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Abstract

Mitochondria are thought to play a role in the aging process through their production

of reactive oxygen species (ROS), and their regulation of cell fate via senescence

and apoptosis. We hypothesize that genetic variation in the mitochondrial genome

may explain a portion of the phenotypic variance in the development of long-term

good health. To test this hypothesis, we have performed genetic association tests

on a set of common mitochondrial polymorphisms, in a study of 419 exceptionally

healthy seniors (cases) and 415 population-based mid-life individuals (controls).

Variant discovery was performed using Sanger sequencing of 834 individuals

for the 1.1 kb non-coding mitochondrial control region, and identified 277 SNPs

present in at least one individual. A set of 92 mitochondrial coding-region SNPs

were chosen via pooled high-throughput sequencing, combined with a previously-

published set of European-specific mitochondrial tag SNPs.

After filtering for minor-allele frequency of > 10%, a set of nine control-region

SNPs and seven coding-region SNPs were tested for association with healthy aging.

None showed a statistically-significant association signal. Additionally, one control-

region variant that had shown association in an Italian centenarian population was

tested in our sample set, but the association was not replicated.
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Chapter 1

Introduction

1.1 Aging as a Genetic Disease

1.1.1 The “Healthy Aging” Phenotype

Our goal is to study biological mechanisms of aging by identifying genetic variants

that are associated with healthy aging. This study focuses on individuals who

have reached the upper end of the normal human lifespan in good health, as op-

posed to other longevity-based studies that focus on centenarians who may not be

exceptionally healthy[1, 2, 3].

This project has been carried out using samples and phenotype data from

the Genomics, Genetics and Gerontology (G3) Study of Healthy Aging. In this

study, cases are defined as having a “healthy aging” phenotype if they reached the

age of 85 years without being diagnosed with cancer, (excluding non-melanoma

skin cancer) cardiovascular disease, major pulmonary disease (excluding asthma),

Alzheimer disease or diabetes. They have been further characterized by means of the

Mini Mental State Examination for determination of moderate to severe cognitive

impairment[4], the Timed Up and Go test of basic mobility skills[5] , the Geriatric

Depression Scale[6] and the Instrumental Activities of Daily Living Scale[7].

Controls are between the ages of 40 and 54 years, and were not recruited with

respect to health status. As such, they are representative of the general population

with respect to their probability of reaching the age of 85 years without acquiring
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one of the five common age-related diseases listed above. Ideally, our controls

would be a random sample of the population at the time that our cases were in

mid-life, and we believe that these controls are a good proxy for that ideal sample.

Specifically, we believe that the allele frequencies of our control sample should

be a good approximation of the allele frequencies of the (now largely deceased)

population that our cases originated from.

1.2 Mitochondria and Aging

1.2.1 Mitochondrial Genome Structure and Regulation

Human mitochondria have a 16.5 kb circular genome, which encodes 13 protein-

coding genes, (See table 1.2) 22 Transfer RNA (tRNA)s, and two Ribosomal

RNA (rRNA)s (see figure 1.1). The protein-coding genes encode subunits of the

mitochondrial electron transport chain complexes I, III and IV, and two subunits of

ATP synthase. In contrast with the nuclear genome, there is very little non-coding

sequence in the human mitochondrial genome. The majority of the non-coding

sequence is contained within the 1.1 kb control region, where three known promoters

coordinate expression of the entire mitochondrial chromosome. Outside of the

control region, the mitochondrial genes are tightly spaced, with clusters of tRNA

genes located between protein-coding genes.

Table 1.1: Selected Mitochondrial Diseases

OMIM ID Name rCRS Positions Mutated Symptoms
535000 LHON 11,778, 3,460, 14484 Blindness
540000 MELAS 3,243, Myopathy, Lactic acidosis
220110 Complex IV Deficiency (various mutations in MT-CO1-3) Myopathy
256000 Leigh Syndrome 4,681 CNS Lesions
545000 MERRF 8,344 Seizures, myopathy
530000 Kearns-Sayre Syndrome (various deletions) Blindness, cardiomyopathy
157640 CPEO (various deletions) Eye turn, hypogonadism

Hundreds of additional mitochondrial proteins are encoded by the nuclear

genome, and coordinated control of the two genomes is required for normal mito-

chondrial function[8, 9]. Mitochondrial gene expression is controlled by transcrip-

tion factors (TFAM, TFB1M, TFB2M) and an RNA polymerase (POLRMT) that are
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Figure 1.1: Map of the Human Mitochondrial Genome. Non-coding control re-
gion (position 16,024-576) is shown in grey. Protein-coding genes are shown in
blue, while RNA-coding genes are shown in red. All gene labels are from the
HUGO Gene Nomenclature Committee (www.genenames.org)
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encoded on the nuclear genome. A transcriptional regulatory network links a master

regulator, PGC-1α (also known as PPARGC1A) to the mitochondrial genome.

Table 1.2: Mitochondrial Protein Genes

Gene Uniprot Acession ETC Complex rCRS Position
MT-ND1 P03886 Complex I 3,307–4,262
MT-ND2 P03891 Complex I 4,470–5,511
MT-COX1 P00395 Complex IV 5,904–7,445
MT-COX2 P00403 Complex IV 7,586–8,269
MT-ATP8 P03928 Complex V 8,366–8,572
MT-ATP6 P00846 Complex V 8,527–9,207
MT-COX3 P00414 Complex IV 9,207–9,990
MT-ND3 P03897 Complex I 10,059–10,404
MT-ND4L P03901 Complex I 10,470–10,766
MT-ND4 P03905 Complex I 10,760–12,137
MT-ND5 P03915 Complex I 12,337–14,148
MT-ND6 P03923 Complex I 14,149–14,673
MT-CYB P00156 Complex III 14,747–15,887

The mitochondrial genome also contains a 1.1 kb control region (position 16024-

576 on GenBank NC 012920) which includes promoters for both the heavy and

light strands, and the heavy strand origin of replication. The control region also

contains numerous transcription factor binding sites. There are three hyper-variable

sequences (HVS1, HVS2 and HVS3) within the control region that contain a rela-

tively high density of polymorphisms, in comparison to the rest of the mitochondrial

genome[10].

The human mitochondrial genome is inherited exclusively from the mother.

Paternal mitochondria are selectively degraded after fertilization, by ubiquitin-

mediated proteasomal degradation[11, 12]. There is no conclusive evidence for

recombination in human Mitochondrial DNA (mtDNA)[13]. An extensive map of

the geographic distribution of mitochondrial haplogroups in human populations

has been recorded. Together with geographic and genotype data from the non-

recombining portion of the Y chromosome, this information has helped to trace

early human migration out of Africa and across the globe[14].

The mitochondrial genome is also highly polymorphic in all human populations.

A previous study of European mitochondrial genome diversity identified 144 single

nucleotide polymorphisms present in > 1% of a sample of 928 publicly available

European mitochondrial genome sequences [15].
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Numerous mitochondrial genetic diseases have been identified[16, 17]. Sev-

eral of these diseases, with their characteristic mutations are listed in table 1.1.

Symptoms vary widely, and include blindness, deafness, diabetes and ataxia.

1.2.2 Reactive Oxygen Species

Mitochondria are thought to contribute to the aging process through the production

of Reactive Oxygen Species (ROS), as a byproduct of oxidative phosphorylation[18,

19]. Prolonged exposure to intracellular ROS can cause damage to protein and lipids,

and can cause somatic mutations in both the nuclear and mitochondrial genomes.

During oxidative phosphorylation, electrons are passed from reduced Nicoti-

namide Adenine Dinucleotide (NADH) and Flavin Mononucleotide (FMNH) to a

group of mitochondrial inner membrane-bound enzymes that comprise the electron

transport chain. Electrons are passed down the chain in a series of redox reactions,

releasing energy that is used to pump protons into the intermembrane space. These

reactions maintain the mitochondrial elechemical gradient that drives the production

of ATP. The majority of electrons passing through the electron transport chain will

finally be combined with H+ and 1
2 O2 to form H2O, but a small percentage will form

side-reactions that result in the production of highly unstable superoxide radicals,

O–·
2 . Superoxide quickly reacts with H2O to form hydrogen peroxide, (H2O2) itself

a strong oxidizing agent. Although small amounts of ROS are a normal byproduct

of cellular metabolism, the accumulated effects of these reactions can degrade tissue,

cause somatic mutations and lead to cellular senescence[20, 21].

1.2.3 The Role of Mitochondria in Apoptosis

Mitochondria integrate several intracellular signals including DNA damage response

and pro-survival signals, as well as metabolic signals such as the ADP/ATP ratio and

intracellular Ca2+ concentrations. Under high cellular stress conditions, these signals

can initiate cell death via the intrinsic apoptotic pathway. The pro-apoptotic proteins

BAX and BAK are recruited to the mitochondrial membrane, resulting in increased

membrane permeability and release of Cytochrome-c and SMAC/DIABLO from the

mitochondrial intermembrane space into the cytosol. The release of Cytochrome-c

and SMAC/DIABLO leads to the activation of effector caspases that initiate the
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process of apoptosis.

Apoptosis is a key protective mechanism against cancer. When a cell acquires

mutations or DNA damage that may lead to escape from the cell cycle and un-

controlled cell division, the apoptotic pathway can be activated to prevent the

development of a malignancy. Model organisms such as p53 knockout mice fail to

activate the intrinsic apoptotic pathway in response to DNA damage and develop

malignancies at a much higher rate than wild-type mice[22]. There is also evidence

that variation in the mitochondrial genome itself can alter the probability that a cell

will undergo apoptosis. Studies of a lymphoblastoid cell line showed that a A4263G

mutation in the mitochondrial isoleucine tRNA could alter mitochondrial membrane

potential and lead to an increased rate of apoptosis[23]. Some have argued that

many of the phenotypic hallmarks of aging (muscle loss, wrinkled skin, functional

decline of internal organs) are due to the accumulated effects of apoptosis and

senescence[24]. They hypothesize that successful aging, (defined as reaching the

age of 85 without being diagnosed with cancer, cardiovascular disease, diabetes,

major pulmonary disease, or Alzheimer disease.)[25] requires a fine balance be-

tween cancer surveillance by apoptosis and a maintenance of healthy pre-senescent

tissue[26].

1.2.4 The Role of Mitochondria in Cellular Senescence

Several lines of evidence indicate that mitochondria play a role in induction of

cellular senescence. Senescent cells are characterized by growth arrest in the G1

phase of the cell cycle, accumulation of H2A.X foci and increased p53 activity

indicative of DNA damage, and decreased telomere length[27]. The telomerase

reverse transcriptase hTERT is translocated to mitochondria in response to oxidative

stress, where it increases the rate of mtDNA damage and promotes apoptosis[28].

This relationship between telomere maintenance and mtDNA maintenance is a

recent discovery, and is not yet completely understood[29]. Cells grown in high

oxygen concentrations become senescent at an increased rate, and senescence can

be delayed by addition of antioxidants or mild uncoupling agents to the growth

medium[30].
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1.2.5 Somatic Mitochondrial DNA Mutations and Aging

Mutations in the mitochondrial genome accumulate with age in somatic tissues.

Mitochondrial DNA mutations have been observed to correlate with age in tissues

such as heart muscle,[31] brain,[32] and skeletal muscle[33]. In addition to point

mutations, accumulation of ROS-damaged deoxyguanosine in the form of 8-Hydroxy-

deoxyguanosine has been observed.

1.2.6 Mitochondrial Heteroplasmy and Tissue Heterogeneity

The number of mitochondria per cell varies from zero in red blood cells to several

hundred in skeletal muscle cells, and each mitochondrion contains several copies of

the mitochondrial genome. Mutations can arise in somatic cells because of oxidative

damage or replication errors by DNA polymerase-γ , and can be propagated to

daughter cells after division. Since each cell contains many copies of the mitochon-

drial genome, there may be a combination of mtDNA alleles in a particular cell or

tissue[34, 35]. This phenomenon is known as heteroplasmy. Several mitochondrial

diseases, such as Myoclonic Epilepsy and Ragged-Red Fibres (MERRF) or Mito-

chondrial Encephalopathy Lactic Acidosis and Stroke-like episodes (MELAS), do not

present physiological symptoms unless the causative mutation accumulates beyond

a certain threshold level, sufficient to disrupt normal mitochondrial function[36].

Although the accumulation of somatic mtDNA mutations is suspected to play a

role in the aging process, our study is designed to detect heritable genetic factors that

influence long-term good health. Mutations that arise in skeletal muscle, epithelium,

neurons and other somatic tissues are not passed on in the germline. Only mutations

that arise in the ova (or pre-oval germ cell lineage) can be passed on to the next

generation.

1.2.7 Reported Associations of Mitochondrial Genome Variants with
Longevity

Several longevity-associated mtDNA variants have been reported in populations

around the world. A control region polymorphism at position 150 was associated

with longevity in the Italian population and has been hypothesized to cause a re-

organization of an origin of replication on the mtDNA[3]. The comparison of 52
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centenarians (age range 99-106 years) and 117 controls (age range 18-98 years)

showed a statistically significant difference (Odds Ratio (OR) = 5.09, P = 0.0035,

Fisher’s exact test) in the frequency of homoplasmic C150T transition in leukocytes.

Furthermore, the researchers noted that the abundance of heteroplasmic C150T

mutation in fibroblasts was correlated with age.

The association signal at control region position 150 has been replicated in both

the Japanese and Finnish populations[37]. In Finns, a comparison of 46 seniors

(age 90 or 91 years) and 57 middle-aged controls showed a significant association

(OR= 1.50, P = 0.037, χ2 test) of the 150T allele with longevity. A similar result

was found in a smaller Japanese sample set of 19 seniors and 9 controls (OR= 1.41,

P = 0.032, χ2 test).

A polymorphism in the MT-ND2 gene at position 5,178 of the coding region

was found to be associated with longevity in the Japanese population[38]. The study

investigated the relative frequencies of the 5178A and 5178C alleles, and found

that the 5178A allele in 9 of 11 centenarians, versus 12 of 43 controls. This same

polymorphism was also associated with glucose tolerance in Japanese men, and may

contribute to resistance to type II diabetes. The MT-ND2 gene encodes a subunit of

NADH dehydrogenase, complex I of the mitochondrial electron transport chain.

1.3 Hypothesis and Specific Aims
We hypothesize that healthy aging is influenced by sequence variation in the mito-

chondrial genome. Therefore, one or more common mitochondrial alleles will be

associated with healthy aging.

The specific aims of this study are as follows:

1. Survey the mitochondrial genomes of cases and controls for sequence variants.

2. Determine whether common variation in the mitochondrial genome is associ-

ated with healthy aging in our study population.
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Chapter 2

Variant Detection

2.1 Introduction
The mitochondrial genome is amenable to targeted resequencing by second-generation

technologies. Its relatively small size (16.5 kilobase (kb)) and low repetitive se-

quence content make it much more likely that a unique sequence alignment can be

determined for the short reads generated by current second-generation sequencing

systems.

In order to identify the extent of mitochondrial genome variation in our sample

set, we used two sequencing technologies for two distinct segments of the mito-

chondrial genome. For the non-coding control region (position 16,024-576), we

performed bi-directional Sanger sequencing on all 419 cases and 415 controls. A

pooled Illumina Genome Analyzer (GA) sequencing strategy was used to identify

variants in the entire mitochondrial genome. See figure 2.1 for an outline of the

variant detection strategy.

2.2 Methods
This study was approved by the joint Clinical Research Ethics Board of the British

Columbia Cancer Agency and the University of British Columbia. All subjects gave

written informed consent.
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Control Region

Coding Region

Illumina 
GA Seq

2x 600 bp PCR

1x 16.4 kb PCR

TACAGTGATTTCCATCGGATC

TACAGTGATATCCATCGGATC

Sequenom 
Genotyping

Sanger Sequencing

Figure 2.1: Experimental Design for Variant Detection. Two sequencing tech-
nologies were used to identify mitochondrial genome variation. The control-
region was PCR-amplified in two segments and sequenced by Sanger sequenc-
ing in individuals. The entire mitochondrial genome was PCR-amplified, pooled,
and sequenced on the Illumina Genome Analyzer. Coding region variants were
carried forward to Sequenom genotyping in individuals.
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2.2.1 Subjects and Samples

The subjects of this study were 419 healthy elderly individuals (cases) and 415

mid-life controls. Cases were > 85 years old at the time of recruitment, and had not

been diagnosed with cancer, cardiovascular disease, Alzheimer disease or diabetes.

Controls were 40-50 years old at recruitment, and were ascertained without regard

to health status. All participants are of European descent, based on subject-reported

ethnicity of their four grandparents. Total DNA was extracted from peripheral

blood leukocytes using the Gentra Puregene Blood Kit (Qiagen), according to the

manufacturer’s protocol.

2.2.2 Control Region PCR and Sanger Sequencing

PCR primers were designed not to overlap with common polymorphic loci. In-silico

PCR was performed using web service based at Kyushu University, to ensure that no

nuclear DNA segments would be co-amplified[39]. The mitochondrial control region

was PCR-amplified with Platinum Pfx polymerase (Invitrogen). PCR reactions

were performed in 20 µL total volume containing: 20 ng template genomic DNA,

10 µM each of forward primer (MAP001 F or MAP002.1 F) and reverse primer

(MAP001 R or MAP002.1 R) (Table 2.1), 0.4 U Platinum Pfx enzyme, 10 mM each

dNTPs, and 1x Phusion Buffer GC. Forward and reverse primers incorporated the

-21M13F (TGTAAAACGACGGCCAGT) and M13R (CAGGAAACAGCTATGAC)

extensions, respectively, at their 5’ ends. Sequencing reactions were carried out as

described previously [40].

2.2.3 Sanger Sequence Assembly

Sanger sequence traces were aligned to the revised Cambridge Reference Sequence

(rCRS) reference sequence (GenBank accession NC 012920) with the Phred/Phrap/-

Consed suite, version 20.0 [41, 42, 43]. Polymorphisms were first detected automat-

ically using Polyphred version 6.18. To minimize false-positives all non-reference

alleles were manually confirmed by visual inspection of chromatograms by two

people.
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2.2.4 Long PCR

The mitochondrial genome was amplified using long-PCR with Phusion polymerase

(Finnzymes). PCR reactions were performed in 20 µL total volume containing: 20

ng template genomic DNA (2 ng/µL), 10 µM each of forward primer MAP011.1 F

and reverse primer MAP011.1 R (Table 2.1), 0.4 U Phusion enzyme, 10mM each

dNTPs, and 1x Phusion Buffer GC. The thermocycler program was: 1.) initial melt

at 98°C for 30 seconds, 2.) melt at 98°C for 10 seconds, 3.) anneal/extend at 72°C

for 8 minutes, 15 seconds 4.) repeat steps 2 and 3, 29 times 5.) final extension at

72°C for 10 minutes.

Table 2.1: PCR primers used for Sanger sequencing and long-PCR.

Primer ID Tm (°C) Sequence rCRS Position
MAP011.1-F 66.3 GGGAGCTCTCCATGCATTTGG 34-54
MAP011.1-R 64.7 AGACCTGTGATCCATCGTGATGTC 16,558-12
MAP001-F 57.1 (-21M13-Fwda)GAAAAAGTCTTTAACTCCACCATT 15,961-15,984
MAP001-R 58.9 (M13-Revb)TACTGCGACATAGGGTGCTC 107-126
MAP002.1-F 59.3 (-21M13-Fwd)GAGCTCTCCATGCATTTGG 36-54
MAP002.1-R 57.3 (M13-Rev)AGGGTGAACTCACTGGAACG 707-726

a‘-21M13-Fwd’ = TGTAAAACGACGGCCAGT
b‘M13-Rev’ = CAGGAAACAGCTATGAC

2.2.5 Construction of DNA Pools

DNA products from long-PCR were quantitated with Quant-iT™PicoGreen® reagent

(Invitrogen). Two DNA pools were constructed. One pool consisted of 10 ng mtDNA

from each of 419 case samples, and the other consisted of 10 ng mtDNA from each

of 415 control samples. DNA was concentrated by speed-vac.

2.2.6 Library Construction and Sequencing

Library construction and DNA sequencing was carried out by the sequencing

platform of the BC Genome Sciences Centre. Pooled mtDNA was sheared using

sonication and size-separated using electrophoresis. The ∼ 300-bp fraction was

isolated for library construction using the Illumina Genome Analyzer single-end

library protocol (Illumina). Sequencing was performed on an Illumina GA using

two lanes of a flow cell per pool, generating 36-bp reads.
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Table 2.2: Summary of Illumina Sequence Mapping (Untrimmed Reads)

Chr. Length Reads Mapped, Cases Reads Mapped, Controls
1 249,250,621 512,872 (4.30%) 539,464 (4.23%)
2 243,199,373 81,462 (0.68%) 85,478 (0.67%)
3 198,022,430 74,357 (0.62%) 77,525 (0.61%)
4 191,154,276 48,754 (0.41%) 53,598 (0.42%)
5 180,915,260 206,336 (1.73%) 225,336 (1.77%)
6 171,115,067 32,858 (0.28%) 35,324 (0.28%)
7 159,138,663 170,779 (1.43%) 227,925 (1.79%)
8 146,364,022 35,068 (0.29%) 38,300 (0.30%)
9 141,213,431 27,073 (0.23%) 26,942 (0.21%)
10 135,534,747 25,878 (0.22%) 25,809 (0.20%)
11 135,006,516 97,174 (0.81%) 98,442 (0.77%)
12 133,851,895 28,901 (0.24%) 30,747 (0.24%)
13 115,169,878 35,384 (0.30%) 36,679 (0.29%)
14 107,349,540 23,239 (0.19%) 24,482 (0.19%)
15 102,531,392 13,155 (0.11%) 14,121 (0.11%)
16 90,354,753 13,580 (0.11%) 13,829 (0.11%)
17 81,195,210 311,656 (2.61%) 299,374 (2.35%)
18 78,077,248 19,447 (0.16%) 20,532 (0.16%)
19 59,128,983 7,709 (0.06%) 7,346 (0.06%)
20 63,025,520 11,142 (0.09%) 11,389 (0.09%)
21 48,129,895 13,807 (0.12%) 14,062 (0.11%)
22 51,304,566 5,967 (0.05%) 5,941 (0.05%)
X 155,270,560 54,631 (0.46%) 62,053 (0.49%)
Y 59,373,566 11,447 (0.10%) 11,022 (0.09%)
MT 16,569 4,286,809 (35.94%) 4,681,659 (36.68%)
other 6,110,758 5,068 (0.04%) 5,087 (0.04%)
total mapped - 6,154,553 (51.59%) 6,672,466 (52.27%)
total unmapped - 5,774,653 (48.41%) 6,092,354 (47.73%)
grand total - 11,929,206 (100.00%) 12,764,820 (100.00%)

2.2.7 Statistical Analysis

In order to assess the effect of read trimming on mapping, alignments were done

with both full 36-base reads and trimmed reads. For trimmed reads, the BWA

read-trimming parameter (q=25) was used. Short sequence reads were aligned to

the GRCh37 (hg19) reference using the BWA sequence alignment program, version

0.6.1-r104[44]. Aside from the read-trimming parameter, all reads were mapped

using default BWA parameters.

Per-base quality scores for both untrimmed and trimmed reads were calculated

with FastQC software[45] (See figures 2.4, 2.5)

SNPs were detected by analyzing BWA ‘pileup’ output files with a custom perl
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Table 2.3: Summary of Illumina Sequence Mapping (Trimmed Reads)

Chr. Length Reads Mapped, Cases Reads Mapped, Controls
1 249,250,621 496,262 (6.92%) 508,839 (6.92%)
2 243,199,373 95,787 (1.34%) 94,431 (1.28%)
3 198,022,430 86,431 (1.20%) 82,319 (1.12%)
4 191,154,276 64,637 (0.90%) 65,229 (0.89%)
5 180,915,260 263,349 (3.67%) 270,725 (3.68%)
6 171,115,067 38,931 (0.54%) 37,264 (0.51%)
7 159,138,663 112,712 (1.57%) 107,757 (1.47%)
8 146,364,022 43,377 (0.60%) 42,340 (0.58%)
9 141,213,431 35,488 (0.49%) 32,654 (0.44%)
10 135,534,747 32,305 (0.45%) 29,541 (0.40%)
11 135,006,516 101,180 (1.41%) 96,423 (1.31%)
12 133,851,895 35,422 (0.49%) 35,238 (0.48%)
13 115,169,878 36,647 (0.51%) 36,389 (0.50%)
14 107,349,540 29,971 (0.42%) 28,723 (0.39%)
15 102,531,392 16,489 (0.23%) 15,896 (0.22%)
16 90,354,753 17,579 (0.25%) 16,484 (0.22%)
17 81,195,210 392,551 (5.47%) 340,912 (4.64%)
18 78,077,248 22,205 (0.31%) 21,735 (0.30%)
19 59,128,983 8,908 (0.12%) 7,365 (0.10%)
20 63,025,520 14,805 (0.21%) 13,690 (0.19%)
21 48,129,895 16,454 (0.23%) 14,409 (0.20%)
22 51,304,566 7,768 (0.11%) 6,995 (0.10%)
X 155,270,560 66,354 (0.93%) 64,348 (0.88%)
Y 59,373,566 11,477 (0.16%) 10,403 (0.14%)
MT 16,569 3,750,715 (52.29%) 4,015,230 (54.64%)
other 6,110,758 5,121 (0.07%) 4,722 (0.06%)
total mapped - 5,802,925 (80.90%) 6,000,061 (81.64%)
total unmapped - 1,370,272 (19.10%) 1,348,969 (18.36%)
grand total - 7,173,197 (100.00%) 7,349,030 (100.00%)

script. At each position, the numbers of reference and non-reference bases were

counted. Only those bases with phred-scaled quality scores of 40 were included for

SNP detection.

2.3 Results

2.3.1 Sequencing of the Mitochondrial Conrol Region

The highly polymorphic mitochondrial control region rCRS (position 16024-576)

was sequenced using bi-directional Sanger sequencing. We discovered 277 SNPs in
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the control region that were present in at least one sample.

2.3.2 Next-Generation Sequencing of Pooled mtDNA

The median depth of sequence coverage was 31,134 reads for the case pool and

12,683 reads for the control pool. This represents approximately 30x coverage for

each sample that is included in the pool. To reduce the number of false-positive

variant calls that are due to sequencing errors, we only considered high-quality

bases (base-quality score > 35 and mapping-qualty score > 20) for SNP-calling.

We identified 90 SNPs in the case pool and 113 SNPs in the control pool with

MAF > 1%. 84 of these SNPs are common to both pools, with 6 SNPs only being

observed in the case pool and 29 SNPs only being observed in the control pool. (see

figs 2.8 and 2.9).

Comparison of minor allele frequencies for control region SNPs in Sanger and

Illumina GA datasets is shown in Figures 2.10 and 2.11. We found close correlation

(Spearman’s r = 0.88 in cases, Spearman’s r = 0.88 in controls, N = 277). We also

observed that pooled Illumina GA sequencing produced consistently lower MAF

estimates than Sanger sequencing of individual samples in this region.

Table 2.4: Functional Consequences for Non-synonymous SNPs

ID Position MAF (Seniors) MAF(Controls) Gene Amino Acid Change PolyPhen
rs28357980 4,917 0.073 0.060 MT-ND2 N [Asn]⇒ D [Asp] 0.129 (benign)
rs28358886 8,697 0.078 0.053 MT-ATP6 M [Met]⇒ I [Ile] 0.890 (possibly damaging)
rs9645429 9,055 0.070 0.051 MT-ATP6 A [Ala]⇒ T [Thr] 0.845 (possibly damaging)
rs2853826 10,398 0.055 0.059 MT-ND3 T [Thr]⇒ A [Ala] 0.000 (benign)
rs28359178 13,708 0.041 0.028 MT-ND5 A [Ala]⇒ T [Thr] 0.000 (benign)
rs3135031 14,766 0.084 0.072 MT-CYTB T [Thr]⇒ I [Ile] 0.000 (benign)
rs28357681 14,798 0.109 0.077 MT-CYTB F [Phe]⇒ L [Leu] 0.000 (benign)
rs2853508 15,326 0.245 0.218 MT-CYTB T [Thr]⇒ A [Ala] 0.000 (benign)
rs3088309 15,452 0.134 0.118 MT-CYTB L [Leu]⇒ I [Ile] 0.029 (benign)

For each gene in the mitochondrial genome, the number of variants observed at

≥ 1% frequency were tabulated (Table 2.5). The most variable protein-coding gene

is MT-ND3, with 20.2 variants per kb in cases, and 17.3 variants per kb in controls.

The most variable RNA gene is MT-TT, with 45.5 variants per kb in cases and 75.5

variants per kb in controls.
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(a) Alignment

(b) Traces

Figure 2.2: SNP Calling by Phred/Phrap/Consed + PolyPhred. (a) Reads were
aligned to the revised Cambridge Reference Sequence (rCRS). Each sample
was sequenced in both forward and reverse directions. Only a subset of samples
are shown Sample IDs are at left in yellow type. (b) Variants were identified
automatically using PolyPhred, and confirmed manually by visual inspection of
sequence traces. Two samples (127 WIL and 128 SIN) with differing alleles at
contig position 1,288 (rCRS position 16,288) are shown.
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(a) a

(b) b

Figure 2.3: Putative Heteroplasmic Positions. Heteroplasmy was observed in
some samples by identifying double-peaks in sequence traces. (a) Sample
‘157 EPP’ shows putative heteroplasmy level of ∼ 25% at contig position 1,189
(rCRS position 16,189). (b) Sample ‘489 SAM’ shows putative heteroplasmy
level of ∼ 50% at contig position 1,126 (rCRS position 16,126). Note that the
relative heights of the two peaks at the heteroplasmic positions are consistent in
forward and reverse reads.
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(a) Case Pool, Untrimmed

(b) Case Pool, Trimmed

Figure 2.4: Effect of Read-trimming on Per-base Quality Distributions (Case
Pool) Average base quality score was calculated at each read position, across
all reads. For each position, red line indicates median quality score, yellow
box indicates interquartile range (25-75%), upper and lower whiskers represent
90% and 10% quantiles, respectively, and blue line represents mean quality
score. The upwards shift in average quality for trimmed reads indicates that
poor-qualty sequence near the 3’ end of reads has been removed in trimmed
reads.
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(a) Control Pool, Untrimmed

(b) Control Pool, Trimmed

Figure 2.5: Effect of Read-trimming on Per-base Quality Distributions (Con-
trol Pool) Average base quality score was calculated at each read position,
across all reads. For each position, red line indicates median quality score,
yellow box indicates interquartile range (25-75%), upper and lower whiskers
represent 90% and 10% quantiles, respectively, and blue line represents mean
quality score. The upwards shift in average quality for trimmed reads indicates
that poor-qualty sequence near the 3’ end of reads has been removed in trimmed
reads.
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Figure 2.6: Sequence coverage across the mitochondrial genome (Case Pool).
Blue line indicates high-quality (phred-scaled quality score = 40) sequence
coverage. Graph lines every 10,000-fold depth.
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Figure 2.7: Sequence coverage across the mitochondrial genome (Control Pool).
Blue line indicates high-quality (phred-scaled quality score = 40) sequence
coverage. Graph lines every 10,000-fold depth.
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Figure 2.8: Minor allele frequencies (Case Pool). Locations and minor allele fre-
quencies for all SNPs detected by Illumina GA sequencing. Base identities are
indicated as follows: A = Red, C = Blue, G = Orange, T = Green. Heights
of data bars indicate minor allele frequencies, scale bars every 10% allele
frequency. 22



Figure 2.9: Minor allele frequencies (Control Pool). Locations and minor allele
frequencies for all SNPs detected by Illumina GA sequencing. Base identities
are indicated as follows: A = Red, C = Blue, G = Orange, T = Green. Heights
of data bars indicate minor allele frequencies, scale bars every 10% allele
frequency. 23



Figure 2.10: MAF comparison (Cases). Minor allele frequencies were determined
by both Sanger sequencing and by pooled Illumina GA sequencing for 277
SNPs in the control region. The Spearman’s rank correlation between the two
estimates is 0.88 in the case sample set, and 0.91 in controls. Dashed line
indicates slope = 1; the least-squares regression line is indicated by a solid
line.
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Figure 2.11: MAF comparison (Controls). Minor allele frequencies were deter-
mined by both Sanger sequencing and by pooled Illumina GA sequencing for
277 SNPs in the control region. The Spearman’s rank correlation between the
two estimates is 0.91 in control sample set. Dashed line indicates slope = 1;
the least-squares regression line is indicated by a solid line.
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Table 2.5: Number of Variants by Gene

Total Variants Variants per kb
Gene Size (bp) Cases Controls Cases Controls
MT-TF 71 0 0 0.0 0.0
MT-RNR1 954 7 10 7.3 10.5
MT-TV 69 0 0 0.0 0.0
MT-RNR2 1,559 17 16 10.9 10.3
MT-TL1 75 0 0 0.0 0.0
MT-ND1 956 8 7 8.4 7.3
MT-TI 69 0 0 0.0 0.0
MT-TQ 72 1 1 13.9 13.9
MT-TM 68 0 0 0.0 0.0
MT-ND2 1,042 12 19 11.5 18.2
MT-TW 68 0 0 0.0 0.0
MT-TA 69 1 2 14.5 29.0
MT-TN 73 0 0 0.0 0.0
MT-TC 66 0 1 0.0 15.2
MT-TY 66 0 0 0.0 0.0
MT-CO1 1,542 11 16 7.1 10.4
MT-TS1 69 1 1 14.5 14.5
MT-TD 68 0 0 0.0 0.0
MT-CO2 684 3 4 4.4 5.8
MT-TK 70 0 1 0.0 14.3
MT-ATP8 207 3 3 14.5 14.5
MT-ATP6 681 7 9 10.3 13.2
MT-C03 784 10 9 12.8 11.5
MT-TG 68 1 1 14.7 14.7
MT-ND3 346 7 6 20.2 17.3
MT-TR 65 1 1 15.4 15.4
MT-ND4L 297 2 3 6.7 10.1
MT-ND4 1,378 18 24 13.1 17.4
MT-TH 69 0 0 0.0 0.0
MT-TS2 59 0 0 0.0 0.0
MT-TL2 71 1 2 14.1 28.2
MT-ND5 1,812 28 27 15.5 14.9
MT-ND6 525 10 6 19.0 11.4
MT-TE 69 0 0 0.0 0.0
MT-CYTB 1,141 20 22 17.5 19.3
MT-TT 66 3 5 45.5 75.8
MT-TP 68 0 0 0.0 0.0
All Protein-coding 11,395 139 155 12.2 13.6
All RNA-coding 4,021 33 41 8.2 10.2
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2.4 Discussion
We have shown here that it is possible to discover variants across the entire mi-

tochondrial genome in over 400 samples in a single sequencing experiment. By

combining long-PCR with second-generation sequencing technology, we were able

to estimate the alllele frequencies of over 300 mitochondrial SNPs in our study

population. This technique will be useful for rapidly surveying a large sample

set for mitochondrial SNPs. Given its small size and high copy number per cell,

mtDNA is a good candidate for pooled targeted resequencing efforts. The size

of the mitochondrial chromosome (16.5 kb) makes it amenable to long PCR. The

whole mtDNA genome can be amplified in one reaction, which simplifies the DNA

pooling process. A similar variant detection has been employed by another group,

using a pool size of 20 samples[46].

Figures 2.6 and 2.7 show that the entire mitochondrial genome was sufficiently

covered by mapped reads to perform variant detection. There are strong peaks in

coverage in both the case pool and control pool near position 200 within the control

region. We attribute this peak to excess PCR primers that were carried through into

the sequencing reaction.

A previous report showed accurate determination of allele frequencies of pooled

genomic DNA on the ABI SOLiD, Roche 454 and Illumina GA II platforms [47].

Our estimation of MAF from Illumina sequencing of DNA pools correlates strongly

with MAF calculated using genotypes determined using Sanger sequence data

(Spearman’s r = 0.88); this correlation is close to the value of r2 = 0.9637 pub-

lished by Druley et al[47]. The most likely source of discrepancy between these

two datasets is due to small differences in the quantity of DNA that each sample

contributes to the DNA pool.

In our analyses, MAF estimated from Illumina GA data is about 25% lower

than our measurement from Sanger sequencing. We suggest that this discrepancy

may represent a bias against mapping of reads containing non-reference bases. We

suggest that a read that contains a real non-reference base in the form of a SNP is

less likely to align than a read that contains no non-reference SNPs, and that this

probem will be increased in low-quality sequence data. This phenomenon, referred

to as ‘reference bias,’ has been observed in previous studies of next-generation
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sequence data[48].

The number of variants observed in at least 1% of samples varied from 0 (MT-

TY, MT-TF for example) to 27 (MT-ND5) (see table 2.5). When normalized by the

length of the gene, the most variable genes are MT-ND3 (20.2 variants/kb in cases,

17.3 variants/kb in controls) and MT-TT (45.5 variants/kb in cases, 75.8 variants/kb

in controls). Note, however, that the short length of the tRNA genes (∼ 70 bp) leads

to a highly variable estimate of variants/kb. Overall the distribution of variants was

similar in protien-coding and RNA-coding genes at roughly 10 variants/kb.

Although our study was not designed to investigate the role that heteroplasmic

variants play in the aging process, we did detect a small number of putative het-

eroplasmic variants by Sanger sequencing. For low levels of heteroplasmy, (below

∼ 25%) it would be difficult to distinguish a true heteroplasmic variant from back-

ground noise in the sequence trace. The few instances of heteroplasmy that we were

able to identify with some certainty appeared to be close to 50% heteroplasmic (See

2.3 for a representative example).
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Chapter 3

A Case-Control Association Study
for Mitochondrial Variants and
Healthy Aging

In order to identify variants that are associated with the healthy-aging phenotype,

case-control association tests were performed using PLINK software[49]. Each SNP

is analyzed by comparing the major and minor allele frequencies in cases versus

controls, by applying a Chi-squared (χ2) test.

The power of a Chi-squared test to detect a genetic association is based on

a comparison of a null χ2
(1−α) distribution to an alternative χ2 distribution with

non-centrality parameter λ , proportional to the effect size[50]. It is expressed as

follows:

Power = P(χ2(d f ,λ )≥ χ
2
1−α(d f )), (3.1)

where:

λ = ∆
2N =

(
(p−q)2

q

)
N (3.2)

and for a 2×2 contingency table, the number of degrees of freedom (d f ) are one.

Coding-region variants were nominated for genotyping based on three criteria.
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Variants that showed a suggestive P-value (< 0.05) based on a comparison of the

estimated Minor Allele Frequency (MAF) from pooled Illumina GA II sequencing

were genotyped, as were a set of 64 tag Single Nucleotide Polymorphism (SNP)s

that were designed to capture all common variants present at > 1% in the European

population, with linkage disequilibrium of at least r2 = 0.8[15]. Finally, any variant

with an estimated MAF of > 0.05 based on pooled sequencing that did not fit the first

two criteria was also included. In total, 92 SNPs were nominated for genotyping

(see Supplemental Table B.1).

Due to our limited statistical power to detect moderate effects in low-frequency

variants, a MAF cut-off of 10% was applied before association testing. This limited

the number of SNPs that qualified for testing to nine control-region SNPs and seven

coding-region SNPs (See tables 3.1 and 3.2, respectively).

One SNP in the control region was selected for testing based on previous reports

of its association with longevity in Italian[3], Finnish and Japanese[37] populations.

3.1 Methods

3.1.1 Power Calculations

Statistical power was calculated with the PS power and sample size calculator[51].

Power curves were calculated for a sample of 419 cases and 415 controls, at minor

allele frequencies of 0.01, 0.05, 0.10, 0.25 and 0.50, with a false-positive rate

α = 0.05.

3.1.2 Genotyping and Quality Control

Genotyping was performed on the Sequenom MassARRAY platform at the McGill

University/Genome Québec Innovation Centre. A set of 92 SNPs were included

in the first assay set. A set of 37 genotyping assays were repeated due to quality

control failure.

Quality control was performed in collaboration with Dr. Denise Daley (Uni-

versity of British Columbia, St.Paul’s Hospital). Assays with call rates below 95%

were considered ‘failed’ and were re-designed. Genotype cluster plots were visually

inspected for irregularities.
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Figure 3.1: Power to Detect Association. Statistical power was calculated using
PS software[51]. Curves are shown for the following control MAFs: 0.01 (blue),
0.05 (orange),0.10 (yellow), 0.25 (green) and 0.50 (purple). For all curves,
α = 0.05 number of cases = 419, number of controls = 415.

3.2 Results
This study is powered to detect an odds ratio of at least 1.75 (or 0.45) for a variant

at minor allele frequency of 0.10 with a false-positive rate of 0.05 (see 3.1).

Of the 92 SNPs that were chosen for the initial round of Sequenom genotyping,

37 failed quality control (See B.3) due to low call rates. These assays were re-

designed and repeated. Of the second set, only three assays failed quality controls

(mt9947, rs41345446 and rs41347846).

After performing χ2 tests for association between mtDNA alleles and healthy

aging, no variants that were tested showed association with the healthy aging

phenotype, at a p-value significance threshold of 0.05. The lowest p-value for

control region SNPs was rs117135796 at position 152, with a p-value of 0.258 and

odds ratio of 0.81. For coding region SNPs, the lowest p-value was 0.280, with

odds ratio 1.11 for rs2853495 at position 11,719 within the MT-ND4 gene.
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The rs62581312 variant at position 150 within the control region showed a

p-value of 0.171 and odds ratio of 0.72.

Table 3.1: Mitochondrial Control Region (MAF > 0.10)

Chr ID Position Minor Allele Major Allele FA
a FU

b χ2c P Odds Ratio
M rs3087742 73 A G 0.456 0.442 0.163 0.726 1.06
M rs117135796 152 C T 0.185 0.218 1.405 0.258 0.81
M rs2857291 195 C T 0.170 0.181 0.173 0.714 0.93
M rs28625645 489 C T 0.102 0.098 0.031 0.908 1.04
M mt16126 16,126 C T 0.195 0.167 1.083 0.318 1.21
M rs55749223 16,189 C T 0.139 0.118 0.811 0.404 1.21
M rs2857290 16,270 T C 0.107 0.093 0.425 0.561 1.16
M rs34799580 16,311 C T 0.151 0.167 0.384 0.567 0.89
M rs3937033 16,519 T C 0.340 0.348 0.062 0.826 0.96

aMinor Allele Frequency in ‘Affecteds’ (seniors)
bMinor Allele Frequency in ‘Unaffecteds’ (controls)
cχ2 test statistic

Table 3.2: Mitochondrial Coding Region (MAF > 0.10)

Chr ID Position Minor Allele Major Allele FA
a FU

b χ2c P Odds Ratio
M rs2853517 709 G A 0.144 0.128 0.942 0.332 1.14
M rs3928306 3,010 C T 0.264 0.246 0.760 0.383 1.10
M rs2015062 7,028 A G 0.445 0.436 0.155 0.694 1.04
M rs2853825 9,477 G A 0.104 0.097 0.214 0.644 1.08
M rs2853495 11,719 A G 0.493 0.468 1.167 0.280 1.11
M rs2853499 12,372 C T 0.242 0.241 0.002 0.961 1.01
M rs28357681 14,798 A G 0.158 0.145 0.516 0.473 1.10

aMinor Allele Frequency in ‘Affecteds’ (seniors)
bMinor Allele Frequency in ‘Unaffecteds’ (controls)
cχ2 test statistic

Table 3.3: Replication of rs62581312 (C150T)

Chr ID Position Minor Allele Major Allele FA
a FU

b χ2c P Odds Ratio
M rs62581312 150 T C 0.082 0.110 1.88 0.171 0.72

aMinor Allele Frequency in ‘Affecteds’ (seniors)
bMinor Allele Frequency in ‘Unaffecteds’ (controls)
cχ2 test statistic
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3.3 Discussion
It is notable that this study did not replicate the previously-reported association

at position 150 of the mitochondrial control region[3]. There are several potential

explanations for this result. The study by Zhang et al. focused on a group of Italians

aged 99-106 years, whereas our samples qualify at age 85 and are mainly of British

ancestry. Although the association was replicated in both Finnish and Japanese

populations,[37] there may be population-specific genetic or environmental factors

that combine with the position 150 polymorphism to effect the aging phenotype.

Because the mitochondrial genome does not recombine, it is possible to identify

sets of variants that are inherited together and form mitochondrial haplotypes. These

haplotypes have been traced to geographic/ancestral lineages across the world[14].

Previous studies have identified haplogroups that are associated with longevity[52,

1, 53]. In our study, we elected to combine a previously-published set of common

European mitochondrial tag SNPs[15] with additional variants that were discovered

by pooled next-generation sequencing.
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Chapter 4

Discussion

We have designed a cost-effective method of surveying the mitochondrial genomes

of hundreds of samples for single-nucleotide polymorphisms. Our method combines

long-range PCR with a high-processivity, low-error DNA polymerase with pooled

next-generation sequencing on the Illumina Genome Analyzer platform. Our single-

amplicon long-PCR mtDNA isolation method also eliminates complications due

to co-amplification of of mtDNA-derived pseudogenes (NUMTs) in the nuclear

genome.

While we have established that is is possible to isolate and sequence the whole

mitochondrial genome via a single long-PCR reaction, our mtDNA isolation proto-

col was not designed to detect common deletions that have been observed in other

studies[54]. Future studies may be able to take advantage of paired-end sequencing

to detect relatively large-scale deletions such as the common 4.9 kb deletion that has

been characterized between rCRS positions 8,470 and 13,446[55]. In a paired-end

sequencing experiment, deletions can be detected when paired reads map further

apart than the expected ∼ 300 bp insert size[56].

Previous reports have demonstrated accurate determination of allele frequencies

of pooled genomic DNA on the ABI SOLiD, Roche 454 and Illumina GA IIx

platforms[47, 57]. Our estimation of MAF from Illumina sequencing of DNA

pools correlates strongly with MAF calculated using genotypes determined using

Sanger sequence data (Spearman’s r = 0.88); this correlation is close to the value of

r2 = 0.9637 published by Druley et al[47]. The most likely source of discrepancy
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between these two datasets is due to small differences in the quantity of DNA that

each sample contributes to the DNA pool.

Our study was not designed for sensitive detection of heteroplasmic variants,

though we did observe a small number of variants that were suggestive of hetero-

plasmy via analysis of Sanger sequence traces. These variants appear similar to

heterozygous variants in diploid nuclear sequence data, with overlapping peaks of

two different fluorophores (Fig 2.3), and suggest a roughly equal mixture of two

alleles. For lower levels of heteroplasmy, it becomes difficult to distinguish true

heteroplasmy from background noise in the Sanger sequence trace. The goal of

this study was to investigate the role that common, heritable mitochondrial variants

may play in the human aging process. Heteroplasmy can be inherited, and can

also arise de novo, and can vary by tissue type[58, 59]. Recent studies have shown

that next-generation sequencing can be a powerful tool to detect heteroplasmy[35].

In order to detect heteroplasmic variants in a pooled sequencing experiment, one

would need a way to tie each read to a specific sample, rather than estimate the allele

frequencies of the whole pool as was done in our experiment. New DNA barcoding

methods (also called ‘indexed’ sequencing) have now made this possible[60]. It is

well established that heteroplasmic variants accumulate with age[58, 61, 62, 63], so

if we had used a sequencing technology that was sensitive to heteroplasmy then it is

likely that we would have observed differences in levels in heteroplasmy between

our cases (> 85 years of age) and controls (40-54 years of age). It would remain

unclear, however, if those somatic heteroplasmic variants would be passed down to

future generations and also to what extent heteroplasmic variants are involved with

healthy aging.

In our analyses, MAF estimated from Illumina GA data is about 25% lower

than our measurement from Sanger sequencing. We suggest that this discrepancy

may represent a bias against mapping of reads containing non-reference bases. We

suggest that a read that contains a real non-reference base in the form of a SNP

is less likely to align than a read that contains no non-reference SNPs, and that

this problem will be increased in low-quality sequence data. This phenomenon

is referred to as ‘reference bias,’ and has been observed in other next-generation

sequencing experiments[48].

When conducting a case-control genetic association study, it is important to
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control for possible population stratification. If the case and control groups are

composed of samples from different ethnic backgrounds, it is possible to observe

false-positive associations due to differences in population-specific allele frequen-

cies that play no functional role in the phenotype of interest. Another study that

is also part of the G3 Study of Healthy Aging, and used the same sample set has

analyzed a set of ancestry-informative markers and found no evidence for population

stratification[64].

Other studies have found evidence for gene-gene interactions in the etiology of

type II diabetes mellitus. One study used a non-parametric machine learning method

known as Multifactor Dimensionality Reduction (MDR) to study genetic association

with the metabolic disease. Out of 23 loci on 15 candidate genes in the study, the

researchers were able to identify a two-locus interaction between PPARγ and UCP2

that significantly reduced risk of T2DM in Koreans (odds ratio: 0.51, 95% CI: 0.34,

0.77, p=0.0016)[65]. Another study, using a more traditional logistic regression

model, identified a three-locus interaction between variants in UCP2, PGC-1α and

position 10,398 of the mitochondrial genome in the North Indian Population[66].

Although our study lacked the statistical power to detect these sorts of effects, this

may be a fruitful direction for future studies of mitochondrial genetics in aging.
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Figure A.1: Sequence Coverage. Sequence reads were aligned to the rCRS (NC 012920.1) with MAQ. Median
coverage was 13,134 reads (31.3 reads per sample) for the case pool, and 12,683 reads (30.6 reads per sample) for
the control pool.
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Figure A.2: Minor Allele Frequencies from Sanger Dataset. A total of 277 SNPs were identified by Sanger sequenc-
ing.
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Appendix B

Mitochondrial Marker Data

Table B.1: Mitochondrial Marker Selection

Position MAF case MAF control P value rs Number Reason for Inclusion

512 0.017 0.000 0.01524 NA P-value < 0.050
675 0.165 0.162 0.92549 NA MAF > 0.050
709 0.096 0.079 0.46286 rs2853517 Saxena et al. Tag SNP
750 0.014 0.028 0.16074 rs2853518 SAXENA TAG
896 0.002 0.018 0.03740 NA P-value < 0.050
930 0.048 0.035 0.49043 rs41352944 Saxena et al. Tag SNP

1,189 0.058 0.071 0.48061 rs28358571 Saxena et al. Tag SNP
3,010 0.223 0.184 0.16902 rs3928306 Saxena et al. Tag SNP
3,109 0.068 0.093 0.16225 NA MAF > 0.050
3,348 0.001 0.004 0.24731 rs41423746 Saxena et al. Tag SNP
3,394 0.014 0.009 0.75245 rs41460449 Saxena et al. Tag SNP
3,505 0.004 0.026 0.01194 rs28358585 P-value < 0.050
3,849 0.001 0.011 0.03014 NA P-value < 0.050
3,915 0.021 0.033 0.29868 rs41524046 Saxena et al. Tag SNP
4,336 0.016 0.012 0.77281 rs41456348 Saxena et al. Tag SNP
4,529 0.012 0.034 0.03835 NA P-value < 0.050
4,769 0.035 0.052 0.24322 rs3021086 Saxena et al. Tag SNP
4,793 0.024 0.008 0.08982 NA Saxena et al. Tag SNP
4,928 0.000 0.001 1.00000 rs41461545 Saxena et al. Tag SNP
5,426 0.010 0.017 0.38249 NA Saxena et al. Tag SNP
5,465 0.000 0.000 1.00000 rs3902405 Saxena et al. Tag SNP
5,495 0.016 0.010 0.54615 rs3020602 Saxena et al. Tag SNP
5,656 0.017 0.012 0.77281 NA Saxena et al. Tag SNP
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Position MAF case MAF control P value rs Number Reason for Inclusion

5,785 0.000 0.011 0.03014 NA P-value < 0.050
5,981 0.002 0.016 0.03740 NA P-value < 0.050
6,182 0.000 0.011 0.03014 NA P-value < 0.050
6,260 0.012 0.017 0.57664 NA Saxena et al. Tag SNP
6,272 0.000 0.011 0.03014 NA P-value < 0.050
6,365 0.017 0.019 0.80102 rs41464546 Saxena et al. Tag SNP
6,719 0.003 0.002 1.00000 rs28358872 Saxena et al. Tag SNP
6,776 0.029 0.024 0.82959 NA Saxena et al. Tag SNP
7,028 0.498 0.471 0.40672 rs2015062 Saxena et al. Tag SNP
8,251 0.027 0.057 0.02499 rs3021089 P-value < 0.050
8,269 0.021 0.031 0.39659 rs8896 Saxena et al. Tag SNP
8,303 0.003 0.016 0.03740 NA P-value < 0.050
8,697 0.117 0.072 0.03293 rs28358886 P-value < 0.050
8,705 0.012 0.007 0.72527 NA Saxena et al. Tag SNP
8,869 0.000 0.000 1.00000 NA Saxena et al. Tag SNP
9,123 0.011 0.010 1.00000 rs28358270 Saxena et al. Tag SNP
9,150 0.013 0.007 0.72527 NA Saxena et al. Tag SNP
9,477 0.067 0.068 1.00000 rs2853825 Saxena et al. Tag SNP
9,548 0.016 0.000 0.01524 NA P-value < 0.050
9,667 0.011 0.018 0.57664 rs41482146 Saxena et al. Tag SNP
9,716 0.027 0.012 0.20577 rs41502750 Saxena et al. Tag SNP
9,899 0.020 0.013 0.57807 rs41345446 Saxena et al. Tag SNP
9,947 0.003 0.016 0.03740 NA P-value < 0.050

10,034 0.016 0.030 0.25570 rs41347846 Saxena et al. Tag SNP
10,084 0.012 0.006 0.45119 rs41487950 Saxena et al. Tag SNP
10,296 0.091 0.081 0.71196 NA MAF > 0.050
10,314 0.033 0.074 0.00901 NA P-value < 0.050
10,398 0.161 0.185 0.35980 rs2853826 MAF > 0.050
10,915 0.002 0.011 0.12210 rs2857285 Saxena et al. Tag SNP
11,377 0.018 0.019 1.00000 NA Saxena et al. Tag SNP
11,485 0.019 0.021 0.81184 rs28529320 Saxena et al. Tag SNP
11,674 0.003 0.012 0.12210 rs28358286 Saxena et al. Tag SNP
11,719 0.428 0.433 0.88880 rs2853495 Saxena et al. Tag SNP
11,812 0.071 0.060 0.57741 rs3088053 Saxena et al. Tag SNP
11,914 0.034 0.027 0.68557 rs2853496 Saxena et al. Tag SNP
12,007 0.010 0.029 0.04604 rs2853497 Saxena et al. Tag SNP
12,372 0.213 0.236 0.45499 rs2853499 Saxena et al. Tag SNP
12,414 0.005 0.017 0.10603 NA Saxena et al. Tag SNP
12,501 0.017 0.041 0.03954 rs28397767 P-value < 0.050

47



Position MAF case MAF control P value rs Number Reason for Inclusion

12,633 0.025 0.020 0.81254 rs3926883 Saxena et al. Tag SNP
12,705 0.037 0.060 0.15203 rs2854122 Saxena et al. Tag SNP
13,020 0.010 0.017 0.38249 rs75577869 Saxena et al. Tag SNP
13,105 0.005 0.010 0.44948 rs2853501 Saxena et al. Tag SNP
13,637 0.007 0.026 0.03296 NA P-value < 0.050
13,706 0.022 0.000 0.00374 NA P-value < 0.050
13,708 0.090 0.065 0.19650 rs28359178 Saxena et al. Tag SNP
13,734 0.007 0.013 0.50388 rs41421644 Saxena et al. Tag SNP
13,869 0.030 0.091 0.00026 NA P-value < 0.050
13,870 0.020 0.069 0.00034 NA P-value < 0.050
13,879 0.012 0.042 0.00937 NA Saxena et al. Tag SNP
13,934 0.023 0.020 0.81254 NA Saxena et al. Tag SNP
13,965 0.006 0.005 1.00000 rs41509754 Saxena et al. Tag SNP
13,966 0.014 0.012 1.00000 rs41535848 Saxena et al. Tag SNP
14,182 0.032 0.042 0.46312 NA Saxena et al. Tag SNP
14,470 0.020 0.020 1.00000 rs3135030 Saxena et al. Tag SNP
14,793 0.047 0.054 0.75375 rs2853504 Saxena et al. Tag SNP
14,798 0.167 0.123 0.07692 rs28357681 Saxena et al. Tag SNP
15,022 0.018 0.048 0.02131 NA P-value < 0.050
15,043 0.025 0.040 0.17600 rs28357684 Saxena et al. Tag SNP
15,218 0.039 0.049 0.50023 rs2853506 Saxena et al. Tag SNP
15,257 0.041 0.042 1.00000 rs41518645 Saxena et al. Tag SNP
15,511 0.001 0.014 0.01491 NA P-value < 0.050
15,758 0.007 0.015 0.33904 rs41337244 Saxena et al. Tag SNP
15,775 0.000 0.014 0.01491 NA P-value < 0.050
15,784 0.005 0.004 1.00000 rs28357375 Saxena et al. Tag SNP
15,833 0.014 0.007 0.50548 rs41504845 Saxena et al. Tag SNP
15,884 0.007 0.021 0.08866 rs28617642 Saxena et al. Tag SNP
15,924 0.059 0.068 0.67229 rs2853510 Saxena et al. Tag SNP
15,937 0.012 0.034 0.03835 NA P-value < 0.050
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Table B.2: Mitochondrial Marker Set for Sequenom Genotyping

ID Chr Position Gene MAF Call Rate AA BB AB U Project State

mt512 M 512 Non-coding 0.000 0.994 0 971 0 6 good
mt675 M 675 RNR1 0.000 0.998 975 0 0 2 good
rs2853517 M 709 RNR1 0.141 0.999 138 838 0 1 good
rs2853518 M 750 RNR1 0.023 0.992 22 947 0 8 good
mt896 M 896 RNR1 0.000 0.000 0 0 0 977 failed
rs41352944 M 930 RNR1 0.046 1.000 932 45 0 0 good
rs28358571 M 1,189 RNR1 0.074 1.000 72 905 0 0 good
rs3928306 M 3,010 RNR2 0.248 0.998 733 242 0 2 good
mt3109 M 3,109 RNR2 0.000 0.999 0 976 0 1 good
rs41423746 M 3,348 ND1 0.002 0.988 963 2 0 12 good
rs41460449 M 3,394 ND1 0.013 0.996 960 13 0 4 good
rs28358585 M 3,505 ND1 0.018 1.000 959 18 0 0 good
mt3849 M 3,849 ND1 0.000 0.000 0 0 0 977 failed
rs41524046 M 3,915 ND1 0.027 0.996 26 947 0 4 good
rs41456348 M 4,336 TRNQ 0.017 0.959 16 921 0 40 good
mt4529 M 4,529 ND2 0.000 0.724 707 0 0 270 good
rs3021086 M 4,769 ND2 0.035 0.995 34 938 0 5 good
mt4793 M 4,793 ND2 0.000 0.000 0 0 0 977 failed
rs41461545 M 4,928 ND2 0.000 0.999 976 0 0 1 good
mt5426 M 5,426 ND2 0.000 0.000 0 0 0 977 failed
rs3902405 M 5,465 ND2 0.001 0.766 747 1 0 229 good
rs3020602 M 5,495 ND2 0.001 1.000 976 1 0 0 good
mt5656 M 5,656 Non-coding 0.000 0.000 0 0 0 977 failed
mt5785 M 5,785 TRNC 0.000 0.982 0 959 0 18 good
mt5981 M 5,981 COX1 0.000 0.000 0 0 0 977 failed
mt6182 M 6,182 COX1 0.000 0.000 0 0 0 977 failed
rs28623747 M 6,260 COX1 0.018 1.000 959 18 0 0 good
mt6272 M 6,272 COX1 0.000 0.898 877 0 0 100 good
rs41464546 M 6,365 COX1 0.016 0.997 16 958 0 3 good
rs28358872 M 6,719 COX1 0.000 0.000 0 0 0 977 failed
mt6776 M 6,776 COX1 0.000 0.000 0 0 0 977 failed
rs2015062 M 7,028 COX1 0.429 1.000 558 419 0 0 good
rs3021089 M 8,251 COX2 0.049 0.987 917 47 0 13 good
rs8896 M 8,269 ATP6 0.025 0.999 24 952 0 1 good
mt8303 M 8,303 ATP6 0.006 0.998 6 969 0 2 good
rs28358886 M 8,697 ATP6 0.090 0.987 87 877 0 13 good
mt8705 M 8,705 ATP6 0.000 0.000 0 0 0 977 failed
mt8869 M 8,869 ATP6 0.000 0.000 0 0 0 977 failed
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ID Chr Position Gene MAF Call Rate AA BB AB U Project State

rs28358270 M 9,123 ATP6 0.009 0.997 965 9 0 3 good
mt9150 M 9,150 ATP6 0.000 0.000 0 0 0 977 failed
rs2853825 M 9,477 COX3 0.104 0.992 101 868 0 8 good
rs41482146 M 9,667 COX3 0.016 1.000 961 16 0 0 good
rs41502750 M 9,716 COX3 0.016 0.996 957 16 0 4 good
rs41345446 M 9,899 COX3 0.017 1.000 17 960 0 0 good
mt9947 M 9,947 COX3 0.000 0.000 0 0 0 977 failed
rs41347846 M 10,034 TRNG 0.000 0.000 0 0 0 977 failed
rs41487950 M 10,084 ND3 0.000 0.000 0 0 0 977 failed
mt10296 M 10,296 ND3 0.000 0.998 0 975 0 2 good
mt10314 M 10,314 ND3 0.000 0.991 968 0 0 9 good
rs2853826 M 10,398 ND3 0.000 0.981 958 0 0 19 good
rs2857285 M 10,915 ND4 0.005 0.989 5 961 0 11 good
rs41537746 M 11,377 ND4 0.015 1.000 962 15 0 0 good
rs28529320 M 11,485 ND4 0.023 1.000 955 22 0 0 good
rs28358286 M 11,674 ND4 0.018 1.000 18 959 0 0 good
rs2853495 M 11,719 ND4 0.467 0.999 520 456 0 1 good
rs3088053 M 11,812 ND4 0.073 0.995 901 71 0 5 good
rs2853496 M 11,914 ND4 0.000 0.000 0 0 0 977 failed
rs2853497 M 12,007 ND4 0.020 0.829 16 794 0 167 good
rs2853499 M 12,372 ND5 0.250 0.988 724 241 0 12 good
rs41520546 M 12,414 ND5 0.009 0.992 960 9 0 8 good
rs28397767 M 12,501 ND5 0.030 1.000 29 948 0 0 good
rs3926883 M 12,633 ND5 0.000 0.000 0 0 0 977 failed
rs2854122 M 12,705 ND5 0.000 0.000 0 0 0 977 failed
rs75577869 M 13,020 ND5 0.000 0.000 0 0 0 977 failed
rs2853501 M 13,105 ND5 0.000 0.000 0 0 0 977 failed
mt13637 M 13,637 ND5 0.000 0.000 0 0 0 977 failed
mt13706 M 13,706 ND5 0.000 0.869 849 0 0 128 good
rs28359178 M 13,708 ND5 0.000 1.000 977 0 0 0 good
rs41421644 M 13,734 ND5 0.000 1.000 977 0 0 0 good
mt13869 M 13,869 ND5 0.000 1.000 0 977 0 0 good
mt13870 M 13,870 ND5 0.000 0.000 0 0 0 977 failed
mt13879 M 13,879 ND5 0.000 0.000 0 0 0 977 failed
mt13934 M 13,934 ND5 0.000 0.000 0 0 0 977 failed
rs41509754 M 13,965 ND5 0.007 0.997 7 967 0 3 good
rs41535848 M 13,966 ND5 0.020 0.999 19 957 0 1 good
mt14182 M 14,182 ND6 0.000 0.000 0 0 0 977 failed
rs3135030 M 14,470 ND6 0.000 0.000 0 0 0 977 failed
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rs2853504 M 14,793 CYTB 0.064 0.999 62 914 0 1 good
rs28357681 M 14,798 CYTB 0.154 0.988 816 149 0 12 good
mt15022 M 15,022 CYTB 0.000 0.000 0 0 0 977 failed
rs28357684 M 15,043 CYTB 0.038 0.999 37 939 0 1 good
rs2853506 M 15,218 CYTB 0.049 0.999 48 928 0 1 good
rs41518645 M 15,257 CYTB 0.025 0.999 952 24 0 1 good
rs35070048 M 15,311 CYTB 0.000 0.972 950 0 0 27 good
rs41337244 M 15,758 CYTB 0.011 1.000 11 966 0 0 good
mt15775 M 15,775 CYTB 0.000 0.000 0 0 0 977 failed
rs28357375 M 15,784 CYTB 0.006 1.000 971 6 0 0 good
rs41504845 M 15,833 CYTB 0.000 0.000 0 0 0 977 failed
rs28617642 M 15,884 CYTB 0.003 0.964 3 939 0 35 good
rs2853510 M 15,924 TRNT 0.060 0.953 875 56 0 46 good
mt15937 M 15,937 TRNT 0.000 0.602 0 588 0 389 good
rs55749223 M 16,189 Non-coding 0.003 0.953 3 928 0 46 good
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Table B.3: Markers Repeated Due to Quality Control Failure

ID Chr Position Gene MAF Call Rate AA BB AB U Project State
mt896 M 896 RNR1 0.005 0.998 973 5 0 2 good
mt3849 M 3,849 ND1 0.007 0.999 972 7 0 1 good
mt4529 M 4,529 ND2 0.022 1.000 22 958 0 0 good
mt4793 M 4,793 ND2 0.018 0.994 17 957 0 6 good
mt5426 M 5,426 ND2 0.007 0.988 2 957 9 12 good
rs3902405 M 5,465 ND2 0.001 1.000 979 1 0 0 good
mt5656 M 5,656 Non-coding 0.020 1.000 20 960 0 0 good
mt5981 M 5,981 COX1 0.000 1.000 980 0 0 0 good
mt6182 M 6,182 COX1 0.003 1.000 977 3 0 0 good
mt6272 M 6,272 COX1 0.000 1.000 980 0 0 0 good
mt6719 M 6,719 COX1 0.000 0.994 0 974 0 6 good
mt6776 M 6,776 COX1 0.044 0.994 931 43 0 6 good
rs2015062 M 7,028 COX1 0.434 0.999 553 424 2 1 good
mt8705 M 8,705 COX2 0.007 0.994 967 7 0 6 good
mt8869 M 8,869 ATP6 0.001 0.999 1 978 0 1 good
mt9150 M 9,150 ATP6 0.011 1.000 969 11 0 0 good
mt9947 M 9,947 COX3 0.000 0.000 0 0 0 980 failed
rs41345446 M 9,899 COX3 0.000 0.000 0 0 0 980 failed
rs41347846 M 10,034 TRNG 0.000 0.000 0 0 0 980 failed
rs2853495 M 11,719 ND4 0.471 0.999 518 461 0 1 good
rs2853496 M 11,914 ND4 0.029 0.990 28 941 1 10 good
rs2853497 M 12,007 ND4 0.020 0.998 958 20 0 2 good
rs3926883 M 12,633 ND5 0.014 0.947 13 915 0 52 good
rs2854122 M 12,705 ND5 0.061 0.833 50 766 0 164 good
mt13020 M 13,020 ND5 0.012 1.000 12 968 0 0 good
rs2853501 M 13,105 ND5 0.012 1.000 11 968 1 0 good
mt13637 M 13,637 ND5 0.022 0.993 952 21 0 7 good
mt13706 M 13,706 ND5 0.000 1.000 0 980 0 0 good
mt13870 M 13,870 ND5 0.000 1.000 980 0 0 0 good
mt13879 M 13,879 ND5 0.020 0.998 958 19 1 2 good
mt13934 M 13,934 ND5 0.016 0.998 0 947 31 2 good
mt14182 M 14,182 ND6 0.044 0.976 914 42 0 24 good
rs3135030 M 14,470 ND6 0.021 0.995 955 20 0 5 good
mt15022 M 15,022 CYTB 0.000 0.995 975 0 0 5 good
mt15775 M 15,775 CYTB 0.001 1.000 978 0 2 0 good
rs41504845 M 15,833 CYTB 0.003 0.891 870 3 0 107 good
mt15937 M 15,937 TRNT 0.002 0.957 2 936 0 42 good
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