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Abstract

In the first essay, I empirically investigate the effect of financial frictions and exogenous demand

pressure on both prices and returns of options. Historically, observed option returns have been a

challenge for no-arbitrage asset pricing models, most notably in the case of out-of-the-money equity

index puts. I propose that liquidation risk, defined as the possibility of forced selling of speculative

positions following a liquidity shock, is a major driver of the relative price of out-of-the-money

put vs. call options (option-implied skewness) in commodity futures options markets and gives

rise to a skewness risk premium in option returns. Establishing speculative net long positions in

options (OSP) as a key proxy for liquidation risk, I find that the skewness risk premium rises (falls),

but realized skewness remains unchanged, when OSP is more positive (negative). I also provide

direct evidence of the price effects during such liquidation events. Trading strategies designed to

theoretically exploit the skewness premium yield up to 2.5 percent per month and load significantly

on risk factors related to the ease of funding for financial intermediaries.

In the second essay, I investigate the pricing dynamics of a class of option-like structured

products, bank-issued warrants, using a large, high-frequency data set. I provide evidence that

issuers extract rents from investors due to 2 key features of these markets: Each issuer is the sole

liquidity provider in the secondary market for her products, and short-selling is not possible. As

a consequence, I find that warrants are more overpriced the harder they are to value, and the

fewer substitutes are available. Second, issuers are able to anticipate demand in the short term

and preemptively adjust prices for warrants upwards (downwards) on days when investors are

net buyers (sellers). Third, issuers decrease the amount of overpricing over the lifetime of most

warrants, lowering returns for investors further. Lastly, while I find a negative relationship between

issuer credit risk and overpricing, the effect is generally too small, is absent prior to the Lehman

Brothers bankruptcy and does not conform to models of vulnerable options.
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Preface

Both essays contained in this thesis, ‘Limits to Market Making, Liquidation Risk and the Skewness

Risk Premium in Options Markets’ as well as ‘The Dynamics of Overpricing in Structured Products’,

are solo-authored. Modified versions will be submitted for publication in finance journals.
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Chapter 1

Introduction

Option pricing theory is inextricably linked to arguments of no-arbitrage and replication, i.e. the

notion that two securities that provide the same payoff in all states of the world must have identical

prices. Under this view, options are redundant securities whose payoffs, in the standard model, can

be exactly replicated using the underlying security and a money market instrument. Option pricing

models do not allow room for demand effects or financial frictions on prices. Yet the assumptions

that have to be made to support the theory are plenty and many do not hold in practice (Bates,

2003).

The two following essays have surprisingly much in common, despite the fact that the data

employed cover very different products that are subject to very different option market structures

and competitive environments. At the heart of the investigation in both essays lies the question

how demand for options by ‘end users’ (Garleanu et al., 2009) affects the pricing of options given

certain financial frictions. The focus of the first is a risk-based explanation of certain limits to

arbitrage effects in option markets, while the second investigates the consequences of a particular

non-competitive market structure on prices.

The essays make use of the circumstance that the exogenous net demand for call options is

negatively correlated with the net demand for put options for certain types of market participants.

Whenever those groups of investors buy calls they tend to be sellers of puts in aggregate at the same

time. Assuming less than elastic supply from intermediaries, this will increase the price of calls

and lower the price of puts. This allows me to employ measures of option-implied skewness that

compare prices of (out-of-the-money) puts with (out-of-the-money) calls, which perfectly captures

the price effect one is looking for in this context. Finally, the modern non-parametric and model-

free versions of option-implied measures being used in both cases avoid the pitfalls of using returns

or prices of individual options (Bakshi et al., 2003; Kozhan et al., 2011).

1.1 Limits to Market Making, Liquidation Risk and the

Skewness Risk Premium in Options Markets

The asset pricing literature has not yet reached a consensus on how to explain option returns of

particular strategies such as writing index put options (Bakshi and Kapadia, 2003). No-arbitrage

based asset pricing models (Benzoni et al., 2011) are forced to employ non-standard assumption in

order to match the historically observed data. Deviating from the no-arbitrage framework, a small

number of studies (Bates, 2003; Bollen and Whaley, 2004; Garleanu et al., 2009) advance the idea

1



of frictions in the intermediation process of the options market, but are only able to link them to

option prices.

The first essay concerns itself with establishing a firm link between observed option returns

and potential limits to arbitrage experienced by option market makers, while deepening our un-

derstanding of the exact nature of these frictions. A newly developed measure of realized skewness

(Neuberger, 2011; Kozhan et al., 2011) allows me to distinguish between option prices being af-

fected by limits to arbitrage rather than reacting to informed demand and to capture the effect of

these limits on option returns in a risk premium for skewness.

In the spirit of the recent limits to arbitrage literature that documents the effects of margin

requirements (Brunnermeier and Pedersen, 2009), arbitrageurs capital scarcity (Hu et al., 2010) or

financial intermediaries’ balance sheets (Adrian and Shin, 2010) on prices in different asset classes,

I focus on the effects of liquidity-related shocks (changes in margins, ease of wholesale funding,

etc.) on option prices.

I propose a channel of liquidation risk, whereby financial traders that rely on leverage and short-

term financing are forced to sell their option holdings following such an exogenous shock. Because

financial intermediaries are capital constrained in the short term, upward sloping supply curves

result in temporary price pressure in options potentially causing losses to other traders as well

(Brunnermeier and Pedersen, 2009). Over time the price pressure dissolves, but rational market

makers pre-emptively incorporate the possibility of such liquidation events into prices giving rise

to a permanent price effect, similar in spirit to the liquidity run model by Bernardo and Welch

(2004).

As a key proxy for the probability of such an event occurring I suggest the size of the net long

positions of speculators in the options market (OSP) and show that it explains option prices as

well as returns both in the cross-section and over time. Further support for the liquidation risk

hypothesis comes from the asymmetric response to changes in OSP where an on average large price

effect due to speculators reducing previously held positions points to occasionally even larger price

effect during episodes of forced selling.

In the last part of the essay, net zero investment strategies of delta-hedged option portfolios

allow me to quantify returns in options that are due to liquidation risk. I find very significant returns

of up to 2.5 percent per month. Further, the employed strategies are found to load significantly on

risk factors related to market-wide funding conditions.

1.2 The Overpricing of Structured Products

Retail structured products have become extremely popular among retail investors in many Eu-

ropean and Asian countries. Being traded on easily accessible venues with low transaction costs

and offering innovative payoffs not to be had otherwise (Stoimenov and Wilkens, 2005), this seems

hardly surprising. The downsides of these products are less well-known (Henderson and Pearson,
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2011; Bernard et al., 2011), especially among retail investors themselves1. The second essay focuses

on one particular class of structured products, so called bank-issued warrants, whose payoffs are

identical to those of cash-settled put or call options on any one of a variety of underlying assets

(with one important caveat).

Especially intriguing about these instruments is the market structure they trade in. Each

security is issued by one particular investment bank and can only be redeemed through that same

issuer acting as a monopolist in the liquidity provision of its products. In addition, short-selling is

not allowed. I investigate the pricing implications that arise due to these deviations from a typical

competitive, no-arbitrage market environment. The existing literature generally limits itself to

determining the average amount of overpricing in these instruments (Bergstresser, 2009). Instead,

the main contribution of this essay is to investigate a) cross-sectional differences among warrants

and b) price changes over time in response to retail demand. Using high-frequency tick data allows

me to distinguish whether prices react to the arrival of demand due to limits to arbitrage faced

by the issuer, which is similar to the focus of the first essay, or whether in fact issuers exploit the

predictable components of retail order flow by adjusting prices in advance. My results point to

the latter, contributing a rather novel finding to the literature that may also have implications for

regulators in these markets.

The final part of the essay is concerned with yet another specialty of structured products, namely

that they carry the credit risk of the issuer. This point has previously not received much attention,

neither by academics (Bartram and Fehle, 2007) nor by retail investors2. Rather than starting from

a model that automatically incorporates credit risk to compute theoretically fair values (Baule et al.,

2008), I investigate if changes in issuer credit risk are properly reflected through changes in actual

prices. Interestingly, I find that only after the Lehman Brothers bankruptcy is there a significant

effect from credit risk. However, additional investigations reveal that issuer credit risk is still not

fully priced.

1Wall Street Journal, May 28th, 2009, ‘Twice shy on Structured Products?’
2New York Times, October 14th, 2008, ‘Lehman’s Certificates Proved Risky in Germany’
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Chapter 2

Limits to Market Making, Liquidation

Risk and the Skewness Risk Premium

in Options Markets3

2.1 Introduction

Empirical studies have shown that writing equity and equity index options, most notably out-

of-the-money (OTM) index puts, yields abnormally high returns (Bakshi and Kapadia, 2003)4.

The origins of these abnormal returns are hotly debated. No-arbitrage asset pricing models are

generally unable to explain them assuming reasonable parameter choices for risk aversion and crash

frequencies (see e.g. Bates, 2000; Bondarenko, 2003)5. In his comprehensive survey, Bates (2003)

concludes that no-arbitrage arguments alone are likely inconsistent with observed option prices.

Instead he suggests to focus on frictions to financial intermediation in option markets, drawing

parallels between the options market and the market for catastrophe insurance (Froot, 2001).

One friction faced by financial intermediaries, the exogenous demand for options, is the subject

of the literature on demand-based option pricing. Bollen and Whaley (2004) and Garleanu, Peder-

sen, and Poteshman (2009) find evidence that systematic demand pressure in the market for index

and equity options affects the level as well as the slope of the implied volatility function. They

suggest that this price effect may be due to market makers being capital-constrained and unable to

fully hedge themselves, giving rise to a particular kind of limits to arbitrage, i.e. limits to market

making.6

These studies leave open a number of questions that this paper attempts to answer. First,

assume demand was informed about the future distribution of the underlying instead of being

purely exogenous. Then we would still expect to see the same effect in prices due to market makers

3A version of this chapter will be submitted for publication. Ruf, Thomas (2012) Limits to Market Making,
Liquidation Risk and the Skewness Risk Premium in Options Markets.

4A number of studies also find abnormal returns in equity options, e.g. from writing options of stocks with high
idiosyncratic volatility (e.g. Goyal and Saretto, 2009; Cao and Han, 2011).

5Exceptions are Liu, Pan, and Wang (2005) who suggest that historical index option prices can be matched if
investors dislike model uncertainty surrounding the true frequency of large negative jumps, and Benzoni, Collin-
Dufresne, and Goldstein (2011) who assume an extremely slow mean-reverting belief about the likelihood of a crash.

6The literature uses the term ‘limits to arbitrage’ in many contexts, most often when describing mis-pricing of
assets across two markets (Shleifer and Vishny, 1997). This paper suggest ‘limits to market making’ to describe a
situation when market makers and liquidity providers more generally are limited in their ability to provide securities
at prices that would prevail in the absence of certain frictions.
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avoiding adverse selection, independent of the presence of financial frictions or limits to arbitrage.

Thus, it is not clear ex ante that demand is a valid proxy for limits to arbitrage or more specifically,

to market making.

Second, the literature has not related abnormal option returns to demand pressure directly.7

An ex-ante decrease in the option price will not automatically translate into an ex-post increase in

the option return if it is correlated with changes in the physical return distribution. Put differently,

while there is evidence that demand pressure makes some options more expensive than others (e.g.

OTM index puts relative to OTM calls), no one has established that they yield abnormally low

returns as a consequence of demand pressure.

Third, when it comes to how the relative pricing of the tails, i.e option-implied skewness, is

affected by demand, Garleanu et al. (2009) focus solely on jumps in the underlying asset as a possible

channel. By contrast, this paper investigates the probability and the severity of liquidation events

in the options market, of which jumps in the underlying are just one possible cause.

I consider an options market with commercial hedgers on the one side and financial traders on

the other, whereby the latter are composed of market makers and outright speculators. Typically,

the former group is liquidity consuming while the latter are liquidity providers. Importantly, finan-

cial traders, especially speculators, are much more prone than hedgers to external liquidity shocks

such as changes in the ease of funding, losses in other markets or changes in margin requirements,

largely as a result of their use of leverage and short term financing.

The arrival of such a shock may force some speculators that were initially, say, net long in options

to quickly close out positions (sell calls and buy puts) while temporarily affecting option prices in

an adverse manner, e.g. depressing call prices and raising put prices, as market makers struggle

to accommodate this order imbalance. This in turn leads to losses for other traders with similar

positions and possibly further selling (e.g. liquidity spirals as in Brunnermeier and Pedersen, 2009).

In equilibrium, the potential for these liquidation events is anticipated and priced in by rational

traders (Bernardo and Welch, 2004), in particular by well-informed market makers, so that the

price of calls (puts) will fall (rise) as speculators increase their net long positions and vice versa. In

this context, the aggregate net position of speculators emerges as an important state variable that

determines the price of the option smile and the relative return of calls and puts via the mechanism

of liquidation risk.

The notion of liquidation risk can explain permanent price effects without having to assume

barriers to entry or slow-moving capital in these markets. Besides the jump risk faced by market

makers, this constitutes another risk-based limit to market making in that it pushes prices away

from those that would prevail in the absence of potential liquidation shocks affecting the options

market.8

7Cao and Han (2011) find option open interest affects option returns and regard it as a proxy for demand pressure,
but do not provide any evidence for this assumption.

8When market makers and non-market making financial traders hold similar net positions, the inventory risk effect
of the first group (Garleanu et al., 2009) and the liquidation risk effect of the second group align and may reinforce
each other.
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My methodology allows me to identify what factors truly represent frictions to financial interme-

diaries in the options market as opposed to rational price setting by unconstrained market makers

e.g. in the face of informed demand. To this end, I decompose the price of skewness into ex-post

realized skewness and a skewness risk premium using the newly developed skewness measures of

Neuberger (2011). Economic intuition would suggest that limits to arbitrage within the options

market should influence only the skewness risk premium, but not affect ex-post realized skewness,

which is determined by the physical price dynamics in the underlying asset market.9 By contrast,

beliefs about the distribution of physical returns, e.g. informed demand or the convenience yield,

should be reflected in realized skewness.

The variance risk premium is the subject of a large number of previous studies (Carr and Wu,

2009; Bollerslev and Todorov, 2011; Driessen et al., 2009; Bollerslev et al., 2011). The focus of this

paper is the relative pricing of the tails of the return distribution, i.e. prices of OTM puts relative

to OTM calls (option-implied skewness), as opposed to the absolute level of prices (option-implied

volatility). Thus, I measure and describe the risk premium for skewness.

My work empirically distinguishes between beliefs and risk premia as determinants of option

prices. To intuitively illustrate the difference between prices responding to changes in beliefs or risk

premia, it is instructive to compare the market for OTM options with the market for catastrophe

insurance, as suggested by Bates (2003). If the price for earthquake insurance goes up, it could

be due to one of three reasons. Either beliefs about the frequency of such an event have changed,

households have become more risk-averse towards the possibility of an earthquake, or insurers are

more constrained in their ability to provide such insurance. Similarly, observing a high price for

OTM put options may be due to a) a high physical probability of a large decline, b) high risk aversion

or c) large frictions in the intermediation of that risk. The existing literature has not been able to

empirically distinguish the former from the latter two explanations because the extreme nature of

OTM option returns and the low number of observations make statistical inference difficult.

I use non-parametric measures of option-implied skewness and realized skewness developed by

Neuberger (2011) to distinguish among these possibilities. Implied skewness reflects the relative

prices of OTM puts vs. OTM calls and is the expectation of realized skewness under the Q-measure.

The difference between realized and implied skewness is the skewness risk premium and can be

thought of as a return to a particular swap contract that is long OTM calls and short OTM puts.10

I conduct the empirical analysis on the market for commodity futures options rather than index

or equity options because they do not have many of the disadvantages of equity and equity index

options when it comes to measuring the price of tail risks and identifying the effect of demand on

prices. My dataset consists of a cross-section of 25 U.S.-listed optionable commodities over a time

period of 20 years. I merge this dataset with data on the aggregate futures and options positions

of different groups of traders, notably commercial traders that trade for hedging purposes and

9The same can be said about factors reflecting the economy’s risk aversion. Thus, allowing for a delineation of
risk aversion effects from financial market frictions may depend on careful economic motivation.

10Kozhan et al. (2011) use these measures to quantify more precisely than was previously possible the extent to
which risk premia for both variance and skewness are present in options on the S&P 500 index.
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financially motivated, non-commercial traders, also called speculators. It can be assumed that the

latter group also contains market makers and arbitrageurs that behave similarly to market makers

by providing liquidity and taking no directional exposure in the underlying. However, the data

does not allow me to disentangle market makers from outright speculators.

The central new variable is the (delta-weighted) net position of speculators as a share of their

total positions in options (henceforth OSP). I consider extreme readings of this variable as indicative

of at least one of two situations. First, if speculators absorb large outright positions from hedgers

they grow more susceptible to external shocks. The probability of forced liquidations thus increases

and to insure against adverse price movements in such an event, new entrants preemptively demand

price concessions. Second, if speculators are largely acting as liquidity providers, extreme levels

of OSP show that market makers carry large unbalanced inventories and may be close to capital

and/or risk constraints similar to Garleanu et al. (2009). Besides exposing them to jump risk in the

underlying asset, this also makes them less able to accommodate future demand imbalances and may

make them susceptible to forced liquidations themselves. Note that the risk of forced liquidation

increases regardless of which group the majority of traders in the non-commercial category belong

to.

I begin by showing supporting evidence from the cross-section of commodities where cross-

sectional dispersion in average OSP is strongly related to average implied skewness as well as the

average skewness risk premium. Motivated by this finding, I conduct the main analysis in a large

panel dataset, focusing on the time series dynamics of skewness. There I find that the skewness

risk premium becomes more positive (negative), but realized skewness is unaffected in times of high

positive (negative) values of OSP. In further support of the liquidation risk hypothesis, I find that,

controlling for the level of existing demand, price pressure has a decidedly asymmetric effect on

option prices, and as a consequence on the skewness risk premium. When speculators increase their

net long exposure having been long already, there is no additional price impact. By contrast, when

speculators reverse previously held long positions, a strong adverse price effect can be observed

on average. Because financial traders optimally avoid price impact in normal times, this provides

evidence for an even larger price impact during episodes of rushed selling by speculators.

Further, I find that reductions in market-wide liquidity and loss of funding for financial inter-

mediaries (Adrian et al., 2011a,b) magnify the effect of OSP on prices. Lastly, a measure of trader

concentration, which is another dimension of how likely forced liquidations are, also affects the price

of skewness and the skewness premium, but not realized skewness. The fact that realized skewness

is unaffected in (almost) all cases above gives great confidence that the suggested factors are indeed

related to limits of market making and do not proxy for investor beliefs or informed demand.

While the use of non-parametric measures has great advantages over using option returns di-

rectly, they make it difficult to interpret the economic magnitude of each effect. Does a strategy

designed to exploit limits to arbitrage give rise to significant returns? To answer this question,

in the final part of the paper I form zero net investment portfolios of particular assets related

to skewness. I find that a long/short portfolio of delta-hedged risk reversals formed on the basis
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of the size of net option exposure of speculators, for instance, yields very significant 2.5 percent

per month. Portfolios formed on the basis of net long trader concentration yields up to 1.6 per-

cent. Interestingly, both strategies load significantly on risk factors related to market-wide funding

conditions.

The remainder of this paper is structured as follows. Section 2.2 provides some background

information on commodity options and describes the sample used for the analysis as well as the

variables related to hedging pressure. Section 2.3 describes the skewness measures and presents the

historical skewness and skewness risk premia found in the data. Section 2.4 motivates the concepts

of limits to market making, outlines the idea of forced liquidations and presents visual evidence in

support. Section 2.5 contains the design and results of the main empirical analysis conducted on a

large panel dataset. Section 2.6 examines portfolio strategies constructed on the basis of two limits

to market making criteria. Section 2.7 concludes.

2.2 Commodity Futures (Options) Markets

While the academic finance literature has intensively investigated options on stocks and equity

indices for decades, there is surprisingly little research on commodity futures option markets. In

part, this is due to lack of widely available data sources on commodity futures options, but it may

also reflect the relative lack of research into commodities in general and the obscurity in which

commodities existed in the public’s mind in the past.

Physical commodities as an asset class, let alone their respective option markets, have been

literally unknown to the average investor until a few years ago. Markets for financial derivatives on

physical commodities have existed for several hundred years and at least as long as stock markets,

yet compared to financial asset classes (such as stocks and bonds) the demand for which can be

characterized as purely speculative, markets for physical commodities are mostly dominated by

commercial traders who participate with the intention of mitigating risk inherent to their line of

business, in other words hedging, not speculation. Further, each commodity is somewhat unique

because of fundamental differences in the dynamics of supply and demand of the physical product

(seasonalities in production or consumption, storability).

Figure 2.1 provides a rough idea of the size of commodity derivatives markets, and commodity

options in particular, over time. The two panels contrast the market for exchange-traded commodity

derivatives with the market for over-the-counter (OTC) derivatives. The left panel depicts the

aggregate open interest (in $B) of the 25 exchange-traded commodities in my sample. Because the

sample is limited to U.S. listed, optionable commodities with a long history it under-reports the true

level of open interest across all commodity exchanges. On the other hand, open interest does not

correct for spread positions held within or across markets by the same agent. The panel distinguishes

between open interest of futures and options and shows that the dollar amount of options contracts

has at times reached up to half that of futures, peaking at $376B at the end of the first half of

2008 (compared with $633B for futures). The right panel shows the aggregate notional amount
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outstanding in OTC commodity derivatives as reported by the Bank of International Settlements

in their ’Semiannual OTC derivatives statistics’11. At the end of June 2008, the BIS reported

notional amounts for OTC forwards and swaps (OTC options) to be peaking at $7.5T ($5.0T).

The OTC market is bigger by an order of magnitude. Nevertheless, it appears that both markets

have exponentially grown (and subsequently ebbed) in a similar fashion over recent years. Further,

OTC market makers such as commodity trading desks of large investment banks will in turn hedge

their net exposure from the OTC market in the liquid futures market, thus leading to some level

of integration between the two markets.

2.2.1 Empirical Advantages over Equity Options Data

I conduct the empirical analysis on the market for commodity futures options rather than index

or equity options for a number of reasons. All empirical work using S&P 500 index options is

bedeviled by the paucity of data, making estimation of the physical return distribution difficult.

Options on a broad market index are not well suited for analyzing the effects of frictions and

limits to arbitrage vis-à-vis other effects, because funding constraints for financial intermediaries

are strongly pro-cyclical (Adrian and Shin, 2010), while risk aversion is strongly counter-cyclical

(Campbell and Cochrane, 1999). In other words, more severe financial constraints, higher risk

aversion and negative realizations in index returns tend to occur jointly.

Options on a cross-section of stocks resolve some of these problems in theory. In practice,

option demand across stocks is highly correlated for similar stocks, e.g. by size, and jointly driven

by investor sentiment (Lemmon and Ni, 2011). Finally, the non-parametric measures employed,

especially those for skewness, require a large number of options at each point in time for each

underlying to adequately measure prices in both tails. Unfortunately, the available datasets (e.g.

OptionMetrics) would limit this type of analysis to the very largest stocks only.

Commodity futures options do not exhibit these problems. My dataset was acquired from the

Commodity Research Bureau (CRB) and consists of a cross-section of 25 U.S.-listed optionable

commodities over a time period of 20 years, exhibiting low cross-correlations in both prices and

demand patterns.12 Option chains of some commodities have quotes for more than 100 options

at a time. In addition, replication and hedging arguments rely on the ease of short-selling the

underlying, which is easily done in the case of futures.

The data that was available for the present study is, however, subject to criticism on other

fronts. The lack of bid/ask quotes makes it difficult to judge a) how noisy individual quotes are

and how much of this noise trickles down into the non-parametric skewness measures and b) how

much of the out-performance α found in Section 2.6 is achievable in practice13. Second, as the

CRB data lacks information on option volume and open interest, liquidity-based filters cannot be

applied. Instead, motivated by the fact that option liquidity generally decreases away from the

11Available at http://www.bis.org/statistics/derstats.htm.
12This is not to say that some commodities, in particular in agriculture, do not exhibit at times large correlations.

However, compared to the market-induced correlation between e.g. large-cap stocks they are mild and less persistent.
13A number of hedge fund analysts were quick to point this out in previous versions of the paper.
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money, I exclude options with prices that were small relative to the minimum tick size. However,

most available option datasets are affected by some of these issues as well. For further details, see

Appendix A.1.1.1.

2.2.2 Futures and Futures Options Data

To my knowledge, this paper is the first to use the futures options database of the Commodity

Research Bureau in addition to their more commonly used futures database. Together, they contain

end-of-day closing prices for a large number of U.S. and international futures and futures options

markets covering financial indices, interest rates, currencies and commodities. For the purpose

of this paper, I focus on major commodity futures markets in the U.S. for which exchange-listed

futures options exist and have been liquid over the majority of the sample period.

Table 2.1 lists the sample containing 25 commodities which can be roughly divided into 5 major

groups: Agricultural, Energy, Meat, Metal and Soft.14 The table shows the first and last maturity

of option contracts by commodity and the number of individual option chains having the necessary

data to create option-implied and realized skewness measures at a remaining time to maturity of at

least 90 days.15 The data ends at the end of August 2010, so that the last option expiration is the

August or September contract of that year, in most cases. Note that at the end of 2006, unleaded

gasoline drops out of the sample due to lack of options and COT data and is replaced by a related

commodity, RBOB gasoline, reflecting a change in economic relevance. For the same reason, data

on pork bellies ends in early 2008. Appendix A.1.1 describes the structure of the data, the cleaning

process and construction of implied and realized measures from option prices in more detail.

Table 2.1 also shows the interquartile range of the key variable in the empirical part, the net

long exposure of speculators in options (short OSP) and its time series correlation with the net long

exposure of speculators in futures. Both the level and the correlation exhibit substantial variation

across the sample, an advantage of the data alluded to earlier.

2.2.3 COT Variables

In addition to a long history of options quotes, I require data on the position of traders for these

commodities as published by the U.S. Commodity Futures Trading Commission (CFTC) in their

Commitment of Traders (COT) reports. Because the CFTC only publishes this data if the number

of active participants in the market and the size of open interest are large enough, this further

ensures that the commodities in the sample are liquid and economically important.16

14My set of commodities is similar to the U.S. based commodities used in Gorton et al. (2007). Compared to
Szymanowska et al. (2011), I exclude platinum and palladium, because there are no liquid options available, but I
include natural gas.

15To compute implied measures, I require a sufficient number of option quotes of out-of-the-money options in both
tails for a particular maturity. The computation of realized skewness requires changes in an implied variance contract
as inputs, thus the same requirements have to be fulfilled for all days leading up to expiration.

16Currently, the report is published every Friday detailing data as of Tuesday of the same week. Prior to October
1992, COT reports were published twice a month with a reporting lag of 6 business days. Markets are excluded if
there are less than 20 traders present with positions above a commodity-specific reporting limit. Futures-only COT
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In the COT reports, traders are divided into 3 groups: commercials, non-commercials and

non-reporting. The first group is thought to mostly consist of producers and consumers of the

underlying commodity that use the futures market to hedge future production or consumption,

thus they are typically called hedgers. The second group consists of large institutions that trade

in the commodity for financial gain, i.e. market makers, trading desks, hedge funds, commodity

trading advisors (CTA) and commodity pools, collectively called speculators in the COT reports.

However, it appears likely that at least some of the traders in this group do not take on outright

speculative positions, but are instead in the business of market making by accommodating the

liquidity needs of other traders. The last group consists of small traders with positions below the

reporting limits, also called the public or retail investors. Apart from total open interest, number

of reporting traders, the report details long and short positions held by members of each group as

well as concentration ratios for the long and short side of the market. These and other measures

derived from the COT data are define below.

Hedging pressure in futures and options: The most commonly used measure derived

from COT data in the literature on commodity futures is hedging pressure (HP), defined as the

normalized net short exposure via futures contracts in commodity i by commercial traders as a

group:

HPi,t =

∑
comm. short fut.−

∑
comm. long fut.∑

comm. short fut. +
∑

comm. long fut.
(2.1)

By construction, HP lies between −1 and +1. HP has been found to positively predict futures

returns (see e.g. Bessembinder (1992), De Roon et al. (2000)). Apart from a futures-only report,

combined futures-and-options reports are available since April 1995, where options positions are

transformed into futures-equivalents using each option’s delta (based on an options pricing model).

To get a measure of demand pressure in the commodity options space, I back out the long and short

positions of commercials in the options market alone and compute an analogue hedging pressure

via options only (OHP):

OHPi,t =
(∑ comm. short options−

∑
comm. long options∑

comm. short options +
∑

comm. long options

)
(2.2)

Speculative net exposure in futures and options: For each of the two derivatives, futures

and futures options, corresponding measures of net long exposure can also be constructed for the

group of speculators, denoted by SP and OSP respectively.

SPi,t =

∑
non-comm. long fut.−

∑
non-comm. short fut.∑

non-comm. long fut. +
∑

non-comm. short fut.
(2.3)

Because hedgers and large financial traders generally constitute the overwhelming majority of

total futures open interest, the numerators are quite similar for most commodities and, due to the

data generally begins in 1986, while the so-called combined COT reports only start in April of 1995.
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slight change in definition, of the same sign. However, even in the absence of retail traders as a third

group, HP differs from SP due to the denominators being the sum of total positions held by each

group. As with futures, the flip side to OHP is the normalized net long exposure of arbitrageurs,

OSP:

OSPi,t =
(∑non-comm. long options−

∑
non-comm. short options∑

non-comm. long options +
∑

non-comm. short options

)
(2.4)

As before, OHP and OSP will differ due to different denominators even in the absence of small

investors holding option positions. In summary, both HP and OHP give an indication of how

“one-sided” hedgers’ aggregate demand is relative to their total exposure in each market, while SP

and OSP do the same for speculators. For hedgers, a more extreme position does not necessarily

equal more risk, as the general purpose is to lock in forthcoming production or consumption of a

commodity at a certain price and eliminate risk. For speculators as a group, however, leaning to

one side can be a risk in and by itself. Should financial traders as a whole be forced to sell out of

their positions due to external shocks, it may cause price pressure and result in losses to the group.

Long and short trader concentration: The COT report contains another item that, to my

knowledge, has not been investigated before. In addition to all the previously mentioned items, the

CFTC also reports concentration ratios separately for the long and the short side independent of

trader classification, i.e. the proportion of long (short) open interest that is held by the largest N

long (short) traders for that commodity. These are available on a net and a gross basis, whereby the

former means that only the residual positions for each trader after offsetting equal long and short

positions are counted. To judge the true concentration of traders with unbalanced positions, the net

version is preferable. I use the concentration ratios reported in the combined futures-and-options

data for N = 8, e.g. for the long side

CRLi,t =
1

OICom,i,t

j∈Top 8∑
(Long Com.)j (2.5)

Ceteris paribus, if a larger fraction of the net exposure on one side of the market is held by a small

number of traders, the price impact will be relatively larger, should one of them be forced to sell

quickly. I will motivate these measures further in Section 2.4.1.

2.3 Measures of Skewness

The literature on option-implied moments has brought forth a number of measures for skewness.

It is still common to use the difference in implied volatility between OTM put options and ATM

options, i.e. the volatility slope or volatility smile, as a proxy for risk-neutral skewness implied in

option prices (Duan and Wei, 2008; Lemmon and Ni, 2011). This is valid because a one-to-one

mapping exists between the volatility smile and the risk-neutral density of the underlying asset

return (Rubinstein, 1994). Practitioners, especially in currencies use so-called risk reversals (see
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also Brunnermeier et al., 2008) to express the asymmetry in price between an equally out-of-the-

money put and call option, quoted as the difference between their implied volatilities for a given

absolute level of their ∆.

Bakshi et al. (2003) (henceforth BKM) propose a more direct measure of option-implied skew-

ness. Via the spanning approach by Bakshi and Madan (2000), BKM use options data to replicate

the risk-neutral expectations of the first 4 un-centered moments of the log return. They then sys-

tematically build expressions for standardized skewness (and kurtosis) from those building blocks.

The construction uses Taylor series expansions and is thus only approximate. This measure has

been employed e.g. by Dennis and Mayhew (2002), Conrad et al. (2009), Rehman and Vilkov (2012)

for index and equity options. Note that the skewness implied by this measure is the normalized

skewness of the return over the life of the underlying option chain, not the average daily skewness

as is commonly measured in asset pricing (Boyer et al., 2010) using daily stock returns.

2.3.1 Raw Skewness Measures

Kozhan et al. (2011) and Neuberger (2011) (henceforth KNS) propose a different measure for longer-

horizon skewness that measures the risk-neutral expectations of the third power of percentage

returns, the so-called model-free implied skewness (MFIS). Under the assumption of continuous

re-balancing, it is equal to the integral of the product of asset return and innovations to its forward-

looking variance and is synthetically constructed as the difference between two measures of variance,

vE and vL (for the details of derivation see the technical appendix as well as KNS):

MFIS0,T := 3
(
vE0,T − vL0,T

)
(2.6)

= EQ
[
3

∫ T

0
dvEt,T

(
dSt
St

)]
≈ EQ [r30,T ] (2.7)

It, too, is based on the spanning approach. Its main drawback is that it is not standardized by

some power of volatility, making the interpretation of values less intuitive. It has the advantage,

however, that only one integral needs to be numerically approximated, while the BKM measure

(see Equation A.7 in the appendix) is a function of several such integrals. Most important and key

to the focus of this paper, the KNS measure has a realized counterpart. The question how risk-

neutral skewness compared to realized skewness was previously impossible to answer. No natural

counterpart to implied skewness was available that was able to measures realized skewness over

some time period. Equation 2.7 reveals that the realized counterpart can be recovered as long as

the integral can be computed. This only requires the existence (or at least, the replication) of a

particular variance contract. A risk premium for skewness can be defined as the difference between

the expectations of realized skewness under the risk-neutral and the physical measure, i.e.

SRP0,T = EP
[
3

∫ T

0
dvEt,T

(
dSt
St

)]
− EQ

[
3

∫ T

0
dvEt,T

(
dSt
St

)]
(2.8)

In practice, the P-measure expectation is replaced by its ex-post realization to compute a
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realization of the skewness risk premium.

The empirical analysis in Section 2.5 is based on the KNS measures of implied and realized

skewness, abbreviated MFIS and RSkew. Because MFIS (just like the model-free implied variance

or MFIV of Britten-Jones and Neuberger, 2000) represents a moment of returns over the remainder

of the life time of the option chain, it gets naturally smaller as time progresses and ultimately

converges to zero at expiration. As a first step, I annualize MFIS, then I take an average over a short

range of days to avoid outliers on individual days from impacting results. For one-month (3-month)

skewness, I average MFIS over dates with remaining maturities in days of I3months = (90, . . . , 99).

More formally, for commodity i and expiration date T , given a maturity m, e.g. 3-month skewness,

I average over observations at times t where T − t ∈ Im.

MFISi,m,T =
1

|Im|
∑

T−t∈Im

MFISi,t,T (2.9)

Finally, because MFIS has an excess kurtosis of 64 in my sample, I take the signed third root

of this average (excess kurtosis −0.4).

MFIS
1/3
i,m,T := sign(MFISi,m,T ) (|MFISi,m,T |)1/3 (2.10)

Just like raw MFIS has an extremely heavy-tailed distribution, so do the raw realized skewness

as well as the skewness risk premium (excess kurtosis is 44 for the latter). I define the signed third

root of realized skewness in an identical fashion to MFIS1/3, i.e.

RSkew
1/3
i,m,T := sign(RSkewi,m,T ) (|RSkewi,m,T |)1/3 (2.11)

where RSkewi,m,T represent the average annualized realized skewness over some small time

window. To get a measure for the skewness premium that is better suited for analysis than raw

SRP, we compute SRP1/3 as follows: Within the estimation window, I compute the signed third

root of realized and implied skew separately, take the difference and only then compute an average.

The sequence is important to ensure that values for realized skewness are only included on days

where the implied measure is non-missing.

SRP
1/3
i,m,T :=

1

|Im|
∑

T−t∈Im

[
RSkew

1/3
i,t,T −MFIS

1/3
i,t,T

]
(2.12)

Note that in the case of SRP, the superscript 1/3 is merely for notational purposes to distinguish

it from the raw premium measure. The transformation of signed roots takes away the extreme

nature of the distribution of the skewness measures even better than scaling by some power of

variance does. The goal is to get a sense of how certain factors affect skewness and the SRP

on average without letting outliers dominate the analysis. The downside of this method is that

the economic importance of each effect is difficult to ascertain. Section 2.6 aims to provide some

answers in that regard.
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2.3.2 Normalized Skewness Measures

The extreme nature of the third moment requires some transformation to make it suitable for

statistical analysis. Taking the third root is a natural solution, but it has drawbacks, in particular

for the skewness premium. Just as it is not correct to measure a volatility risk premium as the

difference between implied volatility and realized volatility due to Jensen’s inequality, the same

inconsistency arises for the third root of skewness.

The obvious other solution is to divide the skewness measures by some function of volatility

to normalize it. However, the question of which volatility to use is not as straightforward as

one might think. Potential candidates are historical realized volatility, currently implied volatility

or even future expected realized volatility. Each choice constitutes an implicit weighting scheme

regarding skewness risk, while the raw measure implicitly assigns equal weights to all time periods

when e.g. computing average risk premia.

In the latest version of Kozhan et al. (2011), skewness is normalized by the implied log variance

contract vL (to the power of 3/2):

SMFIS0,T :=
3
(
vE0,T − vL0,T

)
(
vL0,T

)3/2 (2.13)

=
EQ
[
3
∫ T
0 dvEt,T

(
dSt
St

)]
EQ
[
−2 log

(
ST
S0

)]3/2 ≈ EQ
[
r30,T

]
EQ
[
r20,T

]3/2 (2.14)

Normalized realized skewness and the skewness risk premium are then normalized by the same

denominator. In addition to having time-varying weights this choice allows the variance risk pre-

mium to directly affect the normalized measure via the denominator. It is difficult to judge how this

should affect results. Using several standardizing techniques, I find that all of them exhibit massive

problems with outliers much worse than when using the third roots of the raw measures. As a con-

sequence, the empirical results using these standardized measures differ starkly depending on the

denominator employed and are not reported. Instead, favoring simplicity and an equal-weighting

scheme, I opt in favor of using the measures based on signed third roots outlined in Section 2.3.1.

However, even with the raw measures one might have to worry about an effect from the variance

risk premium on the skewness risk premium via demand. As will be discussed later in more detail,

the key focus of the paper is the effect of directional (e.g. long delta positions) demand by hedgers

on relative option prices, i.e. skewness. Garleanu et al. (2009) show that ‘absolute’ demand for

options (i.e. buying vs. writing them) drives the variance risk premium. Thus, if the directional

demand was correlated with the absolute demand, then the skewness risk premium could partially

pick up the variance risk premium. This can only occur if hedgers had a preference to implement

their views mostly via puts or mostly via calls only. I am not aware of option markets where the

open interest is asymmetrically concentrated among calls or puts on average. Further, for this to

have a systematic effect on the results presented, hedgers would have to have the same preference
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for a majority of the commodities in the sample. I would argue that this, too, is unlikely to occur

and thus there should be no confounding effect from the variance risk premium on the skewness

risk premium using the raw measures.

2.3.3 Sample Variance and Skewness

To see how skewness is related to demand from different groups of investors and limits to market

making, I begin by computing time series averages of implied and realized variance and skewness

and their differences, the risk premia for variance and skewness, for the cross section of commodities

in my sample. While the focus of this paper is on skewness and the skewness risk premium, it may

be helpful to readers unfamiliar with the notion of the latter to go through the corresponding

terms of variance first. In the interest of brevity, I reserve the exact definitions and computational

details of all the measures involved for the Technical Appendix A.2 to the extent that they were

not already discussed in Section 2.3.1.

Variance Risk Premium

The existing literature (e.g. Britten-Jones and Neuberger, 2000; Jiang and Tian, 2005) defines

the variance risk premium (VRP) as the difference between ex-ante model-free implied variance

(MFIV) and ex-post realized variance (RV). Carr and Wu (2009) propose to consider those three

terms in the context of a financial contract, the variance swap. While not traded on exchanges,

variance swaps can be entered into over the counter with investment banks. The buyer of a variance

swap pays the implied variance at the time of transaction as the fixed leg of the swap and receives

as floating leg the variance realized over the term of the contract. If on average implied exceeds

realized, the buyer of the swap tends to overpay in the form of a risk premium.

In the case of equity markets, Carr and Wu (2009) find a large negative VRP and suggest that

investors dislike states of high volatility and are willing to pay the variance risk premium in order

to insure against those states. The evidence on VRP in individual stocks is mixed. While Carr and

Wu (2009) find some negative VRPs in their sample of 30 large cap stocks, Driessen et al. (2009)

report marginally positive VRPs on average for the constituents of the S&P 100 index.

Table 2.2 presents time series averages of implied and realized variance and the variance risk

premium for my sample of commodities as well as the S&P 500 index. For readability, the variance

measures are translated into annual volatilities. The VRP is also annualized and multiplied by 100.

Measures are based on options with maturities of between 90 and 99 days, with the exception of

the second row for the S&P which is based on 30 to 36 days to maturity. This row is included

because prior to 2008, only four S&P 500 option series per year were listed more than 90 days prior

to expiration. The introduction of longer maturities with the beginning of the Great Financial

Crisis is biasing the sample towards high realized volatility observations, in turn causing the VRP

to appear smaller.

For commodities, average implied volatility is always larger than the realized variety. Conse-

quently, the variance risk premium, the difference between realized and implied variance, is always
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negative and (Newey-West adjusted) standard errors indicate that almost all estimates are very

significantly different from zero. In unreported tests, I find that short-term VRPs generated by

options with 30 to 36 days to maturity are even more consistently negative. This means that just

like for equity indices, but unlike individual stocks, volatility in commodities and thus commodity

options are on average overpriced. These findings extend the results of Trolle and Schwartz (2010),

who investigated the variance risk premium of oil and natural gas only. It might be interesting

to investigate whether part of this premium is connected to exposure to some form of systematic

variance factor as Carr and Wu (2009) do for the cross-section of stocks. However, as the focus of

this paper is limits to market making, I will leave this topic to future research.

Skewness Risk Premium

While a measure of option-implied skewness has been proposed in the literature (Bakshi et al.,

2003), until recently no realized counterpart was known. Neuberger (2011) and Kozhan et al.

(2011) (henceforth KNS) overcome this problem and propose a pair of measures, implied and

realized skewness, whose difference can be interpreted as a risk premium for skewness. The realized

skewness of KNS is mostly determined by the interaction between returns and forward-looking

implied variance. If variance increases concurrent with negative returns, the realized skewness

measure becomes consequently negative. The implied measure is the risk-neutral expectation of

realized skewness.

Again, one may think of this in the context of a swap. The buyer of a skewness swap pays

as fixed today’s price, i.e. the implied skewness, and receives as floating the realized covariation

between returns and variance over the term of the contract. If on average implied lies below (above)

realized, i.e. the buyer expects more negative (positive) skewness, the skewness risk premium (SRP)

is positive (negative).

Table 2.3 shows measures of average implied and realized skewness as well as the SRP for the

cross-section of commodities in the sample. Numbers are based on maturities between 90 and 99

days (except the second line for the S&P).

The column ‘BKM’ contains an implied, normalized measure of skewness of log returns (based

on Bakshi et al., 2003) and shows that most commodities are far less negatively skewed than the

equity market. In fact, the agricultural commodities in particular tend to have positive skewness.

The model-free implied skewness (MFIS) (based on Neuberger, 2011) is a non-normalized measure

representing risk-neutral expectations of the third moment of the percentage return, not log return,

over the entire term. The difference between log and percentage returns is the reason why BKM

skewness is negative for more commodities. Further, because MFIS is not divided by some function

of variance, higher average volatility will make MFIS larger in absolute terms. The next two

columns show the average sum of realized cubed returns ‘r3’ and the KNS measure of realized

skewness ‘RSkew’, which is a discrete approximation of the covariation between returns and changes

in implied variance.

Note that for most commodities and the index, the majority of realized skewness does not come
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from cubed daily returns, in fact the two terms occasionally have opposite signs. Heating oil, for

instance, seems to have more large negative returns than positive ones on average. However, the

covariation between returns and changes to implied variance is positive. This indicates that, unlike

for the equity market, large positive returns tend to occur together with increasing volatility more

than large negative returns for many commodities.

Lastly, the skewness risk premium, just like implied skewness itself has varying signs across

commodities in the sample. The S&P 500 index has a strongly significant and positive SRP when

considering 30-day variance swaps.17 Implied skewness is on average much more negative (at −.60)

than realized skewness (at −.36). This is what makes strategies that sell OTM index puts so

profitable: index puts are much more expensive relative to index calls beyond what can be justified

by the ex-post physical distribution of index returns. Commodities, on the other hand, exhibit

both positive and negative SRPs. The meats as well as natural gas are similar to the S&P 500

in that implied skewness is more negative on average than realized skewness, while agricultural

commodities and the precious metals in particular exhibit the opposite behavior.

2.4 The Economics of Option Markets

What can explain the notable dispersion of average implied skewness as well as risk premiums

for skewness across commodities in Table 2.3? Cross-sectional variation in implied skewness could

potentially be due to corresponding differences in beliefs about the return distribution of the under-

lying asset. The price for natural gas certainly behaves quite differently from that for corn in many

ways, which should be reflected in physical moments like volatility and skewness. However, the

existence of and variation in the skewness risk premium show that differences in the price dynamics

of the asset alone are not sufficient as an explanation.

In particular, different signs for the SRP suggest that for some commodities returns to risk

reversals, i.e. long OTM calls and short OTM puts, will on average be positive while they are

negative for others over time. What drives these differences in returns across assets?

In what follows, I argue that the cross-sectional pattern apparent in Table 2.3 is the consequence

of what I will call liquidation risk, i.e. the risk that arises from the possibility of sudden, forced

selling of positions held by financial traders.

2.4.1 Exogenous Hedging Demand and Liquidity Provision

I consider a framework of a commodity futures option market with three notable groups of traders:

commercial hedgers, speculators and market makers. Hedgers have an exogenous reason to be in

the market due to their line of business, i.e. they are exposed to the price of a commodity they

either produce or use as input and require insurance against adverse price movement. Hedgers tend

to be price takers as well as liquidity takers in that they are less driven by the current price but

17As with variance swaps, the lack of power for 90-day skewness swaps is due to the smaller sample size and
relatively larger number of observations that cover the recent financial crisis.
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by immediate operational concerns. Speculators and market makers, on the other hand, tend to

be large, sophisticated financial institutions, hedge funds or trading firms that opportunistically

engage in financial markets with a profit motive. As a consequence they are more selective regarding

at what price they enter a position and both can be broadly described as liquidity providers.

I make a distinction between outright speculators and market makers because they differ in the

way they manage their positions. The former will take outright option positions that expose them

to movements in the underlying without necessarily hedging any of the associated risk, while the

latter immediately lay off directional risk via offsetting futures or options positions. The motivation

of a speculator to enter an option position may be driven by his view that the option is cheap given

his outlook on the underlying, while market makers do not take any view of the underlying market

and instead attempt to profit from the spread they earn between buying and selling while keeping

their inventories balanced.

Critically to the channel I have in mind, market makers, but especially financial speculators,

differ from hedgers in one important aspect, namely that the former are much more prone than

the latter to external liquidity shocks such as changes in the ease of funding, losses in unrelated

positions or changes in margin requirements. This is turn is due to their use of leverage in derivatives

markets and their reliance on short-term financing such as repurchase agreements. A recent study

in commodity futures markets by Cheng et al. (2012) supports this notion. They find that during

the recent financial crisis, increases in equity market volatility led financial traders (hedge funds

and commodity index traders) to close out positions while some hedgers increased them. No such

effect was observable prior to the crisis.

Further, the recent literature is full of examples where availability of arbitrage capital (Hu et al.,

2010), margin requirements (Garleanu and Pedersen, 2011), funding liquidity (Brunnermeier and

Pedersen, 2009), bank leverage (Adrian and Shin, 2010) or intermediaries’ balance sheets (Adrian

et al., 2011a,b) affect asset prices in stock markets, individual equities, currencies or commodity

futures. Thus, this study can be seen along those lines as being concerned with the effect of liquidity

shocks such as changes in margins or funding access on the prices and returns of options.

In any financial market, financial traders face constraints with regards to the amount of capital

they can commit to any one position, the amount of losses they can tolerate before they are forced

to liquidate or the ease with which they can access additional funding. In the face of demand

pressure - be it in futures or options - from institutional investors (Bollen and Whaley, 2004), from

‘end-users’ (Garleanu et al., 2009) or from commercial hedgers (e.g. Hirshleifer, 1988), asset prices

will depend on the ability of arbitrageurs and market makers to raise funds and their willingness

to add to their existing positions to accommodate that demand given a price. This type of limits

to arbitrage is what I call broadly limits to market making.

Already Keynes (1930) posits in the Theory of Normal Backwardation that futures markets help

commodity producers to hedge part of their future production by selling it forward at prices deter-

mined today. Since futures are in zero net supply, someone else has to be long the corresponding

amount of contracts. In Keynes’ model, speculators fill this gap, but they demand compensation in
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the sense that the futures price must lie below the expected future spot price, thereby introducing a

futures risk premium into the market. The extant literature has generally found results supporting

the theory (Bessembinder, 1992; Bodie and Rosansky, 1980; De Roon et al., 2000).

The implicit assumption in Keynes’ theory, however, is that speculators must be risk averse

to some extent. Otherwise no risk premium would be necessary. Only recently has the literature

begun to explicitly model this.18 For instance, Etula (2010) and Acharya et al. (2011) both assume

VaR constraints for speculators/financial intermediaries, which makes them effectively risk averse,

giving rise to limits to arbitrage in both models.

The same principle should apply in the corresponding options market. Assume that instead of

via futures, hedgers would like to hedge their natural long position with short positions in options,

e.g. by buying puts or selling calls or any other strategy with a negative delta. Someone has to

write the put or buy the call, i.e. take a net long position via options. Financial traders, be they

outright speculators or market makers will fill that void, but may only do so under price concessions

from hedgers, just like in the case of futures. In this example, this should lead to more expensive

puts and/or cheaper calls, or simply more negative implied skewness.

But what exactly determines the extent of the price impact? Is it purely based on the amount

of hedging demand or does it depend on the aggregate positions of speculators? Assume there

exists currently a fixed level of hedging demand of short x units via options. In one case the

group of financial traders collectively has a large number of long and short positions relative to x,

while in another case the x units of long option positions constitute a large portion of their overall

positions. To evaluate the different pricing implications in those two situations, I investigate below

how measures of hedging demand and net speculator exposure relate to various measures of skewness

in the cross section of commodities.

2.4.2 Evidence from the Cross-Section

Figure 2.2 contains six scatter plots. The top row shows plots of the time series average of OHP, the

net short hedging demand in options, against the average of 3 measures of option-implied skewness,

the measure proposed by Bakshi et al. (2003, , BKM), the price of a risk reversal (quoted in % IV)

and a scaled version of the measure proposed by Neuberger (2011). The bottom row shows plots

against time series averages of measures of ex-post realized skewness (also proposed by Neuberger,

2011), against a scaled version of the skewness risk premium (SRP) (again Neuberger, 2011), and

finally a Newey-West adjusted t-statistics of this premium testing the significance of the premium

against being zero. All measures except for the risk reversal are as in Table 2.3.

From the top row, it appears that the level of implied skewness is significantly negatively related

to the extent to which hedgers on average hold short positions via options in the commodity. Thus

commodities in which hedgers generally hold larger short options positions, i.e. have a more positive

OHP, tend to have more negative implied skewness and vice versa. OHP seems to be similarly

18Hirshleifer (1988) uses quadratic utility for all agents in his model, but does not discuss the reasons for this
choice.
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related to ex-post realized skewness as well as the skewness risk premium, albeit in the case of

SRP rather weakly. We see that more net short hedging pressure via options is related to a more

positive SRP, indicating that implied skewness is on average more negative than realized skewness

for those commodities. For those commodities, OTM puts (calls) will have lower (higher) returns

on average. OHP explains around one third of total cross-sectional variation of implied skewness,

realized skewness and the SRP, respectively. This could be seen as supporting the notion that

prices are affected in a way that is consistent with demand pressure from hedgers. Note, however,

that had I chosen total open interest in the denominator instead of total hedging positions, the fit

in all plots would have been significantly worse.

In Figure 2.3, I show the corresponding plots against OSP, i.e. the net long exposure of spec-

ulators scaled by their (speculators) total exposure. We notice a at times dramatic increase in fit

across all six plots. An R-squared of 72 percent implies a correlation of over 84 percent in the

case of BKM implied skewness. Note that a positive reading of OSP implies that speculators are

long calls and short puts. This is on average correlated with negative skewness, i.e. low call prices

relative to higher put prices. Thus, it can be ruled out that speculators exert demand pressure.

Further, the direct comparison of hedging pressure with speculative exposure lends strong support

to the idea that it is the relative net exposure of speculators that matters for skewness rather than

pure hedging demand.

To avoid the criticism that the documented correlations are mechanical in some way, I plot the

implied skewness measures and premia against ex-post realized skewness in Figure 2.4. Naturally,

implied skewness and realized skewness are highly correlated. However, the correlations with the

premium measures are much lower than the corresponding values for OSP, which shows that the

latter contains important information for option prices as well as returns in commodity futures.

2.4.3 Possible Explanations

The cross-sectional findings presented in Figures 2.2 and 2.3 merely show a correlation and do not

prove causality, but they serve as a starting point. The fact that the net long options exposure of

speculators (OSP) relates in the observed fashion both to relative option prices (implied skewness)

as well as returns is potentially consistent with the notion that market makers are subject to

frictions such as capital constraints or risk limits (Bates, 2003; Bollen and Whaley, 2004), i.e.

limits to market making. This is under the assumption that market makers constitute a large

proportion of the group classified as speculators by the CFTC.

The cross-sectional results represent a level effect, i.e. commodities with on average more positive

OSP have permanently more negative skewness (and vice versa). If this was due to lack of available

capital alone, it raises the question why does new capital not flow into these markets over time, for

example a hedge fund could easily devote part of its capital to ‘help out’ existing market makers

and profit from the premium for skewness in options.

One potential explanation could be barriers to entry into market making. The Chicago Mercan-

tile Exchange (CME), for example, does indeed give preferential rates to the owners of its exchange
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seats, making it all but impossible to compute with seat owners at making markets as an outsider.

However, these seats are freely and publicly traded, so that one would expect that if capital was

all that was needed to remove these ‘mis-pricings’, over time well-capitalized traders would move

in to take advantage. A risk-based explanation seems much more plausible, which would cause

the inflow of new capital to stop at the point where risk-adjusted returns from market making in

general and the skewness premium in particular go to zero.

Garleanu et al. (2009) suggest the risk of imperfect hedging as culprit. They formalize this

notion in a model that incorporates specific frictions that market makers face when trying to

optimally hedge their book over time. Most notably, in the case of skewness, which is what we

are concerned with here, their model finds that it is jump risk in the underlying asset that makes

hedging imperfect and thus costly and risky for market makers. Empirically, they show that market

maker positions weighted by their exposure to jumps do indeed explain some of the variation in

implied skewness. However, they only conduct this test for the equity market index on a relatively

short sample period.

Further note that under delta-hedging, jumps in the underlying inflict losses only on written

options, while jumps always lead to gains on bought options regardless of direction. Thus, market

makers being long delta-hedged calls and short puts face a reduced jump risk on their portfolio,

as most jump sizes lead to small gains or losses and large upward jumps even to large gains, while

only very large negative jumps result in large losses. Secondly, for an observed level of OSP, market

makers may at different times tilt more heavily towards long calls rather than short puts and vice

versa, leading to variations in the actual exposure to jumps. This is not to say that jumps do not

play a role, but other mechanisms may be better suited to explain what we observe in the present

context.

2.4.4 A Theory of Liquidation Risk

I propose an explanation based on the idea that financial traders, especially outright speculators

tend to be disproportionately affected by exogenous liquidity shocks such as deterioration in funding

liquidity or increase in margin requirements. This is largely owed to their use of leverage and their

preference for short-term financing. Commercial hedgers face this problem much less due to their

natural hedge position. As a consequence, financial traders occasionally are forced out of their

positions in a hurry following a liquidity shock while hedgers are not.

Initially a given shock may only affect a small proportion of financial traders, but the fear

of additional selling may lead to preemptive selling by other traders much like in the model of

Bernardo and Welch (2004), where the fear of a liquidity run alone can cause one. In addition, the

first wave of selling will affect prices adversely, so that other traders with similar exposures that

initially were not affected may now face losses and/or margin calls and be forced to cover as well

in a reinforcing loss spiral.

The severity of the liquidation within a given (options) market will be a function of the size

of the initial net positions of speculators relative to overall open interest, and more importantly
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relative to the capacity of (yet) unaffected liquidity providers. As speculators reduce their positions,

it generally falls to market makers and other arbitrageurs to pick up the slack. But also the

likelihood that a forced liquidation will occur increases with the initial level of the positions of

financial traders. More unbalanced inventories of speculators, or liquidity providers more generally,

may indicate that they are close to hitting inventory, margin and/or risk constraints even in the

absence of an external shock. This increases the chance that some are forced to liquidate their

positions for a shock of a given size.

The finance literature knows of a number of instances where the presence of speculators has the

ability to destabilize markets, for example, via the carry trade in currency markets. Brunnermeier

et al. (2008) find that currencies that speculators tend to herd into are subject to crash risk, i.e. a

forced liquidation out of their positions due to some external shock, e.g. losses in other markets. The

small size and generally much lower liquidity of option markets does not mix well with one group

of traders having to exit in a hurry. Price effects will be magnified in this case. More specifically,

assume that initially, speculators were net long in options, having bought calls and sold puts. Upon

the arrival of some shock, speculators are forced to drastically reduce their positions, buying back

puts and selling calls. Other liquidity providers would need to sell puts and buy the calls. Given

their aforementioned constraints, this will lead to a price impact pushing up put prices and reducing

call prices. This price pressure, however, should vanish with time as liquidity providers re-balance

their inventories and additional capital moves in to take advantage of prices being out of line.

Market makers face some additional complications when deciding whether to step in to absorb

inventory during liquidations, especially in option markets. First of all, it is not always immediately

clear to market participants what the cause of some order imbalance may be; the order flow may be

informed instead of liquidity driven. Second, the perceived dislocation in prices, e.g. of OTM puts

relative to OTM calls, depends on an option pricing model exposing option market makers to model

risk. Third, given the relatively wide bid/ask spreads in options it is almost impossible to shut

down an options book without incurring prohibitive costs, should the market maker himself become

subject to funding problems. Lastly, and interesting from a strategic point of view, the question

at what price to absorb the order flow will depend on expectations regarding the total liquidation

volume and the number and size of other market makers available as well as their expectations and

so on. Somewhat related, Cheng et al. (2012) find that during the recent financial crisis, it was

in fact large commercial traders that assumed the roles of liquidity providers and added positions

whenever the volatility index VIX was rising while hedge funds were doing the opposite.

Note that forced selling can potentially take place exclusively within the options market without

greatly affecting the price of the underlying futures contracts. However, Table 2.1 suggests that

speculative positions between options and underlying futures are positively correlated for most

commodities in our sample. Thus a liquidity shock may also cause forced selling of long futures

contracts which could very well result in a downward jump. Alternatively, the jump may occur

exogenously and cause forced selling by speculators in both markets. Thus, the jump risk of

Garleanu et al. (2009) can be a cause as well as consequence of liquidation risk and generally only
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high-frequency data would allow the researcher disentangle the two.

Another interesting question concerns the number of traders that are leaning heavily to, say, the

long side, holding the amount of total net long exposure constant. If outright speculators are highly

concentrated, this represents another dimension of the risk of liquidations occurring. Fewer, but

larger traders may be especially desperate to liquidate given a liquidity shock, increasing the price

impact. When it is already mostly market makers that hold those concentrated positions, it may

affect their ability to take on additional exposure. Further, allowing for strategic considerations,

those knowing that they face less competition in a market may strategically offer to trade at less

favorable prices (Oehmke, 2009; Fardeau, 2011). Both channels affect prices in the same way.

In equilibrium, the consequences of liquidation events, in particular the potentially large tempo-

rary price impact, will be anticipated and priced in by rational traders. Therefore, option prices as

well as returns should respond to the probability and the potential severity of a forced liquidation

in the options market. Below, I suggest a number of hypotheses that attempt to channel the main

points of the discussion into empirically verifiable statements.

By itself, the finding that OSP relates to implied skewness and the skewness risk premium in

the cross-section does not provide evidence that is exclusive to the notion of liquidation risk. For

instance, it is possible that some unknown factor causes both the observed cross-sectional patterns

in the skewness measures as well as different propensities by commercial traders to use options to

hedge different commodities or by speculators to implement their views. Differences in individual

industry or market structure are potential candidates. In order to build additional support for

limits to market making in general and the relevance of liquidation risk in particular, I investigate

in Section 2.5 how the price of skewness (i.e. option-implied skewness) as well as the return on

skewness (i.e. the skewness risk premium) is affected along the following dimensions over time:

H1: The current net long position of financial traders in options (OSP) is negatively

related to current option-implied skewness, but has little impact on future realized

skewness, giving rise to a premium.

H2: Under normal market conditions, (short-term) price pressure does not affect the

price of options.

H3: During a liquidation event, it is financial traders, not hegders, that face price

pressure.

H4: Deteriorations in market-wide funding liquidity conditions magnify the effects of

OSP in H1, as the likelihood of and price impact given forced selling increases.

H5: If the net exposure on the long (short) side of the market is concentrated among

fewer traders, implied skewness will be more negative, and the premium more

positive.

In summary, the notion of liquidation risk driving the skewness risk premium still makes use

of the assumption that the market making sector cannot absorb infinite amounts of demand in
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the short run, as such it should be seen as an extension of a more general view that limits to

market making affect option price and returns (Bollen and Whaley, 2004). Hypotheses (H1) and

(H5) could be as much a consequence of the risk of liquidation as well as of a market making sector

that is generally constrained with regards to inventory capacity, capital and internal position limits.

However, as mentioned in the discussion of the cross-sectional evidence, the notion of purely capital-

constrained market makers does not explain why those price effects should be permanent, absent

insurmountably large barriers to entry. Garleanu et al. (2009) provide a risk-based explanation

that focuses on jumps in the underlying asset, while I suggest another risk that is independent of

such jumps occurring. Finally, the idea of liquidation risk differs also in the differential treatment

of hedgers’ vs. speculators’ exposure due to their different sensitivity towards market-wide liquidity

conditions. Thus, previous explanations do not directly speak to (H3).

2.5 Time Series Results

In Section 2.3.3, I provide evidence of substantial dispersion in the average skewness across com-

modities. The cross-sectional results suggest that the net option exposure of speculators may play

a role in the price of options as well as their returns. This is visible in Figure 2.3 for both option-

implied skewness as well as the risk premium for skewness. In this section, I focus on the time series

dynamics of skewness rather than cross-sectional averages using a large panel data set. The skew-

ness measures as well as the independent variables are de-meaned separately for each commodity

in order to filter out any level effects that may obfuscate the results.

2.5.1 Design of the Time Series Analysis

With the exception of Table 2.4, each set of results in this section is presented in the form of two

panels, one for ex-ante implied skewness and one for the ex-post realized skewness risk premium, or

to be precise, the transformations defined in Equations (2.10) and (2.12). By taking the difference

between the coefficients within each column, the corresponding coefficient for the realized skewness

can be recovered. This can be seen in Table 2.4, which for the purpose of demonstration contains

the results for realized skewness as well. Minor differences are due to the fact that I winsorize each

variable including the skewness measures separately (at the 5th and 95th percentile).

If a factor that affects implied skewness significantly does not show significantly (with the

opposite sign) in the results for the skewness premium, it means that realized skewness was affected

in a similar fashion as implied skewness, leading to the effect being insignificant for the difference,

i.e. the premium. Thus, the factor seems to be properly priced into option prices and its effects on

skewness expected and option returns are not affected. If, however, a factor affects both implied

skewness and the premium significantly (with opposite signs), we conclude that the factor does not

influence realized skewness and thus option prices appear to include a premium in response to that

effect that is independent of the physical return distribution of the underlying asset. In the latter

case, the effect would thus seem to be driven by financial frictions in the options market.
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All dependent variables that are used to explain skewness are known prior to the time window

where measurement of implied skewness, i.e. the Q-measure expectation of future realized skewness,

takes place. Consequently, they are also known prior to the realization of actual skewness over the

corresponding time period. Thus, all regressions have predictive character and, just like forecasting

regressions for equity returns, generally low R2. The choice of 3-month horizons constitutes a

compromise between having timely predictors and a large enough sample on the one hand and less

noise in the realized measure on the other.

Table 2.4 depicts the coefficients for a number of control variables that are included in each

regression that follow, but have been omitted in all of the following tables to conserve space and

bring into focus the key results. These are the percentage change in futures open interest over the

last 6 month, the lagged 3-month return of the underlying futures contract (i.e. momentum), the

current convenience yield that is implied by the front futures contract and the futures contract

that is closest to a 6-month maturity, and the most recently available realized skewness measured

over 3 months. Growth in open interest may be driven by new speculators or hedgers coming

to the market, potentially leading to a price impact on options. The inclusion of the next two

variables is motivated by the existing literature. Brunnermeier et al. (2008) use momentum in their

analysis of skewness in carry trade returns. The convenience yield reflects the potential scarcity of

the physical commodity and is affected by the probability of low inventories (Gorton et al., 2007).

It seems natural to assume that skewness would react to the probability of low-inventory, high-

price states. These two variables add some explanatory power to the regression, but are mostly

insignificant. Growth in open interest increases both implied as well as realized skewness by a

similar extent, leaving the SRP unchanged. Finally, lagged realized skewness has a very strongly

positive effect on both implied and realized skewness, with implied skewness being affected even

more. The end result is a significantly negative effect on the premium.

Further, both the speculator net exposure in options (OSP) and the concentration ratio of net

long traders (CRL) have strong effects on the relative pricing of options. The meaning of these

results will be discussed below in separate tables. The regressions shown in the following tables

that discuss different aspects of OSP do include CRL as a control, but OSP is only included when

specifically indicated (and vice versa).

2.5.2 The Effect of Demand Pressure

The literature on commodity futures (e.g. Bessembinder and Chan, 1992) finds the futures risk

premia to be predictable by hedging pressure. Ceteris paribus, higher pressure leads to greater

price concessions by hedgers in the futures market and increases the return that speculators can

expect on average. That is, the demand by hedgers not speculators drives returns in futures. Here,

I test if demand pressure variables affect any of the skewness measures. My analysis includes the

hedging pressure and speculators’ net exposure present in the underlying futures market as well as

the equivalent measures in the futures options market.

Table 2.5 shows the results from regressing implied skewness as well as the skewness risk pre-
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mium on a sequence of demand pressure variables. The bottom three lines indicate the dimensions

of the sample and the number of non-missing observations by column. Within each column, the

sample is identical for the two panels.

The first two columns indicate that neither hedging pressure (HP) nor the scaled net exposure

of speculators (SP) have any affect on skewness. More interesting are the following 2 columns

containing the corresponding measures based on the option market, OHP and OSP. Both have a

significantly negative impact on implied skewness and a positive impact on the premium of nearly

identical magnitude, which means that realized skewness is not affected. The sign of the effects

agree with the results shown in the scatter plots of Figures 2.2 and 2.3. Not only do commodities

with on average high levels of OSP have more negative skewness on average, this table provides

evidence that commodity skewness reacts to variations in the level of OSP over time for a given

commodity. Further, because the effect is absent for realized skewness it points towards frictions

in the options market. As a consequence, OTM puts will exhibit lower returns and calls relatively

higher returns in times when OSP is high, i.e. when speculators as a group have written a lot of

puts and bought a lot of calls as a share of their total overall positions.

A key result is visible in Column 5, containing both demand pressure variables for the options

market. Notably, OSP dominates OHP both for implied skewness as well as the risk premium,

indicating that it matters who and how the hedging pressure is absorbed. Column 6 conducts a

robustness check splitting OSP conditional on its sign. While for implied skewness, a difference

in slope is discernible, this effect vanishes for the premium. Table 2.5 thus supports the findings

depicted in the scatter plots and alleviates concerns about an omitted variable that drives both

average trader positions and skewness. The findings also confirm hypothesis (H1).

In unreported results, I also test a slightly modified version of OSP, which is scaled not by total

speculative positions, but by total open interest. This version does generally perform equally well,

but importantly it is dominated by the original OSP when explaining the skewness risk premium.

2.5.3 Unconditional Price Pressure

The literature on hedging pressure in futures (De Roon et al., 2000; Szymanowska et al., 2011)

is careful to delineate permanent effects of the level of hedging demand from temporary effects

from changes in hedging demand, called price pressure. Equal care should be taken in the present

context to understand if temporary effect from changes in the positions of traders drive option

prices. Table 2.6 directly compares the effects of the level with those from changes in demand for

options. ∆OHPt−m,t (∆OSPt−m,t) represent the change in each measure over the last m ∈ {1, 3}
months.

Controlling for the level, changes in hedging demand affect neither the price of skewness nor the

premium. Surprisingly, changes in the net exposure of speculators does have a significant effect,

at least for 1-month changes. As with levels, the effect due to changes in OSP dominates the

OHP-related measure and the sign is notably in the opposite direction as for levels.

The results in Table 2.6 suggest that as speculators as a group buy call options and/or sell
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put options the price of former temporarily increases and the price of the latter decreases. The

comparison of the two time horizons shows that the effect does fade with time. This seems to

suggest that shifts in demand from speculators have a significant impact and that market makers

appear to be slow in accommodating these longer-term order imbalances, which in turn provides

additional evidence for the existence of limits to market making.

2.5.4 Reversal vs. Continuation of Demand

Section 2.5.3 does not directly test hypotheses H2 and H3, because the price pressure variables are

computed unconditionally. Instead, we need to ask whether a liquidation event is currently taking

place. Given the low frequency of the position data (weekly) and end-of-day mid-quotes in options,

this is not directly possible.

However, one may be able to identify forced selling indirectly by conditioning on the previously

existing sign and level of demand. A group of traders is almost certainly not in liquidation mode if

they are observed to add to their positions. Seeing a reversal in the size of positions, however, can

occasionally be due to forced selling. This is motivated by the literature on currency carry trades

(e.g. Brunnermeier et al., 2008) where speculators add to their positions in a high-yielding currency

in a slow and orderly fashion to avoid price impact, until their positions become rather one-sided. At

that point any small external shock (bad macroeconomic news, central bank intervention, margin

calls) sends them collectively scrambling for the exits. As in the model of Bernardo and Welch

(2004), the fear of such a liquidity driven run alone may be cause enough and this fear is largely

a function of the imbalance in speculators positions. To test this in the present context, I split

the price pressure variables into 2 parts, conditional on whether the change in positions adds to

existing exposure by that trader group, i.e. represents a continuation of a trend, or if the change

subtracts from existing positions, i.e. represents a reversal.

Table 2.7 presents those results. Quite remarkably, in the case of changes in OSP, I find that

the price pressure effect documented in Table 2.6 is rather asymmetric and entirely concentrated

in reversions of speculative demand rather than continuations. This nicely fits the aforementioned

analogy with carry trades and is direct evidence that at least occasionally liquidations of speculative

positions are accompanied by a significant price impact, which in turn once again suggests that

market makers face limitations in the size of order imbalance they are willing or able to accommo-

date in the short run. At the 3-month horizon, the effect has vanished. The effects due to the level

of speculative exposure and those due to a reversal in this exposure push prices the same way. As

speculators attempt to cover short positions in puts and sell calls prices move against them making

puts even more expensive and calls even cheaper.

Note that these results do not suggest that every time speculators exit existing positions, it

happens in a disorderly fashion with price impact. Most of the time, it is in the best interest of

rational financial traders to keep the price impact to a minimum. But in order to get to the observed

average effect in Column 2, the less often forced liquidations occur, the more powerful they must

be when they happen. This in a nutshell is what the risk emanating from forced liquidations of
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speculative positions is about. Given a certain level of speculative net long exposure, holder of

net long positions know that with a certain probability they may be forced to sell at temporarily

depressed prices and incorporate this probability into the price they are willing to enter the position

to begin with.

2.5.5 The Effect of Financial Constraints

The recent literature has shown that financial intermediaries, and as a result asset prices, are

sensitive to changes in their ease to access funding, i.e. credit (Adrian and Shin, 2010; Adrian

et al., 2011b). Acharya et al. (2011) and Etula (2010) show that the balance sheets of broker-dealer

firms offer a good glimpse at the their ability to engage in arbitrage or market making in the context

of commodity futures. To test, financial constraints and their effect on option skewness, I use two

of the measures they propose, namely the year-over-year change in the effective risk aversion dΦ̂ of

broker-dealers as in Etula (2010), and the related measure of growth of household assets relative to

the growth of broker-dealer assets employed by Acharya et al. (2011), both on a 12-month rolling

basis. The data are extracted from the quarterly flow of funds database of the Federal Reserve

Board. For both measures, higher values mean a deterioration in financial conditions. In a related

study, Adrian et al. (2011a) relate the risk premium of the U.S. dollar against other currencies to yet

another set of market-wide proxies for the ease of funding of financial intermediaries. Of those I pick

two, namely the year-over-year change in the net issuance of commercial paper and (the 3-month

moving average of) the log ratio of bond issuance of financial firms relative to non-financial firms.

Adrian et al. (2011a) interpret the former as a measure of short-term funding liquidity and the

latter as one of medium and longer term funding liquidity. For these two, higher values represent

improvement in general financial conditions.

The first 4 columns of Table 2.8 show how skewness and premium are affected by these four

proxies for the funding ability of financial intermediaries. At least in the case of first two, I find

that deteriorating balance sheets of broker-dealers seem to affect implied skewness negatively, i.e.

puts rise in price relative to calls, and the skewness risk premium positively by about the same

magnitude. It seems plausible to assume that in times of less credit availability, realized returns of

financial assets may be more negatively skewed as well. Notably, comparing implied skewness and

the risk premium, I find that this has historically not been the case for commodities. Almost all of

the price effect translates into a premium.

Rather than in the pure effects from changes in funding liquidity, I am more interested whether

the effect of OSP is amplified under deteriorating conditions testing hypothesis (H4). This is what

the next 4 columns in Table 2.8 try to answer by including the interaction terms between proxies

of financial constraints and OSP.

I find that recent increases in financial constraints for broker-dealers and financial institutions

more generally amplify the effect of OSP in the case of implied skewness. This makes intuitively

sense, as one would expect that market makers price in the increased likelihood of liquidation events

in the options market for given level of speculative net exposure since precisely deteriorations in
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the ease of funding are prime reasons for speculators, mostly financial institutions and hedge funds

themselves, to be forced to liquidate positions. When it comes to the effect on options net of the

realized skewness, i.e. the skewness premium, evidence for a conditional increase in premium are

hard to find. It appears that half or more of the magnifying effect present in implied skewness

also affects the realized skewness, leaving only insignificant amounts to the premium. Thus, while

prices are affected in intuitive ways, the results for the skewness risk premium and thus option

returns are negative. I will return to this question in Section 2.6, where I do obtain evidence that

option returns are indeed significantly impacted by the the interaction between OSP and funding

constraints.

2.5.6 The Effect of Trader Concentration

Finally, in order to test the last hypothesis (H5) is to consider the proportion of net long (short)

open interest that is concentrated in the hands of the largest N traders in that market after netting

across all futures and options positions individually for each trader. When much of net open interest

is concentrated among the largest traders it suggests that those large traders may be near or at

their limits with regards to the exposure they are allowed or willing to have and that they are more

prone to changes in funding liquidity.

Table 2.9 contains a sequence of regression results relating both skewness measures to a set

of variables of trader concentration. The first 3 columns show that the level of concentration

appears only to play a role on the long side of the market. The effect there is significantly negative

for implied skewness and even more significant for the premium. In other words, in times when

concentration is particularly high on the long side, puts are particularly expensive relative to calls

reflecting the higher likelihood of forced selling coming from that side, or the lack of additional

capacity by market makers holding concentrated and unbalanced positions on that side.

Using levels of concentration may be able to capture persistent effects, but may fail to uncover

transitory effects. In a similar fashion as some demand pressure has only a temporary effect on

prices until the demand is absorbed, it may be the case that it takes a small number of traders some

time to adjust their portfolios to demand shocks. The last 4 columns test for temporary effects.

Notably, after controlling for level effects, I find that skewness does react to changes in trader

concentration on the short side, but that the effect is only temporary. It is not immediately clear,

why the effects are permanent for one side and temporary for the other. Given that the effect from

changes in short concentration is still about as strong for 3-month changes as for 1-month changes

would indicate that it takes a significant amount of time for prices to adjust back to normal.

Overall, I find some support for a permanent effect for concentration on the long side that

supports a risk-based explanation such as liquidation risk. On the short side, the effect seems to be

slowly decaying after a change in trader concentration, which would indicate that a slow adjustment

of capital is taking place. Both results, however, clearly show that the concentration of traders

matters for both the pricing and returns of options.
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2.6 Returns to Portfolio Strategies

The results in Section 2.5 provide evidence that liquidation risk and other limits to market making

affect both the price of skewness as well the skewness risk premium over time in commodities. In

this section, I want to focus on two of the strongest effects. Speculative option net exposure (OSP)

and the long net concentration ratio (CRL) have predictive power for implied skewness (negatively)

and the skewness risk premium (positively), but seem not to affect realized skewness. This suggests

that in times when current exposure in options by speculators is positive and concentration of long

futures positions is high, OTM put options will yield lower returns and OTM calls relatively higher

returns on average.

Unfortunately, the non-parametric nature of the measures employed, not to mention the non-

linear transformation to limit excess kurtosis, make it hard to judge how economically important

these factors really are. Can a trader create abnormal returns by taking on exposure to skewness

in commodities based on some dimension of limits to market making? And second, what kind of

risks does he subject himself to?

As for the second question, consider a trader that aims to exploit the predictive power of the

‘OSP’ variable. To profit, he would go long (short) skewness in commodities that, at the current

time, have above-normal (below-normal) levels of speculative long exposure in options. Since his

positions would align with those of the existing speculators and/or market makers, he essentially

represents the marginal investor on the speculators’ side. As such, he should be particularly vulner-

able to shocks to the funding constraints of financial traders. If those investors on the same side of

the trade as himself are forced to liquidate, his position will suffer accordingly and may be subject

to margin calls. Thus, the return from such a strategy exhibit features of carry trade returns in that

the traders wins if no liquidation or reversal of positions occurs. Alternatively, one can consider

such a strategy as one of liquidity provision, as the ultimate cause of the current price of skewness

is that a given hedging demand is met by insufficient liquidity on the market makers’/speculators’

side.

2.6.1 Practical Implementation

The most direct way to implement these strategy would be with long and short positions in skewness

swaps. Unfortunately, the use of skewness swaps is, at least at present, largely academic as they

are not offered by investment banks. Even variance swaps, which are available over the counter,

will likely be available for a small number of equity indices only, not for the cross section of stocks

or commodities.

It is possible to form long/short portfolios of skewness swaps synthesized from options, but it

is unclear of what magnitude the bid/ask spreads would be in practice and further, given the large

number of short option positions that need to be taken, what the margin requirements would be. In

addition, the replication method of KNS requires continuous re-balancing in the underlying futures

contract. If one chooses instead to re-balance daily, the floating leg, i.e. the realized skewness,
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becomes very noisy for short periods of time. After all, in Section 2.5 I choose 90-day maturities

precisely because shorter maturities of e.g. one month are unreliable. All these issues make it

difficult to compute returns on skewness swaps in a set up of overlapping, re-balancing portfolios.19

Instead, I form relatively simple portfolios made of options in an attempt to catch the basic

notion of skewness. Risk reversals, i.e. a long position in a OTM call option and a short position

in a put option with the same absolute delta, are well-known in the realm of currency options and

widely available over-the-counter (see e.g. Brunnermeier et al., 2008). A risk reversal based on

options with an absolute delta of .25 each, carries a total delta of +.50. To neutralize the valuation

effect from a directional move in the underlying, I enter an offsetting position in the underlying

futures contract.20

Using delta-neutral risk reversals (DNRR) as the asset of choice, I form zero net investment

portfolios that are long and short an equal dollar amount of DNRRs in each commodity. The port-

folios are held for one month after which they are replaced by new DNRRs of the same commodities,

but rebalanced to allocate equal dollar amounts between positions once more. This process is re-

peated until the underlying option series are close to expiration. To reduce standard errors of this

strategy, several partially overlapping portfolios are held at each point in time, much in the way

momentum portfolios of stocks are constructed (Jegadeesh and Titman, 1993).

The decision whether a given commodity receives a positive or negative weight in the portfolio

is based on the relative rank after sorting the cross-section of commodities available at the time

of formation according to the criterion, OSP or CRL respectively. The bottom third receives a

negative, the top a positive and the middle a zero weight. Obviously, more intricate weighting

schemes are possible, but I will focus in the most simple ones here.

To compute returns in a more realistic fashion, assumptions about margin requirements have to

be made. The rules governing margins of futures and options are complex and change constantly

with market states, regulatory environments and over time more generally.21 For the case of a

delta-hedged risk reversal, margins are required for the short side of the option trade and for the

futures contract. I conservatively assume that a margin buffer of 10 percent of the nominal exposure

in the futures contract has to be maintained. In most commodities and in most periods, this will

exceed actual margin requirements22.

On the part of the option positions, I assume that the required margin is 300 percent of the

option that is written for the .25-delta risk reversal. For the more extreme .10-delta RRs, the

option price is small relative to potential changes in value. Example calculations here suggest that

about 6 times the short option value is required.23

19In unreported tests, I do form portfolios of skewness swaps, albeit without intermittent re-balancing. The signs
and significances do line up with the results reported below.

20Bali and Murray (2012) use a similar construct, which they call ‘skewness asset’, but adjust the weights of the
put in order to make the asset both delta and vega-neutral.

21The CBOE provides numerous examples for margin requirements on option strategies e.g. in
http://www.cboe.com/LearnCenter/pdf/margin2-00.pdf

22http://www.cmegroup.com/clearing/margins/ provides current information on futures margins on the CME.
23I used http://www.cboe.com/tradtool/mcalc/default.aspx for the example calculations.
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2.6.2 Construction of Factor-Mimicking Portfolios

One of the goals of the portfolio formation is to gage potential returns in excess of known risk

factors. As mentioned previously, it is likely that the strategies are sensitive to the availability of

capital to arbitrageurs or the financial system in general and subsequent effects on funding liquidity

and asset liquidity (Brunnermeier and Pedersen, 2009). In this context, I investigate if a number

of proxies known to be related to capital abundance in the financial system can partially explain

the strategies’ returns. I use monthly changes in the U.S. Treasury-derived measure of arbitrage

capital by Hu et al. (2010) as well two of the balance sheet measures used in Adrian et al. (2011a) to

explain the risk premium of the U.S. dollar, namely the (year-over-year) change in U.S. commercial

paper outstanding24 and the log ratio of financial bond issuances relative to non-financial bond

issuances at the monthly frequency.

To keep the meaning of the intercept term intact as a measure of performance, I report results

based on factor-mimicking portfolios, i.e. I replace the factors with achievable returns from trade-

able assets. These are constructed as follows. Every month t, I regress the returns of each common

stock in the CRSP universe over the previous 36 months on the 4 Fama-French factors and one of

the liquidity factors Ft.

Ri,τ = γ0 + βFi,tFt + βMi,tR
M
τ + βSMB

i,t RSMB
τ + βHML

i,t RHML
τ + βUMD

i,t RUMD
τ + εi,τ (2.15)

where τ ∈ t− 36, . . . , t− 1. This yields a factor sensitivity for each stock, i.e. its pre-ranking

beta β̂Fi,t. In month t, stocks are sorted into ten deciles according to their pre-formation beta and

returns are value-weighted to yield a continuous time series of returns for each decile. For simplicity,

I choose the factor-mimicking portfolio as the strategy that is long the stocks in decile 10 and short

those in decile 1. Alternatively, one could let the data decide how much weight to put on each of

the deciles, performing a regression that uses the factor on the left and the 10 decile returns on the

right.

For robustness, I conduct two tests for each factor to make sure the portfolio formed in the

above manner does indeed pick up some essential part of the risk factor. First, I confirm that post-

ranking betas of the 10 deciles are meaningfully different from each other and monotonic. Second,

I regress the factor itself on its mimicking portfolio, once with and once without the control factors.

I find the R-squares of these time series regressions to be remarkable high, on average on the order

of 50 percent. This gives me confidence that the factor-mimicking portfolios contain much more

than just noise.

2.6.3 Portfolio Results

Using the method described above, I construct a time series of portfolio returns based on the key

variables that measure some aspect of limits to market making. Table 2.10 shows those results for

24Adrian et al. (2011a) use commercial paper of financial firms only, while I used all commercial paper due to data
limitation. For the time period where both were available to me, both time series tracked each other closely.
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the net exposure of speculators in options (OSP); table 2.11 shows the same results for the trader

concentration on the long side based on combined net positions (CRL). The analysis is done for 2

levels of delta, ∆ = .25 and ∆ = .10. Using monthly re-balancing there are 2 overlapping portfolios

at any point in time. For each commodity, the risk reversals are based on an expiration that lies

between 2 and 4 months after first formation.

A few things jump out. First, for both conditioning variables, the raw returns are higher when

using options that are farther out of the money, presumably owing to their increased leverage

and thus exposure to the difference in skewness. Second, the standard equity risk factor do not

contribute much to explaining the portfolio returns, on the order of 2 to 3 percent in each case.

The OSP-based strategy loads weakly on the market return and possibly HML, while CRL-based

returns appear to be related to momentum in equity returns and, again weakly, the market.

Table 2.10 shows that the raw returns for the OSP-based strategies amount to up to 2.5 percent

per month for lower delta options and about half that for the more conservative choice of option

delta. Risk-adjusted returns are slightly lower, but still strongly significant even when controlling

for the funding liquidity-related risk factors. Where those factor loadings are significant they all

have the intuitively correct sign, pointing towards a positive exposure to aspects of funding liquidity.

Note that by construction, higher values of HPW (or its factor-mimicking portfolio) signify times

of lower funding liquidity. A positive loading thus means that the return on the strategy is higher

during times of lower arbitrage capital abundance. The other 2 factors are concerned with the

amount of funding available to (financial) firms and higher values mean better funding liquidity for

those institutions. Thus, a negative loading in these cases reinforces the result for the HPW factor.

Maximum R-square reaches a respectable 11 percent.

Table 2.11 reveals raw returns of between 1.3 and 1.6 percent for strategies based on CRL. As

with OSP, the liquidity factors all receive loadings with the correct sign and are almost always

significant. Risk-adjusted returns fall to around 1 percent per month and R-square reaches a

maximum of almost 14 percent.

Taken together, we see strong evidence that the skewness risk premium is in part ‘earned’ by

being exposed to liquidity-related risk factors. Unfortunately, the dataset underlying this analysis

does not provide bid and ask quotes, only mid-quotes. Thus, it is hard to judge how much of

the observed abnormal returns can be realistically attained by arbitrageurs. It works in favor of a

non-zero α, however, that in a delta-hedged risk reversal, the proportion of capital actually used

for the options is relatively small given the large position in the futures contract. Transactions

costs in futures are generally on the order of a few basis points only. Secondly, effective spreads in

option markets tend to much lower than posted spreads seem to indicate.

Further, the strategy does not fully reflect the situation that market makers are in. They

enter positions by earning half the spread and can either hold it, properly hedged as part of their

larger book until maturity, or exit the position again earning half the spread. The main point of

this analysis, however, is not to prove that these strategies maintain a significant α in a highly

stylized simulation, rather that they appear to load on risk factors that are associated with the
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general health of the financial intermediary sector. While I was unable to find robust evidence in

Section 2.5.5 that the skewness premium, and thus option returns, are sensitive to the interaction

between OSP and funding constraints, the results here do support this hypothesis.

2.7 Conclusion

Asset pricing models have some difficulty to rationalize the abnormal returns that have been found

for a number of strategies involving equity and equity index options. Among these, the out-of-the-

money index put option puzzle has received the most attention (see, among others, Bondarenko,

2003; Liu et al., 2005; Benzoni et al., 2011). Rather than assuming unrealistically large risk aversion

parameters or biased beliefs, a small strand of the literature searches for alternative explanations

in the micro structure of the options market, more specifically, in the process of financial interme-

diation fulfilled by market makers and arbitrageurs more generally (Bates, 2003). Those studies

provide evidence that the market making sector faces capital constraints and as a consequence of

upward sloping supply curves, option prices diverge from frictionless no-arbitrage prices (Bollen

and Whaley, 2004).

Using a newly proposed measure of realized skewness (Kozhan et al., 2011), unlike the previous

literature I am able to a) exclude informed demand and adverse selection as alternate cause of

the price effect and b) link option returns directly to demand effects for the first time. Further,

analyzing the market for commodity futures options, I find persistent price effects of hedging

demand on options that depend not purely on the size of hedging demand, but instead on the

positions of the financial traders that accommodate this demand. A larger net long exposure of

speculators in options leads to more negative implied skewness, i.e. puts being more expensive and

calls being less expensive, and a positive skewness risk premium, i.e. lower returns to puts and

higher returns to calls. A higher concentration of net holdings among traders on the long side has

the same effect.

I attribute these effects to an increase in liquidation risk, i.e. the possibility that financial traders

are forced to liquidate their holdings following an external liquidity-related shock such as changes

in margins, losses in other markets or worsening funding conditions, causing temporarily adverse

price movements comparable to liquidity runs (Bernardo and Welch, 2004) and carry trade unwinds

(Brunnermeier et al., 2008). I also discover evidence of the impact of episodes of forced selling in

option prices and returns.

In the final part of the paper, I construct portfolios that are aimed at theoretically capturing the

skewness risk premium and find monthly raw returns of 2.5 and 1.3 percent, respectively. Lastly,

using factor-mimicking portfolios I show that parts of the returns are compensation for exposure

to market-wide funding liquidity.
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Table 2.1: Sample Overview

This table lists all U.S.-exchange listed commodities in the sample. The table contains information on the first and

last expiration month available and the number of option series which have sufficient data allowing the computation

of implied and realized measures up to a time to maturity of at least 90 days. The next 3 columns depict the

interquartile range of the main variable of interest taken from the COT reports, OSP, the long net exposure of

speculators (delta-weighted and scaled by speculators’ total open interest). The last column shows the time series

correlation of OSP with the corresponding measure for the underlying futures market.

Commodity Futures Options Data OSP Measure

Begin End #Obs Q1 Q2 Q3 ρSP

Agricultural

Soybean Oil 1989/07 2010/09 139 -39% -21% -9% -3%
Corn 1989/07 2010/09 108 -27% -12% -4% 2%
Oats 1991/03 2010/07 78 -45% -15% 7% 11%
Rough Rice 1992/09 2010/09 108 -18% -3% 15% 9%
Soybeans 1989/07 2010/09 150 -13% -3% 2% -44%
Soybean Meal 1989/07 2010/09 164 -25% -10% 5% -6%
Wheat (CBOT) 1989/07 2010/09 107 -9% 2% 10% -25%

Energy

Crude Oil (WTI) 1990/01 2010/09 248 5% 9% 15% 3%
Heating Oil No. 2 1990/01 2010/09 219 -8% -3% 1% -20%
Unl. Gasoline 1990/04 2006/12 192 -5% 1% 10% -22%
Natural Gas 1993/02 2010/09 204 -4% 0% 5% 4%
RBOB Gasoline 2007/03 2010/09 42 -2% 0% 3% 34%

Meat

Feeder Cattle 1987/04 2010/08 186 23% 37% 49% 29%
Live Cattle 1991/04 2010/08 117 28% 39% 56% 37%
Lean Hogs 1997/02 2010/08 104 17% 25% 41% 43%
Pork Bellies 1987/02 2008/02 79 12% 25% 30% 68%

Metal

Gold (NYMEX) 1989/06 2010/08 128 1% 7% 12% 12%
Copper (HG) 1990/05 2007/08 157 -19% -5% 13% 24%
Silver (NYMEX) 2002/03 2010/09 44 -5% 1% 7% 50%

Soft

Cocoa 1990/09 2010/09 147 -17% -8% -1% 19%
Cotton No. 2 1990/07 2010/09 112 0% 7% 16% -26%
Orange Juice 1990/09 2010/09 144 -22% -3% 13% 2%
Coffee C 1990/09 2010/09 162 -7% -3% 3% 46%
Lumber 1987/11 2010/09 117 -14% 15% 35% 51%
Sugar No. 11 1990/07 2010/09 160 -1% 11% 23% 0%
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Table 2.2: Volatility and Variance Risk Premium

This table depicts time series averages of annualized option-implied and realized volatility for the sample of commodi-

ties as well as the S&P 500 Equity Index. Implied volatility is the square root of the MFIV measures (as in Jiang

and Tian, 2005; Britten-Jones and Neuberger, 2000) and realized volatility is the square root of realized variance

(RV), i.e. the sum of daily square returns of the underlying futures contract. The last two columns show the sample

estimates and the Newey-West adjusted t-statistics of the variance risk premium (VRP), defined as the difference

between RV and MFIV (annualized and multiplied by a factor of 100). All measures are derived from options with

a remaining maturity of 90 to 99 days.

Commodity # Implied Realized Variance Premium
Obs. Vol. Vol. avg. t-stat

Equity Market

S&P 500 105 22.0% 18.3% -0.96 [-1.07]
S&P 500 (30 days) 238 19.8% 16.2% -1.11 ***[-2.99]

Agricultural

Soybean Oil 130 25.3% 22.6% -1.23 ***[-3.44]
Corn 107 26.1% 21.7% -2.07 ***[-6.50]
Oats 72 32.9% 29.1% -2.01 ***[-2.80]
Rough Rice 97 28.0% 22.6% -2.92 ***[-7.33]
Soybeans 149 25.3% 21.8% -1.63 ***[-5.21]
Soybean Meal 160 25.4% 23.8% -0.87 *[-1.87]
Wheat (CBOT) 106 26.5% 24.7% -0.86 **[-2.57]

Energy

Crude Oil (WTI) 244 34.3% 31.0% -2.00 **[-2.34]
Heating Oil No. 2 236 33.3% 30.6% -1.88 ***[-3.73]
Unl. Gasoline 184 31.4% 29.6% -1.08 **[-2.58]
Natural Gas 205 47.3% 44.8% -2.16 *[-1.92]
RBOB Gasoline 41 42.3% 37.9% -2.93 [-0.86]

Meat

Feeder Cattle 185 14.4% 11.4% -0.82 ***[-8.20]
Live Cattle 117 15.5% 13.2% -0.73 ***[-5.18]
Lean Hogs 103 25.9% 22.9% -1.35 ***[-2.94]
Pork Bellies 74 39.7% 33.4% -4.47 ***[-6.85]

Metal

Gold (NYMEX) 126 17.9% 14.4% -1.17 ***[-4.49]
Copper (HG) 187 30.1% 26.3% -2.26 ***[-2.73]
Silver (NYMEX) 47 32.5% 29.4% -1.25 [-1.00]

Soft

Cocoa 147 34.2% 29.7% -2.78 ***[-6.54]
Cotton No. 2 110 25.1% 23.9% -0.53 [-1.52]
Orange Juice 138 34.4% 29.1% -3.74 ***[-4.58]
Coffee C 161 40.5% 33.1% -5.14 ***[-4.99]
Lumber 102 30.4% 27.6% -1.76 ***[-3.77]
Sugar No. 11 159 33.5% 30.2% -2.18 ***[-4.00]
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Table 2.3: Implied vs. Realized Skewness

This table depicts time series averages of a number of measures of implied and realized skewness: ‘BKM’ skewness

is the unit-free, normalized skewness of log returns computed as in Bakshi, Kapadia, and Madan (2003). ‘MFIS’ is

the model-free implied skewness and ‘RSkew’ is the realized skewness, both computed following Kozhan, Neuberger,

and Schneider (2011), ‘r3’ is the part of RSkew that consists of the sum of cubed returns only. The table further

shows the sample estimates and the Newey-West adjusted t-statistics of the skewness risk premium (SRP), defined

as the difference between RSkew and MFIS. All estimates except BKM skewness are annualized and multiplied by

100. Measures are derived from options with a remaining maturity of 90 to 99 days.

Commodity # Implied Realized Skewness Premium
Obs. BKM MFIS r3 RSkew avg. t-stat

Equity Market

S&P 500 105 -1.91 -1.24 -0.01 -1.11 0.13 [0.37]
S&P 500 (30 days) 238 -1.93 -0.60 0.00 -0.36 0.25 ***[3.31]

Agricultural

Soybean Oil 130 0.29 0.50 0.01 0.30 -0.20 ***[-3.12]
Corn 107 0.31 0.76 -0.01 0.47 -0.29 ***[-4.59]
Oats 72 0.41 1.30 -0.02 0.30 -1.00 ***[-5.07]
Rough Rice 97 0.18 0.69 0.00 0.42 -0.28 **[-2.21]
Soybeans 149 0.48 0.78 -0.01 0.55 -0.23 ***[-3.27]
Soybean Meal 160 0.28 0.01 -0.01 0.40 0.38 [0.80]
Wheat (CBOT) 106 0.13 0.57 0.00 0.58 0.01 [0.08]

Energy

Crude Oil (WTI) 244 -0.49 -0.32 -0.16 0.02 0.33 [0.89]
Heating Oil No. 2 236 -0.09 0.47 -0.02 0.09 -0.38 ***[-3.55]
Unl. Gasoline 184 -0.17 0.25 -0.05 0.18 -0.07 [-0.49]
Natural Gas 205 -0.05 2.05 0.12 2.99 0.94 *[1.94]
RBOB Gasoline 41 -0.11 0.16 -0.11 -0.76 -0.92 **[-2.14]

Meat

Feeder Cattle 185 -1.73 -0.21 0.00 -0.04 0.18 ***[3.58]
Live Cattle 117 -1.46 -0.23 0.00 -0.05 0.18 ***[3.42]
Lean Hogs 103 -0.95 -0.65 -0.02 -0.28 0.37 ***[3.70]
Pork Bellies 74 -0.47 -1.03 0.00 -0.25 0.78 **[2.38]

Metal

Gold (NYMEX) 126 -0.18 0.30 0.00 0.13 -0.18 ***[-3.29]
Copper (HG) 187 -0.30 -0.11 -0.01 -0.05 0.06 [0.29]
Silver (NYMEX) 47 0.59 1.54 -0.19 0.06 -1.48 ***[-5.64]

Soft

Cocoa 147 0.01 0.52 -0.01 0.28 -0.25 *[-1.82]
Cotton No. 2 110 -0.25 0.14 -0.01 0.02 -0.12 *[-1.85]
Orange Juice 138 0.22 3.17 0.04 0.40 -2.78 *[-1.95]
Coffee C 161 0.61 4.30 0.08 1.83 -2.47 ***[-5.28]
Lumber 102 -0.26 0.05 0.01 0.11 0.06 [1.25]
Sugar No. 11 159 -0.18 0.36 -0.02 -0.01 -0.37 *[-1.94]
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Table 2.4: Control Variables and Skewness

This table shows the results from a panel regression of implied skewness, realized skewness and the skewness risk premium on two key variables and some controls.

The dependent variable in Panel A is MFIS1/3, the signed third root of average implied skewness (as in Neuberger, 2011), based on option quotes with a remaining

maturity of between 90 and 99 days. In panel B, the dependent variable is RSkew1/3, the signed third root of realized skewness (as in Neuberger, 2011). In panel

C, the dependent variable is the difference between RSkew1/3 and MFIS1/3 averaged over the same range of maturities. Conv. Yield(6m), ∆ OI(6m), Ret(t−3,t)

and RSkew
1/3
t−m are the 6-month convenience yield, the change in futures open interest (relative to 6 months ago), the recent 3-month return of the underlying

future and the most recent realized skewness based on a 3-month maturity, respectively. OSP is the scaled, delta-weighted net long exposure of speculators in

options. logCRL is the log of the net concentration ratio of the largest traders being net long in both futures and options. Standard errors are clustered by month

and commodity following Thompson (2011).

Panel A: Implied Skewness Panel B: Realized Skewness Panel C: Skewness Risk Premium

Conv. Yield (6m) -0.122 -0.099 -0.161 -0.133 0.024 0.027 0.021 0.026 0.156 0.137 0.192 0.169
[-0.70] [-0.61] [-0.90] [-0.79] [0.19] [0.22] [0.17] [0.21] [1.09] [1.01] [1.27] [1.19]

∆ OI (6m) 0.133 0.132 0.117 0.118 0.217 0.216 0.216 0.216 0.070 0.072 0.086 0.084
*[1.76] *[1.82] [1.66] *[1.76] ***[2.81] ***[2.80] ***[2.84] ***[2.84] [0.72] [0.75] [0.91] [0.91]

Ret(t−3,t) -0.081 0.001 -0.109 -0.028 0.250 0.263 0.249 0.262 0.309 0.240 0.335 0.268

[-0.37] [0.01] [-0.50] [-0.13] [1.51] [1.56] [1.45] [1.48] [1.64] [1.30] *[1.73] [1.40]

RSkew
1/3
t−3 0.279 0.274 0.277 0.274 0.160 0.159 0.160 0.159 -0.114 -0.111 -0.113 -0.110

***[5.14] ***[5.10] ***[5.00] ***[4.99] ***[3.33] ***[3.31] ***[3.31] ***[3.30] ***[-3.01] ***[-2.95] ***[-3.02] ***[-2.96]

OSP -0.507 -0.468 -0.079 -0.077 0.423 0.387
***[-3.98] ***[-3.88] [-0.88] [-0.81] ***[3.20] ***[2.93]

logCRL -0.243 -0.197 -0.016 -0.008 0.222 0.184
***[-3.04] **[-2.30] [-0.16] [-0.08] ***[4.10] ***[3.29]

R2 8.7% 11.5% 10.0% 12.3% 4.0% 4.0% 4.0% 4.0% 2.1% 3.6% 3.0% 4.2%

# commodities 25 25 25 25 25 25 25 25 25 25 25 25
# months 183 183 183 183 183 183 183 183 183 183 183 183
Total # Obs. 2,570 2,570 2,570 2,570 2,570 2,570 2,570 2,570 2,570 2,570 2,570 2,570
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Table 2.5: Level of Demand Pressure and Skewness

This table shows the results from a panel regression of implied skewness and the skewness risk premium on a number

of variables related to demand pressure. The dependent variable in Panel A is MFIS1/3, the signed third root of

average implied skewness (as in Neuberger, 2011), based on option quotes with a remaining maturity of between 90

and 99 days. In panel B, the dependent variable is the difference between RSkew1/3 and MFIS1/3 averaged over

the same range of maturities, where RSkew1/3 is the signed third root of realized skewness (as in Neuberger, 2011).

HP (SP) is the scaled net short (long) exposure of hedgers (speculators) in futures. OHP (OSP) is the scaled net

short (long) exposure of hedgers (speculators) in options, delta-weighted. OSP+ (OSP−) is OSP conditional on it

being positive (negative). Coefficients from control variables are omitted. Standard errors are clustered by month

and commodity following Thompson (2011).

Panel A: Implied skewness

HP 0.096
[0.59]

SP 0.068
[0.61]

OHP -0.249 -0.003
**[-2.28] [-0.04]

OSP -0.473 -0.470
***[-3.92] ***[-4.61]

OSP+ -0.716
**[-2.76]

OSP- -0.236
[-1.42]

R2 10.0% 10.0% 11.1% 12.2% 12.2% 12.5%

Panel B: Skewness risk premium

HP -0.104
[-1.14]

SP -0.012
[-0.15]

OHP 0.175 -0.056
**[2.11] [-0.71]

OSP 0.388 0.442
***[2.93] **[2.72]

OSP+ 0.424
**[2.56]

OSP- 0.352
**[2.52]

R2 3.0% 3.0% 3.4% 4.2% 4.2% 4.2%

# commodities 25 25 25 25 25 25
# months 183 183 183 183 183 183
Total # obs 2,587 2,587 2,587 2,587 2,587 2,587
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Table 2.6: Price Pressure and Skewness

This table shows the results from a panel regression of implied skewness and the skewness risk premium on a number

of variables related to demand pressure. The dependent variable in Panel A is MFIS1/3, the signed third root of

average implied skewness (as in Neuberger, 2011), based on option quotes with a remaining maturity of between 90

and 99 days. In panel B, the dependent variable is the difference between RSkew1/3 and MFIS1/3 averaged over

the same range of maturities, where RSkew1/3 is the signed third root of realized skewness (as in Neuberger, 2011).

OHP (OSP) is the scaled net short (long) exposure of hedgers (speculators) in options, delta-weighted. ∆OHPt−m,t

(∆OSPt−m,t) is the change in OHP (OSP) over the last m months. Coefficients from control variables are omitted.

Standard errors are clustered by month and commodity following Thompson (2011).

Panel A: Implied skewness

m = 1 month m = 3 months

OHP -0.259 0.059 -0.259 0.063
**[-2.09] [0.57] *[-1.95] [0.57]

OSP -0.515 -0.572 -0.509 -0.572
***[-3.99] ***[-5.02] ***[-3.56] ***[-4.44]

∆OHPt−m,t 0.046 -0.112 0.024 -0.078
[0.72] [-1.57] [0.44] [-1.29]

∆OSPt−m,t 0.157 0.26 0.066 0.139
**[2.10] ***[3.03] [0.83] [1.50]

R2 11.0% 12.3% 12.3% 11.0% 12.2% 12.3%

Panel B: Skewness risk premium

m = 1 month m = 3 months

OHP 0.207 -0.074 0.251 -0.009
**[2.29] [-0.80] **[2.51] [-0.08]

OSP 0.435 0.506 0.451 0.458
***[2.93] **[2.58] **[2.65] *[2.05]

∆OHPt−m,t -0.073 0.082 -0.103 -0.033
[-1.25] [0.86] *[-1.95] [-0.46]

∆OSPt−m,t -0.19 -0.266 -0.119 -0.085
**[-2.07] *[-1.75] [-1.54] [-0.78]

R2 3.6% 4.4% 4.4% 3.7% 4.3% 4.4%

# commodities 25 25 25 25 25 25
# months 179 179 179 179 179 179
Total # obs 2,538 2,539 2,538 2,538 2,539 2,538
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Table 2.7: Reversal and Continuation of Demand and Skewness

This table shows the results from a panel regression of implied skewness and the skewness risk premium on a number

of variables related to demand pressure. The dependent variable in Panel A is MFIS1/3, the signed third root of

average implied skewness (as in Neuberger, 2011), based on option quotes with a remaining maturity of between 90

and 99 days. In panel B, the dependent variable is the difference between RSkew1/3 and MFIS1/3 averaged over

the same range of maturities, where RSkew1/3 is the signed third root of realized skewness (as in Neuberger, 2011).

OHP (OSP) is the scaled net short (long) exposure of hedgers (speculators) in options, delta-weighted. ∆OHPt−m,t

(∆OSPt−m,t) is the change in OHP (OSP) over the last m months; changes are split in two variables conditional on

whether the change adds to existing net positions or reverses from previous net positions. Coefficients from control

variables are omitted. Standard errors are clustered by month and commodity following Thompson (2011).

Panel A: Implied skewness

m = 1 month m = 3 months

OHP -0.269 0.039 -0.257 0.047
**[-2.16] [0.41] *[-1.97] [0.43]

OSP -0.484 -0.534 -0.493 -0.548
***[-3.03] ***[-3.84] ***[-3.08] ***[-3.63]

∆OHPt−m,t (rev.) 0.039 -0.117 0.025 -0.078
[0.69] *[-1.73] [0.44] [-1.28]

∆OHPt−m,t (cont.) 0.090 -0.046 0.016 -0.019
[0.66] [-0.43] [0.18] [-0.21]

∆OSPt−m,t (rev.) 0.184 0.281 0.067 0.140
***[3.27] ***[3.64] [0.85] [1.52]

∆OSPt−m,t (cont.) 0.035 0.128 0.008 0.056
[0.15] [0.60] [0.04] [0.29]

R2 11.0% 12.3% 12.4% 11.0% 12.2% 12.3%

Panel B: Skewness risk premium

m = 1 month m = 3 months

OHP 0.230 -0.020 0.245 0.018
**[2.21] [-0.20] **[2.74] [0.21]

OSP 0.354 0.399 0.385 0.379
**[2.16] *[1.88] **[2.36] *[1.81]

∆OHPt−m,t (rev.) -0.057 0.093 -0.103 -0.034
[-1.16] [1.00] *[-1.95] [-0.48]

∆OHPt−m,t (cont.) -0.169 -0.090 -0.082 -0.120
[-1.10] [-0.45] [-0.61] [-0.69]

∆OSPt−m,t (rev.) -0.260 -0.327 -0.124 -0.090
**[-2.69] **[-2.12] [-1.56] [-0.81]

∆OSPt−m,t (cont.) 0.126 0.108 0.111 0.182
[0.66] [0.38] [0.68] [0.83]

R2 3.6% 4.5% 4.5% 3.7% 4.4% 4.4%

# commodities 25 25 25 25 25 25
# months 179 179 179 179 179 179
Total # obs 2,516 2,517 2,516 2,516 2,517 2,516
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Table 2.8: Financial Constraints and Skewness

This table shows the results from a panel regression of implied skewness and the skewness risk premium on a number

of variables and interaction terms related to financial constraints affecting financial intermediaries. The dependent

variable in Panel A is MFIS1/3, the signed third root of average implied skewness (as in Neuberger, 2011), based

on option quotes with a remaining maturity of between 90 and 99 days. In panel B, the dependent variable is the

difference between RSkew1/3 and MFIS1/3 averaged over the same range of maturities, where RSkew1/3 is the signed

third root of realized skewness (as in Neuberger, 2011). OSP is the scaled, delta-weighted net long exposure of

speculators in options. dΦ̂ is the year-over-year change in the effective risk-aversion of broker-dealers as in Etula

(2010). Rel. AG is the year-over-year asset growth in balance sheets of households relative to that of broker-dealers

as in Acharya et al. (2011). CP(yoy) is the year-over-year change in the net issuance of commercial paper. Fin. Bond

(MA) is the 3 month moving average of the ratio between bond issuances of financial firms relative to non-financial

firms. X-term is the interaction term between OSP and the other variable included in the same column. Coefficients

from control variables are omitted. Standard errors are clustered by month and commodity following Thompson

(2011).

Panel A: Implied Skewness

OSP -0.440 -0.438 -0.432 -0.472 -0.431 -0.418 -0.451 -0.482
***[-3.78] ***[-3.65] ***[-3.67] ***[-3.84] ***[-3.89] ***[-3.70] ***[-4.43] ***[-4.24]

dΦ̂ -0.124 -0.114
**[-2.15] **[-2.11]

Rel. AG -0.509 -0.480
*[-1.96] *[-1.96]

CP (yoy) 0.319 0.284
[1.63] [1.43]

Fin Bond (MA) 0.028 0.017
[0.72] [0.48]

X-term with OSP -0.304 -1.299 2.031 0.232
*[-1.83] *[-1.86] **[2.74] *[1.82]

R2 13.6% 13.4% 12.9% 12.4% 13.9% 13.7% 13.9% 12.6%

Panel B: Skewness Risk Premium

OSP 0.362 0.354 0.377 0.376 0.358 0.344 0.384 0.378
***[2.85] **[2.73] ***[2.87] **[2.75] ***[2.93] **[2.78] ***[2.96] **[2.68]

dΦ̂ 0.114 0.110
***[3.06] ***[2.97]

Rel. AG 0.551 0.535
***[3.13] ***[3.12]

CP (yoy) -0.088 -0.075
[-0.54] [-0.46]

Fin Bond (MA) 0.076 0.078
[1.66] [1.70]

X-term with OSP 0.122 0.686 -0.721 -0.047
[0.86] [1.10] [-1.07] [-0.24]

R2 5.1% 5.3% 4.2% 4.8% 5.1% 5.3% 4.3% 4.8%

# comm. 25 25 25 25 25 25 25 25
# months 183 183 183 183 183 183 183 183
Total # Obs. 2,570 2,570 2,570 2,570 2,570 2,570 2,570 2,570
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Table 2.9: Trader Concentration and Skewness

This table shows the results from a panel regression of implied skewness and the skewness risk premium on a number

of variables related to the concentration of traders on the long and short side in the underlying futures market. The

dependent variable in Panel A is MFIS1/3, the signed third root of average implied skewness (as in Neuberger, 2011),

based on option quotes with a remaining maturity of between 90 and 99 days. In panel B, the dependent variable

is the difference between RSkew1/3 and MFIS1/3 averaged over the same range of maturities, where RSkew1/3 is the

signed third root of realized skewness (as in Neuberger, 2011). logCRL (logCRS) is the log of the share of the largest

8 traders on the long (short) side based on their netted positions in both the futures and options markets among

all netted long (short) positions. dCRL (dCRS) is the net change in the long (short) concentration ratio relative to

either 1 or 3 months earlier. Coefficients from control variables are omitted. Standard errors are clustered by month

and commodity following Thompson (2011).

Panel A: Implied skewness

logCRL -0.211 -0.207 -0.210 -0.182
*[-1.77] **[-2.10] *[-2.06] [-1.71]

logCRS -0.097 -0.011 -0.031 -0.049
[-0.68] [-0.09] [-0.28] [-0.40]

dCRL(1m) -0.469 -0.018
[-1.56] [-0.05]

dCRS(1m) 0.416 0.506
*[1.90] **[2.08]

dCRL(3m) -0.698 -0.337
**[-2.37] [-0.97]

dCRS(3m) 0.365 0.448
[1.67] [1.69]

R2 12.6% 11.7% 12.6% 11.5% 12.7% 11.9% 12.8%

Panel B: Skewness Risk Premium

logCRL 0.220 0.197 0.195 0.191
***[4.65] ***[4.40] ***[4.26] ***[3.63]

logCRS 0.144 0.062 0.103 0.117
*[1.90] [0.89] [1.33] [1.38]

dCRL(1m) 0.494 0.070
[1.69] [0.24]

dCRS(1m) -0.662 -0.874
**[-2.31] **[-2.40]

dCRL(3m) 0.614 0.232
**[2.21] [0.80]

dCRS(3m) -0.455 -0.639
*[-1.83] *[-2.05]

R2 4.6% 4.0% 4.7% 3.9% 5.1% 4.0% 5.2%

# comm. 25 25 25 25 25 25 25
# months 183 183 183 183 183 183 183
Total # Obs. 2,570 2,570 2,570 2,547 2,547 2,521 2,521
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Table 2.10: Portfolio Returns based on Net Long Speculator Exposure in Options

This table shows raw and risk-adjusted returns to strategies of going long/short delta-neutral risk reversals (DNRR) in commodity options based on the net long

exposure of speculators in commodity futures options. Overlapping portfolios are held for 2 months and rebalanced monthly. The risk reversals are based on

options with a delta of .25 or .10, respectively, and delta-hedged at each re-balancing date. The columns β, SMB, HML, UMD contain the coefficients to the

Fama-French 4-factor model. The columns HPW, CP(yoy) and Fin. Bond contain the loadings on the corresponding factor-mimicking portfolio returns. All

percentage returns reported are scaled to a monthly horizon.

α β SMB HML UMD HPW CP(yoy) Fin.Bond N R2

2 Monthly Turnovers, Delta = .25

1.27% 175 0.00%
***[3.44]

1.13% 0.17 0.02 0.14 0.01 175 3.31%
***[3.00] *[1.90] [0.16] [1.24] [0.16]

1.05% 0.19 -0.04 0.11 0.02 0.09 175 5.97%
***[2.79] **[2.14] [-0.36] [1.01] [0.34] **[2.18]

1.10% 0.21 -0.01 0.14 0.03 -0.06 175 4.70%
***[2.92] **[2.23] [-0.09] [1.22] [0.42] [-1.57]

1.03% 0.16 0.08 0.24 0.03 -0.11 175 7.67%
***[2.76] *[1.79] [0.75] **[2.09] [0.47] ***[-2.82]

0.92% 0.20 0.00 0.21 0.06 0.10 -0.03 -0.11 175 11.31%
**[2.49] **[2.19] [0.03] *[1.82] [0.81] **[2.52] [-0.75] ***[-2.68]

2 Monthly Turnovers, Delta = .10

2.56% 175 0.00%
***[4.40]

2.38% 0.23 0.05 0.20 0.00 175 2.80%
***[3.98] [1.64] [0.25] [1.11] [-0.01]

2.32% 0.25 0.00 0.18 0.01 0.06 175 3.34%
***[3.86] *[1.73] [0.01] [0.99] [0.07] [0.98]

2.32% 0.30 -0.01 0.19 0.04 -0.11 175 4.90%
***[3.90] **[2.07] [-0.06] [1.09] [0.31] *[-1.93]

2.22% 0.21 0.15 0.35 0.03 -0.16 175 6.91%
***[3.77] [1.53] [0.82] *[1.93] [0.29] ***[-2.73]

2.12% 0.28 0.05 0.31 0.06 0.08 -0.07 -0.15 175 8.49%
***[3.59] *[1.91] [0.26] *[1.69] [0.57] [1.26] [-1.14] **[-2.32]
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Table 2.11: Portfolio Returns based on the Long-Side Trader Concentration Ratio

This table shows raw and risk-adjusted returns to strategies of going long/short delta-neutral risk reversals (DNRR) in commodity options based on the long-side

concentration ratio in futures and options combined (CRL) based on netted positions. Overlapping portfolios are held for 2 months and rebalanced monthly. The

risk reversals are based on options with a delta of .25 or .10, respectively, and delta-hedged at each re-balancing date. The columns β, SMB, HML, UMD contain

the coefficients to the Fama-French 4-factor model. The columns HPW, CP(yoy) and Fin. Bond contain the loadings on the corresponding factor-mimicking

portfolio returns. All percentage returns reported are scaled to a monthly horizon.

α β SMB HML UMD HPW CP(yoy) Fin.Bond N R2

2 Monthly Turnovers, Delta = .25

1.33% 179 0.00%
**[2.44]

1.18% 0.06 -0.01 -0.02 0.20 179 2.19%
**[2.09] [0.46] [-0.06] [-0.13] *[1.81]

1.05% 0.09 -0.10 -0.06 0.22 0.13 179 4.77%
*[1.87] [0.69] [-0.58] [-0.37] **[2.00] **[2.17]
1.16% 0.13 -0.07 -0.02 0.24 -0.11 179 4.44%

**[2.06] [0.96] [-0.40] [-0.15] **[2.15] **[-2.02]
1.08% 0.05 0.07 0.11 0.23 -0.13 179 5.16%
*[1.92] [0.37] [0.40] [0.60] **[2.09] **[-2.33]
0.92% 0.14 -0.08 0.04 0.27 0.15 -0.07 -0.12 179 9.33%
*[1.66] [0.99] [-0.46] [0.26] **[2.52] **[2.47] [-1.37] **[-1.98]

2 Monthly Turnovers, Delta = .10

1.63% 179 0.00%
***[3.33]

1.45% 0.17 0.10 0.02 0.13 179 2.17%
***[2.85] [1.41] [0.63] [0.11] [1.35]

1.25% 0.22 -0.04 -0.04 0.16 0.20 179 9.55%
**[2.54] *[1.85] [-0.26] [-0.30] *[1.70] ***[3.76]

1.43% 0.22 0.05 0.01 0.16 -0.08 179 3.70%
***[2.83] *[1.79] [0.34] [0.10] [1.63] *[-1.66]

1.35% 0.16 0.16 0.13 0.16 -0.12 179 4.95%
***[2.69] [1.34] [1.08] [0.81] [1.61] **[-2.25]

1.13% 0.25 -0.01 0.06 0.21 0.22 -0.05 -0.12 179 13.87%
**[2.33] **[2.03] [-0.05] [0.40] **[2.19] ***[4.09] [-1.07] **[-2.21]
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Figure 2.1: Exchange-Traded vs. Over-The-Counter Derivatives

This figure compares the exchange-traded open interest and over-the-counter (OTC) notional amounts for commodity

derivatives. The left graph shows the aggregate open interest (in $B) of the 25 exchange-traded commodities in my

sample. The data is derived from the CFTC commmitment of trader (COT) reports. For each commodity in the

sample, the open interest in number of contracts is multiplied by the price of the Futures front contract and the

contract multiplier. The difference between open interest reported in Futures-only data and the combined report

constitutes the open interest in the options market in delta-weighted Futures equivalents. The right graph shows the

aggregate notional amounts outstanding (in $T) of OTC commodity derivatives excluding Gold, separated into OTC

Forwards & Swaps and OTC Options. The data is taken directly from the ’Semiannual OTC Derivatives Statistics’

of the Bank of International Settlements.

(a) Exchange-traded Commodity Derivatives (b) OTC Commodity Derivatives
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Figure 2.2: Skewness Measures vs. Hedging Pressure

This figure contains six scatter plots that plot the time series average of one of six skewness measures on the Y-axis against the time series average of commercial

net options positions over total commercial positions on the X-axis for the cross-section of the commodities in the sample. The first two measures are implied

skewness (as defined by Bakshi et al. (2003)) and the price of a risk reversal (in percentage of implied volatility). The next 3 measures are implied skewness,

realized skewness and the skewness risk premium (all as defined by Kozhan et al. (2011)). The bottom right graph contains the (Newey-West adjusted) t-statistic

of the skewness risk premium (bottom center). The data is based on options data with a remaining maturity of between 90 to 99 days.
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Figure 2.3: Skewness Measures vs. Speculative Positions

This figure contains six scatter plots that plot the time series average of one of six skewness measures on the Y-axis against the time series average of speculative

net long options positions over total speculative positions on the X-axis for the cross-section of the commodities in the sample. The first two measures are implied

skewness (as defined by Bakshi et al. (2003)) and the price of a risk reversal (in percentage of implied volatility). The next 3 measures are implied skewness,

realized skewness and the skewness risk premium (all as defined by Kozhan et al. (2011)). The bottom right graph contains the (Newey-West adjusted) t-statistic

of the skewness risk premium (bottom center). The data is based on options data with a remaining maturity of between 90 to 99 days.
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Figure 2.4: Realized Skewness vs. Other Skewness Measures

This figure contains five scatter plots that plot the time series average of one of five skewness measures on the Y-axis against the time series average of realized

skewness on the X-axis for the cross-section of the commodities in the sample. The first two measures are implied skewness (as defined by Bakshi et al. (2003)),

the price of a risk reversal (in percentage of implied volatility). The next 2 measures are implied skewness and the skewness risk premium (both as defined by

Kozhan et al. (2011)). The bottom right contains the (Newey-West adjusted) t-statistics of the skewness risk premium (bottom center). The data is based on

options data with a remaining maturity of between 90 to 99 days.
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Chapter 3

The Dynamics of Overpricing in

Structured Products25

3.1 Introduction

The retail market for so-called structured products (SPs) has been growing rapidly around the

globe over the last 20 years.26 Although they come in many forms, structured products exhibit

a number of key commonalities. Their payoffs are combinations of several primary securities that

may include options, equities, equity indices and fixed income securities. The primary clientele for

structured products are small investors who cannot replicate the payoff by themselves. In addition,

SPs are issued by financial institutions that stand by to redeem the securities over their lifetimes.

This is typically necessary, because the issuance volume of these instruments is too small to create

a continuous market unless the issuer provides liquidity. Short-selling, however, is not possible.

Lastly, because structured products are traded outside of derivatives exchanges with clearinghouse,

they carry the credit risk of the issuing party.

The existing empirical literature commonly finds significant overpricing relative to the primary

components (Bergstresser, 2009). This is sometimes attributed to a number of features beneficial

to small investors, for instance small spreads (Bartram et al., 2008) and access to complex payoffs

(Wilkens et al., 2003). More recently, however, a second strand of research has begun to focus

on the negative aspects of SPs arguing that issuers market and sell complex products with low

expected returns (Henderson and Pearson, 2011) to retail investors by exploiting their behavioral

biases and lack of financial literacy (Bernard et al., 2011). Recent articles in the financial press

provide ample evidence that some of the risks involved in structured products are ill understood

by small investors27. In particular, the bankruptcy of Lehman Brothers caused unexpected losses

to investors of Lehman structured products that were marketed as being safe28.

In this paper, we present convincing evidence consistent with the more pessimistic view on SPs.

We find that issuers dynamically exploit their position as monopolistic liquidity suppliers to extract

25A version of this chapter will be submitted for publication. Ruf, Thomas (2012) The Dynamics of Overpricing
in Structured Products.

26In line with the existing literature, this study focuses on publicly available structured products designed and
marketed to retail investors as opposed to products that banks tailor individually to the needs of large investors (e.g.
over-the-counter swaps). Bergstresser (2009) refers to them as structured notes. They were developed in the U.S. in
the late 1980s and early 1990s (Jarrow and O’Hara, 1989; Chen and Kensinger, 1990) and have spread to Europe, in
particular Germany (Wilkens et al., 2003). More recently, they are experiencing rapid growth in Asian markets.

27Wall Street Journal, May 28th, 2009, ‘Twice Shy On Structured Products?’
28Wall Street Journal, October 27th, 2009, ‘FSA to Clean Up Structured-Products Market’
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gains from retail investors that go beyond the static overpricing previously documented.

Our analysis is based on a very large dataset of high-frequency trade and quote data of German

bank-issued warrants. These warrants are the most basic SP because their payoff is simply that

of an option29. We think that the insights that we gain from looking at warrants apply equally

to more complex structured products, because they share most, and perhaps even all institutional

features with bank-issued warrants in countries where both exist. In fact, they typically trade in

the same segment of exchanges and many issuers of one type of instrument are active participants

in the issuance of the other type of instrument as well. In addition, results based on warrants are

not confounded by effects that arise from bundling several securities into one. A further advantage

is the ease with which we can compare and match them to options on regular derivatives exchanges.

First, we investigate which types of warrants retail investors trade and how their preference

affects overpricing. We document that retail investors, compared with professional investors, have

a preference for far out-of-the-money (OTM) warrants offering high leverage as well as some far

in-the-money (ITM) warrants. We argue that far OTM warrants are the most overpriced because

unsophisticated investors find them difficult to evaluate, and no alternative instrument is available

to them. Among the far ITM warrants, only puts are significantly overpriced because investors

have few substitutes for short positions.

Second, we explore how issuers adjust prices facing demand in the secondary market. In par-

ticular, can issuers anticipate demand and exploit the liquidity needs of investors? Or do prices

increase only after a positive demand shock consistent with a demand pressure explanation in the

spirit of Garleanu et al. (2009)? Our results suggest prices for warrants are systematically higher

(lower) on days when investors are net buyers (sellers). We show that it is not realized demand

by investors which subsequently drives prices higher; rather, issuers are able to anticipate future

net demand and opportunistically adjust prices in advance. Thus, the quoted bid/ask spread is

not representative of the round-trip transaction costs that most investors face and returns are

systematically lower, benefiting the issuer.

Third, we explore the ’life cycle hypothesis’ (Wilkens et al., 2003) which suggests a declining

pattern of overpricing over the lifetime of SPs. Previous studies use relatively small datasets and

the methodologies of computing premiums are relatively crude due to lack of data. We revisit this

question with our expansive dataset by applying a number of more refined matching techniques. We

do find some evidence of a declining premium, but the decline depends on the warrant’s moneyness

and time to expiration. In particular, close-to-expiry OTM puts do not conform to the hypothesis

and display an increasing premium. We argue that in both cases, the issuer acts rationally and

exploits investors’ demand, albeit in different ways. Further, we suggest that the large decline

in premium over the lifetime of warrants that was found in some previous studies may be due

29It is important to clarify that bank-issued warrants are not warrants in the usual sense, i.e. warrants issued by
firms on their own stock that dilute existing shares upon exercise. Rather they are option-like instruments issued by
banks on equity, equity indices or any other underlying and settled in cash only. They are virtually unknown in the
U.S. because options exchanges have a long history there and are readily accessible by retail investors. In many other
countries, however, centralized derivatives exchanges are a relatively recent development or have been out of reach
for small investors. In those countries, bank-issued warrants can fill part of this gap.
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to improper matching along the maturity dimension between warrants and similar options on

derivatives exchanges. We suggest several ways in which to adjust this mismatch.

Last, we investigate if an increase (decrease) in issuer credit risk leads to a decrease (increase)

in the price of the structured product. Since SPs are unsecured debt obligations to the issuer, in

an efficient market, their prices ought to rise and fall with the credit quality of the issuer. To the

best of our knowledge, we are the first to measure this effect empirically.30 We do find a negative

effect of issuer credit risk on prices in our sample, but only in the aftermath of the bankruptcy of

Lehman Brothers. However, the sensitivity seems generally too small and more specific predictions

of vulnerable options models (Klein, 1996) are not borne out in the data. We would for instance

expect that put warrant prices should be more sensitive to credit risk than calls. If anything, we

find the opposite. These results suggest that investors are essentially providing issuers with cheap

financing that goes beyond the notion of credit enhancement (Chidambaran et al., 2001; Benet

et al., 2006).

The remainder of the paper is organized as follows. Section 3.2 discusses the existing literature.

Section 3.3 details the data used and the methodology employed. Section 3.4 contains the empirical

analysis. Section 3.6 concludes.

3.2 Literature Review and Institutional Background

3.2.1 Structured Products

While structured products (SP) may differ in many ways across borders they share a number

of similarities. Common to all of them is that their payoff is a combination of several primary

securities that may include options, equities, equity indices and fixed income securities. Since

large, sophisticated investors can build these combinations easily by themselves, most structured

products can be thought of as being exclusively designed and marketed to the wants of smaller

retail investors.

SPs are most commonly issued by financial institutions such as large investment banks who

typically also act as a market maker or liquidity provider in a secondary market. However, there

is anecdotal evidence (see e.g. Pratt, 1995) that the early SPs issued in the U.S. were troubled

by low volumes in the secondary market. On the other hand, SP issuers in German exchanges are

obligated by the exchange to provide liquidity in narrowly defined terms (see e.g. Stuttgart Stock

Exchange, 2010a, p.11). Among other things, issuers have to continuously provide binding quotes

and keep the bid/ask spread within tight bounds. In all other ways, issuers are essentially free to

set ask and offer prices.

While there may not be enough liquidity to allow for investors to trade structured products

among themselves, the issuers stands by to sell and redeem its products at all times. Further,

30Recently, there have been a number of studies that discuss credit risk in the context of structured products.
However, their starting point is always a model of vulnerable options from which fair values are computed. See for
instance, Baule et al. (2008).

53



short-selling is not permitted by the issuer or by the exchange (see e.g. (Stuttgart Stock Exchange,

2010b), Section 49). Because SPs are traded outside of regular derivatives exchanges there is no

central clearing house guaranteeing both sides of each trade and as a consequence all SPs carry the

credit risk of the issuing party.

By now there exists a sizable literature on structured products from a number of international

markets. Studies for the U.S. market have discussed Primes and Scores (Jarrow and O’Hara, 1989),

S&P indexed notes or SPINs (Chen and Sears, 1990) and market-index certificates of deposits or

MICDs (Chen and Kensinger, 1990), foreign currency exchange warrants (Rogalski and Seward,

1991) and more recently, reverse exchangeables (Benet, Giannetti, and Pissaris, 2006) and SPARQs

(Henderson and Pearson, 2011). International studies have covered markets in Switzerland (Wasser-

fallen and Schenk, 1996; Burth et al., 2001; Grünbichler and Wohlwend, 2005), in Australia (Brown

and Davis, 2004) and Germany (Wilkens et al., 2003; Stoimenov and Wilkens, 2005; Wilkens and

Stoimenov, 2007). More or less all of them report that SPs contain a premium when compared

to their individual components. The premium seems to be particularly large around issuance; e.g.

Horst and Veld (2008) report premia of over 25% during the first week of trading.

The size of the premium is generally hard to justify but some studies suggest beneficial properties

like guaranteed liquidity (Chan and Pinder, 2000) and smaller bid/ask spreads (Bartram et al.,

2008) as causes. In addition, trading frictions like access to derivative markets or scalability may

prevent retail investors from building these payoffs by themselves. In that sense, structured products

may offer value by bundling securities, or ’packaging’ (Stoimenov and Wilkens, 2005), for which

investors should be willing to pay a premium. These benefits are largely absent for retail investors

in the U.S. though; in particular, they already enjoy easy access to options exchanges and even

more sophisticated strategies like the writing of options or spread trading can be implemented with

little difficulty.

It is therefore almost surprising that only recently the literature takes a more negative view of

structured products. Henderson and Pearson (2011) call SPs the ’dark side of financial innovation’

because investors would be better off in the money market than buying SPARQs, the particular SP

they analyze. Bernard et al. (2011) argue that issuers emphasize outcomes with high payoffs and

low probabilities in their marketing materials leading retail investors to over-weigh those states in

their expected return calculation. Bethel and Ferrell (2007) discuss legal and policy implications

of the explicit targeting of unsophisticated investors with offers of complex financial securities.

In the model of Carlin (2009) issuers faced with increasing competition increase the complexity

of their products to make comparisons for investors more costly and maintain overpricing. Dorn

(2010) documents that investors regularly fail to identify the cheapest security among in principle

identical options. According to this view, issuers market and sell complex products to investors by

exploiting their lack of financial literacy and behavioral biases (Shefrin and Statman, 1985, 1993).
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3.2.2 Bank-Issued Warrants

Bank issued-warrants can be thought of as simple structured products as their payoff structure

is just that of a put or a call option. Their existence is mainly due to the difficulty with which

retail investors can access derivatives markets in a number of countries. They are unknown in the

U.S. precisely because well-regulated and easily accessible derivatives exchanges have developed

as early as the 1970s. By stark contrast, Germany did not have a derivatives exchange until

1990 (formerly called DTB, now EUREX). Even at the time of writing, according to the EUREX

website (http://www.eurex.de), there are a mere 2 German brokers that offer retail investors access

to EUREX products. The fact that warrants share most of the institutional features with structured

products makes them closely related and any insight that we gain on the price dynamics of warrants

should hold true for structured products as well.

Warrants enjoy the aforementioned benefits of SPs regarding liquidity and binding quotes, but

they also offer some advantages over regular options. While stock options listed on the CBOE

or EUREX trade in lots representing 100 shares of the underlying, warrants can be traded in

much smaller increments; warrants representing one tenth of a share are common. For indices, the

contrast is similarly large as EUREX contracts trade in lots of 5 while the typical ratio for warrants

is 1 to 100. Being able to trade in small increments versus a rather large contract size at the option

exchange again seems to be tailored to the small sums with which retail investor invest.

The literature on warrants is quite small and so far only covers markets in Europe and Australia.

In line with the literature on structured products, empirical studies on bank-issued warrants find

a pattern of overpricing relative to identical options from derivative exchanges that is particularly

strong around issuance; see e.g. Chan and Pinder (2000) for Australia; Horst and Veld (2008) for

the Netherlands; Abad and Nieto (2011) for the Spanish market.

Other studies focus on the bid/ask spread of warrants. Bartram and Fehle (2007) and Bartram,

Fehle, and Shrider (2008) investigate the effects of competition and adverse selection on bid/ask

spreads between German bank-issued warrants and options on the European derivatives exchange

EUREX. The first study finds that the bid/ask spread for both options and warrants is lowered if a

comparable instrument exists on the other market, thereby documenting that competition between

these markets lowers transaction costs in both even though instruments traded in one market are

not fungible in the other. The second study relates the much higher bid/ask spread for options to

the potential for adverse selection that the market makers face as informed investors are more likely

to be encountered on the options exchange EUREX. They find the ask price for warrants to be

slightly higher than for options, but the bid price to be much higher. As a consequence the round

trip costs are lower for warrants, even though the cost of entering the position and thus the value

at risk is larger. The authors suggest that investors who are planning on holding the instrument

for only a short period should be willing to pay more initially if they can sell it back at a better

bid price relative to EUREX.
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3.3 Description of Data and Methodology

We combine data from a number of sources. All datasets cover at least the period from June 2007

through May 2009. This time period contains a large fraction of the credit crisis that started in

August of 2007. Therefore, the sample is well-suited to investigate the impact of credit risk on

structured products.

For simplicity, we consider warrants and options on a single underlying, the German stock index

DAX. The DAX consists of the 30 biggest German firms and is a performance index, i.e. dividends

are assumed to be reinvested in the index. Our sample consists of 8,750 warrants with expiration

dates between April 2008 and December 2012, while the options in the sample expire between June

2007 and December 2012.

To compute moneyness and deltas we acquire second-by-second tick values of the DAX index

from KKMDB database at the University of Karlsruhe. Supplemental data such as issuer CDS

spreads and the closing value of the German volatility index VDAX (the equivalent of the CBOE

VIX) were taken from DATASTREAM.

We acquired all DAX warrant transactions taking place on Scoach from Deutsche Börse AG,

while transaction data from EUWAX comes from the KKMDB at the University Karlsruhe. Bid/ask

quotes for the warrants are from Börse Stuttgart AG. EUREX transaction data was supplied by

Deutsche Börse AG in Frankfurt; it covers all trades that took place in options on the German

stock index DAX during the sample period.

3.3.1 Warrant Data

In Germany, warrants are traded in one of two ways. Each issuer offers an OTC platform, in which

investors can trade directly with the issuer via the online interface of their broker. Within seconds

of the investor requesting a quote, the issuer transmits a binding offer for selling or buying back

warrants which is valid for the next 2-3 seconds. Investors thus have the opportunity to quickly

trade for prices known in advance. Conversations with issuers revealed that more than half of all

trading in warrants and structured products takes place through this channel. In a sample of actual

retail investor transactions used in Dorn (2010), over 80% of warrant trades are executed this way.

The remaining trade takes place in special segments of the regular stock exchanges: in Frankfurt

this segment is called Scoach; in Stuttgart it is called EUWAX (European warrants exchange); the

other regional exchanges play virtually no role in the trading of these instruments.

In their study, Garleanu, Pedersen, and Poteshman (2009), henceforth GPP, make use of a

particular dataset that reports daily open interest by investor group (public customers and propri-

etary traders) and derive the level of net demand facing market makers. The unique features of

the market for warrants allow us to do something similar. Every transaction takes place with an

investor on one side and the issuing bank on the other. Therefore, a transaction with a price above

the mid quote likely constitutes a buy by an investor increasing the total of outstanding product;

a price below the mid quote constitutes the opposite.
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Unfortunately, we only observe warrants transactions that take place on the regular exchanges;

data on OTC transactions with the issuer is not available. Representing less than half of all

transactions, the sum of buys minus the sum of sells from the exchanges yields only a very noisy

picture of the true number of warrants currently in the hands of investors; in fact, summing up

buys and sells over time leads to negative numbers for numerous warrants in our sample, which is

obviously not possible. Instead of investigating how the level of demand impacts the price level of

warrants like GPP, we focus on investigating if changes in net demand have an influence on changes

in prices.

We are confident though that over the course of a trading day, the net change in demand

derived from observed transactions is a suitable proxy of the true net change in demand from all

transactions. This is valid as long as the observed trades are an unbiased subsample of all trades.

3.3.1.1 Identification of Transaction Type

We acquired quote data for 8,750 individual warrants totaling more than 4 billion quotes over 2

years. To identify if a transaction was a buy or a sell by an investor, each trade is matched with

the currently valid bid/ask quote. Unfortunately, the time stamp of the quote data is only given

up the full second for all but the last day in the sample, i.e. the quote could have been updated

any time during that 1 second interval. In contrast, transaction data is given with milliseconds.

Thus, if the second of the quote and the transaction coincide we do not know for certain which

came first, i.e. if the quote was already in place at the time of the trade, or rather if the trade came

first and triggered an update of the quote from the issuer. This occurs for 8.5% of all trades. We

proceed as follows: If the transaction happens in the first half-second, we assume that it arrived

before the quote, therefore the previous quote is assumed to be valid. Naturally, this is what we

do with transactions that do not coincide with a quote. In the other case, we assume that the

same-second quote came first and use it to evaluate the type of the trade. If this does not bring a

decision because the transaction price is equal to the mid quote, we use the previous quote.

If the type of the trade could not be identified up to this point, we consider the following quote

as long as it occurs within 60 seconds of the transaction. If the mid quote increased we consider

the transaction a buy, and a sell if otherwise. Trade for which no decision could be made are

not considered in the aggregation of net demand. All in all, this algorithm fails to identify 2,506

transactions, or 0.27 percent, out of a total of 925,000 transactions for which we had quote data.

We identify 54.36% of all transactions as buys and 45.37% as sells. This seems reasonable as a

certain share of warrants will likely remain on the books of investors until they expire.

3.3.1.2 Construction of European Warrant Prices

Warrant bid/ask quotes are updated frequently over the course of the day. In most of our analysis

we therefore make use of multiple quotes per day. Once every hour from 9:30CET to 17:30CET we

extract the latest quote for each warrant from the data. We eliminate quotes that are older than

1 hour so as to have no overlap between measurements.
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Most warrants are of American exercise type and are thus not immediately comparable to

European EUREX options. Since the underlying does not distribute dividends, only put options

potentially incorporate an early exercise premium (EEP). Since our study deals with warrants,

many of which are longer dated, this premium is not negligible even for contracts that are at-

the-money. We find the EEP to be 5 percent on average for a one-year at-the-money (ATM)

option/warrant.

We proceed as follows: First, we back out the implied volatility of the American warrant ask

quote via the BBSR algorithm31 algorithm developed by Broadie and Detemple (1996). We choose

the ask price because it is a frequent occurrence for options in all markets that mid-quotes of far-

in-the-money or close-to-expiry contracts violate the no-arbitrage bounds. We would like to retain

as much of the sample as possible and not lose valid quotes because the mid-quote is too low for the

Black-Scholes model. The error that we incur is small because in-the-money (ITM) contracts have

very small bid/ask spreads. In a second step, we use the implied volatility (IV) of the ask quote

as input into the Black-Scholes formula holding all other parameters constant to get a European

ask quote. We deduct the originally observed spread to back out the new bid quote. The parts of

the analysis that genuinely require IV estimates as inputs are based on Black-Scholes IVs from mid

quotes.

3.3.2 Option Data

3.3.2.1 Option Implied Volatility Functions (IVF)

As we lack access to bid/ask quotes on EUREX options (the dataset has a price tag of over EUR

10,000), we focus on transactions data. The goal is to compute the premium that a warrant

demands over an identical EUREX option at a particular point in time. It is generally not very

likely to find a transaction for a EUREX option in close temporal proximity to each warrant quote

with identical or very similar features regarding strike, expiration date and type.

Instead we opt for a different route: Over a small time interval (e.g., a trading day or less), we

collect all option trades for a given maturity and type, compute their moneyness at the time of the

transaction and back out Black-Scholes implied volatilities from prices; this step is straightforward

as all DAX options are of European exercise style and there are no dividends to consider. Bartram

and Fehle (2007) report that the difference between bid and ask prices can be relatively large on

EUREX (8-9 percent in their year 2000 data); in practice, however, trades take place within a much

smaller effective bid/ask spread, which should be somewhere in the vicinity of the mid-quote that

one would otherwise use.

Then we fit a 3rd degree polynomial through all IVs as functions of moneyness to get an implied

volatility function (IVF) for each maturity and type, separately for each time interval. We require a

minimum of 12 observations per interval to include the IVF in the sample and we save the moneyness

levels of the most extreme observations that went into estimating the IVF. When matching this

31BBSR is a binomial tree algorithm that uses the Black-Scholes formula in the ultimate step of the tree as well as
a two-point Richardson extrapolation.
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IVF with warrant quotes we only allow quotes whose moneyness lies within these bounds to avoid

any issues resulting from extrapolation. We stop creating IVFs if the time to maturity is 5 days or

less, because the tails of IVFs tend to go vertical as maturity approaches. In addition, if the range

of moneyness levels observed in trades falls below a certain width, the estimate is dropped from

the sample regardless of the number of observations. A too narrow moneyness range may result

in unrealistic IVFs. On average, the R-squared from the fit of the polynomial is a very high 95

percent.

As for the choice of the length of the interval, we face a trade-off between higher accuracy of

the IVF and smaller number of trades as we decrease the time window over which to estimate the

IVF. Even though the sample is substantially reduced as we go from daily IVFs to hourly IVFs, we

still opt for hourly IVF estimates for most of the analysis given the rather volatile sample period.32

To derive hourly IVFs, we split the trading day (from 9:00CET to 17:30CET) into 9 time intervals,

the first half-hour from 9:00CET to 9:30CET (having the highest trading volume of the day), and

the following 8 one-hour intervals up to 17:30CET.

Implicit in this estimation method is the assumption that the IVF stays more or less constant

in terms of moneyness over the course of the respective intra-day interval. Obviously, on volatile

trading days this may not hold, but this is purely an issue of noise, not a systematic bias.

3.3.2.2 Premium Computation

Parts of the empirical analysis require the computation of a premium of the warrant price over

the price of a EUREX option with identical features. We use the mid quote from the warrant

and compute its moneyness at the time of the quote extraction, e.g. 10:30CET. We require an

hourly estimate of the EUREX IVF with expiration in the same month as the warrant and for the

same type. We match the option IVF estimated from trades taking place between e.g. 9:30CET

and 10:30CET to the warrant quotes that were valid at 10:30CET (i.e. issued sometime between

9:30CET and 10:30CET). The moneyness of the warrant quote is plugged into the option IVF to

compute the IV for a virtual EUREX option, which in turn is used to compute a European option

price. The simplest version of the premium is the percentage difference between warrant mid quote

and this artificial EUREX option price.

In each calendar month, almost all warrants in the sample expire 2-4 days prior to the EUREX

expiration date depending on the issuer. We exclude warrants with other expiration dates from

the analysis. However, we still face a slight time to maturity mismatch. One way to adjust for

this is to use the time to maturity of the warrant instead of that of the option in the Black-Scholes

formula when computing an artificial option price. This implicitly assumes that the shape of the

IVF does not systematically change when shifting the maturity by a few days. We know that this

assumption will be violated for options close to maturity. Therefore, our empirical analysis will

exclude observations with less than 20 days to maturity. We call the second premium the adjusted

32We find that results using the less exact matching technique are generally similar, but due to the greater noise,
levels of significance are somewhat reduced.
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premium and the first one unadjusted.

We develop two more versions of the warrant premium. Implied volatilities do not only exhibit

a smile shape across the strike price dimension, they also exhibit a specific term structure along

the maturity dimension. For instance, during volatile times short-term options have a much higher

implied volatility than long-dated options, while the opposite holds during calm periods. The

reason for this tapering off is the mean-reverting behavior of volatility.

We can therefore use the information between two adjacent expiration dates to infer implied

volatilities for options with expiration dates in between. In order to avoid erroneous interpolation,

we require that both IVFs used in the process extend to the moneyness of the warrant for which

we intend to compute a premium. The interpolated IV is simply the linearly weighted average of

the IVs derived by plugging in the warrant moneyness into both IVFs. Since 2-4 days is relatively

close to one of the end points, the error from using a linear fit remains small, even if the IV terms

structure is strongly concave or convex.

One problem of this method is that it requires an IVF for the expiration date of the previous

month. Yet the previous month IVF is no longer available close to its expiration. Furthermore,

the range of traded strikes contracts rapidly as expiration approaches. To mitigate this effect, we

compute one more premium version. Here, the estimated IVF is based on the EUREX IVF with

expiration in the same month as the warrant and the one closest to expiration after that. This

means that we extrapolate 2-4 days outside of the two observation points. The requirement that

both IVFs extend to the desired moneyness level is maintained, however.

This solves the issue of losing a large fraction of the sample on the short end, but it leads to

larger losses at the long end. For instance, to compute the premium of a December 2010 warrant,

the IVFs for December 2010 and the next available expiration are required. During the year 2008,

this was likely December 2011 as additional expirations are only filled in much later. As EUREX

options do not trade much this far into the future, the likelihood of having enough trades to estimate

both IVFs on the same day are very small.

Both interpolated and extrapolated premium have higher data requirements and samples are

therefore smaller. On the other hand, the first premium based on a mismatch is inaccurate and in

fact biased. We use the interpolated version of the premium for a large fraction of the empirical

analysis.

3.4 Empirical Analysis

3.4.1 Preference and Overpricing

The comparison of warrants and options is an almost ideal laboratory set up where two distinct

groups of investors trade in two separate market segments. Warrants and other structured prod-

ucts are most successful in countries, where retail investors are subject to high barriers to entry

into derivative exchanges. Germany is such a case among developed markets, where a derivatives

exchange was only established in 1990 and to the present is difficult to access by small investors.
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The lack of access is likely the main reason why those countries have flourishing markets for struc-

tured products. The EUWAX in Germany, for instance, is the world’s largest exchange for SPs by

number of products with more than 500,000 securities outstanding.33

In principle, there are no barriers that keep large investors from trading warrants or any other

structured product. In practice, however, the design of the market place is geared towards small

transactions and the needs of retail investors, because 1) bid/ask spreads and the stand-by liq-

uidity are only binding up to a certain order size (EUR 3,000-10,000) and 2) the amount of units

outstanding per product is generally not very large (warrants, e.g., are typically issued in batches

of 1-10 million units; on the CBOE this would equate to a mere 100-1000 index option contracts).

In addition, sophisticated investors can easily replicate all payoffs by themselves and will certainly

want to avoid the overpricing and the credit risk involved.

Thus, we argue the segmentation is strong and comparing trading pattern between the two

markets offers insight into the different motivations of private investors relative to institutional

investors. In particular, we can see where the demand for warrants differs from the demand for

options on the EUREX.

Table 3.1 depicts the relative frequency of transactions across different ranges of time to maturity

and moneyness. We use the frequency of trades as a proxy for net demand, because the data does

not allow accurate measurement of true net demand. Notable is the extremely strong concentration

of EUREX option transactions close to expiration as well as at-the-money (ATM). More than 80%

of all transactions happen in contracts with less than 3 months to expiration and over half of all

trading occurs in a narrow 5% band around the money; there is barely any trading in in-the-money

(ITM) options. In contrast, warrants transactions are much more dispersed across maturities and

moneyness. Far-in-the-money and far-out-of-the-money warrants experience larger demand than

comparable options. Particularly, the demand for out-of-the-money (OTM) call warrants greatly

exceeds the trading activity in OTM call options. In addition, there is asymmetry in the demand

for OTM call vs. OTM put warrants. More than 36% of all trades in long-term warrants happen

in excess of 25% OTM; for puts this number is just 15%.

In buying warrants that are even more OTM than what option traders buy, warrant traders ex-

hibit a greater preference for high-leverage securities paying off in states with low probability. This

supports recent findings that warrant traders are motivated by speculation (Glaser and Schmitz,

2007) and entertainment (Bauer et al., 2009), rather than hedging. The activity in far-ITM war-

rants on the other hand is quite puzzling at first. Leverage is rather low and warrant unit prices

are high in this region. Further, given that Glaser and Schmitz (2007) report the median holding

period of warrants to be 3 days, it is hard to understand why more than one third of trading is

concentrated in securities with a remaining life time in excess of 6 months.

In summary, we recognize that there are clear differences in the demand pattern between warrant

and option market participants. Given these differences in demand it would be interesting to see

33See https://www.boerse-stuttgart.de/en/marketandprices/marketandprices.html. As of February 15th, 2011,
Stuttgart stock exchange listed more than 230,000 warrants, 100,000 knock-out products and over 250,000 certificates.
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if the warrant premium shows a pattern that reflects the pattern in demand. Does the premium

differ across regions of moneyness or maturity?

Because the moneyness range of actively traded warrants declines for closer-to-expiration con-

tracts, we use the (absolute of the) warrant’s delta rather than its raw moneyness to make the

pattern in overpricing more comparable across different maturities. When computing delta we

replace the warrant’s IV with the IV of the matching option. Otherwise the degree of overpricing

of the warrant would directly impact its delta. To further avoid influence of outliers we first cut

off the top and bottom 1% of premiums, then we cut off the lowest and largest 1% delta values for

each issuer.

Figure 3.1 shows the median premium as a function of the warrant’s delta for the 6 largest

issuers in the sample based on quote data, separately for puts and calls. The sample is split into

the maturity bins that correspond to the maturity bins in Table 3.1. All graphs exhibit the same

striking pattern where low-|∆|, far-OTM warrants command much higher premiums than ATM

or ITM contracts. OTM calls are generally more overpriced than puts by the same issuer with

the exception of some issuers over some moneyness regions for close-to-expiration warrants. This

pattern corresponds to the asymmetry of demand for OTM contracts in Table 3.1.

One possible explanation is that retail investors find it much harder to determine the fair price

of an OTM warrant, which consists of time value only, relative to ITM warrants, which are mostly

intrinsic value. Carlin (2009) suggests an equilibrium model in which more complex products can be

overpriced more heavily. If we consider OTM warrants as being more complex than ITM warrants,

the overpricing is in line with his model. However, this does not directly speak to the large demand

for high-leverage warrants.

Alternatively, investors with different beliefs may choose securities with different degrees of

leverage. It seems intuitive that a very optimistic investor would choose warrants with higher lever-

age anticipating higher returns relative to a less optimistic investor who may choose lower-leverage

warrants or the underlying. The issuer is then able to extract some portion of the consumer surplus

(with regards to the beliefs of the investor) by charging a relatively higher premium. Assuming

that retail investors that trade warrants tend to be more risk-seeking (in the spirit of Kumar, 2009),

this explanation fits well with a recently emerging strand in the asset pricing literature that focuses

on the preference for positive skewness in stocks and other assets (e.g. Brunnermeier et al., 2007).

Boyer et al. (2010) and Bali et al. (2011) empirically document a negative correlation between stock

returns and expected skewness. Barberis and Huang (2008) motivate this behavior within prospect

theory. Finally and most related, Boyer and Vorkink (2011) show that even option returns and

option return skewness are negatively correlated and ascribe this finding again to a preference for

positive skewness by end-users of options (i.e. retail investors).

Both explanations for the observed cross-sectional pattern, complexity and skewness preference,

are behavioral in nature and fit well with the related literature. By contrast, the commonly cited

reasons for the average overpricing in structured products do not immediately have cross-sectional

pricing implications. Liquidity, for instance, is mandated by exchange regulation and posted quotes
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are binding equally for all instruments. Packaging services Stoimenov and Wilkens (as suggested

by 2005) are not relevant in the case of warrants, but would not differ as a function of strike either.

To our knowledge, taxation does also not affect the cross-section as gains and losses are taxed

symmetrically on the part of the retail investor.

If the demand pattern in Table 3.1 drives prices, one might have expected to see some overpricing

for far-ITM warrants as well. We notice a kink in the premium for far-ITM puts but none for calls.

This suggests that the elasticity of demand differs in those areas. The charged premium and the

demand for warrants by investors are equilibrium outcomes. One possible explanation is that issuers

exploit the lack of good alternatives for investors who would like to express negative views with low

leverage securities, while there are plenty of instruments for going long with low leverage.34 Hence,

issuers can charge a premium for ITM puts, but cannot demand a premium for ITM calls. Thus,

this section provides some basic evidence for the hypothesis that issuers take advantage of investors’

demand for certain payoffs through overpricing. We turn to a more systematic investigation of the

dynamics of the overpricing in the following section.

3.4.2 Demand Pressure vs. Demand Anticipation

Issuers of structured products in Europe maintain binding quotes for all of their products and stand

by to buy and sell if investors want to trade. From conversations with issuers, we understand that

it is literally unheard of that a trade is executed between two private investors. Without the issuer

there would be no liquidity. The flip side of this coin is that the issuer determines the price and

investors have no choice but to accept that price if they want to trade.

Given this monopoly power, the issuer has some incentive to skew the price in his favor. One

way to extract profits from trading in excess of the clearly defined bid/ask spread would be to

offer higher than usual prices on days when investors predominantly buy and offer lower than usual

prices on days investors are mainly selling. This requires some degree of predictability for the

change in net demand, i.e. the order flow of structured products. As we will show below, we find

evidence for such predictability. The frequency at which order flows change are quite high and

depend mostly on the returns of the underlying in the immediate past (yesterday’s return and the

overnight return) and as a consequence, predictability as well as price impacts are also limited to

very short horizons.

Our time frame is thus distinctively different from the literature on option demand pressure

(Bollen and Whaley, 2004; Garleanu, Pedersen, and Poteshman, 2009). Both studies relate private

investor demand to relative prices of options, i.e. the skew of the option smile, at a monthly

frequency. Similarly, Amin et al. (2004) condition on large returns over the past 60 days to explain

changes in the implied volatility of options. Lemmon and Ni (2011) combine those findings and

posit that market sentiment along with lagged market returns drive option demand which in turn

34For regulatory and historical reasons, retail investors cannot short stocks in their accounts at Germany-based
brokerages. One would have to open an account with a foreign broker. Also, during the sample period there were no
so-called inverse ETFs listed on the German market.
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impacts option prices. Their analysis is also at the monthly frequency.

Our analysis is similar to Lemmon and Ni (2011) in that we show that returns drive demand

which in turn drives warrant prices.35 However, the channel that we propose is quite different from

the limits-to-arbitrage explanation suggested by Bollen and Whaley (2004) (BW) and formalized

by Garleanu et al. (2009) (GPP).

BW argue that market makers in the options market face limits to arbitrage because their

access to capital and thus, their tolerance for intermediate losses is limited. In this case a growing

net position causes increasing ’hedging costs and/or volatility-risk exposure’ for market makers.

Consequently, market makers are willing to supply additional options only at increasingly higher

prices. For instance, institutional investors have a large demand for index puts for which there is no

natural counter-party in the market. Market makers absorb this demand imbalance at a premium,

which according to BW can partially explain the volatility smile observed in index options.

GPP suggest discontinuous trading, price jumps and/or stochastic volatility as causes for the

inability of market makers to hedge perfectly and derive analytically how demand pressure increases

option prices in the presence of these frictions.

By contrast, we suggest that issuers use their position and knowledge of future order flow to

adjust prices at a relatively high frequency to extract additional profits from investors. This is not

to say that issuers in the warrants market could not be subject to demand pressures at the monthly

frequency as well. However, with our quite short time series we must leave this question to future

research.

Finally, we should point that e.g. Lemmon and Ni (2011) find sentiment and market returns to

have strong effects on equity options but less so on index options because small investors account

for only 3 percent of trading in index options, but 18 percent in stock options in the U.S. options

market. In our case, the separation between small and large investors happens already with the

choice of exchange. As we pointed out earlier, both index and stock warrants are overwhelmingly

the domain of retail investors trading on EUWAX and Scoach, while large investors trade in the

derivatives exchange EUREX.

3.4.2.1 Aggregate Demand

We start by investigating the dynamics of daily aggregate demand for warrants, separated by type

of warrant and type of transaction. First, we allow contemporaneous variables to explain demand.

In a second step, we predict aggregate demand using only variables that are known prior to the

arrival of demand.

Using a rare dataset of actual transactions by retail investors in the German warrants market,

Glaser and Schmitz (2007) study the motives of retail warrant investors and find that hedging

considerations play virtually no role as the median holding period of both put and call index

warrants is a remarkably short 3 days. This indicates that most retail investors use warrants to

speculate on very short-term movements in the market. When partitioning sells into profitable vs.

35Since our analysis is at the daily or even intra-daily frequency we are precluded from using measures of sentiment.
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losing trades, they find that investors tend to hold warrants twice as long when they are trading at

a loss vs. at a gain: median holding periods are 4 vs. 2 days, and average holding periods are 24

vs. 12 days. This shows that warrant traders are also affected by the disposition effect documented

for stocks by Shefrin and Statman (1985) and Odean (1998).

These observations make it evident that contemporaneous and immediate past returns will play

a prominent role in determining selling decisions in particular. The buyer of a index call warrant

appears to be very likely to sell within 1 or 2 days if he experiences a positive return over this

period. Likewise, the buyer of a index put will sell within the next day or two if the market

declines over that period. Further, since the holding period is quite short regardless of gains, we

think that recent buying activity should foretell selling activity as well.

First, we regress daily aggregate demand for warrants on lagged demand and lagged and con-

temporaneous returns. Returns are measured from yesterday’s closing of the regular market to

today’s closing (1730CET). We measure today’s demand as aggregate Euro volume per category

(Calls vs. puts, buys vs. sells). Warrant trading continues until 2200CET each day, but at much

lower volumes than during regular trading hours. We would like to measure returns and order flow

over identical time periods, therefore we assign any trading activity that occurs after the official

closing to the next trading day. Lagged demand is defined as the sum of daily demand per category

over the preceding 3 trading days. In addition, we include total unsigned trading volume over the

previous 2 weeks as well as the lagged change and the level in market volatility as control vari-

ables. Total volume should help us to distinguish the impact of generally higher trading activity

from short-term buying and selling pressure. Including volatility variables will help to measure the

effect of market returns on demand more precisely because of the well-known negative correlation

between returns and volatility.

Explanatory power in Table 3.2 is very high. In line with our predictions we find a high

propensity to sell after positive returns for calls and after negative returns for puts. Lagged buys

and sells positively impact today’s buys and sells. Somewhat surprising, both puts and calls are

more likely to be bought following negative returns. Total lagged unsigned demand is strongly

significant and positive indicating more trading activity in the present given higher trading activity

in the recent past. Interestingly, the coefficients on volatility levels and changes are of opposite sign.

Times of higher volatility are associated with generally lower trading volumes, while a positive shock

to volatility during the previous day causes more selling activity today. Presumably, an increase

in volatility makes all warrants worth more and thus the chances of a position being profitable

increase, leading to faster selling by investors.

In order to avoid undue influence from extreme returns over the rather volatile sample period,

we repeat the analysis with all return variables winsorized at 3 per cent. Results are qualitatively

the same, albeit R-squared are slightly lower.

Having found a contemporaneous connection between demand and returns, we turn our atten-

tion to the predictive power of lagged demand and returns with regards to future demand. This is

important because we would like to know if issuers can anticipate order flows, for instance at the
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beginning of a trading day. If this is the case then issuers are in a position to adjust prices to take

advantage of investors’ demand before it arrives.

To this end, we will form expectations of intraday demand pressure that occurs between 930CET

and 1730CET. As explanatory variables we use data that is known to the issuers at 930CET, i.e.

yesterday’s return and net demand as well as return and demand occurring between 1730CET

yesterday and 930CET today. We call this the overnight return and the overnight demand.

Compared to the results earlier R-squared in Table 3.3 are naturally lower but still very high.

The results from the previous regression seem to carry through with regards to the signs and

importance of returns on demand. As a robustness check, we repeat the analysis with return

variabels winsorized at 3 percent and find results essentially unchanged.

It is remarkable that simply by using returns and order flows from the immediate past, we can

explain over 60 percent of total variation in demand for puts over the course of the day. Calls are

somewhat more difficult to predict, and we might thus expect that prices are more responsive to

demand for puts than for calls.

We are aware that our predicted demand is an in-sample prediction. We choose this path

because of the relatively short sample period and the fact that we only observe a subset of true

demand, both of which might make out-of-sample predictions extremely noisy. Further, all we have

to assume for this prediction to be attainable by issuers at the time is that coefficients of lagged

demand and return stay constant over time. We have no reason to believe that e.g. investors switch

their propensity to sell calls after markets went up from one year to the next.

3.4.2.2 The Impact of Demand on Warrant Prices

We now turn to investigating the connection between warrant prices and contemporaneous demand

in two steps. First, we check if demand and prices are correlated contemporaneously. Second, we

want to know if prices adjust before demand occurs or after.

One possible methodology would be similar to what existing literature has done: match each

warrant with an option individually and estimate the relative premium of warrants over options.

We follow this path in all other parts of the empirical analysis but for the effect of demand we

choose a different route for several reasons.

First, our study is at a disadvantage to others because we do not have bid/ask quotes of options,

only transactions data. We computed IVFs for options based on transactions but found the imputed

option prices too noisy to be of use even when pooling transaction over the entire trading day. We

would require hourly IVFs.

Secondly, assume we were to observe bid/ask quotes for options and were thus able to compute

reliable estimates for warrant premiums. We try to identify the impact of warrant demand on war-

rant prices relative to option prices, which according to the findings of GPP also face price impact

from demand pressure. Unlike GPP, we do not have access to a dataset that shows outstanding

net option positions by investor group. We therefore have no way of knowing who bought and who

sold a particular option contract as not all trades have to occur between a market maker and an
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investor. Then, given estimated net demand for options we would have to estimate the impact of

option demand on the premium at the same time that we estimate the impact of warrant demand.

This procedure appears to be dependent on too many moving parts that we know too little about.

Instead we opt for a different route that is able to circumvent our data limitations. We use

option implied skewness proposed by Bakshi, Kapadia, and Madan (2003) (BKM) as our measure

of choice. BKM use prices of OTM puts and calls to derive non-parametric moments of the option-

implied expectations of the return distribution of the underlying. Relatively higher prices in some

range of moneyness imply that investors assign a higher probability to the underlying being in

that range at maturity. Intuitively, if prices of OTM puts are higher than prices of equally OTM

calls, investors assign higher probabilities to negative outcomes, which leads to negative implied

skewness. Additional details of constructing BKM measures as well as minimum number of options

required are discussed in Dennis and Mayhew (2002).36

Given the large quote dataset we have too many rather than too few warrant quotes available

at each point in time. We have seen in Figure 3.1 that far-OTM warrants are subject to extreme

overpricing. To guard against the results being driven by the large premia in low moneyness

warrants we exclude put warrants that are more than 20% OTM and call warrants that are more

than 25% OTM. The reason for the slight asymmetry lies in the weighting scheme of the BKM

skewness which is based on the log of moneyness.

We compute BKM skewness for each warrant chain of each issuer once every hour. A warrant

chain consists of all warrants by the same issuer that have a common expiration date. To compute

skewness at e.g. 1730CET, we select the last mid quote of each OTM warrant issued prior to

this time. If the quote is older than an hour it is discarded. Because the derivation of the BKM

measures is based on European-type options, we transform quotes of American-type warrants into

European-type prices via the binomial model described earlier.

In Table 3.4, we regress daily changes in skewness (1730CET to 1730CET) on several versions

of net demand for puts and calls that are measured over the same time period. We include the

lagged level of skewness and yesterday’s return (split up into up and down part) as controls.

We find that total net demand for both calls and puts enters highly significantly. The signs of

the coefficients indicate that demand is positively correlated with warrant prices: higher demand

for calls coincides with higher skewness, which means that the right tail, i.e. calls, becomes more

expensive than the left tail; higher demand for puts coincides with lower skewness, which means

that the left tail becomes more expensive relative to the right tail. The issuer-specific net demands

by itself have the same effect, albeit weaker. Because issuer-specific variables generally turn out

to be quite weak, we will omit them from the following analysis. Using net demand by expiration

instead of total demand has again similar effects but is also weaker. If we use it in addition to total

demand, only the put demand remains significant.

In summary, we find that, on a daily horizon, demand is positively related to contemporaneous

36BKM as well as Dennis and Mayhew (2002) suggest to use at least 3 option prices per side. In the present context
of warrant prices, this suggestion is never binding. 10 to 20 observations per side are typical.
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changes in skewness. The question is: Does demand cause prices to rise, in which case we would

be in the world of Garleanu et al. (2009)? Or do prices adjust preemptively to expected demand?

This would support the case for opportunistic price setting by issuing banks.

To distinguish between these two explanations, we compute the overnight change in skewness

(measured from 1730CET of the previous day to 930CET of the next day). We choose 930CET, be-

cause the regular market opens at 900CET and we want to make sure that orders entered overnight

are not counted towards the intraday demand.

We then split daily demand into two parts. Overnight demand consists of all transactions that

occurred between 1730CET and 930CET, while intraday demand consists of all transactions that

occur after 930CET until that day’s closing at 1730CET. Table 3.5 shows results for both realized

intraday demand as well as predicted demand. The latter is based on the fitted values from the

regressions on total demand shown in Table 3.3 and identical regressions for demand by expiration

not reported.

Note from column (1) in Table 3.5 that lagged and overnight demand alone only explain a small

part of skewness changes, as some controls (not shown) are already highly significant. Further their

signs are different from the previous table. In columns (2a-c) actual net demands that occur during

the day after 930CET have been added. Explanatory power of the models is still relatively low and

adds at most 3.4 percent over column (1). Compare that to columns (3a-c) where actual demand

is replaced by predicted demand. Significances are generally higher and the explanatory power is

raised substantially. With one exception, all predicted net demands enter with the right sign and

are significant.

The results lend strong support to the view that price changes preempt demand. Future ex-

pected net demand for calls is met by increases in skewness, i.e. higher call prices, while future

expected net demand for puts is met by a decrease in skewness, which indicates higher put prices

relative to calls. Thus, issuers systematically short-change investors by overpricing warrants that

are in net positive demand over the following hours, while underpricing warrants that will be

redeemed on a net basis.

3.4.3 The Life Cycle Hypothesis

Wilkens, Erner, and Röder (2003) analyze two types of SPs in the German market, reverse convert-

ibles and discount certificates, and find that the overpricing present in these products declines as

expiration comes closer, which they term the ’life cycle hypothesis’ (LCH). Some subsequent studies

find supporting evidence for a number of other structured products (Grünbichler and Wohlwend

(2005), Stoimenov and Wilkens (2005), and Entrop, Scholz, and Wilkens (2009)), but Abad and

Nieto (2011) fail to find such a pattern for warrants in the Spanish market. Wilkens and Stoimenov

(2007) argue against using the LCH for products with knock-out feature37 because expiration is a

random event in that case.

37A knock-out feature causes the instrument to expire worthless as soon as the underlying hits a pre-determined
level for the first time.
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The idea behind LCH is as follows: At issuance, most SPs are in possession of the issuer

(although active marketing of upcoming IPOs is meant to place a portion of the product with

investors ahead of issuance). Over time, as investors buy the product, the chances of some of

them wanting to redeem securities from the issuer increase. Since bid and ask prices are bound

together rather closely (by exchange regulation), an asking price far above fair value would imply

a bid price that is also too high. Thus, by keeping the bid price too high for long, the issuer risks

being sold back some of her product at inflated prices. Wilkens et al. (2003) argue that investor

buying activity should generally decline as maturity comes closer, while selling activity will likely

increase. To optimally profit from the life cycle of demand, the issuers should gradually reduce the

overpricing over the life time of the product.

Neither Wilkens et al. (2003) nor any of the subsequent studies are able to test this hypothesis

directly because of the lack of demand data. In this study, we only have access to a fraction of total

demand. Thus, estimates of net demand over periods longer than a few days are likely too noisy.

Nevertheless, using daily net demand, we documented in Section 3.4.2 how issuers adjust prices on

a daily basis to exploit high-frequency changes in net demand. It would not be surprising to find

such a pattern at longer horizons as well. However, the unavailability of OTC transaction data on

warrants and other structured products makes testing this hypothesis directly rather difficult.

In the following, we revert to proxying for the effect of life time net demand by using the time

to maturity just like previous studies did. Where we differ from previous research, however, is

how we compute the warrant premium. Wilkens et al. (2003) and Stoimenov and Wilkens (2005)

use a simple hierarchical matching, which with slight deviations is employed by related studies as

well. For each transaction (or quote) of a structured product, all transactions (quotes) of EUREX

options are considered that minimize the difference in strike prices; in the next step, among all

matches of the first step, the difference in time to maturity in minimized. In a third step, the

difference in time stamps is either minimized or used as a filter criterion. Wilkens et al. (2003) are

able to match strike prices quite well, but generally match EUREX options with a maturity half

as long as that of the SP. Similarly, Stoimenov and Wilkens (2005) report average deviations in

maturities of 5-7 months.

To evaluate the effect of maturity on the premium, it seems crucial to compute premia from

options that are very close precisely in the dimension of maturity. Section 3.3.2 describes how

premia are constructed for the purpose of this study. In contrast to previous studies, we match

warrant quotes with implied volatility functions constructed from option trades that take place in

the same hour using options that expire in the same month as the warrant. Further, we impose a

minimum requirement on the number of options, the range of moneyness of the option transactions

and we require that the moneyness of the warrant at the time of the quote is covered by that range.

Daily averages of premia are calculated and admitted if there are more than 2 premiums observed

for a warrant on a given day.

In the absence of option quotes (which could be easily matched one-to-one with warrant quotes),

we feel this is a robust way to compute premia. As mentioned in Section 3.3.2, the method is not
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free of bias because issuers choose expiration dates in a systematic fashion: most warrants expire

between 2 and 4 days prior to the option expiration date.38 To see if this mismatch impacts

any conclusions drawn with regards to the life cycle hypothesis, we compare the raw unadjusted

premium with the three other versions of the warrant premium developed in Section 3.3.2.

Table 3.6 depicts the results of a regression of warrant premium on the time to maturity TTM

(in years). The sample data is split by warrant type and further into 3 maturity bins to see if the

effect changes over the life time of the warrant. In addition within each subsample, the coefficient

of TTM is allowed to vary depending on the delta of the warrant. Panels A-D repeat the analysis

using a different version of the warrant premium. To conserve space, we omit the coefficients of the

control variables that are included. Because we explicitly use them in the next section as well, we

will discuss them there in detail. Standard errors of all coefficients are based on two-way clustering

by date and issuer following Thompson (2011).39

The difference between the unadjusted premium and the remaining three versions is quite

striking. Practically all coefficients in Panel A are highly significant and positive, indicating a

premium that decreases as maturity comes closer. The fact that t-statistics reach levels of 20 and

more, should be reason for concern. This is clearly the manifestation of the mismatch that we

described in much detail above. If the warrant expires 2-4 days earlier its time value sinks at a

increasing rate, ahead of the time value of the option. This is what the TTM coefficient is picking

up. Thus, it appears as if the overpricing is declining strongly.

By contrast, Panels B-D use warrant premia that are adjusted for this mismatch in one of

three ways. Even though the adjustment used in Panel B is quite crude, its results are already

much in line with the more data-intensive versions using intrapolation (Panel C) or extrapolation

(Panel D). Our preferred method is the intrapolated premium, because the sample size is not much

smaller than for the first two methods and the long-term maturity bin contains several times more

observations than in the extrapolated case. All three panels show similar results across moneyness

and maturity. It appears that the premia of OTM calls and more significantly, OTM puts tend to

appreciate during the last 3 months of their lives at a rate of 2 and 4% annually. ITM warrants

as well as OTM warrants with more than 3 months till expiration generally experience a decline in

premium on the order of 2% per year.

The reversal in premium decline for close-to-maturity OTM warrants is somewhat puzzling. We

can think of 2 potential explanations. The first is based on the disposition effect, i.e. behavioral.

Glaser and Schmitz (2007) find that warrant investors are prone to this effect. The second is based

on the transaction cost structure that prevails in most retail financial markets.

First, in a Black-Scholes framework, the change in option price with respect to time as a fraction

of the option price, i.e. θt/Pt, is stronger for OTM options than for ITM options. This difference in

38We randomly compared expiration dates of warrants and other structured products in the German market and
found that they cluster at precisely the same dates.

39Tables 3.6 and following are based on a large number of individual warrant observations; adjusting standard
errors along two dimensions, especially by time, should ensure that the commonly used significance levels remain
valid.
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decline becomes much wider as maturity approaches. This intuitively makes sense, as ITM options

have some intrinsic value, which makes up an increasing part of the total option price, while OTM

options are time value only. To give one stylized example, assume σ = .25, rf = 0, S = 100,

K1 = 107 and K2 = 94. At one year to maturity, the daily loss of time value is 0.31% (0.25%) for a

call with strike K1 (K2), but at two weeks to maturity the daily rate of price decline has increased

to 11.0% (3.6%).

On average, it seems plausible then that contracts that are close to maturity and far-OTM

have the highest likelihood of being a losing position to investors. If the current warrant holders

resist redeeming those warrants because they have an aversion to realize losses, the issuer is free

to charge higher premiums to newly arriving investors without having to fear large redemptions at

high premiums.

The second explanation is based on the fact that transaction costs are typically a percentage

of transaction volume above some minimum amount. An investor currently holding warrants has

the choice between holding on until expiration, at which point he does not incur any transaction

costs40, or to sell prior to maturity incurring the cost. As in the previous explanation, on average,

OTM warrants close to maturity are the most likely to be worth less than when they were originally

purchased. Thus, the minimum transaction cost becomes large as a percentage of the transaction

amount and can tilt the investor towards holding on to the warrants until maturity. This again

leads to less selling pressure and the opportunity for the issuer to extract higher premiums from

new investors.41

How do our results relate to other classes of SPs? Based on our findings we suggest to divide

SPs into two categories, one in which time value plays a subordinate role vs. one where the price

is essentially all time value. SPs with principles that are paid back at expiration fall into the first

category, i.e. discount certificates, as do ITM warrants. In line with previous research mentioned

at the beginning of this section, these products exhibit a declining pattern in overpricing.

In contrast, far-OTM warrants and SPs based on exotic options fall into the second category.

In particular if they are close to the knock-out barrier or far from the knock-in barrier etc., most

of the price consists of time value, i.e. of moving into the money. Again, in line with previous

research mentioned above (Wilkens and Stoimenov (2007), Abad and Nieto (2011)), our findings

suggest that the degree of overpricing for these products is not driven by the LCH.

3.4.4 The Effect of Credit Risk

Credit risk has been a long overlooked issue in the literature on structured products, at least empir-

ically. Structured products in general, and warrants in particular, are unsecured debt obligations

by the issuing bank and as such they are likely to receive a low recovery value in the case of

bankruptcy. Most studies, however, ignore credit risk in their analysis. A common misconception

40At maturity, contracts are cash-settled and if in the money, the value is credited to the investor’s account without
any additional fees.

41We plan on formalizing both channels in a simple model in future versions of the paper.
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is expressed in Bartram and Fehle (2007): ‘the issuer is obligated ... to hedge all options sold.

Thus, bank-issued options [i.e. warrants] are generally considered to be free of default risk.’ Some

studies explicitly incorporate default risk into the fair value computation. Stoimenov and Wilkens

(2005) and Wilkens and Stoimenov (2007) use discount rates derived from issuer bonds instead of a

default free rate to discount cash flows. Baule, Entrop, and Wilkens (2008) explicitly starts in the

vulnerable options framework of Hull and White (1995) and Klein (1996). These studies decrease

the fair value of structured products, but do not investigate if observed prices react to changes in

credit risk.

Until recently, the default risk of large banks has not been a major concern. The credit crisis

that started in 2007 will likely have changed that perception. German retail investors have become

acutely aware of the risk involved in structured products after the collapse of Lehman Brothers

caused a total loss in high-yield Lehman certificates. These were previously thought of and marketed

to small investors as riskless42. Similar products underwritten by Lehman caused small investors

severe losses in the U.S.43, in Great Britain44 and in Hong Kong45. Due to recent worries about

the default of sovereign debt in the Euro-zone and the consequences this may have for European

banks in particular, we are seeing yet another spike in the CDS spreads for European commercial

banks, many of which are active participants in the issuance of warrants and structured products.

Issuer default risk therefore seems to remain an important topic to investors.

Figure 3.2 shows the evolution of unsecured 1-year CDS premiums for the issuers in our sample

that do have traded CDS contracts. For Citigroup we use the senior secured contract, because the

unsecured contract contains too many stale quotes. Issuer default risk is clearly non-negligible for

a large fraction of the time period that is covered by our sample. It seems therefore worthwhile

to ask if the market for structured products (and warrants) is efficient in the sense that observed

prices incorporate the effects of issuer credit risk.

It is entirely possible that retail investors are unable to properly incorporate credit risk in their

demand function for a particular product and, as a consequence, issuers enjoy a form of cheap

borrowing from unknowing retail clients. The results of Baule, Entrop, and Wilkens (2008) could

be seen as supportive of this view. Based on 2004 data they find that average overpricing has

declined relative to the data of Wilkens, Erner, and Röder (2003) from the year 2000, but that

imputed credit risk constitutes a larger share of the total premium in their sample.

Instead of computing fair values of warrants that implicitly incorporate credit risk, we take

a different route by investigating if observed premiums are sensitive to credit risk, i.e. if the

overpricing of warrants diminishes if issuer credit risk increases. Credit risk is measured as last

trading day’s premium on a 1-year CDS for unsecured debt of the issuer (ScaledCDS). We describe

the construction of premiums of warrants over options in Section 3.3.2 of the paper. In our analysis

of the effect of credit risk and other factors on the individual warrant premium, we focus on the

42New York Times, October 14th, 2008, ‘Lehmans Certificates Proved Risky in Germany’
43Wall Street Journal, December 5th, 2009, ‘Investor Wins Lehman Note Arbitration’
44Wall Street Journal, October 27th, 2009, ‘FSA to Clean Up Structured-Products Market’
45Wall Street Journal, May 31st, 2010, ‘The Fine Print is Enlarged, But Will Investors Read It?’
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interpolated version of the warrant premium because it strikes a good balance between sample size

and accuracy.

Warrants in the sample can differ along several dimensions: issuer, expiration date, strike, and

type. Due to this multi-dimensionality we are careful to include a number of control variables.

Issuer dummies are a natural candidate, because they take care of persistent issuer fixed effects.

Previous studies typically find strong differences in the average premium between issuers and our

study is no exception. Presumably, issuers differ by their fixed costs and margins as well as by

bid/ask spreads which may affect premia. We also include the warrant’s |∆| as well as ∆2 (computed

with the IV of the option) motivated by the observation that the warrant premium decreases with

delta in a convex fashion (as documented in Figure 3.1). We exclude warrants with extreme levels

of moneyness. Specifically, for each issuer, we cut off the 5% of warrants with the lowest and the

highest values of delta. For the remaining warrants, we get an approximate range of 0.1 ≤ |∆| ≤ 0.8.

Motivated by Bartram, Fehle, and Shrider (2008), we include 2 competition dummies. DComp

is set to one on a given day for a particular warrant, if at least another warrant exists that expires

in the same month with the same strike and type. DEUREX is set to one for a particular warrant, if

a EUREX option with identical features existed on a given day. Time to maturity (TTM) is meant

to catch a general change in premium over the life time of the warrant. Lastly, LagWarVol is the

warrant-specific trailing total volume (buys plus sells) over the previous 14 days. A large fraction

of warrants outstanding do not trade at all or only very sparsely, while the most traded warrants

achieve daily turnover in excess of one million EUR. It is conceivable that premia differ between

warrants with low and high volume.

Table 3.7 contains the basic result with regards to the effect of credit risk on warrant premium

based on the full sample. Results are reported separately by warrant type, i.e. put vs. call and by

the method of computing premiums, in this case the adjusted, the interpolated and the extrapolated

version. We exclude the unadjusted premium from the remaining analysis because of the biased

results discovered in the previous section with regards to time to maturity.

Since Figure 3.2 shows that our sample contains a relatively calm early period and a period of

heightened credit fears caused by the sudden collapse of Lehman Brothers, it seems plausible that

credit risk did not play a role in the first period because investors in general and retail investors in

particular were not concerned with the possibility of bank failures. Table 3.8 presents those results.

As a minor difference to the previous table, the variable for credit risk is split up into 4 parts to

allow different effects of credit risk on premium depending on the delta of the warrant.

In both tables, R-squared are generally quite high at between 40−50 percent. Credit risk has a

strongly significant negative effect on the warrant premium for the full sample shown in Table 3.7.

The sample split in Table 3.8 reveals, however, that the effect is entirely due to the post-Lehman

period. This is indicative of a structural break, where investors learned from the Lehman event

and started to price in the possibility of an issuing bank defaulting.

It is possible that results in the early period are partially affected by a lack of signal in the credit

risk variable rather than lacking attention by investors. However, as can be seen from Figure 3.2,
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while there was little cross-sectional variation of perceived credit risk among issuers in the pre-

Lehman part of the sample, the time series still shows some variation from essentially no credit

risk to a peak at around 200 basis points (bps). This compares to peaks of 800 bps for Citigroup

and between 200 and 400 bps for other banks in the post-Lehman part. Thus, credit risk was not

negligible entirely pre-Lehman and as a consequence should show up in results if it had been priced

fully.

Another question is whether given the very short holding periods exhibited by retail investors in

these products we should expect to see any effect at all. Obviously, we cannot exclude the possibility

that many retail investors think this way, maybe due to overconfidence in their own ability to foresee

the default of the issuer. However, this view is not grounded in theory as it implies that credit risk

priced into an asset should depend on its turnover or trading volume. Instead, a rational investor

should properly discount the credit risk of the asset over its lifetime and expect to be able to sell

it at any point in the future at a price that also properly discounts the then present credit risk.

With regards to the control variables, the two delta terms pick up the declining and convex

pattern visible in Figure 3.1 and the issuer dummies pick up differences in the level of overpricing

that were also visible in Figure 3.1. The size of the dummy coefficients is of no importance to the

analysis.

There seems to be some evidence that the existence of identical warrants by other issuers

decreases the extent of the overpricing. Thus, competition does have an effect on prices. The result

is much weaker for competition from an identical option listed on EUREX, which supports the

idea of strong segmentation between the two markets. The level of volatility does have a strongly

negative effect on premia but again, only after Lehman. The complex pattern of the TTM coefficient

was the topic of the previous section, thus we will disregard it here. Lastly, lagged warrant turnover

is consistently negative and significant. It is also economically important for high-volume warrants

than can have around 1M EUR in daily turnover. Such a warrant may experience a decline in

premium of around 2% relative to low-volume or no-volume warrants.

The Correlation of Payoff and Default

The coefficient on credit risk in the previous tables suggested that there is an effect of issuer default

risk on overpricing, at least post-Lehman, but is its size reasonable? To make the coefficients

comparable across maturities they scaled such that a coefficient of −1 indicates that the premium

declines by 1% per year of maturity for each additional 100 bp in issuer credit risk. The coefficient

for a 6-month warrant is already multiplied by a factor of two to account for the shorter maturity.

A coefficient of −1 is what a naive model of default risk would predict as coefficient for a vulnerable

claim. The observed values generally lie around −0.25, thus far away from the prediction.

Models of vulnerable options (Klein, 1996) suggest that options should be impacted to different

degrees depending on the correlation between default risk and option payoff. Consider the most

extreme case where the issuer was to issue warrants on its own stock price. An OTM call should

not be affected by the issuer default risk at all, because all states of the world in which the issuer
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defaults are states in which the call payoff is zero anyways. An OTM put, on the other hand,

potentially pays the most in states where the issuer share price goes to zero, which would likely

coincide with bankruptcy. Being an unsecured debt obligation, the warrant would lose its value in

line with other debt instruments of equal seniority. Therefore, moneyness should matter for the

pricing impact of credit risk on warrants.

In our case, the warrants are issued on the DAX, the German headline market index. It is

not difficult to assume that the default risk of issuers, many of which German banks, is negatively

related to market returns, in particular, because the time period was already termed a banking

crisis at the time. Thus, DAX calls pay out in states where the market has risen, which are most

likely states of the world in which banks survived. DAX puts pay out in states of further market

declines, a scenario that could have been likely triggered by bad news from the banking sector.

The credit risk variable in Table 3.8 is split into moneyness regions. Contrary to theoretical

predictions, far-OTM puts are the least sensitive to credit risk; in fact, the post-Lehman sample

exhibits declining coefficients for credit risk from ITM to OTM. Calls on the other hand exhibit

an increasing for the full sample and a flat pattern for the post Lehman sample. Next we split the

sample into maturity bins to test a second natural prediction of a default risk model, namely that

the sensitivity to default risk should increase with the time to maturity. We maintain the division

of the credit risk variable according to the delta of the warrant.

Table 3.9 shows the results. While the patterns are rarely monotonic we would argue that it

appears as if for both types sensitivity to credit risk is more pronounced for OTM warrants. So,

while we find evidence of credit risk being a factor across all maturities, we cannot argue that this

is because of investors rationally relating the payoff of warrants with the likelihood of the issuer’s

default. Further, with maybe the exception of OTM calls, it is hard to argue that there is an

increase in default risk sensitivity for longer maturity contracts.

We conclude that investors do not fully incorporate the effects of credit risk into their demand.

The Lehman bankruptcy may have served as a wake-up call to retail investors that issuer credit

risk is not negligible but the size of the effect suggests that issuers can continue to use structured

products as a source of cheap financing.

The issuance of SPs should not be underestimated in this regard. According to the monthly

market volume statistics issued by the industry group ’Deutscher Derivate Verband’ (DDV) 46,

open interest in structured products in the German market amounted to 76 billion EUR in the

month of May 2009, the last month of the sample period. The number is based on 14 reporting

member banks. The DDV estimates the total open interest at around 90 billion EUR for that time.

In April 2010, estimates of total open interest were in excess of 100 billion EUR. Curiously, about

60% of the total amount outstanding is invested in capital protection certificates that are marketed

as conservative and safe investments with the primary goal of principal protection. Similarly, retail

structured products in the U.S. reported sales volumes of over $100 billion USD in 200747.

46http://www.derivateverband.de/DEU/Presse
47Wall Street Journal, May 28th, 2009, ‘Twice Shy On Structured Products?’
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3.5 Potential for Policy?

Bethel and Ferrell (2007) focus on policy in the U.S. market for structured products and advocate

restricting the pool of eligible investors for which structured products are suitable and improving

transparency and disclosure requirements to avoid uninformed retail investors from making costly

mistakes. However, they are quick to point out that regulation must also be mindful of the costs

imposed on issuers and retail investors and their response to circumvent new restrictions.

The focus of the present paper are novel empirical findings in the market for structured products.

Nevertheless, we shall quickly comment on whether policy implications arise from our findings

specifically. With regards to credit risk, the implication is relatively straightforward. Had retail

investors that were seeking safety known that Lehman certificates carry the full credit risk of the

issuer, it seems likely that fewer had chosen those particular instruments for this purpose. The

issue is thus one of disclosure of all risks in clear terms and can be improved by increasing fines

and accountability on the part of the financial advisor selling these products. Forcing the seller

to confirm the suitability of the product for the individual investor at the point of sale is another

potential avenue.

As for the general and time-varying overpricing, the issue is much less obvious. As the previous

literature has pointed out, some degree of overpricing maybe justified due to the services provided

and the associated costs that arise to the issuer, i.e. packaging services, binding liquidity provision,

marketing and the fixed setup costs in creating the technology, products and know-how. In this

context it is interesting that there are no discernible barriers to entry (other than fixed entry costs)

that would keep competitors from entering this market. Thus, it is a distinct possibility that to a

large extent the profits generated by the issuers are compensation for their investment and business

risk rather than rents.

It is also difficult to argue that the removal of the short-selling constraint would lead to overall

improvements. Given that short-selling requires someone to lend out these products, who would be

a willing party? Retail investors with their very short holdings periods are not suitable candidates

and the issuers themselves cannot be forced to lend out shares. Further, the infrastructure of the

market would have to change significantly. One of the main advantages of this retail-driven market

is the absence of complex margin accounts, which short-selling would require. Such a step would

move SP markets already very close to regular options exchanges and possible lead to their demise.

3.6 Conclusion and Outlook

This study investigates the price setting behavior of issuers of structured products in the secondary

market. Issuers are the sole liquidity providers for their products and do not allow short-selling. In

particular, for the securities that we study, bank-issued warrants in the German market, trading is

only possible with the issuer being on one side of the transaction. This allows the issuer to exert

great power over pricing.

Previous literature has consistently reported overpricing in structured products in general, for

76



the U.S. (Bernard et al., 2011), for Germany (Wilkens et al., 2003) and for Switzerland (Grünbichler

and Wohlwend, 2005), and for warrants in particular (Horst and Veld, 2008; Abad and Nieto, 2011)

when compared to products on derivatives exchanges.

The extent of overpricing can be sufficiently large to ensure that expected returns lie below

the risk-free rate (Henderson and Pearson, 2011) and thus there is no reason for rational investors

to buy some of these products. Other studies point out how issuers take advantage of investors’

susceptibility to certain mental errors like over-optimism (Bernard et al., 2011), how they optimally

increase complexity to maintain overpricing (Carlin, 2009) and increase search costs (Dorn, 2010).

We add to this literature by pointing out a number of ways in which issuers take advantage of

the demand of investors for certain payoffs as well as the lack of financial literacy. Our results are as

follows: First, retail investors exhibit a preference for high-leverage, OTM warrants. Issuers exploit

this demand by overpricing those securities the most. Issuers seem to benefit either from investors

that cannot easily spot the overpricing or from investors with sufficiently optimistic beliefs that

makes them willing to pay higher premiums. Among ITM warrants, puts are more overpriced than

calls, because of the general lack of ways to express negative views on stock markets in Germany.

Second, issuers are able to predict net demand at the daily horizon, because transactions,

especially sales, are heavily influenced by recent returns. Knowing future net demand, issuers

opportunistically adjust prices ahead of time and thus are able to extract additional gains in excess

of the officially quoted bid/ask spread. In turn, this lowers realized profits for investors.

Third, for warrants other than close-to-expiration OTM warrants we find evidence that the

extent of overpricing is decreasing over the life time of the warrant. Thus, issuers extract additional

gains from investors holding warrants for longer periods, diminishing investors’ returns. In contrast,

close-to-expiration OTM warrants appear to decrease less or even increase in overpricing. We

suggest that it is the relative importance of time value as a share of the total price that gives rise to

this divergent behavior and propose two channels through which the relatively larger rate of time

decay keeps existing holders of OTM warrants from selling, thus enabling issuers to decrease prices

less.

Last, we investigate the effect of issuer credit risk on the extent of overpricing. We find that only

since the collapse of Lehman Brothers, is there a discount in prices due to credit risk. However, the

effect is too small relative to vulnerable options models and additional predictions by these models

cannot be confirmed in the data. Once again, issuers seem to be able to profit from the lack of

financial knowledge of investors. We point out that given the large amount of structured products

outstanding (currently 100 billion EUR in Germany alone) underestimation of credit risk amounts

to a non-negligible source of cheap financing for issuing banks.

3.6.1 Implications for Other Structured Products

Admittedly, warrants are the most simple structured product available. It is an open question if

our results carry through to other classes of these instruments. Given that structured products

share most if not all institutional features like trading mechanisms, secondary markets, liquidity
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provision, marketing channels and issuers, we are confident that the main findings apply to all

structured products. In particular, success of the practice of adjusting prices in anticipation of

future demand is completely independent of the instrument, rather it depends on two factors.

First, that investors are forced to trade with the issuer either by market design (as in Germany) or

by lack of liquidity (as for some U.S. products) and second, that daily demand can be anticipated

reasonably well.

Our finding that the effect of maturity on overpricing depends on the importance of time value

relative to total price is also not tied to warrants alone. We argue that all structured products that

pay back the principle will behave similar to ITM warrants because for both the time value of the

option part of the product gets smaller as maturity approaches. In contrast, SPs that payoff nothing

in some states of the world (knock-out, knock-in features) are more similar to OTM warrants in

that their price is mostly driven by time value.

Finally, with regards to credit risk, we see no reason why retail investors would fail to correctly

price default risk into warrants, but would correctly discount other structured products carrying

exactly the same risk.

We are looking forward to seeing an investigation into the predictability of demand for other

structured products as well as the potential exploitation by issuers. We would also be interested in

understanding cross-sectional patterns in demand for other structured products. For instance, is

there a preferred habitat for retail investors with regards to leverage (in speculative, convex-payoff

products) or with regards to the proximity to the participation cap (in concave products) or the

knock-out barrier (in more exotic products)?
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Table 3.1: Relative Transaction Frequencies

This table shows the relative frequency of transactions (in percent) by moneyness category (out-of-the-money (OTM);

at-the-money (ATM); in-the-money (ITM)) for several maturity ranges (1-3 months, 4-6 months and 7 or more

months) and for the full sample. Numbers represent percent shares of row totals, i.e. within maturity bin, with the

exception of the last column ’All’, where they represent the share of each maturity of the total sample. The analysis

is done separately for warrant transaction on EUWAX/SCoach and options on EUREX and further split by calls and

puts.

OTM ATM ITM All

> 25% 15-25% 5-15% ± 5% 5-15% 15-25% > 25%

Panel A: Calls

Warrants

Maturity (in months)

1 - 3m 6.3 9.2 28.6 40.0 2.3 0.2 12.9 37.9
4 - 6m 15.3 19.4 30.1 20.4 2.1 0.3 12.1 19.7
≥ 7m 36.3 14.4 16.6 15.9 2.9 0.7 12.9 42.3
All 20.8 13.4 23.8 25.9 2.5 0.5 12.7 100.0

Options

Maturity (in months)

1 - 3m 1.2 4.2 34.0 58.4 1.7 0.1 0.2 84.3
4 - 6m 8.6 17.5 42.9 26.7 2.9 0.5 0.5 7.9
≥ 7m 28.4 16.3 24.5 22.8 4.6 0.9 2.1 7.6
All 3.8 6.2 34.0 53.1 2.0 0.2 0.3 100.0

Panel B: Puts

Warrants

Maturity (in months)

1 - 3m 3.4 7.6 26.9 39.7 6.8 1.4 13.8 44.6
4 - 6m 7.2 9.6 22.2 34.4 10.6 2.7 13.0 22.4
≥ 7m 15.1 10.9 21.3 25.9 9.4 3.9 13.2 32.9
All 8.1 9.1 24.0 34.0 8.5 2.5 13.4 100.0

Options

Maturity (in months)

1 - 3m 1.4 5.9 34.6 53.9 2.8 0.5 0.5 84.6
4 - 6m 7.4 14.4 33.2 36.8 5.5 1.0 1.4 8.0
≥ 7m 18.9 14.7 25.9 27.2 8.0 2.4 2.6 7.3
All 3.2 7.3 33.8 50.5 3.4 0.7 0.7 100.0
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Table 3.2: Day-over-Day Demand Regression

This table show the results of a regression of aggregate daily demand for warrants on a number of lagged demand and

market return and volatility variables. Regressions are done separately by type of warrant (calls and puts) and type

of transaction (buys and sells). Aggregate daily demand on day t is defined as the sum of all transactions occurring

between 1730CET of the previous day and 1730CET of day t. Explanatory variables are total unsigned warrants

volume over the past 2 weeks (TotWarVolt−14,t−1), lagged change in and level of volatility (∆VDAXt−1, VDAXt−1),

lagged demand by type of transaction and type of warrant (e.g. BuysCt−1) as well as lagged and contemporaneous

market returns (e.g. Ret−t−1). A negative sign indicates that the variable is equal to the market return of that period

if negative and zero otherwise; a positive sign indicates the opposite. Standard errors are computed following Newey

and West (1987, 1994).

Calls Puts

Buys Sells Buys Sells

TotWarVolt−14,t−1 0.43 0.41 0.68 0.77
***[6.07] ***[6.81] ***[4.73] ***[5.00]

∆VDAXt−1 7.19 8.52 5.50 15.98
*[1.78] ***[3.43] [1.21] **[2.07]

VDAXt−1 -3.67 -4.13 -3.13 -3.63
***[-4.63] ***[-5.89] ***[-2.89] **[-2.38]

BuysCt−1 0.12 0.12
***[5.81] ***[5.33]

SellsCt−1 0.04 0.05
*[1.87] **[2.45]

BuysPt−1 0.11 0.09
***[4.55] ***[3.22]

SellsPt−1 0.07 0.11
***[2.91] ***[3.14]

Ret−t−1 -10.21 10.78 -16.87 -38.20
[-1.09] [1.33] [-1.59] **[-2.57]

Ret+t−1 13.04 36.20 -4.62 -42.11
[1.38] ***[3.55] [-0.53] ***[-4.07]

Ret−t -31.90 -5.51 -40.34 -107.60
***[-4.93] [-0.94] ***[-3.56] ***[-5.37]

Ret+t 3.50 63.41 18.12 -32.14
[0.57] ***[7.00] [1.28] ***[-2.61]

# Observations 504 504 504 504
R2 0.391 0.523 0.667 0.695
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Table 3.3: Intraday Demand Prediction

This table show the results of a predictive regression of aggregate intraday demand for warrants on a number of

lagged and overnight demand, lagged and overnight market return and lagged volatility variables. Regressions are

done separately by type of warrant (calls and puts) and type of transaction (buys and sells). Aggregate intraday

demand on day t is defined as the sum of all transactions occurring between 930CET and 1730CET of day t.

Explanatory variables are total unsigned warrants volume over the past 2 weeks (TotWarVolt−14,t−1), lagged change

in and level of volatility (∆VDAXt−1, VDAXt−1), lagged signed market return (Ret−t−1 and Ret+t−1), overnight signed

market return (Ret−ON and Ret+ON ), cumulative demand over the previous three trading days by type (BuysCt−3,t−1

etc.) as well as overnight demand by type (BuysCON etc.). The definitions of overnight returns and demand are

consistent with the times that define intraday demand, i.e. overnight return is defined as the change in the level of

the DAX between 1730CET of trading day t − 1 and 930CET of day t. A negative sign indicates that the variable

is equal to the market return of that period if negative and zero otherwise; a positive sign indicates the opposite.

Standard errors are computed following Newey and West (1987, 1994).

Calls Puts

Buys Sells Buys Sells

TotWarVolt−14,t−1 0.3912 0.4517 0.5028 0.5232
***[5.77] ***[5.90] ***[4.02] ***[3.15]

∆ VDAXt−1 7.2715 7.195 6.6414 5.7717
***[2.69] ***[2.69] [1.44] [0.76]

VDAXt−1 -2.3378 -3.1864 -1.8793 -2.3297
***[-3.41] ***[-3.98] *[-1.90] *[-1.74]

Ret−t−1 11.7337 19.1834 8.0943 14.2664
*[1.68] **[2.25] [0.68] [1.23]

Ret+t−1 -0.9331 12.1836 -18.3902 -43.4377
[-0.16] *[1.71] **[-2.12] ***[-5.41]

Ret−ON -16.7453 0.2643 -27.5442 -100.191
[-1.58] [0.03] ***[-2.77] ***[-6.51]

Ret+ON -2.835 58.9149 7.0739 -74.673
[-0.29] ***[3.90] [0.37] ***[-4.46]

BuysCt−3,t−1 0.0667 0.0512

***[3.28] **[2.13]
SellsCt−3,t−1 0.0273 0.0196

[1.33] [1.04]
BuysPt−3,t−1 0.0664 0.0105

***[2.84] [0.39]
SellsPt−3,t−1 0.0601 0.0962

***[2.83] ***[3.65]
BuysCON 0.3352 0.3237

*[1.85] [1.53]
SellsCON 0.0742 0.2262

[0.44] *[1.65]
BuysPON 0.494 0.3644

**[2.45] [1.31]
SellsPON -0.0217 0.71

[-0.17] **[2.17]

# Observations 504 504 504 504
R2 0.32 0.411 0.603 0.614
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Table 3.4: Daily Change in BKM Skewness

This table shows the results of regressions of day-over-day changes in implied skewness of warrant chains on con-

temporaneous demand measures and control variables. A warrant chain is the set of all warrants by the same issuer

with the same expiration date. Implied skewness is defined as in Bakshi et al. (2003) using all OTM warrants per

warrant chain. Change in skewness is computed as the difference in the level of implied skewness at 1730CET of day

t − 1 and 1730CET of day t. Control variables are the time to maturity of the warrant chain (TTM), the lagged

level of the skewness of the warrant chain (SKEWt−1) and the market return on day t − 1 (Rett−1). Explanatory

variables are contemporaneous net demands (i.e. buys minus sells) by type of warrant and either aggregated by issuer

(ISS NetDem
C/P
t ), by expiration (EXP NetDem

C/P
t ) or summed over all expirations and issuers (TOT NetDem

C/P
t ).

Regressions are OLS with 2-way clustered standard errors following Thompson (2011), clustered by issuer and date.

(1) (2) (3) (4) (5)

TTM -0.042 -0.043 -0.046 -0.044 -0.045
***[-3.52] ***[-3.71] ***[-4.09] ***[-3.84] ***[-4.02]

SKEWt−1 -0.058 -0.059 -0.058 -0.060 -0.059
***[-6.47] ***[-6.69] ***[-6.61] ***[-6.54] ***[-6.54]

Rett−1 -0.061 0.104 0.181 0.652 0.644
[-0.29] [0.49] [0.91] ***[3.07] ***[3.00]

ISS NetDemC
t 0.049 0.010

***[3.44] *[1.85]
ISS NetDemP

t -0.027 0.008
*[-1.87] [0.88]

EXP NetDemC
t 0.025 0.003

***[4.04] [0.56]
EXP NetDemP

t -0.035 -0.011
***[-6.86] ***[-3.17]

TOT NetDemC
t 0.010 0.009

***[3.45] ***[3.07]
TOT NetDemP

t -0.010 -0.009
***[-6.70] ***[-5.88]

# Issuers 9
# Days 488
# Observations 12,608

R2 0.026 0.046 0.066 0.118 0.121
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Table 3.5: Overnight Change in BKM Skewness

This table shows the results of predictive regressions of overnight changes in implied skewness of warrant chains on future intraday (actual and predicted) demand

measures as well as lagged and overnight demand and control variables. The overnight change in skewness is computed as the difference between the level of

implied skewness at 1730CET of day t− 1 and 930CET of day t. Demand measures are split by type of warrant (i.e. puts vs. calls) and by time period. Lagged

demand is the cumulative total net demand (buys minus sells) over the previous three trading days (TOT NetDem
C/P
t−3,t−1). Overnight demand is the sum of

all buys minus all sells of warrants between 1730CET of trading day t − 1 and 930CET of day t (TOT NetDem
C/P
ON ). Future intraday demand is either total

aggregated net demand by type (TOT NetDem
C/P
Day ) or split by expiration date (EXP NetDem

C/P
Day ). In columns (2a-c) the actual realized intraday demand is

used; in column (3a-c) we use the fitted values derived from the regressions in Table 3.3 for total demand and from unreported, but identical regressions for

demand by expiration date. Regressions are OLS with 2-way clustered standard errors following Thompson (2011), clustered by issuer and date. Numbers of

clusters and observations are as in Table 3.4, but omitted to conserve space.

Lagged
only Actual Day Demand Predicted Day Demand

(1) (2a) (2b) (2c) (3a) (3b) (3c)

EXP NetDemC
Day 0.007 0.000 0.430 0.242

**[2.23] [-0.08] ***[7.53] ***[4.78]
EXP NetDemP

Day -0.014 -0.001 -0.078 -0.036

***[-3.84] [-0.45] ***[-6.80] ***[-3.15]
TOT NetDemC

Day 0.001 0.001 0.095 0.072

[0.74] [0.76] ***[8.93] ***[6.72]
TOT NetDemP

Day -0.006 -0.006 -0.012 0.001

***[-4.54] ***[-4.57] **[-2.22] [0.24]

TOT NetDemC
t−3,t−1 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002

**[-2.50] **[-2.12] **[-2.42] **[-2.12] ***[-2.87] ***[-2.75] ***[-2.85]
TOT NetDemP

t−3,t−1 0.000 0.001 0.001 0.001 0.000 0.000 0.000

[0.82] *[1.86] [1.15] *[1.86] [0.90] [1.39] [0.57]
TOT NetDemC

ON 0.017 0.013 0.016 0.013 0.004 0.000 -0.001
**[2.49] **[2.22] **[2.45] **[2.22] [0.91] [-0.10] [-0.13]

TOT NetDemP
ON 0.008 0.010 0.009 0.010 0.005 0.007 0.004

**[2.00] **[2.26] **[2.10] **[2.26] [1.43] **[2.27] [1.16]

TTM -0.010 -0.011 -0.011 -0.011 -0.015 0.004 -0.009
[-1.16] [-1.23] [-1.30] [-1.23] *[-1.83] [0.40] [-1.00]

SKEWt−1 -0.025 -0.024 -0.024 -0.024 -0.029 -0.015 -0.027
***[-3.69] ***[-3.78] ***[-3.68] ***[-3.78] ***[-4.43] ***[-2.73] ***[-4.39]

Rett−1 -0.093 0.012 -0.070 0.012 0.531 0.270 0.507
[-0.50] [0.06] [-0.38] [0.06] **[2.50] [1.46] **[2.46]

R2 0.034 0.068 0.043 0.068 0.145 0.125 0.155
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Table 3.6: The Effect of Time to Maturity

The table shows the coefficients of the time to maturity variable in a regression on the warrant premium. Panels

A-D represent the four different versions of the premium computation. Within each panel, the sample was split

by type (i.e. call vs. put) and further by maturity range (short-term, medium-term, long-term). In addition, the

coefficients are allowed to differ by the delta of the warrant within each regression. To conserve space, the coefficients

of the control variables were omitted. They include issuer dummies, |∆| and ∆2, dummies for competition from other

warrants (DComp) and from EUREX (DEUREX), yesterday’s market volatility (VDAXt−1), the warrant’s cumulative

volume over the previous 2 weeks (LagWarVol) and lagged issuer CDS premium (CDSt−1). Regressions are OLS with

2-way clustered standard errors following Thompson (2011), clustered by issuer and date.

Call Warrants Put Warrants

Short Medium Long Short Medium Long
1-3 months 4-6 months > 7 months 1-3 months 4-6 months > 7 months

Panel A: Unadjusted

|∆| < .25 0.297 0.079 0.036 0.248 0.047 0.001
***[22.08] ***[5.61] ***[4.20] ***[22.68] ***[6.60] [0.31]

.25 < |∆| < .35 0.250 0.065 0.029 0.200 0.043 0.005
***[24.69] ***[5.43] ***[4.65] ***[24.79] ***[6.72] [1.51]

.35 < |∆| < .50 0.221 0.063 0.025 0.174 0.046 0.009
***[27.06] ***[6.04] ***[5.49] ***[24.49] ***[7.50] ***[2.58]

.50 < |∆| 0.180 0.055 0.016 0.122 0.046 0.009
***[24.87] ***[5.70] ***[3.80] ***[16.73] ***[7.35] ***[2.62]

Panel B: Adjusted

|∆| < .25 -0.047 0.037 0.026 -0.070 0.009 -0.006
***[-3.83] ***[2.60] ***[3.05] ***[-7.08] [1.32] [-1.21]

.25 < |∆| < .35 -0.041 0.027 0.021 -0.059 0.011 0.000
***[-4.54] **[2.29] ***[3.42] ***[-8.25] *[1.75] [-0.10]

.35 < |∆| < .50 -0.007 0.031 0.020 -0.022 0.020 0.004
[-0.98] ***[2.99] ***[4.28] ***[-3.71] ***[3.34] [1.20]

.50 < |∆| 0.006 0.027 0.011 -0.002 0.026 0.006
[0.87] ***[2.86] ***[2.77] [-0.25] ***[4.29] [1.64]

Panel C: Intrapolated

|∆| < .25 -0.020 0.029 0.027 -0.043 0.013 -0.003
[-1.57] **[2.28] **[2.49] ***[-4.11] *[1.83] [-0.70]

.25 < |∆| < .35 -0.022 0.023 0.023 -0.037 0.015 0.002
**[-2.46] **[2.17] ***[3.27] ***[-4.83] **[2.27] [0.48]

.35 < |∆| < .50 -0.003 0.025 0.018 -0.014 0.021 0.005
[-0.45] ***[2.69] ***[3.86] **[-2.20] ***[3.40] [1.46]

.50 < |∆| 0.005 0.020 0.011 -0.008 0.024 0.004
[0.76] **[2.36] ***[2.94] [-1.17] ***[3.70] [1.06]

Panel D: Extrapolated

|∆| < .25 -0.036 0.080 0.081 -0.068 0.007 0.030
**[-2.35] ***[2.64] [0.48] ***[-6.13] [0.50] **[2.32]

.25 < |∆| < .35 -0.033 0.065 -0.188 -0.056 0.016 0.043
***[-2.86] **[2.56] [-0.90] ***[-6.72] [1.12] ***[3.32]

.35 < |∆| < .50 -0.004 0.069 -0.237 -0.021 0.029 0.044
[-0.44] ***[3.11] [-0.94] ***[-2.89] **[2.21] ***[2.93]

.50 < |∆| 0.004 0.053 -0.139 -0.007 0.036 0.041
[0.54] ***[2.63] [-0.91] [-0.97] ***[2.66] **[2.38]
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Table 3.7: Individual Warrant Premium

Warrant premiums are computed by three different methods: adjusted, intrapolated and extrapolated. Explanatory

variables are issuer dummies, |∆| and ∆2, dummies for competition from other warrants (DComp) and from EUREX

(DEUREX), lagged market volatility (VDAXt−1), lagged issuer CDS premium (CDSt−1), the warrant’s time until

expiration (TTM) and its cumulative volume over the previous 2 weeks (LagWarVol). Regressions are OLS with

2-way clustered standard errors following Thompson (2011), clustered by issuer and date.

Adjusted Intrapolated Extrapolated

Call Put Call Put Call Put

DBNP 0.133 0.102 0.130 0.096 0.148 0.115
***[37.85] ***[43.58] ***[32.79] ***[39.26] ***[21.64] ***[33.21]

DCBK 0.110 0.089 0.108 0.080 0.124 0.098
***[32.42] ***[40.78] ***[28.00] ***[35.56] ***[18.37] ***[30.12]

DCITI 0.135 0.114 0.131 0.104 0.156 0.128
***[38.06] ***[46.65] ***[31.43] ***[40.93] ***[22.41] ***[35.29]

DDRBK 0.125 0.101 0.122 0.092 0.144 0.115
***[35.43] ***[40.60] ***[29.83] ***[35.43] ***[20.21] ***[31.08]

DDTBK 0.116 0.089 0.113 0.080 0.130 0.098
***[33.42] ***[39.39] ***[27.97] ***[33.87] ***[18.78] ***[28.58]

DSCGN 0.154 0.112 0.148 0.104 0.162 0.118
***[30.93] ***[35.80] ***[28.58] ***[32.85] ***[18.68] ***[27.83]

DTRBK 0.104 0.082 0.102 0.073 0.119 0.091
***[30.01] ***[37.22] ***[25.77] ***[32.52] ***[17.67] ***[27.82]

|∆| -0.336 -0.211 -0.303 -0.175 -0.366 -0.222
***[-31.84] ***[-34.57] ***[-26.45] ***[-26.70] ***[-27.87] ***[-26.80]

∆2 0.267 0.159 0.235 0.133 0.305 0.171
***[23.68] ***[25.60] ***[19.05] ***[18.31] ***[20.95] ***[17.87]

DComp -0.004 -0.002 -0.005 -0.001 -0.009 -0.004
**[-2.54] *[-1.75] **[-2.50] [-0.77] ***[-2.77] **[-2.01]

DEUREX 0.003 -0.002 0.003 -0.003 0.007 -0.001
*[1.68] [-1.63] [1.12] **[-2.03] [1.48] [-0.24]

VDAXt−1 0.006 -0.010 -0.012 -0.024 -0.012 -0.029
[1.15] ***[-3.82] ***[-2.72] ***[-9.50] **[-2.22] ***[-7.57]

CDSt−1 -0.234 -0.201 -0.224 -0.197 -0.355 -0.244
***[-6.03] ***[-6.70] ***[-6.23] ***[-6.42] ***[-7.05] ***[-6.23]

TTM 0.004 -0.010 0.008 -0.006 0.005 -0.015
**[2.37] ***[-6.84] ***[4.25] ***[-3.94] [0.75] ***[-2.76]

LagWarVol -0.003 -0.002 -0.003 -0.002 -0.005 -0.002
***[-5.88] ***[-5.28] ***[-6.12] ***[-5.17] ***[-5.44] ***[-4.61]

# Obs. 93,957 123,035 80,309 107,837 44,251 57,453
R2 0.433 0.469 0.406 0.424 0.420 0.492
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Table 3.8: Warrant Premium by Delta and Time Period

Results are presented for the full sample, and for two subperiods: One from June 2007 - September 2008, the other

from October 2008 - May 2009. This roughly coincides with the bankruptcy of Lehman brothers on September 15th,

2008. Warrant premiums are computed by intrapolation method. Explanatory variables are issuer dummies, |∆| and

∆2, dummies for competition from other warrants (DComp) and from EUREX (DEUREX), yesterday’s market volatility

(VDAXt−1), the warrant’s time until expiration and its cumulative volume over the previous 2 weeks (LagWarVol).

Lagged issuer CDS premium (CDSt−1) is split up into 4 variables to allow for different slopes conditional on the delta

of the warrant. Regressions are OLS with 2-way clustered standard errors following Thompson (2011), clustered by

issuer and date.

Call Premium Put Premium

Full Before Post Full Before Post
Sample Lehman Lehman Sample Lehman Lehman

DBNP 0.132 0.125 0.125 0.097 0.096 0.087
***[30.72] ***[14.76] ***[16.43] ***[35.57] ***[16.10] ***[22.70]

DCBK 0.111 0.106 0.096 0.081 0.082 0.066
***[25.87] ***[13.24] ***[13.01] ***[31.75] ***[15.40] ***[17.28]

DCITI 0.134 0.133 0.114 0.105 0.108 0.086
***[29.20] ***[16.23] ***[13.76] ***[37.43] ***[20.37] ***[18.56]

DDRBK 0.125 0.127 0.104 0.093 0.099 0.073
***[27.97] ***[15.02] ***[15.13] ***[32.22] ***[17.78] ***[17.97]

DDTBK 0.116 0.122 0.091 0.081 0.086 0.062
***[26.02] ***[14.89] ***[12.85] ***[30.34] ***[15.59] ***[16.50]

DSCGN 0.151 0.145 0.164 0.105 0.102 0.114
***[27.56] ***[15.83] ***[15.86] ***[31.13] ***[17.39] ***[16.22]

DTRBK 0.105 0.105 0.087 0.073 0.073 0.061
***[24.06] ***[12.51] ***[12.66] ***[29.60] ***[12.88] ***[16.28]

|∆| -0.310 -0.307 -0.252 -0.178 -0.202 -0.127
***[-22.37] ***[-15.00] ***[-11.10] ***[-22.63] ***[-18.53] ***[-11.68]

∆2 0.235 0.231 0.189 0.136 0.153 0.099
***[16.30] ***[11.76] ***[7.84] ***[16.68] ***[13.29] ***[9.03]

DComp -0.004 -0.007 -0.004 -0.001 -0.003 0.001
**[-2.40] ***[-2.58] ***[-2.76] [-0.76] [-1.57] [0.80]

DEUREX 0.002 -0.002 0.003 -0.003 0.000 -0.004
[1.05] [-0.39] [1.15] **[-2.03] [-0.00] ***[-2.97]

VDAXt−1 -0.012 0.020 -0.012 -0.024 -0.011 -0.029
***[-2.79] [0.59] [-1.55] ***[-9.46] [-0.46] ***[-6.71]

TTM 0.008 0.001 0.015 -0.006 -0.014 0.002
***[4.31] [0.62] ***[5.57] ***[-3.93] ***[-6.38] [1.29]

LagWarVol -0.003 -0.003 -0.002 -0.002 -0.002 -0.002
***[-6.16] ***[-4.77] **[-2.54] ***[-5.16] ***[-4.30] ***[-4.99]

CDSt−1

|∆| < .25 -0.302 0.078 -0.169 -0.210 0.196 -0.048
***[-5.14] [0.18] *[-1.92] ***[-4.67] [0.92] [-0.84]

.25 < |∆| < .35 -0.296 -0.129 -0.233 -0.216 0.063 -0.136
***[-6.92] [-0.37] ***[-3.38] ***[-6.74] [0.31] ***[-3.08]

.35 < |∆| < .50 -0.194 -0.083 -0.204 -0.167 0.199 -0.165
***[-5.78] [-0.28] ***[-3.43] ***[-6.04] [0.95] ***[-4.17]

.50 < |∆| -0.118 -0.133 -0.157 -0.193 0.007 -0.209
***[-4.09] [-0.47] ***[-3.11] ***[-5.99] [0.03] ***[-5.12]

# Observations 80,309 39,957 40,354 107,837 58,723 49,114
R2 0.407 0.502 0.351 0.425 0.468 0.400
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Table 3.9: Warrant Premium by Delta and Time to Maturity

Warrant premiums are computed by intrapolation method. Explanatory variables are issuer dummies, |∆| and ∆2,

dummies for competition from other warrants (DComp) and from EUREX (DEUREX), yesterday’s market volatility

(VDAXt−1), the warrant’s time until expiration and its cumulative volume over the previous 2 weeks (LagWar-

Vol). Lagged issuer CDS premium (CDSt−1) is split up into 4 variables that condition on the delta of the warrant.

Regressions are OLS with 2-way clustered standard errors following Thompson (2011), clustered by issuer and date.

Call Premium Put Premium

Short Medium Long Short Medium Long
1-3 months 4-6 months > 7 months 1-3 months 4-6 months > 7 months

DBNP 0.145 0.109 0.151 0.110 0.089 0.077
***[17.99] ***[14.73] ***[12.85] ***[25.22] ***[20.46] ***[14.76]

DCBK 0.120 0.087 0.135 0.091 0.070 0.068
***[15.10] ***[11.74] ***[11.68] ***[22.08] ***[17.19] ***[13.43]

DCITI 0.149 0.108 0.147 0.121 0.092 0.085
***[18.60] ***[14.10] ***[12.47] ***[27.59] ***[21.67] ***[15.72]

DDRBK 0.143 0.104 0.134 0.113 0.084 0.071
***[17.31] ***[13.44] ***[12.13] ***[25.04] ***[19.69] ***[13.01]

DDTBK 0.127 0.094 0.135 0.091 0.072 0.065
***[15.58] ***[12.55] ***[12.05] ***[21.22] ***[17.96] ***[12.61]

DSCGN 0.153 0.135 0.177 0.112 0.097 0.092
***[16.43] ***[14.41] ***[13.98] ***[21.93] ***[18.81] ***[15.98]

DTRBK 0.119 0.079 0.121 0.084 0.062 0.062
***[14.91] ***[10.47] ***[10.64] ***[20.62] ***[14.76] ***[12.42]

|∆| -0.271 -0.277 -0.441 -0.195 -0.180 -0.187
***[-19.64] ***[-12.63] ***[-9.00] ***[-20.51] ***[-14.07] ***[-9.41]

∆2 0.191 0.208 0.344 0.139 0.144 0.174
***[14.08] ***[8.52] ***[6.56] ***[15.29] ***[9.45] ***[6.90]

DComp -0.010 -0.002 0.005 -0.002 -0.002 0.004
**[-2.47] [-1.13] *[1.82] [-0.97] [-1.10] **[2.47]

DEUREX -0.002 0.004 -0.001 0.005 -0.005 -0.003
[-0.41] [0.89] [-0.24] [1.46] **[-1.96] *[-1.86]

VDAXt−1 -0.029 0.000 -0.006 -0.043 -0.024 -0.010
***[-6.13] [-0.06] [-0.63] ***[-12.28] ***[-6.11] **[-2.08]

TTM -0.009 0.025 0.019 -0.025 0.018 0.000
[-1.11] **[2.47] ***[3.65] ***[-3.72] ***[2.80] [0.12]

LagWarVol -0.004 -0.003 -0.002 -0.002 -0.001 -0.002
***[-5.14] ***[-3.18] ***[-4.05] ***[-4.31] **[-2.19] ***[-4.07]

CDSt−1

|∆| < .25 -0.269 -0.213 -0.567 -0.260 -0.207 -0.246
***[-4.08] **[-2.41] ***[-4.03] ***[-5.38] ***[-2.70] ***[-3.48]

.25 < |∆| < .35 -0.305 -0.310 -0.347 -0.271 -0.178 -0.165
***[-6.74] ***[-4.73] ***[-3.58] ***[-7.36] ***[-3.68] ***[-2.90]

.35 < |∆| < .50 -0.196 -0.191 -0.187 -0.195 -0.120 -0.163
***[-5.66] ***[-3.55] **[-2.52] ***[-6.16] ***[-2.79] ***[-2.96]

.50 < |∆| -0.125 -0.126 -0.060 -0.193 -0.128 -0.155
***[-4.20] **[-2.31] [-1.00] ***[-5.90] **[-2.02] *[-1.76]

# Observations 35,724 24,185 20,403 47,162 33,974 26,703
R2 0.473 0.449 0.307 0.513 0.49 0.271
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Figure 3.1: Warrant Premium by Maturity and Type

The figures show the median premium, i.e. percentage overpricing, of warrants relative to matching EUREX options

as a function of the warrant’s (absolute) delta for the six largest issuers for which we have bid/ask quotes. The

sample is split by type (calls vs. puts) and into three maturity ranges matching those used in Table 3.1: Short-term

(1-3 months); medium-term (4-6 months); long-term (7 and more months). Premia are based on warrant mid-quotes

matched with imputed EUREX option prices.

(a) Short-term

(b) Medium-term

(c) Long-term
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Figure 3.2: CDS Premium by Issuer

The figure shows the evolution of credit risk for the 7 issuers in the sample for which credit default swaps (CDS) are traded from January 2007 through September

2010. The sample period covered by transaction and quote data is June 2007 - May 2009. The bankruptcy of Lehman Brothers took place September 15th, 2008.

CDS Premiums are end-of-day mid-quotes of issuer 1-year CDS contracts on unsecured debt (except for Citigroup, where it is for 1-year senior secured debt).
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Chapter 4

Conclusion

In this thesis, I empirically investigate the effect of investor demand on option prices in two very

different market environment. Chapter 2 expands the literature that considers the constraints and

risks faced by a competitive market making sector and their effects on option prices and returns

(e.g. Bollen and Whaley, 2004). This work is important because the finance literature at large,

particular in macro finance struggles to explain observed puzzles in option prices and returns under

no arbitrage assumptions (Bondarenko, 2003). I particularly focus on the risk introduced to options

markets through the sensitivity of speculative, leveraged traders towards exogenous liquidity shocks

that can result in forced sell-offs of options and temporarily push option prices far away from normal.

Market makers and other liquidity providers form expectations about such an event occurring and

are only willing to accomodate demand for options at prices that partially insure them against

losses from those events. Besides the jump risk-based explanation of Garleanu et al. (2009), this

constitutes another risk-based explanation of permanent price effects, which does not require jumps

in the underlying asset.

Chapter 3 investigates what happens when two major tenets of no-arbitrage option pricing are

taken away by market structure. In the market for (retail) structured products, issuing investment

banks are monopolists in the provision of liquidity for their own products and further do not allow

short-selling. This potentially enables them to sell these option-like securities at inflated prices. By

using high-frequency transactions data and techniques previously not employed in this literature,

my investigation details several ways in which this appears to happen.

Finding that previous research may have mis-estimated the term structure effect in the over-

pricing of structured products, I hope that my work contributes to the prevention of such errors

in future research. Finally, the effect of credit risk on warrant prices had not empirically been

investigated. The finding that it took an event as disruptive as the Lehman Brothers bankruptcy

to (partially) awaken retail investors to the inherent default risk in retail structured products is

telling. It should be a wake-up call to regulators alike especially when considering that precisely

Lehman certificates had previously been marketed as ’safe’. Thus, this work contributes to and

extends an only recently emerging view (e.g. Henderson and Pearson, 2011) that these products

expose retail investors to ill-understood risks.
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4.1 Limitations

Both chapters have room for improvement, mainly with regards to the data employed. Given the

datasets available at the time, some questions that arise naturally from the results presented cannot

be answered. The COT data are publicly available only in a number of rather aggregate datasets

that do not allow to back out certain pieces of information. Most notably, it is possible to back

out the directional net option exposure of trader groups, but not whether this exposure is achieved

through writing or buying different options, which in turn would allow us to infer the exposure of

traders to jump risk and stochastic volatility risk. This is something that the individual data of

Garleanu et al. (2009) allow. A second example is my inability to infer what fraction of, say, long

option positions is hedged via futures by each trader. This would allow us to distinguish between

hedging activities such as market making and liquidity provision and pure speculative positions

within each trading group.

Likewise in the essay on structured products, the quality of the data is hampered by the lack

of quotes on EUREX options rather than transaction data. Unfortunately, this has the potential

to systematically affect some of the results. It may be the case that not only warrants but also

EUREX options are affected by price and demand pressures. This is precisely the focus of the

previous essay. For this reason I go to some length to establish that potential demand pressure

effects between warrants and options are not highly correlated due to market segmentation and the

differential use of instruments across moneyness and maturity.

4.2 Future Work

The measures employed in Chapter 2 (Kozhan et al., 2011) are still evolving and the data require-

ments are rather high for most markets. A natural extension, which I will tackle in the future, is

to employ tick data on commodity futures options. This will allow much more precise estimates

of both implied and realized skewness and, much in the way of the high-frequency analysis that

I conduct in Chapter 3, this invites an investigation of short-term effect, i.e. the propagation of

shocks from one particular option to others or from market-wide indicators such as the VIX on

option prices.

As a side product of my work on skewness, I document that commodity option prices consistently

contain a large negative variance risk premium. For lack of suitable data on volatility exposure

by traders, I am unable to investigate this premium more thoroughly in the context of limits to

market making. Lastly, my findings suggest that limits to arbitrage in the futures market can spill

over into the options market and impact prices and returns there. Conversely, the option market

may contain information that affect futures returns.

Even 40 years after the ‘invention’ of option pricing, we still have not fully understood their

behavior and in particular their deviation from theoretical, no-arbitrage values. Given the renewed

focus on financial intermediaries and their effects on asset prices (Adrian and Shin, 2010), options

offer a fruitful testing grounds due to their high dimensionality.
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Appendix A

Appendix to Chapter 2

A.1 Datasets

A.1.1 Commodity Futures and Options

The main source of data are the ’InfoTech CDs’ provided by the Commodity Research Bureau

(CRB) covering i) futures and cash markets and ii) futures options for a large cross-section of U.S.

and international futures and commodities markets. The futures data contains OHLC prices, while

the options data only provides a daily closing price. Volume and open interest data is not available

for options and for futures only from the year 2001 onwards. I substitute volume and open interest

data from Thomson Reuters DATASTREAM for all futures contracts in the sample, going back to

1980. The option closing price is either the price of the last trade or if no trade occurred it is a

’nominal settlement’ as determined by an options pricing model.

A.1.1.1 Data Cleaning

For a few commodities in the sample, option prices are rounded and are missing a crucial last digit.

For instance, Feeder Cattle has a minimum tick size of 0.025, i.e. option prices must be multiples

of this tick size, but prices are given with only 2 digits after the decimal point. In those cases, if a

price ends in x.x20 or x.x30 (x.x70, x.x80) it is corrected to end in x.x25 (x.x75). Second, prices

below the minimum tick size are deleted from the sample.

Further, the data is cleaned from stale option quotes. If an option price remains stale for more

than 2 days, every further instance at the same price is deleted. This filter is waived for prices

at or below 5 times the minimum tick size, because for far out-of-the-money options the tick size

prevents frequent adjustment to movements in the underlying. Lastly, going from at-the-money to

out-of-the-money for calls and puts separately, option quotes with nominal value are deleted if they

follow another option with nominal value.

An additional quirk in the data is that the strike is always given as a 4-digit number regardless

of actual strike price. For instance, the strike 7500 could be 0.75 cents in the case of gasoline, 7.50

cents in the case of sugar, . . . or even 7500 cents in the case of silver. I identify the true strike

using the following algorithm: First the closing price of the underlying futures contract is added

to the raw options data. I visually inspected the data for each commodity to identify the smallest

and largest strike that ever occurred over the course of the sample as well as the greatest common

factor (GCF) of strikes.
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For puts, I start with the highest possible, i.e. assuming a 4-digit strike price. By simple

no-arbitrage for American-type options, it must hold that K − P < F , allowing for some small

amount of tolerance. If this inequality does not hold, the strike is divided by 10 until it holds or

until the strike falls below the minimum strike price or is not a multiple of the GCF (maximum 5

iterations). For calls, I start with the smallest strike possible within the sample data, which is a

number between 1 and 0.1. By no-arbitrage, it must hold that K+C > F . The strike is multiplied

by 10 until the condition holds for the first time or the strike exceeds the maximum strike price.

This algorithm identifies the only valid strike price given the price of the underlying and the option

price. Additional no-arbitrage conditions as well as a maximum on implied volatility ensure that

the strike-quote tuple is sensible.

Further, because of the lack of open interest or volume data for futures options in the sample,

some alternative filter for liquidity and information content of the price has to be implemented.

To this end, option prices that are less than 8 times the minimum tick size of the option are

automatically discarded because they are likely to be rather illiquid and prices tend to become too

noisy relative to the information they contain.

A.1.1.2 Construction of Discount Factors

I construct discount factors as suggested by the manual to the Ivy DB US options Database, which

outlines an algorithm for discount factors based on BBA LIBOR rates and CME Eurodollar futures.

The CRB data on Eurodollar futures starts in 1982 which coincides with the exchange listing of

that contract. BBA LIBOR data is available from Thomson Reuters DATASTREAM starting in

1986.

Eurodollar futures represent the present value of a 3-month time deposit of $1m USD at a bank

outside the U.S. starting at the expiration of the futures contract. In other words, they are forward

rate agreements. They expire during the last month of each quarter and are available up to 10

years in the future. It is thus possible to construct discount rates (zero rates) up to 10 years into

the future based on a strategy that sequentially rolls over 3-month bank deposits. The anchoring

of these forward agreements is provided via linear interpolation of LIBOR spot rates.

Step 1: Transform BBA LIBOR rates (for T ∈ 1w, 1m, 2m, . . . , 12m) into discount factors (DF)

using an actual/360 day count convention:

DFT = (1 + rT
d

360
)−1

Step 2: Transform the DF back into continuously-compounded rates using an actual/365 con-

vention:

rc,T = −365

d
log(DFT )

Step 3: Linearly interpolate the two LIBOR rates surrounding the front Eurodollar futures

(expiration > 7 days). Transform the interpolated rate of the front futures back into a discount
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factor DF0

DF0 = exp(
d0
365

rc,T0)

Step 4: The Eurodollar implied forward rates are 100 minus the settlement prices divided by

100. Compute subsequent discount factors by discounting the previous DF with the implied forward

rate:

Fi,i+1 =
100− EDi

100
(A.1)

DFi,i+1 = (1 + Fi,i+1
di+1 − di

360
)−1 (A.2)

DFi+1 = DFi ·DFi,i+1 (A.3)

Step 5: Transform all Eurodollar discount factors back to continuously-compounded rates (as

in step 2).

A.1.1.3 Construction of Implied Measures

Given a clean set of option prices and discount rates, implied volatilities are computed following

the BBSR algorithm proposed by Broadie and Detemple (1996). It combines the Binomial Black-

Scholes (BBS) method, whereby the option prices in the penultimate nodes of the tree are replaced

by the Black-Scholes value, with the Richardson interpolation. In the latter, a binomial tree is

constructed twice, once with N1 nodes yielding a price C1 and then with N2 = 2N1 nodes yielding

a price C2. The price C = 2C2 − C1 gives a much more accurate estimate of the true price than

C2 alone, because of the oscillation property of the binomial tree estimation. For further details,

see Broadie and Detemple (1996).

Given IVs of American-type options from this first step, I proceed in accordance with the

literature on the computation of option-implied measures of variance and skewness. IVs are in-

terpolated linearly on a fine grid for moneyness levels of up to 8 standard deviations around the

money. The IVs are translated into European-type option prices, which are then used according

the summation formulas put forth in Bakshi, Kapadia, and Madan (2003) (BKM) and Kozhan,

Neuberger, and Schneider (2011) (KNS) to compute model-free implied variance, implied BKM

skewness and model-free implied skewness (KNS) as described in those papers and in the technical

appendix of this paper. Because the method is non-parametric, model risk as it would be present

when analyzing individual options or extracting distribution parameters is not an issue. Even the

Black-Scholes implied volatility is purely used as a tool to transform American-type option prices

into European-type ones, which the theory is based on.

In particular, BKM and studies that apply their measures (Dennis and Mayhew, 2002) recom-

mend using at least 3 option observations per side. The high density of available strikes in my

sample of commodity futures options makes this requirement rarely binding. Generally, even after
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all other filters are applied, both skewness measures are constructed on the basis of at least 10,

but often up to 50 individual price observations per side. Only very close to expiration can it

happen that the number of informative observations (i.e. after filtering for a certain multiple of the

minimum tick size) decreases below the required 3 per side, at which point the skewness measure

for that date is discarded.

A.1.1.4 Realized Measures

Following KNS, the realized counter-parts to MFIV and MFIS can be computed as sums of functions

of daily (futures/stock) returns and option price data. KNS provide formal proof that under the

risk-neutral measure the expectations of these sums converge to the implied measures in the limit.

The formula to compute the realized measures are also in the technical appendix.

A.1.2 SPX Cash Settled Index Options

A second dataset was acquired from ’Market Data Express’ covering all options on the S&P 500

cash index. I use cash options rather than futures options, because the latter was only available

at quarterly expirations until 2006. The data set covers the time period 1990 to 2009. The

data requires some filtering for errors which can be inferred from the documentation provided by

the vendor. The computation of implied volatilities is done in the same way as for the commodity

options, the only difference being that data on dividends is required. I infer those from the difference

in returns between the total return and the price index for the S&P 500 as provided by Thomson

Reuters DATASTREAM. Lastly, implied and realized measures are computed just as above.

A.2 Theory of Option-Implied Measures

A.2.1 Spanning Approach

Carr and Madan (2001) derive a neat way of replicating any (twice differentiable) time-T payoff

function of an underlying price process by taking an initial time-0 position in the risk-free asset, the

underlying asset (stock, forward, Futures) and in a continuum of European options with maturity

T. Call the stochastic time-T value of underlying S = ST and today’s value S0. The payoff is some

function H(S) which can be replicated as follows:

H(S) = [H(S0)−HS(S0)S0] +HS(S0)S+

∫ S0

0
HSS(K) (K − S)+ dK

+

∫ ∞
S0

HSS(K) (S −K)+ dK (A.4)

The derivation can be found in the appendix of Carr and Madan (2001) and is based on the

fundamental theorem of calculus. The time-0 price of the payoff must then equal to the value of
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the replicating portfolio, i.e.

V0[H(S)] = EQ
0

[
e−rτH(ST )

]
= [H(S0)−HS(S0)S0] e

−rτ +HS(S0)S0

+

∫ S0

0
HSS(K)P0(K)dK +

∫ ∞
S0

HSS(K)C0(K)dK (A.5)

Here, we used that EQ
0 [e−rτST ] = S0. This approach has been used by, among others, Bakshi

et al. (2003), Britten-Jones and Neuberger (2000), and Jiang and Tian (2005) to derive option-

implied expectations for payoffs of higher moments of returns.

A.2.2 Computing Implied Moments

In an oft-cited paper, Bakshi et al. (2003) (BKM) derive non-parametric formula for option-implied,

risk-neutral skewness (and kurtosis) of log returns in the following way. Using the method of Bakshi

and Madan (2000), they replicate in turn the square, cubic and quartic contract of log return

rr,T = log(ST /St). Then the risk-neutral skewness of the log return over the period τ = [t, T ] is

given by

BKMSKEWt,T =

EQ
t

[(
rt,T − EQ

t [rt,T ]
)3]

EQ
t

[(
rt,T − EQ

t [rt,T ]
)2]3/2 (A.6)

=
erτWt,T − 3µt,T e

rτVt,T + 2µ3t,T

[erτVt,T − µ2t,T ]3/2
(A.7)

where

µt,T = EQ
t

[
log(

ST
St

)

]
(A.8)

= erτ − 1− erτ

2
Vt,T −

erτ

6
Wt,T −

erτ

24
Xt,T (A.9)

and V,W,X are the time-t prices of the replicating portfolios of the square, cubic and quartic

contract respectively. Note that the relationship for µ is based on a Taylor expansion and thus the

resulting expressions are not exact.

A.2.3 Aggregation Property and Generalized Variance

The existence of risk premia for higher moments of stock market returns has received considerable

attention in recent years. One tool that has proven very useful in evaluating the presence of one

such premium, the variance risk premium, is the variance swap. For recent applications, see e.g.

Carr and Wu (2009). The basic idea of the variance swap is that the buyer of a variance swap pays

some fixed amount that represents today’s expectation of future variance of the period return and
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then receives the actually realized variance as measured by returns of a higher frequency.

Neuberger (2011) echoes similar results in the literature (Jiang and Tian, 2005; Martin, 2011)

which state that the definitions of the variance swap used in practice are not fully consistent as

the expectation of the period return variance do not equal the variance of daily returns in the

presence of jumps. To this end, Neuberger (2011) derives the ‘Aggregation Property’ (AP) which

ensures that the risk-neutral expectation of a function g of the period return is equal to the sum of

functions g of returns at a higher frequency. Denote St as the underlying price process, st = logSt,

δSt = St−St−1 as the price change and δst = log(St/St−1) as the log return. Following Neuberger

(2011), if (g,X) has the Aggregation Property (where X could be a price process or a log price

process) then

EQ
t [g(XT −X0)] = EQ

t

[
T∑
g(δX)

]
(A.10)

for any partition of the period [0, T ]. The left side of the equation is called the implied characteristic

and is written in terms of a function of the price process over the whole period, while the right

hand side is called the realized characteristic and can be computed using price changes or returns

of a higher frequency. This definition can be extended to not only cover one-dimensional price

processes, but also a tuple (X, v) where v is a so-called generalized variance of the process X. The

latter is defined as vf (s) = Et [f(ST − S0)] where for f it must hold that limx→0 f(x)/x2 = 1.

A.2.4 Variance Swap

Variance swaps can be defined in a number of ways. The version commonly used in practice is

based on log returns, i.e. g(sT − s0) = (sT − s0)2. The implied variance can be replicated using

the square contract of the log return as in BKM. While this definition satisfies the definition of a

generalized variance, it does not have the aggregation property, which means that

EQ
0

[(
log

ST
S0

)2
]

= EQ
0

[
T∑(

log
St
St−1

)2
]

(A.11)

is not always exact48. As pointed out in Jiang and Tian (2005), this relationship only holds for

fully continuous processes without jumps. Neuberger (2011) and Kozhan et al. (2011) propose

two alternative functional forms, which have both the property of generalized variance and the

aggregation property: gL(s) = 2(es − 1 − s) and gE(s) = 2(s · es − es + 1). For instance, for

48An alternative approach by Martin (2011) achieves consistency by proposing an alternative definition of both
legs of the variance swap.
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gL(s) = 2(es − 1− s), it it is easy to see that, even in the presence of jumps, it holds that

EQ
0

[
gL
(

log

(
ST
S0

))]
= 2EQ

0

[
ST
S0
− 1− log

(
ST
S0

)]
(A.12)

= 2EQ
0

[
T∑[

St
St−1

− 1− log

(
St
St−1

)]]
(A.13)

Rewrite the right-hand side of Equation A.12 as vL0,T := 2
(

logS0 − EQ
0 [logST ]

)
and call it the

implied variance of a security that pays logST at time T , or log variance. Using the spanning

approach, the implied log variance can be replicated using weights HL
SS(K) = 2

K2 for the option

contracts. This variance measure is identical to the so-called model-free implied variance (MFIV)

used in Britten-Jones and Neuberger (2000) and is used in this paper as well. The floating leg

of the variance swap is different from the common definition, but in practice the two measures of

realized variance are very close. In a similar fashion, following Neuberger (2011), one can write

EQ
0

[
gE
(

log

(
ST
S0

))]
= 2EQ

0

[
ST
S0

log

(
ST
S0

)
− ST
S0

+ 1

]
(A.14)

= 2EQ
0

[
ST
S0

logST −
ST
S0

logS0

]
(A.15)

= 2

[
EQ
0 [ST logST ]

S0
− logS0

]
(A.16)

and call the last expression vE0,T , the implied variance of the entropy contract paying ST logST .

The replicating weights in this case are HE
SS(K) = 2

S0K
. The log and entropy variances are used to

define the skewness swap below.

A.2.5 Skewness Swap

Similar to the derivation of a consistent variance swap, Neuberger (2011) and Kozhan et al. (2011)

also propose an analogue measure for the skewness of the log return over the period [0, T ] using

the 2 previously defined measures of variance. Note that

vL0,T = −2EQ
0

[
log

(
ST
S0

)]
(A.17)

and similarly, one can show that

vE0,T = 2EQ
0

[(
ST
S0

)
log

(
ST
S0

)]
(A.18)

105



Defining gQ(s, vE) = 3vE(es − 1) + 6(ses − 2es + s + 2), gQ has the aggregation property. The

implied skewness is

MFIS0,T = EQ
t

[
gQ
(
sT − s0, vE(sT − s0)

)]
(A.19)

= 6EQ
t

[
(
ST
S0

+ 1) log
ST
S0

]
(A.20)

= 3(vE0,T − vL0,T ) (A.21)

The option replicating weights are HQ
SS(K) = 2(K−S0)

S0K2 using the spanning approach. Realized

skewness over the period [0, T ] can be computed exactly as

T∑
gQ(δs, δvE) =

T∑[
3δvEeδs + 6

(
δs(eδs + 1)− 2(eδs − 1)

)]
(A.22)

The second term can be shown to approximate cubed returns, i.e. re-writing returns as eδs−1 = rδt,

6 (log(1 + rδt)(rδt + 2)− 2rδt) = r3δt +O(r4δt) (A.23)

This is closely related to the commonly used definition of skewness as the average skewness of

daily returns. As the frequency of realized returns is increased the second term tends to become

smaller and ultimately vanishes as long as the underlying process is reasonably close to a continuous

diffusion process. In this case, and as it turns out in practice, the first term is far more important.

Using slightly different notation, Kozhan et al. (2011) write implied skewness under the assumption

of continuous re-balancing as

MFIS0,T = 3EQ
[∫ T

0
dvEt,T

(
dSt
St

)]
, (A.24)

which emphasizes the fact that the skewness of the return over a longer horizon equals the covari-

ation of returns and changes in expected future variance over the period. Using a Taylor series

expansion, it follows that

MFIS0,T = 3(vE0,T − vL0,T ) = EQ [r30,T +O(r40,T )
]

(A.25)

In practice, computing realized skewness requires that the entropy contract is traded or, equiva-

lently, that its price can be constructed from a range of options on the underlying.
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