

Control of Mobile Manipulation with Networked

Sensing

by

Haoxiang Lang

M. A. Sc., The University of British Columbia, 2008

B. A. Sc., Ningbo University, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

(MECHANICAL ENGINEERING)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

September, 2012

© Haoxiang Lang, 2012

ii

Abstract

This thesis addresses the manipulation control of a mobile robot with the support of a

sensor network, for carrying out dynamically challenging tasks. Such tasks are defined as

those where the robot is required to first identify objects, approach and grasp the needed

objects, and transport them to goal locations in an environment that is dynamic,

unstructured and only partially known. In the present work, a robotic system with these

capabilities is developed and implemented for use in tasks of search and rescue, and

homecare robotics. To this end, this thesis makes significant original contributions in

developing a scheme of adaptive nonlinear model predictive control (ANMPC) and a

sensor network with dynamic clustering capability for mobile manipulation under

challenging conditions.

Two object tracking algorithms for color tracking and feature tracking are developed

for object identification and tracking. A system that uses Q-learning is developed for

mobile robot navigation, which allows the robot to learn and operate in an unknown and

unstructured dynamic environment.

A traditional approach of image-based visual servo control is developed and

demonstrated. The scheme of ANMPC is developed, which incorporates a multi-input

multi-output (MIMO) control system that can accommodate constraints, including

environmental constraints and physical constraints of the robots. In implementing ANPC

scheme, the nonlinear and time-variant model is linearized on line with respect to the

current position of the image feature and robot joints, using an adaptive approach. The

corresponding control architecture predicts the system outputs and generates optimized

control actions according to a cost function.

In order to extend the mobile manipulation system to a wider workspace such as that

found in cities and home scenarios, a sensor network is designed and developed

employing PFSA (Probabilistic Finite State Automata). The developed PFSA is utilized

in both modeling the sensor data and organizing and representing the sensor network. An

application of object identification and tracking is presented; and a heterogeneous sensor

network is developed along with a simulation platform in MATLAB. A self-organized

iii

and clustered sensor network, which is based on PFSA, is demonstrated. In conclusion,

directions for further research and development are indicated.

iv

Table of Contents

Abstract ... ii

Table of Contents ... iv

List of Figures ... ii

List of Tables .. vii

Nomenclature .. ii

List of Abbreviations .. ii

Acknowledgements.. iv

CHAPTER 1 Introduction .. 1

1.1 Motivation... 1

1.1.1 Search and Rescue Robotics .. 1

1.1.2 Homecare Robotics .. 2

1.2 Scope and Goals of the Research.. 3

1.3 Problem Definition ... 3

1.4 Related Work .. 6

1.4.1 Machine Vision .. 6

1.4.2 Robot Navigation ... 8

1.4.3 Visual Servoing ... 10

1.4.4 Networked Sensing .. 16

1.5 Contributions and Organization of the Thesis .. 19

CHAPTER 2 Machine Vision .. 21

2.1 Color Tracking .. 22

2.1.1 RGB and HSI Color Spaces ... 22

v

2.1.2 RGB to HSI Conversion .. 23

2.1.3 HSI to RGB Conversion .. 23

2.1.4 Object Identification .. 24

2.2 SIFT Feature Tracking .. 26

2.2.1 SIFT Feature Generation ... 26

2.2.2 Implementation of SIFT-based Object Identification 33

2.3 Stereo Vision .. 34

CHAPTER 3 Mobile Navigation .. 38

3.1 Mobile Localization and Object Pose Estimation .. 38

3.1.1 Sensors in Mobile Localization and Object Pose Estimation 38

3.1.2 Global Pose Estimation ... 40

3.1.3 Color Blob Tracking .. 42

3.1.4 Estimation of Box Pose ... 44

3.1.5 Simulation Environment .. 47

3.1.6 Simulation Results ... 48

3.2 Autonomous Mobile Navigation .. 51

3.2.1 The Q-learning Algorithm ... 51

3.2.2 Problem Definition .. 53

3.2.3 States, Actions and Rewards.. 54

3.2.4 Simulation Platform ... 58

CHAPTER 4 Visual Servo Control .. 65

4.1 Modeling ... 66

4.1.1 Rigid Motions and Homogeneous Transformation ... 66

4.1.2 Kinematic Modeling of the Robots.. 68

4.1.3 Camera Modeling .. 71

4.1.4 Models of Visual Servoing .. 77

vi

4.2 Traditional Image-based Visual Servo (IBVS) Controller 78

4.3 Hybrid Visual Servo Control .. 87

4.4 ANMPC Visual Servo Controller ... 102

CHAPTER 5 Networked Sensing and Sensor Fusion .. 114

5.1 Definitions .. 116

5.1.1 Formal Languages ... 116

5.1.2 Finite State Machine .. 116

5.1.3 Probabilistic Finite State Automata ... 117

5.1.4 Cross Machine ... 117

5.2 Fusion-driven Sensor Network ... 118

5.3 Design and Implementation of a Fusion-Driven Sensor Network........................ 120

5.3.1 Mobile Target Tracking Application ... 120

5.3.2 An Experiment of a Pressure Sensor Field .. 122

5.3.3 Heterogeneous Sensor Field .. 125

5.3.4 Modeling the Sensor Network as PFAS .. 127

CHAPTER 6 Physical Implementation and Experimentation .. 129

6.1 Overview... 129

6.2 Test Bed .. 130

6.2.1 Pioneer Powerbot ... 131

6.2.2 RobuArm ... 133

6.2.3 Sensors ... 135

6.3 Software Development ... 138

6.4 Mobile Manipulation System ... 139

CHAPTER 7 Conclusions and Suggestions ... 144

7.1 Conclusions .. 144

7.2 Primary Contributions .. 145

vii

7.3 Limitations and Suggested Future Research .. 146

BIBLIOGRAPHY .. 147

ii

List of Figures

Figure 1.1: Schematic representation of the developed system. ... 4

Figure 1.2: The flowchart of the mobile manipulation system. .. 5

Figure 1.3: Block diagram of a dynamic look-and-move system. 11

Figure 1.4: Block diagram of a typical (direct) visual servo system. 11

Figure 1.5: Block diagram of a typical visual servo system (1. Position-based; 2. Image-

based). ... 12

Figure 1.6: General architecture of data fusion processing. ... 17

Figure 2.1: The RGB color model. ... 22

Figure 2.2: The HSI color model. ... 23

Figure 2.3: Procedure of the color tracking algorithm. .. 25

Figure 2.4: Implementation of the color tracking algorithm. ... 26

Figure 2.5: An example of raw data and the results of its differentiation. 27

Figure 2.6: Guassian smoothing in edge detection. .. 28

Figure 2.7: Derivative of Gaussian in edge detection... 29

Figure 2.8: (1) Gaussian; (2) Derivative of Gaussian; (3) Laplacian of Gaussian. 29

Figure 2.9: Difference of Gaussian (DoG) pyramid. .. 30

Figure 2.10: Local extrema. .. 31

Figure 2.11: SIFT feature descriptor. ... 32

Figure 2.12: Flowchart of object identification. ... 32

Figure 2.13: SIFT-based object identification and tracking. .. 33

Figure 2.14: Examples of SIFT based feature matching. ... 34

Figure 2.15: Model of a stereo camera. .. 35

Figure 2.16: Epipolar geometry. ... 36

Figure 2.17: Simplified case of Epipolar geometry. ... 36

Figure 2.18: Disparity of features in the left and right camera scenes. 37

iii

Figure 3.1: General scheme of mobile robot localization and object detection. 40

Figure 3.2: Motion of a differential-drive robot. .. 41

Figure 3.3: (a) Color blob tracking procedure; (b) Camera view. 42

Figure 3.4: (a) Schematic drawing of laser range sensor; (b) a 180 degree laser range

sensor. ... 44

Figure 3.5: (a) Visualized laser range finder results; (b) laser range finder results.......... 45

Figure 3.6: Laser range finder representation. .. 45

Figure 3.7: Simulation environment GUI. .. 48

Figure 3.8: Experimental setup in the simulator. .. 48

Figure 3.9: (a) Global camera view; (b) Robot camera view. .. 49

Figure 3.10: Laser range finder results. .. 49

Figure 3.11: Visualized experimental result. .. 51

Figure 3.12: The agent interacts with an environment. .. 51

Figure 3.13: The mobile navigation system. .. 54

Figure 3.14: Definition of states of the mobile robot and environment. 55

Figure 3.15: Definition of Actions.. 56

Figure 3.16: Flowchart of Q-Learning.. 57

Figure 3.17: Probability of each action... 58

Figure 3.18: Developed simulation platform for Q-learning training in mobile navigation.

 .. 59

Figure 3.19: Mobile robot collides with an obstacle. ... 60

Figure 3.20: Mobile robot reaches the goal. ... 61

Figure 3.21: System exceeds the allowed maximum number of motion steps. 62

Figure 3.22: Validation of the training results. ... 64

Figure 4.1: An example of coordinate frames satisfying DH convention. 68

Figure 4.2: Definition of the system coordinates.. 69

Figure 4.3: Abstraction of the mobile robot, stereo camera and their frames. 70

Figure 4.4: Kinematic chain representation of a robotic manipulator. 71

Figure 4.5: (a) Pinhole camera model; (b) Pinhole camera model with reflected image

plane. ... 72

Figure 4.6: Image plane and pixel plane. .. 73

iv

Figure 4.7: (a) Images for calibration; (b) camera reference and extrinsic parameters. ... 77

Figure 4.8: Simulation results of traditional visual servoing of mobile robot: (a) linear

velocity trajectory; (b) angular velocity trajectory; (c) position errors of the feature on the

image plane. .. 81

Figure 4.9: Simulation results of traditional visual servoing of a robotic manipulator: (a)

position trajectory of the feature point on the image plane; (b) angular velocities of the

six joints; (c) position error trajectories of the feature on the image plane. 83

Figure 4.10: The trajectory of the visual feature point (object) on the image plane. 84

Figure 4.11: The trajectory (position and heading) of the mobile robot in the physical

environment when it carries out the mobile manipulation task. 85

Figure 4 12: The visual errors on the image plane when the robot approaches the object

and attempts to grasp it. .. 85

Figure 4.13: The control inputs of the plant when the new visual servo controller is

operating. .. 86

Figure 4.14: The hybrid control scheme for robust visual servoing. 87

Figure 4.15: The discrete gird world defined on a 640×480 CCD image plane. 89

Figure 4.16: The history of Q-values under different world states when the robot received

off-line training: (a) State (2,2,1), (b) State (3,2,1), (c) State (4,2,1), (d) State (5,2,1). ... 92

Figure 4.17: The trajectory of the visual feature on the 640×480 image plane when the

hybrid controller operated in the presence of a small unacceptable area. 95

Figure 4.18: The history of the row and column pixel coordinates of the visual feature

when the robot approached the object and grasped it. .. 96

Figure 4.19: The performance of the IBVS controller with a small unacceptable area

when the robot carried out a mobile manipulation task: (a) history of the pixel

coordinates of the visual feature on the image plane; (b) trajectory of the mobile robot in

the physical environment; (c) visual errors on the image plane. 98

Figure 4.20: The trajectory of the visual feature on the 640×480 image plane (large

unacceptable area). ... 99

Figure 4.21: The history of the row and column pixel coordinates of the visual feature.

 .. 100

v

Figure 4.22: The performance of the IBVS controller when the unacceptable area is large:

(a) history of the pixel coordinates of the visual feature; (b) trajectory of the mobile robot;

(c) visual errors on the image plane. ... 101

Figure 4.23: Strategy of model predictive control. ... 103

Figure 4.24: Block diagram of the mobile robot system with adaptive nonlinear model

predictive control (ANMPC) for visual servoing. .. 104

Figure 4.25: The experimental results of a mobile visual servo system using un-

constrained ANMPC: (a) trajectory of the target object in the image; (b) pixel errors on

the image plane; (c) history of the mobile robot location; (d) history of the robot

translational velocity (control input); (e) history of the robot rotational velocity (control

input). .. 108

Figure 4.26: Mobile visual servoing using constrained ANMPC. 111

Figure 4.27: Visual servoing of a robotic arm using ANMPC. 113

Figure 5.1: Possible application of a sensor network: (a) a future city; (b) a future home

environment. ... 115

Figure 5.2: An example of finite state machine. ... 116

Figure 5.3: Analogy between a cross machine and a transfer function. 118

Figure 5.4: An example of a system. .. 118

Figure 5.5: Overall network architecture. ... 119

Figure 5.6: Design architecture of a sensor network. ... 121

Figure 5.7: Pressure sensor field. .. 122

Figure 5.8: The experimental setup: (a) Pioneer mobile robot; (b) Segway RMP robot.

 .. 123

Figure 5.9: Basic modeling procedure of sensory data. ... 123

Figure 5.10: Dynamic space-time clustering. ... 124

Figure 5.11: (a) Simulation of a heterogeneous sensor field; (b) Developed Matlab

simulation environment. ... 126

Figure 5.12: Simulation results. .. 126

Figure 5.13: (a) Dynamic clustering mechanism; (b) network clustering. 128

Figure 6.1: Overview of the experiment. .. 130

vi

Figure 6.2: Physical configuration of the test bed. ... 131

Figure 6.3: Poineer Powerbot—the mobile base. ... 132

Figure 6.4: Overview of the task cycle. .. 133

Figure 6.5: RobuArm—the manipulator. ... 134

Figure 6.6: (a) BumbleBee®2 stereo camera; (b) Coordinate frames of the camera. 135

Figure 6.7: The Logitech webcam. ... 136

Figure 6.8: The Hokuyo URG-04LX sensor. ... 137

Figure 6.9: An example of laser reading results. .. 138

Figure 6.10: The overall procedure of the mobile manipulation experiment. 139

Figure 6.11: Screen shots of the experiment. ... 143

vii

List of Tables

Table 2.1: SIFT algorithm of local feature generator……………………………………30

Table 3.1: Important laser range results…………………………………………………46

Table 3.2: Data for pose calculation….…………………………………………………50

Table 4.1: Denavit-Hartenberg convention……………………………………………...67

Table 4.2: DH table of the RobuArm…….……………………………………………...71

Table 6.1: Technical specifications RobuArm………………………………………....134

Table 6.2: Intrinsic parameters of the stereo camera…………………………………...136

Table 6.3: Specifications of the laser distance finder…………………………………..137

ii

Nomenclature

B Blue

𝑐 Column

𝑁(𝑘) Cost function

𝐷 Distance measurement of the laser

𝐷(𝑥,𝑦,𝜎) Difference of Gaussian

𝑖 Focal length

𝑔(𝑥,𝑦) Magnitude of the gradient

G Green

𝐺(𝑥,𝑦,𝜎) Gaussian kernel

𝐺𝑘 Pattern of interest

H Hue

𝐻 = �𝑅 𝑑
0 1� Homogeneous transformation

𝐻𝑝 Prediction horizon

𝐻𝑢 Control horizon

ℎ� Average hue value

I Intensity

𝐼(𝑥,𝑦) Original Image

𝐽 Jacobian

𝐿 Interaction matrix

𝐿(𝑥,𝑦,𝜎) Convoluted image

𝑁𝑁𝑁(𝐴,𝐵) Normalized cross correlation

𝑝 Position and orientation of the robot

𝑝′ New position and orientation of the robot

𝑃(𝐴𝑘) Probabilistic action selection function

𝑞0 Stat state

𝑄 Finite set

𝑄(𝑐𝑖,𝐴𝑗) An entry in the Q-table

iii

𝑄 × Σ𝑖 → 𝑄 State transition function

𝑄 × Σ𝑆 → [0,1] Output mapping

𝑟 Row (see Chapter 2)

𝑟 Reward (see Chapter 3)

R Red

𝑅: 𝑆 × 𝐴 → 𝔑 Reward function

𝑐𝑥 Horizontal dimension of the CCD sensor

𝑐𝑦 Vertical dimension of the CCD sensor

S Saturation

𝑇: 𝑆 × 𝐴 → 𝛱(𝑆) Transition function

𝛼 Learning rate

𝛽 Discount factor

𝜎 Standard deviation

𝜖𝑖 Detection region

𝜃(𝑥,𝑦) Orientation of the gradient

𝛴𝑖 Input alphabet

Σo Output alphabet

(𝑢𝐿 , 𝑣𝐿) Coordinates of the left image

(𝑢𝑅 , 𝑣𝑅) Coordinates of the right image

Δ𝑥 Position difference on the x-axis

Δ𝑦 Position difference on the y-axis

Δ𝜃 Orientation difference

ii

List of Abbreviations

ANMPC Adaptive Nonlinear Model Predictive Controller

ANNs Artificial Neural Networks

CCD Charge-coupled Device

CMOS Complementary Metal–oxide–semiconductor

CNC Computer Numerical Control

DFSM Deterministic Finite State Machine

DH Denavit-Hartenberg

DOF Degree of Freedom

DoG Difference of Gaussian

DSTC Dynamic Space-time Clustering

FSA Finite State Automata

FSM Finite State Machine

GPC Generalized Predictive Control

GUI Graphic User Interface

HSI Hue Saturation Intensity

IBVS Image-based Visual Servoing

LoG Laplacian of Gaussian

MDP Markov Decision Processes

MPC Model Predictive Control

MV Machine Vision

NDFSA Non-deterministic Finite State Automata

NCC A Normalized Cross-correlation

NF Neuro-fuzzy

OES Optical Emission Spectroscopy

PA Probability Automata

PBVS Position-based Visual Servoing

PFSA Probabilistic Finite State Automata

PID Proportional, Integral, Derivative

iii

RGA Residual Gas Analysis

RGB Red Green Blue

RNN Recurrent Neural Network

SIFT Scale Invariant Feature Transform

SQKF Sequential Q-learning Algorithm with Kalman Filtering

TSNNs Time Series Neural Networks

UGVs Unmanned Ground Vehicles

WTC World Trade Center

iv

Acknowledgements

First, I would like to express my sincere gratitude and appreciation to my supervisor,

Dr. Clarence W. de Silva whose constant supervision and guidance have enabled me to

effectively and successfully complete the Master’s and Ph.D. studies at UBC. Particular

acknowledgement should be made of the research grants held by Dr. de Silva from the

Natural Sciences and Engineering Research Council (NSERC) of Canada, Canada

Research Chairs Program, Canada Foundation for Innovation (CFI), British Columbia

Knowledge Development Fund (BCKDF) which funded the research and provided

generous research assistantships for me.

In the same vein, I also want to thank my colleagues, Dr. Tahir Khan, Dr. Ying Wang,

Mr. Edward Wang and all other colleagues at the Industrial Automation Laboratory (IAL)

for their friendship and help. For those who have been working with me, and have paved

the way to my success, please allow me to say a sincere "thank you." I also want to thank

my friends who have supported me and given me their coaching and mentoring in the

past two years.

Finally, I would like to express my deepest thankfulness to my father Junsheng Lang

and my mother Xiutian Zheng who have given me life, and my wife Wanling Li who

always supports me.

1

CHAPTER 1 Introduction

In recent years, the emphasis of robotic research appears to have shifted from the

development of robots for structured industrial environments to the development of

autonomous and cooperative mobile robots operating in unstructured and partially-

known natural environments, such as homes, planet surfaces and disaster scenes. These

autonomous mobile robots are applicable in a number of challenging practical tasks such

as cleaning of hazardous material, surveillance, rescue, and reconnaissance in

unstructured environments which can be too hazardous for humans; and taking care of

the elderly and the disabled in home environments where human caregivers are costly

and in short supply. It is expected that this new class of mobile robots will have extensive

applications in activities where human capabilities are needed, yet not suitable or

impractical for human presence (Siegwart and Nourbakhsh, 2004).

As the main objective, this research aims to complement the existing research

activities in this area, leading to the development of an autonomous mobile robotic

grasping system and associated methodologies and technologies that particularly

incorporate visual servoing with advanced control and networked sensing. The

application domains for these developments are search and rescue situations, and

homecare, where mobile robots are employed.

1.1 Motivation

1.1.1 Search and Rescue Robotics

The necessity of autonomous search and rescue robots was highlighted in the 2001

attack and destruction of the World Trade Center (WTC) in New York City which

resulted in the death of 343 firefighters and 65 other rescuers. This additional loss of life

was mainly caused by the search and rescue operations in an unsafe environment.

Generally speaking, rescue workers have about 48 hours to retrieve trapped humans

2

subsequent to a disaster. However, much time is wasted because of the lack of necessary

equipment and resources for accessing collapsed buildings or generally unsafe areas.

Robotic rescuers will be able to carry out rescue operations more efficiently without

further endangering human life.

Ten years after the WTC incident, the tsunami caused by the earthquake in Sendai,

Japan, resulted in a nuclear reactor crisis. It was another situation where robotic search

and rescue would have been effective. Unfortunately, there was no report of the use of

robots in that situation even though Japan is a leader in robotic applications. These facts

highlight that there are still serious challenges and unsolved technical difficulties in the

field of autonomous mobile robotic manipulation.

1.1.2 Homecare Robotics

Another good application of mobile manipulation systems is in homecare

environments. Since the overall average age of the world population is growing, the

percentage of non-working elders is increasing with respect to the working population. In

Canada, statistics show that the percentage of the senior population will reach about 25%

of the overall population in 2050, while that percentage was a mere 8% in 1971. This

dramatic change will cause financial problems (i.e., more public funds will be needed for

healthcare and homecare) as well as social problems (i.e., short of human caregivers,

effect on families). An effective solution to this problem is to employ autonomous mobile

robots with adequate task capabilities and intelligence. These robots can be designed for

taking care of elders (and the disabled) in their own home environments, providing

assistance in daily activities, medical assistance, surveillance, and so on. Not having to

remove the care receiver from the familiar home environment is a clear benefit in this

regard. Furthermore, round-the-clock care can be provided by a robotic system, in a

consistent manner. Also, the family members will have the freedom and peace of mind to

pursue their own activities such as employment and education while being able to

monitor the home scenario on line with the use of the system sensors and communication

links.

3

1.2 Scope and Goals of the Research
As investigated in the present work, a mobile robotic manipulation system is rather

complex and involves multi-domain technologies such as computer vision, artificial

intelligence, mechanical and electrical design, signal processing, sensing and control.

The objective of this thesis is to develop methodologies and technologies that will lead to

an autonomous mobile robot manipulation system for important practical applications.

The two real-word application scenarios which are targeted in the present developments

and implementations are robotic search and rescue, and homecare robotics. In view of the

needed capabilities for such a robotic system, the scope of the thesis spans four main

areas: 1. Machine vision, specifically object identification and tracking, 2. Robotic

navigation, 3. Manipulation, and 4. Networked sensing. The thesis will particularly

address the following primary challenges:

• Develop methodologies and vision systems for detecting, identifying, and tracking

objects of interest in both global and local sensing areas of a robot.

• Develop a robotic navigation system that has the ability to autonomously guide a

mobile robot to a goal location in an unknown, unstructured and dynamic

environment.

• Develop effective control strategies for robust control of motion and manipulation of

mobile robots in the focused application scenarios.

• Incorporate into the control system a sensor network with both static and dynamic

sensors along with an information fusion technology to enhance the performance of

the robotic tasks.

• Study such performance issues as robustness, cooperative behavior, self-learning, and

adapting capability of the developed robotic system.

1.3 Problem Definition
The primary objective of the present work is to develop an autonomous mobile

manipulation system which has abilities to identify objects, navigate in the workspace,

grasp an object of interest and finally transport it to a goal location. A schematic

representation of the system developed in the present work is shown in Figure 1.1.

4

Figure 1.1: Schematic representation of the developed system.

In this figure, there is a sensor network which contains a set of different type sensors,

such as pressure sensors (circles in the middle of each square block), acoustic sensors,

magnetic sensors (triangles), cameras, and laser distance finders. Some sophisticated

sensors are “dynamic” (e.g., the cameras have the ability to move along the track under

the ceiling; some cameras, magnetic sensors and laser distance finders are carried by

mobile robots). The working procedure of the system is shown in Figure 1.2. The robot

receives a task (e.g., find a specific object, go and grasp it, and transport it to a goal

location) while it is navigating in the workspace. Then, it will try to find the object of

interest in the environment with the help of the sensor network. As it finds the object, the

sensor network will provide to the robot the coordinates of the object in the workspace,

and also the location and the orientation of the robot. The robot then establishes a way to

approach the object while giving due consideration to the dynamics of the environment

including obstacles and other robots. As the robot moves close enough to the object with

the workspace of the robotic arm encompassing the object, it will grasp the object.

Finally the robot transports the object to its goal location. In this procedure, a sensor

Goal

5

network continuously assists the robot in object identification, mobile localization and

navigation.

Figure 1.2: The flowchart of the mobile manipulation system.

There are three challenges in the development of the system, which are all key issues

in realizing a working mobile manipulation system for application the targeted

application scenarios. The first one is the object identification and tracking. In particular,

the manipulation operation heavily relies on the results of identification and tracking

because the approach of visual servoing utilizes camera information in the feedback loop

of the robot control system. The failure of correct identification and tracking during

manipulation will result in failure of the entire system.

The second challenge is localization and navigation, which concerns accurately

determining the location and orientation of the robot at each instance of the robotic task

in order to decide the appropriate next movement for achieving the goal. Because on-

board sensors of the robot can only detect and scan a limited area of the work

environment, it is impossible to monitor the entire robotic environment using these

sensors. Moreover, without completely knowing the environment in advance, the robot

cannot deploy the traditional path planning technologies for decision making related to

navigation.

The third challenge concerns the manipulation process. In a mobile robot, the base

frame is not fixed; and the base coordinate frame will change with time. A pre-defined

approach to manipulation, as typically used in industry will not work in this case. A more

robust approach needs to be developed that can function in a complex working

environment.

Object
Identification Navigation Manipulation Transportation

Sensor
Network

6

In order to extend the capabilities of a mobile manipulation system to fit the entire

global environment, rather complete information regarding the workspace is required,

which cannot be provided by the robot’s on-board sensing capability. How to select and

cluster the available global sensors to generate the necessary information for robotic

control, and to improve the accuracy of the information that is provided to the robot are

important in this regard.

In the present thesis, several approaches are developed to address these issues and

overcome the pertaining key challenges. This will enable the mobile manipulation system

to work robustly and effectively in a dynamic and partially known environment.

1.4 Related Work

1.4.1 Machine Vision

Machine vision is a powerful sensory tool as it can mimic the human sense of vision

and allow non-contact measurement of a working environment. Accordingly, much

attention of the research community has gone to applying vision as a feedback sensor in

industrial control applications. Among the projects of visual servoing, quite well known

is the “DARPA Urban Challenge.” This involves competing teams to build autonomous,

driverless vehicles that are capable of driving in traffic while performing complex

maneuvers such as merging, passing, parking and negotiating intersections in an urban

environment. In these vehicles, camera is the main sensor for providing feedback from

the vehicle environment to the vehicle control system.

 The application of camera vision in computer-based machines is traditionally called

machine vision (MV), which involves image processing and image interpretation

(computer vision). It is a subfield of engineering that encompasses computer science,

optics, mechanical engineering, and industrial automation. A common application of

machine vision is the inspection of manufactured goods such as semiconductor chips,

automobiles, food products, and pharmaceuticals. A machine vision system can carry out

quality assessment tasks with good accuracy and repeatability. It requires digital

input/output devices and computer networks, combined with image processing

techniques, to control the manufacturing equipment. Other recent applications in this area

involve vision-based object detection, tracking of UGVs (Unmanned Ground Vehicles),

http://en.wikipedia.org/wiki/Computer_vision

7

following of mobile robots, and vision-based feedback control of robotic manipulator

movements (visual servoing). This technology can also be implemented in applications

of security and transportation such as video surveillance and traffic control.

Vision-based automated object detection has been playing a significant role in

industrial and service applications. Associated studies have focused on detecting objects

efficiently by using features such as color, shape, size, and texture. However, there are a

number of problems that arise when using these methods to process real world images

under different conditions and environments. Most recent machine vision algorithms may

not necessarily possess adequate performance for common practical use.

Seelen et al. (2000) have used Symmetry Analysis and Model Matching to detect the

rear, front and side views of a group of object types by measuring the inherent vertical

symmetric structure. In their paper, the authors mention that the method has to be robust

against changes in illumination and slight differences of the right and the left parts of an

object. The symmetry-based method is challenged in this manner under real operating

conditions.

As well known, color is a very useful feature in object detection. However, few

existing applications of detection and tracking have used color for object recognition,

because color-based recognition is complicated, and the existing color machine vision

techniques have not been shown to be effective. Buluswar and Draper (1997) have

presented a technique for achieving effective real-time color recognition in outdoor

scenes. It is claimed that this method has been successfully tested in several domains,

such as autonomous highway navigation, off-road navigation and target detection for

unmanned military vehicles.

Bertozzi et al. (1997) have proposed a corner-based method to hypothesize vehicle

locations. The system presented in their paper was composed of a pipeline of two

different engines: a massively parallel architecture for efficient execution of low-level

image processing tasks, improved by the integration of a specific feature for direct data

I/O; and a traditional serial architecture running medium-level tasks aimed at the

detection of the vehicle position in the sequence. A preliminary version of the system was

reported, and it was demonstrated on the MOB-LAB land vehicle.

The use of constellations of vertical and horizontal edges has shown to be a strong

cue for hypothesizing objects in some situations. In identifying pronounced vertical

8

structures in an image, Matthews et al. (1996) used edge detection to find strong vertical

edges. To localize the left and right positions of a vehicle, they computed the vertical

profile of the edge image followed by smoothing using a triangular filter. By finding the

local maximum peaks of the vertical profile, they claimed that they could find the left

and the right positions of a vehicle.

Template-based methods use a predefined pattern of the object class and perform

correlation between the image and the template. Handmann et al. (2000) proposed a

template based on the observation that the rear/frontal view of a vehicle has a “U” shape.

During verification, they considered a vehicle to be present in the image if they could

find the “U” shape. Ito et al. (1995) used a very loose template to recognize pronounced

vertical/horizontal edges and existing symmetry. Due to the simplicity of the template,

these two papers did not generate very accurate results.

Appearance-based methods learn the characteristics of object appearance from a set

of training images which capture the variability in the object class. Compared to the

previously discussed approaches, it is the most accurate and reliable one. In particular,

Lowe (1999, 2004) proposed an algorithm for object recognition and tracking, called the

Scale Invariant Feature Transform (SIFT), which uses a class of local image features. In

his algorithm, the detected features are invariant to changes in illumination, noise,

rotation and scaling; and it has been proven that this approach has high robustness and

reliability. In the present thesis, the SIFT algorithm is utilized to enable a mobile robot

track an object in the camera view, and feedback the environmental information, to

control the robot to a goal location. To the best of our knowledge, this thesis is the first

work to apply the SIFT algorithm for visual servoing in robust mobile robot tracking.

1.4.2 Robot Navigation

An important issue that is investigated within the community of mobile robot

research is robot navigation. This is justified since this involves the capability of a robot

to understand its workspace, determine efficient motion strategies to achieve the motion

goal with consideration of its current pose, goal location in the workspace and possible

obstacles in the path. There are many relevant research directions in this field.

A popular approach of mobile navigation involves path planning, which starts by

acquiring a map of the workspace, and then uses an effective path planner to find a

9

suitable and available path to reach the goal. The field of path planning has been

extensively studied with respect industrial manipulators (with fixed base), and is

gradually being extended to mobile robots as well. As indicated in the review of Siegware

and his colleagues (2004), the path-planning system usually converts the continuous

environmental map into a discrete map, and then the planning is achieved by utilizing

some general strategies to decompose the global problem into local or smaller problems,

such as the roadmap method and the potential field method. Teng et al. (1993) proposed a

navigation method for an initially-known, natural terrain which is assumed to be free of

obstacles. It divides the environment into several sub-regions. In each time interval, the

robot performs computations only in the current region according to the rule of

navigating to the next sub-region which is nearest to the final goal. Bortoff (2000) and

Gu et al. (2004, 2006) utilized a Voronoi diagram method to construct a graph based on

the radar sites for flying navigation of an Unmanned Aerial Vehicle (UAV). The flying

trajectory is generated by searching for the shortest path to the specified destination. This

approach can also be used for on-land navigation of mobile robots in a free-space

environment. However, this approach has a constraint in that it is hard to find a collision-

free path in an unstructured environment. Birgesson et al. (2003) utilized the potential

field algorithm in the path planning for robot navigation. Three forces are utilized: the

repulsive force of the obstacles and the attractive forces of the goal and the waypoints.

Each force is activated only if it meets certain criteria, and the goal force is disabled

when a suitable waypoint is found. Therefore, the robot is pulled toward the nearest

waypoint that lies within a predetermined range of angles between the robot and the goal.

If no waypoints meet this criterion, the robot is pulled toward the goal. The repulsive

force is activated only if the robot is within a threshold distance from the obstacles.

There is a drawback in this type of approach which can make navigation impossible

when the robot is exploring an unknown territory: there has to be a global sensor that can

monitor the entire workspace and generate a global map, which can then be utilized by

the path planner. The poses and locations of the robots and the obstacles should be

accurate because all decisions and actions are decided by assuming perfect data.

Moreover, the potential filed method needs to take into account the local minimal

problem. Therefore, this approach usually is used in initially-known and structured

environments or with the availability of a powerful sensing system.

10

With the development of machine learning and artificial intelligence (AI), more

researchers have focused on solving a global path planning problem by decomposing it

into local problems. Bug1 and Bug2 algorithms (Lumelsky et al., 1987) are among the

earliest, simplest schemes in this category. They are search approaches which are

designed to move the robot towards the goal, going around obstacles and following the

boundary of obstacles. Yufka et al. (2009) applied Bug1, Bug 2 and DistBug motion

planning algorithms in a Pioneer mobile robot, and compared the resulting performance.

The difficulty of these approaches is in finding the so-called leave point when the robot

is following the boundary of the obstacles.

Another candidate for solving the mobile navigation problem in machine learning is

reinforcement learning, especially Q-learning. Reinforcement learning has been studied

by psychologists since the 1940’s (Sutton and Barto, 1998). It involves learning what to

do—how to map situations to actions—so as to maximize a numerical reward signal. It is

considered neither supervised learning nor unsupervised learning. The learner is a

decision-making agent who takes actions in an environment and receives rewards for its

actions in trying to solve a problem (Alpaydm, 2004). After a set of trial-and-error runs,

it should learn the best policy, which is the sequence of actions that maximizes the total

reward. Su and his colleagues (2004) applied reinforcement learning in a robot

navigation application. Fuzzy rules were ultilzed in their work to reason the sensory data

and provide them to the reinforcement learning module for appropriate selection of

actions. Ying and de Silva (2010) proposed a sequential Q-learning algorithm with

Kalman filtering (SQKF) in a multi-robot cooperation project. Their method solves the

problem of behaviour conflicts by conditioning the credit assignment.

1.4.3 Visual Servoing

The earliest research of visual servoing was reported in 1979 (Agin). However, then

the image processing procedure took seconds due to the limitation of computers and

image sensing devices at that time, making real-time control virtually infeasible.

Subsequently, Sanderson and Weiss (1980) introduced a taxonomy of visual servo

systems through a control structure. It is called Dynamic Look-and-Move Structure

where the control architecture is hierarchical and uses vision to provide set-point inputs

to the joint-level controller. Then the sub-control system utilizes joint feedback to

11

internally stabilize the robot (Figure 1.3). In contrast, direct visual servoing utilizes a

visual servo controller which directly relies on vision information to compute joint

inputs, thereby stabilizing the robot (Figure 1.4).

Feature Space/Cartesian
Control Laws

Mobile Robot/
Manipulator

Image Feature Extraction/Object
Estimation

+

-

CamerasImage

Joint
Controller

Joint Angle
Sensors

Figure 1.3: Block diagram of a dynamic look-and-move system.

Feature Space/Cartesian
Control Laws Mobile Robot/Manipulator

Image Feature Extraction/Object
Estimation

+

-

CamerasImage

Figure 1.4: Block diagram of a typical (direct) visual servo system.

With the rapid advancement of computer technologies and image sensing hardware

(CCD and CMOS), computer vision is much faster now than it did in 1980s. Direct

visual servoing came to attention of researchers in the 1990s. Hutchinson has reviewed

many of the related work (Hutchinson, et al., 1996). Since then the term “visual servo”

has come to be accepted as a generic description for any type of visual “feedback

control” of a robotic system. The subject has been under study in various forms for more

than twenty years, in contexts ranging from simple pick-and-place tasks to today’s real-

time, complex tasks involving multiple robots and objects, autonomous cooperation, and

dynamic, unstructured and unknown environments.

Another major classification of vision-based servoing distinguishes between position-

based approach and image-based approach (Chaumette and Hutchinson, 2006). Both

approaches share a similar control block diagram with slight a difference in the control

feedback loop and the reference input (Figure 1.5). In the former, features are extracted

from images from one or more cameras, and used in conjunction with camera models and

a geometric model of the target object to estimate the pose of the target with respect to

12

the cameras. The controller seeks to reduce the error between the current pose and the

desired pose in a 3D (three-dimensional) workspace. In contrast, image-based visual

servo control uses the 2D images (and their visible feature points) directly. Consequently,

image-based visual servo control reduces the computational burden, omits unnecessary

image interpretation, and eliminates the calibration errors in sensors and cameras.

Control Law Mobile Robot/
Manipulator

Image Feature Extraction/
Object Estimation

+

-

Cameras

2. Desired position of the
feature point in the image

1. Desired position in the
work space

1. Current position in the work space
2. Current position of the feature point in the image

Figure 1.5: Block diagram of a typical visual servo system (1. Position-based; 2. Image-

based).

Much of the work related to visual servoing and mobile robots to date has focused on

the application of autonomous navigation control. Physical demonstrations of mobile

manipulation and grasping using visual servoing have been somewhat limited. Some

examples are indicated now. Ma et al. (1999) have developed a vision-guided navigation

system where a non-holonomic mobile robot tracks an arbitrarily shaped continuous

ground curve. They formulated this problem as one of controlling the shape of a curve on

the image plane, and presented corresponding control laws. Dixon et al. (2006) presented

an adaptive tracking controller of a wheeled mobile robot via an un-calibrated camera

system. In their paper, the parameter uncertainty of the mechanical dynamics and the

camera system was considered, and an adaptive controller was proposed to cope with the

uncertainty. In order to implement robust vision-based autonomous navigation systems,

various approaches have been explored, such as planning of image-trajectory or image-

memory (Remazeilles et al., 2007; Dixon et al., 2001), embedded velocity fields (Kelly et

al., 2006), specific geometry features (vanishing points and line orientations; Zhang et

al., 1999), stereo cameras, and omnidirectional or catadioptric cameras (Mariottini and

Prattichizzo, 2008; Chang and Hebert, 2000; Gaspar et al., 2000).

Epipole-based or homography-based techniques besides stereo cameras have been

used for estimating 3D parameters or depth information of target objects in visual servo

control of mobile robot navigation (Chen et al., 2006; Fang et al., 2005; Lopez-Nicolas et

13

al., 2007; Mariottini et al., 2007; Chesi et al., 2006). In these papers, the rotational and

translational relationships between two camera frames were derived by relating the

current image to the desired image of the same target object, which were then used in

visual-servo control.

It has been noticed that robustness and response speed are two important issues in

vision-based mobile navigation systems, and hybrid controllers have been developed to

meet these challenges. For example, a vision-based hybrid control scheme has been

developed (Amarasinghe et al., 2007) for autonomous parking of a mobile robot. Its

hybrid controller includes a discrete event controller to change the direction of travel of

the robot and a pixel-error-driven proportional controller to generate commands to

achieve its continuous motion. A similar project is presented by Vassallo (2000), where a

vision-based mobile robot attempts to autonomously navigate in a building. A visual-

servo controller that uses vanishing point data is combined with an appearance-based

navigation controller to provide extended autonomy even under modest computational

resources.

It is clear that much of the research related to visual servoing and mobile robots

concerns mobile robot navigation, and only a few physical implementations of vision-

based mobile manipulation have been reported. The possible reason for this limited

activity is that vision-based mobile manipulation requires accurate and robust positioning

performance so that it is more challenging than vision-based mobile robot navigation. As

an example of vision-based mobile manipulation, Luca et al. (2007) have developed an

image-based visual-servo controller for non-holonomic mobile manipulators. In their

paper, two well-known methods of redundancy resolution for fixed-base manipulators are

extended for kinematic modeling of a specific non-holonomic mobile manipulator. Their

approach is illustrated through computer simulation, not physical implementation and

experimentation.

Recent work in vision-based mobile manipulation is presented in 2007 (Mansard et

al.), where a visually-guided humanoid robot attempts to autonomously grasp an object

while walking. They have proposed a high-level structure to sequence multiple control

tasks so that the target object remains in the middle of the field of view of the camera

when the robot walks along a planned path. When the robot is sufficiently close to the

object, it grasps the object while continuing to walk.

14

Research of visual servoing has been challenged by an important requirement: how to

keep the visual features within the field of view of the camera. To date, both image-based

visual servoing (IBVS) and position-based visual servoing (PBVS) have used

measurements of visual features to compute the controller outputs. If due to motion of

the robot or some unknown disturbance, these visual features move outside the field of

view of the camera the controller will completely fail. This issue even becomes more

severe when visual servoing is applied to mobile robotic tasks, because mobile robots

move over long distances than fixed-base robotic manipulators.

It is common for visual features to move out of the field of view due to camera/robot

calibration errors or controller design in a visual-servo system. Since the visibility of the

visual features directly affects the robustness of the system, a significant effort has gone

into solving this problem. A popular solution is to employ the potential field approach to

push visual features toward the center of the field of view when the features approach the

edge of the image. A representative work in this area has been completed by Corke and

Hutchinson (2001), where a potential function has been incorporated into an IBVS

controller to repel visual feature points from the boundary of the image plane. Chesi and

Hung (2007) employed a similar approach to solve the visibility constraint problem in

their global path planner for optimal visual servoing. The approach of Navigation

Function, which guarantees a unique minimum, has been introduced into image-space

path planners of visual servoing to generate a desired image trajectory while keeping the

visual features in the field of view (Chen et al., 2007; Cowan et al., 2002).

Another popular method of keeping visual features in the field of view is to employ a

path-planning technique to plan a camera trajectory or a “virtual path” on the image

plane while meeting the visibility constraint (Schramm et al., 2006; Zhang and

Ostrowski, 2002; Chesi et al., 2007). It is common as well to employ a pan/tilt camera to

enlarge the field of view so that the visual features will remain within it (Capparella et

al., 2005; Nierobisch et al., 2006). Further approaches are available in the literature to

solve the visibility problem. For example, Remazeilles and Chaumette (2007) have

employed several specific visual features to ensure that the robot navigates within the

visibility path. Cowan and Chang (2005) have developed a diffeomorphism-based IBVS

controller to keep the features within the field of view and avoid self-occlusion.

15

There exists a common shortcoming in the approaches mentioned above, which are

based on potential-field, navigation-function, or planning techniques: they represent

static solutions designed in advance by a human. These approaches cannot improve their

performance on line and also cannot autonomously adapt to changing control tasks.

Most visual-servo projects today primarily concern object modeling and the quality

of the vision feature feedback while paying less attention to controller design. Notably, a

simple P (Proportional) control law or a PID (Proportional, Integral, Derivative) control

law is commonly used in the literature. However, a PID controller may not be adequate

to handle the robustness and stability issues of real-life mobile robot applications. Spong

and Hutchinson (2006) reviewed proportional control with Lyapunov stability, which is

the controller that is most commonly used by researchers. Although this control law

(Chaumette and Hutchinson, 2006, Spong et al. 2006) can guarantee system stability, its

controller output is not optimal and it is unable to consider various constraints (robot

location constraints, visibility constraints, velocity constraints, and so on) which are

common in a mobile visual-servo system.

In order to get optimal controller outputs, Ginhoux et al. (2005) proposed to use GPC

(generalized predictive controller) in visual servoing of a robotized surgery task. In

particular, a 6 DOF (Degree of Freedom) robotic arm was developed to track the motion

of a pig’s heart based on the visual feedback. Since they employed the basic GPC

scheme, no constraints were considered. In addition, they used the same idea in

teleoperated laparoscopic surgery (Gangloff et al., 2006) and 3-D profile following

(Gangloff and de Mathelin, 2002). Since the constraint issue is quite popular in visual-

servo tasks, Sauvee et al. (2008) implemented a nonlinear model predictive controller for

visual servoing of a robotic arm using vision feedback from ultrasound images. In this

project, they considered various constraints and linearized the nonlinear model into a

constant linear model at the equilibrium point.

 Applying MPC (Model Predictive Control) to visual servoing is still in its juvenile

stage. Only a limited number work has reported as above. Although some positive results

were obtained in them, they shared a common shortcoming: in applying the existing

(basic) MPC technique to visual-servo tasks, a constant linear model is assumed for the

nonlinear plant. As a result, the implemented system can only work in a small

neighborhood of the equilibrium point at which the model is linearized. If the current

16

operation point of the system is farther from the equilibrium point (which is common in a

mobile manipulation task), the controller performance will deteriorate quickly due to the

mismatch between the model and the plant.

1.4.4 Networked Sensing

It is known for a long time that sensor integration is fundamental to increasing the

accuracy, versatility and the application domain of robots, but to date this has not proven

cost effective for the bulk of robotic applications. Multi-sensor systems are designed to

exploit several signature-generation phenomena and to gather different types of

information about objects and scenes of interest. Design of a multi-sensor system

involves optimization of sensors (including sensor location and orientation), data

processing, and communication, and particularly the use of an appropriate fusion strategy

for the sensory data; e.g., Bayesian and Dempster-Shafer inference; fuzzy logic; pattern

recognition using signal processing algorithms, and artificial neural networks. The

backbone of a multi-sensor system concerns how to utilize various streams of data by

using an effective approach for sensor /data fusion.

Sensor fusion first appeared in the literature in the 1960s. Today, application of

sensor fusion has expanded into a wide range of areas: machine health monitoring and

diagnosis, maintenance engineering, robotics, pattern recognition, object tracking, and so

on. Figure 1.6 shows a general architecture of a sensor fusion system which includes

low-level data acquisition and processing and high-level data fusion processing. Low-

level processing concerns the hardware level and the raw data processing; e.g., sensor

selection and arrangement and data acquisition, while the high-level processing focuses

on extracting the raw data of interest and transforming them into utilizable forms. A

decision making system that uses the pre-processed information is also embedded in the

high-level processing layer.

17

Low-level
Information on

Entities and Tracks:
•
• Identities
• Estimates of

Target States

High-level Situation

• Behavior
• Future activities
• Internet

Sensor 1
Target Attribute

Sensor 2
Target Attribute

Sensor N
Target Attribute

Data
Estimation

Target
Discrimination

Data
Association

LOW-LEVEL PROCESSING

Predicted target
states at next data
acquisition interval

Refined estimation
of target states

Refined target
indentities

Assessment

• Detection of
behavior pattern

• Association of
entities and events

• Prediction of future
behavior

• Classification of
situation

HIGH-LEVEL
PROCESSING

Measurements related to state

Measurements related to target
discrimination (detection, classification,

identification)

Figure 1.6: General architecture of data fusion processing.

Artificial neural networks (ANNs) is a commonly applied approach to solve the data

fusion problem. It was introduced by Posner (1989) with the objective of understanding

the functioning of the human brain. He built models of natural neural networks of the

brain and carried out simulation studies. The general idea of ANNs is to make a nonlinear

transformation from a d-dimensional input space to an h-dimensional output space

through an appropriate number of hidden layers. Through appropriate training, the

network weights are adjusted, establishing a reasonably accurate nonlinear relationship

between the inputs and outputs.

Ghosh et al. (2007) proposed a neural network-based sensor fusion architecture for

the estimation of tool wear of a computer numerical control (CNC) milling machine.

Monitoring of tool wear is crucial in preventing the degradation of the machining quality.

Unfortunately, there is no direct way of measuring the process variables related to tool

wear. An ANN-based sensor fusion approach has been proposed by Ghosh et al. (2007) to

fuse the data of cutting force, spindle vibration, spindle current, and sound level from

different sensors. The approach had been validated by both laboratory and industrial

implementation. Hong et al. (2005) developed a neural network-based sensor fusion

system for real-time fault detection of reactive ion etching. The target of this project was

to guarantee the system accuracy and real-time performance. Two in-situ sensors: optical

emission spectroscopy (OES) and residual gas analysis (RGA) were used and the

generated signals were sent to a time series neural networks (TSNNs) for fusing as well

18

as predicting the process parameters. Simulated fault processing data were used to train

the NN and the authors claimed that this approach could potentially contribute to

maintaining a consistent etching process by increasing the probability of identifying the

incipient faults.

Considerable amount of work has been done in sensor fusion where fuzzy logic is

implemented as the fusing method. Lotfi Zadeh (1978) developed the fuzzy set theory in

1965. Zadeh reasoned that the rigidity of the conventional set theory made it impossible

to account for vagueness, imprecision, qualitative aspects, and shades of gray that are

commonplace in real-world events. Consequently, fuzzy logic is valuable where the

boundaries between sets of values are not sharply defined or there is partial possibility of

occurrence of an event.

Although fuzzy logic and neural networks are structurally different, they share a

rather complementary nature as far as strengths and weaknesses are concerned (Karray

and de Silva, 2004). Applying fuzzy methods into the workings of neural networks

constitutes a major thrust of neuro-fuzzy (NF) computing. Wang et al. (2004) proposed a

neuro-fuzzy system to forecast damage propagation trend in rotary machinery and to

provide an alarm before a fault reaches critical levels. After proper training, the

performance of the NF was compared with the performance of a recurrent neural network

(RNN). It showed that the NF was a reliable and robust machine health predictor which

could capture the system dynamic behavior quickly and accurately. Palluat et al. (2006)

designed an intelligent monitoring aid which used a neuro-fuzzy approach. The system

contained a detection tool which used neural networks and a diagnosis tool which used a

neuro-fuzzy approach. Four sensors were used in gathering information. After training,

the NF demonstrated industrial usefulness in an application of monitoring a flexible

production system.

The backbone of a multi-sensor system concerns how to utilize various data by using

an effective approach for sensory data selection and fusion. Ray (2004) has proposed a

novel concept of anomaly detection in complex systems by using Finite State Automata

(FSA) and D-Markov machine. An application of sensor fusion has been reported by

Chattopadhyay and his colleagues (2009). For sensing different types of objects, Chen

(2004) proposed a dynamic architecture in an acoustic sensor network where the sensor

nodes in a clustered sensor network adapts to different targets using Voronoi diagrams.

19

Yang and Sikdar (2003) utilized the Bayesian method to dynamically cluster and fuse the

sensor information in a sensor network to achieve the task of tracking mobile targets.

1.5 Contributions and Organization of the Thesis
This Ph.D. thesis investigates and develops new techniques and expertise that will

facilitate the implementation and effective operation of mobile robot manipulation

systems in unknown, unstructured and dynamic environments. The four main

contributions of the thesis are as follows:

• Efficient and robust machine vision algorithms are developed, which utilize color and

feature of objects. With the integration of other sensors, they help to determine the

pose of the robot in the workspace. They are incorporated into the feedback control

loop of motion of the mobile robot platform and manipulation of the robotic arm by

providing accurate and fast position information of the tracked object.

• A traditional reinforcement learning algorithm, specifically Q-leaning, is incorporated

to enhance the operation of the mobile robot in an unknown, unstructured and

dynamic workspace. With the help of a sensor network, it will guide the mobile robot

to approach the object of interest with increasing effectiveness.

• An adaptive nonlinear model predictive controller is developed for accurate motion

control of the robot when the object is within its local sensing area, and also for

effective manipulation. The developed controller takes into account visibility

constraints and physical constraints, and it is able to provide optimized controller

outputs.

• A Probabilistic Finite State Automata (PFSA)-based, information-driven, and self-

organized sensor network is proposed to dynamically cluster sensors in order to

improve the decision making associated with the robot operation.

The organization of this thesis is as follows: The present chapter (Chapter 1)

introduces existing activities in mobile robotics and highlights main research challenges

of this field. Next it outlines the research objectives of the thesis and presents a literature

survey to establish the related background work, mainly in the past decade. Chapter 2

introduces and discusses the machine vision techniques that are utilized in the

identification and tracking of objects. The methods include color blob tracking, Scale

20

Invariant Feature Transform (SIFT) feature tracking and stereo vision. Their practical

application in mobile manipulation is indicated. In Chapter 3, the conventional method of

reinforcement learning (Q-learning) is customized and incorporated in mobile robot

navigation. The detailed formulation of the states and actions of the algorithm is

presented. This algorithm is then implemented in computer simulation and

experimentation. Chapter 4 addresses several challenges in the area of mobile

manipulation such as visibility constraint, physical constraints and optimal controller

outputs. First, a hybrid controller, which combines a traditional proportional-integral-

derivative (PID) controller and an intelligent Q-learning controller, is proposed. It mainly

addresses the visibility constraint. Then a more advanced controller, termed Adaptive

Nonlinear Model Predictive Controller (ANMPC), is proposed and developed for both

mobile navigation and robotic manipulation. This approach is able to solve problems of

visibility constraint and physical constraints, and also provide optimal controller outputs.

Chapter 5 introduces a self-organized sensor network where Probabilistic Finite State

Automata (PFSA) is utilized to organize and cluster suitable sensors and then fuse their

data to make reliable and more accurate decisions. It has the ability to communicate with

the robots in the workspace and provide information to assist the execution of the robotic

tasks. Experimental investigation using the developed robotic system is presented in

Chapter 6 along with discussions of the experimental results. Chapter 7 summarizes the

primary contributions of the thesis, and indicates several relevant issues and possible

future research directions in mobile manipulation.

21

CHAPTER 2 Machine Vision

Computer vision involves imaging of objects using cameras and high-level

processing of those images to extract features and interpret objects. Machine vision (MV)

is often considered the application of computer vision to industrial and manufacturing

systems. Whereas computer vision is mainly focused on computer-based image

processing, machine vision most often requires digital input-output devices and computer

networks to control other manufacturing equipment such as robotic arms. Machine

Vision is a subfield of engineering that encompasses computer science, image

processing, mechanical engineering, and industrial automation. A common application of

Machine Vision is the inspection of manufactured goods such as semiconductor chips,

automobiles, food and pharmaceuticals; process control; and robot guidance in industrial

applications (Steger et al., 2008; Graves and Batchelor, 2003).

In this thesis, machine vision is mainly applied for identifying and tracking objects as

the robot navigates in its work environment. As presented in section 1.4.1, many methods

are currently available for object identification and tracking. Among these methods, color

tracking is one of the fastest and most straightforward one because the principles of the

algorithm of color identification and tracking works at pixel level. In this chapter, a fast

object tracking algorithm based on color is developed to provide position information of

an object to the visual servo controller of a robot. However, the color tracking algorithm

has its limitations. In particular, the object must have unique colors and the colors of the

environment have to be different from the tracked colors. Because of these limitations,

color tracking algorithms are not natural and adaptive to different scenarios. Next, a more

robust and reliable feature-based object identification is introduced, which utilizes the

SIFT features of objects to achieve object identification. Finally, a stereo vision system is

presented for acquiring the depth information of a detected object.

22

2.1 Color Tracking

2.1.1 RGB and HSI Color Spaces

In the RGB (Red, Green, and Blue) color space, all colors are considered a

combination of the three colors red, green and blue. It is based on a Cartesian coordinate

system, which is shown in Figure 2.1. There are three axes representing Red, Green and

Blue. The cube represents the overall RGB color space with eight corners: Red, Green,

Blue, Cyan, Magenta, Yellow, Black and White. All values in this space range from 0 to

1.

White

Green

Red

(0,1,0)

(1,0,0)

(0,0,1)

Gray Scale

Yellow

Black

Cyan

Magenta

Blue

B

G

R
Figure 2.1: The RGB color model.

The HSI (Hue, Saturation, and Intensity) color space utilizes Hue, Saturation and

Intensity to represent colors. Figure 2.2 illustrates the HSI color space model in a

hexagon where its six corners represent Red, Yellow, Green, Cyan, Blue and Magenta. In

this model, the color is decided only by the angle of Hue which ranges from 0 to 360

degrees. The saturation and intensity values do not contribute to the color, which means

that the color cannot be changed by changing the color density and the lighting

23

conditions. This is the biggest advantage of the HSI color space over the RGB color

space in color tracking because a change in any channel R, G or B will cause a change in

the color.

Blue Magenta

Green Yellow

RedCyan
H

S

Figure 2.2: The HSI color model.

2.1.2 RGB to HSI Conversion

A common digital camera provides RGB signals. The first step of color tracking is to

convert the RGB color space data into HSI color space data. Consider an RGB color

point P that is acquired by a digital camera. The HSI value of the point P is given by:

𝐻 = � 𝜃
360 − 𝜃

𝑖𝑖 𝐵 ≤ 𝐺
𝑖𝑖 𝐵 > 𝐺 (2.1)

where 𝜃 = 𝑐𝑐𝑐−1 �
1
2

[(𝑅−𝐺)+(𝑅−𝐵)]

[(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)]1/2� . The saturation component is given by

𝑆 = 1 − 3
(𝑅+𝐺+𝐵)

[𝑚𝑖𝑚 (𝑅,𝐺,𝐵)] (2.2)

The intensity is given by 𝐼 = 1
3

(𝑅 + 𝐺 + 𝐵) (2.3)

2.1.3 HSI to RGB Conversion

The inverse conversion from the HSI color space to the RGB space is expressed by

the following steps:

If 0° ≤ 𝐻 < 120°,

𝑅 = 𝐼 �1 + 𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆 (60°−𝑆)

� (1 − 𝑆) (2.4)

24

𝐺 = 3𝐼 − (𝑅 + 𝐵) (2.5)

𝐵 = 𝐼(1 − 𝑆) (2.6)

If 120° ≤ 𝐻 < 240°:

𝑅 = 𝐼(1 − 𝑆) (2.7)

𝐺 = 𝐼 �1 + 𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆 (60°−𝑆)

� (1 − 𝑆) (2.8)

𝐵 = 3𝐼 − (𝑅 + 𝐺) (2.9)

If 240° ≤ 𝐻 ≤ 360°:

𝑅 = 3𝐼 − (𝑅 + 𝐵) (2.10)

𝐺 = 𝐼(1 − 𝑆) (2.11)

𝐵 = 𝐼 �1 + 𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆 (60°−𝑆)

� (1 − 𝑆) (2.12)

2.1.4 Object Identification

The procedure of the color tracking algorithm is shown in Figure 2.3. As the camera

grabs an image, first a Guassian filter is applied to the image in order to smooth it by

removing high frequency noise. Next, the color image, which is in the RGB (red, green,

blue) color space, is converted into the HSI (hue, saturation, intensity) color space. This

is done because RGB colors are very sensitive to illumination and the RGB values will

change due to slight changes of the lighting condition; while the values of hue and

saturation will not change when the lighting varies. Therefore, tracking the colors of

specific hue and saturation values is more robust and reliable. Next, a threshold is set

according to a specific color, and the grabbed images are processed for specific color

tracking (Wang and de Silva, 2006). Finally, the position of the center of gravity of the

tracked object is computed using 𝑟 = ∑ 𝑟𝑖𝑛
𝑖=1 /𝑚 and 𝑐 = ∑ 𝑐𝑖𝑛

𝑖=1 /𝑚.

25

Figure 2.3: Procedure of the color tracking algorithm.

Figure 2.4 presents typical results from an application of color tracking. The

objective of the application is to track an Amigo mobile robot while it is moving in the

camera field of view. The left window in Figure 2.4 shows the raw data of the camera

image, and the right window shows the result of identification. The white object in the

image of the right window is the Amigo robot.

The main advantage of this color tracking algorithm is its high speed. It is able to

provide the identification result almost instantaneously in real time. This will improve

the performance of a visual servo control because time delay in the system can cause

instability. However, it only works in a limited set of scenarios. In particular, if there are

many objects with similar colors in the camera scene or if the background is noisy, which

is a common situation, the efficiency of the color tracking algorithm will degrade and

method may fail. Therefore, a more robust algorithm for object identification is desirable.

26

Figure 2.4: Implementation of the color tracking algorithm.

2.2 SIFT Feature Tracking

2.2.1 SIFT Feature Generation

The key to the approaches of feature-based object identification is to employ a robust

feature detector with high repeatability with regard to rotation, illumination, and scaling.

Repeatability of a feature detector, which evaluates the geometric stability under different

transformations of images, is one of the most important criterions in choosing a good

detector. It is given by the percentage of total detected features in the second image

which is transformed from the first image. For example, if features detected in the first

image of a video stream can also be detected in the second image by using the same

detector, then the feature detector is said to have high repeatability. Edges are robust

candidates for feature (Szeliski, 2011). In order to find the edges in an image,

differentiation (or, gradient computation) is usually utilized. However, raw images

usually contain high-frequency noise (Figure 2.5(a)). If a direct differentiation is applied

on the raw data, the edge will not be found as shown in Figure 2.5(b). Application of a

Gaussian convolution before taking the differentiation is known to solve the high

frequency noise problem, as shown in Figure 2.6. Moreover, it can improve the

efficiency by utilizing the Derivative of Gaussian (DoG) as shown in Figure 2.7.

Mikolajczyk (2002) has found that the Laplacian of Gaussian (LoG) function, 𝜎2𝛻2𝐺,

generates most stable image features. However, Lowe proposed a Difference of Gaussian

27

(DoG) detector (Lowe, 1999, 2004) which provides an approximation to the LoG with a

much lower computing effort.

(a) Raw data with noise.

(b) Processed data after taking derivative of the raw data.

Figure 2.5: An example of raw data and the results of its differentiation.

28

Figure 2.6: Guassian smoothing in edge detection.

29

Figure 2.7: Derivative of Gaussian in edge detection.

 Figure 2.8: (1) Gaussian; (2) Derivative of Gaussian; (3) Laplacian of Gaussian.

The procedure of SIFT feature generation is presented in Table 2.1 where the raw

images are first converted into grayscale images which are represented by a pixel matrix

of unsigned 8 bit values. For convince of mathematical operation, each pixel is further

converted into a double precision floating point ranging from 0 to 1.0 (0: black; 1.0:

white).

30

Table 2.1: SIFT algorithm of local feature generator.

 Input: A gray scale image.

Output: Local feature descriptors of the input image.

for the input image

 Double the image size by using bilinear interpolation.

 Build Gaussian DoG Pyramids.

Find local extremes as candidates of feature descriptor.

end

Eliminate unstable candidates.

Identify orientation of descriptor.

Generate local feature descriptors of the image.

return descriptor vector

In a natural scenario, the scales of objects in different images are different and

unknown. Therefore, it is required that the features be stable in different scales. For this

purpose, a DoG pyramid is generated for the image in different scales, as shown in

Figure 2.9. The general idea of generating the DoG pyramid is presented now.

Figure 2.9: Difference of Gaussian (DoG) pyramid.

Suppose that the left-bottom of Figure 2.9 is the original image. A Gaussian blurred

imaged is generated for the right second layer by using the convolution:

𝐿(𝑥,𝑦,𝜎) = 𝐺(𝑥,𝑦,𝜎) ∗ 𝐼(𝑥,𝑦) (2.13)

31

where 𝜎 = 0.5, 𝐺(𝑥,𝑦) = 1
2𝜋𝜎2

𝑒−
(𝑥2+𝑦2)
2𝜎2 = � 1

√2𝜋𝜎
𝑒−

𝑥2

2𝜎2�� 1
√2𝜋𝜎

𝑒−
𝑦2

2𝜎2� (2.14)

The third, fourth and the fifth images are generated by using Gaussian blurring from

the previous image; and the DoG images on the right of the Figure 2.9 are given by

𝐷(𝑥,𝑦,𝜎) = 𝐿(𝑥,𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦,𝑘𝜎) (2.15)

The feature points of an image are decided by finding the local extrema in different

scales. Figure 2.10 shows three DoG images in the neighboring scales. Each pixel in the

DoG images is compared with its 8 neighbor pixels in the same images and 9×2

corresponding neighboring scale. If the checked pixel has a maximum or a minimum

value among these 27 pixels, it will be selected as a point of interest (Feature). For each

point of interest, the gradient and orientation are calculated by using:

𝑔(𝑥,𝑦) = �(𝐿(𝑥 + 1,𝑦) − 𝐿(𝑥 − 1,𝑦))2 + (𝐿(𝑥,𝑦 + 1) − 𝐿(𝑥,𝑦 − 1))2 (2.13)

𝜃(𝑥,𝑦) = 𝐴𝐴𝐴𝑚2((𝐿(𝑥,𝑦 + 1) − 𝐿(𝑥,𝑦 − 1))/(𝐿(𝑥 + 1,𝑦) − 𝐿(𝑥 − 1,𝑦))) (2.14)

After eliminating key points with low contrast and along the edges, a set of feature

points is generated. There are three parameters for each key point: location, gradient and

orientation.

Figure 2.10: Local extrema.

Figure 2.11 shows the way in which the SIFT feature descriptors are generated

(feature representation). The circle in the center represents a point of interest. First, an

8×8 pixel window is selected around the key point in the image. Second, the window is

divided into 4 sub-windows in which each one contains 4×4 blocks. Third, the gradient

histograms of the 8 directions are calculated. Accordingly, a SIFT feature vector contains

32

128 elements (4×4×8). Finally, the vector is normalized in order to be invariant to

changes of illumination.

Figure 2.11: SIFT feature descriptor.

In order to find the object location in an image, the SIFT features of both the current

image from the camera view and the template image are generated. The match points

between the current image and the template are found by searching for the minimum of

the Euclidean distance. The flowchart of the overall process of object identification is

shown in Figure 2.12. First, the raw image is processed by utilizing digital image

processing techniques. Then the SIFT feature of this image are generated using the steps

discussed in the previous sections. The object of interest can be identified by comparing

the SIFT features in the current image and the SIFT features in the template image.

Image Processing

Original Image

Feature Selection Template

Feature Matching

Feature Representation

Object Identification
Figure 2.12: Flowchart of object identification.

33

2.2.2 Implementation of SIFT-based Object Identification

Figure 2.13 shows the results from an application of SIFT feature identification. The

raw image is shown in Figure 2.13(a) which contains the object of interest: a book.

Figures 2.13(b) and (c) show representations of the SIFT features of the template (the

book) and the camera scene.

(a) SIFT keys of the object.

(b) SIFT keys of the camera view at the starting point.

(c) SIFT keys of the camera view at goal location.

Figure 2.13: SIFT-based object identification and tracking.

The object is found by marching the SIFT features between the book template and the

camera scene, as shown in Figure 2.14(a) and (b), which present two views from the on-

board camera. Figure 2.14 (a) shows the camera view when the mobile robot is away

34

from the object, and Figure 1.14 (b) shows the camera view when the robot arrives at the

goal location (grasping location). This experiment verifies good performance of SIFT

feature-based object identification, especially when the object of interest and the

environment have many features. However, the computational time of this method is

rather excessive. Therefore, it is not suitable for visual servoing. However, it is a good

candidate for object identification and tracking using global cameras in a sensor network

where it has more time for decision making than in a visual servo application.

(a) Feature matching between current camera view and template.

(b) Feature matching between camera view of the goal location and template.

Figure 2.14: Examples of SIFT based feature matching.

2.3 Stereo Vision
Stereo vision is used for depth estimation of an image. A visual servo application

requires the position of the object in the image plane as well as the depth information,

which is the distance between the camera and the object with respect to the camera

frame. A stereo camera can provide these two data values simultaneously. A stereo

camera has two sets of cameras as shown in Figure 2.15. A point 𝑃𝐿 in the world space

35

has projections on the two image frames with coordinates (𝑢𝑅 , 𝑣𝑅) and (𝑢𝐿 , 𝑣𝐿) , as

shown. The following equations can be derived from Figure 2.15:

(𝑢𝐿 , 𝑣𝐿) = �𝑖 𝑋
𝑍

, 𝑖 𝑌
𝑍
� (2.15)

(𝑢𝑅 , 𝑣𝑅) = �𝑖 𝑋−𝐵
𝑍

,𝑖 𝑌
𝑍
� (2.16)

Base
lin

e B

OL

OR (uR, vR)

(uL, vL) P=(X, Y, Z)

zR

xR

yR

zL

yL xL u
v

r

c

Figure 2.15: Model of a stereo camera.

Suppose that a point P (Figure 2.16) is observed by two cameras simultaneously. It

projects to the image planes of these two cameras at p and p’, as shown. Note that O and

O’ are the optical center of these two image planes. The line l’, which is in image II, is

called the epipolar line associated with point p of image I. Aso, eL and eR are called

epipoles of the two cameras. The epipolar eR is the projection of the optical center OL in

the right camera frame and so on.

36

P

OL
OR

P1
P2

P3

eL eR

p
p'

p1'
p2'

p3'

Baseline
l l'

Epipolar line

Left view Right view

I IIEpipolar
plane

Figure 2.16: Epipolar geometry.

Epipolar constraint says that if p and p’ are the projections of the same point P in

different cameras, then p’ must lie on the epipolar line associated with p. This result

plays a fundamental role in stereo vision.

The epipolar geometry can be simplified if the two camera image planes coincide, as

shown in Figure 2.17. In this case, the epipolar lines also coincide (EL–PL = ER–PR).

Furthermore, the epipolar lines are parallel to the line OL–OR between the focal points,

and can in practice be aligned with the horizontal axes of the two images. This means

that for each point in one image, its corresponding point in the other image can be found

by looking only along a horizontal line.

Left camera Right camera

Optical center

x x'

Figure 2.17: Simplified case of Epipolar geometry.

37

Therefore, the term “disparity” is defined as 𝑑 = 𝑢𝐿 − 𝑢𝑅 = 𝑖 𝐵
𝑍
 𝑍 = 𝑖 𝐵

𝑑
 (2.17)

where Disparity = k/depth. Here k is a system parameter, which can be acquired by

calibration (2.17). By introducing the Epipolar geometry and its constraints, the stereo

vision problem is converted to a feature identification problem. In other words, the

distance between the camera and the object in terms of the camera coordinates can be

found by finding the position difference of the object in the right and left images (Figure

2.18). Since it is applied in visual servo control, the achieved efficiency is significant. A

Normalized Cross Correlation (NCC) is utilized for searching most similar features

between these two images according to:

𝑁𝑁𝑁(𝐴,𝐵) =
∑ 𝐴𝑖𝑖𝐵𝑖𝑖(𝑖,𝑖)∈𝑊

�∑ 𝐴𝑖𝑖
2

(𝑖,𝑖)∈𝑊 ∑ 𝐵𝑖𝑖
2

(𝑖,𝑖)∈𝑊

 (2.18)

where A, and B are the current position of the candidate features in the left and right

images, respectively.

Left image Right image
Rectified images

u u'ui ui'

Disparity Range Disparity

Matching function
value

Figure 2.18: Disparity of features in the left and right camera scenes.

38

CHAPTER 3 Mobile Navigation

Navigation of mobile robots is an important research area among the research

community of mobile robotics. This importance arises because understanding of the

workspace and the availability of efficient motion strategies are necessary to effectively

achieve a motion goal while giving proper consideration to the current pose, goal

location in the workspace and possible obstacles on the path.

In this chapter, a method is developed for mobile localization and object post

estimation in robotic navigation. Simulation experiments are carried out to show the

performance of the method. Next a navigation system that uses Q-learning is developed

for moving a mobile robot from its current position to a goal location in a dynamic and

unstructured environment. A training software is developed to train and acquire a Q-table

knowledge base, which is necessary in applying Q-learning. This methodology and the

developed software are implemented in the physical mobile robot navigation system in

our laboratory.

3.1 Mobile Localization and Object Pose Estimation

3.1.1 Sensors in Mobile Localization and Object Pose Estimation

Mobile robot localization and object pose (position and orientation) estimation in a

work environment have been central research activities in mobile robotics. Significant

research attention has been to these two issues in the past decade because of the

successes of mobile robotic implementations such as vacuum cleaning robots, delivery

robots, and elder care robots, which heavily rely on the capabilities of accurate robot

localization and object detection. Solution of the problem of mobile robot localization

requires addressing of two main problems (Siegwart and Nourbakhsh, 2004): the robot

must have a representation of the environment; the robot must have a representation of its

39

understanding regarding its pose in this environment. Sensors are the basis of addressing

both problems.

Many off-the-shelf sensors (e.g., GPS, compasses, gyroscopes, and ultrasonic

sensors) that are available for mobile robots are introduced in (Siegwart and Nourbakhsh,

2004), giving their operating principles and performance limitations. Based on this

introduction, ultrasonic sensors (Leonard, and Durrant-whyte, 1991), goniometers

(Bonnifait and Garcia, 1998), laser range finders (Arsenio and Ribeiro, 1998), and CCD

cameras (Yamamoto et al., 2005) are the commonly applied sensors in mobile robot

localization projects for acquiring information on robotic pose estimation at high

precision. Sonar is fast and inexpensive but is usually rather crude, whereas laser

scanning is active, accurate and widely applied in mobile robotics. Vision systems are

passive and have high resolution, and are the most promising sensors for future

generations of mobile robots. In the work of Uĝur et al. (2007), a 3-dimensional (3-D)

laser scanner was applied to perceive the traversability affordance and used to wander in

a room filled with different types of objects (spheres, cylinders and boxes). The results

obtained through training showed that a mobile robot could wander around while

avoiding collision with non-traversable objects, but traversable objects are handled by

rolling them out of its way. A vision-based algorithm for mobile robot localization and

mapping, which uses STIF (scale-invariant image feature) has been applied for mobile

robot localization and map building (Borenstein et al., 1996). The associated experiment

showed that visual landmarks were robustly matched and the pose of the robot was

estimated in a 3D map. Previous work on robotic localization has indicated that laser

scanners and CCD cameras are two promising sensors for this purpose.

The work presented in this session is a part of the mobile navigation system which

we are developing, where a mobile robot detects obstacles, boxes in this case, in order to

find suitable paths for navigation. Figure 3.1 presents the general scheme of mobile robot

localization and object pose estimation in the present work. Successful localization and

object detection involve the following three steps. Perception: the robot must interpret its

sensor data to extract meaningful information; prediction: the robot should determine its

global pose based on meaningful information; matching and pose update: the robot

should detect objects and compute their poses with respect to a local coordinate system,

and update their global poses.

40

Raw data or
features

Encoder

Matching

Observation
(Perception)

Position update

Database/
Knowledgebase

Camera

LaserPrediction
(e.g. odometry)

Figure 3.1: General scheme of mobile robot localization and object detection.

First, optical encoders and an odometry model are utilized to determine the pose of a

mobile robot with respect to a global coordinate system. Next, a CCD camera, which is a

passive sensor, is used to find objects (boxes in the present application) in the

environment as well as the vertical surfaces of the objects (boxes). By identifying and

tracking the color blobs that are attached to the center of each surface of a box, the robot

rotates and adjusts its base pose to move the detected color blob into the center of the

camera view. Finally, a laser range finder, which is mounted on the top of the mobile

robot, is activated to measure the distance and the angle between the laser source and the

laser contact surface on the box. Based on the information acquired in this manner, a

homogeneous transformation matrix is applied to represent the global pose of the robot

and the box. The developed approach is validated using the Microsoft Robotics Studio

simulation environment.

3.1.2 Global Pose Estimation

Estimation of the pose of a mobile robot is a fundamental problem, which can be

roughly divided into two classes (Borenstein et al., 1996): methods for keeping track of

the robot’s pose; and methods for global pose estimation. Much of the research carried

out to date has concentrated on the first class, which assumes that the initial pose of the

robot is known. A commonly used method for global pose estimation in this field is the

odometry model, which determines the pose of a robot relative to a starting point during

navigation of a wheeled vehicle.

41

Figure 3.2 shows a movement of a differential-drive robot, as used in the present

work. Suppose that the initial pose of the robot is completely known. Then, real-time

pose information of the mobile robot can be calculated using rotation measurements of

the two wheels. The overall procedure of the estimation is outlined below. The location

and orientation of the mobile robot in the global coordinate system are represented by the

vector:

[]Tp x y θ= (3.1)

X-Axis

Y
-A

xi
s

θ

v(t), s

Figure 3.2: Motion of a differential-drive robot.

For a differential driving robot, the pose can be estimated from the starting pose by

integrating the travel distance in each interval (during the fixed sampling interval t∆ of

sensors) using

cos(/ 2)x s θ θ∆ = ∆ + ∆ (3.2)

sin(/ 2)y s θ θ∆ = ∆ + ∆ (3.3)

() /r ls s dθ∆ = ∆ − ∆ (3.4)

2 2 () / 2r rs x y s s∆ = ∆ + ∆ = ∆ + ∆ (3.5)

Here, x∆ and y∆ are distances traveled in the last sampling interval along the x and y

directions, respectively; θ∆ is the travel angle with the last sampling interval; ls∆ and

rs∆ are travel distances of the left and the right wheels, respectively; and d is the

distance between the two wheels, which is a constant for a given robot. Therefore, the

updated position 'p for each interval can be found using

' cos(/ 2)
' ' sin(/ 2)

'

x x s
p y y s

θ θ
θ θ

θ θ θ

∆ + ∆
 = = + ∆ + ∆
 ∆

 (3.6)

42

By using the equations (3.4), (3.5) and (3.6), 'p can also be computed from the

following equation:

(() / 2)cos(() / 2)
' (() / 2)cos(() / 2)

() / 2

l r l r

l r l r

r l

x s s s s d
p y s s s s d

s s

θ
θ

θ

∆ + ∆ + ∆ + ∆
 = + ∆ + ∆ + ∆ + ∆
 ∆ − ∆

 (3.7)

In this situation, the global pose of the mobile robot can be found by computing

equation (3.7) during each interval of sensor measurement.

3.1.3 Color Blob Tracking

The second step of the present work concerns accurately tracking or detecting the

objects of interest (boxes) by using a color blob vision tracking system. In Chapter 2, a

fast color-blob tracking algorithm has been developed for the present work, which can

effectively detect and track different color blobs marked on each vertical surface of a

box. The detailed process of color blob tracking in this thesis is shown in Figure 3.3(a).

The original image as acquired by a CCD camera is first processed to remove the

disturbances by transferring the image from the RGB (red, blue, and green) color space

to the HIS (hue, saturation, and intensity) color space and removing its saturation and

intensity components.

Removal of Lighting Disturbance

Statistical Feature Filtering

Color-blob Template Maching

Move the Color Blob into the Center

Rotating the robot base

Original Image

 (a) (b)

Figure 3.3: (a) Color blob tracking procedure; (b) Camera view.

In the next step, a type of statistical feature filtering is employed to remove the color

that is not related to the sample color blobs (5 5× pixel templates). For a 2-D image with

Center Line

43

i j× pixels, the average hue value and the standard deviation σ of the corresponding

color blob can be calculated by the following equations:

2

1 1
((,)) /

n n

i j
h h i j n

= =

= ∑∑ (3.8)

2 2

1 1
((,)) / (1)

n n

i j
h i j h nσ

= =

= − −∑∑ (3.9)

Here, (,)h i j represents the hue value of the original pixel (,)i j . By executing an

“If…else” logic as shown below, the statistical feature filtering is completed.

For (each pixel in the original image)

 If (its hue value is within the set of

 { 1 1 1 11.2 1.2h h h hσ σ− ≤ ≤ + or

2 2 2 21.2 1.2h h hσ σ− ≤ ≤ + or……

1.2 1.2i i i ih h hσ σ− ≤ ≤ + or ……

1.2 1.2k k k kh h hσ σ− ≤ ≤ + }

 Then (it will not be changed)

 Else (Its hue values will be replaced with 0)

Loop

After statistical feature filtering, the color-blob templates, which are 5 5× pixel

matrices, are applied to search the entire image, using the algorithm given below:

Initialize min-distance=100000, blob_pos=(1,1);

For (each element (,)H i j in the matrix of H)

distance= 2 2

1 1
((1, 1) (,)) /

n n

i j
H i k j l T k l m

= =

+ − + − −∑∑ (3.10)

 if (distance<min-distance) then

 min-distance=distance;

 update: blob_pos=(i,j)

output blob_pose;

Finally, the robot rotates its base to adjust the view of the image in order to make sure

that the detected color blob is approximately located on the center line of the camera

44

view. By doing so, it guarantees that the robot is heading towards the color label and the

box in the range of the laser scanner.

In the present work, 4 different color circle labels (red, green, blue, yellow) are

placed on the four vertical surfaces of the box. By using different color labels on

different surfaces, the specific surface toward which the robot is heading can be

determined as well, at the same time.

3.1.4 Estimation of Box Pose

Estimation of Relative Pose

The final step of the present work involves locating the box in the workspace, with

respect to the global coordinate system. In order to achieve this objective, we first need

to know the pose of the box with respect to the coordinate system attached to the mobile

robot (local coordinate system). A laser range finder is used in this work for estimation of

the relative pose. It is based on a SICK LMS 200 2D scanner, which has a horizontal

range of 180o with a maximum resolution of 0.5o. This device produces a range

estimation based on the time needed for the light to reach the target and return. Figure 3.4

(a) shows how it is used to measure range. The sensor transmits light at a known

frequency and measures the phase shift between the transmitted and reflected signals.

Then, the distance between the emission source and the target surface can be determined

using:

/ 4D λθ π= (3.11)

where θ is the electronically measured phase difference between the transmitted and

reflected light beams.
D

L

Transmitted beam
Reflected beam

Phase
Measurement

180o

 (a) (b)

Figure 3.4: (a) Schematic drawing of laser range sensor; (b) a 180 degree laser range
sensor.

45

Figure 3.5 shows the results of the laser range finder. There are four objects within

the laser scanner according to these results. Because the box with a color blob label

should be in the center of the laser range scan after applying the color blob tracking in

the previous section, it is straightforward to establish that the box must be in the range

between 79.5° and 99°.

(a)

(b)

Figure 3.5: (a) Visualized laser range finder results; (b) laser range finder results.

Figure 3.6 and Table 3.1 present the data that are acquired from the laser range finder

for calculating the center location and orientation of the box with respect to the robot

coordinate system. Based on this data, we can present the following group of equations,

which represents the relationship among A, B, 'o and o in the robot coordinate system.

Box

X-Axis

Y-
Ax

is X’-Axis

Y’-A
xis

α β

B

A

o

o’

θ'

Figure 3.6: Laser range finder representation.

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

46

Table 3.1: Important laser range results.

Box Length Box Width α β OA (d1) OB (d2)

1000mm 500mm 80.5° 99° 3079mm 3226mm

1

1

2

2
' 2 ' 2

' 2 ' 2

cos
sin
cos
sin

() () 312500
() () 312500

A

A

B

B

o A o A

o B o B

x d
y d
x d
y d

x x y y
x x y y

α
α
β
β

=
 =
 =
 =
 − + − =

− + − =

 (3.12)

' tan(() / ())B A B AA y y x xθ = − − (3.13)

By solving the equations (3.12) and (3.13), the pose of the box center ('o) and the

orientation of the coordinate frame that is attached to the box with respect to the robot

coordinate system can be found and represented by the vector

' [']T
x yo o o θ= (3.14)

It describes the pose of the box with respect to the mobile robot, and is called the

relative pose.

Estimation of Global Pose of Box

The homogeneous transformation (Spong et al., 2006) matrix, which represents a

rigid body motion of translation and rotation, is applied in this work to represent the

relationship among the three coordinate systems: the global coordinate system, the robot

coordinate system, and the box coordinate system. It combines rotation and translation in

a two-dimensional space, which can be used to perform coordinate transformations

between frames that differ in orientation and translation.

By using the result obtained in the previous section, the homogeneous transformation

matrix between the box coordinate system and the robot coordinate system can be written

as

47

cos ' sin '
' sin ' cos '

0 0 1

x

y

o
T o

θ θ
θ θ

−
 =

 (3.15)

The pose of the robot coordinate frame expressed in the global coordinate system is

known from equation (3.7). The homogeneous transformation matrix between the robot

coordinate system and the global coordinate system can be found as

cos sin
'' sin cos

0 0 1

x
T y

θ θ
θ θ

−
 =

 (3.16)

Therefore, the homogeneous transformation matrix T between the box coordinate

system and the global coordinate system can be computed by using (3.15) and (3.16);

specifically,

cos sin cos ' sin '
'' ' sin cos sin ' cos '

0 0 1 0 0 1

x

y

x o
T T T y o

θ θ θ θ
θ θ θ θ

− −
 = =

cos(') sin(') cos sin
sin(') cos(') sin cos

0 0 1

x y

x y

o o x
o o y

θ θ θ θ θ θ
θ θ θ θ θ θ

+ − + − +
 = + − + +

 (3.17)

In matrix (3.17), the origin and the orientation of the box with respect to the global

coordinate system can be determined by

cos sin
'' sin cos

tan(sin(') / cos('))

x y

x y

x o o x
o y o o y

A

θ θ
θ θ

θ θ θ θ θ

− +
 = = + +
 + +

 (3.18)

3.1.5 Simulation Environment

In this work, Microsoft Robotics Studio simulation environment is utilized to validate

the developed method. The software and relevant algorithm are developed using

Microsoft C#.

Figure 3.7 shows the simulation environment of Microsoft Robotics Studio. The

Microsoft Robotics Studio is a Windows-based environment for robot control and

simulation. Its features include: a visual programming tool, Microsoft Visual

Programming Language for creating and debugging robot applications, web-based and

windows-based interfaces, 3-D simulation (including hardware acceleration), a

http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Visual_programming
http://en.wikipedia.org/wiki/Microsoft_Visual_Programming_Language
http://en.wikipedia.org/wiki/Microsoft_Visual_Programming_Language
http://en.wikipedia.org/w/index.php?title=Robot_application&action=edit&redlink=1
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Hardware_acceleration

48

lightweight service-oriented runtime facility, easy access to robot's sensors and actuators

via a .NET-based concurrent library implementation, and support for a number of

languages including C# and Visual Basic .NET, JScript, and IronPython.

Figure 3.7: Simulation environment GUI.

3.1.6 Simulation Results

Figure 3.8 shows the experimental setup in this work. It contains a Pioneer AT mobile

robot which carries a laser range finder and a CCD camera, and a gray object (a box that

is 500 mm in width and 1000 mm in length) which is labeled using color blobs on its

vertical surfaces. The objective of this experiment is to determine the box pose in the

global coordinate system.

Figure 3.8: Experimental setup in the simulator.

First, the mobile robot rotates its base clockwise to search for the color blobs (i.e., the

box) in the environment. Once the robot finds the color blobs, the color-blob tracking

http://en.wikipedia.org/wiki/Runtime
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Actuator
http://en.wikipedia.org/wiki/.NET
http://en.wikipedia.org/wiki/Concurrent
http://en.wikipedia.org/wiki/Library
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Visual_C_Sharp
http://en.wikipedia.org/wiki/Visual_Basic_.NET
http://en.wikipedia.org/wiki/JScript
http://en.wikipedia.org/wiki/IronPython

49

algorithm is applied to identify candidates. Then, it keeps adjusting the base and moves

the color blob into the middle of the vision frame in order to make sure that the box is

within the range of the laser scanner. Meanwhile, the pose of the robot is recorded

according to the odometry algorithm. Figure 3.9 shows the global camera view and the

on-robot local camera view. The current robot pose in the global coordinate system in

this experiment is []' 1000 1500 18 Tp mm mm= − ° .

 (a) (b)

Figure 3.9: (a) Global camera view; (b) Robot camera view.

The robot sits still while observing the box and the laser range finder is activated.

Figure 3.10 shows the results acquired from the range scanner. The data for the pose

calculation is given in Table 3.2.

Figure 3.10: Laser range finder results.

0 20 40 60 80 100 120 140 160 180
0

500

1000

1500

2000

2500

3000

50

Table 3.2: Data for pose calculation.

Box Length Box Width α β OA (d1) OB (d2)

1000 mm 500 mm 82° 99.5° 2435 mm 2968 mm

By using the group of equations (3.12) and equation (3.13), the pose of the coordinate

frame attached at the center of the box with respect to the robot coordinate system can be

determined as: ' [2901 mm 69 mm 31.9]To = − ° . The homogeneous transformation

matrix between the box coordinate frame and the robot coordinate frame can be written

as

0.8490 0.5284 2901

' -0.5289 0.8490 69
0 0 1

T

 =

 (3.19)

The homogeneous transformation matrix between the robot coordinate frame and the

global coordinate frame can be generated as

0.9511 0.3090 1000
'' 0.3090 0.9511 1500

0 0 1
T

 = −

 (3.20)

Therefore, the homogeneous transformation matrix between the box coordinate frame

and the global coordinate frame is determined by using (3.19) and (3.20); as

0.6441 0.7649 3780
'' ' 0.7653 0.6442 669

0 0 1
T T T

 = = −

 (3.21)

Finally, the origin and the orientation of the box in the global coordinate system can

be determined according to (3.18) as

[]'' [] 3780 mm 669 mm 10.04 TTo x y θ= = ° (3.22)

Figure shows the visualized experimental results, represented in the global coordinate

system.

51

3780

669

1500

x (mm)

y
(mm)

y’ x’

y’’

x’’

X-Axis

Y
-A

xi
s

Box

1000

2901

69 °−18

°− 9.31

°04.10

o’’

o’

Figure 3.11: Visualized experimental result.

3.2 Autonomous Mobile Navigation

3.2.1 The Q-learning Algorithm

Reinforcement learning has been studied by psychologists since the 1940’s (Sutton

and Barto, 1998). It involves learning what to do—how to map situations to actions—so

as to maximize a numerical reward signal. It is neither supervised learning nor

unsupervised learning. The learner is a decision-making agent who takes actions in an

environment and receives rewards for its actions in trying to solve a problem (Alpaydm,

2004). After a set of trial-and error runs, it should learn the best policy, which is the

sequence of actions that maximizes the total reward (Figure 3.12).

AGENT

Environment

State Reward Action

Figure 3.12: The agent interacts with an environment.

52

As shown in Figure 3.12, an intelligent agent knows its state in the current

environment. By applying an action, which is chosen from a sequence of actions in this

state, a feedback to this action is acquired from the environment, which will indicate

whether the action is good (positive reward) or not (negative reward). After exploring

actions in this sequence under different states, a table can be generated to represent the

action probability of getting positive reward in certain situation. The greater the reward

of an action in a particular state, the higher the probability of selecting that action.

Machine learning using the Q-learning algorithm incorporates Markov Decision

Processes (MDP) (Russell and Norvig, 2003, Alpaydin, 2004), which can be defined by a

4-tuple < , >S, A, T, R β , where

1 2{ , , , nS s s s= … } , is a set of states of the work environment or the world

1 2{ , , , }mA a a a= 2 , is a set of actions available to the robot

: ()T S A S× → ∏ , is a transition function, which decides the next environmental

state 's when the robot selects an action ia under the current state s . Also, ()s∏ is the

probability distribution over the states.

:R S A× → ℜ ，is a reward function, which determines the immediate reward when

the robot takes an action ia under the current state s .

In MDP, the core issue is to find the optimal action-selection policies so that the

cumulative reward in a sequence of decision-making becomes a maximum. Since the

transition function and the reward function are usually unknown in a real engineering

application, the Q-learning algorithm (Sutton and Barto, 1998), which involves

reinforcement learning, is employed to reach the optimal policies in an MDP problem.

The steps of the Q-learning algorithm employed in the present work are given below:

For each state 1 2(, , ,)i ns s s s∈ and action 1 2(, , ,)j ma a a a∈ , initialize the table

entry (,)i jQ s a to zero. Initialize τ to 0.9. Initialize the discount factor 0 1β< ≤ and the

learning rate 0 1η< ≤ .

Observe the current state s

Do repeatedly the following:

Probabilistically select an action ak with probability

53

(,)/

(,)/

1

()
k

l

Q s a

k m
Q s a

l

eP a
e

τ

τ

=

=

∑
, and execute it

Receive the immediate reward r

Observe the new state 's

Update the table entry for (,)kQ s a as follows:

'

' '(,) (1) (,) (max [,])k k
a

Q s a Q s a r Q s aη η β= − + +

's s← , *0.9τ τ←

It has been proved that the values of (,)i jQ s a will converge in a static environment

after a certain number of iterations of the Q-learning algorithm (Sutton and Barto, 1998).

When the Q values converge, it implies that the agent or the robot has learned the correct

action-selection policy; specifically, it always selects the optimal action for a specific

world state so that the sum of the discounted rewards in the subsequent decision-making

process will reach a maximum.

3.2.2 Problem Definition

The objective of the present mobile navigation project is to develop an autonomous

mobile robot system that has the ability to autonomously navigate from an initial location

to a goal location. As shown in Figure 3.13, in this workspace, a mobile robot attempts to

navigate from its initial location to the goal location where a screw is located. In its

workspace, obstacles may be present and even appear randomly during the navigation

process.

54

Figure 3.13: The mobile navigation system.

3.2.3 States, Actions and Rewards

Figure 3.14 presents the definition of the states of the robot in the environment.

Suppose that the mobile robot is in the center of the circle in the right of Figure 3.14(b).

It divides the surrounding area of the robot into eight regions as shown in Figure 3.14(b).

For each region, a two bit binary data is utilized to represent the distance between the

closest obstacle and the robot in the particular region. The binary data are lined up in a

sequence ranging from region 1 to region 8 as shown in Figure 3.14 (a). The two digits of

each group represent the distance between the obstacle and the robot. Therefore, a

sequential 14-bit binary data represents the current state of the robot working

environment which comes to 32 (8×4) possible states.

(a)

00: Short (0, 30] cm
01: Middle (30, 100] cm
10: Far (100, 200] cm
11: Very Far (200, ∞] cm

Region 1 Region 8 Distance Orientation

55

(b)

Figure 3.14: Definition of states of the mobile robot and environment.

 Figure 3.15 presents the definition of possible actions of the robot. Based on the

representation in Figure 3.15 (b), it divides the heading direction into 12 sectors and each

sector covers 30 degrees. This means the robot can navigate in twelve directions as

denoted by 0 to 11. There are six bits which are used to represent the motion strategy of

the robot, as shown in Figure 3.15(a). The first four bits represent the moving direction

and the last two bits give the distance of the motion. The combination of these 6 bits

provides the action of the robot motion in terms of orientation and distance.

(a)

Moving Direction Moving Distance

00: Short Rand(0— 10)
01: Middle Rand(10—20 cm)
10: Long Rand(20—40 cm)
11: Extra long Rand(40—60 cm)

7

6

5

4 3

2

1

0

Short

Middle

Far

Very Far

56

(b)

Figure 3.15: Definition of Actions.

It follows that the robot will have 221 states and 26 actions in total, which comes to

2,097,152 states and 64 actions. In the Q-table, there will be one on one mapping

between states and actions. It results in 134,217,728 entries in the table, which represent

the mapping among states and actions. If each Q-value is a single floating-point data

which will use 16 bits (2 bytes) of memory, the overall Q-table will use approximately

0.3 GB of memory space, which can be accommodated by a modern computer.

As mentioned before, the Q-Learning involves decision making of robotic motion

based on the environmental states of the robot. Before the Q-table can be utilized in a

robotic navigation task, it has to be trained. The training procedure is shown in Figure

3.16.

57

Initialize the Q-
Table

Start

First Time

Read Q-table from
the file

N

Y

Detect the state

Normalize the Q
Values

Choose a sequence of actions

Calculate the probability of
each action

Generate a
Random number

Pick up an action
based on the number

Do action

Update the Q-
table

1st time of running Q-
learing

N

Update the Array
for storing Q-table

Do nothing

Get the reward

Figure 3.16: Flowchart of Q-Learning.

It will load the Q-table and initialize it if it, in the beginning of training. In each

iteration, the robot will detect the state of the environment by using its local sensors

58

based on the state definition discussed above. Next, action selection is done based on the

current state. The robot must select a good action from the action database in order to

perform an efficient movement, one that can approach the goal while avoiding obstacles.

The action is selected by applying the probabilistic function:

 𝑝𝑖 = 𝑒
𝑄𝑛𝑒𝑤𝑖

𝜏 /∑𝑒
𝑄𝑛𝑒𝑤𝑖

𝜏 (3.23)

where each action can get a probability to be selected in the range from 0 to 1 (Figure

3.17). The advantage of using the 𝑒
𝑄𝑛𝑒𝑤𝑖

𝜏 term is to avoid the 0 probability, so that each

action has a non-zero to be chosen. Also it solves the local maximum problem.

Figure 3.17: Probability of each action.

After the action is executed, the robot will re-evaluate the current state and compare

it with the state before applying the action. Then it will generate a quantitative value,

which is called the Q value, to represent the performance of the previous action by a cost

function; specifically,

𝑄(𝑐,𝐴) = Q(𝑐, 𝐴) + 𝛼[𝑟 + 𝛾𝑀𝐴𝑥�𝑄(𝑐′,𝐴′)� − 𝑄(𝑐,𝐴)] (3.24)

where 𝑄(𝑐,𝐴) is the current value of a state-action pair, 𝑄(𝑐′,𝐴′) is the value of the state-

action pair of the next step, α is the learning rate (0.8 in my case), 𝛾 is the discount factor

(0.9 in our case)., and 𝑟 is immediate reward. The new Q value will be utilized to update

the existing Q value in the Q table. The Q values in the table will converge if sufficient

time is provided for training.

3.2.4 Simulation Platform

Since the training procedure is complex and time-consuming, it is difficult to directly

implement it in a physical system. A simulation platform is required to train the system.

A simulation platform is developed in Visual Basic.net for acquiring the Q table

(knowledge base) in mobile navigation system. The User Graphic Interface (GUI) of the

59

developed system is shown in Figure 3.18. The black dot represents the mobile robot; the

red dots are obstacles; and the blue dot represents the goal location of the mobile robot.

The goal of this simulation system is to train the mobile robot to navigate from the

current location to the goal region without colliding with any obstacles.

Figure 3.18: Developed simulation platform for Q-learning training in mobile navigation.

As described in the previous session, the original Q-table is initialized so that all the

actions have the same probability to be selected. This means the motion of the robot is

purely random in the beginning of a training process. As the training process proceeds,

the mobile robot will become smarter and choose the action more wisely according to the

updated Q values which represent the efficiency of the motion at the particular state.

60

There are three stopping criteria for each training iteration: 1). Robot hits an obstacle

(Figure 3.19); 2). Robot reaches the goal (Figure 3.20); 3). Robot reaches the allowed

maximum numbers of moving steps (Figure 3.21).

Figure 3.19: Mobile robot collides with an obstacle.

61

Figure 3.20: Mobile robot reaches the goal.

62

Figure 3.21: System exceeds the allowed maximum number of motion steps.

After training, a validating program in the develop system can be utilized to verify

the training performance of the system. In the validating stage, the position of the robot,

the goal region, the number of obstacles and their sizes are randomly generated in the

workspace. In each motion step of the robot, it checks its states according to its local

sensing capability. Then, it selects an action based on the probabilistic action selection

function (3.32). Having selected an action in the Q-table, it executes the selected action

and moves the mobile robot to the next states. It repeats this procedure until the robot

reaches the goal region.

63

(a)

64

(b)

Figure 3.22: Validation of the training results.

65

CHAPTER 4 Visual Servo Control

A vision-based mobile manipulation system typically uses computer vision data as

sensory feedback for controlling the motion of robots. This is also called a visual

servoing system or a visual servo control system. It involves a fusion of many related

research areas including machine vision, robot modeling, control theory, and real time

computing. Specifically, in visual servo control, the vision system provides feedback

information about the current state of the environment to the controller (Chaumette and

Hutchinson, 2006). The robotic system usually consists of a mobile base on which a

multiple-degree-of-freedom (multi-DOF) manipulator arm is mounted. This robot carries

a group of sensors such as cameras, laser distance finders, bumper collision detectors,

and sonars. If it has the ability to work in an unknown and unstructured environment on

its own, without the external interaction of a human operator or another external system,

it is known as autonomous manipulator.

A new trend is to integrate visual servoing into a mobile robot for carrying out

grasping or manipulation activities autonomously, resulting in a vision-based

autonomous mobile manipulation system (Spong, et al., 2006). Compared to traditional

visual-servo control employed in fixed-base robotic manipulators, a vision-based mobile

manipulation system has many advantages. The most important among them may be that

a vision-based mobile manipulation system that integrates the capabilities of its vision

subsystem, the on-board arm and its mobile base, can move about and work in an

unstructured environment. Consequently, the robotic system becomes more flexible and

has wider applications than a traditional fixed-base manipulator system. Since its arm

(manipulator) and cameras are usually mounted on a mobile base, a mobile manipulation

system possesses better maneuverability and terrain coverage capability than a fixed-base

manipulator.

66

 A multi-robot cooperative assembly system is being developed in the Industrial

Automation Laboratory at The University of British Columbia. In this system, multiple

mobile robots autonomously search for the parts of a target vehicle, which are scattered

in an unstructured environment of complex terrain and obstacle distribution. Once an

object of interest is encountered and identified, a robot will attempt to autonomously

grasp it and pick it up with its on-board arm using visual servoing, and transport it to a

designated site for further manipulation and assembly. When the robots determine that

they have collected all the necessary parts, they proceed to assemble them to construct

the target vehicle, by cooperatively manipulating the parts. The specific system is

developed for application in robotic search and rescue.

This chapter addresses several challenges in the area of mobile manipulation with

visual feedback control such as visibility constraint, physical constraints and optimal

controller outputs. First, a hybrid controller, which combines a traditional proportional-

integral-derivative (PID) controller and an intelligent Q-learning controller, is proposed

for visual servo control. It mainly accommodates the visibility constraint. Then a more

advanced controller, termed Adaptive Nonlinear Model Predictive Controller (ANMPC),

is proposed and developed for both mobile navigation and robotic manipulation. This

approach is able to solve problems of visibility constraint and physical constraints, and

also provide optimal controller outputs.

4.1 Modeling
Models of robots and cameras are commonly used in schemes of visual servo control.

In this section several relevant model formulations are presented.

4.1.1 Rigid Motions and Homogeneous Transformation

The rigid motions of a robot can be represented by the matrix

𝐻 = �𝑅 𝑑
0 1� ,𝑅 ∈ 𝑆𝑆(3),𝑑 ∈ ℝ3 (4.1)

where 𝑅 represents a 3 × 3 rotational matrix; and 𝑑 is a distance vector. The matrix in

Equation (4.1) is called a homogeneous transformation, which represents the rotational

and displacement relationship between two coordinate frames. It is a 4 × 4 matrix. The

last row consists of three zeros and a one; and remaining elements are composed of a

67

rotation matrix and a position vector. In robotic applications a commonly used

convention for defining the coordinate frames of reference and generating the

homogeneous transformation matrices is the Denavit-Hartenberg (DH) convention,

which was introduced by Denavit and Hartenberg (Spong, et al., 2006) to simplify the

modeling procedure in generating forward kinematics (i.e., expressing the end-effector

movement in terms of the joint movements) of a robot. There are four parameters in this

representation: 𝜃𝑖 , 𝑑𝑖 , 𝐴𝑖 and 𝛼𝑖 . The detailed definitions of these four parameters are

given in Table 4.1.

Table 4.1: Denavit-Hartenberg convention.

Parameter Axis Description
𝜃𝑖 𝑧𝑖−1 Joint Angle: the angle from 𝑥𝑖−1 to 𝑥𝑖 measured about 𝑧𝑖−1.

- Variable for revolute joints.
𝑑𝑖 𝑧𝑖−1 Link Offset: distance along 𝑧𝑖−1 from 𝑐𝑖−1 to the

intersection of the axes 𝑥𝑖 and 𝑧𝑖−1. - Variable for prismatic
joints.

𝐴𝑖 𝑥𝑖 Link Length: distance along 𝑥𝑖 from the intersection of the
axes 𝑥𝑖 and 𝑧𝑖−1 axes to 𝑐𝑖 . - Constant perpendicular
distance between 𝑧𝑖−1 and 𝑧𝑖−1.

𝛼𝑖 𝑥𝑖 Link Twist: the angle from 𝑧𝑖−1 to zi measured about 𝑥𝑖 . -
Constant angle between 𝑧𝑖−1 and 𝑧𝑖.

Suppose that the coordinates are assigned based on the two DH rules:

(DH1): The axis 𝑥𝑖 is perpendicular to the axis 𝑧𝑖−1 (𝑥𝑖 ⊥ 𝑧𝑖−1).

(DH2): The axis 𝑥𝑖 intersects the axis 𝑧𝑖−1 (𝑥𝑖 ∩ 𝑧𝑖−1 ≠ ∅).

Then, there exists a unique homogeneous transformation matrix that takes the

coordinates from one frame to the base frame, as given by:

𝐻 = 𝑅𝑐𝐴𝑧,𝜃𝑇𝑟𝐴𝑚𝑐𝑧,𝑑𝑇𝑟𝐴𝑚𝑐𝑥,𝑎𝑅𝑐𝐴𝑥,𝛼 =

�

𝑐𝜃𝑖 −𝑐𝜃𝑖
𝑐𝜃𝑖 𝑐𝜃𝑖

0 0
0 0

0 0
0 0

1 0
0 1

� �
1 0
0 1

0 0
0 0

0 0
0 0

1 𝑑𝑖
0 1

� �
1 0
0 1

0 𝐴𝑖
0 0

0 0
0 0

1 0
0 1

� �

1 0
0 𝑐𝛼𝑖

0 0
−𝑐𝛼𝑖 0

0 𝑐𝛼𝑖
0 0

𝑐𝛼𝑖 0
0 1

� =

�

𝑐𝜃𝑖 −𝑐𝜃𝑖𝑐𝛼𝑖
𝑐𝜃𝑖 𝑐𝜃𝑖𝑐𝛼𝑖

𝑐𝜃𝑖𝑐𝛼𝑖 𝐴𝑖𝑐𝜃𝑖
−𝑐𝜃𝑖𝑐𝛼𝑖 𝐴𝑖𝑐𝜃𝑖

0 𝑐𝛼𝑖
0 0

𝑐𝛼𝑖 𝑑𝑖
0 1

� (4.1)

where 𝑅𝑐𝐴𝑧,𝜃 is the rotational matrix about the z axis, 𝑇𝑟𝐴𝑚𝑥,𝑎 is the translational matrix

along the z axis, 𝑇𝑟𝐴𝑚𝑥,𝑎 is the translational matrix along the x axis, and 𝑅𝑐𝐴𝑥,𝑎 is the

68

rotational matrix. Figure 4.1 shows an example of coordinate assignment according to the

DH rules where 𝑥𝑖 ⊥ 𝑧𝑖−1 and 𝑥𝑖 ∩ 𝑧𝑖−1 ≠ 0.

Figure 4.1: An example of coordinate frames satisfying DH convention.

4.1.2 Kinematic Modeling of the Robots

In order to mathematically modeling the robotics system, 6 coordinate frames (Figure

4.2) are introduced. They are camera coordinate frame, pixel coordinate frame, image

coordinate frame, global coordinate frame, mobile base coordinate frame, and robot arm

coordinate frame.

69

zw

… ...

yw

A

a

yc

xc

zc

r

c

zo

yoxo

u

v

W

Image p
lan

e

C
R

zr

xr

yr

O

za

ya

xa

A

Camera projection
model

Mobile base Robot arm & hand

Object of interest

(or,oc)

Camera

xw

P

I

Figure 4.2: Definition of the system coordinates.

The purpose of forward kinematic modeling is to find the position and orientation of

the robot end-effector in terms of the base frame by knowing the parameters of all joint

variables. It is a critical problem in robot modeling. It is a usual case that the links of a

robot are assumed to be rigid bodies; and they are connected together at joints. These

joints determine the freedom of motion between the connected two joints. There are two

typical types joints in general purpose industrial robots: 1) Revolute joints (or rotational

joints) and 2) Prismatic joints (or translatory joints or telescopic joints or linear joints).

Because of the rigid-body assumption, the forward kinematics problem can be solved by

calculating the rigid body transformation among all robot links.

In order to derive the control law for a mobile robot with its manipulator,

mathematical models that describe the relationship between the velocities of the robot

joints and the velocity of a feature point in the camera scene are required.

Kinematic model of the mobile robot

Figure 4.3 shows the relationship between the mobile robot frame and the stereo

camera frame, where the robot frame and the camera frame are rigidly attached to the

70

mobile robot and the stereo camera, respectively. The coordinate transformation between

these two frames is given by

𝐻𝑆𝑟 = �𝑅𝑆
𝑟 𝑑𝑆𝑟

0 1
� (4.2)

where 𝐻𝑆𝑟 represents the homogeneous transformation from the camera frame to the

mobile robot frame, 𝑅𝑆𝑟 is the rotational matrix, and 𝑑𝑆𝑟 = [𝑑𝑥 𝑑𝑦 𝑑𝑧]𝑇 is the position

vector which represents the distance between the origin of the mobile robots and the

origin of the camera frame with respect to the mobile robot frame.

Figure 4.3: Abstraction of the mobile robot, stereo camera and their frames.

Kinematic model of the robotic manipulator

Figure 4.4 shows the kinematic chain of the manipulator. The Denavit-Hartenberg

(DH) parameters of the RobuArm are given in Table 4.2. The homogeneous

transformation of the RobuArm can be generated by using the DH convention, which

represents the orientation of the tool frame and the distance of the origin of the tool frame

from the origin of the robot base frame, with respect to the robot base frame.

71

Figure 4.4: Kinematic chain representation of a robotic manipulator.

Table 4.2: DH table of the RobuArm.

Link 𝛼𝑖 𝐴𝑖 𝑑𝑖 𝜃𝑖

1 0 0 400 𝜃1

2 −π/2 0 0 𝜃2

3 0 418 12.8 𝜃3

4 −π/2 115 0 𝜃4

5 π/2 0 505 𝜃5

6 −π/2 0 0 𝜃6

End-effector 0 -68 301.45 0

4.1.3 Camera Modeling

Perspective Projection

The simplest model of a camera is the pinhole camera model, which is shown in

Figure 4.5(a). In this model, light from a point on the object (𝑃) in the world spaces

passes through a pinhole and projects onto the camera image surface called the image

plane. For an ideal pinhole camera, the camera plane is located at a distance 𝑖(focal

72

length) behind the pinhole. The origin of the coordinate frame is called the center of

projection in the image plane. The intersection of the z axis and the image plane is

known as the principal point.

Image Plane Pinhole

Optical Axis

P (xc, yc, zc)

p

f z

o O
X

Object

x’
z

(a)

Image Plane Pinhole

Optical Axis

P (xc, yc, zc)

p

f z

o O
X

Object

x’
x’

f

Image Plane

p (u, v)

o
z

(b)

Figure 4.5: (a) Pinhole camera model; (b) Pinhole camera model with reflected image

plane.

Figure 4.5(b) shows a pinhole camera model with the reflected image plane model.

This model has the advantage that the projected object (𝑥′) in the image plane is reversed

when compared with the object in the world space (𝑋). Therefore, the modified pinhole

73

camera model simply shifts the image plane to the front of the principal point by 2𝑖. In

this model, the image reversion problem is solved. Meanwhile, the size of the projected

object does not change in view of the property of similar triangles. If camera focal length

𝑖 is known, and the coordinates of the point object in terms of the camera frame is

known as well, which is denoted by (𝑥𝑆,𝑦𝑆 , 𝑧𝑆), we can determine the coordinates of the

point in the real world in terms of the camera frame by sensing the position of the

projected point in the image plane (𝑢, 𝑣):

𝑘 �
𝑥𝑆
𝑦𝑆
𝑧𝑆
� = �

𝑢
𝑣
𝑖
� (4.3)

where 𝑢,𝑣 are the coordinates of the projected point in the image plane. It is seen that

these equations can help identify the 3D position of a point in the camera frame if 𝑢 and

𝑣 are measureable. However, it is not easy to measure these. The sensor of a digital

camera is a two-dimensional array whose elements are called pixels, as shown in Figure

4.6. These pixels are not continuous, and there exist gaps among the pixels. Moreover, a

pixel element is usually rectangular and not square, especially in inexpensive cameras.

The dimensions of the pixel element are descried by 𝑐𝑥 and 𝑐𝑦 in Figure 4.6. Also, the

origin of the image coordinate frame, which is the principal point, is usually not the

center of the image/pixel plane. There exist offsets in real situations.

Origin of the pixel
coordinate frame

{(r,c)}

Image plane

r

c

u

v

A pixel

Origin of the image
coordinate frame

{(u,v)}

sx

sy

Figure 4.6: Image plane and pixel plane.

74

 In Figure 4.5(b), P is a point in the work environment with coordinates (, ,)cx y z

relative to the camera frame, and p is the projection of P on the image plane with

coordinates (,)u v relative to the image plane frame, and with coordinates (,)r c relative

to the pixel coordinate frame. The distance between the origin of the camera frame and

the image plane is denoted by λ , and the coordinates of the principal point are (,)r co o

with respect to the pixel coordinate frame. The coordinate transformation between the

frames is given by:

()
()

x r

y c

u s r o
v s c o

= − −
 = − −

 (4.4)

c

x rc

c

y cc

xr f o
z
yc f o
z

= − +

 = − +

 (4.5)

Here, xs and ys are the horizontal and vertical dimensions, respectively, of a pixel as

given by x
x

f
s
λ

= and y
y

f
s
λ

= .

Let p be a feature point on the image plane with coordinates (,)u v . The moving

velocity of p can be expressed in terms of the camera velocity using the interaction

matrix L as (Dean-Le´on, et al., 2006):
2 2

2 2

0

0

c c
c c
c c

c c

u uv u vu z zL
v v v uv u

z z

λ λ
λ λξ ξ

λ λ
λ λ

 +
− − = = + − − −

 (4.6)

 In Equation 4.6, there are several unknowns: the dimensions of the sensor (xs and ys

), focal length of the camera (xf and yf), the location of the principal point (ro and co),

and the velocity of the camera with respect to the camera frame (c
cξ). These parameters

can be determined through camera calibration, which involves finding two groups of

parameters:

(1) Intrinsic camera parameters

(2) Extrinsic camera Parameters

75

Camera Parameters

Since cameras are usually rigidly attached to robots or mounted on tripods, the

rotational matrix 𝑅𝑆𝑤 and the translational vector 𝑇𝑆𝑤 can be easily determined. Therefore,

if we know the 3D position of a point 𝑃 in the camera frame, the coordinates of this point

in the world frame can be determined by using

𝑃𝑤 = 𝑅𝑆𝑤𝑃𝑆 + 𝑇𝑆𝑤 (4.7)

or conversely,

𝑃𝑆 = 𝑅𝑤𝑆 (𝑃𝑤 − 𝑇𝑆𝑤) = 𝑅𝑤𝑆 𝑃𝑤 − 𝑅𝑤𝑆 𝑇𝑆𝑤 (4.8)

where 𝑅𝑤𝑆 and 𝑅𝑤𝑆 𝑇𝑆𝑤 are called the extrinsic camera parameters. In the section below, we

denote them by 𝑅 and 𝑇, respectively, for brevity. Consider the rotational matrix:

𝑅 = �
𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

� (4.9)

and the translational vector:

𝑇 = [𝑇𝑥 𝑇𝑌 𝑇𝑧]𝑇 (4.10)

with respect to the world coordinate frame. The coordinates of the point in terms of the

camera frame can be found by

𝑥𝑆 = 𝑟11𝑥𝑤 + 𝑟12𝑦𝑤 + 𝑟13𝑧𝑤 + 𝑇𝑥 (4.11)

𝑦𝑆 = 𝑟21𝑥𝑤 + 𝑟22𝑦𝑤 + 𝑟23𝑧𝑤 + 𝑇𝑦 (4.12)

𝑧𝑆 = 𝑟31𝑥𝑤 + 𝑟32𝑦𝑤 + 𝑟33𝑧𝑤 + 𝑇𝑧 (4.13)

Substituting (4.11)-(4.13) into (4.5), we obtain

𝑟 − 𝑐𝑟 = −𝑖𝑥
𝑥𝑐

𝑧𝑐
= −𝑖𝑥

𝑟11𝑥𝑤+𝑟12𝑦𝑤+𝑟13𝑧𝑤+𝑇𝑥
𝑟31𝑥𝑤+𝑟32𝑦𝑤+𝑟33𝑧𝑤+𝑇𝑧

 (4.14)

𝑐 − 𝑐𝑆 = −𝑖𝑦
𝑥𝑐

𝑧𝑐
= −𝑖𝑦

𝑟21𝑥𝑤+𝑟22𝑦𝑤+𝑟23𝑧𝑤+𝑇𝑦
𝑟31𝑥𝑤+𝑟32𝑦𝑤+𝑟33𝑧𝑤+𝑇𝑧

 (4.15)

Combining (4.14) and (4.15), we obtain the equation

𝑖𝑥(𝑐 − 𝑐𝑆)(𝑟11𝑥𝑤 + 𝑟12𝑦𝑤 + 𝑟13𝑧𝑤 + 𝑇𝑥) = 𝑖𝑦(𝑟 − 𝑐𝑟)�𝑟21𝑥𝑤 + 𝑟22𝑦𝑤 + 𝑟23𝑧𝑤 + 𝑇𝑦�

 (4.16)

which has 9 unknowns (𝑖𝑥, 𝑖𝑦, 𝑟11, 𝑟12,𝑟13, 𝑟21, 𝑟22, 𝑟23,𝑇𝑥,𝑇𝑦). Here R and T are

the extrinsic parameters, which denote the coordinate system transformations from the

3D world coordinates to the 3D camera coordinates. Equivalently, the extrinsic

parameters define the position of the camera center and the camera heading in world

coordinates, which may be determined by the homogeneous transformation as discussed

http://en.wikipedia.org/wiki/Camera_center

76

previously. The intrinsic parameters are determined by a camera calibration tool, as

presented in (Zhang, 1999).

An Example of Intrinsic Parameter Determination

The intrinsic parameters determine the characteristics of a camera sensor, and they

will remain constant for a camera. A chess board (Figure 4.7(a)) along with the Matlab

camera calibration toolbox is utilized to determine the parameters of a Logitech web

camera (Figure 4.7(b)). The results show that the Logitech camera has the focal length: f

= [562.17889 522.49795] ± [1.38737 1.29051]; and the principal point: cc = [

332.45990 236.88157] ± [2.13199 1.73026].

(a)

77

 (b)

Figure 4.7: (a) Images for calibration; (b) camera reference and extrinsic parameters.

4.1.4 Models of Visual Servoing

The goal of image based visual servoing (IBVS) is to eliminate the position errors of

the feature points in the image plane by controlling the velocities of the robot joints. To

this end, the inputs and the outputs of the models are the linear/angular velocities of the

robot joints and the positions of the feature points in the image plane, respectively. For

modeling the manipulator, first, the relationship between the velocity of the end effector

with respect to the robot base frame and the velocity of each joint is derived as given by:

𝜉𝑡𝑟 = 𝐽1�̇� (4.17)

where 𝐽1 is the Jacobian matrix (Spong, et al., 2006), and �̇� is a vector which represents

the linear/angular velocities of the joints of the robot. The velocity of the end effector

with respect to its own frame is given by

𝜉𝑡𝑡 = 𝐺−1𝜉𝑡𝑟 (4.18)

where = � 𝑅𝑡
𝑟 03×3

03×3 𝑅𝑡𝑟
� . Since camera is rigidly attached to the end effector, the camera

frame and the end effector frame have a constant relationship of homogeneous

-100
-50

0
50

100
150

0

100

200

300

400

500

600
-100

-50

0

50

100

16

19

17

15

20

7
14

12

18
6

13

5

1149
10

1

8
3

2

Xc

Zc

Yc

Oc

78

transformation. Therefore, one can establish the relationship between the camera velocity

and the velocity of the end effector as:

𝜉𝑡𝑡 = 𝐽2𝜉𝑆𝑆 (4.19)

where 𝐽2 = � 𝑅𝑆
𝑡 𝑐(𝑑𝑆𝑡)𝑅𝑆𝑡

03×3 𝑅𝑆𝑡
�. Next, the relationship between the camera velocity and the

velocities of the feature points in the image plane is written by using the interaction

matrix as:

��̇��̇�� = 𝐿𝜉𝑆𝑆 (4.20)

Then, the relationship between the velocities of the feature points in the image plane

and the velocities of the robot joints can be found through equations (4.17)-(4.20) as:

��̇��̇�� = 𝐿𝐽2−1𝐺−1𝐽1�̇� (4.21)

The model of the mobile robot can also be generated by using a similar procedure,

and the result is given by

��̇��̇�� = 𝐿𝐺−1𝐽�̇� (4.22)

Finally, the relationship between the positions of the feature points in the image plane

and velocities of the joints can be derived through the integration of (4.21) and (4.22),

which are the mathematic models of these two image-based visual servo systems.

4.2 Traditional Image-based Visual Servo (IBVS) Controller
A traditional image-based eye-in-hand visual-servo control law is developed for

motion control of both Powerbot mobile platform and RobuArm robotic arm. The

underlying concept of this IBVS is that the controller will continuously adjust the speed

of the joints (rotational speed of the wheels for the Powerbot; and the speed of the

revolute joints of the RobuArm) so that the coordinates (,)u v of the feature point are

moved toward the desired position (,)d du v on the image. In particular, the error vector of

the image feature point is given by

()

()

u u s r rxd de
s c cv v x dd

− − −
= =

− −−

 (4.23)

where 𝑐𝑥 and 𝑐𝑦 are the dimensions of the pixel of the image sensor, which is a charge-

coupled device (CCD) in this case.

79

The velocity of the feature point can be expressed as

()

()

d u ud
udte
vd v vd

dt

−

= =
−

 (4.24)

By substituting equations (4.21) and (4.22) into (4.24), the following two equations

are obtained:

�̇� = 𝐿𝐽2−1𝐺−1𝐽1�̇� = 𝑀1[𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6]𝑇 (4.25)

�̇� = 𝐿𝐺−1𝐽�̇� = 𝑀2[𝑣 𝜔] (4.26)

Here, 𝑀1 and 𝑀2 are time-varying matrices which become constant in each iteration

after their time varying parameters are linearized through updating. In view of equations

(4.25) and (4.26), assuming the error dynamics obeys �̇� = −𝑘𝑒, a proportional controller

based on the Lyapunov method is designed according to:

[𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6]𝑇 = 𝑀1
−1(−𝑘𝑒) (4.27)

[𝑣 𝜔] = 𝑀2
−1(−𝑘𝑒) (4.28)

Here, k is the scalar proportional gain, with 𝑘 > 0. The control law for both the

mobile robot and the manipulator is obtained by substituting equation (4.23) into (4.27)

and (4.28), as

1 ()
()

x d

y d

s r r
kM

s c c
− − −

−
− −

 Ω =
 (4.29)

where Ω is the velocity vector of either the mobile robot or the RobuArm. In equation

(4.29), the pixel coordinates r and c can be measured directly from the current image

using the available image processing software. Therefore, according to equation (4.29),

the desired angular velocities of each joint can be directly computed from the image

measurements. Moreover, it is noted that the developed controller guarantees asymptotic

stability of the closed-loop system, in view of the error equation e ke= − .

Simulation Results

Figure 4.8 shows the simulation results of traditional visual servoing for the mobile

base. Figure 4.8 (a) and (b) illustrate the linear velocities and angular velocities of the

mobile robot, and Figure 4.8 (c) shows the position errors of the feature point on the

image plane which converge to zero.

80

(a)

(b)

0 5 10 15 20 25 30
-5

0

5

10

15

20

25

30

35

40

v

0 5 10 15 20 25 30
-200

-150

-100

-50

0

50

w

81

(c)

Figure 4.8: Simulation results of traditional visual servoing of mobile robot: (a) linear

velocity trajectory; (b) angular velocity trajectory; (c) position errors of the feature on the

image plane.

Figure 4.9 shows the simulation results of the traditional image based visual servoing

(IBVS) of the robotic manipulator. Figure 4.9(b) shows the angular velocities of the six

joints of the manipulator, and Figure 4.9(a) and (c) illustrate the trajectories of the feature

point on the image plane along with the position errors.

0 5 10 15 20 25 30
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

error

r
error

c

82

(a)

(b)

0 10 20 30 40 50 60 70 80 90 100
200

220

240

260

280

300

320
Position of the feature point in the image plane

P
ix

el

r
c

0 10 20 30 40 50 60 70 80 90 100

-0.1

-0.05

0

0.05

0.1

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

/s
)

Angular velocity of each joint

q1-dot
q2-dot
q3-dot
q4-dot
q5-dot
q6-dot

83

(c)

Figure 4.9: Simulation results of traditional visual servoing of a robotic manipulator: (a)

position trajectory of the feature point on the image plane; (b) angular velocities of the

six joints; (c) position error trajectories of the feature on the image plane.

Experimental Results

In this section the vision-based mobile grasping system as developed in our

laboratory is employed to validate the visual-servo controller. In the experiment, the

mobile robot employs its on-board CCD stereo camera to continuously observe the

position of the target object on the image plane with a color tracking algorithm which has

been described in the previous chapter. It computes the visual error e on the image plane

in each iteration. Next, the IBVS controller determines the desired wheel speeds 1ω and

2ω using equation (4.28), and accordingly commands the low-level controller of the

mobile robot to gradually move the robot toward the target object. When the robot is

sufficiently close to the object, it stops and the visual servo controller of the manipulator

is activated for grasping. A Logitech camera is mounted on the end effector of the robotic

0 10 20 30 40 50 60 70 80 90 100
-80

-60

-40

-20

0

20

40

60

80

100

120

P
ix

el

Position error of the feature in the image plane

deltar

deltac

84

manipulator, acting as an eye-in-hand configuration. A laser distance finder is utilized to

measure the depth information between the camera and the object of interest in the

workspace.

Figures 4.10-4.13 show the experimental results from the traditional visual servo

controller for the mobile robot. The trajectory of the visual feature point on the image

plane is shown in Figure 4.10. The initial position of the visual feature is close to the top-

right corner of the image. Then it moves directly toward the desired position at the

bottom-left corner. The position and heading histories of the robot during the entire

process are shown in Figure 4.11, the pixel errors on the image plane are shown in Figure

4.12, and the control inputs are given in Figure 4.13.

Figure 4.10: The trajectory of the visual feature point (object) on the image plane.

100 150 200 250 300 350 400 450
20

40

60

80

100

120

140

160

180

r

c

Pixel Trajectory

85

Figure 4.11: The trajectory (position and heading) of the mobile robot in the physical

environment when it carries out the mobile manipulation task.

Figure 4 12: The visual errors on the image plane when the robot approaches the object

and attempts to grasp it.

0 20 40 60 80 100 120
-100

0

100

200

300

400

500

t

x
y
theta

0 20 40 60 80 100 120
-350

-300

-250

-200

-150

-100

-50

0

50

t

error

r
error

c

86

Figure 4.13: The control inputs of the plant when the new visual servo controller is

operating.

From the results of both computer simulation and physical experimentation it is seen

that the developed IBVS controller is able to effectively drive a wheeled mobile robot

toward a target object and guide the robotic manipulator to grasp the object. However,

the desired position of the feature point and the initial position of the feature have to be

very carefully selected in order to make the system work. The reasons are as follows:

- It is easy to lose the view of the object of interest when the system is operating;

especially, when the feature point is close to the margins of the image plane. On

one hand, in order to increase the speed of response and to reduce steady state

errors, the controller gain has to be sufficiently high. On the other hand, when the

controller gain is too large, the control inputs (v and ω) increase

correspondingly and as a result the visual features can quickly move out of the

image plane, which leads to failure of the controller. This controller cannot

guarantee the retention of visual features within the image plane.

0 20 40 60 80 100 120
-30

-20

-10

0

10

20

30

t

v
w

87

- It does not consider the physical constraints of the robot. Therefore, the system

can easily fail due to reaching a singular configuration or other physical

constraints.

- The selection of the proportional gain is not straightforward. There has to be a

trade-off between the performance and keeping the feature point inside the

camera view.

- In the case of large displacement, the controller may enter a local minimum or an

unstable region.

4.3 Hybrid Visual Servo Control
An important challenge of visual servoing, as discussed in the previous section, is

attributed to the visibility constraint because if the feature point is moved out of the

image plane, the entire system will fail. In view of such shortcomings, it is necessary to

improve the robustness of the traditional visual servo controller. In the present section, a

hybrid switching controller is developed to eliminate the main shortcomings of the

previous controller. The new control scheme is schematically presented in Figure 4.16.

Figure 4.14: The hybrid control scheme for robust visual servoing.

In Figure 4.14, there are two control loops: the traditional IBVS controller and a new

Q-learning controller. While the IBVS controller will drive the mobile robot toward the

target object, the Q-learning controller will observe the visual features on the image

IBVS

Controller
CCD

Camera

Desired
image

+
–

Visual
errors ν,ω

World State

Extraction
Q-learning

Controller

Arbitrator

Q-Table
(Knowledge Base)

Rule base

Action
State

Current
image

Current
image

88

plane and select an optimal action (an appropriate rotational or translational movement)

so that the visual features are pushed from the image edge to the center. In addition, the

Q-learning controller is able to continuously learn and improve its action-selection policy

on-line using its machine learning algorithm.

There is a rule-based arbitrator in the control system, as indicated in Figure 4.16,

which autonomously switches between the outputs of the controllers so that the overall

hybrid control system achieves a trade-off between its robustness and accuracy.

Finally, the Q-learning controller can be trained offline to improve its performance.

Once it is trained, the Q-learning controller can quickly select the correct actions in a

real-time manner (usually in less than 10 ms in our experiments).

Q-learning Controller

The Q-learning controller shown in Figure 4.14 is a customized controller, which will

keep within the image plane the important visual features of an object of interest. It is

based on the machine learning approach called Q-learning. The main advantage of the Q-

learning controller is that it is able to autonomously learn the action-selection policy of

the mobile robot and improve the controller performance continuously so that the visual

features remain in the field of view of the CCD camera. Due to integration of the Q-

learning controller with the IBVS controller developed in Section IV, the robustness of

the resulting hybrid controller is improved.

The world states in the present Q-learning controller are defined by a discrete grid of

the image plane, as shown in Figure 4.15.

89

Figure 4.15: The discrete gird world defined on a 640×480 CCD image plane.

In Figure 4.15, the 640×480 CCD image plane is divided into an 8×6 discrete grid

world where each cell of the grid has a length of 80 pixels. When an image is grabbed

from the CCD camera, the position of the visual feature point on the image plane can be

easily converted into the coordinates in the grid world as follows:

(/ 80)x INT r= (4.30)

(/ 80)y INT c= (4.31)

Here 0,1, ,639r = and 0,1, ,479c = are the pixel coordinates of the visual feature

points on the image plane, 0,1, ,7x = and 0,1, ,5y = are the corresponding grid

coordinates in the grid world, and ()INT is a function which converts a floating-point

number into an integer by discarding its decimal portion.

The world state in the Q-learning controller is made up of the grid coordinates of the

visual feature and the current depth from the robot to the target object, as given by:

(, ,)s x y d= (4.32)

Here, d is a discrete index value of the current depth, which is computed according to:

x

(0,0)

(0,1)

(0,7)

(5,0)

(5,1) (5,7)

y

Desirable area

Acceptable area

Unacceptable area

90

0 , 40
1, 40 90
2, 90 140
3, 140

if depth cm
if cm depth cm

d
if cm depth cm

if depth cm

<
 < <== < <=
 >

 (4.33)

Under each state, it is assumed that the mobile robot is able to select one of the following

four actions:

Action #1: Move forward for 5 cm.

Action #2: Move backward for 5cm.

Action #3: Rotate for 5 degrees.

Action #4: Rotate for -5 degrees.

After the robot takes an action, it will receive a reward r from the environment. This

reward is computed based on the new position of the visual feature on the image plane,

according to:

20, (,)
0 , (,)
10, (,)
20, (,)

if x y the desirable area
if x y the safe area

r
if x y the dangerous area
if x y is out of the image

+ ∈
 ∈= − ∈
−

 (4.34)

Here, (,)x y is the new position of the visual feature in the grid world after the robot takes

an action. The definitions of the desirable, acceptable and unacceptable areas are given in

Figure 4.15. From equation (4.34) it is clear that the robot is encouraged to select the

correct actions, which will push the visual features toward the desirable area and away

from the unacceptable area on the image plane.

Training Results

The Q-learning controller as presented here was trained with the physical robot-

camera system described in Figure 4.14, to gain on-line experience and then learn/update

its Q-values. In particular, the robot was required to track the position of target object

with the on-board ACTS color-blob tracking software, and to take a series of actions

based on the Q-learning algorithm so that the position of the target object remained in the

desirable area of the image. In this experiment, the Q-learning algorithm was run for

2500 iterations (or steps), and the history of the Q values under four sample states was

recorded, as presented in Figure 4.16.

91

(a)

(b)

0 500 1000 1500 2000 2500
-20

0

20

40

60

80

100
The Q-value history of the state (2,2,1)

Q
(s

,a
)

Step #

Action #0
Action #1
Action #2
Action #3

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Step #

Q
(s

,a
)

The Q-value history of the state (3,2,1)

Action #0
Action #1
Action #2
Action #3

92

(c)

(d)

Figure 4.16: The history of Q-values under different world states when the robot received

off-line training: (a) State (2,2,1), (b) State (3,2,1), (c) State (4,2,1), (d) State (5,2,1).

0 500 1000 1500 2000 2500
-20

0

20

40

60

80

100

Q
(s

,a
)

The Q-value history of the state (4,2,1)

Step #

Action #0
Action #1
Action #2
Action #3

0 500 1000 1500 2000 2500
-20

0

20

40

60

80

100

Step #

Q
(s

,a
)

The Q-value history of the state (5,2,1)

Action #0
Action #1
Action #2
Action #3

93

From Figure 4.16 it is observed that the Q-values have converged after 2500 steps of

decision-making. It means that the Q-learning controller has learned how to select the

correct actions for each state. This will enable the mobile robot to move or rotate

properly so as to keep the visual features in the desirable area on the image. In particular,

for the state of (2,2,1), Figure 4.16(a) shows that the action #2 has a higher Q-value than

the other three actions. Hence this action will have a higher probability to be selected by

the Q-learning controller when the state (2,2,1) is observed by the robot. Similar

conclusions can be drawn from Figure 4.16(b)-(d).

A trained Q-learning controller is in fact a behavior-based decision-making unit. It

continuously observes world states and probabilistically selects actions for the robot

based on the Q-values in the Q-table. Unlike the traditional behavior-based system

(Arkin, 1998) where the behavior rule base is fixed and entirely designed by a human

designer in advance, the rule base (i.e., the Q-table) of Q-learning is learned

autonomously when the robot interacts with its work environment, and it can be

improved online. Therefore, the Q-learning controller developed in this thesis is more

desirable than the traditional behavior-based approaches. Furthermore, it is also more

advantageous than the approaches of potential field and navigation function, and those

based on path planning (Corke and Hutchinson, 2001; Chesi and Huang, 2007; Chen, et

al., 2007; Cowan, et al., 2002; Schramm and Morel, 2006; Zhang and Ostrowski, 2002)

because these approaches do not have a self-learning mechanisms and cannot adapt to a

changing world and improve their decision-making abilities on-line.

The arbitrator of the hybrid control system

In the hybrid control scheme of Figure 4.14, there is an arbitrator which switches on

the IBVS controller or the Q-learning controller depending on the position of the visual

feature in the grid world in Figure 4.15. In particular, it is a rule-based arbitrator that

switches the outputs of the controllers according to the following rules:

Rule #1: If the visual feature P is in the unacceptable area, the Q-learning controller

is selected.

Rule #2: If P is in the desirable area, the IBVS controller is selected.

Rule #3: If P is in the acceptable area, no switching action is taken.

94

These rules, through the Q-learning controller, push a visual feature P back to the

desirable region if it is located in the unacceptable area. Then, the IBVS controller will

drive the robot toward the target object.

 Experimental Results

Further experiments are carried out to validate the hybrid control scheme developed

in this thesis. In the experiment, first, the mobile robot moves close to a target object for

autonomous grasping. It utilizes the feedback information from its CCD camera and the

hybrid controller developed in the previous session to guide the mobile robot to the

grasping position.

Hybrid Visual Servoing with a Small Unacceptable Area

In this experiment, the robot carries out the mobile grasping task in the presence of a

small unacceptable area, using the developed hybrid controller. The unacceptable area is

given by:

60r < or 550r > or 20c < or 450c > (4.35)

where, r and c are the pixel coordinates. The trajectory of the visual feature on the image

plane is presented in Figure 4.17.

95

Figure 4.17: The trajectory of the visual feature on the 640×480 image plane when the

hybrid controller operated in the presence of a small unacceptable area.

In Figure 4.17, the grey area represents the “unacceptable area” on the 640×480

image plane, which is defined by equation (4.46). Because initially the visual feature on

the image is at (587, 165) which is in the unacceptable area, the arbitrator of the hybrid

controller selects the Q-learning controller to determine the motion of the mobile robot.

From Figure 4.17 it is seen that the Q-learning controller uses just 7 steps to bring the

position of the visual feature into the “desirable area” on the image plane. After this

quick action, the arbitrator selects the IBVS controller to take over the control of the

mobile robot. In the remainder of the control process, the IBVS controller drives the

robot to the goal location and orientation until the visual feature reaches its desired pixel

position of (180, 40) on the image.

Figure 4.17 shows that the developed hybrid controller performs better than the IBVS

controller of Section IV. In particular, when the visual feature is located in the

“unacceptable area” of the image plane, the hybrid controller is able to quickly adjust the

camera pose so that the visual feature will move through a large distance at a fast speed

Initial position

Desired position

Unacceptable

area

Border

96

of response so as to enter the “desirable area” on the image. It is usually difficult for the

IBVS controller to move the visual feature through a large distance due to potential

instability problems.

Figure 4.18 presents the history of the row and column pixel coordinates of the visual

feature, and the history of controller switching for the experimental result in Figure 4.17.

Figure 4.18: The history of the row and column pixel coordinates of the visual feature

when the robot approached the object and grasped it.

The performance of the IBVS controller within the hybrid controller is shown in

Figures 4.19(a)-(c).

r

c

97

(a)

(b)

98

(c)

Figure 4.19: The performance of the IBVS controller with a small unacceptable area

when the robot carried out a mobile manipulation task: (a) history of the pixel

coordinates of the visual feature on the image plane; (b) trajectory of the mobile robot in

the physical environment; (c) visual errors on the image plane.

 Figure 4.19(c) indicates that steady-state errors can result when the robot reaches its

desired pose. These errors are caused due to the proportional controller given by equation

(4.29). In the present experiments the steady state errors are quite small and do not result

in a failed grasping.

Hybrid Visual Servoing with a Large Unacceptable Area

In this experiment, a large unacceptable area is defined on the image plane of the

CCD camera, according to:

60r < or 360r > or 20c < or 260c > (4.36)

It shows that the hybrid controller is able to drive the robot to its desired position and

orientation in a robust manner, and make it successfully grasp the target object. When the

unacceptable area is large, the hybrid visual-servo controller exhibits a very different

behavior, as shown in Figure 4.20.

99

Figure 4.20: The trajectory of the visual feature on the 640×480 image plane (large

unacceptable area).

As shown in Figure 4.20 and Figure 4.21, because the unacceptable area is large,

under IBVS control a visual feature can easily enter the unacceptable area. Consequently,

it is observed that the Q-learning controller is activated by the arbitrator very frequently

to push back the visual feature into the acceptable area. From both figures, it is clear that

the trained Q-learning controller has been quite successful in keeping the visual feature

within the acceptable area. Usually, just one step is needed to bring the visual feature

away from the unacceptable area and then transfer the robot control to the IBVS

controller.

Unacceptable

area

Desired

position
Initial

position

Border

100

Figure 4.21: The history of the row and column pixel coordinates of the visual feature.

In the present work, the Q-learning controller makes the robotic system more robust

(by keeping a visual feature within the acceptable area, under disturbances that drive the

feature away from that area) and the IBVS controller guarantees accurate positioning

performance. In this manner the hybrid controller developed in the present work provides

a good trade-off between robustness and accuracy, as clear from Figure 4.20 and Figure

4.21. The performance of the IBVS controller is shown in Figure 4.22 (a)-(c).

r

c

101

(a)

(b)

Figure 4.22: The performance of the IBVS controller when the unacceptable area is

large: (a) history of the pixel coordinates of the visual feature; (b) trajectory of the mobile

robot; (c) visual errors on the image plane.

102

In Figure 4.20, because initially the visual feature is located in the unacceptable area

and since the unacceptable area is much larger than the one in Figure 4.17, the Q-

learning controller is activated frequently in the first part of visual servoing to keep the

visual feature within the acceptable area. As a result, it is observed from Figure 4.20 that

the response curves oscillate significantly in the first stage (from iteration #0 to iteration

#60). After the visual feature is moved away from the unacceptable area, the IBVS

controller gradually takes control of the mobile robot and consequently the response

curves become smoother until the visual feature reaches its desired position on the image

plane. Again, Figure 4.20 shows that the hybrid visual-servo controller developed in this

project provides a rather “balanced” performance in robustness and accuracy, as a result

of the integrated IBVS controller and the Q-learning controller.

4.4 ANMPC Visual Servo Controller
The hybrid controller can solve the visibility constraints in mobile robot

manipulation. However, it cannot be applied in robotic arms because a robotic arm has

more degrees of freedom (DOFs) than the mobile robot does. Moreover, the controller

outputs of the hybrid controller are not optimal. Therefore, an Adaptive Nonlinear Model

Predictive Controller (ANMPC) is developed now to overcome the drawbacks of the

previously-developed hybrid controller.

 The principle of classical Model Predictive Control (MPC) is summarized in Figure

4.23. In each iteration k, an estimated model is used to predict the future states. Then, an

optimal control law is computed based on the principle of forcing the predicted states to

converge to a desired set-point while minimizing a cost function (Camacho and Bordons,

2007).

103

Future / predictionPast

Set point trajectory

Output
(y(t))

Controller
output (u(t))

Predicted Output

Optimal control output

k k+Ts k+Hu k+Hp
Control horizon Hu

Prediction horizon Hp

Figure 4.23: Strategy of model predictive control.

The classical predictive control law may present problems when applied in a visual servo

system for mobile robots. In particular, because in image-based visual servoing, the

current velocity of the visual feature points and depth information are involved in the

interaction matrix (Spone and Hutchinson, 2006) of the camera model, the mathematical

model of the plant (mobile base, camera and manipulator) is nonlinear and time-varying.

In view of long and arbitrary movements of its base, the issues of nonlinearity and time

variance will become more significant when visual servoing is applied to a mobile robot.

Due to possible large motions and nonholomic constraints in a mobile robotic

system, the traditional visual servo-based velocity controller will usually show poor

performance. A customized nonlinear model predictive controller is proposed here to

meet these challenges and to improve the performance of the visual servo system. The

proposed architecture for nonlinear time-varying model predictive control is shown in

Figure 4.24. This architecture is applicable to both mobile robot systems (mobile

platforms) and robotic manipulator systems (robotic arms) with slight differences in the

plant model in the ANMPC controller, and the dimensions of the controller outputs (it

has 2 outputs for the mobile robot and 6 outputs for the robotic manipulator arm).

104

Figure 4.24: Block diagram of the mobile robot system with adaptive nonlinear model

predictive control (ANMPC) for visual servoing.

In Figure 4.23, since MPC requires a linear model of the plant. Hence, the nonlinear

plant is approximated to an adaptive linear model and updated in each iteration of the

control loop using the current velocity and depth information. This nonlinear model

predictive controller for visual servoing explicitly optimizes the positioning performance

of the robot and simultaneously considers various constraints such as joint limits,

singularities, and nonholonomic constraints. The cost function (Camacho and Bordons,

2007) is given by:
22 1

1 0() ()

ˆˆ(|) (|)()
ˆ(|) ˆ (|)

p uH H
d

i id Q i R i

u k i k u V k i kC k
v k i k v k i kω

−

= =

 + − ∆ +
= + + − ∆ +

∑ ∑ (4.37)

where 𝐻𝑝 and 𝐻𝑢 are the prediction horizon and the control horizon, respectively. Also,

(𝑢, 𝑣) is the desired system output, which is the position of the feature point in the image

plane, and Q(i) and R(i) are the weighting matrices (Maciejowski, 2000). Moreover, the

visibility and joint constraints are taken into account in the ANMPC controller.

In Figure 4.24, the ANMPC controller includes four units: Model Updating Unit,

Linearized Model, Constraint Unit, and Optimizer Unit. In particular, the current position

of the target object in the image (i.e., [,]Tu v) and the current depth z are continuously

measured with the CCD camera and the laser distance finder, and are sent into the model

Model
Updateing

Linearized
Model

Optimizer

Constraint
Unit

Environmental constraints
Joint constraints
Visibility constraint

G Interaction Matrix
(L) ∫

∫

Distance Sensors
(Laser, Camera)

Visual Error
+

-

ANMPC
Controller

Plant Model

Camera
(feature tracking)

Pixel frame to image
frame conversion

Plant Model

Updated
Model

Constraint
Unit

∫

Distance Sensors
(Stereo Camera)

Visual Error

1. Mobile robot
2. Camera

d

d

U
V

1

2

*

*v

ω

c
cξ

U
V

R
C

v
ω

U
V

1

2

*

*v

ω

U
V

105

updating unit. Then the linearized model of the plant is updated by the model updating

unit with the latest ,u v and z so that the model can always track the nonlinear plant. In

addition, three kinds of constraints are considered and set up by the constraint unit which

will constrain [,]Tv ω (the translational and rotational velocities of the robot), [, ,]Tx y θ

(the location and heading of the mobile robot in the environment), and [,]Tu v (the

position of the target object in the image). Finally, based on the latest linearized model,

the constraint requirements and the current outputs of the plant, the optimizer unit will

calculate an optimal control input sequence using the quadratic programming algorithm

(QP), as described in (Camacho and Bordons, 2007).

Constraints

 The ANMPC controller, as shown in Figure 4.24, considers three types of

constraints, as follows:

min max()u u t u≤ ≤ and min max()v v t v≤ ≤

(Visibility Constraints) (4.38)

max()x t x≤ , max()y t y≤ , min max()tθ θ θ≤ ≤

(Robot Location Constraints) (4.39)

max()l lv t v≤ and max()tω ω≤

(Robot Velocity Constraints) (4.40)

Experimental Results

In the first experiment, an ANMPC controller was tested without considering any

constraints. The controller parameters are: Sampling time 100st ms= , 10pH = , 3uH = ,

100 0
()

0 100
Q i

=

and
0.1 0

()
0 0.1

R i
=

. The experimental results are presented in

Figure 4.25.

http://en.wikipedia.org/wiki/Quadratic_programming
http://en.wikipedia.org/wiki/Quadratic_programming

106

(a)

(b)

150 200 250 300 350 400 450 500 550
20

40

60

80

100

120

140

160

180

200

row (pixel)

co
lu

m
n

(p
ix

el
)

0 0.5 1 1.5 2 2.5

x 104

-400

-350

-300

-250

-200

-150

-100

-50

0

t(ms)

error

r
error

c

107

(c)

(d)

0 0.5 1 1.5 2 2.5

x 104

-20

0

20

40

60

80

100

120

140

t(ms)

x(cm)
y(cm)

0 0.5 1 1.5 2 2.5

x 104

0

20

40

60

80

100

120

140

160

180

200

t(ms)

v
(c

m
/s

)

108

 (e)

Figure 4.25: The experimental results of a mobile visual servo system using un-

constrained ANMPC: (a) trajectory of the target object in the image; (b) pixel errors on

the image plane; (c) history of the mobile robot location; (d) history of the robot

translational velocity (control input); (e) history of the robot rotational velocity (control

input).

Constrained ANMPC Controller

In this experiment, the ANMPC has the following constraint parameters: 20 450r≤ ≤

, 20 300c≤ ≤ , 20 cm/s 20 cm/slv− ≤ ≤ , 6 deg/s 6 deg/sω− ≤ ≤ , 15 cmy ≥ − .

In the process of visual servoing, the system outputs and the control inputs are presented

in Figure 4.26.

0 0.5 1 1.5 2 2.5

x 104

-10

0

10

20

30

40

50

60

70

80

t(ms)

w
 (d

eg
/s

)

109

(a) System outputs (pixel position of the target object in the image).

(b) Pixel errors on the image plane.

0 0.5 1 1.5 2 2.5

x 104

0

50

100

150

200

250

300

350

400

450

500

r
c

0 0.5 1 1.5 2 2.5

x 104

-350

-300

-250

-200

-150

-100

-50

0

50

t(ms)

error
r

error
c

Constrained

110

(c) History of the mobile robot location.

(d) History of the robot translational velocity (control input).

0 0.5 1 1.5 2 2.5

x 104

-20

0

20

40

60

80

100

120

140

t(ms)

x(cm)
y(cm)

0 0.5 1 1.5 2 2.5

x 104

0

2

4

6

8

10

12

14

16

18

20

t(ms)

v
(c

m
/s

)

Constrained

111

(e) History of the robot rotational velocity (control input).

Figure 4.26: Mobile visual servoing using constrained ANMPC.

From Figure 4.26(a), 4.26(d) and 4.26(e), it is clear that the system outputs (()r t and

()r t) and the control inputs (()lv t and ()tω) were constrained within the desired limits

while Figure 4.26(b) showed that the errors quickly converged to zero. Therefore, from

Figure 4.26, it can be concluded that the ANMPC visual servo controller developed in

this thesis is quite successful in maintaining optimal control performance and

simultaneously it respects various constraints (visibility constraints, velocity constraints,

and so on).

Figure 4.27 shows the results of the ANMPC controller of the manipulator. Figure

4.27(a) shows the trajectory of the feature point in the image plane, and Figure 4.27(b)

shows the controller outputs which are angular velocities of the six joints of the

manipulator. According to the figures, it can be concluded that the ANMPC visual servo

controller developed in this thesis performs satisfactorily for a robotic manipulator.

0 0.5 1 1.5 2 2.5

x 104

-4

-2

0

2

4

6

8

t(ms)

w
 (d

eg
/s

)

Constrained

112

(a) System outputs (pixel position of the target object in the image).

0

0.05

0.1

u

0

0.05

0.1

v

0 5 10 15 20 25 30 35 40 45 50

Position of the feature point in the image plane

Time (seconds)

113

(a) Angular velocities of the six joints.

Figure 4.27: Visual servoing of a robotic arm using ANMPC.

0 10 20 30 40 50 60 70 80 90 100
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
n
g
u
la

r
v
e
lo

c
it
y
 (

ra
d
/s

)

Angular velocity of each joint

114

CHAPTER 5 Networked Sensing and Sensor Fusion

As mentioned in the previous chapter, a critical challenge in mobile manipulation is

the accommodation of visibility constraints because if the camera does not see the object

of interest, there would be no feedback signal in the manipulation control loop. This will

lead to the failure of the entire system. In Chapter 5, a hybrid controller and an adaptive

nonlinear model predictive controller (ANMPC) were proposed with the objective of

keeping the object of interest inside the camera view, which can guarantee functioning of

the manipulation system. However, in these methods the operational workspace is limited

by the camera scene and the flexibility of the robot. Since the workspace within a camera

scene is much smaller than the actual physical workspace of a robot, if the size of camera

scene can be expanded to the entire robotic workspace, the flexibility and capability of

the robotic manipulation system can be dramatically improved. This idea brings us into

the areas of networked sensing and sensor fusion.

A multi-sensor system may be treated as a sensor network. It usually consists of

different types of spatially distributed autonomous sensors such as those for temperature,

acoustics, magnetic field, vision, and pressure. Each sensor is considered an individual

node in the sensor network. Most of them are fixed and cannot move. Some sensors have

mobility and can be moved to different locations according to the specific requirements

of a sensing scenario. They are called dynamic sensors, and have the ability to collect

data from the distributed work environment and forward them to a data processing center.

Two possible applications of networked sensing are shown in Figure 5.1. There are two

challenges in such a large-scale and complex system: 1) what information from the entire

sensor data is useful; and 2) how can the system utilize the sensor data to make decisions

accurately and reliably.

115

Figure 5.1: Possible application of a sensor network: (a) a future city; (b) a future home

environment.

These two questions bring us to the problem of sensor fusion. There, multi-sensor

systems are designed to exploit several signature-generation phenomena, gather different

types of information about objects and scenes of interest, and “fuse” them to obtain more

accurate and reliable information. Design of a multi-sensor system involves optimization

of sensors, data processing, communication, and particularly the use of an appropriate

fusion strategy. As described in the literature review on sensor fusion in Chapter 1, many

methods such as neural networks and fuzzy logic have been applied in sensor fusion.

However, they are only suitable for simple applications because appropriate training is

difficult in complex problems.

In this chapter, Probabilistic Finite State Automata (PFAS) is proposed for application

in sensor feature representation and fusion. It introduces a self-organized sensor network

where PFSA is utilized to organize and cluster suitable sensors and then fuse their data to

make reliable and more accurate decisions. It has the ability to communicate with the

robots in the workspace and provide information to assist the execution of the robotic

tasks.

116

5.1 Definitions

5.1.1 Formal Languages

Formal language is a technical term used in mathematics and computer science. A

formal language (𝐿) over an alphabet Σ is a set of words, which is denoted by 𝛴∗; and an

empty word is denoted by λ (𝐿 = 𝛴∗; 𝜆 = ∅).

5.1.2 Finite State Machine

A Finite State Machine (FSM) or Finite State Automaton (FSA) is an abstract model

of a machine that composes a finite number of states, transitions between those states,

and actions. Figure 5.2 (a) shows an example of an FSM which has 2 states, 2 transitions,

and 2 actions. Figure 5.2 (b) shows a more complex example. The transition indicates a

state change; and is described by a condition that would need to be fulfilled to enable the

transition. The action is a description of an activity that is to be performed at a given

moment. Since there is only one possible transition for any input, it is called a

Deterministic Finite State Machine (DFSM) or Deterministic Finite State Automata

(DFSA).

 a. Elevator b. Parsing the word “Nice”

Figure 5.2: An example of finite state machine.

The mathematical description of a DFSA is composed of Σ, S, s0, δ, F, where: 𝛴 is the

input alphabet; S is a finite, non-empty set of states; 𝑐0 is an initial state; 𝛿 is the state

transition function; and F is the set of final state.

117

5.1.3 Probabilistic Finite State Automata

Non-deterministic Finite State Automata (NDFSA) or Probabilistic Finite State

Automata (PFSA) is different from DFSA in the transition where PFSA has several

possible next steps for an input. PFSA is generalized by probability automata (PA) which

assigns a probability to each state transition.

A PFSA can be defined by 𝑄,𝛴, 𝛿, 𝑞0,𝐹, where Q is a finite set of states; 𝛴 is a finite

set of input symbols; 𝛿 is a transition function; and F is a set of final states. It has two

with two probabilities: the probability P that a particular state transition is triggered; and

the probability that the initial state 𝑞0 is replaced by a stochastic vector.

In the formal language theory (Hopcrof, et al., 2005), an alphabet 𝛴 is a (non-empty

finite) set of symbols. A string x over 𝛴 is a finite-length sequence of symbols in 𝛴. The

length of a string x, denoted by |𝑥|, represents the number of symbols in x. The Kleene

closure of 𝛴, denoted by 𝛴∗, is the set of all finite-length strings of events including the

null string ϵ, where |𝜖| = 0. A string of length 𝑑 ∈ ℕ is denoted by 𝛴𝑑 ⊂ 𝛴∗.

A probabilistic finite state automaton is a tuple 𝐺 = (𝑄,𝛴, 𝛿, 𝑞0,𝜋�), where

• Q is a (nonempty) finite set, called set of states;

• 𝛴 is a (nonempty) finite set, called input alphabet;

• 𝛿: 𝑄 × 𝛴 → 𝑄 is the state transition function;

• 𝑞0 ∈ 𝑄 is the start state;

• 𝜋�:𝑄 × 𝛴 → [0, 1] is an output mapping which is known as the probability morph

function and satisfies the condition ∑ 𝜋��𝑞𝑗 , 𝜏� = 1𝜏∈Σ for all 𝑞𝑖 ∈ 𝑄. The morph function

𝜋 has a matrix representation Π� , called the morph (probability) matrix 𝛱�𝑖𝑗 =

𝜋�𝑞𝑖 ,𝜎𝑗�,∀𝑞𝑖 ∈ 𝑄 and ∀𝜎𝑗 ∈ 𝛴. Note that Π� is a (|𝑄| × |𝛴|) stochastic matrix; i.e., each

element of Π� is non-negative and each row sum of Π� is equal to 1.

The transition map 𝛿 naturally induces an extended transition function 𝛿∗: 𝑄 × 𝛴∗ →

𝑄 such that 𝛿∗(𝑞, 𝜖) = 𝑞 and 𝛿∗(𝑞,𝜔𝜏) = 𝛿(𝛿∗(𝑞,𝜔), 𝜏) for 𝑞 ∈ 𝑄 , 𝜔 ∈ 𝛴∗ and 𝜏 ∈ 𝛴 .

In this thesis, it is assumed that all states in a PFSA are reachable from the start state.

Otherwise, the non-reachable states should be removed from Q.

5.1.4 Cross Machine

A cross machine is a 6-tuple (Q, Σi, Σo,δ, q0,Ψ), where

http://en.wikipedia.org/wiki/Stochastic_vector

118

• 𝑄 is a (nonempty) finite set, called set of states;

• Σ𝑖 is a (nonempty) finite set, called input alphabet;

• Σ𝑆 is a (nonempty) finite set, called output alphabet;

• 𝛿: 𝑄 × Σ𝑖 → 𝑄 is the state transition function;

• 𝑞0 ∈ 𝑄 is the start state;

• 𝜓: 𝑄 × Σ𝑆 → [0,1] is an output mapping, which is known as the output morph

function and satisfies the condition 𝛴𝜎∈𝛴𝑜𝜓�𝑞𝑗,𝜎� = 1 for all 𝑞𝑗 ∈ 𝑄. The output

morph function 𝜓 has a matrix representation 𝛹 , called the output morph

(probability) matrix.

Cross machine can be considered as a transfer function (Figure 5.3), which takes

PFSA as inputs and provides stochastic languages as outputs. Figure 5.4 shows an

example of an input-output system. The cross machine models the binary symmetric

channel, and the input machine is a D-Markov machine of order 1.

Cross
MachinePFSA Stochastic Language

X(s) H(s) Y(s)

Figure 5.3: Analogy between a cross machine and a transfer function.

Figure 5.4: An example of a system.

5.2 Fusion-driven Sensor Network
Since the local sensors of a mobile robot may not be adequate to effectively carry out

the necessary robotic tasks, a dynamic sensor network is proposed in this thesis. This will

facilitate detection, identification, and tracking of objects of interest in the robotic

workspace and subsequent robotic grasping, manipulation, and processing as well. The

network will incorporate heterogeneous sensing elements. Both static and dynamic

119

sensors will be present. The sensor network will be adaptive in the sense that the

structure in which the sensors are connected, the sensor locations, and data pathways all

may be adjustable during robotic operation. This adaptation will require feedback of

requests from the robot depending on the nature and requirements of the task and the

necessary information to effectively carry out the task. In order to meet these needs, a

new network structure is proposed, as shown in Figure 5.5. During operation, a robot

may need to search for an object of interest that is not within its local sensing range.

Then, the robot will send a “help” message to the sensor network, requesting the location

of the object. As the sensor network receives the request from the robot, it will adapt to

the identification and tracking requirements to reconfigure the nodes of the sensors

dynamically concerning different types of targets.

Object identification
Position estimation

 Dynamic clustering

Object search request

Fusion-driven network control

Locolization

Figure 5.5: Overall network architecture.

The dynamic clustering and fusion are done in response to from the robot with regard

to some objects of interest in the environment. This will cause statistical changes and

changes to the spatial-temporal representation of the sensor data. Finally the system will

dynamically reallocate sensing and network resources as appropriate. In summary, the

system has the following features:

• Heterogeneous dynamic space-time clustering (DSTC) protocol

• Sensor node mobility

• Object detection and classification of composite patterns

• Feedback of information requests from the robot

120

5.3 Design and Implementation of a Fusion-Driven Sensor Network

5.3.1 Mobile Target Tracking Application

Figure 5.6 shows the architecture of a sensor network designed for mobile target

tracking. A sensor is defined as a mapping 𝑆:ℙ × 𝔻 × 𝕋 → 𝕍 where ℙ is the set of

sensing modalities (e.g., acoustic energy); 𝔻 is the network design parameter space

consisting of design and operational parameters for sensors (e.g., sensing and

communication range, sampling frequency, communication bandwidth); 𝕋 represents the

time domain; and 𝕍 is a vector space over the real field ℝ. Let 𝕊 be the set of all sensors

in the network. A space time neighborhood 𝜂 centered on the spatial-temporal point

(𝑥0, 𝐴0) is defined as 𝜂(𝑥0, 𝐴0; 𝛿𝑥, 𝛿𝑡) ≜ {(𝑥, 𝐴): ‖𝑥 − 𝑥0‖ < 𝛿𝑥 𝐴𝑚𝑑 |𝐴 − 𝐴0| < 𝛿𝑡}, where

the spatial radius 𝛿𝑥 > 0 and the time interval 𝛿𝑡 > 0 may vary with (𝑥0, 𝐴0). A hotspot

ℋs for a sensor 𝑆𝜖𝕊 at time 𝐴0𝜖𝕋, associated with a stimulus 𝑒, is defined as the space

time neighborhood: ℋ𝑆(𝑒, 𝐴0) ≜ 𝜂𝑒(𝑥𝑆, 𝐴0; 𝛿𝑥, 𝛿𝑡) of the sensor where 𝛿𝑥 and 𝛿𝑡 are the

sensing radius and sensing time interval of the sensor 𝑆 at location 𝑥𝑆 and time 𝐴0 ,

respectively. The hotspot for the sensor set 𝕊 at time epoch t0ϵ𝕋, associated with a

stimulus 𝑒 , is defined to be the set of sensors that have non-empty space-time

neighborhoods: ℋs(e, t0) ≜ {Sϵ𝕊:ℋs(e, t0 ≠ ∅) . A collection of clusters is called a

cluster bank. The Network Design Space is represented by 𝔻 × ℂ, where ℂ is the set of

connectivity vectors of all sensor nodes, and 𝔻 is the network design parameter space as

described before. The topology of the sensor network is defined to be the set ℑ(𝐴) ≜

{𝑥,𝑑,𝑁𝑡(𝑆):∃𝑆𝜖𝕊, with 𝑑 𝜖 𝔻 and connectivity vector 𝑁𝑡(𝑆)) at location 𝑥 at time 𝐴𝜖𝕋}.

Therefore, ℑ(t) contains all variables that a network controller may need to manipulate

for adaptation to changes in the information space.

121

Figure 5.6: Design architecture of a sensor network.

The Network Design Space is configured to adapt to the needs of the Information

Space. Reconfiguration of a large sensor network may be achieved through various

means such as adaptive sampling of an individual sensor, sensor mobility, turning on/off

the existing sensors, bandwidth reallocation, protocol modification, and resource

reallocation. Adaptive parameters of the Network Design Space include sensor position,

resource assignments, and network connectivity.

The Information Space is mainly used to derive the spatial-temporal statistics of

sensor data. Since the system is distributed, each sensor addresses the data compression

and communication constraints by autonomously generating the PFSA interpretation of

data. The constructed PFSAs are compared against a library of pre-defined patterns of

interest, allowing the sensor network to selectively track interesting targets among many

candidates. The PFSAs constructed by individual sensors are fused at the cluster head.

The cluster is dynamically formed by grouping the nodes (sensors) that observe the same

pattern.

The sensor set is denoted by 𝔉 which represents the set of all sensors; 𝐺 is defined as

a pattern of a PFSA; and ℋ is defined to map each sensor 𝑐𝜖𝔉 to the PFSA from the

sensor data stream. Among all identified patterns, a set 𝐺 of 𝐾 patterns of interest,

𝔾 = �𝐺𝑖: 𝑖 = 1,⋯ ,𝐾�,𝐾𝜖ℕ is defined. The set of patterns of interest 𝔾 is completely

122

ordered via the pattern characteristic function 𝑥𝔾:𝔾 → [0,1]. A sensor data segment is

mapped into the pattern of interest 𝐺.

The InforNet Interface functions the interaction between the Information Space and

the Network Design Space. It consists of forward and feedback interfaces as shown in

Figure 5.6. The forward interface translates the Information Space requirements to enable

the network to act as an actuator to best meet the fusion requirements such as

dynamically changing the sensor clusters and network topology. Once the network

finishes executing the command from the Information Space, feedback information will

be sent back to the Information Space through the InfoNet Interface to show the results

from the reconfiguration of the network. It is seen that the Information Space can

selectively cluster the available sensors in order to track different objects. This

mechanism has high scalability and robustness for different objectives.

5.3.2 An Experiment of a Pressure Sensor Field

In this experiment, a pressure sensitive floor (Figure 5.7) is simulated, which consists

of an array of piezoelectric wires that serve as distributed pressure sensors. A coil of

piezoelectric wire is placed under the square floor tiles of size 0.65 m × 0.65 m such

that each sensor generates an analog voltage due to the pressure applied on it. The output

voltage is in the range of 0 to 1023. A total of 144 sensors are placed in a 9×16

equidistant grid to cover the entire workspace. The objective of this experiment is to

identify two different moving objects which are simulated by two different types of

mobile robots: 1). Pioneer mobile robot, and 2) Segway RMP robot (Figure 5.8).

Figure 5.7: Pressure sensor field.

123

(a) (b)

Figure 5.8: The experimental setup: (a) Pioneer mobile robot; (b) Segway RMP robot.

In this work (Figure 5.8(b)), a Segway RMP robot is made to move in the sensor

field. The sensor network (pressure sensor field) detects and tracks spatial-temporal

events of the behavior patterns of a Segway RMP. A Segway RMP moving in different

types of motion trajectories is considered for illustration of detecting and tracking of

various behavior patterns.

Each sensor addresses the issues of data compression and communication constraints

by autonomously aggregating the data through symbolization and semantic construction

of probabilistic finite state automata (PFSA). Figure 5.9 shows the procedure of PFAS

feature generation. As the sensors receive time series data, the data will be divided into

four sub-regions. Next, a feature vector
1 2 3 4(, , ,)TV V V V V= is generated, which represents the

signature of the acquired signal. Finally, the feature vector is utilized to generate a PFAS

pattern.

Figure 5.9: Basic modeling procedure of sensory data.

124

The constructed PFSA are compared against a library of pre-determined patterns of

interest with an appropriate metric, thus allowing the sensor network to selectively track

interesting targets amongst many candidate targets. The observed PFSA which are

matched the PFSA from the library are clustered dynamically, with additional network

and physical requirements. Figure 5.10 shows the logic of sensor clustering.

Figure 5.10: Dynamic space-time clustering.

Suppose that 𝑑 is the distance of the sensor 𝑐 from the target location, 𝐺 is the

observed pattern of interest at its origination point, and 𝐻𝑡(𝑐) is constructed by PFSA

from the data of the sensors. It yields 𝑑 = 𝐷�𝜃(𝐻𝑡(𝑐),𝐺)�, where 𝜃 is a set of PFSA

which measure the deterioration of signal from its origination to the location of the

sensor. Also, 𝑃[𝑐,𝐺] is defined the probability that the sensor has observed the pattern of

interest 𝐺.

Therefore, if 𝐺𝑘 is a pattern of interest and 𝜖𝑖 is the detection region, the probability

of using sensor i in the work environment is given by

𝑃[𝑖,𝐺𝑘; 𝜖𝑖] = �𝑃[𝑖,𝐺𝑘] 𝑖𝑖 𝐷�𝜃(𝐻𝑡(𝑐),𝐺𝑘)� ≤ 𝜖𝑖
0 𝑐𝐴ℎ𝑒𝑟𝑤𝑖𝑐𝑒

. (5.1)

The estimated physical location of a sensed pattern of interest 𝐺𝑘 is estimated by the

cluster as follows:

125

𝜌𝑘,𝐶𝑡
𝑙�𝐺𝑘�

∗ (𝐴) = ∑ Γ(𝑖) ∙ 𝑃[𝑖,𝐺𝑘; 𝜖𝑖]𝑖∈𝐶𝑡
𝑙(𝐺𝑘) (5.2)

where 𝛤(𝑖) is the physical location of sensor 𝑖.

5.3.3 Heterogeneous Sensor Field

In order to extend the work from a network of single sensor type to a heterogeneous

sensor field, we now develop a simulation environment, which is shown in Figure

5.11(a). In this simulation environment, different shapes represent different types of

sensors. The purpose of this simulation is to identify a moving object in the scene. It is

able to track the motion of the object while it is moving. Figure 5.11 (b) shows the

simulation platform which has been developed in Matlab. The top left window shows the

real trajectory of the moving object in the workspace. The top middle window shows the

active sensors in the sensor network which are indicated in color. The red one is the head

of the sensor cluster, and the blue dot is the moving object. The four windows in the

bottom show the detected PFSA pattern of the object.

(a)

126

(b)

Figure 5.11: (a) Simulation of a heterogeneous sensor field; (b) Developed Matlab

simulation environment.

In the simulation, the moving objects are made to move along a horizontal line.

Figure 5.12 shows the performance of the system when it tracks one target and two

targets.

Figure 5.12: Simulation results.

127

5.3.4 Modeling the Sensor Network as PFAS

A sensor network operates in an infrastructure of sensing, computation, and

communication, through which it perceives the evolution of a physical dynamic process

in its environment. It is data-centric (Tubaishat, M. and Madria, 2003) because data from

the sensor nodes are of primary importance for this application. A common characteristic

of information fusion in sensor networks is that data streamed from different sources are

brought together through a communication network. Therefore, the following factors

should be taken into account. Typically, there are thousands of sensor nodes in a wireless

sensor network. It is almost impossible to have a global centralized fusion center. In other

words, the data fusion scheme has to be designed and implemented in a distributed

fashion for wireless sensor networks. It is impossible to broadcast all sensor data in the

network because of the limitation of sensor power and bandwidth of the network.

Therefore, selected use of sensors for different sensing purpose is necessary.

Figure 5.13(a) and (b) show the idea of dynamic clustering and organizing of sensors

as a sensor network for a specific sensing purpose, which is represented by PFSA. In

Figure 5.13(a), each node represents a type of sensor, which can also be considered as a

representation of PFSA features of a type of sensor. As one type of sensor (q0) is

activated to reason the possible object that is tracked, it will keep searching for the

corresponding PFSA features of other types of sensors(q1, q2). As the searching proceeds

all the way from q0 to qn, it gathers all possible PFSA features of the tracked object. This

mechanism gathers the neighboring sensors to be clustered as a sensor network for the

purpose of identifying and tracking a detected object of interest in the workspace, as

shown by the red dash line in Figure 5.13(a).

(a)

128

(b)

Figure 5.13: (a) Dynamic clustering mechanism; (b) network clustering.

129

CHAPTER 6 Physical Implementation and Experimentation

In this chapter, the techniques developed in the previous chapters such as machine

vision, mobile robot navigation with Q-learning, robot motion control, and networked

sensing are integrated and implemented in a physical mobile manipulation system in

laboratory. This system contains a mobile robot platform and a robotic manipulator arm

mounted on it, which has been developed and tested in the Industrial Automation

Laboratory (IAL) of the University of British Columbia. In Section 6.1, the overview of

the overall robotic system and the objective of the present experimentation are

introduced. The test environment is demonstrated in order to simulate the search and

retrieval scenario. Section 6.2 focuses on the hardware and software configuration of the

system and development of the test bed, which consists of the mobile manipulation

system. The sensors that are utilized and mounted on the robot, are discussed as well.

Section 6.3 discusses the experimentation with the mobile manipulation system, which

demonstrates that the developed system has the ability of identifying objects, navigation,

and grasping an object of interest.

6.1 Overview
Physical experimentation is carried out in a laboratory environment to evaluate the

performance of the methodologies and the robotic system that have been in the present

thesis. Figure 6.1 gives an overview of the overall experimental procedure. The test

environment contains a mobile robot platform and a manipulator arm mounted on it,

several obstacles, and an object of interest. In this experiment, the robot navigates and

finds the object of interest in the workspace. Then it moves close to the object. Finally, it

grasp the object by using the on-board manipulator.

130

RobuArm
Webcam

Pioneer PowerBot

Bumblebee Stereo Camera

Object of Interest

Obstacles

Figure 6.1: Overview of the experiment.

6.2 Test Bed
Figure 6.2 shows the physical configuration of the mobile manipulation system. It

contains a Powerbot which is the mobile base, a RubuArm (the manipulator), and

different types of sensors (web camera, laser, sonar, stereo camera).

131

Figure 6.2: Physical configuration of the test bed.

6.2.1 Pioneer Powerbot

Figure 6.3 shows the original Powerbot, which is a high-payload differential-drive

robot developed by Adept Mobile Robots Company. It is able to move at a speed of up to

1.6 m/s with a payload of up to 100 kg. Hence it is an ideal platform for laboratory and

research tasks involving delivery, navigation, and manipulation. The Powerbot is

equipped with a gyro sensor and 2 groups of sonars. The combination of readings from

the gyro and the encoders is able to provide the position and orientation of the mobile

robot. There are 32 sonar cones embedded in the mobile base and they can measure the

distance between the robot and the neighborhood obstacles.

Web Camera

Laser

Sonar

Stereo Camera

132

Figure 6.3: Poineer Powerbot—the mobile base.

The standard Service Information Packet (SIP), which is utilized to control the robot,

is shown in Figure 6.4. It is sent on a constant cycle, and the reception of this SIP triggers

a new iteration of ArRobot's synchronized task processing cycle. This cycle consists of a

series of synchronized tasks, including SIP packet handling, invocation of sensor

interpretation tasks, action handling and resolution, state reflection, and invocation of

user tasks, in that order. The task cycle is (normally) triggered by the reception of a SIP

(unless the robot platform fails to send SIPs or the task cycle is explicitly disassociated

from the robot connection—see below). Each task will be invoked in a predictable order,

and will have the most recent data to act upon. Hence, no task will miss the opportunity

to use a SIP, and as long as the tasks do not take too much time to execute, each SIP is

handled as soon as possible once the robot sends it.

133

Figure 6.4: Overview of the task cycle.

6.2.2 RobuArm

Figure 6.4 shows the robotic manipulator called RobuArm, which is utilized in the

experimental system. It is a six-DOF robotic manipulator which is developed by

Robosoft Company in France. It has six revolute joints with a 10 kg payload, and is very

powerful. The main advantage of this arm is the controllability of the acceleration,

velocity, and position. The detailed specifications of this arm are given in Table 6.1.

134

Figure 6.5: RobuArm—the manipulator.

Table 6.1: Technical specifications RobuArm.

Specification Value Notes

Usage Outdoor

Kinematics 6 independent axes The 3 first axis have mechanical brakes

when power is OFF

Weight About 42 kg

Maximum payload 10 kg

Maximum speed per

axis

 1 rad/sec

Dimensions (L x w x h) See pictures below for its main

dimensions and the working envelope

Main power supply 48 VDC @ 30 A

Protection index IP65 IP65: Protected against water splashes

from all directions by hose (NF

EN60529)

Humidity 0-90% without condensation

Temperature Functioning : 0°C +50°C

Storage : 0°C +50°C

135

Specification Value Notes

Embedded controller EMTRION HiCO.SH7780-SBC

OS Windows-CE® C++

Programming software robuBOX C#, Microsoft Robotic Developer

Studio

Integrated sensors Optical encoder on each axis

Magnetic position limit switch

Interface of supervision Ethernet On-board UDP server

User interface - Power connector

- Communication connector

- Brake release switches

Main Colour Black

6.2.3 Sensors

There are two types of cameras that are utilized in the present work: a stereo camera

and a webcam.

Stereo Camera

A BumbleBee®2 (Figure 6.6(a)) by Point Grey Research is used as the stereo-vision

eye-to-object camera. The stereo camera is directly mounted on the mobile base. Each

camera is calibrated using the same camera calibration method that was described in

Chapter 3. The two cameras are ultimately linked to each other by a common coordinate

frame, as shown in Figure 6.6 (b). The calibration results of these two cameras are given

in Table 6.2.

(a) (b)

Figure 6.6: (a) BumbleBee®2 stereo camera; (b) Coordinate frames of the camera.

136

Table 6.2: Intrinsic parameters of the stereo camera.

 Left Right

Focal length f (mm) 2.5

Focal Length to

Pixel Size Ratio

fx 1321.63149 1314.97694

fy 1355.18201 1344.62115

Principal Point Or 466 470

Oc 406 392

Resolution R 768

C 1024

WebCam

A Logitech QuickCam® Communicate STX™ CCD webcam is used as the

monocular eye-in-hand camera. The ball-socket base of the webcam is removed and

replaced by a custom-made fixture. Finally, the entire assembly is rigidly mounted on the

manipulator’s end-effector using a band clamp (see Figure 6.2). The calibration result has

been presented in Chapter 3.

Figure 6.7: The Logitech webcam.

Laser distance finder

Figure 6.7 shows the Hokuyo URG-04LX sensor. Scanning laser range finders can be

thought of as little sonars using light instead of sound to create 2-D maps of the

proximity to nearby objects. Because lasers use light instead of sound, they can make

measurements very fast and with an extremely narrow field of view (FOV). The scanner

that is utilized in this work has an angular scanning range of 240 degrees, and the angular

resolution is ~0.36 degrees with a scanning refresh rate of up to 10 Hz. Distances are

reported from 20 mm to 4 m. Power is very reasonable at 500 mA and 5 V. The detailed

http://www.acroname.com/robotics/parts/R283-HOKUYO-LASER1.html

137

specifications are listed in Table 6.3. Figure 6.9 demonstrates an example of the laser

readings.

Figure 6.8: The Hokuyo URG-04LX sensor.

Table 6.3: Specifications of the laser distance finder.

Item Specifications

Power source 5 V +/-5%

Current consumption 0.5 A (Rush current 0.8 A)

Detection range 0.02 m to approximately 4 m

Laser wavelength 785 nm, Class 1

Scan angle 240°

Scan time 100 ms/scan (10.0 Hz)

Resolution 1 mm

Angular Resolution 0.36°

Interface USB 2.0, RS232

Weight 5.0 oz (141 gm)

http://www.acroname.com/robotics/parts/R283-HOKUYO-LASER1.html

138

Figure 6.9: An example of laser reading results.

6.3 Software Development
Development, application, and testing of computer software constitute a significant

part of the present development. Two types of computer programming language, Visual

Basic and C++, have been used to develop software for implementing the functions in the

project, particularly related to the robot control subsystem and the mobile navigation

subsystem.

The software tool that is used in developing most of the system in this project is

Visual Studio. It is a Microsoft’s flagship software development tool for computer

programmers. It provides a friendly programming environment for Basic and C/C++.

Moreover, it has strong compatibility with any Microsoft operating system (Windows

2000, Windows 7, etc.) and is well supported by Windows API for hardware-level

programming.

Several other computer technologies are applied in this thesis to enhance the system

performance. Windows API (Application Programming Interface), abbreviated as

WinAPI, is one of them. It is the core set of application programming interfaces available

in Microsoft Windows operating systems, and it provides low-level hardware access to a

Windows system from third-party software (sound card access, etc.). Matlab, which

includes control toolboxes such as control toolbox, MPC toolbox, optimization toolbox

and computer toolbox, is utilized in this work to assist the purposes of analysis and

development.

139

6.4 Mobile Manipulation System
A physical experiment is carried out in the Industrial Automation Laboratory of the

University of British Columbia to evaluate the performance of the developed system.

Figure 6.10 shows the overall procedure of the experiment. First, an overhead camera

with a fisheye lens grabs pictures of the entire workspace. Images are rectified and

processed as gray scale images. Second, the SIFT-based object identification algorithm is

utilized to identify the mobile robot and the goal location by identifying and tracking the

Starbucks logo which is stuck on the robot and the book which is placed in the goal

location, respectively. Meanwhile, the camera can provide localization information of the

mobile robot and the location of the goal to the mobile robot. Then, the robot checks the

current state with the help of the global camera and its own sensing capability. Third, an

action is selected by the Q-learning algorithm from the Q-table, which will move the

robot to approach the goal. As the object (a bottle with a red cap) moves into the local

sensing area of the robot, the ANMPC visual servoing is activated, guiding the mobile

robot to move closer to the object. Finally, anther ANMPC visual servoing for the

manipulator will be utilized to grasp the object when the object is inside the workspace

of the manipulator. The corresponding experimental results are shown in the video clip #

3. Some snapshots of the video clip are shown in Figure 6.10.

Figure 6.10: The overall procedure of the mobile manipulation experiment.

140

Several screen shots of the video clip of the experiment are shown in Figure 6.11.

Figure 6.11(a) shows the workspace and the initial position of the robot, obstacles, and

the object of interest. First, the robot navigates from the current location to a location that

is close to the object of interest by utilizing a navigation system that uses pre-trained Q-

learning (Figure 6.11(b) and (c)). Next, visual servoing using ANMPC is activated to

move the mobile robot closer to the object of interest while making sure that the object is

inside the workspace of the manipulator (Figure 6.11(d)). Finally, the visual servo

control with ANMPC is used for the manipulator to grasp the object of interest.

(a)

141

(b)

(c)

142

(d)

(e)

143

(f)

Figure 6.11: Screen shots of the experiment.

144

CHAPTER 7 Conclusions and Suggestions

This thesis designed, analyzed, and implemented a mobile manipulation system

which is developed for robotic search-and-rescue and homecare applications, where the

robot workspace is unknown and unstructured. The conclusions are summarized in the

next section. The subsequent sections discuss primary research contributions made and

limitations of the current work, and indicate possible improvements that can be made in

future research.

7.1 Conclusions
This thesis addressed the manipulation control of a mobile robot with the support of a

sensor network for carrying out dynamically challenging tasks. Two object tracking

algorithms were developed in object identification and tracking. Specifically, a color-

based tracking algorithm was developed to identify the object of interest and provide the

position of the object in the image plane for visual servoing, and a SIFT-based object

identification was developed for localization. The depth measurement using stereo

cameras was introduced. A system that used Q-learning was developed for mobile robot

navigation. The experimental results showed that the robot learned and operated

effectively in an unknown and unstructured dynamic environment.

Kinematic models of the mobile robotic platform and the manipulator and a model of

the camera were developed and utilized to represent the physical system, where the joint

velocities of the robot are the inputs and the position of the feature point in the image is

the output. A traditional approach of image-based visual servoing was developed and

demonstrated. The scheme of ANMPC was developed, which incorporated a multi-input

multi-output (MIMO) control system that could accommodate constraints, including

environmental constraints (e.g., obstacles, boundaries, visibility) and physical constraints

of the robots (e.g., limits on joint movement, velocity, and torque). In implementing the

ANMPC scheme, the nonlinear and time-variant model was linearized on line with

145

respect to the current position of the feature point and robot joints, using an adaptive

approach. The corresponding control architecture predicts the system outputs and

generates optimized control actions according to a cost function. This approach was

demonstrated to be rather effective in robotic navigation and manipulation.

In order to extend the mobile manipulation system to a wider workspace such as that

found in cities and home scenarios, a sensor network was designed and developed

employing PFSA (Probabilistic Finite State Automata). The developed PFSA was utilized

in both modeling of the sensor data and organizing and representing the sensor network.

An application of object identification and tracking was presented; and a heterogeneous

sensor network was developed along with a simulation platform in MATLAB. A self-

organized and clustered sensor network, which is based on PFSA, was demonstrated.

An integrated robotic system was developed and experimental studies were carried

out. The experimentation showed good performance of the developed approaches and of

the overall system.

7.2 Primary Contributions
The primary contribution of this thesis was to develop an Adaptive Nonlinear Model

Predictive Controller (ANMPC) for motion control of both a mobile robot platform and a

robotic manipulator arm. The proposed controller took into account the visibility

constraints and physical constraints, and it was able to provide optimized controller

outputs. It was shown that the proposed controller was able to perform properly when the

object was within the robot’s local sensing area.

Efficient and robust algorithms of machine vision were developed, which utilized

color and features of objects. With the integration of other sensors, these algorithms

helped to determine the pose of the robot in the workspace. Also, they were implemented

in the motion control feedback loops of the mobile robot and the robotic manipulator,

providing accurate and fast position information of a tracked object.

A traditional algorithm of reinforcement learning, specifically Q-leaning, was

developed to properly execute the motion of a mobile robot in an unknown, unstructured

and dynamic workspace. With the help of a sensor network, the algorithm guided the

mobile robot to move close to the object of interest.

146

A Probabilistic Finite State Automata (PFSA)-based, information driven, self-

organized sensor network was proposed to model the sensor data, and dynamically

cluster the sensors for organizing the sensor network to identify and track different

objects of interest.

Physical experimentation was developed and presented, which showed the

effectiveness of the developed methodologies and systems in applications of mobile

robot manipulation.

7.3 Limitations and Suggested Future Research
Although the mobile manipulation system that was developed in the present thesis

has shown quite good performance in both simulation and experimentation, there are

potential improvements which may constitute a possible future direction of research.

The primary criterion of a successful image-based visual servo system is that the

feature point must remain in the camera frame of view, which greatly limits the

workspace of the robot. In order to overcome this limitation, 1/2D visual servoing or

trajectory planning plus visual servoing may be used, thereby expanding the available

workspace.

Linear and fixed constraints are considered in the thesis, which may not represent a

real work scenario. Moreover, it also limits the workspace of the robot. In future, more

complex constraints may be considered to meet the real world scenarios and increase the

robustness of the system.

A more complex experiment may be designed and developed to evaluate the

performance and effectiveness of a self-organized and clustered sensor network in

identifying and tracking more objects.

In order to perform properly in a real-world scenario such as unstructured and uneven

terrains, dark rooms and in the night, a more enhanced robotic system (e.g., a

mechanical design that has the ability to autonomously recover from a fall) and sensors

(e.g., night vision cameras) will be required.

147

BIBLIOGRAPHY

Agin, G. J., “Real Time Control of a Robot with a Mobile Camera,” Technical Note 179,

SRI International, Menlo Park, CA, Feb. 1979.

Arkin, R.C., Behavior-Based Robotics, The MIT Press, Cambridge, MA, 1998.

Alpaydm, E., Introduction to Machine Learning, MIT Press, Cambridge, MA, 2004.

Amarasinghe, D., Mann, G. K. I., and Gosine, R. G., “Vision-based hybrid control

scheme for autonomous parking of a mobile robot,” Advanced Robotics, Vol. 21, No. 8,

pp. 905-930, 2007.

Arsenio, A. and Ribeiro, M. I., “Active range sensing for mobile robot localization,”

Proceedings of IEEE/RSJ international conference on intelligent robotics and system

(IROS’ 98), Canada, 1998.

Bertozzi, M., Broggi, A., and Castelluccio, S., “A real-time oriented system for vehicle

detection,” J. System Architecture, pp. 317-325, 1997.

Birgesson, E., Howard, A., and Sukhatme, G., “Towards stealthy behaviors,” IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Las Vegas, Nevada,

pp. 1703-1708, October 2003.

Bonnifait, P. and Garcia, G., “Design and experimental validation of an Odometric and

Goniometric localization system for outdoor robot vehicles,” IEEE transactions on

robotics and automation, Vol. 14, No. 4, pp. 541-548, 1998.

Borenstein, J., Everett, B., and Feng, L., Navigating mobile robot: system and techniques,

A. K. Peters, Ltd., Wellesly, MA, 1996.

148

Bortoff, S., “Path planning for UAVs,” American Control Conference, pp.364-368,

Chicago, USA, 2000.

Buluswar, S. D. and Draper, B. A., “Color machine vision for autonomous vehicles,” J.

System Architecture, pp. 317-325, 1997.

Capparella, F., Freda, L., Malagnino, M., and Oriolo, G., “Visual servoing of a wheeled

mobile robot for intercepting a moving object,” Proceedings of 2005 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Edmonton, Canada, August,

2005.

Camacho, E. F. and Bordons, C., Model Predictive Control, 2nd Edition, Springer, 2007.

Chang, P., and Hebert, M., “First results in omni-directional visual servoing,” Advanced

Robotics, Vol. 14, No. 3, pp. 205-220, 2000.

Chattopadhyay, I., Mallapragada, G., and Ray, A., “V*: a robot path planning algorithm

based on renormalized measure of probabilistic regular languages,” International Journal

of Control, Vol. 82, No. 5, pp. 849-867, 2009.

Chaumette, F. and Hutchinson, S., “Visual servo control part I: basic approaches,” IEEE

Robotics & Automation Magazine, Vol. 13, No. 4, pp. 82-90, December 2006.

Chen, J., Dawson, D.M., Dixon, W.E., and Chitrakaran, V.K., “Navigation function-

based visual servo control,” Automatica, Vol. 43, No. 7, pp. 1165-1177, 2007.

Chen, J., Dixon, W. E., Dawson, D. M., and Mcintyre, M., “Homography-based visual

servo tracking control of a wheeled mobile robot,” IEEE Transactions on Robotics, Vol.

22, No. 2, pp. 407-416, 2006.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10375
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10375

149

Chen, W. P., Hou, J., and Sha, L., “Dynamic clustering for acoustic target tracking in

wireless sensor networks,” IEEE Transaction on Mobile Computing, Vol. 3, pp. 258-271,

July 2004.

Chesi, G. and Hung, Y.S., “Global path-planning for constrained and optimal visual

servoing,” IEEE Transactions on Robotics, Vol. 23, No. 5, pp. 1050-1060, 2007.

Chesi, G., Mariottini, G. L., Prattichizzo, D., and Vicino, A., “Epipole-based visual

servoing for mobile robots,” Advanced Robotics, Vol. 20, No. 2, pp. 255-280, 2006.

Chesi, G., Prattichizzo, D., and Vicino, A., “Straight line path-planning in visual

servoing,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 129, n4,

pp. 541-543, 2007.

Corke, P. I. and Hutchinson, S. A. “A new partitioned approach to image-based visual

servo control,” IEEE Transactions on Robotics and Automation, Vol. 17, No. 4, pp. 507-

515, 2001.

Cowan, N. J., Weingarten, J. D., and Koditschek, D. E., “Visual servoing via navigation

functions,” IEEE Transactions on Robotics and Automation, Vol. 18, No. 4, pp. 521-532,

2002.

Cowan, N. J. and Chang, D.E., “Geometric visual servoing,” IEEE Transactions on

Robotics, Vol. 21, No. 6, No. 1128-1138, 2005.

Dean-Le´on, E. C., Parra-Vega, V., and Espinosa-Romero, A., “Visual servoing for

constrained planar robots subject to complex friction,” IEEE/ASME Transactions on

Mechatronics, Vol. 11, No. 4, pp. 389-400, 2006.

150

Dixon, W. E., Dawson, D. M., Zergeroglu, E., and Behal, A. “Adaptive tracking control

of a wheeled mobile robot via an uncalibrated camera system,” IEEE Transactions on

Systems, Man and Cybernetics – Part B, Vol. 31, No. 3, pp. 341-352, 2001.

Fang, Y., Dixon, W. E., Dawson, D. M., and Chawda, P. “Homography-based visual

servo regulation of mobile robots,” IEEE Transactions on Systems, Man and Cybernetics

– Part B, Vol. 35, No. 5, pp. 1041-1050, 2005.

Gangloff, J., Ginhoux, R., and de Mathelin, M., “Model predictive control for

compensation of cyclic organ motions in teleoperated laparoscopic surgery,” IEEE

Transactions on Control Systems Technology, Vol. 14, No. 2, pp. 235-245, 2006.

Gangloff, J. and de Mathelin, M., “Visual servoing of a 6-DOF manipulator for unknown

3-D profile following,” IEEE Transactions on Robotics and Automation, Vol. 18, No. 4,

pp. 511-519, 2002.

Gaspar, J., Winters, N., and Santos-Victor, J., “Vision-based navigation and

environmental representations with an omnidirectional camera,” IEEE Transactions on

Robotics and Automation, Vol. 16, No. 6, pp. 890-898, 2000.

Ghosh, N., Ravi, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R., and

Chattopadhyay, A. B., “Estimation of tool wear during CNC milling using neural

network-based sensor fusion ,” Mechanical Systems and Signal Processing, Vol. 21, No.

1, pp. 466-479, 2007.

Ginhoux, R., Gangloff, J., and de Mathelin, M., “Active filtering of physiological motion

in robotized surgery using predictive control,” IEEE Transactions on Robotics, Vol. 21,

No. 1, pp. 67-79, 2005.

http://www.sciencedirect.com/science/journal/08883270
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236949%232007%23999789998%23635114%23FLA%23&_cdi=6949&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c1e854d0d15c313407ed1f5106de2529
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236949%232007%23999789998%23635114%23FLA%23&_cdi=6949&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=c1e854d0d15c313407ed1f5106de2529

151

Goedeme, T., Nuttin, M., Tuytelarrs, T., and Gool, L.V., “Vision based intelligent wheel

chair control: the role of vision and inertia sensing in topological navigation,” Journal of

Robotic Systems, Vol. 21, No. 2, pp. 85-94, 2004.

Graves, M., and Batchelor, B., Machine Vision for the Inspection of Natural Products,

Springer, 2003.

Gu, D., Kamal, W., and Postlethwaite, I., “A UAV waypoint generator,” AIAA 1st

Intelligent Systems Technical Conference, September 2004.

Gu, D., Postlethwaite, I., and Kim, Y., “A comprehensive study on flight path selection

algorithms,” IEE Seminar on Target Tracking: Algorithms and Applications,

Birmingham, March, 2006.

Handmann, U., Kalinke, T., Tzomakas, C., Werner, M., and Seelen, W.V., “An image

processing system for driver assistance,” Image and Vision Computing, Vol.18, pp. 367-

376, 2000.

Hong, J. S. and May, S. G., “Neural-network-based sensor fusion of optical emission and

mass spectroscopy data for real-time fault detection in reactive ion etching,” IEEE

Transactions on Industrial Electronics, Vol. 52, No. 4, pp. 1063-1072, 2005.

Hopcrof, J. E., Motwani, R., and Ullman, J. D., Introduction to Automata Theory,

Languages, and Computation, 2nd edition. Addison-Wesley, 2001.

Hutchinson, S., Hager, G. D. and Corke, P. I., “A tutorial on visual servo control,” IEEE

Transaction On Robotics and Automation, Vol. 12, No. 5, pp. 651-670, October, 1996.

Ito, T., Yamada, K., and Nishioka, K., “Understanding driving situation using a network

model,” Intelligent Vehicle, pp. 48-53, 1995.

152

Karray, F. and de Silva, C.W., Soft Computing and Intelligent Systems Design, Addison

Wesley, New York, 2004.

Kelly, R., Bugarin, E., and Sanchez, V., “Image-based visual control of nonholonomic

mobile robots via velocity fields: case of partially calibrated inclined camera,”

Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA,

December, 2006.

Leonard, J. and Durrant-Whyte, H., “Mobile robot localization by tracking geometric

beacons,” IEEE transactions on robotics and automation, Vol. 7, pp. 89-97, 1991.

Lopez-Nicolas, G., Sagues, C., and Guerrero, J.J., “Homography-based visual control of

nonholonomic vehicles,” Proceedings of 2007 IEEE International Conference on

Robotics and Automation, Roma, Italy, April, 2007.

Lowe, D. G., “Object recognition from local scale-invariant features,” International

Conference on Computer Vision, Corfu, Greece, pp. 1150-1157, September 1999.

Lowe, D. G., “Distinctive image features from scale-invariant keypoints, International

Journal of Computer Vision,” Vol.60, No. 2, pp. 91-110, 2004.

Luca, A. D., Oriolo, G., and Giordano, P. R., “Image-based visual servoing schemes for

nonholonomic mobile manipulators,” Robotica, Vol. 25, No. 2, pp. 131-145, 2007.

Lumelsky, V. and Stepanov, A., “Path planning strategies for point mobile automation

moving amidst unknown obstacles of arbitrary shape,” Algorithmica, Vol. 2, pp. 402-430,

1987.

Lind, D. and Marcus,M. An Introduction to Symbolic Dynamics and Coding, Cambridge

University Press, Cambridge, UK, 1995.

153

Ma, Y., Kosecka, J., and Sastry, S. S., “Vision guided navigation for a nonholonomic

mobile robot,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 3, pp. 521-

536, 1999.

Maciejowski, J.M., Predictive Control with Constraints, Prentice Hall, Upper Saddle

River, NJ, 2000.

Mansard, N., Stasse, O., Chaumette, F., and Yokoi, K., “Visually-guided grasping while

walking on a humanoid robot,” Proceedings of 2007 IEEE International Conference on

Robotics and Automation, Rome, Italy, April, 2007.

Mariottini, G. L. and Prattichizzo, D. “Image-based visual servoing with central servoing

with central catadioptric cameras,” The International Journal of Robotics Research, Vol.

27, No. 1, pp. 41-56, 2008.

Mariottini, G. L., Oriolo, G., and Prattichizzo, D., “Image-based visual servoing for

nonholonomic mobile robots using epipolar geometry,” IEEE Transactions on Robotics,

Vol. 23, No. 1, pp. 87-100, 2007.

Matthews, N., An, P., Charnley D., and Harris, C., “Vehicle detection and recognition in

greyscale imagery,” Control Engineering Practice, Vol. 4, pp. 473-479, 1996.

Mikolajczyk, K. and Schmid, C., “An affine invariant interest point detector,” European

Conference on Computer Vision, Copenhagen, Denmark, pp. 128-142, 2002.

Nierobisch, T., Fischer, W., and Hoffman, F., “Large view visual servoing of a mobile

robot with a pan-tilt camera,” Proceedings of 2006 IEEE/RSJ International Conference

on Intelligent Robots and Systems, Beijing, China, October, 2006.

154

Palluat, N., Racoceanu, D., and Zerhouni, N., “A neuro-fuzzy monitoring system

Application to flexible production systems,” Computers in Industry, Vol. 57, No. 6, pp.

528-538, 2006.

Ray, A., “Symbolic dynamic analysis of complex systems for anomaly detection,” Signal

Processing, Vol. 84, pp. 1115-1130, 2004.

Remazeilles, A. and Chaumette, F. “Image-based robot navigation from an image

memory,” Robotics and Autonomous Systems, Vol. 55, No. 4, pp. 345-356, 2007.

Russell, S. and Norvig, P., Artificial Intelligence: A Modern Approach, Second Edition,

Pearson Education, Inc., Upper Saddle River, NJ, 2003.

Sanderson, A. C. and Weiss, L. E., “Image-based visual servo control using relational

graph error signals,” in Proc. IEEE, pp. 1074-1077,1980.

Sauvee, M., Poignet, P., and Dombre, E. “Ultrasound image-based visual servoing of a

surgical instrument through nonlinear model predictive control,” The International

Journal of Robotics Research, Vol. 27, No. 1, pp. 25-39, 2008.

Seelen, W.V., Curio, C., Gayko, J., Handmann, U., and Kalinke, T., “Scene analysis

organization of behavior in driver assistance system,” Proceeding of IEEE International

Conference on Image Processing, pp. 524-527, 2000.

Schramm, F. and Morel, G., “Ensuring visibility in calibration-free path planning for

image-based visual servoing,” IEEE Transactions on Robotics, Vol. 22, No. 4, 848-854,

2006.

Spong, M. W., Hutchinson, S., and Vidyasagar, M., Robot Modeling and Control, John

Wiley & sons, Inc, 2006.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2D-4K7FJ6D-1&_user=10&_coverDate=08%2F31%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=377e3151170015282731debef9f19caa#vt1#vt1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2D-4K7FJ6D-1&_user=10&_coverDate=08%2F31%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=377e3151170015282731debef9f19caa#vt2#vt2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2D-4K7FJ6D-1&_user=10&_coverDate=08%2F31%2F2006&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=377e3151170015282731debef9f19caa#vt3#vt3
http://www.sciencedirect.com/science/journal/01663615
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235700%232006%23999429993%23628733%23FLA%23&_cdi=5700&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=e7fef1bf302ff770f8ae1958031754f7

155

Steger, C., Ulrich, M., and Wiedemann C., Machine vision algorithms and applications,

Wiley-VCH, 2008

Siegware, R. and Nourbakhsh, I. R., Introduction to Autonomous Mobile Robots, The

MIT Press, London, English, 2004.

Su, M. C., Huang, D. Y., Chou, C. H., and Hsieh, C. C., “A reinforcement-learning

approach to robot navigation,” IEEE International Conference on Networking, Sensing

and Control, Taipei, Taiwan, March 2004.

Sutton, R. and Barto, A. G., Reinforcement Learning, MIT Press, Cambridge, MA, 1998.

Szeliski, R., Conputer Vision: Algorithms and Applications, Springer, Ithaca, NA, 2011.

Teng, Y., DeMenthon, D., and Davis, L., “Stealth terrain navigation,” IEEE Transactions

on Systems, Man, and Cybernetics, Vol. 23, No. 1, pp.96-110, 1993.

Tubaishat, M. and Madria, S., “Sensor networks: an overview,” IEEE Potential, Vol. 22,

2003.

Uĝur, E., Doĝar, M. R., Çakmak, M., and Şahin, E., “The learning and use of

traversability affordance using range images on a mobile robot,” International conference

on robotics and automation, Roma, Italy, pp. 1721-1726, 2007.

Vassallo, R. F., Schneebeli, H. J., and Santos-Victor, J., “Visual servoing and appearance

for navigation,” Robotics and Autonomous Systems, Vol. 31, No. 1-2, pp. 87-97, 2000.

Wang, Y. and de Silva, C. W. , “A fast and robust algorithm for color-blob tracking in

multi-robot coordinated tasks,” International journal of information acquisition, Vol. 3,

No. 3, pp. 191-200, 2006.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Mu-Chun%20Su.QT.&newsearch=partialPref

156

Wang, Y. and de Silva, C.W., “The sequential Q-learning algorithm with Kalman

filtering (SQKF) for multi-robot cooperative transportation tasks,” IEEE/ASME

Transactions on Mechatronics, Vol. 15, No. 2, pp. 261-268, 2010.

Wang, W. Q., Golnaraghi, F. M., and Ismail, F., “Prognosis of machine health condition

using neuro-fuzzy systems,” Mechanical Systems and Signal Processing, Volume 18, No.

4, pp.813-831, 2004.

Yamamoto, Y., Pirjanlan, P., Munich, M., Dibernardo, E., Goncalves, L., Ostrowski, J.,

and Larlsson, N., “Optical sensing for robot perception and localization,” IEEE workshop

on advanced robotics and its social impacts, Nagoya, Japan, pp. 14-17, 2005

Yang, H. and Sikdar, B., “A protocol for tracking mobile targets using sensor networks,”

Proceedings of IEEE Workshop on Sensor Network Protocols and Applications,

Anchorage, Alasha, USA, May 2003.

Yufka, A. and Parlaktuna, O., “Performance comparison of bug algorithms for mobile

robots,” 5th International Advantaged Technologies Symposium (IATS’09), Karabyj,

Turkey, May 12-15, 2009.

Zhang, H. and Ostrowski, J. P., “Visual motion planning for mobile robots,” IEEE

Transactions on Robotics and Automation, Vol. 18, No. 2, pp. 199-208, 2002.

Zhang, Z., Weiss, R., and Hanson, A. R., “Visual servoing control of autonomous robot

calibration and navigation,” Journal of Robotic Systems, Vol. 16, No. 6, pp. 313-328,

1999.

Zhang, Z. Y., “Flexible camera calibration by viewing a plane from unknown

orientations,” The Proceeding of the Seventh IEEE International Conference on

Computer Vision, Vol. 1, pp. 666-673, September 1999.

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236949%232004%23999819995%23483097%23FLA%23&_cdi=6949&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=6e47bb462122501d4d990c1d107c8bbd
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236949%232004%23999819995%23483097%23FLA%23&_cdi=6949&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=6e47bb462122501d4d990c1d107c8bbd

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	List of Abbreviations
	Acknowledgements
	CHAPTER 1 Introduction
	1.1 Motivation
	1.1.1 Search and Rescue Robotics
	1.1.2 Homecare Robotics

	1.2 Scope and Goals of the Research
	1.3 Problem Definition
	1.4 Related Work
	1.4.1 Machine Vision
	1.4.2 Robot Navigation
	1.4.3 Visual Servoing
	1.4.4 Networked Sensing

	1.5 Contributions and Organization of the Thesis

	CHAPTER 2 Machine Vision
	2.1 Color Tracking
	2.1.1 RGB and HSI Color Spaces
	2.1.2 RGB to HSI Conversion
	2.1.3 HSI to RGB Conversion
	2.1.4 Object Identification

	2.2 SIFT Feature Tracking
	2.2.1 SIFT Feature Generation
	2.2.2 Implementation of SIFT-based Object Identification

	2.3 Stereo Vision

	CHAPTER 3 Mobile Navigation
	3.1 Mobile Localization and Object Pose Estimation
	3.1.1 Sensors in Mobile Localization and Object Pose Estimation
	3.1.2 Global Pose Estimation
	3.1.3 Color Blob Tracking
	3.1.4 Estimation of Box Pose
	3.1.5 Simulation Environment
	3.1.6 Simulation Results

	3.2 Autonomous Mobile Navigation
	3.2.1 The Q-learning Algorithm
	3.2.2 Problem Definition
	3.2.3 States, Actions and Rewards
	3.2.4 Simulation Platform

	CHAPTER 4 Visual Servo Control
	4.1 Modeling
	4.1.1 Rigid Motions and Homogeneous Transformation
	4.1.2 Kinematic Modeling of the Robots
	4.1.3 Camera Modeling
	4.1.4 Models of Visual Servoing

	4.2 Traditional Image-based Visual Servo (IBVS) Controller
	4.3 Hybrid Visual Servo Control
	4.4 ANMPC Visual Servo Controller

	CHAPTER 5 Networked Sensing and Sensor Fusion
	5
	5.1 Definitions
	5.1.1 Formal Languages
	5.1.2 Finite State Machine
	5.1.3 Probabilistic Finite State Automata
	5.1.4 Cross Machine

	5.2 Fusion-driven Sensor Network
	5.3 Design and Implementation of a Fusion-Driven Sensor Network
	5.3.1 Mobile Target Tracking Application
	5.3.2 An Experiment of a Pressure Sensor Field
	5.3.3 Heterogeneous Sensor Field
	5.3.4 Modeling the Sensor Network as PFAS

	CHAPTER 6 Physical Implementation and Experimentation
	6
	6.1 Overview
	6.2 Test Bed
	6.2.1 Pioneer Powerbot
	6.2.2 RobuArm
	6.2.3 Sensors

	6.3 Software Development
	6.4 Mobile Manipulation System

	CHAPTER 7 Conclusions and Suggestions
	7.1 Conclusions
	7.2 Primary Contributions
	7.3 Limitations and Suggested Future Research

	BIBLIOGRAPHY

