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Abstract 

MEDLINE®/PubMed® is a richly annotated resource of over 21 million article citations, growing 

at a modern rate of over 600,000 citations annually. One grand challenge of bioinformatics is analysing 

the extensive literature for a biomedical entity such as a gene or disease. This thesis explores using over-

representation to extract pertinent biomedical annotation from the research articles for an entity. The 

quantitative profiles generated are compared to predict novel associations between entities. 

Medical Subject Heading Over-representation Profiles (MeSHOPs) are constructed from the 

primary literature of an entity of interest. Medical subject annotations for each article are extracted. 

Statistical tests evaluate the significance of each term’s frequency across the set of articles, compared 

against an appropriate background set. The resulting MeSHOP is composed of each term and 

corresponding enrichment p-value.  

MeSHOPs can be computed for any entity with an associated bibliography of PubMed articles. 

We evaluate the predictive performance of quantitatively comparing MeSHOPs to discover novel 

associations between gene and disease entities, achieving up to 16% improvement in accuracy 

compared to gene or disease baseline features (measured as increased Receiver Operating 

Characteristic Area Under the Curve). Strong literature annotation level bias on the predictive 

performance for future gene-disease association was seen. We observe similar results in a parallel 

analysis of associations between drugs and disease. 

Efficiently identifying authors with similar research interests is a challenge in science. During the 

peer review process, authors seek scientists with similar expertise. MeSHOPs are generated for 

individual authors, identifying their research foci. Extending the methods to allow comparison across 

large sets of entities, overlapping research interests between researchers were identified. The predictive 

performance was evaluated for capacity to identify authors working in the same research domains.  

Biomedical annotation analysis of primary literature provides insight into the areas of research 

focus, and is demonstrated to link entities through similarities in their MeSHOPs. We quantitatively 

confirm the trend where well-studied genes, diseases and drugs are more likely to be the focus of 

further research. MeSHOP analysis demonstrates that knowledge in the annotated primary literature 

can be efficiently mined, and the untapped knowledge therein can be discovered computationally.  
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Chapter 1: Introduction 

The entire process of developing this doctoral thesis was a journey. Initially, while exploring the 

literature for the genetics of Purkinje cell-specific expression, I recognised the need for some way to 

keep abreast of the latest and most relevant scientific literature. I wanted to filter out the unnecessary, 

while retaining the elements that I wished to discover. In the pursuit of an improved way of navigating 

scientific knowledge, I realised benefits far beyond my original aims. This thesis describes the motivation 

to pursue this area of research, the steps taken to design and validate the methodologies, the use of 

these methods in a scientific context and how these approaches enable new paths for scientific 

discovery.  

Motivation 

A fundamental challenge of research has always been the extraction of pertinent, relevant 

knowledge from a vast pool of relevant resources, and the ability to successfully combine and utilise this 

knowledge to spur new directions of research. As we enter the era where nearly all knowledge is 

digitised and electronically accessible, and physical geographical separation is superseded by 

instantaneous electronic access, the complexity of this task balloons exponentially with the availability 

of information. We stand at the limits of human capability in rationalizing this deluge of information. On 

the other hand, technology has made equally impressive strides, providing the ability to coordinate 

entire assemblies of increasingly powerful computers, capable of storing and manipulating immense 

datasets. However, is this new technology serving our needs in a meaningful way? Are we getting all the 

information we need while not missing any information that we need?  

This thesis focuses on demonstrating that the MEDLINE®/PubMed® biomedical citation database 

can be exploited to satisfy two principal goals. The first goal is the computational understanding of the 

indexed knowledge of PubMed by extracting, in a quantitative manner, the most important and relevant 

topics relating to a biomedical entity of interest directly from the primary literature. The second goal 

builds on the results of the first goal, and asks whether we can predict previously unknown 

relationships, by comparing our primary literature-derived profiles. While evaluating predictions made 

from the primary literature, we also use the research to measure and confirm pre-existing biases and 

trends in the direction of biomedical research. This introduction focuses on expanding on the 



 

2 

 

background for these goals, providing examples of the current state of the art and placing this work in 

context of the existing field.  

The common theme running through this thesis is using computational resources to analyse the 

extensive, annotated biomedical knowledge available in PubMed. Computational resources allow access 

to this knowledge from anywhere reachable by cellular phone, and networked series of computers allow 

the entire immense body of knowledge to be readily analysed. Yet, for any research topic, the amount 

of knowledge only grows over time, as researchers only add to the body of knowledge (except in rare 

cases where results are retracted) – PubMed averages over a thousand new citations every day. As well, 

all biomedical knowledge is intertwined – experiments rely on assays and tests, hypotheses are tested 

under different experimental conditions, and the observations allow us to understand biochemical 

processes and biological phenotypes. For example, the development of new imaging modalities directly 

allow researchers to non-invasively examine not only the structure but the functioning of the brain, 

allowing scientists to to detect abnormalities in advance of the onset of neurological disorder. Scientific 

endeavour seeks to look for new links and relationships, rather than exact replication of existing results.  

However, as this web of interconnected knowledge thickens and entangles, it becomes 

progressively more difficult to simply observe the most significant and unusual themes. On the other 

hand, modern computational techniques make it possible to analyse large data sets with the power of 

tens or hundreds of computers at once, a necessity as we move beyond small subsets of citations to 

examining over twenty million citations in PubMed. We therefore leverage these computational 

innovations through the application of bioinformatics methods, allowing an unbiased perspective on the 

totality of the literature for a topic, allowing not only identification of the most important related 

biomedical topics but also identifying potential novel avenues to guide further experimentation. We 

present this introduction to outline the current methods, resources and challenges most pertinent to 

this perspective of informatics analysis of biomedical bibliographies. 

Overview of the Thesis Dissertation 

This thesis describes the development of novel methods for: (1) extracting the most relevant 

biomedical topics from a set of related research articles to profile an entity of interest; and (2) 

comparing profiles of biomedical entities to predict new associations. Chapter 1 provides an 

introduction and foundation to scientific databases and searches related to them. Chapter 2 describes 
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the development and application of Medical Subject Over-representation Profiles (MeSHOPs). Over-

representation analysis quantifies the unexpectedness of medical terms, based on their annotation to 

the PubMed articles of an entity of interest. We generate MeSHOPs for several different classes of 

entities – human genes, diseases, pharmacological compounds and biomedical authors. Subsequent 

chapters involve comparing entities using their MeSHOPs to discover novel relationships through their 

MeSHOP similarity.  

More specifically, Chapter 2 focuses on the problem of extracting the most significant topics 

from a biomedical bibliography in the context of biomedical entities. We address the following 

problems: 

 Can the key topics related to a biomedical entity be automatically extracted using statistical 

methods over the entirety of the entity’s bibliography?  

 Can we filter the topics and highlight the most unexpected and interesting topics related to the 

entity, and present this information in a visual way?  

 Can we use the topics extracted to compare related entities and determine in what ways they 

are similar?  

Our approach applies bioinformatics methods over the entirety of the PubMed database to 

comprehensively analyse any bibliography involving articles in PubMed. We adapt statistical over-

representation to extract a quantitative measure of association to all the topics in a given bibliography. 

We demonstrate that this can be adapted to show an overall degree of association to the indexed 

biomedical terms, but also show techniques to highlight the most specific and unusually relevant terms 

for a particular application. We demonstrate that this can applied to different entities, as well as other, 

more specific bibliographies such as the state of an entity at a particular point in time. We show that 

these profiles can be depicted as a graphic. To demonstrate the utility of the method developed here, 

we show that profiles allow us to naturally group related entities by similarity of their associated topics. 

Chapters 3 and 4 further examine the relationships between entities, and ways to discern this 

from their profiles. To accomplish this, we set out to address the following issues and questions: 

 Generating a testbed for validating results using new predictions 

 Discovering biases and trends in biomedical research using our technique 
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 Predicting new relationships between entities by comparing their profiles?  

This section of the thesis aims to demonstrate that MeSHOPs are not only useful for highlighting 

and understanding the knowledge currently known about a particular biomedical entity, but these 

profiles can also be used to inform novel inferences that are hitherto not self-evident. To validate our 

predictions, we stored versions of all the data at yearly intervals since 2007, allowing us to generate 

profiles and predictions from that year and compare against new relationships that appear subsequent 

to that time point. In this regard, Chapter 3 focuses on gene-disease relationships while Chapter 4 

adapts the same methodology to drug-disease relationships. Chapter 5 then applies profiles to look at 

the network of biomedical authors to identify closely related authors sharing biomedical research 

subject interests. 

Our hypothesis in these sections is that comparison of MeSHOPs allows us to identify novel 

relationships via similarity of the profiles extracted from the primary literature of the entities being 

compared. Furthermore, we tested our hypothesis in these sections by generating profiles using an 

archived version of the databases, and evaluating the accuracy of our predictions against associations 

appearing in literature after the archival date. Our methodology used MeSHOPs to generate profiles for 

entities, which were compared using a diverse set of distance metrics for the smaller gene, disease and 

drug datasets. We also demonstrated methods to approximate this comparison for extremely large 

datasets, and apply these methods to compare the many biomedical authors. Our validation was 

compared against a set of baseline gene and disease features to both investigate previously observed 

biases in new biomedical research in addition to placing our research results in context. 

Review of Existing Literature  

As this work is the description of the development of a novel method for the extraction and 

analysis of specified terms or categories in various scientific databases, it is first necessary to describe 

these datasets and existing methods of searching and data extraction. It is also necessary to describe 

why there is need for improvement as, due to well-publicized accounts of ever-increasing scientific 

knowledge, it can already be intuitively understood that the analysis of biomedical literature presents an 

entire domain of computational and informatics problems. These problems of literature mining range 

from information retrieval, to prediction and hypothesis generation (Jensen, Saric, & Bork, 2006). We 

focus in this review on the state of the art directly pertaining to extraction and inference from 
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biomedical literature. We show in Figure 1-1 a schematic of the relevant related research. As the input 

to the system, we review the sources for biomedical literature citations and annotations linked to these 

literature citations. We then look at existing methods of information extraction for summarising and 

integrating the important concepts from sets of citations. Finally, we examine methods that use 

literature to search for novel associations. 

Biomedical Citation Database 

Central to the thesis is a need for a source of biomedical literature, to encompass the primary 

literature for the biomedical entities of interest (See Figure 1-1A). The database should be 

comprehensive, to maximise coverage of the primary literature articles relevant to biomedical entities, 

such as genes, diseases, drugs and authors.  

The MEDLINE®/PubMed® (hereafter referred to as PubMed) database stores over 21 million 

citations, growing at an annual modern rate exceeding six hundred thousand articles(Sayers et al., 

2009)(See Table 1-1). PubMed not only provides a centralised resource for scientists in search of primary 

literature on biomedical subjects, the long-term indexing efforts have made the entirety of this freely 

accessible repository uniquely computationally accessible. Subject area experts at the National Library 

of Medicine(NLM) have linked the database records to the Medical Subject Headings controlled 

vocabulary, providing a hand-curated and maintained set of annotations (Lipscomb, 2000). The NLM 

grants licenses for the use of PubMed to both U.S. and non-U.S. individuals and organisations and 

currently does not impose charges of any kind. (License Agreement for NLM Data 

http://www.nlm.nih.gov/databases/license/license.pdf). Licensees are allowed to download 98% of the 

records in the PubMed database in XML format. The NLM also indexes nearly all the articles with 

Medical Subject Headings (MeSH). Many databases include links from their entities to the PubMed 

records, such as the Online Mendelian Inheritence in Man and Entrez Gene. 

The Excerpta Medica Database (Embase) is a biomedical citation database owned by the Elsevier 

publishing company, encompassing the PubMed records from the NLM as well as an additional 5 million 

records not covered by PubMed. Embase entries are indexed using Emtree, Elsevier’s Life Sciences 

Thesaurus. All PubMed entries are also merged to Embase by the Embase curators. Embase can only be 

accessed by users which have purchased a subscription. 

http://www.nlm.nih.gov/databases/license/license.pdf
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Sciverse Scopus and Web of Science are also citation indexes covering the broader domain of 

science, and both describe over 40 million articles. One of their primary goals is providing links from 

each citation record to other citations in the bibliography for the record, information unavailable 

through PubMed. Scopus is also owned by Elsevier and includes all the content of Embase, including its 

index terms, but does not incorporate Embase’s search capabilities. Web of Science, on the other hand, 

includes in its article entries only general subject categories, keywords from the title as well as 

“Keywords Plus”, keywords frequently cited by the article. Both of these are also commercial products 

requiring a subscription fee with no standard procedure to download the data. 

There are specialised databases for specific domains. For example, PsycINFO is an abstracting 

and indexing database providing more than 3 million records covering behavioural and mental health 

indexed by the Thesaurus of Psychological Index Terms. The Cumulative Index to Nursing and Allied 

Health Literature (CINAHL) provides over 2.2 million records for nursing and allied health with subject 

headings based also originally on MeSH.  

Searching these databases can yield different and complementary results for equivalent queries 

(Wilkins, Gillies, & Davies, 2005). Therefore, applying the methods developed in this thesis to other 

sources of biomedical citations for entities can yield an alternative set of primary literature and result in 

a different perspective on the same biomedical entities. PubMed remains the de facto standard, as it is a 

comprehensive, globally and freely accessible database. Moreover, it is the only database in its class that 

also allows the complete download of its database at no charge. PubMed has been embraced by the 

biomedical community, and many entities in other databases are linked to PubMed articles via PubMed 

identifiers (PMIDs), from the diseases in OMIM to the genes in Entrez Gene.  

Details of MEDLINE®/PubMed® 

PubMed is a searchable citation database at the National Centre for Biotechnology Information 

(NCBI), and now serves as a global portal to a curated index of biomedical literature. The primary subset 

of the bibliographical citation information in PubMed is composed of the NLM MEDLINE database. 

Domain experts at the National Library of Medicine index the incoming citations for MEDLINE by their 

most relevant biomedical topic terms. The scope of PubMed is biomedicine and health, with increased 

coverage on related life sciences beginning in 2000. PubMed focuses primarily on scholarly journals, but 

also includes a small number of relevant articles from newspapers, magazines and newsletters (e.g. 



 

7 

 

Time Magazine). There are also legacy articles from OLDMEDLINE and other initiatives that 

experimented with indexing other scientific literature. As well, unlike SCOPUS and Web of Science, 

advance electronic editions of articles are also added to PubMed. All articles are initially added to 

PubMed, and once the published version is indexed, the citation is moved to MEDLINE. PubMed records 

citation information including title, authors and source publication of the articles. Articles indexed for 

MEDLINE will also have index terms and supplementary concepts. Additionally, PubMed Central 

identifiers are provided for articles in PubMed Central, and the Abstract is stored when provided by the 

source publication. 

Articles were indexed manually since 1879 by the National Library of Medicine as the Index 

Medicus. The Index Medicus was originally a supplement to the Index-Catalogue of the Library of the 

Surgeon-General's Office (Greenberg & Gallagher, 2009), the bibliography of the world’s largest medical 

library since 1895. MEDLARS (Medical Literature Analysis and Retrieval System) is a computerized 

bibliographic retrieval for biomedical literature, originally unveiled in 1964 to both facilitate the 

publication of the bibliography and enable computer-oriented rapid bibliography retrieval(Dee, 2007). 

MEDLINE (MEDLARS Online) is a bibliographical database maintained by the National Library of 

Medicine with free access via PubMed since 1997, eventually supplanting the Index Medicus at the end 

of 2004.  

Approximately 5000 journals are now indexed, with over 21 million citations in its database. 

Entries from the Index Medicus are included from 1964 as MEDLINE. As well, OLDMEDLINE entries, 

currently covering over 2 million citations from 1946 through 1965, are being converted and added, 

although they use outdated subject headings and do not include abstracts. 

Towards the middle of November of each year, the National Library of Medicine performs what 

is essentially annual maintenance on PubMed, updating records received throughout the year and 

creating a fresh Baseline. Throughout the year, approximately weekly updates are applied to the 

baseline. The MEDLINE®/PubMed® Baseline Repository stores the yearly baselines for each year since 

2002. 

The journal citations of MEDLINE®/PubMed® are available to lease from NLM at no charge for 

download in XML format. The current (2012) baseline is 89 GB of data. The NLM licenses the data to 

entities all around the world which allows direct access to the data for analysis, however, their software 
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is not made available. The NCBI provides programmatic access to their search software through E-

utilities. Alternatively, a copy of MEDLINE®/PubMed® can be downloaded for personal use, and small 

amounts of data can be retrieved via PubMed without a formal license. Therefore, PubMed permits 

access to their citations both through their own software, as well as access to the entirety of the citation 

data for direct analysis. While extremely permissive, especially in comparison to other services which do 

not allow direct access to the entirety of the citation data, the lease remains subject to terms imposed 

by the NLM. 

Biomedical Subject Indexes 

In tandem with the database for biomedical citations is the need to identify the pertinent topics 

for each citation (See Figure 1-1B). There is substantial work on biomedical vocabularies, which range 

from straightforward lists of terms, to formally correct ontologies with precisely defined semantic 

relationships. Biomedical vocabularies are used to annotate and index data, standardise format to 

facilitate data exchange and to enable knowledge discovery(O Bodenreider, 2008), something that is 

becoming ever more difficult as the pool of primary literature continues to grow(Howe et al., 2010). 

MEDLINE®/PubMed® and Embase index their citations using their own controlled vocabulary of subject 

terms. Vocabularies also exist for use in specific subject domains, such as annotation of medical causes 

of death, or for biomedical entities such as genes. All MEDLINE entries in the PubMed citation database 

are annotated by NLM curators with Medical Subject Headings. While the MeSH vocabulary has been 

shown to have significant breadth and depth in coverage of concepts occurring in biomedical research 

articles (Yao, Divoli, Mayzus, Evans, & Rzhetsky, 2011), we also provide here an overview of the other 

most important medically relevant vocabularies to place our choice in context. 

In all vocabularies, each term represents a distinct concept, which may have many different 

spellings and may be referred to by different phrases in literature. Controlled vocabularies often also 

provide a hierarchical tree structure, where terms are arranged with the relation of increasing 

specificity. Contrasting this are ontologies, where relationships between terms are more specifically 

defined. In ontologies, each relationship is explicitly categorised – the “is a subtype of” relationship is 

different than the “is a part of” relationship. For example, the mitochondria is a part of the cell, but is a 

subtype of organelle. By explicitly codifying the relationships, much more complex queries can be 

computed, however, this also involves a greater overhead for those developing and maintaining the 

vocabulary as well as those curating the annotations. 
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Many vocabularies are designed for a specific purpose. A number of vocabularies are focused 

for annotating human disease. For example, the International Classification for Disease (ICD) tools ICD-9 

and ICD-10 were developed by the World Health Organization (WHO) and are employed by WHO 

member states to report mortality and morbidity statistics. SNOMED CT(Cornet & de Keizer, 2008) was 

developed by the College of American Pathologists with a focus on recording clinical data and was 

acquired by the International Health Terminology Standards Organisation and used by the Canada 

Health Infoway in its electronic health record standards. Disease Ontology(Schriml et al., 2012) is being 

developed to provide an open-source ontology for human disease designed to for semantic computation 

while mapping to other disease vocabularies such as ICD-9 and SNOMED CT as well as more general 

medical terminologies such as MeSH.  

Another important domain-specific vocabulary is Gene Ontology (GO). GO is a formal ontology 

and the GO Consortium is a set of organism databases, protein databases, and biological research 

communities, all actively involved in developing and applying GO(Ashburner et al., 2000). The GO 

Consortium now coordinates an effort to annotate twelve reference genomes, and when applicable 

PMIDs are one of the primary reference sources to support annotations. GO is also important as the 

biological vocabulary that has been the focus of annotation over-representation analysis (Khatri & 

Drăghici, 2005). However, while it covers gene-related concepts such as molecular function, biological 

processes and cellular compartments, its scope does not encompass other medically relevant topics 

such as diseases. 

To complement our use of PubMed as our source for biomedical literature, we choose to focus 

our results by using MeSH terms as the basis for our profiles. MeSH allows us to use a single biomedical 

vocabulary for all the entities that will be studied in this thesis – drugs, genes, diseases and biomedical 

authors. MeSH has been shown to have high inter-annotator consistency (Funk & Reid, 1983), and was 

identified as one of the best vocabularies for predicting gene-disease associations using the TXTGate 

biomedical literature mining system(Yu, van Vooren, Tranchevent, de Moor, & Moreau, 2008). However, 

while we focus our methods here on the biomedical citations provided by PubMed, our methodology 

could be adapted to other biomedical citation databases to provide a complementary perspective or a 

more specific use case. In such applications, it would be natural to also use a matching biomedical 

terminology – for example, when mining the Embase database of citations, the proprietary EMTREE 

thesaurus would provide a ready source of relevant annotations. 
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Medical Subject Headings 

Our work focuses on MeSH, a controlled vocabulary thesaurus of over 26,000 descriptors as of 

2011 (http://www.nlm.nih.gov/pubs/factsheets/mesh.html). Each of the articles indexed by MEDLINE is 

annotated by MeSH terms for information retrieval. These terms are arranged in a general hierarchical 

structure, with broad terms such as “Anatomy” and “Mental Disorders” to more specific terms such as 

“Alzheimer Disease”. Additionally, more than 199,000 headings – Supplemental Concept Records 

(formerly Supplemental Chemical Records) – are annotated and collected in a separate thesaurus. 

(http://www.nlm.nih.gov/mesh/intro_preface.html) MeSH is updated continually by staff subject 

specialists.  

Based on the Subject Heading Authority List, the Medical Subject Headings list appeared in 1960 

in tandem with the inception of the Index Medicus, envisioned as a single subject authority list for all 

medical periodicals and books(Lipscomb, 2000). Since the 1960s, MeSH has been used by the National 

Library of Medicine for bibliographies and cataloguing both books and periodical articles and now all of 

the over 18 million modern MEDLINE®/PubMed® article references are indexed using MeSH, making this 

one of the most comprehensive, freely accessible biomedical bibliographical resources available.  

The MeSH terms are organised into 16 main categories, and then furthered divided into 

subcategories. Within the subcategories, MeSH terms are arranged hierarchically from most general to 

most specific. Each MeSH term occurs at least once in these branching MeSH trees, but may also appear 

in additional places as appropriate (http://www.nlm.nih.gov/mesh/introduction.html). For example, the 

term “Alzheimer Disease” appears under both the term “Dementia” and the term “Tauopathies” in the 

“Diseases” Category. “Dementia” and “Alzheimer Disease” also appear in the “Psychiatry and 

Psychology” Category. 

MeSH terms are used by both periodical indexers and book cataloguers to represent the key 

topics in each citation entry in MEDLINE. Several basic principles guide curators when annotating 

MEDLINE entries. When a MEDLINE entry covers several different topics, each topic is represented by 

the appropriate MeSH terms. As well, for more complex topics, several MeSH terms can be coordinated 

to accurately represent the topic. Finally, when several headings could describe a topic for the MEDLINE 

entry, the most specific heading is chosen. 

http://www.nlm.nih.gov/pubs/factsheets/mesh.html
http://www.nlm.nih.gov/mesh/intro_preface.html
http://www.nlm.nih.gov/mesh/introduction.html


 

11 

 

As the index to all the records in MEDLINE, MeSH terms enable services such as citation retrieval 

by PubMed to perform more accurately by acting as a subject thesaurus. MeSH terms allow matching to 

a concept independent of the specific terminology used in the original texts. It also allows for inclusive 

retrieval, by using the tree structure to allow general searches to include articles annotated with more 

specific terms (http://www.nlm.nih.gov/mesh/catpractices.html). 

A set of natural categories frequently discussed about the terms can be attached to a MeSH 

terms. If several subheadings are appropriate, separate entries of the MeSH term associated to each 

subheading are added to the record. For example, an article that covers liver metabolism and pathology 

is indexed with both “Liver/metabolism” and “Liver/pathology”. Of the over eighty possible 

subheadings, only relevant subheadings are allowed for each MeSH term, and certain combinations are 

invalid because a corresponding MeSH term exists – for example, “Arm/Injuries” is not possible because 

the concept “Arm Injuries” is already in MeSH. Subheadings are also grouped into subheading trees 

arranged by specificity. 

The Supplementary Concept Records is a supplementary vocabulary to complement the 

“Chemical and Drugs” Category. While the terms in the main MeSH Categories are updated annually, 

Supplementary Concept Records are updated daily. Additionally, Supplementary Concepts are a 

controlled vocabulary – while including a link to related MeSH terms, they are not formally included in 

the MeSH hierarchy and are not associated with MeSH subheadings. 

Starting in 1996, the pharmacologic action terms were coordinated in conjunction with a MeSH 

chemical term (either a Main Heading or a Supplementary Concept Record) to index articles describing 

the action of a drug. However, this indexing strategy does not explicitly link the pharmacologic action 

and the drug involved. Therefore, in 2003, the “Pharmacological Action” category was created, which 

includes pharmacologic actions and the substances that are shown in the literature to use this action. To 

be included in this list, a drug must have a confirmed pharmacologic action, including at least 20 papers 

supporting this action. 

Automated Entity Recognition 

Expert curated subject annotations remain the gold standard to which all other methods are 

compared. However, this method is the most resource intensive, requiring both expertise and time from 

http://www.nlm.nih.gov/mesh/catpractices.html
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human curators. Automatic entity recognition is another technique, where abstracts and/or full-text of 

articles are analysed to identify the topics mentioned in an article.  

Automated efforts have mapped other vocabularies to PubMed articles in an automated 

fashion, such as GoPubMed for Gene Ontology(Doms & Schroeder, 2005). The reverse problem, 

attaching MeSH terms to entities, has also been explored for Uniprot proteins by mapping MeSH terms 

to UniProt comment lines via text analysis(Mottaz, Yip, Ruch, & Veuthey, 2008), and for OMIM diseases 

through the analysis of PubMed bibliographies and PubMed searches(Nakazato, Bono, Matsuda, & 

Takagi, 2009). 

As a general resource, the Unified Medical Language System(UMLS) (Olivier Bodenreider, 2004) 

is a medical metathesaurus that integrates and bridges over 100 source vocabularies developed since 

1986. Associated with the UMLS initiative is the MetaMap tool(Aronson & Lang, 2010) which enables 

UMLS to be mapped to other terminologies. As well, UMLS has been mapped to other terminologies not 

currently part of the thesaurus, such as the proprietary EMTREE thesaurus that indexes 

EMBASE(Taboada, Lalín, & Martínez, 2009). In addition to the Metathesaurus of terms from multiple 

source vocabularies, it also incorporates a Semantic Network.  

Automated efforts still cannot replace manual curation, as seen in efforts comparing 

automatically annotated MeSH terms to manually annotated terms(Trieschnigg et al., 2009). The 

authors find that retrieval systems that use manual annotations are more effective than systems using 

annotations derived from more automated methods at document retrieval tasks. Automated 

techniques, however, provide effective mechanisms to assist curators in the task of assigning subject 

terms, and have been shown to have recall that is potentially superior to non-expert human 

curators(Ruau, Mbagwu, Dudley, Krishnan, & Butte, 2011). Furthermore, computational methods can 

provide a complementary source of annotations when a large-scale manual curation effort is not 

possible.  

Knowledge Discovery 

Linking concepts through Literature 

Swanson and Smalheiser suggested, originally in 1986, that two sets of literature could, when 

brought together, reveal previously “undiscovered public knowledge” that is not apparent when the two 
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literature sets are analysed in isolation (Don R Swanson & Smalheiser, 1996). Specifically, they propose 

the ABC model – discovering the relationship between an entity A and a second entity C through a 

common intermediate entity B. For example, they propose that an environmental factor A can be 

discovered to be linked to a disease C, through a certain physiological condition B relevant to both A and 

C. They consider such relationships to be of particular interest when the sets of literature are “mutually 

isolated and noninteractive” – articles involving A and C both do not cite each other and are not co-

cited. This concept is centrally important for the thesis research that will follow. Smalheiser(Smalheiser, 

2012) describes this methodology as literature-based discovery that emulates “intuitive common-sense” 

strategies employed by domain scientists. Profiles can generate hypotheses in a method inspired by 

Swanson (Srinivasan, 2004), where the profile for a topic A contains the MeSH term B which is 

discovered to link to the profile of another MeSH term C. Alternatively, Srinivasan compares the profiles 

associated with the two MeSH terms A and C, investigating whether they have any linking MeSH terms B 

that are shared between their profiles. The work presented in this thesis takes this methodology as 

inspiration and aims to extend it through automated computational analysis to evaluate all potential B 

terms quantitatively and simultaneously to evaluate the strength of the link between A and C. 

Annotation Over-representation  

The first part of our problem is to build a profile of the biomedical topics most related to an 

entity of interest from its primary literature (See Figure 1-1C). Moving beyond the naïve extraction of all 

terms appearing in the articles, we focus on methods to quantitatively organise these topics based on 

their importance to the entity they describe. This problem maps to the problem of identifying over-

represented terms in a set. 

Over-representation has been extensively studied in bioinformatics in the context of GO 

annotation analysis(Khatri & Drăghici, 2005). In this classic problem, determining whether an individual 

annotation is present more frequently than expected in a group of entity annotations can be performed 

using well-studied statistical methods – the binomial test, the hypergeometric distribution and Fisher’s 

Exact test, the chi-squared test – implemented in tools such as the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) (Dennis et al., 2003).  

These methods classically compare the rate of occurrence of the annotation in the set studied 

against the background occurrence rate of the annotation. Other variations of this problem look at the 
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over-representation of child terms in relation to a parent term. For example, in the case of Gene 

Ontology, there is assigned to each term a “true” parent in the hierarchy, which has been used for this 

analysis(Grossmann, Bauer, Robinson, & Vingron, 2007). In addition to Gene Ontology, over-

representation has also been applied in the genomic context to evaluate the over-representation of 

transcription factor binding sites in a set of sequences, compared to a background, using Fisher’s Exact 

Test and the normal approximation of the binomial test(Ho Sui, Fulton, Arenillas, Kwon, & Wasserman, 

2007), and the same analysis has been applied to the MeSH terms for a set of genes(Kumar, 2011).  

There are existing methods of computing MeSH term associations. The most basic method is the 

naïve binary presence or absence of an annotation in the literature(Djebbari, Karamycheva, Howe, & 

Quackenbush, 2005; Indra Neil Sarkar & Agrawal, 2006). In addition, methods include normalised term 

frequency * inverse document frequency(TF*IDF) adapted from text mining(Srinivasan, 2004), 

information gain from information theory(Nakazato et al., 2007), and other ad-hoc frequency-based 

measures(Indra Neil Sarkar, Schenk, Miller, & Norton, 2009). These examples demonstrate many 

alternative methods exist to measure the degree of association. We consider in this work Fisher’s Exact 

test, which remains a widely used statistical test for annotation over-representation, resulting in directly 

interpretable p-values in a well-understood probabilistic model. MeSH term association statistics 

through hypergeometric p-values has previously been studied in the context of genes(Jani, Argraves, 

Barth, & Argraves, 2010), however, this preliminary analysis limits the analysis to the MeSH categories 

and first-level MeSH sub-categories.  

Over-representation analysis generates quantitative profiles, succinctly distilling the annotations 

of the primary literature for each entity analysed. In this thesis, we investigate profiles generated for the 

gene, disease and drug entities. By comparing profiles for several different entities, we predict 

previously unknown connections (See Figure 1-1D). 

Gene-Disease Prediction 

One classic problem at intersection of bioinformatics and medical informatics is the prediction 

of novel gene-disease relationships. These two classes of entities are both well-suited for advanced 

literature analysis. Diseases form an entire category of MeSH terms, and are therefore well annotated in 

the PubMed literature. The NCBI Entrez Gene annotation resource provides curated literature citations 

associated to genes.  
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Most of the existing methods for the computational prediction of linkages between genes and 

disease take as input a preliminary list of candidate genes (e.g. genes in a genomic region linked in a 

genetic study to a disease), and return as output either a reduced or a ranked list. The underlying 

approaches differ substantively between methods, but all examine characteristics of the genes to 

identify which genes have the greatest similarity to a disease. Examples of characteristics used in the 

methods include numerical features derived from the raw sequence of genes and/or encoded proteins, 

existing annotations of proteins and genes, and abstracts or articles directly referring to the gene. The 

current methods focus on using properties from a representative set of genes to identify similar genes 

from the candidate set. Here I will present an overview of nine recent methods used to link genes to 

disease (See Table 1-2). 

One method for identifying disease-related genes involved clustering the diseases in 

OMIM(Freudenberg & Propping, 2002), rather than the genes themselves, using features such as tissue, 

age of onset, primary etiology, episodic occurrence and mode of inheritance. A measure of similarity 

between any two diseases is calculated based on weighted contributions of each of these indices. Once 

the clusters are determined (using a strategy that involves manual thresholding by a human expert), the 

candidate genes are compared to the disease genes underlying the diseases in each cluster using the GO 

annotations. For a candidate gene in a disease cluster, each GO term is considered. If the GO term does 

not match the candidate gene, the ratio is 0. Otherwise, the ratio of the occurrences of the GO term in 

the cluster and the occurrences of the GO term in all disease genes is computed. The score for a 

candidate gene in a disease cluster is then the average of all the GO term ratios for that gene. This score 

is then downscaled by the number of genes in the cluster. Validation was assessed using leave-one-out 

cross-validation. They observed that predictions were most powerful in cases where disease phenotype 

and gene functions are clearly similar among members of a disease family. Syndromal disease 

phenotypes proved more difficult, potentially due to only partly understood causal mechanisms or 

weakness in the ability to accurately index complex phenotypes. 

Rather than ranking candidates, an alternative approach is to restrict a candidate gene set to 

those genes which meet some of a set of specific properties. GeneSeeker(Driel et al., 2005) can find 

genes within a chromosomal location that are localized in particular tissues, by looking at human and 

mouse expression data. Another method of associating disease genes to anatomical locations(Nicki 
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Tiffin et al., 2005)  performed text mining of PubMed abstracts to associate eVOC anatomical ontology 

terms to gene names.  

Machine learning approaches can be used when a representative set of disease genes are 

available to use as training data. In DGP(López-Bigas & Ouzounis, 2004), a decision tree classification 

approach is used to find features common to disease genes based on a training set composed of sample 

disease and control proteins. Features were protein length, BLASTP ratios (conservation score) between 

a protein and its highest scoring homologue within taxonomic groups (representing phylogenetic 

conservation and extent) and the conservation score with the closest paralogue. The study indicates 

that, on average, hereditary disease genes (genes taken from OMIM) in comparison to randomly 

selected genes are longer, more conserved, phylogenetically extended and without close paralogues. 

PROSPECTR(Adie, Adams, Evans, Porteous, & Pickard, 2005) uses a wide variety of features, 

including the length of the gene, the length of its coding sequence, the length of its cDNA, length of the 

protein, GC content and percentage protein identity with its nearest homologue in various species 

(mouse, worm, fly). The investigators used an alternating decision tree, taking genes from OMIM and 

comparing against genes not found in OMIM. They also generated two independent test sets – one 

using genes from the Human Gene Mutation Database with randomly selected control genes, and 

another set of 54 genes not in OMIM, again with a set of randomly selected control genes. They show 

the ability to enrich candidate disease gene lists by training sequence-based features. 

POCUS(Turner, Clutterbuck, & Semple, 2003) takes another machine learning approach, using a 

selected training set of genes linked to the target disease. POCUS identifies common features between 

all the training genes – InterPro domains, GO annotations, similar expression profile – and assesses the 

chance that such common features would be shared by chance. This method depends on a carefully 

selected training set of genes, and focuses the likelihood of these genes all sharing common, disease-

related properties, in contrast to methods that focus on over-representation of properties among the 

training genes. 

G2D(Perez-Iratxeta, Bork, & Andrade, 2002; Perez-Iratxeta, Wjst, Bork, & Andrade, 2005) links 

genes from a specified genomic locus to diseases based on PubMed MeSH disease and chemical term 

annotation and RefSeq GO annotations. MeSH disease terms are initially linked to MeSH chemical terms 

via co-occurring annotation of PubMed articles. Similarly, RefSeq GO annotations were linked to the 
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MeSH chemical terms via the PubMed references in the GO annotations. Scores were generated for 

these pair-wise associations as the ratio of the cardinality of the intersection against the union. The 

score for the combined disease-chemical-gene relation is defined as the product of the two pair-wise 

relations, and the score for a disease-gene relation is simply the maximum of all possible scores. The 

most recent update(Perez-Iratxeta, Bork, & Andrade-Navarro, 2007) includes additional methods of 

inferring disease-gene associations, involving the user providing genes from other genomic regions 

related to the disease. The first new method uses a set of example genes involved or suspected to be 

involved in the disease, it looks for GO annotation similarity based on Resnik scores(Resnik, 1977). The 

second method added takes a second chromosomal region of interest, and considers protein-protein 

interactions (provided by the STRING database) linking the genes in the input region of interest and the 

second region. This method uses the MeSH annotations of PubMed articles, and integrates this with GO 

annotations, in addition to providing as alternatives methods to link candidate genes to an existing set 

of genes and to another implicated region, however, does treats these methods individually. 

Endeavor(Aerts et al., 2006) aims to create an extendible system for prioritizing disease genes 

using heterogeneous data sources. The input to the system is a training set of genes, and comparisons 

are made against all genes in the genome. For attribute-based data (GO annotations, EST expression, 

InterPro domains and KEGG pathways), over-represented annotations were each given p-values. Genes 

are ranked using Fisher's omnibus meta-analysis to generate a new p-value from a chi-square 

distribution. Vector-based data (literature frequency profile of GO terms, microarray expression, 

human-mouse conserved promoter regions scored by TRANSFAC profiles), and the feature vectors for 

each gene were compared against a trained average vector using Pearson correlation. BLAST similarity, 

BIND interaction partner overlap and a genetic algorithm-derived transcription factor binding site model 

are used to score and rank the genes. The ranks from the methods are combined using order statistics. 

The performance of the system was evaluated against monogenic diseases (extracted from OMIM), 

polygenic diseases (six genes recently determined to be involved in polygenic disease) and also for 

functional role in regulatory pathways (by looking for differential mRNA expression via real-time 

quantitative PCR). They performed functional validation in zebrafish. DiGeorge syndrome (DGS) 

candidate genes were identified from a training set of genes causing DGS and DGS-like symptoms. This 

resulted in the prioritisation of TBX1, a known DGS-related gene, and YPEL1, which yielded DGS-like 

defects when expression was knocked down in vivo. Endeavor combines the results of multiple 

analysis methods, and represents one of the most popular tools for gene-disease association analysis. 
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More recently, CAESAR(Gaulton, Mohlke, & Vision, 2007) takes as input a text about a disease 

and analyses for the presence of ontology terms and gene names. Ontology terms are used to rank 

candidate genes based on matching identified phenotypes when mutated (e.g. mammalian phenotypes 

in the mouse genome database), or showing expression in the tissues mentioned (e.g. eVOC anatomy 

terms in the UniProt database). Identified genes are used to rank candidate genes based on the number 

of protein-protein interactions, shared common pathways in the Kyoto encyclopedia of genes and 

genomes, or conserved functional domains in the Interpro database. The gene ranks are then integrated 

using four scoring functions: sum, mean, maximum and a transformed score that considers both the 

rank of a gene for each data source and the number of genes returned by that data source. CAESAR 

mimics the training of an expert through its direct use of the primary literature.  

To compare and contrast the results from multiple techniques, a large integrative analysis with 

most of the methods was performed to predict genes potentially linked to diabetes and/or obesity(N 

Tiffin et al., 2006). In addition to directly comparing and contrasting the results of diverse methods, the 

study demonstrates the utility of meta-analysis of the combined results. Diversity in methods to analyse 

and predict candidates allows minimisation of bias from any single data source, and so the MeSHOP 

analysis discussed here brings an alternative viewpoint as well as methods to identify and compensate 

for literature bias. The field continues to progress, with the update to G2D and several of the above 

mentioned methods, including CAESAR and Endeavor,emerging since the review study. 

This sampling of the various prediction algorithms currently available provides a taste of the 

diversity of methods available to be applied to predicting novel associations, however, in practice 

researchers have limited time and resources to dedicate towards generating and analysing predictions. 

There remains substantial work to be done before in silico predictions can supplant experimental 

analysis, therefore any predictions need to be supplemented and validated. From a practical standpoint, 

a tool such as Endeavor, integrating many diverse data sources with state-of the-art algorithms for its 

predictions, provides a convenient single source for an ensemble view of the prediction landscape.  

Tools like Endeavor provide a unified framework for predicting novel gene-disease relationships 

by integrating several data sources in a quantitative manner, but these methods rely on qualitatively 

determined scoring mechanisms. Our focus in this thesis, rather than integrating multiple methods, is to 

identify and specifically focus on the literature aspect of the prediction of interactions. From a research 

standpoint, what has been lacking in previous analyses is a focus on the effectiveness of biomedical 
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literature knowledge alone, to quantify its predictive ability as well as identify and understand biases in 

the biomedical research. 

Drug-Disease Prediction 

Pharmaceutical compounds are amongst the most heavily studied chemicals. As part of the 

supplemental MeSH vocabulary, PubMed entries are annotated for the chemical compounds that are 

central to the studies. We focus here on investigating the value of biomedical annotation of compounds 

with confirmed pharmacologic action, building on previous work exploring general trends in the medical 

topics in drug research through MeSH and MEDLINE®/PubMed® bibliometric data(Agarwal & Searls, 

2009).  

The identification of new indications for existing pharmacologic compounds is increasingly 

important. As the development of novel drugs becomes more costly and time-consuming, the 

repurposing of previously approved drugs becomes more attractive. Existing drugs have the advantage 

of already-known toxicity and contraindications, resulting in a shorter approval process. Similar to 

turning off-label prescriptions of doctors for existing compounds into new applications of drugs, we 

examine here exploiting known properties of drugs to infer potential applications towards other 

diseases. 

While existing databases for drugs such as DrugBank(Wishart et al., 2008) store 

pharmacogenomics information such as drug targets, there also exist several databases focused on the 

interconnections of genes, diseases and chemical compounds. PharmGKB (Hewett et al., 2002; Klein et 

al., 2001) and the Comparative Toxicogenomics Database (CTD) (Davis et al., 2010) focus on curating 

knowledge on human genetic variants and links from these to pharmaceutical compounds and disease. 

These databases curate relationships from both PubMed articles as well as other sources of information 

such as the US Food and Drug Administration list of genetic biomarkers in drug labels. 

Although manually curated drug-gene interaction data is the gold standard for many 

researchers, computational approaches can provide broad coverage. The automatically populated 

database SuperTarget (Gunther et al., 2008) focuses on extracting interactions of drugs and their targets 

from MEDLINE®/PubMed® and other interaction databases, in the context of disease diagnosis or 

treatment. SuperTarget is paired with a manually annotated companion resource Matador. Text mining 

tools have been integrated into the biocuration pipeline of CTD to identify interactions between genes, 
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diseases and drugs (Wiegers, Davis, Cohen, Hirschman, & Mattingly, 2009). Although automated text 

analysis is error-prone, they find the emerging automated tools can be applied to increase biocurator 

throughput and efficiency by improving prioritization of articles to curate.  

Beyond assisting in curation, bibliometric and text analysis tools, from text retrieval to natural 

language processing, have been coupled with computational techniques for drug discovery (Agarwal & 

Searls, 2008). They look at applications where genes and drugs, with the relations between these two by 

downloading and analysing PubMed data. 

(Sardana et al., 2011) explore the need and opportunity of bioinformatic analyses to help find 

new applications for existing drugs to treat rare diseases. Automated knowledge-based analysis can be 

used to systematically assist in such drug repositioning in providing quantitative starting evidence. 

However, the existing methods focus on common (non-orphan) diseases, and so a general methodology 

applicable to diseases regardless of their rarity but rather focusing on the pre-existing biomedical 

research, remains an important area of study.  

Repositioning research has often focused on approaches that are independent of pre-existing 

research literature.  For instance, groups have analyzed quantitative structural chemical properties (Fjell 

et al., 2009) and quantitative high-throughput experiments (Aerts et al., 2006). PREDICT (Gottlieb, Stein, 

Ruppin, & Sharan, 2011) combines existing drug-disease associations extracted using the Unified 

Medical Language System with drug-drug and disease-disease similarity to rank a query drug-disease 

association based on the most similar drug-disease evidence. Recent advances in re-positioning have 

incorporated large-scale docking simulations (Y. Y. Li, An, & Jones, 2011) and gene expression profiling 

(Sirota et al., 2011a).  

Author Similarity 

The concept of similarity between entities applies broadly. As a novel approach for information 

retrieval in the life sciences, we became interested in the identification of similarity between authors. 

Every article in PubMed is annotated with a list of authors, representing a vast pool of entities. Unlike 

genes, diseases, drugs or any other kind of medical subject annotation attached to an article, the author 

is a definitive assignment by the creator of the work. It is expected that each author has characteristic 

research interests which should be captured by the topics addressed in their work. Given a profile of 
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each author, it should be possible to identify similarities between authors to facilitate collaborations and 

interactions within the scientific community. 

Identifying and comparing authors based on their research interests has been pursued using 

abstract similarity (Errami, Wren, Hicks, & Garner, 2007). The same class of text comparison methods 

have been applied to detect similar and potentially plagiarised work (Errami, Sun, Long, George, & 

Garner, 2009). Our work builds on this prior body of literature. Rather than focus on the text and 

phrases, we elect to construct quantitative author MeSHOPs and perform large-scale comparisons.  

Author comparisons are confounded by the challenge of author ambiguity. As names are not 

exclusive, with some names being especially common and shared among many individuals, one must 

address the problem of differentiating authors based on surname and initials. Since 2002 the full names 

of the authors have been deposited in PubMed, however many author names exactly match. Further 

complicating the disambiguation problem is the converse problem, where one individual may appear in 

the database under several different names – for instance variations including or omitting some or all 

initials, misspellings, or legal name changes. Biomedical subject annotation similarity has been used to 

distinguish articles from the same author from those by distinct authors with the same name(Torvik & 

Smalheiser, 2009). In addition to the computational methods, several initiatives, including OpenID, 

ResearcherID(Bourne & Fink, 2008) and PubMed Author ID(NLM, 2011) are in progress to explicitly 

identify the authors of articles with an identification number. Once mature, these efforts will eliminate 

ambiguity in the identification of authors and allow the generation of more accurate and complete 

profiles. 

Visualisation 

While the previously discussed applications of the primary literature data allow us to 

quantitatively associate a biomedical entity directly with its related topics or with predicted related 

topics, the presentation of profiles and results can assist in the interpretation of results. For quantitative 

annotation profiles, the ultimate result is a list of terms with a numerical score indicating the strength of 

association. Beyond presenting the results as an ordered list of these pairs and highlighting the strongest 

terms, we look at methods that provide additional information such as allowing direct comparison of the 

relative importance of the terms. 
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In bioinformatics, relative font size has been previously used to convey quantitative scores 

through sequence logos(Schneider & Stephens, 1990). Word clouds have previously been used in the 

analysis of free text, presenting terms from the text in size relative to their occurrence from a variety of 

biomedical sources(Baroukh, Jenkins, Dannenfelser, & Ma’ayan, 2011). These word clouds can be 

generated by removing common words and measuring the enrichment of terms remaining relative to 

the background rate. LigerCat (I.N. Sarkar, Schenk, Miller, & Norton, 2009) extracts MeSH terms from 

the articles returned from PubMed queries or bibliographies from GenBank records, and presents their 

scored results as a word cloud to highlight the most unusual terms. Additionally, the word cloud is 

transformed into an interactive entity, allowing the user to form a new query by combining terms of 

interest from the cloud. We build on these visual representations of medical terms, introducing filtration 

of redundant terms, and demonstrate how changing the comparative background can highlight class-

specific terms. These methods demonstrate that MeSHOPs readily allow visual representation of the 

information encoded in the primary literature, but also reveals this to be a nascent area rich for future 

development. 

Conclusion of Literature Review 

As evidenced by all the prior research efforts, dealing with Big Data is an ongoing problem that 

only increases in difficulty and complexity as our pool of knowledge expands. MEDLINE®/PubMed®, with 

its comprehensive coverage of biomedical articles indexed by expert curators, provides a rich resource 

of human-verified knowledge in computable form. Existing methods hint at the importance of literature 

as both a source of knowledge currently used to guide research and as a means to inform future 

predictions. This thesis will demonstrate that this pool of knowledge can be used to inform us about pre-

existing knowledge, by directly and quantitatively extracting the unusually associated topics for an entity 

and uncovering biases influencing relationships between entities. Moreover, we quantitatively evaluate 

the extent that the knowledge extracted can be used to uncover previously unidentified links, opening 

the way to more sophisticated analyses while cautioning about the significant effects of literature 

annotation bias.  

These applications are only the tip of the iceberg – PubMed provides the opportunity for 

bioinformaticians to use their computational tools to not only extract knowledge from a single paper, 

but to agglomerate the knowledge of all experts in the field to assist in forging a more complete 

understanding of the domain. Ultimately, we wish to enable a future where biomedical researchers are 
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given clear access the totality of the existing knowledge, and can use this knowledge to its fullest extent 

to guide their future endeavors. 

Formal Summary of Chapters 

This thesis focuses on a novel method for extracting the most relevant biomedical topics from a 

set of related research articles to profile an entity of interest (Chapter 2), and uses comparison of these 

entity profiles to predict new associations (Chapters 3-5).  

Chapter 2 describes the extraction of MeSHOPs from annotated biomedical citations. This 

statistical method describes the extraction of highly relevant topic terms over-represented in a set of 

citations compared to a background set of articles. We evaluate the effect of several methods to refine 

and focus the over-representation results, and demonstrate how MeSHOPs allow entities to be grouped 

based on common subject headings in their profiles. 

Chapters 3 shows how MeSHOPs for genes and diseases can be computed and compared, and 

that similarity of MeSHOPs can predict novel gene-disease relationships. We evaluate a variety of 

measures for MeSHOP similarity. We validate the predictions from the analysis of data from 2007, and 

show high accuracy at predicting new relationships appearing in subsequent years. Importantly, we 

investigate several bibliographical baselines, demonstrating that the degree of annotation for genes and 

diseases is predictive of future association. 

Chapter 4 further examines the relationships between entities, focusing on MeSHOPs for 

pharmacologic compounds and compares these to the disease MeSHOPs. To overcome the annotation 

bias introduced by entity annotation, we devise a method to correct for the influence of literature 

annotation in the similarity scores. 

Chapter 5 then applies profiles to look at the network of biomedical authors. With over three 

million authors, several orders of magnitude greater than the four thousand MeSH diseases (4 

thousand) or the thirty thousand human genes, this introduces an additional computational obstacle as 

explicitly comparing every author to every other author is no longer a feasible option. We investigate 

and present computational methods for rapid high throughput entity comparison. 
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Figure 1-1. Schematic of the Research Project.  The project focuses on the analysis of biomedical 

research literature citations (A) and the annotated major biomedical terms annotated to such citations 

(B). We look at sets of citations and associated annotation related to an entity of interest, to analyse for 

the presence of over-represented terms (C). We then explore the prediction of novel associations 

between entities based on the biomedical annotation profiles (D).  
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Baseline Created Number of Citations Increase in Citations 

2002 Approximately November 21, 2001 11,299,108   

2003 Between November 1-4, 2002 11,847,524 548,416 

2004 Between November 14-18, 2003 12,421,396 573,872 

2005 November 20, 2004 14,792,864 2,371,468 

2006 November 18 & 19, 2005 15,433,668 640,804 

2007 November 17 & 18, 2006 16,120,074 686,406 

2008 November 16 & 17, 2007 16,880,015 759,941 

2009 November 21 & 22, 2008 17,764,826 884,811 

2010 November 20, 2009 18,502,916 738,090 

2011 November 19, 2010 19,569,568 1,066,652 

2012 November 18, 2011 20,494,848 925,280 

Table 1-1. Increase in size of the PubMed/MEDLINE Baseline over time. Numbers taken from 

http://mbr.nlm.nih.gov/ 

  

http://mbr.nlm.nih.gov/
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Disease 

Clustering GeneSeeker 

eVOC 

system DGP PROSPECTR G2D POCUS CAESAR Endeavor 

Input Type 

List of 

genes 

Anatomical 

location, 

chromosomal 

regions of 

interest 

Disease, 

list of 

genes 

(from 

disease 

locus) 

List of 

genes 

List of 

genes 

Disease, 

list of 

genes 

(from 

disease 

locus) 

List of 

genes, 

Training 

set of 

genes 

Disease-

related 

text 

corpus 

All genes 

in the 

genome, 

Training 

set of 

genes 

Data Sources Analysed 

PubMed 

Abstracts 
 X X   X   X 

eVOC 

annotation 
  X     X  

Sequence 

data 
   X X X   X 

GO 

annotation 
X     X X X X 

Protein data  X    X X   

Phenotype 

/Expression 

Libraries 

 X     X X X 

Orthologous 

genes 

(mouse) 

 X       X 

Orthologous 

genes 

(other) 

         

Protein 

Domain 
       X X 

Interaction 

Partners  
     X  X X 

Cis-

Regulatory 

Modules 

        X 

OMIM X X      X  

Table 1-2. List of Existing Algorithms for Candidate Disease Gene Selection and Data Sources Analysed 
by these Methods.  
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Chapter 2: Quantitative Biomedical Annotation using Medical Subject Heading 

Over-representation Profiles (MeSHOPs) 

Synopsis 

Background. MEDLINE®/PubMed® indexes over 21 million biomedical articles, providing curated 

annotation of contents using a controlled vocabulary known as Medical Subject Headings (MeSH). The 

MeSH vocabulary, developed over 50+ years, provides broad coverage of topics across biomedical 

research. Distilling the essential biomedical themes for a topic of interest from the relevant literature is 

important to both understand the importance of related concepts and discover new relationships.  

Results. We introduce a novel method for determining enriched curator-assigned MeSH 

annotations in a set of papers associated to a topic, such as a gene, an author or a disease. We generate 

MeSH Over-representation Profiles (MeSHOPs) to quantitatively summarize the annotations in a form 

convenient for further computational analysis and visualization. Based on a hypergeometric distribution 

of assigned terms, MeSHOPs statistically account for the prevalence of the associated biomedical 

annotation while highlighting unusually prevalent terms based on a specified background. MeSHOPs can 

be visualized using word clouds, providing a succinct quantitative graphical representation of the 

relative importance of terms. Using the publication dates of articles, MeSHOPs track changing patterns 

of annotation over time. Since MeSHOPs are quantitative vectors, MeSHOPs can be compared using 

standard techniques such as hierarchical clustering. The reliability of MeSHOP annotations is assessed 

based on the capacity to re-derive the subset of the Gene Ontology annotations with equivalent MeSH 

terms.  

Conclusions. MeSHOPs allow quantitative measurement of the degree of association between 

any entity and the annotated medical concepts, based directly on relevant primary literature. 

Comparison of MeSHOPs allows entities to be related based on shared medical themes in their 

literature. MeSHOPs can be generated and visualised via a web interface. 
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Introduction  

The MEDLINE®/PubMed® (hereafter referred to as PubMed) bibliographic database of the U.S. 

National Library of Medicine (NLM) is an actively maintained central repository of over 18.5 million 

biomedical literature references (Sayers et al., 2009). To navigate this growing body of published 

information, the PubMed references are indexed by subject experts at the NLM using Medical Subject 

Headings (MeSH) (Nelson, Johnston, Humphreys, Bean, & Green, 2001), a structured controlled 

vocabulary of 26,000 biomedical descriptors. The MeSH annotations are intended to facilitate the 

identification of relevant papers for research scientists. As PubMed grows at a modern rate exceeding 

600,000 references per year, researchers face a daunting challenge to assess the body of work about 

entities (genes, drugs, authors, etc.) arising in the course of their research.  

Encapsulating the bibliography for a biomedical entity of interest in a form both understandable 

and informative is an increasingly important challenge in biomedical informatics (Hirschman, Hayes, & 

Valencia, 2007b; Jensen et al., 2006). One approach to succinctly summarise a bibliography (i.e. a set of 

key papers) for a biomedical topic is to identify the MeSH terms most strongly associated to the papers. 

Previous reports which introduced summaries of over-represented MeSH terms for a set of papers 

include a study of enriched annotations for groups of differentially expressed genes (Djebbari et al., 

2005) and a method to identify MeSH terms enriched in articles retrieved in a query of the PubMed 

database (I.N. Sarkar et al., 2009). These initial approaches to MeSH annotation analysis applied ad hoc 

measures of association over small sets of articles to demonstrate the potential value for MeSH 

annotation summarization.  

Key to accelerating the research process is the development of systematic approaches to 

quantitatively represent bibliometric information and infer functionally important relationships between 

entities. Addressing this goal, we introduce MeSH Over-representation Profiles (MeSHOPs) to 

quantitatively describe the properties of genes, diseases or any other entity associated with a set of 

articles represented in PubMed. The entire PubMed database is analyzed. For each MeSHOP, the over-

representation of MeSH annotations across a bibliography of articles is statistically evaluated for a 

biomedical topic. MeSHOPs convey characteristics of the subject entity, facilitating discovery of novel 

relationships across classes of entities. We demonstrate the use of MeSHOPs to facilitate visualization of 

associated properties, subject to the use of appropriate corrections for background annotation 

properties. To assess the utility of MeSHOPs for high-throughput generation of quantitative annotation, 
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the capacity of the process to re-derive a subset of Gene Ontology annotation of genes is measured. 

Using a set of biomedical entities - vitamins - as an example, MeSHOP comparisons are shown to provide 

a quantitative measure of similarity between each member of the class. Profiles can be similarly 

compared across entity classes, as demonstrated in an analysis of the similarities between gene 

MeSHOPs and brain disease MeSHOPs. MeSH Over-representations Profiles fill an important niche in 

computational biology, allowing quantitative annotation descriptions to be generated for any entity for 

which a set of research articles indexed in the PubMed database can be defined. 

Methods 

MeSH Over-representation Profiles 

A MeSHOP is a quantitative representation of the annotations associated with a set of articles, 

where the set is composed of articles that address a specific entity (such as a gene or disease). The 

computation of a MeSHOP initiates from a set of articles that address a specific entity and returns a set 

of over-represented MeSH terms, each term with a p-value reflecting over-representation based on its 

rate of occurrence in the set of articles (see Figure 2-1). Comparing the observed frequency of each 

MeSH term annotated to the background rate returns a measure of over-representation. A MeSHOP is a 

vector of tuples < (t1, m1), (t2, m2), … (tn, mn) >. For each tuple (ti, mi) in a MeSHOP, ti is a distinct MeSH 

term in the MeSH vocabulary and mi is the numeric measure of the over-representation of MeSH term ti 

in the set of articles (the computed over-representation p-value, which can also be negative log-

transformed). For this study, several large classes of entities were analyzed such as the human genes in 

Entrez Gene and the diseases specified formally within MeSH.  

MeSHOPs are generated for each entity in a class by assessing the set of all linked PubMed 

records for each member. We use Fisher’s Exact Test to determine p-values, computed from a 2x2 

contingency table comprised of: 1) the frequency of occurrence of the term ti in the set of articles 

addressing the entity of interest; 2) the remainder of articles addressing the entity not having the term 

ti; 3) the frequency of the term ti in a specified background set of articles, not including articles 

addressing the entity; and 4) the remaining number of articles in the background set that do not refer to 

the term ti.or the entity. To illustrate this, we compute the association of the term “Alzheimer Disease” 

to the gene A2M in Table 2-2. 
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Medical Subject Heading Annotation Data 

Over 18 million biomedical references in PubMed have been evaluated by NLM staff subject 

experts. These curators assigned appropriate MeSH terms corresponding to the topics covered by the 

paper. The MeSH terms chosen are intended to be the most specific terms relevant to the topic covered 

in the paper – for example, if the term “Alzheimer Disease” is attached to the paper, the more general 

(‘parental’) term “Brain Disease” would not be associated. For our analysis, we therefore consider a 

paper annotated by a MeSH term to also be annotated with all ‘parents’ (and ‘grand-parents’, etc.) of 

that MeSH term. When indexing articles using MeSH terms, complex topics often cannot be covered by 

a single MeSH term – in this case multiple terms are “coordinated”. For example, the topic “medical 

staff in teaching hospitals” is covered by using the two MeSH terms “Medical Staff, Hospitals” and 

“Hospitals, Teaching”. All major topics in a report are indexed, even if the findings are negative.  

Previous studies have shown that MeSH provides a high specificity but lower sensitivity retrieval 

of relevant MEDLINE articles(Chang, Heskett, & Davidson, 2006; Jenuwine & Floyd, 2004) than direct 

text searching. This is attributed to the influence of manual curation being able to accurately when the 

topic term is the subject of an article. As MeSH is a standardised vocabulary, it also allows for 

disambiguation of concepts that use the same words, as well as resolving different terminology referring 

to the same concept.  

The MeSH vocabulary is updated annually during the Annual MEDLINE®/PubMed® year-end 

processing (http://www.nlm.nih.gov/bsd/policy/yep_background.html) where terms can may be 

deleted or changed. In most cases, experts at the NLM will specify will specify a replacement MeSH term 

that can be applied automatically to all cases. Additionally, the experts may also manually some 

citations to preserve the intent of the existing indexing effort. New MeSH terms can also be added. In 

general, pre-existing citations are not re-indexed with this new term, except in cases where the new 

term redefines a previously ambiguous heading. 

Generating Disease MeSHOPs 

For each MeSH term from the disease category (Category C), the entire bibliography of 

annotated articles in PubMed was considered. Disease-article linkages are drawn directly from PubMed 

via the curator-assigned MeSH terms. To generate MeSH term literature profiles for diseases, all MeSH 

http://www.nlm.nih.gov/bsd/policy/yep_background.html
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terms from the disease category – Category C – were used; a set composed of 4 229 terms in MeSH 

2007 linking to over 8 million articles. 

Generating Gene MeSHOPs 

All human genes in Entrez Gene were considered (38 604 in Entrez Gene 2007). Two sources for 

gene-article linkages from Entrez Gene were evaluated: Gene Reference Into Function (GeneRIF, 

http://goo.gl/SzRui) and gene2pubmed (http://goo.gl/bUEDU). GeneRIF is a curated set of links provided 

by annotators at the NLM and public submissions, where each set of PubMed articles refers to a briefly 

described function of the gene. gene2pubmed is a set of links to PubMed articles relating to the gene, 

generally broader in scope than GeneRIFs. GeneRIFs link 11 750 human genes to 142 396 articles. 

gene2pubmed links 26 510 human genes to 226 615 articles.  

Implementation 

The analysis was performed using Python (http://www.python.org/), XSLT 

(http://www.w3.org/TR/xslt), and the MySQL database system (http://www.mysql.com/). Fisher’s Exact 

Test p-values were computed using the R statistics package (http://www.r-project.org/). Results were 

generated using 50 CPUs of a compute cluster running under Sun GridEngine 

(http://gridengine.sunsource.net/). A typical cluster machine is a 64-bit dual processor 3 GHz Intel Xeon 

with 16 GB of RAM. 

Datasets were downloaded from Entrez  Gene (ftp://ftp.ncbi.nlm.nih.gov/gene/) and PubMed 

(http://www.nlm.nih.gov/databases/leased.html). See Table 2-1 for details of the size and contents of 

the datasets.  

Results 

MeSHOPs quantitatively represent the association of medical terms to a topic of interest, based 

on the bibliography for the topic compared to a background set of articles. We examine methods for 

generating MeSHOPs, and show how MeSHOPs can be used to reveal terms associated with a topic.  

Calculating MeSHOPs for Biomedical Entities 

We evaluate multiple procedures to quantitatively describe the annotation properties of a 

biomedical entity using MeSH terms attached to a set of articles about the entity. At the simplest, one 

could count the number of times each MeSH term is attached to the corpus of articles (Figure 2-2A). 

http://www.python.org/
http://www.w3.org/TR/xslt
http://www.mysql.com/
http://www.r-project.org/
http://gridengine.sunsource.net/
ftp://ftp.ncbi.nlm.nih.gov/gene/
http://www.nlm.nih.gov/databases/leased.html
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Such an approach fails to account for the number of articles in the corpus, so one could normalize the 

frequency. While such a correction may facilitate comparisons between distinct MeSHOPs, it fails to 

account for the importance of the individual terms and has no impact on the visual representation (data 

not shown). Some terms, such as ‘human’ are attached frequently, but provide little information to 

distinguish between distinct biomedical entities. 

We elect to calculate a p-value reflecting the significance of observing the number of 

annotations with a MeSH term in a set of articles of the given corpus size as detailed in the Methods. 

The p-values allow us to place the quantitative emphasis on distinguishing terms while correcting for the 

number of articles involved (Figure 2-2B). The p-values are computed under the model of a 

hypergeometric distribution via Fisher’s Exact Test. The universal background applied in this case is the 

set of 17 million PubMed articles assigned MeSH terms (see Table 2-2 for more details). The p-values 

measure the co-annotation or co-occurrence of MeSH terms with the entity. This MeSHOP generation 

process (Figure 2-1) underlies all subsequent analysis in this report. 

Simplifying Large MeSHOPs 

Inspecting the raw MeSHOPs revealed two issues that become increasingly important when 

analyzing larger bibliographies: (i) highly correlated terms within the MeSH hierarchy result in concept 

redundancy in the profiles; and (ii) terms enriched among entities in a class result are uninformative of 

the entity being profiled. Two corrections were introduced to address these issues. As an example of the 

first problem, consider the term “Alzheimer Disease”, which implies the more general term “Brain 

Disease”, rendering the observed over-representation of “Brain Disease” redundant in a profile (see 

Figure 2-3). The tree-like structure of the MeSH vocabulary provides a direct method to determine term 

relationships. A more succinct representation can be generated by removing more general terms, 

limiting MeSHOPs to include only the most specific significantly associated terms from the MeSH tree 

(See Figure 2-2C). As an example of the second problem, the initial MeSHOP for the gene BRCA1 

includes the term “polymorphism, single nucleotide”, however this term is enriched for 29% of human 

genes using the universal background set of articles. To address this issue, we calculate the enrichment 

statistics based on class-specific article backgrounds. For human genes, the background is restricted to 

articles addressing at least one human gene. Similarly, for diseases, the background is all articles 

annotated with at least one MeSH disease term. Using class-specific backgrounds, the statistical test 
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highlights terms unusually enriched for the specific member, de-emphasising terms common to all 

members of the class (see Figure 2-2D).  

Visualising MeSHOPs 

MeSHOPs can be directly converted into word clouds to provide a convenient graphical 

depiction of the annotation properties that enables rapid visual comparison of the relative importance 

of terms (See Figure 2-2). Word clouds for the MeSHOPs provide a visual representation of a MeSHOP, 

allowing for immediate evaluation of the most important terms as well as their relative importance, in a 

manner similar to sequence logos (Schneider & Stephens, 1990). We introduced in the previous 

subsection two approaches that improve over-representation profiles: (i) filtering to retain only the 

most specific MeSH terms and (ii) selecting an appropriate background for the statistical assessment. A 

word cloud for a MeSHOP is generated using the associated MeSH terms and the negative log of the 

corresponding calculated p-values, directly translating the statistical significance of each term 

proportionally into the size of the font for the associated term.  

The MeSHOP [term, -log(p-value)] pairs are submitted to the online cloud generating software 

Wordle (http://www.wordle.net) and visualized using the “Horizontal” layout. Each MeSH term for a 

given MeSHOP is laid out by the Wordle software in a random, non-overlapping manner, with the font 

size of the term scaled proportional to the weight in the vector. 

Web Interface for Generating and Obtaining MeSHOPs 

To enable reader exploration of the profiles, we provide pre-computed MeSHOPs for biomedical 

entities such as genes, diseases and pharmaceutical compounds (http://meshop.oicr.on.ca). All MeSH-

annotated articles available through the most recent full year release (2010) are incorporated into the 

profiles. Diseases include all specified by MeSH terms under the parent term “Diseases”. Pharmaceutical 

compounds were defined as compounds appearing in the MeSH supplemental concepts for which an 

indication of ‘pharmaceutical action’ was attached. Genes are not consistently defined as MeSH terms. 

As MeSHOPs may be generated for any set of articles, gene MeSHOPs were derived from existing 

mappings of genes onto PubMed article identifiers. Users seeking to generate MeSHOPs for other 

biomedical entities, may provide a list of PubMed Identifiers (PMIDs). We provide, as an example, 

MeSHOPs for four different entities in Figure Figure 2-4. 

http://www.wordle.net/
http://www.meshops.oicr.on.ca/
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Properties of Gene and Disease Annotation 

Examination of the number of articles linked to human genes and diseases reveal substantial 

differences between these data sources. Most genes have few linked articles, the distribution 

decreasing with an extreme tail of well-studied genes with many links. For the GeneRIF article links from 

Entrez Gene (accessed 2007-02-13), genes have a mean of 369 assigned articles, but a median of only 15 

articles (See Figure 2-5A). Similarly, for the gene2pubmed article links, the mean is 637 articles, yet the 

median is only 20 articles (See Figure 2-5B). Diseases have a more balanced distribution, but still a 

characteristic extreme tail of certain well-studied diseases, with the key distinct difference that very few 

diseases have only a couple articles. In the 2007 release of PubMed, a mean of 19 431 articles linked to 

each disease but a median of only 1 912 articles – still substantially more than the median for genes (See 

Figure 2-6). Of the 24 357 MeSH 2007 terms, 15 674 (64%) terms are represented in gene MeSHOPs (via 

the 2007 gene2pubmed article links), and 23 473 (96%) terms are found in disease MeSHOPs (via 2007 

PubMed). We expect that as genes become better annotated with more comprehensive bibliographies, 

their annotation pattern will come to resemble that of the more comprehensively annotated diseases.  

Re-deriving Gene Ontology Annotations with MeSHOPs 

MeSHOPs may be most advantageous as an approach to generate quantitative annotation 

profiles in a high-throughput manner for any set of biomedical entities that can be associated with sets 

of research articles. To provide a measure of the performance of the procedure to regenerate curated 

annotations, we assessed the sensitivity of MeSHOPs for detecting Gene Ontology terms annotated to 

genes. Using the Unified Medical Language System (UMLS) mapping of MeSH terms to Gene Ontology 

terms, we identified 396 GO terms with one-to-one equivalent MeSH terms. Depicted in Figure 2-7A, we 

observe that the sensitivity of MeSHOPs for representing these terms for the corresponding genes 

ranges from 77% (at a p-value threshold of 0.05) to 95% (at a threshold of 0.31). As GO annotations are 

not comprehensive, there is no direct means to assess the specificity of the method. In lieu of specificity 

we plot the average total number of MeSH terms included per gene relative to the threshold values, 

with 162 terms per gene at a p-value threshold of 0.05 (Figure 2-7B). 

Temporal Changes of MeSHOPs 

MeSHOPs can be used to identify changing knowledge and properties for an entity. For example, 

by taking a subset of the articles for a biomedical entity at different timepoints, we can track the 

changes in research focus for the entity over time. Two areas of research, defined by the MeSH terms 
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“Computational Biology” and “Stem Cells” were analysed. At each selected time point, the fifty most 

recent articles for that year were taken to represent the state of the field at that time, and MeSHOPs 

were computed using the universal PubMed background. Analysing the MeSHOPs for “Computational 

Biology” over the past decade allows us to quantitatively evaluate the evolution of the field (see Figure 

2-8). For this analysis, all years indicate the inclusion of articles to the end of that calendar year. The 

MeSHOP from 1999 reveals significant topics such as “Human Genome Project”, a major informatics 

focus at that time point, that are completely absent when we examine the corresponding MeSHOP from 

2009. “Genetic Research”, present in both MeSHOPs, is followed in the recent MeSHOP with other 

terms for biological disciplines and techniques such as “Genomics”, “Genetic Techniques”, “Proteomics” 

and “Sequence Analysis, Protein”, demonstrating how computational biology techniques are being more 

tightly integrated with biomedical research. As seen in Figure 2-9, data from MeSHOPs can be used to 

chart the gradual decline in significance of “Information Services” as the focus of the research switches 

from storage of the data, and the corresponding rise in association to “Biochemistry” demonstrating a 

tighter coupling with scientific study. Similarly, we can track the changes in “Stem Cells” since the 

introduction of the term in 1984 (see Figure 2-10). By 1985, we see “Hematopoietic Stem Cells” and 

“Bone Marrow Cells” as a significant focus. This is followed by the surge in importance of “Stem Cell 

Transplantation” by 2000, whereas by 2009 we see the focus shifting to “Mesenchymal Stem Cells”, 

“Cell Differentiation” and “Embryonic Stem Cells”.  

MeSHOPs provide both a qualitative visual summary of the shifting focus of research over time 

for an entity of interest, as well as a method to quantitatively track the progression of association of 

biomedical subjects as they relate to the entity of interest. 

Intra-group MeSHOP Similarity 

MeSHOPs can also be used to investigate relationships between a set of related entities. For the 

set of entities comprising the 13 human Vitamins, we first use MeSHOPs to examine the co-occurrence 

of Vitamin MeSH terms in PubMed (See Figure 2-11A) by considering, for each vitamin entity, the subset 

of the MeSHOP relating to vitamins. In this case, the MeSHOPs measure the co-occurrence strength 

between any two vitamins, allowing us to visualise and cluster the vitamins via their bibliographic co-

occurrence using Fisher’s Exact Test. The vitamins separate via the clustering with the fat-soluble 

vitamins A,D,E and K together, whereas the water soluble vitamins (Ascorbic Acid and the B complex 

vitamins) are grouped separately. This graphic also reveals publication trends – for example, of the fat-
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soluble vitamins, all co-occur except for vitamins A and K, and the water-soluble vitamins clustering into 

three distinct groups, with Niacin separated from Pantothenic Acid, Biotin and Thiamine, which are also 

separate from the rest of the B complex vitamins which group with Ascorbic Acid. Using the entirety of 

the vitamin MeSHOPs, we can compute the similarity of the strength of association to biomedical 

subjects, taking the Euclidean distance of the log of the p-values for the shared terms in their MeSHOPs. 

Comparing the results of co-occurrence to the profile comparisons in Figure 2-11B reveals that the 

results of clustering by profile is similar to the bibliographical co-occurrence, such as Vitamin A 

clustering with Vitamin D, as well as Pantothenic Acid clustering with Thiamine. Profile similarity 

clustering however can emphasise different similarities from co-occurrence, such as Niacin being more 

similar to Pantothenic Acid and Thiamine rather than Biotin, and a similarity in annotations between 

Vitamin E and Ascorbic Acid. MeSHOPs allow us to analyse a set of biomedical entities to highlight 

known and expected relationships through strength of co-occurrence in biomedical literature, as well as 

revealing similarities of annotation profiles. 

Inter-group MeSHOP Similarity 

To explore the challenges arising with inter-group MeSHOP comparisons, we sought to identify 

links between a subset of genes and brain disorders. We examined the genes of the Notch (48 genes), 

Wnt (152 genes) and Hh (57 genes) signalling pathways, with the list of genes for each pathway 

extracted from KEGG (accessed June 2011) (See Figure 2-12). These signalling pathway genes were 

profiled against the subset of MeSH terms that are the immediate children of the MeSH term “Brain 

Diseases”. Clustering using their association to the pathway genes, the “Brain Diseases” are arranged 

into categories, with “Brain Neoplasms” being the most strongly associated to the genes, with 

“Hypothalamic Diseases” and “Dementia” also broadly associated. “Brain Injuries”, “Intracranial 

Hypertension” and “Hydrocephalus” are weakly associated to these genes by MeSHOP comparison. We 

grouped the pathway genes based on “Brain diseases” subset of their MeSHOPs. Rather than grouping 

distinctly by pathway, the genes are spread across different clusters. A broad spectrum of the pathway 

genes strongly associated to “Brain Neoplasms”, while a a subset also strongly associated with 

“Hypothalamic Diseases”. Another distinct set of genes associated to “Cerebellar Diseases” are not 

associated with the previous two groups (See Figure 2-12C). MeSHOPs provide a unique quantitative 

method of visualising the gene landscape for a particular topic through the associated MeSH 

annotations. 
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Discussion  

MeSHOPs are quantitative annotation profiles based on over-representation analysis of MeSH 

terms attached to sets of articles, where each set or bibliography is associated to a specific biomedical 

entity such as a gene, disease or chemical. Conveniently visually depicted as word clouds, a MeSHOP 

includes both common terms frequently arising in a bibliography and rare concepts that arise more than 

expected by chance. In this report we demonstrate the capacity of the MeSHOP generation procedure 

to recover known gene annotations (as curated with Gene Ontology terms), use temporal restrictions to 

demonstrate how MeSHOPs change over time, and introduce methods for the comparison of MeSHOPs 

for both intra- and inter-group similarity analyses. MeSHOPs can be expected to be widely used by 

researchers, as they may be generated for any biomedical entity and provide quantitative annotation 

without extensive curation. 

We anticipate that researchers will be most attracted to the convenient generation of 

annotation images by converting MeSHOPs to word clouds. Convenient visualization methods in 

bioinformatics have made substantial impacts on communication, as evident in such methods as 

sequence logos for motifs(Schneider & Stephens, 1990), circos plots for genomics (Krzywinski et al., 

2009), pip-plots and dotter images (Schwartz, 2003; Sonnhammer & Durbin, 1995) for sequence 

alignments, and network diagrams for protein systems (Snel, Lehmann, Bork, & Huynen, 2000). 

MeSHOPs are likely to provide a similar level of convenience for summarizing complex topics for 

accelerated interpretation. The use of word clouds, of course, has been extensive, including for the 

display of gene annotation (Baroukh et al., 2011; Desai et al., 2011). The key advantage of MeSHOPs is 

that they draw upon the expert curation underlying PubMed.  

Technical Challenges 

MeSHOPs directly measure the significance of the annotated biomedical topics for a 

bibliography. The significant terms in a MeSHOP are therefore implicated by co-occurrence (guilt by 

association). The reliability of such over-representation analysis is dependent on the annotation used to 

generate the results. MeSH terms and Supplemental MeSH Concepts are annotated to PubMed articles 

by subject area experts to indicate the major and minor topics addressed by an article. There are two 

caveats to the over-representation analysis. Firstly, a co-occurring MeSH term may not apply to the 

biomedical topic despite appearing in the same paper. This form of erroneous linkage is mitigated when 

significant p-values are supported by multiple co-occurrences in the bibliography addressing the entity. 
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Secondly, co-occurrence can indicate a negative association, as negative associations are annotated in 

MeSH if they are an important topic of the paper. However, a negative association is unlikely to provoke 

substantial further literature support, unless it is of substantial research interest or the result 

inconclusive, at which point the MeSH term emerges as important to the biomedical topic. Thus it is our 

expectation that further development of MeSHOPs will need to explore measures of confidence for 

small bibliographies.  

Manual annotation by domain experts, such as the annotation of MeSH terms to PubMed, is the 

gold standard that other large-scale, more automated techniques are compared against. However, 

manual annotation introduces the potential for human bias, although MeSH annotation has been shown 

to have high inter-annotator consistency (Funk & Reid, 1983). MeSH is also continually updated 

incorporating new terms and updating old terms.  Deprecated old terms are migrated to new terms in 

this process, however old articles are not revisited to be associated with new terms. This can be further 

complicated as when knowledge of a disease grows, classifications may blur or change. One example of 

this is the change in classification for autism and schizophrenia. In the first two editions of the Diagnostic 

and Statistical Manual of Mental Disorders (DSM), autistic disorder and childhood-onset schizophrenia 

were not differentiated, whereas in further editions, childhood-onset schizophrenia is classified with 

adult schizophrenia. Autism, on the other hand, has been proposed to be revised in the fifth edition of 

DSM to be reclassified into a category of autism spectrum disorders, and include other disorders such as 

Asperger’s syndrome. MeSH annotation therefore will be most appropriate and accurate for recent 

articles, and these issues are mitigated once our knowledge and understanding of a topic has matured. 

Related Work 

The use of statistical tests to assign significance values for annotation terms appearing in a text 

or across gene annotations has been frequently observed in bioinformatics. We calculate p-values using 

Fisher’s Exact test, which has a specific, well-defined interpretation well-suited for over-representation 

analysis – the probability that the term would be found as prevalently in an equivalent-sized set of 

articles drawn uniformly at random from the background set of articles – making it possible to set 

meaningful confidence thresholds and evaluate the scores. These scores highlight strength of 

association by correcting for the background frequency of occurrence. Fisher’s Exact Test is commonly 

used in classic Gene Ontology annotation over-representation tools for gene set analysis such as 

DAVID(Dennis et al., 2003) and as a measure of over-representation of transcription factor binding sites 
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across a set of genes or sequences (Ho Sui et al., 2007). Grossmann extended the statistical approach to 

account for the influence of hierarchical annotation, allowing for the frequency of parental terms to 

contribute to the analysis of child terms (Grossmann et al., 2007). 

A number of publications have incorporated MeSH terms into the analysis of sets of articles. 

Many studies have attempted to find common themes for groups of genes arising in experimental 

studies (Djebbari et al., 2005; Jani et al., 2010; Kumar, 2011). Three papers are more similar to the work 

described here, although each has distinct characteristics. The LigerCat system was developed to 

provide a more convenient interface for PubMed searching (I.N. Sarkar et al., 2009). The system 

generates a word cloud for MeSH terms arising in articles reported by an initial user query (which could 

be a single entity such as a gene or drug). The user then can click on the individual terms within the 

cloud to restrict results in the PubMed search. Comparisons of MeSH-based gene profiles were 

performed by Sarkar and Agarwal (Indra Neil Sarkar & Agrawal, 2006), using hierarchical clustering, but 

only using profiles composed of binary values (whether a term is present or absent from the profile), 

where a positive setting was made if there was at least one abstract in which the gene name and 

assigned MeSH term co-occurred. The most similar work was described in two publications about the 

Gendoo system (Nakazato et al., 2007, 2009). The Gendoo system allows users to see MeSH terms 

associated with a gene or drug, and provides an information gain score to indicate which genes or drugs 

are most closely linked to a MeSH term. There is no quantitative profile provided, nor the capacity to 

perform comparisons of distinct entities.  

Future Directions 

Many extensions of MeSHOPs remain to be explored. We describe here the use of the MeSH 

terms alone for over-representation, however, MeSH terms may be assigned ‘subheadings’ by curators. 

Such subheadings more specifically specify the context of a MeSH term (e.g. a disease reference may be 

coupled to “diagnosis” or “therapy”). As well, some MeSH terms are marked as major topics – future 

analysis could use this to place more emphasis on these MeSH terms. Incorporation of the finer shades 

of MeSH annotation may be feasible. 

As evident with disease MeSHOPs, there is a positive correlation between the number of articles 

in a bibliography and the number of over-represented MeSH terms. Improved methods to highlight the 

most relevant biomedical topics may be worthy of future investigation. Ambiguities such as topics 

occurring by chance or negatively associated topics may be addressed through natural language 
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processing text mining techniques to semantically identify exactly how MeSH terms are linked to the 

biomedical topic of interest. 

Each article could be weighted to emphasise articles with more importance. At a rough level of 

scale, the impact factor of the publication could be used to estimate the relevance of the research, but 

more specific measures may be available, such as the number of citations. Another potential application 

of this weighting could be to emphasise more recent findings, weighting recent work more strongly as 

recent work may supersede previous knowledge. 

The Web 2.0 era has introduced an additional resource that could be mined for data on 

annotations and article importance – the scientists themselves. Information can be gleaned passively 

from the behaviour of users. For example, the impact of an article can be directly measured by the 

number of times it has been accessed. Information can also be actively obtained from the community, 

by leveraging community curation projects such as Gene Wiki for functional annotation(Good, Howe, 

Lin, Kibbe, & Su, 2011). More directly, services such as Amazon’s Mechanical Turk provide a way to 

quickly recruit a large pool of annotators via crowdsourcing. The collective intelligence of these 

annotators can be used to generate more specific annotations for a set of articles, or could be used to 

identify articles relevant to an entity, allowing MeSHOPs to be generated for entities without a well-

defined source of related articles. 

MeSHOPs can be generated using any source for bibliographies. Automated extraction of gene 

symbols from PubMed abstracts, using technology such as iHOP(Hoffmann & Valencia, 2004), could 

create larger gene bibliographies. Subclasses of MeSHOPs, such as species-specific gene profiles could 

be generated and compared. A drug MeSHOP could be supplemented with the MeSHOPs of other 

chemical compounds of the same family. 

Conclusion 

MeSHOPs quantitatively represent the MeSH biomedical terms enriched across a set of papers 

associated with a specific biomedical entity such as a gene, disease or drug. Visual display of MeSHOPs 

using word clouds provides a convenient way to convey annotation properties to readers. Comparison 

between MeSHOPs allows for the generation of hypotheses, opening new avenues for applied text 

analysis in bioinformatics.   
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Figure 2-1. Workflow for Generating a MeSHOP. Starting from a set of articles relating to a biological 
concept or entity (the foreground set), the associated MeSH terms for each PubMed record of each article are 
extracted. The prevalence of each MeSH term across the set of articles is compared to a background. Fisher’s Exact 
Test is applied to measure the statistical over-representation of each term in the foreground set.  
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Figure 2-2. Alternative Approaches for Generating MeSHOPs Depicted as Word Clouds.  All MeSHOPs 
depict annotation of the HTT gene that is causal for Huntington Disease. (A) Raw counts. (B) Statistical enrichment 
scores. The top 150 terms in the profile are shown with the font size of the term is proportional to the negative log 
p-value for the term. Note the presence of many general terms which are implied by more specific terms, such as 
“Vertebrates”, “Primates”, “Chordata” and “Mammals” being present, but covered by the term “Humans”. Also, 
when studying a set of human genes, the terms “Humans” and “Genes” are commonly occurring and should be 
down-weighted accordingly. (C) Redundancy Filtered HTT Gene Biomedical Term Word Cloud. This is a word cloud 
where the more general terms have been filtered out from (B), leaving only the most specific terms in the profile. 
For example, the term “Repetitive Sequences, Nucleic Acid” seen in (B) has been filtered out due to the presence 
of the term “Trinucleotide Repeat Expansion”. (D) Redundancy Filtered HTT Gene Biomedical Term Word Cloud 
using human gene background. This is a word cloud when taking only the subset of PubMed articles related to 
human genes as the background, while also applying the filtering seen in (C). 
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Figure 2-3. Subset of the MeSH Tree for Alzheimer Disease. The entries in the Medical Subject Heading 
tree leading to Alzheimer disease. Note that the term Alzheimer Disease occurs in three places in the tree, and 
under two separate subheadings in the Disease category – once under “Central Nervous System Diseases” due to 
its location in the human body, and once under “Neurodegenerative Diseases” and “Tauopathies” due to the type 
of disease. 
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Figure 2-4. Example of MeSHOPs for four different entities. (A) MeSHOP for the human gene PAX6, 
generated from all the gene’s gene2pubmed references. (B) MeSHOP for the disease Aniridia, generated from all 
PubMed articles with the MeSH term “Aniridia”. (C) MeSHOP for the drug Acetaminophen, from all PubMed 
articles with the chemical compound “Acetaminophen. These are all terms in this MeSHOP with p-value of zero; 
the size of the font is proportional to the number of articles for these terms. (D) MeSHOP for the author Craig 
Venter, from all articles with “Craig Venter” listed as an author.  

B
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Figure 2-5. 
Distributions of Genes by Associated Literature References. (A) Distribution of Genes by Number of Associated 
GeneRIF References. The distribution shows that the bulk of the genes have very few references, with an extreme 
tail of a small fraction of genes having a very large number of references. (B) Distribution of Genes by Number of 
Associated gene2pubmed References. Although overall average number of references is higher due to the larger 

number of gene2pubmed references, the distribution remains is very similar to (A).  
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Figure 2-6. Distribution of Diseases by Number of Associated PubMed References. Unlike the 
distributions of gene references, the 4112 disease MeSH terms have substantial literature support, although there 
remains an extreme tail of a small fraction of MeSH terms having an extremely large number of articles.  
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Figure 2-7. p-values of MeSH Term Mapped Gene Ontology (GO) Human Gene Annotation. (A) Fraction 
of human genes to mapped GO term recovered (sensitivity) for p-value thresholds. 77% of gene-GO annotations 
are recovered in MeSHOPs with p-value scores of 0.05 or less, indicating that most gene-GO annotations are very 
strongly associated in the MeSHOPs for the genes. (B) The average size (in number of MeSH terms) of the gene 
MeSHOP when filtered against p-value thresholds. 396 GO terms were mapped to MeSH using UMLS. 
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Figure 2-8. MeSHOP for “Computational Biology”. MeSHOPs were generated for the 50 most recent 
articles annotated with the MeSH term “Computational Biology” from the year 1999 (A) and the year 2009 (B). 
MeSHOPs were computed using the universal background from PubMed Baseline 2010 (covering articles through 
2009). The MeSH term for “Computational Biology” was excluded from the MeSHOP.   
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Figure 2-9. Change in Significance of Biomedical Terms for “Computational Biology” over Time. The p-
values for the terms “Biochemistry” and “Information Services” and their association to “Computational Biology” 
over time. For each time point, a MeSHOP using the most recent 50 articles for that year was generated to obtain 
the p-values for the terms.  
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Figure 2-10. MeSHOP for “Stem Cells”.  MeSHOP generated taking the 50 most recent articles annotated 
with the MeSH term “Stem Cells” from the year 1985 (A), the year 2000 (B) and the year 2009 (C). MeSHOPs were 
computed using the universal background from PubMed Baseline 2010. The MeSH term for “Stem Cells” was 
removed to highlight the other terms present.   
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Figure 2-11. Clustering Vitamin MeSHOPs. (A) Co-occurrence of Vitamins through MeSHOPs. Each 

row represents the MeSHOP for a particular Vitamin. Each column in a row plots the p-value for the MeSH term of 
the column for the MeSHOP of the row. P-values were computed using the universal Baseline 2010 background. P-
values were plotted as a heatmap where red indicates low p-values and green indicates high p-values. The 
dendrogram was constructed using hierarchical clustering in R. (B) Vitamins clustered through similarity of 
MeSHOPs. The MeSHOPs for the Vitamins were compared using Euclidean distance of the log of the p-values for 
overlapping terms, and the similarity measures were plotted in a heatmap. The vitamins were clustered by their 
similarity scores, and the dendrogram for the hierarchical clustering plotted on the y-axis. Red indicates low p-
values and green indicates high p-values in the heatmap. For comparison, the dendrogram from  (A) was plotted 
on the x-axis. 



 

53 

 

 

A B 



 

54 

 

Figure 2-12. Signaling Pathway Gene Co-occurrence with Brain Disease Annotation.  (A) The MeSHOPs for signaling pathway genes from the Notch, 
Wnt and Hh pathways (columns) were plotted, showing the p-values for their associated Brain Disease MeSH terms (rows). The MeSHOPs were computed 
using the universal Baseline 2010 background. Hierarchical clustering was performed on each axis, and in the heatmap, red indicates low p-values and green 
indicates high p-values. (B)  The same data as (A) but with the axes swapped to show more detail of the genes. The MeSHOPs for signaling pathway genes from 
the Notch, Wnt and Hh pathways (rows) were plotted, showing the p-values for their associated Brain Disease MeSH terms (columns). The MeSHOPs were 
computed using the universal Baseline 2010 background. Hierarchical clustering was performed on each axis, and in the heatmap, red indicates low p-values 
and green indicates high p-values. (C) A Subset of the genes from (B) are shown here. Each gene is labeled by their Entrez Gene ID, followed by Wnt, Hh and/or 
Notch indicating their presence in the respective KEGG pathway 

.
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Dataset  February 

2007 

January 2009 April 2010 

Entrez Gene Total Genes 2 460 748 4 710 910 5 999 558 

 Human Genes 38 604 40 183 45 423 

  Baseline 2007 

(Nov 2006) 

Baseline 2009 

(Nov 2008) 

Baseline 2010 

(Nov 2009) 

PubMed Total Articles 16 120 073  17 764 232 18 502 915 

gene2pubmed (Linking 

Entrez Gene and 

PubMed) 

Total Links 3 081 413 12 960 489 5 979 167 

 Total Human 

Gene Links 

272 123 445 650 527 821 

Table 2-1. Datasets Used in the Analysis with Details on Size and Relevant Contents.  Although the 
number of human genes has not increased much over the years, the number of non-human links has increased 
substantially since 2007, while the human gene links have increased at a more moderate rate. Previously, PubMed 
links from genomic sequence were propagated to all related genes. This practice was discontinued in March 2009, 
resulting (at the time) in a 60% decrease in links and the disparity in the number of overall links from 2009 to 2010.  
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 A2M articles Remainder of PubMed articles Total 

Articles referring to 

Alzheimer Disease  

8  39 265 39 273 

Articles without Alzheimer 

Disease reference 

73 16 080 727 16 080 800 

Total  81  16 119 992 16 120 073 

Table 2-2. Analysis of Over-representation of the MeSH Term Alzheimer Disease in the 31 Articles 
Linked via GeneRIF to the Gene A2M (alpha-2-macroglobulin, Entrez Gene ID 2).  The raw p-value computed from 
this table using Fisher’s exact test is 1.45E-11, and after Bonferroni multiple testing correction for 25 183 genes, 
the p-value remains significant at 3.65E-07, indicating a strong research focus of A2M in the field of Alzheimer 
Disease in existing biomedical literature.  
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Chapter 3: Inferring Novel Gene-Disease Associations Using Medical Subject 

Heading Over-representation Profiles 

Synopsis 

Background: MEDLINE®/PubMed® currently indexes over 21 million biomedical articles, 

providing unprecedented opportunity and challenges for text analysis. Using Medical Subject Heading 

Over-representation Profiles (MeSHOPs), an entity of interest can be robustly summarized, 

quantitatively identifying associated biomedical terms and predict novel indirect associations. 

Methods: A procedure is introduced for quantitative comparison of MeSHOPs derived from a 

group of PubMed articles for a biomedical topic (e.g articles for a specific gene or disease). Similarity 

scores are used to compare MeSHOPs of genes and diseases. 

Results: Similarity scores successfully infer novel associations between diseases and genes. The 

number of papers addressing a gene or disease has a strong influence on predicted associations, 

revealing an important bias for gene-disease relationship prediction. Predictions derived from 

comparisons of MeSHOPs achieves up to 16% improvement in the identification of gene-disease 

relationships compared to gene or disease baseline rates.  

Conclusion: MeSHOP comparisons are demonstrated to provide predictive capacity for novel 

relationships between genes and human diseases. We demonstrate the impact of literature bias on the 

performance of gene-disease prediction methods. MeSHOPs provide a usable form of annotation to 

facilitate relationship discovery in biomedical informatics.  

Background 

A key focus of genomic medicine is the identification of relationships between phenotype and 

genotype. Genome-wide association studies and exome/genome sequencing can reveal hundreds of 

candidate genes that may contribute to human disease. Given such a set of candidate genes, the 

prioritization of these genes for functional validation emerges as a key challenge in biomedical 

informatics (Makrythanasis & Antonarakis, 2011). Much focus has been placed upon the development of 

methods for the quantitative association of genes with disease (Nicki Tiffin, Andrade-Navarro, & Perez-

Iratxeta, 2009).  
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Across biomedical research fields, scientific publications are the currency of knowledge. One 

near-universal tool of life scientists to access this “bibliome” is the MEDLINE®/PubMed® bibliographic 

database of the U.S. National Library of Medicine, an actively maintained central repository for 

biomedical literature references (Sayers et al., 2009). Over 21 million citations have been indexed by 

MEDLINE®/PubMed®, at a modern rate exceeding 600,000 articles per year. Researchers face increasing 

difficulty navigating the growing body of published information in search of novel hypotheses. 

Encapsulating the bibliome for a disease or gene of interest in a form both understandable and 

informative is an increasingly important challenge in biomedical informatics (Hirschman, Hayes, & 

Valencia, 2007a; Jensen et al., 2006). 

MEDLINE®/PubMed® provides data structures and curated annotations to assist scientists with 

the challenge of extracting pertinent articles from the bibliome of a biomedical entity. In an ongoing 

process, curators at the National Library of Medicine identify key topics addressed in each publication 

and attach corresponding Medical Subject Headings (MeSH) (Nelson et al., 2001) terms as annotations 

to each publication’s record in MEDLINE®/PubMed®, covering over 97% of all PubMed-indexed citations. 

The National Center for Biotechnology Information (NCBI) PubMed portal utilizes the annotated MeSH 

terms to empower search of the citation database, extending the reach of users beyond naïve word 

matching to topic matching. As one of the pantheon of NCBI resources, PubMed citations are further 

linked to gene entries in Entrez Gene where appropriate, with over 450 000 PubMed citations linked to 

an Entrez Gene entry for a human gene.  

The analysis of gene annotation properties and gene-related literature is a core challenge within 

computational biology. Biomedical keywords for properties of genes, drawn from structured 

vocabularies, have been identified from unstructured gene annotations (Grossmann et al., 2007; Prüfer 

et al., 2007), as well as directly from the primary literature (Bundschus, Dejori, Stetter, Tresp, & Kriegel, 

2008; Nakazato et al., 2007, 2009). Sets of descriptive terms can be visualized as “tag clouds” (Good, 

Kawas, Kuo, & Wilkinson, 2006; Indra Neil Sarkar et al., 2009) . Comparison of gene annotation profiles 

can group genes, expanding protein-protein interaction and phenotype networks, deriving regulatory 

networks and predicting other gene-gene relationships (Kim, Park, & Drake, 2007; Lage et al., 2007; S. Li, 

Wu, & Zhang, 2006; Loscalzo, Kohane, & Barabasi, 2007; Perez-Iratxeta et al., 2007; Rodríguez-Penagos, 

Salgado, Martínez-Flores, & Collado-Vides, 2007). Annotation analysis enables prioritization of candidate 

genes in genetics studies (Bundschus et al., 2008; Gaulton et al., 2007; Yu et al., 2008) and, when 
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integrated with other information sources, predicts novel properties of genes (Aerts et al., 2006; Chen, 

Xu, Aronow, & Jegga, 2007). Existing tools and techniques demonstrate the value, and suggest the high 

potential impact, of annotation analysis. Significant research opportunities remain to improve 

annotation and annotation-based analysis methods.  

The development of computational disease information resources has run parallel to the 

aforementioned gene-based efforts. Controlled vocabularies for medical descriptions (Olivier 

Bodenreider, 2004; Cornet & de Keizer, 2008) and disease-specific annotations (Hamosh, Scott, 

Amberger, Bocchini, & McKusick, 2005; Osborne et al., 2009) are emerging to facilitate medical 

information systems. Within MEDLINE®/PubMed®, a disease division of the Medical Subject Headings 

has been developed over 50 years, providing an extensive inventory of medical disorders. By 2011, over 

4494 MeSH disease terms have been established.  

Key to accelerating the identification of gene-disease relationships is the development of 

systematic approaches to quantitatively represent bibliometric information and infer functionally 

important relationships between entities. We have previously introduced MeSH Over-representation 

Profiles (MeSHOPs) as a convenient tool for constructing quantitative annotations for sets of papers in 

MEDLINE®/PubMed® where each paper refers to the same entity (such as a gene or a disease)(Cheung, 

Ouellette, & Wasserman, 2012). To demonstrate the fidelity of the MeSHOP knowledge representation 

at measuring features important for prediction, we generate the MeSHOPs for human genes and 

diseases and compare these MeSHOPs to predict novel associations. Predictive performance for gene-

disease relationships is validated against co-occurrence in future publications and curated databases. 

Comparing MeSHOPs is demonstrated to be an effective way to identify novel relationships between 

genes and diseases. 

Results  

Generation of MeSHOPs 

Disease and Gene MeSHOPs provide a concise quantitative representation of the biomedical 

knowledge associated with an entity (Figure 3-1). For this study, two large classes of entities were 

analyzed – the human genes in Entrez Gene and the diseases specified formally within MeSH. MeSHOPs 

were generated for the classes disease and human gene by assessing the set of all linked 

MEDLINE®/PubMed® records for each entity.  
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All human genes present in Entrez Gene were considered (38 604 in Entrez Gene 2007). Two 

sources for gene-article linkages from Entrez Gene were evaluated: Gene Reference Into Function 

(GeneRIF) and gene2pubmed. GeneRIF is a curated set of links provided by annotators at the NLM and 

public submissions, where each set of PubMed articles refers to a described function of the gene. 

gene2pubmed is a set of links to PubMed articles relating to the gene, generally broader in scope than 

GeneRIFs. GeneRIFs link 11 750 human genes to 142 396 articles. gene2pubmed links 26 510 human 

genes to 226 615 articles. The two MeSHOP gene collections are analyzed separately in the subsequent 

sections. 

Disease MeSHOPs were generated directly from MEDLINE®/PubMed® via the curator-assigned 

MeSH disease terms. To generate MeSHOPs for diseases, all terms from the disease category – MeSH 

Category C – were used; a set composed of 4 229 terms in MeSH 2007 linking to over 8 million articles.  

Quantitative Comparison of Gene and Disease MeSHOPs for Prediction of Future Co-

Occurrence in Research Publications 

We hypothesize that a disease is likely to be associated with a gene if the disease MeSHOP is 

highly similar to the gene MeSHOP. For example, a disease with a functional relationship to a gene may 

share MeSH terms between profiles, such as localization, metabolic pathways, cellular processes and 

symptoms, even if no links between the gene and the disease have been previously reported in the 

literature. When many biomedical terms are common between two profiles, the likelihood for a future 

association between the entities profiled is expected to increase. 

In the subsequent sections gene-disease relationship predictions using MeSHOPs are validated 

against gene-disease co-occurrences that appear in subsequent MEDLINE®/PubMed® releases (i.e. using 

data not represented in the MeSHOPs). A validated prediction means the first article referring to both 

the gene and the disease was published during a subsequent time period (as reported in the future 2009 

or 2010 MEDLINE®/PubMed® release). Two overlapping validation sets (2007-2009 and 2007-2010) 

were extracted: (i) 95 845 novel gene-disease co-occurrences for gene-article mappings from 

gene2pubmed for 2007-2009; (ii) 183 407 novel gene-disease co-occurrences for mappings from 

gene2pubmed for 2007-2010; (iii) 95 085 novel gene-disease co-occurrences for gene-article mappings 

from GeneRIF for 2007-2009; and (iv) 169 723 novel gene-disease co-occurrences for mappings from 
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GeneRIF for 2007-2010. This approach is similar to the validation scheme presented in (Yetisgen-Yildiz & 

Pratt, 2009).  

Using these validation sets, we evaluate scoring methods by computing the Receiver Operating 

Characteristic (ROC) curve for predictions from analysis of the baseline 2007 data and reporting the Area 

Under the ROC Curve (AUC). MeSHOP comparisons are defined as predictions of future disease-gene co-

occurrence if a similarity score exceeds an applied threshold. To calculate the ROC curve, we classify the 

novel gene-disease co-occurrences appearing in the future gene MeSHOPs as “true positives”, and all 

other gene-disease pairings as “true negatives”. An ideal prediction method will produce a AUC score of 

1, while random predictions are expected to generate a AUC score of 0.5. 

Gene and Disease Predictive Bibliometric Baselines 

There is little quantitative information about baseline performance against which to compare 

gene-disease association prediction methods. Intrinsic characteristics of genes were investigated for 

predictive ability of future gene-disease term co-occurrence (see Table 3-3). For these baseline controls, 

scores were obtained from the quantitative characteristics of each gene. These scores represent gene-

specific properties and do not account for disease properties. All disease-gene pairs were ranked based 

solely on the indicated characteristic of the gene in the pair, and the AUC scores calculated (see Figure 

3-2).  

Gene-specific characteristics evaluated were: percentage of G/C mononucleotide content of the 

primary RefSeq transcript, total number of associated cDNA sequences reported in Entrez Gene, RefSeq 

transcript length, genomic length (from the annotated Ensembl gene/transcript start to end) and the 

Entrez Gene identification (ID) numbers. All data were extracted using BioMart (April 2009). The 

following features produced random AUC scores (~ 0.5): GC content, number of transcripts, transcript 

length and genomic length (Table Table 3-3).  

Strikingly, Entrez Gene ID is predictive of a gene’s likelihood to be linked to disease, with genes 

having lower Entrez Gene IDs more likely to co-occur with a disease in future publications (AUC ranging 

from 0.64 to 0.78). Entrez Gene IDs reflect no direct biological feature of the gene itself, but are 

sequentially assigned as genes are added to the database, indirectly measuring the length of time the 

gene has been studied. Therefore, the publication date of the oldest publication, estimating the length 

of publication history, and the number of publications, estimating the breadth of publication history, 

were examined for each gene using the Entrez Gene Feb 2007 dataset (See Table 3-4). The AUC for the 
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oldest publication for each gene exhibits higher predictive performance than the Entrez Gene ID number 

(AUC of 0.66 to 0.80), and the AUC for the number of publications is the highest of all gene-related 

characteristics observed (AUC of 0.73 to 0.85). Correlation of Entrez Gene ID to a richer and older 

publication history was reported by Leong and Kipling (Leong & Kipling, 2009). As the number of 

publications for a gene is correlated to the number of MeSH terms in the corresponding gene MeSHOP, 

it is not surprising that high AUC scores were obtained for MeSH term counts (See Table 3-4 as well as 

Figure 3-2). As observed for gene-only score ranking, disease-only score rankings can be non-random. 

The MeSH term counts for the disease MeSHOPs were predictive for future gene-disease co-occurrence 

in the literature  (AUC from 0.76 to 0.90) (See Table 3-5 and Table 3-6). Across both gene and disease 

entities and across all validation sets, an entity that is highly annotated is substantially more likely to co-

occur with another entity in future publications.  

MeSHOP Similarity Measures 

Quantitative comparison of gene and disease MeSHOPs improves prediction of future gene-

disease co-occurrence over the baseline features (based strictly on only genes or disease) established 

above. Sixteen distinct similarity measures were evaluated using AUC scores, from counting measures 

such as term overlap and term coverage to calculated measures such as Euclidean (L2) and cosine 

distance of p-value profiles (See Table 3-8). The scores evaluate the shared characteristics from both the 

gene and the disease MeSHOPs to make predictions. Three previously assessed baselines are presented 

for comparison: Entrez Gene ID, the number of terms in the gene MeSHOP, and the number of terms in 

the disease MeSHOP.  

The MeSHOP prediction scores produced AUCs ranging from random at 0.51 to a nearly optimal 

AUC of 0.99, depending on the measure and the validation set (see Table 3-5 and Table 3-6 for the AUC 

results of each score under each validation set). Each individual score was consistent across multiple 

validation sets and the GeneRIF or gene2pubmed article links, with the relative rank of the scores 

remaining nearly identical.  

Although scores such as Term Overlap and Term Coverage (mean AUC of 0.87) have high scores 

compared to random, these are only on par with the best baseline scores (see Figure 3-3 and Table 3-9). 

The most effective similarity score is the L2 of log-p of overlapping terms only: 

 



 

63 

 

                     (G and D refer to the MeSH terms of gene and disease MeSHOPs respectively, gp(i)  

and dp(i) refer to the p-value for the MeSH term i of the gene or disease profile respectively), which 

generates  a mean AUC of 0.94 (See Table 3-9 and Figure 3-4). Although bibliometric baseline scores – 

number of article links for a gene, number of MeSH terms in the gene MeSHOP and number of terms in 

the disease MeSHOP – are predictive of a future paper that refers to the gene and a disease, a distinct 

improvement in prediction is achieved by comparing gene and disease MeSHOPs using this L2 score, 

which will be used for MeSHOP comparisons going forward.  

Mean Test Rank 

As an alternative assessment to AUC scores, one can test assess a score’s ability to correctly rank 

a list of candidate genes. For a particular disease and validation set, a list of n genes (e.g. n=200 genes) is 

constructed – one random disease-associated gene and n-1 random non-associated genes. The list of 

genes is ranked by the comparison score, and the test repeated. In the case of a perfect metric, the 

mean test rank for the disease-associated gene would be 1, and in the case of completely random 

predictions, the mean rank would be n/2. For test lists of 200 candidate genes, the top four MeSHOP 

comparison scores have Mean Test Ranks from 12 to 20, nearly all ranking on average within the top 

10% of the list. To compare, the Mean Test Rank for scoring by the number of gene MeSH terms is 39 

and scoring using Gene ID is 59 (See Table 3-9). 

Predicting Association to Disease 

Co-occurrence of gene and disease references in the same article does not confirm a functional 

relationship between the gene and the disease; such co-occurrence could be observed for studies in 

which a gene-disease relationship is found to be false or not significant. To address this issue, the 

predictive capacity of MeSHOP comparison is evaluated against curated gene-disease relationships from 

the Comparative Toxicogenomics Database (CTD) (Davis et al., 2011; Wiegers et al., 2009). CTD curators 

extract relationships for genes identified as biomarkers, therapeutic targets in treatment or playing a 

role in the etiology of the disease from published literature and the OMIM database. These known gene-

disease relationships are taken as the positive associations for ROC curve analysis to assess the MeSHOP 

predictions. 

Performance of the MeSHOP scores on the CTD validation sets is consistent with the 

performance seen when inferring novel disease terms for gene profiles – bibliometric baselines 
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exhibiting up to AUC 0.85 while the best MeSHOP similarity scores achieve AUCs over 0.9 (see Table 3-4 

and Table 3-9, and Figure 3-5). Results confirm the effectiveness of MeSHOP comparison to recover the 

CTD bona fide gene-disease relationships. AUCs shift by less than 0.08 when compared to the updated 

CTD April 2010 gene-disease relationship data (Table 3-5 and Table 3-6). 

Comparative Assessment of Predictions with a Literature-based System: Candidate Genes for 

Alzheimer Disease  

To place MeSHOP comparisons in relationship to a top literature-based candidate gene 

prediction tool, we evaluated predictions for Alzheimer disease-gene relationships by MeSHOP 

comparison and a leading tool. We identified the top 500 gene candidates (top 3% of genes) for 

Alzheimer disease (AD) identified by MeSHOP comparison and  by the Génie system (Fontaine et al. 

2011), plotting the relationships between the ranks in Figure 3-6.  The top 50 candidate genes are most 

strongly correlated, overlapping for 32 of the genes (see Table 3-7 for the top 50 candidate genes).   

Within Table 3-7, the gene candidates previously investigated in the context of AD are indicated (46/50 

genes) with the number of articles in gene2pubmed for which both the gene and the AD MeSH term are 

attached. For Génie, 48 of the top 50 candidates co-occur with the AD MeSH term (not shown); a 49th 

gene – Notch3 – co-occurs with AD in two abstracts (and thus was detected as direct associations by 

Genie) but these papers were not curated in the gene2pubmed or GeneRIF sets as Notch3-focused 

articles.  MeSHOP comparison ranked Notch3 in the top 100 candidates for AD, despite the lack of 

curated co-occurrence.  Both systems provide highly relevant lists of genes, with MeSHOP analysis 

reporting more novel candidates in this particular case study. Focusing on these novel genes with no 

pre-existing links in the literature, the two methods both implicate the HTT gene, which is known to be 

the causative gene for the neurodegenerative disorder Huntington Disease, MeSHOP comparison ranks 

the XRCC3 gene highly, a DNA repair gene which could be involved in apoptosis and neuronal cell death 

(both of which are mechanisms associated to AD in the literature). The most striking candidates 

identified may be the F2 and the F5 genes, which are involved in the blood coagulation pathway. The 

widely studied AD-related beta-amyloid protein has been shown to interact with fibrinogen, linking 

abnormalities in coagulation to the pathology of AD in recent papers (Cortes-Canteli et al. 2010; Ahn et 

al. 2010). 
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Application to Diabetes Association Study 

To further illustrate the utility of the MeSHOP comparison method, we apply MeSHOP 

comparisons to predict gene-disease pairs arising in a genome-wide association study (GWAS) of 

diabetes. In 2007, Sladek et al. (Sladek et al., 2007) reported a GWAS identifying novel risk loci for type 2 

diabetes in a French cohort. Comparing the reported genes to the MeSHOP profiles (see Table 3-10), 

TCF7L2 (Entrez Gene ID 6934) already had eight articles linking it to Type 2 Diabetes and hence a 

significant association was detected (Bonferroni corrected p=0.018 / raw p=1.3e-7). As well, IDE (Entrez 

Gene ID 3416) had a weaker established link in four articles (Bonferroni corrected p=0.50 / raw p=3.15e-

6). No other genes emerging from the report had an established relationship to Type 2 Diabetes. The 

MeSHOP predictions using publications preceding the GWAS report ranked HHEX (Entrez Gene 3087) in 

the top 19% of genes linked to Diabetes Mellitus, Type 2 (MeSH D003924). The link to HHEX was 

supported by a subsequent study (Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, 

2007). By 2009, almost all of the genes from the study had been investigated for potential links in the 

literature (Diabetes Mellitus, MIM 125853), except ALX4. This demonstrates MeSHOPs successfully 

identifying both known gene-disease linkages as well as corroborating the evidence of a GWAS. 

Application to Pancreatic Cancer Study 

To show that MeSHOP comparison ranks not only support but also supplement existing analysis, 

we examine a study by Jones et al. combining sequenced RNA transcripts from protein-coding genes 

with microarray-based detection of homozygous deletions and amplifications in pancreatic cancer 

(Jones et al., 2008). Using the list of candidate genes from the Jones study with at least two genetic 

alterations identified (n=83), we rank the genes most highly associated to “Pancreatic Neoplasms” via 

MeSHOP comparison. This ranked list is compared to the statistical model used by Jones et al. used to 

differentiate causal genes from passenger genes. In Table 3-1, we list the genes from the Jones 83 gene 

set which are also among the top 5% of all human genes as ranked by MeSHOPs for association to 

pancreatic cancer with (full list presented in Table 3-11). Five of the predicted causal genes are in the 

top six genes in the list, supporting the statistical analysis from a purely bibliometric perspective. The 

remaining gene in the top six, EP300, has recently been shown to be downregulated by miRNA in highly 

metastatic pancreatic ductal adenocarcinomas (Mees et al., 2009), demonstrating the ability of MeSHOP 

comparison to find candidate genes missed by the statistical analysis. Therefore, the MeSHOP 
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comparison provides a bibliometric view that both reinforces and also complements existing analytical 

methods.  

Discussion 

Quantitative annotation profiles based on MeSH annotations, MeSHOPs, are shown to facilitate 

the identification of gene-disease relationships. In assessing the baseline properties of gene-disease 

relationship predictions, we observe a striking bias introduced by the level of annotation of the entities 

(gene and/or disease), such that simply predicting future gene-disease relationships based on the most 

studied genes (or diseases) is better than random guessing. Accounting for this bias, we demonstrate 

that comparison metrics using MeSHOPs have high capacity to predict future gene-disease co-

occurrence in future research publications. Functional relationships between genes and diseases were 

predicted using reference collections, and shown to perform better than baselines based on genes or 

diseases alone. Overall, MeSHOP comparison is shown to be a useful tool for applied bioinformatics.  

Strong performance of bibliometric baselines quantitatively indicates researchers may tend to 

explore additional relationships for existing well-characterised genes and diseases, echoing the 

imbalanced research activity seen by Agarwal and Searls (Agarwal & Searls, 2009). On the other hand, 

this may rather reflect methodological biases emphasizing easier to characterise genes and diseases. 

Well-studied genes have pre-existing protocols and materials such as animal models and PCR primers. 

Well-studied diseases may be more commonly and reliably identified through better-established 

diagnostic methods and physician familiarity. As well, the direction of gene and disease research is 

driven by funding practices, which are also slow to change. 

Rather than bias, the trends uncovered may reflect properties of a subset of genes and diseases. 

Certain types of genes and diseases are involved in key processes, similar to multifunctional proteins in 

interaction networks (Gillis & Pavlidis, 2011). A “hub” gene may be involved in many pathways, and 

could cause many phenotypes when disrupted. Similarly, some phenotypes may actually be the result of 

many different molecular processes each of which when misregulated due to a gene can cause different 

variations of the disease phenotype. As well, there are not just the causative genes for a disease, but 

many other genes may regulate the severity or provide protective immunity against the disease 

phenotype. Regardless of origin of these observed predictive biases, we strongly recommend that all 

future gene-disease prediction methods be contrasted to gene and disease bibliometric baseline 
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characteristics – ideally against the strongest metrics which evaluate the degree of annotation (the 

number of MeSH terms in the MeSHOPs for the gene and disease). Bibliometric baseline comparison 

allows direct comparative assessment of the predictive ability of methods compared to these universal 

trends. While bibliometric biases are more immediately apparent in text mining and text analysis-based 

methods, it remains important to compare all methods to these baselines to ensure that the results are 

not simply reproducing this effect, just as the “hub gene” effect can be seen to influence interaction 

predictions. Also, the bibliometric bias effect may also prove to be important in many other prediction 

applications – as we see in Chapter 4, there is a similar effect when we look at the literature associated 

with a drug when performing drug-disease predictions. This effect may be important to consider and 

control for in any prediction application when the annotation level of an entity can be measured. 

Previous work demonstrated gene length, cDNA length and protein length significantly differ 

between control and disease genes (Adie et al., 2005; López-Bigas & Ouzounis, 2004). Our literature-

based analysis shows neither genomic length nor transcript length have significant predictive ability in 

our current validation sets, suggesting these previous biases are no longer predictive of future gene-

disease association. Advances in methodology such as high-resolution microarrays and sequencing may 

have removed the influence of the bias, suggesting that literature bias favouring well-studied genes may 

correct itself as more genes become better characterised. 

Comparison to Other MeSH-related Methods 

The related but different method of CoPub Discovery (Frijters et al., 2010) seeks to identify 

hidden links between genes and diseases through shared keywords in MEDLINE abstracts. They assess 

predictions using historical entries from before 2000, identifying genes and keywords from entries using 

text mining. For their comparison scores, they employ a straightforward sum of the minimum score of 

the shared MeSH terms. In contrast, our predictions use the larger corpus of PubMed up to 2007, and 

our MeSHOPs-based method builds on curated MeSH terms and Entrez Gene article links, enabling a 

broad range of applications. We also evaluate measures of MeSH term association strength to generate 

MeSHOPs and many different comparison scores for comparing gene and disease MeSHOPs. 

Srinivasan (Srinivasan, 2004) extract MeSH terms of importance to summarise a set of articles 

related to an entity. They consider common MeSH terms between profiles as potential paths to connect 

two entities. MeSHOPs use a statistical scoring method to compute p-values for the profiles, and further 
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evaluates a large number of different methods for generating and comparing the MeSHOPs, analyzing all 

terms between profiles computationally.  

Sarkar et al. (Indra Neil Sarkar et al., 2009) use weighted profiles of MeSH terms and visualize 

the terms as a MeSH cloud to summarise a collection of documents retrieved from MEDLINE and to 

facilitate further investigation of related articles in MEDLINE. 

MeSHOPs share conceptual similarities with the method of CAESAR (Gaulton et al., 2007). 

CAESAR scores the occurrences of extracted keyword terms in an authoritative text that summarises the 

topic of interest. MeSHOPs use all relevant articles, each with individual associated MeSH biomedical 

terms, reflecting both the main directions of research and associated topics. 

Future Directions 

The use of MeSHOPs to novel associations need not necessarily be limited to the attachment of 

disease terms to genes and vice-versa. This methodology could be expanded to the attachment of any 

subset of MeSH terms to biomedical topics of interest. Furthermore, MeSH is just one source for 

biomedical term annotations to PubMed articles. Biases in the human annotation of MeSH terms, as 

well as more comprehensive coverage, could be achieved by merging these results with other sources of 

biomedical annotation. 

MeSHOPs could be explored for gene-disease associations in other species than human – 

preliminary analysis predicting mouse genes associated with MeSH disease terms have achieved similar 

performance results. Human disease gene prioritization has been shown to be improved through 

incorporation of mouse phenotype data (Chen et al., 2007), suggesting incorporation of orthology data 

could be used improve predictions. New candidates for complex diseases could also be evaluated 

through their similarity to known gene related to the disease of interest, as seen in an analysis by Taniya 

et al. for rheumatoid arthritis and prostate cancer using several other sources of gene annotation 

(Taniya et al., 2011). 

MeSH does not classify certain Mental Disorders under Category C, “Diseases”, therefore some 

mental disorders such as Autism or Traumatic Stress Disorders are only found under Category F, 

“Psychiatry and Psychology”. This particular case study looked at predicting association of genes to one 

category of MeSH, however, there is no reason, given a greater amount of computation time, to expand 

the analysis and predict association to any MeSH term.  
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Methods 

MeSHOP Generation for Genes and Diseases 

The construction of MeSHOPs was previously described (Cheung et al., 2012), but is summarized 

here for the convenience of readers. A MeSHOP is a quantitative representation of the MeSH 

annotations associated with a set of articles where the set is composed of articles that address a specific 

entity (such as a gene or disease). The computation of a MeSHOP initiates from a set of articles that 

address a specific entity. Each article has a curator-assigned set of MeSH terms available in 

MEDLINE®/PubMed®. Comparing the observed frequency of each MeSH term annotated to set of 

articles relative to the background rate for each term returns a measure of over-representation. A 

MeSHOP is a vector of tuples < (t1, m1), (t2, m2), … (tn, mn) >. For each tuple (ti, mi) in a MeSHOP, ti is a 

distinct MeSH term in the MeSH vocabulary and mi is the numeric measure of the strength of 

association of the MeSH term ti to the set of articles (e.g. the over-representation measures). To account 

for the tree structure of MeSH, for each MeSH term associated with an article, the article is considered 

associated to all of the parent terms of that MeSH term.  

Several scoring metrics have been implemented to report the strength of association between 

an entity and a MeSH term in a quantitative fashion. A basic measure is the raw count of articles 

annotated with each term. Such counts can be normalized by dividing the raw count by the total 

number term annotations for the particular gene or disease to address the degree of annotation. Such 

counting methods fail to account for statistical significance; the frequency in which terms appears in 

MEDLINE®/PubMed® should be accounted for. To address this deficiency, p-values can be computed 

based on a hypergeometric distribution via Fisher’s Exact Test. A universal background of MeSH term 

frequency is applied in this case derived from a set of 17 million MEDLINE®/PubMed® articles assigned 

MeSH terms (see Table 3-2 for more details). 

Inferring Novel Gene-Disease Association 

To infer entity-MeSH annotation relationships, we hypothesize that a previously unassociated 

MeSH term t is likely to be associated with an entity e if the MeSHOP Pt for the MeSH term t is highly 

similar to the entity’s MeSHOP Pe . The scoring of similarity was performed with a panel of formulae 

presented in Table 3-8. These similarity scores can be seen to measure the degree of co-citation – where 

the gene and disease may not be directly linked, but are both linked to by the same MeSH terms. 
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Receiver operating characteristic curves were computed for each of the of the similarity scores 

evaluated. Area under the curve was measured to assess the accuracy of the scoring metrics. In the case 

where there are no ties, the ROC curve is composed of horizontal and vertical sections; in the case of 

ties, diagonal sections also occur. AUC values can be converted to mean rankings by noting that the AUC 

reports the mean probability that, for a random disease, given a random positive gene and a random 

negative gene, the positive gene is scored higher than the negative gene. The ranking of the positive is 

the result of n-1 Bernoulli trials, where the positive is compared to each of the negatives. Each “failure” 

in this case causes the rank to drop by 1. The average rank is given by 1+(1-AUC )(n-1). 

MEDLINE®/PubMed® Data  

The annual MEDLINE®/PubMed® Baseline releases 2007, 2009 and 2010 were used as the 

source of MeSH annotations for articles. All gene-disease co-occurrences (i.e. the gene and the disease 

directly linked to the same article) were extracted for each release.  

Curated Gene-Disease Relationships 

Two sets of curated gene-disease relationships were extracted from the Comparative 

Toxicogenomics Database (CTD). The first set was all gene-disease tuples involving MeSH disease terms 

downloaded Nov. 2008: 3685 tuples for the gene2pubmed-based MeSHOPs, and 3227 tuples for the 

GeneRIF-based MeSHOPs. A second dataset was all gene-disease tuples, involving MeSH disease terms, 

added between Nov. 2008 and Apr. 2010: 1836 tuples for the gene2pubmed-based MeSHOPs and 1672 

tuples for the GeneRIF-based MeSHOPs. 

Implementation 

The analysis was performed using Python (http://www.python.org/), XSLT 

(http://www.w3.org/TR/xslt), and the MySQL database system (http://www.mysql.com/). Fisher’s Exact 

Test p-values were computed using the R statistics package (http://www.r-project.org/). Results were 

generated using 50 CPUs of a compute cluster running under Sun GridEngine 

(http://gridengine.sunsource.net/). A typical cluster machine is a 64-bit dual processor 3 GHz Intel Xeon 

with 16 GB of RAM. 

Datasets were downloaded from Entrez  Gene (ftp://ftp.ncbi.nlm.nih.gov/gene/) and 

MEDLINE®/PubMed® (http://www.nlm.nih.gov/databases/leased.html). The Comparative 

http://www.python.org/
http://www.w3.org/TR/xslt
http://www.mysql.com/
http://www.r-project.org/
http://gridengine.sunsource.net/
ftp://ftp.ncbi.nlm.nih.gov/gene/
http://www.nlm.nih.gov/databases/leased.html
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Toxicogenomics Database validation set was taken from the gene-disease relationships dataset 

(http://ctd.mdibl.org/downloads/). See Table 3-12 for details of the size and contents of the datasets. 

Availability and Implementation: Results are freely accessible to the public on the web at 

http://meshop.oicr.on.ca/meshop/. Source code implemented in Python is available at 

http://github.com/wac/meshop/ (gene and disease profile analysis) and http://github.com/wac/cmp-

meshop/ (evaluation and validation of results). 

Conclusions 

MeSHOPs quantitatively represent the MeSH biomedical terms associated with any defined 

entity with an identified set of MEDLINE®/PubMed®-indexed papers. Results demonstrate MeSHOP 

similarity can infer functional annotation of genes and diseases. Specifically, the similarity between gene 

MeSHOPs and disease MeSHOPs is highly predictive of future gene-disease ties. Although bibliometric 

characteristics, such as the number of terms in the disease MeSHOP, are predictive of gene-disease 

association, our best predictions, using Euclidean distance of log-p of overlapping terms, achieve a mean 

AUC of 0.94, a 7% accuracy improvement over the strongest baseline. The consistency of the results 

over five validation sets duplicated over two sources of gene-article links demonstrates that the 

predictive performance of our methods is stable and replicable. Beyond the prediction of annotation, 

MeSHOP comparison predicts genes with functional roles in disease process, validated using curated 

gene-disease relationships in CTD and in case studies. 

  

http://ctd.mdibl.org/downloads/
http://meshop.oicr.on.ca/meshop/
http://github.com/wac/meshop/
http://github.com/wac/cmp-meshop/
http://github.com/wac/cmp-meshop/
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Figure 3-1. Comparing Gene and Disease MeSHOPs.  A graphical representation of the comparison of the 
MeSH over-representation profiles for the human gene Pax6 and the disease Aniridia. We show the most strongly 
associated terms for each profile as a word cloud, scaling the size of each term with the degree of association. Blue 
lines link shared terms between the profiles – the similarity scores quantitatively evaluate the difference between 
the profiles by comparing all shared terms between profiles. 
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Figure 3-2. Comparison of Performance of Gene Characteristics. Receiver Operating Characteristic curves 
are shown comparing predictive gene characteristics. Characteristics are computed from a 2007 Entrez Gene 
dataset and the MEDLINE®/PubMed® Baseline 2007, predicting all new disease terms associated to gene MeSHOPs 
between February 2007 and April 2010. The # of articles for the gene and the # of MeSH terms for the gene are 
very similar, with Pearson correlation of 0.79 and a Spearman correlation of 0.97. 
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Figure 3-3. Comparison of Mean MeSHOP Performance Scores. Histogram compares the mean ROC AUC 
of the scoring methods (See Table 3-9). 
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Figure 3-4. Comparing the Performance of Similarity Scores to Gene Characteristics. Receiver Operating 
Characteristic curves for the L2 of log-p of overlapping terms Gene-Disease Profile Comparison Score, compared 
against curves for Gene ID, the number of terms in the gene MeSHOP and the number terms in the disease 
MeSHOP. 
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Figure 3-5. Comparing the Performance of Similarity Scores. ROC curves are shown with AUC, computed 
for the top five similarity metrics and the disease number of MeSH terms baseline. These scores demonstrate 
predictions of gene-disease relationships using February 2007 data validated against the Comparative 
Toxicogenomics Database (11/2008) dataset. 
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Figure 3-6. Comparison of the Top 500 Gene Predictions for Alzheimer Disease from Génie and MeSHOP 
Similarity. The 215 genes ranked in the top 500 gene predictions for both Génie and MeSHOP Similarity are 
compared, showing a correlation of 0.38. 79 of the genes ranked in the top 500 by Génie did not have MeSHOPs 
and therefore did not have a computed MeSHOP similarity score to rank. 
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Table 3-1. Comparison of MeSHOP Results for Pancreatic Cancer Candidate Genes.  This table contrasts 
our MeSHOP similarity scores with data from (Jones et al., 2008), Supplementary Table S7, where they estimate 
the probability that the nucleotide changes observed are caused by pancreatic cancer (passenger probability rate). 
This table lists all genes identified with similarity (via the L2 of log-p of overlapping terms only metric) in the top 
5%. Passenger probability rates < 0.05 are italicized.

Gene Entrez 
Gene 
ID 

MeSHOP  

Similarity 
Score 

Rank Percentile 

 

Mutations Deletions Passenger 
Probability 
Low Rates 

TP53 7157 1.24E+08 11 100 18 2 <0.001 
CDKN2A 1029 8.29E+07 135 99 2 16 <0.001 
KRAS 3845 6.95E+07 266 99 24 0 <0.001 
TGFBR2 7048 6.76E+07 288 99 3 1 <0.001 
EP300 2033 6.37E+07 351 99 2 0 0.176 
SMAD4 4089 6.14E+07 386 98 8 6 <0.001 
ELN 2006 5.57E+07 509 98 2 0 0.115 
F8 2157 5.51E+07 530 98 2 0 0.165 
SCN5A 6331 5.18E+07 629 98 2 0 0.176 
PRKCG 5582 4.77E+07 798 97 2 0 0.115 
TPO 7173 4.71E+07 831 97 2 0 0.115 
PPP1R3A 5506 4.50E+07 946 96 2 0 0.115 
SMARCA4 6597 4.04E+07 1243 95 2 0 0.062 

Table 3-2. Analysis of Over-representation of the MeSH Term Alzheimer Disease in the 31 Articles 
Linked via GeneRIF to the Gene A2M (Entrez Gene ID 2).  The raw p-value computed using Fisher’s exact test is 
1.45E-11, and after Bonferroni multiple testing correction for 25 183 genes, the p-value remains significant at 
3.65E-07, indicating a strong research focus of A2M in the field of Alzheimer Disease in existing biomedical 
literature.

 A2M articles  Remainder of 

MEDLINE®/PubMed® articles  

Total  

Articles referring to 

Alzheimer Disease  

8  39 265 39 273 

Articles without Alzheimer 

Disease reference 

73 16 080 727 16 080 800 

Total  81  16 119 992 16 120 073 
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Table 3-3. Performance of Gene Characteristics at Predicting Association with Disease.  Characteristics 
were compared against the 02/2007-11/2008 validation sets using gene2pubmed and GeneRIF gene references, as 
well as the 11/2008 CTD validation set.

 gene2pubmed GeneRIF 

Scoring Method Validation 

(02/2007-

01/2009) 

Validation 

(02/2007-

04/2010) 

CTD 

Validation 

(11/2008) 

Validation 

(02/2007-

01/2009) 

Validation 

(02/2007-

04/2010) 

CTD 

Validation 

(11/2008) 

% GC content 0.50 0.50 0.51 0.50 0.50 0.51 

Number of Transcripts 0.53 0.53 0.55 0.51 0.51 0.53 

Transcript Length 0.51 0.52 0.50 0.52 0.52 0.53 

Genomic Length 0.52 0.52 0.50 0.51 0.51 0.52 

Gene ID 0.73 0.71 0.78 0.64 0.63 0.69 
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Table 3-4. Comparison of the Performance of Gene ID to Gene-related Scores in MEDLINE®/PubMed®.  
The oldest publication for a gene has comparable performance to Gene ID, as measured by the AUC, however, the 
number of publications for a gene proves to be even more predictive than the Gene ID.

 gene2pubmed GeneRIF 

Feature  Validation 

AUC  

(02/2007-

01/2009) 

Validation 

AUC  

(02/2007-

04/2010) 

CTD 

Validation 

(11/2008) 

Validation 

AUC  

(02/2007-

01/2008) 

Validation 

AUC  

(02/2007-

04/2010) 

CTD 

Validation 

(11/2008) 

Number of MeSH 

Terms 0.74 0.73 0.81 0.80 0.85 0.82 

Number of 

Publications  0.75 0.73 0.80 0.80 0.85 0.82 

Oldest 

Publication (Year)  0.67 0.66 0.73 0.73 0.76 0.73 

Gene ID 0.64 0.64 0.66 0.69 0.75 0.73 
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Table 3-5. Performance Using GeneRIF as the Gene-Literature Data Source. Area under ROC of the 
described scoring methods were compared and tested on the validation sets. 

Scoring 

Method 

Validation 

AUC 

(02/2007-

01/2009) 

Validation 

AUC 

(02/2007-

04/2010) 

CTD AUC 

(11/2008) 

CTD AUC 

(11/2008-

04/2010) 

Training 

AUC 

(02/2007) 

Mean Rank 

Cosine Distance 

of Term 

Frequency-

Inverse Document 

Frequency 0.90 0.89 0.93 0.91 0.98 0.92 2 

Cosine Distance 

of p-values 0.56 0.57 0.60 0.56 0.53 0.56 15 

Cosine Distance 

of term fractions 0.86 0.84 0.91 0.88 0.96 0.89 4 

Sum of the log of 

combined p-

values  0.86 0.85 0.92 0.90 0.94 0.90 3 

Sum of the 

differences of log 

p values  0.91 0.91 0.77 0.83 0.93 0.87 6 

L2 of log-p of 

overlapping terms 

only 0.94 0.93 0.91 0.92 0.98 0.94 1 

L2 of term 

fractions of 

overlapping terms 

only  0.56 0.55 0.55 0.56 0.51 0.55 16 

L2 of log of p-

values  0.90 0.90 0.76 0.83 0.93 0.86 9 

L2 of p-values  0.90 0.90 0.76 0.81 0.92 0.86 11 

L2 of term 

fractions  0.86 0.85 0.89 0.88 0.94 0.88 5 
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Scoring 

Method 

Validation 

AUC 

(02/2007-

01/2009) 

Validation 

AUC 

(02/2007-

04/2010) 

CTD AUC 

(11/2008) 

CTD AUC 

(11/2008-

04/2010) 

Training 

AUC 

(02/2007) 

Mean Rank 

L2 of term 

frequency  0.90 0.90 0.76 0.83 0.93 0.86 10 

Term Coverage 0.91 0.90 0.77 0.83 0.93 0.87 7 

Term Overlap 0.82 0.82 0.86 0.86 0.87 0.85 12 

Number of Gene 

MeSH Terms 0.74 0.73 0.80 0.80 0.81 0.78 13 

Number of 

Disease MeSH 

Terms 0.90 0.90 0.77 0.83 0.93 0.87 8 

Gene ID  0.64 0.64 0.69 0.69 0.66 0.66 14 
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Table 3-6. Performance Using gene2pubmed as the Gene-Literature Data Source. Area under ROC of the 
described scoring methods were compared and tested on the validation sets.

Scoring 

Method 

Validation 

AUC 

(02/2007-

01/2009) 

Validation 

AUC 

(02/2007-

04/2010) 

CTD AUC 

(11/2008) 

CTD AUC 

(11/2008-

04/2010) 

Training 

AUC 

(02/2007) 

Mean Rank 

Cosine Distance 

of Term 

Frequency-

Inverse Document 

Frequency 0.92 0.91 0.95 0.93 0.98 0.94 2 

Cosine Distance 

of p-values 0.53 0.51 0.65 0.63 0.53 0.57 16 

Cosine Distance 

of term fractions 0.90 0.89 0.93 0.91 0.96 0.92 5 

Sum of the log of 

combined p-

values  0.91 0.89 0.94 0.94 0.94 0.92 3 

Sum of the 

differences of log 

p values  0.91 0.91 0.77 0.83 0.93 0.87 7 

L2 of log-p of 

overlapping terms 

only 0.96 0.95 0.92 0.94 0.99 0.95 1 

L2 of term 

fractions of 

overlapping terms 

only  0.64 0.62 0.57 0.60 0.53 0.59 15 

L2 of log of p-

values  0.90 0.90 0.76 0.83 0.93 0.86 10 

L2 of p-values  0.89 0.89 0.75 0.81 0.92 0.86 12 

L2 of term 

fractions  0.92 0.90 0.91 0.92 0.95 0.92 4 
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Scoring 

Method 

Validation 

AUC 

(02/2007-

01/2009) 

Validation 

AUC 

(02/2007-

04/2010) 

CTD AUC 

(11/2008) 

CTD AUC 

(11/2008-

04/2010) 

Training 

AUC 

(02/2007) 

Mean Rank 

L2 of term 

frequency  0.90 0.90 0.76 0.82 0.93 0.86 11 

Term Coverage 0.90 0.91 0.77 0.83 0.93 0.87 8 

Term Overlap 0.91 0.89 0.90 0.92 0.90 0.90 6 

Number of Gene 

MeSH Terms 0.85 0.82 0.85 0.88 0.83 0.85 13 

Number of 

Disease MeSH 

Terms 0.90 0.90 0.76 0.83 0.93 0.86 9 

Gene ID  0.75 0.73 0.78 0.79 0.74 0.76 14 
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Table 3-7. Top 50 Alzheimer Disease Candidate Genes by MeSHOP Similarity.  Genes are ranked by 
MeSHOP similarity score, and compared against the ranked list of Génie candidate genes for Alzheimer Disease (a 
full analysis considering all possible orthologs). Also provided is a list of the number of articles related to Alzheimer 
Disease in the gene2pubmed references for the gene, when present. Highlighted rows indicate high-ranking 
predictions that have no prior association to Alzheimer Disease in the literature. 

Rank Gene 
ID 

Gene 
Name 

Score Génie Rank Alzheimer Disease 
gene2pubmed references 

1 348 APOE 1.18E+04 4 812 

2 351 APP 1.22E+04 2 576 

3 4137 MAPT 1.23E+04 1 211 

4 5663 PSEN1 1.27E+04 3 249 

5 6622 SNCA 1.27E+04 6 30 

6 627 BDNF 1.28E+04 9 47 

7 1312 COMT 1.29E+04 87 10 

8 1401 CRP 1.29E+04 210 5 

9 6532 SLC6A4 1.30E+04 43 23 

10 3064 HTT 1.30E+04 44 #N/A 

11 5444 PON1 1.30E+04 204 16 

12 1813 DRD2 1.30E+04 114 1 

13 4846 NOS3 1.30E+04 118 18 

14 23621 BACE1 1.30E+04 5 86 

15 2950 GSTP1 1.30E+04 470 4 

16 5621 PRNP 1.31E+04 12 28 

17 5054 SERPINE1 1.31E+04 #N/A 3 

18 1636 ACE 1.31E+04 32 45 

19 2952 GSTT1 1.31E+04 #N/A 3 

20 5071 PARK2 1.31E+04 13 6 

21 120892 LRRK2 1.31E+04 18 6 

http://view.ncbi.nlm.nih.gov/gene/348
http://view.ncbi.nlm.nih.gov/gene/348
http://view.ncbi.nlm.nih.gov/gene/351
http://view.ncbi.nlm.nih.gov/gene/351
http://view.ncbi.nlm.nih.gov/gene/4137
http://view.ncbi.nlm.nih.gov/gene/4137
http://view.ncbi.nlm.nih.gov/gene/5663
http://view.ncbi.nlm.nih.gov/gene/5663
http://view.ncbi.nlm.nih.gov/gene/6622
http://view.ncbi.nlm.nih.gov/gene/6622
http://view.ncbi.nlm.nih.gov/gene/627
http://view.ncbi.nlm.nih.gov/gene/627
http://view.ncbi.nlm.nih.gov/gene/1312
http://view.ncbi.nlm.nih.gov/gene/1312
http://view.ncbi.nlm.nih.gov/gene/1401
http://view.ncbi.nlm.nih.gov/gene/1401
http://view.ncbi.nlm.nih.gov/gene/6532
http://view.ncbi.nlm.nih.gov/gene/6532
http://view.ncbi.nlm.nih.gov/gene/3064
http://view.ncbi.nlm.nih.gov/gene/3064
http://view.ncbi.nlm.nih.gov/gene/5444
http://view.ncbi.nlm.nih.gov/gene/5444
http://view.ncbi.nlm.nih.gov/gene/1813
http://view.ncbi.nlm.nih.gov/gene/1813
http://view.ncbi.nlm.nih.gov/gene/4846
http://view.ncbi.nlm.nih.gov/gene/4846
http://view.ncbi.nlm.nih.gov/gene/23621
http://view.ncbi.nlm.nih.gov/gene/23621
http://view.ncbi.nlm.nih.gov/gene/2950
http://view.ncbi.nlm.nih.gov/gene/2950
http://view.ncbi.nlm.nih.gov/gene/5621
http://view.ncbi.nlm.nih.gov/gene/5621
http://view.ncbi.nlm.nih.gov/gene/5054
http://view.ncbi.nlm.nih.gov/gene/5054
http://view.ncbi.nlm.nih.gov/gene/1636
http://view.ncbi.nlm.nih.gov/gene/1636
http://view.ncbi.nlm.nih.gov/gene/2952
http://view.ncbi.nlm.nih.gov/gene/2952
http://view.ncbi.nlm.nih.gov/gene/5071
http://view.ncbi.nlm.nih.gov/gene/5071
http://view.ncbi.nlm.nih.gov/gene/120892
http://view.ncbi.nlm.nih.gov/gene/120892
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22 3553 IL1B 1.31E+04 39 32 

23 4023 LPL 1.31E+04 172 7 

24 6647 SOD1 1.31E+04 36 6 

25 3356 HTR2A 1.31E+04 121 16 

26 10 NAT2 1.31E+04 333 4 

27 7515 XRCC1 1.31E+04 #N/A 2 

28 2944 GSTM1 1.31E+04 #N/A 3 

29 3552 IL1A 1.31E+04 30 36 

30 3569 IL6 1.32E+04 60 28 

31 5664 PSEN2 1.32E+04 7 78 

32 6648 SOD2 1.32E+04 131 4 

33 2153 F5 1.32E+04 #N/A #N/A 

34 338 APOB 1.32E+04 #N/A 1 

35 7421 VDR 1.32E+04 #N/A 2 

36 2147 F2 1.32E+04 #N/A #N/A 

37 183 AGT 1.32E+04 #N/A 2 

38 1543 CYP1A1 1.32E+04 #N/A 1 

39 154 ADRB2 1.32E+04 #N/A 1 

40 4524 MTHFR 1.32E+04 57 30 

41 1071 CETP 1.32E+04 197 8 

42 3557 IL1RN 1.32E+04 278 7 

43 4318 MMP9 1.32E+04 219 5 

44 1565 CYP2D6 1.32E+04 238 9 

45 335 APOA1 1.32E+04 135 7 

46 7517 XRCC3 1.32E+04 #N/A #N/A 

47 3990 LIPC 1.32E+04 #N/A 2 

http://view.ncbi.nlm.nih.gov/gene/3553
http://view.ncbi.nlm.nih.gov/gene/3553
http://view.ncbi.nlm.nih.gov/gene/4023
http://view.ncbi.nlm.nih.gov/gene/4023
http://view.ncbi.nlm.nih.gov/gene/6647
http://view.ncbi.nlm.nih.gov/gene/6647
http://view.ncbi.nlm.nih.gov/gene/3356
http://view.ncbi.nlm.nih.gov/gene/3356
http://view.ncbi.nlm.nih.gov/gene/10
http://view.ncbi.nlm.nih.gov/gene/10
http://view.ncbi.nlm.nih.gov/gene/7515
http://view.ncbi.nlm.nih.gov/gene/7515
http://view.ncbi.nlm.nih.gov/gene/2944
http://view.ncbi.nlm.nih.gov/gene/2944
http://view.ncbi.nlm.nih.gov/gene/3552
http://view.ncbi.nlm.nih.gov/gene/3552
http://view.ncbi.nlm.nih.gov/gene/3569
http://view.ncbi.nlm.nih.gov/gene/3569
http://view.ncbi.nlm.nih.gov/gene/5664
http://view.ncbi.nlm.nih.gov/gene/5664
http://view.ncbi.nlm.nih.gov/gene/6648
http://view.ncbi.nlm.nih.gov/gene/6648
http://view.ncbi.nlm.nih.gov/gene/2153
http://view.ncbi.nlm.nih.gov/gene/2153
http://view.ncbi.nlm.nih.gov/gene/338
http://view.ncbi.nlm.nih.gov/gene/338
http://view.ncbi.nlm.nih.gov/gene/7421
http://view.ncbi.nlm.nih.gov/gene/7421
http://view.ncbi.nlm.nih.gov/gene/2147
http://view.ncbi.nlm.nih.gov/gene/2147
http://view.ncbi.nlm.nih.gov/gene/183
http://view.ncbi.nlm.nih.gov/gene/183
http://view.ncbi.nlm.nih.gov/gene/1543
http://view.ncbi.nlm.nih.gov/gene/1543
http://view.ncbi.nlm.nih.gov/gene/154
http://view.ncbi.nlm.nih.gov/gene/154
http://view.ncbi.nlm.nih.gov/gene/4524
http://view.ncbi.nlm.nih.gov/gene/4524
http://view.ncbi.nlm.nih.gov/gene/1071
http://view.ncbi.nlm.nih.gov/gene/1071
http://view.ncbi.nlm.nih.gov/gene/3557
http://view.ncbi.nlm.nih.gov/gene/3557
http://view.ncbi.nlm.nih.gov/gene/4318
http://view.ncbi.nlm.nih.gov/gene/4318
http://view.ncbi.nlm.nih.gov/gene/1565
http://view.ncbi.nlm.nih.gov/gene/1565
http://view.ncbi.nlm.nih.gov/gene/335
http://view.ncbi.nlm.nih.gov/gene/335
http://view.ncbi.nlm.nih.gov/gene/7517
http://view.ncbi.nlm.nih.gov/gene/7517
http://view.ncbi.nlm.nih.gov/gene/3990
http://view.ncbi.nlm.nih.gov/gene/3990
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48 4153 MBL2 1.32E+04 #N/A 1 

49 23435 TARDBP 1.32E+04 10 10 

50 345 APOC3 1.32E+04 #N/A 2 

 

  

http://view.ncbi.nlm.nih.gov/gene/4153
http://view.ncbi.nlm.nih.gov/gene/4153
http://view.ncbi.nlm.nih.gov/gene/23435
http://view.ncbi.nlm.nih.gov/gene/23435
http://view.ncbi.nlm.nih.gov/gene/345
http://view.ncbi.nlm.nih.gov/gene/345
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Table 3-8. Explanation of the Scoring Functions Evaluated. M refers to the set of all MeSH terms, G and D 
refer to the MeSH terms for the gene and disease profile respectively. g(i), gf(i), gp(i) and gi(i) refer to the 
frequency, term fraction, hypergeometric p-value and term frequency-inverse document frequency for the MeSH 
term i of the gene profile. d(i), df(i) , dp(i) and di(i) refer to the frequency, term fraction, hypergeometric p-value 
and term frequency-inverse document frequency for the MeSH term i of the disease profile.

Scoring Method Description 

Cosine Distance of Term Frequency-

Inverse Document Frequency 

 

Cosine Distance of p-values 

 

Cosine Distance of term fractions 

 

Sum of the log of combined p-values  

 

Sum of the differences of log p values  

 

L2 of log-p of overlapping terms only 

 

L2 of term fractions of overlapping 

terms only   

L2 of log of p-values  

 

L2 of p-values  

 

L2 of term fractions  
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Scoring Method Description 

L2 of term frequency  

 

Term Coverage 
 

Term Overlap 
 

Number of Gene MeSH Terms 
 

Number of Disease MeSH Terms 
 

Gene ID  Entrez Gene ID of the gene. 

  

 DG

 DG

 G

 D
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Table 3-9. Summary of MeSHOP Performance. The AUC mean, standard deviation and ranking for the 
MeSHOP scores and the gene and disease baselines are described, over all validation sets and both GeneRIF and 
gene2pubmed reference sets.

Scoring Method Mean AUC AUC Standard Error  Mean Test Rank 

(n=200) 

Overall Rank 

Cosine Distance of Term Frequency-Inverse 

Document Frequency 0.93 0.03 15.03 2 

Cosine Distance of p-values 0.57 0.05 87.25 16 

Cosine Distance of term fractions 0.90 0.04 20.21 4 

Sum of the log of combined p-values  0.91 0.03 18.88 3 

Sum of the differences of log p values  0.87 0.06 26.97 7 

L2 of log-p of overlapping terms only 0.94 0.03 12.06 1 

L2 of term fractions of overlapping terms only  

0.57 0.04 86.70 15 

L2 of log of p-values  0.86 0.07 28.05 10 

L2 of p-values  0.86 0.07 29.62 12 

L2 of term fractions  0.90 0.03 20.39 5 

L2 of term frequency  
0.86 0.06 28.31 11 

Term Coverage 0.87 0.06 27.14 8 

Term Overlap 0.87 0.03 26.17 6 

Number of Gene MeSH Terms 0.81 0.05 38.69 13 

Gene ID  0.71 0.06 58.78 14 
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Table 3-10. Summary of Diabetes Loci Ranked by MeSHOP Similarity. Loci identified by (Sladek, et al., 
2007) were ranked by MeSHOP similarity (L2 of log-p of overlapping terms only). Direct Association scores are the 
Bonferroni corrected p-values generated using the Feb-2007 datasets.

Locus Entrez Gene ID Predicted 

Similarity Score 

Rank Percentile Direct Association 

IDE 3416 7.59E+07 186 0.01 7.93E-02 

TCF7L2 6934 5.91E+07 421 0.02 3.30E-03 

EXT2 2132 2.96E+07 2616 0.10 N/A 

HHEX 3087 2.18E+07 4631 0.18 N/A 

KIF11 3832 1.87E+07 5985 0.24 N/A 

ALX4 60529 1.55E+07 8313 0.33 N/A 

SLC30A8 169026 1.55E+07 8352 0.33 N/A 

LOC387761 387761 N/A  N/A  N/A  N/A 

  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=6934
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Table 3-11. Comparison of MeSHOP Results for Pancreatic Cancer Candidate Genes.  This table shows all 
genes from (Jones, et al., 2008), Supplementary Table S7, listing by strength of MeSHOP similarity score (via the L2 
of log-p of overlapping terms only metric).

Gene Entrez 
Gene 

Predicted 
Similarity 

Rank Percen-
tile 

Mutations Deletions Passenger 
Probability 
Low Rates 

Passenger 
Probability    
Mid Rates 

Passenger 
Probability   
High Rates 

TP53 7157 1.24E+08 11 100 18 2 <0.001 <0.001 <0.001 

CDKN2A 1029 8.29E+07 135 99 2 16 <0.001 <0.001 <0.001 

KRAS 3845 6.95E+07 266 99 24 0 <0.001 <0.001 <0.001 

TGFBR2 7048 6.76E+07 288 99 3 1 <0.001 0.001 0.003 

EP300 2033 6.37E+07 351 99 2 0 0.176 0.482 0.984 

SMAD4 4089 6.14E+07 386 98 8 6 <0.001 <0.001 <0.001 

ELN 2006 5.57E+07 509 98 2 0 0.115 0.372 0.413 

F8 2157 5.51E+07 530 98 2 0 0.165 0.482 0.853 

SCN5A 6331 5.18E+07 629 98 2 0 0.176 0.482 1.000 

PRKCG 5582 4.77E+07 798 97 2 0 0.115 0.372 0.413 

TPO 7173 4.71E+07 831 97 2 0 0.115 0.375 0.694 

PPP1R3A 5506 4.50E+07 946 96 2 0 0.115 0.477 0.694 

SMARCA4 6597 4.04E+07 1243 95 2 0 0.062 0.183 0.413 

COL5A1 1289 3.72E+07 1518 94 2 0 0.176 0.482 0.984 

MEP1A 4224 3.38E+07 1895 92 2 0 0.062 0.183 0.413 

IL2RG 3561 2.95E+07 2652 89 1 0 0.004 0.016 0.997 

ATP10A 57194 2.77E+07 2974 88 2 0 0.176 0.482 1.000 

MYH2 4620 2.71E+07 3063 88 2 0 0.165 0.477 0.853 

GRIA3 2892 2.62E+07 3281 87 1 1 0.017 0.069 0.999 

ABCA7 10347 2.56E+07 3426 86 2 0 0.033 0.139 0.201 

DLG3 1741 2.51E+07 3540 86 1 0 0.003 0.015 0.997 

DLC1 10395 2.47E+07 3645 86 2 0 0.176 0.482 1.000 

GLTSCR1 29998 2.06E+07 5082 80 2 0 0.062 0.183 0.405 

PCSK6 5046 2.02E+07 5240 79 2 0 0.176 0.482 0.911 

EVPL 2125 2.00E+07 5329 79 2 0 0.176 0.482 0.942 

NRG2 9542 1.95E+07 5537 78 2 0 0.165 0.477 0.853 

SLITRK5 26050 1.93E+07 5655 78 2 0 0.165 0.477 0.853 

SEMA5B 54437 1.92E+07 5713 77 2 0 0.062 0.183 0.413 

DPP6 1804 1.86E+07 6025 76 3 0 0.009 0.079 0.201 

PCDH15 65217 1.84E+07 6162 76 4 0 <0.001 0.017 0.048 

FMN2 56776 1.82E+07 6266 75 2 0 0.176 0.482 0.911 

CACNA2D1 781 1.77E+07 6597 74 1 0 0.001 0.004 0.989 

DLEC1 9940 1.70E+07 7039 72 2 0 0.176 0.482 0.911 

MLL3 58508 1.69E+07 7090 72 6 0 <0.001 <0.001 <0.001 

PB1 55193 1.63E+07 7597 70 2 0 0.165 0.477 0.853 
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Gene Entrez 
Gene 

Predicted 
Similarity 

Rank Percen-
tile 

Mutations Deletions Passenger 
Probability 
Low Rates 

Passenger 
Probability    
Mid Rates 

Passenger 
Probability   
High Rates 

LRRN3 54674 1.60E+07 7856 69 2 0 0.062 0.183 0.405 

CYFIP1 23191 1.56E+07 8225 67 3 0 0.009 0.079 0.201 

SF3B1 23451 1.55E+07 8290 67 3 0 0.009 0.079 0.201 

PXDN 7837 1.55E+07 8302 67 2 0 0.176 0.482 1.000 

TNR 7143 1.54E+07 8453 66 2 0 0.176 0.482 0.911 

SN 6614 1.53E+07 8484 66 2 0 0.176 0.482 1.000 

SLC6A15 55117 1.53E+07 8488 66 2 0 0.062 0.183 0.405 

ARID1A 8289 1.51E+07 8688 66 2 0 0.176 0.482 0.984 

SLC1A6 6511 1.48E+07 8908 65 2 0 0.115 0.477 0.694 

LRRTM4 80059 1.46E+07 9064 64 2 0 0.062 0.183 0.413 

GALNT13 114805 1.42E+07 9651 62 2 0 0.062 0.183 0.405 

GUCY1A2 2977 1.39E+07 9964 60 2 0 0.062 0.183 0.405 

ZNF638 27332 1.37E+07 10174 60 2 0 0.115 0.375 0.694 

PDZRN3 23024 1.33E+07 10522 58 2 0 0.033 0.082 0.201 

DOCK2 1794 1.33E+07 10612 58 2 0 0.062 0.183 0.405 

MIZF 25988 1.32E+07 10714 58 2 0 0.062 0.183 0.405 

DACH2 117154 1.30E+07 10883 57 1 1 0.022 0.088 1.000 

ST6GAL2 84620 1.26E+07 11302 55 2 0 0.115 0.375 0.694 

KBTBD11 9920 1.19E+07 12083 52 1 1 0.006 0.025 0.998 

CNTN5 53942 1.18E+07 12231 51 2 0 0.115 0.375 0.694 

ABLIM2 84448 1.17E+07 12471 51 2 0 0.062 0.183 0.405 

PCDH18 54510 1.14E+07 12864 49 2 0 0.115 0.375 0.694 

ADAMTS20 80070 1.09E+07 13668 46 2 0 0.176 0.482 0.911 

CDH10 1008 1.09E+07 13703 46 3 0 <0.001 0.017 0.048 

KIAA1024 23251 1.09E+07 13715 46 2 0 0.115 0.375 0.694 

TBX18 9096 1.08E+07 13821 45 2 0 0.062 0.183 0.413 

LRFN5 145581 1.07E+07 13894 45 2 0 0.062 0.183 0.405 

DEPDC2 80243 1.07E+07 13953 45 3 0 0.055 0.183 0.405 

FMNL3 91010 1.05E+07 14376 43 2 0 0.055 0.179 0.405 

TM7SF4 81501 1.03E+07 14681 42 2 0 0.055 0.179 0.405 

OR10R2 343406 1.02E+07 15126 40 2 0 0.033 0.139 0.317 

GPR133 283383 1.02E+07 15188 40 2 0 0.062 0.183 0.405 

PCDH17 27253 1.01E+07 15355 39 2 0 0.062 0.183 0.405 

BAI3 577 9.58E+06 16457 35 3 0 0.033 0.082 0.201 

KIAA0774 23281 9.49E+06 16660 34 2 0 0.176 0.482 0.984 

CTNNA2 1496 9.42E+06 16781 33 3 0 0.033 0.179 0.405 

KLHDC4 54758 8.66E+06 18571 26 2 0 0.033 0.082 0.201 
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Gene Entrez 
Gene 

Predicted 
Similarity 

Rank Percen-
tile 

Mutations Deletions Passenger 
Probability 
Low Rates 

Passenger 
Probability    
Mid Rates 

Passenger 
Probability   
High Rates 

ZAN 7455 8.45E+06 19030 25 2 0 0.176 0.482 0.984 

DKFZP586P0123 26005 7.38E+06 20579 18 2 0 0.165 0.477 0.853 

UNC13C 440279 7.38E+06 20835 17 2 0 0.115 0.372 0.694 

FLJ39155 133584 7.38E+06 21333 15 2 0 0.176 0.482 0.942 

RASSF6 166824 7.38E+06 21543 15 2 0 0.062 0.183 0.405 

OVCH1 341350 5.79E+06 24923 1 2 0 0.165 0.477 0.853 

Q9H5F0_HUMAN  No MeSHOP available 3 0 <0.001 0.004 0.009 

Q9H8A7_HUMAN  No MeSHOP available 2 0 0.165 0.477 0.853 

FLJ46481 389197 No MeSHOP available 2 0 0.062 0.183 0.405 

XR_017918.1  No MeSHOP available 2 0 0.062 0.183 0.405 

LOC441136 441136 No MeSHOP available 2 0 0.009 0.079 0.201 
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Table 3-12. Datasets Used in the Analysis with Details on Size and Relevant Contents.  Although the 
number of human genes has not increased much over the years, the number of non-human links has increased 
substantially since 2007, while the human gene links have increased at a more moderate rate.

Dataset  February 2007 January 2009 April 2010 

Entrez Gene Total Genes 2 460 748 4 710 910 5 999 558 

 Human Genes 38 604 40 183 45 423 

  Baseline 2007 

(Nov 2006) 

Baseline 2009 

(Nov 2008) 

Baseline 2010 

(Nov 2009) 

MEDLINE®/PubMed® Total Articles 16 120 073  17 764 232 18 502 915 

gene2pubmed (Linking 

Entrez Gene and 

MEDLINE®/PubMed®) 

Total Links 3 081 413 12 960 489 5 979 167 

 Total Human 

Gene Links 

272 123 445 650 527 821 
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Chapter 4: Separation of Literature Annotation Effects from Topic Similarity in 

Medical Subject Heading Over-representation Profiles (MeSHOPs) for Drugs and 

Diseases 

Synopsis 

Medical Subject Heading Over-representation Profiles (MeSHOPs) quantitatively summarise the 

literature associated with biological entities such as diseases or drugs. A profile is constructed by 

counting the number of times each MeSH term is assigned to an entity-related research publication in 

the MEDLINE/PUBMED database and calculating the significance of the count relative to a background 

expectation.  Based on the expectation that drugs suitable for treatment of a disease (or disease 

symptom) will have similar annotation properties to the disease, we successfully predict drug-disease 

associations by comparing MeSHOPs of diseases and drugs.  The MeSHOP comparison approach delivers 

an 11% improvement over bibliometric baselines. However, a significant bias in novel drug-disease 

associations was observed towards drugs and diseases with more publications. To account for the 

annotation biases, a correction procedure is introduced and evaluated. By explicitly accounting for the 

annotation bias, unexpectedly similar drug-disease pairs are highlighted as candidates for drug 

repositioning research.  

Introduction 

Using previously studied pharmaceutical compounds and applying them towards novel diseases 

or phenotypes, so-called ‘drug repositioning’, has emerged as a key issue in biomedical 

research(Ashburn & Thor, 2004; Joel T Dudley, Deshpande, & Butte, 2011). The cost of developing a new 

chemical or molecular entity with proven therapeutic benefit and established safety was estimated at 

over $1.8 billion, in 2010 and continues to rise rapidly(Paul et al., 2010). Therefore, using compounds 

with known biochemical mechanism of action and an established safety record for new purposes is an 

alternative to the high cost of de novo compound research(Deftereos, Andronis, Friedla, Persidis, & 

Persidis, 2011). Advances in drug repositioning research have identified potential treatments for Crohn’s 

disease (J. T. Dudley et al., 2011; Sirota et al., 2011a), and has raised hopes for advances in the 

treatment of rare, orphan disorders(Sardana et al., 2011). 
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Informatics-based approaches to drug repositioning are exemplified by the identification of 

known drug targets in genes arising in genome wide association studies(Sanseau et al., 2012), the 

prediction of structural suitability of a known compound for a new protein target(Kinnings et al., 2009; 

Y. Y. Li, An, & Jones, 2006), systems biology using gene expression patterns(J. T. Dudley et al., 2011; 

Sirota et al., 2011b), and the study of side effects(Yang & Agarwal, 2011). Underlying many of these 

informatics approaches has been the availability of reference databases containing information about 

the relationship between genes, drugs and diseases, such as DrugBank (Wishart et al., 2008), 

Pharmacogenomics Knowledge Base, and the Comparative Toxicogenomics Database  (Davis et al., 2010; 

Hewett et al., 2002; Klein et al., 2001) .  The broader informatics approaches to drug repositioning have 

been recently reviewed(Joel T Dudley et al., 2011).  

Advances in literature and text analysis methods offer a promising path to drug repositioning 

based on established knowledge.  Text analysis methods have addressed the study of FDA package 

inserts in the SIDER database (Kuhn, Campillos, Letunic, Jensen, & Bork, 2010) to identify side effects, for 

the comparison of word utilization between drug and disease-related abstracts (Frijters et al., 2010; D R 

Swanson, 1990), and for the analysis of similarity between gene ontology process annotations assigned 

to a known drug target and genes in disease-associated pathways. Literature-based drug repositioning 

has been reviewed(Andronis, Sharma, Virvilis, Deftereos, & Persidis, 2011; Plake & Schroeder, 2011).  

Underlying any text-based analysis is the organization and properties of the text within an accessible 

database.  The central information source for biomedical literature is the  MEDLINE®/PubMed® 

database encompassing over 20 million articles in 2012. MEDLINE/PubMed provides a citation resource 

tailored to biomedical researchers, globally accessible at no charge. This comprehensive database of 

medically relevant citations is curated by expert annotators at the National Library of Medicine, where 

each article is indexed with topics from the controlled vocabulary of Medical Subject Headings(Nelson et 

al., 2001) by domain experts at the National Library of Medicine. MeSH terms include medically relevant 

categories such as Anatomy, Disease, Chemical Compounds and Psychiatric Disorders. In addition to the 

topics in the main MeSH hierarchy, chemical compounds – including pharmacologic compounds – are 

included in a Supplementary MeSH vocabulary.   

Despite the increasing wealth of raw literature knowledge, having means to evaluate and 

navigate the entirety of this knowledge becomes progressively more challenging. We introduced 

Medical Subject Heading Over-representation Profiles (MeSHOPs) as a convenient quantitative 
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representation of the properties enriched in a bibliography of scientific literature from 

MEDLINE®/PubMed®.  MeSHOPs succinctly describe the most highly associated MeSH terms for an 

entity of interest. The quantitative comparison of MeSHOPs has been demonstrated to allow the 

predictive inference of entity-entity relationships in a study of relationships between genes and diseases 

(See Chapter 3).  However, we observe that the magnitude of research literature introduces a strong 

bias into the study of entity-entity relationships, with the most popular genes more likely to be linked to 

diseases in the future, and vice-versa.  

In this report we investigate the capacity of MeSHOP comparisons to detect functional 

relationships between pharmaceutical compounds and diseases with an emphasis on the ranking of 

candidates for drug repositioning research. We demonstrate that MeSHOPs capture the properties of 

drugs, and that such information can be compared to disease MeSHOPs to reveal functionally relevant 

relationships. It is important to be aware of biases and trends in research that may influence the results 

of text analysis, and to correct for these biases to better direct research efforts (Edwards et al., 2011; 

Fedorov, Müller, & Knapp, 2010). Entities with limited associated literature, such as some rare diseases, 

are shown to have disproportionate scores in initial MeSHOP comparisons.  To account for existing 

annotation levels of drug and disease entities and identify MeSHOP similarity, we measure the 

annotation strength for drug and disease entities and incorporate this prior information into the scoring 

of prediction strength. Using this improved comparison metric we demonstrate that drug and disease 

MeSHOP comparisons are improved, as validated by the identification of novel associations observed in 

future publications and against a curated reference collection.  

Results 

Generation of Drug MeSH Over-representation Profiles (MeSHOPs) 

MeSHOPs provide a quantitative overview of the biomedical knowledge associated with an 

entity of interest through the indexed biomedical terms. Following the described methods, MeSHOPs for 

all indexed diseases and drugs in PubMed were generated using archived PubMed data up until 2007.  A 

drug MeSHOP is presented for acetaminophen (Figure 4-1), and a disease MeSHOP is presented for 

Aniridia (Figure 4-2).  The scores within MeSHOPs are influenced by the background correction for the 

expectation of MeSH term frequency.  If one takes the background rate from all articles in 

MEDLINE/PUBMED, MeSH terms preferentially associated with drugs are likely to be emphasized in the 
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drug MeSHOPs, such as ‘pharmaceutical preparation’.  The strong scores for such drug-related terms can 

be corrected for by using class-specific backgrounds – such as the subset of articles that address one or 

more drugs. For comparisons of MeSHOPs across categories, as will follow, we select the universal 

background as a common background for all entities being compared. 

Predicting Drug-Disease Associations 

We examine the utility of drug-disease MeSHOP similarity scores for the prediction of drug-

disease co-annotation in future publications. To compare to past performance observed in MeSHOP 

comparisons, 16 similarity scoring metrics were assessed (See the similar analysis in Chapter 3). Two 

bibliometric baselines – the amount of drug annotation (i.e. the number of MeSH terms linked to the 

drug) and the amount of disease annotation (i.e. the number of MeSH terms linked to the disease)– 

were included to assess the effect of annotation bias on predictions. Table 4-1 demonstrates that 

comparison of drug and disease MeSHOPs predicts future drug-disease co-occurrence in subsequent 

years (2007-2011). The most effective similarity score is the Euclidean distance of log-p of overlapping 

terms only (see Methods), which produces an AUC score of 0.95 for the prediction of future co-

occurrence in publications.  

Enthusiasm for the performance is tempered, however, by the fact that a simple metric of the 

number of MeSH terms associated with a disease when used as a prediction ranking produces an AUC 

score of 0.84 (and counts for drug-associated MeSH terms produce a score of 0.80).  Randomly assigned 

scores will produce an AUC of 0.5. These results are consistent with a process in which well-studied 

diseases (or drugs) are more likely to be the subject of future research publications and therefore more 

likely to co-occur with drugs than diseases that have few publications. These scores reflect a systematic 

limitation in the scoring procedure that needs to be resolved to allow for the identification of drugs 

suitable for orphan disorders, as well as to produce a more refined list of candidates to pursue.   

Annotation Bias Observed for Curated Drug-Disease Relationships 

Predicted novel drug-disease relationships may be alternatively assessed against curated 

reference collections that contain bonafide drug uses (i.e. not just co-occurrence in a paper, but 

evidence that the drug is used as a treatment for a disorder).   We downloaded curated drug-disease 

relationships reported in the Comparative Toxicogenomics Database (CTD). We matched drugs from the 

2011 CTD to the drugs defined in PubMed 2007, and defined a reference collection of 291 novel drug-
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disease pairs for those entries in CTD that were defined by publications appearing in the period of 2007-

2011. The reference collection contains 191 unique drugs and 150 unique diseases. As seen in Table 4-1, 

similarity of MeSHOPs is able to accurately predict novel associations by comparing MeSHOPs of drugs 

and diseases, achieving ROC AUC of 0.93 (for the sum of the log of combined p-values).  The Euclidean 

distance of intersecting terms metric that performed best for previous MeSHOP comparison 

performance tests, produces a similar score of 0.92.  

As displayed in Figure 4-3, a substantial fraction of the validation set is over-represented for 

well-studied drugs and diseases. Over half of the 191 drugs are in the top 10% of all drugs in terms of 

amount of associated MeSH annotation (the peak to the left of the histogram). Only slightly less biased, 

of the 150 diseases, over half are in the top 15% of diseases, in terms of associated MeSH annotation.  

Consistent with these properties, using the baseline MeSH term counts for drug or disease annotation 

levels as scores, a ROC AUC of 0.83 is achieved. As for the co-occurrence measure, it is clear that 

annotation bias is a strong predictor for bona fide interactions.  

Controlling for Annotation Bias 

The influence of annotation on the MeSHOP comparison scores can be visualized using 

heatmaps. As seen in Figure 4-4, and fully consistent with the AUC scores above, there is a high degree 

of correlation between the amount of annotation for the disease (as measured by the number of MeSH 

terms in the disease profile), and the drug-disease score (Pearson correlation of -0.82). A correlation of -

0.33 is observed when comparing drug-disease scores against the degree of drug annotation (see Figure 

4-5).  

For a candidate list for drug repositioning, this annotation bias must be eliminated to allow for 

more rarely studied drugs or diseases to emerge from the analysis as candidates.  As described in the 

methods, we introduce a corrected scoring procedure for MeSHOP comparisons that assigns a 

significance to similarity scores based on the distribution of scores for drug-disease tuples with similar 

annotation levels. In short, the observed similarity score should be remarkable given the level of 

annotation of the drug and disease in the tuple.  After applying this correction for drug-disease 

annotation bias, both disease annotation level and drug annotation levels have very low correlation to 

the drug-disease score (0.08 and 0.05 respectively) (see Figure 4-6 and Figure 4-7). The top scoring 

candidate drug-disease predictions are reported in Table 4-2 and can be browsed online 

(http://meshop.oicr.on.ca/meshop/browse_dpc_results.html). 

http://meshop.oicr.on.ca/meshop/browse_dpc_results.html
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Discussion and Related Work 

In this report we introduce a new literature-based procedure for the analysis of drug-disease 

similarity with a focus on the identification of candidates for drug-repositioning.  Using MeSH Over-

representation Profiles (MeSHOPs) as quantitative representatives for biological entities, we seek to 

identify drugs and diseases with similar annotation under the expectation that such similarity may be 

suggestive of potential for repositioning.  Drug-disease MeSHOP similarity scores using a panel of 

metrics are found to be strongly influenced by the level of annotation of drugs and diseases.  In short, 

the most heavily studied diseases and drugs are inappropriately linked by the comparison.  A new 

corrected scoring procedure is introduced to account for the background expectation of similarity scores 

for comparably annotated drugs and diseases.  The new procedure is demonstrated to account for the 

bias.  Application of the MeSHOP similarity scoring procedure reveals a set of candidate drugs for future 

repositioning research. 

The assessment of drug repositioning candidate predictions is necessarily problematic. Given 

the expense of validating drug efficacy, there is no reference collection against which to measure 

performance.  In this report we elected to take as references two approaches.  First, we predicted future 

co-occurrence in the research literature.  This measure is indirect, as co-occurrence does not necessarily 

reflect a functional tie between the drug and disease.  Furthermore, this measure is particularly 

susceptible to annotation influence – well studied drugs and diseases have a higher rate of future 

publications and are thus more likely to be linked.  Within this report, we observe that the MeSHOP 

comparisons perform better than simple annotation measures, which indicates that the similarity 

assessment has value.  Furthermore, we were able to identify and correct for the annotation bias 

influence on the analysis.  It is our hope that future annotation-based similarity measures will be 

evaluated for the biases we observe here.  The second reference collection tested was extracted from 

the CTD, which records bonafide drug-disease links.  The performance measurements reflect a similar 

literature bias on the CTD results, which may reflect a tendency for well-studied drugs to be tested for 

utility in well-studied disease therapy.  

The source of the annotation biases identified in the validation sets may lie in methodological 

bias or be intrinsic to the nature of drug-disease relationships. The case for methodological bias notes 

the relationship between the existence of experimental protocols and the publication of related 

research. The study of disease requires the existence of appropriate animal models, a family with a 
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history of the condition, a large-scale study, an accurate protocol to diagnose the condition. As well, the 

rarity and severity of the disease will also change the degree of research interest. Likewise, the study of 

drugs also benefits from animal models, bioassays to detect the compound, the ability and ease to 

generate the compound, the ability to deliver an appropriate dosage of the compound to the targets of 

interest. Other factors motivating research directions are availability of funding and the focus of existing 

lab personnel and their research. 

However, the bias may also intrinsic to the nature of the disease or of the drug. (Gillis & Pavlidis, 

2011) have previously observed that multifunctional genes are a strong driver in gene function 

prediction. They identify gene multifunctionality through protein interaction and coexpression datasets, 

which encompass previous definitions of the “hub-ness” of a particular gene. A drug may have a more 

global effectiveness, due to targeting these multifunction genes or their pathways, and thereby be 

involved in more drug-disease associations. Similarly, there may be diseases that are involved in key 

processes and thus present many potential drug targets. Whether the biases are intrinsic to the biology 

of drugs and diseases, primarily introduced by the human nature in the research, or some combination 

of these factors will hopefully be revealed by the direction and results of future research. As our 

knowledge of the nature of drugs and diseases increases and matures, the human elements and 

methodological biases will increasingly become less significant, leaving us to identify the degree this bias 

is due to the biological mechanism and nature of the drugs and diseases. 

The application of informatics analysis for drug repositioning may reveal specific candidates for 

study.  The use of MeSHOP comparisons to reveal relationships between entities can be extended to 

enhance the chances for novel insights.  The underlying principle motivating the comparison approach is 

that there will be shared characteristics of the drug actions and disease properties.  While the current 

approach utilizes universal comparisons across all MeSH terms, it may be beneficial to restrict the 

analysis to a subset of MeSH terms more likely to reflect these shared properties.  Development of a 

procedure to restrict the terms (the features) of MeSHOPs may allow for more specific drug 

repositioning candidates to emerge in the future. 

Future Work 

MeSH provides a wide spectrum of medically relevant topics, however, some applications may 

be better served by a vocabulary with more specific terms in the field of interest. For example, there are 
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only eight terms in MeSH (Akathisia, Drug-Induced; Drug Eruptions; Drug Toxicity; Dyskinesia, Drug-

Induced; Epidermal Necrolysis, Toxic; Erythema Nodosum; Serotonin Syndrome; Serum Sickness) 

relating directly to adverse drug events. Instead, there are several subheadings including “adverse 

effects”, “poisoning”, “toxicity” and “contraindications” which can occur with drug terms, or “chemically 

induced” and “complications” subheadings occurring with adverse outcomes. Expanding the analysis to 

look specifically for these subheading modifiers could allow us to extract a subset of articles directly 

relevant to adverse drug reactions for MeSHOP analysis. Alternatively, an alternative source linking side 

effects to articles could be employed to supplement our existing analysis with side-effect data. 

Other sources of pharmaceutical literature could be incorporated to improve the analysis. In 

addition to repositioning existing, on-the-shelf drugs, there are a similar number of drugs that fail Phase 

II trials due to lack of efficacy (DiMasi, 2001). These drugs, however, are not likely to be broadly 

described in the literature. Incorporating internal research reports and other literature within a 

pharmaceutical company would provide literature on a much larger suite of compounds, but would 

require access to this confidential information. The methods may also need to be adapted if a 

proprietary internal vocabulary was used, or text mining approaches may be required to annotate this 

literature. 

CitationRank(Yang, Xu, & He, 2009) was used to highlight genes involved in adverse drug 

reaction by analyzing the co-occurrence of genes in articles relating to an adverse drug reaction. Looking 

at the comprehensive network of MeSHOP similarity between genes, drugs and diseases would allow a 

similar network-style analysis, adding the information of the gene entities. 

Rather than predicting drug-disease associations directly, another application of the method 

could be to highlight potential links between drugs and mechanisms of action. Drug therapies can be 

effective even when the understanding of the underlying mechanism of action is incomplete. These 

predicted drug-mechanism links could be also related back to relevant diseases, helping hypothesize on 

the biology of a disease and effective mechanisms for treatment. 

While the correction presented here uses local empirical distributions, further insight into the 

nature of these distributions could be obtained by attempting to fit them to known distributions. This 

would be particularly useful in cases involving more extreme levels of annotation – currently we match a 

ten percentile range in terms of annotation, which covers a varying range of annotation. As well, this 
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could ultimately lead to improved ways of modeling the assignment of annotation in the background, 

and therefore lead to improved statistics for generating MeSHOPs. 

Methods 

Pharmacological Substances 

In this paper, we examine the set of drugs, defined as all chemical compounds, in both the 

Medical Subject Headings (MeSH) and Supplemental MeSH vocabularies, which are also annotated as 

having a Pharmacologic Action. Since 1996, indexers at the National Library of Medicine track articles 

where the action of a drug is discussed (MeSH Basics – 

http://www.nlm.nih.gov/bsd/disted/mesh/paterms.html). As of 2003, a MeSH Category “Pharmacologic 

Action” was created, in order to delineate chemical compounds which are used therapeutically as 

pharmacologic agents. Such annotations are conservatively assigned, requiring a minimum of 20 

supporting research articles. We analyze these 6884 drugs with respect to the diseases in the MeSH 

hierarchy. 

Constructing Drug and Disease MeSHOPs 

The construction of MeSHOPs, previously described in Chapter 2, is summarized here for the 

convenience of readers. A MeSHOP is a quantitative representation of the MeSH annotations associated 

with a set of articles, where the unifying property of the articles is that each addresses the same, 

specific entity (such as “Acetaminophen”). The computation of a MeSHOP initiates from a set of articles 

that address a specific entity. Each article has a curator-assigned set of MeSH terms available in 

MEDLINE/PubMed. Comparing the observed frequency of each MeSH term annotated to the set of 

articles relative to the background rate for each term returns a measure of over-representation (see 

below for additional details). A MeSHOP is a vector of tuples < (t1, m1), (t2, m2), … (tn, mn) >. For each 

tuple (ti, mi) in a MeSHOP, ti is a distinct MeSH term in the MeSH vocabulary and mi is the numeric 

measure of the strength of association of the MeSH term ti to the set of articles (e.g. the over-

representation measures). To account for the tree structure of MeSH, for each MeSH term associated 

with an article, the article is considered associated to all of the parent terms of that MeSH term. 

After evaluating multiple scoring metrics were implemented (See Chapter 3) for the strength of 

association between an entity (i.e. drug or disease) and a MeSH term, an effective was determined to be 

the log of the p-value reported by Fisher’s Exact Test based on a hypergeometric distribution of term 

http://www.nlm.nih.gov/bsd/disted/mesh/paterms.html
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utilization across a background set of articles.  For this report, two background sets are considered.  

When working within a specific class of entities (e.g. drugs), the background is most appropriately all 

articles that are associated with one or more members of the entity class.  For comparisons between 

entity classes, a universal background is used. For this study, the universal set contained 17 million 

MEDLINE/PubMed articles assigned MeSH terms (see Table 3-2 for more details). We consider the 6 512 

pharmacologic compounds identified in MeSH 2007 as the drug entities. The 4 229 terms in MeSH 2007 

in Category C “Diseases” composed the set of disease entities.  

Predicting Drug-Disease Associations 

A drug and a responsive disease are anticipated to share common literature annotations, such 

as metabolic pathways, cellular processes and symptoms, even if no links between the drug and the 

disease have been previously reported in the literature. To infer novel relationships between a drug and 

a disease, we perform quantitative pairwise comparisons of MeSHOP s between members of each class. 

We hypothesize that a previously unassociated disease t is likely to be associated with a drug d if the 

MeSHOP Pt for the disease t is highly similar to the drug’s MeSHOP Pd . When many biomedical terms 

are common between two profiles, the likelihood for a future association between the entities profiled 

is expected to increase. We have previously evaluated pairwise comparison procedures (see Chapter 3) 

and determined that Euclidean distance effectively detects entity relationships between genes and 

diseases. However, the study revealed a substantial bias in scores introduced by the number of articles 

associated with each entity – entities with greater annotation tended to be more similar to other 

entities.  

Correcting for Pre-Existing Literature Annotation 

Given the significant impact of annotation bias on pairwise MeSHOP comparison, we introduce a 

correction of our similarity scores for these pre-existing literature effects. This correction aims to 

normalize the scores with respect to existing literature annotation, correcting for inherent biases in the 

scoring methods and revealing associations that are due to the similarity of annotation rather than the 

amount of annotation (the “popularity” of the entity). The correction essentially compares each 

similarity score against a local empirical distribution of similarity scores, taken from all similarity scores 

involving drugs and diseases having a similar amount of annotation. 
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Expressed formally, let us consider drug-disease relationships, with scores Xs, drug annotation 

levels Xc and disease annotation levels Xd, where the annotation level is the number of MeSH terms 

annotated to articles in PubMed/MEDLINE for the drug or disease.  For a given drug c and disease d with 

drug annotation level xc and disease annotation level xd and a drug-disease score xs, we want to 

determine the probability that xs is more extreme than a random drug-disease relationship score with 

drug annotation level xc and disease annotation level xd :  

 

However, this probability can only be directly computed when the set of drugs and diseases is 

sufficiently large that there are many drugs and many diseases with the same level of annotation. In 

order to correct for the previously observed bias, we will seek to adjust the significance based on the 

local distribution of scores observed for similarly annotated entities. 

 

This can be computed by incorporating the properties of conditional probability as 

 

As well since  and are independent, this can be further simplified to 

 

We select , and specifically compare against the 10% of the 

drugs that are most similar, annotation level-wise, to the drugs in the relationship of interest, and 

likewise for 10% of the diseases. The correction described allows us to separate the effect of the level of 

annotation for the drug and disease from the similarity of the concepts and allows the user to 

distinguish high-scoring drug-disease relationships that are primarily due to the annotation level of the 

drug or disease concept, from high-scoring relationships that arise due to sharing significant profile 

similarity. 
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Validating Drug-Disease Associations 

To evaluate drug-disease associations predicted by MeSHOP similarity, we analyzed the 2007 

baseline release of MEDLINE®/PubMed® and measured our predictive performance against annotations 

appearing in future releases. The annual MEDLINE®/PubMed® Baseline releases 2007 and 2010 were 

used as the source of MeSH annotations for articles and were obtained directly from the NLM. The drug 

and disease MeSHOPs, computed for the MEDLINE®/PubMed® Baseline 2007, were compared using the 

same panel of similarity scores as we applied to predict gene-disease relationships (See Chapter 3 for 

details). We highlight here the most effective similarity score of this panel is the Euclidean distance of 

log-p of overlapping terms only:  

 

                    (C and D refer to the MeSH terms of drug and disease MeSHOPs respectively, cp(i)  

and dp(i) refer to the p-value for the MeSH term i of the drug or disease profile respectively).  

MeSHOP comparisons are defined as predictions of future disease-gene co-occurrence if a 

similarity score exceeds an applied threshold. Predictions were validated against drug-disease co-

occurrences that appeared in the future MEDLINE®/PubMed® releases which had not appeared in 

articles before 2007. A true positive novel association means an article referring to a previously 

unconnected drug-disease pair was published in the interim period between the 2007 and 2010 

MEDLINE/PubMed Baselines. 

The Comparative Toxicogenomics Database was used as a source of curated drug-disease 

relationships. All drug-disease relationships from the 2010 release were extracted, and those 

relationships reported by articles appearing after the 2007 MEDLINE/PubMed Baseline were defined as 

the curated validation set. 

Using these validation sets, we evaluate the candidate scoring methods by computing the 

Receiver Operating Characteristic (ROC) curve for predictions from analysis of the baseline 2007 data 

and reporting the Area Under the ROC Curve (AUC). Novel drug-disease pairs from the two reference 

sets are defined as “true positives”, and all other drug-disease pairings are defined as “true negatives” 

(which is recognized to be conservative, as such pairs may be validated in future studies).  All drug-

disease pairs reported prior to 2007 are excluded from the AUC analysis. 
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Implementation 

The analysis was performed using Python (http://www.python.org/), XSLT 

(http://www.w3.org/TR/xslt), and the MySQL database system (http://www.mysql.com/). Fisher’s Exact 

Test p-values were computed using the R statistics package (http://www.r-project.org/). Results were 

generated using 50 CPUs of a compute cluster running under Sun GridEngine 

(http://gridengine.sunsource.net/). A typical cluster machine is a 64-bit dual processor 3 GHz Intel Xeon 

with 16 GB of RAM. 

Data was downloaded from MEDLINE®/PubMed® 

(http://www.nlm.nih.gov/databases/leased.html). The Comparative Toxicogenomics Database 

validation set was taken from the drug-disease relationships dataset (http://ctd.mdibl.org/downloads/). 

Results are freely accessible on the web at http://meshop.oicr.on.ca/meshop/. Source code 

implemented in Python is available at http://github.com/wac/meshop/ (gene and disease profile 

analysis) and http://github.com/wac/cmp-meshop/ (evaluation and validation of results). 

Conclusions 

Comparing MeSHOPs allows quantitative analysis of MeSH biomedical topics shared between 

drugs and diseases through their MEDLINE®/PubMed®-indexed primary literature. Quantitatively 

measuring MeSHOP similarity is shown to infer functional relationships between drugs and diseases. 

Specifically, the similarity between drug MeSHOPs and disease MeSHOPs is highly predictive of future 

drug-disease ties. The best similarity metric, using Euclidean distance of the log-p of overlapping terms, 

achieves a mean AUC of 0.94, a 11% improvement over baseline. However, bibliometric characteristics, 

such as the number of terms in the disease MeSHOP, are demonstrated to have a strong bias in drug-

disease association. We describe here a correction that eliminates this bias in the scoring metrics, 

separating the effects of the similarity scoring from the annotation bias. 

  

http://www.python.org/
http://www.w3.org/TR/xslt
http://www.mysql.com/
http://www.r-project.org/
http://gridengine.sunsource.net/
http://www.nlm.nih.gov/databases/leased.html
http://ctd.mdibl.org/downloads/
http://meshop.oicr.on.ca/meshop/
http://github.com/wac/meshop/
http://github.com/wac/cmp-meshop/
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Figure 4-1 MeSHOP for Acetaminophen. All terms are presented in this MeSHOP word cloud 

associated in the Acetaminophen MeSHOP with a p-value of 0. The size of the term in the word cloud 

presented is proportional to the number of related articles for the term. 

 

Figure 4-2. MeSHOP for Aniridia. The top 150 terms in the profile for the disease Aniridia are 

shown, where the font size of each MeSH term is proportional to the negative log p-value for the term. 
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Figure 4-3. Distribution of Drug Annotation and Disease Annotation in the New Drug-Disease 
Associations of the CTD Validation Set.  The x-axis represents the quantile of the MeSH term counts for the drugs 
(part A) and diseases (part B) in the CTD reference collection (part A). The histograms indicate that both drugs and 
diseases within the CTD reference collection are biased toward greater numbers of associated MeSH terms.
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Figure 4-4. The Degree of Disease Annotation Plotted against MeSHOP Comparison Score. The figure 
displays a heatmap depicting the number of drug-disease tuples for a disease annotation level (MeSH terms 
attached to the disease MeSHOP) on the x-axis and a MeSHOP comparison score on the y-axis.  MeSHOP similarity 
scores were calculated using Euclidean Distance. The degree of disease annotation, measured as the total number 
of distinct MeSH terms associated with a disease, is highly inversely correlated (Pearson correlation score of -0.82) 
with the similarity score.  
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Figure 4-5. The Degree of Drug Annotation vs. MeSHOP Comparison Score.  The figure displays a 
heatmap depicting the number of drug-disease tuples for a drug annotation level (MeSH terms attached to the 
disease MeSHOP) on the x-axis and a MeSHOP comparison score on the y-axis.  MeSHOP similarity scores were 
calculated using L2 distance. The degree of drug annotation, measured as the total number of distinct MeSH terms 
associated with a drug, is inversely correlated (Pearson correlation score of -0.33) with the similarity score.  
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Figure 4-6. Disease Annotation vs. Corrected MeSHOP Comparison Score. The figure displays a heatmap 
depicting the number of drug-disease tuples for a disease annotation level (MeSH terms attached to the disease 
MeSHOP) on the x-axis and a corrected MeSHOP comparison score on the y-axis.  MeSHOP similarity scores were 
calculated using L2 distance, but were corrected as described in the text to account for background annotation 
levels. The degree of disease annotation, measured as the total number of distinct MeSH terms associated with a 
disease, is no longer correlated (Pearson correlation score of 0.08) with the corrected similarity score.  
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Figure 4-7. Drug Annotation vs. Corrected MeSHOP Comparison Score. The figure displays a heatmap 
depicting the number of drug-disease tuples for a drug annotation level (MeSH terms attached to the drug 
MeSHOP) on the x-axis and a corrected MeSHOP comparison score on the y-axis.  MeSHOP similarity scores were 
calculated using L2 distance, but were corrected as described in the text to account for background annotation 
levels. The degree of drug annotation, measured as the total number of distinct MeSH terms associated with a 
drug, is no longer correlated (Pearson correlation score of 0.05) with the corrected similarity score.  
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Table 4-1. Performance of a Selection of Drug-Disease Similarity Scores. Performance validated using 
novel direct drug-disease direct co-occurrences from PubMed, and novel drug-disease relationships from the CTD.  
Top scores for each validation set are presented in boldface type. 

Scoring Method  Direct Connection 
Validation AUC 

CTD Validation 
AUC 

Corrected drug-disease p-value 0.65 0.76 

Cosine distance tf-idf 0.88 0.91 

Cosine distance of p-values 0.64 0.70 

Cosine distance of term fractions 0.78 0.83 

Sum of the log of combined p-values 
0.92 0.93 

Sum of the differences of log p values  0.89 0.86 

L2 of log-p of intersecting terms 0.95 0.92 

L2 of term fractions of intersecting terms only  0.64 0.55 

L2 of log of p-values  0.88 0.84 

L2 of p-values  0.87 0.82 

L2 of term fractions P(s < S) 0.85 0.90 

L2 of term frequency  0.87 0.83 

Total number of terms  0.90 0.87 

Number of  Intersecting Terms  0.91 0.91 

Number of Drug Terms 0.80 0.83 

Number of Disease Terms 0.84 0.83 
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Table 4-2. Table of Top-scoring Drug-Disease Relationships After Literature Correction. We present 
filtered list of the drug-disease relationships with corrected p-value of 0, ordered by the strength of the literature 
correction applied. We remove the most prevalent drugs (presented in Table 4-3) and exclude terms involving 
selected disorders judged to be poor targets for drug intervention (Malocclusion, Dental, Vegetative, Bacterial, 
Infection, Dislocation, Smear, Poisoning, Fractures, Edentulous, Decapitation, Injuries, Reperfusion) 

Disease Drug 
Literature 
Correction 

Anomia Fuji Ortho LC 0.7644 

Anomia Prime & Bond 0.6636 

Fused Teeth poly(maleic acid-styrene)neocarzinostatin 0.5922 

Anomia Gluma 0.5796 

Anomia single bond 0.462 

Joint Instability Fuji Ortho LC 0.3913 

Dens in Dente bismuth tripotassium dicitrate 0.3515 

Fused Teeth bismuth tripotassium dicitrate 0.3478 

Joint Instability Prime & Bond 0.3397 

Fused Teeth tirofiban 0.3384 

Joint Instability corticosteroid methanetriol mixture 0.3182 

Joint Instability Gluma 0.2967 

Dens in Dente peginterferon alfa-2a 0.2945 

Fused Teeth peginterferon alfa-2a 0.2914 

Joint Instability Herculite XR 0.2752 

Joint Instability isometamidium chloride 0.2752 

Joint Instability poly(maleic acid-styrene)neocarzinostatin 0.2709 

Alveolar Bone Loss isometamidium chloride 0.2496 

Alveolar Bone Loss poly(maleic acid-styrene)neocarzinostatin 0.2457 

Joint Instability single bond 0.2365 

Joint Instability enfuvirtide 0.2236 

Alveolar Bone Loss enfuvirtide 0.2028 

Joint Instability Zanamivir 0.1849 

Alveolar Bone Loss Zanamivir 0.1677 

Alveolar Bone Loss bismuth tripotassium dicitrate 0.1443 

Joint Instability Abscisic Acid 0.0946 

Neoplasms, Multiple Primary Scotchbond Multi-Purpose 0.0928 

Neoplasms, Multiple Primary single bond 0.088 

Alveolar Bone Loss Abscisic Acid 0.0858 

Neoplasms, Multiple Primary Zanamivir 0.0688 

Neoplasms, Multiple Primary Oseltamivir 0.0656 

Neoplasms, Multiple Primary tert-butylbicyclophosphorothionate 0.064 

Neoplasms, Multiple Primary abacavir 0.0624 

Lymphatic Metastasis Abscisic Acid 0.0242 

Dens in Dente Autoantibodies 0.0095 
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Dens in Dente Interleukin-2 0.0095 

Cor Triatriatum Autoantibodies 0.0094 

Fused Teeth Autoantibodies 0.0094 

Fused Teeth Interleukin-2 0.0094 

Positive-Pressure Respiration, Intrinsic Autoantibodies 0.0094 

Cementoma Autoantibodies 0.0092 

Monieziasis Autoantibodies 0.0092 

Optic Nerve Glioma Autoantibodies 0.0091 

Bone Malalignment Interleukin-2 0.009 

Mansonelliasis Autoantibodies 0.009 

Mansonelliasis Interleukin-2 0.009 

Joint Instability Carbachol 0.0086 

Alveolar Bone Loss Carbachol 0.0078 

Aneurysm, Dissecting Carbachol 0.007 

Gingival Recession Angiotensin II 0.0064 

Gingival Recession Autoantibodies 0.0064 

Gingival Recession Hydrogen Peroxide 0.0064 

Gingival Recession Indomethacin 0.0064 

Gingival Recession Interleukin-2 0.0064 

Leg Length Inequality Hydrogen Peroxide 0.0064 

Tooth Demineralization Tetrodotoxin 0.0051 

Neoplasms, Multiple Primary Tetrodotoxin 0.0048 

Joint Instability Angiotensin II 0.0043 

Joint Instability Autoantibodies 0.0043 

Joint Instability Cycloheximide 0.0043 

Joint Instability Dactinomycin 0.0043 

Joint Instability Dinoprostone 0.0043 

Joint Instability Histamine 0.0043 

Joint Instability Hydrogen Peroxide 0.0043 

Joint Instability Indomethacin 0.0043 

Joint Instability Interleukin-2 0.0043 

Joint Instability Propranolol 0.0043 

Periodontal Pocket Angiotensin II 0.004 

Periodontal Pocket Hydrogen Peroxide 0.004 

Periodontal Pocket Indomethacin 0.004 

Periodontal Pocket Interleukin-2 0.004 

Alveolar Bone Loss Angiotensin II 0.0039 

Alveolar Bone Loss Autoantibodies 0.0039 

Alveolar Bone Loss Cycloheximide 0.0039 

Alveolar Bone Loss Dactinomycin 0.0039 

Alveolar Bone Loss Dinoprostone 0.0039 

Alveolar Bone Loss Ethanol 0.0039 
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Alveolar Bone Loss Histamine 0.0039 

Alveolar Bone Loss Hydrocortisone 0.0039 

Alveolar Bone Loss Hydrogen Peroxide 0.0039 

Alveolar Bone Loss Indomethacin 0.0039 

Alveolar Bone Loss Interleukin-2 0.0039 

Alveolar Bone Loss Propranolol 0.0039 

Graft Occlusion, Vascular Hydrogen Peroxide 0.0039 

Graft Occlusion, Vascular Interleukin-2 0.0039 

Neuroma, Acoustic Angiotensin II 0.0039 

Neuroma, Acoustic Autoantibodies 0.0039 

Neuroma, Acoustic Dinoprostone 0.0039 

Neuroma, Acoustic Hydrogen Peroxide 0.0039 

Neuroma, Acoustic Indomethacin 0.0039 

Neuroma, Acoustic Interleukin-2 0.0039 

Virilism Hydrogen Peroxide 0.0038 

Virilism Interleukin-2 0.0038 

Orbital Neoplasms Hydrogen Peroxide 0.0037 

Orbital Neoplasms Indomethacin 0.0037 

Polycystic Ovary Syndrome Hydrogen Peroxide 0.0037 

Polycystic Ovary Syndrome Interleukin-2 0.0037 

Paranasal Sinus Neoplasms Hydrogen Peroxide 0.0036 

Aneurysm, Dissecting Autoantibodies 0.0035 

Aneurysm, Dissecting Cycloheximide 0.0035 

Aneurysm, Dissecting Dinoprostone 0.0035 

Aneurysm, Dissecting Hydrogen Peroxide 0.0035 

Aneurysm, Dissecting Indomethacin 0.0035 

Aneurysm, Dissecting Interleukin-2 0.0035 

Glaucoma, Open-Angle Interleukin-2 0.0035 

Osteoporosis, Postmenopausal Hydrogen Peroxide 0.0035 

Osteoporosis, Postmenopausal Interleukin-2 0.0035 

Pregnancy, Ectopic Hydrogen Peroxide 0.0035 

Pregnancy, Ectopic Interleukin-2 0.0035 

Renal Artery Obstruction Hydrogen Peroxide 0.0035 

Tooth Demineralization Calcimycin 0.0034 

Tooth Demineralization Carbachol 0.0034 

Mandibular Diseases Carbachol 0.0032 

Neoplasms, Multiple Primary Calcimycin 0.0032 

Neoplasms, Multiple Primary Carbachol 0.0032 

Prosthesis Failure Interleukin-2 0.0026 

Ventricular Dysfunction, Left Interleukin-2 0.0025 

Ventricular Dysfunction Hydrogen Peroxide 0.0023 

Ventricular Dysfunction Interleukin-2 0.0023 
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Atrial Fibrillation Hydrogen Peroxide 0.0022 

Atrial Fibrillation Interleukin-2 0.0022 

Lymphatic Metastasis Carbachol 0.0022 

Neurilemmoma Hydrogen Peroxide 0.0021 

Digestive System Fistula Hydrogen Peroxide 0.002 

Pain, Postoperative Autoantibodies 0.002 

Pain, Postoperative Hydrogen Peroxide 0.002 

Pain, Postoperative Interleukin-2 0.002 

Cell Transformation, Viral Propranolol 0.0019 

Periodontitis Angiotensin II 0.0019 

Aortic Aneurysm Hydrogen Peroxide 0.0018 

Neuroma Hydrogen Peroxide 0.0018 

Poultry Diseases Angiotensin II 0.0017 

Poultry Diseases Cisplatin 0.0017 

Poultry Diseases Indomethacin 0.0017 

Speech Disorders Hydrogen Peroxide 0.0017 

Speech Disorders Indomethacin 0.0017 

Speech Disorders Interleukin-2 0.0017 

Tooth Demineralization Angiotensin II 0.0017 

Tooth Demineralization Autoantibodies 0.0017 

Tooth Demineralization Cisplatin 0.0017 

Tooth Demineralization Cycloheximide 0.0017 

Tooth Demineralization Dactinomycin 0.0017 

Tooth Demineralization Dinoprostone 0.0017 

Tooth Demineralization Follicle Stimulating Hormone 0.0017 

Tooth Demineralization Histamine 0.0017 

Tooth Demineralization Hydrocortisone 0.0017 

Tooth Demineralization Hydrogen Peroxide 0.0017 

Tooth Demineralization Indomethacin 0.0017 

Tooth Demineralization Interleukin-2 0.0017 

Tooth Demineralization Interleukin-4 0.0017 

Tooth Demineralization Luciferases 0.0017 

Tooth Demineralization Morphine 0.0017 

Tooth Demineralization Prednisone 0.0017 

Tooth Demineralization Propranolol 0.0017 

Mandibular Diseases Angiotensin II 0.0016 

Mandibular Diseases Autoantibodies 0.0016 

Mandibular Diseases Cycloheximide 0.0016 

Mandibular Diseases Dinoprostone 0.0016 

Mandibular Diseases Ethanol 0.0016 

Mandibular Diseases Histamine 0.0016 

Mandibular Diseases Hydrocortisone 0.0016 
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Mandibular Diseases Hydrogen Peroxide 0.0016 

Mandibular Diseases Indomethacin 0.0016 

Mandibular Diseases Interleukin-2 0.0016 

Mandibular Diseases Propranolol 0.0016 

Neoplasms, Ductal, Lobular, and Medullary Indomethacin 0.0016 

Neoplasms, Multiple Primary Adenosine 0.0016 

Neoplasms, Multiple Primary Angiotensin II 0.0016 

Neoplasms, Multiple Primary Autoantibodies 0.0016 

Neoplasms, Multiple Primary Cycloheximide 0.0016 

Neoplasms, Multiple Primary Dinoprostone 0.0016 

Neoplasms, Multiple Primary Edetic Acid 0.0016 

Neoplasms, Multiple Primary Ethanol 0.0016 

Neoplasms, Multiple Primary Glycine 0.0016 

Neoplasms, Multiple Primary Heparin 0.0016 

Neoplasms, Multiple Primary Histamine 0.0016 

Neoplasms, Multiple Primary Hydrocortisone 0.0016 

Neoplasms, Multiple Primary Hydrogen Peroxide 0.0016 

Neoplasms, Multiple Primary Indomethacin 0.0016 

Neoplasms, Multiple Primary Interleukin-2 0.0016 

Neoplasms, Multiple Primary Interleukin-4 0.0016 

Neoplasms, Multiple Primary Morphine 0.0016 

Neoplasms, Multiple Primary Propranolol 0.0016 

Neoplasms, Multiple Primary Superoxides 0.0016 

Neoplasms, Multiple Primary Thrombin 0.0016 

Peripheral Nervous System Neoplasms Angiotensin II 0.0016 

Peripheral Nervous System Neoplasms Autoantibodies 0.0016 

Peripheral Nervous System Neoplasms Cycloheximide 0.0016 

Peripheral Nervous System Neoplasms Dinoprostone 0.0016 

Peripheral Nervous System Neoplasms Hydrogen Peroxide 0.0016 

Peripheral Nervous System Neoplasms Indomethacin 0.0016 

Peripheral Nervous System Neoplasms Interleukin-2 0.0016 

Peripheral Nervous System Neoplasms Propranolol 0.0016 

Lymphatic Metastasis Angiotensin II 0.0011 

Lymphatic Metastasis Dinoprostone 0.0011 

Lymphatic Metastasis Histamine 0.0011 

Lymphatic Metastasis Hydrogen Peroxide 0.0011 

Lymphatic Metastasis Indomethacin 0.0011 

Lymphatic Metastasis Propranolol 0.0011 
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Table 4-3. Most Prevalent Highly Associated Drugs. List of drugs and their prevalence among the drug-
disease relationships with corrected p-value of 0. 

Drug 
Number of Drug-Disease 
Relationships 

Antibodies, Monoclonal 3700 

Glucose 3696 

Norepinephrine 3686 

Immunoglobulin G 3634 

Insulin 3611 

Tetradecanoylphorbol Acetate 3577 

Serotonin 3525 

Antibodies, Viral 3494 

Dopamine 3466 

Acetylcholine 3417 

Interferon Type II 3314 

Nitric Oxide 3052 

Antibodies, Bacterial 1818 

Cyclophosphamide 1616 

Immunoglobulin M 1335 

Antibodies 1311 

Epinephrine 1050 

Green Fluorescent Proteins 607 

Iron 598 

Progesterone 595 

Isoproterenol 556 

Atropine 539 
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Chapter 5: Finding Similar Authors through Rapid Comparison of Shared 

Biomedical Research Themes 

Synopsis 

MEDLINE®/PubMed® provides a repository of over 21 million articles from biomedical 

researchers, manually indexed against over 25 thousand medical subjects. Medical Subject Heading 

Over-representation allows us to analyse the research output for a biomedical researcher and 

quantitatively associate researchers with their most strongly related terms. This can then be used to 

associate researchers that share these terms together, which in turn can be used in a number of 

different ways in the biomedical community. In this chapter we explore how these relationships can be 

used to find related authors which can then be used for peer review exercises or scientific 

collaborations. We develop efficient methods for evaluating and comparing the medical topic profiles of 

the large pool of authors, enabling the extraction of an author’s network of most relevant related 

authors based on common research interests.  

Introduction  

With over half a million new authors added to PubMed each year, biomedical expertise is 

increasing at an unprecedented rate. Electronic publishing and the Internet now make articles instantly 

available anywhere in the world, making it possible to read the findings of any researcher in a related 

field without the hurdle of physical access. Traditional boundaries, such as the geographical location of 

your current institution, are become less important as technology makes it possible to discuss and 

collaborate with almost anyone, anywhere.  

PubMed facilitates finding information by presenting a portal for searching research articles by 

biomedical topic. At the heart of the search engine is the indexing effort by the National Library of 

Medicine, which annotates all articles in MEDLINE®/PubMed® with biomedical topic terms from the 

Medical Subject Headings (MeSH) vocabulary. However, as PubMed continues to expand in size, the 

number of articles and authors of these articles continues to grow, and sorting through this sea of 

authors in search of relevant and related experts sharing common biomedical research interest is an 

increasingly difficult problem. 
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Finding authors with similar interests is an important task in several practical contexts. One 

common use case is finding potential reviewers for papers – in the world of peer-reviewed scientific 

publications, it is always necessary to find arms-length researchers with relevant expertise. Researchers 

with similar interests are also potential collaborators for new and existing projects, while simultaneously 

approaching similar problems from their own unique directions. Keeping abreast of the new research 

and finding papers an author is likely to care about by others in a particular field is an important part to 

remaining relevant through by providing unique perspectives on common interests.  

Previously, eTBLAST(Errami et al., 2007) and JANE(Schuemie & Kors, 2008) were developed to 

search for PubMed articles similar to a natural language free text query such as an abstract or a 

preliminary document. After extracting articles similar to the query, both systems process the matching 

article results to extract top-ranked authors and journals. These methods comparing the available free 

text have been also applied to the related topic of detecting highly similar and potentially plagiarised 

citations – citations that extremely similar to the query are likely to be (un)intentional duplicates(Errami 

et al., 2009). Our work builds on this prior body of literature, moving beyond the focus on the text and 

phrases. We shift the focus to the extraction and comparison of distinguishing over-represented topics, 

and using the statistical methods developed for MeSHOPs again here to control for the prevalence of 

terms and emphasise the most unusual and unexpected subjects, while providing a quantitative 

measure of the association. 

To identify the most relevant and distinctive topics studied by biomedical authors, we adapt our 

previous work analysing the Medical Subject Heading annotations of PubMed articles(Cheung et al., 

2012). We profile an author by extracting all the articles in PubMed where he or she is listed as an 

author, and compute the statistical over-representation of the MeSH terms found in these articles. 

These profiles allow quantitative measurement of the significance of the main topics studied by the 

author as evaluated through prevalence as supported by their research output. By comparing these 

profiles, we provide a quantitative measure of the similarity of the authors through their common 

interests. 

However, as the number of entities to compare increases, an exhaustive full comparison of all 

the profiles rapidly becomes computationally very expensive as the algorithmic complexity for 

comparing n entities grows on the order of O(n2). This is especially important once we consider classes 

with extremely large numbers of entities, such as the analysis of all authors in PubMed, which can 
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involve several hundreds of thousands to millions of entities, compared to the tens of thousands of 

human genes. An increase of a hundred times in the number of entities results in a ten thousand-fold 

increase in computational effort. With over 9 million author profiles in PubMed, even comparing a single 

profile against this entire database is prohibitively expensive, and the full set of comparisons results in 

over 4x1013 pairs of authors. The dramatic increase in difficulty necessitates novel methods to rapidly 

compare entities. 

To accommodate this information space, we introduce and evaluate two methods of comparing 

large numbers of MeSH profiles for authors to quickly identify highly similar authors. We achieve this 

through an approximation of the profiles as a vector of bits and comparing these bitvectors. This allows 

comparison of any existing profile against an entire database of profiles without needing to explicitly 

compare against each MeSH term in every profile. We apply this method to the comparison of prolific 

authors in PubMed to illuminate relationships between authors beyond those visible from co-

publication, enabling authors to find potential related peer reviewers and collaborators, based on the 

similarity of their published research. 

Results and Discussion 

MeSHOPs are a succinct, quantitative measure of association between an entity and key 

biomedical topics. By computing the MeSHOPs for all the authors in PubMed, we provide an insight into 

the research of a biomedical author. We examine the MeSHOPs of authors from 2010 and investigate 

the network of links between authors based on the similarity of their MeSHOPs. 

While the number of authors is extremely large – PubMed up to 2010 encompasses over 9 

million unique author names – we successfully computed the complete author profiles, resulting in over 

100Gb of profiles. However, it is even more computationally prohibitive to pre-compute and store the 

similarity of all these profiles. Even when we reduce the set to only profiles from authors that have over 

15 articles in PubMed and eliminate authors names that are likely to be ambiguous (having over 1000 

articles), this still leaves over 800,000 authors.  

We developed two complementary methods to rapidly compare MeSHOPs, approximating a full 

comparison of all the MeSH terms in the MeSHOPs. To evaluate these methods, we apply them towards 

analysis of similarity between authors of articles from journals in three different domains, and for 

classifying members of four separate research institutions. The approximations balance sufficient 
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breadth to cover the diversity in different combinations of topics covered by the authors, while retaining 

sufficient specificity to remain informative about the profiles. One approximation focuses on comparing 

a broad selection of MeSH terms at relaxed p-value thresholds, while the other matches the most 

strongly associated terms to the profile. 

For both approximations, when we need to only consider a subset of the MeSH terms rather 

than the entire profile, there are tradeoffs made between the specificity of the terms and the number of 

authors strongly associated to the term. The most informative and interesting MeSH terms for any 

author are the most strongly associated (i.e. with low p-value) terms, yet to be useful for comparison, 

they need to be associated to large proportion of authors. As seen in Figure 5-2, terms with strong 

average association are only present in MeSHOPs of few authors – for example, “RNA, Ribosomal, Self-

Splicing” has an average p-value of 3.6x10-5, but is only present in the MeSHOPs of eight authors. On the 

other hand, terms annotated to many authors have very high average p-values – for example, “Humans” 

is present in the MeSHOPs of over half a million authors, but has an average p-value of 1.0. When 

comparing the number of authors for a term to the average p-value for the term, we see a Pearson 

correlation of 0.94 and a Spearman correlation of 0.98. To balance strength of association against the 

prevalence of author annotation for a term, we introduce a weighted overall average p-value, where 

authors not having the MeSH term are also included in the average with an effective p-value for the 

term of 1.0.  

Global Summary Bit-Vectors 

Our first approximation method involves summarising the profiles by selecting a subset of MeSH 

terms and thresholds to distil each profile into a succinct numeric representation. This method is 

inspired by locality sensitive hashing techniques, transforming the profile of MeSH terms into a single 

value which can then be efficiently compared. By treating the profile as a multidimensional vector of 

values, we test a subset of the dimensions (i.e. MeSH terms) against a set of thresholds, resulting in a 

distinctive bitvector for each author entity. The more bits two authors have in common, the more 

similar they are. 

We extract the top 1000 MeSH terms with the lowest mean p-value from the fourth level of the 

MeSH hierarchy. We select tier four of the MeSH hierarchy as this depth covers the greatest breadth of 

distinct topics of the twelve hierarchical levels. We use 1000 MeSH terms to allow the bitvector 

comparisons to be performed in time on the order of several minutes on our web servers. We select the 



 

126 

 

overall average as the threshold for each bit, and select the terms with the lowest overall average p-

value to identify the MeSH terms that are associated to the most authors with low p-value. Using the 

mean for the p-value as a threshold, all highly published authors were evaluated. In this case, we 

examine authors associated with a minimum of 15 articles in PubMed. While MeSHOPs can be 

computed for authors with any number of associated articles, profiles generated over a small set of 

articles are less likely to accurately portray the author. 

The JACCARD score based on the bit-vectors is highly correlated to the Euclidean distance score 

computed using the entire MeSHOP (See Figure 5-10). Even though comparisons of bit-vectors are no 

longer direct quantitative measures the differences of the actual p-values of the author MeSHOPs, the 

bit-vector approximations provide sufficient granularity to allow comparison of disparate authors across 

fields in different institutions, resulting in a high correlation of -0.97. 

While global summary bit-vectors allow all authors to be compared directly, due to the diversity 

in MeSH terms and the specificity of authors, the MeSH terms selected in this manner are by necessity 

relatively broad, with such terms as “Injections”, “Cell Count”, “Regulatory Sequences, Nucleic Acid” and 

“Leukemia, Myeloid”. As well, the overall average results in thresholds which are relatively high and 

therefore are not specific to highly associated MeSH terms in MeSHOPs. This allows authors that are 

only moderately associated with terms to be included. The most stringent p-value cut-off starts at 0.81 

(for the MeSH term “Analysis of Variance”), and the least stringent cutoff is considered is at 0.96 (for 

“Molecular Biology”). 

Specific MeSH Term Summaries 

We therefore implemented a second method of comparing author MeSHOPs, extracting the top 

20 most strongly associated MeSH terms from each author’s profile. This allows MeSH terms from the 

entire MeSH hierarchy to be available for the summary profile for each author, and in particular, the 

most specific and relevant terms from each MeSHOP can be included. To compare these partial profiles 

of authors, we again look at the number of terms shared between the authors. Even when limiting the 

analysis to twenty MeSH terms, they cover 25,231 of the 26,140 (96%) MeSH terms . The result is a 

much larger database of 16Gb in size, and attempting to increase the profiles to include the top fifty 

MeSH terms resulted in a database of 36Gb in size. In comparison, the global summary bit-vectors are 

1Gb in size. 
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Comparing Authors from Different Institutions 

We examine the relationships of authors from differing institutions through their MeSHOPs. The 

hypothesis we explore is that MeSHOP comparison can group related authors together based on their 

common research interests. We examine a subset of the principal investigators from four disparate 

institutions – the Centre for Molecular Medicine and Therapeutics, the Genome Sciences Centre, the 

Ontario Institute for Cancer Research and the University of British Columbia Department of Psychiatry. 

One existing method to identify relationships between authors is the analysis of co-authorship 

on the biomedical research papers. This direct relationship highlights existing collaborations between 

authors. We see, in Figure 5-4 and Table 5-2, the co-publications between the authors of our studied 

institutions. Immediately apparent is that co-publication data is often extremely sparse – even among 

members of the same institution, there are many researchers which have never been co-authors on a 

publication. Among the few co-publishers, we observe Yatham and Lam from UBC Psychiatry co-

publishing, as well as Jones and Holt from the GSC. Co-publication can identify closely related 

researchers, although this can be researchers primarily from the same institution, or collaborators with 

complementary expertise. However, another metric is needed to compare less tightly associated 

authors, and to discover authors with similar interests that have not yet interacted.  

We examine in Figure 5-5 the comparison of the authors from these institutions using the 

JACCARD bitvector profile similarity metric. We are able to extract several tightly grouped, institution-

specific subsets. Jones, Marra and Holt are very tightly clustered together as investigators at the GSC. 

Earle, Grunfeld, Dancey, Fenster, Haider and Yaffe from the OICR are grouped together, as are Raymond, 

Craig, Murphy, MacVicar from UBC Psychiatry. Other groups have a strong subject area focus - for 

example, we have Wouters, Bell, Dick and Sidhu from the OICR also clustering with Sader and Karsan 

from the GSC studying cancer. Simpson and Goldowitz from the CMMT cluster with Honer and Snutch 

from the GSC studying the brain. Clustering in this manner allows us to not only visualise the 

relationships between two authors, but also provides a broader context.  

When we examine the overlap of the top 20 most specific MeSH terms from the author 

MeSHOPs (See Figure 5-6 and Table 5-3), we see several highly related authors clustering together. We 

again see co-publishers Marra, Jones and Holt from the GSC clustering together, as well Yatham and Lam 

from UBC Psychiatry. However, this analysis also brings together MacVicar and Murphy from UBC 

Psychiatry with Snutch at the GSC through their work on T and N-Type calcium channels (See Figure 5-7). 
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As we are only comparing twenty terms from each profile, there are many authors that do not overlap 

at all and are therefore uncomparable at this level. However, the relationships that are discovered are 

the result of specific, over-represented topic terms. 

Author Domain Comparison 

Web of Knowledge Domains 

We also examine the ability of our comparison approximations to differentiate authors from one 

domain from authors in other domains. We select three for comparison three subject categories: 

Genetics, Oncology and Psychiatry. Our hypothesis is that authors within a domain will be more similar 

than authors in different domain, and that the similarity measures would find, in general, that two 

authors from the same domain would be closer than two authors from different domains. 

As seen in Table 5-1, the naïve ALLBITS comparison is the least effective, achieving at most 65% 

accuracy under all the validation sets. By focusing only on the MeSH terms below the significance 

thresholds using ONEBITS and combining it with the ALLBITS metric, we achieve over 60% accuracy in all 

domains. However, the JACCARD score is consistently the most accurate of our measures – we achieve 

over 70% accuracy (as measured by the ROC AUC) for all three domains. This measure combines the 

strength of looking at the more significant MeSH terms like ONEBITS, however, also includes a correction 

for the number of significant MeSH terms in each profile.  

Comparison of the top 20 MeSH terms from each author yielded relatively poor performance 

over all the tested subject domains (56% accuracy). As we noticed previously when comparing authors 

from different institutions, this measure was only able to identify highly similar authors – by the very 

nature of only focusing on the most specific biomedical topics, it is only able to identify the closest 

authors in topic similarity. We hypothesize that while this measure is able to detect extremely closely 

related authors, it is unable to distinguish authors in the same domain but working on different topics 

from authors in completely different domains. We confirm this by examining the fraction of 

relationships with a non-zero overlap, and note that we have a precision reaching up to 79%, but with a 

recall rate that never exceeds 15%, when we consider all authors with at least one of their top 20 MeSH 

terms overlapping (See Table 5-5). The precision is lower for Genetics, indicating that the specific terms 

for authors in genetics are more often shared with authors in Oncology and Psychiatry. 
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Overall, we note that the JACCARD metric is able to distinguish authors from a domain from 

authors from other domains at a rate over 70%, however, the poor performance of the highly specific 

top 20 MeSH term profiles shows that these more specialised profiles are not as useful for such global 

comparisons. However, for the authors that are comparable using their top 20 MeSH term profiles, we 

achieve precision at over 75% for Oncology and Psychiatry. 

Cold Spring Harbour Laboratory Meetings 

We investigate our metrics for by taking twenty invited speakers from each of four different 

Cold Spring Harbour Laboratory (CSHL) Meetings: PTEN Pathways & Targets, Gene Expression and 

Signaling in the Immune System, Molecular Chaperones and Stress Responses, and Neuronal Circuits. 

We expect the author similarity metrics to highlight speakers from the same meeting as being more 

similar to one another than to speakers in another meeting. As before, we see that the JACCARD score is 

the most effective overall, again successfully identifying speakers from the same meeting with an 

accuracy of 0.76 (See Figure 5-8). The performance of the other metrics, including the top 20 MeSH term 

profiles, also achieve accuracy from 0.60 to 0.67. Again, using the top 20 MeSH terms means that links 

found between authors involve very strongly associated MeSH terms, however the number of terms 

that can be compared between authors is very limited, resulting in the links between authors involve 

only up to three shared MeSH terms (See Figure 5-9). 

Methods 

Computing p-values 

To compute the association of MeSH terms to an author, we extract from PubMed all articles for 

the author. P-values are then computed based on the frequency of occurrence of the MeSH term 

amongst the articles for the author as compared with the occurrences of the MeSH term in all of 

PubMed, using the Fisher Exact Test. We use this methodology to associate authors with biomedical 

themes in their published research, just as we associate genes, diseases and chemical compounds to 

their relevant biomedical topics in our previous work (Cheung et al., 2012). As we consider all authors in 

PubMed, the background selected in this case is the set of all PubMed articles. 
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MeSHOP Bit-Vectors 

We apply two simplifications to drastically reduce the computation time of finding similar 

authors, especially important when comparing against a set of over half a million authors. We consider a 

filtered subset of n=1000 MeSH terms (of the 26 142 terms of MeSH 2011). MeSH terms vary widely in 

their annotation to PubMed articles (see Figure 5-11), therefore we focus on the most strongly 

associated MeSH terms based on average associated p-value. For each MeSH term i, we further simplify 

the profile – rather than the storing the p-value for the term, we compare the p-value to a predefined 

significance threshold ti and only store a single bit:  the bit is 1 if i is present in the profile and has a p-

value less than ti, otherwise the bit is 0. This reduces each profile to a vector of 1000 bits, which we can 

compare much more quickly than the original profiles, where any of MeSH terms could be present as a 

numeric 32-bit value. 

The MeSH terms are assigned to one or more categories, each of which arranges the terms in a 

hierarchy, linking a general term to a more specific term in a parent-child relationship. We minimize 

overlaps in topic areas by selecting all MeSH terms from the same depth in the tree (being the same 

number of degrees removed from the topmost terms in the category). We select terms from tier 4, 

comprising 9608 MeSH terms, to provide a balance of specificity MeSH terms and coverage of 

biomedical authors. 

As seen in the example MeSH term distributions in Figure 5-3, for each MeSH term, a substantial 

fraction of authors are weakly associated to each MeSH term with a p-value near 1.0. To remove these 

weakly associated authors, we employ p-value thresholds. However, customary p-value cut-offs such as 

0.05 prove too aggressive, as they exclude a large number of authors with an intermediate level of 

association, rendering the bitvectors uninformative for a large fraction of authors. Therefore, to focus 

on the most representative MeSH terms for each author while also covering the largest number of 

authors, we use the overall average as a threshold, which is a threshold sufficiently high allows the 

inclusion of a large fraction of authors. 

Bit-Vector Comparison 

To compare these approximate profiles, we contrast the performance of two metrics. The first 

counts all the bits that are the same between two bitvector profiles p and q: 

 
 )),(((),( qpXORNOTBITCOUNTqpALLBITS 
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This metric emphasizes both the strongly associated terms in in both profiles, as well as the 

terms that are not strongly associated to both profiles. However, on consequence of the low prevalence 

of strongly associated MeSH terms, as seen in Figure 5-2, is that a large fraction of the bits in all profiles 

are zero, and therefore most of the bits matched are the zeroes. 

The second metric counts only the bits set to one that are shared by both profiles: 

 

This metric only counts the bits that are set to one in both p and q. In contrast to ALLBITS(p,q), 

ONEBITS(p,q) focuses only the MeSH terms strongly associated to both authors. However, the resulting 

score is biased as authors with more bits set to one will tend to have higher scores. 

To normalise for the differing number of bits set to one in the profiles, we consider the Jaccard 

metric: 

 

This metric compares all the bits set to one in either p or q, to the number of bits set to one in 

both p and q. Therefore, large profiles that are very different will be penalised, and the best scoring 

profiles are the ones which have many overlapping terms and very other terms that do not overlap. 

To demonstrate these metrics are effective approximations of full profile similarity comparisons, 

we correlate these scores with actual author similarity scores calculated for the two different validation 

subsets in the following sections. The domain of authors for this analysis consisted of authors with a 

minimum of 15 articles and a maximum of 1000 articles, limiting the pool to authors with a substantial 

body of associated literature, while eliminating very general names which are likely the combination of 

several author entities. 

Most Significant Terms  

As a second method to approximately compare author MeSHOPs, we examine the most specific 

and significant terms associated with each author’s profile. For each author, we extracted the 20 most 

significant MeSH terms, regardless of position in the hierarchy, as measured by the p-value associated 
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with the term. To compare authors, we measure the number of overlapping terms among the top 20 

MeSH terms for the pair of authors compared. 

Validation Sets 

We expect authors from the same research domain to be more similar to one another than 

authors from different domains. We select three distinct domains – Genetics, Oncology and Psychiatry – 

and compare authors from these domains. For each of the domains, we select five journals specific to 

the field from the top-ranking journals listed in the ISI Web of Knowledge (see Table 5-4). From each 

journal, we select the 1000 authors associated to the most articles published in the journal after 2005. 

We then pool all the authors from the five journals for a domain as the authors for the domain. Authors 

which occur in the lists for multiple domains are excluded, to prevent ambiguity arising from 

interdisciplinary authors. We then evaluate the ROC of the similarity metrics at measuring similarity of 

pairs of authors for a particular domain. Relationships where both authors from the particular domain 

are treated as “true positive” relationships for the validation, and all relationships of authors from the 

particular domain to authors in other domains are considered “true negatives”. The ROC AUC therefore 

measures the accuracy of recovering authors from a particular domain. 

As a case study, we compare principal investigators from four institutions – the Centre for 

Molecular Medicine and Therapeutics, the Genome Sciences Centre, the Ontario Institute for Cancer 

Research and the UBC Department of Psychiatry. We extracted the subset of all authors with at least 

twenty articles, matching a full first name and last name from PubMed. 

We also look at speakers at four Cold Spring Harbour Laboratory Meetings. For each of the 

meetings, we extract twenty authors, each with at least 15 articles and a maximum of 1000 articles, 

matching a full first name and last name in PubMed. 

Implementation 

MEDLINE®/PubMed® data was downloaded from the National Library of Medicine as the 2011 

Baseline. The bitvectors of MeSH terms for authors were extracted and compared using Python scripts. 

The top MeSH terms for all authors were stored and compared using a MySQL database. 
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Future Directions 

Author disambiguation is an important area of research highly relevant to the generation of 

author MeSHOPs. In the past, authors in PubMed were only identified using their first initials and their 

last name. This results ambiguous cases when multiple authors having the same last name and sharing 

the same initials being indistinguishable in the system. Even with the introduction of storing full first 

names when available in 2002[NLM Technical Bulletin, Nov.-Dec. 2001], there are still cases where 

multiple people have the same first and last name. As well, as PubMed stores specifically the author 

names as provided by the publication, errors in spelling and the presence or absence of middle initials 

further confound this issue. Conversely, certain profiles, such as those generated from author names 

with extremely large numbers of publications, likely to actually be a list merged from several ambiguous 

authors. 

Author similarity has been used to disambiguate different people with the same author name in 

PubMed. MeSH terms have also been used for author disambiguation work such as seen in (Torvik & 

Smalheiser, 2009), who used MeSH term overlap while filtering using a list of MeSH terms, to determine 

whether two articles bearing the same or highly similar author names appear to be the same person. 

While author disambiguation has not yet been solved as of the writing of the thesis, preliminary 

solutions to this problem are being actively developed through solutions such as OpenID and 

ResearcherID (Bourne & Fink, 2008), and PubMed has been developing their own solution in the form of 

a PubMed Author ID(NLM, 2011). Resolving the author disambiguation issue will result in more relevant 

MeSHOPs encompassing the complete body of literature for authors. 

Another potential effect on an author’s MeSHOP is the shifts in focus of research direction for 

an author over their career. Examining cross-sections of the longitudinal evolution could be used to 

differentiate different stages of an author’s career. Alternatively, articles could be weighted by date, 

allowing the MeSHOP to focus on an author’s more current work and assist in identifying associations 

that are current. 

Our method examines the large, publically available data of MEDLINE®/PubMed® and the 

curated MeSH terms. Another source of information about the research articles and authors are citation 

indexes such as Sciverse Scopus and Web of Science. While not providing indexes of the topics related to 

the articles indexes, they instead provide bibliographical citation information. Author similarity has also 
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been previously studied in medical informatics using author co-citation analysis (Andrews, 2003), 

grouping authors in a domain by their co-occurrence in bibliographies. Impact Factor and Eigenfactors 

are metrics commonly applied for bibliometric analysis applied to to identify preeminent journals. 

Impact Factor is derived from the citation frequency (Dong, Loh, & Mondry, 2005), while Eigenfactor 

looks at a weighted network of citations(Rizkallah & Sin, 2010). For authors, H-Index combines citation 

rate and number of authored articles to evaluate the scientific impact of an author’s research(Hirsch, 

2005). Measures of author influence could be incorporated in the author analysis to highlight highly 

influential related authors in the list of similar authors.  

Another closely related domain to the MeSHOPs for authors studied are MeSHOPs for 

biomedical journals. Journal MeSHOPs can also be compared, providing an automated, unbiased view of 

the relationships between the journals based on their published articles. This allows identifying journals 

by their most outstanding topics, and provides a mechanism for matching journals to authors through 

their biomedical subject areas. 

While the techniques described here demonstrate that large-scale profile comparison is now 

feasible, further performance improvements are still possible. The similarity comparisons are 

implemented in system-independent Python, however, further performance improvements could be 

gained by rewriting the bit-comparison routines to take advantage of hardware-specific bit-

manipulation features. As well, each author-author comparison is an independent task, and therefore 

could be parallelised if a cluster was available to the webserver. 

Conclusion 

MeSHOPs provide a direct analysis of the primary literature for biomedical authors, extracting 

unusually prevalent annotation directly from the author’s work. To allow comparison of authors from 

the extremely large pool of biomedical authors in PubMed, we implement two approximations of the 

full profile comparison. We examine bitvectors of the on thousand lowest mean p-values, and compare 

all authors directly on these common terms. Alternatively, we look at the twenty most significant p-

values for each author and compare the overlap of these terms. This allows all the most specific MeSH 

terms related to each author to be used. These methods highlight that even extremely large sets of 

related entities can be compared efficiently, and demonstrate the effectiveness of computational 

methods to discover new relationships between these entities.  
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Figure 5-1. Histogram of the Authors by the Count of their Publications in PubMed.  The number of 
authors exponentially decreases, with over 3.4 million authors having a single citation rapidly declining to 266,000 
authors having five citations. 
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Figure 5-2. MeSH Terms vs. Average p-value. Each point represents a MeSH term, with the number of 
authors having the MeSH term on the x-axis, and the average p-value for the MeSH term on the y-axis. Colour 
indicates the number of terms in the hexagonal cell. A) The average p-value among all the authors with the term is 
plotted against the number of authors with the term. B) MeSH terms are plotted again where with the number of 
authors having the MeSH term on the x-axis, but the average p-value on the y-axis in this case also considers all 
authors not being annotated with the MeSH term as having an effective p-value of 1. 
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Figure 5-3. Frequency Polygon of the p-values for Several MeSH Terms. Frequency of authors associated 
to MeSH terms taken from various tiers of the MeSH tree are shown at each p-value level. For example, for 
“immunoassay”, we see that there are over 20,000 authors with the term “immunoassay” at p-value of about 0.35. 
Far fewer authors have “immunoassay” at p-values 0.6 through to 0.9, but there is another of concentration of 
authors that have the term with a p-value near 1.0 
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Figure 5-4. Heatmap of Co-publication Rates of Principal Investigators from Four Institutions. 
Institutions covered were the Centre for Molecular Medicine and Therapeutics, the Genome Sciences Centre, the 
Ontario Institute for Cancer Research and UBC Department of Psychiatry. Colour palette ranges from purple (no 
co-publications) through dark blue and green to yellow and pale orange indicating the greatest number of co-
publications. Nearly all authors have no common publications. 
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Figure 5-5. Similarity Matrix for Principal Investigators from Four Institutions.  Colour indicates the 
degree of similarity as measured by the JACCARD metric. Full names are listed on the right hand y-axis and last 
names (in the same order) are listed on the x-axis. The left hand colours on the y-axis indicate the institution – 
CMMT (turquoise), GSC (pale blue), OICR (orange) and UBC Dept. of Psychiatry (purple). 
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Figure 5-6. Comparing Author MeSHOPs Using their Top 20 MeSH.  Colour indicates the degree of 
similarity as measured by the number of overlapping MeSH terms among the top 20 MeSH terms for the profiles 
compared. Full names are listed on the right hand y-axis and last names (in the same order) are listed on the x-axis 
The left hand colours on the y-axis indicate the institution – CMMT (turquoise), GSC (pale blue), OICR (orange) and 
UBC Dept. of Psychiatry (purple). 
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Figure 5-7. Top 20 MeSHOP Term Overlaps Between Three Authors. Shown here are the top 20 MeSHOP 
terms, and the overlaps between three biomedical authors. MacVicar and Murphy are affiliated with UBC 
Psychiatry, whereas as Snutch is a researcher at the Genome Sciences Centre. 
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Figure 5-8. Network of CSHL Meeting Speakers Linked by JACCARD Score. Nodes are coloured by the 
CSHL meeting the speaker was identified from: PTEN Pathways & Targets (green), Gene Expression and Signaling in 
the Immune System (red), Molecular Chaperones and Stress Responses (blue), and Neuronal Circuits (purple). The 
colour of the band is a mix of the colours of the speakers involved, and the thickness indicates the magnitude of 
the JACCARD Score for the association. Only associations with JACCARD score greater than 0.20 are shown here. 
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Figure 5-9. Network of CSHL Meeting Speakers Linked by Top 20 MeSH Term Overlap Score. Nodes are 
coloured by the CSHL meeting the speaker was identified from: PTEN Pathways & Targets (red), Gene Expression 
and Signaling in the Immune System (purple), Molecular Chaperones and Stress Responses (green), and Neuronal 
Circuits (blue). The colour of the band is a mix of the colours of the speakers involved, and the thickness indicates 
the number of overlapping MeSH terms. 
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Figure 5-10. JACCARD Similarity Using the 1000-bit Profile Bit-vector Against the L2 distance Score using 
the Full MeSHOPs.  All pairwise author-author comparison scores for the authors of the CMMT/OICR/GSC/UBC 
Dept of Psych validation set are shown here. 
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Figure 5-11 Distribution of PubMed Articles Associated to MeSH terms. The distribution of the 

number of articles for the 25 562 MeSH terms from 2010 MeSH are plotted in this frequency polygon. 
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Table 5-1. Performance of Author Similarity for Identifying Author Research Domain. Receiver Operating 
Characteristic Area Under the Curve (ROC AUC) Scores demonstrate the accuracy of profile similarity comparison 
at differentiating authors within a research area from authors in other research areas. This compares 3749 authors 
in Genetics, 4807 authors in Oncology and 4244 authors in Psychiatry. 

 Genetics Oncology Psychiatry 

JACCARD 0.75 0.78 0.74 

ALLBITS x ONEBITS 0.68 0.78 0.68 

ONEBITS 0.65 0.77 0.65 

ALLBITS 0.65 0.53 0.65 

Top 20 MeSH Overlap 0.56 0.56 0.56 
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Table 5-2. Author Co-publication Counts.  Number of co-publications for principal investigators from the 
CMMT, GSC, OICR and UBC Dept. of Psychiatry. Author pairs with at least one co-publication are listed, sorted by 
number of articles. Each author pair is ordered alphabetically by last name – for example, JONES, STEVEN J M (SJ) | 
MARRA, MARCO A (MA) is listed rather than MARRA, MARCO A (MA) | JONES, STEVEN J M (SJ). 

Principal Investigators  Articles 

HAYDEN, MICHAEL R (MR) LEAVITT, BLAIR R (BR) 42 

LAM, RAYMOND W (RW) YATHAM, LAKSHMI N (LN) 32 

JONES, STEVEN J M (SJ) MARRA, MARCO A (MA) 31 

HOLT, ROBERT A (RA) MARRA, MARCO A (MA) 25 

HOLT, ROBERT A (RA) JONES, STEVEN J M (SJ) 16 

HAYDEN, MICHAEL R (MR) RAYMOND, LYNN A (LA) 16 

JONES, STEVEN J M (SJ) MARRA, MARCO A (MA) 12 

LEAVITT, BLAIR R (BR) RAYMOND, LYNN A (LA) 7 

MURPHY, TIMOTHY H (TH) RAYMOND, LYNN A (LA) 6 

JONES, STEVEN J M (SJ) MARRA, MARCO A (MA) 6 

EARLE, CRAIG C (CC) GRUNFELD, EVA (E) 5 

SIMPSON, ELIZABETH M 
(EM) 

WASSERMAN, WYETH W 
(WW) 

4 

HOLT, ROBERT A (RA) JONES, STEVEN J M (SJ) 4 

MARRA, MARCO A (MA) SADAR, MARIANNE D (MD) 3 

MARRA, MARCO A (MA) MCPHERSON, JOHN D (JD) 3 

JONES, STEVEN J M (SJ) SIMPSON, ELIZABETH M (EM) 3 

JONES, STEVEN J M (SJ) SADAR, MARIANNE D (MD) 3 

HUDSON, THOMAS J (TJ) STEIN, LINCOLN D (LD) 3 

HUDSON, THOMAS J (TJ) PALMER, LYLE J (LJ) 3 

HOLT, ROBERT A (RA) SIMPSON, ELIZABETH M (EM) 3 

MARRA, MARCO A (MA) SIMPSON, ELIZABETH M (EM) 2 

LEAVITT, BLAIR R (BR) SIMPSON, ELIZABETH M (EM) 2 

JONES, STEVEN J M (SJ) WASSERMAN, WYETH W 
(WW) 

2 

HUDSON, THOMAS J (TJ) MCPHERSON, JOHN D (JD) 2 

HOLT, ROBERT A (RA) WASSERMAN, WYETH W 
(WW) 

2 

HOLT, ROBERT A (RA) LEAVITT, BLAIR R (BR) 2 

HOLT, ROBERT A (RA) HONER, WILLIAM G (WG) 2 

HAYDEN, MICHAEL R (MR) SIMPSON, ELIZABETH M (EM) 2 

HAYDEN, MICHAEL R (MR) MURPHY, TIMOTHY H (TH) 2 

MCPHERSON, JOHN D (JD) STEIN, LINCOLN D (LD) 1 

MARRA, MARCO A (MA) WASSERMAN, WYETH W 
(WW) 

1 

MARRA, MARCO A (MA) STEIN, LINCOLN D (LD) 1 

KARSAN, ALY (A) MARRA, MARCO A (MA) 1 

JONES, STEVEN J M (SJ) MCPHERSON, JOHN D (JD) 1 

JANG, KERRY L (KL) YATHAM, LAKSHMI N (LN) 1 



 

148 

 

Principal Investigators  Articles 

JANG, KERRY L (KL) LAM, RAYMOND W (RW) 1 

HONER, WILLIAM G (WG) YATHAM, LAKSHMI N (LN) 1 

HONER, WILLIAM G (WG) LEAVITT, BLAIR R (BR) 1 

HONER, WILLIAM G (WG) LAM, RAYMOND W (RW) 1 

HONER, WILLIAM G (WG) JANG, KERRY L (KL) 1 

HOLT, ROBERT A (RA) SADAR, MARIANNE D (MD) 1 

HAYDEN, MICHAEL R (MR) WASSERMAN, WYETH W 
(WW) 

1 

HAYDEN, MICHAEL R (MR) HUDSON, THOMAS J (TJ) 1 

HAYDEN, MICHAEL R (MR) HONER, WILLIAM G (WG) 1 

HAYDEN, MICHAEL R (MR) HOLT, ROBERT A (RA) 1 

HAIDER, MASOOM A (MA) YAFFE, MARTIN J (MJ) 1 

GOLDOWITZ, DAN (D) LEAVITT, BLAIR R (BR) 1 

GOLDOWITZ, DAN (D) HAYDEN, MICHAEL R (MR) 1 

DANCEY, JANET (J) EARLE, CRAIG C (CC) 1 

BOUTROS, PAUL C (PC) STEIN, LINCOLN D (LD) 1 

BOUTROS, PAUL C (PC) MCPHERSON, JOHN D (JD) 1 

BOUTROS, PAUL C (PC) HUDSON, THOMAS J (TJ) 1 

BELL, JOHN C (JC) WOUTERS, BRADLY G (BG) 1 
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Table 5-3. Top 20 MeSH Term Overlap Counts. Number of overlapping terms, of the Top 20 MeSH terms 
from their MeSHOPs, for principal investigators analysed from the CMMT, GSC, OICR and UBC Dept. of Psychiatry. 
Each author pair is arranged alphabetically by last name. For example, JONES, STEVEN J M (SJ) | MARRA, MARCO A 
(MA) is listed rather than MARRA, MARCO A (MA) | JONES, STEVEN J M (SJ). 

Principal Investigators  Terms 

JONES, STEVEN J M (SJ) MARRA, MARCO A (MA) 7 

HOLT, ROBERT A (RA) JONES, STEVEN J M (SJ) 7 

HAYDEN, MICHAEL R (MR) LEAVITT, BLAIR R (BR) 7 

SIMPSON, ELIZABETH M 
(EM) 

WASSERMAN, WYETH W 
(WW) 

6 

LAM, RAYMOND W (RW) YATHAM, LAKSHMI N (LN) 6 

EARLE, CRAIG C (CC) GRUNFELD, EVA (E) 6 

MURPHY, TIMOTHY H (TH) SNUTCH, TERRANCE P (TP) 3 

MARRA, MARCO A (MA) STEIN, LINCOLN D (LD) 3 

MACVICAR, BRIAN A (BA) SNUTCH, TERRANCE P (TP) 3 

MACVICAR, BRIAN A (BA) MURPHY, TIMOTHY H (TH) 3 

LEAVITT, BLAIR R (BR) RAYMOND, LYNN A (LA) 3 

HOLT, ROBERT A (RA) MARRA, MARCO A (MA) 3 

HOLT, ROBERT A (RA) HONER, WILLIAM G (WG) 3 

STEIN, LINCOLN D (LD) WASSERMAN, WYETH W 
(WW) 

2 

MCPHERSON, JOHN D (JD) SIMPSON, ELIZABETH M (EM) 2 

MCPHERSON, JOHN D (JD) OUELLETTE, B F (BF) 2 

LEAVITT, BLAIR R (BR) WASSERMAN, WYETH W 
(WW) 

2 

LEAVITT, BLAIR R (BR) SNUTCH, TERRANCE P (TP) 2 

LEAVITT, BLAIR R (BR) SIMPSON, ELIZABETH M (EM) 2 

JONES, STEVEN J M (SJ) WASSERMAN, WYETH W 
(WW) 

2 

HUDSON, THOMAS J (TJ) STEIN, LINCOLN D (LD) 2 

HOLT, ROBERT A (RA) SIMPSON, ELIZABETH M (EM) 2 

HOLT, ROBERT A (RA) MCPHERSON, JOHN D (JD) 2 

HAYDEN, MICHAEL R (MR) RAYMOND, LYNN A (LA) 2 

FENSTER, AARON (A) YAFFE, MARTIN J (MJ) 2 

DICK, JOHN E (JE) KARSAN, ALY (A) 2 

CRAIG, ANN MARIE (AM) HONER, WILLIAM G (WG) 2 

BOUTROS, PAUL C (PC) WASSERMAN, WYETH W 
(WW) 

2 

BELL, JOHN C (JC) KARSAN, ALY (A) 2 

RAYMOND, LYNN A (LA) SIMPSON, ELIZABETH M (EM) 1 

PALMER, LYLE J (LJ) YAFFE, MARTIN J (MJ) 1 

OUELLETTE, B F (BF) WASSERMAN, WYETH W 
(WW) 

1 

MURPHY, TIMOTHY H (TH) WASSERMAN, WYETH W 1 



 

150 

 

Principal Investigators  Terms 

(WW) 

MURPHY, TIMOTHY H (TH) RAYMOND, LYNN A (LA) 1 

MCPHERSON, JOHN D (JD) WASSERMAN, WYETH W 
(WW) 

1 

MCPHERSON, JOHN D (JD) STEIN, LINCOLN D (LD) 1 

MARRA, MARCO A (MA) SADAR, MARIANNE D (MD) 1 

MARRA, MARCO A (MA) MCPHERSON, JOHN D (JD) 1 

MACVICAR, BRIAN A (BA) RAYMOND, LYNN A (LA) 1 

LEAVITT, BLAIR R (BR) MURPHY, TIMOTHY H (TH) 1 

KARSAN, ALY (A) SIDHU, SACHDEV S (SS) 1 

KARSAN, ALY (A) MARRA, MARCO A (MA) 1 

JONES, STEVEN J M (SJ) SIMPSON, ELIZABETH M (EM) 1 

JONES, STEVEN J M (SJ) SADAR, MARIANNE D (MD) 1 

JONES, STEVEN J M (SJ) MCPHERSON, JOHN D (JD) 1 

JANG, KERRY L (KL) YATHAM, LAKSHMI N (LN) 1 

JANG, KERRY L (KL) YAFFE, MARTIN J (MJ) 1 

JANG, KERRY L (KL) SIMPSON, ELIZABETH M (EM) 1 

JANG, KERRY L (KL) PALMER, LYLE J (LJ) 1 

JANG, KERRY L (KL) LAM, RAYMOND W (RW) 1 

IVERSON, GRANT L (GL) YATHAM, LAKSHMI N (LN) 1 

IVERSON, GRANT L (GL) LAM, RAYMOND W (RW) 1 

HUDSON, THOMAS J (TJ) SIDHU, SACHDEV S (SS) 1 

HUDSON, THOMAS J (TJ) PALMER, LYLE J (LJ) 1 

HONER, WILLIAM G (WG) YATHAM, LAKSHMI N (LN) 1 

HONER, WILLIAM G (WG) RAYMOND, LYNN A (LA) 1 

HONER, WILLIAM G (WG) MACVICAR, BRIAN A (BA) 1 

HONER, WILLIAM G (WG) LEAVITT, BLAIR R (BR) 1 

HOLT, ROBERT A (RA) WASSERMAN, WYETH W 
(WW) 

1 

HOLT, ROBERT A (RA) STEIN, LINCOLN D (LD) 1 

HAYDEN, MICHAEL R (MR) WASSERMAN, WYETH W 
(WW) 

1 

HAYDEN, MICHAEL R (MR) SNUTCH, TERRANCE P (TP) 1 

HAYDEN, MICHAEL R (MR) SIMPSON, ELIZABETH M (EM) 1 

HAYDEN, MICHAEL R (MR) OUELLETTE, B F (BF) 1 

HAYDEN, MICHAEL R (MR) MURPHY, TIMOTHY H (TH) 1 

HAIDER, MASOOM A (MA) YAFFE, MARTIN J (MJ) 1 

HAIDER, MASOOM A (MA) JONES, STEVEN J M (SJ) 1 

GRUNFELD, EVA (E) SADAR, MARIANNE D (MD) 1 

GOLDOWITZ, DAN (D) WASSERMAN, WYETH W 
(WW) 

1 

GOLDOWITZ, DAN (D) SIMPSON, ELIZABETH M (EM) 1 

GOLDOWITZ, DAN (D) RAYMOND, LYNN A (LA) 1 
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Principal Investigators  Terms 

GOLDOWITZ, DAN (D) OUELLETTE, B F (BF) 1 

FENSTER, AARON (A) SADAR, MARIANNE D (MD) 1 

FENSTER, AARON (A) HAIDER, MASOOM A (MA) 1 

FENSTER, AARON (A) GRUNFELD, EVA (E) 1 

EARLE, CRAIG C (CC) HAIDER, MASOOM A (MA) 1 

DICK, JOHN E (JE) STEIN, LINCOLN D (LD) 1 

DANCEY, JANET (J) YAFFE, MARTIN J (MJ) 1 

DANCEY, JANET (J) HAIDER, MASOOM A (MA) 1 

DANCEY, JANET (J) EARLE, CRAIG C (CC) 1 

CRAIG, ANN MARIE (AM) WASSERMAN, WYETH W 
(WW) 

1 

CRAIG, ANN MARIE (AM) SNUTCH, TERRANCE P (TP) 1 

CRAIG, ANN MARIE (AM) SIMPSON, ELIZABETH M (EM) 1 

CRAIG, ANN MARIE (AM) SIDHU, SACHDEV S (SS) 1 

CRAIG, ANN MARIE (AM) MURPHY, TIMOTHY H (TH) 1 

CRAIG, ANN MARIE (AM) MCPHERSON, JOHN D (JD) 1 

CRAIG, ANN MARIE (AM) LEAVITT, BLAIR R (BR) 1 

CRAIG, ANN MARIE (AM) FENSTER, AARON (A) 1 

BOUTROS, PAUL C (PC) WOUTERS, BRADLY G (BG) 1 

BOUTROS, PAUL C (PC) STEIN, LINCOLN D (LD) 1 

BOUTROS, PAUL C (PC) HONER, WILLIAM G (WG) 1 

BOUTROS, PAUL C (PC) HAYDEN, MICHAEL R (MR) 1 

BELL, JOHN C (JC) WOUTERS, BRADLY G (BG) 1 

BELL, JOHN C (JC) LEAVITT, BLAIR R (BR) 1 

BELL, JOHN C (JC) HAYDEN, MICHAEL R (MR) 1 
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Table 5-4. Five Leading Journals from Genetics, Oncology and Psychiatry Selected for Validation. Five 
journals were selected from each of three different research categories in the ISI Web of Knowledge, by number of 
publications as well as for specificity to the subject category. The top 1000 authors from each of these journals, 
ranked by total publications in the journal after 2005, were selected to form our validation set.
Genetics Oncology Psychiatry 

BMC genomics Cancer research 
The American journal of 

psychiatry 

PLoS genetics 

Journal of clinical oncology : 

official journal of the American 

Society of Clinical Oncology 

Archives of general psychiatry 

Human molecular genetics Anticancer research Biological psychiatry 

American journal of medical 

genetics 
BMC cancer 

Journal of neurology, 

neurosurgery, and psychiatry 

Genetics 

International journal of 

radiation oncology, biology, 

physics 

The British journal of psychiatry 

: the journal of mental science 
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Table 5-5. Precision and Recall of the Domain-specific Relationships from MeSH Profile Overlap. 
Performance measures when examining relationships between authors where at least one of their top 20 MeSH 
terms of their MeSHOPs are overlapping .

 Genetics Oncology Psychiatry 

Precision 0.62 0.79 0.76 

Recall 0.14 0.15 0.15 
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Table 5-6. Performance of Author Similarity for Separating CSHL Speakers. Receiver Operating 
Characteristic Area Under the Curve (ROC AUC) Scores demonstrate the accuracy of profile similarity comparison 
at differentiating speakers from the same CSHL meeting from speakers from different meetings. This compares 20 
speakers from three different CSHL meetings. 

 CSHL Meeting Speakers 

JACCARD 0.76 

ALLBITS x ONEBITS 0.67 

ONEBITS 0.65 

ALLBITS 0.60 

Top 20 MeSH Overlap 0.64 
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Chapter 6: Conclusion 

Overview of the Thesis Work  

It is generally understood that, in its simplest terms, a thesis work is a description of the 

generation of a hypothesis and its subsequent validation.  As is the case in so many theses, the truth of 

the matter is that this thesis work can also be considered a scientific journey and its narration.  The 

journey began in the Introduction where the idea that the ever-increasing body of scientific literature is 

becoming so vast (over 20 million abstracts in PubMed), that a better method needed to be constructed 

in order to more efficiently mine the scientific literature for relevant information.  Taking cues from 

Bioinformatics, and leveraging the excellent heading assignments made by the scientific database 

curators, this thesis describes how I devised a method that employs computational biology and statistics 

to meaningfully determine and visualize associations between two entities of interest. 

Chapter 2 describes how MeSHOPs were generated for genes, diseases and vitamins in order to 

gather any novel relationships within each group.  The implementation and visualization of the 

computed relationships within each group were described, with it being clear that this technique was 

indeed useful for determining new relationships that would otherwise have been too overwhelming for 

conventional methods. 

With the MeSHOP technique having demonstrated both its utility and its validity, Chapter 3 

represents the logical step of using MeSHOPs to explore Gene-Disease relationships. We apply MeSHOPs 

to analyse the relationships between genes and diseases in the domains of diabetes and pancreatic 

cancer. In both cases the MeSHOP methodology supported existing research and predicted novel 

relationships, providing a valuable counterpoint to conventional methodology. 

In Chapter 4, I further refine the MeSHOP technique by using Drugs and Diseases as principal 

discovery entities.  In that respect, I devised ways to deal with problems of annotation bias in order to 

provide a more relevant description of present and predictive drug-disease interactions, with the 

implication for drug discovery by the latter being clearly understood. 

Chapter 5 represents a more personal application of MeSHOPs, finding associations between 

authors and their respective scientific pursuits.  This section demonstrated that some scientifically or 

medically relevant findings may be borne out by looking at the works of authors in related fields.  In 
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addition, this technique also indicates how some researchers may be considered of value in a new group 

or collaboration as their MeSHOPs profile indicates their contribution to a particular field or discipline 

that is not necessarily obvious. 

These five chapters combined represent the synthesis, validation and demonstration of a novel 

technique for data mining various databases to derive not only useful information, but to also derive 

new discoveries in work that, ironically, has already been done.  The utility, the time and effort saved, 

and the highlighting of new directions to explore, all based on the MeSHOP approach, is described in 

this thesis. 

Highlights of MeSHOP Research 

The thesis focuses on statistical over-representation of literature biomedical annotations for a 

given entity in a data vector termed a MeSH Over-representation Profile (MeSHOP). The information in 

these profiles can be compared to accurately predict novel associations between entities. The 

substantial knowledge sequestered in research articles is shown here to be computationally accessible 

through the rich manual curation of biomedical annotation provided in the MEDLINE database. Within 

the thesis we demonstrate that it is feasible to utilize the rich MeSH annotations across the entirety of 

the biomedical knowledge library, and to construct MeSHOPs and compare them for entire classes of 

entities such as drug compounds, human genes, diseases and authors. 

We quantitatively compare MeSHOPs for entities as numerical vectors, and evaluate 16 

measures of MeSHOP similarity, including three annotation-based baselines, over five validation sets. 

Euclidean distance of shared terms is found to be the best performing method across multiple data 

collections. The most effective MeSHOP similarity comparison metrics achieve over 16% accuracy over 

the best of these baselines. We confirm for drug-disease relationships the presence of a strong 

annotation bias in both the similarity scores and the validation sets. We formulate a method to both 

measure the degree of annotation of the entities, and compensate for the bias in the similarity scores. 

We develop and evaluate efficient vector comparison methods to handle the challenge of comparing on 

the order of 106 authors. 

Future Directions 

MeSHOPs demonstrate that the knowledge encoded in biomedical citations can be efficiently 

extracted to elucidate information for end-users as well as infer novel relationships. As an example of 
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high-throughput, comprehensive coverage of entities, we envision that up-to-date biomedical 

annotation profiles to eventually be readily available or computable for any combination of entity 

bibliography and biomedical vocabulary. These profiles would give researchers a rapid, easily visualized 

model of entity properties.  

Prevalence and widespread availability of annotation profiles could be used to inform 

biomedical search. MeSHOPs brings knowledge apparent to expert researchers to those without 

extensive knowledge in a particular field. For example, a researcher confronted with a list of genes and 

an interest in a specific topic represented in the MeSH hierarchy can immediately retrieve a ranked list 

of genes based on the enrichment of the given MeSH annotation in their profiles. In doing so, MeSHOPs 

allow clinicians to obtain an overview of the rapidly-changing landscape of biomedical research 

literature. It can provide clinicians with a view of the most pertinent topics covered in the recent 

research for an entity of interest – a disease diagnosis, a drug being prescribed, the results of a genetic 

test.  

The keywords highlighted in a MeSHOP can be combined with search technologies and be used 

to enable identification of specific articles related to the entity of interest. By supplying a MeSHOP for a 

topic of interest, researchers could retrieve newly published articles which have MeSH annotations 

overlaping with the query, ranked by the importance of the individual query terms. 

MeSHOPs demonstrate a direct, single term-by-term quantitative analysis of the association of a 

term with the entity of interest. Machine learning techniques could be used to learn the relative 

importance of all the terms in the hierarchy, by measuring their ability to predict future annotation. 

Dimensionality reduction techniques such as principal component analysis could be used to combine 

terms and reduce the dimensionality of the profiles. Expanding on our methods of filtering general 

terms in the presence of more specific terms, the significance analysis could also incorporate the 

relationships in the hierarchy of the vocabulary directly in the computation. 

MeSHOP analysis at this point considers the importance of each article to be the same. It has 

been argued that articles that deal with a wide variety of topics or entities are of lesser importance due 

to their lack of specificity. A large number of citations of an article may be an indicator of the 

importance of the article with respect to the topics it covers. As more recent research supersedes past 

results, emphasis could also be made for terms arising in more recent articles. MeSHOPs could therefore 
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be weighted to emphasise the differing levels of importance of the articles. The publication date and the 

degree of annotation for an article could be used to assign a recency and generality score for articles, 

and the citation network can be used to identify the most highly cited and connected articles. This could 

be incorporated directly using data from existing databases and metrics that estimate author, article or 

journal importance. Alternatively, just as MeSHOPs can be equally applied to biomedical topics or 

biomedical authors, existing methods of determining author importance in bibliometric knowledge 

networks could be adapted to examine the association of biomedical topics. Moving beyond a static 

reporting system, the process could be interactive, allowing the researcher to provide their own 

expertise and knowledge. Based on their experience, other prior knowledge – confidence in certain 

replicated experiments or removing retracted, dubious or inapplicable results – could be incorporated in 

the analysis. 

MeSHOP comparison demonstrates that similarities in the profiles can be used to link previously 

unassociated entities. One natural extension would be to apply existing machine learning techniques, 

adapted for the extremely large scale of available biomedical knowledge. This remains however a 

significant step away from being able to computationally reason and hypothesize about the connections. 

Emerging in informatics research are methods for semantic knowledge representation. One vision for 

the next generation internet has entities associated with properties that can be computationally 

manipulated and logically reasoned with in an algorithmic fashion. A grand challenge in the transition to 

a semantic internet is converting knowledge into a computable form. The MeSHOP procedures 

developed in this thesis may provide a suitable means to develop approximations to the semantic 

methods using the available annotations within the domain of biomedical informatics. Ultimately, with 

the availability of semantic knowledge linked to concepts, MeSHOP comparisons could one day be 

support the quantitative predictions and hypotheses with plausible reasoning – to not only simply 

connect disparate topics but open the “black box” and be able to support the predictions with the 

reasoning. 

 

MeSHOPs enable an objective, comprehensive view of the literature for any entity of interest, 

applying the indexed subject terms already present to inform about past and present research. As our 

knowledge grows more comprehensive and diverse, techniques that allow us to understand the 

important themes become increasingly important. As well, we demonstrate that biomedical annotation 
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knowledge can computationally inform hypotheses, while also providing a bibliometric view of the 

biases and directions of research. Using modern computational resources and techniques, MeSHOPs 

unlock the entirety of biomedical annotation knowledge as an accessible, information-rich resource. 

  



 

160 

 

Bibliography 

Adie, E. A., Adams, R. R., Evans, K. L., Porteous, D. J., & Pickard, B. S. (2005). Speeding disease gene 
discovery by sequence based candidate prioritization. BMC bioinformatics, 6(1), 55. 

Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L. C., et al. 
(2006). Gene prioritization through genomic data fusion. Nature biotechnology, 24(5), 537–544. 

Agarwal, P., & Searls, D. B. (2008). Literature mining in support of drug discovery. Briefings in 
Bioinformatics, 9(6), 479–492. 

Agarwal, P., & Searls, D. B. (2009). Can literature analysis identify innovation drivers in drug discovery? 
Nature reviews. Drug discovery, 8(11), 865–78. doi:10.1038/nrd2973 

Andrews, J. E. (2003). An author co-citation analysis of medical informatics. Journal of the Medical 
Library Association : JMLA, 91(1), 47–56. 

Andronis, C., Sharma, A., Virvilis, V., Deftereos, S., & Persidis, A. (2011). Literature mining, ontologies 
and information visualization for drug repurposing. Briefings in bioinformatics, 12(4), 357–68. 
doi:10.1093/bib/bbr005 

Aronson, A. R., & Lang, F.-M. (2010). An overview of MetaMap: historical perspective and recent 
advances. Journal of the American Medical Informatics Association : JAMIA, 17(3), 229–36. 
doi:10.1136/jamia.2009.002733 

Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: identifying and developing new uses for existing 
drugs. Nature reviews. Drug discovery, 3(8), 673–83. doi:10.1038/nrd1468 

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., et al. (2000). 
Gene Ontology: tool for the unification of biology. Nature genetics, 25(1), 25–29. 

Baroukh, C., Jenkins, S., Dannenfelser, R., & Ma’ayan, A. (2011). Genes2WordCloud: a quick way to 
identify biological themes from gene lists and free text. Source code for biology and medicine, 6, 
15. doi:10.1186/1751-0473-6-15 

Bodenreider, O. (2008). Biomedical ontologies in action: role in knowledge management, data 
integration and decision support. Yearbook of medical informatics, 67–79. 

Bodenreider, Olivier. (2004). The Unified Medical Language System (UMLS): integrating biomedical 
terminology. Nucleic acids research, 32(Database issue), D267–70. doi:10.1093/nar/gkh061 

Bourne, P. E., & Fink, J. L. (2008). I am not a scientist, I am a number. PLoS computational biology, 4(12), 
e1000247. doi:10.1371/journal.pcbi.1000247 



 

161 

 

Bundschus, M., Dejori, M., Stetter, M., Tresp, V., & Kriegel, H.-P. (2008). Extraction of semantic 
biomedical relations from text using conditional random fields. BMC bioinformatics, 9, 207. 
doi:10.1186/1471-2105-9-207 

Chang, A. a, Heskett, K. M., & Davidson, T. M. (2006). Searching the literature using medical subject 
headings versus text word with PubMed. The Laryngoscope, 116(2), 336–40. 
doi:10.1097/01.mlg.0000195371.72887.a2 

Chen, J., Xu, H., Aronow, B. J., & Jegga, A. G. (2007). Improved human disease candidate gene 
prioritization using mouse phenotype. BMC bioinformatics, 8, 392. doi:10.1186/1471-2105-8-392 

Cheung, W. A., Ouellette, B. F., & Wasserman, W. W. (2012). Quantitative biomedical annotation using 
Medical Subject Heading Over-representation Profiles (MeSHOPs). Manuscript Submitted for 
Publication (BMC Bioinformatics). 

Cornet, R., & de Keizer, N. (2008). Forty years of SNOMED: a literature review. BMC medical informatics 
and decision making, 8 Suppl 1, S2. doi:10.1186/1472-6947-8-S1-S2 

Davis, A. P., King, B. L., Mockus, S., Murphy, C. G., Saraceni-Richards, C., Rosenstein, M., Wiegers, T., et 
al. (2010). The Comparative Toxicogenomics Database: update 2011. Nucleic acids research, 1–6. 
doi:10.1093/nar/gkq813 

Davis, A. P., King, B. L., Mockus, S., Murphy, C. G., Saraceni-Richards, C., Rosenstein, M., Wiegers, T., et 
al. (2011). The Comparative Toxicogenomics Database: update 2011. Nucleic acids research, 
39(Database issue), D1067–72. doi:10.1093/nar/gkq813 

Dee, C. R. (2007). The development of the Medical Literature Analysis and Retrieval System (MEDLARS). 
Journal of the Medical Library Association : JMLA, 95(4), 416–25. doi:10.3163/1536-5050.95.4.416 

Deftereos, S. N., Andronis, C., Friedla, E. J., Persidis, A., & Persidis, A. (2011). Drug repurposing and 
adverse event prediction using high-throughput literature analysis. Wiley interdisciplinary reviews. 
Systems biology and medicine, 3(3), 323–34. doi:10.1002/wsbm.147 

Dennis, G., Sherman, B. T., Hosack, D. a, Yang, J., Gao, W., Lane, H. C., & Lempicki, R. a. (2003). DAVID: 
Database for Annotation, Visualization, and Integrated Discovery. Genome biology, 4(5), P3. 

Desai, J., Flatow, J. M., Song, J., Zhu, L. J., Du, P., Huang, C., Lin, S. M., et al. (2011). Advances in 
Computational Biology. (H. R. Arabnia, Ed.)Cancer, 680, 709–715. doi:10.1007/978-1-4419-5913-3 

DiMasi, J. (2001). Risks in new drug development: Approval success rates for investigational drugs. 
Clinical Pharmacology & Therapeutics, 69(5), 297–307. doi:10.1067/mcp.2001.115446 

Djebbari, A., Karamycheva, S., Howe, E., & Quackenbush, J. (2005). MeSHer: identifying biological 
concepts in microarray assays based on PubMed references and MeSH terms. Bioinformatics 
(Oxford, England), 21(15), 3324–6. doi:10.1093/bioinformatics/bti503 



 

162 

 

Doms, A., & Schroeder, M. (2005). GoPubMed: exploring PubMed with the Gene Ontology. Nucleic acids 
research, 33(Web Server issue), W783–6. doi:10.1093/nar/gki470 

Dong, P., Loh, M., & Mondry, A. (2005). The “impact factor” revisited. Biomedical digital libraries, 2, 7. 
doi:10.1186/1742-5581-2-7 

Driel, V., M.a, Cuelenaere, K., Kemmeren, P. P., Leunissen, J. A., Brunner, H. G., & Vriend, G. (2005). 
GeneSeeker: extraction and integration of human disease-related information from web-based 
genetic databases. Nucleic Acids Res., 33, W758-W761. 

 

Dudley, J. T., Sirota, M., Shenoy, M., Pai, R. K., Roedder, S., Chiang, a. P., Morgan, a. a., et al. (2011). 
Computational Repositioning of the Anticonvulsant Topiramate for Inflammatory Bowel Disease. 
Science Translational Medicine, 3(96), 96ra76–96ra76. doi:10.1126/scitranslmed.3002648 

Dudley, Joel T, Deshpande, T., & Butte, A. J. (2011). Exploiting drug-disease relationships for 
computational drug repositioning. Briefings in bioinformatics, 12(4). doi:10.1093/bib/bbr013 

Edwards, A. M., Isserlin, R., Bader, G. D., Frye, S. V., Willson, T. M., & Yu, F. H. (2011). Too many roads 
not taken. Nature, 470(7333), 163–5. doi:10.1038/470163a 

Errami, M., Sun, Z., Long, T. C., George, A. C., & Garner, H. R. (2009). Deja vu: a database of highly similar 
citations in the scientific literature. Nucleic acids research, 37(Database issue), D921–4. 
doi:10.1093/nar/gkn546 

Errami, M., Wren, J. D., Hicks, J. M., & Garner, H. R. (2007). eTBLAST: a web server to identify expert 
reviewers, appropriate journals and similar publications. Nucleic acids research, 35(Web Server 
issue), W12–5. doi:10.1093/nar/gkm221 

Fedorov, O., Müller, S., & Knapp, S. (2010). The (un)targeted cancer kinome. Nature chemical biology, 
6(3), 166–169. doi:10.1038/nchembio.297 

Fjell, C. D., Jenssen, H., Hilpert, K., Cheung, W. A., Panté, N., Hancock, R. E. W., & Cherkasov, A. (2009). 
Identification of novel antibacterial peptides by chemoinformatics and machine learning. Journal of 
medicinal chemistry, 52(7), 2006–15. doi:10.1021/jm8015365 

Freudenberg, J., & Propping, P. (2002). A similarity-based method for genome-wide prediction of 
disease-relevant human genes. Bioinformatics, 18(Suppl 2), S110–S115. 

Frijters, R., van Vugt, M., Smeets, R., van Schaik, R., de Vlieg, J., & Alkema, W. (2010). Literature Mining 
for the Discovery of Hidden Connections between Drugs, Genes and Diseases. (A. Rzhetsky, 
Ed.)PLoS Computational Biology, 6(9), e1000943. doi:10.1371/journal.pcbi.1000943 

Funk, M., & Reid, C. (1983). Indexing consistency in MEDLINE. Bull Med Libr Assoc, 71(2), 176–183. 



 

163 

 

Gaulton, K. J., Mohlke, K. L., & Vision, T. J. (2007). A computational system to select candidate genes for 
complex human traits. Bioinformatics, 23(9), 1132–1140. doi:10.1093/bioinformatics/btm001 

Gillis, J., & Pavlidis, P. (2011). The Impact of Multifunctional Genes on “Guilt by Association” Analysis. (J. 
Bader, Ed.)PLoS ONE, 6(2), e17258. doi:10.1371/journal.pone.0017258 

Good, B. M., Howe, D. G., Lin, S. M., Kibbe, W. a, & Su, A. I. (2011). Mining the Gene Wiki for functional 
genomic knowledge. BMC genomics, 12(1), 603. doi:10.1186/1471-2164-12-603 

Good, B. M., Kawas, E. a, Kuo, B. Y.-L., & Wilkinson, M. D. (2006). iHOPerator: user-scripting a 
personalized bioinformatics Web, starting with the iHOP website. BMC bioinformatics, 7, 534. 
doi:10.1186/1471-2105-7-534 

Gottlieb, A., Stein, G. Y., Ruppin, E., & Sharan, R. (2011). PREDICT: a method for inferring novel drug 
indications with application to personalized medicine. Molecular systems biology, 7(496), 496. 
doi:10.1038/msb.2011.26 

Greenberg, S. J., & Gallagher, P. E. (2009). The great contribution: Index Medicus, Index-Catalogue, and 
IndexCat. Journal of the Medical Library Association : JMLA, 97(2), 108–13. doi:10.3163/1536-
5050.97.2.007 

Grossmann, S., Bauer, S., Robinson, P. N., & Vingron, M. (2007). Improved detection of 
overrepresentation of Gene-Ontology annotations with parent child analysis. Bioinformatics 
(Oxford, England), 23(22), 3024–31. doi:10.1093/bioinformatics/btm440 

Gunther, S., Kuhn, M., Dunkel, M., Campillos, M., Senger, C., Petsalaki, E., Ahmed, J., et al. (2008). 
SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids 
Research, 36(Database issue), D919. doi:10.1093/nar/gkm862 

Hamosh, A., Scott, A. F., Amberger, J. S., Bocchini, C. a, & McKusick, V. a. (2005). Online Mendelian 
Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic acids 
research, 33(Database issue), D514–7. doi:10.1093/nar/gki033 

Hewett, M., Oliver, D., Rubin, D., Easton, K., Stuart, J., Altman, R., & Klein, T. (2002). PharmGKB: the 
Pharmacogenetics Knowledge Base. Nucleic Acids Research, 30(1). 

Hirsch, J. E. (2005). An index to quantify an individual ’ s scientific research output. Sciences-New York, 
102(46), 16569–16572. 

Hirschman, L., Hayes, W. S., & Valencia, A. (2007a). Chapter 3 Knowledge Acquisition from the 
Biomedical Literature. Knowledge Acquisition (pp. 58–81). 

Hirschman, L., Hayes, W., & Valencia, A. (2007b). Knowledge Acquisition from the Biomedical Literature. 
Semantic Web (pp. 53–81). doi:10.1007/978-0-387-48438-9_4 



 

164 

 

Ho Sui, S. J., Fulton, D. L., Arenillas, D. J., Kwon, A. T., & Wasserman, W. W. (2007). oPOSSUM: integrated 
tools for analysis of regulatory motif over-representation. Nucleic acids research, 35(Web Server 
issue), W245–52. doi:10.1093/nar/gkm427 

Hoffmann, R., & Valencia, A. (2004). A gene network for navigating the literature. Nature genetics, 36(7), 
664. 

Howe, A. D., Costanzo, M., Fey, P., Gojobori, T., Hide, W., Hill, D. P., Kania, R., et al. (2010). Big data : The 
future of biocuration, 455(7209), 47–50. doi:10.1038/455047a.Big 

Jani, S. D., Argraves, G. L., Barth, J. L., & Argraves, W. S. (2010). GeneMesh: a web-based microarray 
analysis tool for relating differentially expressed genes to MeSH terms. BMC bioinformatics, 11, 
166. doi:10.1186/1471-2105-11-166 

Jensen, L. J., Saric, J., & Bork, P. (2006). Literature mining for the biologist : from information retrieval to 
biological discovery. Nature Reviews Genetics, 7(February 2006), 119–129. doi:10.1038/nrg1768 

Jenuwine, E. S., & Floyd, J. a. (2004). Comparison of Medical Subject Headings and text-word searches in 
MEDLINE to retrieve studies on sleep in healthy individuals. Journal of the Medical Library 
Association : JMLA, 92(3), 349–53. 

Jones, S., Zhang, X., Parsons, D. W., Lin, J. C.-H., Leary, R. J., Angenendt, P., Mankoo, P., et al. (2008). 
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 
(New York, N.Y.), 321(5897), 1801–6. doi:10.1126/science.1164368 

Khatri, P., & Drăghici, S. (2005). Ontological analysis of gene expression data: current tools, limitations, 
and open problems. Bioinformatics (Oxford, England), 21(18), 3587–95. 
doi:10.1093/bioinformatics/bti565 

Kim, H., Park, H., & Drake, B. (2007). Extracting unrecognized gene relationships from the biomedical 
literature via matrix factorizations. BMC Bioinformatics, 8(suppl 9), S6. 

Kinnings, S. L., Liu, N., Buchmeier, N., Tonge, P. J., Xie, L., & Bourne, P. E. (2009). Drug discovery using 
chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and 
extensively drug resistant tuberculosis. PLoS computational biology, 5(7), e1000423. 
doi:10.1371/journal.pcbi.1000423 

Klein, T. E., Chang, J. T., Cho, M. K., Easton, K. L., Fergerson, R., Hewett, M., Lin, Z., et al. (2001). 
Integrating genotype and phenotype information: an overview of the PharmGKB project. 
Pharmacogenetics Research Network and Knowledge Base. The pharmacogenomics journal, 1(3), 
167–70. 

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J., et al. (2009). 
Circos: an information aesthetic for comparative genomics. Genome research, 19(9), 1639–45. 
doi:10.1101/gr.092759.109 



 

165 

 

Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J., & Bork, P. (2010). A side effect resource to capture 
phenotypic effects of drugs. Molecular systems biology, 6(343), 343. doi:10.1038/msb.2009.98 

Kumar, V. (2011). Omics and Literature Mining. In B. Mayer (Ed.), Bioinformatics for Omics Data: 
Methods and Protocols (Vol. 719, pp. 457–477). Totowa, NJ: Humana Press. doi:10.1007/978-1-
61779-027-0 

Lage, K., Karlberg, E. O., Størling, Z. M., Ólason, P. Í., Pedersen, A. G., Rigina, O., Hinsby, A. M., et al. 
(2007). A human phenome-interactome network of protein complexes implicated in genetic 
disorders. Nature Biotechnology, 25(3), 309–316. doi:10.1038/nbt1295 

Leong, H., & Kipling, D. (2009). Text-based over-representation analysis of microarray gene lists with 
annotation bias. Nucleic Acids Research, 37(11). 

Li, S., Wu, L., & Zhang, Z. (2006). Constructing biological networks through combined literature mining 
and microarray analysis: a LMMA approach. Bioinformatics (Oxford, England), 22(17), 2143–50. 
doi:10.1093/bioinformatics/btl363 

Li, Y. Y., An, J., & Jones, S. J. M. (2006). A large-scale computational approach to drug repositioning. 
Genome informatics. International Conference on Genome Informatics, 17(2), 239–47. 

Li, Y. Y., An, J., & Jones, S. J. M. (2011). A Computational Approach to Finding Novel Targets for Existing 
Drugs. (P. E. Bourne, Ed.)PLoS Computational Biology, 7(9), e1002139. 
doi:10.1371/journal.pcbi.1002139 

Lipscomb, C. E. (2000). Medical Subject Headings (MeSH). Bulletin of the Medical Library Association, 
88(3), 265–6. 

Loscalzo, J., Kohane, I., & Barabasi, A.-L. (2007). Human disease classification in the postgenomic era: A 
complex systems approach to human pathobiology. Mol Syst Biol, 3. 

López-Bigas, N., & Ouzounis, C. a. (2004). Genome-wide identification of genes likely to be involved in 
human genetic disease. Nucleic acids research, 32(10), 3108–14. doi:10.1093/nar/gkh605 

Makrythanasis, P., & Antonarakis, S. E. (2011). From sequence to functional understanding: the difficult 
road ahead. Genome medicine, 3(4), 21. doi:10.1186/gm235 

Mees, S. T., Mardin, W. A., Wendel, C., Baeumer, N., Willscher, E., Senninger, N., Schleicher, C., et al. 
(2009). EP300--a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the 
pancreas. International journal of cancer. Journal international du cancer, 126(1), 114–24. 
doi:10.1002/ijc.24695 

Mottaz, A., Yip, Y. L., Ruch, P., & Veuthey, A.-L. (2008). Mapping proteins to disease terminologies: from 
UniProt to MeSH. BMC Bioinformatics, 9(suppl 5), S3. 

NLM. (2011). PubMed Author ID Project. NLM Technical Bulletin, (377), e2. 



 

166 

 

Nakazato, T., Bono, H., Matsuda, H., & Takagi, T. (2009). Gendoo: Functional profiling of gene and 
disease features using MeSH vocabulary. Nucleic Acids Research, 37(Web Server issue). 

Nakazato, T., Takinaka, T., Mizuguchi, H., Matsuda, H., Bono, H., & Asogawa, M. (2007). BioCompass: A 
novel functional inference tool that utilizes MeSH hierarchy to analyze groups of genes. In Silico 
Biology, 8(0006). 

Nelson, S., Johnston, D., Humphreys, B. L., Bean, C. A., & Green, R. (2001). Chapter 11 Relationships in 
Medical Subject Headings. Retrieved May 16, 2012, from 
http://www.nlm.nih.gov/mesh/meshrels.html 

Osborne, J. D., Flatow, J., Holko, M., Lin, S. M., Kibbe, W. a, Zhu, L. J., Danila, M. I., et al. (2009). 
Annotating the human genome with Disease Ontology. BMC genomics, 10 Suppl 1, S6. 
doi:10.1186/1471-2164-10-S1-S6 

Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., & Schacht, A. 
L. (2010). How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nature 
reviews. Drug discovery, 9(3), 203–14. doi:10.1038/nrd3078 

Perez-Iratxeta, C., Bork, P., & Andrade, M. A. (2002). Association of genes to genetically inherited 
diseases using data mining function. Molecular Biology, 31(May). doi:10.1038/ng895 

Perez-Iratxeta, C., Bork, P., & Andrade-Navarro, M. A. (2007). Update of the G2D tool for prioritization of 
gene candidates to inherited diseases. Nucleic Acids Research, 1–5. doi:10.1093/nar/gkm223 

Perez-Iratxeta, C., Wjst, M., Bork, P., & Andrade, M. A. (2005). G2D: a tool for mining genes associated 
with disease. BMC Genetics, 6, 45. 

Plake, C., & Schroeder, M. (2011). Computational polypharmacology with text mining and ontologies. 
Current pharmaceutical biotechnology, 12(3), 449–57. 

Prüfer, K., Muetzel, B., Do, H.-H., Weiss, G., Khaitovich, P., Rahm, E., Pääbo, S., et al. (2007). FUNC: a 
package for detecting significant associations between gene sets and ontological annotations. BMC 
bioinformatics, 8, 41. doi:10.1186/1471-2105-8-41 

Resnik, P. (1977). Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Evaluation, 
1. 

Rizkallah, J., & Sin, D. D. (2010). Integrative approach to quality assessment of medical journals using 
impact factor, eigenfactor, and article influence scores. PloS one, 5(4), e10204. 
doi:10.1371/journal.pone.0010204 

Rodríguez-Penagos, C., Salgado, H., Martínez-Flores, I., & Collado-Vides, J. (2007). Automatic 
reconstruction of a bacterial regulatory network using Natural Language Processing. BMC 
bioinformatics, 8, 293. doi:10.1186/1471-2105-8-293 



 

167 

 

Ruau, D., Mbagwu, M., Dudley, J. T., Krishnan, V., & Butte, A. J. (2011). Comparison of automated and 
human assignment of MeSH terms on publicly-available molecular datasets. Journal of biomedical 
informatics, 44 Suppl 1, S39–43. doi:10.1016/j.jbi.2011.03.007 

Sanseau, P., Agarwal, P., Barnes, M. R., Pastinen, T., Richards, J. B., Cardon, L. R., & Mooser, V. (2012). 
Use of genome-wide association studies for drug repositioning. Nature Biotechnology, 30(4), 317–
320. doi:10.1038/nbt.2151 

Sardana, D., Zhu, C., Zhang, M., Gudivada, R. C., Yang, L., & Jegga, A. G. (2011). Drug repositioning for 
orphan diseases. Briefings in bioinformatics. doi:10.1093/bib/bbr021 

Sarkar, I.N., Schenk, R., Miller, H., & Norton, C. N. (2009). LigerCat: using “MeSH clouds” from journal, 
article, or gene citations to facilitate the identification of relevant biomedical literature. 
Information Retrieval (Vol. 1, pp. 563–567). American Medical Informatics Association. 

Sarkar, Indra Neil, & Agrawal, A. (2006). Literature based discovery of gene clusters using phylogenetic 
methods. AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium, 689–93. 

Sarkar, Indra Neil, Schenk, R., Miller, H., & Norton, C. N. (2009). LigerCat : Using “ MeSH Clouds ” from 
Journal , Article , or Gene Citations to Facilitate the Identification of Relevant Biomedical Literature 
Center for Clinical and Translational Science , University of Vermont , Burlington , VT MBLWHOI 
Library , Marine. Information Retrieval, 1, 563–567. 

Sayers, E., Barrett, T., Benson, D., Bryant, S., Canese, K., Chetvernin, V., Church, D., et al. (2009). 
Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 
37(Database issue). 

Schneider, T. D., & Stephens, R. M. (1990). Sequence logos: a new way to display consensus sequences. 
Nucleic acids research, 18(20), 6097–100. 

Schriml, L. M., Arze, C., Nadendla, S., Chang, Y.-W. W., Mazaitis, M., Felix, V., Feng, G., et al. (2012). 
Disease Ontology: a backbone for disease semantic integration. Nucleic acids research, 
40(Database issue), D940–6. doi:10.1093/nar/gkr972 

Schuemie, M. J., & Kors, J. a. (2008). Jane: suggesting journals, finding experts. Bioinformatics (Oxford, 
England), 24(5), 727–8. doi:10.1093/bioinformatics/btn006 

Schwartz, S. (2003). MultiPipMaker and supporting tools: alignments and analysis of multiple genomic 
DNA sequences. Nucleic Acids Research, 31(13), 3518–3524. doi:10.1093/nar/gkg579 

Sirota, M., Dudley, J. T., Kim, J., Chiang, a. P., Morgan, a. a., Sweet-Cordero, a., Sage, J., et al. (2011a). 
Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression 
Data. Science Translational Medicine, 3(96), 96ra77–96ra77. doi:10.1126/scitranslmed.3001318 



 

168 

 

Sirota, M., Dudley, J. T., Kim, J., Chiang, a. P., Morgan, a. a., Sweet-Cordero, a., Sage, J., et al. (2011b). 
Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression 
Data. Science Translational Medicine, 3(96), 96ra77–96ra77. doi:10.1126/scitranslmed.3001318 

Sladek, R., Rocheleau, G., Rung, J., Dina, C., Shen, L., Serre, D., Boutin, P., et al. (2007). A genome-wide 
association study identifies novel risk loci for type 2 diabetes. Nature, 445(7130), 881–5. 
doi:10.1038/nature05616 

Smalheiser, N. R. (2012). Advances in Information Science Literature-Based Discovery : Beyond the ABCs. 
Journal of the American Society for Information Science, 63(2), 218–224. doi:10.1002/asi 

Snel, B., Lehmann, G., Bork, P., & Huynen, M. A. (2000). STRING: a web-server to retrieve and display the 
repeatedly occurring neighbourhood of a gene. Nucleic acids research, 28(18), 3442–4. 

Sonnhammer, E. L., & Durbin, R. (1995). A dot-matrix program with dynamic threshold control suited for 
genomic DNA and protein sequence analysis. Gene, 167(1-2), GC1–10. 

Srinivasan, P. (2004). Text mining: Generating hypotheses from MEDLINE. Journal of the American 
Society for Information Science and Technology, 55(5), 396–413. 

Swanson, D R. (1990). Somatomedin C and arginine: implicit connections between mutually isolated 
literatures. Perspectives in biology and medicine, 33(2), 157–86. 

Swanson, Don R, & Smalheiser, N. R. (1996). Undiscovered Public Knowledge : a Ten-Year Update. KDD 
(pp. 295–298). 

Taboada, M., Lalín, R., & Martínez, D. (2009). An automated approach to mapping external 
terminologies to the UMLS. IEEE transactions on bio-medical engineering, 56(6), 1598–605. 
doi:10.1109/TBME.2009.2015651 

Taniya, T., Tanaka, S., Yamaguchi-Kabata, Y., Hanaoka, H., Yamasaki, C., Maekawa, H., Barrero, R. a., et 
al. (2011). A prioritization analysis of disease association by data-mining of functional annotation of 
human genes. Genomics, 99(1), 1–9. doi:10.1016/j.ygeno.2011.10.002 

Tiffin, N, Adie, E., Turner, F., Brunner, H. G., Driel, V., M.a, Oti, M., et al. (2006). Computational disease 
gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. 
Nucleic Acids Res, 34, 3067–3081. 

Tiffin, Nicki, Andrade-Navarro, M. a, & Perez-Iratxeta, C. (2009). Linking genes to diseases: it’s all in the 
data. Genome medicine, 1(8), 77. doi:10.1186/gm77 

Tiffin, Nicki, Kelso, J. F., Powell, A. R., Pan, H., Bajic, V. B., & Hide, W. A. (2005). Integration of text- and 
data-mining using ontologies successfully selects disease gene candidates. Nucleic acids research, 
33(5), 1544–52. doi:10.1093/nar/gki296 

 



 

169 

 

Torvik, V. I., & Smalheiser, N. R. (2009). Author name disambiguation in MEDLINE. ACM Transactions on 
Knowledge Discovery from Data, 3(3), 1–29. doi:10.1145/1552303.1552304 

Trieschnigg, D., Pezik, P., Lee, V., de Jong, F., Kraaij, W., & Rebholz-Schuhmann, D. (2009). MeSH Up: 
effective MeSH text classification for improved document retrieval. Bioinformatics (Oxford, 
England), 25(11), 1412–8. doi:10.1093/bioinformatics/btp249 

Turner, F., Clutterbuck, D., & Semple, C. (2003). POCUS: mining genomic sequence annotation to predict 
disease genes. Genome biology, 4(11), R75. 

Wiegers, T. C., Davis, A. P., Cohen, K. B., Hirschman, L., & Mattingly, C. J. (2009). Text mining and manual 
curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD). 
BMC bioinformatics, 10, 326. doi:10.1186/1471-2105-10-326 

Wilkins, T., Gillies, R. A., & Davies, K. (2005). EMBASE versus MEDLINE for family medicine searches: can 
MEDLINE searches find the forest or a tree? Canadian family physician Médecin de famille 
canadien, 51, 848–9. 

Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., et al. (2008). 
DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic acids research, 
36(Database issue), D901–6. doi:10.1093/nar/gkm958 

Yang, L., & Agarwal, P. (2011). Systematic drug repositioning based on clinical side-effects. PloS one, 
6(12), e28025. doi:10.1371/journal.pone.0028025 

Yang, L., Xu, L., & He, L. (2009). A CitationRank algorithm inheriting Google technology designed to 
highlight genes responsible for serious adverse drug reaction. Bioinformatics (Oxford, England), 
25(17), 2244–50. doi:10.1093/bioinformatics/btp369 

Yao, L., Divoli, A., Mayzus, I., Evans, J. a., & Rzhetsky, A. (2011). Benchmarking Ontologies: Bigger or 
Better? (K. B. Cohen, Ed.)PLoS Computational Biology, 7(1), e1001055. 
doi:10.1371/journal.pcbi.1001055 

Yetisgen-Yildiz, M., & Pratt, W. (2009). A new evaluation methodology for literature-based discovery 
systems. Journal of biomedical informatics, 42(4), 633–43. doi:10.1016/j.jbi.2008.12.001 

Yu, S., van Vooren, S., Tranchevent, L.-C., de Moor, B., & Moreau, Y. (2008). Comparison of vocabularies, 
representations and ranking algorithms for gene prioritization by text mining. Bioinformatics, 
24(16), i119. 

 


