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Abstract

The solution of convex quadratic programs using primal-dual interior-point
methods has at its core the solution of a series of linear systems, which are in
practice commonly reduced by block Gaussian elimination from the original
unsymmetric block 3-by-3 formulation to either a block 2-by-2 saddle-point
matrix or a block 1-by-1 normal equations form. The 3-by-3 formulation can
also be symmetrized with a similarity transformation if a symmetric solver
is to be used. We examine whether this practice of reduction is beneficial for
the solver. For each of these formulations we find analytical results for the
following spectral properties: the inertia, condition number, conditions for
nonsingularity, and bounds on the eigenvalues. While the reduced systems
become increasingly ill-conditioned throughout the iterations except in spe-
cial cases, the 3-by-3 formulations remain nonsingular and well-conditioned
with only mild assumptions on the problem; with regularization the as-
sumptions are further simplified. Numerical examples are used to support
the analytical results. We conclude that the 3-by-3 formulations, unsym-
metric or symmetric, unregularized or regularized, have superior spectral
properties that support their use in practice.
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Preface

Chapters 3, 4, and 5 are based on work conducted with Chen Greif and
Dominique Orban, and this material is in preparation for publication. I
was responsible for much of the analysis appearing in Chapters 3 and 4,
with input from my coauthors, and the numerical results in Chapter 5 are
from my own code. The initial writeup of these chapters was done by me,
though there have been many collaborative edits in the time since. The small
section on nonstrict complementarity, Section 2.7, was originally written by
Dominique Orban.
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Chapter 1

Introduction

Optimization is the technique of finding the best solution out of a set of
choices. Optimization problems occur throughout all fields, from maximiz-
ing profit in business to minimizing material stress in engineering. Some
problems model situations created by humans, such as minimizing labour
costs at a factory, while others solve problems occurring naturally, such as
the minimization of energy in a molecule. A very simple example is to min-
imize x2 + y2, which has the obvious solution x = y = 0. The set of choices
may be restricted in some way, such as maximizing profit with a fixed cost of
materials. The example of minimizing x2 +y2 can be extended by restricting
x+ y ≥ 2, where the solution is no longer as obvious. As computing power
becomes ubiquitously available, ever larger optimization problems can be
solved, leading to the increasing use of optimization throughout all fields.

Any optimization problem involves an objective function, a measure of
how good the current choice is. The variables in the problem represent
properties of the choice being made, and restrictions on the choice are given
as constraints to the problem. A general optimization problem in standard
form is given by

minimize
x

f(x) subject to c(x) = 0, d(x) ≥ 0, (1.1)

where x ∈ Rn and c and d may be vector functions. In this standard form,
x are the variables, f(x) is the objective function and c(x) = 0 and d(x) ≥ 0
are constraints.

The exact solutions to only a few optimization problems can be found;
for example, certain smooth unconstrained optimization problems can be
solved using straightforward calculus. However, most classes of optimization
problems, and especially the large problems that occur in practice, require
the use of iterative methods that find approximate solutions.

Quadratic programs are a type of the general optimization problem (1.1)
in which the objective function is quadratic and the constraints are linear.
In standard form, the problem is

minimize
x

f(x) = cTx+
1

2
xTHx subject to Jx = b, x ≥ 0,

1



Chapter 1. Introduction

where H ∈ Rn×n and J ∈ Rm×n. Details on the setup of these problems and
converting to standard form will be covered in Section 2.1. These problems
arise in many applications, and also as subproblems within solution algo-
rithms for more general constrained optimization problems in the form (1.1),
making the efficient solution of quadratic programs an important goal. The
two major and contrasting categories of algorithms for quadratic program-
ming are active-set methods and interior-point methods [45]. Active-set
methods attempt to decide which inequality constraints are active, or hold
with equality, reducing the problem to one that has only equality constraints
and is simpler to solve. Interior-point methods, by contrast, require that the
inequalities hold strictly, moving towards a solution from the interior of the
feasible set.

The primal-dual interior-point algorithm, our focus here, uses Newton’s
method for rootfinding to solve a set of equations, so the major compu-
tational cost of each iteration is the solution of a linear system. A key
question in solving quadratic programs with interior-point methods is how
to solve these linear systems. The focus of this thesis will be to answer this
question by examining properties of different formulations of these systems.
The system is naturally posed as a block 3-by-3 system, where the ma-
trix is unsymmetric and indefinite. The system may be symmetrized using
a similarity transformation to a symmetric indefinite block 3-by-3 system.
Alternatively, one step of block Gaussian elimination can be performed to
achieve a symmetric indefinite block 2-by-2 system in the classic saddle-
point form [4]. Finally, a second step of block Gaussian elimination can be
performed to reduce further to a symmetric positive definite block 1-by-1
system in the normal equations form. The quadratic program can also be
regularized to alleviate numerical difficulties that arise during the solution
of the linear system, leading to a set of regularized matrices that can be
manipulated in similar ways.

Interior-point methods come out of the theoretical background of the
older barrier methods and penalty methods, which solve (1.1) by transform-
ing the problem into a sequence of unconstrained minimization problems.
Fiacco and McCormick [15] traced in detail the history of these methods
until 1968, a few highlights of which follow. In 1943, Courant [10] proposed
studying barrier-type functions, but this idea was not followed into the cre-
ation of an algorithm. The logarithmic potential method was introduced in
two papers by Frisch in 1954 and 1955, using the gradients for problems
of the form f(x) +

∑
αi log(di(x)) to solve problems with inequality con-

straints. This method was utilized in 1961 by Parisot in his Ph.D. thesis
to solve linear programming problems, and other convex programs, with

2



Chapter 1. Introduction

sequential unconstrained methods, later called the sequential unconstrained
minimization technique (SUMT). Fiacco and McCormick extended SUMT
for convex programming problems with both equality and inequality con-
straints in 1966 [13], using a barrier function for the inequality constraints
and a penalty function for the equality constraints, and in 1967 [14] they es-
tablished several theoretical results for the same problem, including duality
results. Many results of theirs and others are collected in [15].

Barrier methods declined in popularity during the 1970s for several rea-
sons, one being the ill-conditioning of matrices involved in the solution
[18, 49]. Several developments specific to linear programming changed this.
The solution of linear programs had been done almost exclusively by variants
of the simplex method developed in 1947 and published in 1951 by Dantzig
[12], which has excellent practical performance but exponential theoretical
complexity [15, 49]. In 1979, Khachiyan [31] published the ellipsoid method,
the first polynomial-time algorithm for linear programs, which was based
on nonlinear programming techniques [49, 51]. Unfortunately its practical
performance was poor. A dramatic change to the field occurred in 1984
when Karmarkar published a polynomial-complexity algorithm for linear
programs [33], which he claimed to be consistently 50 times faster than sim-
plex [49, 51]. The algorithm was an interior method using a logarithmic
potential function, leading to the revival of interior-point methods for lin-
ear programming. In 1986, Gill et al. [22] showed the relationship between
Karmarkar’s algorithm and classical barrier methods, meaning that similar
methods could be exploited for nonlinear programming as well. Research
since then has tended to view linear and nonlinear programming from a
unified perspective, in contrast to the separated view during the dominance
of simplex [49, 51]. The first polynomial interior-point algorithm for convex
quadratic programming was introduced in 1986 by Kapoor and Vaidya [32]
and independently by Ye and Tse [25].

The methods covered so far have all been formulated as primal methods,
focusing only on the original form of the problem. Primal-dual methods were
developed after Karmarker’s discovery, and while the definitions differ, they
use both the original (primal) variables and the Lagrange multipliers (dual
variables), and use Newton’s method to solve a set of nonlinear equations in
these variables [51]. They have many excellent theoretical properties, includ-
ing better conditioning than strictly primal methods, and can be extended
to many nonlinear programs [51]. One key component of this discovery was
the definition and derivation in 1980 by McLinden [38] of theoretical prop-
erties of the central path for a primal-dual set of problems [52]. In 1987,
Megiddo [39] provided several insights to the central path, including its ge-

3



Chapter 1. Introduction

ometry near the solution, which motivated Kojima, Mizuno, and Yoshise
[34] in the same year to develop the first polynomial primal-dual algorithm,
a long-step path-following algorithm. Shortly thereafter, Kojima, Mizuno,
and Yoshise [35] also developed a short-step path-following algorithm with
better theoretical complexity. Mizuno, Todd, and Ye in 1990 [42] provided
a predictor-corrector improvement on the short-step algorithm. Parallel de-
velopments to this series of primal-dual methods focused on the logarithmic
function, using it to generate search directions or update function values
[52]. Path-following algorithms for convex quadratic programs were devel-
oped by several groups, including Mehrotra and Sun in 1990 [41]. Gonzaga
in 1992 [25] covered many theoretical concepts and algorithms relating to
path-following algorithms for linear programming, and lists some develop-
ments for these algorithms for quadratic programming and other problems.
Nesterov and Nemirovskii in 1994 [44] covered interior-point algorithms for
convex optimization in a general setting with many theoretical results and
new proposed methods. They also commented that techniques for linear pro-
gramming can generally be extended without difficulty to convex quadratic
programming, and that a thorough bibliography of interior-point methods
at that time had numbered over a thousand papers, indicating the explosion
of the subject.

The previously mentioned methods all require feasibility of the initial
starting point, which is difficult to satisfy. In the search for practical al-
gorithms, infeasible-interior-point methods were introduced, allowing more
general starting points. Important discoveries for this group of methods
were global convergence by Kojima, Megiddo, and Mizuno in 1993 [36] and
polynomial complexity by Zhang in 1994 [53], the latter of which is general
to convex quadratic programming. Many current algorithms are based on
the predictor-corrector algorithm of Mehrotra in 1992 [40]. This infeasible-
interior-point primal-dual method uses a higher-order approximation for the
central path. It also uses heuristic guidelines to choose a starting point
and several parameters, which leads to an efficient and practical algorithm,
though it has no convergence theory [52]. This algorithm is the basis for the
solvers covered in this thesis.

While the algorithms of modern interior-point solvers are mostly settled,
the choice of matrix formulation to use in the algorithm differs, and various
linear algebra issues related to the solution of these systems arise. Many
modern solvers reduce fully to the normal equations form; one prominent
example is PCx for linear programming [11]. Others reduce to the saddle-
point form; examples include OOQP for quadratic programming [21] and
IPOPT and KNITRO for general nonlinear programming [7, 8, 48]. An-

4



Chapter 1. Introduction

other example is HOPDM for linear programming and convex quadratic
programming, which automatically chooses either the normal equations or
saddle-point form [2]. We are not aware of any existing solvers which solve
the unreduced problem for any of these problems.

Properties of the normal equations form are straightforward, and there
is relatively little analysis of this form. One difficulty with the use of the
normal equations is that an interim step involves the inversion of a matrix,
which may lead to fill-in [18]. The saddle-point formulation has properties
that directly follow from the general properties of such matrices; see [4, 28,
46, 47] for some relevant general results and [20] for results specialized to
optimization. The ill-conditioning of some reduced matrices is well-known
[15, 16, 18, 49, 51], but it has been referred to, with some assumptions on
solution methods, as “benign” [16, 51],“usually harmless” [18], and “highly
structured” [18]. The matrices for classical barrier methods are also ill-
conditioned [18, 50].

There are relatively few existing results for the unreduced 3-by-3 for-
mulation. Some spectral properties for various formulations for the special
case of linear programming are covered in [37]. Uniform boundedness of the
inverse under several assumptions is proved in [3], intended to be used in
further theoretical proofs. Saunders is cited in [16] as stating by personal
communication that a similarity transformation leads to a symmetrized ver-
sion of the 3-by-3 system, equivalent to the symmetrized matrix used in this
thesis. Several works [16, 18] note that the matrix of this system remains
well-conditioned though ill-conditioning remains when forming the right-
hand side and computing the variables due to multiplication by a diagonal
matrix with large elements; they also both mention a different symmetric
formulation that is ill-conditioned.

There are also other formulations of the system besides those covered
in this thesis. An augmented formulation is proposed in [17] that has the
benefit of being positive definite on and near the central path, allowing the
use of more specialized linear solvers. Scalings of the systems are used in [37]
and [19] to alleviate ill-conditioning. A partially-eliminated formulation for
the penalty problem is used in [27] and [23] based on partitioning inequality
constraints by residual size, after noting that ill-conditioning is due to the
varying sizes of these residuals. The conditioning of various formulations
was discussed in [5] for discretized variational problems, but since they use
iterative methods with large-scale problems, the ill-conditioning of the re-
duced forms is problematic, and they therefore use in experiments only the
original unreduced form and a partially-eliminated formulation. They also
offer a scaling of the saddle-point form that is well-conditioned, but recov-

5



Chapter 1. Introduction

ering the variables of interest requires the reverse scaling which can amplify
numerical errors.

An outline of the remainder of this thesis is as follows: Chapter 2 will
cover background material on quadratic programming, Chapter 3 will cover
properties of the matrices for interior-point methods, Chapter 4 will cover
properties of the regularized matrices, Chapter 5 will present numerical ex-
periments, and Chapter 6 will conclude.

6



Chapter 2

Convex quadratic
programming

In this chapter we introduce quadratic programming and necessary theoret-
ical concepts for its analysis. This material is well known, but is provided
for completeness. A thorough treatment of quadratic programming, and the
source of the material of this chapter unless otherwise noted, can be found in
the books [6, 30, 45]. Section 2.1 will define the problem and give examples,
Section 2.2 will cover convexity, Section 2.3 will define the dual problem,
Section 2.4 will define constraint qualifications, Section 2.5 will cover the
necessary and sufficient conditions for a minimum, Section 2.6 will cover
interior-point methods, and Section 2.7 will cover non-strict complementar-
ity.

2.1 Definitions and examples

Given matrices H ∈ Rn×n and J ∈ Rm×n and vectors b ∈ Rm and c ∈ Rn,
a quadratic program (QP) in standard form is given by

minimize
x∈Rn

cTx+
1

2
xTHx subject to Jx = b, x ≥ 0. (2.1)

The function cTx + 1
2x

THx is called the objective function, the equations
Jx = b are the equality constraints, and the inequalities x ≥ 0 are the
inequality constraints or nonnegativity constraints. A common assumption
is that J is full rank withm < n, meaning none of the equality constraints are
redundant. H is symmetric, and is variously required to be positive definite,
positive definite on the nullspace of J , or positive definite on a critical cone
lying in the nullspace of J . Throughout this thesis, H will be assumed to be
at least positive semi-definite and no assumption will be made on the rank
of J , with other conditions on H and J specified as needed. If H ≡ 0, (2.1)
is a linear program (LP), another important type of optimization problem.

A point x is called feasible if all the constraints are satisfied, and the
feasible set is the set of all feasible points, {x | Jx = b, x ≥ 0}. An

7



2.1. Definitions and examples

inequality constraint is inactive if it is satisfied strictly, and is called active
if it is satisfied with equality. The active set A(x) at a feasible point x
is the set of constraints that are active for the point x, and the inactive
set I(x) is similarly the set of constraints that are inactive. Henceforth
if unambiguous these sets will be referred to as A and I for brevity. For
an index set N ⊆ {1, . . . , n} and a vector v ∈ Rn, vN is the subvector of
v indexed by N . Similarly, if A is a matrix with n columns, AN is the
submatrix of the columns of A corresponding to indices in N , and ANN is
the square submatrix with both rows and columns corresponding to indices
in N . Using this notation, the vector xA corresponds to the elements of x
in the active set, thus xA = 0 for a QP in standard form (2.1).

A point x∗ is a local minimizer or local solution of (1.1) if it is feasible
and f(x∗) ≤ f(x) for all feasible x in some neighbourhood surrounding
x∗. A point x∗ is a global minimizer or global solution if it is feasible and
f(x∗) ≤ f(x) for all feasible x.

The gradient of a differentiable function f(x) is

∇f =
(
∂f
∂x1

, . . . , ∂f∂xn

)
.

The Hessian is

∇2f =


∂f2

∂x2
1

∂f2

∂x1∂x2
. . . ∂f2

∂x1∂xn

∂f2

∂x2∂x1

. . .
...

...
. . .

...
∂f2

∂xn∂x1

∂f2

∂xn∂x2
. . . ∂f2

∂x2
n

 .

The Taylor series for a function f(x) is an infinite sum of terms representing
the function. Truncating the Taylor series gives a Taylor polynomial that
approximates f near a point x0. We will use only up to the quadratic Taylor
polynomial, which is given by

f(x) ≈ f(x0) + (x− x0)T∇f(x0) +
1

2
(x− x0)T∇2f(x0)(x− x0).

2.1.1 Non-standard form

A quadratic program may be stated in many different forms, but all can be
reduced to the standard form. The simplest case is that the variables x are
bounded below element-wise, as x ≥ d. This can be changed to standard
form by shifting to a new variable vector x′ = x− d which is then bounded
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2.1. Definitions and examples

below by zeros, and setting b′ = b − Jd to formulate the new constraints
Jx′ = b′. The objective function does not change, although the optimal
value will.

Another case is if the constraints with the matrix J are given as in-
equality constraints, Jx ≤ b. By introducing slack variables xs ≥ 0, the

constraints can be rewritten as
(
J I

)( x
xs

)
= b. Upper bounds on the

variables are considered as constraints and dealt with in the same way. Sim-
ilarly, if the constraints were Jx ≥ b, then the problem can be transformed
by subtracting slack variables in the same way (these are sometimes referred
to as excess variables). In both cases, the objective function is corrected to(
cT 0T

)( x
xs

)
+ 1

2

(
xT xTs

)(H 0
0 0

)(
x
xs

)
.

If the variables lack nonnegativity constraints and are thus free variables,
this can be fixed by setting x = x+ − x−, with x+ ≥ 0 and x− ≥ 0.

The equality constraints are corrected to
(
J −J

)(x+

x−

)
= b, and the new

objective function is
(
cT −cT

)(x+

x−

)
+ 1

2

(
xT+ xT−

)( H −H
−H H

)(
x+

x−

)
.

Finally, these techniques can all be combined in the case that the problem
is non-standard in more than one way, and each of these techniques can be
applied to one or more variables. Thus since any problem can be expressed
in standard form, standard form will be assumed henceforth.

2.1.2 Examples

One common example of quadratic programming is least-squares approxi-
mation. The problem is to approximately solve Jx = b, with J ∈ Rm×n a
full rank matrix with m > n. Unless b is in the range-space of J , there is
no solution to this equation. Instead, the problem is solved to minimize the
residual ‖Jx− b‖2. In the form of a quadratic program, this is

minimize
x

‖Jx− b‖22 = xTJTJx− 2bTJx+ bT b. (2.2)

This is an unconstrained QP, and it has the solution

x = (JTJ)−1JT b. (2.3)

Bound constraints in the form l ≤ x ≤ u can be added to this problem to
get a constrained least-squares problem, which no longer has the solution

9



2.2. Convexity

(2.3). If J is large and sparse, regardless of whether or not there are con-
straints, iterative methods are applied to solve (2.2) rather than using (2.3)
to compute x, which is computationally inefficient and potentially unstable.

An example that comes from modelling a real-life situation is Markowitz’s
model for portfolio optimization. It models a collection of n possible invest-
ments, each with return ri which is not known in advance. These returns
may be assumed to be random variables with expected value µi = E[ri]
and variance σ2

i = E[(ri − µi)2]. The returns are not independent, and the

correlations between the returns are given by ρi,j =
E[(ri−µi)(rj−µj)]

σiσj
. Given

this information, the investor invests a fraction of the available money xi in
the ith investment. Constraints are that all money must be invested, so the
sum of the xi must be one, and that the fractions must be positive. The
optimization is to maximize return while minimizing variance, resulting in
the quadratic program

maximize
x∈Rn

µTx− κxTGx subject to
n∑
i=1

xi = 1, x ≥ 0.

The matrix G is the covariance matrix with entries Gi,j = ρi,jσiσj , and the
parameter κ is a risk tolerance parameter. A large value for κ places more
emphasis on having less variance, which is a more conservative investment,
while a small value will allow more variance but possibly larger returns.
When applying this model to real life investments, the expected values,
variances, and correlations are not known, and are generally estimated by
combining historical data with the insights of professionals.

2.2 Convexity

Convexity is a fundamental property for optimization that determines how
local and global minimizers behave and are related. The convexity of an
optimization problem is determined by the convexity of the objective and
constraint functions.

A set C ∈ Rn is convex if for any x, y ∈ C, we have αx + (1− α)y ∈ C
for all α ∈ [0, 1]. Geometrically, this says that the line segment connecting
any two points in the set lies entirely in the set.

A function f(x) is convex on a convex set C if for any x, y ∈ C it satisfies

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀α ∈ [0, 1]. (2.4)

It is strictly convex if it satisfies

f(αx+ (1− α)y) < αf(x) + (1− α)f(y), ∀α ∈ (0, 1)

10



2.2. Convexity

for any x, y ∈ C with x 6= y. A function f(x) is concave if −f(x) is convex.
Convexity for functions can be thought of as a generalization of linearity:
a function is linear if the condition (2.4) holds with equality. Thus linear
functions are both convex and concave. Convexity in geometric terms says
that the line connecting (x, f(x)) and (y, f(y)) lies on or above the function,
as illustrated in Figure 2.1.

Figure 2.1: Illustration of convexity.

For differentiable functions, convexity can be characterized in terms of
derivatives.

Theorem 2.1 (First order conditions for convexity). For f continuously
differentiable, it is convex on a convex set C if and only it satisfies

f(x) ≥ f(y) +∇f(y)T (x− y),

for all x, y in C. It is strictly convex if and only if the above holds with a
strict inequality.

Proof. First we show that convexity implies the inequality as stated. Assume
that f is convex on a set C. Using the definition of convexity of f , we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),

f(y + α(x− y))− f(y)

α
≤ f(x)− f(y).

Allowing α to tend to zero from above gives

∇f(y)T (x− y) ≤ f(x)− f(y),

which rearranges to the result.
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2.2. Convexity

Now, for the other direction, assume that f satisfies

f(x) ≥ f(y) +∇f(y)T (x− y),

for all x, y in C. Then for an arbitrary α ∈ [0, 1], let z = αx+ (1−α)y ∈ C,
and take

f(x) ≥ f(z) +∇f(z)T (x− z),
f(y) ≥ f(z) +∇f(z)T (y − z).

Multiplying the first inequality by α and the second by (1− α) and adding
gives

αf(x) + (1− α)f(y) ≥ f(z) +∇f(z)T (αx+ (1− α)y)−∇f(z)T z,

αf(x) + (1− α)f(y) ≥ f(αx+ (1− α)y),

giving that f is convex.
The proof for strict convexity is identical except for the use of strict

inequalities, so it is omitted.

Theorem 2.2 (Second order conditions for convexity). For f twice con-
tinuously differentiable, it is convex if and only if its Hessian is positive
semidefinite. It is strictly convex if and only if its Hessian is positive defi-
nite.

Proof. Assume that f is convex on an open convex set C. Let y ∈ C and
d be any direction. Then for small α > 0, y + αd ∈ C, and we can use a
Taylor expansion as follows:

f(y + αd) = f(y) + α∇f(y)Td+ α2dT∇2f(y)d+ α3O(‖d‖3).

Using the result from Theorem 2.1 with x = y + αd, we have

α2
(
dT∇2f(y)d+ αO(‖d‖3)

)
≥ 0.

Dividing by α2 and then allowing α to tend to zero, we have that ∇2f(y) is
positive semi-definite.

Assume that∇2f(z) is positive semidefinite for all z ∈ C, an open convex
set. Then for any x, y ∈ C, the following holds by Taylor’s theorem

f(y) = f(x) +∇f(x)T (y − x) + (y − x)T∇2f(z)(y − x),

for some z ∈ C. Since ∇2f(z) is positive semidefinite, the result of Theo-
rem 2.1 holds and thus f is convex.

Again, the results for strictly convex are similar and are omitted.
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Using the definitions of convexity and strict convexity for functions, we
can now define convexity for optimization problems.

Definition 2.3 (Convexity for optimization problems). A general optimiza-
tion problem (1.1) is called convex if the objective function f is convex, the
equality constraint functions ci are linear, and the inequality constraint func-
tions di are concave. It is called strictly convex if the objective function is
strictly convex and the latter two conditions also hold.

The benefit of convex optimization is that a local solution is also a global
solution, as shown in the following theorem.

Theorem 2.4 (Convex global solutions). If x∗ is a local minimizer of a
convex optimization problem (1.1), then x∗ is a global minimizer. If the
problem is strictly convex, then x∗ is the unique global minimizer.

Proof. Assume that x∗ is a local minimizer, but that it is not a global
minimizer. Then there exists some x with c(x) = 0 and d(x) ≥ 0 such that
f(x) < f(x∗). Then for α ∈ (0, 1), we have

f(αx∗ + (1− α)x) ≤ αf(x∗) + (1− α)f(x),

< αf(x∗) + (1− α)f(x∗),

= f(x∗),

showing that there exist points arbitrarily close to x∗ with function values
strictly less than f(x∗), contradicting the assumption that x∗ is a local
minimizer. Thus such an x cannot exist, and x∗ is a global minimizer.

For f strictly convex, assume that x∗ is a global minimizer but that it
is not unique. Then there exists some x with c(x) = 0 and d(x) ≥ 0 such
that f(x) = f(x∗). Then for α ∈ (0, 1), we have

f(αx∗ + (1− α)x) < αf(x∗) + (1− α)f(x),

= αf(x∗) + (1− α)f(x∗),

= f(x∗),

again contradicting the assumption that x∗ is a local minimizer. Thus x∗ is
the unique global minimizer.

For quadratic programming, the conditions that the equality constraints
be linear and the inequality constraints concave always hold, so whether the
problem is convex depends only on the objective function. If H is positive
semi-definite, then the quadratic programming problem (2.1) is convex, and
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further if H is positive definite, then the problem is strictly convex. The
assumptions of this thesis ensure that the problem is always convex, which
will ensure additional theoretical properties such as duality, which is covered
next.

2.3 Duality and the dual problem

The theory of duality allows the construction of an alternative optimization
problem, the dual problem, from the original problem, called the primal
problem for contrast. In the dual problem, the variables and constraints
have switched positions, so that the variables of the dual problem are related
to the constraints for the primal problem, and similarly for the constraints
of the dual. For some problems, the dual is easier to solve than the primal,
and when the problems satisfy certain properties , then given the solution to
one problem, the solution to the other can be easily computed. In the case of
quadratic programming, the dual objective will provide a convenient lower
bound on the primal objective. Here we use Lagrangian duality, though
other theories exist; see [30].

By introducing vectors y ∈ Rm and z ∈ Rn, the Lagrange multipliers for
the equality and inequality constraints respectively, the dual problem can
be defined for the primal QP (2.1). The Lagrangian function for (2.1) is

L(x, y, z) = cTx+
1

2
xTHx− yT (Jx− b)− zTx.

We can recover the primal problem as follows. The primal function is defined
to be

L∗(x) = sup
y,z≥0

L(x, y, z),

= sup
y,z≥0

(
cTx+

1

2
xTHx− yT (Jx− b)− zTx

)
.

If any component of Jx− b 6= 0, then by allowing the corresponding multi-
plier in y to increase or decrease, depending on the sign of the component,
and setting all other multipliers to zero, the Lagrangian will increase without
bound. Similarly, if any x < 0, by allowing the corresponding multiplier in
z to increase, the Lagrangian will increase without bound. Thus the terms
yT (Jx− b) and zTx must be zero, and the primal function is

L∗(x) =

{
cTx+ 1

2x
THx, if x ≥ 0, Jx = b

∞, otherwise.
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2.3. Duality and the dual problem

The original primal problem is thus minimize
x

L∗(x) on the domain where

L∗(x) is finite. The primal problem is therefore a min-max problem for the
Lagrangian function.

The dual problem is given by the max-min problem for the same La-
grangian. Note that since the variables z correspond to the inequality con-
straints, they must be nonnegative, and thus we have the constraint z ≥ 0.
For any z ≥ 0, the dual function is defined as

L∗(y, z) = inf
x
L(x, y, z),

= inf
x

(
cTx+

1

2
xTHx− yT (Jx− b)− zTx

)
.

If any of ∇xL = c+Hx− JT y− z 6= 0, then by changing the corresponding
element of x and setting the remaining elements to zero the Lagrangian will
decrease without bound. The condition c+Hx−JT y− z = 0 thus becomes
a constraint. Solving this equation for x would require H positive definite,
which we do not assume. Alternatively, x can be retained as a variable to
obtain

L∗(x, y, z) =

{
bT y − 1

2x
THx, if z ≥ 0, JT y + z −Hx = c

−∞, otherwise.

The dual problem is then defined to be maximize
x,y,z

L∗(x, y, z) on the domain

where this is finite. Then the dual problem can be stated as follows

maximize
x,y,z

bT y − 1

2
xTHx subject to JT y + z −Hx = c, z ≥ 0. (2.5)

Note that this is also a convex quadratic programming problem, though not
in standard form. Taking the dual of this dual problem recovers the primal
problem. If H is not positive semi-definite, the relationship between the
primal and dual problems no longer holds.

Given a feasible primal-dual triple (x, y, z), the difference in the objec-
tives is

(cTx+
1

2
xTHx)− (bT y − 1

2
xTHx),

= cTx+ xTHx− bT y,
= (c+Hx)Tx− bT y,
= (JT y + z)Tx− (Jx)T y,

= yTJTx+ zTx− xTJT y,
= zTx ≥ 0.
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Thus for any feasible triple, the dual objective is a lower bound on the primal
objective. This is known as weak duality, and the inner product zTx = xT z
is called the duality gap. In the case of infeasibility, the duality gap is the
difference in objective functions, but this is not equal to xT z. The dual
function is in fact a lower bound on the primal function for all triples: if the
triple is not primal feasible, the primal function takes the value ∞, and if it
is not dual feasible, the dual function takes the value −∞.

2.4 Constraint qualifications

Methods for solution of many optimization problems (1.1), and specifically
quadratic programs (2.1), work by using linear approximations to the ob-
jective and constraint functions to build a better iterate from the current
iterate. This approach only makes sense when linear approximations are
good approximations. The theory of constraint qualifications finds condi-
tions when these approximations make sense.

Let C be the closed, convex set of feasible points for (2.1). If x is a feasible
point, the sequence {zk} is a feasible sequence approaching x if zk ∈ C for all
k large enough and zk → x. The following definition is one way to capture
the geometry of a set C at a feasible point.

Definition 2.5 (Tangent cone). The vector d is a tangent to C at x if there
is a feasible sequence {zk} approaching x and a sequence {tk} with tk > 0,
tk → 0 such that limk→∞

zk−x
tk

= d. The set of all tangents to C at x is
called the tangent cone and is denoted TC(x).

Starting from any feasible point for (2.1), we want to move in directions
that stay within the feasible set. This is given by the following definition.

Definition 2.6 (Linearized feasible direction set). Given a feasible point x
and the active set A(x), the set of linearized feasible directions is

F(x) = {d | Jd = 0, dT ei = 0, i ∈ A(x)},

where ei is the ith standard basis vector.

Constraint qualifications are conditions where TC(x) is identical to, or
at least similar to, F(x). This ensures that the feasible directions represent
the actual geometry of the set C, and thus that a linearized approximation
to the problem captures the essential features and will yield useful informa-
tion. They are also used extensively for theoretical analysis of optimization
problems. There are many different constraint qualifications, some of which
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are more easily characterized than others. One constraint qualification is
that all active constraint gradients be linear, which is obviously satisfied for
quadratic programming. However, the constraint qualification we will use
throughout this thesis is another common constraint qualification, the linear
independence constraint qualification.

Definition 2.7 (LICQ). A triple (x, y, z) that is feasible for (2.1) satisfies
the Linear Independence Constraint Qualification (LICQ) if the set of active
constraint gradients is linearly independent, i.e.

(
JT −IA

)
has full column

rank.

This matrix comes from the gradients of the equality constraints, JT ,
and the gradients of the active inequality constraints, IA. The negative sign
is added for convenience in later results. The LICQ can be used to find
conditions for a solution, as in the following section, and we will also use
it in Chapters 3 and 4 to find requirements for nonsingularity of matrices
involved in the algorithms.

2.5 Conditions for a solution

Conditions for a solution of an optimization problem (1.1) can be char-
acterized by using first-order or second-order derivative information. The
first-order necessary conditions for a solution to (2.1) are fundamental to
constrained optimization, and in particular to interior-point methods. They
are given in the following theorem.

Theorem 2.8 (KKT conditions). If x∗ is a local minimizer of (2.1) and
the LICQ holds at x∗, then there exist y∗ and z∗ such that the following
conditions are satisfied at x∗, y∗, z∗:

c+Hx− JT y − z = 0, (2.6a)

Jx− b = 0, (2.6b)

x ≥ 0, (2.6c)

z ≥ 0, (2.6d)

xizi = 0, i = 1, 2, . . . , n. (2.6e)

These are referred to as the Karush–Kuhn–Tucker (KKT) conditions for the
quadratic programming problem (2.1).

Proof. The proof is long and technical. The interested reader is referred to
[45, Section 12.4] for a thorough proof for general optimization problems.
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The conditions xizi = 0 are referred to as the complementarity condi-
tions, and they require that at least one of xi and zi be zero for each index
i. If exactly one of these is zero for all indices, then strict complementarity
is said to hold. A QP is called degenerate if either strict complementarity
fails to hold, or some constraints are redundant at the solution. Thus if the
LICQ and strict complementarity hold, the problem is nondegenerate. If the
LICQ fails to hold, we can regularize the problem, as described in Chap-
ter 4. Non-strict complementarity complicates matters significantly, but by
partitioning the variables, it can be dealt with. We cover this in Section 2.7.

At this point the duality result from Section 2.3 can be revisited. The
difference in the primal and dual objectives is zTx ≥ 0. At the solution, the
KKT conditions require that zTx = 0. Thus at the solution, the primal and
dual objectives are equal. This is known as strong duality.

The second order necessary conditions are given in the following theorem.

Theorem 2.9 (Second-order necessary conditions). Assume x∗ is a local
minimizer of (2.1), the LICQ holds at x∗, the vectors y∗ and z∗ are the
Lagrange multipliers for which the KKT conditions are satisfied, and strict
complementarity holds. Define N to be a null-space basis matrix for the

matrix

(
J
−ITA

)
. Then NTHN is positive semi-definite.

Proof. See [45, Section 12.5].

The second-order sufficient conditions are given in the following theorem.

Theorem 2.10 (Second-order sufficient conditions). Assume x∗ is a feasible
point for (2.1) and there exists y∗ and z∗ such that the KKT conditions are
satisfied at x∗, y∗, z∗ with strict complementarity. Assume also that NTHN
is positive definite. Then x∗ is a strict local solution for (2.1).

Proof. See [45, Section 12.5].

Remark. Note that for a strictly convex QP, H is positive definite and thus
NTHN is positive definite always since N is a basis matrix. Then if strict
complementarity is satisfied, by Theorem 2.10 this implies that the KKT
conditions are in fact necessary and sufficient. This fact is used to derive
methods for solving (2.1) by iteratively finding solutions to the KKT condi-
tions, as is covered in the next section.
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2.6. Interior-point methods

2.6 Interior-point methods

The two main classes of solvers for QPs are active-set methods and interior-
point methods. Active-set methods have been in use since the 1970s, and
extend the idea of Dantzig’s simplex method for LPs. They use an estimate
of the active set A to solve at each iteration a QP which has only equality
constraints. Then a new estimate of the active set is found, and the method
proceeds. Each iteration is cheap, but no advantage of sparsity is taken, and
the time required to solve in the worst case is exponential in the problem
size. These methods are very effective for smaller QPs where the exponential
worst-case bound is not insurmountable, or where a rough solution is known
that can warm-start the algorithm [45].

The history of interior-point methods is covered in Chapter 1. While
they have polynomial complexity, each iteration is expensive. The idea is to
solve the equalities from (2.6) while ensuring that the inequalities from (2.6)
are strictly satisfied. These equations have both linear and mildly nonlinear
components, and are not too difficult to solve, but the inequalities create
more difficulties. The particular class of interior-point methods we focus on
are primal-dual interior-point methods. The KKT conditions for the primal
QP (2.1) are given by (2.6), and since the solution (x, y, z) of the KKT
conditions must be primal and dual feasible and satisfy complementarity, the
dual problem is also solved. Thus by solving the KKT conditions for (x, y, z),
we obtain a solution for both problems simultaneously. These primal-dual
methods were shown to be the most efficient form of interior-point methods,
and have been the ones that continue to be used.

The equations from the KKT conditions can be rewritten as a mapping
as follows

F (x, y, z) =

c+Hx− JT y − z
b− Jx
−XZe

 = 0,

where the matrices X and Z are diagonal matrices of the vectors x and z
respectively, and e is the vector of ones. Using Newton’s method, the system
that is solved at each iteration is H −JT −I

−J 0 0
−Zk 0 −Xk

∆xk

∆yk

∆zk

 =

−c−Hxk + JT yk + zk

−b+ Jxk

XkZke

 . (2.7)

The new iterate is (xk+1, yk+1, zk+1) = (xk, yk, zk) + αk(∆xk,∆yk,∆zk),
with step size αk ∈ (0, 1] chosen to retain feasibility. Henceforth, we drop
the iteration numbers for compactness, and it is understood that the system

19



2.6. Interior-point methods

is composed of the vectors from the most recent iteration. This system is
referred to as the affine Newton system, and its solution is referred to as the
affine Newton direction.

The full step with α = 1 generally violates the nonnegativity of x and
z, so a line search can be performed to determine the step size. Unfortu-
nately, the step size found from this pure Newton step is often very small.
To resolve this difficulty, the complementarity conditions xizi = 0 are re-
placed with the relaxed complementarity conditions xizi = τ , τ > 0. In
subsequent iterations, τ is reduced to zero to recover the original comple-
mentarity conditions. This relaxed complementarity condition can also be
found by considering the optimization problem with a logarithmic barrier
term with barrier parameter τ , and finding the first-order optimality condi-
tions for this problem. The revised KKT conditions can again be written as
a function as follows

Fτ (x, y, z) =

c+Hx− JT y − z
b− Jx

−XZe+ τe

 = 0. (2.8)

The system that is solved at each iteration is then H −JT −I
−J 0 0
−Z 0 −X

∆x
∆y
∆z

 =

−c−Hx+ JT y + z
−b+ Jx
XZe− τe

 . (2.9)

A Newton step in this direction is usually able to take a larger step length
without violating nonnegativity. The set of solutions {(xτ , yτ , zτ ) | τ > 0}
is referred to as the central path, and all solutions on the central path are
strictly feasible. The value of τ is chosen to reduce the current average value
of xizi, defined as

µ =
xT z

n
,

by some fraction σ ∈ [0, 1]. This σ is called the centering parameter, and µ
is the duality measure. If σ = 1, this step is a pure centering step, moving
the solution towards the point (xµ, yµ, zµ) on the central path where all the
complementarity products are equal to the current average value. If σ = 0,
the standard Newton step from (2.7) is recovered. Most solvers choose a
value between these two extremes.

The solution technique we use for the numerical experiments in Chapter 5
is based on the predictor-corrector method for linear programs by Mehrotra,
which was later extended to QPs. It is a practical algorithm that ignores
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some theory but has good results. It involves two Newton steps. The first
is a predictor step to find the affine Newton direction by solving the system
(2.7). The results from this computation are then used in a second Newton
step which computes the search direction in a combination of three contri-
butions: the predictor from the affine Newton step, a corrector for the error
in linearization made in the predictor step, and a correction towards the
central path. The system for this step is as follows H −JT −I

−J 0 0
−Z 0 −X

∆x
∆y
∆z

 =

 −c−Hx+ JT y + z
−b+ Jx

XZe+ ∆Xaff∆Zaffe− σµe

 , (2.10)

where ∆Xaff and ∆Zaff are diagonal matrices of the vectors ∆xaff and ∆zaff

respectively, the steps from the affine Newton step. The value of σ is also
based on the results from the affine Newton step, in a formula with no the-
oretical justification but good performance. The use of the same matrix for
two steps allows the matrix to be factored once with the resulting factor-
ization used twice, which is only marginally more expensive than one solve.
The full algorithm is given in Algorithm 2.1.

Algorithm 2.1 Mehrotra’s algorithm for QPs

Input: H, J , c, b, tolerance.
Initialize x, y, z.
repeat

Solve (2.7) to get ∆xaff , ∆yaff , ∆zaff .
Compute step sizes αpri

aff and αdual
aff .

Compute µ = xT z/n and µaff = (x+ αpri
aff ∆xaff)T (z + αdual

aff ∆zaff)/n.
Compute centering parameter σ = (µaff/µ)3.
Solve (2.10)to get ∆x, ∆y, ∆z.
Compute step sizes αpri and αdual.
Update x = x+ αpri∆x, y = y + αdual∆y, z = z + αdual∆z.

until duality gap is less than tolerance.

The maximum step size for the primal affine step before moving into in-
feasibility would be the minimum of −xi/∆xaff,i over all indices i where
∆xaff,i < 0. The actual step size is taken to be most of the distance
to the boundary, using a factor called the step factor which is close to
1. We take a step factor of 0.95, and compute a step size as follows:
αpri

aff = min(1, 0.95 min∆xaff,i<0(−xi/∆xaff,i)). The calculation of the other
step sizes are similar, with the dual steps using the corresponding values of
z rather than x.
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2.7. Non-strict complementarity

One difficulty in using interior-point methods is finding a good starting
point. Mehrotra’s initialization solves two equality-constrained minimum
norm problems, then modifies these to ensure strict feasibility with respect to
the inequality constraints. This again has no theoretical basis, but has good
practical performance, and the algorithm in fact performs poorly without it.
In our work, we solve two equality constrained QPs, following the method
of Mehrotra’s original algorithm for LPs and the work to extend to QPs in
[20]. Their initialization problem for x is an equality constrained QP, and
the problem for y and z is chosen to use the same matrix, as Mehrotra’s
LP algorithm does. We follow this idea, and the initial primal variable x is

chosen to solve the problem minimize
x

1

2
‖x‖2 +

1

2
xTHx subject to Jx = b,

which can be solved with the following linear system:(
H + I −JT
−J 0

)(
x
t

)
=

(
0
−b

)
. (2.11)

The solution for t is then discarded. The initial dual variable z is then chosen

to solve the problem minimize
z

1

2
‖z‖2 +

1

2
zTHz + cT z subject to Jz = 0,

which can be solved with the following system:(
H + I −JT
−J 0

)(
z
y

)
=

(
−c
0

)
, (2.12)

which also provides the initial Lagrange multipliers y. Since these problems
both use the same matrix, a single factorization can be applied. The initial
points x and z will in general include negative elements, so the procedure of
Mehrotra is applied to ensure that they are strictly positive by modifying
negative elements. The full algorithm to compute the starting values is given
in Algorithm 2.2.

2.7 Non-strict complementarity

Many of the results of this thesis rely on strict complementarity being satis-
fied in the limit, however, not all QPs (2.1) satisfy strict complementarity at
a local solution. In the case of linear programming, if at least one solution
exists, a strictly complementary solution always exists [24]. With mild as-
sumptions, interior-point methods iterate towards a strictly complementary
limit point [52, Theorem 6.8]. However, this no longer holds for QPs. One
counter-example is

minimize
x

1

2
x2 subject to x ≥ 0,
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2.7. Non-strict complementarity

Algorithm 2.2 Starting point computation for Mehrotra’s algorithm

Input: H, J , c, b.
if c ≡ 0 then

Perturb a random element of c to 10−2.
end if
if b ≡ 0 then

Perturb a random element of b to 10−2.
end if
Solve (2.11) to get x̃.
Solve (2.12) to get ỹ and z̃.
Compute δx = max((−3/2) mini x̃i, 0) and δz = max((−3/2) mini z̃i, 0).
Compute x̂ = x̃+ δxe and ẑ = z̃ + δze.
Compute δ̂x = 0.5 x̂

T ẑ
eT ẑ

and δ̂z = 0.5 x̂
T ẑ
eT x̂

.

Compute x = x̂+ δ̂xe, y = ỹ, and z = ẑ + δ̂ze.

which has (x, z) = (0, 0) as the only solution. The matrices of (2.7), (2.9),
and (2.10) will have zero rows in the limit, and thus will be singular. Here
we outline a partially eliminated system which will allow our results to apply
to these problems.

Indicator sets can be used to separate indices into three groups, two
active and one inactive. We define two types of active constraints, and thus
partition the active set A. The set of strongly active constraints at x is
AS := {i = 1, . . . , n | xi = 0 < zi}. The set of weakly active constraints
at x is AW := {i = 1, . . . , n | xi = zi = 0}, the constraints at which strict
complementarity fails to hold. Suppose at each iteration k of the interior-
point method, we can identify approximations AkS , AkW , and Ik to AS ,
AW , and I, respectively. Such indicator sets can resolve the singular limit
difficulty provided they ensure that zki /x

k
i → 0 as k → ∞ for i ∈ AkW ∪ Ik

while xki /z
k
i → 0 as k → ∞ for i ∈ AkS . Indeed if this were the case, upon

partitioning x, z, H, and J according to Bk := AkW ∪ Ik and Sk := AkS , the
variables ∆zB can be eliminated in (2.9) to get

HSS HSB −JTS −I
HT
SB HBB +X−1

B ZB −JTB
−JS −JB
−ZS −XS




∆xS
∆xB
∆y
∆zS

 =


rd,S

rd,B +X−1
B rc,B

rp
rc,S

 .

The coefficient matrix of this system has a well-defined limit whenever J has
full row rank. Details of indicator sets with the requisite properties, along
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2.7. Non-strict complementarity

with pointers to the literature, are given in [9] and [43]. Should J not have
full row rank, the system can be regularized, as covered in Chapter 4.
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Chapter 3

Properties of matrices in
interior-point methods

In this chapter we examine the properties of several different formulations of
the matrices in systems (2.7), (2.9), and (2.10). For each of these matrices,
we find conditions for nonsingularity, the inertia, bounds on the eigenvalues,
and bounds and estimates of the condition numbers.

The matrices of (2.7), (2.9), and (2.10) are all the same, so we can write
a general form of the step as H −JT −I

−J 0 0
−Z 0 −X

∆x
∆y
∆z

 =

rdrp
rc

 , (3.1)

where the subscripts on the right side indicate the constraints for dual fea-
sibility, primal feasibility, and the complementarity condition. These are
defined by rd = −c − Hx + JT y + z, rp = −b + Jx, and rc will vary de-
pending on the type of step being performed. The matrix of this system
is

K3 =

 H −JT −I
−J 0 0
−Z 0 −X

 .

The system (3.1) can be reduced by eliminating ∆z, resulting in the
system (

H +X−1Z −JT
−J 0

)(
∆x
∆y

)
=

(
rd −X−1rc

rp

)
.

Then ∆z can be recovered by computing ∆z = −X−1(rc + Z∆x), which
since X is diagonal, is an inexpensive computation. The matrix of this
system is

K2 =

(
H +X−1Z −JT
−J 0

)
.
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Chapter 3. Properties of matrices in interior-point methods

One more step of Gaussian elimination can be performed to eliminate
∆x, resulting in the system(

J(H +X−1Z)−1JT
)

∆y =
(
−J(H +X−1Z)−1(rd −X−1rc)− rp

)
.

Then ∆z and ∆x can be recovered via ∆z = −X−1(rc + Z∆x) and ∆x =
(H +X−1Z)−1(JT∆y + rd −X−1rc), which is an inexpensive computation
if the inverse of H +X−1Z is stored for use several times in each iteration.
The matrix of this system is

K1 =
(
J(H +X−1Z)−1JT

)
.

The system (3.1) can be solved using any of the matrices K3, K2, or
K1, each of which has different properties. The properties of K2 and K1

are relatively well-known, while K3 has had comparatively little analysis;
see Chapter 1 for a review of existing literature. We provide analysis on all
formulations, including new results for K3.

The following definitions and notation will be used throughout this and
the next chapter.

The maximum and minimum singular values of a general matrix B are
denoted by σmax(B) and σmin(B) respectively, and similarly the maximum
and minimum eigenvalues of a square matrix M are λmax(M) and λmin(M).
The eigenvalues of H are denoted by

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

and the singular values of J are denoted by

σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0.

We use θ for the eigenvalues of the matrices K1, K2, and K3 as needed to
avoid confusion with other quantities.

For any vectors u ∈ Rn, v ∈ Null(J)⊥ ⊂ Rn, and w ∈ Rm, the following
bounds are satisfied

λn‖u‖2 ≤ uTHu ≤ λ1‖u‖2, (3.2)

σm‖v‖ ≤ ‖Jv‖ ≤ σ1‖v‖, (3.3)

σm‖w‖ ≤ ‖JTw‖ ≤ σ1‖w‖. (3.4)

Note that the right inequality in (3.3) is satisfied for all v ∈ Rn.

Definition 3.1 (Inertia). The inertia of a square matrix S with real eigen-
values is the triple (n+, n−, n0), where n+, n− and n0 are the numbers of
positive, negative, and zero eigenvalues of S, respectively.
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3.1. Normal equations

Theorem 3.2 (Sylvester’s law of inertia, [26]). For any nonsingular matrix
R, the matrices S and RSRT have the same inertia.

Definition 3.3 (Condition number). The spectral condition number of a
matrix B is denoted κ(B) and is defined by

κ(B) =
σmax(B)

σmin(B)
.

Definition 3.4 (Asymptotic notation, [29, Section 9.2]). f(x) is said to be
at most order g(x), written f(x) = O(g(x)), if there exists a positive real
number M and a real number x0 such that |f(x)| ≤M |g(x)| for all x > x0.

Definition 3.5 (Asymptotic bounds). We say that g(x) is an asymptotic
upper bound for f(x), and write f(x) . g(x), if f(x) ≤ O(g(x)). Similarly,
we say that h(x) is an asymptotic lower bound for f(x), and write h(x) .
f(x), if f(x) ≥ O(h(x)).

At each iteration of the interior-point method, the matrices K1, K2,
and K3 will change since X and Z change. These matrices are collectively
referred to as the case of during the interior-point method or during the
iterations, as similar properties hold. The limiting case or the case in the
limit refers to the situation where τ is taken to zero and we find a solution
satisfying the original complementarity condition, and thus the solution to
(2.1). Although this case will not occur in the interior-point method and the
matrices will not be used, we can assemble matrices in the same forms as K1,
K2, and K3 and discuss their properties. This analysis is helpful because
the interior-point method is iterating towards this solution and thus the
matrices of the method iterate towards these limiting matrices.

3.1 Normal equations

We first examine the properties of the matrix K1, the furthest reduced of
the formulations. An obvious benefit of the use of this formulation is the
smaller size, but spectral properties may not be optimal, as we see in this
section.

3.1.1 Nonsingularity

First we observe the conditions for nonsingularity of K1, considering sep-
arately the cases of during the interior-point iteration and the limit of the
iterations.
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3.1. Normal equations

Theorem 3.6. The matrix K1 is positive definite during the iterations, and
thus nonsingular, if and only if J has full rank.

Proof. Assume J has full rank. Then for any v 6= 0, w = JT v 6= 0 as well.
Forming vTK1v = vT

(
J(H +X−1Z)−1JT v

)
= wT (H + X−1Z)−1w > 0

since H is positive semi-definite and X and Z are diagonal and strictly
positive. Thus J full rank is sufficient for K1 to be positive definite.

Assume J does not have full rank. Thus there exists v ∈ Null(JT ), v 6= 0,
and vTK1v = 0. Thus J full rank is necessary.

Theorem 3.7. The matrix K1 is positive definite at the limit of the itera-
tions if and only if the variables x > 0, H is positive definite, and J has full
rank.

Proof. We show that each of these conditions is necessary. If any element
of x = 0, then the matrix X is singular and K1 is as well. Thus x > 0
is necessary. Now assuming x > 0, by complementarity, z = 0, and thus
X−1Z = 0. Then H positive definite is necessary. Assuming that x > 0
and H is positive definite, but that J does not have full rank, there exists
v ∈ Null(J), v 6= 0. Then vTK1v = 0, and J full rank is necessary.

Now for sufficiency, assume x > 0 and H is positive definite. Following
the same proof as for 3.6, J together with the two assumed conditions is
sufficient for K1 to be positive definite.

The case that K1 is positive definite in the limit is a special case: if all
variables x are positive, the inequality constraints are all inactive, and the
only active constraints are the equality constraints. This means that the
solution is the same as the solution to an equality constrained QP, which is
much simpler to solve. The conditions of H positive definite and J full rank
are also strong conditions, and generally, K1 is singular at the limit.

3.1.2 Inertia

Given the conditions for nonsingularity as listed in the previous section, the
inertia of K1 is always (m, 0, 0).

The inertia is of interest in optimization algorithms since at a local min-
imum, the problem is locally convex. Thus many methods working with
nonconvex problems control the inertia to ensure the correct properties dur-
ing the iterations; see [16].
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3.1. Normal equations

3.1.3 Eigenvalue bounds

Bounds on the eigenvalues of K1 can be easily found.

Theorem 3.8. The eigenvalues of K1 are bounded in the interval[
σ2
m

λmax(H +X−1Z)
,

σ2
1

λmin(H +X−1Z)

]
.

Proof. The eigenvalue equation for K1 is(
J(H +X−1Z)−1JT

)
v = θv,

and multiplying by vT gives

vTJ(H +X−1Z)−1JT v = θ‖v‖2. (3.5)

To find the upper bound, we can bound by the largest eigenvalue of (H +
X−1Z)−1 as follows

λmax((H +X−1Z)−1)‖JT v‖2 ≥ θ‖v‖2.

Now using (3.4) and the properties on the eigenvalues of an inverse of a
matrix, we have

σ2
1

λmin(H +X−1Z)
‖v‖2 ≥ θ‖v‖2.

If v = 0, then it is trivial and is therefore not an eigenvector. Thus v 6= 0,
and we can divide by ‖v‖2 to get the upper bound.

To find the lower bound, we start from (3.5). Bounding by the smallest
eigenvalue of (H +X−1Z)−1 gives

λmin((H +X−1Z)−1)‖JT v‖2 ≤ θ‖v‖2.

Using (3.4) and the properties on the eigenvalues of an inverse of a matrix,
we have

σ2
m

λmax(H +X−1Z)
‖v‖2 ≤ θ‖v‖2,

and dividing by ‖v‖2 gives the bound.
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3.1. Normal equations

3.1.4 Condition numbers

Using the bounds on eigenvalues from the previous section, we can find a
bound on the condition number of K1.

Theorem 3.9. The condition number of K1 is bounded by

κ(K1) ≤ κ(J)2κ(H +X−1Z).

Proof. Using the eigenvalue bounds and the definition of condition number,
we find

κ(K1) ≤

(
σ2

1
λmin(H+X−1Z)

)
(

σ2
m

λmax(H+X−1Z)

) ,
=

(
σ2

1

σ2
m

)(
λmax(H +X−1Z)

λmin(H +X−1Z)

)
,

= κ(J)2κ(H +X−1Z).

We can find an asymptotic bound on this condition number as follows.
If our solution (x, y, z) exactly solves the relaxed complementarity condition
xizi = µ, then we have X−1Z = µX−2. Assuming that at least one element
of x goes to zero and does so at the same rate as µ→ 0, which is typically
the case under our assumptions [52, Theorem 6.8], we have the asymptotic
estimates

λmin(H +X−1Z) ≈ λn + µ,

λmax(H +X−1Z) ≈ λ1 + 1/µ ≈ 1/µ.
(3.6)

Using these, asymptotic bounds on the eigenvalues of K1 are

µ . θ . 1/(λn + µ).

The condition number is then O( 1
µ(λn+µ)), which simplifies to

κ(K1) .

{
1
µ , if λn > 0
1
µ2 , if λn = 0.

(3.7)

The estimate for λn > 0 is in line with those of [50], who assumes that
a second-order sufficiency condition holds. The asymptotic bound hides a
factor of κ(J), however we focus on the effect of µ, which changes throughout
the iterations.
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3.2. Saddle-point form

3.2 Saddle-point form

We now move on to examine the saddle-point form, the matrix K2. This
formulation is widely used and advocated, and has the advantage of the
vast analysis on saddle-point matrices in general. We specialize these to
find spectral properties of K2.

3.2.1 Nonsingularity

We can easily observe the conditions for nonsingularity of K2, since it is a
standard saddle-point matrix and there is existing analysis of these matrices.

Theorem 3.10. The matrix K2 is nonsingular during the iterations if and
only if J has full rank.

Proof. Noting that H +X−1Z is positive definite, this follows directly from
[4, Theorem 3.1].

Similarly to the normal equations, the case that K2 is nonsingular at the
limit is a special case, requiring the variables x > 0.

Theorem 3.11. The matrix K2 is nonsingular at the limit of the iteration
if and only if x > 0, J has full rank, and Null(H) ∩Null(J) = {0}.

Proof. If any element of x = 0, then the matrix X is singular and K2 is
as well. Thus x > 0 is necessary. Assuming x > 0, by complementarity,
z = 0, and thus X−1Z = 0. Using [4, Theorem 3.2], J has full rank and
Null(H) ∩Null(J) = {0} are necessary and sufficient.

3.2.2 Inertia

Assuming the conditions for nonsingularity given previously, the inertia of
K2 is (n,m, 0).

3.2.3 Eigenvalue bounds

Eigenvalue bounds for a saddle-point matrix are given in [46]; the results
here directly follow these. The (1, 1) block of K2 is H+X−1Z and is strictly
positive definite during the iterations; note also that X and Z change at each
iteration, so these bounds will change at each iteration as well.
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3.2. Saddle-point form

Theorem 3.12. The eigenvalues of K2 are bounded by the following:

θ ≥ 1

2

(
λmin(H +X−1Z)−

√
λmin(H +X−1Z)2 + 4σ2

1

)
,

θ ≤ 1

2

(
λmax(H +X−1Z)−

√
λmax(H +X−1Z)2 + 4σ2

m

)
,

for negative eigenvalues θ, and

θ ≥ λmin(H +X−1Z),

θ ≤ 1

2

(
λmax(H +X−1Z) +

√
λmax(H +X−1Z)2 + 4σ2

1

)
,

for positive eigenvalues θ.

3.2.4 Condition numbers

Using the bounds from the previous section, we can form an asymptotic
bound on the condition number.

Theorem 3.13. The condition number of K2 is bounded asymptotically by

κ(K2) .
1

µ2
.

Proof. Using the situation where the extremal eigenvalues of H+X−1Z are
approximated by (3.6), we obtain the asymptotic estimates

µ . θ . 1/µ

for the positive eigenvalues, and

−1 . θ . −µ

for the negative eigenvalues. The asymptotic bounds on the negative eigen-
values are simplified from Taylor expansions. Using these bounds on the
eigenvalues gives the condition number.

Remark. The lower bound on the negative eigenvalues is finite, and thus the
remaining three bounds are responsible for the ill-conditioning of K2.

When λn = 0, K2 has the same asymptotic conditioning as K1, but when
λn > 0, it appears that K2 has worse asymptotic conditioning than K1, due
to the upper bound on the negative eigenvalues.
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3.3 Unreduced 3-by-3 form

We now cover the properties of the matrix K3, providing several new results.

3.3.1 Nonsingularity

We consider the conditions for nonsingularity of K3 during the iterations.

Theorem 3.14. The matrix K3 is nonsingular during the iterations if and
only if J has full rank.

Proof. Assume that there exists a nontrivial nullspace vector (u, v, w), that
is,  H JT −I

J 0 0
−Z 0 −X

uv
w

 =

0
0
0

 . (3.8)

Solving the third block row of (3.8) for w, which is permissible since X is
positive definite during the iteration, yields w = −X−1Zu. Taking the inner
product of the first block row with u and substituting for w gives

uT (H +X−1Z)u+ (Ju)T v = 0.

The second block row is Ju = 0, so using this we reduce to

uT (H +X−1Z)u = 0. (3.9)

Since X and Z are diagonal and strictly positive throughout the iteration,
H + X−1Z is positive definite. Thus (3.9) has only the trivial solution
u = 0, which implies w = 0. It follows from the first block row of (3.8) that
JT v = 0. If J has full rank, this implies v = 0.

If J does not have full row rank, (u, v, w) with v ∈ Null(JT ), v 6= 0, is a
nontrivial null vector.

Therefore the condition of J full rank is both necessary and sufficient for
K3 to be nonsingular during the iteration.

Remark. It is sufficient for nonsingularity of K3 to assume that H is pos-
itive semidefinite on the nullspace of J only, since then (3.9) still implies
that u = 0. However, in this case (2.1) is no longer a convex QP and the
duality relationship with (2.5) does not hold. This definiteness assumption
is common in literature; see [26].

We now consider the limit of the iteration.
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3.3. Unreduced 3-by-3 form

Theorem 3.15. The matrix K3 is nonsingular at the limit of the iterations
if and only if the solution (x, y, z) is strictly complementary, Null(H) ∩
Null(J)∩Null(Z) = {0}, and the linear independence constraint qualification
(LICQ) is satisfied.

Proof. If (x, y, z) is not strictly complementary, there is a zero row in the
third block row of (3.8) and K3 is singular. Therefore, strict complemen-
tarity is necessary.

If Null(H) ∩ Null(J) ∩ Null(Z) 6= {0}, take u ∈ Null(H) ∩ Null(J) ∩
Null(Z), u 6= 0, v = 0 and w = 0. Since Hu = Ju = −Zu = 0, it follows
from (3.8) that (u, v, w) is a nontrivial null vector of K3. Thus this condition
is necessary.

Now, assume strict complementarity and Null(H)∩Null(J)∩Null(Z) =
{0}, and suppose (u, v, w) is in the nullspace of K3. Since zI = 0 at the
solution, the third block row of (3.8) and strict complementarity yield uA =
0 and wI = 0. Therefore, uTw = 0. Taking the inner product of the first
block row of (3.8) with u and substituting Ju = 0 from the second block
row gives uTHu = 0, thus u ∈ Null(H). Noting that Ju = 0 is equivalent to
saying u ∈ Null(J), and uA = 0 is equivalent to u ∈ Null(Z), combining all
conditions on u gives u ∈ Null(H) ∩ Null(J) ∩ Null(Z), which implies that
u = 0 by the assumption. Eliminating u and wI from (3.8), we have

(
JT −IA

)( v
wA

)
= 0,

which has only the trivial solution (v, wA) = (0, 0) if and only if the LICQ
holds. Thus the three conditions together are sufficient, and the LICQ is
necessary.

Remark. The condition that Null(H) ∩ Null(J) ∩ Null(Z) = {0} cannot be
verified before a solution is found, but Null(H)∩Null(J) = {0} is a sufficient
condition.

Comparing the requirements for nonsingularity ofK1, K2, andK3, we see
that during the iterations, all are nonsingular when J has full rank. However,
at the limit, K1 and K2 are singular unless x > 0, or all the inequality con-
straints are inactive, together with other conditions on J and H. Contrast
this with the requirements for nonsingularity of K3. Strict complementarity
is a common assumption for the solution algorithms, and we have already
detailed how this requirement can be dealt with. Null(H) ∩ Null(J) = {0}
is another common assumption for optimization algorithms. Finally, the
LICQ is also a common assumption for analysis of algorithms, though it is
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3.3. Unreduced 3-by-3 form

too strong for use in practice. We shall see that when some of these condi-
tions do not hold, regularization alleviates the difficulties. Numerical results
also indicate that even when all forms of the system are singular in the limit
and the matrices of the iteration become increasingly ill-conditioned, the
conditioning of K3 is superior.

3.3.2 Inertia

To work with the eigenvalues and inertia of K3, a symmetric matrix is
required to guarantee that the eigenvalues are real. By using a similarity
transformation with the diagonal matrix D defined by

D =

I 0 0
0 I 0

0 0 Z
1
2

 ,

(3.1) can be symmetrized to give H −JT −Z
1
2

−J 0 0

−Z
1
2 0 −X


∆x

∆y

∆̃z

 =

 rd
rp

Z−
1
2 rc

 , (3.10)

where ∆̃z = Z−
1
2 ∆z. The matrix from this system is

K̂3 := D−1K3D =

 H −JT −Z
1
2

−J 0 0

−Z
1
2 0 −X

 .

We find results on the inertia of K̂3 both during the iterations and in
the limit. We first need the following result.

Lemma 3.16 ([26], Lemma 3.1). Let

B :=

0 0 It
0 S 0
It 0 0


for a arbitrary square matrix S and size t identity matrix It. Then B has t
eigenvalues −1, t eigenvalues 1, and the remaining eigenvalues the same as
those of S.

Theorem 3.17. Assume that J has full rank and Null(H)∩Null(J) = {0}.
Then the inertia of K̂3 during the iterations is (n, n+m, 0).
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Proof. Let the matrix N be an orthonormal nullspace basis matrix for J .
Since Null(H) ∩ Null(J) = {0}, NTHN is positive definite. The follow-
ing construction follows the proof of [26, Lemma 3.2]. Complete the basis
N so that

(
Y N

)
is orthogonal. Then J

(
Y N

)
=
(
L 0

)
, where L is

nonsingular. Define

M1 :=

Y N 0 0
0 0 I 0
0 0 0 I

 .

Then we have

MT
1 K̂3M1 =


Y THY Y THN LT −Y TZ

1
2

NTHY NTHN 0 −NTZ
1
2

L 0 0 0

−Z
1
2Y −Z

1
2N 0 −X

 .

Let

M2 :=


In−m 0 0 0

0 Im 0 0
−1

2L
−TY THY −L−TY THN L−T 0

0 0 0 I

 .

Then

MT
2 M

T
1 K̂3M1M2 =


0 0 Im −Y TZ

1
2

0 NTHN 0 −NTZ
1
2

Im 0 0 0

−Z
1
2Y −Z

1
2N 0 −X

 .

Finally, let

M3 :=


I 0 0 0
0 I 0 R
0 0 I S
0 0 0 I

 ,

where R := −(NTHN)−1NTZ
1
2 and S := −Y TZ

1
2 . The product M :=

M1M2M3 is nonsingular, and since K̂3 is nonsingular by Theorem 3.14, the
matrix

MT K̂3M =


0 0 Im 0
0 NTHN 0 0
Im 0 0 0
0 0 0 G

 , (3.11)
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3.3. Unreduced 3-by-3 form

withG = −X − Z
1
2N(NTHN)−1NTZ

1
2 , is also nonsingular. From the pre-

viously noted Lemma 3.16, Sylvester’s law of inertia, and the fact that G
is negative definite, we obtain that K̂3 has n + m negative and n positive
eigenvalues.

This result holds in the limit.

Theorem 3.18. Assume that Null(H) ∩ Null(J) = {0} and (x, y, z) is a
solution of (2.1) and (2.5) where strict complementarity and the LICQ are
satisfied. Then the inertia of K̂3 is (n, n+m, 0).

Proof. Following the proof of Theorem 3.17, (3.11) still holds. G is clearly
at least negative semidefinite, and since M is nonsingular by the proof of
Theorem 3.17 and K̂3 is nonsingular by Theorem 3.15, G is in fact negative
definite. Therefore K̂3 has n+m negative and n positive eigenvalues.

Remark. In fact, the assumption of the LICQ can be weakened to assume
only that J is full rank, and G can be proven negative definite via strict
complementarity.

The inertia of K̂3 is the same during the iterations and in the limit with
conditions sufficient for nonsingularity. This is in contrast to the cases for
K1 and K2. Theorems 3.17 and 3.18 also hold for indefinite H, as long as
the condition of positive definiteness on the nullspace of J is satisfied.

3.3.3 Eigenvalue bounds

We now find bounds on the eigenvalues of the symmetric indefinite matrix
K̂3, which given the similarity transformation will also apply to K3. We
assume that the conditions of Theorem 3.15 hold, so K̂3 and K3 are nonsin-
gular throughout the iterations and at the limit. Our technique uses energy
estimates in the style of [46].

The eigenvalue problem for K̂3 is formulated as H JT −Z
1
2

J 0 0

−Z
1
2 0 −X


uv
w

 = θ

uv
w

 . (3.12)

Theorem 3.19. The positive eigenvalues of K̂3, and thus also K3, are
bounded in[

min
j

1

2

(
λn − xj +

√
(λn + xj)2 + 4zj

)
,

1

2

(
λ1 +

√
λ2

1 + 4(σ2
1 + zmax)

)]
.
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3.3. Unreduced 3-by-3 form

The lower positive bound in Theorem (3.19) is useful in the case that
λn = 0, but in the case where H is strictly positive definite, there is an
alternative uniform lower bound.

Corollary 3.20. A uniform lower bound for the positive eigenvalues of K̂3

is given by λn.

The following proof covers both the theorem and corollary.

Proof. We proceed one bound at a time, using energy estimates and estab-
lishing the desired inequalities.

First we find the upper bound. Since θ and x are both positive, the
matrix θI + X is nonsingular. We can then solve for w in the third block
row of (3.12) to get

w = −(θI +X)−1Z
1
2u.

Substituting into the first block row of (3.12), we obtain

Hu+ JT v + Z
1
2 (θI +X)−1Z

1
2u = θu.

Taking the inner product with u, and noting that the matrices Z
1
2 and

(θI+X)−1 are diagonal and therefore commute, gives the following equation
for θ:

uTHu+ uTJT v + uT (θI +X)−1Zu = θ‖u‖2. (3.13)

Solving for v in the second block row of (3.12) gives v = 1
θJu, which we

substitute into (3.13) to get

uTHu+
1

θ
‖Ju‖2 + uT (θI +X)−1Zu = θ‖u‖2. (3.14)

Now we bound terms in (3.14). We use (3.2) and (3.3) to bound the first
and second terms in (3.14), giving

λ1‖u‖2 +
1

θ
σ2

1‖u‖2 + uT (θI +X)−1Zu ≥ θ‖u‖2.

Since the matrix (θI + X)−1Z is diagonal, we may bound the remaining
term on the left with the maximum of the diagonal elements, leaving(

λ1 +
1

θ
σ2

1 + max
i

zi
θ + xi

)
‖u‖2 ≥ θ‖u‖2.

This maximum term can be bounded as follows

max
i

zi
θ + xi

≤ zmax

θ
,
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3.3. Unreduced 3-by-3 form

where zmax indicates the maximum value of zi at the current iterate. This
bound becomes tight as the iterations proceed, since generally at least one
xi → 0. On the other hand, if this does not occur, then all zi = 0 at the
limit and therefore zmax = 0. We have(

λ1 +
1

θ
σ2

1 +
zmax

θ

)
‖u‖2 ≥ θ‖u‖2.

Multiplying by θ and rearranging gives(
θ2 − λ1θ − (σ2

1 + zmax)
)
‖u‖2 ≤ 0.

The vector u must be nonzero. If u = 0 then the second block row of (3.12)
implies θv = 0, and since θ is strictly positive, this gives v = 0. The first
block row then yields Z

1
2w = 0 and w = 0, which is a contradiction since an

eigenvector must be nontrivial. We can therefore divide by ‖u‖2 and bound
by the larger root of the quadratic to obtain

θ ≤ 1

2

(
λ1 +

√
λ2

1 + 4(σ2
1 + zmax)

)
, (3.15)

giving an upper bound.
Next, we find a lower bound on θ. Taking the inner product of v with

the second block row of (3.12), we have

vTJu ≡ uTJT v = θ‖v‖2,

which we substitute into (3.13) to give

uTHu+ θ‖v‖2 + uT (θI +X)−1Zu = θ‖u‖2.

Using (3.2), we have

λn‖u‖2 + θ‖v‖2 + uT (θI +X)−1Zu ≤ θ‖u‖2.

Bounding the last term on the left with a minimum of the diagonal elements,
this becomes

λn‖u‖2 + θ‖v‖2 + min
i

zi
θ + xi

‖u‖2 ≤ θ‖u‖2. (3.16)

This minimum will occur for some index j, and we then multiply by θ + xj
and rearrange into

(θ2 + (xj − λn)θ − (λnxj + zj))‖u‖2 ≥ θ‖v‖2 ≥ 0.
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3.3. Unreduced 3-by-3 form

Since again u 6= 0, we then bound by the positive root of the quadratic,
giving

θ ≥ 1

2

(
λn − xj +

√
(λn + xj)2 + 4zj

)
.

Taking the minimum over all j gives the bound.
To find the uniform lower bound given in the corollary, we begin from

(3.16) and bound the minimum term below by zero, since the terms are all
positive. Then rearranging we have

(θ − λn)‖u‖2 ≥ θ‖v‖2 ≥ 0,

which since u 6= 0 gives the bound

θ ≥ λn.

We now consider bounds on the negative eigenvalues, but are only able
to find an effective lower negative bound.

Theorem 3.21. Assume that θI + X is nonsingular for all θ < 0 in the
spectrum of K̂3. The negative eigenvalues of K̂3, and thus also K3, are
bounded in [ζ, 0), where

ζ := min

{
1

2

(
λn −

√
λ2
n + 4σ2

1

)
, min
{j|θ+xj<0}

θ∗j

}
and θ∗j is the smallest negative root of the cubic equation

θ3 + (xj − λn)θ2 − (σ2
1 + zj + xjλn)θ − σ2

1xj = 0.

Proof. Proceeding as in the proof of Theorem 3.19, we start from (3.14)
with the bounds in (3.2) and (3.3) to get

λn‖u‖2 +
1

θ
σ2

1‖u‖2 + uT (θI +X)−1Zu ≤ θ‖u‖2.

Bounding the last term of the left-hand side by the minimum,(
λn +

1

θ
σ2

1 + min
i

zi
θ + xi

)
‖u‖2 ≤ θ‖u‖2. (3.17)

We now need to consider two cases. In case one, θ+ xi > 0 for all indices i,
and in this case we can bound the minimum term from below by zero. In case
two, some θ+xi < 0, and there exists an index j such that mini

zi
θ+xi

=
zj

θ+xj
.
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3.3. Unreduced 3-by-3 form

Beginning with case one, we start from (3.17) and bound the minimum
term below by zero, giving

(λn +
1

θ
σ2

1)‖u‖2 ≤ θ‖u‖2,

which we can multiply by θ and rearrange to give

(θ2 − λnθ − σ2
1)‖u‖2 ≤ 0.

Since u 6= 0, we can divide by ‖u‖2 and bound by the root of the quadratic
to get the bound

θ ≥ 1

2

(
λn −

√
λ2
n + 4σ2

1

)
.

For case two, we use the index j for the minimum in (3.17) to get(
λn +

1

θ
σ2

1 +
zj

θ + xj

)
‖u‖2 ≤ θ‖u‖2.

Multiplying by θ(θ + xj) > 0 and rearranging, we get(
θ3 + (xj − λn)θ2 − (σ2

1 + zj + xjλn)θ − σ2
1xj
)
‖u‖2 ≥ 0.

Since u 6= 0, we can divide by ‖u‖2 and define θ∗j to be the smallest root of
the cubic

θ3 + (xj − λn)θ2 − (σ2
1 + zj + xjλn)θ − σ2

1xj = 0.

Evaluating this cubic at θ = 0 gives

−σ2
1xj < 0,

so there must be at least one positive real root because the cubic increases to
infinity as θ increases. Looking at the derivative of the cubic and evaluating
again at θ = 0 we have

−σ2
1 − zj − xjλn.

Since the slope of the cubic for large negative θ would be positive, this indi-
cates that there are either two negative roots or a pair of complex conjugate
roots. If no cubic offers a real negative root, this implies that case one ap-
plies. The bound is given by the minimum of these possible bounds from
cases one and two.

Remark. It is not possible in practice to know which indices j satisfy θ+xj <
0, but in computations, θ∗j can be computed for all indices j.

Regarding the unsatisfying upper negative bound, the bounds in Theo-
rems 3.19 and 3.21 are pessimistic, as we shall see in the discussion of the
condition number next. Regularization, covered in the next chapter, will
allow more definite conclusions, including a nonzero upper negative bound.
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3.3. Unreduced 3-by-3 form

3.3.4 Condition numbers

Since we have not been able to find an upper bound for the negative eigen-
values, we cannot find an estimate of the condition number. However, we
can make some general statements on the conditioning of K3. Under the
assumptions of Theorems 3.14 and 3.15, K̂3 is nonsingular and converges to
a well-defined limit as µ→ 0. Therefore, its condition number is asymptot-
ically uniformly bounded independently of µ, which is not reflected by the
bounds on the eigenvalues. In practice, we have observed that the condi-
tioning of K̂3 and K3 are typically substantially better than that of K1 or
K2. One potential explanation for this behaviour is that using K3 avoids
division by elements of X, avoiding the large roundoff errors that can occur
with such divisions. Some observations on the conditioning of these matrices
have been previously made; see Chapter 1.
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Chapter 4

Regularization and the
properties of matrices

As seen in Chapter 3, there are numerical difficulties with K1 and K2, and
while K3 has finite outer bounds and less restrictive conditions for nonsin-
gularity, some conditions are difficult to verify before solving. Additionally,
the lack of an upper negative bound on the eigenvalues means that we have
no estimate for the condition number. To alleviate these difficulties, we
consider a regularized version of (2.1). There are several ways to regular-
ize: primal regularization alleviates ill-conditioning of the Hessian, while
dual regularization alleviates ill-conditioning of the Jacobian. Details of
several regularization approaches can be found in [20]. We focus on the
two-parameter approach of [20] which applies both primal and dual regu-
larization. For parameters ρ > 0 and δ > 0, the regularized primal QP
is

minimize
x,r

cTx+
1

2
xTHx+

1

2
ρ‖x− xk‖2 +

1

2
δ‖r + yk‖2

subject to Jx+ δr = b, x ≥ 0.

(4.1)

In this formulation, xk and yk are the current iterates for x and y respec-
tively. The dual problem corresponding to (4.1) is

maximize
x,y,z,s

bT y − 1

2
xTHx− 1

2
δ‖y − yk‖2 − 1

2
ρ‖s+ xk‖2

subject to −Hx+ JT y + z − ρs = c, z ≥ 0.

(4.2)

By setting δ = ρ = 0, the original primal-dual pair (2.1) and (2.5) is recov-
ered.

Given this modified primal dual-pair, we can proceed with an interior-
point method. The KKT conditions with a modified complementarity con-
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Chapter 4. Regularization and the properties of matrices

dition, similarly to (2.8), are

Fτ (x, y, z, r, s) =


c+Hx+ ρs− JT y − z

δ(r + yk)− δy
ρx− ρ(s+ xk)
b− Jx− δr
−XZe+ τe

 = 0.

An interior point-method for these problems is proposed in [20] that con-
verges under standard conditions with either fixed or decreasing regulariza-
tion parameters. The 3-by-3 system to solve at each iteration, after elimi-
nating the variables s and r and substituting the current iterates for each
variable, is H + ρI −JT −I

−J −δI 0
−Z 0 −X

∆x
∆y
∆z

 =

rdrp
rc

 .

The vectors on the right hand side are defined, depending on the context,
as in (2.9) or (2.10). The matrix of this system is

K3,reg =

H + ρI −JT −I
−J −δI 0
−Z 0 −X

 .

Using Gaussian elimination, we can eliminate ∆z, resulting in the system(
H +X−1Z + ρI −JT

−J −δI

)(
∆x
∆y

)
=

(
rd −X−1rc

rp

)
.

Then ∆z can be recovered by computing ∆z = −X−1(rc + Z∆x). The
matrix from this system is

K2,reg =

(
H +X−1Z + ρI −JT

−J −δI

)
.

One more step of Gaussian elimination can be performed to eliminate
∆x, resulting in the system(

J(H +X−1Z + ρI)−1JT + δI
)

∆y

=
(
−J(H +X−1Z + ρI)−1(rd −X−1rc)− rp

)
.

The remaining variables can be recovered via ∆z = −X−1(rc + Z∆x) and
∆x = (H + X−1Z + ρI)−1(JT∆y + rd − X−1rc). The matrix from this
system is

K1,reg =
(
J(H +X−1Z + ρI)−1JT + δI

)
.
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4.1. Normal equations

4.1 Normal equations

We first consider the matrix K1,reg, the regularized analogue to K1.

4.1.1 Nonsingularity

First we observe the conditions for nonsingularity of K1,reg, both during the
iterations and in the limit.

Theorem 4.1. For δ > 0, the matrix K1,reg is unconditionally positive
definite during the iterations.

Proof. Since x is strictly positive during the iterations, H + X−1Z + ρI is
positive definite, and J(H+X−1Z+ρI)−1JT is positive semidefinite. Thus
for δ > 0, K1,reg is positive definite.

Theorem 4.2. For δ, ρ > 0, the matrix K1,reg is positive definite at the
limit of the iteration if and only if x > 0.

Proof. If any element of x = 0, then the matrix X is singular and K1,reg is
as well. Thus x > 0 is necessary.

Assume x > 0. Then by complementarity, z = 0, and thus X−1Z = 0.
Then H+X−1Z+ρI = H+ρI is positive definite, and thus K1,reg is positive
definite.

Comparing to the unregularized case, we note that during the iterations,
J is no longer required to be full rank, and in the limit the requirements of
H positive definite and J full rank are not needed.

4.1.2 Inertia

Given the conditions for nonsingularity as listed in the previous section, the
inertia of K1,reg is always (m, 0, 0). Both K1,reg and K1 are thus strictly
positive definite, but under weaker assumptions for K1,reg.

4.1.3 Eigenvalue bounds

Bounds on the eigenvalues of K1,reg can be easily found.

Theorem 4.3. The eigenvalues of K1,reg are bounded in the interval[
σ2
m

λmax(H +X−1Z + ρI)
+ δ,

σ2
1

λmin(H +X−1Z + ρI)
+ δ

]
.

45



4.1. Normal equations

Proof. The eigenvalue equation for K1,reg is(
J(H +X−1Z + ρI)−1JT + δI

)
v = θv,

and multiplying by vT gives

vT
(
J(H +X−1Z + ρI)−1JT + δI

)
v = θ‖v‖2. (4.3)

First to find the upper bound, we can bound by the largest eigenvalue of
(H +X−1Z + ρI)−1 as follows

λmax((H +X−1Z + ρI)−1)‖JT v‖2 + δ‖v‖2 ≥ θ‖v‖2.

Now using (3.4) and the properties on the eigenvalues of an inverse of a
matrix, we have(

σ2
1

λmin(H +X−1Z + ρI)
+ δI

)
‖v‖2 ≥ θ‖v‖2.

If v = 0, then it is trivial and thus not an eigenvector. We may then divide
by ‖v‖2 to get the upper bound.

To find the lower bound, we start from (4.3). Bounding by the smallest
eigenvalue of (H +X−1Z + ρI)−1 gives

λmin((H +X−1Z + ρI)−1)‖JT v‖2 + δ‖v‖2 ≤ θ‖v‖2.

Using (3.4) and the properties on the eigenvalues of an inverse of a matrix,
we have (

σ2
m

λmax(H +X−1Z + ρI)
+ δ

)
‖v‖2 ≤ θ‖v‖2,

and dividing by ‖v‖2 gives the bound.

4.1.4 Condition numbers

We use the eigenvalue bounds from the previous section to find a bound on
the condition number of K1,reg

Theorem 4.4. The condition number of K1,reg is bounded by

κ(K1,reg) ≤ σ2
1 + δλmin(H +X−1Z + ρI)

σ2
m + δλmax(H +X−1Z + ρI)

κ(H +X−1Z + ρI).
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4.2. Saddle-point form

Proof. Using the eigenvalue bounds and the definition of condition number,
we find

κ(K1,reg) ≤

(
σ2

1
λmin(H+X−1Z+ρI)

+ δ
)

(
σ2
m

λmax(H+X−1Z+ρI)
+ δ
) ,

=
λmax(H +X−1Z + ρI)

(
σ2

1 + δλmin(H +X−1Z + ρI)
)

λmin(H +X−1Z + ρI) (σ2
m + δλmax(H +X−1Z + ρI))

,

=
σ2

1 + δλmin(H +X−1Z + ρI)

σ2
m + δλmax(H +X−1Z + ρI)

κ(H +X−1Z + ρI).

From this condition number bound, it it easy to see that if both ρ and δ
are positive, the condition number is strictly smaller than the unregularized
matrix. In the case that the extremal eigenvalues of H + X−1Z can be
approximated by (3.6), the eigenvalues of K1,reg are asymptotically bounded
by

δ . θ . 1/ρ.

Then we can find the following asymptotic condition number

κ(K1,reg) .
1

ρδ
. (4.4)

In practice, ρ and δ are allowed to take values as small as
√
εmach. In

this case, there is a definite disadvantage to using the normal equations
formulation since the condition number likely exceeds the inverse of machine
precision early. Indeed, the implementation of [20] initializes ρ = δ = 1
and divides both parameters by 10 at each iteration. In double precision,
after just 8 iterations, the smallest allowed value of 10−8 is reached but the
procedure typically has not yet converged.

4.2 Saddle-point form

We now consider spectral properties of K2,reg.

4.2.1 Nonsingularity

Using existing analysis for saddle-point matrices, we find conditions for non-
singularity of K2,reg.

Theorem 4.5. For δ > 0, the matrix K2,reg is unconditionally nonsingular
during the iterations.
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4.2. Saddle-point form

Proof. Since x is strictly positive during the iterations, H + X−1Z + ρI is
positive definite. Thus for δ > 0, nonsingularity follows directly from [4,
Theorem 3.1].

Theorem 4.6. For δ, ρ > 0, the matrix K2,reg is nonsingular at the limit
of the iteration if and only if x > 0.

Proof. If any element of x = 0, then the matrix X is singular and K2,reg is
as well. Thus x > 0 is necessary.

Assume x > 0. Then by complementarity, z = 0, and thus X−1Z = 0.
Then H+X−1Z+ρI = H+ρI is positive definite, and again, nonsingularity
follows directly from [4, Theorem 3.1].

As in the case of the normal equations, nonsingularity requires fewer
assumptions than in the unregularized case.

4.2.2 Inertia

Assuming the conditions for nonsingularity given previously, the inertia of
K2,reg is (n,m, 0). This result can also be found in [20].

4.2.3 Eigenvalue bounds

Eigenvalue bounds for K2,reg are given in [20, Theorem 5.1] following results
of [46] and [47].

Theorem 4.7 ([20]). The eigenvalues of K2,reg are bounded by the following:

θ ≥ 1

2

(
λmin(H +X−1Z + ρI)− δ

−
√

(λmin(H +X−1Z + ρI) + δ)2 + 4σ2
1

)
,

θ ≤ 1

2

(
λmax(H +X−1Z + ρI)− δ

−
√

(λmax(H +X−1Z + ρI) + δ)2 + 4σ2
m

)
,
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4.2. Saddle-point form

for negative eigenvalues θ, and

θ ≥ λmin(H +X−1Z + ρI),

θ ≤ 1

2

(
λmax(H +X−1Z + ρI)− δ

+
√

(λmax(H +X−1Z + ρI) + δ)2 + 4σ2
1

)
,

for positive eigenvalues. Additionally, −δ is an eigenvalue of K2,reg if and
only if J is rank deficient.

Remark. Using a Taylor expansion on the upper negative bound gives

θ ≤ 1

2

(
λmax(H +X−1Z + ρI)− δ

−
√

(λmax(H +X−1Z + ρI) + δ)2 + 4σ2
m

)
,

≈ 1

2

(
λmax(H +X−1Z + ρI)− δ

− (λmax(H +X−1Z + ρI) + δ)

(
1 +

2σ2
m

(λmax(H +X−1Z + ρI) + δ)2

))
,

= −δ − 2σ2
m

(λmax(H +X−1Z + ρI) + δ)
,

≤ −δ,

thus all negative eigenvalues are bounded above by −δ.
The upper negative bound of approximately −δ is the only place in

which the bounds of the regularized version differ substantially from the
unregularized. This will play a role in the conditioning of the matrix, seen
next.

4.2.4 Condition numbers

Using the bounds from the previous section, we can find an asymptotic
bound on the condition number.

Theorem 4.8. The condition number of K2,reg is bounded asymptotically
by

κ(K2,reg) .
1

µmin(ρ, δ)
.
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4.3. Unreduced 3-by-3 form

Proof. Using the situation where the extremal eigenvalues of H+X−1Z are
approximated by (3.6), we obtain the asymptotic estimates

ρ . θ . λmax(H +X−1Z + ρI) ≈ 1/µ

for the positive eigenvalues, and

−1 . θ . −δ

for the negative eigenvalues. Using these asymptotic bounds on the eigen-
values gives the condition number.

As in the unregularized case, the lower negative bound is finite, and
thus the remaining three bounds are responsible for the condition number.
The limits of machine precision, given the common bounds on δ and ρ, are
not achieved until µ reaches

√
εmach, which typically occurs in the last few

iterations.

4.3 Unreduced 3-by-3 form

We now turn to K3,reg, providing new results on the spectral properties.

4.3.1 Nonsingularity

We start by stating necessary and sufficient conditions for nonsingularity
during the iterations.

Lemma 4.9. For δ > 0, the matrix K3,reg given is nonsingular throughout
the interior-point iterations.

Proof. Looking at the systemH + ρI JT −I
J −δI 0
−Z 0 −X

uv
w

 =

0
0
0

 , (4.5)

we attempt to find a nontrivial solution, that is, a nonzero element (u, v, w)
in the nullspace of K3,reg. From the third block row, we have w = −X−1Zu.
Taking the inner product of the first block row with u and substituting for
w yields

uT (H + ρI +X−1Z)u+ (Ju)T v = 0,
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Using using v = 1
δJu from the second block row, this simplifies to

uT
(

(H + ρI +X−1Z) +
1

δ
JTJ

)
u = 0.

Since X and Z are diagonal and positive definite, and the remaining matrices
are positive semidefinite, the matrix associated with the above equation is
positive definite for any ρ ≥ 0. Therefore, the only solution is u = 0, which
implies v = 0 and w = 0.

Lemma 4.10. For δ = 0, the matrix K3,reg is nonsingular throughout the
interior-point iterations if and only if J has full rank.

Proof. Assume that (u, v, w) lies in the nullspace of K3,reg. The only differ-
ence with the proof of Lemma 4.9 is that Ju = 0. Following the same steps,
we obtain

uT
(
H + ρI +X−1Z

)
u = 0.

Again, the matrix is positive definite, giving u = 0 as the only solution, and
this implies that w = 0. The first block row leaves us with JT v = 0, which
implies v = 0 if J has full rank. Therefore the full rank condition for J is a
sufficient condition for nonsingularity of K3,reg.

If J does not have full row rank, then (u, v, w) with v ∈ Null(JT ), v 6= 0,
u = 0, w = 0 is a nontrivial nullspace vector. Therefore the full-rank
condition on J is both necessary and sufficient.

We collect Lemmas 4.9 and 4.10 into a unified theorem.

Theorem 4.11. Let ρ ≥ 0. The matrix K3,reg is nonsingular throughout
the interior-point iterations if and only if either δ > 0, or δ = 0 and J has
full rank.

We now consider what happens to K3,reg in the limit of the interior-point
iteration. If (x, y, z) is not strictly complementary, there is a zero row in the
third block row of (4.5) and K3,reg is singular. Thus strict complementarity
is necessary for nonsingularity in each case. The proof of each lemma in this
section attempts to find a nontrivial nullspace element of K3,reg.

Lemma 4.12. For ρ > 0 and δ > 0, K3,reg is nonsingular at the limit of
the interior-point iteration if and only if (x, y, z) is strictly complementary.

Proof. Since zI = 0 at the solution, the third block row of (4.5) and strict
complementarity yield uA = 0 and wI = 0, and therefore, uTw = 0. We
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take the inner product of the first block row with u, substitute v = 1
δJu

from the second block row and use uTw = 0 to get

uT
(
H + ρI +

1

δ
JTJ

)
u = 0.

Since ρ > 0, the coefficient matrix is positive definite. Therefore, u = 0. It
follows that v = 0, and the first block row leaves w = 0. Therefore K3,reg is
nonsingular, and strict complementarity is sufficient.

Lemma 4.13. For ρ > 0 and δ = 0, K3,reg is nonsingular at the limit
of the interior-point iteration if and only if the solution (x, y, z) is strictly
complementary and the LICQ is satisfied.

Proof. The only difference with the proof of Lemma 4.12 is that Ju = 0.
Following the same steps, we obtain uT (H+ρI)u = 0. SinceH+ρI is positive
definite, the only solution is u = 0. Examining the remaining equations, we
have (

JT −IA
)( v

wA

)
= 0,

which has only the trivial solution (v, wA) = (0, 0) if and only if the LICQ
holds. Thus these two conditions together are sufficient, and the LICQ is
necessary, completing the proof.

Lemma 4.14. For ρ = 0 and δ > 0, K3,reg is nonsingular at the limit of
the interior-point iteration if and only if Null(H)∩Null(J)∩Null(Z) = {0}
and the solution (x, y, z) is strictly complementary.

Proof. Following again the same steps as in the proofs of the previous two
lemmas, taking an inner product with u, we obtain this time

uT
(
H +

1

δ
JTJ

)
u = 0.

The coefficient matrix above is positive semidefinite, and thus we must have
u ∈ Null(H) ∩ Null(J). Since uA = 0, we also have u ∈ Null(Z). Thus
u = 0 if Null(H) ∩ Null(J) ∩ Null(Z) = {0}, and the second block row
gives v = 0. The first block row leaves w = 0, so the only solution is the
trivial solution. Thus Null(H)∩Null(J)∩Null(Z) = {0} together with strict
complementarity are sufficient for nonsingularity of K3,reg.

Assume now that Null(H)∩Null(J)∩Null(Z) 6= {0}, then for any nonzero
u ∈ Null(H)∩Null(J)∩Null(Z), we have a nontrivial nullspace vector of the
form (u, 0, 0). Therefore the condition is both necessary and sufficient.
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Lemmas 4.12, 4.13, and 4.14 are all summarized in the following theorem.
Also included in the theorem is the unregularized case, δ = ρ = 0, which is
covered in Theorem 3.15.

Theorem 4.15. Necessary and sufficient conditions for the matrix K3,reg to
be nonsingular at the limit of the interior-point iteration are that the solution
(x, y, z) be strictly complementary, Null(H) ∩ Null(J) ∩ Null(Z) 6= {0} if
ρ = 0, and the LICQ be satisfied if δ = 0.

Table 4.1 summarizes all conditions both during the iterations and at
the limit covered here and in Chapter 3. We note that regularization with
positive ρ and δ gives nonsingularity with no further requirements during
the iterations, and that it removes all but the requirement of strict comple-
mentarity for nonsingularity in the limit.

Table 4.1: A summary of the necessary and sufficient conditions on nonsin-
gularity throughout the interior-point iterations and at the limit.

ρ > 0 ρ = 0

δ > 0
IP iteration: unconditional
nonsingularity (Lemma 4.9)

IP iteration: unconditional
nonsingularity (Lemma 4.9)

at limit: (x, y, z) is strictly
complementary (Lemma 4.12)

at limit: Null(H) ∩ Null(J) ∩
Null(Z) = {0}, (x, y, z)
is strictly complementary
(Lemma 4.14)

δ = 0
IP iteration: J has full rank
(Lemma 4.10)

IP iteration: J has full rank
(Theorem 3.14 and Lemma
4.10)

at limit: (x, y, z) is strictly
complementary, and the
LICQ (Lemma 4.13)

at limit: Null(H) ∩ Null(J) ∩
Null(Z) = {0}, (x, y, z) is
strictly complementary, and
the LICQ (Theorem 3.15)

4.3.2 Inertia

We again require a symmetric matrix to ensure real eigenvalues. The matrix
K3,reg is symmetrizable with the diagonal matrix D used earlier in (3.10),
generating the symmetric matrix K̂3,reg. This allows us to consider bounds
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in real arithmetic for the latter, which will then also apply to the matrix
K3,reg. The matrix K̂3,reg is given byH + ρI JT −Z

1
2

J −δI 0

−Z
1
2 0 −X


We find results for the inertia of K̂3,reg, showing that it is the same as

in the unregularized case both during the iterations and in the limit.

Theorem 4.16. For ρ ≥ 0, δ > 0, assume H+ρI is positive definite. Then
the inertia of K̂3,reg during the iterations is (n, n+m, 0).

Proof. Defining the matrix M as follows

M =

 I 0 0
A I 0
B 0 I

 ,

with A := −J(H+ρI)−1 and B := Z
1
2 (H+ρI)−1, we can decompose K̂3,reg

as

MT K̂3,regM =

H + ρI 0 0
0 U 0
0 0 W

 (4.6)

where U := −δI−J(H+ρI)−1JT and W := −X−Z
1
2 (H+ρI)−1Z

1
2 . Since

H + ρI is positive definite and U and W are negative definite, the inertia of
K̂3,reg is (n, n+m, 0).

Theorem 4.17. For ρ ≥ 0, δ > 0, assume H + ρI is positive definite
and (x, y, z) is a solution of (4.1) and (4.2) where strict complementarity is
satisfied. Then the inertia of K̂3,reg is (n, n+m, 0).

Proof. Following the proof of Theorem 4.16, the relation (4.6) holds. By
Lemma 4.12, K̂3,reg is nonsingular, and therefore since M is nonsingular,
the block diagonal matrix in (4.6) is nonsingular as well. Then H + ρI is
positive definite and U and W are negative definite, and the inertia of K̂3,reg

is (n, n+m, 0).

Finally, we can also consider the case where δ > 0, but require only
nonnegativity of ρ.

Theorem 4.18. For δ > 0 and ρ ≥ 0, the inertia of K̂3,reg during the
iterations is (n, n+m, 0).
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Proof. We can decompose K̂3,reg asI −1
δJ

T X−1Z
1
2

I
I

A −δI
−X

 I
−1
δJ I

X−1Z
1
2 I

 ,

where A := H + ρI + 1
δJ

TJ +X−1Z, which is positive definite. The result
follows.

We do not include a similar result for the limit; our goal is to present
the regularization with strictly positive parameters as ideal. We add that
the inertia results also hold in the case where δ = 0, which follows from the
unregularized results.

4.3.3 Eigenvalue bounds

The eigenvalue problem for K̂3,reg isH + ρI JT −Z
1
2

J −δI 0

−Z
1
2 0 −X


uv
w

 = θ

uv
w

 . (4.7)

Our first result provides bounds on the positive eigenvalues of K̂3,reg.

Theorem 4.19. The positive eigenvalues of the matrix K̂3,reg are bounded
in

[ξ, η] ,

where

ξ = min
j

1

2

(
λn + ρ− xj +

√
(λn + ρ+ xj)2 + 4zj

)
and η is the largest root of the cubic equation

θ3 + (δ − (λ1 + ρ))θ2 − (δ(λ1 + ρ) + σ2
1 + zmax)θ − zmaxδ = 0.

We can also find a simplified uniform lower bound which is more easily
computed.

Corollary 4.20. A uniform lower bound for the positive eigenvalues of
K̂3,reg is given by

ξ0 = λn + ρ.
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Proof. As before, we separate the discussion into the upper bound and lower
bound cases.

Beginning with the upper bound, we solve for w in the third block row of
(4.7) to get w = −(θI +X)−1Z

1
2u, which we substitute into the first block

row to obtain

(H + ρI)u+ JT v + Z
1
2 (θI +X)−1Z

1
2u = θu.

Taking the inner product with u and noting that the matrices Z
1
2 and (θI+

X)−1 are diagonal and therefore commute gives the following equation for
θ:

uT (H + ρI)u+ uTJT v + uT (θI +X)−1Zu = θ‖u‖2. (4.8)

Solving for v in the second block row of (4.7) gives v = 1
θ+δJu, which we

substitute into (4.8) to get

uT (H + ρI)u+
1

θ + δ
‖Ju‖2 + uT (θI +X)−1Zu = θ‖u‖2. (4.9)

We use (3.2) and (3.3) to bound the first and second terms in (4.9):

(λ1 + ρ)‖u‖2 +
σ2

1

θ + δ
‖u‖2 + uT (θI +X)−1Zu ≥ θ‖u‖2.

Since the matrix (θI + X)−1Z is diagonal, we bound by the maximum of
the diagonal elements

uT (θI +X)−1Zu ≤ max
i

zi
θ + xi

‖u‖2.

As in the proof of Theorem 3.19, we can bound the maximum term above
by zmax

θ . We now have(
λ1 + ρ+

σ2
1

θ + δ
+
zmax

θ

)
‖u‖2 ≥ θ‖u‖2. (4.10)

Multiplying by (θ + δ)θ and rearranging gives(
θ3 + (δ − (λ1 + ρ)) θ2 −

(
δ(λ1 + ρ) + σ2

1 + zmax

)
θ − zmaxδ

)
‖u‖2 ≤ 0.

We must have u 6= 0, since if u = 0 then the second block row of (4.7) implies
that (θ + δ)v = 0. Since K̂3,reg is nonsingular, θ > 0 and thus θ + δ > 0,

implying that v = 0. Then, by the first block row, Z
1
2w = 0 would imply
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w = 0, which must not occur since the eigenvector must be nontrivial. We
can thus divide by ‖u‖2 and bound by the largest real root of

θ3 + (δ − (λ1 + ρ)) θ2 −
(
δ(λ1 + ρ) + σ2

1 + zmax

)
θ − zmaxδ = 0,

yielding an upper bound. Note that there is exactly one positive real root,
since the values of the cubic and its derivative are negative at zero.

For the lower bound, taking the inner product of v with the second block
row of (4.7) and rearranging, we have

vTJu ≡ uTJT v = (θ + δ)‖v‖2,

which we substitute into (4.8) to give

uT (H + ρI)u+ (θ + δ)‖v‖2 + uT (θI +X)−1Zu = θ‖u‖2.

Using (3.2), we have

(λn + ρ)‖u‖2 + (θ + δ)‖v‖2 + uT (θI +X)−1Zu ≤ θ‖u‖2.

Bounding the last term on the left with a minimum, this becomes

(λn + ρ)‖u‖2 + (θ + δ)‖v‖2 + min
i

zi
θ + xi

‖u‖2 ≤ θ‖u‖2. (4.11)

This minimum will occur for some index j, and we then multiply by θ + xj
and rearrange into

(θ2 + (xj − λn − ρ)θ − (xj(λn + ρ) + zj))‖u‖2 ≥ (θ + δ)‖v‖2 ≥ 0.

Since again u 6= 0, we then bound by the positive root of the quadratic.
Taking the minimum over all j gives the bound.

Now, a uniform lower bound as given in the corollary can be found by
taking zero as a lower bound for the mini

zi
θ+xi

term in (4.11), giving

(λn + ρ)‖u‖2 + (θ + δ)‖v‖2 ≤ θ‖u‖2,

which after rearranging is

(θ − λn − ρ)‖u‖2 ≥ (θ + δ)‖v‖2 ≥ 0.

Thus an alternative lower bound is θ ≥ λn + ρ.

We begin our investigation of negative eigenvalues with an upper bound,
which turns out to depend on the scaling of the problem.
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Lemma 4.21. Let ρ ≥ 0 and δ > 0. Suppose that xi > δ for i = 1, . . . , n.
Then the negative eigenvalues of K̂3,reg are bounded above by −δ, and θ = −δ
is an eigenvalue if and only if J is rank deficient.

Proof. First we will show the bound. Assume by contradiction that there
is a negative eigenvalue that satisfies θ > −δ. Upon extracting v = 1

θ+δJu

from the second block row and using the identity wTZ
1
2u = −wT (θI +X)w

from the third block row, taking the inner product of the first block row
with u gives

uT (H + ρI)u+ 1
θ+δ‖Ju‖

2 + wT (θI +X)w = θ‖u‖2.

Since θ + δ > 0 by assumption and all xi > δ > −θ, the left-hand side
of the last identity is positive. If u = 0, then both v and w are also zero,
giving a trivial eigenvector and therefore a contradiction. If u 6= 0, θ must
be positive, which contradicts our initial assumption on the sign of θ. Thus
the negative eigenvalues are bounded above by −δ.

Suppose J is rank deficient. Then u = 0, v ∈ Null(JT ), v 6= 0 and w = 0
satisfies (4.7) with θ = −δ.

Suppose now that J has full rank and show that θ 6= −δ. By contradic-
tion, assume that θ = −δ. From the third block row and the assumption
that all xi > δ, we have

wTZ
1
2u = wT (δI −X)w ≤ 0.

Taking the inner product of the first block row of (4.7) with u and using the
above inequality and Ju = 0 from the second block row, we obtain

−δ‖u‖2 = uT (H + ρI)u− uTZ
1
2w ≥ 0.

Since δ > 0, this must mean that u = 0. The third block row then gives
w = 0 and we are left with JT v = 0 in the first block row. Since J has
full row rank, we conclude that v = 0 and that θ = −δ cannot be an
eigenvalue.

Interestingly, a similar result holds in the limit. Note however that there
seems to be a transition zone between the moment where some components
of x drop below δ and the limit when strict complementarity applies. This
“grey zone” is necessarily attained if A 6= ∅, and it is more difficult to
characterize the relationship between θ and −δ in that zone.
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Lemma 4.22. Let ρ > 0 and δ > 0. Suppose that in the limit of the
interior-point iterations, (x, y, z) is strictly complementary, xi > δ for all
i ∈ I, and maxi

√
zi is sufficiently small. Then the negative eigenvalues of

K̂3,reg are bounded above by −δ, and θ = −δ is an eigenvalue if and only if
J is rank deficient.

Proof. We will first show the bound. Assume by contradiction that there
exists a negative eigenvalue that satisfies θ > −δ. Since K̂3,reg is nonsingu-
lar, there must exist ε > 0 such that θ ≤ −ε for all negative eigenvalues. If
δ ≤ ε, −ε ≤ −δ and the eigenvalues are bounded above by −δ, a contradic-
tion. Thus we can consider only the case where ε < δ. Suppose then that
maxi

√
zi < ε. In the limit, we have xA = 0, xI > 0 and zI = 0. Because

strict complementarity is satisfied, we must also have zA > 0. Partitioning
the third block row of K̂3,reg in (4.7) into active and inactive components
gives

−Z
1
2
AAuA = θwA, (4.12)

−XIIwI = θwI . (4.13)

We may rewrite (4.13) as (XII + θI)wI = 0, which implies wI = 0 because
xi + θ > xi − δ > 0 for all i ∈ I by assumption. Taking the inner product
of both sides of (4.12) with wA gives

− wTAZ
1
2
AAuA = θ‖wA‖2. (4.14)

Taking now the inner product of the first block row of (4.7) with u, the
inner product of the second block row with v and combining, we may write

θ‖uI‖2 = uT (H + ρI)u+ (θ + δ)‖v‖2 + θ(‖wA‖2 − ‖uA‖2), (4.15)

where we used the decomposition ‖u‖2 = ‖uA‖2 + ‖uI‖2 and (4.14). Note
that from (4.12), uA = 0 if and only if wA = 0. If both vanish, necessarily
uI 6= 0, and then the right hand side of (4.15) is strictly positive. This
implies that θ > 0, a contradiction. Suppose now that uA 6= 0 and wA 6= 0.

Rearranging (4.12) we find that wA = −1
θZ

1
2
AAuA, and using the upper

bounds maxi
√
zi < ε and θ ≤ −ε we have ‖wA‖2 ≤ ε2

θ2 ‖uA‖2 ≤ ‖uA‖2.
Substituting into (4.15) gives

θ‖uI‖2 ≥ uT (H + ρI)u+ (θ + δ)‖v‖2.

Then the right hand side is strictly positive, and if uI 6= 0, θ > 0, a con-
tradiction. If uI = 0, then uA = 0, again a contradiction. Therefore, we
cannot have θ > −δ, and we conclude that θ ≤ −δ.
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Suppose J is rank deficient. As in Lemma 4.21, (0, v, 0) with v ∈
Null(JT ), v 6= 0 is an eigenvector for θ = −δ.

Now assume that J has full rank, and assume by contradiction that
θ = −δ. Partitioning as above gives

Z
1
2
AAuA = δwA (4.16)

XIIwI = δwI . (4.17)

Rearranging (4.17), the matrix (XII − δI) has full rank by assumption, so
we have wI = 0. If u = 0 we also have wA = 0 and there only remains
JT v = 0 in the first block row of (4.7), giving the trivial eigenvector and
a contradiction. Thus u 6= 0. Taking the inner product of (4.16) with wA
reveals that

wTZ
1
2u = wTAZ

1
2
AAuA = δ‖wA‖2. (4.18)

Using the Cauchy–Schwarz inequality and the bound on maxi
√
zi, we have

wTAZ
1
2
AAuA ≤ ε‖wA‖‖uA‖,

and using (4.18) and rearranging gives

‖wA‖ ≤
ε

δ
‖uA‖ ≤ ‖uA‖ ≤ ‖u‖ (4.19)

since ε < δ. Taking the inner product of the first block row with u, using
(4.18) and Ju = 0 from the second block row, and rearranging, we have

uT (H + ρI)u = δ(‖wA‖2 − ‖u‖2),

which reduces to uT (H + ρI)u ≤ 0 by (4.19). Therefore u = 0, a contradic-
tion, and θ 6= −δ when J is full rank.

Remark. By scaling the optimization problem prior to solving, it is always
possible to arrange so that the assumption on scaling of xi and zi are always
satisfied. These results hold trivially when δ = 0.

Next, we derive a lower bound on the negative eigenvalues.

Theorem 4.23. Assume θI + X is nonsingular for all θ throughout the
computation. Then the negative eigenvalues θ of the matrix K̂3,reg satisfy

θ ≥ ζ,
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where

ζ := min

{
1

2

(
λn + ρ− δ −

√
(λn + ρ+ δ)2 + 4σ2

1

)
, min
j|θ+xj<0

θ∗j

}
,

and θ∗j is the smallest negative root of the cubic equation

θ3 + (xj + δ − λn − ρ) θ2 +
(
δxj − δ(λn + ρ)− xj(λn + ρ)− σ2

1 − zj
)
θ

−
(
δxj(λn + ρ) + σ2

1xj + zjδ
)

= 0.

Proof. We assume that θ+δ < 0. The case where θ ≥ −δ poses no difficulty
here since it can be easily verified that ζ ≤ −δ.

We start from (4.9) with the bounds in (3.2) and (3.3) to get

(λn + ρ)‖u‖2 +
1

θ + δ
σ2

1‖u‖2 + uT (θI +X)−1Zu ≤ θ‖u‖2.

Bounding the remaining term of the previous inequality by the minimum,
we obtain (

λn + ρ+
1

θ + δ
σ2

1 + min
i

zi
θ + xi

)
‖u‖2 ≤ θ‖u‖2. (4.20)

We consider two cases. In case one, θ + xi > 0 for all indices i, and in this
case we can bound the minimum term from below by zero. In case two,
some θ + xi < 0, and there exists an index j such that mini

zi
θ+xi

=
zj

θ+xj
.

In case one, we bound the minimum term in (4.20) below by zero, giving(
λn + ρ+

1

θ + δ
σ2

1

)
‖u‖2 ≤ θ‖u‖2, (4.21)

which we can multiply by (θ + δ) and rearrange to give(
θ2 + (δ − λn − ρ)θ − (δ(λn + ρ) + σ2

1)
)
‖u‖2 ≤ 0.

We must have u 6= 0, since if u = 0 the second line of (3.12) implies (θ+δ)v =

0, implying that v = 0. The first line yields Z
1
2w = 0 and thus w = 0, a

contradiction. Thus we can divide by ‖u‖2 and bound by the negative root
of the quadratic, giving

θ ≥ 1

2

(
λn + ρ− δ −

√
(λn + ρ+ δ)2 + 4(σ2

1)

)
.
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In case 2, we use the index j for the minimum in (4.20) to get(
λn + ρ+

1

θ + δ
σ2

1 +
zj

θ + xj

)
‖u‖2 ≤ θ‖u‖2. (4.22)

Multiplying by (θ + δ)(θ + xj) and rearranging, we get(
θ3 + (xj + δ − λn − ρ)θ2 + (δxj − δ(λn + ρ)− xj(λn + ρ)− σ2

1 − zj)θ
− (δxj(λn + ρ) + σ2

1xj + zjδ)
)
‖u‖2 ≥ 0.

We note that again u 6= 0, so we can divide by ‖u‖2 and define θ∗j to be the
smallest root of the cubic

θ3 + (xj + δ − λn − ρ) θ2 +
(
δxj − δ(λn + ρ)− xj(λn + ρ)− σ2

1 − zj
)
θ

−
(
δxj(λn + ρ) + σ2

1xj + zjδ
)

= 0.

Then the bound is given by the minimum of these possible bounds from
cases one and two.

We can compare the bounds of the regularized and unregularized 3-by-
3 systems using asymptotic techniques. For the upper positive bound, we
begin with (4.10) and set ε = δ/θ to get(

λ1 + ρ+
1

θ(1 + ε)
σ2

1 +
zmax

θ

)
‖u‖2 ≥ θ‖u‖2.

Using 1
1+ε ≈ 1− ε for small ε and dividing by ‖u‖2 gives

λ1 + ρ+
1

θ
σ2

1(1− ε) +
zmax

θ
≥ θ,

which after multiplying by θ and rearranging becomes

θ2 − (λ1 + ρ)θ − (σ2
1(1− ε) + zmax) ≤ 0.

This yields the bound

θ ≤ 1

2

(
λ1 + ρ+

√
(λ1 + ρ)2 + 4(σ2

1(1− ε) + zmax)

)
. (4.23)

By comparing with the unregularized bound given in Theorem 3.19, we can
see that the regularization with ρ is approximately a shift of this bound
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away from zero by ρ, and that the regularization with δ gives a small con-
traction of the bound. Comparing the lower positive bounds, we see that
the regularization with ρ results in a shift away from zero by approximately
ρ. In total, the positive spectral interval is additively shifted away from zero
by approximately ρ, and contracted by a factor related to δ.

For the upper negative bound, we note that given the scaling assumptions
in Lemmas 4.21 and 4.22, these show that the effect of regularization is to
buffer the eigenvalues away from zero by δ. For the lower negative bound,
we consider each of the two cases. For case one we begin from (4.21), divide
by ‖u‖2 and use the same asymptotic argument as above to get

λn + ρ+
1

θ
σ2

1(1− ε) ≤ θ.

Multiplying by θ and rearranging gives

θ2 − (λn + ρ)θ − σ2
1(1− ε) ≤ 0,

leading to the bound

θ ≥ 1

2

(
λn + ρ−

√
(λn + ρ)2 + 4σ2

1(1− ε)
)
.

Comparing this to the bound given in Theorem 3.21, we see that ρ has no
significant effect, while the effect of δ is to bring the bound closer to zero.
For case two, we begin from (4.22), which we divide by ‖u‖2 and use the
same asymptotic argument as above to get

λn + ρ+ σ2
1(1− ε) +

zj
θ + xj

≤ θ.

Multiplying by θ + xj , which is negative, and collecting we get

θ3 + (xj − λn − ρ)θ2 − (σ2
1(1− ε) + zj + xj(λn + ρ))θ − xjσ2

1(1− ε) ≥ 0.

We now separate the original equation giving the bound in Theorem 3.21
from the ρ and ε terms. The ρ terms are −θ2− xjθ = −θ(θ+ xj) and the ε
terms are σ2

1θ+σ2
1xj = σ2

1(θ+xj). Since θ+xj < 0, these are both negative,
so the cumulative effect is shift the cubic polynomial down. This will shift
the lower negative bound closer to zero. In total, there is no significant effect
from ρ, while δ both shifts the interval away from zero and contracts the
interval.
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4.3.4 Condition numbers

Unlike the situation for the unregularized 3-by-3 system, for the regularized
system we can find an asymptotic bound on the condition number.

Theorem 4.24. The condition number of K3,reg is bounded asymptotically
by

κ(K3,reg) .

{
1
δ , if λn > 0

1
min(ρ,δ) , if λn = 0.

Proof. We can obtain the following asymptotic estimates for the eigenvalues:

λn + ρ ≤ θ ≤ η . 1

for the positive eigenvalues, and

1 . ζ ≤ θ ≤ −δ

for the negative eigenvalues. Using these asymptotic bounds on the eigen-
values gives an asymptotic bound of 1

min(ρ+λn,δ)
, which further simplifies to

the given bounds.

This validates the claim that the unreduced system sees the best con-
ditioning. Under the usual choices of ρ and δ and unless the conditioning
of the problem is such that the constants hidden in the asymptotic bound
are very large, this condition number will remain within computing limits
through convergence of the iteration. Our numerical experiments, covered in
the next chapter, will verify that the unreduced matrices remain numerically
nonsingular throughout.
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Numerical experiments

We offer examples to validate the analysis of previous sections. The compu-
tations are done in Matlab. The code is a straightforward implementation
of Algorithm 2.1, with starting point computed via Algorithm 2.2. Matlab’s
built-in functions are used to compute singular values, eigenvalues, and con-
dition numbers, and we use the backslash operator to solve linear systems,
which implements an LU factorization and solves the system using it. The
code terminates when the difference between the primal and dual objective
functions, the duality gap, is below a tolerance of 10−8. The comparisons
between different formulations are both illustrating the differences in the
matrices themselves and the performance of the solver when using that for-
mulation. Plots of eigenvalues and condition numbers are versus iteration
number, and should be read left to right as progression of the interior point
solver. We use solid lines for eigenvalue bounds and dots for the actual
eigenvalues. Details of the problems we solve are given in Table 5.1. The
problems are small so that the exact eigenvalues can be calculated, but they
are representative.

Table 5.1: Properties of quadratic programs solved.

Problem Source n m LICQ?

1 TOMLAB 6 5 Yes

2 TOMLAB 5 3 Yes

3 TOMLAB 10 6 Yes

6 TOMLAB 10 7 Yes

8 TOMLAB 6 4 Yes

13 TOMLAB 7 5 Yes

17 TOMLAB 293 286 Yes

21 TOMLAB 51 27 No

22 TOMLAB 295 173 No

We first illustrate the eigenvalue bounds of Chapter 3. The problem
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we examine is a small quadratic program from the TOMLAB optimization
package [1], problem number 6. At the limit of the iterations, this problem
satisfies the LICQ, strict complementarity, and the non-intersection of the
nullspaces, and thus by Theorem 3.15 the 3-by-3 matrices will remain non-
singular in the limit. These favourable properties cause the inner eigenvalue
bounds to be pessimistic, since our bounds do not distinguish whether the
LICQ and non-intersection of the nullspaces hold.

First we consider the bounds on K1. Figure 5.1 shows the eigenvalues of
K1 in log scale. The eigenvalues remain within the bounds, and the largest
follow the upper bound, while the lower bound is pessimistic. The upper
bound is exponentially increasing as 1/µ, and the lower bound is decaying
like µ, which were the asymptotic bounds given in Chapter 3.

Figure 5.1: TOMLAB problem 6: eigenvalues of K1 in log scale.
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Now for K2, Figure 5.2 shows the positive and negative eigenvalues sep-
arately in log scale. These show similar trends as for K1: the upper positive
and lower negative bounds appear fairly tight, while the lower positive and
upper negative bounds are pessimistic. The upper positive bound increases
as 1/µ, while the lower positive and upper negative bounds decay like µ,
again following the asymptotic bounds given in Chapter 3. For both K1 and
K2, the exponential increase of the upper positive bound, with the eigenval-
ues achieving this bound, is the cause of the ill-conditioning of these matri-
ces. While the inner bounds decay towards zero, the eigenvalues themselves
remain well away from zero and do not contribute to the ill-conditioning.
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Figure 5.2: TOMLAB problem 6: eigenvalues of K2 in log scale.
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Figure 5.3 shows the eigenvalues of K3 in log scale. The upper positive
and lower negative bounds remain fixed with respect to µ, and these bounds
are relatively tight. While the upper negative bound is zero and the lower
positive bound decays like µ, these bounds do not reflect the eigenvalues
which are bounded away from zero on both the positive and negative side.
The conditioning of this matrix is thus better than that of K1 or K2: it is
fixed with respect to both the iteration number and µ. Figure 5.4 shows
the same thing for the symmetric K̂3, which has near identical behaviour to
that of its unsymmetric counterpart.

Figure 5.5 shows the condition numbers of the different formulations.
The 3-by-3 formulations are indeed well-conditioned throughout, while the
reduced forms have exponentially increasing condition numbers. Table 5.2
gives the duality gaps during the iterations, showing the progression of the
iterations. Note that the 3-by-3 formulations take fewer iterations, possibly
due to their better conditioning, though this needs further investigation and
remains an item for future work.

Next we illustrate the eigenvalue bounds of Chapter 4. We use the same
problem and regularize with ρ = δ = 1e−4. Figure 5.6 shows the eigenvalues
of K1,reg in log scale. We see that the upper and lower bounds are now fixed
with respect to µ after the initial iterations.
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Figure 5.3: TOMLAB problem 6: eigenvalues of K3 in log scale. Note that
the upper negative bound is zero and is not visible in this scale.
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Figure 5.4: TOMLAB problem 6: eigenvalues of K̂3 in log scale. Note that
the upper negative bound is zero and is not visible in this scale.
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Figure 5.5: TOMLAB problem 6: comparison of the condition numbers.
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Figure 5.6: TOMLAB problem 6: eigenvalues of K1,reg in log scale with
ρ = δ = 1e−4.
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Table 5.2: TOMLAB problem 6: progression of the interior-point solver.

k Duality gap

K3 solver K̂3 solver K2 solver K1 solver

0 5.031373e+04 5.031373e+04 5.031373e+04 5.031373e+04

1 1.490725e+04 1.490725e+04 1.490725e+04 2.671911e+04

2 5.199114e+04 5.199114e+04 2.783944e+04 1.239206e+04

3 2.079359e+03 2.079359e+03 3.336749e+04 −6.535199e+03

4 1.300615e+02 1.300615e+02 7.693309e+03 −3.759075e+02

5 6.930406e+00 6.930406e+00 1.623930e+02 −3.068804e+01

6 3.483175e−01 3.483175e−01 −1.709920e+02 −7.616401e−01

7 1.741601e−02 1.741601e−02 −4.382071e+00 −1.220000e−01

8 8.708002e−04 8.708002e−04 1.536128e+00 1.252850e−02

9 4.354001e−05 4.354001e−05 6.165176e−01 1.859958e−03

10 2.177003e−06 2.177003e−06 1.815162e−01 6.841660e−04

11 1.088520e−07 1.088520e−07 3.393544e−02 1.158979e−04

12 5.442416e−09 5.442416e−09 6.215981e−03 2.299556e−05

13 1.618046e−03 3.688372e−06

14 2.389091e−04 5.986658e−07

15 9.084266e−05 8.586721e−08

16 2.157252e−05 1.209264e−08

17 6.648293e−06 1.524313e−09

18 1.296226e−06

19 2.493653e−07

20 4.124377e−08

21 5.205948e−09
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Figure 5.7 shows the eigenvalues of K2,reg in log scale. While the inner
bounds are now well away from zero, the upper positive bound is still in-
creasing exponentially with 1/µ, and the eigenvalues have not substantially
changed.

Figure 5.7: TOMLAB problem 6: eigenvalues of K2,reg in log scale with
ρ = δ = 1e−4.
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Figure 5.8 shows the eigenvalues of K3,reg in log scale, and Figure 5.9
shows the same thing for K̂3,reg. The lower positive bound is now well
away from zero, as given in Theorem 4.19, and there is an upper negative
bound at −δ, as given in Lemma 4.21. While these bounds are helpful
for analytical purposes, the eigenvalues themselves have not substantially
changed from the unregularized case due to the favourable properties of this
problem. Table 5.3 gives the duality gaps during the iterations, showing
that the 3-by-3 forms take fewer iterations but with little difference to the
unregularized case.

Figure 5.10 shows the effect on the condition numbers of varying the
regularization parameters, again using the same problem. The 3-by-3 for-
mulations are unchanged over different choices of regularization parameters,
and referring back to Figure 5.5, the condition numbers are still unchanged.
The properties of this problem do not require regularization for the 3-by-3
formulations and accordingly, regularization has little effect on the matrix.
Referring back to Theorem 4.24, the upper bound on the condition num-
bers is O(1/min(ρ, δ)) when λn = 0, as it is here, but in this case this
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Figure 5.8: TOMLAB problem 6: eigenvalues of K3,reg in log scale with
ρ = δ = 1e−4.
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Figure 5.9: TOMLAB problem 6: eigenvalues of K̂3,reg in log scale with
ρ = δ = 1e−4.
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Table 5.3: TOMLAB problem 6: progression of the interior-point solver
regularized with ρ = δ = 1e−4.

k Duality gap

K3 solver K̂3 solver K2 solver K1 solver

0 5.031373e+04 5.031373e+04 5.031373e+04 5.031373e+04

1 1.492640e+04 1.492640e+04 1.492640e+04 2.673851e+04

2 5.159215e+04 5.159215e+04 2.746570e+04 1.239648e+04

3 2.051814e+03 2.051814e+03 3.295581e+04 −6.519909e+03

4 1.306938e+02 1.306938e+02 7.512121e+03 −3.701845e+02

5 6.966969e+00 6.966969e+00 1.848690e+02 −2.742238e+01

6 3.505399e−01 3.505399e−01 −1.716993e+02 −5.221952e−01

7 1.755095e−02 1.755095e−02 −4.548437e+00 −2.666012e−02

8 8.787479e−04 8.787479e−04 1.526718e+00 1.887891e−02

9 4.399788e−05 4.399788e−05 5.909084e−01 3.894197e−03

10 2.202938e−06 2.202938e−06 1.736246e−01 8.123547e−04

11 1.102999e−07 1.102999e−07 3.174431e−02 1.487522e−04

12 5.522452e−09 5.522452e−09 5.825992e−03 2.498628e−05

13 1.521274e−03 4.084137e−06

14 2.248358e−04 6.214614e−07

15 8.643147e−05 8.887218e−08

16 2.060630e−05 1.224180e−08

17 6.363942e−06 1.531589e−09

18 1.241999e−06

19 2.390589e−07

20 3.948298e−08

21 4.994945e−09
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bound is an overestimate since the condition numbers are fixed with respect
to the regularization parameters. The 2-by-2 saddle-point problem is also
unchanged over the different regularization parameters, but for a different
reason: the regularization cannot fix the conditioning of this formulation.
Looking at Theorems 3.13 and 4.8, we see that the condition number for
the unregularized matrix is O(µ−2), while for the regularized matrix it is
O(1/(µmin(ρ, δ)). However, the regularized case is as poor as the unregu-
larized, suggesting that at least the unregularized bound is an overestimate.
The 1-by-1 is interesting; the condition number increases to a certain point,
then levels off. The condition number is O(1/(ρδ)), given in (4.4), so us-
ing fixed regularization parameters has this effect. The approximate point
of levelling off appears to be closer to O(1/min(ρ, δ)), suggesting again an
overestimate of the asymptotic bound. Common practice is to decrease the
regularization parameters at each iteration, which would lead to the condi-
tion number of the 1-by-1 form continuing to increase instead of levelling
off. Overall, the condition numbers of the 3-by-3 formulations are small and
fixed both as the iteration progresses and for different choices of the parame-
ters, while the condition numbers of the 2-by-2 and 1-by-1 are exponentially
increasing and sensitive to choice of parameters respectively.

We now show an example which does not satisfy the LICQ, but which still
does have strict complementarity. Thus the requirements of Theorem 3.15
fail, but the requirements of Lemma 4.12 are satisfied and the 3-by-3 ma-
trices will be nonsingular when regularized. We use problem 21 from the
TOMLAB package, another small quadratic program. The inner eigenvalue
bounds are more representative of the actual eigenvalues for this problem
because the LICQ is not satisfied.

Figure 5.11 shows the eigenvalues of K1 in log scale. The eigenvalues
follow the trends of both bounds, the upper bound increasing as 1/µ and the
lower bound decaying as µ, though neither bound is quite tight. Contrast
this to the case for problem 6, where the eigenvalues only followed the upper
bound.

Figure 5.12 shows the eigenvalues of K2 in log scale. The upper positive
bound increases as 1/µ and is tight, and the lower positive and upper nega-
tive bounds decay as µ, with the eigenvalues following these trends. This is
in contrast to the case for problem 6, where the eigenvalues were well away
from zero on both the positive and negative sides.

Figure 5.13 shows the eigenvalues of K3 in log scale. The upper positive
and lower negative bounds are fixed and tight, while the lower positive bound
decays as µ and the upper negative bound is zero. We see for this problem
that the eigenvalues are also tending towards zero, in contrast to problem
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Figure 5.10: TOMLAB problem 6: comparing the condition numbers over
different regularization parameters.
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(a) ρ = δ = 1e−2
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(b) ρ = δ = 1e−4
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(c) ρ = δ = 1e−6
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(d) ρ = δ = 1e−8
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Figure 5.11: TOMLAB problem 21: eigenvalues of K1 in log scale.
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Figure 5.12: TOMLAB problem 21: eigenvalues of K2 in log scale.
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6. The cumulative effect is that K3 has better conditioning than K1 or K2

which have poor conditioning due to both the large and small eigenvalues,
though all matrices are numerically singular. Figure 5.14 shows the same
thing for K̂3.

Figure 5.13: TOMLAB problem 21: eigenvalues of K3 in log scale. Note
that the upper negative bound is zero and is not visible in this scale.
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Figure 5.15 shows the condition numbers of the different formulations,
illustrating that all formulations are singular in the limit, but that the 3-by-3
formulations are better conditioned. Note that although the condition num-
bers of the 1-by-1 system and both 3-by-3 systems are very similar through
the first 15 iterations, the method with the 1-by-1 has not yet converged
and requires several more iterations, at which point the condition number is
orders of magnitude higher. The small fluctuation in the condition numbers
for the 1-by-1 system in the final iterations is likely a numerical artefact
of the condition number computation for very ill-conditioned matrices. Ta-
ble 5.4 gives the duality gaps during the iterations. Note again that the
3-by-3 formulations take fewer iterations.

We now regularize the same problem with ρ = δ = 1e−4. Figure 5.16
shows the eigenvalues of K1,reg in log scale. Both bounds are now fixed with
respect to µ after the initial iterations, similarly to the case for problem 6.

Figure 5.17 shows the eigenvalues of K2,reg in log scale. While the in-
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Figure 5.14: TOMLAB problem 21: eigenvalues of K̂3 in log scale. Note
that the upper negative bound is zero and is not visible in this scale.
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Figure 5.15: TOMLAB problem 21: comparing the condition numbers.
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Table 5.4: TOMLAB problem 21: progression of the interior-point solver.

k Duality gap

K3 solver K̂3 solver K2 solver K1 solver

0 4.503941e+06 4.503941e+06 4.503941e+06 4.503941e+06

1 1.777060e+05 1.777060e+05 1.777060e+05 4.727740e+05

2 6.685252e+04 6.685252e+04 6.430173e+04 8.839079e+04

3 2.302182e+03 2.302182e+03 2.664655e+03 4.533996e+04

4 1.884457e+02 1.884457e+02 1.413989e+02 4.737956e+03

5 2.327962e+01 2.327962e+01 1.488893e+01 6.459162e+02

6 3.770574e+00 3.770574e+00 1.531868e+00 5.649864e+01

7 7.890978e−01 7.890978e−01 4.724062e−01 1.068655e+01

8 4.111731e−02 4.111731e−02 3.333264e−02 1.561047e+00

9 2.053638e−03 2.053638e−03 3.364520e−03 4.095004e−01

10 1.026760e−04 1.026760e−04 3.064170e−04 7.294324e−02

11 5.133785e−06 5.133785e−06 3.251172e−05 1.476766e−02

12 2.566892e−07 2.566892e−08 2.923329e−06 2.762271e−03

13 1.283446e−08 1.283446e−08 2.661271e−07 4.647201e−04

14 6.417226e−10 6.417226e−10 2.343025e−08 7.562990e−05

15 1.825309e−09 1.052725e−05

16 1.495218e−06

17 1.736741e−07

18 2.168710e−08

19 2.136175e−09
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Figure 5.16: TOMLAB problem 21: eigenvalues of K1,reg in log scale with
ρ = δ = 1e−4.
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ner bounds are now well away from zero, the upper positive bound is still
increasing exponentially, and all bounds are tight.

Figure 5.18 shows the eigenvalues of K3,reg in log scale, and Figure 5.19
shows the same thing for K̂3,reg. The lower positive bound is now well
away from zero, and there is an upper negative bound at −δ. Note that
at iteration 9, the magnitude of the smallest negative eigenvalues drops
below δ, and this is exactly the point when the smallest xi drops below
δ. This illustrates the “grey zone” when the conditions of Lemma 4.21 no
longer hold, but Lemma 4.22 does not yet apply. Note that despite these
eigenvalues dropping below the bound, they are still well away from zero.
Table 5.5 gives the duality gaps during the iterations.

Figure 5.20 shows the effect on the condition numbers of varying the reg-
ularization parameters, again using the same problem. The conditioning of
the 2-by-2 system is still poor, with only slight variations depending on the
parameters. The 1-by-1 and 3-by-3 systems have good conditioning, with
the condition number increasing with smaller regularization parameters. As
in the unregularized case, the 1-by-1 system and both 3-by-3 systems have
similar condition numbers for several iterations, but again, the 1-by-1 re-
quires more iterations and the final condition numbers are larger.

Note that the iteration counts for the 3-by-3 systems are smallest for the
intermediate values of the regularization parameters, showing the tradeoff
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Figure 5.17: TOMLAB problem 21: eigenvalues of K2,reg in log scale with
ρ = δ = 1e−4.
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Figure 5.18: TOMLAB problem 21: eigenvalues of K3,reg in log scale with
ρ = δ = 1e−4.
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Table 5.5: TOMLAB problem 21: progression of the interior-point solver
regularized with ρ = δ =1e−4.

k Duality gap

K3 solver K̂3 solver K2 solver K1 solver

0 4.503941e+06 4.503941e+06 4.503941e+06 4.503941e+06

1 1.774202e+05 1.774202e+05 1.774202e+05 4.763510e+05

2 6.696263e+04 6.696263e+04 6.445851e+04 8.848551e+04

3 2.287257e+03 2.287257e+03 2.643388e+03 4.634337e+04

4 1.856561e+02 1.856561e+02 1.401005e+02 4.814498e+03

5 2.244920e+01 2.244920e+01 1.433592e+01 6.538652e+02

6 3.377959e+00 3.377959e+00 1.350548e+00 5.169495e+01

7 7.869090e−01 7.869090e−01 6.385468e−01 9.709657e+00

8 3.175784e−02 3.175784e−02 3.318791e−02 1.234782e+00

9 1.187212e−03 1.187212e−03 4.503474e−03 3.603788e−01

10 3.992364e−05 3.992364e−05 5.549683e−04 6.298637e−02

11 1.107967e−06 1.107967e−06 6.684694e−05 1.371323e−02

12 1.547644e−08 1.547644e−08 7.343561e−06 2.562025e−03

13 −9.907045e−10 −9.907045e−10 7.320559e−07 4.360643e−04

14 7.355794e−08 7.058248e−05

15 6.148318e−09 1.005925e−05

16 1.422312e−06

17 1.726436e−07

18 2.153875e−08

19 2.267023e−09
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Figure 5.19: TOMLAB problem 21: eigenvalues of K̂3,reg in log scale with
ρ = δ = 1e−4.
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in regularization: larger parameters give more stabilization, but at the cost
of changing the problem significantly.

Finally, we consider the iteration counts for different problems with and
without regularization. Tables 5.6 and 5.7 show the iteration counts for all
the problems listed in Table 5.1 with 5 different choices of regularization
parameters. The notation “—” indicates a problem which did not converge
in the 300 maximum iterations, and the notation “*” indicates a problem
which blew up to infinity or NaN. We observe that the iteration counts for
the 3-by-3 formulations are either similar to or substantially better than
the iteration counts for the reduced formulations. Note the restrictions on
regularization parameters in, for example, problem 17: for ρ = δ = 1e−2
the method blows up, for ρ = δ = 1e−4 the iteration counts are large, and
for ρ = δ = 1e−6 and ρ = δ = 1e−8 the iteration counts are the same as
without regularization.
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Figure 5.20: TOMLAB problem 21: comparing the condition numbers over
different regularization parameters.
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(a) ρ = δ = 1e−2
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(b) ρ = δ = 1e−4
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(c) ρ = δ = 1e−6
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(d) ρ = δ = 1e−8
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Table 5.6: Iteration counts for different problems, part 1. A problem that
did not converge is noted by “—”, and a problem that blew up is noted by
“*”.

Problem Regularization Matrix formulation in solver

parameters K3 K̂3 K2 K1

1

ρ = δ = 0 9 9 9 9
ρ = δ = 1e−2 8 8 8 8
ρ = δ = 1e−4 9 9 9 9
ρ = δ = 1e−6 9 9 9 9
ρ = δ = 1e−8 9 9 9 9

2

ρ = δ = 0 10 10 9 9
ρ = δ = 1e−2 11 11 11 12
ρ = δ = 1e−4 10 10 10 10
ρ = δ = 1e−6 10 10 9 9
ρ = δ = 1e−8 10 10 9 9

3

ρ = δ = 0 11 11 26 16
ρ = δ = 1e−2 28 28 — 26
ρ = δ = 1e−4 11 11 24 15
ρ = δ = 1e−6 11 11 26 16
ρ = δ = 1e−8 11 11 26 16

6

ρ = δ = 0 12 12 21 17
ρ = δ = 1e−2 17 17 23 18
ρ = δ = 1e−4 12 12 21 17
ρ = δ = 1e−6 12 12 21 17
ρ = δ = 1e−8 12 12 21 17

8

ρ = δ = 0 11 11 11 11
ρ = δ = 1e−2 11 11 11 11
ρ = δ = 1e−4 11 11 11 11
ρ = δ = 1e−6 11 11 11 11
ρ = δ = 1e−8 11 11 11 11
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Table 5.7: Iteration counts for different problems, part 2. A problem that
did not converge is noted by “—”, and a problem that blew up is noted by
“*”.

Problem Regularization Matrix formulation in solver

parameters K3 K̂3 K2 K1

13

ρ = δ = 0 10 10 10 13
ρ = δ = 1e−2 11 11 11 13
ρ = δ = 1e−4 10 10 10 13
ρ = δ = 1e−6 10 10 10 13
ρ = δ = 1e−8 10 10 10 13

17

ρ = δ = 0 16 16 18 25
ρ = δ = 1e−2 * — * *
ρ = δ = 1e−4 41 43 40 40
ρ = δ = 1e−6 16 16 18 25
ρ = δ = 1e−8 16 16 18 25

21

ρ = δ = 0 14 14 15 19
ρ = δ = 1e−2 24 24 21 25
ρ = δ = 1e−4 13 13 15 19
ρ = δ = 1e−6 14 14 15 19
ρ = δ = 1e−8 14 14 15 19

22

ρ = δ = 0 24 24 33 32
ρ = δ = 1e−2 — — — —
ρ = δ = 1e−4 — — — —
ρ = δ = 1e−6 28 28 31 35
ρ = δ = 1e−8 24 24 32 32
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Conclusions

We have found analytical results for spectral properties of matrices arising
from primal-dual interior-point methods for convex quadratic programs. We
began by considering the original, unregularized problem (2.1). We consid-
ered four formulations of the Newton system occurring from the interior-
point method for this problem: the original 3-by-3 unsymmetric form, the
symmetrized 3-by-3 form, the 2-by-2 saddle-point form, and the 1-by-1 nor-
mal equations form. For each of these formulations, we have provided results
on the conditions for nonsingularity, inertia, bounds on the eigenvalues, and
condition number. The matrices for all formulations are nonsingular dur-
ing the iterations if J has full rank, but other properties vary. When we
are exactly on the central path and the asymptotic estimates of (3.6) hold,
we can find asymptotic estimates of the condition numbers in terms of µ,
the duality measure. For the normal equations, we saw that the matrix is
generally singular in the limit, and that the condition number through the
iteration is O(µ−2). For the saddle-point form, the matrix is again generally
singular in the limit, and the condition number is O(µ−2). The unsym-
metric and symmetric 3-by-3 forms have the same spectral properties since
the symmetrization is via a similarity transformation, and they are non-
singular in the limit assuming strict complementarity, the LICQ, and that
Null(H) ∩Null(J) ∩Null(Z) = {0}. These conditions are much less restric-
tive than those for the reduced formulations. We found inertia results on
these matrices both during the iterations and in the limit. We provided up-
per and lower bounds on the positive eigenvalues, and a lower bound on the
negative eigenvalues. For this unregularized case, we were not able to find
a nonzero upper bound on the negative eigenvalues, and thus were not able
to find a bound on the condition number, but the results on nonsingularity
indicate that the condition number is uniformly bounded independently of
µ. This alone is stronger than the results on the condition number of the
reduced formulations.

We next considered the regularized problem (4.1) and considered the
same four formulations of the Newton system mentioned above. Again,
the matrices for all formulations share the same requirements for nonsin-
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gularity during the iteration; when the regularization parameters ρ and δ
are positive, the matrices are unconditionally nonsingular. For the normal
equations, the matrix is generally singular in the limit, and the condition
number is O(1/(ρδ)). If this bound on the condition number were achieved,
the conditioning for the regularized 1-by-1 form would be worse than the
unregularized form. For the saddle-point form, we again generally have sin-
gularity at the limit, and the condition number is O(1/(µmin(ρ, δ))). The
3-by-3 forms require only strict complementarity for nonsingularity in the
limit, and the use of a partially reduced formulation will allow nonstrict
complementarity. We have found bounds on the eigenvalues, including a
nonzero upper bound for the negative eigenvalues, in contrast to the unreg-
ularized case where the bound was simply zero. We have also shown that
the regularization parameters both shift the spectral intervals away from
zero and contract the intervals. Finally, we have shown that the condition
number is O(1/δ) when λn > 0 and O(1/min(ρ, δ)) when λn = 0, which
indicates that for common choices of ρ and δ the regularized matrices will
be numerically nonsingular throughout the iterations.

We illustrated the analytical results with numerical examples, and while
the inner eigenvalue bounds were pessimistic for some problems, the outer
bounds were generally tight. The 3-by-3 formulations were superior in con-
ditioning for both unregularized and regularized matrices. In preliminary
experiments, the performance of the method using the 3-by-3 formulations
in terms of iteration counts was equivalent or superior to those using the
2-by-2 or 1-by-1 formulations.

Overall, we have presented a thorough analysis of the spectral properties
of a range of formulations of the Newton systems. We have shown that the
regularized 3-by-3 systems have the most favourable spectral properties and
require only strict complementarity to ensure nonsingularity.

Based on this analysis, we suggest that the regularized 3-by-3 systems be
considered to solve the Newton systems in these methods. This is in contrast
to the current state of the field, where the normal equations or saddle-point
forms seem to be used exclusively. The ill-conditioning of these systems is
well-known, but it has been argued that it does not impact the performance
of the method when using direct solvers; this is often known as “benign” ill-
conditioning. However, the increase in availability of computing power has
led to larger problems being solved, and these large problems will necessitate
the use of iterative solvers for these linear systems, where spectral properties
become crucial.

The natural extension to this work is thus to consider the performance of
interior-point methods with iterative linear solvers. This would include anal-
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ysis of the clustering of eigenvalues for all formulations, with the goal of then
finding effective preconditioners for each formulation. There is much exist-
ing work for preconditioning saddle-point systems, both for specific problems
and a few general black-box preconditioners. Development of precondition-
ers for the 3-by-3 formulations may prove difficult, particularly in a general
case where there is no specific information about the structure or properties
of H and J . However, the favourable conditioning of the regularized 3-by-3
forms may allow direct application of iterative solvers with either no pre-
conditioner or a very simple preconditioner. One key point for the use of
iterative solvers is that they use only matrix-vector products, and thus the
increased size of the 3-by-3 forms is not a difficulty compared to the 2-by-2
forms since it is only in diagonal matrices.

Another extension to this work would be to consider spectral analysis
of the matrices arising from interior-point methods for other classes of op-
timization problems. This could include nonconvex quadratic programs,
general nonlinear programs, and semidefinite programs. While a few of our
results apply directly to nonconvex quadratic programs, extension to these
classes of problems will require further analysis. Semidefinite programming
in particular will require careful analysis since the matrices X and Z are no
longer diagonal; instead they are restricted to be positive semidefinite, but
are allowed to be dense.
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[31] L. G. Hačijan. A polynomial algorithm in linear programming. Dokl.
Akad. Nauk SSSR, 244(5):1093–1096, 1979. ISSN 0002-3264. English
translation: Soviet Math. Dokl., 20(1):191–194, 1979.

[32] S. Kapoor and P. M. Vaidya. Fast algorithms for convex quadratic pro-
gramming and multicommodity flows. In Proceedings of the eighteenth
annual ACM symposium on Theory of computing, STOC ’86, pages
147–159, 1986. ISBN 0-89791-193-8.

[33] N. Karmarkar. A new polynomial-time algorithm for linear program-
ming. Combinatorica, 4(4):373–395, 1984. ISSN 0209-9683. doi:
10.1007/BF02579150.

[34] M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point
algorithm for linear programming. In Progress in mathematical pro-
gramming (Pacific Grove, CA, 1987), pages 29–47. Springer, New York,
1989.

[35] M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm
for a class of linear complementarity problems. Math. Programming, 44
(1, (Ser. A)):1–26, 1989. ISSN 0025-5610. doi: 10.1007/BF01587074.

[36] M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-
interior-point algorithm for linear programming. Math. Program-
ming, 61(3, Ser. A):263–280, 1993. ISSN 0025-5610. doi: 10.1007/
BF01582151.

[37] J. Korzak. Eigenvalue relations and conditions of matrices arising in
linear programming. Computing, 62(1):45–54, 1999. doi: 10.1007/
s006070050012.

[38] L. McLinden. An analogue of Moreau’s proximation theorem, with ap-
plication to the nonlinear complementarity problem. Pacific J. Math.,
88(1):101–161, 1980. ISSN 0030-8730.

[39] N. Megiddo. Pathways to the optimal set in linear programming.
In Progress in mathematical programming (Pacific Grove, CA, 1987),
pages 131–158. Springer, New York, 1989.

93



Bibliography

[40] S. Mehrotra. On the implementation of a primal-dual interior point
method. SIAM J. Optim., 2(4):575–601, 1992. ISSN 1052-6234. doi:
10.1137/0802028.

[41] S. Mehrotra and J. Sun. An algorithm for convex quadratic program-
ming that requires O(n3.5L) arithmetic operations. Math. Oper. Res.,
15(2):342–363, 1990. ISSN 0364-765X. doi: 10.1287/moor.15.2.342.

[42] S. Mizuno, M. J. Todd, and Y. Ye. On adaptive-step primal-dual
interior-point algorithms for linear programming. Math. Oper. Res.,
18(4):964–981, 1993. ISSN 0364-765X. doi: 10.1287/moor.18.4.964.

[43] R. D. C. Monteiro and S. J. Wright. Local convergence of interior-point
algorithms for degenerate monotone LCP. Comput. Optim. Appl., 3(2):
131–155, 1994. ISSN 0926-6003. doi: 10.1007/BF01300971.

[44] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algo-
rithms in convex programming, volume 13 of SIAM Studies in Ap-
plied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1994. ISBN 0-89871-319-6. doi: 10.1137/1.
9781611970791.

[45] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in
Operations Research and Financial Engineering. Springer, New York,
second edition, 2006. ISBN 978-0387-30303-1; 0-387-30303-0.

[46] T. Rusten and R. Winther. A preconditioned iterative method for sad-
dlepoint problems. SIAM Journal on Matrix Analysis and Applications,
13(3):887–904, 1992. doi: 10.1137/0613054. Iterative methods in nu-
merical linear algebra (Copper Mountain, CO, 1990).

[47] D. Silvester and A. Wathen. Fast iterative solution of stabilised Stokes
systems. II. Using general block preconditioners. SIAM Journal on
Numerical Analysis, 31(5):1352–1367, 1994. doi: 10.1137/0731070.
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