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Abstract

T cells are part of the immune system and as such play a very important
role in keeping us healthy. One crucial step in the complex process which
is the immune response to pathogens is T cell activation.

The general goal of my thesis is to mathematically describe the migra-
tion patterns followed by T cells while waiting to be activated in the lymph
node. Insight into these migration patterns could lead to better knowledge
of the strategies T cells take to make activation such an efficient process.

In order to fulfill my goal I have used two different approaches: one
mainly computational and the other mainly theoretical.

On the computational side, I analyzed three-dimensional microscopic
movies of mice lymph nodes inside of which labelled T cells are moving.
From the movies I extracted the trajectories of the cells. I studied movies
from two experimental frameworks, exogenous and endogenous. On the
former, more frequent type of experiment, T cells are labelled outside the
mouse and then transferred in. The endogenous experiments, on the con-
trary, involve genetically modified mice whose T cells are born labelled.
I concluded that there is a significant difference in labelled T cell motion
between the two experimental frameworks. This suggests that previous re-
sults from exogenous experiments should be treated with caution due to
possible errors introduced by the methods specific to that type of experi-
ment.

On the theoretical side I studied the time it takes for a model T cell
to be activated under different scenarios regarding the characteristics of
the lymph node as well as of the other cells in it. Since T cells become
activated after establishing contact with a specific cell among many similar
ones which also move within the lymph node, what I effectively computed
was the mean first passage time for a model T cell to reach a defined target
within the model lymph node.
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Chapter 1

Introduction

1.1 Biological description of the problem

The immune system is protects the body from foreign agents and disease.
In vertebrates the actions of the immune system can be classified in two
main categories: innate immunity and adaptive immunity. The innate im-
mune system acts first and provides a first line of defense. It is generic,
meaning that it reacts in much the same way to similar pathogens. The
adaptive immune system, on the other hand, identifies the pathogen and
produces cells which will only attack that specific pathogen. The adaptive
system keeps a copy of the cells created specifically to attack the patho-
gen even after it has been cleared out of the body. By doing this it provides
long-lasting immunity to the host, so next time the same pathogen is found
in the body the immune system will already have the specific tools to fight
it. However, the initial adaptive response is slower and also relies on the
innate system.

T cells are a type of lymphocyte (white blood cell) which play a very im-
portant role in the adaptive immune response. T cells originate in the bone
marrow but then migrate to the thymus to undergo maturation, which is
why they are called “T” cells. Mature T cells then enter the bloodstreamand
migrate to the peripheral lymphoid organs (PLO), organized tissues where
adaptive immune responses are initiated andwhere lymphocytes are main-
tained. T cells are continually recirculating through these tissues. They en-
ter the PLOs by squeezing between high endothelial venules (HEV) and
exit through efferent lymph vessels. Antigen1 is also carried from the site
of infection to the PLOs. Specialized cells, referred to as Antigen Pressent-
ing Cells (APC), carry antigen to the PLOs and display it to lymphocytes.
[19]

The lymph nodes (LN) are one type of PLOs. They are highly organized
and are located at the points of convergence of vessels of the lymphatic sys-

1Antigen - Term used to refer to any substance that can be recognized by the adaptive
immune system.
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1.2. Current approaches

Figure 1.1: Schematic diagram showing the major structural components
of a lymph node [24].

tem. One important structure inside the LN is the fibroblastic reticular net-
work (FRN), a network formed by fibroblastic reticular cells and filaments
between them. Figure 1.1 shows the architecture of the lymph node.

A key step in the cascade of actions which lead to the adaptive response
is T cell activation. T cells are equippedwith receptors which allow them to
recognize antigen displayed by APCs. Hence T cell receptors (TCR) show
an enormous variability (from one cell to other). While in the lymph node,
T cells successively scan APCs and read the information presented by them
until finding their cognate antigen. If the reading contact with the cognate
APC lasts long enough then the T cell is activated and it undergoes prolifer-
ation and differentiation, the first steps of adaptive immunity. The descen-
dants of an activated T cell are ready to fight the pathogens (by activating
B cells to produce antibody, or by directly killing infected cells).

In particular, dendritic cells (DC) are an important class of APCs. They
have long projections called dendrites, which gives them their name.

1.2 Current approaches

While interacting with APCs, T cells change their behaviour in different
ways depending on whether they are bound or not, or if they have already
been activated. Therefore, analyzing the movement of T cells in the LN
is important, for it can lead to better knowledge of the processes that take

2



1.2. Current approaches

place inside the LN.
Here, I present results from two different mathematical approaches to

describing the behaviour of T cells in the LN. The first approach focused
on describing T cell motion from data while the second one was about de-
scribing the time it takes for a T cell to find its corresponding APC under
different hypotheses about T cell motion. The purpose of both approaches
is to gain insight into the strategies of the immune system in making T cell
activation an efficient process.

In Chapter 2 I present the work done using the first approach. For this
part I analyzed imaging data of labelled T cells inside the LN of a healthy
mouse. Thanks to the development of advanced imaging techniques (two-
photon microscopy) we were able to acquire time series of quasi-three-
dimensional images showing T cells inside a LN. From these I extracted
cell paths and characterized them. This has been done in the past, how-
ever, we propose a new experimental frame which we think provides more
accurate results. Here I present a comparison between the results obtained
from the typical experiment and those from our new experimental frame.

The second approach is presented on Chapter 3. Here we studied the
first passage time of a model T cell to a fixed target, the cognate APC. We
considered different scenarios by varying the motility conditions for the T
cell as well as the characteristics of the environment where it moves, i.e. the
LN.

3



Chapter 2

Analysis of two-photon
imaging data from T cells
moving within living tissue

This chapter is the result of a collaboration with Dr. Pasquale Maffia’s team
at the University of Glasgow. The data they provided us with was a time
series of 3-dimensional images showing T cells inside the LN. Each 3D im-
age corresponding to a time point is in reality a stack of several 2D images,
spaced by a couple of micrometers in height, which are taken rapidly and
sequentially, and so are regarded as forming one 3D image at a single time
point. I worked with several data sets, which varied in the number of time
points as wells as the size of the stack. Details of each data set’s specifica-
tions are given in Table 2.1.

2.1 Two-photon microscopy

Two-photon excitationmicroscopy [6] is a relatively newfluorescence imag-
ing technique. It has the advantage of allowing living tissue to be imaged
at high depth.

2PM relies on the fact that two photons of approximatedly half the en-
ergy needed for single photon excitation, can equally excite a fluorophore
if the two photons hit it simultaneously. Because that is a lower proba-
bility event, fewer fluorophores will become excited, and more excitation
events are likely to occur near the focal point, where more photons are con-
centrated (Figure 2.1). This is in part the reason why 2PM presents less
background noise (see Figure 2.2).

Moreover, since lower energymeans longerwavelength, thewavelength
of the absorbed photons in 2PM is about two times the wavelength the ab-
sorbed photons in single photon microscopy. Because lower wavelength
gets scattered a lot, this again means less noise in 2PM images, as well as
less tissue damage by phototoxicity. [17]

4
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Name Exogenous/ Number of Number of Imaging rate Pixels µm Height per
Endogenous slices time points (s/stack) per side per side slice (µm)

LN2 endogenous 17 120 29.025 512 531.37 2

LN7 endogenous 12 150 20.004 512 531.37 2

LN8 endogenous 12 60 20.816 512 531.37 2

LN9 endogenous 30 20 50.799 512 531.37 2

LN10 exogenous 22 30 45.666 512 425.1 2

Z1 exogenous 25 38 12.821 560 283.4 2.5

Table 2.1: Summary of the specifications of the experiments I analyzed data from. Only those specifications
which influence the computational analysis of the data are included.

5



2.2. Experiments

Figure 2.1: Two photon microscopy requires two simultaneous events of
high wavelength [17].

Figure 2.2: Two photon microscopy presents less background noise [17].

2.2 Experiments

Previous studies of T cell motion are based on experiments where cells
are extracted from the mouse, then exogenously tagged with a fluorophore
protein, and finally transfected back into the mouse. In these experiments
only some of the transfected cells then home to the LN. Hence images from
this type of experiment show low densities of labelled cells. Moreover,
we hypothesize that cells which have been outside the mice show altered
dynamics, and also those cells rediscovered in the LN may represent an
unusual subset of the basic T cell population.

Our collaborators in the University of Glasgow have performed en-
dogenous experiments on genetically modified mice whose cells express
Green Fluorescent Protein (GFP). Because in these geneticallymodifiedmice
all T cells express GFP, the density of cells shown in images obtained from
endogenous experiments is higher. This is good in the sense that more data
is available but it also makes the determination of trajectories more compli-

6



2.3. Methods for the inference of cell paths

cated.

2.2.1 Experimental methods

To image endogenous T cell populations, inguinal lymph nodes were ex-
cised from hCD2 GFP mice and placed in a perfusion chamber. Lymph
nodes were maintained at 37°C by perfusion with heated CO2 indepen-
dent media. Following staining, approximately 2 million T cells were trans-
ferred by intravenous tail vein injection into CD11c YFP transgenic mice.

Multiphoton fluorescence was performed using a Zeiss 7MP multipho-
ton microscope (Carl Zeiss, Jena, Germany) after excitation by a Coher-
ent Chameleon wavelength tuneable laser (Coherent, Glasgow, UK). Zeiss
10X/0.3 NA air and 20X/1.0 NA water immersion lenses (both Carl Zeiss,
Germany) were used to focus light on the sample and to collect emitted
light. Fluorescence emission was collected at <375nm (autofluorescence),
500-550nm (green) and 600-680nm (red). All sampleswere excited at 920nm.

2.3 Methods for the inference of cell paths

2.3.1 Single particle tracking

Single particle tracking (SPT) is a widely used technique whereby the mo-
tion of biological particles can be observed. The particle of interest is tagged
using any of a variety of experimental techniques. Then a series of images
is taken by means of a microscope at high temporal resolution. From these
one can attempt to extract particle trajectories, a highly non-trivial task that
requires joining the dots (cell centers) between frames in a sensible way.
In typical SPT experiments, only a small number of particles are tagged,
which makes the tracking somewhat easier [18].

The endogenous experiments we worked with present three major dif-
ficulties as compared to typical SPT experiments:

• First, in a strict sense, what I did was not SPT but rather single cell
tracking. Cells are much bigger than what we generically call “a par-
ticle”. This is not really a disadvantage per se, in fact I would say it
is an advantage. The problem, however, is that many existing SPT
techniques cannot be directly applied to cell tracking.

• Second, the high cell density is a big problem. Even by eye it is often
difficult to tell which of two cells located close to each other on a
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(a) LN2 (b) LN7

(c) LN8 (d) LN9

(e) LN10 (f) Z1

Figure 2.3: A sample image from each data set. Notice that the bottom row
shows the exogenous experiments. All images correspond to t = 1 and
z = 1.
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frame moved to where on the next frame. Moreover, background
noise increases when having so many bright spots on an image.

• Third, SPT has only rarely been done in three dimensions. Having the
third dimension is good because it provides more information about
the phenomenonwe are studying. However, we found that even once
it is known which planes a specific cell lies on, determining its 3D
center is a difficult task which has a great influence in the subsequent
track analysis.

Hence we can conclude that our problem is how to deal with so much
information.

2.3.2 Steps in the tracking process

I have distinguished three main stages in the process of extracting the par-
ticle trajectories. The stages were separated in this way because I tackled
each stage separately, computationally speaking.

Denoising This is the first stage and consists of filtering the images so that
the background noise does not interfere with the subsequent stages.
In other words, in this stage a noisy image is transformed into one
with better defined cell boundaries.

Detection The next step is to determine what makes a single cell in the
image and find all single cells. To facilitate the last step once all cells
in an image have been determined each of them is characterized by
the 3D coordinates of its center.

Tracking At this stage one has a list of 3D positions corresponding to each
time point. The tracking step consists of connecting these positions
into discrete trajectories in a sensible way.

The following subsections describe each stage in more detail. A whole
section (2.4) has been dedicated to the second stage, detection, because it
was the step for which I developed new algorithms. One such algorithm
actually uses the same method I used for the tracking step. This is why I
left the detection section after the first and third steps’ subsections, which
basically used methods that already existed.
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2.3.3 Denoising with wavelets

As I said before, first the images need to be treated so as to get rid of noise
and extract positions of objects that are truly there. Further, one has to
dismiss all those objects which seem too small, or otherwise “flawed”, to
be real T cells (or whatever cells we are tracking).

For the denoising step I used an algorithm developed to extract bright
spots from biological images [21]. The novelty about this algorithm is that it
can detect bright spots at different levels of resolution, it is thus well suited
to detect cells.

The algorithm was implemented in MATLAB by Henry Jaqaman and
François Aguet. The code includes both the denoising and the detection
part. However, they both only work in 2D, which is why I split the code in
two parts. The denoising part of the algorithm is based on image process-
ing with wavelets theory. I thought about extending it to three dimensions
but it is not clear how much that would help. The problem is that the res-
olution of the images is lower in the third dimension (height) than in each
x-y plane. I thought if I used a direct extension to 3D of the denoising algo-
rithm a lot of information might be discarded as noise. Hence, I decided to
use the denoising part to process all 2D images individually. Then the 2D
denoised images are put together as 3D images for the next step.

At first I used the algorithm with the default parameter for the level of
denoising and I noticed that after processing the images with this level of
denoising there were many short tracks. So I decided to increase the level
of denoising. The higher level of denoising uses more morphological oper-
ations to get rid of isolated pixels and other outliers. This is done by means
of the MATLAB function bwmorph, the higher level additionally perform-
ing the processes erode, spur, clean, and thicken. By doing that I would get
rid of dim spots in the central area, where most cells are located (see Figure
2.4).

I tried both levels and most results here use the higher level of denois-
ing, unless otherwise stated. However, there are advantages and disad-
vantages to both levels. The higher level sometimes misses spots that are
clearly visible by eye in some frames breaking a path or splitting a cell in
the z direction.

2.3.4 Track extraction

U-track [13] is a well known SPT software. It is very flexible in that it allows
the user to modify many parameters in order to adjust the algorithm to a
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(a) Original (b) Lower level of denoising (c) Higher level of denoising

Figure 2.4: An example image in original and after denoising in the two
levels. This image corresponds to data set “LN2” with t = 1 and z = 8.

specific problem.
In short, what the algorithm does is the following: For each pair of

consecutive time points, match positions in the first frame with positions
in the following frame. This is treated as a linear assignment problem [2]:
there is a cost for each match and the goal is to minimize the total cost.
To reduce the size of the combinatorial problem, a position can only find
a match in a circular area around it (the radius of which is a user-assigned
parameter). Not having a match is highly penalized, but it may happen, as
each particle can only find a single match.

After the first step one is left with a bunch of generally short tracks.
The second step is called “gap closing”, here the short tracks previously
obtained are matched, this time not on consecutive time steps. At this stage
u-track offers the possibility of allowing for merging and splitting. It often
happens that two particles in an image come so close to each other that they
look as a single cell. The concepts of merging and splitting are related to
such events. Merging refers to two cells which had separated tracks before
but at a given time point appear as a single position. Splitting, on the other
hand, refers to the case when a single track splits into two different ones. If
one allows for merging and splitting then two segments’ ends (starts) can
be matched to the same segment’s start (end). The problem with using the
merge & split capability is that at the end one has groups of tracks instead
of a single cell track. For example, if two tracks merge and later split again
into two separate tracks, there is no way of knowing which of the first two
tracks corresponds with which of the two last tracks. For that reason in the
results shown here I did not allow for merging and splitting.

Next is a list of the u-track parameters I modified.
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Gap closing time window This sets the maximum number of time steps
that a track can be lost and still reappear. Because we have 3D images
and the cells are large, bright objects, it is not often that a cell goes out
of focus and then comes back. In fact, a cell can only get out of the
imaging region if it is on the bottom or top planes, or near the edges
of the other planes. Hence I set this parameter to 1.

Minimum track segment length Tracks obtained from the first step which
are shorter than this parameter (units of number of frames) will not be
considered for the second step (the gap closing). For this parameter I
used the default, which is 2.

Search radius lower limit It refers to the search radius mentioned in the
description of the first step of the tracking algorithm. Because many
cells, specially in the periphery, stay static through out the video, I let
this parameter be 0µm.

Search radius upper limit This parameter was set to 10µm. Its value was
determined by noting how big were the steps taken by some of the
cells whose movement was more apparent by eye. I also considered
the fact that the average diameter of a T cell is 7µm.

Flag for linear motion U-track allows for three motion models: Brownian
motion, Brownianmotion plus movement with constant velocity, and
randommotion plus movement along a straight line but with the pos-
sibility of immediate direction reversal. I tested all three and the dif-
ferences did not appear to be significant (see Figures C.5 to C.7 in
Appendix C). The results shown in the main text were obtained us-
ing the third motion model.

It is worthmentioning that during the detection step all calculations use
units of pixels but before proceeding to the tracking step it is important to
scale the coordinates appropiately so that the difference in x,y and z res-
olution does not introduce bias to the results. To that effect the results of
detection were transformed to micrometers using the resolution specifica-
tions from each data set.
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152

154

156

158

116.5117117.5118118.5119119.5120120.5

15.5

16

16.5

17

17.5

18

18.5

19

19.5

Figure 2.5: Sample trajectory computed by u-track. This corresponds to
LN2. The scale is micrometers. Notice that it spans about 6µm on each
dimension. By comparing with the video one realizes that this cell did not
really move. Its apparent movement is a consequence of a general drift by
the whole lymph node. The zigzagging pattern is very likely a consequence
of intensity variations in the cell throughout the video.
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2.4 The detection step

2.4.1 Spot detector

The detection method from [21] (hereafter called spotDetector) is relatively
simple so it was not hard to adapt it to work on three dimensions. Here is
a description of the original spotDetector algorithm:

1. Find local intensity maxima (MAX). In the original 2D version of
SpotDetector, a 9x9 window is used to define “local”.

2. Find connected regions. Two pixels are in the same region if they
have one common vertex or side (hence each pixel has 8 neighbors).

3. For each connected region find its weighted centroid (COM) and the
local maxima (computed in 1) that lies on the region. The program
keeps a list of the COM of and highest local maximum in each region.

4. If no local maximum lies on the region then the index of the highest
value on the region is recorded instead.

5. The program also keeps a list of all other (non highest) local maxima
on the region, these are called secondary maxima. Secondary max-
ima whose distances to both the COM and the MAX do not excede a
certain threshold (I used 5 pixels) are deleted from the list.

6. At the end, the COM and the remaining secondary maxima are re-
turned as the centers of the detected cells comprised in the connected
region or cluster. The program can easily be modified so the returned
centers include the MAX instead of the COM.

The only tricky part in making this algorithm work for the 3D data was
defining local in the first step. The 2D version uses a MATLAB built-in
function called ordfilt2which replaces the value on each pixel with themax-
imum over the values of its neighboring pixels, where the neighborhood is
defined by the notion of local (a 9x9 window). MATLAB does not have an
analogous 3D function and although it does not seems like a complicated
process to code, it turns out to be very computationally expensive. How-
ever, I found that someone had already coded a function ordfilt3 [5] which
nevertheless has the restriction of onlyworking on cubic windows to define
locality. This was inconvenient because the x-y scale is very different from
the z scale on my images. Nevertheless, I used the 3D version of spotDetec-
tor with ordfilt3 using a size 7 cubic window to define locality. Since scales
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vary from data set to data set (see Table 2.1) this might be more suitable for
some data sets than for other.

One last detail from the 3D version is the definition of connected re-
gion. In 2D an 8-neighbor lattice was used. For 3D I chose 6-neighbors, i.e.
two voxels are in the same region if they share a face. Like in the original
spotDetector, the program offers the possibility of returning the COM or the
MAX (plus the remaining secondary maxima).

My 3D version of spotDetector, which has large parts from the original,
is given in Appendix B.1.

2.4.2 My detection technique

In the spotDetector algorithm, the detection of intensity local maxima and
discrimination of them by distance is performed in order to distinguish the
centers of several cells that may be very close together, forming a cluster.
I proposed an alternative mechanism to separate cells using the 3D infor-
mation. The idea behind my algorithm (hereafter referred to as mySpotDe-
tector) is that clustered cells might appear as a single 2D connected region
in some planes but not in all the planes spanned by all cells in the cluster.
Hence one might take a 3D connected region and look for the planes in it
where such region does not appear as a 2D connected region. The algo-
rithm is explained next.

1. Find all 3D connected regions. I chose to do this defining connected-
ness in terms of a 6-neighbors matrix, but I also did trials using 18-
and 26-neighbors.

2. Loop over all these connected regions.

3. Look at the first (bottom most) plane that comprises the current re-
gion.

4. Find all 2D connected regions and save them. For these I used an 8-
neighbors definition (but also did trials with 4-neighbors definition).

5. Look at the following plane that comprises the current 3D region, and
also find all 2D connected regions.

6. Look at the intersections between 2D regions in the current plane and
saved regions.

• If a region in the current plane intersects none of the saved re-
gions, append it to the list of saved regions.
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(a) z = 1 (b) z = 2 (c) z = 3 (d) z = 4

(e) z = 5 (f) z = 6 (g) z = 7 (h) z = 8

(i) z = 9 (j) z = 10 (k) z = 11 (l) z = 12

Figure 2.6: Extract from one of the movies to show how my detection tech-
nique works. All the planes contained in one three dimensional connected
region are shown. Intensity variations have been omitted in this example.
See next figure for the resulting saved regions.

• If a region in the current plane intersects one or more saved re-
gions, replace each of those saved regions with the correspond-
ing intersection.

7. Repeat steps 5 and 6 until reaching the last plane that comprises the
current 3D connected region.

8. Aweighted centroid (depending on intensities) is then found for each
saved region. These centers correspond to the cells that were so close
to each other that appeared as the current single connected 3D region.

9. One could also start from the last (topmost) plane comprising a given
3D connected region and sweep all planes down. This approach will
be called “top down” whereas the one described before will be called
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“bottom up”. It does not appear to make much difference which ap-
proach is used.

Figures 2.6 to 2.8 show an example of how this detectionmethodworks.

Figure 2.7: Resulting saved regions after processing the example shown in
Figure 2.6 with mySpotDetector. According to step 8, the resulting detected
cells would have centers determined as the intensity weighted centroids of
the spots shown in this figure.

Figure 2.8: Two 3D views of the connected region from the example in Fig-
ure 2.6. These were plotted with the Volume Viewer plug-in from ImageJ
[20].

2.4.3 Using u-track for detection

Although the results from both previous methods did not seem too bad at
first, when feeding them to u-track for the tracking step, the programwould
have difficulty processing the information and often would show errors in
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computing the matrices to solve the linear assignment problem. Because of
these errors we wanted another detection method. When consulting with
the authors of u-track, it was suggested to us that we used u-track in 2D for
the detection part. As it turned out, after doing this for the detection part
the tracking step would then go smoothly.

In this algorithm, u-track is used separately on the stacks corresponding
to each time point. Here the z-position is the analogous of time in the nor-
mal tracking process. U-track parameters are set to allow only for very short
motion and no gaps (because one cell cannot disappear and then reappear
skipping one intermediate plane). The parameters used were: gap closing
time window 1, minimum track segment length 5 (to reduce the number
of tracks included in the gap closing step), search radius 1 (except for “z1”
which has higher resolution and so the search radius was allowed to be 1
or 2), and the linear motion model was assumed to be random.

The series of 2D positions input to u-track are obtained by using the
original spotDetector on each plane individually.

The output of using u-track as a detection method is a series of posi-
tions in the planes spanned by each cell. Coordinates of each cell are then
determined in the following way:

• For x and y, take the average of the x and y positions in each of the
planes the spot spans.

• The z-coordinate is also an average of the vertical positions of the
planes where the spot appears. This average is weighted with the
intensity of the cell on that plane normalized by the total intensity of
the cell.

Abbreviated name Program name Section where Specific
it is described parameter

sd3D-MAX B.1. spotDetector3D 2.4.1 choice = 0

sd3D-COM B.1. spotDetector3D 2.4.1 choice = 1

mySD-bup B.2. mySpotDetector 2.4.2 bt = 0

mySD-tdown B.2. mySpotDetector 2.4.2 bt = 1

u-track B.3. detecttr 2.4.3

Table 2.2: Summary of the detection methods used. See Appendix B for the
codes to which the second column refers. The specific parameter is used in
the codes to distinguish between two variations of the same algorithm.
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2.5 Testing

I mainly focused on testing the algorithm I created, that is mySpotDetector,
although I did try a couple of tests on the existing methods (u-track and
spotDetector).

To test the detectionmethods I generated some 3-dimensional positions
which were to be the centers of the cells. These centers are constrained to
a box of size 254x254x64 and cells are assumed to be spherical of constant
radius r. Then, the bottom plane of the box is “imaged”: an image cor-
responding to that plane shows in black those pixels which fall inside a
sphere. The next three planes are not imaged, but the fourth is. 17 images
are generated in this manner and then processed with the detection meth-
ods. See Figure 2.9 for sample simulated planes. The interested reader can
find the code for this test on Appendix B.4.
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Figure 2.9: Sample simulated images with r = 6. Caption of each subfigure
indicates number of simulated cells.

It was difficult to come up with a way to measure error and this part
still has to be improved. I computed two errors: Error 1 is the sum of the
distance between each simulated cell and the closest center found by the
detector, normalized by the number of cells simulated; Error 2 is the relative
error between the estimated and true number of cells. Notice that Error 2
is not precisely the fraction of cells missed since many of the computed
positions do not correspond to any of the real positions.
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Figure 2.10: Error 1 as a function of the number of simulated cells. The
vertical axis units are micrometers and it is shown in log scale. It was not
possible to test u-track when there are only a few or too many simulated
cells (cases with 10,100, and 5000), since in such cases the algorithm returns
no found cells.

Figures 2.10 and 2.11 summarize the results obtained.
The large relative error between the estimated and true number of cells

(Error 2) is due to the high percentage of cell overlapping (see Figure 2.9).
Taking that into account, one can conclude that the fact that Error 1 is so
small, especially when there are too many simulated cells, is also due to
cell overlapping. It implies that cluster centers are quite close to the true
centers of the simulated cells.

Notice that, at least in terms Error 2, themethod that does best ismySpot-
Detector. The reason is that this method attempts to distinguish individual
cells in a cluster by using only shape information, while the other methods
rely on intensity variations (which the simulated images do not have).

I tried to include the detection method which uses u-track in this test-
ing procedure but I encountered several problems. When there are only
a few cells or too many of them simulated (cases with 10,100, and 5000)
the algorithm returns no found cells. For the cases where some cells were
found, u-track returned several warning messages which indicate that it is
not getting along well with the simulated data. So this method of detection
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Figure 2.11: Error 2 as a function of the number of simulated cells, shown as
percentage. It was not possible to test u-track when there are only a few or
too many simulated cells (cases with 10,100, and 5000), since in such cases
the algorithm returns no found cells.

does worse in the test than the other methods. The problem is that the 2D
positions returned in the first step of the algorithm are not cell centers, but
cluster centers. Clusters probably vary toomuch from one plane to the next
one (in fact, mySpotDetector uses this variability to distinguish cells) and
that is why u-track cannot build trajectories succesfully.

I think this does not necessarily mean that the methods are bad, but
maybe the simulated data is too far from its experimental counterpart and
this is why they fail. Indeed, the failure comes from the fact that there are
no local maxima since there is no variation in intensity at all. More tests are
needed on simulated data that includes noise and different shapes for the
cells.

Even though u-track has been tested, results shown in [13] are only for
2D, so that it is not clear if the method was also tested in 3D. Therefore, I
created a function (testtrack, see Appendix B.5) which generates a number
of simulated Brownian paths with a chosen diffusion coefficient, saving
their positions at certain time points. I wanted to build the simulation in
such a way that positions were only recorded if the particle is inside the
imaged box (i.e. a rectangular box of low height as before) but too much
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information was lost and the tracker did a very bad job, returning only a
handful of trajectories even when I was simulating 1000 tracks. This issue
already raises a warning, although we had already suspected that the low
resolution in the z direction was the biggest problem we had with the data.

Nevertheless, I decided to go one step back and test u-track in a free
diffusion situation, that is without the box constraints. Again I had trouble
finding a good way of measuring the error. Just comparing the original
number of tracks with those output by u-track does not seem to give a lot of
information. In [13] the authors present their results from testing in terms
of percentage of misses, but they do not explain how they assess whether a
given trajectory was “missed” or not.

In summary, testing needs improving, especially in terms of better mea-
suring whether or not the results are acceptable.

2.6 Analysis

From the results of the tracking process I analyzed some properties that can
be rapidly computed and give an idea of the behaviour of the cells in terms
of motion. These properties are

Turning angle Angle formed by three positions of a particle in consecutive
time frames, as measured by the dot product.

Step size Distance travelled by a particle in one time step.

Average step size Average step size over all steps taken by a given parti-
cle.

Track diameter Maximum distance between any two positions of a given
track.

Track length (or life span) Number of time points a given track spans. Ef-
fectively computed as the difference between the last and the first
time points where the particle is present.

For each set of results I got I computed these properties for every trajectory
and thenmade histograms showing this information. For example, Figures
2.12 and 2.14 both show results from data set LN7 but the first one corre-
sponds to the analysis using the detection algorithm mySpotDetector while
the second one corresponds to using u-track as method of detection.

Notice from Figures 2.12(a), 2.13(a), and 2.14(a) that for the endogenous
experiments there seem to be a preference for turning almost completely in
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Figure 2.12: Histograms for data set LN7 using mySpotDetector-bup as de-
tection method with the lower level of denoising.

23



2.6. Analysis

Pi/4 Pi/2 3Pi/4
0

20

40

60

80

100

LN7trd − Turning angle

Angle

F
re

qu
en

cy

(a)

0 5 10 15 20
0

200

400

600

800

1000

1200
LN7trd − Step size

Distance (um)

F
re

qu
en

cy

(b)

0 5 10 15 20
0

50

100

150

200

250
LN7trd − Diameter

Distance (um)

F
re

qu
en

cy

(c)

0 20 40 60 80 100
0

200

400

600

800

1000
LN7trd − Track length

Time steps

F
re

qu
en

cy

(d)

Figure 2.13: These histograms correspond to the analysis of the endogenous
data set LN7, using u-track as method of detection and with the lower level
of denoising.
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the opposite direction (compare also with Figure 2.15 which shows results
for one of the endogenous experiment). The peak at an angle of π would
not be expected for random motion. In fact, no preferred angle would be
expected for random motion.
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Figure 2.14: These histograms correspond to the analysis of the endogenous
data set LN7, using u-track as method of detection and with the higher level
of denoising.

2.6.1 Discrimination of tracks

The mentioned bias in turning angle could be an important feature but
we first needed to rule out the possibility that it was a consequence of the
methods used and not of the true intrinsic cell dynamics. On Figure 2.16
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Figure 2.15: These histograms correspond to the analysis of exogenous data
set LN10, using u-track as method of detection and with the higher level of
denoising.
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Figure 2.16: Histogram of turning angle ignoring the z-coordinate for all
experiments with the higher level of denoising. Only tracks with average
step > 3µm and with at least 5 frames are included in these histograms.
Compare the endogenous versus the exogenous experiments (bottom row).
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we ignored the z-coordinate information. We did so because given the way
this coordinate is assigned, there is a lot of oscillation in it, specially when
the cell is only taking short steps (see Figures 2.17 and 2.18).
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Figure 2.17: 3D representation of all tracks found for LN2 (higher level of
denoising, u-track as method of detection). Scale is in micrometers.
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Figure 2.18: Planar projections of the tracks extracted from LN2. Scale is in
micrometers.

Another approach was to separate the list of positions from a trajectory
into two lists: odd and even time points. Then compute the histograms
for each list separately. If the cell, or one of its coordinates, was oscillating
in such a way that it was going back and forth from one “side” to another,
then these histogramswould show the true turning angle distribution. This
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Figure 2.19: Turning angle histograms for odd and even time points sepa-
ratedly. This results correspond to LN8 processed with the higher level of
denoising and u-track as tracking method. The z-coordinate, unlike stated
in Section 2.4.3, was assigned as the simple average of the planes spanned
by a cell (i.e. no weighting).

was not the case however, as it can be seen from Figure 2.19.
Because we observedmany very short tracks (see insets (d) and (e) from

Figure 2.15, and bear in mind that the diameter of a T cell is about 7µm) we
decided to restrict our analysis to the longer tracks. We also thought that
the bias in turning angle could be being introduced by the short tracks as
well.

Moreover, I noticed for a few examples that the average distance trav-
elled during a time step is less than 1µm for tracks that correspond to sta-
tionary cells. For that reason I computed the number of tracks whose av-
erage step is greater than 3µm/min, which is roughly equivalent to more
than 1µm per frame. Results are shown on Table 2.3 as well as on Figure
2.16.

By comparing the tracking results with the videos I concluded that most
of the short tracks are part of a bigger trajectory that the algorithm failed
to connect (see Figure 2.20). Hence the fact there are so many short tracks
does not mean, as one could imagine, that cells move so much that they
disappear from the imaged region in just a few frames.
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2.6. Analysis

Name Level of denoising Tracks w/ big avg steps Long tracks

LN2 higher 540 100

LN2 normal 753 140

LN7 higher 326 56

LN7 normal 530 90

LN8 higher 161 30

LN8 normal 248 34

LN9 higher 23 3

LN9 normal 43 9

LN10 higher 98 40

LN10 normal 111 41

Z1 higher 76 14

Z1 normal 158 23

Table 2.3: Number of tracks which are effectively moving, according with
the criterion of having average step greater than 3µm/min. The third
column shows how many of the moving tracks are at least 5 steps long.
Shorter tracks do not contribute significant information.

(a) (b)

Figure 2.20: (a) Example of how the process often misses part of the tra-
jectory. The blue line shows what the computer found to be the full track,
the magenta line is the rest of the track, which I found by eye. For each
time point in the trajectory I chose the z plane where the cell looked bigger
in area and then add all those images up to obtain the trace shown in the
picture. The extract comes from experiment LN2. (b) 3D view of the part
of the track which was detected by u-track.
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Figure 2.21: Histograms of step size corresponding to the endogenous ex-
periments.

2.6.2 Exogenous vs endogenous

We thought that an interesting feature to compare between the exogenous
and endogenous experiments was the cell velocity. Two of the properties
described on Section 2.6 are related to cell velocity, namely step size and
average step size. Step size refers to the distance traveled by a given cell
in a given single time step, whereas average time step is the mean of the
step sizes of all steps from a given track. Both quantities can be scaled to
measure distance traveled per minute (which has actually been done in all
the plots displayed here).

I used the step size information to test our hypothesis that cells present
altered behaviour in exogenous experiments. We asked ourselves if, given
the experimental results that we have, was there enough information to
reject the hypothesis that the average velocity is the same for both types
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Figure 2.22: Histograms of step size corresponding to the exogenous ex-
periments. The obvious outliers from experiment Z1 were deleted before
bootstrapping.

(endogenous and exogenous) experiments. I found that we can reject that
hypothesis with a confidence level of at least 95%.

To take advantage of all the data that we have, we used step size instead
of average step size. In this way I have 17,261 data points from the endoge-
nous experiments and 1,349 data points from the exogenous experiments.
To obtain the distribution of mean velocity from this data, I took 1000 boot-
strap samples from each type of experiment and computed the average of
those samples. The bootstrap sampling was done in MATLAB.

The hypotheses to test are

H0 : vexo − vendo = 0

Ha : vexo − vendo > 0

where vexo refers to the average velocity of a cell from an exogenous experi-
ment while vendo refers to the average velocity of a cell from an endogenous
experiment

Because the cells from one of the exogenous experiments, namely LN10,
exhibit very rapid movement as compared to the others, I bootstrapped the
data from the two exogenous experiments separately as well as all together.
A high amount of movement is a natural consequence of the experimental
conditions which is in general reduced by other methods but can be worse
in certain experiments, like it is the case for this particular movie.

Tables 2.4 and 2.5 and Figure 2.23 show the results obtained. From Table
2.5 we can see that cells from the exogenous experimentsmove significantly

32
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faster than those from endogenous experiments. In fact, from Table 2.4 we
see that the distributions of average velocity do not overlap, so technically
our conclusion has a significance level of 0%. Although we would need to
analyze more experiments before drawing such a strong conclusion, this re-
sult is highly suggestive of an important difference in labelled T cell motion
between exogenous and endogenous experiments.

Similar results were obtainedwhen using the normal level of denoising.

Variable Minimum Maximum

vendo 2.0902 2.2662

vexo 3.7452 5.0438

vZ1 11.0362 16.1753

vLN10 2.5323 2.9707

Table 2.4: Maximum and minimum values of bootstrapped average veloc-
ities. Units are µm/min. vendo is the bootstrapped average of 1000 sam-
ples collected from all four endogenous experiments while vexo is the cor-
responding bootstrapped average of 1000 samples from the two exogenous
experiments. Because the cells from LN10 exhibit very rapid movement as
compared to the others, the data from the two exogenous experiments was
bootstrapped separately as well as all together.
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Figure 2.23: Distributions of bootstrapped average cell velocity: vendo in
red, vexo in black, vZ1 in magenta, and vLN10 in blue.
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Variable Confidence interval

vexo − vendo 1.6772 - 2.3442

vZ1 − vendo 9.3529 - 12.9622

vLN10 − vendo 0.4314 - 0.7080

Table 2.5: Confidence intervals of 95% of vexo − vendo. Units are µm/min.

2.7 Discussion and future work

Although I did not obtain as many results from this project as I would have
liked, I gained a lot of insight into the computational problem it poses. I
think the reason why tracks are apparently easy to identify by eye is be-
cause our eyes and brain incorporate a lot of information, including shape
and history. Unless a cell has too many neighbors, one can often determine
unequivocally what is the position of a cell in the next frame by indirectly
using information about its shape and its past trajectory.

Hence, shape plays an important role in this problem. It is true that all
cells have more or less the same shape, and so it is not possible to perform
the tracking by identifying the cells like one would with people. However,
when cells move they change their cytoskeleton following more or less the
same patterns which might be helpful in the tracking process. On the other
hand, static cells look more round (see Figure 2.24).

I think one ought to consider, if not the shape, at least the whole area
(or volume) of a cell instead of just attempting to form tracks out of a list of
centers. From one time point to the next one the area occupied by a cell in
the first frame often overlaps the area it occupies in the following frame. I
am certain that by considering the whole volume of the cell and not just its
center, the problems brought by the oscillations in coordinates, such as the
strong peak in turning angle at π, would be overcome.

There is another piece of information that I think should be incorpo-
rated into u-track: the fact that cells do not simply disappear from one time
step to the next. Because we are imaging in 3D they do not go out of the
imaging region unless they are in the bottom/top planes or near the edges
of the planar images. I predict that this would prevent the algorithm from
breaking trajectories into several pieces, at least partially.

One other problem I did not manage to solve is the general drift that
the whole lymph node undergoes. It is evident from the movies, when one
looks at the static cells, that there is a general drift going on. Such drift is
not obvious when the movie is played but only when one looks at the first
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(a) t = 6 (b) t = 7 (c) t = 8 (d) t = 9

Figure 2.24: These images correspond to frames 6 to 9, plane z = 1, of
experiment LN2. Notice how the shapes of the marked cells change from
one frame to another. The cell marked with a blue dot is static while the
one marked with a red dot is not.

and last frames. It is because of this drift that the diameters and average
steps from the tracks corresponding to static cells are not so small.

For all the T cell images we have, we also have imageswhere the bound-
ary of the LN is tagged (Figure 2.25). We thought that from this images we
were going to be able to estimate the size and direction of the drift. I tried
to do so by computing the intensity weighted centroid of the LN’s bound-
ary for each time point, and then compute the vector of movement of this
centroid from one frame to the next one. This vector would then be sub-
stracted from all cell positions in all future frames. I did this with one set
but in doing so I noticed that some cells actually seem to be drifting in
a very different direction than what the vector of weighted centroid dis-
placement showed. Finding a better way to measure the drift is on the list
of future work.

These and other factors are the reason whywe think the tracking results
need a lot of improvement yet.

Lack of adequate visualization tools is one more problem that, if over-
come, could help improve the results. For example, at one point I engaged
in the task of generating a considerable amount of trajectories by eye. I
ended up not using these results simply because they were written on a
piece of paper. I am convinced that it would have been different if the soft-
ware we used to play the movies, which is only in 2D, had allowed me to
store as part of the movie the trajectories I was detecting. What I was plan-
ning to do with these trajectories was train the parameters of the tracking,
and maybe also the detection, algorithms. Visualization of the movies with
the superimposed tracks in 3D is also important to validate the results and
detect problems in the methods. I do not think I have the right training
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Figure 2.25: Microscopy images showing the contour of the LN. These im-
ages correspond to the first and last time points, plane z = 1, from data set
LN7.
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Figure 2.26: This figure shows a trajectory found by eye which the compu-
tational process missed. For each time point in the trajectory I chose the z
plane where the cell looked bigger in area and then add all those images up
to obtain the trace shown in the picture. The extract comes from experiment
LN2.

to build my own software to solve this problem. However, I spend some
time looking for existing solutions and even talked to some experts on vi-
sualization of biological images. Unfortunately, I did not find a satisfactory
solution.

Besides improving the detection and tracking methods one natural ex-
tension to this work is to analyze more experiments, especially of the ex-
ogenous type, in order to confirm the results from Section 2.6.2.

Further extensions of this work include implementing some statistical
method to infer the trajectory of a cell between time steps or once it has
left the imaging region. Also, evaluating the relationship between move-
ment patterns and zones in the LN, the influence of zones being not only
suggested by theory but also by observing the videos.
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Chapter 3

First passage time of a T cell to
an APC

In this chapter I present some calculations of the mean time it takes for a
naı̈ve T cell to reach a specific APC, among many non-specific ones, inside
the LN. First passage time calculations have been performed in the past
for other problems related to T cell activation [27]. The T cell is taken to
be a point in three dimensional space. The APCs, which in reality are big-
ger than T cells, are model as spheres, first with fixed finite radii and then
with asymptotically small volume. While T cells are assumed to be mobile,
APCs are static. The lymph node is in most cases a sphere, for the sake
of simplicity in explicit calculations, but most results hold for any sort of
convex shape.

The idea of analyzing this problem came from two papers [11, 12] which
studied a similar problem using computational tools. The authors simu-
lated the movement of T cells in the LN, including other cells in the model.
On the first paper the goal was to find how population-level parameters
relate to single-cell properties in the process of pathogen killing by T cells.
It was found that the time it takes for a T cell to kill an infected cell has a
bigger influence on the killing efficency than the time needed for a T cell to
find the target cell. The second paper studied the influence of the FRN in
the probability of two cells finding each other.

The results in this chapter are theoretical, that is, not based on nor com-
pared with data. Hence, a predetermined model has to be assumed for
cell motion. For the most part, I assumed that T cells perform isotropic
Brownian motion. In Section 3.4 I considered the case of space dependant
diffusion.

Another factor involved in the calculations is the influence of the lymph
node’s boundary. Because T cells enter the lymph node mainly through
HEVs, located along veins that cross the LN, they could show up inside it
at virtually any point. They however would always exit through the same
spot, which could be modelled as a hole on the LN’s boundary. Neverthe-
less, cells do not exit when they first “bump into” this hole, but they con-
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tinue their search until they receive a signal to exit [24]. Hence I considered
various different scenarios for the boundary conditions on the LN.

Since T cells are assumed to perform Brownian motion, then their con-
centration u (x, t) at time t on the point x in space, satisfies the diffusion
equation

∂u

∂t
=

∂

∂x

[

D (x)
∂u

∂x

]

The different boundary conditions considered apply to this equation and
are the following

Dirichlet u (x, t) = 0 for x ∈ ∂Ω, which means the particles get absorbed
by the boundary (or exit) as they reach it.

Neumann ∂nu (x, t) = 0 for x ∈ ∂Ω, where ∂n represents the derivative
in the outward normal direction, means that there is no outward
flux through the boundary. In other words, when a particle hits the
boundary it is reflected back inside Ω.

Robin The Robin boundary condition is a combination of the Dirichlet and
Neumann conditions, namely ∂nu (x, t) = −λu (x, t) for x ∈ ∂Ω. With
this boundary condition there is some flux through the boundary.

3.1 First passage time concepts

An important concept in the theory of stochastic processes is that of the first
passage time of a certain event. In the case of Brownian motion we usually
think of the first time the particle reaches certain target. The probability
moments of the first passage time are of interest in many areas of study
[22].

In the next sections I will constantly refer to the following two concepts:

Splitting Probability When the absorbing (Dirichlet) boundary consists of
disjoint sets B = ∪N

i=1Bi, Pi is the probability of exiting through Bi.

Moments of the first passage time Tn is the n-th moment of the first pas-
sage time to the target(s) of interest, that is the APC. When referring
to the mean first passage time (MFPT), that is the first moment, we
drop the subscript and say simply T.
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3.2 Basic problem

On a first approach to the problemwe consider Ω, the LN, to be the interior
of a sphere of radius R+, and Ω1, an APC, to be a concentric sphere of
radius R− < R+. For simplicity we center the spheres at the origin. For
this problem, we considered two different conditions for the boundary of
Ω. The boundary of the target, ∂Ω1, is always absorbing, as we regard the
process as terminated once the particle has reached Ω1. The T cell is a point
with initial position x ∈ Ω�Ω1.

3.2.1 Neumann boundary

Although in reality T cells are not strictly trapped inside the LN, as I al-
ready said, it is also not true that they exit as soon as they hit the boundary
of the LN. Therefore, one might be interested in asking, if the T cell was
indeed unable to leave the LN, how long will it take it on average, to find
its cognate APC.

Mean first passage time

It is well known [22, 23] that the MFPT T satisfies the Poisson equation

∇2
T (x) = − 1

D
, x ∈ Ω�Ω1;

(3.1)T (x) = 0, x ∈ ∂Ω1;
∂nT (x) = 0, x ∈ ∂Ω,

where D is the diffusion constant.
Because of radial symmetry T only depends on r so that the partial

differential equation 3.1 reduces to the ordinary differential equation

∂2T

∂r2
(r) +

2

r

∂T

∂r
(r) = − 1

D
, r ∈ (R−, R+),

(3.2)T (R−) = 0,
∂nT (R+) = 0.

The solution to the homogeneous version of the Poisson equation, that
is the Laplace equation, is

c1
r
+ c2, (3.3)
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and we find a particular solution for 3.2 to be − r2

6D . Hence the general
solution to 3.2 is

T (r) =
c1
r
+ c2 −

r2

6D
. (3.4)

Now the boundary conditions T (R−) = 0 and ∂nT (R+) = 0 give the
following equations for c1 and c2

c1
R−

+ c2 −
R2
−

6D
= 0,

T
′ (R+) = − c1

R2
+

− R+

3D
= 0,

from where

c1 =− R3
+

3D
,

c2 =
R2
−

6D
− c1

R−
=

R2
−

6D
+

R3
+

3DR−
=

R3
− + 2R3

+

6DR−
.

The final expression for T is

T (r) =
R3
− + 2R3

+

6DR−
− R3

+

3Dr
− r2

6D
. (3.5)

A plot of T is shown on Figure 3.1.

Variance of the mean first passage time

Since the equation for all the moments of the FPT are also well known, it
is possible to also obtain an expresion for the Variance of the First Passage
Time (VFPT) using that

Var = T2 − T
2. (3.6)

As in [23], the equation for the second moment is

∇2
T2 (x) = − 2

D
T (x) , x ∈ Ω;

(3.7)T2 (x) = 0, x ∈ Ω�Ω1;
∂nT2 (x) = 0, x ∈ ∂Ω.

I found the following to be a particular solution for the previous equation:

r4

60D2
+

R3
+r

3D2
−
(

R3
− + 2R3

+

)

r2

18D2R−
.
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Figure 3.1: Plot of the mean (left) and variance (right) of the FPT to the
target inner sphere Ω1 as a function of the starting point, with reflecting
boundary conditions. R+ = 1, R− = 0.01, and D = 3.

Hence the solution to 3.7 is

T2 (r) =
c1
r
+ c2 +

r4

60D2
+

R3
+r

3D2
−
(

R3
− + 2R3

+

)

r2

18D2R−
.

After substituting the boundary conditions and solving for c1 and c2 we
find a final expression for the second moment of the FPT

(3.8)

T2 (r) =
18R5

+R− − 5R3
+

(

R3
− + 2R3

+

)

45D2R−r

+
r
(

3R−r3 + 60R3
+R− − 10r

(

R3
− + 2R3

+

))

180D2R−

+
40R6

+ + 7R6
− − 72R−R5

+ − 20R3
−R

3
+

180D2R2
−

,

and so we also have an expression for the VFPT, which we denote by V

(3.9)
V (r) =

r
(

20R3
+ − r3

)

90D2
+
10R6

+ + R6
− − 20R3

−R
3
+ − 36R−R5

+

90D2R2
−

+
2R5

+

5D2r
− R6

+

9D2r2
.

A plot of V is shown on Figure 3.1.
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3.2.2 Dirichlet boundary

Next we study what would happen if T cells would actually exit the LN
as soon as they hit its boundary. If we only changed the Neumann bound-
ary conditions to Dirichlet BC on equation 3.1 we would be computing the
mean time it takes for the particle to be absorbed, which now can happen
on any of the boundaries, i.e. ∂Ω or ∂Ω1. However, that is not what we
want. We want the MFPT to the APC, that is the mean time it takes for
the particle to hit ∂Ω1 before hitting the LN’s boundary ∂Ω. Hence, as in
[22], we first need to know the probability of absorption at Ω1, that is the
splitting probability P1. Because we will only compute the splitting prob-
ability to Ω1 we drop the subscript 1 and use P instead of P1 throughout
this chapter.

Splitting probability and mean first passage time

According to [22] the splitting probability and the MFPT to Ω1 satisfy the
following equations:

∇2P (x) = 0, x ∈ Ω�Ω1,
(3.10)P (x) = 0, x ∈ ∂Ω,

P (x) = 1, x ∈ ∂Ω1;

(3.11)D∇2 [PT] (x) = −P (x) , x ∈ Ω�Ω1,
[PT] (x) = 0, x ∈ ∂Ω ∪ ∂Ω1.

Again by spherical symmetry the previous equations are reduced to

P ′′ (r) +
2

r
P ′ (r) = 0,

(3.12)P (R−) = 1,
P (R+) = 0;

D

[

P ′′
T + 2P ′

T
′ + PT

′′ +
2

r

(

P ′
T + PT

′)
]

= −P ,

(3.13)P (R−)T (R−) = 0,
P (R+)T (R+) = 0.
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We already now the form of the solution to 3.12 (equation 3.3) so we just
need to check boundary conditions and get the constants.

P (R−) =
c1
R−

+ c2 = 1

P (R+) =
c1
R+

+ c2 = 0

=⇒ c2 = − c1
R+

=⇒ R+c1 − R−c1 = R−R+

=⇒ c1 =
R−R+

R+ − R−

=⇒ c2 = − R−
R+ − R−

Hence

P (r) =
R−R+

r (R+ − R−)
− R−

R+ − R−
. (3.14)

Equation 3.13 then reduces to

T
′′ +

2c2
c1 + c2r

T
′ = − 1

D
(3.15)

and we have that
2c2

c1 + c2r
= − 2

R+ − r
,

so the solution is

T (r) = − r (r− 2R+)

6D
− k1

r− R+
+ k2.

Now we need to find k1 and k2 from the boundary conditions. We have

P (r)T (r) =
c2R+ (r − 2R+)

6D
− c2r (r − 2R+)

6D

+
k1c2R+

r (r − R+)
− k1c2

r − R+
− k2c2R+

r
+ k2c2

where we have written c1 in terms of c2 using that c1 = −R+c2.
Notice that even though P (R+) = 0, P (R+)T (R+) could be nonzero

since T has a 1
r−R+

term. We have

0 = P (R+)T (R+) =
k1c2 (R+ − R+)

R+ (R+ − R+)
= − k1c2

R+
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Figure 3.2: Typical shape of the probability of reaching Ω1, P , as given by
equation 3.14. The parameters used are R− = 0.01, R+ = 1, and D = 3.

from where we must have k1 = 0. On the other hand since P (R−) = 1 then
to satisfy P (R−)T (R−) = 0 we need

0 = T (R−) = −R− (R− − 2R+)

6D
+ k2,

and thus

k2 =
R− (R− − 2R+)

6D
.

The final expresion for T is

T (r) = − r (r− 2R+)

6D
+
R− (R− − 2R+)

6D
. (3.16)

Plots of P and T for the case with absorbing boundary are shown on
Figures 3.2 and 3.3.

Variance of the first passage time

In [22], the author does not present equations for the higher ordermoments
of the FPT. However, it is easy to deduce the equation for the second mo-
ment following the same arguments used to obtain the equation for the
MFPT [see 22, Section 1.6.3].

We obtain P (x) by summing the probabilities for all paths that start at
x and reach R−, i.e.

P (x) = ∑
p∈paths

Pp (x) . (3.17)
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Then, by their definitions, T and T2 can be written as

T (x) =
∑p∈paths Pp (x) tp (x)

∑p∈paths Pp (x)
, (3.18)

T2 (x) =
∑p∈paths Pp (x) t2p (x)

∑p∈paths Pp (x)
, (3.19)

where tp (x) represents the time it takes for the particle to go from x to R−
following path p.

Now the sum overall the considered paths can be decomposed into the
outcome after one step and the sum over all path remainders from the in-
termediate point x′. In this discretizing framework we assume that on a
time step δt the particle can only take steps of size δx in one of six direc-
tions (±e1, ±e2, ±e3), and each direction is chosen with equal probability.
Thus x′ can only be equal to x± δxei with i ∈ {1, 2, 3}. Therefore

P (x) = ∑
p

[

3

∑
i=1

1

6
Pp (x + δxei) +

3

∑
i=1

1

6
Pp (x − δxei)

]

=
1

6

3

∑
i=1

[

Pp (x + δxei) + Pp (x − δxei)
]

.

Upon substituting P (x± δxei) by a three term Taylor expansion one
obtains equation 3.10. If we repeat what we just did to equation 3.17, to
equation 3.19 we obtain
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P (x)T2 (x) = ∑
p∈paths

Pp (x) t
2
p (x)

= ∑
p

3

∑
i=1

[

1

6
Pp (x + δxei)

(

tp (x + δxei) + δt
)2

+
1

6
Pp (x − δxei)

(

tp (x − δxei) + δt
)2
]

= δt2P (x) +
δt

3

3

∑
i=1

[

∑
p

Pp (x + δxei) tp (x + δxei)

+ ∑
p

Pp (x − δxei) tp (x − δxei)

]

+
1

6

3

∑
i=1

[

∑
p

Pp (x + δxei) t
2
p (x + δxei)

+ ∑
p

Pp (x − δxei) t
2
p (x − δxei)

]

= δt2P (x)

+
δt

3

3

∑
i=1

[P (x + δxei)T (x + δxei) + P (x − δxei)T (x − δxei)]

+
1

6

3

∑
i=1

[P (x + δxei)T2 (x + δxei) + P (x − δxei)T2 (x − δxei)]

where the last expression is obtained using equations 3.18 and 3.19. Next
we replace [PTn] (x± δxei) by its three term Taylor expansion about x.
Then

P (x)T2 (x) = δt2P (x) +
δt

3

3

∑
i=1

[

2P (x)T (x) + δx2
∂2PT

∂x2i
(x)

]

+
1

3

3

∑
i=1

[

P (x)T2 (x) +
δx2

2

∂2PT2

∂x2i
(x)

]

= δt2P (x) + 2δtP (x)T (x) +
δtδx2

3
∇2 [PT] (x)

+ P (x)T2 (x) +
δx2

2
∇2 [PT2] (x)

(3.20)
=⇒ −2δtP (x)T (x)

= δt2P (x) +
δtδx2

3
∇2 [PT] (x) +

δx2

2
∇2 [PT2] (x) .
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3.2. Basic problem

Now in this discretized diffusion process a relation between the time
and space steps is enforced, namely that

D =
δx2

2δt
.

Thus equation 3.20 turns into

(

δx2

2D

)2

P (x) +
δx4

6D
∇2 [PT] (x) +

δx2

2
∇2 [PT2] (x) = −δx2

D
P (x)T (x) .

Finally, we divide the previous equation by δx2 and then take the limit
as δx goes to 0 to obtain

∇2 [PT2] (x) = − 2

D
P (x)T (x) . (3.21)

Boundary conditions are analogous to those in 3.13.
Now that we have derived the equation we proceed to solving it. As in

equation 3.15 the previous equation reduces to

T
′′
2 +

2

r− R+
T

′
2 =

1

3D2
(r (r− 2R+)− R− (R− − 2R+)) (3.22)

which has solution given by

T2 (r) =
3D2b1 + 5R3

+R− (R− − 2R+) + 2R5
+

45D2 (r − R+)

− (R− − R+)
2 (r − R+)

2

9D2
+
(r − R+)

4

20D2
+ b2,

where b1 and b2 are constants to be determined upon sustitution of bound-
ary conditions. We start by checking the condition imposed on the outer
boundary (r = R+), again we must be careful here since T2 has a term

1
r−R−

.
Cancelling terms where applicable we are left with the following equation
at r = R+

0 = [PT2] (r)

=
R+

(

3D2b1 + 5R3
+R− (R− − 2R+) + 2R5

+

)

− r
(

3D2b1 + 5R3
+R− (R− − 2R+) + 2R5

+

)

45D2r (r − R+)

= − (r − R+)

45D2r (r − R+)

(

3D2b1 + 5R3
+R− (R− − 2R+) + 2R5

+

)

.
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3.2. Basic problem

Hence

b1 = −5R3
+R− (R− − 2R+) + 2R5

+

3D2
.

Now, since P (R−) = 1 at the other boundary we have

0 = T2 (R−)

= − (R− − R+)
4

9D2
+
(R− − R+)

4

20D2
+ b2

and thus

b2 =
11 (R− − R+)

4

180D2
.

Finally, we arrive to an expression for T2

T2 (r) =

(

11 (R− − R+)
2 − 9 (r− R+)

2
) (

(R− − R+)
2 − (r− R+)

2
)

180D2
.

(3.23)
We just need to use this together with formula 3.6 and equation 3.16 to
obtain the VFPT for the absorbing case:

(3.24)

V (r) =

(

11 (R− − R+)
2 − 9 (r − R+)

2
) (

(R− − R+)
2 − (r − R+)

2
)

180D2

−

(

(R− − R+)
2 − (r − R+)

2
)2

36D2

=

(

(R− − R+)
2 − (r − R+)

2
) (

3 (R− − R+)
2 − 2 (r − R+)

2
)

90D2
.

Figure 3.3 shows the VFPT for the problem with Dirichlet boundary
conditions.

3.2.3 Robin boundary

Finally, we examine the case of a Robin boundary condition for ∂Ω. It is
a good condition to consider since the T cell is not really unable to leave
the LN, as in the reflecting case, but it does not necessarily exits the first
time it hits the boundary, as in the absorbing case. Therefore, it makes
sense to ask what would happen if, on reaching the boundary of the LN,
the T cell would exit only with certain probability smaller than 1. With this
assumption and following the same discretizing argument that was used
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3.2. Basic problem

Figure 3.3: Plot of the mean (left) and variance (right) of the FPT to the
target inner sphere Ω1 as a function of the starting point, with absorbing
boundary conditions (equations 3.16 and 3.24). The parameters used are
R− = 0.01, R+ = 1, and D = 3.

on the previous section, we derived a boundary condition for the splitting
probability. As it turns out, this is in agreement with assuming a Robin
condition for the diffusion equation for the particle concentration u (as in
the introduction fo this chapter) [8].

The same equations 3.10, 3.11, and 3.21 are still valid, only the boundary
conditions will change. To derive the proper boundary conditions we go
back to one dimension, the result is easily extendable to our 3-dimensional
case. We consider a particle moving on the interval [R−, R+].

Derivation of boundary conditions

Suppose that if the particle reaches R+ then it either takes a step of size δx
back into the interval with probability 1− λ (δx), or the process ends with
probability λ (δx). In other words, the probability of getting to R+ − δx
from R+ in a time step of size δt, p (R+ − δx, δt|R+), is 1− λ (δx). Assume
also that this probability function λ satisfies λ (δx) = λ0δx, where λ0 is a
constant. Hence λ (δx) → 0 when δx → 0. Then

(3.25)P (R+) = (1− λ)P (R+ − δx)

≈ (1− λ)
(

P (R+)− δxP ′ (R+)
)

,
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3.2. Basic problem

where we have used a Taylor approximation to obtain the second line.
Therefore

(1− λ) δxP ′ (R+) = −λP (R+) .

Now we divide by δx and obtain

(1− λ0δx)P ′ (R+) = −λ0P (R+) .

Taking the limit as δx goes to 0 we get the following condition for the split-
ting probability on the right hand side boundary:

P ′ (R+) = −λ0P (R+) . (3.26)

Following analogous steps, an equation can be derived for the MFPT to
R−, T (x). From equation 3.18 and by our boundary assumption we have

[PT] (R+) = ∑
p

(1− λ) Pp (R+ − δx)
(

tp (R+ − δx) + δt
)

= δt (1− λ)P (R+ − δx) + (1− λ)P (R+ − δx)T (R+ − δx)

= δtP (R+) + (1− λ)
(

[PT] (R+)− δx [PT] ′ (R+)
)

,

where we have subsituted equation 3.25 and again used a Taylor approxi-
mation of PT about R+ to obtain the last line. This yields

(1− λ) δx [PT]′ (R+) = δtP (R+)− λ [PT] (R+)

Recall that we have established a relation between δt and δx, namely δt =
δx2/2D. Substituting that and the definition of λ (δx) on the previous equa-
tion and then dividing by δx we get

(1− λ0δx) [PT]′ (R+) =
δx

2D
P (R+)− λ0 [PT] (R+) .

Again taking the limit as δx goes to 0 gives the boundary conditionwewere
looking for:

[PT]′ (R+) = −λ0 [PT] (R+) . (3.27)

The same condition is satisfied by the second moment, as can be seen
following the analogous argument, i.e.

[PT2] (R+) = ∑
p

(1− λ) Pp (R+ − δx)
(

tp (R+ − δx) + δt
)2

= δt2P (R+) + 2δt (1− λ) [PT2] (R+ − δx)

+ (1− λ)
(

[PT2] (R+)− δx [PT2]
′ (R+)

)

from where
[PT2]

′ (R+) = −λ0 [PT2] (R+) . (3.28)

51



3.2. Basic problem

Splitting probability and mean first passage time

Nowwe are ready to solve the sytem given by equations 3.10, 3.11, and 3.21
changing the boundary conditions on Ω1 to conditions 3.26, 3.27, and 3.28
respectively, which corresponds to the FPT problem with a partially ab-
sorbing boundary. We drop the subscript on parameter λ0 in the boundary
conditions.

We first look at the equation for P . We already know the general solu-
tion to 3.10, namely

P (r) =
c1
r
+ 1− c1

R−
,

Then condition 3.26 gives

− c1
R2
+

+ λ
c1
R+

+ λ

(

1− c1
R−

)

= 0, (3.29)

which then implies −c1R− + λc1R+R− + λR2
+R− − λc1R

2
+ = 0 and so

c1 =
λR2

+R−
λR2

+ − λR+R− + R−
, (3.30)

c2 =
R− (1− λR+)

λR2
+ − λR+R− + R−

. (3.31)

Hence the solution for P is

P (r) =
R−
(

λR2
+ − λR+r + r

)

r (λR2
+ − λR+R− + R−)

. (3.32)

See figures 3.4 and 3.5 for a visual representation of this equation.
We can now work the equation for T. Again we know the equation

simplifies by spherical symmetry to equation 3.15, which substituting the
values of c1 and c2 we just computed yields

T
′′ +

2 (1− λR+)

λR2
+ − λR+r + r

T
′ = − 1

D
.

The general solution of the previous equation is

T (r) = k2 −
(

λR2
+ − λR+r + r

)2

6D (λR+ − 1)2
− k1

6D (λR+ − 1) (λR2
+ − λR+r + r)

. (3.33)
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Figure 3.4: Solution for the splitting probability with a Robin BC on ∂Ω.
Parameters as before, plus λ = 0.5.

Figure 3.5: Splitting probability P as a function of the “leakyness” of the
boundary, λ, for a fixed value of the starting point, r0 = 0.7. All other
parameters remain the same. The spectrum of λ has been split in two plots
since P has a singularity at λ = 1 for the chosen value of R+.
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Figure 3.6: Solution for the MFPT with a Robin BC on ∂Ω. Parameters as
before, plus λ = 0.5.

After substituting both boundary conditions, T (R−) = 0 and [PT]′ (R+) =
−λ [PT] (R+), we obtain an expression for the MFPT:

T (r) =
1

3D (λR+ − 1)

[

(

λR2
+ − λR+R− + R−

)2 −
(

λR2
+ − λR+r + r

)2

2 (λR+ − 1)

− R3
+ (r − R−)

(

λR2
+ − λR+R− + R−

) (

λR2
+ − λR+r + r

)

]

.

(3.34)

See figures 3.6 and 3.7 for a visual representation of this equation.

3.3 Multiple targets with asymptotically null volume

The real problem we are concerned with is how long it takes for a T cell to
find its antigen specific APC, when it is surrounded by other non-specific
APCs. The best model would be one where, upon reaching the non-specific
APCs, the T cell in question would remain attached to it only for a short
time and then it would continue its search in the LN.We start in this section
with a model where the T cell stops its search when it hits any of the APCs.

We consider N spherical targets Ωǫi with centers xi ∈ Ω with radii ǫai,
ai > 0, in such a way that these spheres are completely contained inside
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Figure 3.7: MFPT T as a function of the “leakyness” of the boundary, λ, for
a fixed value of the starting point, r0 = 0.7. All other parameters remain
the same. The spectrum of λ has been split in two plots since T has a
singularity at λ = 1 for the chosen value of R+.

the LN (a sphere Ω of radius a centered at the origin). There are two rea-
sons for making the radii asymptotically small. First, for simplicity, since
having randomly located spheres with positive volumes would break the
spherical symmetry of Ω that we have been taking a lot of advantage from.
By keeping the symmetry we can use a matched asymptotics rather than
a simulations approach to solve the problem. The second reason, is that,
although APCs tend to be larger than T cells, it makes more sense to make
APCs have asymptotically null rather than positive volume, given that the
T cell is merely a point.

We again examine different boundary conditions for the LN.

3.3.1 Neumann boundary

This problem has already been studied in the past [3, 4, 15]. In this section
I will outline the process of obtaining a two term expansion of the splitting
probability P1, that is the probability of reaching Ωǫ1 before reaching any
of the other APCs Ωǫj for j = 2, . . . ,N, by using matched asymptotics. The

starting point x is in Ω\Ωp where Ωp ≡ ∪N
i=1Ωǫi . I followed notes from

Professor Michael Ward [25, 26]. For simplicity of notation, we again drop
the subscript 1 on the splitting probability and use only P (x). Later we
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3.3. Multiple targets with asymptotically null volume

will use numeric subscripts again for the asymptotic expansions, then P1

will be used again, but it should not be confused with what we are now
simply denoting by P .

Again P satisfies Laplace’s equation

∇2P (x) = 0, x ∈ Ω\Ωp;

(3.35)∂nP (x) = 0, x ∈ ∂Ω;
P (x) = 1, x ∈ ∂Ω1;

P (x) = 0, x ∈ ∪N
j=2∂Ωǫi .

We first look at the outer region, away from the targets. As usual, we
expand P as

P = P0 + ǫP1 + ǫ2P2 + . . . (3.36)

Then
(3.37)∇2Pk = 0, x ∈ Ω\ {x1, . . . , xN}

∂nPk = 0, x ∈ ∂Ω

with certain singularity conditions as x → xj for j = 1, . . . ,N, determined
upon matching to the inner solution.

Then we look at the inner regions, we analyze separately the region
near each target. Near the j-th APC, we expand the inner solution w (y) ≡
P
(

xj + ǫy
)

, with y ≡ ǫ−1
(

x− xj
)

,

w = w0 + ǫw1 + . . . (3.38)

Now∇2
yw = ǫ2∇2

xP and so

∇2
yw0 = 0, y /∈ Ωj; w0 = δj1, y ∈ ∂Ωj (3.39)

∇2
yw1 = 0, y /∈ Ωj; w1 = 0, y ∈ ∂Ωj (3.40)

Here Ωj = ǫ−1Ωǫj . The far-field boundary conditions for w0 and w1 are
determined by the matching condition as x → xj between the inner and
outer expansions 3.36 and 3.38, written as

P0 + ǫP1 + ǫ2P2 + . . . ∼ w0 + ǫw1 + . . . (3.41)

The first matching condition is that w0 ∼ P0 as |y| → ∞. As before, the
solution to 3.39 is

w0 =
c1
|y| + c2,
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so that as |y| → ∞, w0 = c2 and thus P0 = c2 is a constant. The condition
w0 = δj1, y ∈ ∂Ωj, means w0

(

aj
)

= δj1, and so c1 = aj
(

δj1 −P0

)

. Hence

w0 (y) ≈ P0 +
aj
(

δj1 −P0

)

|y| (3.42)

as |y| → ∞. From this and the matching condition 3.41 we conclude that as
x → xj,

P1 ∼
aj
(

δj1 −P0

)

|x− xj|
. (3.43)

To be able to satisfy this condition we slightly perturb equation 3.37:

∇2P1 (x) = Sδ (x) ,

where S is a constant and δ is the Dirac delta function. Transforming the
previous equation to spherical coordinates we have

1

r2
∂

∂r

[

r2
∂P1

∂r

]

= Sδ (r) ,

which upon integration holds

∂

∂r

[

r2
∂P1

∂r

]

= Sr2δ (r) . (3.44)

Now recall that by definition

∫

R3
δ (x) dx = 1.

We can transform this equation to spherical coordinates to obtain

(3.45)

1 =
∫ 2π

0

∫ π

0

∫ ∞

0
δ (r) r2 sin θdrdθdϕ

=
∫ ∞

0
δ (r) r2

∫ 2π

0

∫ π

0
sin θdθdϕdr

=
∫ ∞

0
δ (r) r2

∫ 2π

0
[− cos θ]π0 dϕdr

=
∫ ∞

0
δ (r) r2

∫ 2π

0
2dϕdr

= 4π
∫ ∞

0
δ (r) r2dr.
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Hence, using 3.45 on equation 3.44 we get

r2
∂P1

∂r
=

S

4π
+ c′1

=⇒ ∂P1

∂r
=

S

4πr2
+
c′1
r2

=⇒ P1 (r) = −S + c′′1
4πr

+ c′2.

Nowwe can find out what S has to be to agree with the matching condition
3.43, namely

S = −4π
(

δj1 −P0

)

aj.

Therefore the equation for P1 writes

(3.46)∇2P1 = −4π
N

∑
j=1

(

δj1 − P0

)

ajδ
(

x − xj
)

, x ∈ Ω;

∂nP1 = 0, x ∈ ∂Ω.

Next we will use the divergence theorem to state a solvability condition
for P1 and thus determine P0. Indeed by the divergence theorem

∫∫∫

Ω
∇2P1dV =

∫∫

∂Ω
∇P1 ·~ndS =

∫∫

∂Ω
∂nP1dS

and the RHS is equal to zero by the boundary condition on 3.46. On the
other hand

∫∫∫

Ω
∇2P1dV = −4π

N

∑
j=1

(

δj1 −P0

)

aj

and so

(1−P0) a1 −P0 ∑
N
j=2 aj = 0 (3.47)

=⇒ P0 =
a1

∑
N
j=1 aj

.

We write
(3.48)P0 =

a1
Nā

, ā ≡ a1 + · · · + aN
N

,

to save space.
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Now let us look at the Green’s function for the system

∇2G =
1

|Ω| − δ (x − ξ) , x ∈ Ω;

(3.49)∂nG = 0, x ∈ ∂Ω;
∫

Ω
G (x; ξ) dx = 0.

In terms of this function the solution to 3.46 can be written as

P1 (x) = 4π
N

∑
j=1

(

δj1 −P0

)

ajG
(

x; xj
)

+ χ1 (3.50)

where χ1 is a constant. By integrating the previous equation we obtain an
expression for χ1:

∫

Ω
P1dx = 4π

N

∑
j=1

(

δj1 − P0

)

aj

∫

Ω
G
(

x; xj
)

+
∫

Ω
χ1

= χ1|Ω|

by equation 3.47. Then

χ1 =
1

|Ω|
∫

Ω
P1dx

We have finally arrived to a two term expansion of the splitting proba-
bility:

P (x) =
a1
Nā

+ 4πǫa1

[

G (x; x1)−
1

Nā

N

∑
j=1

ajG
(

x; xj
)

]

+ ǫχ1 +O
(

ǫ2
)

. (3.51)

The derivation of G and χ1 can be found in references [15, 25, 26] and I have
also rewritten it in Appendix A for the sake of completeness. See Figures
3.9 and 3.10 for some example plots of P .

Mean first passage time

We now look at the MFPT.
The solution to

∇2
TG (x) = − 1

D
, x ∈ Ω\Ωp,

(3.52)∂nTG (x) = 0, x ∈ ∂Ω,
TG (x) = 0, x ∈ ∂Ωp,
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Figure 3.8: Sphere of radius 1 representing the lymph node, with 3000 ran-
domly placed spherical targets (which represent dendritic cells). The one
target filled in green is Ω1, which represents the cognate APC the T cell is
looking for. All targets are placed in such a way that there is at least 5ǫ
between each pair and also separating them from the LN boundary. Since
a spherical LN in mice is about 2mm in diameter [14], the scale here is
in millimeters. I used aj = 0.35 for all j, since for ǫ = 0.01 the radius
ǫaj = 3.5× 10−3mm would correspond to the average size of a dendritic
cell. However, such a big value for ǫ made it imposible to compute posi-
tions for the 3000 targets without overlapping so I used ǫ = 0.001 instead.
See the following figures for more details.
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3.3. Multiple targets with asymptotically null volume
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Figure 3.9: Splitting probability from equations 3.51, A.11, and A.15, with
ǫ = 0.001. P is plotted as a function of r along the radius shown in red
(left) or black (right) in figure 3.8 (the angles which define these radii were
chosen randomly).
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Figure 3.10: Splitting probability from equations 3.51, A.11, and A.15, with
ǫ = 0.001. P is plotted as a function of the azimuthal angle along the circle
shown in red (left) or black (right) in figure 3.8 (the radius and the polar
angle which define these circles were chosen randomly).
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3.3. Multiple targets with asymptotically null volume

corresponds to the mean first passage time to hitting any of the traps. (The
subscript G stands for “general”.) This is readily calculated by using the
same matched asymptotic approach as before. Thus TG is given in the limit
ǫ → 0 of small trap radius by

(3.53)TG ≈ a3

3NāDǫ

[

1− 4πǫ
N

∑
j=1

ajG
(

x; xj
)

+
4πǫ

Nā
aTGa +O

(

ǫ2
)

]

[4]. See Figures 3.11 and 3.12 for examples.
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Figure 3.11: MFPT from equations 3.51 and A.11, with ǫ = 0.001 and D =
3. TG is plotted as a function of r along the radius shown in red (left) or
black (right) in figure 3.8 (the angles which define these radii were chosen
randomly).
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Figure 3.12: MFPT from equations 3.51 and A.11, with ǫ = 0.001 and D = 3.
TG is plotted as a function of the azimuthal angle along the circle shown in
red (left) or black (right) in figure 3.8 (the radius and the polar angle which
define these circles were chosen randomly).
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3.3. Multiple targets with asymptotically null volume

Also, the average MFPT based on a uniform distribution of starting
points, T̄G = |Ω|−1

∫

Ω TGdx, satisfies

(3.54)T̄G ≈ a3

3NāDǫ

[

1 +
4πǫ

Nā
aTGa +O

(

ǫ2
)

]

.

T̄G for parameters like those from Figure 3.11 is around 0.1075. Increasing
the radii of the targets to 3.5 gives a T̄G of about 0.0125, while reducing ǫ
to 0.0001 makes T̄G = 1.0885. See also Figures 3.13 and 3.14.
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Figure 3.13: Plot of T̄G versus aj. N = 3000, a = 1, ǫ = 0.001 and D = 3. Due
to the big variation in scale I separated the range of aj in three plots.
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Figure 3.14: Plot of T̄G versus ǫ and N. Same parameters as previous figure.

To compute the MFPT to the specific cognate APC, Ω1, when the T cell
is unable to leave the LN we would instead need to solve

∇2 [PT] (x) = − 1

D
P (x) , x ∈ Ω\Ωp;

(3.55)∂nT (x) = 0, x ∈ ∂Ω;

[PT] (x) = 0, x ∈ ∂ ∪N
j=2 Ωǫj ;

T (x) = 0, x ∈ ∂Ωǫ1 .
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3.3. Multiple targets with asymptotically null volume

Unfortunately, we have not as yet been able to solve this. Instead, we study
the previouslymentioned case where the T cell keeps its search after having
contact with other non-cognate APCs. This is effectively done by imposing
a Neumann boundary condition on all other targets (j = 2, . . . ,N). Under
this model, a contact between the T cell and a non-cognate APC is infinites-
imaly short. The differential equation to solve is

∇2
T (x) = − 1

D
, x ∈ Ω\Ωp;

(3.56)∂nT (x) = 0, x ∈ ∂Ω
⋃∪N

j=2Ωǫj ;

T (x) = 0, x ∈ ∂Ωǫ1 .

In the outer region we expand T = ǫ−1
T0 + T1 + ǫT2 + . . .. For k = 0, 2

the Tk satisfy
∇2

Tk (x) = 0, x ∈ Ω\ {x1, . . . , xN},
(3.57)∂Tk (x) = 0, x ∈ ∂Ω,

while T1 satisfies

∇2
T1 (x) = − 1

D
, x ∈ Ω\ {x1, . . . , xN};

(3.58)∂nT1 (x) = 0, x ∈ ∂Ω.

Singularity conditions as x → xj will be determined upon matching to the
inner solution.

In the inner region near the j-th trap, like we did for P before, we let
v (y) ≡ T

(

xj + ǫy
)

with y ≡ ǫ−1
(

x− xj
)

. We also expand v = ǫ−1v0 + v1 +
. . .. The equations for the vk are

∇2vk
(

y
)

= 0, y /∈ Ωj,

(3.59)∂nvk
(

y
)

= 0, y ∈ ∂Ωj, j 6= 1,

vk
(

y
)

= 0, y ∈ ∂Ω1,

and the matching condition reads

ǫ−1
T0 + T1 + ǫT2 + . . . ∼ ǫ−1v0 + v1 + . . .

By equations 3.57 and 3.59, T0 is a constant and v0 is too in the inner
region near the j-th trap for j 6= 1. The matching condition implies that
v0 = T0 in the j-th inner region j 6= 1 while

v0 (y) = T0 −
T0a1
|y|

64



3.3. Multiple targets with asymptotically null volume

in the inner region near the first trap. By checking the matching condition
again, we conclude that T1 satisfies equation 3.58 with singular behaviour

T1 ∼ − a1T0

|x− x1|

as x → x1 and T1 ∼ 0 as x → xj. Therefore, in terms of the Dirac distribu-
tion, T1 satisfies

∇2
T1 (x) = 4πa1T0δ (x − x1)−

1

D
, x ∈ Ω;

∂nT1 (x) = 0, x ∈ ∂Ω.

We use the divergence theorem on the previous equation to derive a solv-
ability condition for T1, which yields

T0 =
|Ω|

4πa1D
. (3.60)

Now in terms of the Green’s function, defined by equation 3.49, and a
constant χT we find that

T1 = −4πa1T0G (x; x1) + χT .

Next we expand the previous expression for T1 as x → xj using the local
behaviour of G found on Appendix A.1.1. We get

T1 ∼ − a1T0

|x − x1|
− 4πa1T0R1,1 + χT, as x → x1;

T1 ∼ −4πa1T0Gj,1 + χT, as x → xj.

Upon substituting into the matching condition we find that

v1 ∼ −4πa1T0Gj,1 + χT, as |y| → ∞,

where we are using the matrix notation from Appendix A.1.1. From equa-
tion 3.59 we note that v1 is also a constant in the inner region near the j-th

trap for j 6= 1, whereas v1 (y) = c1

(

1− a1
|y|

)

in the inner region near the first

trap, with c1 a constant. Hence

v1 (y) =
(

χT − 4πa1T0Gj,1

)

(

1− δj,1a1

|y|

)

.
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Figure 3.15: MFPT from equation 3.61 with ǫ = 0.001 and D = 3. T is
plotted as a function of r along the radius shown in red (left) or black (right)
in figure 3.8 (the angles which define these radii were chosen randomly).

Once again we go back to the matching condition and obtain that T2

should also be approximatedly 0 as x → xj, j 6= 1, and

T2 ∼
a1 (4πa1T0R1,1 − χT)

|x− x1|
as x → x1. Thus the equation for T2 is

∇2
T2 (x) = −4π

(

4πa1T0R1,1 − χT

)

a1δ (x − x1) , x ∈ Ω;

∂nT2 (x) = 0, x ∈ ∂Ω.

Finally, the divergence theorem yields a solvability condition for T2 which
gives χT = 4πa1T0R1,1.

We have thus obtained a two-term expression for the MFPT:

T (x) =
a3

3ǫa1D
+
4πa3

3D
(R1,1 − G (x; x1)) . (3.61)

See Figures 3.15 and 3.16 for examples.

3.3.2 Robin boundary

In this section we want to study the asymptotic solution to 3.35 when the
boundary condition on ∂Ω, ∂nP = 0, is replaced by ∂nP = λP . Since the
Robin Green’s function for the Laplace equation is unknown, we instead
consider the case when λ = ǫλ0 for some constant λ0 and let ǫ go to 0.

Notice that the solution in the inner region would be the same from
the previous section, as only the outer boundary condition has changed.
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Figure 3.16: MFPT from equation 3.61 with ǫ = 0.001 and D = 3. T is
plotted as a function of the azimuthal angle along the circle shown in red
(left) or black (right) in figure 3.8 (the radius and the polar angle which
define these circles were chosen randomly).

Therefore, we need only solve the outer problem and be careful that the
match is not lost.

Like before, in the outer region we expand P = P0 + ǫP1 + ǫ2P2 + . . ..
Notice that the boundary condition for P0 is again ∂nP0 = 0 so that P0 is a
constant.

Now, near the j-th trap we again let w (y) ≡ P
(

xj + ǫy
)

and so equa-
tions 3.39 and 3.40 hold. From 3.43 we find that P1 must satisfy

(3.62)∇2P1 = −4π
N

∑
j=1

(

δj1 − P0

)

ajδ
(

x − xj
)

, x ∈ Ω,

∂nP1 = −λ0P0, x ∈ ∂Ω.

The solvability condition for P1 obtained by the divergence theorem gives

(3.63)
−4π

N

∑
j =1

(

δj1 − P0

)

aj =
∫∫

∂Ω
λ0P0

= −λ0P0|∂Ω|,

where |∂Ω| is the surface area of the sphere Ω. Thus

P0 =
4πa1

4πNā + λ0|∂Ω| . (3.64)
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3.3. Multiple targets with asymptotically null volume

Next we decompose P1 = −λ0P0P1P +P1H + χR where χR is a constant
and P1P and P1H obey the following conditions

∇2P1P =
|∂Ω|
|Ω| , x ∈ Ω,

(3.65)∂nP1P = 1, x ∈ ∂Ω,
∫

Ω
P1P (x) dx = 0;

∇2P1H =
λ0P0|∂Ω|

|Ω| − 4π
N

∑
j=1

(

δj1 − P0

)

ajδ
(

x − xj
)

, x ∈ Ω,

(3.66)∂nP1H = 0, x ∈ ∂Ω,
∫

Ω
P1H (x) dx = 0.

In terms of the Green’s function of the previous section (equation 3.49),
a solution to 3.66 is readily found to be

P1H = 4π
N

∑
j=1

(

δj1 −P0

)

ajG
(

x; xj
)

, (3.67)

by identity 3.63.
As for P1P, the divergence theorem yields
∫

Ω

(

G (ξ; x)∇2P1P (ξ) − P1P (ξ)∇2G (ξ; x)
)

dξ =
∫

∂Ω
G (ξ; x) dξ.

The LHS is equal to

λ0P0|∂Ω|
|Ω|

∫

Ω
G (ξ; x) dξ −

∫

Ω
P1P (ξ)

(

1

|Ω| − δ (ξ − x)

)

dξ = P1P (x) .

Hence

P1P (x) =
∫

∂Ω
G (ξ; x) dξ. (3.68)

Indeed, by reciprocity of G the third condition for P1P is satisfied too since

∫

Ω
P1P (x) dx =

∫

∂Ω

(

∫

Ω
G (ξ; x) dx

)

dξ

=
∫

∂Ω

(

∫

Ω
G (x; ξ) dx

)

dξ

= 0.
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3.3. Multiple targets with asymptotically null volume

For the specific case we are dealing with, namely Ω is a sphere of radius
a, we can also find a explicit solution to 3.65. First notice that

|∂Ω|
|Ω| =

4πa2

4
3πa3

=
3

a
.

Thus the general solution for P1P is

P1P (r) =
c1
r
+ c2 +

r2

2a

where c1 and c2 are constants. Then the boundary condition yields

1 = P ′
1P (a) =

(

− c1
r2

+
r

a

)

|r=a= − c1
a2

+ 1

so that c1 = 0. On the other hand, the integral condition imposed on P1P

gives

0 =
∫

Ω
P1P (x) dx

= 4π
∫ a

0

(

c2 +
r2

2a

)

r2dr

= 4π

(

c2a
3

3
+

a5

10a

)

by a change to spherical coordinates. Then

c2 = − 3

10
a

and so

P1P (x) =
|x|2
2a

− 3

10
a. (3.69)

We have reached the analogous step to equation 3.51, a two term ex-
pansion for the splitting probability:

(3.70)

P (x) =
a1

Nā + λ0a2
+ ǫa1

[

− λ0

Nā + λ0a2

( |x|2
2a

− 3

10
a

)

+ 4πG (x; x1)

− 1

Nā + λ0a2

N

∑
j=1

ajG
(

x; xj
)

]

+ ǫχR +O
(

ǫ2
)

.

The derivation of χR has been left for Appendix A. See Figures 3.17 and
3.18 for some example plots of P .
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Figure 3.17: Splitting probability from equations 3.70, A.11, and A.19, with
ǫ = 0.001 and λ0 = 0.5. P is plotted as a function of r along the radius
shown in red (left) or black (right) in Figure 3.8 (the angles which define
these radii were chosen randomly).
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Figure 3.18: Splitting probability from equations 3.70, A.11, and A.19, with
ǫ = 0.001 and λ0 = 0.5. P is plotted as a function of the azimuthal angle
along the circle shown in red (left) or black (right) in Figure 3.8 (the radius
and the polar angle which define these circles were chosen randomly).
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3.4. Space dependant diffusivity

An analogous derivation yields the MFPT to any absorbing boundary,
that is the solution to equation 3.52 changing the Neumann boundary con-
dition by the Robin boundary condition we proposed here ∂nTG = ǫλ0TG.
Because this general MFPT is not what we are interested in, I did not in-
clude that calculation.

3.4 Space dependant diffusivity

We now consider the problem of space dependant diffusion. As it has been
said, lymph nodes have a highly organized architecture, and so it makes
sense to think that T cells do not perform free diffusion, but that their dif-
fusion coefficient depends on their location inside the LN. Moreover, it has
been proposed [1] that the fibroblastic reticular network might be of aid in
the search of a T cell for its cognate APC. In the FRN model dendritic cells
are located on the network and T cells preferentially crawl along it with
their velocities being higher on the FRN [12].

Figure 3.19: Visual representation of a two dimensional version of our FRN
model (the FRN fibers shown in color). The diffusion coefficient on the x
(respectively y) direction increases when the cell is on the blue (respectively
red) layers. The purple squares mark the intersections between horizontal
and vertical fibers of the FRN. On those regions diffusion is higher in both
the x and y direction. White squares are areas of slower diffusion off the
FRN. This image was adapted from [9].

To mimic the influence of the FRN in the time taken for a T cell to find
its correspondingAPC, we created a mathematical model where the lymph
node is layered in all three dimensions. Diffusion on the x direction (respec-
tively y, z directions) is higher when the cell is on the strips with y and z
constant (respectively x and z constant, and x and y constant). (See Figure
3.19 for a visual representation of this model.)
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3.4. Space dependant diffusivity

We write the already familiar equation for the MFPT when there are
several absorbing sections on the boundary, in the following way

(3.71)Lǫ
[

T
ǫP
]

= P (x) ,

with P satisfying the corresponding equation from the previous sections.
Here ǫ represents the width of the layers.

Before we had L = −D∇2. This time each entry of the Laplacian will be
multiplied by a different diffusion coefficient, which will also depend on x.

We want to find T
ǫ in the homogenization limit ǫ → 0, i.e. when the

strips are so thin that every region, no matter how small, intersects both
types of layers. Notice that Lǫ can be written as Lǫ = −A (x/ǫ) : D2 where
D2 is the matrix of second partial derivatives, i.e. with i, j entry equal to

(

D2
)

i,j
=

∂2

∂xixj
,

and the colon operator acts in the following way

M : N = tr
(

MTN
)

=
3

∑
i,j=1

Mi,jNi,j

for any matrices M and N.
To start with a simpler example, we take a step back to the case where

there is only one target. Then the MFPT (to any absorbing part of the
boundary) satisfies

(3.72)Lǫ
T

ǫ = 1

[16], where

(3.73)Lǫ = −
3

∑
i,j=1

Ai,j

( x

ǫ

) ∂2

∂xixj
,

A being the matrix of diffusion coefficients and ǫ the width of the strips.
According to [9], in the limit when ǫ → 0 solutions of the general equa-

tion Lǫuǫ = f (x) converge to solutions of the averaged equation

−Ā : D2u = f (x) (3.74)

Here the averaged coefficient matrix Ā is given by Ā = 〈ρ∞A〉 where the
angle brackets denote the average 〈v〉 =

∫

v, and ρ is the invariant distribu-
tion of L, that is the solution to

L∗ρ∞ = 0,

〈ρ∞〉 = 1.
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3.4. Space dependant diffusivity

Notice that the matrix A will be periodic since we want the diffusion
coefficient to depend only on whether the particle is on or off the color
strips and not of on which particular strip it is currently found. For the
previous result to hold we need A to have period 1, so we will enforce
this when defining the diffusion coefficents on the layered pattern. Thus to
compute the average 〈v〉 we need only integrate over [0, 1].

To define A, we first consider a symmetric function g (x) such that g
takes higher values on the interval [0, 0.5], which would correspond to one
of the FRN fibers, and lower values on the interval [0.5, 1]. One very simple
example is shown in Figure 3.20.
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Figure 3.20: Plot of g(z) = (sin (2πz) + 1.1) /2.1. The red line is the border
line between layers like in Figure 3.19, the left side of the red line corre-
sponding to a color strip.

In terms of such a function g we could define the diffusion coefficient
matrix to be

A (x) = D





g(x2)g(x3 − 0.5) 0 0
0 g(x1 − 0.5)g(x3 − 0.5) 0
0 0 g(x1 − 0.5)g(x2)



 ,

where x = (x1, x2, x3) and D is a basal diffusion coefficient.
Clearly A is diagonal and has separable entries, that is it can be ex-

pressed as a product of diagonal matrices each depending on only one xi:

A (x) = D
n

∏
j=1

Aj
(

xj
)

.
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3.4. Space dependant diffusivity

In the particular case we are considering

A1 (x1) =





1 0 0
0 g(x1 − 0.5) 0
0 0 g(x1 − 0.5)



 ,

A2 (x2) =





g(x2) 0 0
0 1 0
0 0 g(x2)



 ,

A3 (x3) =





g(x3 − 0.5) 0 0
0 g(x3 − 0.5) 0
0 0 1



 .

Hence according to [9] the matrix of coefficients for the averaged equation
has the simplified form

(3.75)Ā =

〈

1

D ∏
n
j=1 A

j
jj

(

xj
)

A

〉〈

1

D ∏
n
j=1 A

j
jj

(

xj
)

〉−1

= 〈A〉 .
If we use g as in Figure 3.20 then

h =
∫ 1

0
g (z) dz =

∫ 1

0
g (z− 0.5) dz =

1.1

2.1

so that the averaged equation ends up being

−Dh2∇2u = f (x) (3.76)

Notice that the case will be the same whenever the functions that de-
scribe the behaviour along each fiber integrate to the same constant, pro-
vided that A is diagonal and has separable entries.

Another interesting case to consider would be to only have these fast
fibers along two of the three directions. Then we would have a different
diffusion coefficient along one direction, but all coefficients would still be
constant.

More complicated dynamics arise if diffusion changes from its basal
state in every direction regardless of the orientation of the fiber the cell is at.
Although these alternative model is plausible, the simple model presented
here already incorporates the influence of the FRN so that there is no need
to complicate it. Indeed, by increasing the diffusion coefficient of the same
direction as the orientation of the fiber the cell is at, it would appear that it
is crawling along the fiber.
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3.5 Discussion and future work

Notice how the MFPT increases 10 fold from a Robin boundary (with λ =
0.5) and 100 fold from a Dirichlet boundary, to a Neumann boundary (see
Figure 3.21). Also, in the case where the cell is unable to leave the LN, the
MFPT increases very rapidly as the starting position of the T cell moves
away from the target. In the other two cases, that is when the cell has some
chance to escape from the LN, the increase is less steep. Recall that, in
reality, T cells remain in the LN only for some time and if they do not get
activated they recirculate through the body and return to the LN later.

(a) Neumann (b) Dirichlet (c) Robin

Figure 3.21: Mean first passage time with different conditions on the
boundary of the LN ∂Ω. Figures 3.1, 3.3 and 3.6 are here shown side by
side for ease of comparison.

For the case wherewe consideredmultiple asymptotically small targets,
notice how changing the Neumann for a Robin BC introduces a difference
in the splitting probability already at first order. This is so despite the fact
that the exit flux out of the LN imposed by the Robin condition is of order
ǫ. (Compare equations 3.51 and 3.70.) Indeed, P0 for the Robin condition
has an extra λ0a

2 in the denominator so that the probability of hitting Ω1

before the process ends (by absorption by either the other targets or the LN
boundary) is smaller in the Robin case.

To our knowledge, the splitting probability had never been computed
for the multiple asymptotically small tagets with a Robin BC on the outer
sphere. That is an important contribution from this thesis work, even if
the case we considered is a Robin BC of order ǫ. Moreover, further exten-
sions of this condition can be adapted from the results in [8]. For example,
conditions could be derived for a model where the moving particle waits
for some time on the boundary before deciding whether to exit or to re-

75



3.5. Discussion and future work

turn to the inside. Such a model might be relevant for other FPT biological
problems, if not for the T cell activation problem here proposed.

Most results in this chapter can be improved to resemble more closely
the dynamics of T cell activation. Many calculations were left in a sense
incomplete, for example on Section 3.2.3 I did not compute the variance.
Just the calculation of the second moment is very lengthy, complicated and
error prone, which is why I did not continue to the variance. In the previous
section one could also find explicit solutions for the case when the averaged
diffusion coefficients are not equal in all directions.

Another interesting variation of the problems presented here would be
to include more information about the antigen presenting cells. For exam-
ple, since dendritic cells are a major class of APCs one could study how
having long dendrites changes the time it takes for a T cell to find its corre-
sponding DC.

Also all the models presented could be used with real data to estimate
contact rates and other kinetic parameters.

As I said in the introduction, this mean first passage time approach
to the immunological problem was inspired by the Graw-Regoes papers
[11, 12]. Hence it is of high interest to compare our results with those pre-
sented in the paper. However, this work is not yet in a stage where such
comparison can be done. On the 2009 paper, the authors studied the in-
fluence of target localization on the killing rates of cytotoxic T cells. Al-
though we considered a different process, namely localization of the ac-
tivating APC, the problems are very similar and many of the results here
presented could be adapted to the other problem. The problem is, however,
that our model ends when the target is found. To evaluate the simulated
results from the paper under our theoretical framework, we would need
to consider a model in which the bond remains for a certain time and after
breakage the T cell goes back to the searching stage. I mentioned before
that, given the serial engagement hypothesis, this model would also be in-
teresting under the T cell activation problem.

Following the FRN model, one could also consider the MFPT to a spe-
cific node on a graph (the FRN) when the T cell is only moving along the
edges of the graph. This has been studied in the past via simulations [7].
However, a MFPT calculation on a random graph (or other type of graph
which might resemble the FRN) is very complicated.

In summary, there is a lot more work that can be done and many direc-
tions in which this research can be extended. Moreover, I believe the work
here presented is significative for it sets the theoretical framework which
can not only be used for the immunological problem I proposed, but for
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many other biological problems.
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[15] Theodore Kolokolnikov, Michèle S. Titcombe, and Michael J. Ward.
Optimizing the fundamental Neumann eigenvalue for the Laplacian
in a domain with small traps. European Journal of Applied Mathematics,
16(2), April 2005.

[16] Hannah W. McKenzie, Mark A. Lewis, and Evelyn H. Merrill. First
passage time analysis of animal movement insights into the functional
response. Bulletin of Mathematical Biology, 71(1), September 2009.

[17] MicroscopyU. Fundamentals and applications in multiphoton exci-
tation microscopy. From http://www.microscopyu.com/articles/

fluorescence/multiphoton/multiphotonintro.html.

[18] Jennifer S. Morrison. Deciphering multi-state mobility within single
particle trajectories of proteins on the plasma membrane. Master’s
thesis, The University of British Columbia, August 2010.

[19] Kenneth Murphy. Janeway’s Immunobiology. Garland Science, 8th edi-
tion, 2012.

[20] National Institutes of Health. Image J. From http://rsbweb.nih.

gov/ij/.

[21] Jean-Christophe Olivo-Marin. Extraction of spots in biological images
using multiscale products. Pattern Recognition, 35(9), 2002.

79

http://lccb.hms.harvard.edu/software.html
http://lccb.hms.harvard.edu/software.html
http://www.microscopyu.com/articles/fluorescence/multiphoton/multiphotonintro.html
http://www.microscopyu.com/articles/fluorescence/multiphoton/multiphotonintro.html
http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/


[22] Sidney Redner. A Guide to First passage processes. Cambridge Univer-
sity Press, 2001.

[23] Hannes Risken. The Fokker-Planck Equation. Methods of Solution and Ap-
plications. Springer-Verlag, second edition, 1989.

[24] Ulrich H. von Andrian and Thorsten R. Mempel. Homing and cel-
lular traffic in lymph nodes. Nature Reviews Immunology, 3:867–878,
November 2003.

[25] Michael J. Ward. Math 551: Homework 2. From http://www.math.

ubc.ca/~ward/teaching/m551/hw2_11sol.pdf.

[26] Michael J. Ward. Notes on strong localized perturbation theory. From
http://www.math.ubc.ca/~ward/teaching/m551/m550_hole.pdf.

[27] Carla Wofsy, Daniel Coombs, and Byron Goldstein. Calculations show
substantial serial engagement of T cell receptors. Biophysical Journal,
80(2), February 2001.

80

http://www.math.ubc.ca/~ward/teaching/m551/hw2_11sol.pdf
http://www.math.ubc.ca/~ward/teaching/m551/hw2_11sol.pdf
http://www.math.ubc.ca/~ward/teaching/m551/m550_hole.pdf


Appendix A

Additional derivations

A.1 From the Neumann splitting probability,

equation 3.51

A.1.1 The Neumann Green’s function for the sphere

We now calculate the Neumann Green’s function G (x, ξ) satisfying equa-
tion 3.49 when Ω is a sphere of radius a.

First let us look at the singular part of G, that is we want to solve

(A.1)∇2u (x) = −δ (x − ξ) , in R
3.

Take a small sphere Ωǫ of radius ǫ about ξ. Then in a neighborhood of
ξ we let r = |x− ξ| and then

0 = ∇2u

= urr +
2

r
ur, for r > 0,

so that u (r) =
β
r .

Now, since
∫

Ωǫ

∇2u (x) dx = −
∫

Ωǫ

δ (x− ξ) dx = −1,

then by the divergence theorem

−1 =
∫

Ωǫ

∇u ·~ndS = 4π
(

r2ur (r)
)

|r=ǫ, (A.2)

again by a change to spherical coordinates as in equation 3.45. Since ur =
−βr−2 then equation A.2 gives

4π

(

−ǫ2β

ǫ2

)

= −1
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A.1. From the Neumann splitting probability, equation 3.51

which yields

β =
1

4π
.

Thus

u (x) =
1

4π|x − ξ| ,

and so we can write

(A.3)G (x; ξ) ≈ 1

4π|x − ξ| + R (x; ξ) , as x → ξ.

To find R I followed the Appendix A from reference [15]. We first de-
compose G as follows

G (x; ξ) = u (x) +
|x|2 + |ξ|2

6|Ω| +
1

4π
φ (x; ξ) , (A.4)

with φ an unknown function we want to compute. Notice that in that case

∇2G (x; ξ) = ∇2u (x) +
1

6|Ω|

(

∂2

∂r2
+
2

r

∂

∂

)

(

|x|2 + |ξ|2
)

+
1

4π
∇2φ (x; ξ)

= −δ (x − ξ) +
1

|Ω| +
1

4π
∇2φ (x; ξ) .

Because Ω is a sphere, |Ω| = 4πa3/3. Then

∂nG (x; ξ) =
1

4π

(

∂n

(

1

|x − ξ|

)

+
|x|
a3

+ ∂nφ

)

.

Substituting this onto the differential equation which defines G, equation
3.49, we find that φ must satisfy

(A.5)∇2φ = 0, x ∈ Ω,

∂nφ = − 1

a2
− ∂n

(

1

|x − ξ|

)

, x ∈ ∂Ω.

To solve A.5 we choose a coordinate system so that the source point
x = ξ is on the positive z axis. Then, since ∇2φ = 0 and φ is axisymmetric,
φ admits the series expansion

φ (x; ξ) =
∞

∑
n=0

BnPn (cos θ)

( |x||ξ|
a2

)n

, (A.6)
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where Pn is the Legendre polynomial of integer n and the Bn for n = 0, 1, . . .
are coefficients to be determined. To simplify the problem, we have en-
forced that φ (x; ξ) = φ (ξ; x) so that G (x; ξ) = G (ξ; x), an assumption that
agrees with the interpretation of P . From A.6 we see that

∂nφ|∂Ω=
∞

∑
n=0

nBn

an+1
Pn (cos θ) |ξ|n . (A.7)

Now, from the generating function for Legendre polynomials,

1√
1− 2tz + t2

=
∞

∑
k=0

tkPk (z) , (A.8)

we obtain the following equation, by setting z = cos θ and t = |ξ|/|x|:
1

|x − ξ| =
1

√

|ξ|2 − 2|x||ξ| cos θ + |x|2

=
1

|x|
√
t2 − 2tz + 1

=
∞

∑
n=0

|ξ|n
|x|n+1 Pn (cos θ) .

By differentiating this expression with respect to r = |x| we get

(A.9)∂r

(

1

|x − ξ|

)

|r=a = −
∞

∑
n=0

(n + 1) |ξ|n
an+2

Pn (cos θ) .

Upon substituting A.7 and A.9 into the boundary condition given in A.5,
we obtain

∞

∑
n=0

(

nBn −
n + 1

a

)

Pn (cos θ)
|ξ|n
an+1

= − 1

a2
.

Since B0 is arbitrary, we can choose it to be equal to 1/a for convenience.
Then the other coefficients must satisfy

(A.10)Bn =
1

a
+

1

na
, for n ≥ 1.

Back to the series expansion of φ, equation A.6, and replacing on it the
previous expressions for the Bn’s, we find that

φ (x; ξ) =
1

a

∞

∑
n=0

Pn (cos θ)

( |x||ξ|
a2

)n

+
1

a

∞

∑
n=1

1

n
Pn (cos θ)

( |x||ξ|
a2

)n

.
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By using the generating function A.8 again we find that the first infinite
sum reduces to

1

a

∞

∑
n =0

Pn (cos θ)

( |x||ξ|
a2

)n

=
a

|x|

(

a4

|x|2 − 2|ξ| a
2

|x| cos θ + |ξ|2
)− 1

2

=
a

|x|r′ ,

where x′ = xa2/|x|2 is the image point to x outside the sphere and r′ =
|x′ − ξ|.

To calculate the second infinite sum let us define the following function:

I (β) =
∞

∑
n=1

1

n
Pn (cos θ) βn.

In terms of it, the second infinite sum is equal to a−1 I
(

|x||ξ|/a2
)

. Upon
diferentiating and then using the generating function A.8 we get

I ′
(

β
)

=
∞

∑
n=1

Pn (cos θ) βn−1

=
1

β

∞

∑
n=1

Pn (cos θ) βn

=
1

β

(

∞

∑
n=0

βnPn (cos θ)− P0 (cos θ)

)

=
1

β

(

1
√

β2 − 2β cos θ + 1
− 1

)

,

since P0 (cos θ) = 1. We can integrate the previous equation [see 10, page
95] to obtain an expression for I. Since I (0) = 0,

I
(

β
)

=
∫ β

0

1

s

(

1√
s2 − 2s cos θ + 1

− 1

)

ds

= log

(

2

1− β cos θ +
√

1 + β2 − 2β cos θ

)

.

We are finally in a position to obtain a final expression for φ and so also
for G.

φ (x; ξ) =
a

|x|r′ +
1

a
log

(

2a2

a2 − |x||ξ| cos θ + |x|r′
)

,
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(A.11)
G (x; ξ) =

1

4π|x − ξ| +
|x|2 + |ξ|2

6|Ω| +
a

4π|x|r′

+
1

4πa
log

(

2a2

a2 − |x||ξ| cos θ + |x|r′
)

+ B,

where B is a constant which will be chosen to satisfy
∫

Ω G = 0.
Now we want to show that

∫

Ω
G (x; ξ) is independent of ξ and so that

we can compute B by looking at the simpler equation
∫

Ω
G (x; 0) = 0. We

have:

0 =
∫

Ω
G
(

x; ξ′
)

[

∇2G (x; ξ) − 1

|Ω| + δ (x − ξ)

]

dx

=
∫

Ω
G
(

x; ξ′
)

∇2G (x; ξ) dx − 1

|Ω|
∫

Ω
G
(

x; ξ′
)

+ G
(

ξ; ξ′
)

=
∫

Ω
∇ ·

[

G
(

x; ξ′
)

∇G (x; ξ)
]

dx −
∫

Ω

[

∇G (x; ξ) · ∇G
(

x; ξ′
)]

dx

− 1

|Ω|
∫

Ω
G
(

x; ξ′
)

+ G
(

ξ; ξ′
)

.

Then the divergence theorem gives
∫

Ω
∇ ·

[

G
(

x; ξ′
)

∇G (x; ξ)
]

dx =
∫

∂Ω
G
(

x; ξ′
)

∇G (x; ξ) ·~ndx
= 0,

by the boundary condition on G, i.e. ∂nG = 0 on ∂Ω. Hence

1

|Ω|
∫

Ω
G
(

x; ξ′
)

= G
(

ξ; ξ′
)

−
∫

Ω
∇G (x; ξ) · ∇G

(

x; ξ′
)

dx.

Note that the RHS is symmetric in ξ and ξ′. It follows that
∫

Ω G (x; ξ) dx =
∫

Ω G (x; ξ′) dx. With a change to spherical coordinates, like in equation 3.45,
we compute the desired integral:

0 =
∫

Ω
G (x; 0) dx

=
1

4π

∫ 2π

0

∫ π

0

∫ ∞

0
r sin θdrdθdϕ +

1

4πa

∫ 2π

0

∫ π

0

∫ ∞

0
r2 sin θdrdθdϕ

+
1

6|Ω|
∫ 2π

0

∫ π

0

∫ ∞

0
r4 sin θdrdθdϕ + B|Ω|

=
∫ a

0
rdr +

1

a

∫ a

0
r2dr +

4π

6|Ω|
∫ a

0
r4dr + B|Ω|

= a2
(

1

2
+
1

3
+

1

10

)

+
4πa3

3
B.
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Here we have used the fact that when ξ = 0, r′ = |x′| = a2/|x|. Thus

B = − 7

10πa
. (A.12)

A.1.2 Derivation of χ1

In this section we compute the constant from the order ǫ function, P1, from
the splitting probability with multiple targets and Neumann outer bound-
ary.

Let us first write P1 (x) as x → xj using what we found on the previous
section (equation A.3).

P1 (x) ≈
(1− P0) a1
|x − x1|

+ 4π (1− P0) a1R1,1 − 4πP0

N

∑
i=2

aiG1,i + χ1, as x → x1,

P1 (x) ≈ − P0aj

|x − xj|
− 4πP0ajRj,j + 4πa1Gj,1 − 4πP0

N

∑
i=1,i 6=j

aiGj,i + χ1,

as x → xj, j = 2, . . . ,N,

where Gi,j ≡ G
(

xi; xj
)

and Ri,j ≡ R
(

xi; xj
)

. We reduce the previous equa-
tions by introducing the notation

B1 = 4πa1R1,1 − 4πP0

(

a1R1,1 +
N

∑
i=2

aiG1,i

)

,

Bj = 4πa1Gj,1 − 4πP0

(

ajRj,j +
N

∑
i=1,i 6=j

aiGj,i

)

, j = 2, . . . ,N.

Thus

P1 (x) ≈















(1−P0) a1
|x− x1|

+ B1 + χ1, as x → x1

− P0aj

|x− x1|
+ Bj + χ1, as x → xj

. (A.13)

From the matching conditions 3.41 and 3.42 we get that w1 must satisfy
w1 ≈ Bj + χ1 as |y| → ∞. On the other hand, equation 3.40 has solution

w1 (y) = c

(

1− aj

|y|

)

,

where c is a constant which is readily found to be c = Bj + χ1, since w1 → c
as |y| → ∞.
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Going back again to the matching condition 3.41, it yields

P2 ≈ − aj
(

Bj + χ1

)

|x − xj|
, as x → xj, j = 1, . . . ,N.

By an argument like that led by equations 3.44 and 3.45 we find that P2

should satisfy

(A.14)∇2P2 = 4π
N

∑
j=1

aj
(

Bj + χ1

)

δ
(

x − xj
)

, x ∈ Ω,

∂nP2 = 0, x ∈ ∂Ω.

The divergence theorem yields a solvability condition for P2, just as it did
for P1 on equation 3.47, namely

N

∑
j=1

aj
(

Bj + χ1

)

= 0.

Hence

χ1 = − 1

Nā

N

∑
j=1

ajBj.

The expressions for Bj can be substituted back and so χ1 can be written
in matrix form as

χ1 = −4πa1
Nā

[

(

GTa
)

1
− 1

Nā
aTGa

]

, (A.15)

where a = (a1, . . . , aN)
T and

G ≡













R1,1 G1,2 · · · G1,N

G2,1
. . .

. . .
...

...
. . .

. . . GN−1,N

GN,1 · · · GN,N−1 RN,N













.

Notice that with equations A.11 and A.12 we can compute all the entries of
this matrix. In particular

(A.16)Ri,i =
|xi|2
4πa3

+
a

4π
(

a2 − |xi|2
) +

1

4πa
log

(

a2

a2 − |xi|2
)

− 7

10πa
.
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A.2 From the Robin splitting probability, equation

3.70

A.2.1 Derivation of χR

In this section we compute the constant from the order ǫ function, P1, from
the splitting probability with multiple targets and Robin outer boundary.

First we look at the limit as x → xj of P1 (x). Like in Section A.1.2 we
write

P1 (x) ≈















(1−P0) a1
|x− x1|

+ B1 + χR, as x → x1

− P0aj

|x− x1|
+ Bj + χR, as x → xj

(A.17)

with

B1 = −λ0P0P1P (x1) + 4πa1R1,1 − 4πP0

(

a1R1,1 +
N

∑
i=2

aiG1,i

)

,

Bj =−λ0P0P1P

(

xj
)

+4πa1Gj,1− 4πP0

(

ajRj,j +
N

∑
i=1,i 6=j

aiGj,i

)

, j = 2, . . . ,N.

Following an argument entirely analogous to that on A.1.2 we find that
P2 must satisfy

(A.18)∇2P2 = 4π
N

∑
j=1

aj
(

Bj + χR

)

δ
(

x − xj
)

, x ∈ Ω,

∂nP2 = −λ0P1, x ∈ ∂Ω.

Upon using the divergence theorem on the previous equation we obtain a
solvability condition for P2, namely

4π
N

∑
j =1

aj
(

Bj + χR

)

=
∫

Ω
∇2P2dV

= −λ0

∫

∂Ω
P1dS

= λ2
0P0

∫

∂Ω
P1PdS

− λ04π
N

∑
j=1

(

δj1 − P0

)

ajP1P

(

xj
)

− λ0χR|∂Ω|
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by equation 3.68.
Now notice that P1P is constant on ∂Ω since it is a function of only |x|.

Its value is a/2− 3a/10 = a/5. Hence

∫

∂Ω
P1PdS =

a|∂Ω|
5

=
4πa3

5
.

Substituting back the expressions for Bj we find that ∑
N
j=1 ajBj can bewritten

with matrix notation as

N

∑
j =1

ajBj = −λoP0

N

∑
j=1

ajP1P

(

xj
)

+ 4π
[

a1

(

GTa
)

1
− P0a

TGa
]

.

Recall that

P1P (x) =
|x|2
2a

− 3

10
a.

Therefore

χR =
1

4π
(

Nā + λ0a2
)

(

λ2
0P0

∫

∂Ω
P1PdS − λ04π

N

∑
j=1

(

δj1 − P0

)

ajP1P

(

xj
)

− 4π
N

∑
j=1

ajBj

)

=
1

Nā + λ0a2

(

1

5
λ2
0P0a

3 − λ0a1P1P (x1) + λ0P0

N

∑
j=1

ajP1P

(

xj
)

+ λoP0

N

∑
j=1

ajP1P

(

xj
)

− 4π
[

a1

(

GTa
)

1
− P0a

TGa
]

)

=
1

Nā + λ0a2

(

λ2
0P0a

3

5
− λ0a1|x1|2

2a
+
3λ0a1a

10
+

λ0P0

a

N

∑
j=1

aj|xj|2

− 3λ0P0aNā

5
− 4π

[

a1

(

GTa
)

1
− P0a

TGa
]

)

.

(A.19)
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Appendix B

Programs

In this appendix I present the most relevant codes written by me which I
used for Chapter 2.
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B.1 spotDetector3D

Extension to three dimensions of the program spotDetector, algorithm from [21], coded by François Aguet, which
can be downloaded from http://lccb.hms.harvard.edu/software.html.

function movieInfo=spotDetector3D(path,Z,T,choice,dthreshold)

% Adapted for 3D from SpotDetector, http://lccb.hms.harvard.edu/doc/spotDetector_101410.zip

%

% Reads a denoised 3D video in the form of a collection of 2D images

% Detects centers of 3D cells in each snapshot

% Centers are determined in the following way:

% - First, find all 3D connected regions (considering only nearest

% neighbors).

% - Get the centers of mass of these regions.

% - Find local maxima (using a cubic window of side 7).

% - For each region, retain

% - the first local maximum if choice=0

% - the center of mass if choice=1

% and the secondary local maxima that are farther away from both the

% center of mass and the highest local maximum than dthreshold.

%

% INPUT path is the path to the folder where the images are contained

% the code assumes that such folder follows the pattern created by

% imstotiff.m, i.e.

% - such folder has the name of the data set, with which also the images

% names start

% - inside this folder, there’s another one named "processed" where all the
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% denoised images are contained

% - the images are named name_Tddd_Zdd.tif

% Images are also assumed to be squared

%

% Z is the number of planes from a 3D "snapshot"

% T is the total number of time points imaged

%

% OUTPUT is movieInfo, appropiately formatted to be input to u-track

% For a movie with N frames, movieInfo is a structure array with N entries.

% Every entry has the fields xCoord, yCoord, zCoord (if 3D) and amp.

% If there are M objects in frame i, each one of these fields in

% moveiInfo(i) will be an Mx2 array, where the first column is the value

% (e.g. x-coordinate in xCoord and amplitude in amp) and the second column

% is all zero.

%

% In SpotDetector3D, flag is unused. Uncomment the block starting with

% "if flag==0", to split also regions where cells "look like" 3D 8’s.

if nargin<5

dthreshold = 5;

end

if nargin<4

choice=0;

elseif isempty(choice)

choice=0;

end92
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movieInfo=repmat(struct(’xCoord’,[],’yCoord’,[],’zCoord’,[],’amp’,[]),T,1);

[~,base]=fileparts(path);

L=size(imread([path,filesep,’processed’,filesep,base,’_T001_Z01.tif’]),1);

img3d=zeros(L,L,Z); %img3d will contain the 3D image

ny=L;

nx=L;

nz=Z;

for t=1:T

% save 2D images into 3D compund

tname=[’_T’,num2str(t,’%3.3d’)];

for z=1:Z

sufix=[’_Z’,num2str(z,’%2.2d’),’.tif’];

name=[path,filesep,’processed’,filesep,base,tname,sufix];

img3d(:,:,z)=imread(name);

end

%% 3D process connected components

mask3d=img3d>0;

localMax = locmax3d(img3d, 7);

[labels, nComp] = bwlabeln(mask3d, 6);

area = zeros(nComp, 1);93
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totalInt = zeros(nComp, 1);

nMaxima = zeros(nComp, 1);

xmax = zeros(nComp, 1);

ymax = zeros(nComp, 1);

zmax = zeros(nComp, 1);

xcom = zeros(nComp, 1);

ycom = zeros(nComp, 1);

zcom = zeros(nComp, 1);

labelVect = zeros(nComp, 1);

xmax2 = cell(nComp, 1);

ymax2 = cell(nComp, 1);

zmax2 = cell(nComp, 1);

area2 = cell(nComp, 1);

totalInt2 = cell(nComp, 1);

labelVect2 = cell(nComp, 1);

% Compute area and center of mass for each component

stats = regionprops(labels, img3d, ’Area’, ’WeightedCentroid’, ’PixelIdxList’);

% Component labels of local maxima

maxLabels = labels .* (labels & localMax>0);

maxCoords(1:nComp) = struct(’PixelIdxList’, []);

mc = regionprops(maxLabels, ’PixelIdxList’);

maxCoords(1:length(mc)) = deal(mc);
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for n = 1:nComp

[yi,xi, zi] = ind2sub([ny nx nz], stats(n).PixelIdxList);

[ym,xm,zm] = ind2sub([ny nx nz], maxCoords(n).PixelIdxList);

area(n) = stats(n).Area;

com = stats(n).WeightedCentroid;

xcom(n) = com(1);

ycom(n) = com(2);

zcom(n) = com(3);

values = img3d(stats(n).PixelIdxList);

totalInt(n) = sum(values);

nMaxima(n) = length(xm);

if nMaxima(n)==1

xmax(n) = xm;

ymax(n) = ym;

zmax(n) = zm;

nMaxima(n) = 1;

labelVect(n) = labels(ym,xm,zm);

elseif nMaxima(n)==0 % no maximum was detected for this cluster

maxValueIdx = find(values == max(values));

xmax(n) = xi(maxValueIdx(1));

ymax(n) = yi(maxValueIdx(1));

zmax(n) = zi(maxValueIdx(1));

nMaxima(n) = 1;95
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labelVect(n) = labels(ymax(n), xmax(n), zmax(n));

else % resolve multiple maxima cases

maxValues = localMax(sub2ind(size(localMax), ym, xm, zm)); % highest local max

maxIdx = find(maxValues == max(maxValues));

xmax(n) = xm(maxIdx(1));

ymax(n) = ym(maxIdx(1));

zmax(n) = zm(maxIdx(1));

labelVect(n) = labels(ymax(n), xmax(n), zmax(n));

% remove highest max from list

xm(maxIdx(1)) = [];

ym(maxIdx(1)) = [];

zm(maxIdx(1)) = [];

% compute distance of secondary maxima to primary

dist2max = sqrt((xmax(n)-xm).^2 + (ymax(n)-ym).^2 + (zmax(n)-zm).^2);

dist2com = sqrt((xcom(n)-xm).^2 + (ycom(n)-ym).^2 + (zcom(n)-zm).^2);

mindist = min(dist2max,dist2com);

% retain secondary maxima where mindist > threshold

idx2 = find(mindist > dthreshold);

if ~isempty(idx2)

xmax2{n} = xm(idx2);

ymax2{n} = ym(idx2);

zmax2{n} = zm(idx2);

nSecMax = length(idx2);96



B
.1.

sp
o
tD

etecto
r3D

nMaxima(n) = nSecMax+1;

% split area

area2{n} = area(n)*ones(nSecMax,1)/nMaxima(n);

area(n) = area(n)/nMaxima(n);

labelVect2{n} = labels(sub2ind(size(labels), ymax2{n}, xmax2{n}, zmax2{n}));

%intensity values

totalInt2{n} = totalInt(n)*ones(nSecMax,1)/nMaxima(n);

totalInt(n) = totalInt(n)/nMaxima(n);

end

end

end

xmax2 = vertcat(xmax2{:});

ymax2 = vertcat(ymax2{:});

zmax2 = vertcat(zmax2{:});

totalInt2 = vertcat(totalInt2{:});

area2 = vertcat(area2{:});

labelVect2 = vertcat(labelVect2{:});

% assign results to output structure

frameInfo.xmax = [xmax; xmax2(:)];

frameInfo.ymax = [ymax; ymax2(:)];

frameInfo.zmax = [zmax; zmax2(:)];

frameInfo.xcom = [xcom; xmax2(:)];97
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frameInfo.ycom = [ycom; ymax2(:)];

frameInfo.zcom = [zcom; zmax2(:)];

frameInfo.totalInt = [totalInt; totalInt2(:)];

frameInfo.area = [area; area2(:)];

frameInfo.nMaxima = nMaxima; % maxima per component

frameInfo.labels = [labelVect; labelVect2(:)];

frameInfo.nComp = nComp;

% prepare fields for tracker

nObj = length(frameInfo.xmax);

movieInfo(t).amp = zeros(nObj,2);

movieInfo(t).xCoord = zeros(nObj,2);

movieInfo(t).yCoord = zeros(nObj,2);

movieInfo(t).zCoord = zeros(nObj,2);

movieInfo(t).amp(:,1) = frameInfo.totalInt;

if choice==0

movieInfo(t).xCoord(:,1) = frameInfo.xmax;

movieInfo(t).yCoord(:,1) = frameInfo.ymax;

movieInfo(t).zCoord(:,1) = frameInfo.zmax;

elseif choice==1

movieInfo(t).xCoord(:,1) = frameInfo.xcom;

movieInfo(t).yCoord(:,1) = frameInfo.ycom;

movieInfo(t).zCoord(:,1) = frameInfo.zcom;98
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end

frameInfo.path = [];

frameInfo.maskPath = [];

end

parent=fileparts(pwd);

if choice==0

sfx=’max’;

elseif choice==1

sfx=’com’;

end

save([parent,filesep,’Results’,filesep,base,’sd3D_’,sfx,’.mat’],’movieInfo’);

B.2 mySpotDetector

Alternative 3D detection algorithm of my own autorship.

function movieInfo=mySpotDetector(path,Z,T,bt)

% Algorithm by Monica Delgado

% Uses ideas from SpotDetector, http://lccb.hms.harvard.edu/doc/spotDetector_101410.zip

%

% Reads a denoised 3D video in the form of a collection of 2D images

% Detects centers of 3D cell-like connected regions in each snapshot

% The cell-like characteristic is obtained by splitting regions
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% that look like two or more sphere-like objects pasted

%

% INPUT path is the path to the folder where the images are contained

% the code assumes that such folder follows the pattern created by

% imstotiff.m, i.e.

% - such folder has the name of the data set, with which also the images

% names start

% - inside this folder, there’s another one named "processed" where all the

% denoised images are contained

% - the images are named name_Tddd_Zdd.tif

% Images are also assumed to be squared

% Z is the number of planes from a 3D "snapshot"

% T is the total number of time points imaged

% bt is an indicator

% - if bt=1 then sweeping will be done from top to bottom

% - if bt=0 then sweeping will be done from bottom to top (default)

% Results will be saved in folder Results under the main folder

%

% Output is movieInfo, appropiately formatted to be input to u-track

% For a movie with N frames, movieInfo is a structure array with N entries.

% Every entry has the fields xCoord, yCoord, zCoord (if 3D) and amp.

% If there are M objects in frame i, each one of these fields in

% moveiInfo(i) will be an Mx2 array, where the first column is the value

% (e.g. x-coordinate in xCoord and amplitude in amp) and the second column

% is all zero.
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if nargin<4

bt=0;

end

movieInfo=repmat(struct(’xCoord’,[],’yCoord’,[],’zCoord’,[],’amp’,[]),T,1);

[~,base]=fileparts(path);

L=size(imread([path,filesep,’processed’,filesep,base,’_T001_Z01.tif’]),1);

imagen=zeros(L,L,Z); %imagen will contain the 3D image

for t=1:T

% save 2D images into 3D compund

tname=[’_T’,num2str(t,’%3.3d’)];

for z=1:Z

sufix=[’_Z’,num2str(z,’%2.2d’),’.tif’];

name=[path,filesep,’processed’,filesep,base,tname,sufix];

imagen(:,:,z)=imread(name);

end

fprintf(’Starting analysis of time point %d...\n’,t);

% begins analysis

bimage=imagen>0; %make binary image corresponding to 3d image

CC=bwconncomp(bimage,6); % find 3D connected regions

R=CC.PixelIdxList;

n=CC.NumObjects;
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stats=regionprops(CC,imagen,’BoundingBox’,’WeightedCentroid’,’Image’);

for i=1:n % sweep all connected regions

bb=ceil(stats(i).BoundingBox);

%the first 3 entries of bb denote the coordinates of the upper

%right pixel of the bounding box, the following 3 denote the

%width of the bounding box along each dimension

if ((bb(4)==1) || (bb(5)==1) ||(bb(6)==1))

% if the region is really of dim less than 3, then there’s no

% problem determining its center

movieInfo(t).xCoord(end+1,:)=[stats(i).WeightedCentroid(1) 0];

movieInfo(t).yCoord(end+1,:)=[stats(i).WeightedCentroid(2) 0];

movieInfo(t).zCoord(end+1,:)=[stats(i).WeightedCentroid(3) 0];

movieInfo(t).amp(end+1,:)=[sum(imagen(R{i})) 0];

else

flag=0; %this flag will turn on if in some plane of the current

%3D region there’s more than one 2D connected region

s=size(stats(i).Image);

img2d=zeros(s);

img2d(stats(i).Image==1)=imagen(R{i});

% img2d is the non-binary version of output Image from

% regionprops
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% initialize: find connected 2D regions inside the first

% plane of the current 3D region

if bt==1

cc2d=bwconncomp(stats(i).Image(:,:,end),8); % start on top plane

elseif bt==0

cc2d=bwconncomp(stats(i).Image(:,:,1),8); % start on bottom plane

end

if cc2d.NumObjects>1

flag=1;

end

prevPIL=cc2d.PixelIdxList;

for m=1:length(prevPIL) %for each 2d connected region

if bt==1

prevplane{m}=bb(6); % start on top plane

elseif bt==0

prevplane{m}=1; % start on bottom plane

end

end

% prevPIL=previous Pixel Indexes List,

% sweep all subsequent planes included in the 3D region

% this algorithm will find the intersections of 2D regions

% between planes

if bt==1

ss=bb(6)-1;
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ff=1;

inc=-1;

elseif bt==0

ss=2;

ff=bb(6);

inc=1;

end

for z=ss:inc:ff

%find 2D connected regions in each plane of the current

%3D region

cc2d=bwconncomp(stats(i).Image(:,:,z),8);

if cc2d.NumObjects>1

flag=1;

end

newlist=cc2d.PixelIdxList; % current plane list of pixels in each region

flaglist=1:cc2d.NumObjects;

m=1; % new regions counter

for j=1:length(prevPIL)

flagj=0;

% if a given previous 2D region does not have

% intersection with regions in the current plane,

% don’t intersect it (which would erase it), keep it, as

% it is a region which has probably ended in the

% previous plane, that’s what this flagj is for

% Same way, we must keep the 2D regions in current
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% plane which had empty intersections with all previous

% regions, flaglist helps here

%compare each region found so far with

%current regions, keep non-empty intersections

for k=1:cc2d.NumObjects

set=intersect(prevPIL{j},newlist{k});

if ~isempty(set)

flagj=1;

flaglist=setdiff(flaglist,k);

PIL{m}=set;

plane{m}=[prevplane{j},z];

m=m+1;

end

end

if flagj==0

PIL{m}=prevPIL{j};

plane{m}=prevplane{j};

m=m+1;

end

end

% keep 2D regions in current plane that matched no

% previous regions
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for k=flaglist

PIL{m}=newlist{k};

plane{m}=z;

m=m+1;

end

prevPIL=PIL;

prevplane=plane;

end % end of the current plane of a given 3D region

% if flag==0

% movieInfo(t).xCoord(end+1,:)=[stats(i).WeightedCentroid(1) 0];

% movieInfo(t).yCoord(end+1,:)=[stats(i).WeightedCentroid(2) 0];

% movieInfo(t).zCoord(end+1,:)=[stats(i).WeightedCentroid(3) 0];

% movieInfo(t).amp(end+1,:)=[sum(imagen(R{i})) 0];

% else

% convert PIL and plane to 3D linear indeces of Image

label=zeros(s);

mm=1;

for m=1:length(PIL)

if ((length(PIL{m})>1) || (length(plane{m})>1))

lidx{mm}=ind2sub2ind(s(1:2),PIL{m},plane{m});

label(lidx{mm})=mm;

mm=mm+1;

end
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end

% find the weighted centroids of the regions found

aux=regionprops(label,img2d,’WeightedCentroid’);

cntr=zeros(length(aux),3);

for m=1:length(aux)

cntr(m,:)=aux(m).WeightedCentroid;

movieInfo(t).amp(end+1,:)=[sum(img2d(lidx{m})) 0];

end

%recover corresponding coordinates in original image

movieInfo(t).xCoord(end+1:end+m,:)=[cntr(:,1)+bb(1) zeros(m,1)];

movieInfo(t).yCoord(end+1:end+m,:)=[cntr(:,2)+bb(2) zeros(m,1)];

movieInfo(t).zCoord(end+1:end+m,:)=[cntr(:,3)+bb(3) zeros(m,1)];

% end

PIL={};

plane={};

lidx={};

end %ends case more than one z-slice

end % end of current 3D region

end %end of current time image

parent=fileparts(pwd);

if bt==0

sfx=’bup’;
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elseif bt==1

sfx=’tdown’;

end

save([parent,filesep,’Results’,filesep,base,’mysd_’,sfx,’.mat’],’movieInfo’);

B.3 detecttr

This function uses u-track on the denoised images both for detection of 3D cell centers and for the actual tracking.

function H=detecttr(path,Z,T,d)

if nargin<4

d=0;

end

prnt=pwd;

[~,name]=fileparts(path);

if d==0

mkdir(path,’lessnoise’)

end

movieInfo=repmat(struct(’xCoord’,[],’yCoord’,[],’zCoord’,[],’amp’,[],’height’,[]),T,1);

H=[];

for t=1:T

cd([prnt,filesep,’SpotDetector’])

tstr=num2str(t,’%3.3d’);
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for z=1:Z

if d==0

frame = double(imread([path,filesep,’original’,filesep,name,’_T’,tstr,’_Z’,...

num2str(z,’%2.2d’),’.tif’]));

denoised=denoise(frame,4,2);

imwrite(uint8(denoised-1),[path,filesep,’lessnoise’,filesep,name,’_T’,tstr,...

’_Z’,num2str(z,’%2.2d’),’.tif’],’tiff’);

elseif d==1

denoised=imread([path,filesep,’lessnoise’,filesep,name,’_T’,tstr,’_Z’,...

num2str(z,’%2.2d’),’.tif’]);

end

mi(z) = spotDetector(denoised);

%H=[H; mi(z).area];

H=[H; mi(z).totalInt./mi(z).area];

end

cd([prnt,filesep,’u-track111221’,filesep,’u-track’])

tfdet=scriptTrackGeneral(mi,0,2,1,5,0,1,2);

% last parameter is 1 for all LN except z1, in which case it’s 2

for i=1:length(tfdet)

if any(isnan(tfdet(i).tracksCoordAmpCG(1:8:end)))

print(’Gap found in track %d, t = %d\n’,i,t)

print(’*****************************\n’)

else

movieInfo(t).xCoord=[movieInfo(t).xCoord; mean(tfdet(i).tracksCoordAmpCG(1:8:end)) 0];

movieInfo(t).yCoord=[movieInfo(t).yCoord; mean(tfdet(i).tracksCoordAmpCG(2:8:end)) 0];

zc=sum(tfdet(i).tracksCoordAmpCG(4:8:end).*[tfdet(i).seqOfEvents(1,1):...
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tfdet(i).seqOfEvents(2,1)])/sum(tfdet(i).tracksCoordAmpCG(4:8:end));

movieInfo(t).zCoord=[movieInfo(t).zCoord; zc 0];

movieInfo(t).height=[movieInfo(t).height; tfdet(i).seqOfEvents(2,1)...

-tfdet(i).seqOfEvents(1,1)+1];

movieInfo(t).amp=[movieInfo(t).amp; max([std(tfdet(i).tracksCoordAmpCG(1:8:end)),...

std(tfdet(i).tracksCoordAmpCG(2:8:end)),std(tfdet(i).tracksCoordAmpCG(3:8:end))]) 0];

end

end

end

for i=1:T

%movieInfo(i).xCoord(:,1)=movieInfo(i).xCoord(:,1)*530.33/512;

%movieInfo(i).xCoord(:,1)=movieInfo(i).xCoord(:,1)*424.27/512; %for LN10

movieInfo(i).xCoord(:,1)=movieInfo(i).xCoord(:,1)*283.4/560; %for z1

movieInfo(i).yCoord(:,1)=movieInfo(i).yCoord(:,1)*283.4/560;

movieInfo(i).zCoord(:,1)=2.5*(movieInfo(i).zCoord(:,1)-1);

%the scaling factor is 2 for most LN except for z1 in which case it is 2.5

end

tf=scriptTrackGeneral(movieInfo,0,3,1,2,2,0,10);

cd(prnt)

%mkdir(’Results’,[name,’trd’])

save([’Results’,filesep,name,’trd’,filesep,name,’trdlnzamp.mat’],’movieInfo’);

save([’Results’,filesep,name,’trd’,filesep,’tr’,name,’-trdlnzamp.mat’],’tf’);

Function scriptTrackGeneral is called in the following way:
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function tracksFinal=scriptTrackGeneral(movieInfo,tosave,probDim,TW,minTL,LM,minSR,maxSR)

% Copyright (C) 2011 LCCB

%

% This file is part of u-track.

%

% u-track is free software: you can redistribute it and/or modify

% it under the terms of the GNU General Public License as published by

% the Free Software Foundation, either version 3 of the License, or

% (at your option) any later version.

%

% u-track is distributed in the hope that it will be useful,

% but WITHOUT ANY WARRANTY; without even the implied warranty of

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Public License for more details.

%

% You should have received a copy of the GNU General Public License

% along with u-track. If not, see <http://www.gnu.org/licenses/>.

%

%

%% Detection results: movieInfo

%

%For a movie with N frames, movieInfo is a structure array with N entries.

%Every entry has the fields xCoord, yCoord, zCoord (if 3D) and amp.

%If there are M features in frame i, each one of these fields in

%moveiInfo(i) will be an Mx2 array, where the first column is the value

%(e.g. x-coordinate in xCoord and amplitude in amp) and the second column
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%is the standard deviation. If the uncertainty is unknown, make the second

%column all zero.

%

% INPUT tosave is the full path and name where the results will be

% saved

% TW = gapCloseParam.timeWindow

% minTL = gapCloseParam.minTrackLen

% LM = parameters.linearMotion

% minSR = parameters.minSearchRadius

% maxSR = parameters.maxSearchRadius

B.4 testdetect

function error=testdetect(density,r, dm)

% Generates a 3D image with spherical cells, samples it with 17 2D planes

% and then tries to compute the centers of the cells with SpotDetector.

% INPUT density is the number of cells

% r is the radius of a cell (in pixels); assuming they’re all spherical

% and have the same size

% dm choose the detection method

% - 0: my method, bottom up

% - 1: my method, top down

% - 2: adapted 3D method, with maximum

% - 3: adapted 3D method, with center of max

% - 4: detection with u-track

% OUTPUT error(1) is the sum of the distance between each original cell
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% and the closest computed (by mySpotDetector) cell

% error(2) is the difference between the new density of cells

% (computed by mySpotDetector) and the original density

%% Parameters

bside=254; % number of pixels on each side of the 2D slices

uheight=4; % distance (in pixels) between each pair of z slices

nslices=17; % number of z slices

height=(nslices-1)*uheight+2*r;

imagen=uint8(zeros(bside,bside,nslices));

%% Generate cells (spheres)

% rng(’shuffle’); %doesn’t work in MatlabR2010a

C=rand(density,3);

C(:,1:2)=0.499+bside*C(:,1:2);

C(:,3)=height*C(:,3);

%% Take 2D images

for i=1:density % sweep all generated cells

cx=C(i,1);

cy=C(i,2);

cz=C(i,3);

% figure out which integer z are comprised in the sphere

zstrt=max([ceil(cz-r),r]);

zend=min([floor(cz+r),height-r]);

% for each plane with integer z comprised in the sphere
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for z=zstrt:zend

if mod(z-r,4)==0 % check which integer z correspond to z-slice (ie were imaged)

d=z-cz; % distance between center of sphere and current plane

R=sqrt(r^2-d^2); % radius of the intersection of the sphere with the plane

k=(z-r)/4+1; % corresponding number of z-slice

% figure out which integer y are comprised in the circular intersection

y0=max([ceil(cy-R),1]);

y1=min([floor(cy+R),bside]);

% for each integer y comprised in the intersection

for y=y0:y1

sec=sqrt(R^2-(y-cy)^2);

% x distance from y axis (of the circle) to circunference at height y

x0=max([round(cx-sec),1]);

x1=min([round(cx+sec),bside]);

imagen(y,x0:x1,k)=128;

end

end

end

end

%rescale centers

C(:,3)=(C(:,3)-r)/4+1;

% add noise to original image

% noise=uint8(64*randn(size(imagen)));

% imagen=imagen+noise;
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%% Spot Detector -- Image denoising

% for i=1:nslices

% detectionMask = denoise(imagen(:,:,i));

% end

%% Spot Detector 3D -- My Algorithm

switch dm

case 0

movieInfo=mySpotDetector(imagen,0);

case 1

movieInfo=mySpotDetector(imagen,1);

case 2

movieInfo=spotDetector3D(imagen,0);

case 3

movieInfo=spotDetector3D(imagen,1);

case 4

movieInfo=detecttr(imagen);

end

newdens=size(movieInfo.xCoord,1);

output=zeros(newdens,3);

output(:,1)=movieInfo.xCoord(:,1);

output(:,2)=movieInfo.yCoord(:,1);

output(:,3)=movieInfo.zCoord(:,1);

%% Sort results

[~,ord2]=sort(C(:,3));C=C(ord2,:);
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[~,ord1]=sort(output(:,3));output=output(ord1,:);

%% Compute error

dist=zeros(newdens,density);

for i=1:newdens

for j=1:density

dist(i,j)=norm(output(i,:)-C(j,:));

end

end

[minbycol,midx]=min(dist,[],1);

error(1)=sum(minbycol)/density;

error(2)=newdens-density;

cd /home/monica/Thesisv2/simulations

% this function needs to be improved in the following ways:

% - find a better way to quantify error

% - check the scaling when measuring error, I think it would make more

% sense to rescale movieInfo instead of the centers, but one needs to be

% careful with the offsets (ie pixels start at 0.5, not 0)

B.5 testtrack

function tf=testtrack(no_of_tracks,no_of_steps,diffcoeff)

% This function still needs a way of measuring the errors.

% This function tests u-track on no_of_tracks simulated tracks which follow

% Brownian motion with diffusion coefficient diffcoef. Tracks are followed
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% for no_of_steps seconds.

curr=pwd;

[prnt]=fileparts(curr);

movieInfo=repmat(struct(’xCoord’,[],’yCoord’,[],’zCoord’,[],’amp’,[]),no_of_steps,1);

%% Specify simulation parameters

dim = 3; % Dimensionality

tau = 6; % Sampling interval in s (0.001 = 1 ms)

x= 250;

z= 24;

%% Code for generating single-state random walks

%% (i.e. pure diffusion with a single diffusion coefficient)

displacements = normrnd(0, sqrt(diffcoeff*tau), [no_of_tracks,no_of_steps-1, dim]);

%% Calculate position at each step

startingpoint=cat(3,x*rand(no_of_tracks,1,2),z*rand(no_of_tracks,1,1));

position = cumsum(cat(2,startingpoint,displacements),2);

% This part ’registers’ only those positions of the simulated tracks which

% are inside a box of size x by x by z (which represents the imaged area).

% for i=1:no_of_steps

% xidx=intersect(find(position(:,i,1)>=0),find(position(:,i,1)<=x));

% yidx=intersect(find(position(:,i,2)>=0),find(position(:,i,2)<=x));

% zidx=intersect(find(position(:,i,3)>=0),find(position(:,i,3)<=z));

117



B
.5.

testtrack

% idx=intersect(xidx,yidx);

% idx=intersect(idx,zidx);

% movieInfo(i).xCoord=[position(idx,i,1),zeros(length(idx),1)];

% movieInfo(i).yCoord=[position(idx,i,2),zeros(length(idx),1)];

% movieInfo(i).zCoord=[position(idx,i,3),zeros(length(idx),1)];

% movieInfo(i).amp=[ones(length(idx),1),zeros(length(idx),1)];

% end

% This part keeps full tracks even if they wander off the ’imaged’ box

for i=1:no_of_steps

movieInfo(i).xCoord=[position(:,i,1),zeros(no_of_tracks,1)];

movieInfo(i).yCoord=[position(:,i,2),zeros(no_of_tracks,1)];

movieInfo(i).zCoord=[position(:,i,3),zeros(no_of_tracks,1)];

movieInfo(i).amp=[ones(no_of_tracks,1),zeros(no_of_tracks,1)];

end

cd([prnt,filesep,’u-track110523’,filesep,’u-track’])

tf=scriptTrackGeneral(movieInfo,[prnt,filesep,’Results’,filesep,’testtr-’,...

num2str(no_of_tracks),’-’,num2str(diffcoeff,’%1.2f’),’.mat’],dim);

cd(prnt)
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Additional plots
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Figure C.1: Histograms for data set LN2 using mySpotDetector-bup as de-
tection method with the lower level of denoising.
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Figure C.2: Histograms for data set LN8 using mySpotDetector-bup as de-
tection method with the lower level of denoising.
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Figure C.3: Histograms for data set LN9 using mySpotDetector-bup as de-
tection method with the lower level of denoising.
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Figure C.4: Histograms for data set z1 using mySpotDetector-bup as detec-
tion method with the lower level of denoising.
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Figure C.5: Histograms corresponding to data set LN10 using u-track as
method of detection, the z-coordinate determined as the normal average of
all planes which contain the cell. For the tracking step, a pure Brownian
motion model was assumed.
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Figure C.6: Histograms corresponding to data set LN10 using u-track as
method of detection, the z-coordinate determined as the normal average of
all planes which contain the cell. For the tracking step, a random motion
plus movement with constant velocity model was assumed.

124



Appendix C. Additional plots

Pi/4 Pi/2 3Pi/4
0

5

10

15

20

25

30
LN10 detection with utrack − angles

Angle

F
re

qu
en

cy

0 2 4 6 8 10 12
0

50

100

150

200

250
LN10 detection with utrack − step size

Distance (um)

F
re

qu
en

cy

0 5 10 15 20 25
0

20

40

60

80

100

120
LN10 detection with utrack − diameter

Distance (um)

F
re

qu
en

cy

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140
LN10 detection with utrack − length

Time steps

F
re

qu
en

cy

Figure C.7: Histograms corresponding to data set LN10 using u-track as
method of detection, the z-coordinate determined as the normal average of
all planes which contain the cell. For the tracking step the motion model
was random motion and movement along a straight line but with the pos-
sibility of immediate direction reversal.
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Figure C.8: These histograms correspond to the analysis of the endogenous
data set LN2, using u-track as method of detection and with the higher level
of denoising.
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Figure C.9: These histograms correspond to the analysis of the endogenous
data set LN8, using u-track as method of detection and with the higher level
of denoising.
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Figure C.10: These histograms correspond to the analysis of the endoge-
nous data set LN9, using u-track as method of detection and with the higher
level of denoising.
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Figure C.11: These histograms correspond to the analysis of the endoge-
nous data set Z1, using u-track as method of detection and with the higher
level of denoising.
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