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Abstract

Deploying wireless body area networks (WBANs) in the long-term at-home

monitoring of a patient’s physiological and bio-kinetic conditions has become

increasingly prevalent. However, such WBANs do not typically incorporate

mechanisms to detect and correct for the possibility of accidentally switch-

ing up wearable wireless sensor nodes (W2SNs), where a node assigned to

one limb is placed on another, and vice-versa, leading to possible incorrect

prognoses from interpreting the data.

In this thesis, we present a new scheme to automatically identify and

verify the locations of W2SNs in a WBAN. Using small-scale geospatial

information, instantaneous atmospheric air pressures at each node are exam-

ined and compared to map and match them in physical space. By enhanc-

ing the context-awareness of WBANs, this enhancement enables unassisted

sensor node placement, providing a practical solution to obtain and contin-

uously monitor node locations at a sufficient resolution to recognize limb

placement, without multidimensional fine-grain position information. Only

a single atmospheric air pressure sensor (A2PS) is added to each W2SN;

compared to existing localization techniques, no beacons or extra nodes are
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Abstract

required, enabling an inexpensive and self-contained solution.

To quantify and validate the accuracy, consistency and reliability of this

localization scheme, a statistical analysis on a set of commercially-available

air pressure sensors and an experimental prototype WBAN is conducted to

examine the scheme’s performance and limitations. This study has verified

that this approach is indeed capable of distinguishing between positions in-

dicative of expected separation between different limbs of the patient’s body.

Based on a 60cm separation between nodes, the statistical analysis consis-

tently exceeded 95% accuracy within the confidence interval (CI), demon-

strating great promise for incorporation into commercial WBANs.

We also present and experimentally demonstrate an enhancement aiming

to reduce false-positive (Type I) errors in conventional accelerometer-based

on-body fall detection schemes. Our statistical analysis has shown that by

continuously monitoring the patient’s limb positions, the W2SN position in-

formation would enable the WBAN to better classify ‘fall-like’ motion from

actual falls, where the patient requires remote caregiver assistance.

iii



Preface

Co-Authorship Statement

I hereby declare that I am the main contributor and first author of this

manuscript, as well as the related papers published [1, 2] written in collabo-
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Chapter 1

Introduction

This manuscript presents and experimentally verifies a new approach to en-

able wireless body area networks (WBANs) to automatically and instantly

map its wearable wireless sensor nodes (W2SNs) to the limbs of the wearer’s

body in physical space. The importance and value of having such contextual

information is explained in the remainder of Chapter 1. The extents to which

localization techniques are currently applied to WBANs and wireless sensor

networks (WSNs), and the development of personal fall-detection systems

will be surveyed in Chapter 2. In Chapter 3, our new approach is docu-

mented in more depth, and validated experimentally using statistical verifi-

cation analyses to ensure applicability, accuracy and feasibility. In Chapter

4, this manuscript explores the benefit of augmenting limb position tracking

to the long-term at-home WBAN ambulatory monitoring application of on-

body fall detection. Finally, this manuscript shall conclude with a summary

of findings and possible future directions in Chapter 5.
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1.1. Motivation

1.1 Motivation

WBANs are becoming increasingly plausible and prevalent solutions for on-

body health monitoring and diverse medical applications [8–11]. This can be

largely attributed to the decreasing physical size, production costs and power

consumption of micro-electromechanical systems (MEMS) sensor technology.

Traditional wired body area network (BAN) health monitoring systems ful-

fill the aim of being apt for short and long-term use. However, there is

a widespread consensus that replacing wired devices with W2SNs, placed

specifically on the patient’s body to measure vital signs, is more desirable as

per the inherent freedom of movement that the wearer gains, particularly for

at-home monitoring applications. These externally-worn nodes often take

the form of armbands, leg straps, and adhesive pads to allow for easy re-

moval prior to activities such as showering and swimming, where the nodes

may interfere or malfunction.

However, this added flexibility increases the chance of misplacing W2SNs

after a certain activity is finished and they need to be worn again. A patient

could muddle up the nodes, causing for example the arm node to record leg

motion, and vice versa. Depending on the nature of the long-term monitoring

and the frequency at which data is analyzed by the clinician or caregiver,

node misplacement could yield conflicting data with the expected patterns

at the intended node location. For example, a clinician analyzing arm and leg

tremors for dyskinesia symptoms in Parkinson’s disease patients (as described

2
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in [2]) may collect inconsistent data if the sensors’ physical placements over

the patient’s limbs mismatch their correct target locations.

Currently, W2SNs are typically manually programmed for collecting data

consistent with certain locations of a patient’s body, such as an arm or

leg. Sensor nodes have limited self-identification capability, and there are

no widely used mechanisms to enable the WBAN to detect node placement.

One could argue that nodes could be labelled, color-coded, or specific in-

structions could be provided to patients. However, requiring patients to

perform complicated setup procedures on a daily basis is impractical, and

relying solely on the wearer’s skill to place labeled W2SNs is at best unreli-

able – human error, including forgetfulness, inattention, or moral weakness,

is a significant cause or contributing factor to erroneous data [12]. Incorrect

placement of m-health WBAN sensors could lead to inaccurate or incorrect

prognoses. Thus, simplicity is crucial for the ideal self-worn system.

For these reasons, designing a system of W2SNs with placement-awareness

capabilities to enable seamless integration becomes highly desirable. Our

proposed solution lies in adding a MEMS atmospheric air pressure sen-

sor (A2PS), a small device similar in size to other MEMS sensors such as

accelerometers and gyroscopes and widely used in WBANs today, to each

W2SN. A2PSs would enable the WBAN to measure and track the air pres-

sure at each W2SN location. Minimal patient intrusiveness is achieved, since

the wearer could worry less about the chance of accidentally swapping or

muddling up W2SNs – the WBAN would automatically identify placement of

3
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each W2SN relative to one another in absolute space, each time the nodes are

(re)placed, in order to dynamically assign their corresponding tasks. Nodes

worn around the body already frequently consist of identical and interchange-

able hardware to minimize design and manufacturing cost, so this advantage

can be used to eliminate the need to designate specific nodes for specific

locations.

Many long-term health and medical applications, including rehabilitation

and ambulatory monitoring [10, 11], could also greatly benefit from being

aware of the locations of its W2SNs. This manuscript explores augmenting

on-body accelerometer-based fall detection systems with sensor node loca-

tions discussed above. This is to enable the WBAN to make a better decision

on whether a fall has occurred – not only based on the characteristics of the

impact as detected by accelerometers, but also taking into consideration the

patient’s current body position and ‘limb arrangement’ for a more informed

picture of his or her condition and situation.

The main objective of the research in this thesis is to analyze and report

on a newly conceived sensor node localization technique designed to make

WBAN more widely accepted, and explore a WBAN application where such

a technique would greatly improve the system towards mass adoption.

4



1.2. Research Contributions

1.2 Research Contributions

The schemes developed and documented in this manuscript target WBANs

used in the long term at-home monitoring of elderly patients, and patients

with chronic conditions. The core research contributions of my thesis are:

1. Experimentally verifying a new scheme enabling W2SNs to au-

tomatically perform sensor node localization and limb recog-

nition, by identifying and tracking the vertical arrangement

of WBAN nodes. (Chapter 3)

• Currently, localization and ranging techniques cannot provide lo-

cation information in absolute and physical space, without pre-

placed location beacons, either on-body or off-body. As well, cur-

rent pattern recognition techniques often yield inconsistent or un-

reliable information, notwithstanding the requirement of extensive

offline processing (Section 2.2).

• Our new scheme aims to achieve a similar goal by avoiding these

limitations. This thesis shall analyze and quantify the perfor-

mance of the proposed W2SN placement verification scheme, by

ensure that the output of A2PSs used consistently produces ac-

curate, consistent and reliable data. The context awareness of

WBANs may then be extended to provide enhanced error detec-

tion and correction for sensor node placement.

5
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2. Improving accelerometer-based fall detection performance, by

augmenting the extensively studied impact detection mecha-

nism with limb position information and patient body state.

(Chapter 4)

• Once the newly proposed sensor node localization technique in

Section 2.2 has been verified, applications in today’s WSN sys-

tems can be augmented to further improve the quality of contex-

tual information, and enable the system to make a better decision

based on a new dimension of data.

• Specifically, today’s on-body at-home fall detection and ambu-

latory monitoring schemes typically comprise of accelerometers,

where a spike in z-axis acceleration signifies a fall or impact. How-

ever, routine daily activities could also result in accelerometer

spikes with similar characteristics (Section 2.3), generating ‘false-

positive’ falls. Thus, such systems could greatly benefit from addi-

tional contextual information (the position of the patient, if he or

she is standing up or lying down immediately following detected

impact) if this enables the system to better preclude whether or

not a fall has occured, or reduce the false detection.

6



Chapter 2

Background

This chapter reviews the current state-of-the-art techniques surrounding sen-

sor node localization and patient fall-detection systems, and discusses oppor-

tunities for improvement that have motivated our research.

2.1 Types Of Sensor Networks

Sensor networks consist of a group of interconnected and spatially-distributed

sensors, deployed to measure and monitor physical and environmental pa-

rameters [13]. Typical sensors used in such networks could provide infor-

mation such as temperature, kinetic motion (through accelerometers and

gyroscopes), ambient light, sound, pressure, and material stress. A data ag-

gregator node serves as a gateway and is used to collect data from the sensor

nodes for viewing or storing-and-forwarding to a remote system.

2.1.1 Wired Sensor Networks

Traditionally, wired sensor networks have been employed to collect informa-

tion from different locations, due to the developed technology and higher

7
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available bandwidth. For short-term monitoring applications, where sensors

are frequently moved around or re-used, a wired multi-node system may

be inconvenient. Setup and removal may introduce additional wiring costs

and/or error, due to the need to repeatedly attach and remove wires [8]. For

long-term applications, such as seismic monitoring in remote locations, it

may be impractical to run wires to the desired sensor placement locations.

This has led to wireless solutions being preferred for such applications.

2.1.2 Wireless Sensor Networks (WSNs)

By employing wireless radios, WSNs each sensor node can communicate with

one another without a physical data link connection. Primary design con-

siderations include computation, energy and communication (placement for

optimum routing and signal quality) constraints [14, 15]. Key developments

fueling the large scale adoption of WSNs include wireless personal area net-

work (WPAN) protocols such as the Bluetooth R© and ZigBee R© [16], as well

as the unified software platforms such as TinyOS R©, a lightweight open-source

operating system created by UC Berkeley [13]. Today, typical applications

of WSNs include military [17], environmental (such as forest fire detection

and earthquake sensing) [17, 18], industrial and agriculture (such as inven-

tory tracking) [19], and home automation (including smart environments and

ambience control) [20, 21].

The main advantage of implementing a WSN over traditional wired coun-

terparts is the lack of wires. Requirements and considerations include indoor-
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outdoor operation, high power efficiency, high accuracy and reliability, and

the ability to make do with existing infrastructure [22] due to cost and/or

feasibility. In designing WSNs, one must consider issues such as the tradeoff

between power consumption and processing power, coexistence among sen-

sor nodes and different networks, and the multiple access of wireless channels

[15, 22, 23].

2.1.3 Wireless Body Area Networks (WBANs)

WBANs typically consist of a group of collaborating W2SNs, strategically

placed on, near, or within several locations of a human body, or even a

combination (Fig. 2.1) [3, 9–11]. W2SNs are primarily deployed to moni-

tor human physiological and bio-kinetic conditions and can provide context

awareness [3]. A single node may comprise of many different types of sensors

to assist in location discovery and enable smarter and more aware sensor

networks. Common applications of WBANs include healthcare (such as re-

habilitation and ambulatory monitoring) [10], fitness and entertainment [3].

Recent significant traction in on-body medical applications has focused such

systems on pervasive long-term patient monitoring scenarios involving the

collaboration of physicians, nurses, psychologists and sociologists [3, 8].

The advent of WBANs as a separate class originated from the realization

of the differences in the human body compared to traditional applications

and environments in which WSNs are used [9, 10, 13, 24]. Whilst many

design considerations and challenges are shared with WSNs, sensor nodes
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Figure 2.1: An example WBAN platform, illustrating possible on-body sensor
types and its environment [3] ( c©2009 IEEE)

designed for WBANs should also:

• Be small and extremely non-intrusive, to maintain patient comfort and

minimize inconvenience to maintain appeal [10, 24]. Compared to tra-

ditional WSNs, smaller and more energy efficient batteries and designs

are often required. Thus, the tradeoff between processing and commu-

nication power versus battery life is crucial.
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• Contain components bio-compatible with the wearer’s body [3]. For

example, in the US, FCC (Federal Communications Commission) cer-

tification and FDA (Food and Drug Administration) approval and cer-

tification may be required.

• Not rely on having tens or hundreds of nodes. Unlike traditional WSNs

[25–27], WBANs are usually deploy to measure and monitor vital signs

sensors worn on a patient’s body, and typically only have a handful of

nodes.

• Implement additional system security. For example, more extensive

authentication measures may be required to protect sensitive patient

information and ensure privacy [10]. In comparison, WSNs used for

environmental monitoring may not be recording personal data.

• Be self sufficient. Components of the WBAN may be placed less ac-

cessibly, for example, implanted into a patient’s body. Thus, the nodes

must be reliable and be able to recover from errors by itself as much as

possible [24].

2.2 W2SN Localization And Positioning

The importance of accurate node placement is intensified in WBANs, com-

pared to other types of WSNs. One reason is that most WSNs are deployed

once and remain static in the same physical location for its lifespan. For ex-
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ample, WSNs used to monitor seismic activity are expected to remain in the

same locations, after installation at predetermined locations, for its entire

useful life. In contrast, the nodes of a WBAN with are expected to be placed

and removed from a patient quite frequently [8, 10]. Placement errors asso-

ciated with this could range from minor positioning errors, such as a node

not centered properly on the patient’s wrist, to the muddling up of nodes,

such as where a node designed to monitor leg activity was incorrectly placed

on the patient’s arm.

This section shall provide overviews of the different extents of autonomy

regarding node localization (Section 2.2.1), and distance measurement tech-

niques (Section 2.2.2) and localization algorithms (Section 2.2.3) currently

employed by wireless nodes.

2.2.1 The Autonomy Of Current Localization

Techniques

The term localization encompasses a set of techniques, mechanisms and al-

gorithms used to measure and obtain the spatial relationship of WSNs, with

reference to our physical world [22]. One method of classifying localization

techniques is by its degree of autonomy in providing location information,

for example, automatic, semi-automatic (beacon-assisted), and manual. Au-

tomatic localization is where all nodes are able to identify their own location

completely by themselves, such as a global positioning system (GPS) re-
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ceiver (Section 2.2.2.4). Typically, these systems are fully autonomous and

involve no human interaction. Semi-automatic localization involves some

sensor nodes in the system being able to discover their own location on their

own, known as beacons or anchor nodes, and infers relative location informa-

tion to less-capable nodes with no automatic localization capability. Manual

localization involves the user or caregiver setting the location information

associated with each node by-hand, and such nodes make no effort to verify

the user’s input. Alternatively, localization techniques can also be classified

as active (using signal-emitting techniques) and passive (non-signal emitting

or emitting signals on an alternate channel) [22].

Automatic Localization

To support the idea of a fully-autonomous WBAN, sensor nodes should ide-

ally be able to identify their own location quickly and accurately. In designing

BANs towards the goal of being autonomous and fault-tolerant, the accurate

positioning of sensors is one of the most important factors to ensure reliability

and accuracy [23]. For example, in one wireless electrocardiography (ECG)

system, the placement of the three sensor pads in [28] was shown to have a

strong effect on the quality of the 12-lead ECG signal generated.

Semi-Automatic (Beacon-Assisted) Localization

This approach involves a small number of nodes known as beacons or anchor

nodes [29], which can obtain their physical location either autonomously, or
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by being placed at predefined locations and location information set man-

ually. These beacons then combine this absolute location information with

relative distances obtained with other techniques, such as by inferring dis-

tance using the received signal power between a beacon and another node

as per Section 2.2.2.1. Semi-automatic localization is typically considered an

acceptable tradeoff today between location accuracy and feasibility, partic-

ularly with larger networks with many nodes where it may not be practical

to manually configure each nodes location information prior to each deploy-

ment.

Manual Localization

Traditionally, manual hand placement of sensors has been acceptable for

WBAN systems due to relatively few nodes being employed in each system.

As well, trained experts and caregivers such as physicians are expected to

proficiently setup these system on a patient’s behalf. However, as appli-

cations of WBANs extend from in-clinic applications to at-home scenarios

where patients are expected to place and take off W2SNs on their own [8],

safeguards must be in place to minimize incorrect placements, for example a

patient muddling up sensor pads, especially if the W2SNs used in a WBAN

could be physically identical and not easily distinguishable from one another.

Correct node placement is particularly important for applications like ECG,

where even a small misplacement would severely affect results [28].
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2.2.2 Distance Measurement Techniques

Location discovery and awareness techniques have been investigated exten-

sively for WSNs in general. However, as explained in Section 2.1, such lo-

calization techniques are typically used for to determine node placement to

ensure good transmission properties where importance is placed on the rout-

ing of network traffic [14, 26, 27, 30], as opposed to mapping and pinpointing

physical sensor placement. This section discusses some of today’s most preva-

lent distance measurement techniques, their advantages and disadvantages,

and explores the feasibility of applying such techniques to perform localiza-

tion of WBAN nodes. It is worth noting that most of the techniques dis-

cussed, with the exception of GPS in Section 2.2.2.4, provide non-absolute

spatial information -- as such, only relative distances can be inferred, not

orientation.

Radio Signal Strength Measurement

One of the most common techniques to estimate the distance between two

nodes is by inferring distance d from the measured received signal strength

(RSS) of the radio, using the relation RSS = 1/dn where n is the path loss ex-

ponent [4, 22]. In open space, n is approximately 2, whereas near the ground,

n is closer to 4. Under conditions such as waveguide and corridors, n can be

less than that for free space, such as 1.5 [22]. Unfortunately, this method pro-

duces distance estimates of relatively low accuracy, as it is highly prone to un-

certainty due to the random nature of the wireless channel, caused by effects
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including multipath propagation effects, including wave reflection, diffrac-

tion and scattering, as well as shadowing [4]. To improve accuracy, studies

have been performed; for example, [31] investigates obtaining a Cramér-Rao

bound (CRB) to compare minimum attainable variances of unbiased sen-

sor location estimators. Nonetheless, since no extra hardware is required,

using RSS to infer the approximate range between nodes is simple and inex-

pensive, and suffices in situations where merely ‘in-range’ or ‘not-in-range’

measurements are required [22]. For example, given a Bluetooth R© WPAN

where a cellular phone is paired to a hands-free wireless headset, to deter-

mine whether incoming calls should be routed to the headset or remain on

the phone, the RSS of the headset is checked to determine whether or not

the headset has come into range. In applications where an exact absolute

physical location is required, to place the relative locations obtained using

this method in absolute reference, a beacon in the WBAN with its position

known can be used together with other nodes to infer relative locations using

RSS [32], for example an extra node placed outdoors with GPS capability.

However, requiring an extra stationary node may not be practical for mobility

reasons, particularly for WBANs.

Radio-Based Time Of Flight

Measuring the time of flight of a radio signal is also frequently employed.

‘Fine-grained’ techniques such as Time of Arrival (ToA) and Time Differ-

ence of Arrival (TDoA) examine the radio signal travel time between the
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transmitter and receiver, and are frequently coupled with techniques to re-

duce estimation error [4, 23, 29, 32]. Such techniques can be significantly

more precise than measuring RSS, as using ToA and TDoA for localization

is less sensitive to physical effects compared to measuring and comparing

signal strength [23]. However, the main challenges with measuring time of

flight involve signal synchronization and obtaining high precision measure-

ments of the times. This translates into a tradeoff between distance accuracy

and sophisticated hardware requirements; ToA ranging requires a dedicated

high speed timer, and powerful microcontroller unit (MCU) for computation.

Ultrasound-Based Time Of Flight

Instead of applying time of flight techniques radio frequencies used by the

nodes for transmission, acoustic techniques such as ultrasound have also been

explored as a means to approximate the range between nodes of a WBAN

[4, 22]. Due to the relatively slow propagation of sound1, low-cost sensors

could be employed to perform the measurement. However, for systems where

extra hardware cannot be introduced, this may not be feasible. As well, ac-

curate distance measurements using ultrasound would require nodes to be in

direct line of sight, which may not be practical if nodes are to be mounted

around a patient’s body; for example, some sensors could be on the front side

of the body, while others on the back side. Also, the disadvantage of requir-

ing a powerful MCU for computation still persists [23]. Another localization

1the speed of sound is approximately 343 m/s in dry air at room temperature
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technique exploring ad-hoc node positioning used Angle of Arrival (AoA)

[33], where antenna arrays or a series of ultrasound sensors have been com-

plemented to improve the accuracy of distance estimations by being able to

sense the direction from which signals are received. This method provides

not only positioning, but also orientation information of the nodes. However,

without an anchor node, the topology generated would still be ‘floating’ and

not ‘fixed’ to the earth’s absolute coordinate frame.

Global Positioning System Receivers

A variation of radio-based time of flight (Section 2.2.2.2) involves the use

and multilateration of geosynchronous satellites in the earth’s orbit, instead

of relying on other nodes in the WBAN [4]. This can be considered as a form

of semi-automatic localization. The use of GPS receivers in recent years has

been particularly popular in the area of consumer electronics. These devices

utilize GPS satellites to triangulate the user’s location, with applications

ranging from portable navigation devices used in automobiles, to Internet-

enabled smartphones allowing users to check-in’ to places for coupons and

deals. However, the main problem of using GPS receivers in WBANs is that

a clear and relatively unobstructed view of the sky is required for maximum

accuracy, as satellite triangulation heavily relies on being in an outdoor envi-

ronment with satellite line of sight [4, 23, 33]. GPS localization performance

is heavily diminished indoors or in urban areas surrounded by skyscrapers.

Clearly, a WBAN cannot be expected to be operating outdoors all the time.
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Even then, consumer GPS technology is only accurate in the range of 3 to

15 meters. This is insufficient for WBANs, as nodes are placed inches apart;

whereby navigation devices operate over cities or continents, WBANs oper-

ate over the height of a human body. Coupled with the relative high cost

and high power consumption of GPS chipsets [21], the use of GPS receivers

to provide location awareness of individual W2SNs is highly unsuitable.

2.2.3 Localization Algorithms

From Section 2.2.2, we see that a wide range of algorithms have been de-

veloped for WSNs to compute localization information. Some of the main

challenges include measurement error, distance measurement range limita-

tions and computation cost [4], and these factors would limit their success

and effectiveness in being deployed in WBANs, especially when sensor node

localization is required to map and pinpoint the physical locations of W2SNs,

as opposed to simply determining a logical topology for optimum routing and

transmission [14, 26, 27, 30]. The following algorithms outline how to uti-

lize the different distance measuring techniques from Section 2.2.2 for node

localization:

Area-Based Algorithms

Area-based algorithms typically estimate sensor positions from wireless radio

connectivity, by determining whether or not two nodes are within range of

each other. This is easily accomplished using RSS and signal power thresh-
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olds, as discussed in Section 2.2.2.1. One method is to employ grid techniques

and anchor nodes or beacons [29]. In this semi-autonomous topology, nodes

with their locations known are arranged in a relatively densely-distributed

grid. The distance of a nearby node is estimated as the center of the poly-

gon area of surrounding in-range beacons. This is known as the centroid

approach [4], where localization accuracy is determined by the size of the

polygon area (Fig. 2.2). Smaller polygons are possible by reducing the

transmission power and range, which however, affects how far apart nodes

can be placed. Extensions to the centroid approach, such as the Approximate

Point-In-Triangulation Test (APIT) algorithm have been developed to im-

prove localization accuracy by exploiting beacon redundancy [4, 34]. How-

ever, APIT requires a very large number of densely placed nodes [34], and

since WBANs typically have fewer nodes than traditional WSNs, this may

not be practical.

Distance-Based Algorithms

Distance-based algorithms utilize the knowledge at each sensor node and

compare this knowledge between pairs of nodes. These algorithms can be

classified as global optimization algorithms, multilateration algorithms, or

recursive algorithms [4].

• Multilateration, an extension and generalization of trilateration, in-

volves computing approximate node locations using geometries of spheres

and triangles to calculate and map adjacent nodes (Fig. 2.3). Al-

20



2.2. W2SN Localization And Positioning

Figure 2.2: An example of the centroid approach, where five location-aware
nodes are defining the area to determine location S, approximated as S ′ [4]
( c©2007 IEEE)

Figure 2.3: Triangulation and an example showing the impact of measure-
ment errors [4] ( c©2007 IEEE). In (a), the three radii of each of the nodes
intersect perfectly at location S. However, in (b), when the distance mea-
surements have errors, the three radii do not intersect at one point, thus S
is not a unique point, but the region of intersections, thus limiting accuracy.
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gorithms using multilateration techniques aim to minimize the error

between measured and approximated locations using at least three

beacons by distance-fitting [4, 21]. Minimization can be performed

using techniques such as steepest gradient descent, enhanced steepest

descent (ESD) and non-linear conjugate gradient. Multilateration al-

gorithms rely heavily on accurate average hop distances and cannot

tolerate large distance measurement errors. Unfortunately, the perfor-

mance for anisotropic networks or systems with complex topologies is

subpar, due to cumulative range error [29]. A multi-hop approach is

proposed to estimate the shortest path distance between a node and

a beacon multiple hops away, which borrows its iterative computation

idea to improve performance from distance vector routing [4, 22].

• Global optimization approaches are frequently advocated in scenar-

ios where too few beacons or anchor nodes are immediate neighbors to

nodes requiring distance information [4], making recursion infeasible.

One suggested approach is the use of multidimensional scaling (MDS)

[4, 29], a statistical technique to map sensors in 2D and 3D space.

Such algorithms estimate distances by solving an objective function in

a minimization problem, and only require a handful of anchor nodes.

Different MDS algorithms have been suggested, including the classi-

cal optimization problem described above, and a more robust version

which can recover the coordinates of nodes without complete distances

and with fewer anchor nodes [35]. MDS can perform better than mul-
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tilateration approaches, but the tradeoff is its high computation cost.

• Recursive algorithms are frequently proposed to overcome short

range requirements in previous techniques. Beacons iteratively re-

broadcast themselves, after their locations are accurately identified, as

new beacons’ to link up with more nearby sensors [4]. However, such

algorithms require very accurate individual distance measurements to

minimize the cumulative errors could result, and perform very poorly

when nodes are placed in straight lines or in a concave area [4].

Radio Transmission Learning Models

Kernel-based learning is an example of an approach which, instead of using

distance information between pairs of sensor nodes, attempts to utilize dis-

tributions of radio signal patterns measured by the beacons [4] to train a

sensor localization classification function which makes decisions on whether

or not nodes are located in certain regions, similar to techniques commonly

used with radio frequency (RF) indoor tracking systems. This approach is

deemed more robust, particularly for densely deployed sensor networks, be-

cause the classification function incorporates interference in the network’s

environment. For enhanced performance, one could set up this technique

such that multiple overlapped regions are defined, and a node’s position can

be identified as the intersection of such regions [4]. However, accurate results

may not be produced using such techniques if the network does not have a

sufficient number of nodes, which again, cannot be presumed for WBANs.
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Pattern Recognition and Time-Series Analysis

An alternative learning approach to measuring relative distances or radio re-

ceived signal powers between nodes is through the use of pattern recognition

and time series analysis [5]. This technique involves dividing up the patient’s

body into pre-defined ‘regions’, and WSNs will be matched to the correct

region.

In [5], kinetic motion is captured at various locations on the patient’s

body using accelerometers (Fig. 2.4), and by using mixed supervised and

unsupervised learning time series analysis methods, an support vector ma-

chine (SVM) is used to analyze motion patterns and, based on the motion

patterns of different limbs, estimate a ‘map’ of W2SNs and their correspond-

ing location with a certain degree of confidence. Experimental results were

obtained using 25 subjects, and with 30 minutes of data each, an average 89%

accuracy was obtained. However, the attained accuracy depended heavily on

the limb being measured. For example, the shin area produced nearly perfect

results, but identifying the head area was done least accurately. As well, the

system is unsuitable for real-time mapping and identification of W2SNs, a

key characteristic required by WBANs [10], because it required 30 minutes

of motion data plus additional off-body processing and analysis, due to the

time period involved and complexity of the SVM.

Off-body limb recognition methods have also been explored, where the

face and upper-body limbs are recognized and tracked using a video camera

in real-time [36, 37]. However, due to the extensive amount of image pro-
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Figure 2.4: Dividing the body into 10 regions for placement of sensors in
time-series analysis and the use of pattern recognition to determine which
region the measured signals correspond to [5] ( c©2011 IEEE)

cessing required for limb detection, extensive processing power is required

of the MCU to support this approach, and the need for stationary off-body

equipment limits this as a solution for WBAN applications.
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2.2.4 Summary Of Localization Techniques

Many efforts to improve location detection of W2SNs have been examined, al-

though based on the techniques from our literature review in this section, the

primary motivation behind the majority of sensor node localization studies

pertains to improving data transmission techniques between wireless nodes

[31, 38, 39]. These techniques are therefore tailored to general WSNs with

tens or hundreds of nodes [25], as opposed to WBANs with a handful of

nodes at most [11].

Using geospatial and hypsometric information, that is, the Earth’s at-

mospheric air pressure distribution is a common practice for large-scale ap-

plicatons such as tracking altitude changes in mountaineering [40]. How-

ever, to the best of our knowledge, applying this technique to the small-scale

positioning of WBANs sensor nodes placed less than a few meters apart

remains unexplored. This is the basis of our sensor node localization ap-

proach to provide localization capabilities without the need for stationary

off-body hardware. To demonstrate the feasibility, our proposed scheme pre-

liminary findings was demonstrated in [1]. We shall continue our analysis of

using small-scale geospatial information in WBANs sensor node localization

in Chapter 3.
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2.3 Fall Detection

On the study of fall detection systems, where an off-site caregiver can be

notified if the patient being monitored suffers from a fall, most proposed

systems leverage one of two classes of concepts. The first class involves on-

body motion sensing, where falling is inferred by characteristic patterns in

body acceleration and motion [6, 41–46], as illustrated in Fig. 2.5. The

second class involves off-body monitoring using video cameras [36, 37, 47–

50], where limb recognition and tracking is utilized to monitor the patient’s

motion, as per Fig. 2.6. Both classes have their own advantages, but also

significant drawbacks and deficiencies which have thus far prevented mass

end-user adoption [51].

2.3.1 On-Body Fall Detection Schemes

The first class of concepts relies on spikes or patterns in accelerometer and/or

gyroscope readings to trigger pre-defined thresholds and deduce falls [6, 41–

44] – however, many common activities, for example heavily sitting down on

a chair, could produce false-positives due to similar acceleration character-

istics, even though a fall has not occurred [6, 51], limiting the confidence in

relying solely on this technique to deduce whether or not a fall has actually

occurred. More critically, many papers have demonstrated that such a sys-

tem alone would result in a significant quantity of false-negatives, that is,

falls that go about undetected. As well, variations of this concept to reduce
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Figure 2.5: Example of an on-body fall detection system, where a ‘fall’ is
detected by an accelerometer using pre-defined threshold triggers [6] ( c©2007
Elsevier)

the false-detection of falls have been attempted. Simple variations include

monitoring the patient for seconds or minutes after acceleration spikes to

determine if he/she gets up immediately after [52]. However, in a medical

emergency situation, waiting this period to deduce falls may be too late.

In another variation, machine learning is incorporated along with tagging

locations around the body using RF location sensors in [53]. However, the

authors acknowledge that this approach is still deficient in differentiating

‘fall-like’ events from slow falls.
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Figure 2.6: Example of an off-body fall detection system, where a skeleton
is extracted from an image of the body with localized joints and limbs [7]
( c©2004 IEEE)

2.3.2 Off-Body Fall Detection Schemes

Concerning the second concept class of off-body video monitoring, while limb

recognition has demonstrated a high degree of accuracy [7, 36, 37, 47, 49, 50,

54], despite a somewhat lack of experimental validation specifically for at-

home fall detection applications [47]. Aside from computing power consider-

ations surrounding video processing which would require off-body equipment

[49], limb recognition using video feeds has been dismissed time after time

due to privacy issues surrounding the continuous video recording of the pa-

tient [55, 56]; studies based on such a system have been rejected even by
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focus groups due to being too intrusive. As well, since cameras require off-

body installation, the system’s operation is limited to the rooms in which

the cameras are installed [48]; thus, such a system cannot follow the patient

outside of their home.

2.3.3 Summary Of Fall Detection Schemes

As we can see, the two classes of fall detection systems are currently at

opposite ends — accelerometer-based systems lack accuracy and reliability

due to frequent false-positives and false-negatives, and video camera-based

systems are surrounded by significant privacy concerns. Due to the inherent

portability advantage of self-contained on-body solutions, there is much value

in improving the accuracy of these systems. One approach would be to enable

the WBAN to not just detect whether or not body impact has occured, but

also to determine the context and state of the patient immediately following

any detected impact.

By augmenting the known position and orientation of the patient’s body

limbs, a simple check of whether the patient is standing up or lying down

would enable the system to better preclude whether or not a remote caregiver

needs to be informed to assist the patient, without the privacy issues sur-

rounding off-body video monitoring techniques. We document our approach

in full detail in Chapter 4.
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Chapter 3

W2SN Location Recognition

Using Small-Scale Atmospheric

Air Pressure Differences

This chapter outlines our new approach on using small-scale geospatial infor-

mation to map and recognize W2SN locations, and documents our verification

process to ensure the applicability of this approach to WBANs.

3.1 Localization Technique Overview

The core of our research contribution is based on experimentally explor-

ing and validating geospatial information to the context and size-scale of

WBANs. Our new localization technique leverages the geospatial air pressure

distribution in the Earth’s atmosphere, described by the following expression

of the hypsometric equation [57–59]:

p = p0(1− (Lh/T0)(gM/RL)) (3.1)
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We measure atmospheric pressure p [Pa] at altitude h [m], given sea level

atmospheric pressure p0 [Pa] and other constant parameters 2. The use of

Eqn. 3.1 assumes hydrostatic equilibrium. This relation is visually repre-

sented in Fig. 3.1. In a nutshell, Eqn. 3.1 and Fig. 3.1 shows that air

pressure decreases as altitude increases. The International Standard Atmo-

sphere (ISA) model assumes a constant L and g between 0-11km in altitude

[59], enabling Eqn. 3.1 to be valid for at-home applications.

To overcome the variation of atmospheric air pressure measurements with

time and weather, we compare the instantaneous pressures at multiple loca-

tions on the body and identify the vertical arrangement and locations of the

nodes on a scale relative to the wearer, as described in Fig. 3.2. This is possi-

ble by assuming that the intended node positions and ordering in the WBAN

are known and remain the same, enabling the WBAN to map the expected

locations of nodes with an ordered list of node locations measured. Through

sorting the list (such as by using Alg. 1), the node with the highest air pres-

sure is identified as the node placed at the lowest position. This procedure is

almost instantaneous, and is only required each time the W2SNs are moved

– the detection on whether or not W2SNs have been removed or replaced is

outside the scope of this investigation, although additional hardware, such

as heart rate sensors in each W2SN, can be employed for this purpose.

To demonstrate and evaluate our technique against a practical application

2sea-level standard temperature T0, earth-surface gravitational acceleration g, dry air
molar mass M , universal gas constant R, temperature lapse rate L.
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Figure 3.1: Visual representation of the change in atmospheric pres-
sure with altitude, described by the hypsometric equation, from http:

//www.physicalgeography.net/fundamentals/7d.html ( c©2006 Michael
Pidwirny). Our proposed scheme operates on the principle of being in the
‘troposphere’ region, between 0-11km from sea level, where the ISA model
assumes a constant L and g.
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3.1. Localization Technique Overview

Figure 3.2: Overview of the W2SN location identification and mapping tech-
nique described in Chapter 3. (a) First, pressure readings at each W2SN are
taken simultaneously by A2PSs. (b) Next, the pressure readings are com-
pared and mapped in-order to physical space described in Eqn 3.1. Each
colored circle in this figure represents a single W2SN; #1 in red and #2
in blue. (c) Given a set of pre-defined W2SNs, (d) the pressure readings
are mapped to the patient’s body based on the expected position of his/her
limbs.

which would benefit from being able to identify W2SN location in real-time

for limb recognition, we apply the proposed technique to our WBAN speci-

fied in [2], which monitors tremors and dyskinesia symptoms in Parkinson’s

disease patients. The WBAN (Fig. 3.3) consists of W2SNs mounted on a

patient’s body and a data aggregation base station node, all consisting of

standard Crossbow TelosB R© motes (Fig. 3.4) commonly used in WBAN re-

search [11]. In addition to sensors required by the primary application of the

WBAN (for example, three-axis accelerometers), each W2SN has been fitted
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3.1. Localization Technique Overview

Figure 3.3: Topology of WBAN platform, showing W2SN placements on
body, used to experimentally validate node localization technique

Figure 3.4: Photograph of a prototype W2SN and its components constructed
from adapting the digital sensor platform created for Parkinson’s disease
tremor measurements [1]
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3.2. Localization Technique Validation & Results

with Bosch R© BMP085 A2PSs for localization and limb position tracking.

This small, low-cost, low-power device can detect air pressure differences of

less than 3Pa in ultra-high resolution mode, which translates to approx. 25cm

in altitude change, and advertises <1Pa resolution with software averaging

[60].

To determine the placement position of each W2SN, each node trans-

mits air pressure P and temperature T readings together with data col-

lected for the WBAN’s primary application to the base station. In our

setup, a MATLAB-enabled PC aggregates all sensor data and perform post-

processing. Although pressures can be compared directly for W2SN localiza-

tion purposes, altitudes h at each node location can also be deduced using

Eqn. 3.1 from p by obtaining p0 from an external source; in our setup, we

opted to use Environment Canada’s weather report 3.

3.2 Localization Technique Validation &

Results

The experimental validation of our technique consists of the following major

procedures to evaluate the system’s performance in detecting the changes in

height required for W2SN localization and limb position tracking:

1. Selecting appropriate A2PS sampling parameters (1 sensor, 1 position)

3Environment Canada’s current conditions for Vancouver, BC, Canada: http://www.
weatheroffice.gc.ca/forecast/city_e.html?bc-74&unit=m
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3.2. Localization Technique Validation & Results

– Section 3.2.1

2. Ensuring that the selected A2PS can accurately and reliably detect

small-scale changes in air pressure, applicable along the height of a

human body (1 sensor, 2 positions) – Section 3.2.2

3. Examining and correcting for intrinsic differences between two different

A2PS, to ensure that readings from one can be compared with readings

from another (2 sensors, 1 position) – Section 3.2.3

4. Combining the previous procedures to enable the WBAN to measure

the air pressure at two limb locations without reusing the same sensor

(2 sensors, 2 positions) – Section 3.2.4

Fig. 3.5 illustrates expected PDFs of atmospheric air pressure readings

for each of the aforementioned procedures. The spread is to be quantified

further in Section 3.2.1. In Fig. 3.5A, we demonstrate that for the same

sensor hardware held at the same position, the characteristics of the A2PS

readings distribution remains the same. With this, we demonstrate in Fig.

3.5B that the distributions of readings from two distinct positions must be

spread out distinctly along the pressure scale in order for the two sets of

readings to be statistically distinguishable from one another. Noting that

in a real WBAN, we cannot use the same sensor to simultaneously measure

atmospheric air pressure at two physical locations, we determine and account

for the offset between readings from two sensors in Fig. 3.5C. Once this offset

is accounted for, we can use two sensors to measure atmospheric air pressures
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3.2. Localization Technique Validation & Results

Figure 3.5: Expected PDFs of A2PS readings for each of the validation pro-
cedures outlined in Section 3.2

Figure 3.6: Expected CDFs of A2PS readings corresponding to Figure 3.5
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3.2. Localization Technique Validation & Results

at two locations in Fig. 3.5D. Corresponding expected CDFs are illustrated

in Fig. 3.6.

While data was manually captured at controlled times for the purpose of

validating our experiment, we expect a commercial-grade WBAN to continu-

ously sample the A2PS and utilize a rolling window to repeatedly perform the

statistical testing described in this section to monitor the position of W2SNs

in the WBAN.

3.2.1 Selecting Appropriate Pressure Sensor

Sampling Parameters (1 Sensor, 1 Position)

In this sub-section, we demonstrate that for the same sensor hardware held

at the same position, the characteristics of the A2PS readings distribution

remains the same. As well, we examine the tradeoffs considered in selecting

the appropriate sampling parameters for the A2PSs.

The proposed system aims to expedite the process of accurately verifying

W2SN placement while reducing power consumption. On one hand, the ac-

curacy of the verification process depends on the raw A2PS readings output,

whose error margins (noise) in turn depend on the sampling rate. Empir-

ical results obtained through our WBAN setup reveal that by employing

the highest resolution mode of the A2PS, a 10Hz sampling rate suffices to

minimize noise and reduce power consumption by not overloading the MCU

through oversampling. However, a suitable sampling time window must be
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3.2. Localization Technique Validation & Results

obtained in order to optimize the accuracy of the W2SN placement verifica-

tion assessment.

To this effect, we placed one node on a stationary surface and sampled

the A2PS readings for one hour. Simple visual inspection and comparison

with Environment Canada weather reports corroborated either steady air

pressure variations (increasing or decreasing) or a stable output, depending

on the current weather conditions. However, our scheme is not impacted by

this, because the time scale of the W2SN placement verification process is

too short compared to the length of time it takes for atmospheric air pres-

sure changes to have any effect on the system’s accuracy. It follows that a

placement verification process subject to rapid, artificial changes in atmo-

spheric air pressure is prone to inaccuracies because this circumstance skews

the PDF of the readings’ error margin. In other words, the proposed scheme

enhances location verification reliability by ensuring that the statistical anal-

ysis is performed over data samples unambiguously described by a probability

distribution, as detailed shortly.

By taking 1 hour of pressure data readings where the sea level air pres-

sure remained stable, and by examining window sizes (subsets of this data)

between 1 second and 60 seconds, the mean and spread of pressure readings

remained very similar throughout this range, as depicted in Table 3.1. By

characterizing the PDF and CDF of the data samples at hand, we can define

confidence intervals (CIs) that can be referenced to determine pertinent data

sampling windows that maximize the accuracy of the system’s assessment
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3.2. Localization Technique Validation & Results

Table 3.1: Sampling window and number of samples N vs. mean & spread
of pressure measurements, and goodness of fit with a Gaussian Distribution,
given 1 node at 1 position

Window N Mean StDev p-Value p >0.05?
[sec] [samples] [Pa] [Pa]

1 10 99869 4.977 <0.005 No
2 20 99870 3.911 0.099 Yes
3 30 99870 3.986 0.389 Yes
5 50 99869 4.068 0.276 Yes
10 100 99868 3.654 0.110 Yes
15 150 99868 3.983 0.030 No
20 200 99868 4.336 0.017 No
30 300 99867 4.653 0.021 No
60 600 99867 4.313 <0.005 No

process. We examine the goodness of fit (GOF) of the data from each win-

dow size against a Gaussian distribution with 95% CI. Fitting the data to

common distributions using GOF tests showed that a Gaussian distribution

had the best fit. From Table 3.1 and the probability plot in Fig. 3.7, we can

see that sampling windows of 2 seconds, 3 seconds, 5 seconds and 10 seconds

produced readings that could be confidently approximated by a Gaussian

distribution, that is, their p-values were >0.05. Furthermore, the 3-second

sampling window returned the highest p-value, meaning this sampling win-

dow would be most preferable, in order to ensure that the error estimation

process corresponds with a Gaussian PDF describing the actual data samples

output by the sensor. Otherwise, employing an error estimation scheme for

a data stream with mismatching PDF would invalidate the accuracy of our

scheme. Repeating this analysis with two more sets of pressure data also
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3.2. Localization Technique Validation & Results

Figure 3.7: Probability plot showing goodness of fit with a Gaussian Distri-
bution for varying sample window sizes between 1s and 60s

produced the same findings, where the 3-second sampling window gave the

highest p-value.

The different sampling window trials shown in Table 3.1 and the corre-

sponding pressure reading distributions gives us a good reference point to

determine the length of the sampling window based on the GOF results.

With too short of a sampling window, too few data points are available

for an accurate fit. However, if we take measurements for too long, overall

fluctuations in atmospheric air pressure due to the weather would skew our

readings, thus limiting the accuracy of our proposed scheme.

42



3.2. Localization Technique Validation & Results

3.2.2 Verifying Assessments of Height Measurements

Between Positions (1 Sensor, 2 Positions)

In this sub-section, we describe the verification process to ensure that our

hardware can accurately and reliably detect the small-scale changes in air

pressure representative of heights along the human body, in accordance with

the results obtained and described in Section 3.2.1. This is achieved by plac-

ing one A2PS at two locations spanning a controlled vertical distance apart,

and by ensuring that the pressure measurements at the two locations can

be distinguished from one another if the obtained measurements statistically

remain within the CI.

Here, we first utilize only one A2PS to negate the intrinsic hardware

differences between two different sensors. We demonstrated this technique

and reported preliminary results in [1]. In a practical WBAN, we need two

W2SNs to obtain measurements at two positions, as described and examined

in the next subsections. We placed the single sensor at two baseline heights,

defined as 0cm (Position I), and at 60cm above Position I (Position II) and

obtained pressure data at the two positions. The 60cm height difference

was selected as a starting point indicative of the typical minimum distance

between two limb positions we expect our system to monitor, based on a two-

W2SN WBAN with one arm node and one leg node. We examine 3-second

data portions using two-sample T-tests. Since identical sensors were used,

we assume equal variances between the two sets of data. First, we compare
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3.2. Localization Technique Validation & Results

Table 3.2: Comparing the measured pressures distribution with 1 sensor at
2 positions, using a two-sample T-test

Position N Mean StDev SE Mean
[samples] [Pa] [Pa]

Trial 1

I @0cm 30 101913.87 2.80 0.51
II @60cm 30 101903.47 3.90 0.71
Estimate for difference µ(60cm) - µ(0cm): 10.400
95% CI for difference: (8.645, 12.155)
T-Test of difference = 0 (vs not =):

T-Value = 11.86 P-Value = 0.000 DF = 58)

Trial 2

I @0cm 30 101911.80 2.54 0.46
II @60cm 30 101903.07 3.98 0.73
Estimate for difference µ(60cm) - µ(0cm): 8.733
95% CI for difference: (7.008, 10.459)
T-Test of difference = 0 (vs not =):

T-Value = 10.13 P-Value = 0.000 DF = 58)

Trial 3

I @0cm 30 101913.70 2.83 0.52
II @60cm 30 101903.60 2.92 0.53
Estimate for difference µ(60cm) - µ(0cm): 10.100
95% CI for difference: (8.614, 11.586)
T-Test of difference = 0 (vs not =):

T-Value = 13.60 P-Value = 0.000 DF = 58)

one set of sample data from Position I against a set from Position II, and

repeat the test ensure reproducibility. Next, we compare sample data taken

from the same position against each other to ensure that same position data

is not falsely detected as being different. A small p-value enables us to reject

the null hypothesis; that is, there is a statistically significant difference in

height estimates at the two positions.

From Table 3.2 we can see that for all 3 trials, placing the sensor at

60cm altitude differences returned pressure difference measurements of on
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Table 3.3: Baseline comparison of the measured pressures distribution with
1 sensor at the same position

Position N Mean StDev SE Mean
[#] [Pa] [Pa]

Trial 1 vs. 2

I @0cm 30 101913.87 2.80 0.51
I @0cm 30 101911.80 2.54 0.46

Estimate for difference µ(60cm) - µ(0cm): 2.067
95% CI for difference: (0.685, 3.448)
T-Test of difference = 0 (vs not =):

T-Value = 2.99 P-Value = 0.004 DF = 58)

Trial 1 vs. 3

I @0cm 30 101913.87 2.80 0.51
I @0cm 30 101913.70 2.83 0.52

Estimate for difference µ(60cm) - µ(0cm): 0.167
95% CI for difference: (-1.288, 1.622)
T-Test of difference = 0 (vs not =):

T-Value = 0.23 P-Value = 0.819 DF = 58)

Trial 2 vs. 3

I @0cm 30 101911.80 2.54 0.46
I @0cm 30 101913.70 2.83 0.52

Estimate for difference µ(60cm) - µ(0cm): -1.900
95% CI for difference: (-3.289, -0.511)
T-Test of difference = 0 (vs not =):

T-Value = -2.74 P-Value = 0.008 DF = 58)

average 8Pa-10Pa, with an estimated difference of 7Pa-12Pa with a 95%

CI. Furthermore, the two-sample T-tests returned p-values of 0.000 for all

3 trials, confirming that the height estimate at Position I are statistically

different from that at Position II with >99.9% CI. This means that the sensor

readings from Position I differ enough from Position II to enable the system

to detect the changes in air pressure, and thus height, that we require. From

Table 3.3, comparing pressure data taken from the same positions against

each other, the two-sample T-tests for all 3 trials returned p-values >0.000.
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3.2. Localization Technique Validation & Results

Figure 3.8: Empirical CDF Plot of measured pressures with 1 sensor at 2
positions, showing that the A2PS can reliably distinguish between the two
positions

As expected, that the results are insufficient to falsely identify different height

assessments given the same position. Visually, an empirical CDF plot of the

trials in Fig. 3.8 were very comparable to the expected CDF (Fig. 3.5B) – the

gap between the CDFs of the two positions suggest statistically significant

differences between measurements from the two positions, and the similar

CDFs among the trials for each position show a high degree of consistency.

Repeating this experiment with more data provided agreeable results. Thus,

based on these results, we can confidently and reliably distinguish between

the two positions using one sensor.
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3.2.3 Verifying Assessments of Height Measurements

Between Nodes (2 Sensors, 1 Position)

In this subsection, we describe the process of verifying that two different

sensors measure the same pressure when placed in the same position. Dur-

ing initial experimentation, we discovered that each A2PS, even when placed

together at the same altitude, would report pressure readings offset from

one another. Moving both sensors to different altitudes produced the same

offset. This implies that MEMS hardware response differences between oth-

erwise identical A2PSs are due to insufficient precision in the eleven 16-bit

factory calibration coefficients different for each sensor, possibly because the

sensor was designed for measuring more macro-scale air pressure readings.

This realization highlights the importance of understanding the operation of

A2PSs for measuring fine-grain, human-scale height differences at the high-

est possible resolution. Thus, this calibration process is an important step

towards implementing a reliable height-based W2SN placement estimation

system.

To substantiate this claim, we place two A2PS-equipped W2SNs side-by-

side (at the same altitude) and examine the mean and spread of the pressure

data from each node. Using the 3-second, 10Hz sample window determined

previously, we can see in Table 3.4 that applying a two-sample T-test (assum-

ing equal variances) returned differences in measurements between two A2PSs

placed at the same position of on average 40Pa-43Pa, with an estimated dif-
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Table 3.4: Comparing the measured pressures distribution with 2 sensors at
1 position, using a two-sample T-test

Node N Mean StDev SE Mean
[samples] [Pa] [Pa]

Trial 1

N1 30 101956.33 4.72 0.86
N2 30 101913.87 2.80 0.51

Estimate for difference µ(N2) - µ(N1): 42.47
95% CI for difference: (40.46, 44.47)
T-Test of difference = 0 (vs not =):

T-Value = 42.37 P-Value = 0.000 DF = 58)

Trial 2

N1 30 101954.00 5.07 0.92
N2 30 101911.80 2.54 0.46

Estimate for difference µ(N2) - µ(N1): 42.20
95% CI for difference: (40.13, 44.27)
T-Test of difference = 0 (vs not =):

T-Value = 40.80 P-Value = 0.000 DF = 58)

Trial 3

N1 30 101953.77 5.68 1.00
N2 30 101913.70 2.83 0.52

Estimate for difference µ(60cm) - µ(0cm): 40.07
95% CI for difference: (37.75, 42.39)
T-Test of difference = 0 (vs not =):

T-Value = 34.58 P-Value = 0.000 DF = 58)

ference of 37Pa-45Pa with a 95% CI. Clearly, without offset correction, any

comparisons made between different sensor hardware are prone to error, as

the offset is approximately four times larger than the change in pressure we

saw over a 60cm vertical distance. Visually, if we plot an empirical CDF

(Fig. 3.9), we can observe the offset between two different pieces of hardware

that must be accounted for.

To ensure that we can apply this correction factor just once and be able

to meaningfully compare pressure readings between different hardware, we
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Figure 3.9: Empirical CDF Plot of measured pressures with 2 sensors at 1
position, showing the offset between two different pieces of hardware which
must be accounted for

ensure that this offset is indeed a linear offset, that is, the offset does not

change with altitude or over time. This was accomplished by repeating the

experiment at different altitudes over the height of a typical human body,

and examining the pressure offset between the two sensors. Measurements

obtained between two nodes at the same location revealed very similar esti-

mates, and that the offset for our two particular A2PSs remained at approx-

imately 40Pa. This confirms that the offset can be treated as being linear

for the purposes of our approach, thereby enabling us to compare pressure

measurements between sensors so long as this offset is accounted for.
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3.2.4 Validating Assessments of Height

Measurements in a WBAN (2 Sensors,

2 Positions)

In this last step, we combined our previous approaches to estimate air pres-

sure measurements at two different locations. Because verifying the correct

placement of W2SNs on limbs requires the ability to measure the air pressure

at each location simultaneously, we must validate that using two sensors to

measure pressures at two locations produces data comparable to those de-

scribed in Section 3.2.2, where the output of a single sensor was gauged at

two positions (one case at a time). Again, we utilize a 3-second sampling

window as per the results presented in Section 3.2.1.

Using the same two-sample T-test and assuming equal variances as per

the procedure in Section 3.2.2, as well as linear offset as per Section 3.2.3,

the results displayed in Table 3.5 show that the pressure difference between

the two positions is indeed statistically significant, and the test verifies that

the two positions are indeed different. Also, the 7Pa-15Pa estimate for the

pressure difference at a 95% CI is very comparable to the 7Pa-12Pa estimate

for the pressure difference with 95% CI at 60cm apart observed in Section

3.2.2, Table 3.2. Performing more trials produced similar pressure difference

estimates. Thus, the test demonstrated that the linear offset correction is

successful, and valid comparisons can be made between pressure measure-

ments from two nodes. Empirical CDF plots for each of the 3 trials show the
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Table 3.5: Comparing the measured pressures distribution with 2 sensors at
2 positions with linear offset correction, using a two-sample T-test

Node / Position N Mean StDev SE Mean
[#] [Pa] [Pa]

Trial 1

N1 @0cm 30 101916.33 4.72 0.86
N2 @60cm 30 101903.47 3.90 0.71

Estimate for difference µ(N2) - µ(N1): 12.87
95% CI for difference: (10.63, 15.11)
T-Test of difference = 0 (vs not =):

T-Value = 11.50 P-Value = 0.000 DF = 58)

Trial 2

N1 @0cm 30 101914.00 5.07 0.92
N2 @60cm 30 101903.07 3.98 0.73

Estimate for difference µ(N2) - µ(N1): 10.93
95% CI for difference: (8.58, 13.29)
T-Test of difference = 0 (vs not =):

T-Value = 9.29 P-Value = 0.000 DF = 58)

Trial 3

N1 @0cm 30 101913.77 5.68 1.00
N2 @60cm 30 101903.60 2.92 0.53

Estimate for difference µ(60cm) - µ(0cm): 10.17
95% CI for difference: (7.83, 12.50)
T-Test of difference = 0 (vs not =):

T-Value = 8.72 P-Value = 0.000 DF = 58)

measured pressure differences between the two nodes at the two positions

(60cm apart) in Fig. 3.10 were very comparable to the expected CDF (Fig.

3.5D) – once again, the gap between the CDFs of the two positions suggest

statistically significant differences between measurements from the two posi-

tions, and the similar CDFs among the trials for each position show a high

degree of consistency.

By determining and accounting for the differences in sensor hardware in

a one-time calibration process, where the A2PSs are placed at the same ver-
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Figure 3.10: Empirical CDF Plot of measured pressures with 2 sensors at
2 positions, corrected relative to Node N2, to enable comparison with the
1-sensor 2-position Empirical CDF (Fig. 3.8)

tical location, to correct the linear offset analyzed in Section 3.2.3, the same

pressures are measured by the two separate W2SNs when placed at the same

altitude. Thus, it is possible to draw accurate and meaningful comparisons

between the air pressure measurements at each limb, thereby enabling the

WBAN to identify and map its W2SNs. This procedure has therefore demon-

strated that our new localization approach can be implemented in practice.
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3.3 Localization Technique Discussion &

Limitations

By examining altitude differences between W2SNs, we introduced and demon-

strated our new approach for W2SN localization, to map and recognize the

location of nodes in a WBAN, by leveraging fine-grain hypsometric informa-

tion of the Earth’s atmosphere. Specifically, this approach targets WBANs

since such systems ideally have as few nodes as possible, and not tens or

hundreds of nodes, as assumed by traditional WSN localization techniques

for data transmission routing, and node placement for signal strength quality

concerns [14, 25].

As illustrated in Fig. 3.2, given the physical topology of the WBAN, we

can confidently identify which node is attached to which limb based on the

altitude information of each W2SN. The placements at each height would

correspond to placing W2SNs on the head, arm, and/or leg. This technique

is designed to perform localization, or to verify W2SN placement while the

patient is upright to maximize the distances between the nodes, and thus

improve detection accuracy. We anticipate that this will not limit the real-

life usefulness of this system; as discussed in Chapter 3, node localization for

limb recognition and tracking is only required each time the patient takes

off and replaces the W2SNs from his or her body. In our experiment, we

tested W2SNs at 60cm apart, indicative of the minimum expected distance

between a patient’s arm/wrist and lower leg. The larger the distance apart,
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the higher the accuracy of the system. However, in a commercial WBAN,

the selection of the A2PS will have a large effect on the altitude differences

detected.

In contrast to traditional W2SN localization techniques surveyed in Chap-

ter 2, this approach does not rely on having a large number of nodes to

perform localization, nor stationary beacon nodes to perform ranging. One

limitation of the approach is its constraint of one-dimensional space. For

example, this approach is unable to distinguish between different nodes at-

tached at the same height on the body, such as a W2SN attached to the

left arm and another attached to the right arm. An additional technique

would be required to identify and pinpoint nodes in additional dimensions.

Notwithstanding this, since the human body is slender, and more W2SNs are

typically distributed along the height of a body, by being able to self-identify

W2SNs at different heights, we have reduced the number of nodes requiring

manual identification to ‘left’ and ‘right’ nodes, which is far more convenient

for the patient.
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Chapter 4

Enhancing

Accelerometer-Based Fall

Detection Schemes With Limb

Position Tracking

This chapter describes an enhancement to conventional on-body fall detection

schemes, by augmenting the sensor node localization technique described

and validated in Chapter 3, with the goal of enhancing the WBAN’s ability

to differentiate common ‘fall-like’ (false-positive) events from actual falls.

Here, a typical accelerometer-based fall detection WBAN is replicated and

incorporated with limb position tracking, and the limb positions deduced

from A2PSs are compared against their expected positions based on different

at-home scenarios to demonstrate the improvement.
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4.1 Fall Detection Overview

In a typical on-body fall detection system, accelerometers are fitted in each

W2SN (described in Chapter 3) to capture x, y, and z-axis limb accelera-

tion, and elementary fall detection techniques look for ‘falls’ by monitoring

acceleration magnitude peaks due to impact [6, 41, 43, 44]. However, as

explained in Chapter 2, motion from certain daily activities such as sitting

down on a chair often produces large z-direction acceleration spikes and could

be mistaken as a ‘fall’ [6]. Since traditional on-body schemes lack contex-

tual awareness, the expected detection accuracy based on impact magnitudes

alone cannot be entrusted for long-term at-home fall monitoring.

4.2 Fall Detection Hypothesis Testing

We define the following fall detection hypotheses:

• H0 (null hypothesis) - the system has detected a fall (the two W2SNs

are found to be at the same vertical position)

• H1 (alternative hypothesis) - the system has not detected a fall (the

two W2SNs are not found to be at the same vertical position)

These hypotheses aid in describing the 4 possible outcomes:

1. A fall was detected, and there has indeed been a fall (true-positive,

desired outcome, accept H0)
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2. A fall was detected, but there was no fall (false-positive, undesired

outcome, Type I error from falsely rejecting null hypothesis)

3. A fall was not detected, and there has indeed been no fall (true-

negative, desired outcome, reject H0 correctly)

4. No fall was detected, but there was a fall (false-negative, Type II error

from falsely not rejecting null hypothesis)

The hypotheses are formed in this order to ensure that the system only

concludes that no fall has occurred if it can confidently be sure that the

null hypothesis can be rejected. This is because an undetected fall (a false-

negative) has more fatal consequences than one where no fall has occurred

but an alarm is triggered (a false-positive).

4.2.1 Enhancement Scheme Overview

We further define the probability that the patient requires assistance and

caregiver attention P (H0) as the intersection of P (fall), the probability that

an impact or free-fall has occurred as detected by an accelerometer, and

P (lyingdown), the probability that the patient is lying down, as detected by

A2PSs, in the time immediately following:

P (H0) = P (fall) ∩ P (lyingdown) (4.1)

In a nutshell, our proposed fall detection enhancement considers both
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P (fall) and P (lyingdown), as opposed to traditional on-body systems that

rely solely on P (fall). The WBAN makes an assessment based on the oc-

currence of A2PSs at the arm and leg reporting similar altitude to estimate

P (lyingdown) (implying that the patient is lying down) within a margin of

error, given that an accelerometer has indicated a fall event based on the

magnitude of impact or free-fall P (fall). Classifying falls based on P (fall)

alone have been previously studied in detail in [6, 41, 43, 44]. Thus, this

chapter focuses the on the performance of P (lyingdown), and whether or

not the WBAN using this information can accurately and reliably detect

that a patient is lying down as a result of common daily at-home activities.

4.3 Fall Detection Enhancement

Experimental Approach

We apply our W2SN placement recognition technique to improve such an on-

body WBAN, by introducing limb position awareness to monitor the patient’s

condition in the time surrounding detected impact. With our approach, a

WBAN continuously tracks and monitors the instantaneous air pressure at

each limb to deduce the patient’s physical state, immediately after significant

accelerometer activity is detected that could indicate a ‘fall-like’ event. By

comparing pressure differences against the known W2SN placement topology,

the WBAN can examine the position of the arm node relative to the leg node,

and deduce if the user is upright (standing or sitting up, where the nodes are
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Figure 4.1: Expected accelerometer and A2PS data behavior under various
typical at-home movement events

at different vertical positions), or lying down (where the nodes are vertically

at the same position).

To demonstrate that comparing limb position information before and af-

ter any impact detected by accelerometers is beneficial to a fall detection

system, we replicate typical at-home user activities to observe how our ap-

proach responds in determining the patient’s context, compared to using only

accelerometer data. We perform a variety of everyday tasks, including walk-

ing, traversing stairs, sitting, and lying down. We also emulate a fall onto

the ground. The change in acceleration and air pressure at each W2SN is

recorded and examined.

We quantify our enhancement’s performance in detecting a patient as ‘ly-

ing down’ by sampling 3-second windows of pressure data corresponding to
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immediately after the accelerometer observes spikes from the replicated sce-

nario, and perform two-sample T-tests between the two W2SNs for each data

set (trial). Depending on the scenario, the p-Value should either conclude

that the two nodes are at different altitudes (the patient is not lying down),

or that the nodes are not at different altitudes, inferring that the patient is

lying down. The closer the p-value is to 0.000, the more confident we can

be that the patient is not lying down. Qualitatively speaking, we expect

the system to respond as illustrated in Fig. 4.1, depending on the scenario.

Here, while any vertical jerk or impact (change in acceleration) could trigger

a z-direction acceleration spike, if we examine the absolute altitude of the

arm and leg with respect to each other, the physical state of the patient can

be deduced.

The WBAN and experimental configuration in Chapter 3 was reused,

consisting of one W2SN attached to the arm, and another attached to the

leg (Fig. 3.3). Analog Devices’ ADXL345 digital accelerometers [61] were

used to acquire x, y, and z-axis limb acceleration at each W2SN. This is to

demonstrate that a Parkinson’s disease limb tremor monitoring system, such

as in [2], could be easily upgraded with fall-detection capabilities, without

additional W2SNs or moving nodes around. For a pure fall-detection WBAN

disregarding primary application sensor placement, it is worth noting that

studies on sensor placement to record acceleration due to falls has so far been

inconclusive [46]; some have suggested behind the ear [41], the trunk [6] or

the head and waist [43] areas as being the optimum locations for a fall sensor.
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Our proposed approach aims to increase the sensitivity and performance of

on-body fall detection and allow the primary application of the WBAN to

dictate the placement of W2SNs.

4.4 Fall Detection Enhancement

Experimental Results

This section documents the performance and response of our proposed scheme

as implemented into a prototype WBAN, as described in Section 4.3. Five

scenarios representing expected ambulatory motion were performed.

In Figs. 4.2–4.6, acceleration plotted is in the z-direction, that is, in

the direction of gravitational acceleration. As with the localization measure-

ments in Chapter 3, we use the Environment Canada sea level air pressure

reading at the time of the data acquisition to infer the altitudes at each node.

Sampling windows used for statistical analysis are boxed in green.

4.4.1 Scenario 1: Walking

In a fall detection ambulatory monitoring system, aside from staying still,

walking is likely the most elementary and common movement type. Our

subject replicates typical walking on level ground, representative of ordinary

daily activities around the home. Visually examining the response in this

scenario, each footstep results in an acceleration spike 0.5g to 2g in magni-
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Figure 4.2: Scenario 1: Walking - Arm and leg acceleration, air pressure,
inferred altitude. A2PS readings at the arm and leg nodes remain distinc-
tively different to distinguish between the two traces, despite small localized
fluctuations. (Sampling windows used for statistical analysis boxed in green)
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Table 4.1: Scenario 1: Walking - comparing the measured pressures at the
arm and leg (after linear offset correction), using a two-sample T-test

Node N Mean StDev SE Mean
[#] [Pa] [Pa]

Trial 1

N1 (arm) 30 101140.30 3.53 0.65
N2 (leg) 30 101149.10 4.17 0.76
Estimate for difference µ(N2) - µ(N1): 8.800
95% CI for difference: (6.800, 10.800)
T-Test of difference = 0 (vs not =):

T-Value = 8.82 P-Value = 0.000 DF = 56)

Trial 2

N1 (arm) 30 101140.73 3.83 0.70
N2 (leg) 30 101149.80 4.14 0.76
Estimate for difference µ(N2) - µ(N1): 9.07
95% CI for difference: (7.00, 11.13)
T-Test of difference = 0 (vs not =):

T-Value = 8.80 P-Value = 0.000 DF = 57)

Trial 3

N1 (arm) 30 101136.67 3.26 0.60
N2 (leg) 30 101148.50 3.90 0.71
Estimate for difference µ(60cm) - µ(0cm): 11.83
95% CI for difference: (9.973, 13.694)
T-Test of difference = 0 (vs not =):

T-Value = 12.74 P-Value = 0.000 DF = 56)

tude. Ignoring the minute fluctuations as expected from noise and localized

pressure differences, we observe that visually, the pressure at the arm and leg

nodes remain stable throughout the walking motion and compares favorably

with our expectations (Fig. 4.1A).

The two-sample T-tests (described in Table 4.1) estimated a 7Pa-14Pa

difference in pressure between the two positions, with a p-value of 0.000,

indicating with 100% certainty a true-negative case, that null hypothesis can

be rejected and that the arm and leg nodes are indeed at different vertical
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positions., the system can deduce that the patient is upright (from the A2PS

data) and moving about (from the accelerometer data) and has not suffered

a fall.

4.4.2 Scenario 2: Walking Up/Down Stairs

The walking scenario indicative of WBAN ambulatory monitoring and fall

detection mechanisms was repeated on a staircase, to recognize that falls

while walking are more likely while traversing stairs. Scenario 2A describes

the walk up, and Scenario 2B describes the walk down.

Performing two-sample T-tests (Tables 4.2 and 4.3) gave a 4Pa-15Pa es-

timated difference in pressure between the two positions, with a p-value of

0.000 for both scenarios, once again indicating a true-negative case, that the

arm and leg are at different vertical positions, with absolute certainty. The

results also infer that the arm and leg are closer together compared to Sce-

nario 1, which is valid because of the leg motion involved in climbing stairs.

As an aside, while the accelerometer sees similar motion data in both walking

scenarios, the difference due to walking up and down a flight of stairs is clearly

observed in Fig. 4.3, further aiding in the contextual awareness and determin-

ing the patient’s motion pattern. Once again, ignoring minute fluctuations

from noise and localized pressure differences, we observe that visually, the

pressure at the arm and leg nodes generally remain stable throughout the

walking motion despite small changes in the distance between the arm and

leg when walking up and down stairs, and again compares favorably with our
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Figure 4.3: Scenario 2: Walking Up/Down Stairs - Arm and leg acceleration,
air pressure, inferred altitude. While A2PS readings show the wearer gaining
and losing altitude to provide context, once again, the arm and leg nodes
remain distinctively different from each other despite small fluctuations.
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Table 4.2: Scenario 2A: Walking Up Stairs - comparing the measured pres-
sures at the arm and leg (after linear offset correction), using a two-sample
T-test

Node N Mean StDev SE Mean
[#] [Pa] [Pa]

Trial 1

N1 (arm) 30 101137.00 4.59 0.84
N2 (leg) 30 101148.90 6.05 1.1
Estimate for difference µ(N2) - µ(N1): 11.90
95% CI for difference: (9.12, 14.68)
T-Test of difference = 0 (vs not =):

T-Value = 8.58 P-Value = 0.000 DF = 58)

Trial 2

N1 (arm) 30 101129.33 4.83 0.88
N2 (leg) 30 101137.07 5.57 1.0
Estimate for difference µ(N2) - µ(N1): 7.73
95% CI for difference: (5.04, 10.43)
T-Test of difference = 0 (vs not =):

T-Value = 5.74 P-Value = 0.000 DF = 58)

Trial 3

N1 (arm) 30 101120.63 6.41 1.2
N2 (leg) 30 101129.33 5.36 0.98
Estimate for difference µ(60cm) - µ(0cm): 8.70
95% CI for difference: (5.65, 11.75)
T-Test of difference = 0 (vs not =):

T-Value = 5.70 P-Value = 0.000 DF = 58)

Table 4.3: Scenario 2B: Walking Down Stairs - comparing the measured
pressures at the arm and leg (after linear offset correction), using a two-
sample T-test

Node N Mean StDev SE Mean
[#] [Pa] [Pa]

Trial 1

N1 (arm) 30 101109.33 5.54 1.0
N2 (leg) 30 101115.77 4.39 0.80
Estimate for difference µ(N2) - µ(N1): 6.43
95% CI for difference: (3.85, 9.02)
T-Test of difference = 0 (vs not =):

T-Value = 4.98 P-Value = 0.000 DF = 58)

Trial 2

N1 (arm) 30 101119.37 3.91 0.71
N2 (leg) 30 101128.37 5.41 0.99
Estimate for difference µ(N2) - µ(N1): 9.00
95% CI for difference: (6.56, 11.44)
T-Test of difference = 0 (vs not =):

T-Value = 7.39 P-Value = 0.000 DF = 58)

Trial 3

N1 (arm) 30 101128.57 5.52 1.0
N2 (leg) 30 101139.00 6.17 1.1
Estimate for difference µ(60cm) - µ(0cm): 10.43
95% CI for difference: (7.41, 13.46)
T-Test of difference = 0 (vs not =):

T-Value = 6.90 P-Value = 0.000 DF = 58)

expectations (Fig. 4.1A).
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Table 4.4: Scenario 3: Sitting Down - comparing the measured pressures at
the arm and leg (after linear offset correction), using a two-sample T-test

Node N Mean StDev SE Mean
[#] [Pa] [Pa]

Trial 1

N1 (arm) 30 100090.47 4.60 0.84
N2 (leg) 30 100103.43 5.25 0.96
Estimate for difference µ(N2) - µ(N1): 12.97
95% CI for difference: (10.42, 15.52)
T-Test of difference = 0 (vs not =):

T-Value = 10.18 P-Value = 0.000 DF = 58)

Trial 2

N1 (arm) 30 100091.03 4.14 0.76
N2 (leg) 30 100102.87 3.82 0.70
Estimate for difference µ(N2) - µ(N1): 11.83
95% CI for difference: (9.77, 13.89)
T-Test of difference = 0 (vs not =):

T-Value = 11.50 P-Value = 0.000 DF = 58)

Trial 3

N1 (arm) 30 100093.70 4.21 0.77
N2 (leg) 30 100104.30 5.04 0.92
Estimate for difference µ(60cm) - µ(0cm): 10.60
95% CI for difference: (8.20, 13.00)
T-Test of difference = 0 (vs not =):

T-Value = 8.84 P-Value = 0.000 DF = 58)

4.4.3 Scenario 3: Sitting Down

In this scenario, we analyze the response of the system due to sitting down

onto a chair, and standing up. Fig. 4.4 shows the data from a user repeatedly

sitting down and standing up. Impact between the user and the chair is

shown clearly in the accelerometer data, which would be used to trigger the

location measurements.

Two-sample T-tests (Table 4.4) estimate a 8Pa-16Pa difference in pres-

sure between the arm and leg positions, with a p-value of 0.000 for both
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scenarios, again indicating with very high confidence that we can reject the

null hypothesis as desired, as the user is not lying down. As well, from the

pressure and inferred altitude, we can differentiate between periods when the

user is standing up and sitting down as well, since the distance between the

arm and leg nodes narrows significantly when the user sits down. Visually

(Fig. 4.4), the pressure at the arm and leg nodes generally remain stable

while the patient stood up, and converged slightly without any overlapping

during the period in which the patient is sitting down. This resembles and

compares favorably with our expected behavior (Fig. 4.1B).

4.4.4 Scenario 4: Lying Down

This scenario involves lying down onto a bed or couch from an upright po-

sition. The accelerometer trace in Fig. 4.5 illustrates the fall. Examining

the pressure data during the period the user is lying down (when the A2PSs

from the two W2SNs become placed at the same altitude), we observe a fast

response as the two traces converge to the same pressure and altitude read-

ings between 7s-15s, resembling the pressure sensor behavior in Fig. 4.1C.

The pressure at the arm and leg nodes generally remain stable otherwise.

Two-sample T-tests in this region estimate a 0Pa-5Pa difference in pres-

sure between the arm and leg positions with 95% CI (Table 4.5), and p-values

>0.000 demonstrate that as expected, we cannot from this data statistically

reject the null hypothesis (concluding that the arm and leg are at different

heights), and thus, the WBAN can be aware that the patient is currently
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Table 4.5: Scenario 4: Lying Down - comparing the measured pressures at
the arm and leg (after linear offset correction), using a two-sample T-test

Node N Mean StDev SE Mean
[#] [Pa] [Pa]

Trial 1

N1 (arm) 30 100096.57 4.61 0.84
N2 (leg) 30 100099.30 5.31 0.97
Estimate for difference µ(N2) - µ(N1): 2.73
95% CI for difference: (0.16, 5.30)
T-Test of difference = 0 (vs not =):

T-Value = 2.13 P-Value = 0.038 DF = 56)

Trial 2

N1 (arm) 30 100096.47 4.34 0.79
N2 (leg) 30 100098.93 4.48 0.82
Estimate for difference µ(N2) - µ(N1): 2.475
95% CI for difference: (0.19, 4.75)
T-Test of difference = 0 (vs not =):

T-Value = 2.17 P-Value = 0.035 DF = 57)

Trial 3

N1 (arm) 30 100094.87 4.09 0.75
N2 (leg) 30 100097.63 3.93 0.72
Estimate for difference µ(60cm) - µ(0cm): 2.775
95% CI for difference: (0.69, 4.84)
T-Test of difference = 0 (vs not =):

T-Value = 2.67 P-Value = 0.010 DF = 57)

lying down. However, simply by examining arm and leg positions does not

illustrate how the patient became lying down; whether or not this was the

result of a fall or impact. Notwithstanding this, by analyzing the patterns in

accelerometer activity as previously studied in on-body fall detection systems

and outlined in Section 2.3.1, the system can be better equipped to deter-

mine this. Since once the patient stands up, the two A2PS traces revert to

their original states, the system can be programmed such that if the patient

stands up shortly after perceiving to have fallen, the WBAN can continue
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Table 4.6: Scenario 5: Falling Onto Ground - comparing the measured pres-
sures at the arm and leg (after linear offset correction), using a two-sample
T-test

Node N Mean StDev SE Mean
[#] [Pa] [Pa]

Trial 1

N1 (arm) 30 100096.57 4.19 0.77
N2 (leg) 30 100098.93 4.63 0.85
Estimate for difference µ(N2) - µ(N1): 2.37
95% CI for difference: (0.08, 4.65)
T-Test of difference = 0 (vs not =):

T-Value = 2.08 P-Value = 0.042 DF = 58)

Trial 2

N1 (arm) 30 100094.67 4.74 0.87
N2 (leg) 30 100097.97 4.12 0.75
Estimate for difference µ(N2) - µ(N1): 3.30
95% CI for difference: (1.00, 5.60)
T-Test of difference = 0 (vs not =):

T-Value = 2.88 P-Value = 0.006 DF = 58)

Trial 3

N1 (arm) 30 100098.60 4.49 0.82
N2 (leg) 30 100101.97 3.61 0.66
Estimate for difference µ(60cm) - µ(0cm): 3.37
95% CI for difference: (1.26, 5.47)
T-Test of difference = 0 (vs not =):

T-Value = 3.20 P-Value = 0.002 DF = 58)

to monitor the situation, but note to itself that the likelihood that a fall

occurred has reduced.

4.4.5 Scenario 5: Fall Onto Ground

In this scenario, our test subject replicates a fall onto the ground, from

an upright standing position onto a hardwood floor. Already, we notice in

Fig. 4.6 that a basic fall detection system which relies solely on acceleration
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thresholds would not be reliable, as the magnitudes and spikes here are quite

similar to those even in the walking case in Fig. 4.2.

Two-sample T-tests in 3-second data windows immediately succeeding

an accelerometer spike estimate a 0Pa-6Pa difference in pressure between

the arm and leg positions with 95% CI (Table 4.7), and p-values >0.000

demonstrate that again, we cannot statistically reject the null hypothesis

(conclude that the arm and leg are at different heights), and that there is a

possibility that the patient is lying down, consistent with us visually exam-

ining Fig. 4.6. This is also consistent with our expected behavior illustrated

in Fig. 4.1C. Since the WBAN is no longer confident that the patient is still

upright, the system can examine if an accelerometer-detected ‘fall’ triggered

preceded this lying down state, to determine if the patient may be lying

down. If so, a caregiver can be immediately alerted of this potential fall.

Note that the acceleration characteristics preceding these pressure measure-

ments must also be analyzed, as a closer examination of both acceleration

magnitude and air pressure convergence show strong a similarity to the data

obtained by lying down in Scenario 4.

4.5 Fall Detection Enhancement Discussion

& Limitations

Results from our experiments show that this enhancement to conventional

on-body fall detection schemes reliably detects a wearer’s state for deducing
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P (lyingdown), by using two-sample T-tests; since this is a non-computationally

expensive statistical function, it is feasible to instruct the WBAN to contin-

uously monitor the patient using rolling window samples. In all of our test

cases, the WBAN successfully differentiated between an upright position,

versus lying down. Tables 4.1 through 4.6 have been summarized for quick

comparisons (Table 4.7. While the A2PSs alone were unable to further dis-

tinguish between specific different upright positions (standing vs. sitting), we

observe that the usefulness of a contextually-aware WBAN is highlighted in

a fall detection application; a much better decision on the patient’s condition

can be made simply by knowing if a patient is lying down.

As explained previously, in some of these scenarios, relying solely on ac-

celerometer data would make it difficult to distinguish between a ‘slow fall’

and other fall-like activity, as in [53]. To further compound the situation, it

has been discussed that many elderly people ‘fall’ onto a chair when sitting

down due to reduced muscle strength with old age [6]. This results in higher

acceleration peaks than analyzing young adults sitting down, who have much

greater control over the speed of their body motions; depending on how the

patient sits on a chair, the acceleration profile could be similar to an actual

fall. With our proposed enhancement, by considering both P (fall) explored

extensively in previous works and P (lyingdown), augmenting arm and leg

position information clearly shows that after such a ‘fall’ on a chair, the

WBAN can now be aware that the patient is still upright and not lying on

the ground, thus greatly improving its ability to estimate P (H0) compared
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to previously studied on-body fall detection systems where P (H0) was solely

deduced by P (fall).

We can foresee some cases where augmenting limb position information

would not help reduce the probability of false-positive detection. From our

experimental data, by solely looking at arm and leg position, it would be

difficult to distinguish activities for a patient lying down and falling unin-

tentionally – comparing the accelerometer data from the arm node at time

4s-6s in Figs. 4.5 and 4.6 with [6, Fig. 1A], both cases generate accelerom-

eter responses that would indicate a fall, although lying down on a bed is

not actually a fall. With these cases, it is necessary to further analyze the

acceleration characteristics outside the scope of this study.

To further improve this on-body fall detection enhancement, we could

fine tune the T-test parameters using real-world trials. For example, further

study of the acceptable p-value threshold at 95% CI with test subjects can be

performed. We can also expand the scheme by incorporating more decisions,

for example by examining the instantaneous characteristics of the triggering

impact acceleration. As well, a wide range of additional sensors could be

incorporated, such as heart rate, for deeper contextual information. However,

based on the current state of the enhancement, the results from this chapter

show great promise in improving the rate of some scenarios which are key

sources of false-positive detection classifications in ambulatory monitoring

and on-body fall detection WBAN systems.
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Table 4.7: Summary of Tables 4.1–4.6 enabling a comparison between the
estimated pressure differences and T-Test p-values of two positions for the
‘fall-like’ scenarios replicated

∆P ∆P (95% CI) p-Value DF
[Pa] [Pa], [Pa]

Scenario 1
Trial 1 8.80 6.80, 10.80 0.000 56
Trial 2 9.07 7.00, 11.13 0.000 57
Trial 3 11.83 9.97, 13.70 0.000 56

Scenario 2A
Trial 1 11.90 9.12, 14.68 0.000 58
Trial 2 7.73 5.04, 10.43 0.000 58
Trial 3 8.70 5.65, 11.75 0.000 58

Scenario 2B
Trial 1 6.43 3.85, 9.02 0.000 58
Trial 2 9.00 6.56, 11.44 0.000 58
Trial 3 10.43 7.41, 13.46 0.000 58

Scenario 3
Trial 1 12.97 10.42, 15.52 0.000 58
Trial 2 11.83 9.77, 13.89 0.000 58
Trial 3 10.60 8.20, 13.00 0.000 58

Scenario 4
Trial 1 2.73 0.16, 5.30 0.038 56
Trial 2 2.47 0.19, 4.75 0.035 57
Trial 3 2.77 0.69, 4.84 0.010 57

Scenario 5
Trial 1 2.37 0.08, 4.65 0.042 58
Trial 2 3.30 1.00, 5.60 0.006 58
Trial 3 3.37 1.26, 5.47 0.002 58
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Figure 4.4: Scenario 3: Sitting Down - Arm and leg acceleration, air pressure,
inferred altitude. From the A2PS readings, the arm and leg nodes move
closer together while the wearer sitting down. However, the difference in
A2PS readings is still present, implying that the sensors are still vertically
some distance apart, and that the wearer is not lying down.
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Figure 4.5: Scenario 4: Lying Down - Arm and leg acceleration, air pressure,
inferred altitude. The period in which the test subject was lying down can
clearly be seen by the overlapping arm and leg node A2PS readings. This
overlap suggests that the two nodes are vertically at the same height.
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Figure 4.6: Scenario 5: Falling Onto Ground - Arm and leg acceleration, air
pressure. Once again, the period in which the test subject was lying down
can clearly be seen by the overlapping arm and leg node A2PS readings.
Since lying down and falling over both result in the wearer’s arm and legs
to be horizontal, we must analyze the preceding impact detected by the
accelerometers, as extensively studied in previous works.
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Chapter 5

Conclusion

5.1 Summary Of Contributions

This manuscript has presented and experimentally verified a new approach

to determine and monitor the location of W2SNs mounted along the height

of a patient’s body, by measuring and comparing instantaneous air pressures

at each node (Chapter 3). This spatial information enables the WBAN to

automatically identify and map which limb each of the W2SNs ares mounted

on, based on a pre-defined known set of node positions. We believe this

scheme is novel because the technique reliably identifies and maps W2SN

locations in absolute coordinate space, without an infrastructure of off-body

‘anchor’ or ‘beacon’ nodes, presuming the presence of a large number of nodes

as with conventional WSN techniques, or requiring extensive and lengthy

offline processing, as outlined in Chapter 2.

We have verified the feasibility and practicality of implementing this

scheme into an existing WBAN designed for long-term at-home patient mon-

itoring. In Chapter 3, we have experimentally shown that commercially-

available A2PSs can be utilized to produce reliable and accurate position
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information in an absolute reference frame, which enables the matching of

W2SNs against their expected positions. Once the W2SNs are located, by

continuously tracking the node positions, the WBAN is able to deduce basic

daily activities through inferred limb position and movement, for example

standing up versus lying down.

In Chapter 4, we proposed and experimentally demonstrated an enhance-

ment to conventional on-body fall-detection schemes to enable better differ-

entiation of ‘fall-like’ motion from actual falls. Specifically, we showed the

improvement in outcome classification of our proposed scheme against sev-

eral identified scenarios where traditional systems frequently produce false-

positive (Type I) errors, such as when a patient sits down on a chair. By

analyzing accelerometer behavior alone, the spikes could suggest a ‘fall’, but

by also considering arm and leg position, the ambiguity was shown to be mit-

igated; clearly, a patient who is not lying down immediately following any

detected impact has likely not suffered from a fall. Our results have demon-

strated that by incorporating a decision on both P (fall) and P (lyingdown)

in determining P (H0), this enhancement has provided more rich contextual

information, without the privacy and practicality concerns of video limb

recognition-based off-body solutions (Chapter 2).
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5.2 Future Direction

Our new sensor node scheme studied in this manuscript is able to map and

recognize W2SN locations based on a pre-defined set of expected node loca-

tions (Chapter 3). However, this scheme does not enable full two-dimensional

or three-dimensional sensor node localization. This means that the technique

alone is unable to distinguish between W2SNs mounted to limbs at the same

vertical altitude of a patient, for example ‘left’ and ‘right’-handed nodes,

since such positions would give identical and indistinguishable atmospheric

air pressure readings. While our new approach has significantly reduced

the number of nodes requiring manual placement, WBANs would without a

doubt benefit from a second or third dimension of placement data.

While a 60cm separation between two W2SNs has been examined, the

granularity of our scheme is limited only by the accuracy and resolution of

the A2PS hardware. As sensor technology continues to evolve and higher

performance devices are developed, we foresee our approach to benefit from

higher resolution pressure data. For example, since creating our prototype

W2SN architecture and performing our experimental analyses, Bosch R© has

released a new digital pressure sensor, the BMP180, which can detect even

smaller pressure and thus altitude differences (2Pa, 0.17m) than the BMP085

digital sensors used in our experimental verification (3Pa, 0.25m) [60]. With-

out a doubt, even more precise sensors are just around the corner. For fur-

ther A2PS accuracy with existing sensors, filters could be explored to reduce
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the noise of A2PS readings, as long as this does not introduce significant

MCU overhead, producing a further tradeoff between power consumption

and speed.

To further optimize power consumption, to facilitate adopting this scheme

in a commercial WBAN solution, the scheme could be refined to sample

A2PSs at a varying frequencies – higher frequencies could be reserved for

only when potential falls or impact are detected by an accelerometer. As

well, many MEMS accelerometers, including the Analog Devices R© ADXL345

used in our prototype WBAN feature highly optimized built-in tap detection

interrupts [61] which could be utilized to further reduce accelerometer power

consumption.

On the area of air pressure data overhead, the A2PSs merely requires an

extra stream of air pressure data per W2SN, which was easily transmitted

over IEEE 802.15.4 in our prototype WBAN platform. Thus, we do not antic-

ipate wireless channel limitations problems when implementing this scheme

if future applications dictate a WBANs based on other protocols, such as

Bluetooth R©and Bluetooth Low-Energy R©.

5.3 Final Remarks

Overall, the new scheme described and evaluated in this manuscript has

demonstrated a strong promise in delivering accurate, consistent and reli-

able results for use in commercial limb recognition and ambulatory monitor-
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ing W2SN systems designed for m-health applications. By considering the

further refinements discussed in Section 5.2, we believe that the automatic

characteristics provided by this scheme will contribute and motivate efforts to

reach the levels of seamless and effortless integration expected and required

for an even wider-scale adoption of WBANs.
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Appendix A

Experimental Setup

Details of the hardware and software used to create the prototype WBAN
system:

Hardware:

• Motes: Crossbow TelosB R© Rev. B [62], featuring:

– Texas Instruments MSP430 MCU

– CC2420 IEEE 802.15.4 Transceiver

– Digital Inter-Integrated Circuit (I2C) Bus

• A2PS: Bosch R© BMP085 digital air pressure sensor [60]

– BMP ADDR (0x77) - BMP085 I2C address defined by factory

– BMP OSS: 3 (oversampling setting)

• Accelerometer: Analog Devices R© ADXL345 digital 3-axis accelerome-
ter [61]

– ACC ADDR (0x1D) - ADXL345 I2C address defined by factory

– BW RATE (0x2C): 0x19

– DATA FORMAT (0x31): 0x0A

– POWER CTL (0x2D): 0x08

– ACC OUT (0x32) - output registers defined by factory

Software:

• W2SN and aggregator node: TinyOS 2.1.1 on Windows

• PC: MATLAB R2009b for Windows
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TinyOS: W2SN Packet Structures

Packet structures used in each W2SN in our experimental setup to trans-
mit data to the aggregator node for forwarding to the MATLAB-enabled
PC. Each W2SN employs store-and-forward, where 3 sets of readings are
collected and amalgamated into one packet for transmission. The MATLAB
interface deconstructs the packets received.

NREADINGS = 3;

// packet structure for accelerometer data

typedef nx_struct packetXYZ {

nx_uint16_t id; /* Mote id of sending mote. */

nx_uint16_t sensor_type; /* type of sensor */

nx_uint16_t interval; /* Samping period. */

nx_uint16_t count; /* Samples counted * NREADINGS onwards */

nx_uint16_t readings_x[NREADINGS];

nx_uint16_t readings_y[NREADINGS];

nx_uint16_t readings_z[NREADINGS];

//nx_uint16_t voltage;

} packetXYZ_t;

// packet structure for air pressure sensor data

typedef nx_struct packetPT {

nx_uint16_t id; /* Mote id of sending mote. */

nx_uint16_t sensor_type; /* type of sensor */

nx_uint16_t interval; /* Samping period. */

nx_uint16_t count; /* Samples counted * NREADINGS onwards */

nx_int32_t readings_P[NREADINGS];

nx_int16_t readings_T[NREADINGS];

//nx_uint16_t voltage;

} packetPT_t;
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TinyOS: BMP085 A2PS Initialization Procedure

How to read factory calibration values stored on each BMP085 sensor, in
TinyOS, as part of each W2SN’s initialization procedure as documented in
the spec sheet.

Input Variables (read from BMP085 EEPROM through registers):

int16_t bmp_AC1, bmp_AC2, bmp_AC3, bmp_B1, bmp_B2;

int16_t bmp_MB, bmp_MC, bmp_MD;

uint16_t bmp_AC4, bmp_AC5, bmp_AC6;

uint32_t bmp_UP, bmp_UT; // uncalibrated P and T

Process Variables (used to determine P and T):

int32_t bmp_X1, bmp_X2, bmp_B5, bmp_B6, bmp_X3, bmp_B3;

uint32_t bmp_B4, bmp_B7;

Output Variables (calibrated pressure and temperature):

int32_t bmp_P;

int16_t bmp_T;

// -------- calculate true temperature

bmp_X1 = ((long)(bmp_UT - bmp_AC6) * (long)bmp_AC5) >> 15;

bmp_X2 = ((long)bmp_MC << 11) / ((long)bmp_X1 + (int32_t)bmp_MD);

bmp_B5 = bmp_X1 + bmp_X2;

bmp_T = ((long)bmp_B5 + 8) >> 4;

// --------- calculate true pressure

bmp_B6 = (long)bmp_B5 - 4000;

bmp_X1 = ((int32_t)bmp_B2 * ((long)bmp_B6*(long)bmp_B6 >> 12)) >> 11;

bmp_X2 = (int32_t)bmp_AC2 * (long)bmp_B6 >> 11;

bmp_X3 = bmp_X1 + bmp_X2;

bmp_B3 = ((((int32_t)bmp_AC1*4 + bmp_X3) << BMP_OSS) + 2) >> 2;

bmp_X1 = (int32_t)bmp_AC3 * (long)bmp_B6 >> 13;

bmp_X2 = ((int32_t)bmp_B1 * ((long)bmp_B6*(long)bmp_B6 >> 12)) >> 16;

bmp_X3 = (((long)bmp_X1 + (long)bmp_X2) + 2) >> 2;
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bmp_B4 = ((uint32_t)bmp_AC4 * (uint32_t)((long)bmp_X3 + 32768)) >> 15;

bmp_B7 = ((uint32_t)bmp_UP - (long)bmp_B3)*(50000 >> BMP_OSS);

if(bmp_B7 < 0x80000000UL)

bmp_P = (bmp_B7 << 1) / bmp_B4;

else

bmp_P = bmp_B7 / bmp_B4 << 1;

bmp_X1 = ((long)bmp_P >> 8) * ((long)bmp_P >> 8);

bmp_X1 = ((long)bmp_X1 * 3038) >> 16;

bmp_X2 = (-7357 * (long)bmp_P) >> 16;

bmp_P = bmp_P + ((bmp_X1 + bmp_X2 + 3791) >> 4);
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Figure A.1: Schematic of the PCB developed for our prototype W2SN to connect the I2C-enabled digital
sensors to the TelosB mote – GYRO1 to an ITG3200 digital gyroscope, ACC1 to an ADXL345 digital
accelerometer, and BMP1 to a BMP085 digital air pressure sensor. Pin configurations for each sensor were
based on the Sparkfun breakout board designs. Pull up resistors were required for the I2C bus to operate.
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Figure A.2: PCB layout of the schematic illustrated in Fig. A.1. See Fig. 3.4 for a photograph of an
assembled prototype W2SN.
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Figure A.3: Screenshot of MATLAB GUI developed for our prototype WBAN to display and capture W2SN
readings. On the left, the two colored dots provide a spatial representation of the interpreted node positions.
On the right, a time trace is provided from the acceleration or atmospheric air pressure for one of the nodes.
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Appendix B

Algorithm Addendum

Algorithm 1: Example using a simple recursive quicksort function to
produce an ordered list of node pressures, for matching with the known
pre-defined list of node positions

Data: Measured air pressure readings at W2SNs: I = {p1, p2 ... pn}
Result: Ordered list of node pressures

1 function sortPressures(I)
2 if length(I) ≤ 1 then
3 return I; // base case

4 end
5 select and pull pivot from I;
6 foreach pi in I do
7 if pi ≤ pivot then
8 append pi to Iless;
9 else

10 append pi to Igreater;
11 end

12 end
13 return concatenate(quicksort(Iless), pivot, quicksort(Igreater))
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