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Abstract

Positron emission tomography (PET) produces imafj&sctional processes of the boidy
vivo. The analysis of PET data for research purposestitsnally involves kinetic modeling
of the concentration of the radiotracer over timt#hin a region of interest (ROI) in the body
to derive parameters related to the uptake/bindihghe radiotracer in that region. PET
imaging is commonly used to study Parkinson’s disg@D), where loss of motor function
is caused by the progressive death of neuronseirbttéin that produce the neurotransmitter
dopamine. In PD, both the kinetic and the spatstriution of the tracer change due to the
disease: the posterior parts of the striatum (miqdar in the putamen) are affected before

the anterior parts.

The purpose of this dissertation is to develop\eehanalysis method for PET data that uses
the spatial characteristics of the radiotracer&rdiution within anatomically-defined ROIs
to extract additional information about pathologistates. The proposed analysis method is
based on mathematical 3D shape descriptors thaineagiant to translation, scaling, and
rotation, called 3D moment invariants (3DMIs). Tveriable of interest in this case is not
only the radiotracer’s uptake rate constant or inigpgbotential, but also the 3D spatial shape
and distribution of the radioactivity within the RO

This dissertation shows that 3DMIs were able tocessfully quantify differences in the
spatial distribution of PET radiotracer images lestw healthy controls and PD subjects.
3DMI values were found to correlate with a clinicakasure of disease severity in all
anatomical regions studied here (putamen, caudadevantral striatum), as opposed to
kinetic parameters which only showed significantrelation to clinically-assessed PD
severity in the putamen. Levodopa-induced changespatial patterns of dopamine release
(as measured using 3DMIs) were found to be sigmitiy correlated with PD severity in all
ROls studied here. These findings suggest thattjatwve studies of a radiotracer’s spatial
distribution can be complementary to kinetic maugliin extracting information about
pathological states from PET data and have thenfiaté¢o contribute novel information in

PET neuroimaging studies.
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Chapter 1: Introduction

1.1 PET Basics

Medical imaging aims to produce images of selectearacteristics of the human body to
help with patient care and medical research. Rwsigmission tomography (PET) is a
medical imaging modality that allows us to produteges of functional processes of the
body in-vivo (Bailey, 2005). An image is produced by detectpairs of y—rays emitted
indirectly from a molecule that tracks a specifadip function. In order to emit-rays, the
molecule is first tagged in a radiochemistry labonawith a positron-emitting isotope which
decays by the conversion of a proton into a neudirhproducing a positron and neutrino as

by-products:
pon+pt+v,. (1.1)

The radiolabeled molecule is then introduced inlibdy, where the positron travels until it
encounters an electrop)( The SB* pair annihilates and two nearly collinegfrays are
emitted, each with an energy of 511 keV. Thesmys can be detected with specialized

instruments and used to produce an image of whereblecule is located.

The molecules used for PET imaging have to ref(especific function in the body. For
example, the molecule fluorodeoxyglucose (FDG) lbarabeled with*—emitting**F and
used as an analogue of glucose. Glucose is widdg by cells in the body as a main source
of energy and®-FDG can be used to image a wide range of climicaiditions, such as
rapidly-growing tumors (Chen and Chen, 2011).

Other commonly usefi*—emitting isotopes for PET imaging dr€, >0, *N and®*Rb. The
presence of a neutrino in the decay (see Equatidp dllows some of the energy and
momentum of the original proton to be carried awiyerefore, emitted positrons can have a
continuum of kinetic energies up to a maximum valukich depends on the nuclear states

of the parent and daughter isotopes. The positaortlien travel a wide range of distances in



the body before it loses all its kinetic energy amahihilates with an electron. For example,
the mean(maximum) positron range in water fst, *'C and*®0 is 0.6(2.4) mm, 1.1(4.1)
mm and 2.5(7.3) mm, respectively (Bailey, 2005)tdpes with low positron range are ideal
for PET imaging because they allow for a bettealiaation of the radiolabeled molecule
within the body.

Radioactive decay follows an exponential form, withhe number of decays being
proportional to the amount of material availabledecay N = Nye~*, whereN, is the
original number of decaying isotopes). The ratewhich the decay takes place (called
radioactivity') is described by the decay constahtAn intuitive way to characterize the
decay is by determining the time it takes for i material to decay, also called the half-
life, given byT, , = In 2/1. For example, the half-life dffF, *'C and*0 is 109.8 minutes,
20.4 minutes and 2.0 minutes, respectively. A gB&il radiotracer is one with a long
enough half-life to allow enough time for imagimvghile not being too long that it will stay
radioactive for a long time after the imaging isished. In this respecfF and*'C are good

PET radiotracers witffO being challenging due to its short half-life.

1.2 PET Instrumentation

PET imaging scanners consist of maryay detectors coupled to signal amplification and
readout devices. The-ray detectors of choice for PET imaging are sSkatitbn crystals:
these are inorganic crystals that emit visiblengg&tion) light wheny—ray photons interact
with it. A photo-detector and amplification devite then used to detect the scintillation
photons. These components are then arranged inf@gwa@tion that optimizes the detection
of nearly collineary—ray photons. Most PET systems use a ring or polggaetector
configuration as shown in see Figure 1.1. The rimgsolygons can then be stacked side-by-

side to provide larger solid angle coverage arahafbr 3D imaging.

! The Sl units of activity is the Becquerel (Bq)ttwiBq = 1 decay/second.



The scintillation crystals have high effective atomumbers and high density to provide a
high stopping efficiency for 511 keV photons andréase the probably of detection. The
scintillation process produces lower energy sdatidn photons (usually in the ultraviolet

range at ~400 nm) that can then be detected bypj®riate photo-detector. Scintillation

photons are produced at a specific rate for eagitalrtype and have a characteristic
exponential decay with a decay constant usuallyhie range of tens or hundreds of
nanoseconds. Since we are interested in deteddiing @fy—ray photons hitting the detectors

at the same time, a low decay constant is desiragtdid mislabeling background photons as
true pairs. The number of scintillation photons dqueed should ideally be large and
proportional to the energy deposited within thestay This helps to improve the energy
resolution of the crystal and allows for efficierfection of low energy photons that may be
produced by scattering within the object being igthgin order to increase resolution and
control the light distribution within the crystad series of fine cuts of varying lengths
(lightguided are made within each crystal block to divide themo ismaller individual

elements.

Figure 1.1: Sample configuration for PET detectors using a i) and hexagonal (B) geometry.

Scintillation crystals can be designed in smalhsdaits (A) or larger continuous elements (B).



Typical scintillation crystals used in PET are biglmgermanate (BGe;012, BGO), lutetium
oxyorthosilicate doped with cerium (:3i0s:Ce, LSO) and lutetium-yttrium oxyorthosilicate
doped with cerium (LigY o 2SiOs:Ce, LYSO). The last two scintillators provide aodaall-
around performance (high density, short decay emmsteasonable energy resolution) and
are used in many new PET systems (Nutt, 2002; Temahs2004).

The photo-detectors commonly used for PET are phutbiplier tubes (PMTs) and
semiconductor-based photodiodes. PMTs have beersaed the longest and represent the
most common photo-detector for PET, while photod®dre a new technology that is
rapidly improving. PMTs are devices operating atwan which produce electrons in a
photocathode by interacting with scintillation ptras. The electrons are then accelerated in a
series of electrodes with increasing voltages, ltieguin the production of additional
electrons at each electrode (see Figure 1.2A). dil@ates a high amplification of the signal
that is detected at the anode as a sharp pulsiglofchrrent. A one-to-one coupling of the
scintillation crystal elements and PMTs is not camniy used due to the high cost and
complexity of this design. Instead, a block deteck®sign is used (see Figure 1.2B), where
crystal elements are much smaller than the sizkeoPMTs, multiple crystal elements share
a few PMTs and Anger logic is used to find the taoaof the crystal element associated
with each event (Bailey, 2005).

A
) g 511 keV photon B)
Scintillation{ %56_ scintillation lightguides
crystal ) photons ~JmIm || crysials.___*
\ﬁ““‘ electrons .$
PMT < signal "'--..____“ PMTs A
amplification block detector
configuration

Figure 1.2: A) Schematic of PET detectors consisting of sttitth crystals and PMTs. B) Block

detector configuration with many crystal elemestp@rated by lightguides) sharing a few PMTs.



The spatial resolution of PET scanners is deterthimg a number of factors, such as the
positron range in the object being imaged, the cahrearity of they—ray photons, the size
of the individual crystal elements, and the aldonitused to find the location of the event
(Moses et al., 1997). The non-collinearityyefay photons arises from the fact that "
pair might not be at rest during annihilation armhservation of momentum results in
deviations from 180° between the photons. The rarigessible deviations has been found
to be described by a Gaussian with a full-widthhalf maximum (FWHM) of about 0.5°
(Shibuya et al., 2007). For a detector 20 cm awayfthe annihilation site this translates to
a degradation in the spatial resolution of ~1 mm.

The PET scanner used for the work presented indibgertation is the CTI/Siemens ECAT
High Resolution Research Tomograph (HRRT). It csissof eight flat panels of crystal
material arranged in an octagonal configuratiorchBaanel is 175mm wide and 252 mm in
length with 117 detector blocks arranged in a 9aftdy coupled to a 10x14 array of PMTs
in a block design (de Jong et al., 2007). The detddocks consist of two crystal layers with
LSO on the front and LYSO at the back and eachkbhas 8x8 individual crystal elements
(each element is 2.1x2.1mm), resulting in 4 PMTrsefach crystal block. The axial field of
view (FOV) is 25.2 cm long and the transaxial F@\B1L.2 cm in diameter. The small crystal
elements and use of double-layered high performasuietillation crystals allows this

scanner to have a high sensitivity throughout t9&/Fand a very high spatial resolution of
~2.4 mm (Sossi et al., 2005; de Jong et al.,, 200f)s scanner is therefore ideal for

dedicated human brain imaging and was used toat@lePET data in this dissertation.

1.3 Data Acquisition

PET data is collected by measuring temporal coermseds: pairs of—ray photons detected
within a small coincidence time window (usually ewf nanoseconds) at two opposing
detector elements. The imaginary line connectimgttvo detector elements is called the line
of response (LOR) and can be described by therdistaf the LOR from the center of the
FOV (r), the transaxial angle of the LOR)( the azimuthal anglep) and the axial position
of the middle of the LORz) as shown in Figure 1.3. The intersection of rpldtiLORs will

5



then correspond to the location within the scanmbere all the detected photons were

created, thus registering coincidence events.

Yy

first

g\ ring
1
r !
x 1
1
1

LO

last
ring

Figure 1.3: Schematic showing the LOR parameigt®, @, z) from a transaxial (left) and axial

(right) view.

The data that are collected can be stored in samo@r listmode formats. Sinograms are 2D
histograms of the number of events detected at é&2R over the allowed range of
transaxials angle®] and distances along the FO¥).(We can also think of sinograms as a
series of 1D projectiong,(r, 8), of the object being imaged taken over the alloveadje of
transaxial angles. A sample sinogram for a point@®is shown in Figure 1.4. For 3D data,
a sinogram can be created for each azimuthal ggglehat is present in the data and its
associated axial positiorz)( An appropriate mathematical algorithm can thenused to
reconstruct the original 3D spatial distributiolorfr the sinograms. In order to incorporate
time information (also calledynamicscanning), data are collected for a specific arhofin
time, stored into a series of sinograms and thega®repeated until the end of the imaging

session.
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Figure 1.4: Left — sample projections of a point source at tlifterent transaxial angles. Right —

Corresponding sinogram.

Alternatively, data can be stored in listmode faormBere, information about each
coincidence event detected is stored individudlhe information can be in the form of two
identifications corresponding to the detector eletmavhich detected the coincidences or the
four LOR parametersr(6,¢,z) described above. Time information about when the
coincidences were detected in included by writimget stamps into the list-mode file a
specific intervals (usually in the order of a nsdcond). Each coincidence event is then
associated with the closest time stamp in ordermawe temporal information. Other
information that can also be recorded is the enelgyosited by each photon and their
relative detection times. Listmode data are theestery flexible in that data can be grouped
using various criteria after detection and as neédxethe analysis being carried out (data can
be grouped according to specific energy boundaties frames, etc). In sinogram format,
these parameters need to be pre-determined bdferentaging session and cannot be

changed while imaging is taking place. On the otiend, listmode data can require large
amount of disk space for storage.



1.4 Data Corrections

A series of corrections need to be applied to P&fR dbr accurate quantitative studies. The
coincidences detected by PET scanners are not‘wal/ coincidences, but can be random
and scattered coincidences (see Figure 1.5). Toueidences are those that occur when
both photons from an annihilation event are deteet® coincidences, in this case neither
photon undergoes any form of interaction beforendpeiletected and no other event is
detected within the coincidence time window. Trwéncidences can be lost to attenuation
(see below) due to photon interactions with matiside the scanner (e.g., the object being
imaged) or scattering into angles outside the FOdfrections to account for the differences
in detector efficiency between detector elements @atient motion during the scan can also

be made.

True coincidence Scattered coincidence Random coincidence

Figure 1.5: Sample schematic showing true (left), scatteredtéeand random (right) coincidences

detected by PET systems.

Scatter coincidences arise when one or both ofptt@ons have undergone at least one
Compton scattering before being detected. Comptattesing results in a reduced photon
energy and a change in the photon direction, prioduen incorrect LOR for the coincidence.
The amount of scattered photons detected can beeaddy rejecting photons that lie outside
an energy window centered on 511 keV. Several otte¢hods have been used to correct for
scatter, including the use of multiple energy wwdoand the use of a physical model to
describe the scattering process (Watson et al4)200



Random coincidences are created by two photonshwihic not originate from the same
annihilation event but are detected as a coincielgrair by chance. The rate at which these
coincidences occur depends on the rate at whigjlesevents are detected (events where the
second photon is not recorded due to attenuatioattes, or non-interactions with the
detector elements). For each LOR the expected number of random coincidenegs (
collected within an imaging tim#t can be estimated using the rate of single evestsrded

by the two detectorsk( andR;) within the coincidence time windowt) asr,, = 27R;R;At.

This requires an estimate of the singles r&eandR;. The number of random coincidences
can also be estimated by introducing a time det&y the coincidence window, which will
detect events that have zero probability of arishogn a true coincidence and instead arise

by chance.

The loss of photons due to attenuation is a seoansern for PET data, where imaging of
human subjects can lead to a loss of over 90%eophotons for some LORs (especially for
those passing though a large amount of dense mlxtekitenuation in this case is mostly
due to Compton scattering where one of the two @istis not detected. Since we are
dealing with two photons, the attenuation doesdegend on the location along the LOR
where the annihilation occurs but only on the tat@lount and type of attenuation material.

Attenuation can be corrected for each LOR by egsiigahe probability P, that the photon
will not interact with the material along the LOR given byP = exp (— fLORy(x)dx).

Here,u(x) is the linear attenuation coefficient of the mitleat positionx along the LOR.
One method to correct for attenuation is to estntlae values gf(x) within the image, also
called au-map. This is done by using an external radiatomae {ransmission sourgeto
produce two sets of sinograms: one of the transomssource while the scanner is empty (a
blank scah and one of the source while the object being mdag placed inside the scanner
(atransmission scgn The ratio oblank scan/transmission scaan then be used to estimate
the amount of attenuation present for each LORthod au-map. Theu-map can then be
used to correct the PET image of the object. Addél methods to correct for attenuation
involve estimating attenuation from fixed anatomgdels (e.g., an average head anatomy)
and using computed tomography (CT) or magneticasce (MR) images to deriyevalues
(Bailey, 2005; Hofmann et al., 2009).



In addition, variations in the production and indival characteristics of each detector
element in the PET scanner will cause variationthéir sensitivity as high as 10% or more.
Differences in the geometrical positions of twoedddrs contributing to an LOR will also
contribute to detector variations in the scanner.cdrection for this effect (called
normalizatior) can be made by exposing the detector to a welwknsource of radioactivity.
Differences between the expected and detected cate# for each LOR can then be used to
correct for differences in detector sensitiviti€he effect of subject motion can also affect
the data collected as it will contribute to degtamtaof spatial resolution. In order to reduce
this effect, an individually molded thermoplasti@ask can be used for every subject, the
amount of motion can be measured using an optiaeking device (Bloomfield et al., 2003)
and/or the images obtained during the scan canebhkgned with a suitable algorithm
(Dinelle et al., 2011).

1.5 Image Reconstruction

After data have been collected, the coincidence®rded for each LOR have to be
reconstructed into a 3D image. The algorithms comynaised for this purpose can be
divided into analytical and iterative algorithms this section we review the key

characteristics of each.

The most common analytic reconstruction algorithemns those based on backprojection
techniques. Here, the counts collected for eacfegtion p(r, ;) at angled; are uniformly
distributed along the imaging spagtéx, y). This process (calleldackprojection is repeated
for every angled; along which data were collected. If the anglesensampled uniformly
around the entire object there is enough data twrately reconstruct the entire image
volume. One of the drawbacks with this techniquéhet part of the detected counts are
always projected outside the object being imagesijlting in a blurring effect. Blurring can
be thought of as increased signal present at kgpgéal dimensions or, in frequency space,
increased signal at low frequencies. This blurraasn be decreased bitering the data
before backprojecting. The most common analyticomstruction technique involves

computing the Fourier Transform of each projectionultiplying by a filter that decreases
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signal at low frequencies, computing the Inversaurien Transform of the resulting
projection and then backprojecting the filtered fijgs. This is known as diltered
backprojection(FBP) and is the most widely used reconstructiachti&ue While this
procedure is fast and easy to implement, the iaguiinages still suffer from large amounts
of noise, reduced resolution and various reconstmicartifacts. In addition, the FBP
algorithm cannot be modified to take into accoumggical processes affecting the data and
properties of the imaging system, such as sca#tttenuation, differences in detector
sensitivities and more. Such effects need to bentakto account in pre- or post-processing

steps with varying degrees of success.

Iterative methods are used when more flexibilitpégded in the reconstruction process. The
general concept of iterative reconstruction is shawFigure 1.6. The goal is to arrive at the
best estimate of the true image by successive appations. The process is started by
providing an initial estimate of the image and praidg estimated projections bgrward
projection As the name suggests, this is exactly the opposgibackprojection and is carried
out by summing the counts in the estimated imager @i required angles. The set of
estimated projectiong,(r, 8) are then compared to the actual measured projeqgtio-, 6)

and the differences between them are used to upgaienage estimate. The process is then
repeated for a specific number of iterations ofl wié differences between the estimated and
measured projections drops below a predetermineghbld level. One of the key strengths
of iterative algorithms is their ability to incomate corrections into the reconstruction
process, by taking into account physical proceasesimaging system characteristics in the
forward projection step. At the same time, thesgperties make iterative algorithms much
slower and computationally demanding to run thanPFBne method that has been
developed to speed up the algorithms is to only aiseibset of the available projections
during each iteration. An example of this methodth® ordered subset expectation
maximization (OSEM) algorithm, which incorporatéatsstical information to compute the

most likely source image using a subset of prapestin each iteration.
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Figure 1.6: Schematic summary of the key steps in iterativenscuction.

1.6 Data Analysis: Kinetic Modeling

PET imaging over a period of time allows us to gtutbw the concentration of the
radiotracer changes over time and therefore prgvidéormation about thdunctional
properties of the body. We can then use a matheatatiodel to derive parameters that
describe how the tracer interacts in the body asetion of time kinetic modeliny Using
kinetic modeling we can derive quantities that seelated to the strength of the binding
between the tracer and its target cells and the aathich the tracer is taken up, used or
released by cells. For example, the radiotracer ED{ed to estimate the rate of glucose use
in the body and has been proven to be helpful tediieg fast-growing cancer cells that use

glucose as a source of fuel.

Kinetic modeling involves developing a biologicabdel for how the tracer interacts in the

body. This is usually done by assuming that theetrawill flow between different
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compartments which are described as volumes where the tracdr be uniformly

distributed. Compartments can be open or closedrdbpg whether the tracer is allowed to
escape the compartment or not. Compartments doet#ssarily have a simple biological
meaning since depending on the tracer it can bentalp by one specific cell type in a
specific organ or many cells in different organkenefore, a kinetic model for each tracer
needs to be developed according to the specifisiplogical and biochemical principles that
govern the tracer’s interactions in the body. Mathgcal kinetic models then describe the
rate of exchange of the tracer between differelcepartments (througrate constanfsand

the amount of tracer concentration present in easmpartment. These models are

commonly formulated using differential equations.

compartment A compartment B
L’ dCA(t)ldt = 'k1 CA(t) + kZCB(t)
Ca(t) Cag(t)
4k_ dCB(t);{dt - k1 CA(t) - kch(t)
2

Figure 1.7: Simple two-compartment kinetic model with rate tamis k and k and concentrations

in each compartment of,@) and G(t).

A simple two compartmental model with its assodatquations and parameters is shown in
Figure 1.7. Here, the concentration of the tramegr time in compartment AG,(t), is
commonly called theinput function The concentration of the tracer over time in
compartment Bz (t), is what we measure with a time-series of PET esamnd generally
represents the amount of tracer over time in g8ug of interest. To measuig(t) we select
a region of interest (ROI) in the PET images whaeetissue of interest is located, we then
extract the observed number of counts within thd R@he PET images and plot them as a
function of time. The resulting plot is known agdime activity curve (TAC). In order to
estimate the rate constants (in this das@ndk,) that describe the tracer kinetics, we need
an estimate of both the input function afigt). The input function can be obtained by
taking arterial blood samples throughout the saansiession, which is not always possible
13



and can sometimes be very challenging for pati€nsthe other hand, the input function can

be estimated by using another region within the R&dge (calledeference regionwhere

the tracer has negligible specific bindingACs derived for the tissue and reference regions
are then used to solve the differential equatidrirekinetic model being used. A sample set
of TACs is shown irFigure 1.8
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Figure 1.8: Sample TACs for the putamen (tissue of interest)tla@ cerebellum (reference tissue)

using the radiotracer'fC]Raclopride.

Every radiotracer behaves differently in the body a could also behave differently in
different tissues. Therefore, the specific modetdugnumber of compartments and rate
constants) has to be characterized individuallyefach tracer in each tissue of interest and
reference region. A sample three compartmental meitle a reference region that includes
tracer flow from/to plasma is shown in Figure IT®acers are generally described as being

reversibleif they can become bound and unbound in the tisirerest. On the other hand,

2 Tracer binding to the tissue of interest is cal&mbcific binding while binding to other sites is called
nonspecific binding
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tracers are described as irreversible if they rantmund k; = 0 in this example). For
reversible tracers, the parameter of interest fos tissertation is the tracertsinding
potential (in this exampleks/ks), which can be interpreted as representing thebeunof
available sites where the tracer can become boalsd €alledB.y divided by the rate at
which the tracer becomes unbound (also called isodiation constankp). This approach
is used to find the non-displaceable binding paa&n{BP\p) of radiotracers such as
[*’C]Raclopride and*{C]Dihydrotetrabenazine (see Section 3.4). For @rsible tracers, we
are interested in the rate at which the traceakisn up in the tissue of interest, also called the
uptake rate When a reference region is used to study thetikgef the tracer (as in our
example), the uptake rate can be definedkg(k,+ks) (Patlak and Blasberg, 1985)his
approach is used to find the dopamine uptake gatstant Koc—= koks/(kotks)) using the

radiotracef **F]Fluoro-L-dopa (see Section 3.4).

region of interest reference region
kq K'y
+— —
- |— Unbound o HR Unbound
2 kl Ik a 4
T 3 4 L/ 1
o o \
Bound Bound

Figure 1.9: Kinetic model using a reference region as the irfpottion.

In addition to applying kinetic modeling to the TAGerived by averaging concentrations
from ROIs within the image, they can be appliedrntdividual voxel TACs. The derived
kinetic parameters can be used to malgmmetric imageof the values for every voxel.
These parametric images can then be used to stlidyegions of the brain without
preselecting regions of interest. However, thishodtis very sensitive to noise in the
original image and noise-induced biased can be weportant in the derived kinetic

parameters.
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1.7 MRI Basics

Magnetic resonance imaging (MRI) is a medical imggiechnique that also allows us to
study the human body vivo (Chakeres and Schmalbrock, 1992). While PET is ueed
study the functional properties of the body, foe urpose of this dissertation MRI will be
used to study the structural (also cal&ttomica) properties of the body in order to locate
anatomical regions of interest in the body. In thiay, MRI provides complementary

information about the body than that available VIREET imaging.
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Figure 1.10: A — Schematic showing alignment of nuclear magmatiments in the presence of an

external magnetic field g8 B — Use of an RF pulse to flip spins and thalsssequent relaxation.

The basic principle of MRI relies on the fact thia body contains a large amount of protons
(mostly present in hydrogen nuclei inside wateranoles), which in turn have a magnetic
moment,m. Normally, the nuclear magnetic moments have randoentations inside the
body (see Figure 1.10A). However, when the bodplésed inside a large magnetic field
(By), the hydrogen nuclei align themselves with thedaion of the magnetic field and can
combine to create a macroscopic magnetic monMntiq order to produce a signal fravh
that can be observed it is necessary to disturlsyeEem. The magnetic moment will be able

to absorb energy at a specific frequency, called.#imor frequencygiven by:

wo =yBy , (12)
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wherey=42.6 MHz/T for a proton. A radio frequency (RF)lés therefore used to transmit a
pulse with a frequencyw, into the body for a brief period of time which IMdause the
magnetization to tilt away from8, and precess around it. As it precesses, the magtieti
will create a current on the RF coil by Faradayuictcbn which is then detected by a receiver
coil. Once the RF pulse is turned off, the magmaittn will realign itself withB, within a
characteristic time (callegklaxation time see Figure 1.10B). The longitudinal component of
the magnetization (parallel #,) relaxes due to spin-lattice interactions wittharacteristic
time generally known as T1. The transverse compookthe magnetization (perpendicular
to By) relaxes due to spin-spin interactions with arabi@ristic time generally known as T2.
For a given input RF pulse, nuclei in different pddssues will have different relaxation
times which will change the RF signal received frtmem and allows MRI to provide
contrast between different tissue types. In ordeproduce a 3D image of the body, the
magnetic field is changed by the use of gradiens @ that it varies in all three spatial
directions, By(x,y,z). In this way, the RF signal received will have @atgally-varying
frequency profile which can be mapped into a gradled k-space An inverse Fourier
transform of this signal can then be used to rerap spatial frequencies into spatial

coordinates.

Figure 1.11:Sample T1-weighted MR image.

The contrast in a MR image can be manipulated laygimg the parameters of the input RF
pulse and the gradient coils. In particular, thegrilse can be repeated at specific intervals
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with a period called theepetition time(TR). We can also manipulate the gradient coils in
order to change the time at which the signal igiked after the RF pulse is sent, called the
echo time(TE). Since different tissues will have different ThdaT2 relaxation times,
adjusting TR and TE accordingly allows us to giviéedent contrast to different tissues as
needed. For example, a so-called T1-weighted imaifjeuse a short TR and short TE
resulting in images where tissues that have diffeiel values will have different contrast
(the areas with shortest T1 values will show ashtightest regions in a T1-weighted image).
For example, Figure 1.11 shows a T1-weighted imaige TR = 7.6 ms and TE = 3.5 ms
where white matter (T1 ~ 700 ms, T2 ~ 90 ms) haghbsignal, grey matter (T1 ~ 800 ms,
T2 ~ 100 ms) is darker, and the ventricles withdaaghounts of water (T1 ~ 3000 ms, T2 ~
3000 ms) are very dark.

1.8 Thesis Motivation and Outline

As described in Section 1.6, the quantitative agialpf PET data traditionally involves
kinetic modeling of the concentration of the rachoer over time. This modeling is used to
derive parameters related to the binding/uptakéhefradiotracer in the body. While this
analysis is very common it is not trivial to perfarOn the other hand, relatively little work
has been done in assessing the information abmatifumal processes that can be gained
from the spatial distribution of the radiotracerhi the spatial resolution available in most
human PET systemg-3-6 mm) is lower than that available in other mab imaging
modalities (down to sub-mm for magnetic resonameaging — MRI), it is worthwhile to
investigate the use of spatial information from REafa, especially with the higher resolution

available in modern scanners (de Jong et al., 2D8&0 et al., 2011).

The most common approach to investigate spatiaramétion in human brain imaging
involves warping each individual image to a comntemplate (Ashburner and Friston,
1997; Brett et al., 2002). This method allows tlmmparison of images from different
subjects at the voxel level with the goal of redgcintersubject anatomical variability.
However, this method is very susceptible to mistegtion errors given the substantial

anatomical variability between individuals and ahhidegree of spatial smoothing is
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commonly used to overcome this problem. The rewylivarped images have degraded
spatial information and residual misregistratiomoes can still reduce the amount of

functional overlap between subjects (Gispert et2003). Nonetheless, this technique has
been used for PET studies and has proven insightar example, relative differences in

radiotracer binding between different brain areag.( low binding in frontal lobe) have been

related to cognitive decline and used to studyoueriforms of dementia (Ishii et al., 2001;

Ercoli et al., 2012).

Alternatively, we can extract data within a specROI for each subject and compare spatial
characteristics across subjects within the ROIlthia case, the original information in the
image and the spatial resolution are maximally gme=d. The main problems with this
method are: a) defining the ROI consistently féisabjects, and b) using an analysis method
that does not amplify intersubject variability. R@Hfinition can be a challenge and is usually
derived from an anatomical image using previousraeatomy knowledge (Mitsis et al.,
2008). Despite the variability that this ROI defion introduces, in certain cases it has been
shown to produce better localization and highesisierty than whole brain warping (Nieto-
Castanon et al.,, 2003; Ng et al.,, 2010). In theecak PET data, where anatomical
information is limited, ROI definition is especiallchallenging. The availability of
multimodality scanners (PET/CT and PET/MRI) willihén developing a consistent method
for ROI delineation (Delso et al., 2011).

The focus of this dissertation is then to invesgéga novel, subject-specific, ROI-based
analysis method for PET data that characterizegdtmtracer spatial distribution and is
minimally affected by intersubject variability. lother words, we would like to study the
radiotracer’s spatial distribution within an ROIntaining, for example, the putamen, while
being minimally affected by individual differencesputamen size and image orientation. In
tumor imaging, recent PET studies have shown thiaguhe spatial characteristics of tumors
(also referred to as tumor heterogeneity) can esghaumedictions of response to therapy
(Tixier et al., 2011), treatment outcomes (El Nagaal., 2009), and survival (Eary et al.,
2008).

This work then investigates the use 3D moment iangs (3DMIs) to quantify spatial

characteristics in the shape and texture of PE® dathin a specific ROIl. 3DMIs are
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mathematical shape descriptors designed to be ngelda@nvariant) to scaling, translation
and rotation (Hu, 1962; Flusser et al., 2009). 3Bklle combinations of terms describing the
variance, skewness and kurtosis of a distributiod aan be thought of as measuring
deviations from a smooth and symmetric 3D spaiglidution. 3DMIs quantify not only the
3D shape of an object (as defined by its outer Hatias) but also the 3D spatial distribution
of voxel values within the object (also called itexture” or “heterogeneity”). The
hypothesis of this work is that 3DMIs will be alite describe the spatial distribution of a
radiotracer within a specific ROI in a PET image.addition, this work will test whether
3DMIs are able to differentiate between healthy pathological states where the spatial
distribution of radioactivity within an ROI is chged as a consequence of disease. Spatial
information can then be added to parameters defrneed kinetic modeling to increase the
information gained from PET imaging about pathotadjistates. In order to test these
hypotheses, 3DMIs were applied to PET images oftlineacontrols and subjects with
Parkinson’s disease (PD). In addition, we will asatomical MR images to determine the

ROls appropriate for this work.

This dissertation is then divided as follows: Cleap2 summarizes the construction and
properties of moment invariants starting in 2D axganding the results to 3D; Chapter 3
provides an introduction to PD, its clinical feasyy the dopaminergic brain system involved
in it and the role of PET imaging in the diseasbagter 4 describes the methodology and
results obtained when applying 3DMIs to PET imagkbkealthy controls and subjects with
PD; finally, Chapter 5 provides the conclusionsiva from this work and the future

directions that can be followed.
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Chapter 2: Moment Invariants

2.1 Introduction

Deriving a mathematical way to describe the shd@ambject and classifying it accordingly
is extremely useful. The shape of an object bemgged can be used to recognize and
classify it according to its spatial properties.niedical imaging, we require a mathematical
shape descriptor that does not change (ie, rentarasiant) for subjects of different physical
sizes and different orientations while they arengemaged. The shape descriptor should
then be invariant to geometrical changes such abngg¢ translation and rotation of the
object. However, we also require that this desorifg able tadiscriminatebetween objects
of different shapes so that real underlying diffees between subjects can be found. An

appropriate balance between invariance and distataipower is therefore needed.

Here we give a general introduction to the matherabshape descriptors known mement
invariants 2D moment invariants have been used in pattegogration and image
processing since first introduced by (Hu, 1962)pwked group theory to derive the required
expressions. The 3D versions of these invariantg West introduced by (Sadjadi and Hall,
1980) and have been expanded by others (GalveLantbn, 1993; Guo, 1993). Moment
invariants have become one of the most importard arost frequently used shape
descriptors with wide ranging applications in objeecognition (Flusser et al., 2009). In
order to describe moment invariants the concephanentswill be introduced first, as well
as a description of how they are used to charaetdtinctions and distributions. Moment
invariants are then formulated by combining momamtspecific ways to achieve invariance
to translation, scale and rotation. For a detailegbduction to moments, moments invariants

and their application to pattern recognition andge analysis see (Flusser et al., 2009).
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2.2 2D Moments

Moments are traditionally used to describe the psfiaf probability density functions and
are also used to measure the mass distribution ifdg. For a 2D distribution given by

f(x,y), in our case this can describe a 2D image, the entsyof orden=p+q are given by:

Mpq = [0 [ pCe,y)f(x,y)dxdy = [ [ xPyaf(x, y)dxdy . (2.1)

The last expression on the right describeggiemetric momentsnce they are calculated by
“projecting” f (x, y) onto the polynomial basis given pyx, y) = xPy4. These represent the
most common moments used. Different basis functiares also possible, e.g., using

p(x,y) = (x + iy)?P(x — iy)9 gives rise tacomplex moments

Geometrical moments are simple and generally easyderstand, at least at low orders

For example, zeroth and first order moments cacobabined as follows:

+00 +00
mOO = f_oo f_oo f(x, y)dxdy ’ (22)
+00 400 +00 (400
Mg Jooo J oo Xf (x,y)dxdy — Moy oo oo ¥ y)dxdy  _
—20 °°°o °°°o =X, — = °°°° °°°° = . 2.3
Moo [l o [y fxy)dxdy % oo JI2 1 fey)dxdy Y (2:3)

Here,m,, can be thought of as the totally “mass” of thegmé#or the area of an object for
2D images) whilem,,/my, andmy,;/my, can be though of as the “centers of mass” or
centroids of the image. Similarly, the second order moment, and my, describe the
“distribution of mass” ormoments of inertiaf the image with respect to each coordinate
axes. It is also helpful to think of moments ascdbsg the shape of a probability density
function represented by the image. In this cagg is the sum of all values in the image,

while m;,/my, andm,, /m,, can be thought of as describing thean values

While geometrical moments are useful for descrilgegeral properties of the objects being
studied, they cannot be used to characterize $phsi@ibutions of different subjects since
they are sensitive to changes in position, sizeagigshtation. In order to derive moments that
remaininvariantin those circumstances we need to modify the mésnarspecific ways. As

it is shown below, individual moments can be madeaiiant to scaling and translation on
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their own, while invariance to rotation is deriveg using special combination of multiple

moments.

2.2.1 Invariance to Translation

Moments can be made invariant to translation soraéwhsily by using the object centroid
coordinates as the origin of the coordinate systiean.the geometric moments described
above we can then derive tbentral geometric momentghich are invariant to translation as

follows:

My = [ [770x — ®)P (v — 7)f (x, y)dxdy | (2.4)

where the centroid coordinates are found using &mua?.3. These moments are then

invariant to the translation of the object withivetimaging area.

Here, second order central moments represent tii@nea along each axidgo andMoy,) as
well as the covariance between two axds;). In this way, second order central moments
can be used to define the orientation of the image additional higher order moments are
generally usedskewnessindkurtosis Third order central moments are used to desc¢hibe
skewness of the distribution in each directibhM2>> andMgy/Moz>'?), where skewness is
used as a measure of deviations from symmetryardisiribution. In addition, fourth order
central moments are used to describe the kurtbsiedistribution Kao/Mog> andMos/Mo2?),
which can be classically thought of as a measuilmtif the “peakedness” of the distribution
and the heaviness of its tails. In Figure 2.1 wewsttistributions that demonstrate the

characteristics described by each of these spgriptors.
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Figure 2.1: Sample distributions showing the shape charactesishat can be described using

moments.

2.2.2 Invariance to Scaling

Central moments can be made invariant to the sfzthe object by normalizing them
appropriately. In principle we can use any momené anormalization factor as long as it is
not zero. Since low-order moments are less seasiivnoise and easier to calculate, it is
common to normalize by the smallest order monhéyat

Mpq

Npq = ~pra,; - (2.5)

2
MOO
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These are then callesbrmalized central momentBroving thaty,, is invariant to scaling of

the coordinates by a constant fac@an be done as follows:
M'pq =77 [T 7[sP (c = DP][s9(y — §)f (x, y)[sdx][sdy] = sP+I+2M,,, (2.6)

so that the normalized central moment becomes:

+q+2
o Mipg  SPTITEMpg  Mpq 2.7)
Npqe = —ota,,; = PFq, pta,, — pq - -
2
Mr,2 (s?Mgp) 2 ol

2.2.3 Invariance to Rotation

The construction of moments that are invariantaiatron is not straightforward. The first
derivation of 2D moments that are invariants tation was done by (Hu, 1962), who used
algebraic invariant theory to derive seven invagarsing second- and third-order geometric

moments. The first five Hu moment invariants are:

P1 = Myo + Moy

@y = (Myg — Mgy)? + 4mi,

@3 = (M3g — 3my3)* + (3my; — my3)?

@5 = (M0 + My3)? + (Myy — Mp3)?

@s = (39 — 3myp) (M3 + M) [(M30 + My2)? — 3(Myy — Mg3)?] +
(3myy — mg3) (Mg + My3)[3(M3e + M) — (Myy — My3)?]

(2.8)

If the replace the geometric moments,,, by central momentsM,,, or normalized
moments,n,,, the resulting moment invariants will be invariaot rotation, translation
and/or uniform scaling. After Hu, many authors haeederived the above 2D rotational
invariants, including approaches using Fourier-Melfransforms (Li, 1992), complex
moments (Flusser et al., 2009) and other algoritfdimsand Tianxu, 2004). Unfortunately,
none of the derivations is straightforward. Howewerce they are formed it is easy to show

they are invariant under rotation. In 2D, the notaimatrix for an angle of rotatiohis given

by:
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()= (58 o ”)() 2.9)

. x'? = cos? Ox? + sin? Oy? — 2cos O sin O xy

y'? = sin® Ox? + cos? Oy? + 2cos O sin O xy (2.10)
The rotated second-order moments are then given by:
m’,o = cos? Bm’,, + sin? m’y, — 2cos O sin @ my,
m'y, = sin? Om’',, + cos? Om’y, + 2cos O sin @ my, (2.11)
Therefore, for the first Hu invariant we find:
@'y =m'y +m' gy = (cos?0 + sin?0) (M, + mgy) = My + Mgy (2.12)

which shows that the moment combination is invdnarder rotation.

2.3 3D Moment Invariants

Invariance to translation and uniform scaling assyeto define in 3D by extending the

definitions already used in 2D. Specifically, tH2 §eometric and central moments are given
by:

Mpgr = [ oy [y -y ¥P Y727 f (x,y, 2)dxdydz (2.13)
and,
Mpgr = [0 [ 20 [20 (= DP v = )z = 2)"f (x,, 2)dxdydz (2.14)
where the centroids are again defined by:

xo=00 5= 010 g ool (2.15)
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Here, the order of the moment is given hy=p +q +r and M,,, is a translational
invariant. In turn, invariance to uniform scalingncagain be achieved by normalizing to the

largest invariant:

Mpqr
Mpqr = —Frgiro; - (2.16)
3

+1
MOOO

Unfortunately, invariance to rotation is even lesgightforward to derive in 3D than in 2D.
For example, spherical harmonics can be used mhsiE@omplex moments to derive the
expressions. The first 3D moment invariants of sdcorder were derived by (Sadjadi and
Hall, 1980):

J1 = M200 + Nozo + Mooz
J2 = M200M020 + N200M002 + Moz0Moo02 — N301 — Ni10 — Né11 (2.17)

J3 = N200M020M002 — 7]00277%10 - 7]02077%01 - 7]20077(2)11 + 2N110M101M011

Two other 3D rotational moment invariants were sl from third and fourth order

moments using moment tensor contraction by (Re&isd,, 1992):

B; = 7]%00 + 7](2)30 + 77(%03 + 3(’7%10 + 77(%21 + 7]%01 + 77%20 + 77(%12 + 7]%02) + 677%11
By = N500 + Néao0 + NGoa + 4310 + 0631 + N501 + Ni30 + NG13 + Ni0z) + (2.18)
6(N320 + Nb22 + N502) + 12(N311 + Nfaq + nf12)

In addition, (Lo and Don, 1989) presented a systenapproach to derive 3D rotational
invariant moments using group representation thaaogd/complex moments. They were able
to derive a total of twelve 3D moment invariantsngssecond and third order moments.
Their results are equivalent to those shown in Egna 2.17 and 2.18 and expand on them.

Physically, the above definitions of 3DMIs can béerpreted as followsl; represents the
total spatial variance in the objecl; and J; incorporate spatial covariance as well as
variance, whileBz and B, include skewness and kurtosis, respectively, a$ age other
spatially descriptive terms. Although higher-ordaoments can be used they are more
sensitive to noise and only relatively low-ordermemts will be used for this dissertation

dealing with an initial exploration of 3DMIs for HElata.
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2.4 Applications in Medical Imaging

The following are sample applications of momentamants for the purpose of medical

imaging.

Brain Morphometry:(Mangin et al., 2004) used various shape desceptocluding the 3D
moment invariants of Lo and Don, to describe thapshof sulci (folds) in the brain and
various deep-brain regions from MR images. Theynébthat moment invariants are able to
describe the shape of brain regions with similancttires having similar invariant values
(such as the globus pallidus and putamen). Theyfalsnd that moment invariants are able
to find differences in the shape of brain regioosoading to subjects’ handedness and sex.
For example, they found that the collateral sulbas a different shape, in particular a
different curvature, in females and males. In astirthe overall size of the sulcus did not
show a significant difference.

Intracranial aneurisms:Intracranial aneurisms are dangerous enlargemeintser@bral
arteries, most commonly those that meet at theleCot Willis. Some aneurisms result in
ruptured arteries and some do not. Those that rpéasult in heavy hemorrhaging and have
a high rate of mortality and morbidity. Therefoegcurate characterization of aneurisms
between ruptured and unruptured is critical. (MilEt al., 2007) and (Valencia et al., 2010)
explored shape descriptors to predict the riskupture of cerebral arteries in an aneurism.
They found that moment invariants provide the Ipestlictive capabilities among different
shape descriptors.

fMRI activation mapsFunctional MRI (fMRI) is used to map different regs in the brain
to specific brain functions. This is commonly ddnehaving subjects perform a specific task
(e.g., tapping their fingers, hearing sounds) whiéng imaged inside an MR scanner. The
analysis of this data is commonly done by calcatastatistical probabilities that voxels in
the image are ‘activated’ and thus have higheraigmile the task is being performed. The
statistics for all voxels in the image are thereassled into statistical maps showing regions
of the brain having high probability of being aetigd during the task. Typically, this is done
by warping the brain image of each subject so itchiegs a common template and allowing
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for cross-comparisons between subjects to be peedr However, this method does not

account for the spatial variabilities of each sabgeanatomy.

In order to preserve spatial information withoutrgmsing the noise due to intersubject
spatial variations, (Ng et al., 2009) used 3D madmewariants to characterize the spatial
distribution of fMRI activation maps. They were @lb show that the spatial distribution of
the activations varies between different tasksaddition, they found that using 3D moment
invariants to characterize the spatial variatiofisthe activation statistics offered more
sensitivity to changes in activation patterns thtrer commonly used methods.

2.5 3D Moment Invariants for PET Images

This thesis will explore the use of 3D moment imaats (3DMIs) to describe the spatial
characteristics of PET images within a specific R@We will use the second order moments
Ji1, Jo and J; derived by (Sadjadi and Hall, 1980), as well as third and fourth order

momentsB; andBy, respectively, derived by (Reiss, T. H., 1992)TRiBages of PD will be

used to test the use of 3DMIs. PD is an ideal pagyoto investigate the use of spatial
information since the disease produces a very Bpepatial pattern of radiotracer uptake
that is different from that in healthy subjects. Wi review the main characteristics of PD

in the following chapter.
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Chapter 3: Parkinson’s Disease

3.1 Clinical Overview

Parkinson’s disease (PD) is the second most commeonodegenerative disease and it is
estimated that it affects nearly 100,000 Canad{®askinson Society Canada, 2003). The
risk of developing the disease increases rapidbr tive age of 60 years and less than 4% of
all cases occur under the age of 50 years (VanH2elen et al., 2003). The lifetime risk has
been estimated to be about 4% with men being alivast as likely to develop PD as
women (Dluzen and McDermott, 2000; Elbaz et alQ2)0 Differences in the incidence of
PD due to race and ethnicity have also been obd€ian Den Eeden et al., 2003). While
most cases of PD are considered to be non-heritdidy are referred to as ‘idiopathic’ or
‘sporadic’ PD), it is now known that around 10% adses arise due to genetic factors
possibly related to protein degradation and mitochal function (Klein and
Schlossmacher, 2006).

The classic picture of PD is that of a movemenomier, with the most common symptoms
being tremor at rest, rigidity, difficulties initiag movements (called akinesia), slowness of
movements (called bradykinesia) and postural ingtal{Jankovic, 2008). Interestingly,
motor symptoms can be very asymmetric affecting ©9de of the body more than the other
especially early on in the disease, a fact thatsed for diagnostic purposes to differentiate
PD from other neurodegenerative diseases (Gelb, €t99). It has lately become apparent
that non-motor complications are also common in PDr example, depression is now
known to be a common co-morbid condition with estiés of its prevalence amongst PD
patients ranging from ~10%-70% (Veazey, 2005). Othen-motor symptoms include
anxiety, apathy, sleep disorders, gastrointestityafunctions and more (Chaudhuri et al.,
2006). The importance of these non-motor symptarité quality of life of PD patients is
increasingly being recognized (Martinez-Matrtin, 21
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The diagnosis of PD is done clinically and varioating scales are used to evaluate the
amount of impairment and disability. The Hoehn &y#H&Y) scale is commonly used to
provide a general description of how PD symptomggmss and to provide a coarse
comparison between different groups of patientsefihoand Yahr, 1967). The H&Y ratings
range from O for no signs of disease to 5 for padievho need a wheelchair or are bedridden
unless assisted. The most common scale for asges&tailed clinical disability and
impairment is the Unified Parkinson’s Disease Ratitale (UPDRS; Movement Disorder
Society, 2003). The UPDRS includes sections deglicad the assessment of non-motor
aspects of daily living (part 1), motor aspectsdafly living (part Il), clinician-scored motor
evaluation (part Ill) and treatment-related comgtilcns (part IV). The part Il of the UPDRS
is commonly used as a clinical measure of incrgasiator disability as PD progresses, with
scores ranging from 0 for complete absence of motoptoms to a maximum score of 108

for severe, bilateral symptoms.

The pathology of PD is associated with the degeioeraf neurons that innervate subcortical
brain areas associated with motor, cognitive amebit functions. These degenerating
neurons originate in the substantia nigra pars emtap(SNc) of the midbrain and are
associated with the production of the neurotrartem@topamine (DA). The reduced levels of
DA are then thought to disrupt brain circuits resgble for the control of motor functions. It
is estimated that 50-80% of dopaminergic neuroesadready lost by the time symptoms
appear and the disease is diagnosed (Davie, 2(IB).is also characterized by the
accumulation of thea-synuclein protein into aggregates called Lewy bsdi(LB).

Postmortem studies have shown that the distributiobhBs in the brain of PD subjects is

generally correlated with the degree of clinicahgyoms (Hurtig et al., 2000).

There is no method to prevent or delay the losgoplaminergic neurons and currently there
is no cure for PD. Existing treatments are theeefigsigned to alleviate symptoms by using
medication, surgery, rehabilitation and other sgets as needed. Early during treatment,
medication can provide effective symptom managenfenta wide range of patients.

However, motor complications due to medication @mmonly developed and an optimal
tradeoff between good symptom management and uabésiside effects needs to be
achieved (Royal College of Physicians and NatioGallaborating Centre for Chronic
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Conditions, 2006). As the disease progresses atidslymptoms and side effects worsen. In

this case, medication is not an effective therapysurgery becomes an option.

The main medications used to treat the motor symgtof PD are levodopa, dopamine
agonists and monoamine oxidase-B (MAO-B) inhibitarsvodopa (LD) is the most widely
used treatment for PD and is a dopamine precursichwis converted into dopamine by
dopaminergic neurons. LD increases the amount ofiD#he brain and temporarily reduces
the motor symptoms of PD. LD is regularly usedombination with drugs which inhibit the
synthesis and degradation of DA in order to proltmg action of LD. Unfortunately, the
long term use of LD can lead to the developmeninafesirable motor complications, such as
involuntary movements (called dyskinesias) and tflatons in the response to the

medication (Jankovic and Stacy, 2007).

Dopamine agonists and MAO-B inhibitors are usec¢@splementary therapy to LD with
the aim of improving symptom management and reduanotor complications. Dopamine
agonists bind to dopamine receptors and activamtim the absence of dopamine. They
have similar effects to LD and reduce the incideocenotor complications to LD (Tintner
and Jankovic, 2003). However, dopamine agoniste s&le effects of their own, including
psychiatric complications such as impulse contisbidlers (Bonuccelli and Ceravolo, 2008;
Voon et al., 2011). MAO-B inhibitors increase tlegdl of dopamine in the brain by blocking
its metabolism. They are not as effective as LOdgpamine agonists in managing motor
symptoms and are therefore used predominantly @arlge disease for patients with mild

symptoms (Jankovic and Poewe, 2012).

Surgery is commonly used for advanced patients wineg therapies are no longer sufficient
to control symptoms and complications. Deep brémudation (DBS) is the most common
surgical treatment and involves the implantatiora afevice which sends electrical impulses
to specific areas of the brain. The areas commdaigeted for stimulation are the
subthalamic nucleus (STN) and the globus pallid@®)( The use of DBS can reduce
symptoms and/or decrease medication side effeatk@¥ic and Poewe, 2012). DBS is a
major surgery and has associated risks, includnegpossibility of hemorrhage, inflection

and equipment malfunction (Doshi, 2011).
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3.2 Neuroanatomy of Motor Function

As discussed above, PD is associated with the d#attopaminergic neurons in the SNc.
The SNc is part of a group of nuclei in the brasfectively known as theasal gangliaThe
basal ganglia are associated with various functiomgduding motor control, learning and
action selection. As shown in Figure 3.1, the n@mponents of the basal ganglia are the
striatum (composed of the caudate and putamen)glibleus pallidus (composed of the
globus pallidus externa, GPe, and the globus pallidterna, GPi), the substantia nigra (SN;
composed of the SNc and the substantia nigra gaiculata, SNr), and the subthalamic
nucleus (STN). In addition to interconnections kesw different basal ganglia structures,

they are also strongly connected to the cerebré¢xothalamus and other brain areas.

Dorsal striatum Internal capsule
Caudate

Striatum

Putamen

Ventral

SN .
Thalamus . | tum Thalamus GPi

Figure 3.1: Anatomy of the basal ganglia in sagittal (left) arahsverse planes (right).

The striatum is the largest nuclei in the basalgganand it has two district nuclei (the
caudate and putamen) separated by a large traghitd matter (the internal capsule). The
dopaminergic neurons in the SNc project to thestnn and supply regulatory DA input to
these structures. The striatum also receives ifipat the cerebral cortex, with the caudate

and putamen receiving input mostly from differeattp of the cortex. In the globus pallidus,
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both GPe and GPi receive input from the striaturinthe GPe in turn projecting mainly to

the STN while the GPi works together with the Skbjgcting mainly to the thalamus.

A B
| Cortex/Motor Areas | | Cortex/Limbic Areas |
SNc/VTA SNc/VTA
I;‘;trialtulr:r;z Ventral /STN
: el
. ! |
) Ventral
Direct l | Indirect Pallidum
Pathwa Path

e S

> ® 4
Glutamate/ GABA/ Dopamine/
excitatory inhibitory  regulatory

Figure 3.2: The classical basal ganglia circuits involved intorq/A) and limbic (B) functions.

The interconnections between the cerebral cortagalbganglia and thalamus allow them to
work together to regulate motor, cognitive and licnfunctions in the brain. The dorsal part
of the striatum is largely involved in motor furanti the intermediate parts in cognitive
function, while the ventral part is involved in lme function. For example, the classical
model for understanding how the basal ganglia egguhotor and limbic functions is shown
in Figure 3.2. The so-called motor circuit involvieg pathways: a direct pathway and an
indirect pathway (Figure 3.2, left). Here, the maiput information arises from the cortex
and enters the basal ganglia through the strialrturn, the main output structures are the
GPi and SNr, which project out to the thalamus. THeect” pathway involves direct

connections between the striatum and the GPi/Siduth a monosynaptigaminobutyric
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acid (GABA, an inhibitory neurotransmitter) project. The “indirect” pathway involves
information relays at the GPe and STN through poigptic GABAergic and glutamatergic
(excitatory) projections. Both pathways projecthe cortex in the end, regulating instruction
from the cortex to motor neurons in the body whedher facilitate or inhibit movements.

In the direct pathway for motor function, the inkitn of the GPi/SNr by the striatum keeps
structures in the thalamus and brainstem underceztlinhibition, allowing the thalamus to
excite the cortex and allows movement to proceedilke indirect pathway, inhibition of the
GPe can reduce inhibition of the STN which in taxcites the GPi/SNr more. The GPi/SNr
then inhibits the thalamus more, resulting in redlcstimulation of the cortex and
suppression of movements. Here, the role of SNelfitmodulated by a nearby nucleus
called the ventral tegmental area, VTA) is to matkithe entire circuit by supplying DA at
the level of the striatum to excite the direct patl (which contains D1 receptors, see
Section 3.3) and inhibit the indirect pathway (Whimontains D2 receptors). Therefore, the
injection of DA into the striatum promotes the exi@an of movements. This model helps us
understand Parkinson's disease, whepar&insonianstate results from a reduced DA input
from the SNc to the striatum, resulting in an ollardnibition of movements. On the other
hand, adyskineticstate results from the opposite case, where redactvity of the STN

results in an increase of involuntary movements.

In turn, the limbic circuit of the basal gangliati®ught to play a key role in the incentive,
emotional and motivational aspects of motor movdserne neuroanatomy of this circuit is
less well-understood and a general summary is shoviaigure 3.2 (right). For this circuit
the limbic input arises from the frontal associaticortex, cingulate gyrus, orbitofrontral
cortex, amygdala and hippocampus (among other¢hidrcase, the main input nucleus is the
nucleus accumbens (also known as the ventral wimiaS), which is made up of the
ventromedial caudate, ventral putamen and olfadiapgrcle. Parallex inputs into the STN
are also present. The VS/STN then project to tharak pallidum, which projects to the
thalamus and then back to the cortex. This cinsuaiso regulated by the dopaminergic input
from the SNc/VTA. This limbic circuit has been asisted with the motivation required to
learn motor tasks. Abnormal dopaminergic projediom this system from the SNc/VTA

have been associated with addictive behaviors.hb ¢ase of addictions, the normal
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modulation of behavioral responses to stimuli thetivate feelings of reward (motivation)

and the subsequent reinforcement these behavibeliéved to be disrupted.

The cortico-basal ganglia circuits described aldmaae largely been thought of as segregated
loops with limited sharing of information. Howevegcent findings have shown that the
anatomical projections in these structures are nmohe complex than those shown in
Figure 3.2. The largely expanded connections noawknto exist between the different
structures associated with the basal ganglia hatesated the revision of the classic models
for their functionality shown in Figure Figure 3(Praganski et al., 2008; DelLong and
Wichmann, 2009; Marchand, 2010; Rommelfanger andhwiiann, 2010). These extended
models have a larger degree of integration betvikercircuits. For example, (Marchand,
2010) suggests that the cortico-basal ganglia itiycoan represent a final common pathway
from discrete brain regions to output signals engassing motor, emotional and cognitive
domains. As such, the varied information that iseiheed by these structures can then be
collected, funneled, integrated and processed filgrent circuits. While segregation can still
be present, the degree by which the circuits d@egyrated and segregated can be determined
with future studies. The fact that many disease®a@ated with these structures contain

multiple motor, emotional, and cognitive aspecispsuts this view.

3.3 Dopamine System

At the molecular level, brain functions are modedat by neurotransmitters.
Neurotransmitters are chemicals that transmit andutate signals from neurons to their
target cells across a junction called siyaaptic cleftNeurotransmitters are released from the
neurons at the synaptic cleft and bind-@oeptorson the receiving cell. The binding of the
neurotransmitter results in an activation of th# iceorder to perform a specific function.
Residual amounts of the neurotransmitter can heteahe synaptic cleft and must be cleared

so that the synapse is ready to function againoaa as another neurotransmitter signal is
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sent. The clearing is performed by either reabsgrkiie neurotransmitter for future used by

aneurotransmitter transportesr by breaking it down metabolically.

Neurotransmitters are produced in neurons from ddinand simple precursors commonly
found in the body. They are then packaged and dtor® synaptic vesiclesVesicular

transporters are proteins that move the neurotrétessfrom the cytoplasm into the vesicles
where they are then taken to the synaptic membaadereleased into the synaptic cleft.
Receptors on the opposite side of the synaptict defd to the neurotransmitter. The
receptors can either produce a postsynaptic patentiich can be excitatory or inhibitory
depending on the type of receptor and neurotratesmiReceptors can also produce

postsynaptic potentials that modulate (increasgeorease) excitatory or inhibitory signals.

Dopamine

. ; re-uptake ;
Pre-synaptic b M Post-synaptic
neuron - ® neuron

A
- J D
. * signal
— ® transmission
® [ ]
& ¢ .
vy -.
NE .
Vesicles VMAT2
DAT Receptor

Figure 3.3: Schematic of a dopaminergic synapse showing prapsignand post-synaptic

components.

Dopaminergic neurons represent less than 1% otfdfa number of neurons in the brain
(Chinta and Andersen, 2005). However, as descrdbede, they play a very important part
in modulating various brain functions such as mdtehavior, motivation and working

memory. Over 90% of dopaminergic neurons are lacatethe SNc and VTA, which as
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described above project to various regions of theabganglia and cerebral cortex. These
neurons produce dopamine and use vesicular moneatransporters (VMAT) to store it
into vesicles, in particular VMAT2 (Peter et al99b), as shown in Figure 3.3. After
dopamine is released into the synapse it bindedt¢eptors in the post-synaptic cell. Five
subtypes of dopamine receptors mediate the acfi@owamine: D1 and D5 belong to the
D1-like family, while D2, D3 and D4 belong to the2flike family (Missale et al., 1998;
Beaulieu and Gainetdinov, 2011). The distributibmezeptors varies in different tissues. For
example, D1 and D2 are widely expressed in thatatn, while D3 has lower expression
overall and is more commonly found in the venttabatum and ventral parts of the GP. In
order to recycle and clear dopamine from the syoaeft after it is released the dopamine

transporter (DAT) is used.

3.4 PET Imaging of PD

A neurodegenerative disease like PD will reduce nienber of neurons that produce
dopamine, resulting in altered brain functions tdapend on dopamine such as the ones
described above. Neuroimaging of the dopamine systn then be used to study numerous
pathological conditions in detail, including PD. néas PET radiotracers have been
developed to study pre-synaptic and post-synamtpachinergic function. The pre-synaptic
production and trapping of dopamine in vesicles lvarstudied with the dopamine precursor
[*®F]Fluoro-L-dopa (FDOPA). The radiotracét€]Dihydrotetrabenazine (DTBZ) or it§F-
labeled analogue can be used to label VMAT2 andvigeoa measure of surviving
dopaminergic terminals. Several molecules, inclgdiiC]Methylphenidate (MP), has been
developed to label the DAT and provide an imagingpsure of functioning dopaminergic
terminals. Post-synaptically, radiotracers whicmpete with dopamine for receptor binding
can be used to estimate changes in the amountpaitioe released into the synapse after an
intervention. The D2/D3 receptor antagoniSC|Raclopride (RAC) can be used for this
purpose. These, and other, PET radiotracers canbihesed to study changes in the function
of the dopamine system due to neurological diseases
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RAC DTBZ FDOPA

Healthy
Control

PD
Subject

Figure 3.4: PET images using RAC (left), DTBZ (middle) and FIB@fght) for a healthy control
(top) and a subject with PD (bottom).The more afféside for this PD subject is the left side.

In PD, the above radiotracers have been used asashsease progression, complications,
effects of therapies and more (Stoessl et al., ROIAe kinetic modeling summarize in
Section 1.6 can be used to derive binding potenéiatl uptake rate for the tracers of interest,
which can then be used to understand how the disg@erates at the molecular level. For
example, DTBZ binding has been shown to decreagsfisantly as disease progresses,
reflecting a reduced number of VMAT2 as dopaminenmgeurons die. DTBZ binding has
then been shown to provide a reliable imaging nreasti disease progression (Lee et al.,
2000; Nandhagopal et al., 2009). On the other hBB)PA uptake has been shown to be
relatively preserved in the early disease, reftgcpossible compensatory mechanisms, such
as increased dopamine synthesis in the remainipgrdimergic neurons, to make up for the
overall reduced production of dopamine (Lee et26lQ4; Hilker et al., 2005; Nandhagopal et
al., 2009). RAC binding has been observed to begipated in early untreated PD and to be
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relatively preserved as disease progresses (Rihmk,el995; Kaasinen et al., 2000). A
sample set of PET images comparing a healthy dostitject and a PD subject with these
tracers is shown in Figure 3.4.

As RAC competes with dopamine for binding, a douRRC scan protocol (at baseline and
after intervention) is used as a measure of intgrele-induced changes in synaptic DA
levels, often referred to as “intervention-inducgolpamine release” by the pre-synaptic
dopaminergic neurons. For example, if dopaminelsased after the intervention, the RAC
binding potential will be lower since receptors Iwlle occupied by dopamine and the
radiotracer will not be able to bind to them. Theoant of dopamine released can then be
estimated by calculating the change in the binghogntial of RAC between a baseline scan

(BPywasg @and a scan done after the intervention;{BRs follows:

BPpase=BPint
BPpase

Dopamine release (%) = (3.2)

In PD, the amount of LD-induced dopamine releasienesed using RAC has been shown to
have a positive correlation to disease progresgiamdroff et al., 1996; de la Fuente-

Fernandez et al.,, 2001, 2004). This finding canirtierpreted to mean that as disease
progresses, the same amount of DA precursor (B1dase LD) results in more dopamine

being released faster into the synapse of the renganeurons.

As we have seen, for DTBZ and FDOPA the kinetigoprties of the tracer affected by PD
are though to reflect a decrease in storage capdo#lated to increased death of
dopaminergic neurons as the disease progressegllags functional changes in levodopa-
derived dopamine kinetics. More importantly forstldissertation, we can see in Figure 3.4
thatthe spatial distribution of the tracers also chaader PD subjects due to the diseatde
posterior parts of the putamen are significantlyenaffected than other anatomical regions
in DTBZ and FDOPA images. This change reflectssipatial patterns of disease progression
where the posterior parts of the striatum (in patéir in the putamen, which is largely
associated with motor function) are affected betbee anterior parts. We can also see that
another important aspect of the disease is reflecte¢he PET images: it is common for one

side of the brain to be more affected than the rpthgpecially early in the disease. This
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results in an asymmetric tracer uptake betweentwlresides of the brain with one side

appearing brighter.

Given the distinct change in spatial charactesstt PET images due to PD, the main goal
of this dissertation is to derive an analysis mdthioat will be able to quantify spatial

changes and will be able to relate them to clityemleaningful measures of disease
progression. 3DMIs will be used to mathematicalgsctibe the spatial changes in PET
images. Such analysis will be helpful when changeshe magnitude of a radiotracer
binding/uptake remain the same when averaged wahspecific anatomical region, but

instead the spatial characteristics of the bindipggtke change. The next chapter will
describe the use of 3DMIs for PET image of PD dedrésults obtained.
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Chapter 4: 3D Moment Invariants for PET Images of Parkinson’s

Disease

4.1 Introduction

The goal of this dissertation is to explore whetBBMIs derived from PET images of PD
will help to characterize the spatial progressidn RD-induced abnormalities of the
dopaminergic system and relate them to clinical suess of disease progression. The

particular research questions explored in thisetliaion are:

* Are 3DMIs able to differentiate between healthytcols and PD patients?

* Do changes in 3DMIs have a strong relationshigitocally-meaningful PD severity
and progression assessments? And,

« Can 3DMiIs provide novel insights into levodopa-ioed dopamine release as

measured by a double RAC protocol?

Specifically, 3DMIs will be used to describe chasnge the spatial characteristics of the
dopaminergic function in PD in the following anatcal regions of the striatum: putamen,
caudate and ventral striatum. As was describedhap@r 3:, the putamen is involved in
many motor functions and is significantly affectdrting early in the disease. On the other
hand, the caudate performs increasingly cognitivections while the ventral striatum is
largely involved in limbic functions. This study marticularly important for the last two
regions (caudate and ventral striatum), where kinparameters generally do not show
significant correlation with PD severity and whéne effects of PD on cognitive and limbic

functions can potentially be studied in more detath this novel analysis method.

This chapter will first describe the analysis mekhbat was developed to compute 3DMIs
for PET images within an anatomically-derived R®Ging MRI data. The results obtained for

PD images will then be shown.
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4.2 Materials

The data used for this project included five pdsemith PD and five healthy controls who
were imaged with PET and MRI. All subjects undertwBET scans with three different
radiotracers: RAC, DTBZ and FDOPA. For PD patierasti-Parkinson medication was
withdrawn 12 to 18 hours prior to scanning to miizinits effect on the data obtained. All
PD patients underwent a double RAC protocol: albssscan and a scan on a different day
beginning 1 hour following the open-label oral adistration of levodopa/carbidopa
(250/25mg, respectively). This double RAC protoa@s used to estimate the amount of
levodopa-induced dopamine release. In turn, DTBd BDOPA were used to study the

amount of denervation and dopamine uptake ratpeotisely.

4.2.1 PET Data

All PET scans were performed in 3D mode on the Si€hhens High Resolution Research
Tomograph (HRRT). This dedicated brain PET cameasadfield of view of 24 cm axially
and 31.2 cm in-plane with an high intrinsic reswmintof 2.5 mm (de Jong et al., 2007). A 10-
minute transmission scan using an extetif@s source was performed before each emission
scan for attenuation correction. Head motion wasimized using individually molded
thermoplastic masks. Emission data were reconstlugsing an ordinary Poisson ordered
subset expectation maximization (OSEM-OP) algorithvith corrections for scatter,
attenuation, randoms, and normalization (Polittd &myder, 1991; Vandenberghe et al.,
2001). Emission data were then corrected for mdipnsing the AIR software package. The

final images had voxel size of 1.22x1.22x1.23cm

For RAC and DTBZ scans, healthy controls were tg@avith 300£25 MBq of activity and
scanned for 1 hour. For RAC and DTBZ scans, PDeptdiwere injected with 297+20 MBq
and 373+3 MBq of activity, respectively, and scathif@ 1 hour. Data from the DTBZ and
RAC scan were framed into the following dynamic wEtce: 4x1minute, 3x2minutes,

8x5minutes, 1x10minutes. For FDOPA scans, all subjeere injected with 257+2 MBq of
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activity and scanned for 1.5 hours (sequence: 1&xfes). All subjects received oral
administration of 200 mg of carbidopa 1 hour prior FDOPA scanning to aid with
radiotracer absorption.

4.2.2 MRI Data

All subjects also underwent an MRI scan to obtaiatamical information. An anatomical

MRI image of all subjects was obtained using a 8ilips Achieva scanner equipped with a
head coil. T1-weighted images were taken usinglaotiield echo (T1-TFE) sequence with
TR=7.7ms, voxel dimensions of 1x1x1lmnmatrix size of 256x256 pixels, and 170 slices.

Head motion was minimized by placing foam paddiridpw the coil.

4.2.3 Subject Details

Of the five PD patients included in this study, fowere receiving chronic levodopa
treatment and three of these patients were algweag direct DA agonists. One patient was
receiving DA agonists alone. PD patients had noldnbderate PD, four had H&Y stage I,
one had stage II.5. Group characteristics for PD lealthy controls are summarized in
Table 4.1. For PD patients, motor performance nigstvas conducted off anti-Parkinson
medication using the motor part of the UPDRS (pH)t The study took place over an

average of 37+29 days (except one healthy conth@revtwo of the four scans were taken
two years apart). The study was approved by thevddsity of British Columbia Clinical

Ethics Board and all subjects gave written informedsent.
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Table 4.1: Subject demographics

Variable HCs (n=5) PDs (n=5)
Age, y 49(20) 63(6)
Male sex, No. (%) 2(40) 4(80)
PD duration, y - 8.3(5.6)
H&Y stage, median (range) - 2(2.0-2.5)
Levodopa usage, mg/d - 475(217)
Dopame agonist usagemg/d - 193(135)
UPDRS motor score - 18(11)

"Unless otherwise specified, values shown reprebennean and standard deviation.

” Dopamine agonist doses are given in levodopa etprit units.

4.3 Methodology
4.3.1 Data Analysis

The T1-weighted MRI images were rebinned usingnedr interpolation to have a pixel size
matching that of the PET images. For each subjeetPET images were then individually
coregistered to the corresponding MRI image aVl a total time-integrated emission
image was derived from the dynamic PET data andgtstration was performed using the
mutual information algorithm available in StatisiicParametric Mapping 8 (SPMB)

software. A time-integrated emission image contgjrthe last 30 minutes of the PET data

was also calculated and the whole-brain rigid ti@msation matrix derived above was

3 Wellcome Trust Centre for Neuroimaging, UCL | nstit of Neurology

(http://lwww.fil.ion.ucl.ac.uk/spm/software/spm8/
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applied to it. The coregistered PET images wergalhy inspected by eye to look for any
errors in the coregistration method. The coregeste80 minute image was then used for
subsequent analysis using 3DMIs as it is most sgmtative of the spatial distribution of the

tracer after it has reached equilibrium betweesmbkand tissue.

The T1-weighted MRI image of each subject was usmddefine anatomical ROIs
corresponding to the left and right putamen, caaidad VS. The ROIs were drawn on each
slice where the caudate and putamen were visiblth@morsal side of the striatum (where
the effects of PD are most significant). The RCindgon of the VS was done following the
method by Mawlawi et al. (2001). The ROIs were drdw hand and were then exported to
the corresponding baseline RAC image to carefuilgc& for small coregistration errors and
moved accordingly. Putamen and VS ROIs were newsrech more than one pixel from the
original MRI-based placement, while caudate ROI&ge partial volume effects are more
important) were never moved more than two pixetsnfrthe MRI placement, within the
spatial resolution of the PET images. These PETvopéd ROIs were then placed on all
PET images for each subject to check that no rabidoregistration errors remained. The
values of the radiotracer concentration within tégulting ROIs were then extracted for all
PET images of each subject. Sample images compuéngutamen concentrations of DTBZ
between a healthy control and a PD patient are shiawrigure 4.1. These distributions
containing the 3D coordinates of every voxék,y,z), as well as their radiotracer
concentration valuef (x, y, z), were then used to derive 3DMIs using Matlab aswdised

below.
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Control

Y

Figure 4.1: Left - DTBZ images over three brain slices for altiey control (top) and PD patient
(bottom) with corresponding ROls for the caudatd patamen. Right - Sample spatial distributions

extracted for the right putamen for both subjects.

To compare the results obtained from 3DMIs witlditianal PET analysis methods we also
calculated kinetic parameters for the radiotracgssed here. In order to derive kinetic
parameters for the same ROIs used to calculate 3DW# produced parametric images of
the radiotracer kinetics of interest. Here, kingiarameters were derived for every voxel in
the image using the original dynamic PET data Hevis. For RAC and DTBZ we produced
parametric images of their non-displaceable binglioggntials (BRp, see Section 1.6) using
a simplified reference tissue model as implememtethe Receptor Parametric Mapping
software (Gunn et al., 1997). The cerebellum wasduss the reference regions for RAC
while the occipital cortex was used for DTBZ. FOD®PA, parametric images of the
dopamine uptake rate constant,{K see Section 1.6) were produced using the Patlak
graphical method (Patlak and Blasberg, 1985) wihth occipital cortex as the reference
tissue. The resulting parametric images were thmegtstered to the T1l-weighted MRI
images as described above. For all parametric imyape kinetic parameters for each ROI

were calculated by averaging the voxel values coatawithin it.
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Given that PD is a highly asymmetric disease ameigdly affects one side of the brain more
than the other (especially early in the disead®}, information was kept separate and the

3DMI and kinetic parameter values from both sidethe brain were not averaged.

4.3.2 3DMis for PET Data

Five 3DMIs were calculated for each radiotracergmér ROIs that encompass the left and
right caudate, putamen and VS. The 3DMIs &re),, Js, B andB, as defined in Equations
2.17 and 2.18. As was previously mention&drepresents the total spatial variance within
the ROI,J, andJ; incorporate spatial covariance as well as variawtde B; andB, include

skewness and kurtosis, respectively, as well aar agpatially descriptive terms.

Another important consideration when calculatingVB is the distribution of voxel values,
f(x,y,z),in the image. There are no established guidelfoeshe optimum distribution of
voxel values to use and this largely depends orgtads of the study. For example, some
studies have chosen to re-map fMRI activation iatvalues so that they lie between 0 and
1 for all subjects to minimize intersubject varlapi (Ng et al., 2009). In this case, the
derived 3DMIs would be insensitive to overall magde changes in voxel values within the
chosen ROI. Other studies have kept the origirtehsity values in the image (Morales et al.,
2008), set all the voxel values to 1 (Mangin et2004), and one study interested only in the
shape of the surface of an ROI set all voxel vatoe8 except at the surface of the area of
interest where the values were set to 1 (Ward. e2@07).

For the specific case of PET data of PD patiensgmitude changes in voxel values carry
very useful information. For example, healthy colstthave much higher radiotracer uptake
due to intact dopaminergic terminals. When combwvét the purely spatial changes within
the ROI due to the disease, the resulting 3DMIs lsarvery powerful in discriminating

between healthy controls and PD patients as wethasacterizing differences in the same
individual due to a pharmacological interventioeggesults below). After testing various
remapping schemes (including the ones describedeabsubtracting the minimum value

within the ROI only and using the resulting voxalues to calculate the 3DMIs was found to
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provide an appropriate balance between intersulgjedtintrasubject variability and useful
magnitude changes in voxel values (see resultselthe minimum value in the ROl was
estimated by taking the median of the lowest 10elmalues in the ROI and discarding
voxels with values lower than the median. For eXamihis remapping scheme can account
for differences such as those arising from charigethe specific amount of radiotracer

activity injected between different subjects antileen different scans of the same subject.

For all ROls, the errors on the derived 3DMIs wesémated using the bootstrap method as
implemented in the Matlab function ‘bootstp’ usib@00 iterations for each ROI. The effect
of the underlying background (e.g., due to non-#jgebinding) in the PET ROIs was
studied and it does not significantly affect theMdB: when the original voxel values are
replaced by a random distribution with mean anadded deviation matching that of the
background level the resulting 3DMIs are much semdhan those obtained with the original
voxel values (by more than a factor of 10). Sinlawhen adding this simulated background
to the original voxel values the 3DMIs are <2% eliént from the original ones and within
the estimated error bars, indicating that a uniftsaakground would not affect significantly
the calculated 3DMIs.

4.4 Results

This section describes the results obtained wheklI8Dvere used to describe the spatial

distribution of a radiotracer within an ROI in a PEnage.

4.4.1 3DMis Differentiate Between Healthy Controls and PDpatients

3DMIs were found to successfully differentiate beénw healthy controls and PD patients,
particularly for DTBZ (which is known to provideraliable measure of neurodegeneration
and thus disease severity). Figure 4.2 shows tlesuned spatial variancé, (in Equation 5)

for healthy controls and PD patients in the putammudate and ventral striatum. For
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comparison the values for DTBZ BP, FDOPAKand RAC BP in those regions are also

shown.

The spatial variance for DTBZ was significantlyfdrent for healthy controls and PDs in all
ROIs studied here. In the putamen, where spatphatries due to PD are largest, the
momentB; (which has terms describing spatial asymmetriehéenform of skewness, see
Equation 2.18) also showed significant differeniscesveen healthy controls and PD patients
for DTBZ images. The values fd3; in the putamen are shown in Figure 4.3. Table 4.2
shows the statistical significances of a two-samiple-tailed t-test between healthy controls
and PD subjects calculated assuming they have ahequances. As expected, DTBZ BP
values were seen to decrease significantly for Rilepts, especially in the putamen,
reflecting a reduced number of pre-synaptic VMAT2 dopaminergic neurons die.
Differences between healthy controls and PD patienth FDOPA and RAC were not as
widely seen as with DTBZ, a finding that is conesigt with previous results involving
FDOPA in compensatory mechanisms and RAC bidinganeimg relatively preserved as

disease progresses.

It is then clear that 3DMIs, especially for DTBZArcdistinguish between healthy controls
and PD patients with high significance in all RQtsidied here. In the case of RAC, the
spatial varianceJ{) showed more significant difference between hgattbntrols and PD
patients than BPs in the caudate and ventral stniatVhile the differences were not as
significant as those obtained using DTBZ BP and PBQX,., 3DMIs were found to have
stronger correlations than kinetic parameters tilmases of denervation severity as measured

using DTBZ and to clinical assessments of diseageriy (see Sections 4.4.2 and 4.4.3).
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Figure 4.2: Left - Spatial variance (J for healthy controls and PD subjects in the pwtarmcaudate

and ventral striatum obtained from DTBZ (dot), FD®Rsquare) and RAC (cross) images.

Individual error bars in J values were found by bootstrapping. Right - DTEBZ BDOPA Kocc and
RAC BP values for the same ROls.
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Figure 4.3: Spatial asymmetry (as measured usiggf@ healthy controls and PD subjects in the
putamen for DTBZ (dots), FDOPA (square) and RAGYSs)

Table 4.2 Statistical differences (p- values) between heattintrols and PD subjects.

Tracer/Variable Caudate Ventral
Putamen Striatum
DTBZ J 4x10° 9x10* 0.05
Bs 6x10° 0.04 0.02
BP 3x10° 7x10" 8x10°
FDOPA NN 2x10° 1x10° 0.13
Bs 0.025 0.09 0.09
Koce 2x10° 2x10* 0.65
RAC & 0.18 0.02 0.004
Bs 0.38 0.08 0.03
BP 0.23 0.04 0.006
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The fact that relatively small 3DMI values with dimwaariations were seen in healthy
controls (see Figure 4.2 and Figure 4.3) reflebts fact that the shape of the anatomical
structuresand texture of the radiotracer concentrations wittme members of this group are
consistent. For PD patients, the larger value d&Dwith large variations between subjects
can reflect the fact that there are more variatiarthe 3D shapand/ortexture of the ROIs

in this group. To differentiate between effects doe8D shape versus texture, 3DMIs for
each anatomical ROl were calculated where all voradlies have been manually set to a
constant; in this case the value 1. Here, any tianian the resulting 3DMIs will be due to
the 3D shape of the anatomical ROI only, and roBid texture. In this case, the 3DMIs of
healthy controls and PD patients were indistingaidé: changes at the level of ~20% were
seen across all subjects (see Figure 4.4). Thigestig) that the difference in 3DMIs between
healthy controls and PD patients reflect mostlysthdifferences to the 3DMIs provided by
changes in the 3D texture, i.e., the spatial dhistion of the radiotracer concentration within
the ROI. This also illustrates the power of shapscdptors such as 3DMIs to characterize
spatial distributions: they provide a wealth ofamhation about both the 3D shape and
texture within an ROI that can be applied to PE&ada
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Figure 4.4: Spatial variance (J top) and asymmetry {Bbottom) for all ROIs with voxel values

replaced by 1.

4.4.2 3DMis Correlate with PD Severity

Given that DTBZ is considered to be a reliable imggnarker of neurodegeneration, 3DMIs
derived for this tracer are expected to be semsitty changes due to advanced stages of
neurodegeneration and therefore increased PD sev@éMIs were found to have a strong
correlation with PD severity and to differentiatetleen the most and least affected sides of
the brain. When comparing 3DMI values to clinic®RS scores for the left and right sides

of each subject a strong positive relationship feasd to be presehtThe resulting plot for

* Here, slightly modified UPDRS values were usedtst the scores from motor deficits that are ndesi
specific (e.g., speech, posture, gait, etc) werdeddo the individual scores for the left and riglites of the
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J; is shown in Figure 4.5 (left column) for the putamcaudate and VS. Values for DTBZ
BP as a function of UPDRS are also shown in Figube (right column).

In PD, the posterior parts of the striatum are céfe first, giving patients with advanced
disease a very one-sided or “skewed” spatial @istion that is most evident along the
putamen with tracers such as DTBZ. Equation 2.18vshthat the expression for tis
moment invariant has terms that involve spatialwsiess in each of the three spatial
dimensions (e.g.x300). Therefore, in the putameml®; values are also seen to be highly
correlated to disease severity (see Figure 4.6).

As a first estimate, the data were tested for keotlnear and exponential relationships
between DTBZ 3DMIs and BPs as a function of UPDBSD patients (Nandhagopal et al.,
2009). To test for an exponential relationship, vakies were first linearized by taking the
logarithm of both variables and then performingireedr regression. In most cases, an
exponential relationship was found to be a beitethéin a linear one with the current data
(the only exception beings in the putamen, which shows a more linear tharoeaptial

relationship). The best-fit regression resultssir@wn in Table 4.3.

For DTBZ, 3DMIs were then found to have a strongdationship to UPDRS than BPs in all
ROls studied here. This finding suggests that 3Db#ls be used independently of kinetic
parameters to track the amount of degeneratioreptexss disease progresses and its impact

on motor performance.

body. These values were interpreted as represedi@RS scores for each side that are more repasenof
the overall disease stage as well as maintainifagriration about the degree of disease asymmetrgdch
subject.
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Figure 4.5: Spatial variance (J in DTBZ images as a function of UPDRS (left) &tBZ BP
(middle) for the putamen (top), caudate (center) amntral striatum (bottom). The corresponding
values for DTBZ BP versus UPDRS are also shownhtrigeach side of the brain is shown

separately.
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Table 4.3: Regression parameters for 3DMIs as a function of UPDRS for PD subjects. An

exponential relationship was assumed and subsequently linearized.

Tracer/Variable Putamen Caudate Ventral Striatum
DTBZ N r=0.89, p=0.0005 r=0.68, p=0.03 r=0.67, p=0.03
Bs r=0.81, p=0.005 r=0.58, p=0.08 r=0.49, p=0.15

BP r=0.85, p=0.002 r=0.57, p=0.09 r=0.47, p=0.17

"Regression using a linear relationship betwegaml UPDRS provides a more significant
correlation with r=0.89 and p=0.0005.

The above analysis was also carried out using @A images. In this case, no correlation
of the resulting 3DMIs or K with disease progression was found. This resutbissistent
with previous findings that show large variatioms RDOPA uptake early in the disease,
possibly associated with compensatory mechanisras @t al., 2004; Hilker et al., 2005;
Nandhagopal et al., 2009).
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4.4.3 Levodopa-induced Spatial Changes Correlate with P[3everity

The changes in spatial characteristics of RAC irmageéPD patients after a dose of levodopa
(LD) were also studied. The change in RAC BP altsingle dose of LD is commonly used
to estimate the amount of drug-induced synapticaduope (DA) release. One hypothesis of
this dissertation is that the spatial charactesstif DA release will vary as PD progresses:
early in the disease there will be a localized oasp to LD in the striatum (at the locations
with large amounts of neurodegeneration), givingerto a large change in the spatial
characteristics and, in particular, a larger spatariance after LD than before LD. In

contrast, later in the disease a more uniform nespanight be expected throughout the
largely affected striatum and, therefore, an ungkdnor smaller spatial variance in the
baseline RAC scan than after LD. On the other hand,known that the magnitude of the

LD-induced changes in RAC BP increases for morersedisease, indicating a combination
of decreased presynaptic buffering capacity angelaswing in synaptic DA levels before

and after LD administration as the disease progeess

Figure 4.7 (left) shows the RAG and BP values for healthy controls, PD patienteree
LD, as well as PD patients after LD in the putam®mlear trend for increasel values for
PD patients after LD is visible. This increase ng&aR® values after LD different to those of
controls at a statistically significant level (péR). On the other hand, BP values in the
putamen are not significantly different to contrblsfore or after LD (p=0.06). The percent
change in the 3DMI values before LD (e.g, J1,bgfared after LD (e.g., J1,after) for each

ROI was calculated as in the following example:

A]l — ]1,after_]1,before (41)

]1,before

The change in spatial characteristics before atet &D can then be correlated to relevant
disease characteristics, such as severity andidlwra&imilar correlations in the estimated
amount of DA release using the change in the derRAC BPs as shown in Equation 3.1
can also be explored. A linear regression analgsisws that the change in spatial
characteristics (here we concentrate JanchangesAJ;) are negatively correlated to the

clinical assessment of disease severity (as mehsisiag UPDRS) in the patients studied
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here (see Figure 4.7, top centre). Converskly,was found to be positively correlated to

DTBZ BP and thus increases as the number of sumgyiterminals increases (see Figure 4.7,
top right). These relationships are very significemthe putamen with (r=-0.78, p=0.0075)

for AJ; versus UPDRS and (r=0.65, p=0.03) Adk versus DTBZ BP.
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Figure 4.7: Levodopa-induced changes in the putamen. Left: RA®p) and BRp (bottom) values
for healthy controls, PD patients at baseline arigl &ter LD. Middle: Levodopa-induced changes in
RAC J (top) and DA release (bottom) as a function of BRIRight: Levodopa-induced change in
RAC J (top) and DA release (bottom) as function of DHBZ

On the other hand, DA release did not show anyifsignt correlations with disease

duration, age or severity for the subjects studietf (see Figure 4.7, bottom centre and

®> A marginal correlation of DA release with age wWasnd in the putamen and caudate with p=0.07 im bot
regions.
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right). While a correlation of DA release with dase duration has been shown to exist in the
putamen (de la Fuente-Fernandez et al., 2004, likely that the relatively low number of
subjects did not allow this study to be sensitivett This fact, however, makes it more
remarkable that strong correlationsAdf with UPDRS and DTBZ BP was seen and suggests
that as disease progresses, not only is the ammfudegeneration important for motor

performance, but that the spatial characteristitkeddegeneration is also key.

The decrease inJ; as disease progresses can be seen as a refletttbe widespread
degeneration, which results in a more uniform spatattern of DA release, leading to
unchanged or reduced spatial variance. Thereftwe,spatial distribution of DA release
before and after levodopa has great potential foviding additional information about how
PD progresses and its effect on motor, cognitive lanbic functions, a finding that will be

explored further in future work.

In the caudate and VS (see Figure 4.8 and Fig@e HothJ; and BP values were different
to those of healthy controls at a statisticallyngfigant level (p<0.05) both before and after
LD. A significant negative correlation @fJ; versus UPDRS was also present in the caudate
(r=-0.65, p=0.03). In the VS, this relationship vwaso significant after taking into account
disease duration as a covariate (r=-0.59, p=0.0B¢re was no significant correlation to
disease duration by itself and its inclusion aswadate did not change the correlation in the
putamen or caudate. No significant correlation @amd of AJ; with age in any of the
regions studied here and its inclusion as a cowadéad not affect the results. As in the
putamen, the estimated amount of DA released dueDiodid not have a significant
correlation to either UDPRS or DTBZ BP.
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Figure 4.8: Same agigure 4.7but for the caudate.
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Figure 4.9: Same as Figure 4.7 but for the ventral striatum.

Unlike the putamenJ; did not have a statistically significant correlatim DTBZ BP in the

caudate or ventral striatum. These areas are femgenl by PD and this finding might not
come as a surprise. However, from Figure 4.8 aiguirEi 4.9 it appears that the lack of
correlation might be due to a couple of outlierpe&fically, there are two patients who
(opposite to the above hypothesis) showed laigievalues despite having low DTBZ BP
and thus large amount of degeneration. One of thasents also showed a largé, and low

DTBZ BP value in the putamen (see Figure 4.7 tghtyiand, interestingly, has reported
strong motor side effects to treatment with LD aves switched to dopamine agonists to
control PD symptoms. The other subject who onlynghtargeAJ; values for low DTBZ BP

in the caudate and ventral striatum has a histdrpassible psychiatric side effects to
dopamine agonists in the form of impulse contrdodiers. While a study with larger
number of patients is needed to establish anyioekttip between 3DMIs and potential side

effects to treatment, these results are very eagiuyg.

62



Chapter 5: Discussion, Future Work and Conclusions

5.1 Discussion and Future Work

This dissertation shows that 3DMIs were able tovig® a mathematical description of the
spatial distribution of PET images within a ROI. M3 were able to distinguish between
healthy controls and PD subjects despite differenoethe size and orientation of each
subject’s brain. In addition, changes in 3DMIs wéryend to have a strong relationship to

clinically-assessed PD severity in all anatomiegions studied here.

Since 3DMIs can be thought of as measuring spdgalations from smooth, symmetric
distributions it should not be surprising that theg able to measure changes due to PD,
which is well-know for having a very pathologicablpecific spatial pattern. It is exciting and
encouraging that 3DMIs show such strong relatignshith clinical assessments of PD
severity, opening a new window for studying thisedise with PET images using spatial
analysis. In particular, the terda (a measure of spatial variance) was significacolyelated
with disease severity in all the anatomical registglied here, while the terBy (a measure

of spatial asymmetry) was significantly correlateth disease severity in the putamen
(where the PD-induced spatial asymmetry is padityprominent).

The fact that a strong relationship with clinicadlgsessed PD severity was seen in both the
caudate and the VS fadk (especially since FDOPA J and DTBZ BP do not show such
strong correlation) will be very important for teudy of how PD affects these areas, which
are associated with more cognitive and limbic fiorg than the putamen (Draganski et al.,
2008; Marchand, 2010). This is particularly impada since the significant effect of PD
(and its associated treatment) on cognitive anthitinfunctions has recently been identified
as a key aspect that affects the quality of liféDf patients and has therefore become a very
active and significant area of research (Barored.e2009; Martinez-Martin, 2011).

Levodopa-induced changes in RAiCvalues were negatively correlated to PD sevetity a

statistically significant level. This suggests tlearly in the disease a localized response to
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the presence of exogenous DA (at locations withelamounts of degeneration) results in an
increased value of spatial variance in the anatalnstructures studied here. The fact that
such a strong correlation was found with a smathber of subjects suggests that the spatial
distribution of the denervation can be an importaol to study the clinical progression of

PD, especially in longitudinal studies where theggniade of the tracer uptake might change
relatively little but the spatial characteristicsutd provide a more sensitive progression

biomarker.

The use of 3DMiIs for PET imaging of other diseasesso very promising. For example, in
oncology, quantifying tumor heterogeneity has rdgebeen shown to be important for

clinical outcomes (Eary et al.,, 2008; ElI Naga et aD09) and 3DMIs might provide

additional useful information in this area. Dopaeirelease studies in drug addiction and
other neuropsychiatric disorders have sometimeslymed puzzling results, such as the
finding that there is no difference in the amoumtDA released between oral versus
intravenous doses of methylphenidate despite a&lrarely leading to addiction (Volkow et

al., 2004; Shen et al., 2012). These, and many o#search areas, might benefit from spatial
analysis methods similar to the one presented here.

The use of 3DMIs for helping to translate resedindings into clinical settings is also
encouraging. A large stumbling block in this aress lbeen the fact that the majority of
neuroimaging research relates to comparisons agusgs of subjects and conclusions
about specific individuals is, in most cases, redsible. For the study of neuroimaging
spatial information, warping a subject’'s brainsataommon template is not optimal toward
the goal of developing clinical assessment too Hre relevant for individual subjects.
However, 3DMIs allow us to retain an individualjgasial characteristics while being able to
compare them to group values. The potential us8@iviis in a wide range of application is

therefore large.

On the technical side, several questions remaim épethe use of 3DMIs in neuroimaging
research. Among them is the question of how high epatial resolution is needed to fully
exploit the benefits of spatial analysis. The datathis dissertation used taken with one of

the PET scanners with highest available spatialuésns. To what extent a dataset with
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lower resolution will impact the usefulness of sgladinalysis remains to be explored, and the
answer will most likely lie in the related questiofi what is the relative size of the
anatomical area of interest to the spatial resmiuéivailable for imaging? Further work on
answering these questions in the context of PDbeagxplored in future efforts.

Additional research questions that remain to beloggd include: how best to combine
3DMIs with traditional kinetic parameters (and aother relevance information, such as
clinical and behavioral data) to better charactediseases and assess their treatments? The
use of machine learning algorithms and statistidassification schemes are increasingly
being used in medical research (Shiraishi et @112 Mwangi et al., 2012) and can be
applied to this problem. In addition, the best waperform segmentation for functional data
has long been an important area of research witblear answer (Zanotti-Fregonara et al.,
2009; Dewalle-Vignion et al., 2012). This area e$earch is being explored in Dr. Sossi’s
group with the aim of combining anatomical and tiowal information to improve the
segmentation results. On the other hand, it is pdssible that the large-scale spatial changes
in radiotracer uptake over the entire striatum lmanough on their own (without anatomical
information) to provide the required spatial chéeastics and this possibility can be

explored in future work.

Finally, it is worth noting that 3DMIs are part @fwide range of spatial descriptors (Tesar et
al., 2008; El Naqga et al., 2009; Flusser et alQ®20While 3DMIs have been found to be
very effective at describing the spatial changeseoled in PET images of PD patients, there
are many other spatial descriptors that may pravéd more useful for other imaging

modalities and/or other diseases.

5.2 Conclusions

This dissertation explored the use of 3DMIs to ahterize the spatial distribution of PET
images within a ROI. This novel analysis method apglied to data from healthy controls
and patients with PD. 3DMIs were able to succebsfguantify the spatial differences
between healthy controls and PD subjects and shawsttbng correlation with PD severity
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in all regions studied here (putamen, caudate amdkal striatum) for tracers that are known
to track disease progression. In addition, 3DMIgewable to quantify levodopa-induced

spatial changes in a double RAC protocol with thsult that the largest increase in the
spatial variance occurs early in the disease. Tssertation showed that the spatial
characteristics of PET images can be used to assiBD staging, diagnosis, assessing
response and side-effects to therapies, and mpegiabanalysis of PET images such as the

one carried out here may therefore have an importds to play in neuroimaging studies.
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