The topology of solutions in Figure 3.1 looks typically like a WD-
solution, with the three critical points clearly visible, viz., the sonic point,
the radial Alfvén point and the fast point. The critical solution emerges
from the surface of the star sub-sonic, gets accelerated through to the dust
condensation radius, subsequently passes through the three critical points
and finally emerges super-Alfvénic at large distances.

At this stage it is convenient to classify the different types of solutions in
Figure 3.1. The different types of solutions and their respective locations in
the phase space are illustrated qualitatively in Figure 3.2. Therein, it can be
seen that the unphysical double-valued solutions to the left of the sonic point
are referred to, in the current study, as Type I solutions. The failed wind
solutions, directly below the sonic point, are called Type II. The unphysical
multi-valued solutions that make loops, between the radial Alfvén point and
the fast point, are designated as Type IIIa. The unphysical double-valued
solutions adjacent to the loop solutions are called Type IIIb.

The solitary unphysical solution that passes through the sonic X-type
singularity, is called the Bondi solution, this is labelled as B, in Figure 3.2.
While the unphysical double-valued solution that intersects the critical so-
lution, at exactly the two Alfvén points, is designated the Alfvénic solution;
labelled A. Similarly, the critical solution is labelled as C.

The unphysical wind solutions that start at the photophere with super-
sonic velocities, just to the right of the Bondi solution and subsequently pass
through the radial Alfvén point and get decelerated to sub-sonic velocities
at large distances from the star, are designated as Type IVa. Meanwhile,
the unphysical double-valued solutions that pass through the radial Alfvén
point alone, are designated as Type IVb. Finally, the unphysical double-
valued solutions, in the region between the critical solution and the Alfvénic
solution, immediately to the right of the fast point, are referred to as Type
V.

As mentioned earlier, the dust grains condense from the gas beyond rd,
where the temperature falls below the condensation temperature. Beyond
rd, we therefore solve the hybrid ODE with a fixed value of Γd. Thus at the
dust condensation radius, the two types of solutions, dust-free and hybrid,
must match, in terms of velocity of the gas. This is illustrated in Figure 3.3,
where we have expressed the coordinates using a logarithmic scale to facili-
tate examination. In Figure 3.3, the red solid line represents a hybrid wind
solution for a dust parameter of Γd = 0.3, while the black long-dash-dotted
line that passes through the radial Alfvén point with a kink at (uA, rA), is a
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Figure 3.3: Plausible hybrid wind solutions with parameters uA ≈ 0.09vesc,0,
rA ≈ 63.93R0, Γd = 0.3 and remaining parameters as given in Table 3.1.
The red solid line and black long-dash-dotted line intersecting at the radial
Alfvén point, are the critical solutions of the hybrid wind model and pure
WD wind model, respectively. The green-short-dash-dotted lines are possible
Type I wind solutions of a pure WD wind that can leave the star via the
hybrid critical solution after dust condensation at the intersection points of
the green-short-dash-dotted lines and the red solid line. The blue dashed line
is the temperature profile calculated for the hybrid wind critical solution. It
should be interpreted using the secondary axis.
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pure WD solution with Γd = 0. As can be clearly seen, the kink at the ra-
dial Alfvén point indicates that this solution is not physical. This indicates
that it is not possible to have a pure WD wind for AGB stars; only with
dust formation is it possible to achieve an outflow. The Bondi type solutions
for both the hybrid wind (long-dashed red line) and the pure WD solution
(black long-dash-dotted line), can also be seen to pass through the respec-
tive sonic points. Similarly the two fast points can also be distinguished
clearly for the two types of solutions; the Alfvénic solutions pass through
them. It is to be mentioned at this juncture, that inclusion of an outward
force in the wind due to radiation pressure has the effect of suppressing both
the sonic point and the fast point towards the photosphere; the sonic and
the fast points for the hybrid wind (in red) can clearly be seen to lie inside
their respective counterparts of the pure WD wind, in terms of distance from
the star’s photosphere. The green short-dash-dotted lines are solutions of
Type I, for a pure WD wind. The points of intersection of the red solid line
representing the critical solution of the hybrid model and the green short-
dash-dotted lines, represent different dust formation radii. The temperatures
corresponding to these can be inferred using the blue line, which represents
the temperature profile, determined using the critical solution of the hybrid
wind, via Eq. (3.49). Thus, if a wind solution starts off at the base of the
wind sub-sonic and travels through the envelope of the AGB star according
to (say) the fourth green short-dash-dotted line from the left, then it can
pass through the dust formation radius at approximately 1000K, just ahead
of about 10R0 and leave the star via the red solid line, the critical solution of
the hybrid wind. We therefore see that the unphysical Type I solutions that
start off dust-free, can intersect the hybrid critical solution and leave the star
as a hybrid critical wind. However, there is a constraint. The last Type I
solution that can leave the star as a hybrid wind intersects the critical solu-
tion in red, at the sonic point. Any solution of Type I that intersects the red
solid line, after it has turned and become double-valued, does not represent a
physical hybrid wind. This is illustrated in the black long-dash-dotted Type
I solution that turns and then intersects the red solid line, just ahead of the
hybrid sonic point in Figure 3.3. Therefore, all the green short-dash-dotted
lines are allowed possible solutions of different hybrid winds.

Figure 3.3 also shows that if a hybrid wind is to be achieved, there are two
possibile scenarios. First, the dust formation radius can lie within or at most
upon the sonic point of the hybrid wind solution. Second, it can lie beyond
or upon the fast point of the hybrid solution, or exactly at the radial Alfvén
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point. Only the first possibility places the dust formation temperature in
the acceptable range for typical AGB parameters so we will focus mainly
on this class of solutions (however, c.f. Figure 3.9 and discussion thereof).
While the latter scenarios do represent legitimate mathematical solutions,
it is however unlikely that the dust formation temperature be significantly
lower than about 1000K and concomitantly, that the dust formation radius
in AGB stars, should lie as far out as nearly 70R0. Since it is expected
that the dust formation must occur within a few stellar radii in AGB stars,
the only plausible solutions are therefore the Type I green short-dash-dotted
lines, that intersect the hybrid critical line in red.

For the hybrid critical solution shown in Figures 3.1 and 3.3, it is possible
to calculate the azimuthal velocity profile of the gas according to Eq. (3.27).
This calculation is carried out and the results are shown in Figure 3.4. As
can be seen the gas velocity profile rises sharply to a maximum value close to
the sonic point and then falls off less steeply than the rise; this is consistent
with the usual WD-picture. The locations of the dust formation radius and
the three critical points are also indicated therein.

In Figure 3.5 we have plotted the energy flux per second per steradian
leaving the star, in the equatorial plane, for the critical solution, alongside
the various components of the energy flux. The solid line shows the total
energy flux in the gas as function of radius; it is constant for the critical
solution. It is the sum of all the other lines on the plot. This is calculated
via Eqs. (3.38-3.40). The short-dash-dotted line is the magneto-rotational
energy flux, which is the sum of the second and the last term in Eq. (3.38).
As the distance from the photosphere increases, the radial magnetic field
falls of as ∼ 1/r2, however the rotational energy is expected to peak close
to the sonic point, as can be inferred from Figure 3.4, where the azimuthal
velocity peaks. The two competing terms collectively yield a large positive
sum closer to the star, and the contribution diminishes quite rapidly, beyond
approximately the dust formation radius, as can be seen in Figure 3.5. The
long-dashed line represents the gravitational potential energy of the wind, the
fourth term in Eq. (3.38) and it is therefore negative. The short-dashed line
is the kinetic energy of the wind (the first term in Eq. (3.38)) which gradually
increases away from the star as the wind is accelerated. On the other hand,
the long-dash-dotted line is the enthalpy (the third term in Eq. (3.38)) which
gradually decreases from a maximum value at the stellar surface where the
density of the gas is expected to be the highest and follows a power law, of
the form ∼ ργ−1. The decrease is quite gradual as the exponent is 0.06 since
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Figure 3.4: Critical azimuthal gas velocity as a function of radius. The
vertical dotted lines indicate the locations of the dust formation radius and
the three critical points.
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Figure 3.5: Plot showing the energy fluxes calculated using Eqs. (3.38-3.40)
for the critical hybrid wind solution with parameters uA ≈ 0.09vesc,0, rA ≈
63.93R0, Γd = 0.3 and remaining parameters as given in Table 3.1. The
vertical dotted lines indicate the dust formation radius and the the three
critical points. The solid horizontal line represents the total constant energy
flux. From the top short-dash-dotted curve shows the magneto-rotational
energy, the long-dash-dotted curve represents the enthalpy, the short-dashed
curve shows the variation in kinetic energy and finally at the bottom the
long-dashed line represents the gravitational potential energy of the gas.
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we used γ = 1.06. The contribution of the kinetic energy and the enthalpy
are quite small in comparison to the magneto-rotational energy. However,
when the magneto-rotational energy is added to the gravitational potential
energy, then the sum is comparable to the kinetic energy. Again, the dust
formation radius and the three critical points are indicated in the figure. It is
also to be mentioned that, since it is possible to recover the momentum terms
of Eq. (3.18) by differentiating Eq. (3.38), therefore the slopes of the different
lines shown in Figure 3.5 would indicate the contributions of these terms. In
particular, it can be clearly seen that the slopes of the magneto-rotational en-
ergy and the gravitational energy (which includes radiation pressure) are the
most prominent features in Figure 3.5. This indicates that the the most sig-
nificant contributions to accelerating the wind are indeed due to the Lorentz
force term plus rotational term in Eq. (3.18) and the gravitational potential
which includes the effect of radiation pressure on the dust grains. In this
regard, it is evident upon inspecting Figure 3.5, that beyond approximately
the radial Alfvén point, the gravitational energy flux becomes flat, indicating
that the acceleration due to the gravitational potential modified by radia-
tion pressure, becomes negligible in the wind. However, beyond r = rA,
the magneto-rotational energy still has a small contribution and continues
to accelerate the wind. In summary, at small distances, (r <≈ rs), both the
magneto-rotational terms and the modified gravitational potential terms of
Eq. (3.18) have a combined and pronounced effect in accelerating the wind;
however, at large distances (r >≈ rA) the effect of the gravitational poten-
tial becomes negligible while there still persists a small contribution from the
magneto-rotational term, that mildly accelerates the wind outward.

Figure 3.6 shows the velocity profiles of the dust and the gas plotted
as a function of distance from the centre of the star. The velocity of the
dust grains exceeds that of the gas bulk, as is required by the hybrid wind
model, in order to produce an outward drag force on the gas, to acceler-
ate it outward. The velocity of the dust grains is determined according to
Eq. (3.37), once the velocity profile of the gas is ascertained, with an as-
sumed average value for the dust-to-gas ratio 〈δ〉. Figure 3.6 shows the gas
and dust velocity profiles for two different sets of model parameters. The
solid black line represents the gas velocity while the dotted black line repre-
sents the corresponding dust velocity. This model had parameters Γd = 0.3
and 〈δ〉 = 1/1000. In order to investigate the effect of changing the average
dust-to-gas ratio, we kept all other parameters of the model fixed, in partic-
ular, the radiation pressure mean efficiency and the stellar luminosity, were
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Figure 3.6: Dust and gas velocity profiles for two hybrid winds with param-
eters uA ≈ 0.09vesc,0, rA ≈ 63.93R0, Γd = 0.3 (in black) and with parameters
uA ≈ 0.07vesc,0, rA ≈ 53.05R0, Γd = 0.6 (in red). In the former case, the dust-
to-gas ratio was 〈δ〉 = 1/1000 and in the latter case it was double this value,
i.e. 〈δ〉 = 1/500. The remaining wind parameters are given in Table 3.1.
The dust velocity profile in each case is determined using Eq. (3.37).
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kept constant. Then, according to Eq. (3.19), if the average dust-to-gas ratio
is doubled then, then accordingly, the dust parameter Γd must also double.
Thus, for the second model’s results shown in Figure 3.6, we took Γd = 0.6
and 〈δ〉 = 1/500. Thus, the red-dashed line represents the gas velocity pro-
file, while the red-long-dash-dotted line represents the corresponding dust
velocity profile. However, changing the dust parameter also changes the lo-
cations of the the three critical points. With Γd = 0.3 the Alfvén velocity
and Alfvén radius were found to be uA ≈ 0.09vesc,0, rA ≈ 63.93R0, while
for Γd = 0.6, the corresponding values were found to be uA ≈ 0.08vesc,0,
rA ≈ 53.05R0 respectively. It can clearly be seen that within about 50R0

(which is approximately the location of the radial Alfvén point for the sec-
ond model), the dust in the second model (red-long-dash-dotted line) has a
steeper rise, indicating a larger acceleration in the wind. Beyond about 50R0,
the acceleration of the wind in the second model (Γd = 0.6) starts to decline
(see Figure 3.5 and discussion thereof). However, the wind in the first model
(Γd = 0.3) at this distance, is still getting accelerated, therefore its velocity
increases. Thus, when Γd is smaller, acceleration due to radiation pressure
continues to have an effect, out to larger distances from the star. In addition,
at a distance of about 50R0, the temperature in the wind is about ≈ 800K
for the model with Γd = 0.3 and about ≈ 550K for the model with Γd = 0.6.
Thus, the bulk of the gas is much cooler in the latter case. As a result, it
is natural that the velocities in the second model are slightly lower than the
first. That being said, it is to be acknowledged that by increasing the dust
parameter by increasing the average dust-to-gas ratio, the wind gets acceler-
ated much faster closer to the star. This is expected; however, the terminal
velocity in this case is lower, as the acceleration due to radiation pressure
does not have a pronounced effect out to large distances (r >≈ rA).

At this stage we turn our attention to the question of changing the tem-
perature at the base of the wind. In AGB stars, it is likely that due to
density pulsations within the star, the temperature and density at the stellar
photosphere are likely to undergo change [e.g. 93]. It has also been suggested
by Soker and Clayton [124] that magnetic-cool spots probably exist in the
region around the equator of an AGB star, much like our sun. If such is the
case, then the temperature at the base of the hybrid wind will change lo-
cally, and this will have an effect on the stellar wind beyond the photosphere
in the AGB envelope. In order to investigate this, we constructed a hybrid
model with an altogether different base temperature. Following Soker and
Clayton [124], we set the base temperature in a magnetic-cool spot to be sig-
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nificantly less than the prescribed average 3000K, of the stellar photosphere.
Accordingly, in order to achieve a hybrid stellar wind, that starts with neg-
ligible velocity at the stellar surface and gets accelerated to super-Alfvénic
velocities having passed through the dust formation radius and the the three
critical points, we treated Γd, uA and rA as free parameters. As described in
sub-section 3.3.2 we varied the values of these parameters until a successful
critical solution was achieved. When the base temperature is changed to
2000K, we found that in order to achieve a hybrid stellar wind, the three
free parameters required to take on values; Γd ≈ 0.62, uA ≈ 0.07vesc,0 and
rA ≈ 52.19R0. Figure 3.7 shows how the morphology of the solution changes
when the base temperature is changed. We have merely shown the key so-
lutions, namely, the critical solutions, the Bondi and the Alfvénic solutions.
The solid black lines are the hybrid wind solutions when the base temperature
is T0 = 3000K and the dust parameter is Γd = 0.3. The lighter red lines are
for T0 = 2000K and Γd ≈ 0.62. The dashed lines at the far left indicate the
locations of the respective dust formation radii for the two models; in both
cases the dust formation temperature was taken to be Td ≈ 1200K. It can be
clearly seen in Figure 3.7, that when the base temperature is decreased to
2000K, all the critical points as well as the dust formation radius, are sup-
pressed towards the photosphere. The formation of dust closer to the stellar
surface is directly related to the steep drop in the temperature profile ahead
of the photosphere in the AGB envelope. This finding is consistent with the
results of Soker and Clayton [124], who found that dust formation occurred
closer to the stellar surface ahead of magnetic-cool spots on the equator of
an AGB star. Additionally, the stellar wind critical solution for T0 = 2000K
has a lower terminal velocity than its counterpart for T0 = 3000K. This is
directly related to the fact that the bulk of the gas is much cooler when the
base temperature is lower. If there exist magnetic-cool spots on the surface
of an AGB star, then the stellar wind properties, namely the wind speed and
momentum of the outflow will change, ahead of the cool spot in the envelope
of the star. This will result in asymmetric flows between different parts of
the star, in addition to the fact, that dust formation will occur closer to the
star. These will directly lead to MHD instabilities, that can grow and be-
come unstable and result in asymmetric mass loss. However, it is to be noted,
that investigating such effects is beyond the scope of the current study. In
order to investigate instabilities it will be necessary to carry out MHD cal-
culation in at least two, if not three dimensions. By definition, the current
steady-state model cannot incorporate dynamic effects such as instabilities.
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Figure 3.7: Plot showing the effect of changing the temperature at the base
of the stellar wind. The black lines are for a hybrid wind with parameters
T0 = 3000K, uA ≈ 0.09vesc,0, rA ≈ 63.93R0 and Γd = 0.3 while the red
lines are for a hybrid wind with parameters T0 = 2000K, uA ≈ 0.07vesc,0,
rA ≈ 52.19R0 and Γd ≈ 0.62. Both winds have identical remaining wind
parameters, as given in Table 3.1. The dashed lines represent the locations of
the respective dust formation radii for the two hybrid winds with Td ≈ 1200K,
in both cases. Dust formation occurs closer to the stellar surface when the
base temperature is lowered.
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Addition of effects of radiative transfer, along with internal chemistry, that
affects dust grain formation, with relaxation of the assumption of spheri-
cal grains, would be the ultimate goal of such an endeavour. It has already
been shown by Woitke and Niccolini [58] using 2-D hydrodynamic codes with
radiative transfer, that it is possible to capture hydrodynamic instabilities.
The addition of magneto-rotational effects to these models would result in
richer gas (and dust) dynamics and quite different instabilities in the flow
altogether, due to the presence of MHD effects. The presence of instabilities
in the outflow are the precursors for asymmetric mass loss, which has been
theorised to be responsible for white dwarf kicks [see 175–181]. In this con-
text, the current work is relevant, as it presents a steady-state solution that
2- and 3-D MHD-dust-driven wind models can reproduce by eliminating the
time dependence, i.e., setting the ∂/∂t terms to zero. It also presents an
additional avenue for the formation of instabilities, in AGB stellar winds.

It is also to be noted that, when the dust parameter was increased to
values closer to unity, it resulted in the critical points being suppressed to-
wards the photosphere; this can clearly be seen in Figure 3.7. Concordantly,
as the dust parameter is increased, it results in dust condensation closer to
the stellar surface. In Figure 3.8 we have plotted the location of the three
critical points as a function of the dust parameter Γd. The short-dash-dotted
line represents the location of the sonic point (rs) as Γd is varied, the solid
line shows the variation in the radial Alfvén point (rA), while the long-dash-
dotted line shows the change in the fast point (rf ). Also plotted therein, is
the temperature at the radial Alfvén point; the short-dashed line. As can be
clearly seen, in the limit of Γd → 1, the three critical points converge and
their locations approach the stellar surface. The sharp decline in the radial
Alfvén temperature beyond Γd ≈ 0.7 indicates that the temperature profile
in the AGB envelope falls off in an extremely steep manner, making the so-
lutions of the gas momentum equation implausible and indeed unphysical.

To determine the dependence of the critical points on the dust parameter,
we continuously changed the value of Γd with a step size of 10−4, within the
limits shown in Figure 3.7 and for each given value of Γd, we determined the
appropriate set of parameters {uA, rA, (ws, xs) and (wf , xf )}, that yielded
a continuous monotonically increasing critical solution through the critical
points. Following which, the temperature at the radial Alfvén point was
determined according to Eq. (3.46).

However in Figure 3.8 we have only shown the effect of changing a single
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Figure 3.8: Plot showing the effect of changing the dust parameter Γd on
the morphology of the family of solutions to Eq. (3.33). In all calculations
the common parameters for the models are shown in Table 3.1. The short-
dash-dotted line shows variation in the sonic point (rs) as a function of Γd,
the solid line shows the change in the radial Alfvén point (rA) with changing
Γd, while the long-dash-dotted line represents the change in the fast point
(rf) for the same case. The short-dashed line traces the dependence of the
temperature at the radial Alfvén point on Γd, this should be interpreted using
the secondary axis.
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parameter. The determination of the location of the critical points also
depends on other parameters, such as the polytropic index, the photospheric
temperature, the mass-loss rate, etc. While the wind solutions are stable
for the locations of the critical points shown in Figure 3.8, a full-stability
analysis would be required to establish how the solutions change as a result
of changing the other parameters mentioned above. Such a detailed analysis
was considered to be outside the scope of the current study and we present
in Figure 3.8 merely the stable solutions that arise after changing a single
parameter while all the others are kept fixed.

In simple isothermal dust-driven wind models, a stellar outflow is achieved
by setting Γd > 1 (e.g. [e.g. 93]). This is done to counteract the force of
gravity and to drive the gas outward. However, in the current study we
found that setting the dust parameter to be greater than unity, did not yield
a set of critical points; i.e., they were found not to exist in the domain
R0 ≤ r ≤ 150R0, for which Eqs. (3.41-3.44) were satisfied simultaneously.
Hybrid winds were successfully achieved for 0 < Γd < 1. Indeed, as is
shown in Figure 3.7, Γd ≈ 0.7 is a reasonable physical upper limit, where
TA(Γd ≈ 0.7) ≈ 450K and after which point the decline in the temperature
proceeds very rapidly. It is to be mentioned that for all of the calculations
carried out to produce Figure 3.7, the temperature at the base of the wind
was T0 = 3000K and all the remaining parameters were identical to those
given in Table 3.1.

Finally, for the sake of completeness, we have shown in Figure 3.9, the
plausible hybrid wind solutions, should the dust formation radius exist out-
side the fast point. Again the parameters of the hybrid wind are identical
to those shown in Table 3.1. It is to be mentioned that it is likely that dust
formation lies within a few stellar radii [e.g. 93]; however, since the param-
eters of Table 3.1 may all be scalable to suit an altogether different type of
star, we have therefore included Figure 3.9, to complete the scenario of dust
forming in the envelope or indeed the outer atmosphere of the star.

In Figure 3.9, the solid black line represents the critical solution of a pure
Weber-Davis stellar wind, without any dust. While the long-dash-dotted red
line represents the hybrid wind critical solution with Γd = 0.3 and uA ≈
0.07vesc,0 and rA ≈ 48.20R0, the pure WD wind has the same values for
uA and rA. As can be seen in this case, the hybrid wind is not a physical
possibility as it is not continuous through the radial Alfvén point. On the
other hand the pure WD-equatorial wind is continuous. The Bondi and
Alfvénic solutions for the two types of solutions, with and without dust, are
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Figure 3.9: Plausible hybrid wind solutions with dust formation occurring
beyond the fast point. The red-long-dash-dotted line and the black solid line
intersecting at the radial Alfvén point, are the critical solutions of the hybrid
wind model and pure WD wind model, respectively. The green-short-dash-
dotted lines are possible Type V wind solutions of a hybrid wind (Γd = 0.3)
that can leave the star as a dust laden wind after dust formation occurs at
the intersections with the solid black WD critical solution. The thick green
solid line represents a possible hybrid wind solution with Γd = 2.
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also plotted in long-dash-dotted-red and black-dashed lines respectively. The
long-dashed lines in red represent the hybrid unphysical solutions of Type V.
The intersections of the pure WD critical solution in black, with the Type
V hybrid green-short-dash-dotted lines, represent possible locations for the
dust formation radius. Thus a wind may start off as a pure WD wind at the
surface of the star, pass through all three critical points and then undergo
dust formation beyond the fast point. At this stage the critical solution
may leave the star by following a hybrid solution represented by the short-
dash-dotted lines in green, after dust condensation. The red-long-dashed
lines are not plausible as they have either turned and become double-valued
(the left most long-dashed-red dashed line) or they do not intersect the solid
black line (the long-dashed-red lines to the right of the green-short-dash-
dotted lines), at least within the domain indicated. The thick solid green
line that intersects the solid black line at about r ≈ 95R0, is a hybrid wind
solution of Type V. This solution has the dust parameter set to a value
greater than unity (Γd = 2). Thus it can be seen that it is possible to have
a hybrid wind with Γd > 1 if rd > rf . In this case, the critical points for
the hybrid wind parameters are unphysical and do not lie within the domain
R0 ≤ r ≤ 150R0 (see earlier discussion relating to Figure 3.8). However in
this case, the critical wind solution has already been accelerated through the
physically possible pure-WD critical points before dust condensation occurs
in the wind. Thus, the hybrid picture can still work with the dust parameter
greater than unity as long as dust condensation occurs beyond the fast point.
As mentioned before, Figure 3.9 does not apply to AGB stars (since dust
condensation likely occurs within a few stellar radii), it is included here for
the sake of completeness and understanding the full nature of the hybrid
wind solutions.

This completes our discussion of the results of the study. In the following
section we present our summary and conclusions along side a short discussion
of directions for further investigation.

3.5 Conclusion

We present below a brief summary of the current study and thereafter a short
discussion of possible avenues for further work.
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3.5.1 Summary

In the preceding discussion we presented a hybrid wind model for AGB stars.
The model consists of incorporating a dust-driven wind with a Weber-Davis
MHD equatorial wind. The resulting wind momentum equations yielded
expressions for the radial and azimuthal velocities of the gas and the dust.
After eliminating the azimuthal equations, two radial equations remained in
the model that described the velocity profiles of both the gas and the dust.
In the model described in this study, we explicitly assumed a steady-state
for the wind dynamics.

A WD wind was assumed to begin at the surface of the star, one that
would eventually fail if not for the formation of dust grains at a given radius,
which allows the hybrid wind to leave the star at super-Alfvénic velocities.
The dust formation was assumed to occur abruptly, at a pre-determined
radius. All the dust grains were assumed to be perfectly spherical with
identical size. It was implicitly assumed that radiation pressure was purely
in the radial direction without scattering. The opacity of the grains was
implicitly assumed to be such that all of the radiation impinging on the
grains was absorbed and imparted momentum to the grains. The resulting
drag force was assumed to be purely radial as well. The rationale was to
develop a simple model to delineate the key points of the theory.

The hybrid wind ODE was subsequently solved using finite difference
methods, for different values of the dust parameter Γd. It was found that,
in order to achieve a successful hybrid wind, it was necessary for the dust
parameter to take values such that 0 < Γd < 1, when dust formation occurs
within the slow point, i.e., rd < rs. The effect of changing the dust parameter
revealed that Γd > 1, did not yield plausible stellar wind parameters. It was
found that when Γd → 1, all three critical points converged to the the stellar
surface.

Finally, the effect of changing the temperature at the base of wind was also
investigated. The temperature was changed from T0 = 3000K to T0 = 2000K
to represent a magnetic-cold spot on the equator of an AGB star. It was
found that lowering the temperature not only changed the morphology of
the family of solutions by suppressing the critical points towards the stellar
surface, but also required a greater value of the dust parameter in order to
achieve a successful hybrid wind. This additionally resulted in suppressing
the dust formation radius as well, towards the photosphere of the star, con-
sistent with the findings of Soker and Clayton [124]. Since the velocity of the
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wind, ahead of the magnetic-cool spot in the AGB envelope, was found to
be appreciably lesser, than the case when the temperature was the average
equatorial temperature, it was accordingly conjectured, that such an effect,
would likely produce asymmetric outflows, owing to the formation of MHD
instabilities in the wind.

3.5.2 Avenues for further investigation

The question of MHD instabilities is an intriguing one. It presents a di-
rect route for the onset of asymmetric outflows, that have been theorised to
cause kicks to the nascent white dwarf within an AGB star [see 175–181].
Hydrodynamic instabilities have already been captured in 2-D simulations of
AGB winds [see 58, 59, 169–171]. Therefore the next logical step would be
to incorporate magnetic fields; a complicated step, but one that is necessary
in order to get a more complete picture of these stars. In such models the
dust would form in the envelope in-situ and add to the outflow. In order to
realise the onset of MHD instabilities in the flow, a starting point would be a
2-D axisymmetric model with magneto-rotational effects coupled with dust
formation in the envelope. The results of the current study could be used
as a check for the steady-state solution of such a model. Such an endeavour
would undoubtedly yield interesting results and would shed new light upon
the formation of instabilities in the outflows from these stars and answer the
question of whether such instabilities can lead to appreciably asymmetric
mass loss and momentum transfer.

A second avenue, would be to relax one, or indeed several, of the assump-
tions that were made in deriving the current model. As a first experiment,
it may be possible to assume that there also exists drag in the azimuthal
direction. Such a drag term would result if there is scattering of radiation
in the azimuthal direction, or even if the assumption of spherical dust grains
were to be relaxed. This would result in a modification of Eqs. (3.16) and
(3.23), to include an azimuthal drag term. Concomitantly, the assumption
that the dust-to-gas ratio is small can be relaxed so that Eq. (3.4) cannot
be approximated. This would ultimately result in four coupled ODE’s (one
each for the radial and azimuthal momenta of both the gas and the dust)
that can be solved simultaneously to yield the dust and gas velocity profiles
in both the radial and azimuthal directions. Third, the dust parameter can
be assumed to vary with radius rather than be kept fixed, this may be the
easiest to implement. Depending upon the nature of the dependence Γd(r),
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it will change the topology of the solution to Eq. (3.33), since the solutions of
Eqs. (3.41-3.44) will change appreciably. Fourth, the dust grain sizes can be
assumed to have a distribution, rendering the determination of the drag force
more tedious, but definitely closer to reality. Additionally, there can even be
assumed to exist a certain degree of scattering, which will effectively change
the radiation pressure term in Eq. (3.12). Finally, the effect of pulsations can
also be incorporated in the modelling, by including at first a simple radial
prescription for pulsation and later incorporating non-radial modes. The ef-
fect of pulsation would be two-fold. First, the location of the critical points
of the solution will change, thereby altering the morphology of the family of
solutions in the u − r phase-space. Secondly, the inclusion of pulsation will
alter the density profile, thus altering the continuity equation as well. There-
fore the inclusion o pulsation would definitely change the nature of solutions
of the hybrid model, but more than that, the problem would then be more
tractable within a time-dependent framework in order to capture the compli-
cation variations over the timescale of a radial (or non-radial) pulsation. All
these changes will necessarily make the computation more intensive, but will
all ultimately yield good dividends and further the understanding of AGB
winds, complementing the current state-of-the-art models.
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Chapter 4

The Magnetised Bellows of

Betelgeuse †

4.1 Introduction

Betelgeuse (α−Orionis), one of the closest cool-evolved supergiant stars to
Earth, has been the focus of research for many decades now. However, de-
spite the considerable amount of attention it has received, our understanding
of the wind of the star and the nature of its mass efflux remain as yet, mys-
terious in more ways than one. Even though modern understanding of the
stellar wind of this M-type supergiant star, despite formidable challenges on
both the observational and theoretical fronts, has progressed well beyond
the rudimentary stages [see 194–203], still however, significant gaps in our
understanding remain quite entrenched. For example, observations in nei-
ther the ultra-violet (UV) nor the infra-red (IR), reveal blue-shifted emission
lines; a requisite signature of gas outflow [see 204], should the wind get suffi-
ciently accelerated close to the star. It is also still not known how the stellar
wind is supported. We do however understand that dust forms at small
and large distances from the photosphere, at radii r >

∼ 1.33R0 [e.g. 205] and
r >

∼ 25 − 30R0 [e.g. 196, 204, 206–208] respectively where R0 is the optical
photospheric radius. While there is now evidence of dust forming species
such as alumina being present in small quantities, in the lower reaches of
Betelgeuse’s atmosphere (∼ 1.3− 1.5R0) [see 205, 209], there is no evidence
that this results in a dust-driven wind at these distances [e.g. 204]. It has
been conjectured that alumina may form close to the star and then, once
transported to large distances (r >

∼ 30R0), may provide nucleation sites for
silicate dust to form [see 209]. However, this scenario still requires transport
of stellar material to these larger distances in the atmosphere and presently,

†Based on an article published in Monthly Notices of the Royal Astronomical Society,
Vol. 422 (2), pp. 1272−82, 2012. c© Anand Thirumalai & Jeremy S. Heyl. c© Royal
Astronomical Society.

73



4.1. Introduction

it is not known how this is achieved [see 204, 210, 211]. It is believed that a
combination of MHD effects, pulsation and convection may be responsible,
but there are presently no models that demonstrate this unequivocally [see
204]. On the other hand, efforts at modelling the stellar wind of Betelgeuse
(and red supergiants and AGB stars) remain almost as disparate factions,
modelling either solely magnetohydrodynamic (MHD) or acoustic waves [e.g.
188, 189, 212, 213] or relying upon a combination of dust- [see 58, 214, 215]
and pulsation-driven mechanisms [see 137–142, 159]. Each of these models
achieves a modicum of success, while ignoring stellar rotation altogether.
Though it is widely acknowledged, that both magneto-centrifugal effects and
the presence of dust grains in the gas, may be part of a greater coupled pic-
ture [see 188, 189, 210, 216, 217], there have however been no efforts, thus
far, at combining the two for a red supergiant like Betelgeuse.

In addition to these concerns, it is also clearly seen that the atmosphere
around Betelgeuse is not spherically symmetric. Indeed, there are some in-
homogeneities that are seen, attributable to clumps in the outflow [see 200].
These concerns are compounded by the fact that observations reveal that the
temperature structure has a complicated form. Differences are seen at the
same radius in different parts of the atmosphere [see 218], revealing a slight
departure from a spherically symmetric picture. With regard to seeing a
clear signature of a stellar wind in the form of blue shifted emission lines, the
observations have had severe difficulties in being able to resolve the spectra
at close distances from the photosphere [see 204]. Indeed, observations have
revealed that in parts of Betelgeuse’s atmosphere there is redshifted emission
indicating that there may be infall of matter back onto the star [see 219].

The rotation rate of Betelgeuse has also been reported in the literature
[e.g. 220, see Table 4.1]. More recently, Zeeman observations also reveal
unambiguously, that there exists a magnetic field on the surface of Betelgeuse
[see 80, 81]. These observations naturally raise several questions regarding
the role that magneto-rotational effects might play in the star’s wind. Thus
overall, we see that there are several unanswered questions regarding the
nature of the outflow from Betelgeuse. Here, we present the very first model
integrating MHD and rotational effects with a dust-driven wind scenario
for Betelgeuse. The aim of the current study is to shed a new light on
these issues and attempt to answer, at least some of these concerns. In this
study, we find that the presence of a small magnetic field, on the order of
what was recently discovered; of about 1 G [see 80], is sufficient to drive
material from close to the stellar surface up and out of its gravity well, by
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means of a magneto-rotational wind. Dust condensation later occurs at large
distances from the star (∼ 30R0) which finally results in a hybrid-MHD-dust-
driven outflow. This model provides a possible alternative resolution of this
issue [see 204, 210, 211]. It is to be mentioned at the very outset, that this
model is merely suggested as an additional mechanism that can play a role
in transport of stellar material and is not intended to supplant the altogether
feasible models involving MHD or acoustic waves as likely candidates.

The theoretical model that we developed for intermediate mass asymptotic-
giant-branch (AGB) stars [see 216] has been extended to tackle the case of
a supergiant like Betelgeuse. The reader is referred to our earlier work [see
216, and also Chapter 3] for details of the model. Here we shall present only
the salient features of the theory. We also find that the wind velocities that
are obtained from the model are in good agreement with current estimates
[e.g. 188, 200, 204].

4.2 Betelgeuse’s Hybrid Wind Model

For the purposes of modelling, there are some marked differences that Betel-
geuse exhibits from a run-of-the-mill AGB star. For example, Betelgeuse is
much more massive (∼ 15M⊙, e.g. Smith et al. [197]) than an intermediate
mass AGB star. It also has a far more extended and cooler atmosphere. More
importantly, the dust condensation radius is much farther out, in terms of
stellar radii, from the photosphere in comparison to a canonical AGB star. In
the former, the primary process governing mass-loss is the radiation pressure
on dust grains that form at close distances from the photosphere, typically
no greater than 10R0, coupled with strong stellar pulsation. The presence of
a magnetic field then has the effect of playing a secondary role governing the
gas dynamics. In an AGB star, the hybrid-MHD-dust-driven mechanism is
such, that without the onset of dust formation, it is not possible to achieve an
outflow and thereafter, the predominant energy exchange in the wind is be-
tween the magneto-rotational and gravitational components; see Figure 3.5.
In such a scenario, it was seen quite crucially, that dust formation must oc-
cur prior to the hybrid model’s sonic point and concomitantly, it was seen
that the dust parameter, Γd was required to be less than unity for achieving
a hybrid wind. Such is not the case for Betelgeuse where observations find
only a small amount of dust inside r <

∼ 25− 30 R0.
In our earlier study, we had additionally investigated the possibility of
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locating the dust condensation radius outside the fast Alfvén point. It was
shown that such a hybrid wind is entirely theoretically possible, given typical
parameters of an AGB star [see Fig. 9 of 216]. It was concluded therein that
while such a scenario is unlikely for a typical AGB star it may well apply to
an altogether different type of stellar wind. It is this second type of hybrid-
MHD-dust-driven model that is adapted herein to formulate a stellar efflux
scenario for Betelgeuse, with dust formation occurring at a large distance
∼ 30 R0, from the star.

Our theoretical model can be summed up as follows (the interested reader
is referred to Thirumalai and Heyl [216] for the steps involved in the deriva-
tion). We imagine that we are looking down upon the two-dimensional equa-
torial plane of Betelgeuse. Therein, we assume that the magnetic field and
the gas (and dust) velocity are functions of purely the radial distance from
the centre of the star. The poloidal (co-latitudinal) components of these
vectors vanish; this is the fundamental assumption behind the canonical
Weber-Davis [see 28, hereafter WD] model for our sun. The gas forms the
first fluid and carries the magnetic field. However, unlike the sun, in the
atmosphere of Betelgeuse, embedded within the gas is a second fluid; the
dust. The two fluids co-exist and are coupled to each other through drag. In
an evolved supergiant like Betelgeuse, the circumstellar atmosphere is cool
enough (<∼ 1000K) that dust grains can condense out of the surrounding gas
[e.g. 196, 204, 206–208]. In fact, direct imaging has enabled estimates for
the inner dust shell temperature to be ∼ 700 K at around ∼ 30R0 [e.g. 221].
Stellar radiation from the interior impinging upon the dust grains, can im-
part enough momentum to power these exiguous solar sails and propel them
outward through the surrounding gaseous matter. However, whilst moving
through the gas, the dust drags the gas along with it, resulting in a prodigious
and combined mass efflux of both dust and gas, from the star; the so-called
dust-driven wind. It is to be kept in mind, that the dust-to-gas mass-ratio is
small; for Betelgeuse, it is expected to be on the order of ≈ 6×10−4−5×10−3

or so [see 222]. Additionally, the dust grains in our model are assumed to
be spherical in shape, thus presenting a circular cross-section for radiation
pressure to act upon. The surface temperature of Betelgeuse (T0) plays a key
role in determining the hybrid wind parameters, such as the bulk gas velocity
at the base of the wind and the location of the critical points (see below).
We also assume that the gas has the thermodynamic equation of state of a
polytrope, with a polytropic index γ > 1, where a value of unity represents
the isothermal limit. We model the fluid flow as an inviscid one and the elec-
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trodynamic properties of the fluid are taken to obey ideal MHD, i.e., there
is no Lorentz force acting on the fluid and the electric and magnetic forces
balance each other completely. Additionally, the model requires as input,
a number of observed quantities, such as the mass of the star, its rotation
rate, the surface magnetic field strength and the mass-loss rate. These and
other parameters for Betelgeuse are listed in Table 4.1. With these ingredi-
ents, upon examining the Euler equations for fluid flow for both the dust and
the gas that are coupled with each other and invoking mass and energy flux
continuity and ensuring that the divergence of the magnetic field explicitly
vanishes within the governing equations, we can arrive at a steady-state de-
scription of the hybrid dual-fluid wind in the equatorial plane of Betelgeuse
[see 216]. The radial equation for the gas velocity profile is then given by,

dw

dx
=
w

x

N(w, x)

D(w, x)
, (4.1)

where, w = u/uA is the gas speed normalised using the Alfvén speed and
x = r/rA, is the radial distance expressed in units of the Alfvén radius.
Hereafter, the subscript ‘A’ refers to values of the different variables at the
Alfvén radius. The quantities N(w, x) and D(w, x) are the numerator and
denominator respectively and are given by,

N(w, x) =

(

2γST (wx
2)1−γ −

SG

x
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)
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)
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and

D(w, x) =
(

w2 − γST (wx
2)1−γ

)

(wx2 − 1)3 − SΩx
2 ×

(wx2)2
(

1

x2
− 1

)2

. (4.3)

In the above equations, the parameters ST = 2kTA

mpu2
A

, SG = GM∗

rAu2
A

and SΩ =
Ω2r2

A

u2
A

along with γ uniquely determine the locations of the critical points, and hence
the morphology of the family of solutions of Eq. (4.1). Here TA is the gas
temperature at the Alfvén radius, k is the Boltzmann constant and mp is the
mass of a proton. The critical points are, as usual, defined as the locations at
which both the numerator and the denominator vanish, thereby keeping the
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right-hand side of Eq. (4.1) finite, these are the sonic point, the radial Alfvén
point and the fast point [e.g. 28]. The presence of the Heaviside function
in Eq. (4.2) represents the formation of dust at the location x = xd, the
dust condensation radius in units of the Alfvén radius. The critical wind
solution of Eq. (4.1) will yield the gas velocity profile, thereby enabling the
determination of all other dependent variables, such as the dust velocity
profile (to be discussed below), the Mach number as a function of distance
from the star, the azimuthal velocity of the gas, the azimuthal component of
the magnetic field, the temperature profile and the density structure of the
gas in the envelope of the Betelgeuse. The critical solution of Eq. (4.1) is
defined as one that starts off at the base of the wind sub-sonic, passes through
the three critical points in a continuous manner and emerges super-Alfvénic
at large distances from the star. The dust velocity profile is then given by
[see 216],

v(r) = u(r) +









√

a4th + 4
(

ΓdGM∗

πa2ndr2

)2

− a2th

2









1/2

, (4.4)

where ath is the thermal speed given by ath =
√

2kT/µmu and µmu is the
mean molecular mass of the gas and nd is the dust grain number density,
which is assumed to be given by, ndmd/ρ ≈ 〈δ〉 where 〈δ〉 is the average
dust-to-gas ratio in the wind [see 216]. The dust in the current theory is
treated in a simplistic and idealised manner, without rigorously considering
the effects of dust radiative properties or including the effects of scattering
and absorption on the radiation pressure mean efficiency. While such an
analysis would no doubt portray a more complete picture, the current rudi-
mentary treatment nevertheless captures the salient features of the coupled
outflow from the star. As our purpose here is to illustrate the feasibility of
a hybrid-MHD-dust-driven wind model for Betelgeuse, the current simplistic
treatment of dust was considered sufficient.

Eq. (4.1) is solved numerically, and the reader is referred to our earlier
work [see 216] for complete details on the numerical methodology. The per-
tinent points of the method are conveyed below, in brief.
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Table 4.1: Various parameters for modelling Betelgeuse.
Parameter Symbol Value / Comment
Mass M∗ ∼ 15M⊙

Radius R0 ∼ 650R⊙

Mass loss rate Ṁ ∼ 3× 10−6M⊙/yr
Surface magnetic
field strength B0 ∼ 1 G
Bulk surface gas
velocity (radial) u0 ∼ 10−12vesc,0

(vanishingly small)
Surface temperature (effective) T0 ∼ 3650K
Stellar rotation rate Ω ∼ 1.2× 10−8 rad/s
Surface escape velocity vesc,0 9.39× 106 cm/s
Polytropic exponent γ > 1
Alfvén Radius rA ∼ 25R0

Alfvén speed uA ∼ 0.15vesc,0
Dust Parameter Γd varied
Dust grain radius a spherical grains
Dust grain mass md ∼ 4/3πa3ρd
Dust grain density ρd 4 g/cm3
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4.3 Numerical Method

Eq. (4.1) is solved using the package ODEPACK employing a finite difference
method with chord iteration with the Jacobian supplied [see 192, 193]. Initial
conditions were supplied at the beginning of the integration. Typical error
tolerances for convergence testing that were employed were on the order
of 10−12 for both the absolute and relative errors [see 192]. For a typical
integration, step sizes of 10−9 or 10−10, in units of the Alfvén radius, were
employed depending upon the region of integration being near the critical
points or sufficiently away from them. This resulted in typically 109 − 1010

function evaluations. In the current study, in contrast to [e.g. 216], we located
the radial Alfvén point at around 25R0 with an Alfvénic temperature of
TA ≈ 720 K, and Alfvénic velocity uA ≈ 0.15vesc,0 ≈ 14 km/s, because
we wanted to have a dust formation temperature of ∼ 700 K with dust
condensation occurring at ∼ 30R0. The polytropic exponent γ was varied
and the locations of the sonic point and the fast point were found according
to the method described in [e.g. 216]. Once a particular value for γ is chosen,
the bulk radial gas velocity at the photosphere is found using the relation,

u0 = uA

(

rA
R0

)2(
TA
T0

)1/(γ−1)

(4.5)

Thus, with these parameters now identified, a solution of Eq. (4.1) is obtained
that is continuous through the critical points with a tolerance for testing
continuity of about 10−8, about an order of magnitude greater than the
integration step size. The polytropic exponent is varied until a suitable set of
values for the parameters {rs, us, rf , uf , u0}, are obtained so that the solution
would be first continuous through all the critical points and second, result in
a temperature of about 700 K in the vicinity of 30R0.

4.4 Results and Discussion

Observations of the circumstellar atmosphere of Betelgeuse indicate that dust
primarily exists in the form of a shell at a distance of about ∼ 30R0 [e.g.
221]. However, recent observations as discussed above, seem to indicate that
there may be small amounts of alumina (Al2O3) present rather close to the
photosphere [see 205, 209], within 1.5R0. However, it is thought that this
alumina may be either transient, perhaps even destroyed at around 1.5R0 or
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even further out in the chromosphere [see 209], or is present in such small
quantities as to be unable to support a dust-driven wind at these distances.
There is a third possibility, however remote, that the small amount of alumina
present does result in a mild dust-driven wind, but the alumina is transparent
until it accumulates silicates on its surface [see 223], which occurs in the dust
shell at around 30R0.

Regardless, observations do not indicate a significant presence of dust
in the region 1.5R0

<
∼ r <

∼ 30R0. In this study, we address each of these
possibilities, within the framework of the hybrid-dust-driven wind model.
Physically, there are four distinct scenarios that emerge and these are listed
in Table 4.2. Each of these scenarios are explored in the following discussion.

4.4.1 Scenario 1: Silicate dust forms at 30R0

This is the simplest and perhaps the most likely scenario to fit the observa-
tions of Betelgeuse’s atmosphere. Herein, there is no dust formation at close
distances and silicate dust condenses at a distance of about 30R0 where the
temperature drops to about 700 K. Stellar material is transported from the
photosphere to this distance of 30R0 by means of a Weber-Davis magneto-
rotational wind. This is shown in Figure 5.1, with two cases corresponding to
silicate dust formation in reasonable and large amounts at a distance of about
30R0. The gas velocities of the critical hybrid-wind solutions of Eq. (4.1) are
shown in Figure 5.1 as the red and green long-dashed lines. These solutions
start at the base of the wind subsonic and accelerate first through the sonic
point at about 5.27R0; after this the wind is supersonic. It can be readily
seen that the Mach numbers are small for the critical solution close to the
photosphere (r <

∼ 5R0). Beyond the sonic point, the wind mildly accelerates
through the radial and fast Alfvén points, that are nearly coincident upon
one another, and emerges super-Alfvénic at large distances (r > 25R0). A
little further out, dust condenses out from the gas at a radial distance of
rd = 30R0, shown by the vertical dashed line marked “rd”. At this dis-
tance from the surface of Betelgeuse, the temperature has dropped below
the dust condensation temperature for silicates of about ≈ 700 K; the tem-
perature is given by the blue solid line and should be interpreted using the
right-hand axis. The temperature profile shown in Figure 5.1, corresponds
to Scenario 1a, wherein silicate dust forms in reasonable amounts at around
30R0. Thereafter the wind is a coupled MHD-dust-driven wind and the gas
outflow rapidly approaches the terminal velocity. Thus, the solution is purely
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Table 4.2: Different dust formation scenarios in Betelgeuse
Scenario 1a Silicate dust forms at r = 30R0 in reasonable

quantities (Γd = 0.5, 〈δ〉 ∼ 1/2000)

Scenario 1b Silicate dust forms at r = 30R0 in large
quantities (Γd = 5, 〈δ〉 ∼ 1/200)

Scenario 2a Alumina dust forms at r < 1.5R0 in small
quantities (Γd = 0.05, 〈δ〉 ∼ 1/20000) and
provides nucleation sites for silicate dust
around r = 30R0

Scenario 2b Alumina dust forms at r < 1.5R0 in large
quantities (Γd = 0.5, 〈δ〉 ∼ 1/2000) and
provides nucleation sites for silicate dust
around r = 30R0

Scenario 3a Alumina dust forms at r < 1.5R0 in small
quantities (Γd = 0.05, 〈δ〉 ∼ 1/20000) and
is subsequently destroyed at r ≈ 7.53R0 due
to a chromospheric component in the atmosphere
and silicate dust later forms at r = 30R0

Scenario 3b Alumina dust forms at r < 1.5R0 in large
quantities (Γd = 0.5, 〈δ〉 ∼ 1/2000) and
is subsequently destroyed at r ≈ 7.53R0 due
to a chromospheric component in the atmosphere
and silicate dust later forms at r = 30R0

Scenario 4a Alumina dust forms at r < 1.5R0 in small
quantities (Γd = 0.05, 〈δ〉 ∼ 1/20000) and
is subsequently destroyed at r ≈ 1.5R0 and
silicate dust forms at r = 30R0

Scenario 4b Alumina dust forms at r < 1.5R0 in large
quantities (Γd = 0.5, 〈δ〉 ∼ 1/2000) and
is subsequently destroyed at r ≈ 1.5R0 and
silicate dust forms at r = 30R0
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WD from the phototsphere (r = R0) to the dust condensation radius (r = rd)
and thereafter it is hybrid. This is the primary salient feature of the hybrid
wind model developed for Betelgeuse.

Also shown in Figure 5.1 are the corresponding dust velocities for these
two models in this scenario, shown by the solid lines that lie above the
long-dashed ones. It can be seen that the dust grains are moving radially
faster than the gas and dragging the gas along with them. The solid red
line represents the dust velocity profile for a model with parameters Γd =
0.5 and 〈δ〉 = 1/2000; Scenario 1a. In order to investigate the effect of
changing the average dust-to-gas ratio and therefore the dust parameter Γd,
we kept all other parameters of the model fixed, in particular, the radiation
pressure mean efficiency and the stellar luminosity, were kept constant. Now,
if the average dust-to-gas ratio is increased by an order of magnitude then
accordingly, the dust parameter Γd must also correspondingly increase by an
order of magnitude. Thus, for the second model’s results shown in Figure 5.1,
we took Γd = 5 and 〈δ〉 = 1/200; Scenario 1b. For this latter model, the dust
velocity profile is shown with the green solid line that lies below the red solid
line. This range of the dust-to-gas ratio of 1/2000 ≤ 〈δ〉 ≤ 1/200, represents
a reasonable bound for the amount of dust in the atmosphere of Betelgeuse
[e.g. 222]. It was seen in our earlier work [c.f. Figure 6 of 216] that changing
the dust parameter shifted the location of the critical points. In general,
increasing the value of the dust parameter Γd results in moving the location
of the sonic point and fast point towards the surface of the star; this is the
case should dust formation occur inside the sonic point in the hybrid wind
model. However, it was shown earlier [see Figure 9 of 216, and discussion
thereof] that formation of dust beyond the fast point does not influence the
location of the critical points. Then, Eq. (4.1) can simply be integrated with
the presence of the Heaviside function from r = rd to r = ∞ for a given value
of Γd. Thus in this case, the wind has already successfully passed through
the critical points and emerged super-Alfvénic prior to dust condensation.

Beyond about r ≈ rA = 25R0, the acceleration of the gas in the wind
due to dust drag in the second model (Γd = 5, Scenario 1b) starts to decline
more steeply than in the case of a hybrid model with a smaller value of
Γd = 0.5 (Scenario 1a). Thus, the gas in the wind in the first model (Γd = 0.5,
Scenario 1a) at this distance, is still getting accelerated, therefore its terminal
velocity is slightly larger and the red long-dashed line lies above the green
long-dashed line. Thus, when Γd is smaller, acceleration due to radiation
pressure continues to have an effect, out to larger distances from the star.
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Figure 4.1: A hybrid wind solutions are shown for Scenario 1 with parame-
ters uA = 0.15vesc,0, rA = 25R0, for different Γd and remaining parameters
as given in Table 4.1. The red and green solid lines trace the dust velocity
profiles for Scenarios 1a and 1b respectively, corresponding gas velocity pro-
files are shown by the red and green long-dashed lines. The decreasing blue
solid line traces the temperature and should be interpreted using the right
hand y-axis.
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The effect on the dust grains is a little counter-intuitive and can be un-
derstood by examining Eq. (4.4). We can re-write Eq. (4.4) by replacing
the dust grain number density with an expression employing the dust-to-gas
ratio as,

v(r) = u(r) +









√

a4th + 4
(

ΓdGM∗md

πa2ρ〈δ〉r2

)2

− a2th

2









1/2

. (4.6)

Upon examining the second term under the square-root; the radiation pres-
sure term, we can see that the smaller the value of the average dust-to-gas
ratio, the larger this term will be and therefore the larger the value of the
dust grain velocity, v(r). Thus, when the radiation pressure mean efficiency
and the stellar luminosity are kept constant, then naturally, the dust grain
velocity is larger for smaller dust-to-gas ratios; this is the effect seen in Fig-
ure 5.1. For the calculations carried out above, we assumed that the dust
grains were spherical and were assumed to be on average [see 205] about
0.005µm in size with a density of about 4 g/cm3.

With regard to scattering of radiation by the dust grains, in the current
study this was assumed to be absent, thus precluding the complications that
arise upon including this effect. Briefly, the inclusion of isotropic scattering
would have the effect, for the simple theory described here, of altering the
radiation pressure mean efficiency as, Qrp 7→ QA + QS, where QA and QS

represent the efficiencies of absorption and isotropic scattering, respectively.
In a more rigorous model, these could be calculated for a particular type
of dust grain and used in the equations, thus incorporating scattering of
photons by dust grains.

Moreover, in the framework of the current theory, the dust grains do
not possess azimuthal velocity with respect to the gas. That being said,
Poynting-Robertson drag due to scattering of radiation by dust grains would
inevitably decelerate the grains in the azimuthal direction, thereby altering
the momentum equations further. In reality however, it is to be acknowledged
that scattering is probably anisotropic since the dust grains may well align
themselves along field lines. Such a detailed analysis involving the complex
phenomena touched upon above, while being extremely pertinent and closer
to a realistic picture, was considered to be outside the scope of the current
study, where the aim is to portray a simple picture.

It is implicitly assumed in our model that dust condensation occurs
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abruptly at a distance where the gas temperature (Tgas) falls below the dust
condensation temperature T c

dust. In addition, we assume that that the condi-
tions are conducive for grain growth. In the current, rather idealised treat-
ment of the dust, we are not concerned with the radiative properties of the
dust. We are therefore content with the assumption that the temperature
of the outflow is governed by the gas. This was considered to be reasonable
considering that the dust-to-gas ratio employed was small 〈δ〉 = 1/2000. It
has also been shown that the temperature profile in the circumstellar envi-
ronment of Betelgeuse is rather complicated [e.g. 224], with effects such as
dust-grain drag contributing to heating. Such an analysis as well as inclu-
sion of rigorous dust radiative properties was considered to be outside the
scope of the current study. We simply assume for determining the dust-grain
temperature, that the dust grains must be in radiative equilibrium with the
stellar luminosity field and that it is optically thin. Therefore, we can as-
sume a relationship for the temperature profile for the dust, outside the dust
condensation radius as [e.g. 93, 223],

Td(r) = C T0

(

R0

2r

)2/5

, ∀ r ≥ 30R0, (4.7)

where, the coefficient C, depends upon the radiation pressure mean efficiency.
In the current study we are treating the dust in a rather simplistic manner,
therefore instead of calculating the radiation pressure mean efficiency we
can assume that the coefficient C lies in a range between zero and unity,
i.e., 0 < C ≤ 1. This then allows us to calculate a range of values for
the dust temperature at the condensation radius, Td(30R0). The mean of
these calculated values, for the given range in C and the adopted values
of R0 and T0 given in Table 4.1, is found to be 〈Td〉|30R0

≈ 390 K. This
rather rudimentary estimate is in reasonably good agreement with the value
obtained by Harper et al. [222], of 360 K at around 33R0. The dust in
the current model may therefore be able to mimic, in a qualitative sense,
the radio and IR behaviour of the dust model of Harper et al. [222]. Given
the idealistic nature of the current hybrid-MHD-dust-driven wind theory, the
formulation of a detailed model, such as that described by Harper et al. [222],
was considered to be outside the scope of the current investigation. We shall
end with a cautionary note, that a detailed analysis would nevertheless be
required, before conclusions can be drawn about the dust related physics and
we acknowledge this as a limitation of the current theory.
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In summary, the result in Figure 5.1 demonstrates that it is possible to
obtain a coupling between magneto-centrifugal effects and the usual dust-
driving mechanism. There are however a few pertinent observations with
respect to the hybrid wind model in specific, that warrant mentioning. First,
it can be clearly seen, that magneto-centrifugal effects, with a small magnetic
field (∼ 1 G) and slow rotation, Ω ≈ 1.2 × 10−8rad/s, [see 220] can quite
clearly lift material from the photosphere of Betelgeuse up into the circum-
stellar atmosphere. In the latter region, dust condenses in the gas to result
in a hybrid wind at large distances. This reveals that magneto-centrifugal
driving can be an additional mechanism for solving the mystery of how to lift
stellar material out into the circumstellar envelope in not only Betelgeuse,
but potentially in all cool, evolved supergiant stars. Second, the temperature
profile obtained in the solution, is reasonably consistent with observations
[see 200, 204, 218]. For example, the profile indicates that around 2R0, the
gas temperature drops to about 2840 K, lying well within the measured range
[see 218].

In addition, the temperature range in the region R0 ≤ r ≤ 4.1R0 can
be inferred from Figure 5.1 to be 1200 <

∼ T ≤ 3650 K and it can be seen
that lower limit for the observed [Fe II] emission of 2110 K [see 204] lies
in this region. It can also be seen that the gas velocities are small in this
region, consistent with the lack of observations for Doppler blue-shifted wind
signatures.

Third, the resulting terminal velocity is about 14−15 km/s; this is consis-
tent with present estimates [e.g. 188, 211] and in reasonably good agreement
with the adopted value of about ∼ 10 km/s for modelling by Harper et al.
[204]. It is to be remembered that measured or inferred values for the out-
flow velocity would indicate a somewhat averaged value for gas velocity at a
given distance from the star; however, within the framework of the current
model, outflow velocity is calculated in the equatorial plane alone. Simula-
tions of large-scale MHD convection in Betelgeuse have suggested that it is
possible to have variation in the radial velocities on the order of 1− 10 km/s
in both up- and down-flowing regions [e.g. 225]. In addition, it is also to
be mentioned that the stellar efflux is thought to be variable in Betelgeuse,
observations seem to suggest variability over a 40 year period or so [see 196],
however the current framework assumes a steady-state case, thus the inter-
pretation of the calculated values of outflow obtained in this study, need to
be tempered by these observations. In light of all this, we considered the
agreement of velocities to be good.
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In addition, once the radial velocity profile has been determined, it is pos-
sible to determine the azimuthal component of the magnetic field. With this
it becomes possible to estimate, á posteriori, the importance of the Lorentz
force and any ion-neutral drag. The rationale being to check the validity of
the ideal-MHD assumption. In the current framework, it is assumed implic-
itly that the ions and neutrals are well coupled in the equatorial plane and
non-ideal MHD effects such as ambipolar diffusion are negligible and thus
ignored. A way to assess this is to calculate the ratio of the gyrofrequency
and the momentum exchange rate [e.g. 226] as,

βj(r) =
ZjeB(r)

mjc

(m+mj)

ρ(r)〈σv〉j
. (4.8)

Where βj is the ratio for the jth ionic species, Zj is the atomic number, mj is
particle mass of the given ionic species, B is the magnitude of the magnetic
field, e is the electronic charge, c is the speed of light and m is the averaged
particle mass of the neutrals. Here ρ is the gas density, determined once the
solution to Eq. (4.1) is calculated. Finally, 〈σv〉j is the ion-neutral collision
momentum transfer rate coefficient [see Table 2.1 and Equation 2.34 of 53]
and is given by

〈σv〉j = 2.0× 10−9

(

mH

µ

)1/2

cm3 s−1, (4.9)

where, µ = mjµn/(mj + µn) is the reduced mass in a typical ion-neutral col-
lision, with µn the mean molecular mass of neutrals. Similarly, the electron-
neutral collision momentum transfer rate can be determined as [e.g. 52, 226],

〈σv〉e|r = 8.3× 10−9 ×max

[

1,

(

T (r)

100 K

)1/2
]

cm3 s−1 (4.10)

Assuming that the largest single ionic species is Si, we can then calculate the
ratio of the gyrofrequency to the momentum exchange rate, for both the ions
(βSi) and the electrons (βe).

We find that βmax
Si ≈ 7.9 × 10−7, while βmax

e = 2.7 × 10−4. In general,
we find over the entire domain for r in the equatorial plane, that βSi(r) ≪
βe(r) ≪ 1. As mentioned earlier, one of the central assumptions in the model
is that the Lorentz force vanishes in the fluid, i.e., we have force-free MHD,
therefore it is to be expected that the ratios β of the gyrofrequencies to the
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momentum transfer rate, would also accordingly be small. This then implies,
that for the radial range considered in this study, i.e. 0 ≤ r ≤ 80R0, the
Hall and ambipolar diffusion terms arising from electron-ion drift and ion-
neutral drift respectively, are negligible. Additionally, the conductivity of the
plasma can be estimated using the usual relation, σ = 107T

3/2
e K−3/2Ω−1cm−1

[e.g. 227], where Te is the electron temperature, such that Te(r) > Tgas(r).
Figure 5.1 shows that the minimum temperature for the gas far away from the
photosphere is about Tmin

gas ≈ 640 K. We can therefore find an estimate for the
lower limit of the conductivity using this temperature and estimate a value of
σmin ≈ 1.6× 1011 Ω−1 cm−1, yielding a magnetic Reynolds number [e.g. 228]
of Rem = ULµ0σmin ∼ 1023, so Ohmic diffusion is unimportant (U ∼ 10 km/s
and L ≈ R0 are typical velocity and length scales for Betelgeuse and µ0 is the
permeability of the vacuum, 4π× 10−7Ωs/m). The assumption of effectively
infinite plasma conductance, is then a reasonable assumption. Thus, we
see that the central assumption of ideal-MHD in the equatorial plane of
Betelgeuse is a reasonable first approximation to make, for the purpose of
conveying a simple picture.

Finally, the Alfvénic Mach numbers in the inner region of the circum-
stellar envelope are small and actually, do not exceed unity before the sonic
point, located at around 5.27R0. Therefore our model does not suffer from
the same drawbacks as many Alfvén wave models that have the artifact of
having large Mach numbers close to the surface of the star. Indeed, in our
model the wind only becomes super-Alfvénic beyond the Alfvén point at
around 25R0 and even then, only mildly so.

In Figure 5.2 we have shown the azimuthal velocity, uφ(r) of the gas (red
solid line). The dust is assumed to co-rotate with the gas, thus the azimuthal
velocity profile shown in the figure is also true for the dust (for r ≥ rd), since
there is no drag between the dust and the gas in the azimuthal direction. The
azimuthal velocity profile is obtained once the radial velocity profile is known
[see 216]. The velocity profile obtained is typical for a magneto-rotational
wind. The dotted lines in the figure and in its inset represent the rotation of
the star [see 220]. It is readily seen that the azimuthal wind velocity closely
traces the observed rotation of the star and only begins to depart markedly
after r ≈ 4.5R0. This decoupling from stellar rotation occurs in the inner
wind region of the magneto-rotational wind, at a physical distance corre-
sponding to ≈ 2.03 × 1014cm, for Betelgeuse. It is also interesting to note
that at large distances the azimuthal velocity of the gas is strongly de-coupled
from the stellar rotation rate. Therefore, the chromospheric component in
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Figure 4.2: The azimuthal velocity of the gas is shown as a function of the
radial distance (red solid line) for Scenario 1a. The inset shows a magnified
region around the peak of the profile around the sonic point.
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the atmosphere at a few stellar radii may also appear to be de-coupled from
stellar rotation as was observed by Harper and Brown [198]. However, it is
to be remembered that the hybrid-MHD-dust-driven theory presented in this
study, concerns itself with the equatorial plane alone, while the observations
of Harper and Brown [198] are spatially resolved in the cross-dispersion direc-
tion; this may have an averaging effect along the dispersion direction. Thus,
the theoretically obtained rotational decoupling that occurs in the equato-
rial plane, in the current study, may well be quite a bit different from the
observations of Harper and Brown [198]. Therefore any inferences drawn in
this regard must be tempered by the observation that the current model is
a rather simple picture, with concomitant limitations.

We now turn our attention to the question of spots on the surface of
Betelgeuse and the related question of temperature inhomogeneities. Recent
observations [see 229–232] suggest that there may be a few (on the order
of 2 or 3) large spots on the surface of Betelgeuse, indicating that there
are temperature inhomogeneities on the surface of Betelgeuse. We therefore
chose to model Betelguese with two different photospheric temperatures in
order to examine the effect of spots on its equator [see 124].

In the current study however, these spots were taken to be colder than the
effective temperature so that the temperature profile close to the photosphere
1.0 ≤ r ≤ 3.5R0 may be investigated so as place constraints on the alumina
formation region, if at all, close to the star. The spots were considered to have
temperatures of 2600 K and 3000 K respectively, well within fluctuations of
about 1000 K or so, about the effective temperature [see 233]. The magnetic
field was left unchanged so that the effect of changing a single parameter
could be patently established. The solitary requisite constraint that was
placed however, was that regardless of the photospheric spot temperature,
the temperature at a distance of about 30R0 should be in the vicinity of
700 K, for silicate dust formation in the circumstellar shell at this distance.
Thus, the radial Alfvén point was left unchanged. Therefore the other free
parameter that was varied in order to achieve an efflux was the bulk gas
radial velocity at the surface, u0. The gas velocity profiles were then solved
for by integrating Eq. (4.1), above the spots located at the photosphere.
Figure 4.3 shows the temperature profiles obtained in the wind ahead of the
spots in the close circumstellar environment of Betelgeuse. The temperature
profile obtained using the effective temperature of 3650 K is also shown for
comparison as the top most blue solid line. It can be seen that the lower the
photospheric temperature, the flatter the temperature profile is, in the inner
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Figure 4.3: Temperature profile in the close circumstellar environment with
two photospheric spots of temperatures 2600 K and 3000 K. The two dashed
horizontal lines show calculated alumina condenstation temperatures from
two different models. The vertical green shaded region shows the MOLsphere
region predicted by Perrin et al (2007). Only the model with photospheric
spot temperature of T0 = 2600 K has an overlap with the MOLsphere region
for the alumina condensation temperature range.
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wind region. Thus the red solid line (T0 = 3000 K) lies below the blue solid
line (T0 = 3650 K) and above the green solid line (T0 = 2600 K).

Also shown in Figure 4.3 are two temperature bounds calculated by Ver-
hoelst et al. [209] for alumina dust condensation. The upper bound of 2400 K
is the value that they arrived at by demanding radiative equilibrium of dust
grains using the radiative transfer code MODUST, for alumina condensa-
tion. The lower bound of 1900 K on the other hand, is the temperature that
their MARCS model predicts in the region about 0.5R0 above the photo-
sphere. It is to be kept in mind however, that at such short distances, the
MARCS model may have limitations due to acoustic wave heating and the
breakdown of the assumption of local thermal equilibrium. With this caveat
in place, it can be seen that this range of temperature only occurs in the
region 2.55R0 ≤ r ≤ 3.16R0 for the model with T0 = 3650 K, indicating
the possible alumina dust condensation region. Similarly, the corresponding
range for the model with the spot of temperature T0 = 3000K places this
region to be 1.99R0 ≤ r ≤ 2.83R0. Both these regions lie well outside the
observed thin shell for the MOLsphere of 1.33R0 ≤ r <

∼ 1.5R0 [e.g. 205, 209];
shown as the green band in Figure 4.3.

It is however interesting to note, that the model for the photospheric spot
temperature of 2600 K, predicts a possible alumina condensation region of
1.37R0 ≤ r ≤ 2.37R0. This region quite interestingly, overlaps slightly with
the MOLsphere model of Perrin et al. [205]. However, it is to be remembered
that current observations do not reveal any dust in the region 1.5R0 ≤ r ≤
20− 30R0 [e.g. 209]. Thus, we see that within the framework of the hybrid-
MHD-dust-driven model presented in this study for Betelgeuse, it is possible
to form alumina dust very close to the photosphere in the region of interest;
1.33R0 ≤ r <

∼ 1.5R0, by lowering the photospheric temperature to about
2600 K. For temperatures above this, our model predicts the possible alumina
condensation region to lie further out from the photosphere and there is no
overlap between our model and the MOLsphere model of Perrin et al. [205].

Additionally, it can be seen in Figure 4.3, that temperatures predicted by
the models with photospheric spots are different at the same height above
the photosphere, in the close circumstellar environment of Betelgeuse. Thus,
the observed variability in temperature [see 218] at the same radial distance
from the photosphere can, at least in part, be attributed to the presence
of spots. The temperature profile in the wind above the spots is different
from that above normal regions. Thus, our model with equatorial spots, can
reproduce these differences in temperature, at least qualitatively, indicating

93



4.4. Results and Discussion

an asymmetric temperature distribution.
Presently, we discuss the other possible scenarios for dust formation listed

in Table 4.2. The motivation for these scenarios is the observation that
alumina dust may be present in small quantities close to the photosphere of
Betelgeuse. Therefore, one can naturally ask the question whether alumina
first forms in sufficient amounts to facilitate a slow dust-driven wind and
second, what would happen if alumina dust is subsequently destroyed at
some distance from the star? In this regard there are a few possibilities. It is
to be kept in mind that there are no observations that support the presence
of dust between ≈ 1.5R0 and about 20− 30R0 [e.g. 209]. Therefore, the first
possibility is we can assume that alumina forms in both small and sufficient
quantities close to the star (Scenarios 2a and 2b respectively), to facilitate a
slow wind, but the alumina dust is transparent until it accumulates silicates
on its surface beyond 30R0. In both these models, the assumption is that
alumina dust provides nucleation sites for silicates to form upon.

The second possibility is that alumina dust forms close to the star (in
small and large quantities; explored in Scenarios 3a and 3b respectively).
This results in a slow MHD-dust-driven hybrid wind. The dust is then de-
stroyed at around ≈ 7.53R0 due to a chromospheric component in the at-
mosphere where the temperatures are high [e.g. 219]. Note that Lobel and
Dupree [219] adopted a value for the radius of the photosphere as 700R⊙,
whereas we have adopted 650R⊙, hence we obtain the outer limit for the
chromosphere as ≈ 7.53R0 rather than 7R0. Silicate dust later condenses at
large distances ∼ 30R0. It is implicitly assumed in this model that alumina
dust is transparent so as not to reveal any dust signature between 1.5R0 and
30R0.

The third possibility is we can assume formation of alumina in the re-
gion r ≤ 1.5R0 (in small and large quantities; explored in Scenarios 4a and
4b respectively). This dust then gets destroyed at a distance of 1.5R0 due
to perhaps convective turbulence in regions closer to the photosphere and
changes in pressure or perhaps due to temperature variability in the chro-
mosphere. Whatever the reason may be, dust is not seen between 1.5R0 and
about 20− 30R0. Silicate dust later condenses at large distances.

The purpose of these scenarios is not to elaborate on the details of dust
spallation, but rather to ask the pertinent question that, within the frame-
work of the hybrid-MHD-dust-driven wind theory, is it possible to achieve an
efflux, should alumina first form and perhaps even be destroyed in the wind,
at some distance? In addition, it is to be kept in mind that for the models
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presented in Scenarios 2−4 the photospheric temperature was considered to
be T0 = 2600 K.

4.4.2 Scenarios 2 and 3: Alumina forms and has an

influence on the wind

Figure 4.4 shows both Scenarios 2 and 3 each containing two hybrid wind
models. Scenario 2 is shown in the upper panel of Figure 4.4 while Scenario 3
is shown in the lower panel. The red and green solid lines represent the dust
velocity profiles in these scenarios for small and large amounts of alumina
condensation, respectively. Similarly, the long-dashed green and red lines
represent the corresponding gas velocity profiles. Quite importantly, in Sce-
narios 2a and 2b, the numerator in Eq. (4.2) was modified to accommodate
for the two different dust species; alumina and silicates as,

N(w, x) =

(

2γST (wx
2)1−γ −

SG

x
× (1− Γalumina

d ·Θ(x− x
(1)
d )−

Γsilicate
d ·Θ(x− x

(2)
d ))

)

×(wx2 − 1)3 + SΩx
2(w − 1)

(

1− 3wx2 + (wx2 + 1)w
)

, (4.11)

where, x
(1)
d = 1.38 for alumina dust condensation and x

(2)
d = 30 for silicate

dust condensation. Thus, Eq. (4.1) is integrated as a pure WD wind in the
region R0 ≤ r ≤ 1.38R0, then with alumina dust in the region 1.38R0 ≤
r ≤ 30R0 and finally with both alumina and silicate dust in the region
30R0 ≤ r ≤ 40R0. In Scenario 2 (upper panel of Fig. 4.4) the portion of the
hybrid solution in the region 1.38R0 ≤ r ≤ 30R0 is a critical solution as it
navigates through the critical points. The portions of the solutions outside
this interval are not part of the critical solution, but rather lie elsewhere in
the u− r phase space of each of the models, respectively.

The alumina condensation radius of 1.38R0 lies in the range suggested by
Perrin et al. [205], for the thin molecular shell that contains alumina in the
close circumstellar environment of Betelgeuse. This value also lies inside the
green shaded region of Figure 4.3. The lower red solid lines in Figure 4.4,
in both the upper and lower panels, represent the dust velocity profiles for
models with formation of alumina dust in small quantities (〈δ〉 = 1/20000
). This is an order of magnitude less than what is expected for silicate
dust in the dust shell at around 30R0. Accordingly, we assumed an order
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Figure 4.4: Dust and gas velocity profiles for Scenarios 2 (upper panel) and
3 (lower panel). The dust velocities are shown using solid lines and the
gas velocities with long-dashes lines. The dust and gas velocity profiles for
the models with greater dust formation, i.e. larger Γd, lie above those with
lesser amount of alumina dust formation in the inner wind region. Scenario
2 shows influence of the presence of both alumina and silicate dust species in
the wind, whereas, Scenario 3 shows the effect of alumina spallation at the
edge of the chromosphere at 7.53R0.
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of magnitude smaller value for the dust parameter, Γd = 0.05; it is to be
mentioned that even smaller values may be adopted.

The upper green solid lines in both panels, prior to the silicate conden-
sation region, represent the dust velocity profiles for models with formation
of alumina dust in large quantities ( 〈δ〉 = 1/2000). The dust parameter was
then given by Γd = 0.5. The purpose being to explore a somewhat extreme
case in which alumina forms in large enough amounts to sustain a mild MHD-
dust-driven hybrid wind, but is transparent to observations. While such a
scenario may well be remote, we explore it for the sake of completeness.

It can clearly be seen in both Scenarios 2 and 3, as expected, that if the
dust parameter is larger, then it results in a greater acceleration of the wind
closer to the photosphere. Thus, the green lines lie above the red ones. For
smaller values of the dust parameter, on the other hand, the effect of this
acceleration due to dust, continues to have an effect out to larger distances.
As a result, the red long-dashed lines rise above the green long-dashed lines
at some distance. Ultimately the terminal velocity of the models with the
smaller value of Γd are slightly larger due to this effect.

In the upper panel in Figure 4.4, at the silicate dust condensation radius
of 30R0, we notice a discontinuity, since the silicate dust condenses as well.
The red solid line in this region corresponds to a model with parameters
Γd = Γalumina

d + Γsilicate
d = 0.05 + 0.5 = 0.55 with 〈δtotal〉 = 1/2000. Thus

Eq. (4.1) is integrated outwards from r = rd with these parameters. Similarly
the green solid line in this region in the upper panel, represents a model with
parameters corresponding to Γd = Γalumina

d + Γsilicate
d = 0.5 + 0.6 = 1.1, again

with 〈δtotal〉 = 1/2000. Notice that we have kept the dust-to-gas ratio fixed
in both cases to the same value. The silicate dust condenses from the gas
abruptly at 30R0. As a result, the discontinuity in the dust velocity across
the silicate dust condensation radius is seen in both models. However, the
jump in the velocity is much larger for the green solid line in comparison to
the red solid line as this model has a higher value of Γd for the same 〈δtotal〉.

On the other hand, in the lower panel of Figure 4.4 showing scenarios 3a
and 3b, alumina dust is assumed to form close to the photosphere, but is then
destroyed at a distance of about 7.53R0 due to a chromospheric component.
There are some rather subtle differences from Scenarios 2a and 2b and these
are detailed below.

In the lower panel of Figure 4.4, once again the lower solid red line shows
the dust velocity profile for a model with parameters Γalumina

d = 0.05 and
〈δalumina〉 = 1/20000. The upper green solid line meanwhile, represents
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the dust velocity profile for a model with parameters Γalumina
d = 0.5 and

〈δalumina〉 = 1/2000. As described earlier, the solutions start off at the base
of the wind at the photosphere, subsonic and alumina dust formation occurs
at r = 1.38R0. Thus from r = R0 to r = 1.38R0, Eq. (4.1) is integrated as
a pure WD wind without the dust parameter. It is to be mentioned that
in this region the solutions are not part of the pure WD critical solution.
Alumina dust condensation radius is shown at 1.38R0 for the two models in
this scenario. As can be seen, the model with the larger dust parameter has
a greater velocity, evidenced by the green lines lying above the red ones.

In the region 1.38R0 ≤ r <
∼ 7.53R0 the winds are hybrid MHD-dust-driven

winds and Eq. (4.1) is integrated with the presence of dust parameters for
each of the two models. In this region the solutions for the gas velocities are
parts of the critical solutions for each of the two hybrid-MHD-dust-driven
winds. Alumina dust spallation is assumed to occur at a distance of about
≈ 7.53R0 and this produces the sharp discontinuity in both the dust and gas
velocity profiles seen in the lower panel of Figure 4.4. In the region 7.53R0

<
∼

r ≤ 30R0, Eq. (4.1) is therefore integrated without the dust parameter,
i.e. as a pure WD wind, for the two models. However, the gas velocities
in this latter region, are no longer part of the respective critical solutions.
Hence, these solutions pass through only the radial Alfvén point, but not
the fast point. Thus at large distances, these solutions are sub-Alfvénic.
Therefore they constitute the so-called failed wind solutions as r → ∞. As
a result these models become theoretically non-viable as one of the primary
requirements is that the wind should be super-Alfvénic at large distances.
Thus with alumina dust spallation in between the sonic point and the radial
Alfvén point, at around 7.53R0, we see that it is not possible to sustain a
physically viable efflux.

For the sake of completeness, we have included silicate dust in Scenario
3. At a distance of 30R0 in the wind, silicate dust condensation occurs and
beyond 30R0, the wind is once more a hybrid MHD-dust-driven wind. The
dust velocities are once again calculated after the gas velocity profiles are
determined, according to Eq. (4.4). It can be seen that the gas outflow
velocity profiles for the two models cross one another at around the radial
Alfvén point. As a result the dust and gas velocity profiles in the region
r ≥ 30R0, for the model with greater amount of alumina (green dashed and
solid lines, Scenario 3b) lie slightly below the one with the lesser amount
of alumina (red dashed and solid lines, Scenario 3a). In both these models
it is assumed that silicate dust forms with a dust-to-gas ratio of 〈δsilicate〉 =
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1/2000, with Γd = 0.5.
In summary we see in the upper panel of Figure 4.4, that it is possible

to obtain a hybrid-MHD-dust-driven wind if alumina forms close to the pho-
tosphere and results in a mild wind transporting stellar material to large
distances. Silicate dust condenses at a distance of 30R0 and adds to the stel-
lar efflux. Inspecting the upper panel of Figure 4.4 reveals that the model
with a larger amount of alumina formation close to the star (Scenario 2b), is
not viable, since observations do not indicate such a large amount of alumina
close to the photosphere. In the second model (Scenario 2a) with a smaller
value of Γd, while the amount of dust may well be reasonable, current obser-
vations do not reveal any dust velocities. The only way we can reconcile this
model with observations is by assuming that the alumina dust is transparent.

In the lower panel of Figure 4.4 on the other hand, once again it is seen
that it is possible to have alumina formation at close distance, within 1.5R0

and subsequent spallation at around ≈ 7.53R0 and still achieve a solution
with the formation of silicate dust. However, as stated earlier, the gas veloc-
ity solutions are not part of the critical solution. As a result, these solutions
are sub-Alfvénic as r → ∞. Therefore, they cannot be considered to be
viable wind solutions. As a result, alumina spallation at a distance of 7.53R0

does not result in a wind, within the framework of the current steady-state
hybrid-MHD-dust-driven theory. In addition, the spallation of alumina dust
at a distance of around ≈ 7.53R0 results in the discontinuity seen in the
lower panel of Figure 4.4. Such large discontinuities are a source of con-
cern, particularly because they can lead to fluid flow instabilities and shocks.
However, this is not within the realm of investigation of the current theory,
a simple steady-state treatment. It may be possible that such instabilities
may precipitate in motion of material back towards the photosphere as is
seen by Lobel and Dupree [219]. Thus we see that scenarios 3a and 3b are
theoretically possible; however, the primary concern is that they predict sub-
Alfvénic velocities at large distances. Thus the results of Scenarios 3a and
3b cannot be completely reconciled with observations. This may well point
towards the inference that the simplest scenario discussed earlier, Scenario
1a, may well the be the most pertinent.

We now turn our attention to the final scenario before summarising the
results obtained in this study.
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4.4.3 Scenario 4: Alumina spallation close to the

photosphere

Presently, we discuss the cases where alumina dust condensation occurs in
both small and large quantities close to the photosphere and subsequent
spallation occurs at around 1.5R0; Scenarios 4a and 4b respectively. The
rationale being, that the reason why alumina dust is not seen between 1.5R0

and around 30R0 is that it gets destroyed at around 1.5R0. This is an al-
ternative to assuming that the alumina grains are transparent until they
accumulate silicates on their surfaces. The question then is whether it is
possible to achieve a hybrid outflow with alumina dust formation and spal-
lation included in the framework of the hybrid MHD-dust-driven picture. It
is to be mentioned at the very outset that the formation of alumina in both
small and large quantities was not seen to produce any appreciable influence
on the stellar efflux in this scenario. The silicate dust and corresponding gas
velocity profiles obtained were seen to be nearly identical to those shown in
Figure 5.1. Thus, formation and subsequent spallation of alumina, all within
r = 1.5R0 was not seen to be a physically relevant picture for the stellar
efflux of Betelgeuse. Nevertheless, a brief description of the calculation and
some pertinent points are conveyed below.

For Scenarios 4a and 4b it was assumed that alumina condensation occurs
at r = 1.38R0 in small and large quantities. Thus Scenario 4a has parameters
Γalumina
d = 0.05 and 〈δalumina〉 = 1/20000, while Scenario 4b has parameters

Γalumina
d = 0.5 and 〈δalumina〉 = 1/2000. From r = R0 to r = 1.38R0, Eq. (4.1)

is integrated as a pure WD wind without the dust parameter. It is to be
mentioned that these parts of the solutions are not part of the WD critical
solution. In the region 1.38R0 ≤ r ≤ 1.5R0, the winds are hybrid MHD-dust-
driven winds and Eq. (4.1) is integrated with the presence of dust parameters
for the two models. However alumina is dust is then abruptly destroyed at
a distance of 1.5R0 and therefore in the region 1.5R0 < r < 30R0 the wind
is a pure WD type of wind and Eq. (4.1) is integrated without the dust
parameter. The portion of the solution in the region 1.5R0 < r < 30R0

corresponds to a pure WD critical solution, one that passes through all three
critical points. The critical solution then carries the wind out to a distance
of 30R0 at which point, silicate condensation occurs and silicate dust grains
form. The dust and gas velocities for the two models in Scenario 4a and 4b in
the region r ≤ 1.5R0 were calculated to be miniscule; ≤ 10−10 cm/s and as a
result immeasurable and not detectable in the form of wind signatures. Thus
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in this scenario, for all intents and purposes, alumina dust condensation can
be considered to be absent in the wind as it does not produce any appreciable
effect, in which case Scenario 4 quite simply reduces to Scenario 1; the most
viable picture thus far in the discussion.

This brings us to the end of our discussion of the results obtained in this
study. In the following section, the findings are summarised.

4.5 Conclusion

In this study we presented a hybrid-MHD-dust-driven wind model for the
red supergiant Betelgeuse (α−Orionis). The model is a direct application
of our previously derived theory that consists of incorporating a dust-driven
wind with a Weber-Davis MHD equatorial wind [see 216].

Overall, the results shown above indicate that MHD effects and radia-
tion pressure on dust grains can have a complementary role to play in the
winds of supergiants such as Betelgeuse, alongside the altogether complicated
and involved physics of thermal pulsation and convection and other equally
complex phenomena such as MHD or acoustic waves.

Within the framework of the model, we investigated four different scenar-
ios for dust formation in the atmosphere of Betelgeuse. It was seen that the
simplest hybrid wind scenario; Scenario 1a, was perhaps the most viable one
as well. In this picture, a pure WD wind was assumed to begin at the surface
of the star, one that would eventually leave the star as a hybrid-MHD-dust-
driven wind after the formation of dust grains at the dust condensation radius
at around 30R0. This provided a mechanism for lifting stellar material from
the photosphere of the star up into the atmosphere while maintaining low
Mach numbers for the wind in the inner wind region. The dust formation
was assumed to occur abruptly at the dust condensation radius where the
temperature is low enough for silicate grains to condense. In our model, all
the dust grains were assumed to be perfectly spherical with identical size. It
was implicitly assumed that radiation pressure was purely in the radial direc-
tion without scattering. The opacity of the grains were implicitly assumed to
be such that all of the radiation impinging on the grains was absorbed and
imparted momentum to the grains. The resulting drag force was assumed to
be purely radial as well.

In Scenario 1a, since dust grain condensation occurs outside the fast point,
as in our earlier work [see 216], it was seen that adopting a range of values
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for the dust parameter Γd, resulted in different hybrid winds with different
terminal velocities.

It was also seen that by adopting the values for different parameters
for Betelgeuse, as given in Table 4.1, the resulting hybrid wind model is
able to rationalise several of the observed features of this red supergiant,
such as the predicted wind velocities, observed atmospheric temperatures at
different distances from the photosphere, observed region of dust formation
and temperature inhomogeneities in the circumstellar envelope.

We additionally investigated the possibility of having more than one dust
species form in the wind. Scenarios 2-4 dealt with the formation of alumina
dust close to the photosphere of Betelgeuse. We also investigated the effect
on the efflux, should alumina be destroyed at some distance. In each of these
scenarios it was seen that it was possible to form a hybrid-MHD-dust-driven
wind, however it was not possible to reconcile the predictions of these models
completely with the current observations regarding dust formation and lack
of wind signatures interior to the dust shell of Betelgeuse. In addition, we
found that for these scenarios to work, within the framework of the hybrid-
MHD-dust-driven wind theory, it was required that the surface temperature
should be around T0 = 2600 K, to overlap with recent observations for the
close circumstellar environment of Betelgeuse [e.g. 205]. Therefore, it is to be
concluded that while it may well be possible for alumina to form close to the
photosphere of Betelgeuse, it probably does not influence the wind outflow
interior to ∼ 30R0. However, it is to be remembered that the current model
is merely a steady-state treatment of an infinitely more complicated picture.
All that can be said at this stage is that the current theory seems to point
towards the simplest case; Scenario 1a, as the most likely candidate. It
is to be mentioned that the current model may play a complementary role
alongside the altogether different and complex mechanisms for stellar outflow
involving MHD or acoustic waves.

Future work will extend the modelling towards a more realistic full two- or
three-dimensional picture, concomitantly including a poloidal magnetic field
and allowing the entire system to be described dynamically with time varying
magnetic and velocity fields with convection. The final and indeed ultimate
picture would of course, be to then include the stochastic effects of dust
formation and dynamics, alongside calculation of the radiative properties of
the dust, as is done in some recent work [see 58, 234]. Realisation of this task
will ultimately explore the true nature of the outflow from Betelgeuse and
other red supergiants, which is now beyond doubt, understood to be more
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complicated than at first imagined and yet, presenting a hurdle surmountable
in steps. Perhaps the very first of those steps, is the steady-state model
described in the current study.
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Chapter 5

Is Mira a Magneto-Dusty

Rotator? †

5.1 Introduction

Mira (omicron-Ceti) is a relatively close evolved star that is in its Asymptotic
Giant Branch (AGB) infancy. It is the template upon which the class of stars
called Mira variables are based, which are characterised most strikingly, by
large-amplitude long period variability that is readily discernible. Mira itself
varies over a period of about 332 days [e.g. 235]. This variability is linked to
its process of mass-loss attributed to the complex interplay of pulsation and
convection and the concomitant effect of radiation pressure on dust grains in
its envelope [e.g. 59, 137, 145, 214].

This mass-loss is central to stellar evolution of low- and intermediate-mass
stars, from the AGB phase to the planetary nebula phase. As such, Mira has
been studied quite extensively in the literature at a variety of wavelengths,
by employing an array of different instruments. A wealth of understanding
has emerged from millimetre and sub-millimetre observations of transitions
of the CO molecule in the envelope of Mira, which have been instrumental
in probing the physical nature of outflow and the structure of the envelope
of Mira. At centimetre wavelengths, for probing the the physical processes
at short distances from the photosphere (a few stellar radii), studies of SiO
masers have proved to be crucial. These studies have provided an under-
standing of the dynamics of molecular shells around Mira and other AGB
stars. Imaging of Mira in the near infra-red (IR) and optical wavelengths
have provided tools for measuring the diameter, while mid-IR low resolution
spectra of silicate emission features have facilitated our understanding of the
physical conditions and distribution of the dust. This cumulative effort over
the past few decades has not only yielded dividends in terms of our under-

†Based on an article submitted to a journal and currently in review.
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standing of the star, but contrastingly and quite importantly, raised more
questions than those that have been answered.

Over the years, observations of Mira have revealed much about its intrigu-
ing nature. For example, Planesas et al [see for e.g. 236, 237] were among
the first to discover asymmetries in the envelope of Mira and they concluded
that a mildly collimated outflow may exist in the atmosphere of Mira. The
authors speculate that perhaps a mild or even a moderately strong magnetic
field, in the equatorial plane at the photosphere, may be responsible for pro-
ducing density enhancements in the equatorial plane needed for the observed
degree of asymmetry in the wind, without producing large effects in the over-
all structure of the envelope. Shortly thereafter, observations by Bester and
co-workers [e.g. 196, 206] found evidence for dust formation in the inner re-
gions of Mira’s atmosphere, at around 3R0, where R0 is the photospheric
radius. They were also able to estimate the dust temperature at the inner
dust radius to be around 1200 K. Around the same time, Young [see 238]
did a survey of Mira variables using CO (3-2) and CO (4-3) spectra and was
able to estimate outflow velocities. He found a value of about 4.8 km/s for
the outflow velocity for Mira’s wind, and surmised that the actual outflow
velocity was probably larger. He additionally concluded that it is likely that
even in Mira variables with small mass-loss rates, radiation pressure on dust
grains can support the wind in the inner atmosphere while at a few hundred
AU from the star there is no evidence for wind acceleration.

Elsewhere, Lopez et al [see 235] in an involved study found asphericity
and temporal variations in the dust shells of Mira using 11 µm visibility
observations. They computed both spherically and axially symmetric radia-
tive transfer models for the atmosphere of Mira in order to rationalise the
observed visibilities. They were able to model the asphericity of the atmo-
sphere using discrete shells, disks and clumps with a modicum of success.
Their findings indicate that while hot spots may modify the spatial power
spectrum, resulting in the perceived stellar elongation, it is more likely, they
conclude, that a disk in addition to a hot spot may be a more appropriate
model. Their CO maps revealed two lobes of gas, that the authors interpret
as a slow bipolar outflow, possibly resulting due to partial collimation of
high density gas in the equatorial plane, in the inner part of the molecular
envelope. In addition to this asymmetry, they also observed asymmetry in
the TiO emission in the atmosphere which they attribute to the presence
of the hot white dwarf companion star, Mira B, or possibly due to innately
inhomogeneous dust distribution in the atmosphere of Mira itself. Overall
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they modelled the observed visibility of Mira using two shells of dust, at 3R0

and at 12R0, and they found that the axially symmetric models fared better
than the spherically symmetric ones. Moreover, they found that their models
with clumps of dust were also reasonably good at rationalising the observed
visiblity of Mira. Their models with dust clumps assumed a spot probably
exists on the photosphere, in the direction of the clump.

Around the same time Knapp et al [see 239] found evidence for double
winds in not only Mira but in numerous other Mira variables, by observing
CO(2-1) and CO(3-2) line emission. They speculated that the slower com-
ponent of the double wind may be due to the resumption of mass-loss after it
has been abruptly stopped by some change in the stellar properties. For Mira
they found that the fast wind component had a velocity of about 7 km/s while
the slow wind had a velocity of about 2.5 km/s. Ryde et al [see 240, 241]
in an effort to investigate the physical phenomena in Mira’s wind at inter-
mediate distances of 100− 1000R0, carried out observations of photospheric
light scattered by vibrational-rotational transitions of the fundamental band
of CO. They were able to arrive at an estimate of the mass-loss rate of about
3 × 10−7M⊙ yr−1 and an expansion velocity of the envelope of about 2.5
km/s, in agreement with Knapp et al [see 239], however still different from
the estimates of Young [see 238]. While it is seen that observations made
utilising the line emission spectra from CO transitions, various authors ar-
rive at similar results for the expansion velocity of Mira’s envelope at greater
distances in the circumstellar environment (CSE) of Mira, there is however
not much agreement for the values of the wind velocity in the inner regions
of the wind. This situation is further complicated by the fact that in the
literature several wind driving mechanisms have been proposed such as jets
and acoustic waves etc. Nearly all the mechanisms are able to reproduce
the mass-loss and the expansion and turbulent velocities and are even able
to reproduce the radio line profiles reasonably well. As a result, as noted
by Ryde et al [see 240, 241], there is little consensus regarding the actual
expansion velocity of Mira’s envelope and even less agreement regarding the
wind in the inner wind regions. This may be understandable given the fact
that Mira itself may be undergoing non-radial pulsations [242]. In addition
to this, there may be present spots on the surface of the star that alter the
wind dynamics over the lifetime of the spot [see 127, 216, 242, 243]. Mira
B may also be interacting with the wind of the AGB star. And finally, the
dust distribution may well be asymmetric and variable over short timescales
[59, 196] further complicating observations.
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To add to the mysteries surrounding Mira, Soker and Kastner [see 244]
developed a model for flaring on AGB stars motivated by the discovery of
magnetic fields in AGB stars and X-ray observations of AGB stars [e.g. 245,
246]. They find that the X-ray observation may be attributable to magnetic
flares from Mira, but they cannot rule out the possibility that Mira B may
be the point of origin of the X-ray luminosity. Moreover, they also make the
case from their observation that it is possible that Mira B could be a low-
mass main-sequence companion [see 247], although recent evidence seems to
support that Mira B is indeed a white dwarf companion [see 248] and the
latter authors speculate that this may imply that Mira B can be the launch
site for streams, i.e., bipolar outflow. Thus, the nature of the emission and
also perhaps the efflux may well be influenced by the white dwarf companion.
Indeed the question of such companions and indeed the effect that planets
even may have on the asymmetries in the envelopes of AGB stars, has been
investigated by Soker [127, 128, 129], Soker and Harpaz [130].

Furthermore, adding to the uncertainties regarding the properties of Mira
is that it is essentially a variable star, which is of course linked to the pulsa-
tions and convection within the star itself. This, in addition to the fact that
the atmosphere is very extended makes the determination of the diameter of
the star, essentially a definition of the photosphere, rather difficult. Different
researchers arrive at various stellar diameters. For example, Perrin et al [see
249] found that by varying the opacity of the molecular layer just ahead of
the photosphere, they are able to account for the apparent changes in the
diameter of Mira. In turn, they find that the radius of the star is 346±46R0

when it is at its minimum and 358 ± 48R0 at its maximum. Accordingly,
they also find a higher stellar effective temperature (c.f. [e.g. 250, 251], who
find 464± 80R0 as the radius of Mira).

While transitions of the CO molecule have been the source of a great deal
of data for the star Mira, for gaining insight into the physical processes that
occur close to the photosphere, at a distance of a few stellar radii or so, as
mentioned earlier, SiO maser emission has proven to be the tool of choice.
For example, the continuous data obtained for the star TX Cam, by Diamond
and Kemball [see 72, 252], provided a detailed picture of the dynamics at the
base of the stellar wind, close to the photosphere. Their observations did not
reveal large scale contraction of the envelope, as was previously thought, but
rather revealed that there is more a predominant expansion, thereby giving
hints of the underlying complex phenomena at work, particularly in light
of the fact that in TX Cam, there exists a surface magnetic field of about
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5− 10 G. Following these observations, Cotton et al [253] find that the SiO
emission in Mira occurs in a ring that is only half of the diameter of the
inner dust radius. They also find that the AGB star R Aquarii seems to
be rotating with a period of about 22 yrs at the distance of the SiO maser
emission. Utilising similar data modelling and reduction techniques, Cotton
et al [82] detect possible stellar rotation in Mira with a period of 89× sin(i)
yrs, where ‘i’, is the unknown angle between the rotation axis and the line of
sight to the star. Moreover, they find that the polarization of the SiO maser
emission suggests that the magnetic field in Mira is predominantly radial and
the jet-like structures in their maser observations suggest that the magnetic
field may be elongated in the direction of the masing structure. The authors
attribute this to one of two effects; either the dynamical feature observed in
the envelope is dragging the magnetic field or, the gas is constrained to flow
along the magnetic field. In either case, they conclude that a magnetic field
is likely present in the atmosphere of Mira, at the distance of the masing
structures. This may suggest that the magnetic field in Mira may well be
similar to the magnetic fields observed in other AGB stars, where they find a
variety of magnetic field strengths, ranging from a few milli gauss to several
tens of gauss [e.g. 73, 77, 78, 254, 255]. Such field strengths suggest that
the role of magnetic fields in shaping the outflow as well as properties of
the envelope may well be non-trivial and indeed dynamically important. A
recent theoretical study by Busso et al [see 256] reveals that buoyant flux
tubes may play an important role in transport of stellar material processed
in the neighbourhood of the hydrogen burning shells in Red Giant Branch
(RGB) and AGB stars. They find that a large magnetic field on the order of
106 G is needed at the base of the cold bottom processing region, which from
simple arguments of flux conservation translates to a surface field of <

∼ 20 G,
in agreement with Herpin et al [see 73].

Thus, overall we see that there are several unanswered questions with
regard to the nature of the outflow from Mira, its extended atmosphere, and
indeed regarding the star itself. From the brief discussion of the literature
presented above, it appears that the role that magnetic fields may play in
shaping the outflow and influencing certain dynamic features of the envelope
cannot be ignored. In the current study we present a rudimentary model
integrating the effects of rotation, an equatorial magnetic field and the usual
dust-driving picture into one cohesive scenario for delineating certain aspects
of Mira’s outflow. This theory has already been successfully employed for
describing the outflow of the red supergiant star Betelgeuse (α−Orionis) [see
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243] as well as for intermediate mass AGB stars [see 216]; the work presented
here represents an extension of the theory to the low-mass end of AGB stars,
by applying it to the star Mira which is about 1.5M⊙ [e.g. 257]. The aim of
the current work is to raise the question, particularly now that stellar rotation
may have detected in Mira [see 82], that how important is the magnetic field
in the stellar outflow and can Mira be a magneto-dusty rotator, given the
current observations?

This chapter is organised as follows. Section 5.2 describes the hybrid-
MHD-dust-driven wind model in brief. A listing of the different physical
properties of Mira employed in the modelling is also given therein. The
numerical methods employed are also discussed in brief. In Section 5.3 we
present the results alongside a discussion. Thereafter a summary is provided
and implications of the current theory are discussed in Section 5.4, in the
conclusion.

5.2 Mira’s Hybrid-Wind Model

We confine our attention to an axisymmetric model in the equatorial plane
of the star. Therein, the velocity fields of the gas and the dust as well as the
magnetic field are assumed to have radial and azimuthal components. How-
ever, the azimuthal components are functions of purely the radial distance
from the star; this is the central assumption behind the canonical Weber-
Davis [see 28, hereafter WD] model for our sun. There are two fluids; the gas
which carries the magnetic field and secondly the dust, which moves through
the gas, dragging the gas with it. The two fluids are coupled by a drag term
in the usual way. The dust-to-gas ratio is kept small around ∼ 1/355 [e.g.
196] and the individual dust grains are assumed to be spherical in shape.
The gas is assumed to have a polytropic equation of state, with a polytropic
exponent γ > 1, where a value of unity represents the isothermal limit. We
assume ideal MHD where there is no Lorentz force in the fluid. The input
parameters for model of Mira’s wind are listed in Table 5.1. A steady-state
description of the gas velocity in the hybrid wind in the equatorial plane of
Mira can be written as [see 216],

dw

dx
=
w

x

N(w, x)

D(w, x)
, (5.1)
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where, w = u/uA is the gas speed normalised using the Alfvén speed and
x = r/rA, is the radial distance expressed in units of the Alfvén radius.
Hereafter, the subscript ‘A’ refers to values of the different variables at the
Alfvén radius. The quantities N(w, x) and D(w, x) are the numerator and
denominator respectively and are given by,

N(w, x) =

(

2γST (wx
2)1−γ −

SG

x
(1− Γd ·Θ(x− xd))

)

×(wx2 − 1)3 + SΩx
2(w − 1)

(

1− 3wx2 + (wx2 + 1)w
)

(5.2)

and

D(w, x) =
(

w2 − γST (wx
2)1−γ

)

(wx2 − 1)3 − SΩx
2 ×

(wx2)2
(

1

x2
− 1

)2

. (5.3)

In the above equations, the parameters ST = 2kTA

mpu2
A

, SG = GM∗

rAu2
A

and SΩ =
Ω2r2

A

u2
A

along with γ uniquely determine the locations of the critical points, and hence
the morphology of the family of solutions of Eq. (5.1). Here TA is the gas
temperature at the Alfvén radius, k is the Boltzmann constant while mp is
the mass of a proton. The presence of the Heaviside function in Eq. (5.2)
represents the formation of dust at the location x = xd. The dust velocity
profile is then given by [see 216],

v(r) = u(r) +









√

a4th + 4
(

ΓdGM∗

πa2ndr2

)2

− a2th

2









1/2

, (5.4)

where ath is the thermal speed given by ath =
√

2kT/µmu and µmu is the
mean molecular mass of the gas and nd is the dust grain number density,
which is assumed to be given by, ndmd/ρ ≈ 〈δ〉, with 〈δ〉, the average dust-
to-gas ratio in the wind. Eq. (5.1) is solved numerically on a computer
[see 216, 243]. In the following section the results are presented alongside a
discussion.
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Table 5.1: Various parameters for modelling Mira. The variable parameters
are listed as such.

Parameter Symbol Value / Comment
Mass M∗ ∼ 1.5M⊙

Radius R0 ∼ 464R⊙

Mass loss rate Ṁ ∼ 3× 10−7M⊙/yr
Surface magnetic
field strength B0 variable
Bulk surface gas
velocity (radial) u0 variable
Surface temperature (effective) T0 ∼ 2500K
Stellar rotation rate Ω 2π/[89× sin(i)] yr−1

Rotation axis angle i variable
Surface escape velocity vesc,0 3.52× 106 cm/s
Polytropic exponent γ > 1
Alfvén radius rA variable
Alfvén speed uA variable
Dust Parameter Γd variable
Dust grain radius a spherical grains
Dust grain density ρd 2.3 g/cm3
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5.3 Results and Discussion

Along with the basic ingredients of the model listed in Table 5.1, the set
of parameters {B0, u0, ua, ra, γ,Γd, i} are varied until a critical solution to
Eq. (5.1) is obtained that satisfies the following criteria.

1. The solution passes through all three critical points; the sonic point,
the radial Alfvén point and the fast point

2. The solution is continuous through the radial Alfven point.

3. The velocity profile starts at the base of the wind sub-sonic and attains
a super-Alfvénic terminal velocity at large distances

4. The temperature range in the dust condensation region (within a few
stellar radii from the photosphere) is consistent with observations.

5. The gas terminal velocity is consistent with observations.

This optimisation procedure carried out in tandem with integrating the
differential equation in Eq. (5.1) results in a picture of a hybrid MHD-dust-
driven wind for Mira as shown in Figure 5.1. The critical wind solution is
shown as the solid red line, which comprises of two parts, L1 and C2. These
two lines intersect at the dust formation radius rd, which in the current
model is located at 3R0. In the region r ≥ rd Eq. (5.1) is integrated with the
presence of the dust parameter Γd, which represents dust grain drag acting on
the gas; it is this part of the solution that is labelled C2. On the other hand,
inside r ≤ rd there is no dust and as a result Eq. (5.1) is integrated in this
latter region without the dust parameter, as a pure WD solution. This part
of the solution is labelled as L1. Thus in the region R0 ≤ r ≤ rd, a pure WD
mechanism is responsible for transport of stellar material. Together, L1+C2

forms the combined hybrid MHD-dust-driven wind. The radial Alfvén point
and the fast point lie nearly coincident upon one another; shown by the
black dashed vertical line at r ≈ 43R0. Theoretically speaking, if we assume
that dust condensation occurs at the photosphere, then we would obtain the
combined solution C1+C2 by integrating Eq. (5.1) with the dust parameter,
over the entire domain R0 ≤ r ≤ 100R0. However, in the atmosphere of
Mira, dust formation occurs at the dust condensation radius r = rd and
not at the photosphere. Therefore, inside the dust radius, r ≤ rd, the wind
starts off at the photosphere at some velocity u0, and proceeds outwards
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Figure 5.1: Hybrid wind solution is shown for Mira with parameters uA ≈
0.14vesc,0, rA ≈ 43.47R0 and for Γd ≈ 0.06 and remaining parameters as given
in Tables 5.1 and 5.2. The red solid line (L1 + C2) traces the hybrid MHD-
dust-driven wind solution for Mira. The decreasing blue solid line traces the
temperature and should be interpreted using the right hand y-axis.
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along the trajectory L1, and after dust condensation at r = rd, the solution
then switches to proceed outward along C2, rather than continue along the
unphysical solution L2.

Thus, it is seen explicitly, that without the onset of dust formation at
r = rd, there wouldn’t be any efflux fromMira, since there is only one solution
(C2) that passes through all three critical points, and emerges super-Alfvénic
at large distances. As can be seen, the gas terminal velocity is about 5km/s
in the equatorial plane, which is in reasonably good agreement with estimates
of the wind velocity of Mira [e.g. 238, 257].

The dust velocity profile is also shown in Figure 5.1 as the brown dot-
dashed line. This is computed according to Eq. (5.4), once the gas velocity
profile is known. The dust velocity is slightly larger than the gas velocity, as
expected, due to dust-driving. The red dashed line represent the azimuthal
velocity profile of the gas. This profile is typical for a magneto-centrifugal
wind. The blue solid line shows the temperature profile in the atmosphere of
Mira and should be interpreted using the right hand side axis. The photo-
spheric temperature is about 2500 K for the model shown. Finally, the green
shaded area shows the so called hybrid region. This region is bounded to the
left by r = rind ≈ 2.6R0, this is the lower limit for the inner dust radius as
given by [e.g. 196]. To the right, the hybrid region is bounded by the sonic
point of the pure WD magneto-centrifugal model. The sonic point of the
hybrid model lies at r ≈ 5.61R0; just inside the hybrid region. As seen in our
earlier study [see 216], one of the ways in which a hybrid wind is possible is
if the sonic point of the hybrid model lies within the sonic point of the pure
WD model; i.e., rs < rWD

s . Moreover, the dust formation radius must also
then lie inside r ≤ rs. The temperature in the hybrid region can be inferred
from the temperature profile shown, to be about 1000 <

∼ T <
∼ 1300 K, which

is well within the observed range of temperatures at this distance from the
star [e.g. 196, 206, 235, 249].

Finally the optimised values for the different variable parameters in the
model are given in Table 5.2. Notice that the surface radial magnetic field
at the photosphere is obtained to be about 4 G, which is within the range of
field strengths estimated by Herpin et al. [73] and Busso et al. [256] for AGB
stars.

Presently, we turn our attention to the question of hot spots on the pho-
tosphere of Mira, and the related question of the influence of the spot on
the stellar wind, ahead of the spot in the atmosphere. Figure 5.2(a) shows a
hybid MHD-dust-driven wind model where the photospheric temperature is
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increased to about 2700 K. However, in this second model instead of formu-
lating a hybrid wind model as before, with dust formation occurring within
the sonic point, we chose a different scenario. Our motivation here was to
investigate the possibility regarding dust formation at around 12R0, at which
distance [e.g. 235] model a second dust shell. Within the framework of the
current theory, we found that the only way to have a viable wind scenario
with dust formation at this distance, was by collocating the dust formation
radius with the radial Alfvén point. However, in this case, as can be seen
from Figure 5.2, the solution is not continuous through the radial Alfvén
point. In this scenario, the solution need not be continuous at r = rA as this
also happens to be the dust formation radius, hence a discontinuity in the
solution is allowed.

In Figure 5.1 it can be seen that the temperature at the left bound of
the hybrid region (r = rind = 2.6R0) is about 1313 K. This same temperature
is calculated to be at a distance of about 2.9R0 in Figure 5.2. Thus, ahead
of a hot spot in the atmosphere, the viable dust formation region moves
further out from the photosphere, as would be expected. In Figure 5.2 the
temperature at the sonic point is seen to be about 876 K. Thus the range
of temperature in this model is similar to that for the hybrid region in Fig-
ure 5.1, therefore it is still possible to formulate a hybrid wind scenario with
dust formation occurring within the sonic point, as was shown in Figure 5.1.
However, as mentioned earlier, in the current model our goal is to locate a
second dust shell outside the sonic point at around 12R0 [see 235] and not
within it.

In this scenario, with a short-lived hot spot on the photosphere, the tem-
perature in the gas is about 800 K at the radial Alfvén point (r = rA). Thus,
the observed temperature for the dust of about 600 K at this distance is quite
feasible [e.g. 235]. Overall, for the lifetime of the hot spot, it is possible to
sustain a hybrid wind with dust forming at 12R0. A pure WD mechanism
transports stellar material from the photosphere, through the sonic point
and out to the radial Alfvén point. After dust formation at this location,
the MHD-dust-driven wind then negotiates its way through the remaining
critical point; the fast point and leaves the star super-Alfvénic. Comparing
Figure 5.2(a) with Figure 5.1 reveals that hybrid model is quite sensitive to
changes in the photospheric temperature and the magnetic field. For the
model shown in Figure 5.2, the surface radial magnetic field strength was
found to be ≈ 1.15 G. The dust parameter (Γd) was found to be about 0.1;
a little higher than in the previous model (c.f. Table 5.2). With these pa-
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Figure 5.2: (a) Hybrid wind solution is shown for a scenario with a hot spot
at the photosphere of Mira. This model has parameters uA ≈ 0.15vesc,0,
rA ≈ 29.21R0 and Γd ≈ 0.1 and remaining parameters as given in Table 5.1.
The surface magnetic field was found to be B0 ≈ 1.15G. The decreasing blue
solid line traces the temperature and should be interpreted using the right
hand y-axis. (b) Gas velocities obtained by perturbing the solution in the
vicinity of rA and (c) the corresponding dust velocities.
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rameters, the terminal wind velocity is also concomitantly higher, at around
11 km/s in the equatorial plane. In comparison to the time for one stellar
rotation, since the hot-spot would be short-lived, so too would be the wind
ahead of the spot in the atmosphere.

In this regard, there are some concerns that are inherited from collocating
the dust formation and radial Alfvén points. In the main, dust formation
and growth is a stochastic process that is not completely understood. Par-
ticularly, for the wind ahead of a short-lived hot spot in the atmosphere, the
physical processes may be quite dynamic over time-scales comparable to the
spot lifetime. As a result small changes in the wind velocity in the vicinity
of the radial Alfvén point can result in a drastically different wind velocity
profile and indeed the wind may not be able to navigate through the fast
point. This is shown in Figure 5.2(b) and (c). We have perturbed the gas
velocity by a small amount (<∼ 0.01%) ahead of the radial Alfvén point and
then integrated the perturbed solution outwards. Figure 5.2(b) shows the
unperturbed solution as the red solid line and the perturbed wind solutions
as the dashed lines. We see that this perturbation of the gas velocity results
in the wind becoming either a failed wind, where it does not pass through
the fast point (the dashed lines below the solid red line) or the wind becomes
an unphysical double valued wind (dashed lines above the the red solid line
that form loops). In either case, this suggests that minor perturbations of
the wind velocity around the radial Alfvén point will drastically change the
nature of the outflow. Figure 5.2(c) shows the corresponding dust veloc-
ity profile for both the unperturbed and the perturbed solutions. Should
the dust follow any of the perturbed trajectories then it will not leave the
star and can lead to instabilities in the flow. Therefore, while it is possible
that in the atmosphere of Mira, conditions ahead of a mild hot spot may
result in a hybrid wind with dust formation at around 12R0, these condi-
tions would be limited by the life-time of the spot, and as such cannot be
classified as steady-state, even when compared to the stellar rotation time.
Such a localised phenomenon ahead of a hot spot may be able to account
for clumpiness of the dust distribution and even spatially distinct dust shells
around Mira [e.g. 235]. We shall end this discussion by cautioning the reader
that fully dynamic 2- or 3-D modelling would be needed for establishing the
importance of such dynamic short time-scale phenomena, which cannot be
entirely gleaned from the simplistic theory presented here. Presently, the
conclusions of the current work are summarised in the following section.
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Table 5.2: Optimised values of the variable parameters for the star Mira.

Parameter Value

B0 ≈ 4.11 G
u0 ≈ 5.89× 10−6 km/s
uA ≈ 4.93 km/s
rA ≈ 43.47R0

γ ≈ 1.06
Γd ≈ 0.06
i ≈ 26.60◦ ≈ 0.46 rad

5.4 Conclusion

In this letter we have modelled the stellar wind of Mira as a hybrid MHD-
dust-driven wind. The study was motivated largely by hints of the discovery
of a magnetic field in the star in addition to a possible detection of stellar
rotation.

Since the surface magnetic field strength as well as the rotation rate are
not exactly known, these along with a few other physical parameters such
as the dust parameter (Γd) were treated as variable parameters that were
fine-tuned, in order to arrive at a suitable stellar wind model for Mira. We
obtained a stellar wind with a terminal velocity of about 5 km/s in the
equatorial plane. This value for the wind velocity is in agreement with current
estimates. The stellar effective temperature was taken to be about 2500 K
and we obtained a surface magnetic field of about ≈ 4 G, in reasonably
good agreement with current estimates. We also arrived at an estimate for
a hybrid region in the inner atmosphere of Mira. This region depicts the
range of distances at which dust condensation can occur in order to produce
a hybrid wind. The temperature profile obtained for this hybrid region is
consistent with models of the atmosphere of Mira.

For the purpose of modelling dust shells around Mira at several stellar
radii, we employed a model of a hot-spot that alters the wind dynamics
ahead of the spot in the atmosphere. With this we were able to show that it
may be possible to facilitate dust formation at around 12R0 by collocating
the dust formation and radial Alfvén points, resulting in a hybrid wind.
However, since such a spot may be short-lived the dust and gas velocities in
the vicinity of the radial Alfvén point are likely to change over short time-
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scales and can result in failed wind solutions, if not dynamic instabilities,
thereby forming localised regions of dusty clumps, or even distinct shells
with slightly enhanced dust density.

It is however to be remembered, that the current model is an idealised
steady-state description of an infinitely more complicated and dynamic prob-
lem. As such, the results obtained here only convey the possibility, that Mira
may be a magneto-dusty rotator. However, without doubt, dynamic multi-D
modelling of its wind is required for obtaining ultimately, a truer description
of the nature of its efflux and of its atmosphere.
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Chapter 6

A Two-Dimensional

Pseudospectral Hartree-Fock

Method for Low-Z Atoms in

Intense Magnetic Fields †

In the previous chapters we have developed a theory for dust-driven winds
with the inclusion of magnetohydrodynamic effects, in the envelopes of cool
red giant stars and AGB stars. It was seen that these objects can harbour
magnetic fields that can have an influence on the winds. In the current chap-
ter however, we turn our attention to a different but related question. The
objects described in the previous chapters at the end of their evolution will
form compact objects; likely a neutron star for the red supergiant Betelgeuse
and a white dwarf star for the low-mass AGB star Mira, and likewise for
the intermediate-mass AGB stars described in Chapter 3. It is possible that
these objects can be magnetised like their progenitors, however with much
larger fields.

With large magnetic fields, the energy levels of atoms are greatly altered
from their field-free configurations. This presents a difficulty when trying to
interpret the spectra of such objects. For doing so, we would require accurate
estimates of the energy levels of different atoms in strong and intense mag-
netic fields. In intense magnetic fields the spherical symmetry of the atom
is broken and the electrons’ interaction with the magnetic field becomes al-
most or even greater in magnitude, in comparison to their interaction with
the nucleus. The loss of spherical symmetry implies that the quantum num-
bers required to describe the different electronic states in atoms, are now

†Based on an article submitted to a journal and currently in review. The material
presented here additionally borrows from A. Thirumalai & J.S. Heyl, Phys. Rev. A, 79,
012514 (2009), c© The American Physical Society and from J.S. Heyl & A. Thirumalai,
MNRAS, Vol. 407(1), pp. 590−98, 2010. c© Jeremy S. Heyl & Anand Thirumalai.

120



6.1. Introduction

changed as well. Studies of atoms in intense magnetic fields are scarce and
only the energy levels of a few of the lowest-lying states are known, and
even then, the accuracy of these upper bounds for the energies can be im-
proved. The method of calculation of the energy levels in such a case is a
non-perturbative method; the Hartree-Fock technique. Many of the modern
methods for solving the problem of atoms in strong and intense magnetic
fields are computationally intensive or they resort to several approximations
that render the implementation lengthy and often cumbersome.

The work described in the current chapter concerns itself with formulating
a straight-forward solution of the above mentioned two-dimensional Hartree-
Fock problem. The motivation is to develop a compact atomic structure
software capable of computing energy levels of atoms to a high degree of
accuracy in a matter of minutes. Such a software can be readily integrated
into atmosphere models of magnetised white dwarf stars and neutron stars,
as it is does not come with the accompaniment of any great computational
overhead. Presently, an introduction to the field of atomic structure in strong
magnetic fields is provided and in later sections, the method of solution of
the problem is described in detail.

6.1 Introduction

The motivation to study atoms in magnetic fields of strength beyond the
perturbative regime is attributable in a large part, due to the discovery of
such fields being present in white dwarf stars [e.g. 68, 258, 259] and neutron
stars [e.g. 69, 70]. The most commonly observed neutron stars - pulsars,
have been observed to have magnetic fields on the order of 107 - 109T [e.g.
83]. Magnetars [e.g. 260], which are strongly magnetized neutron stars, can
have magnetic field strengths well in excess of 109T. White dwarf stars on
the other hand have somewhat less extreme fields, albeit still high, ∼ 102 -
105T [e.g. 83]. Many of the recycled millisecond pulsars can have fields as low
as 104 T, [see 261], which is still a large field. At such high field strengths,
a Zeeman-type perturbative treatment of the field [e.g. 262] is not possible.
The structure of atoms is considerably altered from the low field case.

The problem of atoms in magnetic fields has been tackled by various re-
searchers since the 1970’s using a variety of different methods. In the litera-
ture, there exist numerous studies of hydrogen [e.g. 263–272] and many recent
studies of helium [e.g. 89, 273–290] atoms in strong magnetic fields. There
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have also been studies conducted for molecules and chains of atoms for both
hydrogen and helium atoms in strong to intense magnetic fields [e.g. 291–
298]. Moreover, our recent investigation [e.g. 88] using single-configuration
Hartree-Fock (HF) theory [e.g. 91] was seen to yield accurate upper bounds
for the binding energies of hydrogen and helium in strong magnetic fields.
Our later study [see 92], obtained accurate binding energies for helium and
lithium atoms in strong magnetic fields. The numerical method employed in
the latter study was seen to yield considerable dividends, in terms of reducing
the computational time for the solution of the problem. The atomic struc-
ture code provided therein is readily portable and could easily be included in
existing atmosphere models of neutron stars and white dwarf stars, without
much computational expense. Presently, the reader is referred to Ref. [e.g.
88] for a short chronological review of both one- and two-electron systems in
strong magnetic fields.

In sharp contrast to these somewhat simpler systems, there is very lim-
ited work available in the literature for atoms with more than two electrons.
A brief chronological review of the topic is provided herein. One of the first
studies to investigate atoms in intense magnetic fields, in particular the iron
atom, was by Flowers et al [e.g. 299] in 1977. This variational study extended
the work due to the authors in Ref. [300] and obtained binding energies of
iron atoms and condensed matter in magnetic fields relevant to neutron stars.
Errors in this study were later corrected by Muller [e.g. 301]. Other meth-
ods included density functional studies [e.g. 302, 303] and also employed the
Thomas-Fermi-Dirac method [e.g. 304, 305] for estimating binding energies
of atoms in intense magnetic fields. The first comprehensive HF studies of
atoms with more than two electrons were carried out by Neuhauser et al [e.g.
306, 307] for magnetic fields greater than 108T, thus being directly relevant to
neutron stars. Elsewhere, HF studies of atoms and molecules in intense mag-
netic fields were conducted by Demuer et al [e.g. 308], with results consistent
with previous findings. All of the above treatises, Refs. [299–308], concern
themselves with magnetic fields in excess of 108T, well into the so-called in-
tense magnetic field regime. At these field strengths, the interaction of the
electron with the nucleus of the atom becomes progressively less dominant, in
comparison to its interaction with the field itself. One of the first studies to
carry out a rigorous HF treatment of atoms with more than two electrons in
strong or intermediate field strengths was Ref. [89]. Therein, they obtained
estimates of the binding energies of a few low-lying states of lithium and car-
bon atoms, in low to strong magnetic fields. Elsewhere, Ivanov [e.g. 309] and
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Ivanov & Schmelcher [e.g. 288, 289, 310–313], have over recent years, carried
out detailed HF and post-HF studies of atoms with more than two electrons
using a numerical mesh-method for solving the unrestricted HF equations
[e.g. 288]. The special meshes were so constructed as to facilitate finite-
difference calculations in a two-dimensional domain using carefully selected
mesh node points [e.g. 314]. They were able to ascertain the binding energies
of the first few low-lying states of low-Z atoms such as lithium, beryllium
and mid-Z atoms such as boron and carbon etc., using this method. More-
over, using a gaussian basis of functions for expressing the wave functions of
the electrons [e.g. 281–287], adopting a full configuration-interaction method,
Al-Hujaj & Schmelcher [e.g. 90, 315] have been able to estimate the bind-
ing energies of lithium and beryllium atoms in strong or intermediate mag-
netic fields, thereby improving upon previously obtained results. The sodium
atom in a strong magnetic field has also been studied by Gonzalez-Ferez &
Schmelcher [e.g. 316] with estimates of binding energies for the same. Else-
where, low lying states of the lithium atom have also been studied in strong
magnetic fields using a configuration-interaction method, employing the so-
called freezing full-core method both with [e.g. 317] and without [e.g. 318]
correlation between electrons. Recently, Medin & Lai [e.g. 294, 295] have
also studied atoms and molecules and infinite chains of condensed matter in
magnetic fields greater than 108T, using density-functional-theory. Mori et al
[e.g. 279, 280] have studied mid-Z atoms in strong to intense magnetic fields
using perturbation theory as well, obtaining results consistent with previ-
ous findings. Finally, as mentioned earlier, recent work on the lithium atom
using a single-configuration HF calculation employing spectral methods for
solution yielded accurate eigenvalues and eigenvectors of low-lying states in
strong or intermediate magnetic field strengths [e.g. 92]. The method was
seen to be computationally more economical than conventional HF solution
methods using either finite-element techniques [e.g. 88] or finite difference
methods [e.g. 83].

In the literature, there are very few studies of atoms with more than two
electrons in strong magnetic fields. The methods developed for the determi-
nation of binding energies are either very involved such as Quantum Monte-
Carlo and configuration-interaction techniques using different basis functions,
or they are computationally demanding such as numerical mesh-methods
and finite-element techniques. Configuration-interaction (CI) methods rely
upon determining the expansion coefficients and assume that the individual
electron wave functions are already pre-determined from essentially several
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single-configuration calculations, i.e., the orbitals are not optimized during
the calculation. A variant of post-HF methods that optimizes the orbitals
in addition to the expansion coefficients is the so-called Multi-Configuration
Hartree-Fock (MCHF) method [e.g. 319]. Both these post-HF methods yield
considerable improvements with regard to the estimates of the upper bounds
for the energies of various states. In the intermediate range of magnetic field
strengths, where both the nucleus of the atom and the magnetic field have
interactions with the electrons that are approximately equal in magnitude,
the single configuration approximation then becomes increasingly ineffective
with greater number of electrons. However, these methods are computation-
ally more intensive than a single configuration calculation. Thus far, the most
accurate CI methods involve decomposing the wave functions into a Gaussian
basis set relying upon separation of variables in cylindrical coordinates [e.g.
90, 315]. These methods do however require a large set of basis functions. On
the other hand, MCHF methods would require fewer basis functions, as the
orbitals get optimized during the computation with the coefficients [e.g. 319].
The separation of variables and/or basis decompositions speed up the com-
putation in these post-HF methods considerably. However, there do not exist
hitherto, any fully two-dimensional (2D) post-HF studies of multi-electron
atoms in intense magnetic fields. This is partly due to the computational
overhead associated with adopting a fully two-dimensional picture. Central
to the development of such a method would be the fast and accurate compu-
tation of the single-configuration problem in a full 2D framework without any
basis expansions and separation of variables. Wave functions so determined
could be used directly in 2D configuration-interaction calculations or the
problem could be cast into a MCHF framework. In the latter, the orbitals
within each configuration could be optimized as the calculation proceeds.
Such post-HF studies would yield more accurate data for the structure of
atoms in intense magnetic fields. The aim of the current study is to facilitate
this larger goal, by providing a fast and accurate solution of the full 2D single
configuration problem of atoms in intense magnetic fields.

The method outlined in the current study is an extension of the method
developed in our two previous studies Refs. [88, 92]. The framework does not
make any assumptions of basis functions and neither is it restricted to the
adiabatic approximation. The computations are seen to be readily extend-
able to arbitrary field strengths and atoms with greater number of electrons.
The overall algorithm of solution using pseudospectral methods is also com-
putationally straightforward to implement and has already been seen to yield
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considerable dividends in terms of computational time [e.g. 92]. Obtaining
accurate estimates of the energy levels of atoms, in particular low-Z atoms,
in strong and intense magnetic fields will ultimately facilitate a proper un-
derstanding of the spectra of neutron stars and white dwarf stars. Thus the
central aim of the current work is to provide accurate estimates of the binding
energies of the first few low-lying states of the simplest low-Z atoms; helium
and lithium, in strong and intense magnetic fields using an unrestricted two
dimensional single-configuration pseudospectral method. Our subsidiary goal
is to additionally provide a computationally efficient and economical software
that could be directly integrated into atmosphere models of neutron stars.

6.2 The HF Equations

We shall begin with the generalised single-configuration HF equations for an
atom with ‘ne’ electrons and nuclear charge ‘Z’, in a magnetic field that is
oriented along the z-direction. A derivation of the single-configuration HF
equations can be found in our earlier work [see 88], here we shall present only
the salient points. We shall be using cylindrical coordinates as the geometry
of atoms in strong magnetic fields is more easily described in this basis. We
shall employ a single configuration methodology, as a result the wave function
of the electrons can be expressed using a single Slater determinant as,

Φ = Ane

(

ψ̃1, ψ̃2, ψ̃3, ..., ψ̃ne−1, ψ̃ne

)

, (6.1)

where Ane
is the anti-symmetrization operator. The individual electronic

wave functions ψ̃i are given by,

ψ̃i = ψi(ρi, zi)e
imφiχi(si), (6.2)

where i labels each of the ne electrons. The two-dimensional single particle
wave functions ψi(ρi, zi) are taken to be real functions. The spin part of the
wave function is given by χi(si).

The single configuration HF equation can then be written in cylindrical
coordinates as shown in Eq. (6.3). Here the length scale is in units of Bohr
radii and the energy is scaled in units of Rydberg energy in the Coulomb
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potential of charge Ze (see below for definitions).

[

−∇2
i,(ρi,zi)

+
m2

i

ρ2i
+ 2βZ(mi − 1) + β2

Zρ
2
i −

2

ri

]

ψi (ρi, zi)

+
2

Z

∑

j 6=i

[ΦDψi(ρi, zi)− αEψj(ρi, zi)] = ǫiψi (ρi, zi) , (6.3)

where i, j = 1, 2, 3, ..., ne and ri =
√

ρ2i + z2i . The differential operator in
Eq. (6.3) above is ∇2

i,(ρi,zi)
≡ (1/ρi)∂/∂ρi(ρi∂/∂ρi)+∂

2/∂z2i . Integration with
respect to the azimuthal coordinate, φ, has already been carried out, prior to
writing the result in Eq. (6.3) above. The contribution due to electron spin
has also similarly been averaged out a priori. The total Hartree-Fock energy
of the state is given by

εtotal =
∑

i

ǫi −
1

2

2

Z

∑

j 6=i

[〈ψi(ρi, zi)|ΦD|ψi(ρi, zi)〉 − 〈ψi(ρi, zi)|αE |ψj(ρi, zi)〉] .

(6.4)
The direct and exchange interactions are determined according to the method
outlined in Ref. [88], as the solutions of the elliptic partial differential equa-
tions for the potentials given respectively by,

∇2
iΦD = −4π|ψj(ρi, zi)|

2 (6.5)

and
[

1

ρi

∂

∂ρi

(

ρi
∂

∂ρi

)

−
(mi −mj)

2

ρ2i
+

∂2

∂z2i

]

αE(ρi, zi) = −4πψ∗
j (ρi, zi)ψi(ρi, zi).

(6.6)
In the current study, we have chosen to work in units of Bohr radii along

with the definitions given below. The Bohr radius for an atom of nuclear
charge Z is given by aB/Z, where aB = ~/αmec is the Bohr radius of the
hydrogen atom. The magnetic field strength parameter βZ , is given by the
expression βZ = B/(Z2B0), where B0 is the critical field strength at which
point the transition to the intense magnetic field regime occurs [see 83].
This is defined as B0 = (2α2me

2c2)/(e~) ≈ 4.70108× 105T. Thus, beyond a
value of βZ ≈ 1, the transition to the intense magnetic field regime occurs
and the interaction of the electron with the nucleus becomes progressively
less dominant as βZ increases. The energy parameter of the ith electron is
defined as ǫi = Ei/(Z

2E∞), with E∞ = 1
2
α2mec

2, the Rydberg energy of
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the hydrogen atom. For brevity we shall refer to the units of energy as
EZ,∞, which should be remembered as the Rydberg energy in the Coulomb
potential of charge Ze. The quantity α = e2/(4πǫ0~c) ≈ 1/137 is the fine
structure constant. In the current study, all the physical constants were used
in SI units. Additionally, the magnetic field B, is taken to be in units of
Tesla. The above written Eq. (6.3) represents the N -coupled Hartree-Fock
equations in partial differential form for an N -electron system with nuclear
charge Z. The system of equations is solved iteratively; see Section 6.4 for
the numerical details.

Based upon the above definition of βZ , it is convenient to classify the
field strength [see 320] as low (βZ ≤ 10−3), intermediate, also called strong
(10−3 < βZ ≤ 1) and intense or high (1 < βZ <∞). It is immediately evident
upon inspection that Eq. (6.3) is a set of coupled non-linear partial differential
equations. The equations are coupled through the exchange interaction term
between the electrons. Presently, we shall describe in detail, the numerical
methodology developed in the current study.

It is to be mentioned in this regard, that in the current study we shall only
be concerned with fully spin-polarised states (FSP), in other words all the
electrons of the atom are assumed to be anti-aligned with the magnetic field.
Such states have an exchange interaction between the electrons providing an
extra coupling term in the HF equations, αE . Additionally, the FSP states
are the seen to be the most bound states in increasing magnetic fields in the
intense field regime. The extension to partially spin-polarised configurations
is easily achieved by eliminating the exchange term in the HF equations.

6.3 The Pseudospectral Approach

The HF equations collectively given by Eq. (6.3) above, describe a coupled
eigenvalue problem. The atomic state function consists of a single Slater
determinant that describes the wave function. The numerical solution of the
coupled equations in Eq. (6.3) proceeds via the so-called self consistent field
(SCF) method due to Hartree [see 91].

First we find a solution to the hydrogenic problem; Eq. (6.3) without the
direct and exchange interactions. This allows us to obtain an initial estimate
for the wave functions. Second, using these estimates the elliptic partial
differential equations for the direct and exchange interaction potentials in
Eqs. (6.5) and (6.6) are solved. With these potentials now obtained, the cou-
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pled HF problem including the direct and exchange interactions in Eq. (6.3),
is solved as a full non-linear eigensystem. The eigenvalues obtained are the
individual particle energies ǫi and the normalized eigenvectors are the wave
functions, ψi(ρi, zi). The SCF iterations then proceed with the updated elec-
tron wave functions and the steps from the second step described above, are
repeated until convergence.

Central to the entire scheme is the method of solution of the partial dif-
ferential equations. For a numerical solution of the above scheme, we employ
a discretization based on a pseudospectral approach as described in an earlier
study [see 92]. In contrast to our earlier work, in the current study we employ
a cylindrical coordinate system. As a result the methodology for setting up
the problem is considerably different from that described in Ref. [92]. This
section is arranged as follows. First we describe the methodology employed
for solving the hydrogen atom using pseudospectral methods in cylindrical
coordinates. Particular emphasis is placed on the implementation of bound-
ary conditions. Thereafter, the treatment is extended to the particular case of
the helium atom in a single configuration and a generalization of the scheme
is then provided for greater than two electrons.

6.3.1 The Hydrogenic Problem

We begin with the Hamiltonian for the hydrogenic problem (single-electron)
in a strong magnetic field,

[

−

(

1

ρi

∂

∂ρi

(

ρi
∂

∂ρi

)

+
∂2

∂z2i

)

+
(mi)

2

ρ2i

+β2
Zρ

2
i −

2
√

ρ2i + z2i

]

ψi (ρi, zi) = ǫiψi (ρi, zi) . (6.7)

The solution of the eigenvalue problem in Eq. (6.7) yields the individual
electron energies and wave functions in a given configuration. The wave
functions thus obtained form the initial guess to begin the Hartree-Fock
iterations. The domains of both the radial and the axial coordinates are
0 6 ρ, z < ∞. The problem maintains azimuthal symmetry and thus, a
solution of Eq. (6.7) in this domain, when reflected about the z = 0 plane
(respecting z−parity of course) and revolved about the z-axis through 2π,
gives the solution in three-dimensional cylindrical coordinates.
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First the semi-infinite domains are compactified using the transforma-
tions,

xi = 2 tanh (ρi)− 1 (6.8)

and
yi = 2 tanh (zi)− 1. (6.9)

This ensures that the semi-infinite domain is mapped from [0,∞)⊗ [0,∞) to
[−1, 1]⊗ [−1, 1]. There are several mappings that can be carried out to solve
the problem of the hydrogen atom without a magnetic field. The interested
reader is referred to Ref. [see 321] for a treatise on different choices of map-
pings for carrying out radial integrals. In the current study however, we are
opting to follow a procedure that allows us to formulate a method based on
collocation using Chebyshev-Lobatto points. The mapping described above
allows us to employ the zeros of the Chebyshev-Lobatto polynomials as the
collocation points which lie in the domain [−1.1]. With the transformations
given in Eqs. (6.8) and (6.9), we can re-write Eq. (6.7) as

[

−
1

4

(

3− x2 − 2x
)2 ∂2

∂x2
−

1

2

(

3− x2 − 2x
)

×

(

[

tanh−1

(

1 + x

2

)]−1

−1 − x)
∂

∂x
−

1

4

(

3− y2 − 2y
)2 ∂2

∂y2
+

1

2

(

3− y2 − 2y
)

(1 + y)
∂

∂y

+ (mi)
2

[

tanh−1

(

1 + x

2

)]−2

+ β2
Z

[

tanh−1

(

1 + x

2

)]2

−
2

√

[

tanh−1
(

1+x
2

)]2
+
[

tanh−1
(

1+y
2

)]2



ψi (x, y) = ǫiψi (x, y) ,

(6.10)

where, we have dropped the subscripts on the coordinate labels. The dis-
cretisation points are thereafter taken to be the commonly used Chebyshev-
Lobatto points [see 92, 322, 323] given by

xj , yj = cos (πj/N) , (6.11)

where j = 0, 1, ..., N . As is customary, we employ monic polynomials of
degree N as the cardinal functions to interpolate between these points and
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are given by [see 92, 322],

pj(x) =
1

aj

N
∏

k=0
k 6=j

(x− xk), (6.12)

with

aj =
N
∏

k=0
k 6=j

(xj − xk). (6.13)

Derivatives of these interpolating polynomials at the discretisation points
then yield the so-called Chebyshev differentiation matrix, whose elements
are given by,

Dij =
1

aj

N
∏

k=0
k 6=i,j

(xi − xk) =
ai

aj(xi − xk)
(i 6= j) (6.14)

and

Djj =
N
∑

k=0
k 6=j

(xj − xk)
−1 (6.15)

With the differentiation matrices thus formed, it is possible to write down
a differential equation in matrix form as follows. Consider the differential
equation,

d2

dx2
u(x) = f(x). (6.16)

This can be written using the Chebyshev Differentiation matrix as,

N+1
∑

k′=1

D2
j′k′p(xk′) = f(xj′) j′ = 1, ..., N + 1, (6.17)

where D2 is the square of the matrix D and p(x) is the polynomial inter-
polant approximating the solution u(x). In Eq. (6.17) j′ and k′ refer to rows
and columns of the matrices and vectors and hence start from 1 rather than
0 as in Eq. (6.11). Using this matrix formulation, it is then possible to write
more complicated differential equations as matrix equations [see 92, 322],
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provided the domain has been suitably compactified to [−1, 1]. The differ-
ential equation in Eq. (6.16) has thus been converted to a discrete equation
with an operator (a matrix) acting upon a vector. A simple solution (u) of
the above equation can then be obtained by multiplying both sides from the
left with the inverse operator, (D2)−1, once appropriate boundary conditions
have been imposed.

To illustrate, let us consider the simple case of applying a zero or null-
type Dirichlet condition at the end points of the domain (x = −1, j = N and
x = 1, j = 0). This implies that we are fixing the values at the end points
to zero, i.e., u(xk′=1) = 0 and u(xk′=N+1) = 0 in Eq. (6.17). Therefore the
first and the last equation in Eq. (6.17) vanish identically. Thus, the first
and last columns of the matrix D2 can be discarded as they multiply with
u(xk′=1) = 0 and u(xk′=N+1) = 0, respectively. Similarly, the first and last
rows of the matrix D2 can also be discarded as we are ignoring both the first
and the last equation in Eq. (6.17) as f(xk′=1,N+1) = 0. Therefore the effect
of imposing Dirichlet conditions at the end points has the effect of trimming
the working matrix by removing appropriate rows and columns. Let us define
this trimmed version of the Chebyshev Differentiation matrix as D̃j′k′. The
trimmed matrix has indices labelled j′, k′ = 2, ..., N . Thus the solution in
the interior of the domain xj′=2,...,N can be found according to

p(xj′) =
N
∑

k′=2

(D̃2)−1
j′k′f(xk′) j′ = 2, ..., N, (6.18)

where (D̃2)−1 is the inverse of D̃2, which has a low condition number. The
vectors p(x) and f(x) are explicitly given by,

p =





















p(x2)
p(x3)
.
.
.

p(xN−1)
p(xN)





















f =





















f(x2)
f(x3)
.
.
.

f(xN−1)
f(xN)





















(6.19)

Notice that the vectors p and f also have indices running from 2 to N since
the first and last rows have been removed due to the imposition of null type
Dirichlet boundary conditions. On the other hand, if the Dirichlet conditions
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were of the fixed variety with u(xk′=1) = a and u(xk′=N+1) = b, then we can
write Eq. (6.17) as

N
∑

k′=2

D̃2
j′k′p(xk′) = f(xk′)− aD2

j′,1 − bD2
j′,N+1

(j′ = 2, ..., N). (6.20)

In this case, the solution in the interior of the domain xj′=2,...,N can be written
as,

p(xj′) =

N
∑

k′=2

(D̃2)−1
j′k′(f(xk′)− aD2

j′,1 − bD2
j′,N+1)

(j′ = 2, ..., N). (6.21)

It is then immediately evident that if a = b = 0, then we recover Eq. (6.18).
Neumann-type boundary conditions are handled in a similiar manner by

extending Eq. (6.21) using the differentiation matrix D [see 324]. For ex-
ample, if we wish to solve Eq. (6.17) subject to the boundary conditions
that u(xk′=N+1) = 0 and u′(xk′=1) = 0, then we can re-write Eq. (6.20) by
replacing b = 0 and a = p(xk′=1), the latter is unknown a priori ;

N
∑

k′=2

D̃2
j′k′p(xk′) = f(xk′)−D2

j′,1p(xk′=1)

(j′ = 2, ..., N). (6.22)

Putting E = D̃2
j′k′ , with j′, k′ = 2, ..., N and E0 =

[

D2
2,1, D

2
3,1, ..., D

2
N,1

]

, we
can re-cast Eq. (6.22) in matrix form as,

Ep = f− E0p(x1) (6.23)

However, since u′(xk′=1) = 0 it implies that the derivative of the solution at
the x = 1 boundary must vanish. We can write this condition as

N
∑

k′=1

D1,k′p(xk′) = D1,1p(x1) +

N
∑

k′=2

D1,k′p(xk′) = 0. (6.24)

Substituting B0 = D1,1 and B1 = [D1,2, D1,3, ..., D1,N ] we can then immedi-
ately re-write Eq. (6.24) as

B0p(x1) +B1p = 0. (6.25)

132



6.3. The Pseudospectral Approach

This allows us to obtain an expression for the unknown quantity p(x1) in
terms of p as

p(x1) = −B−1
0 B1p. (6.26)

Substituting Eq. (6.26) in Eq. (6.23) we obtain

(E − E0B
−1
0 B1)p = f. (6.27)

The solution in the interior can then be obtained as,

p = (E −E0B
−1
0 B1)

−1f. (6.28)

This then yields a straightforward linear algebra problem of solving a system
of equations with is readily handled using standard methods. The method
outlined above for imposing boundary conditions and formulating the prob-
lem, has been extended to the case of two dimensions and is applied to obtain
a solution of the problem in Eq. (6.10) which is described below in brief.

At this juncture it is to be mentioned that in writing Eq. (6.10), we
have removed the co-ordinate singularity at x = −1, by replacing it with
x = −1 + δ, where δ = 10−14 in units of Bohr radii. This approximation
produced acceptable results within error tolerances. The singularity at the
outer boundary of the domain, given by x = 1 (corresponding to ρ = ∞),
is taken care of by imposing a Dirichlet boundary condition since the wave
function must vanish at infinity (see below). Similarly, at the other outer
boundary; y = +1, we impose a Dirichlet condition since here too, the wave
function should vanish at infinity. The remaining boundaries at x, y = −1
can have either Dirichlet or Neumann boundary conditions, depending upon
the behaviour of the wave function. The following discussion delineates the
methodology for the 2D problem.

6.3.1.1 An Explicit Example - Domain Discretization

We consider here an explicit example to illustrate the use of pseudospectral
methods for solving an eigenvalue problem. In particular, we shall delve into
the methodology adopted here for imposing boundary conditions in consid-
erable detail. The method developed here is a non-trivial extension of the
one developed by the authors in Ref. [324].

Let us begin with a domain [−1, 1]⊗[−1, 1] which is discretised using N+1
points in each of the two Cartesian directions; x and y, with N = 3. This is
illustrated in Fig. (6.1) The partial differential equation in Eq. (6.10) is two-
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(x3,y3) (x2,y3) (x1,y3) (x0,y3)

(x3,y2)
(x2,y2) (x1,y2)

(x0,y2)

(x3,y1)
(x2,y1) (x1,y1)

(x0,y1)

(x3,y0) (x2,y0) (x1,y0) (x0,y0)

Dirichlet Boundary Condition

Dirichlet
Boundary
Condition

x = −1 x = +1

y = −1

y = +1

Figure 6.1: Pictorial representation of the domain [−1, 1]⊗ [−1, 1] discretised
using N+1 points in each direction, with N = 3. The outer boundaries have
Dirichlet conditions imposed.

dimensional therefore, following the procedure outlined in Refs. [92, 324], we
can construct two-dimensional operators by employing Kronecker products
of matrices. For example, a differential equation of the form,

∂2

∂x2
u+

∂2

∂y2
u = f(x, y), (6.29)

can be written in matrix form as,

D̃2
x u(xi, yj)+D̃

2
y u(xi, yj) = f(xi, yj)

i, j = 1, ..., N + 1. (6.30)

Note that in the matrices the D̃x and D̃y the outer boundaries at x, y =
+1 have already been excised due to Dirichlet boundary conditions and the
squares of the respective differentiation matrices have been appropriately
trimmed. As a result, the indices i, j are limited to a lower value of i, j = 1
rather than i, j = 0. The operators D̃2

x and D̃2
y are then given by kronecker
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products with the identity matrices,

D̃2
x = [Dx ×Dx]⊗ Iy (6.31)

and
D̃2

y = Ix ⊗ [Dy ×Dy] , (6.32)

where Ix and Iy are identity matrices of dimension Nx × Nx and Ny × Ny

respectively. In our example, the number of node points in the x and y-
directions are equal, thus Nx = Ny = N . Therefore, using the above formal-
ism we can write down Eq. (6.10) in matrix form as,

[

diag(a)× D̃2
x + diag(b)× D̃x + diag(c)× D̃2

y

+diag(d)× D̃y + diag(e)
]

ψi ≡ Liψi = ǫiψi, (6.33)

where D̃x = Dx ⊗ Iy and D̃y = Ix ⊗ Dy. Since we are imposing Dirich-
let boundary conditions at the two outer boundaries, this implies that we
can remove the first row and column from each of the matrices Dx and Dy

(see discussion above and Refs. [92, 322]), prior to forming the operators in
Eqs. (6.31) and (6.32). The diagonal matrices a, b, c, d and e are the coef-
ficients of the different terms in Eq. (6.10), in the order in which they are
written; explicitly,

diag(a) = −
1

4
diag((3− x2 − 2x)2), (6.34a)

diag(b) = −
1

2
diag

((

3− x2 − 2x
)

×
(

[

tanh−1

(

1 + x

2

)]−1

− 1− x

))

, (6.34b)

diag(c) = −
1

4
diag((3− y2 − 2y)2), (6.34c)

diag(d) =
1

2
diag

((

3− y2 − 2y
)

(1 + y)
)

, (6.34d)
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diag(e) = diag

(

(mi)
2

[

tanh−1

(

1 + x

2

)]−2

+

β2
Z

[

tanh−1

(

1 + x

2

)]2

−
2

√

[

tanh−1
(

1+x
2

)]2
+
[

tanh−1
(

1+y
2

)]2



 .(6.34e)

Replacing ψi with the polynomials in Eq. (6.12), the collocation points of
the problem then forms a mesh with the corresponding values p(xi, yj) with
i, j = 1, ..., N + 1. The collocation points are those illustrated in Fig. (6.1).
However, instead of writing the polynomial as a matrix of values at the
collocation points, we can write the matrix as an extended vector comprising
of the different columns, one followed by another. This then forms an N2×1
vector rather than an N ×N matrix. Explicitly, we can reshape the matrix
p(xi, yj), with values given at the collocation points (see Fig. 6.1), from

p =





p(x1, y1) p(x2, y1) p(x2, y1)
p(x1, y2) p(x2, y2) p(x3, y2)
p(x1, y3) p(x2, y3) p(x3, y3)



 , (6.35)

to

p =





























p(x1, y1)
p(x1, y2)
p(x1, y3)
p(x2, y1)
p(x2, y2)
p(x2, y3)
p(x3, y1)
p(x3, y2)
p(x3, y3)





























. (6.36)

It is to be remembered that in our explicit example N = 3.

6.3.1.2 Boundary Condition Implementation

Presently, Eq. (6.33) can be re-cast into matrix form as,

Lp = λp, (6.37)

where the eigenvalues of the spectrum are obtained in λ; the individual single
particle energies. At this juncture, let us now suppose that we wish to solve
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the eigenvalue problem for the 1s0 state of the hydrogen atom. This state
in the presence of a field would then be characterized using the notation
ν2S+1Mπz , where M = Σimi is the total z− component of angular momentum.
The summation is over all the electrons in the atom; for the hydrogen atom
there is only one electron. Similarly, the total z-parity of the state is the
product of the z-parities of each electron, explicitly, πz = Πne

i=1πz,i. Again
for hydrogen there is only one electron. The total z− component of the
angular momentum, M , then forms a manifold within which different sub-
spaces exist. The quantum number ν counts the excitation level within a
given M-manifold and sub-space symmetry. The spin multiplicity is given in
the usual way as 2S+1. Finally, the z−parity of the state is indicated using
πz = ±1, indicating positive or negative parity. Therefore, the state 1s0 of
hydrogen in the presence of a strong field would be written as 110+.

For this state of hydrogen the boundary conditions are as follows. Along
both the x, y = +1 boundaries the wave function must vanish, therefore
we have Dirichlet boundary conditions. Along the x, y = −1 boundaries
however, we have Neumann conditions. These boundary conditions are to be
kept in mind for the following discussion. A pictorial representation of the
operator L acting upon the vector p is given in Fig. (6.2).

p(x1, y1)

p(x1, y2)

p(x1, y3)

p(x2, y1)

p(x2, y2)

p(x2, y3)

p(x3, y1)

p(x3, y2)

p(x3, y3)

N − 1

1

N − 1

1

N

N − 1 1 N − 1 1 N

E1

E2

E3

E4

C1

C2

C3

C4

EN,1

EN,2

Figure 6.2: Pictorial representation the operator L acting upon the vector p.
The number of points in either direction, is N = 3 in the current example.

Fig. (6.1) shows the different parts of the matrix operator L. Specifically,
the different parts of the matrix that are relevant to the solution in the
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interior mesh points of the problem, are labelled. These are the submatrices
E1, E2, E3, E4, C1, C2, C3, C4,EN,1 and EN,2. The vector p can accordingly
be split into three components,

pint =









p(x1, y1)
p(x1, y2)
p(x2, y1)
p(x2, y2)









, (6.38a)

pby =

[

p(x1, y3)
p(x2, y3)

]

(6.38b)

and

pbx =





p(x3, y1)
p(x3, y2)
p(x3, y3)



 . (6.38c)

In the above, pint refers to the function value in the interior points of the
mesh given in Fig. (6.1), while the function values at the x = −1 boundary
are given by pbx and correspondingly, the values at the y = −1 boundary
are given by pby . The eigenvalue problem in the interior mesh points is then
given by,

Epint = λpint − Cpby − ENpbx . (6.39)

Compare Eq. (6.39) with Eq. (6.23). Meanwhile, the matrices E, C and EN

are given by (see Fig. (6.2)),

E =

[

E1 E3

E2 E4

]

(N−1)2×(N−1)2
, (6.40a)

C =

[

C1 C3

C2 C4

]

(N−1)2×(N−1)

(6.40b)

and

EN =

[

EN,1

EN,2

]

(N−1)2×N

(6.40c)

The dimensions of the matrices are also quoted for convenience. The ob-
jective here is to obtain a solution of the eigenvalue problem in Eq. (6.39).
This would be possible if we are able to express the function values at the
boundaries, i.e., pbx and pby in terms of the solution in the interior pint. See
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discussion above regarding the one-dimensional problem; Eqs. (6.25 - 6.28).
However, the values at the boundaries obey Neumann boundary conditions.
A Neumann boundary condition imposed on the wave function ψ along a
given boundary is given by,

n̂ · ∇ψ = g, (6.41)

where, n̂ is the unit vector normal to the boundary and g is the value to
which, the directional derivative of the function along the direction of the
normal vector is set. In our case, the boundaries in question are the lines
x, y = −1. The corresponding normal vectors are then trivial and we obtain
the conditions,

∂

∂x
ψ(x, y)

∣

∣

∣

∣

x=−1

= 0 (6.42)

and
∂

∂y
ψ(x, y)

∣

∣

∣

∣

y=−1

= 0. (6.43)

Once again, we can use differentiation matrices to specify these boundary
conditions, as,

Bxp|x=−1 = 0 (6.44)

and
Byp|y=−1 = 0. (6.45)

The boundary matrices are defined by Bx = Dx ⊗ Iy and By = Ix ⊗ Dy.
By virtue of the Kronecker product with the identity matrix, Bx has entries
only along the diagonals. The matrix By on the other hand, is a block
diagonal matrix with each block of dimension N × N . The products Bxp

and Byp are required by Eqs. (6.44) and (6.45) to vanish along the specified
boundaries, therefore we need only restrict our attention to those parts of
the boundary matrices. Fig. (6.3) shows a pictorial representation of the
boundary matrix Bx acting on the vector p. Since the derivative is required
to vanish along the x = −1 boundary, therefore we focus our attention on the
part of the boundary matrix Bx, that acts on the vector p along the boundary
in question, i.e., the last N rows. Fig. (6.3) shows the sub-matrices that are
needed, these are labelled B0,1, B0,2, B0,3, B0,4 and BN . Thus, we can write
Eq. (6.44) as,

B1pint +B2pby +BNpbx = 0. (6.46)

The matrices B1 and B2 in Eq. (6.46) are given by,

B1 =
[

B0,1 B0,2

]

N×(N−1)2
(6.47a)
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p(x1, y1)

p(x1, y2)

p(x1, y3)

p(x2, y1)

p(x2, y2)

p(x2, y3)

p(x3, y1)

p(x3, y2)

p(x3, y3)

N

N − 1 1 N − 1 1 N

B0,1 B0,2B0,3 B0,4 BN

Figure 6.3: Pictorial representation the operator Bx acting upon the vector
p. The number of points in either direction, is N = 3.

and
B2 =

[

B0,3 B0,4

]

N×(N−1)
(6.47b)

The dimensions of the matrices are indicated for convenience. Eq. (6.46)
has two unknowns, pbx and pby that need to be expressed in terms of pint.
Therefore we need another equation. This is provided by Eq. (6.45). We
have shown in Fig. (6.4) a pictorial representation of the boundary matrix
By acting upon the the vector p. The different sub-matrices are also shown in
Fig. (6.4). We can then write down an equation for expressing the boundary
condition in Eq. (6.45) as,

Gpint +Hpby = 0. (6.48)

The matrices G and H are given by,

G =

[

G1 G3

G2 G4

]

(N−1)×(N−1)2
(6.49a)

and

H =

[

H1 H3

H2 H4

]

(N−1)×(N−1)

(6.49b)

It is to be kept in mind that since By is a block diagonal matrix, with
each block of dimension N × N , only the block diagonal portion of G and
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p(x1, y1)

p(x1, y2)

p(x1, y3)

p(x2, y1)

p(x2, y2)

p(x2, y3)

p(x3, y1)

p(x3, y2)

p(x3, y3)

N − 1

1

N − 1

1

N

N − 1 1 N − 1 1 N

G1

G2

G3

G4

H1

H2

H3

H4

Figure 6.4: Pictorial representation the operator By acting upon the vector
p. The number of points in either direction, is N = 3.

the diagonal of H , are respectively non-zero. In the current explicit example,
therefore we have G2 = G3 = [ 0 0 ] andH2 = H3 = 0. With these definitions
in place, we can employ Eqs. (6.46) and (6.48) to obtain expressions for the
unknowns pbx and pby in terms of the values in the interior pint as,

pby = −H−1Gpint (6.50)

and
pbx = −B−1

N (B1 − B2H
−1G)pint. (6.51)

Substituting Eqs. (6.50) and (6.51) in Eq. (6.39) we obtain an eigenvalue
problem for the solution in the interior mesh points as,

(

E − ENB
−1
N (B1 −B2H

−1G) − CH−1G
)

pint = λpint. (6.52)

Eq. (6.52) can then be solved as an eigenvalue problem using standard meth-
ods to obtain the eigenvalues λ and the eigenvectors. See Section 6.4 for
details regarding the numerical method employed for solving the eigenvalue
problem. It is also to be mentioned that in general the master matrices
constructed such as in Eq. 6.52 are not in general self-adjoint. As a result,
the matrix methods utilised in the solution of these eigenvalue problems, are
those employed for general non-symmetric, non-hermitian matrices, such as
the non-symmetric algorithms of ARPACK; see § 6.4. For the moment, we
turn our attention to extending this methodology to the two-electron prob-
lem.
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6.3.2 The Two-Electron Problem

The HF problem for the two electron atom can be written, using the matrix
formalism detailed above in a compact form as,





L1 +
2
Z
diag[ΦD,1] − 2

Z
diag[αE ]

− 2
Z
diag[αE ] L2 +

2
Z
diag[ΦD,2]









ψ1

ψ2



 = λ





ψ1

ψ2



 . (6.53)

It is evident upon inspection that Eq. (6.53) is a coupled eigenvalue prob-
lem. The operators L1 and L2 are the operators defined in Eq. (6.33). The
direct and exchange operators, diag[ΦD,i] and diag[αE ] make the problem
non-linear, as they depend upon the solutions ψi. However, the problem
is linearized by estimating the direct and exchange interactions using wave
functions from the previous iteration. The exchange interaction still cou-
ples the two electrons and as such, we are still required to solve a coupled
eigensystem.

Once the hydrogenic problem has been solved to obtain initial estimates
for the wave functions, these can then be employed for calculating the direct
and exchange potentials. In order to continue with our explicit example, let
us suppose that we wish to calculate the energy of the helium atom in the
configuration 13(−1)+, or in terms of field-free notation, 1s02p−1. Thus the
hydrogenic problem would first need to be solved for each of the two electrons
in the configuration. Let us label the electrons’ wave functions using different
letters; p ≡ 1s0 and q ≡ 2p−1.

The electron in the orbital 2p−1, in the presence of a magnetic field, has
properties rather different from the 1s0 electron. The wave function of the
former has positive z−parity, but goes to zero along the y−axis. In other
words, qbx = 0 and it has a Dirichlet condition imposed. There is however
still a Neumann condition along the x-direction. This is to be remembered
in the following discussion. Presently, we briefly describe the method of
solution of the elliptic partial differential equations for obtaining the direct
and exchange interactions.

6.3.2.1 The Direct and Exchange Interactions

Let us assume that we have solved the hydrogenic problem and already ob-
tained initial estimates for the wave functions of each of the two electrons,
viz., p and q for the states 1s0 and 2p−1, using the method described in
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Section 6.3.1. Eqs. (6.5) and (6.6) can be re-written after domain compacti-
fication as,

[

1

4

(

3− x2 − 2x
)2 ∂2

∂x2
+

1

2

(

3− x2 − 2x
)

×

(

[

tanh−1

(

1 + x

2

)]−1

−1 − x)
∂

∂x
+

1

4

(

3− y2 − 2y
)2 ∂2

∂y2
−

1

2

(

3− y2 − 2y
)

(1 + y)
∂

∂y

]

ΦD,i (x, y) = −4π |ψj (x, y)|
2 ,(6.54)

for the direct interaction and as
[

1

4

(

3− x2 − 2x
)2 ∂2

∂x2
+

1

2

(

3− x2 − 2x
)

×

(

[

tanh−1

(

1 + x

2

)]−1

−1 − x)
∂

∂x
+

1

4

(

3− y2 − 2y
)2 ∂2

∂y2
−

1

2

(

3− y2 − 2y
)

(1 + y)
∂

∂y

− (mi −mj)
2

{

tanh−1

(

1 + x

2

)}−2
]

αE (x, y) = −4πψ∗
j (x, y)ψi (x, y) ,

(6.55)

for the exchange interaction. More compactly, Eqs. (6.54) and (6.55) can be
written using matrix form as,

LdirΦD,i = −4π

{

q2 for i = 1
p2 for i = 2

(6.56)

and
LexchαE = −4π(pq). (6.57)

In the above, i = 1 or 2, labels the electrons. We emphasize at this stage that
Eqs. (6.56) and (6.57) are written for the two-electron problem. For more
than two electrons there would exist summations on right hand sides over the
different states (see the direct and exchange terms in Eq. (6.3)). Moreover,
p2, q2 and (pq) are the element-by-element products of the corresponding
vectors that have be suitably normalised. Ldir and Lexch are the left hand
side operators in Eqs. (6.54) and (6.55) respectively, the various terms in
which are defined similar to Eqs. (6.34a-e).
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In the current explicit example, since p ≡ 1s0, the boundary conditions
for the vector p2 are identical to that for p, i.e., Neumann conditions along
x, y = −1. Likewise, since q ≡ 2p−1, the boundary conditions for the vector
q2 are identical to that for q, i.e., Neumann condition along y = −1 but
Dirichlet condition along x = −1; qbx = 0.

The product of the two vectors (pq) on the other hand, vanishes along
the line x = −1, since qbx = 0; therefore it has a Dirichlet condition given by
(pq)bx = 0. However, along the line y = −1 a Neumann condition remains,
since each individual vector has a Neumann condition.

With these boundary conditions now identified, they can be imposed on
the operators Ldir and Lexch using the methods described in Section 6.3.1.2.
The two linear systems of equations at the collocation points, given by
Eqs. (6.56) and (6.57), are solved using standard methods, to obtain the
direct and exchange potentials as,

ΦD,1 =
{

Edir − CH−1G
}−1

q2
int, (6.58a)

ΦD,2 =
{

Edir −EN,dir B
−1
N (B1 − B2H

−1G) − CH−1G
}−1

p2
int. (6.58b)

and

αE =
{

Eexch − CH−1G
}−1

(pq)int. (6.58c)

In the above, the matrices Edir, EN,dir and Eexch are defined similarly to
Eqs. (6.40a) and (c), this time however, using the operators Ldir and Lexch

respectively (see Section 6.3.1.2). Once the direct and exchange interactions
have been determined, they can be substituted in Eq. (6.53) and the coupled
eigensystem can be solved.

We would like to caution at this stage, that the boundary conditions im-
plemented in the explicit example are specifically for the configuration of
the helium atom given by 13(−1)+ or 1s02p−1. For other configurations, the
boundary conditions imposed on p and q would be different. In that case,
Eqs. (6.58a-c) would change accordingly. With this in mind, we now pro-
ceed to the next section which describes the setup of the coupled eigenvalue
problem in Eq. (6.53) and the implementation of boundary conditions for its
solution.
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6.3.2.2 The Coupled Eigenvalue Problem

The direct and exchange potentials are found in Eqs. (6.58a-c) as vectors.
These are converted to matrices with entries on the main diagonal before
substituting into Eq. (6.53). If we label the operator on the left hand side of
Eq. (6.53) as M , then we can re-write Eq. (6.53) as,





M11 M12

M21 M22









p

q



 = λ





p

q



 . (6.59)

We can depict pictorially, the action of M on the vector

(

ψ1

ψ2

)

or equiv-

alently

(

p

q

)

, as shown in Fig. (6.5).
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Figure 6.5: Pictorial representation of the action of the operator M in Eq. (6.59).
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It can immediately be seen in Fig. (6.5) that in the matrices M11 and
M22, the off-diagonal sub-matrices are identical to those in Fig. (6.3), see
Eqs. (6.40a-c). Also, it can be seen that the matrices M12 and M21 are di-
agonal matrices that are identical. These represent the exchange interaction
between the two electrons. Only the non-zero parts of these matrices that
act on the interior parts of the vectors, pint and qint are shown in Fig. (6.5).
In this explicit example, the vector p represents the 1s0 state, while the vec-

tor q represents the 2p−1 state. Accordingly, in the vector

(

p

q

)

, a Dirichlet

boundary condition has been imposed explicitly along x = −1 for the vec-
tor q by setting qbx = 0, as shown in Fig. (6.5). The coupled eigensystem
can then be written as a system of coupled matrix equations for the interior
points as,

E11pint + T 12qint = λpint − Cpby −ENpbx (6.60a)

and

T 12pint + E22qint = λqint − Cqby . (6.60b)

The sub-matrices C and EN are defined as given in Eqs. (6.40b & c). How-
ever, The sub-matrix E11 and E22 have slightly different entries on the diag-
onal and are thus defined as,

Eii =

[

Eii
1 E3

E2 Eii
4

]

(N−1)2×(N−1)2
, i = 1, 2. (6.61)

Similar to our discussion regarding the hydrogen atom in Section 6.3.1.2, we
are required to express the vectors pbx , pby and qby in terms of pint and qint

respectively, by implementing Neumann boundary conditions. This would
enable us to then cast the coupled eigenvalue problem into its final form,
prior to its numerical solution.

Once again we construct the boundary matrices Bx and By as described
earlier. This time however, we need to implement Neumann boundary con-
ditions for both electrons. Thus, in addition to Eqs. (6.44) and (6.45), we
have a Neumann boundary condition along y = −1 for the vector q, i.e.,

Byq|y=−1 = 0. (6.62)

Expressions for pbx , pby and qby , in terms of pint and qint respectively, are
obtained using the method described earlier in Section 6.3.1.2. These when
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substituted into Eqs. (6.60a and b) immediately yield,
{

E11 − CH−1G−ENB
−1
N (B1 −B2H

−1G)
}

pint + T 12qint = λpint (6.63a)

and

T 12pint +
{

E22 − CH−1G
}

qint = λqint (6.63b)

This can then immediately be recast as a standard coupled eigenvalue prob-
lem for the interior mesh points as,




[

E11 − CH−1G− ENB
−1
N (B1 − B2H

−1G)
]

T 12

T 12 [E22 − CH−1G]



×





pint

qint



 = λ





pint

qint



 .

(6.64)

Eq. (6.64) is then solved using standard algorithms to obtain the eigenvectors
and eigenvalues. Once the wave functions have been obtained, the direct and
exchange interactions are re-evaluated. These updated potentials are then
reused to carry out the HF iterations until convergence is achieved. We would
like to caution the reader once more that the formulation of the HF problem
shown in Eq. (6.64) is for the explicit example of the configuration of helium
given by 13(−1)+ or 1s02p−1. For other configurations, depending upon the
boundary conditions, Eq. (6.64) will take a very different form. The left hand
side operator shown in Eq. (6.64) is the pseudospectral representation of the
HF operator for a particular configuration of the helium atom.

It is also to be mentioned at this juncture, that we are not finding an
approximate effective potential for the exchange interaction as first suggested
by Slater [see 325] which greatly simplifies the HF equations. As a result
Eq. (6.64) takes the form of a fully coupled eigenvalue problem, and not, we
emphasize, the usual single-particle form,

Fiψi = ǫψi, (6.65)

where F is the usual Fock operator given explicitly by

Fi = Hi +
∑

j

(Jj −Kj). (6.66)
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6.3. The Pseudospectral Approach

The direct (Jj) and exchange interactions (Kj) are usually found using an
approach similar to Slater’s, employing wave functions from the previous
iteration. This procedure essentially uncouples the eigenvalue problem [see
325]. It can be seen upon examining Eq. (6.64) that we are not carrying
out such an approximation. Therefore we solve the full HF problem as a
coupled eigenvalue problem. In our computations for helium we found that
the solution of the uncoupled problem following Ref. [325] yielded slightly
more bound results, by about 1 − 2%. That being said, our goal here is
to provide a fast and efficient means of solving the fully coupled problem,
therefore the numerical procedure outlined below pertains as such, to the
latter and the results presented in Section 6.5 are likewise for a solution of
the coupled problem.

The method described above can easily be extended to tackle the case
of the multi-electron atom, say lithium. It can be seen that the problem
size in Eq. (6.64) will grow not only with the number of mesh points but
also with the number of electrons. For a given number of mesh points N
in each direction and a certain number of electrons ne, the size of the HF
operator in Eq. (6.64) is [ne(N − 1)2)× (ne(N − 1)2]. If one were to express
the exchange interactions completely using information from the previous
iteration and thus uncouple the eigenvalue problem as in Eq. (6.65), then
within each HF iteration, one would be solving ne eigenvalue problems each
of size [(N − 1)2 × (N − 1)2]. Thus, since computer memory requirements
are governed by this latter system size, the coupled problem in Eq. (6.64) is
readily seen to be far more intensive than the uncoupled problem in Eq (6.65).
This important distinction is to be kept in mind when interpreting the results
obtained in this study. That being said, we give here presently, the block
matrix form that the coupled HF problem will take for the lithium atom,













M11 T 12 T 31

T 12 M22 T 23

T 31 T 23 M33
















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




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q

r













= λ













p

q

r













. (6.67)

The exchange operators are symmetric under permutation, thus T ij = T ji, i, j =
1, 2, 3. The matrices Mii, i = 1, 2, 3, on the other hand, are formulated in a
manner similar to that depicted pictorially in Fig. (6.5), modulo implementa-
tion of appropriate Dirichlet and Neumann boundary conditions, depending
up the state in question.
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Thus for a large number of node points and electrons, it becomes im-
perative that efficient computational methods be used in order to facilitate
an economical solution of the fully coupled HF problem in Eq. (6.3), not
only in terms of computer memory, but also quite importantly, in terms of
computational time. The primary objective, as was stated earlier, is to de-
lineate a method for the expedient solution of the single-configuration HF
problem, providing a software that could be easily integrated into atmosphere
models for neutron stars. It is to be acknowledged at the very outset, that
these results can be improved by using CI or MCHF methods. It is also to
be acknowledged that since we are not using the usual approximation for
the exchange interaction, the computer memory requirements are quite a lot
higher than the uncoupled problem. This fact should be kept in mind should
the atomic structure software described herein be considered for integration
with atmosphere models.

The following section details the efficient numerical methods employed
for this solution and the convergence tests that are carried out.

6.4 Numerical Details

Examination of Fig. (6.5) reveals that the matrix M , is largely a sparse
matrix. Thus we can take advantage of this fact and employ sparse matrix
methods for the method of solution of the coupled eigenvalue problem.

An atomic structure software package based on the pseudospectral method
outlined in Section 6.3 was developed for this study. The code was written in
the high level programming language MATLAB R© making particular use of
its fast matrix manipulation algorithms. The eigenvalue problems described
in Eqs. (6.52), (6.64) and (6.67) are solved by discretizing the equations
and solving the resultant algebraic eigenvalue problem. The discretization is
done using a standard Chebyshev-Lobatto spectral collocation method [see
322]. The coupled eigenvalue problem in Eq. (6.3) is then solved using a
sparse matrix generalized eigensystem solver using the implicitly restarted
Arnoldi method (IRAM) [see 326–328]. A numerical implementation of this
method is readily available in the software package ARPACK [see 328]. The
key advantage of employing IRAM is that the memory storage requirements
are far less than the original Arnoldi algorithm. Very briefly, it employs a
typical Arnoldi factorization to generate an orthogonal basis for forming a
Krylov subspace. The implicit restarting is closely related to the well un-
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derstood implicitly shifted QR algorithm [see 329, 330], where the idea is to
restart the Arnoldi factorization with a vector that is better pre-conditioned
so that it can damp unwanted components from the eigenvector expansion.
At this stage the reader is referred to Refs. [327, 328, 331] for details on the
implementation and other computational aspects of ARPACK. The compu-
tational time is remarkably reduced due to implicit restarting, particularly
for computing a few eigenvalues in a given part of the spectrum [see 328].
This method was found to yield accurate results for the energy eigenval-
ues of the first few eigenstates of helium and lithium in intense magnetic
fields. In our computations during a typical Arnoldi iteration, it was seen
that generating a Krylov subspace with about 50 basis vectors was sufficient
for determining around 15 eigenvalues in the vicinity of a given shift (σ),
by employing the shift-invert algorithm [see 328]. Runs were carried out for
different values of the magnetic field strength parameter βZ , in the range
5 × 10−1 ≤ βZ ≤ 103, for the cylindrical pseudospectral code. A typical
tolerance of around 10−10 was employed for the internal errors of ARPACK.
Additionally for testing convergence of the pseudospectral method, we em-
ployed up to six different levels of mesh refinement, ranging from coarse to
fine mesh i.e., N = 21, 31, 41, 51, 61 and 71 mesh points in each direction.
The finest mesh calculations for lithium for example, took on the order of
1000−1400 seconds of computing time on an Intel R© Xeon R© E5620 2.4 GHz
processor, for obtaining a fully converged HF solution.

The code takes as its input, the number of electrons in the atom ne,
the nuclear charge Z, and the magnetic field strength parameter βZ and the
configuration for which calculations are to be carried out, such as the state
1s02p−13d−2, etc. It then proceeds to compute systematically the eigenvalues
and eigenfunctions of the coupled system of equations in Eq. (6.3), according
to the iterative procedure described below in brief.

Eqs. 6.3, 6.5 and 6.6 are solved in a three step process using the itera-
tive self-consistent field (SCF) Hartree-Fock method [see 91]. First, an initial
estimate is obtained for the eigenvectors by solving Eq. 6.3 without the contri-
butions due the interaction between the electrons. The second step involves
obtaining estimates for the potentials due to the direct and exchange interac-
tions amongst the electrons, using the elliptic partial differential Eqs. 6.5 and
6.6. These are solved using the estimates for the wave functions obtained in
the previous step. These potentials are then used to solve for better estimates
of the eigenfunctions along with the relevant eigenvalues in Eq. 6.3. The last
two steps are iterated in the order described above to obtain progressively
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better estimates for the eigenvalues and eigenvectors with each HF iteration.
It was observed during our runs that fast convergence was achieved; within
about 6−12 HF iterations. A convergence criterion for the HF iterations was
employed wherein the difference between the HF energies for two consecutive
iterations was tested. Typically, a tolerance on the order of 10−8EZ,∞ was
employed for this purpose. Once the HF iterations attained convergence,
the total energy of the Hartree-Fock state under consideration is reported
according to Eq. 6.4.

Additionally, the current work does not include relativistic corrections to
the energies. These corrections have been shown to be small in strong as well
as intense magnetic fields for hydrogenic atoms [see 332–334]. Their results
for the hydrogen atom reveal that for the states considered in their studies,
the fractional change in energy is on the order of 10−6 or so. This fractional
change in energy was seen to be smaller than the numerical errors arising
from convergence of the pseudospectral method, established using different
levels of mesh refinements. Thus, while relativistic corrections are important,
it was not possible to account for them accurately in the current study.

Moreover, it is to be kept in mind that the current implementation of
the pseudospectral method for the solution of the HF problem, is a single
configuration calculation. Thus, it does not take into account effects such as
electron correlation which can become important for many-electron systems.
Post-HF methods, such as configuration-interaction and MCHF methods will
no doubt yield more accuracy. However, as mentioned in Section 6.1, the aim
of the current study is to facilitate a fast and computationally economical
method for the 2D solution of the many-electron single-configuration prob-
lem, without resorting to any basis expansion, or separation of variables or
even the commonly employed adiabatic approximation. The energies and
wave functions obtained from such a calculation, could be directly employed
in a 2D-configuration-interaction calculation, or the method described in
Section 6.3 could be extended towards a full 2D-MCHF framework. Such an
undertaking, while being perhaps the next step in the evolution of the atomic
structure code described herein, was considered to be outside the scope of
the current study.

Presently, the results are presented alongside a discussion in the following
section.
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6.5. Results and Discussion

6.5 Results and Discussion

The atomic structure software package developed in the current study ex-
tends our earlier computations for atoms in strong magnetic fields [see 88, 92],
towards the intense field regime, βZ ≫ 1. The states that were considered
in this study are labelled using both the field-free and strong-field notations
for the sake of clarity; these can be found in Table 6.1 which lists these dif-
ferent states of helium and lithium. We have studied the six most tightly
bound states of each atom in the intense magnetic field regime (βZ ≫ 1).
Within a given parity sub-space, typically there are crossovers that occur as
the magnetic field is reduced and the reader is referred to Ref. [289] for an
excellent discussion regarding ground state crossovers which are typically in
the regime βZ < 1. Within each given parity sub-space, we considered the
most tightly bound state in the intense field regime.

Table 6.1: The different states of helium and lithium considered in this study,
listed using both intense-field and field-free notation. It is the the field-
free configurations that are calculated in the weak- and intermediate-field
regimes.

Intense-field Field-free

Helium

13(−1)+ 1s02p−1

13(−1)− 1s03d−1

13(−2)+ 1s03d−2

13(−2)− 1s04f−2

13(0)+ 1s02s0
13(0)− 1s02p0

Lithium

14(−3)+ 1s02p−13d−2

14(−3)− 1s02p−14f−2

14(−2)+ 1s02s03d−2

14(−2)− 1s02p−13d−1

14(−1)+ 1s02s02p−1

14(−1)− 1s02p02p−1

6.5.1 The Helium Atom

For the states of helium listed in Table 6.1, eigenvalue computations were
carried out and the total HF energies were calculated for six different levels
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of mesh refinement. This enables us to extrapolate the convergence of the
results to the limit of infinitely fine mesh, as shown in Fig. 6.6. This figure
shows the convergence of eigenvalues obtained from a few sample calculations
for both helium and lithium. With each level of mesh refinement, the system
size grows and the full system size is reported on the x−axis of Fig. 6.6.
This is the dimension of the coupled eigenvalue problem that is solved. A
variety of extrapolation methods were tested and it was seen that using piece-
wise continuous cubic Hermite interpolating polynomials [see 335], yielded
the most reasonably extrapolated results over the entire range of magnetic
field strengths considered here. For extrapolation to infinitely fine mesh, we
employed the average area per unit grid size as the abscissa. Thus it was
possible to extrapolate to infinitely fine mesh or zero area per unit grid size.
It is the extrapolated values that are reported in the tables for the binding
energies.

The calculated HF energies for positive parity states of helium are given
in Table 6.2, while those for the negative parity states are shown in Table 6.3.
The absolute values of the binding energies are given therein. Also shown
therein, are the calculated data from other references for comparison. In this
study we investigated the three most tightly bound states within each parity
sub-space, in the limit of intense magnetic fields. The corresponding weak
field orbitals of these states are those listed in Table 6.1. The values given
in parentheses are from eigenvalue computations using spherical coordinates.
These calculations were carried out using our pseudospectral atomic struc-
ture software developed in an earlier study [see 92]. An improved and faster
version of the code was employed, again using the same levels of mesh refine-
ment for maintaining consistency. The cylindrical pseudospectral method
begins to lose accuracy as the magnetic field decreases, in the weak field re-
gion, while in contrast, the spherical pseudospectral method loses accuracy
in the intense field limit. Therefore using a combination of the two types of
codes, we can explore the entire range in 0 ≤ βZ ≤ 1000.

6.5.1.1 The positive z−parity sub-space of Helium

It can be seen upon examining the data in Table 6.2 that the results obtained
in the current study are in good agreement with values obtained elsewhere
and in some instances represent slight to moderate improvements in the upper
bound of the binding energy. For the state 13(0)+ which is comprised of the
oribtals 1s02s0, we see that the average difference with respect to the most
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Table 6.2: Absolute value of the binding energies of the positive parity state
13(0)+, of helium. Energies are in units of Rydberg energies in the Coulomb
potential of nuclear charge Z = 2 for helium. Accurate data from other
work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 286]

0 (1.0899) 1.0871 a 1.0876
0.01 (1.1256) 1.1213 1.1213 1.1220
0.05 (1.2103) 1.1911 1.2056 1.2064
0.1 (1.2914) 1.2133 1.2860 1.2868
0.125 (1.3301) 1.3253
0.2 (1.4389) 1.4330 1.4338
0.25 (1.5112) 1.4999
0.5 1.7878 1.4670 1.7718
0.625 1.9064 1.8841
0.7 1.9714 1.6690 1.9447
1 2.1974 1.9116 2.1601

1.25 2.3564 2.3137
2 2.7395 2.4793 2.6840
2.5 2.9461 2.8862
5 3.7022 3.4672 3.6272

6.25 3.9861 3.9076
7 4.1386
10 4.6565 4.4362 4.5693
12.5 5.0117 4.9215
20 5.8449 5.6367 5.7473
25 6.2837
50 7.8424 7.6473 7.7334
62.5 8.4121
70 8.7150
100 9.7302 9.5434 9.6143

a Ref. [89] continued on next page
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continued from previous page

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 286]

125 10.4152
200 11.9909 11.8111
250 12.8052
500 15.6258 15.4537
700 17.1629
1000 18.9191 18.7519

bound values given therein from other calculations, is about ∆ ≈ 1.25% with
the maximum difference being at around βZ = 6.25 at around 2%. The results
remain accurate to large values of magnetic field strength, i.e., βZ = 1000,
where little data is available. The results obtained from the cylindrical pseu-
dospectral method are about 0.8% more bound than the results of Ref. [83]
at around βZ = 1000. Similarly for the state 13(−2)+, we notice that the
average difference from the most tightly bound values obtained elsewhere is
about ∆ ≈ 2.5%. In particular we see that both the cylindrical and spherical
pseudospectral codes are slightly more accurate than our earlier study [see 88]
in the intermediate and strong field regime; 10−2 ≤ βZ ≤ 10, by a maximum
of about 5%. The field-free spectroscopic orbital of the second electron in the
state 13(−2)+, is the 3d−2 orbital, which has a much greater spatial extent
than the 1s0 orbital, even in strong and intense magnetic fields. The same is
true for the 2s0 electron in the configuration 13(0)+. In our earlier study [see
88] we had adopted a finite-element based approach for the solution of the
single-configuration HF problem and as a result, had truncated the domain of
the problem to about 20 Bohr radii in both the z− and ρ− directions. How-
ever, in the current study we are employing a compactification which does
not truncate the domain, but rather preserves the information in the entire
two-dimensional space. As a result, orbitals such 3d−2 that have a greater
spatial extent, are determined with a little more accuracy in comparison to
our previous study [see 88]. Concordantly, we see that the improvement in
the strong field regime is on the order of 2−5% with respect to the results ob-
tained in Ref. [88]. We also see that in the limit of intense fields, i.e. βZ ≥ 10,
the accuracy is still preserved and we see an improvement in the estimates
with respect to the Quantum Monte Carlo method due to Jones et al. [see
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Table 6.3: Absolute value of the binding energies of the positive parity state
13(−2)+, of helium. Energies are in units of Rydberg energies in the Coulomb
potential of nuclear charge Z = 2 for helium. Accurate data from other
work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 286]

0 (1.0307) 1.0179a 1.0278
0.01 (1.0872) 1.0852a 1.0830 1.0833
0.05 (1.2212) 1.2175a 1.2160 1.2167
0.1 (1.3495) 1.3510a 1.3436 1.3450
0.125 (1.4063) 1.4016
0.2 (1.5572) 1.5598a 1.5525
0.25 (1.6459) 1.6411
0.5 (2.0035) 2.0009a 1.9945 2.1425
0.625 (2.1948)
0.7 (2.3041) 2.2246a 2.2171
1 2.6328 2.4981a 2.4933

1.25 2.8285 2.6940
2 3.3090 3.1685a 3.1634
2.5 3.5696 3.4274
5 4.5305 4.3740a 4.3693

6.25 4.8938 4.7380
7 5.0894 4.9268a 4.9203
10 5.7563 5.5851a 5.5770
12.5 6.2158 6.0443
20 7.2995 6.9867 7.0938
25 7.8734
50 9.9273 9.5806 9.6643
62.5 10.6835
70 11.0867 10.7977
100 12.4434 12.0449 12.1142

a Ref. [88] continued on next page
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continued from previous page

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 286]

125 13.3631
200 15.4914 15.0117
250 16.5978
500 20.4605 19.5816
700 22.5842
1000 25.0252 24.2004

89]. While the method developed by the authors in Ref. [89, 277] may be
more involved than the simple single-configuration HF treatment given here,
nonetheless it is to be remembered that in the current study we are solving a
fully coupled eigenvalue problem for the electrons at each HF iteration and
are not solving the problem by carrying out an approximation as suggested
by Slater [see 325] (see discussion regarding Eqs. (6.65) and (6.66) above).
This makes the current solution of the problem computationally more inten-
sive. Thus, overall in the current study, the computational overhead may be
slightly more than that of the work in Refs. [89, 277]. With this cautionary
note to the reader in place, we see that the pseudospectral code developed in
this study produces slightly improved results. The IRAM method that is em-
ployed for calculating the eigenvalues (see Section 6.4) however, reduces the
computational overhead quite significantly, in comparison to solving for the
entire spectrum of the fully coupled problem. On average the computation
of the converged values in Tables 6.2 and 6.3 took between about 250−600 s
of computing time for the finest mesh calculations, utilizing about 4 − 5GB
of computer memory.

The third state that was investigated was the ground state of helium in
intense magnetic fields. This is the configuration 13(−1)+ comprised of the
spectroscopic orbitals 1s02p−1. Here we see that the values obtained from
the pseudospectral method produce values that are in general a little more
bound than the results obtained in our earlier study Ref. [88]. The maxi-
mum improvement in the range 0 ≤ βZ ≤ 1.25 is about ∆ ≈ 0.7%. However
we see that the configuration interaction calculations due to Schmelcher and
co-workers, are in general more accurate than the single configuration re-
sults, although the results are still in reasonable agreement (∆ ≈ 1.6% on
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Table 6.4: Absolute value of the binding energies of the positive parity state
13(−2)+, of helium. Energies are in units of Rydberg energies in the Coulomb
potential of nuclear charge Z = 2 for helium. Accurate data from other
work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 286]

0 (1.0686) 1.0668a 1.0657c 1.0666
0.01 (1.1223) 1.1183a 1.1177 1.1193
0.05 (1.2734) 1.2691a 1.2683 1.2704
0.1 (1.4209) 1.4189a 1.4151 1.4178
0.125 (1.4859) 1.4828
0.2 (1.6579) 1.6585a 1.6508 1.6544
0.25 (1.7583) 1.7545
0.5 (2.1582) 2.1550a 2.1490
0.625 (2.3183) 2.3128
0.7 (2.4060) 2.4029a 2.3956
1 2.7209 2.7026a 2.7000

1.25 2.9254 2.9197
2 3.4213 3.4384a 3.4333
2.5 3.6905 3.7203
5 4.6835 4.7502a 4.7441

6.25 5.0593 5.1421
7 5.2615 5.3474a 5.3408
10 5.9516 6.0543a 6.0506
12.5 6.4271 6.5524
20 7.5490 7.5750 7.6845
25 8.1432 8.2895b

50 10.2704 10.3567 10.4438
62.5 11.0537 11.2333b

70 11.4712 11.6533
100 12.8764 12.9904 13.0632

a Ref. [88] continued on next page
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continued from previous page

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 286]

125 13.8289 14.0161
200 16.0328 16.1516
250 17.1783 17.3495
500 21.1763 21.2521
700 23.3733
1000 25.8978 25.8917

average, over the range 2 ≤ βZ ≤ 12.5). This shows that taking into ac-
count the effects of electron correlation and interactions between different
configurations is an important aspect necessary for the accurate solution of
the multi-electron problem. The drawback however is that such calculations
are computationally more involved than a simple single configuration calcu-
lation. We also see that for this state towards the higher end of the intense
field regime, i.e., βZ ≈ 1000, there is a minor loss in accuracy. This is at-
tributed to the fact that the 2p−1 electron becomes exceedingly bound and
concomitantly, greatly reduced in spatial extent and constrained closer to
the nucleus while at the same time being elongated along the z−direction.
Our finest mesh calculation yielded an absolute value for the HF binding en-
ergy of about 25.9923EZ,∞, however, the result obtained from extrapolation
is what is quoted in Tables 6.2−6.4. Thus, we see that this result could be
made more accurate by increasing the levels of mesh refinement so that better
convergence could be achieved for the 2p−1 orbital in the extreme end of the
intense field regime. Our calculations were ultimately limited by computing
resources, thus further mesh refinement in excess of N = 71 node points in
each direction was not possible.

Overall, for the 13(−1)+ state of helium the agreement with the most
bound energy values from different studies, is on average about ∆ ≈ 0.9%.
Since our primary objective in this study is to delineate a fast and reasonably
accurate method for atomic structure calculations in intense magnetic fields,
we considered this level of agreement to be sufficient.

Next we discuss the three most tightly bound negative parity states of
the helium atom in intense magnetic fields.
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6.5.1.2 The negative z−parity sub-space of Helium

The three most tightly bound negative parity states of helium in the intense
field regime, were investigated in this study. The results for the binding
energies are shown in Tables 6.5−6.7. For the state 13(0)− we see that
the results from the pseudospectral calculations, in both weak and strong
fields (0 ≤ βZ ≤ 10), are in general more bound in comparison to the results
obtained in our earlier study [see 88]. The average improvement is about ∆ ≈
3.2%. As mentioned earlier, the current study employs a compactification
of the entire domain without truncation and as a result the estimation of
the orbitals that have a greater spatial extent is slightly more accurate in
comparison to Ref. [88]. We also see a moderate improvement in the intense
field regime where the average improvement is around ∆ ≈ 4% with respect
to the most bound results quoted in the table. At the higher end of the
intense field regime (βZ ≥ 50), the results continue to remain accurate, as
the pseudospectral method better estimates the spatial extent and shape of
the 2p0 electron in the 13(0)−. Here the improvements with respect to the
data from Refs. [83] and [see 277] are about ∆ ≈ 2%.

The calculated binding energies of the remaining two tightly bound states
13(−1)− and 13(−2)− show a similar trend. The average improvements with
respect to the most bound results obtained elsewhere are around ∆ ≈ 3.8%
in both cases. It can be seen upon examining the data for these states, that
the state 13(−2)− becomes more bound than the 13(−1)− state of helium
with increasing magnetic field strength in the intense field regime. However
the binding energies are still quite close to each other.

One of the aims of the current study is to provide a fast method for the
calculation of the energy landscape of atoms in intense magnetic fields; there-
fore, we have additionally calculated fits to the data provided in Tables 6.2
through 6.7. The model fits are rational functions whose analytic form is
given by,

f(x) =

∑n
i=0 aix

i

xm +
∑m−1

i=0 bixi
, (6.68)

where x = ln(1+β) and m = n−2. The fitting was carried out using a non-
linear least squares Levenberg-Marquardt algorithm with line searches [see
336]. The coefficients and the maximal fitting errors over the entire range
βZ = 0 to βZ = 103 are given in Table 6.8. As can be seen in Table 6.8,
the errors are small enough that these fitting functions could be employed
directly in atmosphere models of neutron stars rather than incorporating
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Table 6.5: Absolute value of the binding energies of the negative parity state
13(0)−, of helium. Energies are in units of Rydberg energies in the Coulomb
potential of nuclear charge Z = 2 for helium. Accurate data from other
work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 286]

0 (1.0686) 1.0641a 1.0657c 1.0665
0.01 (1.1056) 1.1029a 1.1016 1.1026
0.05 (1.2147) 1.2135a 1.2099 1.2112
0.1 (1.3229) 1.3231a 1.3174 1.3191
0.125 (1.3727) 1.3669
0.2 (1.4982) 1.4988a 1.4914 1.4936
0.25 (1.5721) 1.5676
0.5 1.9831 1.8647a 1.8593
0.625 2.1056 1.9796
0.7 2.1722 2.0461a 2.0404
1 2.4025 2.2685a 2.2641

1.25 2.5635 2.4243
2 2.9487 2.8060a 2.7989
2.5 3.1555 3.0057
5 3.9092 3.7522a 3.7466

6.25 4.1916 4.0297
7 4.3431 4.1817a 4.1762
10 4.8579 4.6920a 4.6862
12.5 5.2110 5.0400
20 6.0396 5.7495 5.8585
25 6.4762 6.2940b

50 8.0289 7.7491 7.8346
62.5 8.5969
70 8.8990 8.6998
100 9.9120 9.6370 9.7075

a Ref. [88] continued on next page
b Ref. [289]
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continued from previous page

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 286]

125 10.5958
200 12.1694 11.8970
250 12.9830
500 15.8018 15.5307
700 17.3384
1000 19.0943 18.8230

a code that calculates the binding energy. Thus, atmosphere models which
are computationally intensive to begin with, need not be further complicated
with the addition of an atomic structure calculation module, even though the
software developed in this study is compact and computationally efficient and
economical in terms of computational time as well.

6.5.2 The Lithium Atom

We investigated the six most tightly bound states of the lithium atom in
intense magnetic fields. The binding energies obtained from solving the cou-
pled eigenvalue problem in Eq. (6.67) are shown in Tables 6.9 through 6.12.
These tables show the results for the positive and negative parity states, re-
spectively. As in the case of the helium atom, the HF binding energies are
results that were obtained after extrapolating to the limit of infinitely fine
mesh.

6.5.2.1 The positive z−parity sub-space of Lithium

In contrast to the helium atom, lithium has been investigated far less often
in the literature, and data is scarce for the binding energies of the different
states, particularly in the intense field regime. Tables 6.9 through 6.11 show
the computed HF binding energies for the three most tightly bound states
in the positive parity sub-space of the lithium atom. Once more, the values
given in parentheses are those computed using our spherical pseudospectral
code. Upon examining the data in Table 6.11, we see that the state 14(−3)+

of lithium comprised of the orbitals 1s02p−13d−2 is the best investigated
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Table 6.6: Absolute value of the binding energies of the positive parity state
13(−1)−, of helium. Energies are in units of Rydberg energies in the Coulomb
potential of nuclear charge Z = 2 for helium. Accurate data from other
work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 285]

0 (1.0307) 1.0278
0.01 (1.0745) 1.0693 1.0702 1.0705
0.05 (1.1808) 1.1565 1.1756 1.1761
0.1 (1.2846) 1.2270 1.2764 1.2795
0.125 (1.3308) 1.3255
0.2 (1.4539) 1.3174 1.4469 1.4481
0.25 (1.5262) 1.5202
0.5 1.9260 1.5131 1.8078
0.625 2.0537 1.9259
0.7 2.1227 1.7202 1.9877
1 2.3605 1.9678 2.2097

1.25 2.5264 2.3687
2 2.9224 2.5433 2.7441
2.5 3.1343 2.9511
5 3.9033 3.5369 3.6950

6.25 4.1902 3.9795
7 4.3440 4.1264
10 4.8652 4.5067 4.6387
12.5 5.2218 4.9947
20 6.0567 5.7056 5.8158
25 6.4958
50 8.0536 7.7118 7.7958
62.5 8.6227
70 8.9252 8.6651
100 9.9389 9.6039 9.6748

continued on next page
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continued from previous page

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 285]

125 10.6235
200 12.1969 11.8675
250 13.0102
500 15.8279 15.5050
700 17.3638
1000 19.1190 18.7997

state in the literature thus far. The results obtained from the current study
can be seen to be in reasonably good agreement with the estimates obtained
elsewhere. The average improvement in the estimate of the binding energy for
the state 14(−3)+, over the entire range 0 ≤ βZ ≤ 1000, is about ∆ ≈ 1%,
with a maximum of around 3% in the strong field regime. The majority
of the results for the binding energy of the 14(−3)+ from other studies in
Tables 6.9 through 6.11, are from Ref. [289]. This study was also a single
configuration calculation, albeit using a numerical approach employing finite-
difference based mesh methods. We see that the current pseudospectral
approach preserves accuracy as the magnetic field increases obtaining slightly
better estimates than Ref. [289], even at the higher end of the intense field
regime. Including effects of electron correlation and relativistic effects will of
course improve the results obtained herein.

The second most tightly bound positive parity state of lithium is 14(−1)+,
shown in Table 6.10. This state comprises of the orbitals 1s02s02p−1. It can
be seen that the estimates obtained in the current study are slight improve-
ments with an average of ∆ ≈ 0.8% over the range 0 ≤ βZ <

∼ 56. While this
state is not as tightly bound as the 14(−3)+ state in the intense field regime,
examination of the data in weak fields reveals that with decreasing magnetic
field strength, this state becomes the most tightly bound of the three states,
in the vicinity of βZ ≈ 0.3.

The third state investigated is 14(−2)+, which represents the third most
tightly bound state of the positive z−parity states in intense magnetic fields.
Data for this state are shown in Table 6.9. For this state however, there is
no data in the intense field regime. The only available data shown is in the
weak and strong field regime. We see that in this case the average difference
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Table 6.7: Absolute value of the binding energies of the positive parity state
13(−2)−, of helium. Energies are in units of Rydberg energies in the Coulomb
potential of nuclear charge Z = 2 for helium. Accurate data from other
work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 284]

0 (1.0189) 1.0156
0.01 (1.0643) 1.0579 1.0601 1.0603
0.05 (1.1684) 1.1364 1.1634 1.1636
0.1 (1.2709) 1.1979 1.2650 1.2655
0.125 (1.3166) 1.3110
0.2 (1.4384) 1.2723 1.4319 1.4326
0.25 (1.5044) 1.5042
0.5 1.8844 1.4937 1.7912
0.625 2.0174 1.9090
0.7 2.0885 1.7012 1.9709
1 2.3300 1.9493 2.0500

1.25 2.4982 2.3522
2 2.8993 2.5269 2.7287
2.5 3.1136 2.9361
5 3.8898 3.5242 3.6827

6.25 4.1789 3.9680
7 4.3337 4.1155
10 4.8581 4.4971 4.6275
12.5 5.2166 4.9860
20 6.0548 5.6989 5.8091
25 6.4952
50 8.0562 7.7080 7.7940
62.5 8.6260
70 8.9288 8.6620
100 9.9434 9.6015 9.6724

continued on next page
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continued from previous page

Refs. Ref. Ref.
βZ Here [83]/[88] [277] [see 284]

125 10.6277
200 12.2027 11.8661
250 13.0163
500 15.8350 15.5043
700 17.3717
1000 19.1256 18.7993

from the results obtained in Ref. [90] is about ∆ ≈ 0.5%. And we see that
the CI calculations produce a more accurate result at the higher end of the
strong field regime, i.e., βZ ≈ 0.5. To the best of our knowledge, since data
is not available in the literature for this state in the range 0.7 ≤ βZ ≤ 1000,
no comparisons could be made and we state that the results obtained in the
current study, represent the first such investigation. The same is true for the
state 14(−1)+ (c.f. Table 6.10) in the range 70 ≤ βZ ≤ 1000

6.5.2.2 The negative z−parity sub-space of Lithium

Table 6.12 shows the three most tightly bound states of lithium that have neg-
ative z−parity. It is quite striking to see that the negative parity sub-space
has not been tackled much in the literature. To the best of our knowledge,
there is data available only for the 14(−1)− state of lithium, comprised of
the orbitals 1s02p02p−1. We see that the pseudospectral approach produces
estimates that are on average about ∆ ≈ 2.3% more bound than the results
from other studies, over the range of magnetic field strengths 0 ≤ βZ <

∼ 56.
However, once more there is no data available in the higher end of the intense
field regime of 70 ≤ βZ ≤ 1000.

The most tightly bound negative parity state of lithium is seen to be the
state 14(−3)−, which is comprised of the orbitals 1s02p−14f−2. It can be
seen that this state becomes the most tightly bound negative parity state at
around βZ ≈ 20. Below this field strength, the 14(−1)− is the most tightly
bound of the three negative parity states of lithium shown in Table 6.12. To
the best of our knowledge, this crossover has not been reported elsewhere in
the literature. In addition, it can be seen by comparing the binding energies
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reported in Tables 6.9 through 6.12, that the state 14(−3)−, is also the second
most tightly bound state of lithium in intense magnetic fields. Moreover,
the third state shown therein, the 14(−2)− state, comprised of the orbitals
1s02p−13d−1, also has not been investigated in the literature. This latter
state represents the third most tightly bound negative parity state of lithium
in the intense field regime.

Thus overall we see that for the six most tightly bound states of lithium
in intense magnetic fields, two of the states have not been investigated ear-
lier at all (14(−3)− and 14(−2)−) and a third state (14(−2)+) has not been
investigated in the intense field regime. Therefore the results presented here
appear to be the first of such studies. In addition we see that for the remain-
ing three states that were investigated, the binding energies obtained in the
current study show slight improvements relative to the estimates obtained
elsewhere.

Furthermore, for the sake of facilitating atmosphere and crustal models
of neutron stars, we have also carried out rational function fits to the data.
Once again these analytic forms can be implemented directly in such codes,
thereby circumventing the need for atomic structure calculations altogether.
The rational functions have the same functional form as those described in
Eq. (6.68) above. The coefficients of these rational functions are given in
Table 6.13 alongside estimates of the fitting errors.

This concludes our discussion of the results obtained in this study. In the
following section, we summarize the findings alongside a brief discussion of
further avenues for investigation.

6.6 Conclusion

We present below a brief summary of this study and thereafter a short dis-
cussion of possible avenues for further work.

6.6.1 Summary

In the current study we have investigated low-Z atoms, helium and lithium
in intense magnetic fields. A two-dimensional single-configuration Hartree-
Fock method, as described in Ref. [88], was adopted. A key feature of the
method is that the potentials for the inter-electronic interactions are obtained
as solutions to the elliptic partial differential equations as given in Eqs. (6.5)
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and (6.6). The HF equations in Eq. (6.3) are solved using the self consistent
field method. In the current study the HF equations are solved as a fully
coupled eigenvalue problem, without expressing the exchange interactions as
an effective single-particle potential [see 325]. Thus it was observed that the
system size grew as ne(N−1)2×ne(N−1)2, with ne the number of electrons
in the coupled problem and N the number of grid points in each direction.

A pseudospectral approach was adopted for the numerical solution of
the problem using cylindrical coordinates so as to facilitate calculations in
the intense field regime. The resulting semi-infinite domain of the prob-
lem was kept in its entirety and a suitable compactification was carried
out. Thereafter, domain discretization was achieved using the commonly
employed Chebyshev-Lobatto spectral collocation method. It was seen that
the transformed equations had a coordinate singularity along the axis; a rem-
nant of using cylindrical coordinates. The singularity was excised from the
domain, by a translation of about δ = 10−14; see Section 6.3.1.

Additionally, we outlined in great detail, the formulation of the pseu-
dospectral problem with a description of the method for imposing boundary
conditions. For this purpose we gave explicit examples of the pseudospectral
implementation for the ground states of hydrogen and helium in intense mag-
netic fields. The method developed in the current study is a generalization
of the implementation due to the authors in Ref. [324].

The resulting discretized and coupled eigenvalue problem problem was
solved using standard sparse matrix methods. The software package ARPACK
was employed for computing eigenvalues in the desired part of the spectrum,
obtaining a handful of eigenvalues and eigenvectors. A major advantage of
the implicitly restarted Arnoldi method is the drastically reduced computa-
tional overhead and memory requirements, even for very large system sizes.
As a result, we were able to obtain accurate eigenvalues and eigenvectors for
helium and lithium in intense magnetic fields.

The key enabling advantage of the psuedospectral approach is the im-
mensely reduced computational time required for obtaining accurate results;
on the order of about a thousand seconds. In addition, since we have adopted
here an unrestricted two-dimensional approach to the problem [see 88], it has
the distinct advantage that we do not require a basis of functions to describe
the wave functions. Thus the wave functions obtained in the current unre-
stricted 2D approach can be thought of in effect, as those arising from the
superposition of a large number of basis functions. Simultaneously, we also
do not impose a separation of coordinate variables in the functional form
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of the individual electron wave functions and adhere instead to the natural
symmetries of the problem, i.e., we maintain azimuthal symmetry.

We presented data for the six most tightly bound states of the helium
atom in intense magnetic fields, in Tables 6.2 through 6.7. These were seen
to be consistent with findings elsewhere. Similarly we investigated the six
most tightly bound states of the lithium atom as well. However, we found
that the data in the literature to be rather scarce for lithium. As a result we
could only compare our results for four of the six states characterized in this
study. We also presented, apparently for the first time, calculations for the
binding energies for the states 14(−2)− and 14(−3)− of lithium. We find that
the the latter state is also the second most tightly bound state of lithium in
intense magnetic fields.

The work described herein was motivated primarily by the need to have
accurately determined upper bounds for the binding energies of atoms in
intense magnetic fields employing a computationally straight-forward imple-
mentation. As the atomic structure software developed here is small and com-
putationally economical, it produces accurate results within a short amount
of computing time. As a result, it can be incorporated directly into atmo-
sphere and crustal models for neutron stars. However, while this may be
desirable, it may present an additional layer of computational complexity.
The user may wish to circumvent this by employing the rational function fits
given in Tables 6.8 and 6.13. These analytic forms, model the data in the
range 0 ≤ βZ ≤ 1000 and thus may simplify atmosphere and crustal models
considerably.

6.6.2 Avenues for future work

At this juncture it is prudent to be aware of the limitations of the atomic
structure software. First, since the code developed herein is merely a pro-
totype, we have not included effects such as electron correlation, relativistic
corrections, finite nuclear mass effects and electron screening. Conceivably,
these effects once included, will result in further improvements to the binding
energies. These additions would collectively represent one of the directions
in which the current software could be improved. Secondly, the cylindri-
cal pseudospectral code begins to lose accuracy in the intermediate range of
magnetic field strengths, βZ <

∼ 0.5. At this point it becomes necessary to
carry out the computations using spherical coordinates. In the current study
we are carrying out this switch manually, when we notice a drop in accu-
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racy at low fields; this could be automated by keeping track of the change in
the eigenvector estimates as the field is lowered gradually, in the weak and
intermediate field regimes.

In the current study the memory requirements for the code are quite lean,
considering that we are solving a fully coupled eigensystem. As a result the
current study can be extended to tackle the case of mid-Z atoms such as
beryllium, boron, carbon, oxygen etc., for which binding energy data is even
more scarce than that for lithium. This would be the obvious next step in
the utilization of the current version of the software for determining atomic
structure in intense magnetic fields. In this regard it may possible to enhance
computational efficiency by rendering certain parts of the code to execute on
a parallel architecture. In particular, the determination of the eigenvalues
within each HF iteration could be computed on a distributed system employ-
ing PARPACK; a parallel implementation of the implicitly restarted Arnoldi
method. This would have a considerable impact on the usage of memory as
well, since array storage requirements would be distributed over numerous
nodes. In addition, at present in the serial version of the code, the interac-
tions between each pair of electrons are calculated one after the next. As a
result the computational time for determining the interaction matrices de-
pends cumulatively on the number of pair-wise interactions. Clearly this
becomes an issue with increasing number of electrons in the atom. This
computation would directly benefit from calculating each pair-wise interac-
tion on a different node in parallel, thereby reducing computational time and
the rate would then be limited by the slowest pair-wise computation rather
than the cumulative time for all the pair-wise computations. Concordantly,
with parallelization it would be possible to increase mesh refinement partic-
ularly for atoms with ne ≥ 3. In the current prototype of the software, we
were restricted to N = 61 node points for lithium, due to an upper limit on
the available computer memory.

Moreover, the current version of the code is only accurate for the low-
lying states. For example it was not possible to obtain accurate estimates of
excited states within a given symmetry sub-space, such as say the 24(−3)+

state of lithium etc. This is to be acknowledged as a drawback although it
can be related directly to computing resources. The binding energy of these
excited states are significantly lower than the ground state configurations
within a given M-manifold. With further excitations the binding energy
reduces still more. Thus, from a theoretical point of view, these states are
of interest, however in the astrophysical context, which this work focuses
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on, these excited states are not of as much importance as the ground state
configurations within variousM-manifolds. The oscillator strengths between
these excited states and the tightly bound ground state configurations are
small. That being said, the software developed in this study can be extended
to calculate binding energies of these excited states. In this study we are
generating a reasonably sized Krylov subspace for determining a handful of
eigenvectors of the fully coupled HF problem. Our primary concern was
with regard to memory usage, which can grow rapidly with system size. An
obvious step would be to decouple the electrons in the HF iterations by
calculating an effective single particle exchange potential [see 325] and solve
the effective single particle HF equations as shown in Eq. (6.65). This would
reduce the computational memory requirements as the number of electrons
in the problem are increased. By doing so, it would be possible to determine
further excited states in the spectrum, than what can be resolved in the
coupled HF problem, for a given Krylov sub-space size and computer memory.
Second, the mesh refinement can be increased further to resolve a greater
part of the spectrum better. Once more this is limited quite obviously by
computer memory. Although, it may be possible to have non-uniform grids
in the x− and y− directions. At the moment, the number of points in each
direction is the same. This makes the formulation of the pseudospectral
method somewhat simpler. However, with increasing magnetic field strength
the electron orbitals become not only greatly reduced in spatial extent but
also elongated along the direction of the magnetic field. Thus, by introducing
greater number of points in the y−direction than in the x− direction it may
be possible to re-formulate the problem in a more computationally efficient
manner.

Furthermore, the software described in the current study could be ex-
tended towards a full 2D configuration interaction or even a 2D-MCHF frame-
work. These post-HF methods would lead to an immediate improvement in
the estimates of the binding energies obtained herein. The inclusion of dif-
ferent configurations and incorporating concomitantly, correlation effects be-
tween configurations, would produce better results. This would particularly
be the case, in the weak and intermediate field regimes where correlation ef-
fects can contribute to the binding energy reasonably significantly. In either
case, the method developed herein would be central to such enhancements
and as such, the current study represents the very first implementation of a
cylindrical pseudospectral method for atomic structure calculations in intense
magnetic fields.
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Finally, there is the question of the explaining the accuracy of the colloca-
tion methods used in this study. The pseudospectral methods employed here
fall under the broad category of the Discrete Variable Representation (DVR)
methods. Numerous authors have investigated and commented upon the
accuracy of such methods. In general there is agreement that these meth-
ods owe their accuracy to the fact that the inter-electronic potentials and
the Coulomb potentials are merely computed at a handful of discrete points
rather than computing the matrix elements of these interactions numerically
or analytically over large domains. Furthermore, as was noted by Baye and
co-workers [see 271], these methods are very useful for obtaining fast and ac-
curate results for four or five decimal places. It is also seen that the accuracy
of the estimates decreases rapidly with increasing magnetic field strength. In
the current study, it is exactly this sort of behaviour that is observed. To
investigate the issue of whether the collocation method is consistent with the
variational principle, different collocation methods can be implemented and
then checked for internal consistency. This was considered to be outside the
scope of the current study and is therefore left as a matter to be explored in
future work.
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Figure 6.6: Convergence of the binding energy with mesh refinement is
shown. The plot shows results from eigenvalue computations for two states
of helium (top two panels) and lithium (bottom two panels) each, at different
magnetic field strengths. The levels of mesh refinement employed correspond
to N = 21, 31, 41, 51, 61 and 71 points in each of the x− and y− directions for
helium and up to N = 61 for lithium. The lines drawn through the data are
interpolating piece-wise cubic hermite polynomials that are also employed
for extrapolation.
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Table 6.8: Coefficients of the different rational functions for fitting the six
states of helium discussed. The absolute maximum fractional error of the
eigenvalue relative to the fit from βZ = 0 to βZ = 103 is reported in the
variable ǫ

State Coefficients State Coefficients

13(−1)+

1s02p−1

a0 = −1.7217123
a1 = −17.814316
a2 = −19.974289
a3 = 0.70874301
a4 = −0.94000973
b0 = 1.6042624
b1 = 9.5985466
ǫ = 6× 10−3

13(−2)−

1s04f−2

a0 = 0.045473505
a1 = 1.3416631
a2 = −1.9945187
a3 = −9.5055929
a4 = 0.56822486
a5 = −0.48530257
b0 = −0.044558692
b1 = −1.1134528
b2 = 3.776243
ǫ = 5× 10−3

13(−2)+

1s03d−2

a0 = −0.26130228
a1 = −3.9622156
a2 = 7.69114
a3 = 7.1549007
a4 = −24.249904
a5 = 2.1137011
a6 = −0.99080421
b0 = 0.2528006
b1 = 2.5631582
b2 = −9.7214586
b3 = 9.8712035
ǫ = 5× 10−3

13(−1)−

1s03d−1

a0 = −0.058636537
a1 = −7.202045
a2 = 2.1397541
a3 = 75.211465
a4 = 6.6163959
a5 = 3.6429931
a6 = −0.044520254
b0 = 0.05689405
b1 = 6.6097765
b2 = −17.233698
b3 = −19.204331
ǫ = 3× 10−3

13(0)+

1s02s0

a0 = −0.21346351
a1 = −7.0538773
a2 = −10.924921
a3 = 0.35137528
a4 = −0.5304386
b0 = 0.1956651
b1 = 5.8292412
ǫ = 4× 10−3

13(0)−

1s02p0

a0 = 0.69370335
a1 = 0.0079933198
a2 = −5.9113942
a3 = 0.31958673
a4 = −0.39964524
b0 = −0.64093914
b1 = 1.5039961
ǫ = 1× 10−2
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Table 6.9: Absolute value of the binding energies of the positive parity state of
lithium, 14(−2)+. Energies are in units of Rydberg energies in the Coulomb
potential of nuclear charge Z = 3 for lithium. Accurate data from other
work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

βZ Here Ref. [90]
0 (1.1492) 1.1491

0.00056 (1.1541) 1.1544
0.0028 (1.1780) 1.1720
0.0056 (1.1961) 1.1901
0.0111 (1.2267) 1.2203
0.0278 (1.2964) 1.2886
0.0556 (1.3912) 1.3930
0.5 2.2993

0.5556 2.3759 2.4145
0.7 2.5557
1 2.8657

1.1111 2.9664
2 3.6114

2.7778 4.0396
5 4.9451

5.5556 5.1282
7 5.5536
10 6.2788

11.1111 6.5099
20 7.9535

27.7778 18.8840
50 10.7991

55.5556 11.1787
70 12.0662
100 13.5238

111.1111
200 16.8116

continued on next page
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continued from previous page

βZ Here Ref. [90]

277.7778 18.5917
500 22.1657

555.5556 22.8620
700 24.4514
1000 27.0771
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Table 6.10: Absolute value of the binding energies of the positive parity
state of lithium, 14(−1)+. Energies are in units of Rydberg energies in the
Coulomb potential of nuclear charge Z = 3 for lithium. Accurate data from
other work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

βZ Here Elsewhere
0 (1.1968) 1.1926a

0.00056 (1.2024) 1.1969a

0.0028 (1.2194) 1.2121c

0.0056 (1.2390) 1.2334a

0.0111 (1.2735) 1.2674a

0.0278 (1.3530) 1.3463a

0.0556 (1.4529) 1.4432a

0.5 2.4094
0.5556 2.4885 2.4246a

0.7 2.6749
1 3.0006

1.1111 3.1063 3.0432b

2 3.7837
2.7778 4.2333 4.1781b

5 5.1836
5.5556 5.3756 5.3304c

7 5.8219
10 6.5822

11.1111 6.8244 6.7909c

20 8.3368
27.7778 9.3109 9.2936c

50 11.3187
55.5556 11.7205 11.7000c

a Ref. [90] continued
b Ref. [289] on next
c Ref. [309] page
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continued from previous page

βZ Here Elsewhere

70 12.6336
100 14.1628

111.1111
200 17.5969

277.7778 19.4541
500 23.1796

555.5556 23.9049
700 25.5599
1000 28.2923
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Table 6.11: Absolute value of the binding energies of the positive parity
state of lithium, 14(−3)+. Energies are in units of Rydberg energies in the
Coulomb potential of nuclear charge Z = 3 for lithium. Accurate data from
other work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

βZ Here Elsewhere
0 (1.1357) 1.1427a [1.1299]d

0.00056 (1.1425) 1.1487
0.0028 (1.1652) 1.1663
0.0056 (1.1897) 1.1869
0.0111 (1.2324) 1.2278
0.0278 (1.3354) 1.3294
0.0556 (1.4699) 1.4627
0.5 2.6782

0.5556 2.7697 2.6572a

0.7 2.9822
1 3.3547

1.1111 3.4721 3.3695b

2 4.2352
2.7778 4.7438 4.6779b

5 5.8237
5.5556 6.0426 6.0043b

7 6.5525
10 7.4242

11.1111 7.7027 7.6856c

20 9.4492
27.7778 10.5810 10.5685b

50 12.9213
55.5556 13.3871 13.3464b

a Ref. [90] continued on
b Ref. [289] next page
c Ref. [309]
d Ref. [337]
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continued from previous page

βZ Here Elsewhere

70 14.4618
100 16.2704

111.1111 16.8412 16.7294
200 20.3551

277.7778 22.5789 22.2774
500 27.0683

555.5556 27.9464 27.4029
700 29.9557
1000 33.2904
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Table 6.12: Absolute value of the binding energies of the negative parity
states of lithium. Energies are in units of Rydberg energies in the Coulomb
potential of nuclear charge Z = 3 for lithium. Accurate data from other
work is also provided for comparison. (βZ = γ/2Z2). The values given
in parentheses are obtained from a faster version of our spherical atomic
structure code developed earlier [see 92].

14(−2)− 14(−1)− 14(−3)−

βZ Here Here Elsewhere Here
0 (1.1400) (1.1687) 1.1652c (1.1306)

0.00056 (1.1457) (1.1735) 1.1695c (1.1361)
0.0028 (1.1644) (1.1909) 1.1865c (1.1556)
0.0056 (1.1827) (1.2110) 1.2065c (1.1755)
0.0111 (1.2183) (1.2469) 1.2417c (1.2104)
0.0278 (1.3073) (1.3354) 1.3297c (1.2964)
0.0556 (1.4248) (1.4500) 1.4463c (1.4113)
0.5 2.5144 2.5901 2.4866

0.5556 2.5985 2.6712 2.4842a 2.5718
0.7 2.7941 2.8611 2.7752
1 3.1302 3.1899 3.1167

1.1111 3.2387 3.2961 3.1035a 3.2265
2 3.9287 3.9735 3.9241

2.7778 4.3831 4.4211 4.2319a 4.3826
5 5.3384 5.3651 5.3445

5.5556 5.5309 5.5577 5.3767b 5.5379
7 5.9775 6.0017 5.9885
10 6.7403 6.7636 6.7562

11.1111 6.9858 7.0095 6.8298b 7.0060
20 8.5011 8.5128 8.5180

27.7778 9.4756 9.4858 9.3242a 9.4947
50 11.4806 11.4889 11.5022

55.5556 11.8781 11.8861 11.7269a 11.8999

a Ref. [309] continued on next page
b Ref. [289]
c Ref. [90]
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continued from previous page

14(−2)− 14(−1)− 14(−3)−

βZ Here Here Here

70 12.7929 12.8008 12.8156
100 14.3263 14.3347 14.3504
200 17.7625 17.7758 17.7921

277.7778 19.6188 19.6369 19.6531
500 23.3394 23.3705 23.3862

555.5556 24.0634 24.0974 24.1130
700 25.7156 25.7561 25.7715
1000 28.4424 28.4943 28.5116

Note: There is no data available in the
literature for comparison for βZ ≥ 70.
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Table 6.13: Coefficients of the different rational functions for fitting the six
states of lithium discussed. The absolute maximum fractional error of the
eigenvalue relative to the fit from βZ = 0 to βZ = 103 is reported in the
variable ǫ

State Coefficients

14(−3)+

1s02p−13d−2

a0 = −535.72875
a1 = −5798.3255
a2 = −3697.7541
a3 = −75.172313
a4 = −110.3002
b0 = 468.35702
b1 = 2070.8459
ǫ = 9× 10−3

14(−1)+

1s02s02p−1

a0 = −3.9323519
a1 = −42.850795
a2 = −39.165039
a3 = 0.42649409
a4 = −1.4493673
b0 = 3.2679311
b1 = 19.93254
ǫ = 7× 10−3

14(−2)+

1s02s03d−2

a0 = −3.5455821
a1 = −37.85524
a2 = −35.186156
a3 = 0.52456655
a4 = −1.3412409
b0 = 3.0591966
b1 = 18.498756
ǫ = 9× 10−3

continued on next page
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continued from previous page

State Coefficients

14(−3)−

1s02p−14f−2

a0 = −9.3555515
a1 = −88.389164
a2 = −62.302697
a3 = −0.17161294
a4 = −2.0600694
b0 = 8.2232868
b1 = 34.29776
ǫ = 7× 10−3

14(−1)−

1s02p02p−1

a0 = 1.0841938
a1 = −1.9251408
a2 = −148.33918
a3 = −101.67185
a4 = −1.2270097
a5 = −3.1352421
b0 = −0.92575833
b1 = 7.0913811
b2 = 60.317953
ǫ = 3× 10−3

14(−2)−

1s02p−13d−1

a0 = −17.90019903
a1 = −25.29627281
a2 = −661.06955428
a3 = −1219.55537379
a4 = −139.85464269
b0 = 429.60387534
b1 = 121.92364211
ǫ = 6× 10−3
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Chapter 7

Conclusion

7.1 Final Remarks

In this thesis we investigated the implications of a magnetic field on the late
stages of stellar evolution. The first part of the study involved examining the
influence of a dynamically important magnetic field on the stellar wind in
evolved giants, in particular AGB stars. The primary goal was to determine
whether it was possible to include self-consistently, magneto-rotational effects
with the effects of radiation pressure on dust grains in the envelope of an AGB
star.

We formulated a theory that combines a classical Weber-Davis type MHD
wind with a momentum equation for the dust grains. This picture requires a
dual-fluid description. The gas forms the first fluid that carries the magnetic
field while the dust forms the second fluid that moves through it. The two
fluids are coupled to each other through drag. We saw in Chapter 3 that the
solution of such a hybrid model resulted in an interesting stellar wind, with
traits of both types of winds being preserved. The presence of magnetosonic
points puts a limit on the viable locations for the dust formation radii. On the
other hand, the presence of dust formation was seen to be crucial for escape of
stellar material from the star. Thus is in this picture, a WD mechanism plays
a secondary role, providing support to the wind by transporting material from
the photosphere out to the dust formation radius.

In this regard we saw that two possible types of hybrid models emerged.
In the first type, the dust formation radius was required to lie within the
sonic point of the pure WD model. This also implied that the sonic point
of the hybrid model was also within the sonic point of the pure WD model.
Thus after dust condensation, the wind could get accelerated to supersonic
velocities after passing through the sonic point. Further out, this wind solu-
tion being the critical solution, would pass through the two Alfvën point and
emerge super-Alfvënic at large distances. This type of hybrid wind solution
resulted in dust formation typically within a few stellar radii, consistent with
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observations, and the wind velocity attained at large distances was around
∼ 15 − 20 km/s, in agreement with current observations. It was seen that
for such hybrid winds the dust parameter was required to be less than unity
in order to achieve an outflow from the star.

We additionally formulated a second type of hybrid wind model in which
the dust formation occurs outside the fast point. This typically places the
location of dust formation many stellar radii away from the photosphere.
It was seen that such a combination was theoretically possible and it was
concluded that while such a large distance for dust formation though not
reasonable for AGB stars, was probably suitable for other types of stars such
as eruptive variable R-Coronae Borealis (RCB) stars. In this type of model,
the WD mechanism was responsible for transport of stellar material all the
way from the photosphere out to the dust formation radius, many stellar
radii away. It was seen that for such a scenario, the dust parameter was
merely required to be greater than zero.

Overall, at the end of Chapter 3 it was ascertained that it is indeed
possible to have the effects of a magnetic field coupled with the usual dust
formation picture, resulting in the very first dual-fluid hybrid MHD-dust-
driven wind model.

We adapted this hybrid stellar wind theory to tackle the case of the red
supergiant star Betelgeuse (Chapter 4). The primary motivations for this
study were first the discovery of a magnetic field in the star at the distance
of the SiO masers, of about 1 G. Secondly, the reason why Betelgeuse is so
interesting is that there appears to be very little dust inside r <

∼ 30R0, as a
result one of the outstanding questions regarding its mass-loss is, how is the
stellar wind supported if dust forms at such a large distance from the star?

In an attempt to answer this question, we adapted our hybrid MHD-
dust-driven wind theory for a red supergiant. We investigated several dust
formation (and spallation) scenarios in the atmosphere of Betelgeuse and
concluded that while it is possible that the more complicated scenarios may
result in stellar wind velocities consistent with observations, the simplest of
such scenarios was perhaps the most viable one. In this scenario, a WD
mechanism transports stellar material out to about 30R0 at which location
the temperature of the gas is conducive for dust condensation. Thereafter a
hybrid MHD-dust-driven wind then results in a mild efflux with a terminal
wind speed of about 14 km/s, in agreement with recent estimates. It was also
seen in Chapter 4 that the temperature profile of the gas and the estimated
dust temperatures were consistent with studies elsewhere.
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Thus, it was concluded at the end of Chapter 4 that a hybrid MHD-dust-
driven wind can support transport of stellar material from the photosphere,
out to distances in the extended atmosphere where dust formation occurs
resulting in a combined efflux of dust and gas. This mechanism was proposed
as an additional mechanism that can play a role alongside stellar pulsation
and convection, as well as MHD and acoustic waves.

In Chapter 5, we adapted the same hybrid MHD-dust-driven wind theory
to model the wind from the prototype of long period variables, the star Mira
itself. This study was motivated once more by hints of not only detection
of a magnetic field in the atmosphere of Mira, but also a possible detection
of rotation. In Mira’s atmosphere observations suggest an inner radius for
the dust shell at around 3R0. Thus we modelled the wind using a model of
the first kind, where dust forms inside the sonic point. With such a model
we were able to obtain a wind terminal velocity of ∼ 5 km/s, inside 100R0,
in agreement with current estimates. The temperature profile obtained was
also consistent with inferred dust temperatures at different distances from the
photosphere. In order to obtain a wind solution to this model, we treated the
surface magnetic field as a variable parameter, among others. We obtained,
within the framework of the simple hybrid MHD-dust-driven wind theory,
that a surface magnetic field strength of about 4 G would be required, given
the other parameters of the star, for obtaining a wind expansion velocity
of about 5 km/s. This magnetic field strength was seen to lie well within
theoretical and observational estimates for AGB stars.

Thus it is seen that the hybrid MHD-dust-driven wind model can be
adapted successfully for modelling the winds of low- and intermediate-mass
AGB stars as well as red supergiants, establishing the need for developing
further, more realistic models.

The latter part of the thesis focussed on the end products of stellar evo-
lution, viz., magnetised neutron stars and white dwarf stars. This study was
motivated by the need to have accurate data for atomic structure of low-Z el-
ements in strong and intense magnetic fields. The overall aim was to facilitate
a correct interpretation of the spectra of these objects. We implemented a
pseudospectral method of solution for the generalised 2D single-configuration
HF equations of few-electron systems. It was seen that this method was many
orders of magnitude faster than contemporary finite-element based methods.
The algorithm developed is also computationally straight-forward to imple-
ment in comparison to full configuration interaction or quantum Monte-Carlo
methods. This study represents the first cylindrical pseudospectral imple-
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mentation of atoms in strong magnetic fields and as such represents the
first step in the realisation of full 2-D pseudospectral multi-configuration HF
methods, without relying upon any explicit basis functions or the adiabatic
approximation. We also obtained data for the binding energies of two low-
lying states of the lithium atom that had not been studied thus far in the
literature.

The atomic structure package developed for this study (see Appendix B),
is compact and is developed so that other configurations can be easily added
with minimal effort.

7.2 Future Work

At this stage there are various directions in which the current thesis can
be extended. First, the hybrid MHD-dust-driven wind can be improved in
two directions. Broadly speaking, within the framework of a steady-state
description, it can be assumed as noted earlier that there also exists drag in
the azimuthal direction. This would result in the inclusion of an azimuthal
drag term. Concomitantly, by allowing the dust-to-gas ratio to change with
distance rather than use an average value, the momentum equations would
get accordingly modified to result in four coupled ODE’s (one each for the
radial and azimuthal momenta of both the gas and the dust) that can be
solved simultaneously to yield the dust and gas velocity profiles in both the
radial and azimuthal directions. This would also change the dust parameter
with distance from the star and it will change the topology of the solutions.
Moreover, the dust grain sizes can be assumed to have a distribution, ren-
dering the determination of the drag force more tedious, but definitely closer
to reality. There can even be assumed to exist a certain degree of scattering,
which will effectively change the radiation pressure term in the momentum
equations.

Finally, modelling can be made far more realistic by adopting a fully
dynamic time-dependent form for the velocity and magnetic fields. A 2-
D axisymmetric model with magneto-rotational effects coupled with dust
formation in the envelope would ultimately enable capturing the onset of
MHD instabilities. The dust-grain physics can also be handled in a more
realistic way by allowing for stochastic in-situ dust grain formation. The
results of the current study could be used as a check for the steady-state
solution of such a model. Such an endeavour, as noted earlier would answer
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the question of whether such instabilities can lead to appreciably asymmetric
mass loss and momentum transfer and perhaps even result in white-dwarf
kicks. These improvements would then ultimately enable the formulation of
a model of the stellar winds of evolved stars that would present a picture
that is more accurate than the simple treatment provided in Chapters 3, 4
and 5.

With regard to atomic structure in strong magnetic fields there are also
several avenues in which the current study can be advanced. At the very
outset, the code can be cast into a parallel form so that taking advantage
of distributed computing, a great speed up can be achieved. This would
also imply that the memory usage can be reduced as well. These two de-
velopments would ensure that first not only atoms with greater number of
electrons can be tackled, but also secondly, it would make it possible to
extend the treatment towards a 2D-configuration interaction or a full multi-
configuration framework. This would ultimately make it possible to take into
account the important effects of electron-correlation and would improve the
current estimates for the binding energies give in Chapter 6.

Finally, since the atomic structure package developed for this study is
merely a prototype, effects due to finite nuclear mass, relativistic corrections,
electron screening and correlation can be included, making the determination
of the wave functions more accurate. These collective improvements would
ultimately enable a better interpretation of the spectra of the magnetised
end products of stellar evolution.
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[98] L. F. Miranda, Y. Gómez, G. Anglada, and J. M. Torrelles. Water-
maser emission from a planetary nebula with a magnetized torus. Na-
ture, 414:284–286, November 2001.

[99] Y.-H. Chu, G. H. Jacoby, and R. Arendt. Multiple-shell planetary
nebulae. I - Morphologies and frequency of occurrence. ApJ, 64:529–
544, July 1987. doi: 10.1086/191207.

[100] L. Stanghellini, R. L. M. Corradi, and H. E. Schwarz. The correla-
tions between planetary nebula morphology and central star evolution.
Astron. & Astroph., 279:521–528, November 1993.

[101] A. Frank. Bipolar outflows and the evolution of stars. New Astronomy
Review, 43:31–65, May 1999. doi: 10.1016/S1387-6473(99)00005-6.

200



Bibliography
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Appendix A

Hybrid Wind Model - Source

Code

The central driver routine for the hybrid wind model, written in Fortran 77,
is provided here. A suitable bash, Perl or Ruby wrapper can run the driver
for various initial conditions. It needs to be directly compiled alongside
ODEPACK [192, 193]. The latter is available at

https://computation.llnl.gov/casc/odepack/odepack_home.html.

C The f o l l ow ing i s a d r i v e r program f o r s o l v i ng the Weber−
Davis s o l a r wind model

C on a uni−dimens iona l g r id o f po in t s .
C The problem to be so lv ed i s an ord inary d i f f e r e n t i a l

equat ion
C
C dy/dt= (y/ t ) ∗ ( (2 g ST ( yt ˆ2)ˆ(1−g ) −Sg/ t ) ( yt ˆ2−1)ˆ3 + SW

t ˆ2 (y−1)
C ∗ [ ( yt ˆ2+1)y − 3 yt ˆ2 +1 ] /
C ( (yˆ2 − g ST ( yt ˆ2)ˆ(1−g ) ) ( yt ˆ2−1)ˆ3 − SW yˆ2 t ˆ2

(1− t ˆ2) ˆ2 )
C
C on the i n t e r v a l from t = t0 to t = tmax , with i n i t i a l

c o nd i t i o n s
C y0 supp l i ed at t0 . The problem i s s t i f f .
C
C The f o l l ow ing coding s o l v e s t h i s problem with DLSODE,

us ing
C MF = 21 . I t uses
C ITOL = 1 and ATOL about 1 .D−12.
C At the end o f the run , s t a t i s t i c a l q u a n t i t i e s o f i n t e r e s t

a re pr in ted .
C
C NOTE: A s h e l l s c r i p t wrapper runs t h i s d r i v e r program
C running va r i ous i n i t i a l c o nd i t i o n s .

e x t e r na l fex , j ex
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i n t e g e r iopt , iout , i s t a t e , i t a sk , i t o l , iwork (21) , l iw
, lrw

in t e g e r mf , neq , counter , i f l a g , nyh , k , ten
i n t e g e r der ivchk , iwr i t e , thousand , divnum
in t e g e r wr i t e counte r , hundred , i cont , i tcount , i ta sk0 ,

i op t0
i n t e g e r ∗8 numsteps
double p r e c i s i o n ato l , r t o l , rwork (32) , t , tout , t s tep ,

y (1 )
double p r e c i s i o n y0 , t0 , tout0 , r to l 0 , a to l0 , t c r i t 0
double p r e c i s i o n st param , sg param , sw param ,

gamma param
double p r e c i s i o n st param0 , sg param0 , sw param0 ,

gamma param0
double p r e c i s i o n nu ts ing , s t s i n g , omega ts ing ,

gamma tsing
double p r e c i s i o n xc , vc , xf , vf , tprev , yprev , tend ,

yend
double p r e c i s i o n dky , g dusty , xa , va , xa0p99 , d la s t ,

tento4
double p r e c i s i o n va0p9 , va1p01 , xa0p98 , xa1p01 , xa1p02
double p r e c i s i o n xa0p975 , l a s t y good , l a s t t g o od ,

dky prev
double p r e c i s i o n f lux , f f , s t , sg , sw , g , xd , xmin , xmax
common /wd params/ st param , sg param , sw param ,

gamma param
common / f l a g s / icont , i tcount , d l a s t

c open va r i ous output f i l e s , main output f i l e i f ” output .
dat ”

open (1 , f i l e=’ output . dat ’ , s t a tu s=’new ’ , a c c e s s=’
s e quen t i a l ’ ,

#form=’ formatted ’ , a c t i on=’ wr i t e ’ )

open (2 , f i l e=’ de r i v . dat ’ , s t a tu s=’new ’ , a c c e s s=’ s e quen t i a l
’ ,

#form=’ formatted ’ , a c t i on=’ wr i t e ’ )

open (3 , f i l e=’ l a s t d e r i v . dat ’ , s t a tu s=’new ’ , a c c e s s=’
s e quen t i a l ’ ,

#form=’ formatted ’ , a c t i on=’ wr i t e ’ )

open (9 , f i l e=’ i s t a t e . dat ’ , s t a tu s=’new ’ , a c c e s s=’

226



Appendix A. Hybrid Wind Model - Source Code

s e quen t i a l ’ ,
#form=’ formatted ’ , a c t i on=’ wr i t e ’ )

open (10 , f i l e=’ deldky . dat ’ , s t a tu s=’ r ep l a c e ’ ,
#a c c e s s=’ s e quen t i a l ’ , form=’ formatted ’ , a c t i on=’ wr i t e ’ )

open (11 , f i l e=’ l a s t i n t e g r a t i o n . dat ’ , s t a tu s=’ r ep l a c e ’ ,
#a c c e s s=’ s e quen t i a l ’ , form=’ formatted ’ , a c t i on=’ wr i t e ’ )

c counter i s f o r c a r r i n g out mu l t ip l e i n t e g r a t i o n s in the u−
r phase space

c in the cur r ent v e r s i o n i t i s s e t to zero . Otherwise the
wrapper s c r i p t

c w i l l i n t r oduce i t and increment i t .
counter = 0

c input v a r i a b l e s
c y0 <−− i n i t i a l c ond i t i on f o r the dependent va r i a b l e
c t0 <−− s t a r t i n g po int f o r i n t e g r a t i o n
c tout0 <−− the next time/ space s tep . tout0−t0=step s i z e
c r t o l 0 <−− r e l a t i v e to l e r ance , s e e d l sode docs
c a t o l 0 <−− abso lu te to l e r ance , s e e d l sode docs
c i t a s k 0 <−− ta sk type , s e e d l sode docs
c i opt <−− extra options , s e e d l sode docs
c i s t a t e 0 <−− i n i t i a l s t a t e f o r i n t e g r a t i o n , s e e d l sode docs
c t c r i t 0 <−− l o c a t i o n o f any c r i t i c a l po int , s e e d l sode docs
c st param0 <−− ST parameter
c sg param0 <−− SG parameter
c sw param0 <−− SW parameter
c gamma param0 <−− po l y t r op i c exponent
c numsteps <−− number o f s t eps wanted . deprecated
c i c on t <−− (1 or 0) whether to cont inue a f t e r parameter ;

ad jus ted mid−way .
c deprecated
c g dusty <−− dust parameter
c xa <−− =1 l o c a t i o n o f Alfven po int .
c va <−− =1 Alfven v e l o c i t y
c d l a s t <−− l a s t l o c a t i o n o f i n t e g r a t i o n . deprecated
c xd <−− l o c a t i o n o f the dust fo rmat ion rad iu s .

wr i t e (∗ ,∗ ) ’ p l e a s e prov ide the f o l l ow ing in that order ’
wr i t e (∗ ,∗ ) ’ y0 , t0 , tout0 , r to l 0 , a to l0 , i ta sk0 , iopt0 ,

#i s t a t e 0 , t c r i t 0 , st param0 , sg param0 , sw param0 ,
#gamma param0 , numsteps , i cont , g dusty , xa , va , d la s t , xd ’
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read (∗ ,∗ ) y0 , t0 , tout0 , r to l 0 , a to l0 , i ta sk0 , iopt0 ,
i s t a t e 0 ,

#t c r i t 0 , st param0 , sg param0 , sw param0 , gamma param0 ,
numsteps ,

#icont , g dusty , xa , va , d la s t , xd

c opt i ona l read statement , not r equ i r ed in cur r ent v e r s i o n
c read (2 ,∗ ) xc
c read (2 ,∗ ) vc
c read (3 ,∗ ) x f
c read (3 ,∗ ) v f

c i n i t i a l i s e opt i ons needed by dlsode . s e e docs .
neq = 1
y (1 ) = y0
t = t0
tout = tout0
i t o l = 1
i t a s k = i t a s k 0
i s t a t e = 1
iopt=iopt0
i f ( i op t . eq . 1) then

rwork (5 ) =0.0D0
rwork (6 ) =0.0D0
rwork (7 ) =0.0D0
rwork (8 ) =0.0D0
rwork (9 ) =0.0D0
rwork (10) =0.0D0
iwork (5 )=0
iwork (6 )=1000
iwork (7 )=0
iwork (8 )=0
iwork (9 )=0
iwork (10)=0

end i f
C iopt = 0

lrw = 32
l iw = 21
mf = 21
nyh = 1
ts t ep = tout−t
k=1
hundred=100
thousand=1000
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ten=10
i f ( i t a s k . eq . 4 ) then

rwork (1 )=t c r i t 0
tend=xa
yend=va

end i f

c l o c a t e the minimum and maximum in t e g r a t i o n l im i t s .
c xmin i s R0/ ra
c xmas i s a r b i t r a r y

xmin=0.067D0
xmax=5.0D0

gamma param=gamma param0
st param=st param0
sg param=sg param0
sw param=sw param0

g=gamma param0
s t=st param0
sg=sg param0
sw=sw param0

10 i f ( counter . gt . 0) wr i t e (∗ ,∗ ) ” reduc ing t o l s and t ry ing
again ”

i f ( counter . gt . 0) then
r t o l = r t o l ∗10 . d0
a t o l = a to l ∗10 . d0
i s t a t e = 1

e l s e
a t o l=a to l 0
r t o l=r t o l 0

end i f

c you t y p i c a l l y want r t o l no l e s s than ˜ 1d−8
c you t y p i c a l l y want a t o l no l e s s than ˜ 1d−8
c f i r s t we s h a l l t ry to perform c a l c u l a t i o n with r t o l=a to l=1

d−12
c i f i t does not suceed and produces i s t a t e=−1
c then and only then do we try to reduce r t o l and a to l by

f a c t o r s
c o f 10 and try again . we do t h i s u n t i l r t o l=ato l<=1d−8
c i f we obta in an output with i s t a t e . ne . −1 then a l l i s

good
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c %−−−−−−−−−−−−−−−−%
c % Centra l Dr iver %
c %−−−−−−−−−−−−−−−−%

wr i t e (1 , 20 ) t , y (1 )
wr i t e counte r = 0

14 i f ( tout . l t . xmax ) then
yprev = y (1 )

c a l l d l sode ( fex , neq , y , t , tout , i t o l , r t o l , a to l ,
i t a sk ,

# i s t a t e , iopt , rwork , lrw , iwork , l iw , jex , mf )
tprev = t
i f ( i s t a t e . eq . 2 ) then

l a s t y g o od=y (1 )
l a s t t g o o d=tout

end i f

i f ( tout . gt . xmin . and . . not . ( ( y (1 ) +1.0) . eq . y (1 ) )
. and .

# (mod( wr i t e counte r , 10000 ) . eq . 0) ) then
c the second l o g i c a l r e l a t i o n s h i p prevents us from

wr i t ing nan ’ s

wr i t e (1 , 20 ) t , y (1 )
20 format ( f18 . 14 , 6 x , f18 . 1 4 )

end i f

i f ( i s t a t e . l t . −1 . and . i s t a t e . gt . −5 . or . counter
#. gt . 2 . or . tout . l t . 0 . d0 . or . i s t a t e . l t . −5 ) then

go to 80
e l s e i f ( i s t a t e . eq . −1 . and . counter . l e . 2) then

counter = counter + 1
go to 10

e l s e i f ( i s t a t e . eq . −5 ) then
i s t a t e = 1
t s t ep=10∗ t s t ep
tout=tout+2∗ t s t ep
y (1 )=yprev
t=tprev
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goto 40
end i f

wr i t e counte r=wr i t e counte r + 1
40 tout = tout+ts t ep

go to 14

end i f

wr i t e (6 , 60 ) iwork (11) , iwork (12) , iwork (13)
60 format (/ ’ no . s t eps =’ , i4 , ’ , no . f−s =’ , i4 , ’ , no . j−s

=’ , i 4 )

65 wr i t e (11 , 68 ) l a s t t g o od , l a s t y g o od
68 format ( f18 . 14 , 6 x , f18 . 1 4 )

stop

80 wr i t e (6 , 90 ) i s t a t e
90 format (/// ’ e r r o r ha l t . . i s t a t e =’ , i 3 )
95 format ( i 3 )

c 130 wr i t e (∗ ,∗ ) ’ I n t e g r e a t i o n reached dust fo rmat ion rad iu s
; xd ’

140 wr i t e (∗ ,∗ ) ’ I n t e g r a t i o n reached outer l im i t xmax ’

wr i t e (∗ ,∗ ) ’ t h i s i s the end , my only f r i end , the end ’

c l o s e (1 )
c l o s e (2 )
c l o s e (3 )
c l o s e (9 )
c l o s e (10)
c l o s e (11)

stop
end

c %−−−−−%
c % END %
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c %−−−−−%

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

c %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
c % opt i ona l func t i on f o r d e r i v a t i v e %
c % to be c a l c u l a t ed out s ide d l sode %
c % f o r the sake o f comparison %
c %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%

subrout ine f ex ( neq , t , y , ydot )
i n t e g e r neq
double p r e c i s i o n t , y (1 ) , ydot (1 ) , t d e r i v , y d e r i v
double p r e c i s i o n st param , sg param , sw param ,

gamma param
double p r e c i s i o n st , sg , sw , g
double p r e c i s i o n numer , denom
common /wd params/ st param , sg param , sw param ,

gamma param
common / f l a g s / icont , i tcount , d l a s t

s t = st param
sg = sg param
sw = sw param
g = gamma param

numer = (2 ∗ g ∗ s t ∗ ( y (1 ) ∗ t ∗ t ) ∗∗(1−g ) − sg / t ) ∗(y
(1 ) ∗ t ∗

#t − 1 ) ∗∗3 + sw ∗ t ∗ t ∗( y (1 ) − 1 ) ∗( ( y (1 ) ∗ t ∗ t +1)∗y (1 )
−3∗y (1 )

#∗t ∗ t + 1 )

denom = ( y (1 ) ∗y (1 ) − g ∗ s t ∗ ( y (1 ) ∗ t ∗ t ) ∗∗(1−g ) ) ∗
( y (1 ) ∗ t ∗

#t − 1 ) ∗∗3 − sw ∗ y (1 ) ∗ y (1 ) ∗ t ∗ t ∗(1− t ∗ t ) ∗(1− t ∗ t )

i f ( i c o n t . eq . 1 ) then
open (7 , f i l e=’ pr ev de r iv . dat ’ , s t a tu s=’ o ld ’ , a c c e s s=’

s e quen t i a l ’ ,
#form=’ formatted ’ , a c t i on=’ read ’ )

read (7 , 150 ) t d e r i v , y d e r i v
150 format ( f25 . 14 , 6 x , f25 . 1 4 )

ydot (1 )=y de r i v
C ydot (1 )=d l a s t
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i c o n t=0
c l o s e (7 )

e l s e i f ( i c o n t . eq . 2 ) then
ydot (1 )=d l a s t
i c o n t=0

e l s e
ydot (1 ) = (y (1 ) / t ) ∗ numer/denom

end i f

r e turn
end

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−
c %−−−−−−−−−−−−−−−−−−−−−−−−−%
c % Jacobian o f the problem %
c %−−−−−−−−−−−−−−−−−−−−−−−−−%

subrout ine j ex ( neq , t , y , ml , mu, pd , nrpd )
i n t e g e r neq , ml , mu, nrpd
double p r e c i s i o n t , y (1 ) , pd (1 , 1 )
double p r e c i s i o n st param , sg param , sw param ,

gamma param
double p r e c i s i o n st , sg , sw , g

common /wd params/ st param , sg param , sw param ,
gamma param

common / f l a g s / icont , i tcount , d l a s t

s t = st param
sg = sg param
sw = sw param
g = gamma param

pd (1 ,1 ) = 1 / t ∗ ( (2 ∗ g ∗ s t ∗ ( y (1 ) ∗ t ∗∗ 2) ∗∗ (1 −
g ) − sg

#/ t ) ∗(y (1 ) ∗ t ∗∗ 2 − 1) ∗∗ 3 + sw ∗ t ∗∗ 2 ∗ ( y (1 ) − 1)
∗ ( ( y (1 )

#∗t ∗∗ 2 + 1) ∗ y (1 ) − 3 ∗ y (1 ) ∗ t ∗∗ 2 + 1) ) / ( ( y (1 ) ∗∗ 2
− g ∗ s

#t ∗ ( y (1 ) ∗ t ∗∗ 2) ∗∗ (1 − g ) ) ∗ ( y (1 ) ∗ t ∗∗ 2 − 1) ∗∗ 3
− sw ∗

#y(1 ) ∗∗ 2 ∗ t ∗∗ 2 ∗ (1 − t ∗∗2) ∗∗ 2) + y (1 ) / t ∗ (2 ∗ g
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∗ s t ∗
#(y (1 ) ∗ t ∗∗ 2) ∗∗ (1 − g ) ∗ (1 − g ) / y (1 ) ∗ ( y (1 ) ∗ t ∗∗

2 − 1)
#∗∗ 3 + 3 ∗ (2 ∗ g ∗ s t ∗ ( y (1 ) ∗ t ∗∗ 2) ∗∗(1 − g ) − sg /

t ) ∗ ( y (
#1) ∗ t ∗∗ 2 − 1) ∗∗ 2 ∗ t ∗∗ 2 + sw ∗ t ∗∗ 2 ∗ ( ( y (1 ) ∗ t

∗∗ 2 + 1)
#∗ y (1 ) − 3 ∗ y (1 ) ∗ t ∗∗ 2 + 1) + sw ∗ t ∗∗ 2 ∗ ( y (1 ) − 1)

∗ (2 ∗
#y(1 ) ∗ t ∗∗ 2 + 1 − 3 ∗ t ∗∗ 2) ) / ( ( y (1 ) ∗∗ 2 − g ∗ s t ∗

( y (1 ) ∗ t
#∗∗ 2) ∗∗ (1 − g ) ) ∗ ( y (1 ) ∗ t ∗∗ 2 − 1) ∗∗ 3 − sw ∗ y (1 )

∗∗ 2 ∗ t
#∗∗2 ∗ (1 − t ∗∗ 2) ∗∗ 2) − y (1 ) / t ∗ ( (2 ∗ g ∗ s t ∗ ( y (1 )

∗ t ∗∗
#2) ∗∗ (1− g ) − sg / t ) ∗ ( y (1 ) ∗ t ∗∗ 2 − 1) ∗∗ 3 + sw ∗ t

∗∗ 2 ∗
#(y (1 ) − 1) ∗ ( ( y (1 ) ∗ t ∗∗ 2 + 1) ∗ y (1 ) − 3 ∗ y (1 ) ∗ t ∗∗

2 + 1) )
#/ ( ( y (1 ) ∗∗ 2 − g ∗ s t ∗(y (1 ) ∗ t ∗∗ 2) ∗∗ (1 − g ) ) ∗ ( y

(1 ) ∗ t ∗∗
#2 − 1) ∗∗ 3 − sw ∗ y (1 ) ∗∗ 2 ∗ t ∗∗ 2 ∗ (1 − t ∗∗ 2) ∗∗ 2)

∗∗ 2 ∗
#((2 ∗ y (1 ) − g ∗ s t ∗ ( y (1 ) ∗ t ∗∗ 2) ∗∗ (1 − g ) ∗ (1 − g )

/ y (1 ) )
#∗ ( y (1 ) ∗ t ∗∗ 2 − 1) ∗∗ 3 + 3 ∗ ( y (1 ) ∗∗ 2 −g ∗ s t ∗ ( y

(1 ) ∗ t ∗∗
#2) ∗∗ (1 − g ) ) ∗ ( y (1 ) ∗ t ∗∗ 2 − 1) ∗∗ 2 ∗ t ∗∗2 − 2 ∗ sw

∗ y (1 )
#∗ t ∗∗ 2 ∗ (1 − t ∗∗ 2) ∗∗ 2)

return
end

c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Pseudospectral Method for

Atoms - Source Code

The cylindrical pseudospectral atomic structure code described in Chapter 6
is provided below. The software is written in the high-level programming
language Matlab. The code depends up a routine “cheb.m” which is available
with the suite of programs developed by Lloyd N. Trefethen.

% This i s a s p e c t r a l code f o r s o l v i ng the helium atom in strong
% magnetic f i e l d s

% The PDE that we are t ry ing to s o l v e i s o f the f o l l ow ing form :
%
% a1u xx + b1u x + c1u yy + d1u y + e1u + fv = \ lambda u
% a2v xx + b2v x + c2v yy + d2v y + e2v + fu = \ lambda v
%
% where ,
% a1 , a2=−0.25∗(3−xˆ2−2∗x) ˆ2 ;
% b1 , b2=−0.5∗(3−xˆ2−2∗x ) ∗ ( 1 . / atanh (0 .5∗(1+x ) )−1−x ) ;
% c1 , c2=−0.25∗(3−yˆ2−2∗y) ˆ2 ;
% d1 , d2=0.5∗(3−yˆ2−2∗y ) ∗(1+y ) ;
%
% e1=m 1ˆ2∗ rho2inv + betaZ Z2∗ rho2 −2∗Znucl . / s q r t ( rho2+z2 ) + . . .
% 2∗betaZ Z ∗(m1−1) + 2/Z∗Phi D 1 ;
%
% e2=m 2ˆ2∗ rho2inv + betaZ Z2∗ rho2 −2∗Znucl . / s q r t ( rho2+z2 ) + . . .
% 2∗betaZ Z ∗(m2−1) + 2/Z∗Phi D 2 ;
%
% f=2/Z∗ alpha E ;
%
% \ rho i s the r a d i a l c y l i n d r i c a l coo rd ina te and i s r e l a t ed to x

v ia the
% trans fo rmat i on :
%
% x = 2tanh ( rho )−1 ; rho = atanh (0 .5∗(1+x ) ) ; with −1 <= x <= +1
%
% z i s the a x i a l c y l i n d r i c a l coo rd ina te and i s r e l a t ed to y v ia
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the
% trans fo rmat i on :
%
% y = 2tanh ( z )−1 ; z = atanh (0 .5∗(1+y ) ) ; with −1 <= y <= +1
%
% The r a d i a l coo rd ina te (\ rho ) i s semi− i n f i n i t e [ 0 , i n f ] and the

a x i a l
% coo rd ina te ( z ) i s semi− i n f i n i t e .
% The compa c t i f i c a t i o n puts them both in the i n t e r v a l [−1 ,1 ]
% Thus we can use Chebyshev po in t s f o r both the s e d i r e c t i o n s

% ================== IMPORTANT NOTE ======
% I f the problem i s a g e n e r a l i s e d e i g enva lue problem
% (A u = \ lambda B u) then use a QZ a lgor i thm by invok ing e i g (A,

B)
% in matlab .
% ON the other hand should the problem become too la r g e , many

node
% po in t s or i f the problem becomes spar se , then use Krylov

Subspace
% method such as the i t e r a t i v e Arnoldi a lgor i thm or Lanczos
% i t e r a t i o n s ( should the matrix be symmetric ) . Use ’ e i g s ’

r out ine f o r
% the above ca s e s .
% ========================================

% % The boundary c ond i t i o n s are as shown below p i c t o r i a l l y
% %
% % Di r i c h l e t
% % −−−−−−−−−−− D
% % N | | i
% % e | | r Example :
% % u | | i This i s f o r the m=0 e l e c t r on
% % m | | c o f Hydrogen
% % a | | h
% % n | | l
% % n | | e
% % −−−−−−−−−−− t
% % Neumann

% %
% % Di r i c h l e t
% % D −−−−−−−−−−− D
% % i | | i
% % r | | r Example :
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% % i | | i This i s f o r the m=−1 e l e c t r on
% % c | | c o f Hydrogen
% % h | | h
% % l | | l
% % e | | e
% % t −−−−−−−−−−− t
% % Neumann

c l e a r a l l
c l e a r g l o ba l

% s h i f t the s i n g u l a r i t y by t iny amount
t iny=1e−14;

t i c ,

% % −−−−−−−−−−−−−−−−−−−−−−−−−−−
% % −−−−−−−−−−−−−−−−−−−−−−−−−−−

% Def in ing the problem −− user need only input the f o l l ow ing :
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Znucl=3; % Nuclear charge assume : n e l e c t r on s=Znucl

con f i g t e rm=[ ’ 1 s0 ’ ; ’ 2p−1 ’ ; ’ 3d−2 ’ ] % the c on f i g u r a t i o n o f the
atom

% each s t r i n g in term must be the same length , so pad with
blanks

% f o r th i s , s e e the s t r i n g 1 s0 above f o r example and compare
with

% 2p−1
c o n f i g t e rm c e l l=c e l l s t r ( con f i g t e rm ) ; % conver t to c e l l a r ray
betaZar =[0 .2 5/18 0 .5 10/18 . . .

0 . 7 1 20/18 2 . . .
50/18 5 100/18 7 . . .
10 200/18 20 500/18 . . .
50 1000/18 70 100 . . .
1000/18 200 5000/18 500 . . .
10000/18 700 1 0 0 0 ] ;

f o r betaZcount=1: l ength ( betaZar ) ,

betaZ=betaZar ( betaZcount )
s i gma gue s s a r=[−1 −1 −1 −1.5 . . .

−2 −2 −2 −2.5 . . .
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−3 −3 −3.5 −3.5 . . .
−4 −4 −4.5 −5 . . .
−5.5 −6.5 −7.5 −8 . . .
−10 −12 −13 −14 . . .
−14 −15 −16]; % guess f o r a r no l d i method .

s igma guess=s igma gue s s a r ( betaZcount )
f o r N=21 :10 :41 , % number o f node po in t s in the rho and z

d i r e c t i o n s

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% begin c a l c u l a t i o n s
% f i r s t d e f i n e the ’ e l e c t r on ’ data s t r u c tu r e
% more s t a t e s can be added to the s tatements below
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f o r i =1:Znucl ,
i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 1 s0 ’ ) )

e l e c t r on ( i ) .m=0; % azimuthal quantum
number

e l e c t r on ( i ) . pa r i ty =1; % z−pa r i ty f o r betaZ
−−> i n f i n i t y

e l e c t r on ( i ) .Neumann= [1 , 1 ] ; % Neumann cond i t i o n s on
inne r boundar ie s

e l e c t r on ( i ) . e x c i t a t i o n=0; % ex c i t a t i o n l e v e l o f
the s t a t e

e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ; % the term o f the
e l e c t r on

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 2 s0 ’ ) )
e l e c t r on ( i ) .m=0;
e l e c t r on ( i ) . pa r i ty =1;
e l e c t r on ( i ) .Neumann= [1 , 1 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=1;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 2p−1 ’ ) )
e l e c t r on ( i ) .m=−1;
e l e c t r on ( i ) . pa r i ty =1;
e l e c t r on ( i ) .Neumann= [0 , 1 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=0;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 3p−1 ’ ) )
e l e c t r on ( i ) .m=−1;
e l e c t r on ( i ) . pa r i ty =1;
e l e c t r on ( i ) .Neumann= [0 , 1 ] ;
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e l e c t r on ( i ) . e x c i t a t i o n=1;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 3d−2 ’ ) )
e l e c t r on ( i ) .m=−2;
e l e c t r on ( i ) . pa r i ty =1;
e l e c t r on ( i ) .Neumann= [0 , 1 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=0;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 3d−2 ’ ) )
e l e c t r on ( i ) .m=−2;
e l e c t r on ( i ) . pa r i ty =1;
e l e c t r on ( i ) .Neumann= [0 , 1 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=1;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 2p0 ’ ) )
e l e c t r on ( i ) .m=0;
e l e c t r on ( i ) . pa r i ty=−1;
e l e c t r on ( i ) .Neumann= [1 , 0 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=0;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 3p0 ’ ) )
e l e c t r on ( i ) .m=0;
e l e c t r on ( i ) . pa r i ty=−1;
e l e c t r on ( i ) .Neumann= [1 , 0 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=1;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 3d−1 ’ ) )
e l e c t r on ( i ) .m=−1;
e l e c t r on ( i ) . pa r i ty=−1;
e l e c t r on ( i ) .Neumann= [1 , 0 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=0;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 4d−1 ’ ) )
e l e c t r on ( i ) .m=−1;
e l e c t r on ( i ) . pa r i ty=−1;
e l e c t r on ( i ) .Neumann= [1 , 0 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=1;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 4 f−2 ’ ) )
e l e c t r on ( i ) .m=−2;
e l e c t r on ( i ) . pa r i ty=−1;
e l e c t r on ( i ) .Neumann= [1 , 0 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=0;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

e l s e i f ( strcmp ( c o n f i g t e rm c e l l ( i ) , ’ 5 f−2 ’ ) )
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e l e c t r on ( i ) .m=−2;
e l e c t r on ( i ) . pa r i ty=−1;
e l e c t r on ( i ) .Neumann= [1 , 0 ] ;
e l e c t r on ( i ) . e x c i t a t i o n=1;
e l e c t r on ( i ) . term=con f i g t e rm ( i , : ) ;

end
end

betaZ2=betaZ ˆ2 ;
msq=ze ro s ( Znucl , 1 ) ;
de l ta m sq=ze ro s ( Znucl , Znucl ) ;
f o r i =1:Znucl ,

msq( i )=e l e c t r on ( i ) .mˆ2 ;
end
f o r i =1:Znucl ,

f o r j =1:Znucl ,
i f ( j˜=i )

de l ta m sq ( i , j )=( e l e c t r on ( i ) .m−e l e c t r on ( j ) .m) ˆ2 ;
end

end
end

% D i f f e r e n t i a t i o n matr i ces f o r Chebyshev g r id on [−1 ,1 ]
[D, x]=cheb (N) ;
D2=Dˆ2 ;

% There are D i r i c h l e t c ond i t i o n s at the zeroth end o f x and
y

% So remove f i r s t rows o f Dx,Dy,Dx2 ,Dy2 .
D=D(2 :N+1 ,2:N+1) ;
D2=D2( 2 :N+1 ,2:N+1) ;

% r e s i z e the g r id and e x c i s e i n f i n i t y at x=−1
x ( end )=x( end )+t iny ;
x=x ( 2 :N+1) ;
y=x ;

% mesh the g r id
[ xx , yy]=meshgrid (x , y ) ;
xx=xx ( : ) ;
yy=yy ( : ) ;

% use x = 2tanh ( rho )−1 ; rho = atanh (0 .5∗(1+x ) ) ; with −1 <=
x <= +1

rho=atanh (0 .5∗(1+xx ) ) ;
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rhoinv =1./ rho ;
rho2=rho . ˆ 2 ;
rho2inv=1./ rho2 ;
z=atanh (0 .5∗(1+yy ) ) ;
z2=z . ˆ 2 ;

% Construct ing the operator c o e f f i c i e n t s
a=−0.25∗(3−xx.ˆ2−2∗xx ) . ˆ 2 ;
b=−0.5∗(3−xx.ˆ2−2∗xx ) . ∗ ( rhoinv−1−xx ) ;
c=−0.25∗(3−yy.ˆ2−2∗yy ) . ˆ 2 ;
d=0.5∗(3−yy .ˆ2−2∗yy ) .∗(1+yy ) ;

e c o e f f=ze ro s (Nˆ2 , Znucl ) ;
f o r i =1:Znucl ,

e c o e f f ( : , i )=msq( i ) ∗ rho2inv + betaZ2∗ rho2 −2./ s q r t ( rho2+z2 )
;

end

e exch=ze ro s (Nˆ2 , Znucl , Znucl ) ;
f o r i =1:Znucl ,

f o r j =1:Znucl ,
i f ( j˜=i )

e exch ( : , i , j )=de l ta m sq ( i , j ) ∗ rho2inv ;
end

end
end

% Next form the LHS operator .
I=eye (N) ;

Dx2kr=kron (D2 , I ) ;
Dxkr=kron (D, I ) ;
Dy2kr=kron ( I ,D2) ;
Dykr=kron ( I ,D) ;

aDx2=diag ( a ) ∗Dx2kr ;
bDx=diag (b) ∗Dxkr ;
cDy2=diag ( c ) ∗Dy2kr ;
dDy=diag (d) ∗Dykr ;

Lmtrx=ze ro s (Nˆ2 ,Nˆ2 , Znucl ) ;
Lpmtrx=ze ro s (Nˆ2 ,Nˆ2 , Znucl ) ;

f o r i =1:Znucl ,
Lmtrx ( : , : , i )=aDx2+bDx+cDy2+dDy+diag ( e c o e f f ( : , i ) ) ; % one
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f o r each e l e c t r on
Lpmtrx ( : , : , i )=aDx2+bDx+cDy2+dDy+diag ( e c o e f f ( : , i ) )+ . . .

2∗betaZ ∗( e l e c t r on ( i ) .m − 1)∗ eye (Nˆ2) ; % one f o r each
e l e c t r on

end

Ld i r e c t= −aDx2−bDx−cDy2−dDy ; % Notice the minus
s i g n s

Lexchng=ze ro s (Nˆ2 ,Nˆ2 , Znucl , Znucl ) ;
f o r i =1:Znucl ,

f o r j =1:Znucl ,
i f ( j˜=i )

Lexchng ( : , : , i , j )= −aDx2−bDx−cDy2−dDy−diag ( e exch ( : , i , j
) ) ; % Notice the minus s i g n s

end
end

end

% Next remove every Nth row in the f i r s t N∗(N−1) rows ,
inc luded .

Lmtrx (N:N:N∗(N−1) , : , : ) = [ ] ;
Lexchng (N:N:N∗(N−1) , : , : , : ) = [ ] ;
Lpmtrx (N:N:N∗(N−1) , : , : ) = [ ] ;
Ld i r e c t (N:N:N∗(N−1) , : ) = [ ] ;

% Def ine the C matrix
Cmtrx=ze ro s ( (N−1)ˆ2 ,N−1) ; % note that Cdirect and/ or

Cexchng = − Cmtrx
f o r i=N:N:N∗(N−1) ,

Cmtrx ( : , i /N)=Lmtrx ( 1 : (N−1)ˆ2 , i , 1 ) ;
end

% Next remove every Nth column in the f i r s t N∗(N−1) columns ,
inc luded .

Lmtrx ( : ,N:N:N∗(N−1) , : ) = [ ] ;
Ld i r e c t ( : ,N:N:N∗(N−1) ) = [ ] ;
Lexchng ( : ,N:N:N∗(N−1) , : , : ) = [ ] ;
Lpmtrx ( : ,N:N:N∗(N−1) , : ) = [ ] ;

% Def ine the matrix E
Emtrx=ze ro s ( (N−1) ˆ2 , (N−1)ˆ2 , Znucl ) ;
Eexchng=ze ro s ( (N−1) ˆ2 , (N−1)ˆ2 , Znucl , Znucl ) ;
Epmtrx=ze ro s ( (N−1) ˆ2 , (N−1)ˆ2 , Znucl ) ;
Emtrx ( 1 : (N−1) ˆ 2 , 1 : (N−1) ˆ 2 , : )=Lmtrx ( 1 : (N−1) ˆ 2 , 1 : (N−1) ˆ 2 , : ) ;
Ed i r e c t=Ld i r e c t ( 1 : (N−1) ˆ 2 , 1 : (N−1)ˆ2) ;
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Eexchng ( 1 : (N−1) ˆ 2 , 1 : (N−1) ˆ 2 , : , : )=Lexchng ( 1 : (N−1) ˆ 2 , 1 : (N−1)
ˆ 2 , : , : ) ;

Epmtrx ( 1 : (N−1) ˆ 2 , 1 : (N−1) ˆ 2 , : )=Lpmtrx ( 1 : (N−1) ˆ 2 , 1 : (N−1) ˆ 2 , : ) ;

% Def ine the matrxix En
ENmtrx=ze ro s ( (N−1)ˆ2 ,N) ; % Note : ENp=ENmtrx
ENti lde=ze ro s ( (N−1)ˆ2 ,N−1) ; % Note : ENp ti lde = ENti lde
ENmtrx ( 1 : (N−1) ˆ2 , 1 :N, : )=Lmtrx ( 1 : (N−1) ˆ2 , (N−1)ˆ2+1:end , 1 ) ;
ENti lde ( 1 : (N−1) ˆ2 , 1 :N−1)=ENmtrx ( 1 : (N−1) ˆ2 , 1 :N−1) ;
ENdirect=Ld i r e c t ( 1 : (N−1) ˆ2 , (N−1)ˆ2+1:end ) ; % Note : ENexchng=

ENdirect
ENd i r e c t t i l d e=ENdirect ( : , 1 :N−1) ; % Note :

ENd i r e c t t i l d e=ENexchng ti lde

% f r e e up some memory
c l e a r Lexchng Ld i r e c t

% % Next s e t up the boundary cond i t i on matr i ces
B=kron (D, I ) ; % boundary matrix f o r the d e r i v a t i v e in the x−

d i r e c t i o n .

B0=B(N∗(N−1)+1:end , 1 :N∗(N−1) ) ;
B2=ze ro s (N,N−1) ;
f o r i=N:N:N∗(N−1) ,

B2 ( : , i /N)=B0 ( : , i ) ;
end
B0 ( : ,N:N:N∗(N−1) ) = [ ] ;
BN=B(N∗(N−1)+1:end ,N∗(N−1)+1:end ) ;
BN ti lde=BN(1 :N−1 ,1:N−1) ;
B1=B0 ;
B1 t i l d e=B1 ( 1 :N−1 , : ) ;

% % Next we s e t up the bounday cond i t i on matrix in the y−
d i r e c t i o n

By=kron ( I ,D) ;
Bycopy=By ; % setup a copy f o r d e f i n i ng fu r th e r a r r ay s

% % Def ine the H matrix
H=zero s (N−1,N−1) ;
f o r i=N:N:N∗(N−1) ,

f o r j=N:N:N∗(N−1) ,
H( i /N, j /N)=By( i , j ) ;

end
end
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% % Remove every Nth columns in the f i r s t N∗(N−1) columns
Bycopy ( : ,N:N:N∗(N−1)) = [ ] ;

% % Def ine the J matr i ces
J f u l l=Bycopy ( 1 :N∗(N−1) ,N∗(N−1)−N+1+1:end ) ;
J=ze ro s (N−1,N) ;
f o r i=N:N:N∗(N−1) ,

J ( i /N, : )=J f u l l ( i , : ) ;
end

% % Prune Bycopy ar ray −− get r i d o f the J f u l l part
Bycopy=Bycopy ( 1 :N∗(N−1) , 1 :N∗(N−1)−N+1) ;

% % Def ine the G matrix
G=zero s (N−1,N∗(N−1)−N+1) ;
f o r i=N:N:N∗(N−1) ,
G( i /N, : )=Bycopy ( i , : ) ;

end

% % Def ine i nv e r s e matr i ces to be used
BNinv=inv (BN) ;
BN ti lde inv=inv ( BN ti lde ) ;
Hinv=inv (H) ;
HJBinv=inv (H−J∗BNinv∗B2) ;
GJB=G−J∗BNinv∗B1 ;
CHG=Cmtrx∗Hinv∗G;
EBHG=ENmtrx∗(BNinv ∗(B1−B2∗Hinv∗G) ) ;
EBHGdir=ENdirect ∗(BNinv ∗(B1−B2∗Hinv∗G) ) ;
EBBtilde=ENti lde∗BN ti lde inv ∗B1 t i l d e ;
EBBti ldedir=ENd i r e c t t i l d e ∗BN ti lde inv ∗B1 t i l d e ;

% % c l e a r v a r i a b l e s to f r e e up memory
c l e a r D D2 By Bycopy x xx y yy rho rhoinv rho2 rho2inv z . . .

z2 a b c d e c o e f f e exch I Dx2kr Dxkr Dy2kr Dykr aDx2
bDx . . .

cDy2 dDy Lmtrx Lpmtrx Ld i r e c t Lexchng Cmtrx . . .
ENmtrx ENti lde ENdirect ENd i r e c t t i l d e B B0 B2 BN . . .
BN ti lde B1 B1 t i l d e H J f u l l J G BNinv BN ti lde inv Hinv

. . .
HJBinv GJB

% we setup and s o l v e the e i g enva lue problem

Mmtrx=ze ro s ( (N−1) ˆ2 , (N−1)ˆ2 , Znucl ) ;
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Mdirect=ze ro s ( (N−1) ˆ2 , (N−1)ˆ2 , Znucl ) ;
Mexchng=ze ro s ( (N−1) ˆ2 , (N−1)ˆ2 , Znucl , Znucl ) ;

f o r i =1:Znucl ,

i f ( e l e c t r on ( i ) . pa r i ty==1)

Mmtrx ( : , : , i )=Emtrx ( : , : , i )−e l e c t r on ( i ) .Neumann (1 ) ∗EBHG −
. . .
e l e c t r o n ( i ) .Neumann (2 ) ∗CHG;

Mdirect ( : , : , i )=Edirect−e l e c t r on ( i ) . Neumann(1 ) ∗EBHGdir
. . .
− e l e c t r on ( i ) .Neumann(2 ) ∗(−CHG) ;

% note the minus s i gn on CHG: s e e d e f i n i t i o n o f Cmtrx
above

e l s e

Mmtrx ( : , : , i )=Emtrx ( : , : , i )−e l e c t r on ( i ) .Neumann (1 ) ∗
EBBtilde ;

Mdirect ( : , : , i )=Edirect−e l e c t r on ( i ) . Neumann(1 ) ∗
EBBti ldedir ;

end

end

f o r i =1:Znucl ,
f o r j =1:Znucl ,

i f ( j˜=i )
i f ( e l e c t r on ( i ) . pa r i ty==1 && e l e c t r on ( j ) . pa r i ty==1)

Mexchng ( : , : , i , j )=Eexchng ( : , : , i , j )−e l e c t r on ( i ) .
Neumann(1 ) ∗ . . .
e l e c t r o n ( j ) . Neumann(1 ) ∗EBHGdir . . .
− e l e c t r on ( i ) .Neumann (2 ) ∗ e l e c t r on ( j ) . Neumann(2 )

∗(−CHG) ;
% note minus s i gn in CHG; s e e d e f i n i t i o n o f
% Cmtrx above

e l s e
Mexchng ( : , : , i , j )=Eexchng ( : , : , i , j )−e l e c t r on ( i ) .

Neumann(1 ) ∗ . . .
e l e c t r o n ( j ) . Neumann(1 ) ∗EBBti ldedir . . .
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− e l e c t r on ( i ) .Neumann (2 ) ∗ e l e c t r on ( j ) . Neumann(2 )
∗(−CHG) ;

% note minus s i gn in CHG; s e e d e f i n i t i o n o f
% Cmtrx above

end
end

end
end

% f r e e up some more memory
c l e a r EBHGdir EBBti ldedir Ed i r e c t Eexchng Emtrx

Mdinv=ze ro s ( (N−1) ˆ2 , (N−1)ˆ2 , Znucl ) ;
Mexinv=ze ro s ( (N−1) ˆ2 , (N−1)ˆ2 , Znucl , Znucl ) ;

f o r i =1:Znucl ,
Mdinv ( : , : , i )=inv (Mdirect ( : , : , i ) ) ;
f o r j =1:Znucl ,

i f ( j˜=i )
Mexinv ( : , : , i , j )=inv (Mexchng ( : , : , i , j ) ) ;

end
end

end

% f r e e up some memory
c l e a r Mdirect Mexchng

% conver t the f u l l matrix to a spa r s e matrix
% by squeez ing out the ze r o s and f i nd e i g enva l u e s

% opt i ons f o r arpack
opts . d i sp =0;
opts . p=50;
opts . t o l=1e−10;

V=ze ro s ( (N−1)ˆ2 ,15 , Znucl ) ;
Lam=zero s (15 ,15 , Znucl ) ;
f o r i =1:Znucl ,

[V( : , : , i ) ,Lam( : , : , i ) ]= e i g s ( spa r s e (Mmtrx ( : , : , i ) ) ,15 , ’sm ’ ,
opts ) ;

end
Lamsort=ze ro s (15∗ Znucl , 1 ) ;
f o r i =1:Znucl ,

[ Lamsort , i i ]= s o r t ( diag (Lam( : , : , i ) ) ) ;
l lam=Lamsort+2∗betaZ ∗( e l e c t r on ( i ) .m − 1) ;
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e l e c t r on ( i ) . e i g v a l=llam ( e l e c t r on ( i ) . e x c i t a t i o n+1) ;
e l e c t r on ( i ) . e i gvec=V(: ,1+ e l e c t r on ( i ) . e x c i t a t i o n , i ) ;

end

di sp ( ’ hydrogenic problem so lv ed ’ )

% % Free up memory
c l e a r V Lam Lamsort l lam Mmtrx i i

% % Now that we have e i g envec to r s , normal i s e them
f=ze ro s (Nˆ2 , Znucl ) ;

f o r j =1:Znucl ,
f o r i =1:N−1,

f ( i ∗N+2:( i +1)∗N, j )=e l e c t r on ( j ) . e i gvec ( ( i −1)∗(N−1)+1: i ∗N−
i ) ;

end
end

% D i f f e r e n t i a t i o n matr i ces f o r Chebyshev g r id on [−1 ,1 ]
[DD, xn]=cheb (N) ;
xn=xn ( 1 :N) ;
xn (1 )=xn (1 )−t iny ;
yn=xn ;
wx=inv (DD(1 :N, 1 :N) ) ;wx=wx( 1 , : ) ; % Matlab

% wx=inv (DD(1 :N, 1 :N) ) ( 1 , : ) ;
wy=wx ;
wx=(8∗pi ∗atanh (0 .5∗(1+xn ’ ) ) ./(3−xn ’.ˆ2−2∗xn ’ ) .∗wx) ;
wy=2./(3−yn ’.ˆ2−2∗yn ’ ) .∗wy ;
we=kron (wx ,wy) ;

norm=zero s ( Znucl , 1 ) ;
f o r i =1:Znucl ,

norm( i )=we∗ f ( : , i ) . ˆ 2 ;
end

% % v ’ s are normal i s ed and de f ined only on i n t e r i o r po in t s
f o r i =1:Znucl ,

e l e c t r on ( i ) . e i gvec=e l e c t r on ( i ) . e i gvec / s q r t (norm( i ) ) ;
end

% % c l e a r unneeded v a r i a b l e s
c l e a r DD xn yn wx wy f
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f o r i =1:Znucl ,
e l e c t r on ( i ) . e i g v e c p r e v i t e r=e l e c t r on ( i ) . e i gvec ;
e l e c t r on ( i ) . e i g v a l p r e v i t e r=e l e c t r on ( i ) . e i g v a l ;

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% % Sta r t Hartree Fock i t e r a t i o n s

% % Fi r s t we determine the d i r e c t and exchange i n t e r a c t i o n s
% % We are t ry ing to s o l v e the f o l l ow ing PDE’ s f o r the

d i r e c t and
% % exchange i n t e r a c t i o n s .
% %
% % −−−−−− Dir e c t I n t e r a c t i o n s −−−−−−−−−−−−−−
% % au xx + bu x + cu yy + du y = f i i i n t e r

% % −−−−−− Exchange In t e r a c t i o n −−−−−−−−−−−−−−
% % au xx + bu x + cu yy + du y + eu = f i j i n t e r

% % The boundary c ond i t i o n s are as shown below p i c t o r i a l l y
% %
% % Di r i c h l e t
% % −−−−−−−−−−− D
% % N | | i
% % e | | r Example :
% % u | | i D i r e c t I n t e r a c t i o n
% % m | | c f o r 1 s0 e l e c t r on
% % a | | h
% % n | | l
% % n | | e
% % −−−−−−−−−−− t
% % Neumann

% %
% % Di r i c h l e t
% % D −−−−−−−−−−− D
% % i | | i
% % r | | r Example :
% % i | | i Exchange In t e r a c t i o n
% % c | | c b/w 1 s0 and 2p−1
% % h | | h
% % l | | l

248



Appendix B. Pseudospectral Method for Atoms - Source Code

% % e | | e
% % t −−−−−−−−−−− t
% % Neumann

% % Fi r s t we determine the RHS f o r the i n t e r a c t i o n s on
i n t e r i o r

% % gr id po in t s ; boundary c ond i t i o n s are imposed on the
boundar ie s

% % in t e r s u f f i x s tands f o r ’ i n t e r i o r ’ .

% begin HF i t e r a t i o n s
e i g v a l o l d ( 1 : Znucl )=0;
d e l e i g v a l ( 1 : Znucl ) =10;
%d e l e i g v a l 1 =10;
%d e l e i g v a l 2 =10;
del E HF=10;
E HFold=0;

i t e r =0;
maxiter=25;

% e i g va l o l d 1 =0;
% e i g va l o l d2 =0;

% i n i t i a l i s e the i n t e r a c t i o n matrix
% This i s cons t ruc ted as f o l l ow s :
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% −− −−
% | I11 I12 I13 |
% | I21 I22 I23 |
% | I31 I32 I33 |
% −− −−
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% where I i j i s the i n t e r a c t i o n o f e l e c t r on ’ i ’ with e l e c t r on

’ j ’
% and I i j i s an (N−1)ˆ2 by (N−1)ˆ2 matrix

whi l e ( abs ( del E HF ) >= 1e−8)

i f ( i t e r==maxiter ) , break ; end

i t e r=i t e r +1;

f i n t e r=ze ro s ( (N−1)ˆ2 , Znucl , Znucl ) ;
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f o r i =1:Znucl ,
f o r j =1:Znucl ,

i f ( i==j )
f i n t e r ( : , i , i )=−4∗pi ∗( e l e c t r on ( i ) . e i gvec . ˆ 2 ) ;

e l s e
f i n t e r ( : , i , j )=−4∗pi ∗( e l e c t r on ( i ) . e i gvec .∗ . . .

e l e c t r o n ( j ) . e i gvec ) ;
end

end
end

i n t e r a c t=ze ro s ( (N−1)ˆ2 , Znucl , Znucl ) ;
f o r i =1:Znucl ,

f o r j =1:Znucl ,
i f ( i==j )

i n t e r a c t ( : , i , i )=Mdinv ( : , : , i ) ∗ f i n t e r ( : , i , i ) ;
e l s e

i n t e r a c t ( : , i , j )=Mexinv ( : , : , i , j ) ∗ f i n t e r ( : , i , j ) ;
end

end
end

% i n i t i a l i s e and setup master matrix with bc ’ s
Master=ze ro s ( Znucl ∗(N−1)ˆ2 , Znucl ∗(N−1)ˆ2) ;

% add bc ’ s with nuemann cond i t i o n s
f o r i =1:Znucl ,

f o r j =1:Znucl ,
i f ( i==j )

i f ( e l e c t r on ( i ) . pa r i ty==1)
Master ( ( i −1)∗(N−1)ˆ2+1: i ∗(N−1) ˆ2 , ( i −1)∗(N−1)ˆ2+1: i

∗(N−1)ˆ2) . . .
= Epmtrx ( : , : , i ) − e l e c t r on ( i ) . Neumann(1 ) ∗EBHG

− . . .
e l e c t r o n ( i ) .Neumann (2 ) ∗CHG;

e l s e
Master ( ( i −1)∗(N−1)ˆ2+1: i ∗(N−1) ˆ2 , ( i −1)∗(N−1)ˆ2+1: i

∗(N−1)ˆ2) . . .
= Epmtrx ( : , : , i ) − e l e c t r on ( i ) . Neumann(1 ) ∗

EBBtilde ;
end

end
end

end
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f o r i =1:Znucl ,
e l e c t r on ( i ) . PhiD=ze ro s ( (N−1) ˆ2 , (N−1)ˆ2) ;
f o r j =1:Znucl ,

i f ( j ˜=i )
e l e c t r on ( i ) . PhiD=e l e c t r on ( i ) . PhiD + 2/Znucl∗diag (

i n t e r a c t ( : . . .
, j , j ) ) ;

end
end

end

% f i nd the d i r e c t and exchange i n t e r a c t i o n s
f f d i r=ze ro s ( (N−1)ˆ2 , Znucl ) ;
f f e x=ze ro s ( (N−1)ˆ2 , Znucl ) ;
f o r i =1:Znucl ,

f o r j =1:Znucl ,
i f ( i==j )

f o r k=1:Znucl ,
i f ( k˜=i )

f f d i r ( : , i )=f f d i r ( : , i )+( e l e c t r on ( i ) . e i gvec . ˆ 2 ) .∗
. . .
i n t e r a c t ( : , k , k ) ;

end
end

e l s e
f f e x ( : , i )=f f e x ( : , i )+( e l e c t r on ( i ) . e i gvec .∗ e l e c t r on ( j )

. e i gvec ) .∗ . . .
i n t e r a c t ( : , i , j ) ;

end
end

end

f d i r e c t=ze ro s (Nˆ2 , Znucl ) ;
fexchng=ze ro s (Nˆ2 , Znucl ) ;
f o r j =1:Znucl ,

f o r i =1:N−1,
f d i r e c t ( i ∗N+2:( i +1)∗N, j )=f f d i r ( ( i −1)∗(N−1)+1: i ∗N−i , j ) ;
fexchng ( i ∗N+2:( i +1)∗N, j )=f f e x ( ( i −1)∗(N−1)+1: i ∗N−i , j ) ;

end
end

f o r i =1:Znucl ,
e l e c t r on ( i ) . d i r e c t en e r g y=we∗ f d i r e c t ( : , i ) ;
e l e c t r on ( i ) . exchange energy=we∗ fexchng ( : , i ) ;

end

251



Appendix B. Pseudospectral Method for Atoms - Source Code

% c l e a r memory
c l e a r f f d i r f f e x f d i r e c t fexchng

% complete setup o f the master matrix
f o r i =1:Znucl ,

f o r j =1:Znucl ,
i f ( i==j )

Master ( ( i −1)∗(N−1)ˆ2+1: i ∗(N−1) ˆ2 , ( i −1)∗(N−1)ˆ2+1: i ∗(
N−1)ˆ2) . . .
= Master ( ( i −1)∗(N−1)ˆ2+1: i ∗(N−1) ˆ2 , ( i −1)∗(N−1)

ˆ2+1: i ∗(N−1)ˆ2) . . .
+ e l e c t r on ( i ) . PhiD ;

e l s e
Master ( ( i −1)∗(N−1)ˆ2+1: i ∗(N−1) ˆ2 , ( j −1)∗(N−1)ˆ2+1: j ∗(

N−1)ˆ2) . . .
= −2/Znucl∗diag ( i n t e r a c t ( : , i , j ) ) ;

end
end

end

% c l e a r some memory
c l e a r f i n t e r i n t e r a c t

% conver t master matrix to a spa r s e one
MS=spa r s e (Master ) ;

% c l e a r some more memory
c l e a r Master
rm f i e l d ( e l e c t r on , ’PhiD ’ ) ;

% % Find e i g enva l u e s o f spa r s e matrix MS
[V,Lam]= e i g s (MS, 1 5 , s igma guess , opts ) ;
Lam=diag (Lam) ;
bimag=f i nd ( imag (Lam)˜=0) ;
V( : , bimag ) = [ ] ;
Lam( bimag ) = [ ] ;
[ Lamsort , i i ]= s o r t (Lam) ;
b=f i nd ( Lamsort<0) ;
Lamgood=Lamsort (b) ;

f o r i =1:Znucl ,
temp=0;
f o r j =1: l ength (b) ,
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t e s t v e c=V( ( i −1)∗(N−1)ˆ2+1: i ∗(N−1)ˆ2 , i i ( j ) ) ;
% f i nd over lap
over lap=abs ( t e s tvec ’∗ e l e c t r on ( i ) . e i g v e c p r e v i t e r ) ;
i f ( over lap >= temp)

temp=over lap ;
j v a l=j ;
e l e c t r on ( i ) . e i gvec=t e s t v e c ;
e l e c t r on ( i ) . e i g v a l=Lamgood( j v a l ) ;

end
end

end

% % Fi r s t , normal i s e them
f=ze ro s (Nˆ2 , Znucl ) ;

f o r j =1:Znucl ,
f o r i =1:N−1,

f ( i ∗N+2:( i +1)∗N, j )=e l e c t r on ( j ) . e i gvec ( ( i −1)∗(N−1)+1: i ∗
N−i ) ;

end
end

norm=zero s ( Znucl , 1 ) ;
f o r i =1:Znucl ,

norm( i )=we∗( f ( : , i ) . ˆ 2 ) ;
end

% % v ’ s are normal i s ed and de f ined only on i n t e r i o r po in t s
f o r i =1:Znucl ,

e l e c t r on ( i ) . e i gvec=e l e c t r on ( i ) . e i gvec / s q r t (norm( i ) ) ;
end

% c l e a r memory
c l e a r f norm

% c l e a r memory
c l e a r f norm

f o r i =1:Znucl ,
d e l e i g v a l ( i )=e l e c t r on ( i ) . e i gva l−e l e c t r on ( i ) .

e i g v a l p r e v i t e r ;
e l e c t r on ( i ) . e i g v a l p r e v i t e r=e l e c t r on ( i ) . e i g v a l ;
e l e c t r on ( i ) . e i g v e c p r e v i t e r=e l e c t r on ( i ) . e i gvec ;

end
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% c l e a r v a r i a b l e s to f r e e memory
c l e a r f norm V Lam bimag MS Lamgood b t e s t v e c

E HF=0;
f o r i =1:Znucl ,

E HF=E HF + e l e c t r on ( i ) . e i g v a l − (1/ Znucl ) ∗ . . .
( e l e c t r on ( i ) . d i r e c t en e r g y − e l e c t r on ( i ) .

exchange energy ) ;
end
E HF
del E HF=E HF−E HFold ;
E HFold=E HF ;

end

% c l e a r some memory
rm f i e l d ( e l e c t r on , ’PhiD ’ ) ;

E HFname=s t r c a t ( ’ E HF betaZ ’ , num2str ( betaZ ) , ’ N ’ , num2str (N
) , ’ . dat ’ ) ;

f i d e=fopen (E HFname , ’w+’ ) ;
f p r i n t f ( f i d e , ’%48s\n ’ , ’

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;
f p r i n t f ( f i d e , ’%−24s %24.18 f \n ’ , ’E HF : ’ ,E HF)

;
f p r i n t f ( f i d e , ’%−24s %24.18 f \n ’ , ’ betaZ : ’ , betaZ

) ;
f p r i n t f ( f i d e , ’%48s\n ’ , ’

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;
f o r i =1:Znucl ,

f p r i n t f ( f i d e , ’%−24s %24s\n ’ , ’ term : ’ ,
e l e c t r on ( i ) . term ) ;

f p r i n t f ( f i d e , ’%−24s %24.18 f \n ’ , ’ e l e c t r on number : ’ , i ) ;
f p r i n t f ( f i d e , ’%−24s %24.18 f \n ’ , ’m : ’ ,

e l e c t r on ( i ) .m) ;
f p r i n t f ( f i d e , ’%−24s %24.18 f \n ’ , ’ pa r i ty : ’ ,

e l e c t r on ( i ) . pa r i ty ) ;
f p r i n t f ( f i d e , ’%−24s %24.18 f %24.18 f \n ’ , ’Neumann

: ’ , . . .
e l e c t r o n ( i ) .Neumann(1 ) , e l e c t r on ( i ) . Neumann(2 ) ) ;

f p r i n t f ( f i d e , ’%−24s %24.18 f \n ’ , ’ e x c i t a t i o n l e v e l : ’ ,
e l e c t r on ( i ) . e x c i t a t i o n ) ;

f p r i n t f ( f i d e , ’%−24s %24.18 f \n ’ , ’ energy e i g enva lue : ’ ,
e l e c t r on ( i ) . e i g v a l ) ;

f p r i n t f ( f i d e , ’%−24s %24.18 f \n ’ , ’ d i r e c t energy : ’ ,
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e l e c t r on ( i ) . d i r e c t en e r g y ) ;
f p r i n t f ( f i d e , ’%−24s %24.18 f \n ’ , ’ exchange energy : ’ , . . .

e l e c t r o n ( i ) . exchange energy ) ;
f p r i n t f ( f i d e , ’%48s\n ’ , ’

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ ) ;
end

vecs=ze ro s ( (N−1)ˆ2 , Znucl ) ;
f o r i =1:Znucl ,

vecs ( : , i )=e l e c t r on ( i ) . e i gvec ;
end

save ( s t r c a t ( ’ e i g env e c t o r s ’ , ’ betaZ ’ , num2str ( betaZ ) , . . .
’ N ’ , num2str (N) , ’ . dat ’ ) , ’−a s c i i ’ , ’−double ’ , ’−

tabs ’ . . .
, ’ vecs ’ ) ;

% f r e e memory
c l e a r vecs ;

end

end

toc

}
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