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Abstract 

 

This thesis addresses the manipulation control of a mobile robot with the support of a 

sensor network, for carrying out dynamically challenging tasks. Such tasks are defined as 

those where the robot is required to first identify objects, approach and grasp the needed 

objects, and transport them to goal locations in an environment that is dynamic, 

unstructured and only partially known. In the present work, a robotic system with these 

capabilities is developed and implemented for use in tasks of search and rescue, and 

homecare robotics. To this end, this thesis makes significant original contributions in 

developing a scheme of adaptive nonlinear model predictive control (ANMPC) and a 

sensor network with dynamic clustering capability for mobile manipulation under 

challenging conditions.  

Two object tracking algorithms for color tracking and feature tracking are developed 

for object identification and tracking. A system that uses Q-learning is developed for 

mobile robot navigation, which allows the robot to learn and operate in an unknown and 

unstructured dynamic environment.  

A traditional approach of image-based visual servo control is developed and 

demonstrated. The scheme of ANMPC is developed, which incorporates a multi-input 

multi-output (MIMO) control system that can accommodate constraints, including 

environmental constraints and physical constraints of the robots. In implementing ANPC 

scheme, the nonlinear and time-variant model is linearized on line with respect to the 

current position of the image feature and robot joints, using an adaptive approach. The 

corresponding control architecture predicts the system outputs and generates optimized 

control actions according to a cost function.  

In order to extend the mobile manipulation system to a wider workspace such as that 

found in cities and home scenarios, a sensor network is designed and developed 

employing PFSA (Probabilistic Finite State Automata). The developed PFSA is utilized 

in both modeling the sensor data and organizing and representing the sensor network. An 

application of object identification and tracking is presented; and a heterogeneous sensor 

network is developed along with a simulation platform in MATLAB. A self-organized 
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and clustered sensor network, which is based on PFSA, is demonstrated. In conclusion, 

directions for further research and development are indicated.  



iv 
 

 

Table of Contents   

 

Abstract ............................................................................................................................... ii 

Table of Contents ............................................................................................................... iv 

List of Figures ..................................................................................................................... ii 

List of Tables .................................................................................................................... vii 

Nomenclature ...................................................................................................................... ii 

List of Abbreviations .......................................................................................................... ii 

Acknowledgements............................................................................................................ iv 

CHAPTER 1 Introduction .................................................................................................. 1 

1.1 Motivation................................................................................................................. 1 

1.1.1 Search and Rescue Robotics .............................................................................. 1 

1.1.2 Homecare Robotics ............................................................................................ 2 

1.2 Scope and Goals of the Research.............................................................................. 3 

1.3 Problem Definition ................................................................................................... 3 

1.4 Related Work ............................................................................................................ 6 

1.4.1 Machine Vision .................................................................................................. 6 

1.4.2 Robot Navigation ............................................................................................... 8 

1.4.3 Visual Servoing ............................................................................................... 10 

1.4.4 Networked Sensing .......................................................................................... 16 

1.5 Contributions and Organization of the Thesis ........................................................ 19 

CHAPTER 2 Machine Vision .......................................................................................... 21 

2.1 Color Tracking ........................................................................................................ 22 

2.1.1 RGB and HSI Color Spaces ............................................................................. 22 



v 
 

2.1.2 RGB to HSI Conversion .................................................................................. 23 

2.1.3 HSI to RGB Conversion .................................................................................. 23 

2.1.4 Object Identification ........................................................................................ 24 

2.2 SIFT Feature Tracking ............................................................................................ 26 

2.2.1 SIFT Feature Generation ................................................................................. 26 

2.2.2 Implementation of SIFT-based Object Identification ...................................... 33 

2.3 Stereo Vision .......................................................................................................... 34 

CHAPTER 3 Mobile Navigation ...................................................................................... 38 

3.1 Mobile Localization and Object Pose Estimation .................................................. 38 

3.1.1 Sensors in Mobile Localization and Object Pose Estimation .......................... 38 

3.1.2 Global Pose Estimation ................................................................................... 40 

3.1.3 Color Blob Tracking ........................................................................................ 42 

3.1.4 Estimation of Box Pose ................................................................................... 44 

3.1.5 Simulation Environment .................................................................................. 47 

3.1.6 Simulation Results ........................................................................................... 48 

3.2 Autonomous Mobile Navigation ............................................................................ 51 

3.2.1 The Q-learning Algorithm ............................................................................... 51 

3.2.2 Problem Definition .......................................................................................... 53 

3.2.3 States, Actions and Rewards............................................................................ 54 

3.2.4 Simulation Platform ......................................................................................... 58 

CHAPTER 4 Visual Servo Control .................................................................................. 65 

4.1 Modeling ................................................................................................................. 66 

4.1.1 Rigid Motions and Homogeneous Transformation ......................................... 66 

4.1.2 Kinematic Modeling of the Robots.................................................................. 68 

4.1.3 Camera Modeling ............................................................................................ 71 

4.1.4 Models of Visual Servoing .............................................................................. 77 



vi 
 

4.2 Traditional Image-based Visual Servo (IBVS) Controller ..................................... 78 

4.3 Hybrid Visual Servo Control .................................................................................. 87 

4.4 ANMPC Visual Servo Controller ......................................................................... 102 

CHAPTER 5 Networked Sensing and Sensor Fusion .................................................... 114 

5.1 Definitions ............................................................................................................ 116 

5.1.1 Formal Languages ......................................................................................... 116 

5.1.2 Finite State Machine ...................................................................................... 116 

5.1.3 Probabilistic Finite State Automata ............................................................... 117 

5.1.4 Cross Machine ............................................................................................... 117 

5.2 Fusion-driven Sensor Network ............................................................................. 118 

5.3 Design and Implementation of a Fusion-Driven Sensor Network........................ 120 

5.3.1 Mobile Target Tracking Application ............................................................. 120 

5.3.2 An Experiment of a Pressure Sensor Field .................................................... 122 

5.3.3 Heterogeneous Sensor Field .......................................................................... 125 

5.3.4 Modeling the Sensor Network as PFAS ........................................................ 127 

CHAPTER 6 Physical Implementation and Experimentation ........................................ 129 

6.1 Overview............................................................................................................... 129 

6.2 Test Bed ................................................................................................................ 130 

6.2.1 Pioneer Powerbot ........................................................................................... 131 

6.2.2 RobuArm ....................................................................................................... 133 

6.2.3 Sensors ........................................................................................................... 135 

6.3 Software Development ......................................................................................... 138 

6.4 Mobile Manipulation System ............................................................................... 139 

CHAPTER 7 Conclusions and Suggestions ................................................................... 144 

7.1 Conclusions ...................................................................................................... 144 

7.2 Primary Contributions ...................................................................................... 145 



vii 
 

7.3 Limitations and Suggested Future Research .................................................... 146 

BIBLIOGRAPHY .......................................................................................................... 147 



ii 
 

 

List of Figures  

 

Figure 1.1: Schematic representation of the developed system. ......................................... 4 

Figure 1.2: The flowchart of the mobile manipulation system. .......................................... 5 

Figure 1.3: Block diagram of a dynamic look-and-move system. .................................... 11 

Figure 1.4: Block diagram of a typical (direct) visual servo system. ............................... 11 

Figure 1.5: Block diagram of a typical visual servo system (1. Position-based; 2. Image-

based). ............................................................................................................................... 12 

Figure 1.6: General architecture of data fusion processing. ............................................. 17 

 

Figure 2.1: The RGB color model. ................................................................................... 22 

Figure 2.2: The HSI color model. ..................................................................................... 23 

Figure 2.3: Procedure of the color tracking algorithm. .................................................... 25 

Figure 2.4: Implementation of the color tracking algorithm. ........................................... 26 

Figure 2.5: An example of raw data and the results of its differentiation. ....................... 27 

Figure 2.6: Guassian smoothing in edge detection. .......................................................... 28 

Figure 2.7: Derivative of Gaussian in edge detection....................................................... 29 

Figure 2.8: (1) Gaussian; (2) Derivative of Gaussian; (3) Laplacian of Gaussian. .......... 29 

Figure 2.9: Difference of Gaussian (DoG) pyramid. ........................................................ 30 

Figure 2.10: Local extrema. .............................................................................................. 31 

Figure 2.11: SIFT feature descriptor. ............................................................................... 32 

Figure 2.12: Flowchart of object identification. ............................................................... 32 

Figure 2.13: SIFT-based object identification and tracking. ............................................ 33 

Figure 2.14: Examples of SIFT based feature matching. ................................................. 34 

Figure 2.15: Model of a stereo camera. ............................................................................ 35 

Figure 2.16: Epipolar geometry. ....................................................................................... 36 

Figure 2.17: Simplified case of Epipolar geometry. ......................................................... 36 

Figure 2.18: Disparity of features in the left and right camera scenes. ............................ 37 

 



iii 
 

Figure 3.1: General scheme of mobile robot localization and object detection. .............. 40 

Figure 3.2: Motion of a differential-drive robot. .............................................................. 41 

Figure 3.3: (a) Color blob tracking procedure; (b) Camera view. .................................... 42 

Figure 3.4: (a) Schematic drawing of laser range sensor; (b) a 180 degree laser range 

sensor. ............................................................................................................................... 44 

Figure 3.5: (a) Visualized laser range finder results; (b) laser range finder results.......... 45 

Figure 3.6: Laser range finder representation. .................................................................. 45 

Figure 3.7: Simulation environment GUI. ........................................................................ 48 

Figure 3.8: Experimental setup in the simulator. .............................................................. 48 

Figure 3.9: (a) Global camera view; (b) Robot camera view. .......................................... 49 

Figure 3.10: Laser range finder results. ............................................................................ 49 

Figure 3.11: Visualized experimental result. .................................................................... 51 

Figure 3.12: The agent interacts with an environment. .................................................... 51 

Figure 3.13: The mobile navigation system. .................................................................... 54 

Figure 3.14: Definition of states of the mobile robot and environment. .......................... 55 

Figure 3.15: Definition of Actions.................................................................................... 56 

Figure 3.16: Flowchart of Q-Learning.............................................................................. 57 

Figure 3.17: Probability of each action............................................................................. 58 

Figure 3.18: Developed simulation platform for Q-learning training in mobile navigation.

 .......................................................................................................................................... 59 

Figure 3.19: Mobile robot collides with an obstacle. ....................................................... 60 

Figure 3.20: Mobile robot reaches the goal. ..................................................................... 61 

Figure 3.21: System exceeds the allowed maximum number of motion steps. ................ 62 

Figure 3.22: Validation of the training results. ................................................................. 64 

 

Figure 4.1: An example of coordinate frames satisfying DH convention. ....................... 68 

Figure 4.2: Definition of the system coordinates.............................................................. 69 

Figure 4.3: Abstraction of the mobile robot, stereo camera and their frames. ................. 70 

Figure 4.4: Kinematic chain representation of a robotic manipulator. ............................. 71 

Figure 4.5: (a) Pinhole camera model; (b) Pinhole camera model with reflected image 

plane. ................................................................................................................................. 72 

Figure 4.6: Image plane and pixel plane. .......................................................................... 73 



iv 
 

Figure 4.7: (a) Images for calibration; (b) camera reference and extrinsic parameters. ... 77 

Figure 4.8: Simulation results of traditional visual servoing of mobile robot: (a) linear 

velocity trajectory; (b) angular velocity trajectory; (c) position errors of the feature on the 

image plane. ...................................................................................................................... 81 

Figure 4.9: Simulation results of traditional visual servoing of a robotic manipulator: (a) 

position trajectory of the feature point on the image plane; (b) angular velocities of the 

six joints; (c) position error trajectories of the feature on the image plane. ..................... 83 

Figure 4.10: The trajectory of the visual feature point (object) on the image plane. ....... 84 

Figure 4.11: The trajectory (position and heading) of the mobile robot in the physical 

environment when it carries out the mobile manipulation task. ....................................... 85 

Figure 4 12: The visual errors on the image plane when the robot approaches the object 

and attempts to grasp it. .................................................................................................... 85 

Figure 4.13: The control inputs of the plant when the new visual servo controller is 

operating. .......................................................................................................................... 86 

Figure 4.14: The hybrid control scheme for robust visual servoing. ................................ 87 

Figure 4.15: The discrete gird world defined on a 640×480 CCD image plane. .............. 89 

Figure 4.16: The history of Q-values under different world states when the robot received 

off-line training: (a) State (2,2,1), (b) State (3,2,1), (c) State (4,2,1), (d) State (5,2,1). ... 92 

Figure 4.17: The trajectory of the visual feature on the 640×480 image plane when the 

hybrid controller operated in the presence of a small unacceptable area. ........................ 95 

Figure 4.18: The history of the row and column pixel coordinates of the visual feature 

when the robot approached the object and grasped it. ...................................................... 96 

Figure 4.19: The performance of the IBVS controller with a small unacceptable area 

when the robot carried out a mobile manipulation task: (a) history of the pixel 

coordinates of the visual feature on the image plane; (b) trajectory of the mobile robot in 

the physical environment; (c) visual errors on the image plane. ...................................... 98 

Figure 4.20: The trajectory of the visual feature on the 640×480 image plane (large 

unacceptable area). ........................................................................................................... 99 

Figure 4.21: The history of the row and column pixel coordinates of the visual feature.

 ........................................................................................................................................ 100 



v 
 

Figure 4.22: The performance of the IBVS controller when the unacceptable area is large: 

(a) history of the pixel coordinates of the visual feature; (b) trajectory of the mobile robot; 

(c) visual errors on the image plane. ............................................................................... 101 

Figure 4.23: Strategy of model predictive control. ......................................................... 103 

Figure 4.24: Block diagram of the mobile robot system with adaptive nonlinear model 

predictive control (ANMPC) for visual servoing. .......................................................... 104 

Figure 4.25: The experimental results of a mobile visual servo system using un-

constrained ANMPC: (a) trajectory of the target object in the image; (b) pixel errors on 

the image plane; (c) history of the mobile robot location; (d) history of the robot 

translational velocity (control input); (e) history of the robot rotational velocity (control 

input). .............................................................................................................................. 108 

Figure 4.26: Mobile visual servoing using constrained ANMPC. ................................. 111 

Figure 4.27: Visual servoing of a robotic arm using ANMPC. ...................................... 113 

 

Figure 5.1: Possible application of a sensor network: (a) a future city; (b) a future home 

environment. ................................................................................................................... 115 

Figure 5.2: An example of finite state machine. ............................................................. 116 

Figure 5.3: Analogy between a cross machine and a transfer function. ......................... 118 

Figure 5.4: An example of a system. .............................................................................. 118 

Figure 5.5: Overall network architecture. ....................................................................... 119 

Figure 5.6: Design architecture of a sensor network. ..................................................... 121 

Figure 5.7: Pressure sensor field. .................................................................................... 122 

Figure 5.8: The experimental setup: (a) Pioneer mobile robot; (b) Segway RMP robot.

 ........................................................................................................................................ 123 

Figure 5.9: Basic modeling procedure of sensory data. ................................................. 123 

Figure 5.10: Dynamic space-time clustering. ................................................................. 124 

Figure 5.11: (a) Simulation of a heterogeneous sensor field; (b) Developed Matlab 

simulation environment. ................................................................................................. 126 

Figure 5.12: Simulation results. ...................................................................................... 126 

Figure 5.13: (a) Dynamic clustering mechanism; (b) network clustering. ..................... 128 

 

Figure 6.1: Overview of the experiment. ........................................................................ 130 



vi 
 

Figure 6.2: Physical configuration of the test bed. ......................................................... 131 

Figure 6.3: Poineer Powerbot—the mobile base. ........................................................... 132 

Figure 6.4: Overview of the task cycle. .......................................................................... 133 

Figure 6.5: RobuArm—the manipulator. ....................................................................... 134 

Figure 6.6: (a) BumbleBee®2 stereo camera; (b) Coordinate frames of the camera. .... 135 

Figure 6.7: The Logitech webcam. ................................................................................. 136 

Figure 6.8: The Hokuyo URG-04LX sensor. ................................................................. 137 

Figure 6.9: An example of laser reading results. ............................................................ 138 

Figure 6.10: The overall procedure of the mobile manipulation experiment. ................ 139 

Figure 6.11: Screen shots of the experiment. ................................................................. 143 

 

  



vii 
 

 

List of Tables  

 

Table 2.1: SIFT algorithm of local feature generator……………………………………30 

Table 3.1: Important laser range results…………………………………………………46 

Table 3.2: Data for pose calculation….…………………………………………………50 

Table 4.1: Denavit-Hartenberg convention……………………………………………...67 

Table 4.2: DH table of the RobuArm…….……………………………………………...71 

Table 6.1: Technical specifications RobuArm………………………………………....134 

Table 6.2: Intrinsic parameters of the stereo camera…………………………………...136 

Table 6.3: Specifications of the laser distance finder…………………………………..137 

 

 



ii 
 

 

Nomenclature 

B   Blue 

𝑐    Column 

𝑁(𝑘)    Cost function  

𝐷    Distance measurement of the laser 

𝐷(𝑥,𝑦,𝜎)   Difference of Gaussian 

𝑖    Focal length 

𝑔(𝑥,𝑦)   Magnitude of the gradient 

G   Green 

𝐺(𝑥,𝑦,𝜎 )   Gaussian kernel  

𝐺𝑘    Pattern of interest 

H   Hue 

𝐻 = �𝑅 𝑑
0 1�   Homogeneous transformation 

𝐻𝑝    Prediction horizon 

𝐻𝑢    Control horizon 

ℎ�    Average hue value 

I   Intensity 

𝐼(𝑥,𝑦)   Original Image 

𝐽    Jacobian 

𝐿    Interaction matrix 

𝐿(𝑥,𝑦,𝜎)   Convoluted image 

𝑁𝑁𝑁(𝐴,𝐵)   Normalized cross correlation 

𝑝    Position and orientation of the robot 

𝑝′    New position and orientation of the robot 

𝑃(𝐴𝑘)    Probabilistic action selection function 

𝑞0    Stat state 

𝑄    Finite set 

𝑄(𝑐𝑖,𝐴𝑗)   An entry in the Q-table 



iii 
 

𝑄 × Σ𝑖 → 𝑄   State transition function 

𝑄 × Σ𝑆 → [0,1]  Output mapping 

𝑟    Row (see Chapter 2) 

𝑟    Reward (see Chapter 3) 

R   Red 

𝑅: 𝑆 × 𝐴 → 𝔑   Reward function 

𝑐𝑥    Horizontal dimension of the CCD sensor 

𝑐𝑦    Vertical dimension of the CCD sensor 

S   Saturation 

𝑇: 𝑆 × 𝐴 → 𝛱(𝑆)  Transition function 

𝛼    Learning rate 

𝛽    Discount factor 

𝜎   Standard deviation                                                                 

𝜖𝑖    Detection region  

𝜃(𝑥,𝑦)   Orientation of the gradient 

𝛴𝑖    Input alphabet 

Σo    Output alphabet 

(𝑢𝐿 , 𝑣𝐿)   Coordinates of the left image 

(𝑢𝑅 , 𝑣𝑅)   Coordinates of the right image 

Δ𝑥    Position difference on the x-axis 

Δ𝑦    Position difference on the y-axis 

Δ𝜃    Orientation difference 



ii 
 

 

List of Abbreviations 

ANMPC  Adaptive Nonlinear Model Predictive Controller 

ANNs   Artificial Neural Networks 

CCD   Charge-coupled Device 

CMOS   Complementary Metal–oxide–semiconductor 

CNC   Computer Numerical Control 

DFSM   Deterministic Finite State Machine 

DH   Denavit-Hartenberg 

DOF   Degree of Freedom 

DoG   Difference of Gaussian 

DSTC   Dynamic Space-time Clustering 

FSA   Finite State Automata 

FSM   Finite State Machine 

GPC   Generalized Predictive Control 

GUI   Graphic User Interface 

HSI   Hue Saturation Intensity  

IBVS   Image-based Visual Servoing 

LoG   Laplacian of Gaussian 

MDP   Markov Decision Processes 

MPC   Model Predictive Control 

MV   Machine Vision 

NDFSA  Non-deterministic Finite State Automata 

NCC   A Normalized Cross-correlation 

NF    Neuro-fuzzy 

OES   Optical Emission Spectroscopy 

PA   Probability Automata 

PBVS   Position-based Visual Servoing 

PFSA   Probabilistic Finite State Automata 

PID   Proportional, Integral, Derivative 



iii 
 

RGA   Residual Gas Analysis 

RGB   Red Green Blue 

RNN    Recurrent Neural Network 

SIFT   Scale Invariant Feature Transform 

SQKF   Sequential Q-learning Algorithm with Kalman Filtering 

TSNNs  Time Series Neural Networks 

UGVs   Unmanned Ground Vehicles 

WTC   World Trade Center  

  



iv 
 

 

Acknowledgements 

 

First, I would like to express my sincere gratitude and appreciation to my supervisor, 

Dr. Clarence W. de Silva whose constant supervision and guidance have enabled me to 

effectively and successfully complete the Master’s and Ph.D. studies at UBC. Particular 

acknowledgement should be made of the research grants held by Dr. de Silva from the 

Natural Sciences and Engineering Research Council (NSERC) of Canada, Canada 

Research Chairs Program, Canada Foundation for Innovation (CFI), British Columbia 

Knowledge Development Fund (BCKDF) which funded the research and provided 

generous research assistantships for me.  

In the same vein, I also want to thank my colleagues, Dr. Tahir Khan, Dr. Ying Wang, 

Mr. Edward Wang and all other colleagues at the Industrial Automation Laboratory (IAL) 

for their friendship and help. For those who have been working with me, and have paved 

the way to my success, please allow me to say a sincere "thank you." I also want to thank 

my friends who have supported me and given me their coaching and mentoring in the 

past two years. 

Finally, I would like to express my deepest thankfulness to my father Junsheng Lang 

and my mother Xiutian Zheng who have given me life, and my wife Wanling Li who 

always supports me. 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1 Introduction 

 

 

 

In recent years, the emphasis of robotic research appears to have shifted from the 

development of robots for structured industrial environments to the development of 

autonomous and cooperative mobile robots operating in unstructured and partially-

known natural environments, such as homes, planet surfaces and disaster scenes. These 

autonomous mobile robots are applicable in a number of challenging practical tasks such 

as cleaning of hazardous material, surveillance, rescue, and reconnaissance in 

unstructured environments which can be too hazardous for humans; and taking care of 

the elderly and the disabled in home environments where human caregivers are costly 

and in short supply. It is expected that this new class of mobile robots will have extensive 

applications in activities where human capabilities are needed, yet not suitable or 

impractical for human presence (Siegwart and Nourbakhsh, 2004).  

As the main objective, this research aims to complement the existing research 

activities in this area, leading to the development of an autonomous mobile robotic 

grasping system and associated methodologies and technologies that particularly 

incorporate visual servoing with advanced control and networked sensing. The 

application domains for these developments are search and rescue situations, and 

homecare, where mobile robots are employed. 

 

1.1  Motivation  

1.1.1 Search and Rescue Robotics 

The necessity of autonomous search and rescue robots was highlighted in the 2001 

attack and destruction of the World Trade Center (WTC) in New York City which 

resulted in the death of 343 firefighters and 65 other rescuers. This additional loss of life 

was mainly caused by the search and rescue operations in an unsafe environment. 

Generally speaking, rescue workers have about 48 hours to retrieve trapped humans 
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subsequent to a disaster. However, much time is wasted because of the lack of necessary 

equipment and resources for accessing collapsed buildings or generally unsafe areas. 

Robotic rescuers will be able to carry out rescue operations more efficiently without 

further endangering human life. 

Ten years after the WTC incident, the tsunami caused by the earthquake in Sendai, 

Japan, resulted in a nuclear reactor crisis. It was another situation where robotic search 

and rescue would have been effective. Unfortunately, there was no report of the use of 

robots in that situation even though Japan is a leader in robotic applications. These facts 

highlight that there are still serious challenges and unsolved technical difficulties in the 

field of autonomous mobile robotic manipulation. 

 

1.1.2 Homecare Robotics  

Another good application of mobile manipulation systems is in homecare 

environments. Since the overall average age of the world population is growing, the 

percentage of non-working elders is increasing with respect to the working population. In 

Canada, statistics show that the percentage of the senior population will reach about 25% 

of the overall population in 2050, while that percentage was a mere 8% in 1971. This 

dramatic change will cause financial problems (i.e., more public funds will be needed for 

healthcare and homecare) as well as social problems (i.e., short of human caregivers, 

effect on families). An effective solution to this problem is to employ autonomous mobile 

robots with adequate task capabilities and intelligence. These robots can be designed for 

taking care of elders (and the disabled) in their own home environments, providing 

assistance in daily activities, medical assistance, surveillance, and so on. Not having to 

remove the care receiver from the familiar home environment is a clear benefit in this 

regard. Furthermore, round-the-clock care can be provided by a robotic system, in a 

consistent manner. Also, the family members will have the freedom and peace of mind to 

pursue their own activities such as employment and education while being able to 

monitor the home scenario on line with the use of the system sensors and communication 

links.  
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1.2  Scope and Goals of the Research 
As investigated in the present work, a mobile robotic manipulation system is rather 

complex and involves multi-domain technologies such as computer vision, artificial 

intelligence, mechanical and electrical design, signal processing, sensing and control.  

The objective of this thesis is to develop methodologies and technologies that will lead to 

an autonomous mobile robot manipulation system for important practical applications. 

The two real-word application scenarios which are targeted in the present developments 

and implementations are robotic search and rescue, and homecare robotics. In view of the 

needed capabilities for such a robotic system, the scope of the thesis spans four main 

areas: 1. Machine vision, specifically object identification and tracking, 2. Robotic 

navigation, 3. Manipulation, and 4. Networked sensing. The thesis will particularly 

address the following primary challenges: 

• Develop methodologies and vision systems for detecting, identifying, and tracking 

objects of interest in both global and local sensing areas of a robot.  

• Develop a robotic navigation system that has the ability to autonomously guide a 

mobile robot to a goal location in an unknown, unstructured and dynamic 

environment. 

• Develop effective control strategies for robust control of motion and manipulation of 

mobile robots in the focused application scenarios.  

• Incorporate into the control system a sensor network with both static and dynamic 

sensors along with an information fusion technology to enhance the performance of 

the robotic tasks.  

• Study such performance issues as robustness, cooperative behavior, self-learning, and 

adapting capability of the developed robotic system. 

 

1.3  Problem Definition 
The primary objective of the present work is to develop an autonomous mobile 

manipulation system which has abilities to identify objects, navigate in the workspace, 

grasp an object of interest and finally transport it to a goal location. A schematic 

representation of the system developed in the present work is shown in Figure 1.1. 



4 
 

 
Figure 1.1: Schematic representation of the developed system. 

 

In this figure, there is a sensor network which contains a set of different type sensors, 

such as pressure sensors (circles in the middle of each square block), acoustic sensors, 

magnetic sensors (triangles), cameras, and laser distance finders. Some sophisticated 

sensors are “dynamic” (e.g., the cameras have the ability to move along the track under 

the ceiling; some cameras, magnetic sensors and laser distance finders are carried by 

mobile robots).  The working procedure of the system is shown in Figure 1.2. The robot 

receives a task (e.g., find a specific object, go and grasp it, and transport it to a goal 

location) while it is navigating in the workspace. Then, it will try to find the object of 

interest in the environment with the help of the sensor network. As it finds the object, the 

sensor network will provide to the robot the coordinates of the object in the workspace, 

and also the location and the orientation of the robot. The robot then establishes a way to 

approach the object while giving due consideration to the dynamics of the environment 

including obstacles and other robots. As the robot moves close enough to the object with 

the workspace of the robotic arm encompassing the object, it will grasp the object. 

Finally the robot transports the object to its goal location. In this procedure, a sensor 

Goal 
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network continuously assists the robot in object identification, mobile localization and 

navigation.  

 
Figure 1.2: The flowchart of the mobile manipulation system. 

 

There are three challenges in the development of the system, which are all key issues 

in realizing a working mobile manipulation system for application the targeted 

application scenarios. The first one is the object identification and tracking. In particular, 

the manipulation operation heavily relies on the results of identification and tracking 

because the approach of visual servoing utilizes camera information in the feedback loop 

of the robot control system. The failure of correct identification and tracking during 

manipulation will result in failure of the entire system. 

The second challenge is localization and navigation, which concerns accurately 

determining the location and orientation of the robot at each instance of the robotic task 

in order to decide the appropriate next movement for achieving the goal. Because on-

board sensors of the robot can only detect and scan a limited area of the work 

environment, it is impossible to monitor the entire robotic environment using these 

sensors. Moreover, without completely knowing the environment in advance, the robot 

cannot deploy the traditional path planning technologies for decision making related to 

navigation. 

The third challenge concerns the manipulation process. In a mobile robot, the base 

frame is not fixed; and the base coordinate frame will change with time. A pre-defined 

approach to manipulation, as typically used in industry will not work in this case. A more 

robust approach needs to be developed that can function in a complex working 

environment.  

Object 
Identification Navigation Manipulation Transportation 

Sensor 
Network 
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In order to extend the capabilities of a mobile manipulation system to fit the entire 

global environment, rather complete information regarding the workspace is required, 

which cannot be provided by the robot’s on-board sensing capability. How to select and 

cluster the available global sensors to generate the necessary information for robotic 

control, and to improve the accuracy of the information that is provided to the robot are 

important in this regard. 

In the present thesis, several approaches are developed to address these issues and 

overcome the pertaining key challenges. This will enable the mobile manipulation system 

to work robustly and effectively in a dynamic and partially known environment. 

    

1.4  Related Work 

1.4.1 Machine Vision 

Machine vision is a powerful sensory tool as it can mimic the human sense of vision 

and allow non-contact measurement of a working environment. Accordingly, much 

attention of the research community has gone to applying vision as a feedback sensor in 

industrial control applications. Among the projects of visual servoing, quite well known 

is the “DARPA Urban Challenge.” This involves competing teams to build autonomous, 

driverless vehicles that are capable of driving in traffic while performing complex 

maneuvers such as merging, passing, parking and negotiating intersections in an urban 

environment. In these vehicles, camera is the main sensor for providing feedback from 

the vehicle environment to the vehicle control system.   

 The application of camera vision in computer-based machines is traditionally called 

machine vision (MV), which involves image processing and image interpretation 

(computer vision). It is a subfield of engineering that encompasses computer science, 

optics, mechanical engineering, and industrial automation. A common application of 

machine vision is the inspection of manufactured goods such as semiconductor chips, 

automobiles, food products, and pharmaceuticals. A machine vision system can carry out 

quality assessment tasks with good accuracy and repeatability. It requires digital 

input/output devices and computer networks, combined with image processing 

techniques, to control the manufacturing equipment. Other recent applications in this area 

involve vision-based object detection, tracking of UGVs (Unmanned Ground Vehicles), 

http://en.wikipedia.org/wiki/Computer_vision
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following of mobile robots, and vision-based feedback control of robotic manipulator 

movements (visual servoing). This technology can also be implemented in applications 

of security and transportation such as video surveillance and traffic control.  

Vision-based automated object detection has been playing a significant role in 

industrial and service applications. Associated studies have focused on detecting objects 

efficiently by using features such as color, shape, size, and texture. However, there are a 

number of problems that arise when using these methods to process real world images 

under different conditions and environments. Most recent machine vision algorithms may 

not necessarily possess adequate performance for common practical use. 

Seelen et al. (2000) have used Symmetry Analysis and Model Matching to detect the 

rear, front and side views of a group of object types by measuring the inherent vertical 

symmetric structure. In their paper, the authors mention that the method has to be robust 

against changes in illumination and slight differences of the right and the left parts of an 

object. The symmetry-based method is challenged in this manner under real operating 

conditions. 

As well known, color is a very useful feature in object detection. However, few 

existing applications of detection and tracking have used color for object recognition, 

because color-based recognition is complicated, and the existing color machine vision 

techniques have not been shown to be effective. Buluswar and Draper (1997) have 

presented a technique for achieving effective real-time color recognition in outdoor 

scenes. It is claimed that this method has been successfully tested in several domains, 

such as autonomous highway navigation, off-road navigation and target detection for 

unmanned military vehicles. 

Bertozzi et al. (1997) have proposed a corner-based method to hypothesize vehicle 

locations. The system presented in their paper was composed of a pipeline of two 

different engines: a massively parallel architecture for efficient execution of low-level 

image processing tasks, improved by the integration of a specific feature for direct data 

I/O; and a traditional serial architecture running medium-level tasks aimed at the 

detection of the vehicle position in the sequence. A preliminary version of the system was 

reported, and it was demonstrated on the MOB-LAB land vehicle. 

The use of constellations of vertical and horizontal edges has shown to be a strong 

cue for hypothesizing objects in some situations. In identifying pronounced vertical 



8 
 

structures in an image, Matthews et al. (1996) used edge detection to find strong vertical 

edges. To localize the left and right positions of a vehicle, they computed the vertical 

profile of the edge image followed by smoothing using a triangular filter. By finding the 

local maximum peaks of the vertical profile, they claimed that they could find the left 

and the right positions of a vehicle. 

Template-based methods use a predefined pattern of the object class and perform 

correlation between the image and the template. Handmann et al. (2000) proposed a 

template based on the observation that the rear/frontal view of a vehicle has a “U” shape. 

During verification, they considered a vehicle to be present in the image if they could 

find the “U” shape. Ito et al. (1995) used a very loose template to recognize pronounced 

vertical/horizontal edges and existing symmetry. Due to the simplicity of the template, 

these two papers did not generate very accurate results.  

Appearance-based methods learn the characteristics of object appearance from a set 

of training images which capture the variability in the object class. Compared to the 

previously discussed approaches, it is the most accurate and reliable one. In particular, 

Lowe (1999, 2004) proposed an algorithm for object recognition and tracking, called the 

Scale Invariant Feature Transform (SIFT), which uses a class of local image features. In 

his algorithm, the detected features are invariant to changes in illumination, noise, 

rotation and scaling; and it has been proven that this approach has high robustness and 

reliability. In the present thesis, the SIFT algorithm is utilized to enable a mobile robot 

track an object in the camera view, and feedback the environmental information, to 

control the robot to a goal location. To the best of our knowledge, this thesis is the first 

work to apply the SIFT algorithm for visual servoing in robust mobile robot tracking. 

 

1.4.2 Robot Navigation 

An important issue that is investigated within the community of mobile robot 

research is robot navigation. This is justified since this involves the capability of a robot 

to understand its workspace, determine efficient motion strategies to achieve the motion 

goal with consideration of its current pose, goal location in the workspace and possible 

obstacles in the path. There are many relevant research directions in this field.  

A popular approach of mobile navigation involves path planning, which starts by 

acquiring a map of the workspace, and then uses an effective path planner to find a 
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suitable and available path to reach the goal. The field of path planning has been 

extensively studied with respect industrial manipulators (with fixed base), and is 

gradually being extended to mobile robots as well. As indicated in the review of Siegware 

and his colleagues (2004), the path-planning system usually converts the continuous 

environmental map into a discrete map, and then the planning is achieved by utilizing 

some general strategies to decompose the global problem into local or smaller problems, 

such as the roadmap method and the potential field method. Teng et al. (1993) proposed a 

navigation method for an initially-known, natural terrain which is assumed to be free of 

obstacles. It divides the environment into several sub-regions. In each time interval, the 

robot performs computations only in the current region according to the rule of 

navigating to the next sub-region which is nearest to the final goal. Bortoff (2000) and 

Gu et al. (2004, 2006) utilized a Voronoi diagram method to construct a graph based on 

the radar sites for flying navigation of an Unmanned Aerial Vehicle (UAV). The flying 

trajectory is generated by searching for the shortest path to the specified destination. This 

approach can also be used for on-land navigation of mobile robots in a free-space 

environment. However, this approach has a constraint in that it is hard to find a collision-

free path in an unstructured environment. Birgesson et al. (2003) utilized the potential 

field algorithm in the path planning for robot navigation. Three forces are utilized: the 

repulsive force of the obstacles and the attractive forces of the goal and the waypoints. 

Each force is activated only if it meets certain criteria, and the goal force is disabled 

when a suitable waypoint is found. Therefore, the robot is pulled toward the nearest 

waypoint that lies within a predetermined range of angles between the robot and the goal. 

If no waypoints meet this criterion, the robot is pulled toward the goal. The repulsive 

force is activated only if the robot is within a threshold distance from the obstacles.     

There is a drawback in this type of approach which can make navigation impossible 

when the robot is exploring an unknown territory: there has to be a global sensor that can 

monitor the entire workspace and generate a global map, which can then be utilized by 

the path planner. The poses and locations of the robots and the obstacles should be 

accurate because all decisions and actions are decided by assuming perfect data. 

Moreover, the potential filed method needs to take into account the local minimal 

problem. Therefore, this approach usually is used in initially-known and structured 

environments or with the availability of a powerful sensing system.  
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With the development of machine learning and artificial intelligence (AI), more 

researchers have focused on solving a global path planning problem by decomposing it 

into local problems. Bug1 and Bug2 algorithms (Lumelsky et al., 1987) are among the 

earliest, simplest schemes in this category. They are search approaches which are 

designed to move the robot towards the goal, going around obstacles and following the 

boundary of obstacles. Yufka et al. (2009) applied Bug1, Bug 2 and DistBug motion 

planning algorithms in a Pioneer mobile robot, and compared the resulting performance. 

The difficulty of these approaches is in finding the so-called leave point when the robot 

is following the boundary of the obstacles.  

Another candidate for solving the mobile navigation problem in machine learning is 

reinforcement learning, especially Q-learning. Reinforcement learning has been studied 

by psychologists since the 1940’s (Sutton and Barto, 1998). It involves learning what to 

do—how to map situations to actions—so as to maximize a numerical reward signal. It is 

considered neither supervised learning nor unsupervised learning. The learner is a 

decision-making agent who takes actions in an environment and receives rewards for its 

actions in trying to solve a problem (Alpaydm, 2004). After a set of trial-and-error runs, 

it should learn the best policy, which is the sequence of actions that maximizes the total 

reward. Su and his colleagues (2004) applied reinforcement learning in a robot 

navigation application. Fuzzy rules were ultilzed in their work to reason the sensory data 

and provide them to the reinforcement learning module for appropriate selection of 

actions. Ying and de Silva (2010) proposed a sequential Q-learning algorithm with 

Kalman filtering (SQKF) in a multi-robot cooperation project. Their method solves the 

problem of behaviour conflicts by conditioning the credit assignment. 

 

1.4.3 Visual Servoing 

The earliest research of visual servoing was reported in 1979 (Agin). However, then 

the image processing procedure took seconds due to the limitation of computers and 

image sensing devices at that time, making real-time control virtually infeasible. 

Subsequently, Sanderson and Weiss (1980) introduced a taxonomy of visual servo 

systems through a control structure. It is called Dynamic Look-and-Move Structure 

where the control architecture is hierarchical and uses vision to provide set-point inputs 

to the joint-level controller. Then the sub-control system utilizes joint feedback to 
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internally stabilize the robot (Figure 1.3). In contrast, direct visual servoing utilizes a 

visual servo controller which directly relies on vision information to compute joint 

inputs, thereby stabilizing the robot (Figure 1.4).  
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Figure 1.3: Block diagram of a dynamic look-and-move system. 
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Figure 1.4: Block diagram of a typical (direct) visual servo system. 

 

With the rapid advancement of computer technologies and image sensing hardware 

(CCD and CMOS), computer vision is much faster now than it did in 1980s.  Direct 

visual servoing came to attention of researchers in the 1990s. Hutchinson has reviewed 

many of the related work (Hutchinson, et al., 1996). Since then the term “visual servo” 

has come to be accepted as a generic description for any type of visual “feedback 

control” of a robotic system. The subject has been under study in various forms for more 

than twenty years, in contexts ranging from simple pick-and-place tasks to today’s real-

time, complex tasks involving multiple robots and objects, autonomous cooperation, and 

dynamic, unstructured and unknown environments.  

Another major classification of vision-based servoing distinguishes between position-

based approach and image-based approach (Chaumette and Hutchinson, 2006). Both 

approaches share a similar control block diagram with slight a difference in the control 

feedback loop and the reference input (Figure 1.5). In the former, features are extracted 

from images from one or more cameras, and used in conjunction with camera models and 

a geometric model of the target object to estimate the pose of the target with respect to 
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the cameras. The controller seeks to reduce the error between the current pose and the 

desired pose in a 3D (three-dimensional) workspace. In contrast, image-based visual 

servo control uses the 2D images (and their visible feature points) directly. Consequently, 

image-based visual servo control reduces the computational burden, omits unnecessary 

image interpretation, and eliminates the calibration errors in sensors and cameras. 
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Object Estimation

+

-

Cameras

2. Desired position of the 
feature point in the image

1. Desired position in the 
work space
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2. Current position of the feature point in the image

 

Figure 1.5: Block diagram of a typical visual servo system (1. Position-based; 2. Image-

based). 

 

Much of the work related to visual servoing and mobile robots to date has focused on 

the application of autonomous navigation control. Physical demonstrations of mobile 

manipulation and grasping using visual servoing have been somewhat limited. Some 

examples are indicated now. Ma et al. (1999) have developed a vision-guided navigation 

system where a non-holonomic mobile robot tracks an arbitrarily shaped continuous 

ground curve. They formulated this problem as one of controlling the shape of a curve on 

the image plane, and presented corresponding control laws. Dixon et al. (2006) presented 

an adaptive tracking controller of a wheeled mobile robot via an un-calibrated camera 

system. In their paper, the parameter uncertainty of the mechanical dynamics and the 

camera system was considered, and an adaptive controller was proposed to cope with the 

uncertainty. In order to implement robust vision-based autonomous navigation systems, 

various approaches have been explored, such as planning of image-trajectory or image-

memory (Remazeilles et al., 2007; Dixon et al., 2001), embedded velocity fields (Kelly et 

al., 2006), specific geometry features (vanishing points and line orientations;  Zhang et 

al., 1999), stereo cameras, and omnidirectional or catadioptric cameras (Mariottini and 

Prattichizzo, 2008; Chang and Hebert, 2000; Gaspar et al., 2000).    

Epipole-based or homography-based techniques besides stereo cameras have been 

used for estimating 3D parameters or depth information of target objects in visual servo 

control of mobile robot navigation (Chen et al., 2006; Fang et al., 2005; Lopez-Nicolas et 
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al., 2007; Mariottini et al., 2007; Chesi et al., 2006). In these papers, the rotational and 

translational relationships between two camera frames were derived by relating the 

current image to the desired image of the same target object, which were then used in 

visual-servo control. 

It has been noticed that robustness and response speed are two important issues in 

vision-based mobile navigation systems, and hybrid controllers have been developed to 

meet these challenges. For example, a vision-based hybrid control scheme has been 

developed (Amarasinghe et al., 2007) for autonomous parking of a mobile robot. Its 

hybrid controller includes a discrete event controller to change the direction of travel of 

the robot and a pixel-error-driven proportional controller to generate commands to 

achieve its continuous motion. A similar project is presented  by Vassallo (2000), where a 

vision-based mobile robot attempts to autonomously navigate in a building.  A visual-

servo controller that uses vanishing point data is combined with an appearance-based 

navigation controller to provide extended autonomy even under modest computational 

resources.  

It is clear that much of the research related to visual servoing and mobile robots 

concerns mobile robot navigation, and only a few physical implementations of vision-

based mobile manipulation have been reported.  The possible reason for this limited 

activity is that vision-based mobile manipulation requires accurate and robust positioning 

performance so that it is more challenging than vision-based mobile robot navigation. As 

an example of vision-based mobile manipulation, Luca et al. (2007) have developed an 

image-based visual-servo controller for non-holonomic mobile manipulators. In their 

paper, two well-known methods of redundancy resolution for fixed-base manipulators are 

extended for kinematic modeling of a specific non-holonomic mobile manipulator. Their 

approach is illustrated through computer simulation, not physical implementation and 

experimentation. 

Recent work in vision-based mobile manipulation is presented in 2007 (Mansard et 

al.), where a visually-guided humanoid robot attempts to autonomously grasp an object 

while walking. They have proposed a high-level structure to sequence multiple control 

tasks so that the target object remains in the middle of the field of view of the camera 

when the robot walks along a planned path.  When the robot is sufficiently close to the 

object, it grasps the object while continuing to walk. 
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Research of visual servoing has been challenged by an important requirement: how to 

keep the visual features within the field of view of the camera. To date, both image-based 

visual servoing (IBVS) and position-based visual servoing (PBVS) have used 

measurements of visual features to compute the controller outputs. If due to motion of 

the robot or some unknown disturbance, these visual features move outside the field of 

view of the camera the controller will completely fail.  This issue even becomes more 

severe when visual servoing is applied to mobile robotic tasks, because mobile robots 

move over long distances than fixed-base robotic manipulators.   

It is common for visual features to move out of the field of view due to camera/robot 

calibration errors or controller design in a visual-servo system. Since the visibility of the 

visual features directly affects the robustness of the system, a significant effort has gone 

into solving this problem. A popular solution is to employ the potential field approach to 

push visual features toward the center of the field of view when the features approach the 

edge of the image. A representative work in this area has been completed by Corke and 

Hutchinson (2001), where a potential function has been incorporated into an IBVS 

controller to repel visual feature points from the boundary of the image plane.  Chesi and 

Hung (2007) employed a similar approach to solve the visibility constraint problem in 

their global path planner for optimal visual servoing. The approach of Navigation 

Function, which guarantees a unique minimum, has been introduced into image-space 

path planners of visual servoing to generate a desired image trajectory while keeping the 

visual features in the field of view (Chen et al., 2007; Cowan et al., 2002). 

Another popular method of keeping visual features in the field of view is to employ a 

path-planning technique to plan a camera trajectory or a “virtual path” on the image 

plane while meeting the visibility constraint (Schramm et al., 2006; Zhang and 

Ostrowski, 2002; Chesi et al., 2007).  It is common as well to employ a pan/tilt camera to 

enlarge the field of view so that the visual features will remain within it (Capparella et 

al., 2005; Nierobisch et al., 2006).  Further approaches are available in the literature to 

solve the visibility problem. For example, Remazeilles and Chaumette (2007) have 

employed several specific visual features to ensure that the robot navigates within the 

visibility path. Cowan and Chang (2005) have developed a diffeomorphism-based IBVS 

controller to keep the features within the field of view and avoid self-occlusion.   
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There exists a common shortcoming in the approaches mentioned above, which are 

based on potential-field, navigation-function, or planning techniques: they represent 

static solutions designed in advance by a human. These approaches cannot improve their 

performance on line and also cannot autonomously adapt to changing control tasks.   

Most visual-servo projects today primarily concern object modeling and the quality 

of the vision feature feedback while paying less attention to controller design. Notably, a 

simple P (Proportional) control law or a PID (Proportional, Integral, Derivative) control 

law is commonly used in the literature. However, a PID controller may not be adequate 

to handle the robustness and stability issues of real-life mobile robot applications. Spong 

and Hutchinson (2006) reviewed proportional control with Lyapunov stability, which is 

the controller that is most commonly used by researchers. Although this control law 

(Chaumette and Hutchinson, 2006, Spong et al. 2006) can guarantee system stability, its 

controller output is not optimal and it is unable to consider various constraints (robot 

location constraints, visibility constraints, velocity constraints, and so on) which are 

common in a mobile visual-servo system. 

In order to get optimal controller outputs, Ginhoux et al. (2005) proposed to use GPC 

(generalized predictive controller) in visual servoing of a robotized surgery task. In 

particular, a 6 DOF (Degree of Freedom) robotic arm was developed to track the motion 

of a pig’s heart based on the visual feedback. Since they employed the basic GPC 

scheme, no constraints were considered. In addition, they used the same idea in 

teleoperated laparoscopic surgery (Gangloff et al., 2006) and 3-D profile following 

(Gangloff and de Mathelin, 2002). Since the constraint issue is quite popular in visual-

servo tasks, Sauvee et al. (2008) implemented a nonlinear model predictive controller for 

visual servoing of a robotic arm using vision feedback from ultrasound images. In this 

project, they considered various constraints and linearized the nonlinear model into a 

constant linear model at the equilibrium point.         

     Applying MPC (Model Predictive Control) to visual servoing is still in its juvenile 

stage. Only a limited number work has reported as above. Although some positive results 

were obtained in them, they shared a common shortcoming: in applying the existing 

(basic) MPC technique to visual-servo tasks, a constant linear model is assumed for the 

nonlinear plant. As a result, the implemented system can only work in a small 

neighborhood of the equilibrium point at which the model is linearized. If the current 
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operation point of the system is farther from the equilibrium point (which is common in a 

mobile manipulation task), the controller performance will deteriorate quickly due to the 

mismatch between the model and the plant.  

 

1.4.4 Networked Sensing 

It is known for a long time that sensor integration is fundamental to increasing the 

accuracy, versatility and the application domain of robots, but to date this has not proven 

cost effective for the bulk of robotic applications. Multi-sensor systems are designed to 

exploit several signature-generation phenomena and to gather different types of 

information about objects and scenes of interest. Design of a multi-sensor system 

involves optimization of sensors (including sensor location and orientation), data 

processing, and communication, and particularly the use of an appropriate fusion strategy 

for the sensory data; e.g., Bayesian and Dempster-Shafer inference; fuzzy logic; pattern 

recognition using signal processing algorithms, and artificial neural networks. The 

backbone of a multi-sensor system concerns how to utilize various streams of data by 

using an effective approach for sensor /data fusion.  

Sensor fusion first appeared in the literature in the 1960s. Today, application of 

sensor fusion has expanded into a wide range of areas: machine health monitoring and 

diagnosis, maintenance engineering, robotics, pattern recognition, object tracking, and so 

on. Figure 1.6 shows a general architecture of a sensor fusion system which includes 

low-level data acquisition and processing and high-level data fusion processing. Low-

level processing concerns the hardware level and the raw data processing; e.g., sensor 

selection and arrangement and data acquisition, while the high-level processing focuses 

on extracting the raw data of interest and transforming them into utilizable forms. A 

decision making system that uses the pre-processed information is also embedded in the 

high-level processing layer. 
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Figure 1.6: General architecture of data fusion processing. 

 

Artificial neural networks (ANNs) is a commonly applied approach to solve the data 

fusion problem. It was introduced by Posner (1989) with the objective of understanding 

the functioning of the human brain. He built models of natural neural networks of the 

brain and carried out simulation studies. The general idea of ANNs is to make a nonlinear 

transformation from a d-dimensional input space to an h-dimensional output space 

through an appropriate number of hidden layers. Through appropriate training, the 

network weights are adjusted, establishing a reasonably accurate nonlinear relationship 

between the inputs and outputs.  

Ghosh et al. (2007) proposed a neural network-based sensor fusion architecture for 

the estimation of tool wear of a computer numerical control (CNC) milling machine. 

Monitoring of tool wear is crucial in preventing the degradation of the machining quality. 

Unfortunately, there is no direct way of measuring the process variables related to tool 

wear. An ANN-based sensor fusion approach has been proposed by Ghosh et al. (2007) to 

fuse the data of cutting force, spindle vibration, spindle current, and sound level from 

different sensors. The approach had been validated by both laboratory and industrial 

implementation. Hong et al. (2005) developed a neural network-based sensor fusion 

system for real-time fault detection of reactive ion etching. The target of this project was 

to guarantee the system accuracy and real-time performance. Two in-situ sensors: optical 

emission spectroscopy (OES) and residual gas analysis (RGA) were used and the 

generated signals were sent to a time series neural networks (TSNNs) for fusing as well 



18 
 

as predicting the process parameters. Simulated fault processing data were used to train 

the NN and the authors claimed that this approach could potentially contribute to 

maintaining a consistent etching process by increasing the probability of identifying the 

incipient faults. 

Considerable amount of work has been done in sensor fusion where fuzzy logic is 

implemented as the fusing method. Lotfi Zadeh (1978) developed the fuzzy set theory in 

1965. Zadeh reasoned that the rigidity of the conventional set theory made it impossible 

to account for vagueness, imprecision, qualitative aspects, and shades of gray that are 

commonplace in real-world events. Consequently, fuzzy logic is valuable where the 

boundaries between sets of values are not sharply defined or there is partial possibility of 

occurrence of an event. 

Although fuzzy logic and neural networks are structurally different, they share a 

rather complementary nature as far as strengths and weaknesses are concerned (Karray 

and de Silva, 2004). Applying fuzzy methods into the workings of neural networks 

constitutes a major thrust of neuro-fuzzy (NF) computing. Wang et al. (2004) proposed a 

neuro-fuzzy system to forecast damage propagation trend in rotary machinery and to 

provide an alarm before a fault reaches critical levels. After proper training, the 

performance of the NF was compared with the performance of a recurrent neural network 

(RNN). It showed that the NF was a reliable and robust machine health predictor which 

could capture the system dynamic behavior quickly and accurately. Palluat et al. (2006) 

designed an intelligent monitoring aid which used a neuro-fuzzy approach. The system 

contained a detection tool which used neural networks and a diagnosis tool which used a 

neuro-fuzzy approach. Four sensors were used in gathering information. After training, 

the NF demonstrated industrial usefulness in an application of monitoring a flexible 

production system. 

The backbone of a multi-sensor system concerns how to utilize various data by using 

an effective approach for sensory data selection and fusion. Ray (2004) has proposed a 

novel concept of anomaly detection in complex systems by using Finite State Automata 

(FSA) and D-Markov machine. An application of sensor fusion has been reported by 

Chattopadhyay and his colleagues (2009). For sensing different types of objects, Chen 

(2004) proposed a dynamic architecture in an acoustic sensor network where the sensor 

nodes in a clustered sensor network adapts to different targets using Voronoi diagrams. 
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Yang and Sikdar (2003) utilized the Bayesian method to dynamically cluster and fuse the 

sensor information in a sensor network to achieve the task of tracking mobile targets. 

 

1.5  Contributions and Organization of the Thesis 
This Ph.D. thesis investigates and develops new techniques and expertise that will 

facilitate the implementation and effective operation of mobile robot manipulation 

systems in unknown, unstructured and dynamic environments. The four main 

contributions of the thesis are as follows: 

• Efficient and robust machine vision algorithms are developed, which utilize color and 

feature of objects. With the integration of other sensors, they help to determine the 

pose of the robot in the workspace. They are incorporated into the feedback control 

loop of motion of the mobile robot platform and manipulation of the robotic arm by 

providing accurate and fast position information of the tracked object. 

• A traditional reinforcement learning algorithm, specifically Q-leaning, is incorporated 

to enhance the operation of the mobile robot in an unknown, unstructured and 

dynamic workspace. With the help of a sensor network, it will guide the mobile robot 

to approach the object of interest with increasing effectiveness. 

• An adaptive nonlinear model predictive controller is developed for accurate motion 

control of the robot when the object is within its local sensing area, and also for 

effective manipulation. The developed controller takes into account visibility 

constraints and physical constraints, and it is able to provide optimized controller 

outputs.  

• A Probabilistic Finite State Automata (PFSA)-based, information-driven, and self-

organized sensor network is proposed to dynamically cluster sensors in order to 

improve the decision making associated with the robot operation. 

 

The organization of this thesis is as follows: The present chapter (Chapter 1) 

introduces existing activities in mobile robotics and highlights main research challenges 

of this field. Next it outlines the research objectives of the thesis and presents a literature 

survey to establish the related background work, mainly in the past decade. Chapter 2 

introduces and discusses the machine vision techniques that are utilized in the 

identification and tracking of objects. The methods include color blob tracking, Scale 



20 
 

Invariant Feature Transform (SIFT) feature tracking and stereo vision. Their practical 

application in mobile manipulation is indicated. In Chapter 3, the conventional method of 

reinforcement learning (Q-learning) is customized and incorporated in mobile robot 

navigation. The detailed formulation of the states and actions of the algorithm is 

presented. This algorithm is then implemented in computer simulation and 

experimentation. Chapter 4 addresses several challenges in the area of mobile 

manipulation such as visibility constraint, physical constraints and optimal controller 

outputs. First, a hybrid controller, which combines a traditional proportional-integral-

derivative (PID) controller and an intelligent Q-learning controller, is proposed. It mainly 

addresses the visibility constraint. Then a more advanced controller, termed Adaptive 

Nonlinear Model Predictive Controller (ANMPC), is proposed and developed for both 

mobile navigation and robotic manipulation. This approach is able to solve problems of 

visibility constraint and physical constraints, and also provide optimal controller outputs. 

Chapter 5 introduces a self-organized sensor network where Probabilistic Finite State 

Automata (PFSA) is utilized to organize and cluster suitable sensors and then fuse their 

data to make reliable and more accurate decisions. It has the ability to communicate with 

the robots in the workspace and provide information to assist the execution of the robotic 

tasks. Experimental investigation using the developed robotic system is presented in 

Chapter 6 along with discussions of the experimental results. Chapter 7 summarizes the 

primary contributions of the thesis, and indicates several relevant issues and possible 

future research directions in mobile manipulation. 
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CHAPTER 2 Machine Vision 

 

 

 

Computer vision involves imaging of objects using cameras and high-level 

processing of those images to extract features and interpret objects. Machine vision (MV) 

is often considered the application of computer vision to industrial and manufacturing 

systems. Whereas computer vision is mainly focused on computer-based image 

processing, machine vision most often requires digital input-output devices and computer 

networks to control other manufacturing equipment such as robotic arms. Machine 

Vision is a subfield of engineering that encompasses computer science, image 

processing, mechanical engineering, and industrial automation. A common application of 

Machine Vision is the inspection of manufactured goods such as semiconductor chips, 

automobiles, food and pharmaceuticals; process control; and robot guidance in industrial 

applications (Steger et al., 2008; Graves and Batchelor, 2003).  

In this thesis, machine vision is mainly applied for identifying and tracking objects as 

the robot navigates in its work environment. As presented in section 1.4.1, many methods 

are currently available for object identification and tracking. Among these methods, color 

tracking is one of the fastest and most straightforward one because the principles of the 

algorithm of color identification and tracking works at pixel level. In this chapter, a fast 

object tracking algorithm based on color is developed to provide position information of 

an object to the visual servo controller of a robot. However, the color tracking algorithm 

has its limitations. In particular, the object must have unique colors and the colors of the 

environment have to be different from the tracked colors. Because of these limitations, 

color tracking algorithms are not natural and adaptive to different scenarios. Next, a more 

robust and reliable feature-based object identification is introduced, which utilizes the 

SIFT features of objects to achieve object identification. Finally, a stereo vision system is 

presented for acquiring the depth information of a detected object.  
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2.1 Color Tracking 

2.1.1 RGB and HSI Color Spaces 

In the RGB (Red, Green, and Blue) color space, all colors are considered a 

combination of the three colors red, green and blue. It is based on a Cartesian coordinate 

system, which is shown in Figure 2.1. There are three axes representing Red, Green and 

Blue. The cube represents the overall RGB color space with eight corners: Red, Green, 

Blue, Cyan, Magenta, Yellow, Black and White. All values in this space range from 0 to 

1.  

White

Green

Red

(0,1,0)

(1,0,0)

(0,0,1)

Gray Scale

Yellow

Black

Cyan

Magenta

Blue

B

G

R  
Figure 2.1: The RGB color model. 

 

The HSI (Hue, Saturation, and Intensity) color space utilizes Hue, Saturation and 

Intensity to represent colors. Figure 2.2 illustrates the HSI color space model in a 

hexagon where its six corners represent Red, Yellow, Green, Cyan, Blue and Magenta. In 

this model, the color is decided only by the angle of Hue which ranges from 0 to 360 

degrees. The saturation and intensity values do not contribute to the color, which means 

that the color cannot be changed by changing the color density and the lighting 
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conditions. This is the biggest advantage of the HSI color space over the RGB color 

space in color tracking because a change in any channel R, G or B will cause a change in 

the color.  

Blue Magenta

Green Yellow

RedCyan
H

S

 
Figure 2.2: The HSI color model. 

 

2.1.2 RGB to HSI Conversion 

A common digital camera provides RGB signals. The first step of color tracking is to 

convert the RGB color space data into HSI color space data. Consider an RGB color 

point P that is acquired by a digital camera. The HSI value of the point P is given by: 

𝐻 = � 𝜃
360 − 𝜃

𝑖𝑖 𝐵 ≤ 𝐺
𝑖𝑖 𝐵 > 𝐺         (2.1) 

where 𝜃 = 𝑐𝑐𝑐−1 �
1
2

[(𝑅−𝐺)+(𝑅−𝐵)]

[(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)]1/2� . The saturation component is given by 

𝑆 = 1 − 3
(𝑅+𝐺+𝐵)

[𝑚𝑖𝑚 (𝑅,𝐺,𝐵)]       (2.2) 

The intensity is given by 𝐼 = 1
3

(𝑅 + 𝐺 + 𝐵)     (2.3) 

 

2.1.3 HSI to RGB Conversion 

The inverse conversion from the HSI color space to the RGB space is expressed by 

the following steps:  

If 0° ≤ 𝐻 < 120°,  

𝑅 = 𝐼 �1 + 𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆 (60°−𝑆)

� (1 − 𝑆)       (2.4) 
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𝐺 = 3𝐼 − (𝑅 + 𝐵)        (2.5)  

𝐵 = 𝐼(1 − 𝑆)          (2.6) 

If 120° ≤ 𝐻 < 240°: 

𝑅 = 𝐼(1 − 𝑆)         (2.7) 

𝐺 = 𝐼 �1 + 𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆 (60°−𝑆)

� (1 − 𝑆)      (2.8) 

𝐵 = 3𝐼 − (𝑅 + 𝐺)         (2.9) 

If 240° ≤ 𝐻 ≤ 360°: 

𝑅 = 3𝐼 − (𝑅 + 𝐵)         (2.10) 

𝐺 = 𝐼(1 − 𝑆)          (2.11) 

𝐵 = 𝐼 �1 + 𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆 (60°−𝑆)

� (1 − 𝑆)       (2.12) 

 

2.1.4 Object Identification 

The procedure of the color tracking algorithm is shown in Figure 2.3. As the camera 

grabs an image, first a Guassian filter is applied to the image in order to smooth it by 

removing high frequency noise. Next, the color image, which is in the RGB (red, green, 

blue) color space, is converted into the HSI (hue, saturation, intensity) color space. This 

is done because RGB colors are very sensitive to illumination and the RGB values will 

change due to slight changes of the lighting condition; while the values of hue and 

saturation will not change when the lighting varies. Therefore, tracking the colors of 

specific hue and saturation values is more robust and reliable. Next, a threshold is set 

according to a specific color, and the grabbed images are processed for specific color 

tracking (Wang and de Silva, 2006).  Finally, the position of the center of gravity of the 

tracked object is computed using 𝑟 = ∑ 𝑟𝑖𝑛
𝑖=1 /𝑚 and 𝑐 = ∑ 𝑐𝑖𝑛

𝑖=1 /𝑚. 
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Figure 2.3: Procedure of the color tracking algorithm. 

 

Figure 2.4 presents typical results from an application of color tracking. The 

objective of the application is to track an Amigo mobile robot while it is moving in the 

camera field of view. The left window in Figure 2.4 shows the raw data of the camera 

image, and the right window shows the result of identification. The white object in the 

image of the right window is the Amigo robot.  

The main advantage of this color tracking algorithm is its high speed. It is able to 

provide the identification result almost instantaneously in real time. This will improve 

the performance of a visual servo control because time delay in the system can cause 

instability. However, it only works in a limited set of scenarios. In particular, if there are 

many objects with similar colors in the camera scene or if the background is noisy, which 

is a common situation, the efficiency of the color tracking algorithm will degrade and 

method may fail. Therefore, a more robust algorithm for object identification is desirable. 
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Figure 2.4: Implementation of the color tracking algorithm. 

 

2.2 SIFT Feature Tracking 

2.2.1 SIFT Feature Generation 

The key to the approaches of feature-based object identification is to employ a robust 

feature detector with high repeatability with regard to rotation, illumination, and scaling. 

Repeatability of a feature detector, which evaluates the geometric stability under different 

transformations of images, is one of the most important criterions in choosing a good 

detector. It is given by the percentage of total detected features in the second image 

which is transformed from the first image. For example, if features detected in the first 

image of a video stream can also be detected in the second image by using the same 

detector, then the feature detector is said to have high repeatability. Edges are robust 

candidates for feature (Szeliski, 2011). In order to find the edges in an image, 

differentiation (or, gradient computation) is usually utilized. However, raw images 

usually contain high-frequency noise (Figure 2.5(a)). If a direct differentiation is applied 

on the raw data, the edge will not be found as shown in Figure 2.5(b). Application of a 

Gaussian convolution before taking the differentiation is known to solve the high 

frequency noise problem, as shown in Figure 2.6. Moreover, it can improve the 

efficiency by utilizing the Derivative of Gaussian (DoG) as shown in Figure 2.7. 

Mikolajczyk (2002) has found that the Laplacian of Gaussian (LoG) function, 𝜎2𝛻2𝐺, 

generates most stable image features. However, Lowe proposed a Difference of Gaussian 
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(DoG) detector (Lowe, 1999, 2004) which provides an approximation to the LoG with a 

much lower computing effort.  

 
(a) Raw data with noise. 

(b) Processed data after taking derivative of the raw data. 

Figure 2.5: An example of raw data and the results of its differentiation. 
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Figure 2.6: Guassian smoothing in edge detection. 
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Figure 2.7: Derivative of Gaussian in edge detection.  

 

 
 Figure 2.8: (1) Gaussian; (2) Derivative of Gaussian; (3) Laplacian of Gaussian. 

 

The procedure of SIFT feature generation is presented in Table 2.1 where the raw 

images are first converted into grayscale images which are represented by a pixel matrix 

of unsigned 8 bit values. For convince of mathematical operation, each pixel is further 

converted into a double precision floating point ranging from 0 to 1.0 (0: black; 1.0: 

white).  
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Table 2.1: SIFT algorithm of local feature generator. 

 Input: A gray scale image. 

Output: Local feature descriptors of the input image. 

 

for the input image 

    Double the image size by using bilinear interpolation. 

    Build Gaussian DoG Pyramids. 

Find local extremes as candidates of feature descriptor. 

end 

Eliminate unstable candidates. 

Identify orientation of descriptor. 

Generate local feature descriptors of the image. 

return descriptor vector 

 

 

In a natural scenario, the scales of objects in different images are different and 

unknown. Therefore, it is required that the features be stable in different scales. For this 

purpose, a DoG pyramid is generated for the image in different scales, as shown in 

Figure 2.9. The general idea of generating the DoG pyramid is presented now. 

 
Figure 2.9: Difference of Gaussian (DoG) pyramid. 

 

Suppose that the left-bottom of Figure 2.9 is the original image. A Gaussian blurred 

imaged is generated for the right second layer by using the convolution:  

𝐿(𝑥,𝑦,𝜎) = 𝐺(𝑥,𝑦,𝜎 ) ∗ 𝐼(𝑥,𝑦)      (2.13) 
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where  𝜎 = 0.5, 𝐺(𝑥,𝑦) = 1
2𝜋𝜎2

𝑒−
(𝑥2+𝑦2)
2𝜎2 = � 1

√2𝜋𝜎
𝑒−

𝑥2

2𝜎2�� 1
√2𝜋𝜎

𝑒−
𝑦2

2𝜎2�     (2.14) 

The third, fourth and the fifth images are generated by using Gaussian blurring from 

the previous image; and the DoG images on the right of the Figure 2.9 are given by  

𝐷(𝑥,𝑦,𝜎) = 𝐿(𝑥,𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦,𝑘𝜎)     (2.15) 

The feature points of an image are decided by finding the local extrema in different 

scales. Figure 2.10 shows three DoG images in the neighboring scales. Each pixel in the 

DoG images is compared with its 8 neighbor pixels in the same images and 9×2 

corresponding neighboring scale. If the checked pixel has a maximum or a minimum 

value among these 27 pixels, it will be selected as a point of interest (Feature). For each 

point of interest, the gradient and orientation are calculated by using: 

𝑔(𝑥,𝑦) = �(𝐿(𝑥 + 1,𝑦) − 𝐿(𝑥 − 1,𝑦))2 + (𝐿(𝑥,𝑦 + 1) − 𝐿(𝑥,𝑦 − 1))2   (2.13) 

𝜃(𝑥,𝑦) = 𝐴𝐴𝐴𝑚2((𝐿(𝑥,𝑦 + 1) − 𝐿(𝑥,𝑦 − 1))/(𝐿(𝑥 + 1,𝑦) − 𝐿(𝑥 − 1,𝑦))) (2.14) 

After eliminating key points with low contrast and along the edges, a set of feature 

points is generated.  There are three parameters for each key point: location, gradient and 

orientation. 

 
Figure 2.10: Local extrema. 

 

Figure 2.11 shows the way in which the SIFT feature descriptors are generated 

(feature representation). The circle in the center represents a point of interest. First, an 

8×8 pixel window is selected around the key point in the image. Second, the window is 

divided into 4 sub-windows in which each one contains 4×4 blocks. Third, the gradient 

histograms of the 8 directions are calculated. Accordingly, a SIFT feature vector contains 



32 
 

128 elements (4×4×8). Finally, the vector is normalized in order to be invariant to 

changes of illumination. 

 
Figure 2.11: SIFT feature descriptor. 

 

In order to find the object location in an image, the SIFT features of both the current 

image from the camera view and the template image are generated. The match points 

between the current image and the template are found by searching for the minimum of 

the Euclidean distance. The flowchart of the overall process of object identification is 

shown in Figure 2.12. First, the raw image is processed by utilizing digital image 

processing techniques. Then the SIFT feature of this image are generated using the steps 

discussed in the previous sections. The object of interest can be identified by comparing 

the SIFT features in the current image and the SIFT features in the template image. 

Image Processing

Original Image

Feature Selection Template

Feature Matching

Feature Representation

Object Identification  
Figure 2.12: Flowchart of object identification. 

 



33 
 

2.2.2 Implementation of SIFT-based Object Identification 

Figure 2.13 shows the results from an application of SIFT feature identification. The 

raw image is shown in Figure 2.13(a) which contains the object of interest: a book. 

Figures 2.13(b) and (c) show representations of the SIFT features of the template (the 

book) and the camera scene.  

 
(a) SIFT keys of the object. 

 
(b) SIFT keys of the camera view at the starting point. 

 
(c) SIFT keys of the camera view at goal location. 

Figure 2.13: SIFT-based object identification and tracking. 

 

The object is found by marching the SIFT features between the book template and the 

camera scene, as shown in Figure 2.14(a) and (b), which present two views from the on-

board camera. Figure 2.14 (a) shows the camera view when the mobile robot is away 
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from the object, and Figure 1.14 (b) shows the camera view when the robot arrives at the 

goal location (grasping location). This experiment verifies good performance of SIFT 

feature-based object identification, especially when the object of interest and the 

environment have many features. However, the computational time of this method is 

rather excessive. Therefore, it is not suitable for visual servoing. However, it is a good 

candidate for object identification and tracking using global cameras in a sensor network 

where it has more time for decision making than in a visual servo application. 

 
(a) Feature matching between current camera view and template. 

 
(b) Feature matching between camera view of the goal location and template. 

Figure 2.14: Examples of SIFT based feature matching. 

 

2.3 Stereo Vision 
Stereo vision is used for depth estimation of an image. A visual servo application 

requires the position of the object in the image plane as well as the depth information, 

which is the distance between the camera and the object with respect to the camera 

frame. A stereo camera can provide these two data values simultaneously. A stereo 

camera has two sets of cameras as shown in Figure 2.15. A point 𝑃𝐿 in the world space 
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has projections on the two image frames with coordinates (𝑢𝑅 , 𝑣𝑅)  and (𝑢𝐿 , 𝑣𝐿) , as 

shown. The following equations can be derived from Figure 2.15: 

(𝑢𝐿 , 𝑣𝐿) = �𝑖 𝑋
𝑍

, 𝑖 𝑌
𝑍
�         (2.15) 

(𝑢𝑅 , 𝑣𝑅) = �𝑖 𝑋−𝐵
𝑍

,𝑖 𝑌
𝑍
�        (2.16) 
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Figure 2.15: Model of a stereo camera. 

 

Suppose that a point P (Figure 2.16) is observed by two cameras simultaneously. It 

projects to the image planes of these two cameras at p and p’, as shown. Note that O and 

O’ are the optical center of these two image planes. The line l’, which is in image II, is 

called the epipolar line associated with point p of image I. Aso, eL and eR are called 

epipoles of the two cameras. The epipolar eR is the projection of the optical center OL in 

the right camera frame and so on.  
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Figure 2.16: Epipolar geometry. 

 

Epipolar constraint says that if p and p’ are the projections of the same point P in 

different cameras, then p’ must lie on the epipolar line associated with p. This result 

plays a fundamental role in stereo vision.  

The epipolar geometry can be simplified if the two camera image planes coincide, as 

shown in Figure 2.17. In this case, the epipolar lines also coincide (EL–PL = ER–PR). 

Furthermore, the epipolar lines are parallel to the line OL–OR between the focal points, 

and can in practice be aligned with the horizontal axes of the two images. This means 

that for each point in one image, its corresponding point in the other image can be found 

by looking only along a horizontal line.  

Left camera Right camera

Optical center

x x'

 
Figure 2.17: Simplified case of Epipolar geometry. 
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Therefore, the term “disparity” is defined as  𝑑 = 𝑢𝐿 − 𝑢𝑅 = 𝑖 𝐵
𝑍
  𝑍 = 𝑖 𝐵

𝑑
 (2.17) 

where Disparity = k/depth. Here k is a system parameter, which can be acquired by 

calibration (2.17). By introducing the Epipolar geometry and its constraints, the stereo 

vision problem is converted to a feature identification problem. In other words, the 

distance between the camera and the object in terms of the camera coordinates can be 

found by finding the position difference of the object in the right and left images (Figure 

2.18). Since it is applied in visual servo control, the achieved efficiency is significant. A 

Normalized Cross Correlation (NCC) is utilized for searching most similar features 

between these two images according to: 

𝑁𝑁𝑁(𝐴,𝐵) =
∑ 𝐴𝑖𝑖𝐵𝑖𝑖(𝑖,𝑖)∈𝑊

�∑ 𝐴𝑖𝑖
2

(𝑖,𝑖)∈𝑊 ∑ 𝐵𝑖𝑖
2

(𝑖,𝑖)∈𝑊

       (2.18) 

where A, and B are the current position of the candidate features in the left and right 

images, respectively.  

Left image Right image
Rectified images

u u'ui ui'

Disparity Range Disparity

Matching function 
value

 

Figure 2.18: Disparity of features in the left and right camera scenes. 
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CHAPTER 3 Mobile Navigation 

 

 

 

Navigation of mobile robots is an important research area among the research 

community of mobile robotics.  This importance arises because understanding of the 

workspace and the availability of efficient motion strategies are necessary to effectively 

achieve a motion goal while giving proper consideration to the current pose, goal 

location in the workspace and possible obstacles on the path.  

In this chapter, a method is developed for mobile localization and object post 

estimation in robotic navigation. Simulation experiments are carried out to show the 

performance of the method. Next a navigation system that uses Q-learning is developed 

for moving a mobile robot from its current position to a goal location in a dynamic and 

unstructured environment. A training software is developed to train and acquire a Q-table 

knowledge base, which is necessary in applying Q-learning. This methodology and the 

developed software are implemented in the physical mobile robot navigation system in 

our laboratory.   

 

3.1 Mobile Localization and Object Pose Estimation 

3.1.1 Sensors in Mobile Localization and Object Pose Estimation 

Mobile robot localization and object pose (position and orientation) estimation in a 

work environment have been central research activities in mobile robotics. Significant 

research attention has been to these two issues in the past decade because of the 

successes of mobile robotic implementations such as vacuum cleaning robots, delivery 

robots, and elder care robots, which heavily rely on the capabilities of accurate robot 

localization and object detection. Solution of the problem of mobile robot localization 

requires addressing of two main problems (Siegwart and Nourbakhsh, 2004): the robot 

must have a representation of the environment; the robot must have a representation of its 
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understanding regarding its pose in this environment.  Sensors are the basis of addressing 

both problems.  

Many off-the-shelf sensors (e.g., GPS, compasses, gyroscopes, and ultrasonic 

sensors) that are available for mobile robots are introduced in (Siegwart and Nourbakhsh, 

2004), giving their operating principles and performance limitations. Based on this 

introduction, ultrasonic sensors (Leonard, and Durrant-whyte, 1991), goniometers 

(Bonnifait and Garcia, 1998), laser range finders (Arsenio and Ribeiro, 1998), and CCD 

cameras (Yamamoto et al., 2005) are the commonly applied sensors in mobile robot 

localization projects for acquiring information on robotic pose estimation at high 

precision. Sonar is fast and inexpensive but is usually rather crude, whereas laser 

scanning is active, accurate and widely applied in mobile robotics. Vision systems are 

passive and have high resolution, and are the most promising sensors for future 

generations of mobile robots. In the work of Uĝur et al. (2007), a 3-dimensional (3-D) 

laser scanner was applied to perceive the traversability affordance and used to wander in 

a room filled with different types of objects (spheres, cylinders and boxes). The results 

obtained through training showed that a mobile robot could wander around while 

avoiding collision with non-traversable objects, but traversable objects are handled by 

rolling them out of its way. A vision-based algorithm for mobile robot localization and 

mapping, which uses STIF (scale-invariant image feature) has been applied for mobile 

robot localization and map building (Borenstein et al., 1996). The associated experiment 

showed that visual landmarks were robustly matched and the pose of the robot was 

estimated in a 3D map. Previous work on robotic localization has indicated that laser 

scanners and CCD cameras are two promising sensors for this purpose. 

The work presented in this session is a part of the mobile navigation system which 

we are developing, where a mobile robot detects obstacles, boxes in this case, in order to 

find suitable paths for navigation. Figure 3.1 presents the general scheme of mobile robot 

localization and object pose estimation in the present work. Successful localization and 

object detection involve the following three steps. Perception: the robot must interpret its 

sensor data to extract meaningful information; prediction: the robot should determine its 

global pose based on meaningful information; matching and pose update: the robot 

should detect objects and compute their poses with respect to a local coordinate system,  

and update their global poses.  
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Figure 3.1: General scheme of mobile robot localization and object detection. 

 

First, optical encoders and an odometry model are utilized to determine the pose of a 

mobile robot with respect to a global coordinate system. Next, a CCD camera, which is a 

passive sensor, is used to find objects (boxes in the present application) in the 

environment as well as the vertical surfaces of the objects (boxes). By identifying and 

tracking the color blobs that are attached to the center of each surface of a box, the robot 

rotates and adjusts its base pose to move the detected color blob into the center of the 

camera view. Finally, a laser range finder, which is mounted on the top of the mobile 

robot, is activated to measure the distance and the angle between the laser source and the 

laser contact surface on the box. Based on the information acquired in this manner, a 

homogeneous transformation matrix is applied to represent the global pose of the robot 

and the box. The developed approach is validated using the Microsoft Robotics Studio 

simulation environment. 

 

3.1.2 Global Pose Estimation 

Estimation of the pose of a mobile robot is a fundamental problem, which can be 

roughly divided into two classes (Borenstein et al., 1996): methods for keeping track of 

the robot’s pose; and methods for global pose estimation. Much of the research carried 

out to date has concentrated on the first class, which assumes that the initial pose of the 

robot is known. A commonly used method for global pose estimation in this field is the 

odometry model, which determines the pose of a robot relative to a starting point during 

navigation of a wheeled vehicle.  
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Figure 3.2 shows a movement of a differential-drive robot, as used in the present 

work. Suppose that the initial pose of the robot is completely known. Then, real-time 

pose information of the mobile robot can be calculated using rotation measurements of 

the two wheels. The overall procedure of the estimation is outlined below. The location 

and orientation of the mobile robot in the global coordinate system are represented by the 

vector:  

[ ]Tp x y θ=          (3.1) 

X-Axis

Y
-A

xi
s

θ

v(t), s

 
Figure 3.2: Motion of a differential-drive robot. 

 

For a differential driving robot, the pose can be estimated from the starting pose by 

integrating the travel distance in each interval (during the fixed sampling interval t∆  of 

sensors) using  

cos( / 2)x s θ θ∆ = ∆ + ∆        (3.2) 

sin( / 2)y s θ θ∆ = ∆ + ∆        (3.3) 

( ) /r ls s dθ∆ = ∆ − ∆         (3.4) 

2 2 ( ) / 2r rs x y s s∆ = ∆ + ∆ = ∆ + ∆       (3.5) 

Here, x∆ and y∆ are distances traveled in the last sampling interval along the x and y 

directions, respectively; θ∆  is the travel angle with the last sampling interval; ls∆  and 

rs∆  are travel distances of the left and the right wheels, respectively; and d is the 

distance between the two wheels, which is a constant for a given robot. Therefore, the 

updated position 'p  for each interval can be found using 

' cos( / 2)
' ' sin( / 2)

'

x x s
p y y s

θ θ
θ θ

θ θ θ

∆ + ∆     
     = = + ∆ + ∆     
     ∆     

     (3.6) 
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By using the equations (3.4), (3.5) and (3.6), 'p  can also be computed from the 

following equation: 

(( ) / 2)cos( ( ) / 2 )
' (( ) / 2)cos( ( ) / 2 )

( ) / 2

l r l r

l r l r

r l

x s s s s d
p y s s s s d

s s

θ
θ

θ

∆ + ∆ + ∆ + ∆   
   = + ∆ + ∆ + ∆ + ∆   
   ∆ − ∆   

   (3.7) 

In this situation, the global pose of the mobile robot can be found by computing 

equation (3.7) during each interval of sensor measurement. 

 

3.1.3 Color Blob Tracking 

The second step of the present work concerns accurately tracking or detecting the 

objects of interest (boxes) by using a color blob vision tracking system. In Chapter 2, a 

fast color-blob tracking algorithm has been developed for the present work, which can 

effectively detect and track different color blobs marked on each vertical surface of a 

box. The detailed process of color blob tracking in this thesis is shown in Figure 3.3(a). 

The original image as acquired by a CCD camera is first processed to remove the 

disturbances by transferring the image from the RGB (red, blue, and green) color space 

to the HIS (hue, saturation, and intensity) color space and removing its saturation and 

intensity components.  

 

Removal of Lighting Disturbance

Statistical Feature Filtering

Color-blob Template Maching

Move the Color Blob into the Center

Rotating the robot base

Original Image

    
         (a)                    (b) 

Figure 3.3: (a) Color blob tracking procedure; (b) Camera view. 

 

In the next step, a type of statistical feature filtering is employed to remove the color 

that is not related to the sample color blobs (5 5× pixel templates). For a 2-D image with 

Center Line 
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i j× pixels, the average hue value and the standard deviation σ  of the corresponding 

color blob can be calculated by the following equations: 

2

1 1
( ( , )) /

n n

i j
h h i j n

= =

= ∑∑        (3.8) 

2 2

1 1
( ( , ) ) / ( 1)

n n

i j
h i j h nσ

= =

= − −∑∑       (3.9) 

Here, ( , )h i j  represents the hue value of the original pixel ( , )i j . By executing an 

“If…else” logic as shown below, the statistical feature filtering is completed.  

For (each pixel in the original image) 

 If (its hue value is within the set of  

 { 1 1 1 11.2 1.2h h h hσ σ− ≤ ≤ + or 

2 2 2 21.2 1.2h h hσ σ− ≤ ≤ +   or……  

1.2 1.2i i i ih h hσ σ− ≤ ≤ +     or …… 

1.2 1.2k k k kh h hσ σ− ≤ ≤ + } 

 Then (it will not be changed) 

 Else (Its hue values will be replaced with 0) 

Loop 

After statistical feature filtering, the color-blob templates, which are 5 5×  pixel 

matrices, are applied to search the entire image, using the algorithm given below: 

Initialize min-distance=100000, blob_pos=(1,1); 

For (each element ( , )H i j  in the matrix of H) 

distance= 2 2

1 1
( ( 1, 1) ( , )) /

n n

i j
H i k j l T k l m

= =

+ − + − −∑∑    (3.10) 

 if (distance<min-distance) then 

 min-distance=distance; 

 update: blob_pos=(i,j) 

output blob_pose; 

Finally, the robot rotates its base to adjust the view of the image in order to make sure 

that the detected color blob is approximately located on the center line of the camera 
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view. By doing so, it guarantees that the robot is heading towards the color label and the 

box in the range of the laser scanner. 

In the present work, 4 different color circle labels (red, green, blue, yellow) are 

placed on the four vertical surfaces of the box. By using different color labels on 

different surfaces, the specific surface toward which the robot is heading can be 

determined as well, at the same time.  

 

3.1.4 Estimation of Box Pose  

Estimation of Relative Pose  

The final step of the present work involves locating the box in the workspace, with 

respect to the global coordinate system. In order to achieve this objective, we first need 

to know the pose of the box with respect to the coordinate system attached to the mobile 

robot (local coordinate system). A laser range finder is used in this work for estimation of 

the relative pose. It is based on a SICK LMS 200 2D scanner, which has a horizontal 

range of 180o with a maximum resolution of 0.5o. This device produces a range 

estimation based on the time needed for the light to reach the target and return. Figure 3.4 

(a) shows how it is used to measure range. The sensor transmits light at a known 

frequency and measures the phase shift between the transmitted and reflected signals. 

Then, the distance between the emission source and the target surface can be determined 

using: 

/ 4D λθ π=          (3.11) 

where θ  is the electronically measured phase difference between the transmitted and 

reflected light beams. 
D

L

Transmitted beam
Reflected beam

Phase 
Measurement

180o

    
            (a)                   (b) 

Figure 3.4: (a) Schematic drawing of laser range sensor; (b) a 180 degree laser range 
sensor. 
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Figure 3.5 shows the results of the laser range finder. There are four objects within 

the laser scanner according to these results.  Because the box with a color blob label 

should be in the center of the laser range scan after applying the color blob tracking in 

the previous section, it is straightforward to establish that the box must be in the range 

between 79.5° and 99°. 

 
(a) 

 
(b) 

Figure 3.5: (a) Visualized laser range finder results; (b) laser range finder results. 

 

Figure 3.6 and Table 3.1 present the data that are acquired from the laser range finder 

for calculating the center location and orientation of the box with respect to the robot 

coordinate system. Based on this data, we can present the following group of equations, 

which represents the relationship among A, B, 'o and o in the robot coordinate system. 

Box

X-Axis

Y-
Ax

is X’-Axis

Y’-A
xis

α β

B

A

o

o’

θ'

 
Figure 3.6: Laser range finder representation. 
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Table 3.1: Important laser range results. 

Box Length Box Width α β OA (d1) OB (d2) 

1000mm 500mm 80.5° 99° 3079mm 3226mm 

 

1

1

2

2
' 2 ' 2

' 2 ' 2

cos
sin
cos
sin

( ) ( ) 312500
( ) ( ) 312500

A

A

B

B

o A o A

o B o B

x d
y d
x d
y d

x x y y
x x y y

α
α
β
β

=
 =
 =
 =
 − + − =


− + − =

      (3.12) 

' tan(( ) / ( ))B A B AA y y x xθ = − −       (3.13) 

By solving the equations (3.12) and (3.13), the pose of the box center ( 'o ) and the 

orientation of the coordinate frame that is attached to the box with respect to the robot 

coordinate system can be found and represented by the vector  

' [ ']T
x yo o o θ=         (3.14) 

It describes the pose of the box with respect to the mobile robot, and is called the 

relative pose. 

 

Estimation of Global Pose of Box  

The homogeneous transformation (Spong et al., 2006) matrix, which represents a 

rigid body motion of translation and rotation, is applied in this work to represent the 

relationship among the three coordinate systems: the global coordinate system, the robot 

coordinate system, and the box coordinate system. It combines rotation and translation in 

a two-dimensional space, which can be used to perform coordinate transformations 

between frames that differ in orientation and translation. 

By using the result obtained in the previous section, the homogeneous transformation 

matrix between the box coordinate system and the robot coordinate system can be written 

as 
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cos ' sin '
' sin ' cos '

0 0 1

x

y

o
T o

θ θ
θ θ

− 
 =  
  

       (3.15) 

The pose of the robot coordinate frame expressed in the global coordinate system is 

known from equation (3.7). The homogeneous transformation matrix between the robot 

coordinate system and the global coordinate system can be found as   

cos sin
'' sin cos

0 0 1

x
T y

θ θ
θ θ

− 
 =  
  

       (3.16) 

Therefore, the homogeneous transformation matrix T between the box coordinate 

system and the global coordinate system can be computed by using (3.15) and (3.16); 

specifically, 

cos sin cos ' sin '
'' ' sin cos sin ' cos '

0 0 1 0 0 1

x

y

x o
T T T y o

θ θ θ θ
θ θ θ θ

− −   
   = =    
      

cos( ') sin( ') cos sin
sin( ') cos( ') sin cos

0 0 1

x y

x y

o o x
o o y

θ θ θ θ θ θ
θ θ θ θ θ θ

+ − + − + 
 = + − + + 
  

   (3.17) 

In matrix (3.17), the origin and the orientation of the box with respect to the global 

coordinate system can be determined by 

cos sin
'' sin cos

tan(sin( ') / cos( '))

x y

x y

x o o x
o y o o y

A

θ θ
θ θ

θ θ θ θ θ

− +   
   = = + +   
   + +   

     (3.18) 

3.1.5 Simulation Environment 

In this work, Microsoft Robotics Studio simulation environment is utilized to validate 

the developed method. The software and relevant algorithm are developed using 

Microsoft C#. 

Figure 3.7 shows the simulation environment of Microsoft Robotics Studio. The 

Microsoft Robotics Studio is a Windows-based environment for robot control and 

simulation. Its features include: a visual programming tool, Microsoft Visual 

Programming Language for creating and debugging robot applications, web-based and 

windows-based interfaces, 3-D simulation (including hardware acceleration), a 

http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Visual_programming
http://en.wikipedia.org/wiki/Microsoft_Visual_Programming_Language
http://en.wikipedia.org/wiki/Microsoft_Visual_Programming_Language
http://en.wikipedia.org/w/index.php?title=Robot_application&action=edit&redlink=1
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Hardware_acceleration


48 
 

lightweight service-oriented runtime facility, easy access to robot's sensors and actuators 

via a .NET-based concurrent library implementation, and support for a number of 

languages including C# and Visual Basic .NET, JScript, and IronPython. 

 
Figure 3.7: Simulation environment GUI. 

 

3.1.6 Simulation Results 

Figure 3.8 shows the experimental setup in this work. It contains a Pioneer AT mobile 

robot which carries a laser range finder and a CCD camera, and a gray object (a box that 

is 500 mm in width and 1000 mm in length) which is labeled using color blobs on its 

vertical surfaces. The objective of this experiment is to determine the box pose in the 

global coordinate system. 

 
Figure 3.8: Experimental setup in the simulator. 

 

First, the mobile robot rotates its base clockwise to search for the color blobs (i.e., the 

box) in the environment. Once the robot finds the color blobs, the color-blob tracking 

http://en.wikipedia.org/wiki/Runtime
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Actuator
http://en.wikipedia.org/wiki/.NET
http://en.wikipedia.org/wiki/Concurrent
http://en.wikipedia.org/wiki/Library
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Visual_C_Sharp
http://en.wikipedia.org/wiki/Visual_Basic_.NET
http://en.wikipedia.org/wiki/JScript
http://en.wikipedia.org/wiki/IronPython
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algorithm is applied to identify candidates. Then, it keeps adjusting the base and moves 

the color blob into the middle of the vision frame in order to make sure that the box is 

within the range of the laser scanner. Meanwhile, the pose of the robot is recorded 

according to the odometry algorithm. Figure 3.9 shows the global camera view and the 

on-robot local camera view. The current robot pose in the global coordinate system in 

this experiment is [ ]' 1000 1500 18 Tp mm mm= − ° .  

 
          (a)     (b) 

Figure 3.9: (a) Global camera view; (b) Robot camera view. 

 

The robot sits still while observing the box and the laser range finder is activated. 

Figure 3.10 shows the results acquired from the range scanner. The data for the pose 

calculation is given in Table 3.2. 

 

 
Figure 3.10: Laser range finder results. 
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Table 3.2: Data for pose calculation. 

Box Length Box Width α  β OA (d1) OB (d2) 

1000 mm 500 mm 82° 99.5° 2435 mm 2968 mm 

 

By using the group of equations (3.12) and equation (3.13), the pose of the coordinate 

frame attached at the center of the box with respect to the robot coordinate system can be 

determined as: ' [2901 mm 69 mm 31.9 ]To = − ° . The homogeneous transformation 

matrix between the box coordinate frame and the robot coordinate frame can be written 

as 

 
0.8490 0.5284 2901

' -0.5289 0.8490 69
0 0 1

T
 
 =  
  

      (3.19) 

The homogeneous transformation matrix between the robot coordinate frame and the 

global coordinate frame can be generated as 

0.9511 0.3090 1000
'' 0.3090 0.9511 1500

0 0 1
T

 
 = − 
  

      (3.20) 

Therefore, the homogeneous transformation matrix between the box coordinate frame 

and the global coordinate frame is determined by using (3.19) and (3.20); as 

0.6441 0.7649 3780
'' ' 0.7653 0.6442 669

0 0 1
T T T

 
 = = − 
  

     (3.21) 

Finally, the origin and the orientation of the box in the global coordinate system can 

be determined according to (3.18) as  

[ ]'' [ ] 3780 mm 669 mm 10.04 TTo x y θ= = °     (3.22) 

Figure shows the visualized experimental results, represented in the global coordinate 

system. 



51 
 

3780

669

1500

x (mm)

y 
(mm)

y’ x’

y’’

x’’

X-Axis

Y
-A

xi
s

Box

1000

2901

69 °−18

°− 9.31

°04.10

o’’

o’

 
Figure 3.11: Visualized experimental result. 

 

3.2  Autonomous Mobile Navigation 

3.2.1 The Q-learning Algorithm 

Reinforcement learning has been studied by psychologists since the 1940’s (Sutton 

and Barto, 1998). It involves learning what to do—how to map situations to actions—so 

as to maximize a numerical reward signal. It is neither supervised learning nor 

unsupervised learning. The learner is a decision-making agent who takes actions in an 

environment and receives rewards for its actions in trying to solve a problem (Alpaydm, 

2004). After a set of trial-and error runs, it should learn the best policy, which is the 

sequence of actions that maximizes the total reward (Figure 3.12). 

AGENT

Environment

State Reward Action

 
Figure 3.12: The agent interacts with an environment. 
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As shown in Figure 3.12, an intelligent agent knows its state in the current 

environment. By applying an action, which is chosen from a sequence of actions in this 

state, a feedback to this action is acquired from the environment, which will indicate 

whether the action is good (positive reward) or not (negative reward). After exploring 

actions in this sequence under different states, a table can be generated to represent the 

action probability of getting positive reward in certain situation. The greater the reward 

of an action in a particular state, the higher the probability of selecting that action.  

Machine learning using the Q-learning algorithm incorporates Markov Decision 

Processes (MDP) (Russell and Norvig, 2003, Alpaydin, 2004), which can be defined by a 

4-tuple < ,  >S, A, T, R β , where 

1 2{ , , , nS s s s= … } , is a set of states of the work environment or the world 

1 2{ , , , }mA a a a= 2 , is a set of actions available to the robot 

: ( )T S A S× → ∏ , is a transition function, which decides the next environmental 

state 's when the robot selects an action ia  under the current state s . Also, ( )s∏  is the 

probability distribution over the states. 

:R S A× → ℜ ，is a reward function, which determines the immediate reward when 

the robot takes an action ia  under the current state s . 

In MDP, the core issue is to find the optimal action-selection policies so that the 

cumulative reward in a sequence of decision-making becomes a maximum. Since the 

transition function and the reward function are usually unknown in a real engineering 

application, the Q-learning algorithm (Sutton and Barto, 1998), which involves 

reinforcement learning, is employed to reach the optimal policies in an MDP problem. 

The steps of the Q-learning algorithm employed in the present work are given below: 

For each state 1 2( , , , )i ns s s s∈   and action 1 2( , , , )j ma a a a∈  , initialize the table 

entry ( , )i jQ s a  to zero. Initialize τ  to 0.9. Initialize the discount factor 0 1β< ≤ and the 

learning rate 0 1η< ≤ . 

Observe the current state s 

Do repeatedly the following: 

Probabilistically select an action ak with probability  
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( , )/

( , )/

1

( )
k

l

Q s a

k m
Q s a

l

eP a
e

τ

τ

=

=

∑
, and execute it 

Receive the immediate reward r 

Observe the new state 's  

Update the table entry for ( , )kQ s a  as follows: 

 
'

' '( , ) (1 ) ( , ) ( max [ , ])k k
a

Q s a Q s a r Q s aη η β= − + +        

's s← , *0.9τ τ←  

It has been proved that the values of ( , )i jQ s a will converge in a static environment 

after a certain number of iterations of the Q-learning algorithm (Sutton and Barto, 1998). 

When the Q values converge, it implies that the agent or the robot has learned the correct 

action-selection policy; specifically, it always selects the optimal action for a specific 

world state so that the sum of the discounted rewards in the subsequent decision-making 

process will reach a maximum. 

 

3.2.2 Problem Definition 

The objective of the present mobile navigation project is to develop an autonomous 

mobile robot system that has the ability to autonomously navigate from an initial location 

to a goal location. As shown in Figure 3.13, in this workspace, a mobile robot attempts to 

navigate from its initial location to the goal location where a screw is located. In its 

workspace, obstacles may be present and even appear randomly during the navigation 

process.   
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Figure 3.13: The mobile navigation system. 

 

3.2.3 States, Actions and Rewards 

Figure 3.14 presents the definition of the states of the robot in the environment. 

Suppose that the mobile robot is in the center of the circle in the right of Figure 3.14(b). 

It divides the surrounding area of the robot into eight regions as shown in Figure 3.14(b). 

For each region, a two bit binary data is utilized to represent the distance between the 

closest obstacle and the robot in the particular region. The binary data are lined up in a 

sequence ranging from region 1 to region 8 as shown in Figure 3.14 (a). The two digits of 

each group represent the distance between the obstacle and the robot. Therefore, a 

sequential 14-bit binary data represents the current state of the robot working 

environment which comes to 32 (8×4) possible states. 

 
(a) 

00: Short   (0, 30] cm 
01: Middle   (30, 100] cm 
10: Far   (100, 200] cm 
11: Very Far (200, ∞] cm 

Region 1 Region 8 Distance Orientation 
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(b) 

Figure 3.14: Definition of states of the mobile robot and environment. 

 

      Figure 3.15 presents the definition of possible actions of the robot. Based on the 

representation in Figure 3.15 (b), it divides the heading direction into 12 sectors and each 

sector covers 30 degrees. This means the robot can navigate in twelve directions as 

denoted by 0 to 11. There are six bits which are used to represent the motion strategy of 

the robot, as shown in Figure 3.15(a). The first four bits represent the moving direction 

and the last two bits give the distance of the motion. The combination of these 6 bits 

provides the action of the robot motion in terms of orientation and distance. 

 
(a) 

Moving Direction Moving Distance 

00: Short   Rand(0— 10) 
01: Middle   Rand(10—20 cm) 
10: Long   Rand(20—40 cm) 
11: Extra long  Rand(40—60 cm) 

7 

6 

5 

4 3 

2 

1 

0 

Short 

Middle 

Far 

Very Far 
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(b) 

Figure 3.15: Definition of Actions.       

 

It follows that the robot will have 221 states and 26 actions in total, which comes to 

2,097,152 states and 64 actions. In the Q-table, there will be one on one mapping 

between states and actions. It results in 134,217,728 entries in the table, which represent 

the mapping among states and actions. If each Q-value is a single floating-point data 

which will use 16 bits (2 bytes) of memory, the overall Q-table will use approximately 

0.3 GB of memory space, which can be accommodated by a modern computer.  

As mentioned before, the Q-Learning involves decision making of robotic motion 

based on the environmental states of the robot. Before the Q-table can be utilized in a 

robotic navigation task, it has to be trained. The training procedure is shown in Figure 

3.16.  
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Figure 3.16: Flowchart of Q-Learning. 

 

It will load the Q-table and initialize it if it, in the beginning of training. In each 

iteration, the robot will detect the state of the environment by using its local sensors 
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based on the state definition discussed above. Next, action selection is done based on the 

current state. The robot must select a good action from the action database in order to 

perform an efficient movement, one that can approach the goal while avoiding obstacles. 

The action is selected by applying the probabilistic function: 

 𝑝𝑖 = 𝑒
𝑄𝑛𝑒𝑤𝑖

𝜏 /∑𝑒
𝑄𝑛𝑒𝑤𝑖

𝜏         (3.23) 

where each action can get a probability to be selected in the range from 0 to 1 (Figure 

3.17). The advantage of using the  𝑒
𝑄𝑛𝑒𝑤𝑖

𝜏  term is to avoid the 0 probability, so that each 

action has a non-zero to be chosen. Also it solves the local maximum problem.  

 

 

 

 

 

Figure 3.17: Probability of each action. 

 

After the action is executed, the robot will re-evaluate the current state and compare 

it with the state before applying the action. Then it will generate a quantitative value, 

which is called the Q value, to represent the performance of the previous action by a cost 

function; specifically, 

𝑄(𝑐,𝐴) = Q(𝑐, 𝐴) + 𝛼[𝑟 + 𝛾𝑀𝐴𝑥�𝑄(𝑐′,𝐴′)� − 𝑄(𝑐,𝐴)]        (3.24) 

where 𝑄(𝑐,𝐴) is the current value of a state-action pair, 𝑄(𝑐′,𝐴′) is the value of the state-

action pair of the next step, α is the learning rate (0.8 in my case), 𝛾 is the discount factor 

(0.9 in our case)., and 𝑟 is immediate reward. The new Q value will be utilized to update 

the existing Q value in the Q table. The Q values in the table will converge if sufficient 

time is provided for training.  

 

3.2.4 Simulation Platform 

Since the training procedure is complex and time-consuming, it is difficult to directly 

implement it in a physical system. A simulation platform is required to train the system. 

A simulation platform is developed in Visual Basic.net for acquiring the Q table 

(knowledge base) in mobile navigation system. The User Graphic Interface (GUI) of the 
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developed system is shown in Figure 3.18. The black dot represents the mobile robot; the 

red dots are obstacles; and the blue dot represents the goal location of the mobile robot. 

The goal of this simulation system is to train the mobile robot to navigate from the 

current location to the goal region without colliding with any obstacles.  

 
Figure 3.18: Developed simulation platform for Q-learning training in mobile navigation. 

 

As described in the previous session, the original Q-table is initialized so that all the 

actions have the same probability to be selected. This means the motion of the robot is 

purely random in the beginning of a training process. As the training process proceeds, 

the mobile robot will become smarter and choose the action more wisely according to the 

updated Q values which represent the efficiency of the motion at the particular state. 
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There are three stopping criteria for each training iteration: 1). Robot hits an obstacle 

(Figure 3.19); 2). Robot reaches the goal (Figure 3.20); 3). Robot reaches the allowed 

maximum numbers of moving steps (Figure 3.21).  

 
Figure 3.19: Mobile robot collides with an obstacle. 
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Figure 3.20: Mobile robot reaches the goal. 
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Figure 3.21: System exceeds the allowed maximum number of motion steps. 

 

After training, a validating program in the develop system can be utilized to verify 

the training performance of the system. In the validating stage, the position of the robot, 

the goal region, the number of obstacles and their sizes are randomly generated in the 

workspace. In each motion step of the robot, it checks its states according to its local 

sensing capability. Then, it selects an action based on the probabilistic action selection 

function (3.32). Having selected an action in the Q-table, it executes the selected action 

and moves the mobile robot to the next states. It repeats this procedure until the robot 

reaches the goal region.  
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(a) 
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(b) 

Figure 3.22: Validation of the training results. 
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CHAPTER 4 Visual Servo Control 

 
 

 

A vision-based mobile manipulation system typically uses computer vision data as 

sensory feedback for controlling the motion of robots. This is also called a visual 

servoing system or a visual servo control system. It involves a fusion of many related 

research areas including machine vision, robot modeling, control theory, and real time 

computing. Specifically, in visual servo control, the vision system provides feedback 

information about the current state of the environment to the controller (Chaumette and 

Hutchinson, 2006). The robotic system usually consists of a mobile base on which a 

multiple-degree-of-freedom (multi-DOF) manipulator arm is mounted. This robot carries 

a group of sensors such as cameras, laser distance finders, bumper collision detectors, 

and sonars. If it has the ability to work in an unknown and unstructured environment on 

its own, without the external interaction of a human operator or another external system, 

it is known as autonomous manipulator.  

A new trend is to integrate visual servoing into a mobile robot for carrying out 

grasping or manipulation activities autonomously, resulting in a vision-based 

autonomous mobile manipulation system (Spong, et al., 2006). Compared to traditional 

visual-servo control employed in fixed-base robotic manipulators, a vision-based mobile 

manipulation system has many advantages. The most important among them may be that 

a vision-based mobile manipulation system that integrates the capabilities of its vision 

subsystem, the on-board arm and its mobile base, can move about and work in an 

unstructured environment. Consequently, the robotic system becomes more flexible and 

has wider applications than a traditional fixed-base manipulator system. Since its arm 

(manipulator) and cameras are usually mounted on a mobile base, a mobile manipulation 

system possesses better maneuverability and terrain coverage capability than a fixed-base 

manipulator. 
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  A multi-robot cooperative assembly system is being developed in the Industrial 

Automation Laboratory at The University of British Columbia. In this system, multiple 

mobile robots autonomously search for the parts of a target vehicle, which are scattered 

in an unstructured environment of complex terrain and obstacle distribution. Once an 

object of interest is encountered and identified, a robot will attempt to autonomously 

grasp it and pick it up with its on-board arm using visual servoing, and transport it to a 

designated site for further manipulation and assembly. When the robots determine that 

they have collected all the necessary parts, they proceed to assemble them to construct 

the target vehicle, by cooperatively manipulating the parts. The specific system is 

developed for application in robotic search and rescue.  

This chapter addresses several challenges in the area of mobile manipulation with 

visual feedback control such as visibility constraint, physical constraints and optimal 

controller outputs. First, a hybrid controller, which combines a traditional proportional-

integral-derivative (PID) controller and an intelligent Q-learning controller, is proposed 

for visual servo control. It mainly accommodates the visibility constraint. Then a more 

advanced controller, termed Adaptive Nonlinear Model Predictive Controller (ANMPC), 

is proposed and developed for both mobile navigation and robotic manipulation. This 

approach is able to solve problems of visibility constraint and physical constraints, and 

also provide optimal controller outputs. 

 

4.1  Modeling 
Models of robots and cameras are commonly used in schemes of visual servo control. 

In this section several relevant model formulations are presented. 

 

4.1.1 Rigid Motions and Homogeneous Transformation 

The rigid motions of a robot can be represented by the matrix 

𝐻 = �𝑅 𝑑
0 1� ,𝑅 ∈ 𝑆𝑆(3),𝑑 ∈ ℝ3        (4.1) 

where 𝑅 represents a 3 × 3 rotational matrix; and 𝑑 is a distance vector. The matrix in 

Equation (4.1) is called a homogeneous transformation, which represents the rotational 

and displacement relationship between two coordinate frames. It is a 4 × 4 matrix. The 

last row consists of three zeros and a one; and remaining elements are composed of a 
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rotation matrix and a position vector. In robotic applications a commonly used 

convention for defining the coordinate frames of reference and generating the 

homogeneous transformation matrices is the Denavit-Hartenberg (DH) convention, 

which was introduced by Denavit and Hartenberg (Spong, et al., 2006) to simplify the 

modeling procedure in generating forward kinematics (i.e., expressing the end-effector 

movement in terms of the joint movements) of a robot. There are four parameters in this 

representation: 𝜃𝑖 , 𝑑𝑖 , 𝐴𝑖  and 𝛼𝑖 . The detailed definitions of these four parameters are 

given in Table 4.1.  

Table 4.1: Denavit-Hartenberg convention. 

Parameter Axis Description 
𝜃𝑖 𝑧𝑖−1 Joint Angle: the angle from 𝑥𝑖−1 to 𝑥𝑖 measured about 𝑧𝑖−1. 

- Variable for revolute joints. 
𝑑𝑖 𝑧𝑖−1 Link Offset: distance along 𝑧𝑖−1  from 𝑐𝑖−1  to the 

intersection of the axes 𝑥𝑖 and 𝑧𝑖−1. - Variable for prismatic 
joints. 

𝐴𝑖 𝑥𝑖 Link Length: distance along 𝑥𝑖 from the intersection of the 
axes 𝑥𝑖  and 𝑧𝑖−1  axes to 𝑐𝑖 . - Constant perpendicular 
distance between 𝑧𝑖−1 and 𝑧𝑖−1. 

𝛼𝑖 𝑥𝑖 Link Twist: the angle from 𝑧𝑖−1 to zi measured about 𝑥𝑖 . - 
Constant angle between 𝑧𝑖−1 and 𝑧𝑖. 

 

Suppose that the coordinates are assigned based on the two DH rules: 

(DH1): The axis 𝑥𝑖 is perpendicular to the axis 𝑧𝑖−1 (𝑥𝑖 ⊥ 𝑧𝑖−1). 

(DH2): The axis 𝑥𝑖 intersects the axis 𝑧𝑖−1 (𝑥𝑖 ∩ 𝑧𝑖−1 ≠ ∅). 

Then, there exists a unique homogeneous transformation matrix that takes the 

coordinates from one frame to the base frame, as given by: 

𝐻 = 𝑅𝑐𝐴𝑧,𝜃𝑇𝑟𝐴𝑚𝑐𝑧,𝑑𝑇𝑟𝐴𝑚𝑐𝑥,𝑎𝑅𝑐𝐴𝑥,𝛼 =

�

𝑐𝜃𝑖 −𝑐𝜃𝑖
𝑐𝜃𝑖 𝑐𝜃𝑖

0 0
0 0

0 0
0 0

1 0
0 1

� �
1 0
0 1

0 0
0 0

0 0
0 0

1 𝑑𝑖
0 1

� �
1 0
0 1

0 𝐴𝑖
0 0

0 0
0 0

1 0
0 1

� �

1 0
0 𝑐𝛼𝑖

0 0
−𝑐𝛼𝑖 0

0 𝑐𝛼𝑖
0 0

𝑐𝛼𝑖 0
0 1

� =

�

𝑐𝜃𝑖 −𝑐𝜃𝑖𝑐𝛼𝑖
𝑐𝜃𝑖 𝑐𝜃𝑖𝑐𝛼𝑖

𝑐𝜃𝑖𝑐𝛼𝑖 𝐴𝑖𝑐𝜃𝑖
−𝑐𝜃𝑖𝑐𝛼𝑖 𝐴𝑖𝑐𝜃𝑖

0 𝑐𝛼𝑖
0 0

𝑐𝛼𝑖 𝑑𝑖
0 1

�         (4.1) 

where 𝑅𝑐𝐴𝑧,𝜃 is the rotational matrix about the z axis, 𝑇𝑟𝐴𝑚𝑥,𝑎 is the translational matrix 

along the z axis, 𝑇𝑟𝐴𝑚𝑥,𝑎 is the translational matrix along the x axis, and 𝑅𝑐𝐴𝑥,𝑎 is the 
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rotational matrix. Figure 4.1 shows an example of coordinate assignment according to the 

DH rules where 𝑥𝑖 ⊥ 𝑧𝑖−1 and 𝑥𝑖 ∩ 𝑧𝑖−1 ≠ 0. 

 
Figure 4.1: An example of coordinate frames satisfying DH convention. 

 

4.1.2 Kinematic Modeling of the Robots 

In order to mathematically modeling the robotics system, 6 coordinate frames (Figure 

4.2) are introduced. They are camera coordinate frame, pixel coordinate frame, image 

coordinate frame, global coordinate frame, mobile base coordinate frame, and robot arm 

coordinate frame.  
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Figure 4.2: Definition of the system coordinates. 

 

The purpose of forward kinematic modeling is to find the position and orientation of 

the robot end-effector in terms of the base frame by knowing the parameters of all joint 

variables. It is a critical problem in robot modeling. It is a usual case that the links of a 

robot are assumed to be rigid bodies; and they are connected together at joints. These 

joints determine the freedom of motion between the connected two joints. There are two 

typical types joints in general purpose industrial robots: 1) Revolute joints (or rotational 

joints) and 2) Prismatic joints (or translatory joints or telescopic joints or linear joints). 

Because of the rigid-body assumption, the forward kinematics problem can be solved by 

calculating the rigid body transformation among all robot links.  

In order to derive the control law for a mobile robot with its manipulator, 

mathematical models that describe the relationship between the velocities of the robot 

joints and the velocity of a feature point in the camera scene are required.  

 

Kinematic model of the mobile robot 

Figure 4.3 shows the relationship between the mobile robot frame and the stereo 

camera frame, where the robot frame and the camera frame are rigidly attached to the 
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mobile robot and the stereo camera, respectively. The coordinate transformation between 

these two frames is given by 

𝐻𝑆𝑟 = �𝑅𝑆
𝑟 𝑑𝑆𝑟

0 1
�                             (4.2) 

where 𝐻𝑆𝑟  represents the homogeneous transformation from the camera frame to the 

mobile robot frame, 𝑅𝑆𝑟 is the rotational matrix, and 𝑑𝑆𝑟 = [𝑑𝑥 𝑑𝑦 𝑑𝑧]𝑇 is the position 

vector which represents the distance between the origin of the mobile robots and the 

origin of the camera frame with respect to the mobile robot frame.  

 

Figure 4.3: Abstraction of the mobile robot, stereo camera and their frames. 

 

Kinematic model of the robotic manipulator 

Figure 4.4 shows the kinematic chain of the manipulator. The Denavit-Hartenberg 

(DH) parameters of the RobuArm are given in Table 4.2. The homogeneous 

transformation of the RobuArm can be generated by using the DH convention, which 

represents the orientation of the tool frame and the distance of the origin of the tool frame 

from the origin of the robot base frame, with respect to the robot base frame.   
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Figure 4.4: Kinematic chain representation of a robotic manipulator. 

 

Table 4.2: DH table of the RobuArm. 

Link 𝛼𝑖 𝐴𝑖 𝑑𝑖 𝜃𝑖 

1 0 0 400 𝜃1  

2 −π/2 0 0 𝜃2  

3 0 418 12.8 𝜃3  

4 −π/2  115 0 𝜃4  

5 π/2   0 505 𝜃5  

6 −π/2 0 0 𝜃6  

End-effector 0 -68 301.45 0 

 

4.1.3 Camera Modeling 

Perspective Projection 

The simplest model of a camera is the pinhole camera model, which is shown in 

Figure 4.5(a). In this model, light from a point on the object (𝑃) in the world spaces 

passes through a pinhole and projects onto the camera image surface called the image 

plane. For an ideal pinhole camera, the camera plane is located at a distance 𝑖(focal 
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length) behind the pinhole. The origin of the coordinate frame is called the center of 

projection in the image plane. The intersection of the z axis and the image plane is 

known as the principal point.  

Image Plane Pinhole

Optical Axis

P (xc, yc, zc)

p

f z

o O
X

Object

x’
z

(a) 

Image Plane Pinhole

Optical Axis

P (xc, yc, zc)

p

f z

o O
X
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x’
x’

f

Image Plane

p (u, v)

o
z

(b) 

Figure 4.5: (a) Pinhole camera model; (b) Pinhole camera model with reflected image 

plane. 

 

Figure 4.5(b) shows a pinhole camera model with the reflected image plane model. 

This model has the advantage that the projected object (𝑥′) in the image plane is reversed 

when compared with the object in the world space (𝑋). Therefore, the modified pinhole 
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camera model simply shifts the image plane to the front of the principal point by 2𝑖. In 

this model, the image reversion problem is solved. Meanwhile, the size of the projected 

object does not change in view of the property of similar triangles. If camera focal length 

𝑖 is known, and the coordinates of the point object in terms of the camera frame is 

known as well, which is denoted by (𝑥𝑆,𝑦𝑆 , 𝑧𝑆), we can determine the coordinates of the 

point in the real world in terms of the camera frame by sensing the position of the 

projected point in the image plane (𝑢, 𝑣): 

𝑘 �
𝑥𝑆
𝑦𝑆
𝑧𝑆
� = �

𝑢
𝑣
𝑖
�           (4.3) 

where 𝑢,𝑣 are the coordinates of the projected point in the image plane. It is seen that 

these equations can help identify the 3D position of a point in the camera frame if 𝑢 and 

𝑣 are measureable. However, it is not easy to measure these. The sensor of a digital 

camera is a two-dimensional array whose elements are called pixels, as shown in Figure 

4.6. These pixels are not continuous, and there exist gaps among the pixels. Moreover, a 

pixel element is usually rectangular and not square, especially in inexpensive cameras. 

The dimensions of the pixel element are descried by 𝑐𝑥 and 𝑐𝑦 in Figure 4.6. Also, the 

origin of the image coordinate frame, which is the principal point, is usually not the 

center of the image/pixel plane. There exist offsets in real situations.   

Origin of the pixel 
coordinate frame

{(r,c)}

Image plane

r

c

u

v

A pixel

Origin of the image 
coordinate frame

{(u,v)}

sx

sy

 
Figure 4.6: Image plane and pixel plane. 
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  In Figure 4.5(b), P is a point in the work environment with coordinates ( , , )cx y z

relative to the camera frame, and p is the projection of P on the image plane with 

coordinates ( , )u v  relative to the image plane frame, and with coordinates ( , )r c  relative 

to the pixel coordinate frame. The distance between the origin of the camera frame and 

the image plane is denoted by λ , and the coordinates of the principal point are ( , )r co o

with respect to the pixel coordinate frame. The coordinate transformation between the 

frames is given by: 

 
( )
( )

x r

y c

u s r o
v s c o

= − −
 = − −

                                                           (4.4) 

c

x rc

c

y cc

xr f o
z
yc f o
z


= − +


 = − +

                                                           (4.5) 

Here, xs and ys are the horizontal and vertical dimensions, respectively, of a pixel as 

given by x
x

f
s
λ

=  and y
y

f
s
λ

= .  

Let p be a feature point on the image plane with coordinates ( , )u v . The moving 

velocity of p can be expressed in terms of the camera velocity using the interaction 

matrix L as (Dean-Le´on, et al., 2006): 
2 2

2 2

0

0

c c
c c
c c

c c

u uv u vu z zL
v v v uv u

z z

λ λ
λ λξ ξ

λ λ
λ λ

 +
− −    = =  +   − − −  




     (4.6) 

 In Equation 4.6, there are several unknowns: the dimensions of the sensor ( xs and ys

), focal length of the camera ( xf  and yf ), the location of the principal point ( ro  and co ), 

and the velocity of the camera with respect to the camera frame ( c
cξ ). These parameters 

can be determined through camera calibration, which involves finding two groups of 

parameters: 

(1) Intrinsic camera parameters 

(2) Extrinsic camera Parameters 
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Camera Parameters 

Since cameras are usually rigidly attached to robots or mounted on tripods, the 

rotational matrix 𝑅𝑆𝑤 and the translational vector 𝑇𝑆𝑤 can be easily determined. Therefore, 

if we know the 3D position of a point 𝑃 in the camera frame, the coordinates of this point 

in the world frame can be determined by using 

𝑃𝑤 = 𝑅𝑆𝑤𝑃𝑆 + 𝑇𝑆𝑤          (4.7) 

or conversely, 

𝑃𝑆 = 𝑅𝑤𝑆 (𝑃𝑤 − 𝑇𝑆𝑤) = 𝑅𝑤𝑆 𝑃𝑤 − 𝑅𝑤𝑆 𝑇𝑆𝑤        (4.8) 

where 𝑅𝑤𝑆  and 𝑅𝑤𝑆 𝑇𝑆𝑤 are called the extrinsic camera parameters. In the section below, we 

denote them by 𝑅 and 𝑇, respectively, for brevity. Consider the rotational matrix:  

𝑅 = �
𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

�         (4.9) 

and the translational vector:  

𝑇 = [𝑇𝑥 𝑇𝑌 𝑇𝑧]𝑇           (4.10) 

with respect to the world coordinate frame. The coordinates of the point in terms of the 

camera frame can be found by 

𝑥𝑆 = 𝑟11𝑥𝑤 + 𝑟12𝑦𝑤 + 𝑟13𝑧𝑤 + 𝑇𝑥        (4.11) 

𝑦𝑆 = 𝑟21𝑥𝑤 + 𝑟22𝑦𝑤 + 𝑟23𝑧𝑤 + 𝑇𝑦        (4.12) 

𝑧𝑆 = 𝑟31𝑥𝑤 + 𝑟32𝑦𝑤 + 𝑟33𝑧𝑤 + 𝑇𝑧        (4.13) 

Substituting (4.11)-(4.13) into (4.5), we obtain 

𝑟 − 𝑐𝑟 = −𝑖𝑥
𝑥𝑐

𝑧𝑐
= −𝑖𝑥

𝑟11𝑥𝑤+𝑟12𝑦𝑤+𝑟13𝑧𝑤+𝑇𝑥
𝑟31𝑥𝑤+𝑟32𝑦𝑤+𝑟33𝑧𝑤+𝑇𝑧

      (4.14) 

𝑐 − 𝑐𝑆 = −𝑖𝑦
𝑥𝑐

𝑧𝑐
= −𝑖𝑦

𝑟21𝑥𝑤+𝑟22𝑦𝑤+𝑟23𝑧𝑤+𝑇𝑦
𝑟31𝑥𝑤+𝑟32𝑦𝑤+𝑟33𝑧𝑤+𝑇𝑧

      (4.15) 

Combining (4.14) and (4.15), we obtain the equation 

𝑖𝑥(𝑐 − 𝑐𝑆)(𝑟11𝑥𝑤 + 𝑟12𝑦𝑤 + 𝑟13𝑧𝑤 + 𝑇𝑥) = 𝑖𝑦(𝑟 − 𝑐𝑟)�𝑟21𝑥𝑤 + 𝑟22𝑦𝑤 + 𝑟23𝑧𝑤 + 𝑇𝑦�

           (4.16) 

which has 9 unknowns ( 𝑖𝑥, 𝑖𝑦, 𝑟11, 𝑟12,𝑟13, 𝑟21, 𝑟22, 𝑟23,𝑇𝑥,𝑇𝑦 ). Here R and T are 

the extrinsic parameters, which denote the coordinate system transformations from the 

3D world coordinates to the 3D camera coordinates. Equivalently, the extrinsic 

parameters define the position of the camera center and the camera heading in world 

coordinates, which may be determined by the homogeneous transformation as discussed 

http://en.wikipedia.org/wiki/Camera_center
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previously. The intrinsic parameters are determined by a camera calibration tool, as 

presented in (Zhang, 1999). 

 

An Example of Intrinsic Parameter Determination 

The intrinsic parameters determine the characteristics of a camera sensor, and they 

will remain constant for a camera. A chess board (Figure 4.7(a)) along with the Matlab 

camera calibration toolbox is utilized to determine the parameters of a Logitech web 

camera (Figure 4.7(b)). The results show that the Logitech camera has the focal length: f 

= [ 562.17889   522.49795 ] ± [ 1.38737   1.29051 ]; and the principal point: cc = [ 

332.45990   236.88157 ] ± [ 2.13199   1.73026 ]. 

 
(a) 
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                       (b) 

Figure 4.7: (a) Images for calibration; (b) camera reference and extrinsic parameters. 

 

4.1.4 Models of Visual Servoing 

The goal of image based visual servoing (IBVS) is to eliminate the position errors of 

the feature points in the image plane by controlling the velocities of the robot joints. To 

this end, the inputs and the outputs of the models are the linear/angular velocities of the 

robot joints and the positions of the feature points in the image plane, respectively. For 

modeling the manipulator, first, the relationship between the velocity of the end effector 

with respect to the robot base frame and the velocity of each joint is derived as given by: 

𝜉𝑡𝑟 = 𝐽1�̇�                     (4.17) 

where 𝐽1 is the Jacobian matrix (Spong, et al., 2006), and �̇� is a vector which represents 

the linear/angular velocities of the joints of the robot. The velocity of the end effector 

with respect to its own frame is given by 

𝜉𝑡𝑡 = 𝐺−1𝜉𝑡𝑟                    (4.18)  

where = � 𝑅𝑡
𝑟 03×3

03×3 𝑅𝑡𝑟
� . Since camera is rigidly attached to the end effector, the camera 

frame and the end effector frame have a constant relationship of homogeneous 
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transformation. Therefore, one can establish the relationship between the camera velocity 

and the velocity of the end effector as: 

𝜉𝑡𝑡 = 𝐽2𝜉𝑆𝑆                     (4.19) 

where 𝐽2 = � 𝑅𝑆
𝑡 𝑐(𝑑𝑆𝑡)𝑅𝑆𝑡

03×3 𝑅𝑆𝑡
�. Next, the relationship between the camera velocity and the 

velocities of the feature points in the image plane is written by using the interaction 

matrix as: 

��̇��̇�� = 𝐿𝜉𝑆𝑆                      (4.20) 

Then, the relationship between the velocities of the feature points in the image plane 

and the velocities of the robot joints can be found through equations (4.17)-(4.20) as: 

��̇��̇�� = 𝐿𝐽2−1𝐺−1𝐽1�̇�                                 (4.21) 

The model of the mobile robot can also be generated by using a similar procedure, 

and the result is given by 

��̇��̇�� = 𝐿𝐺−1𝐽�̇�                                (4.22) 

Finally, the relationship between the positions of the feature points in the image plane 

and velocities of the joints can be derived through the integration of (4.21) and (4.22), 

which are the mathematic models of these two image-based visual servo systems. 

 

4.2  Traditional Image-based Visual Servo (IBVS) Controller 
A traditional image-based eye-in-hand visual-servo control law is developed for 

motion control of both Powerbot mobile platform and RobuArm robotic arm. The 

underlying concept of this IBVS is that the controller will continuously adjust the speed 

of the joints (rotational speed of the wheels for the Powerbot; and the speed of the 

revolute joints of the RobuArm) so that the coordinates ( , )u v of the feature point are 

moved toward the desired position ( , )d du v  on the image. In particular, the error vector of 

the image feature point is given by 

( )

( )

u u s r rxd de
s c cv v x dd

− − −
= =

− −−

   
   
    

                                (4.23)               

where 𝑐𝑥 and 𝑐𝑦 are the dimensions of the pixel of the image sensor, which is a charge-

coupled device (CCD) in this case.  
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The velocity of the feature point can be expressed as 

( )

( )

d u ud
udte
vd v vd

dt

−

= =
−

 
        
  





                                       (4.24) 

By substituting equations (4.21) and (4.22) into (4.24), the following two equations 

are obtained: 

�̇� = 𝐿𝐽2−1𝐺−1𝐽1�̇� = 𝑀1[𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6]𝑇        (4.25) 

�̇� = 𝐿𝐺−1𝐽�̇� = 𝑀2[𝑣 𝜔]                                                         (4.26) 

Here, 𝑀1 and 𝑀2 are time-varying matrices which become constant in each iteration 

after their time varying parameters are linearized through updating. In view of equations 

(4.25) and (4.26), assuming the error dynamics obeys �̇� = −𝑘𝑒, a proportional controller 

based on the Lyapunov method is designed according to: 

[𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6]𝑇 = 𝑀1
−1(−𝑘𝑒)                      (4.27) 

[𝑣 𝜔] = 𝑀2
−1(−𝑘𝑒)                                                                (4.28) 

Here, k is the scalar proportional gain, with 𝑘 > 0. The control law for both the 

mobile robot and the manipulator is obtained by substituting equation (4.23) into (4.27) 

and (4.28), as 

1 ( )
( )

x d

y d

s r r
kM

s c c
− − −

−
− −

 Ω =   
                                           (4.29) 

where Ω  is the velocity vector of either the mobile robot or the RobuArm. In equation 

(4.29), the pixel coordinates r and c can be measured directly from the current image 

using the available image processing software. Therefore, according to equation (4.29), 

the desired angular velocities of each joint can be directly computed from the image 

measurements. Moreover, it is noted that the developed controller guarantees asymptotic 

stability of the closed-loop system, in view of the error equation e ke= − . 

 

Simulation Results 

Figure 4.8 shows the simulation results of traditional visual servoing for the mobile 

base. Figure 4.8 (a) and (b) illustrate the linear velocities and angular velocities of the 

mobile robot, and Figure 4.8 (c) shows the position errors of the feature point on the 

image plane which converge to zero.  



80 
 

 

(a) 

 

(b) 

0 5 10 15 20 25 30
-5

0

5

10

15

20

25

30

35

40

 

 
v

0 5 10 15 20 25 30
-200

-150

-100

-50

0

50

 

 
w



81 
 

 

(c) 

Figure 4.8: Simulation results of traditional visual servoing of mobile robot: (a) linear 

velocity trajectory; (b) angular velocity trajectory; (c) position errors of the feature on the 

image plane. 

 

Figure 4.9 shows the simulation results of the traditional image based visual servoing 

(IBVS) of the robotic manipulator. Figure 4.9(b) shows the angular velocities of the six 

joints of the manipulator, and Figure 4.9(a) and (c) illustrate the trajectories of the feature 

point on the image plane along with the position errors.  
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(c) 

Figure 4.9: Simulation results of traditional visual servoing of a robotic manipulator: (a) 

position trajectory of the feature point on the image plane; (b) angular velocities of the 

six joints; (c) position error trajectories of the feature on the image plane. 

 

Experimental Results 

In this section the vision-based mobile grasping system as developed in our 

laboratory is employed to validate the visual-servo controller. In the experiment, the 

mobile robot employs its on-board CCD stereo camera to continuously observe the 

position of the target object on the image plane with a color tracking algorithm which has 

been described in the previous chapter. It computes the visual error e on the image plane 

in each iteration. Next, the IBVS controller determines the desired wheel speeds 1ω  and 

2ω  using equation (4.28), and accordingly commands the low-level controller of the 

mobile robot to gradually move the robot toward the target object. When the robot is 

sufficiently close to the object, it stops and the visual servo controller of the manipulator 

is activated for grasping. A Logitech camera is mounted on the end effector of the robotic 
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manipulator, acting as an eye-in-hand configuration. A laser distance finder is utilized to 

measure the depth information between the camera and the object of interest in the 

workspace.   

Figures 4.10-4.13 show the experimental results from the traditional visual servo 

controller for the mobile robot. The trajectory of the visual feature point on the image 

plane is shown in Figure 4.10. The initial position of the visual feature is close to the top-

right corner of the image. Then it moves directly toward the desired position at the 

bottom-left corner. The position and heading histories of the robot during the entire 

process are shown in Figure 4.11, the pixel errors on the image plane are shown in Figure 

4.12, and the control inputs are given in Figure 4.13. 

 

 
Figure 4.10: The trajectory of the visual feature point (object) on the image plane. 
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Figure 4.11: The trajectory (position and heading) of the mobile robot in the physical 

environment when it carries out the mobile manipulation task. 

 
Figure 4 12: The visual errors on the image plane when the robot approaches the object 

and attempts to grasp it. 
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Figure 4.13: The control inputs of the plant when the new visual servo controller is 

operating. 

 

From the results of both computer simulation and physical experimentation it is seen 

that the developed IBVS controller is able to effectively drive a wheeled mobile robot 

toward a target object and guide the robotic manipulator to grasp the object. However, 

the desired position of the feature point and the initial position of the feature have to be 

very carefully selected in order to make the system work. The reasons are as follows: 

- It is easy to lose the view of the object of interest when the system is operating; 

especially, when the feature point is close to the margins of the image plane.  On 

one hand, in order to increase the speed of response and to reduce steady state 

errors, the controller gain has to be sufficiently high. On the other hand, when the 

controller gain is too large, the control inputs ( v  and ω )  increase 

correspondingly and as a result the visual features can quickly move out of the 

image plane, which leads to failure of the controller. This controller cannot 

guarantee the retention of visual features within the image plane.  

0 20 40 60 80 100 120
-30

-20

-10

0

10

20

30

t

 

 
v
w



87 
 

- It does not consider the physical constraints of the robot. Therefore, the system 

can easily fail due to reaching a singular configuration or other physical 

constraints. 

- The selection of the proportional gain is not straightforward. There has to be a 

trade-off between the performance and keeping the feature point inside the 

camera view.  

- In the case of large displacement, the controller may enter a local minimum or an 

unstable region. 

 

4.3  Hybrid Visual Servo Control 
An important challenge of visual servoing, as discussed in the previous section, is 

attributed to the visibility constraint because if the feature point is moved out of the 

image plane, the entire system will fail. In view of such shortcomings, it is necessary to 

improve the robustness of the traditional visual servo controller. In the present section, a 

hybrid switching controller is developed to eliminate the main shortcomings of the 

previous controller. The new control scheme is schematically presented in Figure 4.16. 

 
Figure 4.14: The hybrid control scheme for robust visual servoing. 

In Figure 4.14, there are two control loops: the traditional IBVS controller and a new 

Q-learning controller. While the IBVS controller will drive the mobile robot toward the 
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plane and select an optimal action (an appropriate rotational or translational movement) 

so that the visual features are pushed from the image edge to the center. In addition, the 

Q-learning controller is able to continuously learn and improve its action-selection policy 

on-line using its machine learning algorithm.   

There is a rule-based arbitrator in the control system, as indicated in Figure 4.16, 

which autonomously switches between the outputs of the controllers so that the overall 

hybrid control system achieves a trade-off between its robustness and accuracy.  

Finally, the Q-learning controller can be trained offline to improve its performance. 

Once it is trained, the Q-learning controller can quickly select the correct actions in a 

real-time manner (usually in less than 10 ms in our experiments).  

 

Q-learning Controller 

The Q-learning controller shown in Figure 4.14 is a customized controller, which will 

keep within the image plane the important visual features of an object of interest. It is 

based on the machine learning approach called Q-learning. The main advantage of the Q-

learning controller is that it is able to autonomously learn the action-selection policy of 

the mobile robot and improve the controller performance continuously so that the visual 

features remain in the field of view of the CCD camera. Due to integration of the Q-

learning controller with the IBVS controller developed in Section IV, the robustness of 

the resulting hybrid controller is improved.  

The world states in the present Q-learning controller are defined by a discrete grid of 

the image plane, as shown in Figure 4.15. 
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Figure 4.15: The discrete gird world defined on a 640×480 CCD image plane. 

 

In Figure 4.15, the 640×480 CCD image plane is divided into an 8×6 discrete grid 

world where each cell of the grid has a length of 80 pixels.  When an image is grabbed 

from the CCD camera, the position of the visual feature point on the image plane can be 

easily converted into the coordinates in the grid world as follows: 

( / 80)x INT r=          (4.30) 

( / 80)y INT c=                                                           (4.31) 

Here 0,1, ,639r =   and 0,1, ,479c =   are the pixel coordinates of the visual feature 

points on the image plane, 0,1, ,7x =  and 0,1, ,5y =  are the corresponding grid 

coordinates in the grid world, and ()INT is a function which converts a floating-point 

number into an integer by discarding its decimal portion. 

The world state in the Q-learning controller is made up of the grid coordinates of the 

visual feature and the current depth from the robot to the target object, as given by: 

( , , )s x y d=                                                                    (4.32) 

Here, d is a discrete index value of the current depth, which is computed according to: 
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0 , 40
1, 40 90
2, 90 140
3, 140

if depth cm
if cm depth cm

d
if cm depth cm

if depth cm

<
 < <==  < <=
 >

                       (4.33) 

Under each state, it is assumed that the mobile robot is able to select one of the following 

four actions: 

Action #1: Move forward for 5 cm. 

Action #2: Move backward for 5cm. 

Action #3: Rotate for 5 degrees. 

Action #4: Rotate for -5 degrees. 

After the robot takes an action, it will receive a reward r from the environment. This 

reward is computed based on the new position of the visual feature on the image plane, 

according to: 

20, ( , )
0 , ( , )
10, ( , )
20, ( , )

if x y the desirable area
if x y the safe area

r
if x y the dangerous area
if x y is out of the image

+ ∈
 ∈= − ∈
−

         (4.34) 

Here, ( , )x y is the new position of the visual feature in the grid world after the robot takes 

an action. The definitions of the desirable, acceptable and unacceptable areas are given in 

Figure 4.15. From equation (4.34) it is clear that the robot is encouraged to select the 

correct actions, which will push the visual features toward the desirable area and away 

from the unacceptable area on the image plane. 

 

Training Results 

The Q-learning controller as presented here was trained with the physical robot-

camera system described in Figure 4.14, to gain on-line experience and then learn/update 

its Q-values. In particular, the robot was required to track the position of target object 

with the on-board ACTS color-blob tracking software, and to take a series of actions 

based on the Q-learning algorithm so that the position of the target object remained in the 

desirable area of the image.  In this experiment, the Q-learning algorithm was run for 

2500 iterations (or steps), and the history of the Q values under four sample states was 

recorded, as presented in Figure 4.16. 
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(c) 

 
(d) 

Figure 4.16: The history of Q-values under different world states when the robot received 

off-line training: (a) State (2,2,1), (b) State (3,2,1), (c) State (4,2,1), (d) State (5,2,1). 
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From Figure 4.16 it is observed that the Q-values have converged after 2500 steps of 

decision-making. It means that the Q-learning controller has learned how to select the 

correct actions for each state. This will enable the mobile robot to move or rotate 

properly so as to keep the visual features in the desirable area on the image. In particular, 

for the state of (2,2,1), Figure 4.16(a) shows that the action #2 has a higher Q-value than 

the other three actions. Hence this action will have a higher probability to be selected by 

the Q-learning controller when the state (2,2,1) is observed by the robot. Similar 

conclusions can be drawn from Figure 4.16(b)-(d). 

A trained Q-learning controller is in fact a behavior-based decision-making unit. It 

continuously observes world states and probabilistically selects actions for the robot 

based on the Q-values in the Q-table. Unlike the traditional behavior-based system 

(Arkin, 1998) where the behavior rule base is fixed and entirely designed by a human 

designer in advance, the rule base (i.e., the Q-table) of Q-learning is learned 

autonomously when the robot interacts with its work environment, and it can be 

improved online. Therefore, the Q-learning controller developed in this thesis is more 

desirable than the traditional behavior-based approaches. Furthermore, it is also more 

advantageous than the approaches of potential field and navigation function, and those 

based on path planning (Corke and Hutchinson, 2001; Chesi and Huang, 2007; Chen, et 

al., 2007; Cowan, et al., 2002; Schramm and Morel, 2006; Zhang and Ostrowski, 2002) 

because these approaches do not have a self-learning mechanisms and cannot adapt to a 

changing world and improve their decision-making abilities on-line.  

 

The arbitrator of the hybrid control system 

In the hybrid control scheme of Figure 4.14, there is an arbitrator which switches on 

the IBVS controller or the Q-learning controller depending on the position of the visual 

feature in the grid world in Figure 4.15. In particular, it is a rule-based arbitrator that 

switches the outputs of the controllers according to the following rules: 

Rule #1: If the visual feature P is in the unacceptable area, the Q-learning controller 

is selected. 

Rule #2: If P is in the desirable area, the IBVS controller is selected. 

Rule #3: If P is in the acceptable area, no switching action is taken. 
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These rules, through the Q-learning controller, push a visual feature P back to the 

desirable region if it is located in the unacceptable area. Then, the IBVS controller will 

drive the robot toward the target object. 

   

 Experimental Results 

Further experiments are carried out to validate the hybrid control scheme developed 

in this thesis. In the experiment, first, the mobile robot moves close to a target object for 

autonomous grasping. It utilizes the feedback information from its CCD camera and the 

hybrid controller developed in the previous session to guide the mobile robot to the 

grasping position. 

  

Hybrid Visual Servoing with a Small Unacceptable Area 

In this experiment, the robot carries out the mobile grasping task in the presence of a 

small unacceptable area, using the developed hybrid controller. The unacceptable area is 

given by: 

60r <  or 550r > or 20c <  or 450c >                  (4.35) 

where, r  and c are the pixel coordinates. The trajectory of the visual feature on the image 

plane is presented in Figure 4.17. 
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Figure 4.17: The trajectory of the visual feature on the 640×480 image plane when the 

hybrid controller operated in the presence of a small unacceptable area. 

In Figure 4.17, the grey area represents the “unacceptable area” on the 640×480 

image plane, which is defined by equation (4.46). Because initially the visual feature on 

the image is at (587, 165) which is in the unacceptable area, the arbitrator of the hybrid 

controller selects the Q-learning controller to determine the motion of the mobile robot. 

From Figure 4.17 it is seen that the Q-learning controller uses just 7 steps to bring the 

position of the visual feature into the “desirable area” on the image plane. After this 

quick action, the arbitrator selects the IBVS controller to take over the control of the 

mobile robot. In the remainder of the control process, the IBVS controller drives the 

robot to the goal location and orientation until the visual feature reaches its desired pixel 

position of (180, 40) on the image.  

Figure 4.17 shows that the developed hybrid controller performs better than the IBVS 

controller of Section IV. In particular, when the visual feature is located in the 

“unacceptable area” of the image plane, the hybrid controller is able to quickly adjust the 

camera pose so that the visual feature will move through a large distance at a fast speed 
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of response so as to enter the “desirable area” on the image. It is usually difficult for the 

IBVS controller to move the visual feature through a large distance due to potential 

instability problems. 

Figure 4.18 presents the history of the row and column pixel coordinates of the visual 

feature, and the history of controller switching for the experimental result in Figure 4.17. 

      
Figure 4.18: The history of the row and column pixel coordinates of the visual feature 

when the robot approached the object and grasped it. 

 

The performance of the IBVS controller within the hybrid controller is shown in 

Figures 4.19(a)-(c). 
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(a) 

 
(b) 
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(c) 

Figure 4.19: The performance of the IBVS controller with a small unacceptable area 

when the robot carried out a mobile manipulation task: (a) history of the pixel 

coordinates of the visual feature on the image plane; (b) trajectory of the mobile robot in 

the physical environment; (c) visual errors on the image plane. 

 

 Figure 4.19(c) indicates that steady-state errors can result when the robot reaches its 

desired pose. These errors are caused due to the proportional controller given by equation 

(4.29). In the present experiments the steady state errors are quite small and do not result 

in a failed grasping.  

 

Hybrid Visual Servoing with a Large Unacceptable Area 

In this experiment, a large unacceptable area is defined on the image plane of the 

CCD camera, according to: 

60r <  or 360r > or 20c <  or 260c >                  (4.36) 

It shows that the hybrid controller is able to drive the robot to its desired position and 

orientation in a robust manner, and make it successfully grasp the target object. When the 

unacceptable area is large, the hybrid visual-servo controller exhibits a very different 

behavior, as shown in Figure 4.20. 
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Figure 4.20: The trajectory of the visual feature on the 640×480 image plane (large 

unacceptable area). 

 

As shown in Figure 4.20 and Figure 4.21, because the unacceptable area is large, 

under IBVS control a visual feature can easily enter the unacceptable area. Consequently, 

it is observed that the Q-learning controller is activated by the arbitrator very frequently 

to push back the visual feature into the acceptable area. From both figures, it is clear that 

the trained Q-learning controller has been quite successful in keeping the visual feature 

within the acceptable area. Usually, just one step is needed to bring the visual feature 

away from the unacceptable area and then transfer the robot control to the IBVS 

controller.   
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Figure 4.21: The history of the row and column pixel coordinates of the visual feature. 

 

In the present work, the Q-learning controller makes the robotic system more robust 

(by keeping a visual feature within the acceptable area, under disturbances that drive the 

feature away from that area) and the IBVS controller guarantees accurate positioning 

performance. In this manner the hybrid controller developed in the present work provides 

a good trade-off between robustness and accuracy, as clear from Figure 4.20 and Figure 

4.21. The performance of the IBVS controller is shown in Figure 4.22 (a)-(c). 
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(a) 

 
(b) 

 
Figure 4.22: The performance of the IBVS controller when the unacceptable area is 

large: (a) history of the pixel coordinates of the visual feature; (b) trajectory of the mobile 

robot; (c) visual errors on the image plane. 
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In Figure 4.20, because initially the visual feature is located in the unacceptable area 

and since the unacceptable area is much larger than the one in Figure 4.17, the Q-

learning controller is activated frequently in the first part of visual servoing to keep the 

visual feature within the acceptable area. As a result, it is observed from Figure 4.20 that 

the response curves oscillate significantly in the first stage (from iteration #0 to iteration 

#60). After the visual feature is moved away from the unacceptable area, the IBVS 

controller gradually takes control of the mobile robot and consequently the response 

curves become smoother until the visual feature reaches its desired position on the image 

plane. Again, Figure 4.20 shows that the hybrid visual-servo controller developed in this 

project provides a rather “balanced” performance in robustness and accuracy, as a result 

of the integrated IBVS controller and the Q-learning controller. 

 

4.4  ANMPC Visual Servo Controller 
The hybrid controller can solve the visibility constraints in mobile robot 

manipulation. However, it cannot be applied in robotic arms because a robotic arm has 

more degrees of freedom (DOFs) than the mobile robot does. Moreover, the controller 

outputs of the hybrid controller are not optimal. Therefore, an Adaptive Nonlinear Model 

Predictive Controller (ANMPC) is developed now to overcome the drawbacks of the 

previously-developed hybrid controller. 

 The principle of classical Model Predictive Control (MPC) is summarized in Figure 

4.23. In each iteration k, an estimated model is used to predict the future states. Then, an 

optimal control law is computed based on the principle of forcing the predicted states to 

converge to a desired set-point while minimizing a cost function (Camacho and Bordons, 

2007).  
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Figure 4.23: Strategy of model predictive control. 

 

The classical predictive control law may present problems when applied in a visual servo 

system for mobile robots. In particular, because in image-based visual servoing, the 

current velocity of the visual feature points and depth information are involved in the 

interaction matrix (Spone and Hutchinson, 2006) of the camera model, the mathematical 

model of the plant (mobile base, camera and manipulator) is nonlinear and time-varying. 

In view of long and arbitrary movements of its base, the issues of nonlinearity and time 

variance will become more significant when visual servoing is applied to a mobile robot.  

Due to possible large motions and nonholomic constraints in a mobile robotic 

system, the traditional visual servo-based velocity controller will usually show poor 

performance. A customized nonlinear model predictive controller is proposed here to 

meet these challenges and to improve the performance of the visual servo system. The 

proposed architecture for nonlinear time-varying model predictive control is shown in 

Figure 4.24. This architecture is applicable to both mobile robot systems (mobile 

platforms) and robotic manipulator systems (robotic arms) with slight differences in the 

plant model in the ANMPC controller, and the dimensions of the controller outputs (it 

has 2 outputs for the mobile robot and 6 outputs for the robotic manipulator arm).  

 



104 
 

 
Figure 4.24: Block diagram of the mobile robot system with adaptive nonlinear model 

predictive control (ANMPC) for visual servoing. 

 

In Figure 4.23, since MPC requires a linear model of the plant. Hence, the nonlinear 

plant is approximated to an adaptive linear model and updated in each iteration of the 

control loop using the current velocity and depth information. This nonlinear model 

predictive controller for visual servoing explicitly optimizes the positioning performance 

of the robot and simultaneously considers various constraints such as joint limits, 

singularities, and nonholonomic constraints. The cost function (Camacho and Bordons, 

2007) is given by: 
22 1
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∑ ∑              (4.37) 

where 𝐻𝑝 and 𝐻𝑢 are the prediction horizon and the control horizon, respectively. Also, 

(𝑢, 𝑣) is the desired system output, which is the position of the feature point in the image 

plane, and Q(i) and R(i) are the weighting matrices (Maciejowski, 2000). Moreover, the 

visibility and joint constraints are taken into account in the ANMPC controller. 

In Figure 4.24, the ANMPC controller includes four units: Model Updating Unit, 

Linearized Model, Constraint Unit, and Optimizer Unit. In particular, the current position 

of the target object in the image (i.e., [ , ]Tu v ) and the current depth z  are continuously 

measured with the CCD camera and the laser distance finder, and are sent into the model 
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updating unit. Then the linearized model of the plant is updated by the model updating 

unit with the latest   ,u v and z  so that the model can always track the nonlinear plant. In 

addition, three kinds of constraints are considered and set up by the constraint unit which 

will constrain [ , ]Tv ω  (the translational and rotational velocities of the robot), [ , , ]Tx y θ

(the location and heading of the mobile robot in the environment), and [ , ]Tu v (the 

position of the target object in the image). Finally, based on the latest linearized model, 

the constraint requirements and the current outputs of the plant, the optimizer unit will 

calculate an optimal control input sequence using the quadratic programming algorithm 

(QP), as described in (Camacho and Bordons, 2007).   

 

Constraints 

     The ANMPC controller, as shown in Figure 4.24, considers three types of 

constraints, as follows: 

min max( )u u t u≤ ≤ and min max( )v v t v≤ ≤  

(Visibility Constraints)                                   (4.38) 

max( )x t x≤ , max( )y t y≤ , min max( )tθ θ θ≤ ≤    

(Robot Location Constraints)                         (4.39) 

max( )l lv t v≤  and max( )tω ω≤  

(Robot Velocity Constraints)                          (4.40) 

 

Experimental Results 

In the first experiment, an ANMPC controller was tested without considering any 

constraints. The controller parameters are: Sampling time 100st ms= , 10pH = , 3uH = , 

100 0
( )

0 100
Q i  

=  
 

and
0.1 0

( )
0 0.1

R i  
=  

 
. The experimental results are presented in 

Figure 4.25. 

http://en.wikipedia.org/wiki/Quadratic_programming
http://en.wikipedia.org/wiki/Quadratic_programming
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 (e) 

Figure 4.25: The experimental results of a mobile visual servo system using un-

constrained ANMPC: (a) trajectory of the target object in the image; (b) pixel errors on 

the image plane; (c) history of the mobile robot location; (d) history of the robot 

translational velocity (control input); (e) history of the robot rotational velocity (control 

input). 

 

Constrained ANMPC Controller  

In this experiment, the ANMPC has the following constraint parameters: 20 450r≤ ≤

, 20 300c≤ ≤ , 20 cm/s 20 cm/slv− ≤ ≤ , 6  deg/s 6   deg/sω− ≤ ≤ , 15 cmy ≥ − .  

In the process of visual servoing, the system outputs and the control inputs are presented 

in Figure 4.26. 
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(a) System outputs (pixel position of the target object in the image). 

 
(b) Pixel errors on the image plane. 

0 0.5 1 1.5 2 2.5

x 104

0

50

100

150

200

250

300

350

400

450

500

 

 
r
c

0 0.5 1 1.5 2 2.5

x 104

-350

-300

-250

-200

-150

-100

-50

0

50

t(ms)

 

 

error
r

error
c

Constrained 



110 
 

 
(c) History of the mobile robot location. 

 
(d) History of the robot translational velocity (control input). 
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(e) History of the robot rotational velocity (control input). 

Figure 4.26: Mobile visual servoing using constrained ANMPC. 

 

From Figure 4.26(a), 4.26(d) and 4.26(e), it is clear that the system outputs ( ( )r t and 

( )r t ) and the control inputs ( ( )lv t and ( )tω ) were constrained within the desired limits 

while Figure 4.26(b) showed that the errors quickly converged to zero. Therefore, from 

Figure 4.26, it can be concluded that the ANMPC visual servo controller developed in 

this thesis is quite successful in maintaining optimal control performance and 

simultaneously it respects various constraints (visibility constraints, velocity constraints, 

and so on). 

Figure 4.27 shows the results of the ANMPC controller of the manipulator. Figure 

4.27(a) shows the trajectory of the feature point in the image plane, and Figure 4.27(b) 

shows the controller outputs which are angular velocities of the six joints of the 

manipulator. According to the figures, it can be concluded that the ANMPC visual servo 

controller developed in this thesis performs satisfactorily for a robotic manipulator. 
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(a) System outputs (pixel position of the target object in the image). 
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(a) Angular velocities of the six joints.  

Figure 4.27: Visual servoing of a robotic arm using ANMPC. 
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CHAPTER 5 Networked Sensing and Sensor Fusion 

 
 

 

As mentioned in the previous chapter, a critical challenge in mobile manipulation is 

the accommodation of visibility constraints because if the camera does not see the object 

of interest, there would be no feedback signal in the manipulation control loop. This will 

lead to the failure of the entire system. In Chapter 5, a hybrid controller and an adaptive 

nonlinear model predictive controller (ANMPC) were proposed with the objective of 

keeping the object of interest inside the camera view, which can guarantee functioning of 

the manipulation system. However, in these methods the operational workspace is limited 

by the camera scene and the flexibility of the robot. Since the workspace within a camera 

scene is much smaller than the actual physical workspace of a robot, if the size of camera 

scene can be expanded to the entire robotic workspace, the flexibility and capability of 

the robotic manipulation system can be dramatically improved. This idea brings us into 

the areas of networked sensing and sensor fusion.  

A multi-sensor system may be treated as a sensor network. It usually consists of 

different types of spatially distributed autonomous sensors such as those for temperature, 

acoustics, magnetic field, vision, and pressure. Each sensor is considered an individual 

node in the sensor network. Most of them are fixed and cannot move. Some sensors have 

mobility and can be moved to different locations according to the specific requirements 

of a sensing scenario. They are called dynamic sensors, and have the ability to collect 

data from the distributed work environment and forward them to a data processing center. 

Two possible applications of networked sensing are shown in Figure 5.1. There are two 

challenges in such a large-scale and complex system: 1) what information from the entire 

sensor data is useful; and 2) how can the system utilize the sensor data to make decisions 

accurately and reliably.  
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Figure 5.1: Possible application of a sensor network: (a) a future city; (b) a future home 

environment. 

 

These two questions bring us to the problem of sensor fusion. There, multi-sensor 

systems are designed to exploit several signature-generation phenomena, gather different 

types of information about objects and scenes of interest, and “fuse” them to obtain more 

accurate and reliable information. Design of a multi-sensor system involves optimization 

of sensors, data processing, communication, and particularly the use of an appropriate 

fusion strategy. As described in the literature review on sensor fusion in Chapter 1, many 

methods such as neural networks and fuzzy logic have been applied in sensor fusion. 

However, they are only suitable for simple applications because appropriate training is 

difficult in complex problems.  

In this chapter, Probabilistic Finite State Automata (PFAS) is proposed for application 

in sensor feature representation and fusion. It introduces a self-organized sensor network 

where PFSA is utilized to organize and cluster suitable sensors and then fuse their data to 

make reliable and more accurate decisions. It has the ability to communicate with the 

robots in the workspace and provide information to assist the execution of the robotic 

tasks. 
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5.1  Definitions 

5.1.1 Formal Languages 

Formal language is a technical term used in mathematics and computer science. A 

formal language (𝐿) over an alphabet Σ is a set of words, which is denoted by 𝛴∗; and an 

empty word is denoted by λ (𝐿 = 𝛴∗; 𝜆 = ∅). 

 

5.1.2 Finite State Machine 

A Finite State Machine (FSM) or Finite State Automaton (FSA) is an abstract model 

of a machine that composes a finite number of states, transitions between those states, 

and actions. Figure 5.2 (a) shows an example of an FSM which has 2 states, 2 transitions, 

and 2 actions. Figure 5.2 (b) shows a more complex example. The transition indicates a 

state change; and is described by a condition that would need to be fulfilled to enable the 

transition. The action is a description of an activity that is to be performed at a given 

moment. Since there is only one possible transition for any input, it is called a 

Deterministic Finite State Machine (DFSM) or Deterministic Finite State Automata 

(DFSA). 

    
   a. Elevator     b. Parsing the word “Nice” 

Figure 5.2: An example of finite state machine.  

 

The mathematical description of a DFSA is composed of  Σ, S, s0, δ, F, where: 𝛴 is the 

input alphabet; S is a finite, non-empty set of states;  𝑐0 is an initial state; 𝛿 is the state 

transition function; and F is the set of final state. 
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5.1.3 Probabilistic Finite State Automata 

Non-deterministic Finite State Automata (NDFSA) or Probabilistic Finite State 

Automata (PFSA) is different from DFSA in the transition where PFSA has several 

possible next steps for an input. PFSA is generalized by probability automata (PA) which 

assigns a probability to each state transition. 

A PFSA can be defined by 𝑄,𝛴, 𝛿, 𝑞0,𝐹, where Q is a finite set of states; 𝛴 is a finite 

set of input symbols; 𝛿 is a transition function; and F is a set of final states. It has two 

with two probabilities: the probability P that a particular state transition is triggered; and 

the probability that the initial state 𝑞0 is replaced by a stochastic vector. 

In the formal language theory (Hopcrof, et al., 2005), an alphabet 𝛴 is a (non-empty 

finite) set of symbols. A string x over 𝛴 is a finite-length sequence of symbols in 𝛴. The 

length of a string x, denoted by |𝑥|, represents the number of symbols in x. The Kleene 

closure of  𝛴, denoted by 𝛴∗, is the set of all finite-length strings of events including the 

null string ϵ, where |𝜖| = 0. A string of length 𝑑 ∈ ℕ is denoted by 𝛴𝑑 ⊂ 𝛴∗.  

A probabilistic finite state automaton is a tuple 𝐺 = (𝑄,𝛴, 𝛿, 𝑞0,𝜋�), where 

• Q is a (nonempty) finite set, called set of states; 

• 𝛴 is a (nonempty) finite set, called input alphabet; 

• 𝛿: 𝑄 × 𝛴 → 𝑄 is the state transition function; 

• 𝑞0 ∈ 𝑄 is the start state; 

• 𝜋�:𝑄 × 𝛴 → [0, 1] is an output mapping which is known as the probability morph 

function and satisfies the condition ∑ 𝜋��𝑞𝑗 , 𝜏� = 1𝜏∈Σ  for all 𝑞𝑖 ∈ 𝑄. The morph function 

𝜋  has a matrix representation Π� , called the morph (probability) matrix 𝛱�𝑖𝑗 =

𝜋�𝑞𝑖 ,𝜎𝑗�,∀𝑞𝑖 ∈ 𝑄 and ∀𝜎𝑗 ∈ 𝛴. Note that Π� is a (|𝑄| ×  |𝛴|) stochastic matrix; i.e., each 

element of Π� is non-negative and each row sum of Π� is equal to 1. 

The transition map 𝛿 naturally induces an extended transition function 𝛿∗: 𝑄 × 𝛴∗ →

𝑄  such that 𝛿∗(𝑞, 𝜖) = 𝑞  and 𝛿∗(𝑞,𝜔𝜏) = 𝛿(𝛿∗(𝑞,𝜔), 𝜏) for 𝑞 ∈ 𝑄 , 𝜔 ∈ 𝛴∗  and 𝜏 ∈ 𝛴 . 

In this thesis, it is assumed that all states in a PFSA are reachable from the start state. 

Otherwise, the non-reachable states should be removed from Q. 

 

5.1.4 Cross Machine 

A cross machine is a 6-tuple (Q, Σi, Σo,δ, q0,Ψ), where  

http://en.wikipedia.org/wiki/Stochastic_vector
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• 𝑄 is a (nonempty) finite set, called set of states; 

• Σ𝑖 is a (nonempty) finite set, called input alphabet; 

• Σ𝑆 is a (nonempty) finite set, called output alphabet; 

• 𝛿: 𝑄 × Σ𝑖 → 𝑄 is the state transition function; 

• 𝑞0 ∈ 𝑄 is the start state; 

• 𝜓: 𝑄 × Σ𝑆 → [0,1] is an output mapping, which is known as the output morph 

function and satisfies the condition 𝛴𝜎∈𝛴𝑜𝜓�𝑞𝑗,𝜎� = 1 for all 𝑞𝑗 ∈ 𝑄. The output 

morph function 𝜓  has a matrix representation 𝛹 , called the output morph 

(probability) matrix. 

Cross machine can be considered as a transfer function (Figure 5.3), which takes 

PFSA as inputs and provides stochastic languages as outputs. Figure 5.4 shows an 

example of an input-output system. The cross machine models the binary symmetric 

channel, and the input machine is a D-Markov machine of order 1.  

Cross 
MachinePFSA Stochastic Language

X(s) H(s) Y(s)
 

Figure 5.3: Analogy between a cross machine and a transfer function. 

 
Figure 5.4: An example of a system. 

 

5.2  Fusion-driven Sensor Network 
Since the local sensors of a mobile robot may not be adequate to effectively carry out 

the necessary robotic tasks, a dynamic sensor network is proposed in this thesis. This will 

facilitate detection, identification, and tracking of objects of interest in the robotic 

workspace and subsequent robotic grasping, manipulation, and processing as well. The 

network will incorporate heterogeneous sensing elements. Both static and dynamic 
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sensors will be present. The sensor network will be adaptive in the sense that the 

structure in which the sensors are connected, the sensor locations, and data pathways all 

may be adjustable during robotic operation. This adaptation will require feedback of 

requests from the robot depending on the nature and requirements of the task and the 

necessary information to effectively carry out the task. In order to meet these needs, a 

new network structure is proposed, as shown in Figure 5.5. During operation, a robot 

may need to search for an object of interest that is not within its local sensing range. 

Then, the robot will send a “help” message to the sensor network, requesting the location 

of the object. As the sensor network receives the request from the robot, it will adapt to 

the identification and tracking requirements to reconfigure the nodes of the sensors 

dynamically concerning different types of targets.  

Object identification
Position estimation

 Dynamic clustering

Object search request

Fusion-driven network control

Locolization

 
Figure 5.5: Overall network architecture. 

 

The dynamic clustering and fusion are done in response to from the robot with regard 

to some objects of interest in the environment. This will cause statistical changes and 

changes to the spatial-temporal representation of the sensor data. Finally the system will 

dynamically reallocate sensing and network resources as appropriate. In summary, the 

system has the following features:   

• Heterogeneous dynamic space-time clustering (DSTC) protocol 

• Sensor node mobility 

• Object detection and classification of composite patterns 

• Feedback of information requests from the robot 
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5.3  Design and Implementation of a Fusion-Driven Sensor Network 

5.3.1 Mobile Target Tracking Application 

Figure 5.6 shows the architecture of a sensor network designed for mobile target 

tracking. A sensor is defined as a mapping 𝑆:ℙ × 𝔻 × 𝕋 → 𝕍  where ℙ  is the set of 

sensing modalities (e.g., acoustic energy); 𝔻  is the network design parameter space 

consisting of design and operational parameters for sensors (e.g., sensing and 

communication range, sampling frequency, communication bandwidth); 𝕋 represents the 

time domain; and  𝕍 is a vector space over the real field ℝ. Let 𝕊 be the set of all sensors 

in the network. A space time neighborhood 𝜂  centered on the spatial-temporal point 

(𝑥0, 𝐴0) is defined as 𝜂(𝑥0, 𝐴0; 𝛿𝑥, 𝛿𝑡) ≜ {(𝑥, 𝐴): ‖𝑥 − 𝑥0‖ < 𝛿𝑥 𝐴𝑚𝑑 |𝐴 − 𝐴0| < 𝛿𝑡}, where 

the spatial radius 𝛿𝑥 > 0 and the time interval 𝛿𝑡 > 0 may vary with (𝑥0, 𝐴0). A hotspot 

ℋs for a sensor 𝑆𝜖𝕊 at time 𝐴0𝜖𝕋, associated with a stimulus 𝑒, is defined as the space 

time neighborhood: ℋ𝑆(𝑒, 𝐴0) ≜ 𝜂𝑒(𝑥𝑆, 𝐴0; 𝛿𝑥, 𝛿𝑡) of the sensor where 𝛿𝑥  and 𝛿𝑡  are the 

sensing radius and sensing time interval of the sensor 𝑆  at location 𝑥𝑆 and time 𝐴0 , 

respectively. The hotspot for the sensor set 𝕊 at time epoch t0ϵ𝕋, associated with a 

stimulus 𝑒 , is defined to be the set of sensors that have non-empty space-time 

neighborhoods: ℋs(e, t0) ≜ {Sϵ𝕊:ℋs(e, t0 ≠ ∅) . A collection of clusters is called a 

cluster bank. The Network Design Space is represented by 𝔻 × ℂ, where ℂ is the set of 

connectivity vectors of all sensor nodes, and 𝔻 is the network design parameter space as 

described before. The topology of the sensor network is defined to be the set ℑ(𝐴) ≜

{𝑥,𝑑,𝑁𝑡(𝑆):∃𝑆𝜖𝕊, with 𝑑 𝜖 𝔻 and connectivity vector 𝑁𝑡(𝑆)) at location 𝑥 at time 𝐴𝜖𝕋}. 

Therefore, ℑ(t) contains all variables that a network controller may need to manipulate 

for adaptation to changes in the information space.  
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Figure 5.6: Design architecture of a sensor network. 

 

The Network Design Space is configured to adapt to the needs of the Information 

Space. Reconfiguration of a large sensor network may be achieved through various 

means such as adaptive sampling of an individual sensor, sensor mobility, turning on/off 

the existing sensors, bandwidth reallocation, protocol modification, and resource 

reallocation. Adaptive parameters of the Network Design Space include sensor position, 

resource assignments, and network connectivity.   

The Information Space is mainly used to derive the spatial-temporal statistics of 

sensor data. Since the system is distributed, each sensor addresses the data compression 

and communication constraints by autonomously generating the PFSA interpretation of 

data. The constructed PFSAs are compared against a library of pre-defined patterns of 

interest, allowing the sensor network to selectively track interesting targets among many 

candidates. The PFSAs constructed by individual sensors are fused at the cluster head. 

The cluster is dynamically formed by grouping the nodes (sensors) that observe the same 

pattern. 

The sensor set is denoted by 𝔉 which represents the set of all sensors; 𝐺 is defined as 

a pattern of a PFSA; and ℋ is defined to map each sensor 𝑐𝜖𝔉 to the PFSA from the 

sensor data stream. Among all identified patterns, a set 𝐺  of 𝐾  patterns of interest, 

𝔾 = �𝐺𝑖: 𝑖 = 1,⋯ ,𝐾�,𝐾𝜖ℕ is defined. The set of patterns of interest 𝔾 is completely 
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ordered via the pattern characteristic function 𝑥𝔾:𝔾 → [0,1]. A sensor data segment is 

mapped into the pattern of interest 𝐺. 

The InforNet Interface functions the interaction between the Information Space and 

the Network Design Space. It consists of forward and feedback interfaces as shown in 

Figure 5.6. The forward interface translates the Information Space requirements to enable 

the network to act as an actuator to best meet the fusion requirements such as 

dynamically changing the sensor clusters and network topology. Once the network 

finishes executing the command from the Information Space, feedback information will 

be sent back to the Information Space through the InfoNet Interface to show the results 

from the reconfiguration of the network. It is seen that the Information Space can 

selectively cluster the available sensors in order to track different objects. This 

mechanism has high scalability and robustness for different objectives. 

 

5.3.2 An Experiment of a Pressure Sensor Field 

In this experiment, a pressure sensitive floor (Figure 5.7) is simulated, which consists 

of an array of piezoelectric wires that serve as distributed pressure sensors. A coil of 

piezoelectric wire is placed under the square floor tiles of size 0.65 m × 0.65 m such 

that each sensor generates an analog voltage due to the pressure applied on it. The output 

voltage is in the range of 0 to 1023. A total of 144 sensors are placed in a 9×16 

equidistant grid to cover the entire workspace. The objective of this experiment is to 

identify two different moving objects which are simulated by two different types of 

mobile robots: 1). Pioneer mobile robot, and 2) Segway RMP robot (Figure 5.8).  

 
Figure 5.7: Pressure sensor field. 

 



123 
 

 
(a)        (b) 

Figure 5.8: The experimental setup: (a) Pioneer mobile robot; (b) Segway RMP robot. 

 

In this work (Figure 5.8(b)), a Segway RMP robot is made to move in the sensor 

field. The sensor network (pressure sensor field) detects and tracks spatial-temporal 

events of the behavior patterns of a Segway RMP. A Segway RMP moving in different 

types of motion trajectories is considered for illustration of detecting and tracking of 

various behavior patterns. 

Each sensor addresses the issues of data compression and communication constraints 

by autonomously aggregating the data through symbolization and semantic construction 

of probabilistic finite state automata (PFSA). Figure 5.9 shows the procedure of PFAS 

feature generation. As the sensors receive time series data, the data will be divided into 

four sub-regions. Next, a feature vector 
1 2 3 4( , , , )TV V V V V= is generated, which represents the 

signature of the acquired signal. Finally, the feature vector is utilized to generate a PFAS 

pattern. 

 
Figure 5.9: Basic modeling procedure of sensory data. 
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The constructed PFSA are compared against a library of pre-determined patterns of 

interest with an appropriate metric, thus allowing the sensor network to selectively track 

interesting targets amongst many candidate targets. The observed PFSA which are 

matched the PFSA from the library are clustered dynamically, with additional network 

and physical requirements. Figure 5.10 shows the logic of sensor clustering.  

 
Figure 5.10: Dynamic space-time clustering. 

 

Suppose that 𝑑  is the distance of the sensor 𝑐  from the target location, 𝐺  is the 

observed pattern of interest at its origination point, and 𝐻𝑡(𝑐) is constructed by PFSA 

from the data of the sensors. It yields 𝑑 = 𝐷�𝜃(𝐻𝑡(𝑐),𝐺)�, where 𝜃 is a set of PFSA 

which measure the deterioration of signal from its origination to the location of the 

sensor. Also, 𝑃[𝑐,𝐺] is defined the probability that the sensor has observed the pattern of 

interest 𝐺.  

Therefore, if 𝐺𝑘 is a pattern of interest and 𝜖𝑖 is the detection region, the probability 

of using sensor i in the work environment is given by 

𝑃[𝑖,𝐺𝑘; 𝜖𝑖] = �𝑃[𝑖,𝐺𝑘]        𝑖𝑖 𝐷�𝜃(𝐻𝑡(𝑐),𝐺𝑘)� ≤ 𝜖𝑖
0                             𝑐𝐴ℎ𝑒𝑟𝑤𝑖𝑐𝑒

.    (5.1) 

The estimated physical location of a sensed pattern of interest 𝐺𝑘 is estimated by the 

cluster as follows: 
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𝜌𝑘,𝐶𝑡
𝑙�𝐺𝑘�

∗ (𝐴) = ∑ Γ(𝑖) ∙ 𝑃[𝑖,𝐺𝑘; 𝜖𝑖]𝑖∈𝐶𝑡
𝑙(𝐺𝑘)        (5.2) 

where 𝛤(𝑖) is the physical location of sensor 𝑖. 

 

5.3.3 Heterogeneous Sensor Field 

In order to extend the work from a network of single sensor type to a heterogeneous 

sensor field, we now develop a simulation environment, which is shown in Figure 

5.11(a). In this simulation environment, different shapes represent different types of 

sensors. The purpose of this simulation is to identify a moving object in the scene. It is 

able to track the motion of the object while it is moving. Figure 5.11 (b) shows the 

simulation platform which has been developed in Matlab. The top left window shows the 

real trajectory of the moving object in the workspace. The top middle window shows the 

active sensors in the sensor network which are indicated in color. The red one is the head 

of the sensor cluster, and the blue dot is the moving object. The four windows in the 

bottom show the detected PFSA pattern of the object.  

 

(a) 
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(b) 

Figure 5.11: (a) Simulation of a heterogeneous sensor field; (b) Developed Matlab 

simulation environment.   

 

In the simulation, the moving objects are made to move along a horizontal line. 

Figure 5.12 shows the performance of the system when it tracks one target and two 

targets.    

 
Figure 5.12: Simulation results. 
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5.3.4 Modeling the Sensor Network as PFAS 

A sensor network operates in an infrastructure of sensing, computation, and 

communication, through which it perceives the evolution of a physical dynamic process 

in its environment. It is data-centric (Tubaishat, M. and Madria, 2003) because data from 

the sensor nodes are of primary importance for this application. A common characteristic 

of information fusion in sensor networks is that data streamed from different sources are 

brought together through a communication network. Therefore, the following factors 

should be taken into account. Typically, there are thousands of sensor nodes in a wireless 

sensor network. It is almost impossible to have a global centralized fusion center. In other 

words, the data fusion scheme has to be designed and implemented in a distributed 

fashion for wireless sensor networks. It is impossible to broadcast all sensor data in the 

network because of the limitation of sensor power and bandwidth of the network. 

Therefore, selected use of sensors for different sensing purpose is necessary.  

Figure 5.13(a) and (b) show the idea of dynamic clustering and organizing of sensors 

as a sensor network for a specific sensing purpose, which is represented by PFSA. In 

Figure 5.13(a), each node represents a type of sensor, which can also be considered as a 

representation of PFSA features of a type of sensor. As one type of sensor (q0) is 

activated to reason the possible object that is tracked, it will keep searching for the 

corresponding PFSA features of other types of sensors(q1, q2). As the searching proceeds 

all the way from q0 to qn, it gathers all possible PFSA features of the tracked object. This 

mechanism gathers the neighboring sensors to be clustered as a sensor network for the 

purpose of identifying and tracking a detected object of interest in the workspace, as 

shown by the red dash line in Figure 5.13(a).     

 
(a) 
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(b) 

Figure 5.13: (a) Dynamic clustering mechanism; (b) network clustering.  
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CHAPTER 6 Physical Implementation and Experimentation 

 

 
In this chapter, the techniques developed in the previous chapters such as machine 

vision, mobile robot navigation with Q-learning, robot motion control, and networked 

sensing are integrated and implemented in a physical mobile manipulation system in 

laboratory. This system contains a mobile robot platform and a robotic manipulator arm 

mounted on it, which has been developed and tested in the Industrial Automation 

Laboratory (IAL) of the University of British Columbia. In Section 6.1, the overview of 

the overall robotic system and the objective of the present experimentation are 

introduced. The test environment is demonstrated in order to simulate the search and 

retrieval scenario. Section 6.2 focuses on the hardware and software configuration of the 

system and development of the test bed, which consists of the mobile manipulation 

system. The sensors that are utilized and mounted on the robot, are discussed as well. 

Section 6.3 discusses the experimentation with the mobile manipulation system, which 

demonstrates that the developed system has the ability of identifying objects, navigation, 

and grasping an object of interest.  

6.1  Overview 
Physical experimentation is carried out in a laboratory environment to evaluate the 

performance of the methodologies and the robotic system that have been in the present 

thesis. Figure 6.1 gives an overview of the overall experimental procedure. The test 

environment contains a mobile robot platform and a manipulator arm mounted on it, 

several obstacles, and an object of interest. In this experiment, the robot navigates and 

finds the object of interest in the workspace. Then it moves close to the object. Finally, it 

grasp the object by using the on-board manipulator.  
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RobuArm
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Bumblebee Stereo Camera

Object of Interest

Obstacles
 

Figure 6.1: Overview of the experiment. 

 

6.2 Test Bed  
Figure 6.2 shows the physical configuration of the mobile manipulation system. It 

contains a Powerbot which is the mobile base, a RubuArm (the manipulator), and 

different types of sensors (web camera, laser, sonar, stereo camera).   
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Figure 6.2: Physical configuration of the test bed. 

 

6.2.1 Pioneer Powerbot 

Figure 6.3 shows the original Powerbot, which is a high-payload differential-drive 

robot developed by Adept Mobile Robots Company. It is able to move at a speed of up to 

1.6 m/s with a payload of up to 100 kg. Hence it is an ideal platform for laboratory and 

research tasks involving delivery, navigation, and manipulation. The Powerbot is 

equipped with a gyro sensor and 2 groups of sonars. The combination of readings from 

the gyro and the encoders is able to provide the position and orientation of the mobile 

robot. There are 32 sonar cones embedded in the mobile base and they can measure the 

distance between the robot and the neighborhood obstacles.  

Web Camera 

Laser 

Sonar 

Stereo Camera 



132 
 

 
Figure 6.3: Poineer Powerbot—the mobile base. 

 

The standard Service Information Packet (SIP), which is utilized to control the robot, 

is shown in Figure 6.4. It is sent on a constant cycle, and the reception of this SIP triggers 

a new iteration of ArRobot's synchronized task processing cycle. This cycle consists of a 

series of synchronized tasks, including SIP packet handling, invocation of sensor 

interpretation tasks, action handling and resolution, state reflection, and invocation of 

user tasks, in that order. The task cycle is (normally) triggered by the reception of a SIP 

(unless the robot platform fails to send SIPs or the task cycle is explicitly disassociated 

from the robot connection—see below). Each task will be invoked in a predictable order, 

and will have the most recent data to act upon. Hence, no task will miss the opportunity 

to use a SIP, and as long as the tasks do not take too much time to execute, each SIP is 

handled as soon as possible once the robot sends it. 
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Figure 6.4: Overview of the task cycle. 

 

6.2.2 RobuArm 

Figure 6.4 shows the robotic manipulator called RobuArm, which is utilized in the 

experimental system. It is a six-DOF robotic manipulator which is developed by 

Robosoft Company in France.  It has six revolute joints with a 10 kg payload, and is very 

powerful. The main advantage of this arm is the controllability of the acceleration, 

velocity, and position. The detailed specifications of this arm are given in Table 6.1. 
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Figure 6.5: RobuArm—the manipulator. 

 

Table 6.1: Technical specifications RobuArm. 

Specification Value Notes 

Usage Outdoor   

Kinematics 6 independent axes The 3 first axis have mechanical brakes 

when power is OFF 

Weight About 42 kg   

Maximum payload 10 kg   

Maximum speed per 

axis 

 1 rad/sec  

Dimensions (L x w x h) See pictures below for its main 

dimensions and the working envelope 

  

Main power supply 48 VDC @ 30 A   

Protection index IP65 IP65: Protected against water splashes 

from all directions by hose (NF 

EN60529) 

Humidity 0-90% without condensation   

Temperature Functioning : 0°C   +50°C 

Storage :  0°C   +50°C 
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Specification Value Notes 

Embedded controller EMTRION HiCO.SH7780-SBC   

OS Windows-CE®  C++ 

Programming software robuBOX C#, Microsoft Robotic Developer 

Studio 

Integrated sensors Optical encoder on each axis 

Magnetic position limit switch 

  

Interface of supervision Ethernet  On-board UDP server 

User interface - Power connector 

- Communication connector 

- Brake release switches 

  

Main Colour Black   

 

6.2.3 Sensors 

There are two types of cameras that are utilized in the present work: a stereo camera 

and a webcam. 

 

Stereo Camera 

A BumbleBee®2 (Figure 6.6(a)) by Point Grey Research is used as the stereo-vision 

eye-to-object camera. The stereo camera is directly mounted on the mobile base. Each 

camera is calibrated using the same camera calibration method that was described in 

Chapter 3. The two cameras are ultimately linked to each other by a common coordinate 

frame, as shown in Figure 6.6 (b). The calibration results of these two cameras are given 

in Table 6.2. 

          
(a)                                                            (b) 

Figure 6.6: (a) BumbleBee®2 stereo camera; (b) Coordinate frames of the camera. 
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Table 6.2: Intrinsic parameters of the stereo camera. 

  Left Right 

Focal length f (mm) 2.5  

Focal Length to 

Pixel Size Ratio 

fx 1321.63149 1314.97694 

fy 1355.18201 1344.62115 

Principal Point  Or 466 470 

Oc 406 392 

Resolution  R 768 

C 1024 

 

WebCam 

A Logitech QuickCam® Communicate STX™ CCD webcam is used as the 

monocular eye-in-hand camera. The ball-socket base of the webcam is removed and 

replaced by a custom-made fixture. Finally, the entire assembly is rigidly mounted on the 

manipulator’s end-effector using a band clamp (see Figure 6.2). The calibration result has 

been presented in Chapter 3. 

 
Figure 6.7: The Logitech webcam. 

 

Laser distance finder 

Figure 6.7 shows the Hokuyo URG-04LX sensor. Scanning laser range finders can be 

thought of as little sonars using light instead of sound to create 2-D maps of the 

proximity to nearby objects. Because lasers use light instead of sound, they can make 

measurements very fast and with an extremely narrow field of view (FOV).  The scanner 

that is utilized in this work has an angular scanning range of 240 degrees, and the angular 

resolution is ~0.36 degrees with a scanning refresh rate of up to 10 Hz. Distances are 

reported from 20 mm to 4 m. Power is very reasonable at 500 mA and 5 V. The detailed 

http://www.acroname.com/robotics/parts/R283-HOKUYO-LASER1.html
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specifications are listed in Table 6.3. Figure 6.9 demonstrates an example of the laser 

readings. 

 

 
Figure 6.8: The Hokuyo URG-04LX sensor. 

 

Table 6.3: Specifications of the laser distance finder. 

Item Specifications 

Power source 5 V +/-5% 

Current consumption 0.5 A (Rush current 0.8 A) 

Detection range 0.02 m to approximately 4 m 

Laser wavelength 785 nm, Class 1 

Scan angle 240° 

Scan time 100 ms/scan (10.0 Hz) 

Resolution 1 mm 

Angular Resolution 0.36° 

Interface USB 2.0, RS232 

Weight 5.0 oz (141 gm) 
 

 

http://www.acroname.com/robotics/parts/R283-HOKUYO-LASER1.html
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Figure 6.9: An example of laser reading results.  

 

6.3 Software Development 
Development, application, and testing of computer software constitute a significant 

part of the present development. Two types of computer programming language, Visual 

Basic and C++, have been used to develop software for implementing the functions in the 

project, particularly related to the robot control subsystem and the mobile navigation 

subsystem. 

The software tool that is used in developing most of the system in this project is 

Visual Studio. It is a Microsoft’s flagship software development tool for computer 

programmers. It provides a friendly programming environment for Basic and C/C++. 

Moreover, it has strong compatibility with any Microsoft operating system (Windows 

2000, Windows 7, etc.) and is well supported by Windows API for hardware-level 

programming. 

Several other computer technologies are applied in this thesis to enhance the system 

performance. Windows API (Application Programming Interface), abbreviated as 

WinAPI, is one of them. It is the core set of application programming interfaces available 

in Microsoft Windows operating systems, and it provides low-level hardware access to a 

Windows system from third-party software (sound card access, etc.). Matlab, which 

includes control toolboxes such as control toolbox, MPC toolbox, optimization toolbox 

and computer toolbox, is utilized in this work to assist the purposes of analysis and 

development. 
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6.4  Mobile Manipulation System 
A physical experiment is carried out in the Industrial Automation Laboratory of the 

University of British Columbia to evaluate the performance of the developed system. 

Figure 6.10 shows the overall procedure of the experiment. First, an overhead camera 

with a fisheye lens grabs pictures of the entire workspace. Images are rectified and 

processed as gray scale images. Second, the SIFT-based object identification algorithm is 

utilized to identify the mobile robot and the goal location by identifying and tracking the 

Starbucks logo which is stuck on the robot and the book which is placed in the goal 

location, respectively. Meanwhile, the camera can provide localization information of the 

mobile robot and the location of the goal to the mobile robot. Then, the robot checks the 

current state with the help of the global camera and its own sensing capability. Third, an 

action is selected by the Q-learning algorithm from the Q-table, which will move the 

robot to approach the goal. As the object (a bottle with a red cap) moves into the local 

sensing area of the robot, the ANMPC visual servoing is activated, guiding the mobile 

robot to move closer to the object. Finally, anther ANMPC visual servoing for the 

manipulator will be utilized to grasp the object when the object is inside the workspace 

of the manipulator. The corresponding experimental results are shown in the video clip # 

3. Some snapshots of the video clip are shown in Figure 6.10. 

 
Figure 6.10: The overall procedure of the mobile manipulation experiment. 
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Several screen shots of the video clip of the experiment are shown in Figure 6.11. 

Figure 6.11(a) shows the workspace and the initial position of the robot, obstacles, and 

the object of interest. First, the robot navigates from the current location to a location that 

is close to the object of interest by utilizing a navigation system that uses pre-trained Q-

learning (Figure 6.11(b) and (c)). Next, visual servoing using ANMPC is activated to 

move the mobile robot closer to the object of interest while making sure that the object is 

inside the workspace of the manipulator (Figure 6.11(d)).  Finally, the visual servo 

control with ANMPC is used for the manipulator to grasp the object of interest.    

 

 
(a) 
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(b) 

 
(c) 
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(d) 

 
(e) 
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(f) 

Figure 6.11: Screen shots of the experiment. 
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CHAPTER 7 Conclusions and Suggestions 

 
 

This thesis designed, analyzed, and implemented a mobile manipulation system 

which is developed for robotic search-and-rescue and homecare applications, where the 

robot workspace is unknown and unstructured. The conclusions are summarized in the 

next section. The subsequent sections discuss primary research contributions made and 

limitations of the current work, and indicate possible improvements that can be made in 

future research.  

 

7.1 Conclusions 
This thesis addressed the manipulation control of a mobile robot with the support of a 

sensor network for carrying out dynamically challenging tasks. Two object tracking 

algorithms were developed in object identification and tracking. Specifically, a color-

based tracking algorithm was developed to identify the object of interest and provide the 

position of the object in the image plane for visual servoing, and a SIFT-based object 

identification was developed for localization. The depth measurement using stereo 

cameras was introduced. A system that used Q-learning was developed for mobile robot 

navigation. The experimental results showed that the robot learned and operated 

effectively in an unknown and unstructured dynamic environment.  

Kinematic models of the mobile robotic platform and the manipulator and a model of 

the camera were developed and utilized to represent the physical system, where the joint 

velocities of the robot are the inputs and the position of the feature point in the image is 

the output. A traditional approach of image-based visual servoing was developed and 

demonstrated. The scheme of ANMPC was developed, which incorporated a multi-input 

multi-output (MIMO) control system that could accommodate constraints, including 

environmental constraints (e.g., obstacles, boundaries, visibility) and physical constraints 

of the robots (e.g., limits on joint movement, velocity, and torque). In implementing the 

ANMPC scheme, the nonlinear and time-variant model was linearized on line with 
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respect to the current position of the feature point and robot joints, using an adaptive 

approach. The corresponding control architecture predicts the system outputs and 

generates optimized control actions according to a cost function. This approach was 

demonstrated to be rather effective in robotic navigation and manipulation.  

In order to extend the mobile manipulation system to a wider workspace such as that 

found in cities and home scenarios, a sensor network was designed and developed 

employing PFSA (Probabilistic Finite State Automata). The developed PFSA was utilized 

in both modeling of the sensor data and organizing and representing the sensor network. 

An application of object identification and tracking was presented; and a heterogeneous 

sensor network was developed along with a simulation platform in MATLAB. A self-

organized and clustered sensor network, which is based on PFSA, was demonstrated.  

An integrated robotic system was developed and experimental studies were carried 

out. The experimentation showed good performance of the developed approaches and of 

the overall system.  

 

7.2 Primary Contributions 
The primary contribution of this thesis was to develop an Adaptive Nonlinear Model 

Predictive Controller (ANMPC) for motion control of both a mobile robot platform and a 

robotic manipulator arm. The proposed controller took into account the visibility 

constraints and physical constraints, and it was able to provide optimized controller 

outputs. It was shown that the proposed controller was able to perform properly when the 

object was within the robot’s local sensing area.   

Efficient and robust algorithms of machine vision were developed, which utilized 

color and features of objects. With the integration of other sensors, these algorithms 

helped to determine the pose of the robot in the workspace. Also, they were implemented 

in the motion control feedback loops of the mobile robot and the robotic manipulator, 

providing accurate and fast position information of a tracked object. 

A traditional algorithm of reinforcement learning, specifically Q-leaning, was 

developed to properly execute the motion of a mobile robot in an unknown, unstructured 

and dynamic workspace. With the help of a sensor network, the algorithm guided the 

mobile robot to move close to the object of interest. 
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A Probabilistic Finite State Automata (PFSA)-based, information driven, self-

organized sensor network was proposed to model the sensor data, and dynamically 

cluster the sensors for organizing the sensor network to identify and track different 

objects of interest.  

Physical experimentation was developed and presented, which showed the 

effectiveness of the developed methodologies and systems in applications of mobile 

robot manipulation.   

 

7.3  Limitations and Suggested Future Research 
Although the mobile manipulation system that was developed in the present thesis 

has shown quite good performance in both simulation and experimentation, there are 

potential improvements which may constitute a possible future direction of research.  

The primary criterion of a successful image-based visual servo system is that the 

feature point must remain in the camera frame of view, which greatly limits the 

workspace of the robot. In order to overcome this limitation, 1/2D visual servoing or 

trajectory planning plus visual servoing may be used, thereby expanding the available 

workspace.  

Linear and fixed constraints are considered in the thesis, which may not represent a 

real work scenario. Moreover, it also limits the workspace of the robot. In future, more 

complex constraints may be considered to meet the real world scenarios and increase the 

robustness of the system.  

A more complex experiment may be designed and developed to evaluate the 

performance and effectiveness of a self-organized and clustered sensor network in 

identifying and tracking more objects.  

In order to perform properly in a real-world scenario such as unstructured and uneven 

terrains, dark rooms and in the night, a more enhanced robotic system (e.g.,  a 

mechanical design that has the ability to autonomously recover from a fall) and sensors 

(e.g., night vision cameras) will be required. 
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