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Abstract

In wood engineering, lower quantile estimation is vital to the safety of the

construction with wood materials. In this thesis, we will first study the cen-

sored Weibull maximum likelihood estimate (MLE) of the lower quantile as

in the current industrial standard D5457 (ASTM, 2004a) from a statistical

point of view. According to our simulations, the lower quantile estimated by

the censored Weibull MLE with the 10th empirical percentile as the thresh-

old has a smaller mean squared error (MSE) than the intuitive parametric

or non-parametric quantile estimate. This advantage can be shown to be

achieved by a good balance between the variance and bias with the help of

subjective censorship.

However, the standard D5457 (ASTM, 2004a) only utilizes a small (10%)

and ad-hoc proportion of the data in the lower quantile estimation, which

stimulates us to further improve it. First, we can consider fitting a more

complex model, such as the Weibull mixture, to a larger, (e.g., 70%) pro-

portion of the data set with the subjective censorship, which leads to the

censored Weibull mixture estimate of the lower quantile. Also, the bootstrap

can be used to select a better censoring threshold for the censored Weibull

MLE, which leads to the bootstrap censored Weibull MLE. According to

our simulations, both proposals can yield a better lower quantile estimates

than the standard D5457 and the bootstrap censored Weibull MLE is better

than the censored Weibull mixture.
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Chapter 1

Introduction

In Canada, wood (lumber) products are very important in the building

construction and they are used for roofs, walls and floors in many buildings

Johnson et al. (2003). To ensure the safety and duration of those wood

buildings, it is necessary to study the strength properties of those wood

products. As introduced in Cheng (2010), wood strength properties are

described by several strength measures, such as the Modulus of Rupture

(MOR, strength of the lumber board under pressure vertical to the grain1),

ultimate tensile strength (UTS, strength of the specimen under tension in

the direction of the grain) and so on.

Among all these measures, the MOR is one of the most important, as it

measures what pressure a board can bear when something is placed upon it

and thus applying a force vertical to its grain, which is the typical pressure

seen on a roof or floor of wood buildings. Therefore, MOR is the focus of

our current study. In the laboratory, the MOR of a lumber board can be

measured by gradually increasing the stress on the board and recording the

stress level at which the board breaks. Obviously, this testing procedure is

destructive—a board cannot be used for construction after we find out its

MOR, and thus it is impossible to measure the MOR of every single board

that will be used in the construction.

1This is an relatively unusual usage of this word, which denotes the direction that the
tree grows
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Moreover, when compared to other materials such as metal or concrete,

wood products have more variable strength properties: Different trees, even

of the same specie, have different MORs. Even two boards cut from the

same tree, they can have different MORs as they are from different parts of

the tree. In another words, the MOR of a board is totally at random.

For such stochastic properties of materials, people can only try to ensure

that the probability of failure is smaller than a designed small fraction, for

example, 5%, which also means that the load on boards should not be larger

than the 5th percentile of the population of the MOR. However, as it is im-

possible to break all the boards to find the true population 5th percentile,

the engineers need to estimate this 5th percentile with some statistical meth-

ods. This thesis is thus focused on the statistical methods of estimating the

5th percentile.

1.1 Data collection and example data sets

To estimate a quantile, engineers first randomly sample a few hundred (e.g.,

300) boards from a population, for example, from a certain mill, and then

destructively test them to obtain the MORs of this sample of lumber boards.

A more detailed description of the test can be found in (Cheng, 2010).

Currently, our research group has two data sets of MORs, one with 98

observations and the other one with 282 observations. The MOR values have

been rescaled for the convenience of numerical analysis. Their histograms

are shown in Figure 1.1. These two data sets will be denoted by MOR1 or

MOR2 respectively in our study. We will use models imitating these two

data sets to evaluate different methods of lower quantile estimation. Due to

the limitation of time and requirements of our collaborator–Forrest Product

Innovations, we study only the 5th percentile estimate, but the methods

discussed here can surely be applied to other lower quantiles, such as the 1st

percentile.
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Figure 1.1: Histogram of MOR1 and MOR2
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1.2 Quality of a quantile estimate

Before we introduce any quantile estimate, we will first discuss how to eval-

uate the quality of a quantile estimate. First, it has to be accurate (i.e. un-

biased) as overestimation of the lower quantile would entail a higher risk

of damage for the structure while underestimation would cause unnecessary

waste of construction material and higher construction costs. Therefore,

achieving accurate estimation of lower quantiles is an important statistical

problem. It is also necessary to control the standard errors of quantile es-

timates to avoid having to collect a huge (and costly) data set to obtain

such good estimates. In our work, the performance of quantile estimate is

measured by the mean square error (MSE), which covers both accuracy and

efficiency:

EG(q̃n − q)2 = V ar(q̃n) + (EGq̃n − q)2

where the G is the model of the population, q̃n is the quantile estimate from

a sample of size n and q is the true quantile under model G. It is well known

that the MSE is the sum of the variance of q̃n and its squared bias.

Meanwhile, for convenience in displaying and interpreting the results, we

3



will use the root mean squared error (RMSE), which, intuitively speaking,

shows the error of the quantile estimate on the same scale as the quantile.

For the most part in our study, the MSE or RMSE has to be estimated by

Monte Carlo simulation, where a large number N , e.g., 10000 of replicates

will be simulated from the model G and then each of them will yield a

quantile estimate q̃in, i = 1, 2, . . . , N , where the index of the replicates is in

the super-script to avoid confusion with the sample size n in the subscript.

Let di = (q̃in − q)2. Then the MSE and RMSE of the quantile estimate q̃

under model G will be estimated by

M̂SE =d̄ =
1

N

N∑
i=1

(q̃in − q)2

R̂MSE =

√
M̂SE =

√
d̄.

Moreover, for a better understanding of the MSE or RMSE, we will also

study the bias (EGq̃n − q, estimated by 1
N

∑N
i=1 q̃

i
n − q in the simulations)

and standard deviation (equivalently the variance) of the quantile estimates,

to show the accuracy and efficiency of the quantile estimate. But the MSE

and RMSE are the most important measures of the goodness of the quantile

estimates.

1.2.1 The precision of R̂MSE

As the RMSE is estimated by the Monte Carlo procedure, the precision of

the R̂MSE will depend on the number of replicates N . The larger N is,

the better R̂MSE estimates the RMSE. In order to account for the Monte

Carlo error of our RMSE estimate, we will also consider the standard error

of R̂MSE. Here is a brief derivation of how to calculate the Monte Carlo

standard error of R̂MSE:

The variance of M̂SE can be estimated by

σ̂2
M̂SE

= V ar(d̄) =
1

N(N − 1)

N∑
i=1

(di − d̄)2.

4



By central limit theorem (Casella and Berger, 2002), the M̂SE = d̄ will

asymptotically follow a normal distribution. Then the variance of R̂MSE

can be estimated by Delta method (Casella and Berger, 2002) as,

σ̂2
R̂MSE

=

(
1

2
√
d̄

)2

V ar(d̄).

In this way, the Monte Carlo standard error of our RMSE estimate can be

estimated by

σ̂
R̂MSE

=
1

2
√
d̄

√
V ar(d̄).

1.3 Overview

For quantile estimation, people usually consider the non-parametric empiri-

cal quantile or some parametric quantile estimate. Those quantile estimates

are easy to obtain but they have different drawbacks, which will be first

reviewed in Chapter 2. To balance between the non-parametric and para-

metric quantile estimate, the current wood engineering industrial standard

D5457 (ASTM, 2004a) applies a subjective censorship scheme to a complete

data set and obtains the quantile estimate from the censored Weibull max-

imum likelihood estimate of the lower tail. In Chapter 3, we will first carry

out a review of this approach for a statistical point of view, which has not

been done despite the fact that the standard has been used for many years.

Based on our study, the censored Weibull MLE in the current industrial

standard is superior to the non-parametric or parametric quantile estimates,

but it only utilizes a small ad-hoc proportion of a complete data set, which

inspires us to further improve it by using more data or choosing a better

proportion (equivalent to selecting a better censoring threshold). In Chapter

4, the Weibull mixture and censored Weibull mixture are proposed to utilize

more data for the lower quantile estimation. Chapter 5 describes a bootstrap

procedure for choosing a better threshold for the censored Weibull MLE.

The quantile estimate from the censored Weibull mixture and the bootstrap

5



censored Weibull MLE are shown to be better than the original censored

Weibull MLE via our simulations.
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Chapter 2

Non-parametric and

Parametric Quantile

Estimates

All kinds of quantile estimates can be viewed as an inverse of a distribution

estimate. The distribution estimate can be obtained non-parametrically via

the empirical distribution or kernel density estimate, which leads to the

non-parametric quantile estimate. On the other hand, we can assume and

fit a parametric distribution for the data and obtain a parametric quantile

estimate. The parametric or non-parametric quantile estimates are easy to

obtain but they both have some serious shortcomings.

2.1 Non-parametric quantile estimates

In this section, we will first introduce the empirical quantile and then the

quantile obtained from the kernel density estimate.

7



2.1.1 Empirical distribution and empirical quantile

For an i.i.d. sample X1, X2, . . . , Xn, the empirical distribution function F̂n

is defined as,

F̂n(x) =
1

n

n∑
i=1

1{Xi ≤ x}, (2.1)

where the 1(·) is the indicator function. It is one when Xi ≤ x and it is zero

when the event is false. According to the famous Glivenko–Cantelli theorem

(Cantelli, 1933; Glivenko, 1933), the supremum ||F̂n−F ||∞ = supx |F̂n(x)−
F (x)| converges to 0 almost surely.

As this empirical distribution is discrete, several definitions of the em-

pirical quantile are obtained by different definitions of the inverse or the

linear interpolation of it. The function “quantile” in R provides nines ways

to calculate the empirical quantile. For example, type I empirical quantile is

based on the most commonly used definition of the inverse of the empirical

distribution,

F̂−1n (t) = inf{x : F̂n(x) ≥ t}. (2.2)

Under this definition, the pth quantile q̂ for a sample of size n will be the

bnpcth order statistics X(bnpc), where bnpc denotes the smallest integer no

smaller than np. In some statistical software like SAS, the quantile is defined

as the nearest even order statistic, which is Type III in R. Here the phrase

“nearest even” is a little misleading. When we round np, the nearest integer

to np is chosen. For example, for np = 2.3, q̂ = X[np] = X(2) and for

np = 2.6, q̂ = X([np]) = X(3). But when there is a tie we will take the even

integer. For example, if np = 1.5, q̂ = X(2) but if np = 2.5, still q̂ = X(2).

So the “nearest even” indeed means “nearest and then even”.

The above definitions of empirical quantile based on the inverse of empir-

ical distribution only involves one order statistic for the quantile estimate,

which is often inefficient and biased according to our simulations (as shown

later). People also consider linear interpolation between two order statis-

8



tics to achieve better empirical quantiles. Here let pi = Pr(X ≤ X(i)),

where X(i) is the i-th order statistic and we can then estimate pi by as

p̂i = (i − a)/(n + b), where the a and b are some tuning parameters. The

empirical quantile q̂(p) of probability p, where p ∈ [p̂i, p̂i+1], interpolates

between X(i) and X(i+1):

q̂(p)−X(i)

p− p̂i
=
X(i+1) −X(i)

p̂i+1 − p̂i

q̂(p) = X(i) + (p− p̂i)
X(i+1) −X(i)

p̂i+1 − p̂i
.

In this way, different choices of a, b in p̂i = (i − a)/(n + b) will lead to

different empirical quantiles. For example, a = b = 0 leads to interpolat-

ing the commonly defined empirical distribution (Type IV in R). It is also

found that a = b = 1/3 is approximately unbiased for the median regardless

of the true distribution (Type VIII in R). Moreover, a = 3/8, b = 1/4 is

approximately unbiased (Type IX in R) for the quantiles of the normal dis-

tribution. Hyndman and Fan (1996) provide a detailed description of these

nine definitions of empirical quantiles.

In order to choose the best definition of “empirical quantile” for our

study, several simulations under varied models have been carried out to

compare the nine types of empirical quantiles in R. Generally speaking,

these nine types of empirical quantiles are very similar, but the types with

interpolation between two order statistics are marginally better than those

only based on only one order statistic. As an example, the box-whisker plot

of the 5th empirical percentiles in a simulation under Weibull(7, 7)1 with

sample size of 300 and 2500 replicates is in Figure 2.1.

For expository, only the Type I, III, IV, VIII, IX introduced above are

shown in Figure 2.1. It is easy to see that the last three types with linear

interpolation (Type VIII, IX) are relatively less (median) biased. Based on

the mean squared error of these different definitions of quantile estimate in

1This denotes a two-parameter Weibull distribution with shape parameter as 7 and
scale parameter as 7. A detail introduction to the Weibull distribution will be provided
in the next chapter.
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Figure 2.1: Several definitions of empirical quantiles in data sets sim-
ulated from Weibull(7, 7)
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our simulations, we choose type IX as the default empirical quantile estimate

for our study.

Moreover, regardless of the definition of empirical quantile in a finite

sample, they are asymptotically equivalent. It is well known that the empir-

ical pth quantile q̂n converges to the true quantile q almost surely. Moreover,

according to Serfling (1980),

√
n(q̂n − q)→d N(0, p(1− p)/f2(q)), (2.3)

where f is the PDF of the underlying model behind the data. For our study,

we have few observations in the left tail, as shown in Figure 1.1 and thus

f(q) is very small. Thus, the variance of the empirical quantile will be very

large.
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2.1.2 Kernel density estimate and kernel quantile

In the above empirical quantiles, we only smooth between two order statis-

tics, which only uses a small part of the information from the data. As

illustrated later, the quantile estimate can be more efficient if we smooth

over the entire sample. This leads us to apply some non-parametric den-

sity estimation techniques, such as, kernel density estimation, orthogonal

series estimators, sieve estimators, etc. Please refer to Izenman (1991) for a

throughout review on those techniques. In our study, we only consider the

simplest and most popular kernel density estimate.

As in (2.1), the empirical distribution can be viewed as putting a mass of

1/n at each observation Xi. The kernel density will put a small “bump”—a

kernel at each observation, which can be written as,

k̃b(x) =
1

nb

n∑
i=1

κ(
x−Xi

b
), (2.4)

where the κ(·) is the kernel function and b decides the kernel’s width.

The kernel function κ(·) is a symmetric function that integrates to one.

Some common kernels are the standard normal (Gaussian) density function,

triangle, rectangular, uniform and Epanechnikov, etc. According to Izenman

(1991), the Epanechnik kernel minimizes the mean integrated squared error

(MISE, EF
∫

(k̃b(x)− f(x))2dx). However, we will only consider the normal

kernel, which is the simplest to interpret for this study.

The kernel function decides the shape of the “bump”, while the band-

width b decides the width of this “bump”, which is also referred to also the

bandwidth and smoothing parameter. The larger b is, the smoother the den-

sity estimate is. According to the summary in Jones et al. (1996), there are

various ways to select the bandwidth, such as rule of thumb, cross-validation

and using pilot estimation of derivatives. Based on the recommendation of

Jones et al. (1996), we will adopt the“Solve-the-Equation” approach pro-

posed in Sheather and Jones (1991). This approach is well implemented

in R, but its mathematical details are complicated and not stated here for

brevity.
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This kernel density estimate has been intensively studied by varied au-

thors, which is well summarized in Silverman (1986). It is well known that

kernel density estimate is a strongly consistent estimate of the true den-

sity (k̃b(x) →a.s. f(x) for all x) if the bandwidth b → 0 and nb → ∞ when

n→∞ (Izenman, 1991; Silverman, 1986). With the kernel density estimate,

the kernel estimated CDF is K̃b(x) =
∫ x
−∞ k̃b(u)du and we can numerically

invert K̃b(x) to obtain the quantile estimate q̄. According to Azzalini (1981),

q̄ is also a consistent estimate of the true quantile and the asymptotic vari-

ance of
√
nq̄ is p(1−p)

f2(q)
−O(n−1/3) under certain regularity conditions. Recall

that the asymptotic variance of
√
nq̂ is p(1−p)

f2(q)
as in (2.3), which indicates

the empirical quantile and the quantile obtained from the kernel density

estimate q̄ have the same asymptotic variance. But by the O(n−1/3) term

in the asymptotic variance of q̄, the variance of q̄ can be smaller than the

variance of q̂ in a finite sample, which can be seen in our simulations in

Chapter 3.

However, it is necessary to point out that this numerical inverse of the

kernel density estimate q̄ is not the one usually referred to as “kernel quan-

tile estimate”, which is developed with similar ideas but from a different

perspective (Parzen, 1979). According to Lio and Padgett (1991) and Jones

(1992), the kernel quantile estimate and the one inverted from kernel density

estimate q̄ are asymptotically equivalent. Thus, only q̄ is compared to the

other quantile estimates in our study.

2.2 Parametric quantile estimation

The quantile obtained from the kernel density estimate is more efficient than

the empirical quantile in a finite sample, but this improvement is quite lim-

ited in practice. Due to the large variance of non-parametric lower quantile

estimates, people sometimes prefer to find a parametric approximation to

the true distribution and then obtain a more efficient parametric quantile

estimate (Silverman, 1986).

However, as will be shown in Chapter 3, the parametric quantile estimate

can be seriously biased when the model does not approximate the true pop-
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ulation distribution. It is thus critical to choose a good parametric model

for the data. However, there can be several models fitting the data equally

well in practice. Taken the MOR2 data set as an example, we can fit the

Weibull, log-normal, gamma and the minimum type Gumbel distribution to

it, as illustrated in Figure 2.2.

Figure 2.2: Different parametric models for MOR2 data set
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These four distributions are commonly used in modelling the strength

of materials. The Weibull distribution will be introduced in Chapter 3 and

a short introduction of the other three are provided in the appendix. For

a more detailed introduction, please refer to Lawless (1982). The param-

eters of these distribution are fitted via MLE approach, which have been

summarized in Table 2.1.

From Figure 2.2, it is easy to find that these four models are very different

but it is hard to visually tell which one fits the MOR2 best. Therefore, we

will compare the goodness-of-fit achieved by these four distributions by the

Kolmogorov–Smirnov statistic:

D(F̃n) = sup
x
{|F̃n(x)− F̂n(x)|},

where the F̃n is the parametric density estimate and F̂n(x) is the empirical

distribution. It measures the maximum absolute discrepancy between the

fitted distribution and the empirical distribution. The D(F̃n) of these four
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models are also included in Table 2.1.

Table 2.1: Parametric models for MOR2, Goodness-of-fit and corre-
sponding quantile estimates with

Model Parameters D(F̃n) q̃(0.05)

Weibull α = 5.23 η = 7.39 0.07 4.19
Log-normal µ = 1.89 σ = 0.22 0.05 4.63
Gamma k = 21.46 s = 0.32 0.05 4.59
Minimum Gumbel a = 7.54 b = 1.41 0.10 3.36

From Table 2.1, it is easy to see that the goodness-of-fit achieved by these

four models are very close and the goodness-of-fit cannot help us decide the

best model for our data. To make the situation worse, the quantile estimates

are very different, as we learn from the last column of Table 2.1. Clearly,

the task of choosing the parametric model will be challenging and limits

the application of parametric quantile estimate in practice. Moreover, if

we specify the wrong model, the parametric quantile estimate can be very

biased, which will be shown in the next chapter.

As a summary of this chapter, the non-parametric quantile is unbiased

but very inefficient. Although the parametric quantile estimate can be fully

efficient, we cannot take the risk of model misspecification and using a se-

riously biased quantile. In this way, we need to find a quantile estimate

balanced between the non-parametric and parametric quantile.
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Chapter 3

Censored Weibull MLE, A

Semi-parametric Approach

For the lower quantile estimation, the wood engineering industry does not

apply the non-parametric empirical quantile estimates nor the parametric

quantile estimate due to their different shortcomings, as discussed in the

previous chapter. They find it unnecessary to have an accurate density

estimate for the entire distribution and the lower quantiles can be sufficiently

determined by the density below the true quantile. Therefore, it is sufficient

to only specify a parametric distribution for the lower tail, which leads to a

semi-parametric model:

g(x;θ, X0) =

{
f(x;θ), x ≤ X0

h(x), x > X0

. (3.1)

Here f(x;θ) is the density for the parametric lower tail, for example, a

Weibull distribution with θ = (α, η). X0 is the change point where the

parametric density ends the non-parametric part starts. The non-parametric

part h(x) is an unspecified density except for the following two technical

requirements, which ensures that g(x) is a well defined density:

1. h(x) ≥ 0, x > X0

2.
∫∞
X0
h(x)dx = 1−G(X0) = 1− F (X0,θ).
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Under this semi-parametirc model, the quantile estimate can be obtained

only from the parameter estimates of the left tail when the lower quantile

q of interest is smaller than the change point X0. Thus, it is not necessary

to estimate X0 nor the non-parametric part of this semi-parametric model

if we are only interested in estimating the lower quantile.

In order to focus on the estimation the parametric left tail, we will apply

subjective censoring in our parameter estimate, which will be introduced in

Section 3.1. In Section 3.2, we will support our choice of the Weibull distri-

bution as the parametric left tail from both engineering and statistical point

of view. The computation of the censored Weibull MLE will be introduced

in Section 3.3. The simulation comparison of the censored Weibull MLE

and the non-parametric or parametric quantile estimate will be presented in

Section 3.4. To further understand the advantage of the censored Weibull

MLE, we will compare it to the ordinary MLE in Section 3.5 and discuss

the goodness-of-fit in the left tail in Section 3.6.

3.1 Subjective censoring

Before the subjective censoring and its consistency are discussed, we will

begin with a short introduction of censoring.

3.1.1 Introduction to censoring

In statistics, engineering and other fields, censoring denotes that the mea-

surement of an observation is not complete known, but this partially ob-

served observation will still be kept in the analysis. For example, a wooden

board survives under a certain stress level will not be further stressed to

broken but the information that it has survived under this stress level can

still be used in a statistical analysis.

According to Lawless (1982, 2003) and Rinne (2009), censoring can be

classified into informative and non-informative based on whether the cen-

soring depends on the experimental outcome. Generally speaking, a non-

informative censoring has a pre-determined censoring rule. For example, it

can be decided before the experiment that after a specimen has survived
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under a 1000 pound stress load, it will not be further stressed until bro-

ken. Based on this censoring rule, non-informative censoring can be further

classified into Type I and II censoring: In Type I censoring, the board’s

strength is only known exactly when it is smaller than a predetermined

strength value, as in the previous example; In Type II censoring, only the

strength of r (a predetermined number) weakest lumber boards in a sample

of n boards are completely known.

It is better to explain Type II censoring with the example in our lumber

strength testing. We start to increase the stress from zero on all n lum-

ber boards in our experiment simultaneously with the same rate of stress

increase. Instead of increasing the stress until all the boards are broken,

we will stop the experiment when r out n boards broke. Also, for the con-

venience in recording the data, the strength (the stress level at which it

breaks) of the first broken board will be labelled X1, the second broken one

X2, and so on. In this way, the strengths of r broken boards are completely

known while the strengths of the n− r unbroken boards are known only to

be larger than Xr. It is necessary to point out that this X1, X2, . . . , Xr are

actually the smallest r order statistics when the strength of the n boards

are fully observed.

3.1.2 Definition and properties of subjective censoring

However, the censoring we will apply does not fall into those categories

directly. The strength of every board in our sample is known and thus a

complete data set without any censoring is available. But we want to focus

on the information in just the left tail by censoring the rest of the data in

the estimation of the parametric left tail in (3.1). Observations larger than a

censoring threshold C will be censored and the information they contribute

to the estimation process will be only that Xi > C. In the current industrial

standard (ASTM, 2004a), the censoring threshold C is chosen to be the 10th

empirical percentile (Type III definition, nearest even order statistics) in the

estimation of the 5th percentile. In this way, 90% of the available data are

censored to focus on the left tail. Similar ideas are used in Hill (1975) where
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the left part of the data is subjectively censored to conduct extreme value

inference.

In this way, this subjective censoring can be either viewed as a Type I

censoring with the threshold chosen to be the sample 10th percentile or a

Type II censoring when only 10% of the specimens fail in the experiment.

If the subjective censoring is treated as a Type I censoring, its likelihood is:

LI(X;θ) =
n∏
i=1

[f(Xi;θ)]δi [1− F (C;θ)]1−δi , (3.2)

where δi = 1{Xi ≤ C} indicates whether the ith unit is censored or not.

Here we also assume C < X0 and thus the change point X0 and the non-

parametric part of model (3.1) will be subjectively censored.

If the subjective censoring is treated as a type II censoring, according to

(Lawless, 1982), the likelihood is

LII(X;θ) =
n!

(n− r)!

r∏
i=1

f(X(i);θ)[1− F (X(r);θ)]n−r

where X(i), i = 1, 2, . . . , n are the order statistics of sample X1, X2, . . . , Xn.

When C = X(r), it is easily to verify the likelihoods LI(X;θ) and

LII(X;θ) only differs in a constant n!
(n−r)! , which indicates the θ̃ maximizing

LI(X;θ) will also be the one maximizing LII(X;θ). In this way, whether

we treat the subjective censoring in the industrial standard D5457 (ASTM,

2004a) as a type I or type II does not affect the parameter estimates and

thus does not affect the quantile estimate. For ease of tracking asymptotic

properties of the censored MLE, we will work with the likelihood of type I

censoring in (3.2).

Meanwhile, in order to distinguish the subjective censoring from the

ordinary Type I censoring, we will name the above approach of maximizing

the subjectively censored likelihood as the censored MLE with pth empirical

percentile as the threshold. It is necessary to point out that the empirical

quantile used as the threshold is defined as the nearest even order statistic

(Type III definition), as in the industrial standard D5457 (ASTM, 2004a).
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On the other hand, the empirical quantile we treat as a quantile estimate is

the Type IX definition, which is better than the Type III definition according

to our discussions in Chapter 2. We will distinguish these two types of

empirical quantile when they are in use.

For simplicity, the censored Weibull MLE with 10th empirical percentile

as the threshold will be denoted by CMLE. Also, in order to distinguish

the MLE without censoring from the censored MLE, we will call the MLE

without censoring the ordinary MLE (OMLE for short).

Clearly, maximizing the above censored likelihood is not the only way to

estimate the parameter in the left tail. Other methods include least squares

and conditional tail modelling. But based on Durrans et al. (1998), the

censored MLE is the best one for lower quantile estimation and thus will be

the only one considered in our study.

3.2 Choice of parametric lower tail

Besides the subjective censoring, another important ingredient of (3.1) is

the choice of the parametric tail. The current industrial standard (ASTM,

2004a) chooses the two-parameter Weibull distribution (Weibull, 1951), whose

PDF and CDF is:

F (x) =1− exp

(
−
(
x

η

)α)
, x ≥ 0 (3.3)

f(x) =
α

η

(
x

η

)α−1
exp

(
−
(
x

η

)α)
, x ≥ 0. (3.4)

As introduced in Lawless (1982) and Rinne (2009), the Weibull distri-

bution has been a popular parametric model in survival analysis and varied

engineering fields for more than half a century. The history and a very de-

tailed introduction of the Weibull distribution can be found in Rinne (2009).

In wood engineering, the application of the Weibull distribution first

appeared in Warren (1973) and a review of the history of the Weibull dis-

tribution in wood engineering can be found in Johnson et al. (2003). Spe-

cially for the lower quantile estimation of wood strength data, Durrans et al.
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(1998) compared the censored MLE, tail modelling and least squares and

confirmed that the censored Weibull MLE is the best method among them.

In the 1990’s, the American Society for Testing and Materials (now called

ASTMInc. or ASTM for short) started to apply the Weibull distribution in

their standards for testing materials on varied properties. Such standards

include D5457 (ASTM, 2004a), D5055 (ASTM, 2004b), etc. For the lower

quantile estimation, the latest relevant standard is D5457, which describes

and standardizes the censored Weibull MLE with 10th empirical percentile

as the threshold.

Besides the popularity of the Weibull distribution in wood engineering,

some empirical evidence can also be found from our two real data sets to

support the choice of the Weibull.

3.2.1 Empirical evidence from the real data sets

There are several popular distributions other than the Weibull in survival

analysis, such as log-normal, gamma and minimum Gumbel. All these four

models can be fitted to the lower tail of the two real data sets with the

subjective censorship. Here the censoring threshold is the 10th empirical

percentile (Type III definition) of the two data sets. The curves from the

censored MLE of these four models are shown in Figure 3.1.

Figure 3.1: Censored parametric models for MOR1 and MOR2
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Although the curves of these four models are very different in the right

tail, they actually are very similar in the left tail. To study the goodness of

these parametric models in approximating the left tail of the real data set,

we can use the following truncated Kolmogorov–Smirnov statistic, which

measures the maximum absolute discrepancy between the fitted parametric

tail F̃n and the empirical distribution F̂n(x) of the real data set up the

censoring threshold C:

D‡(F̃n, F̂n(x)) = sup
x≤C
{|F̃n(x)− F̂n(x)|}. (3.5)

The D‡(F̃n, F̂n) of the four models on the two real data sets are sum-

marized in Table 3.1. It is easy to see that the D‡(F̃n, F̂n) of different para-

metric models on the same data set are very similar. They are all around

0.02 for MOR1 and 0.01 for MOR2, which indicates that these four models

approximate the lower tail of the real data sets similarly well.

However, if we must choose a parametric model based on D‡(F̃n, F̂n),

the Weibull can be the best one balanced between the two data sets: the

minimum Gumbel achieves the best fit in the left tail of MOR1while it is

the worst fit of MOR2 left tail; Log-normal and gamma are the worst fits

in MOR1 but the best fits in MOR2; The fits of the Weibull are neither the

best nor the worst, but it is close to the best fit both in MOR1 and MOR2,

which supports our choice of the Weibull.

Table 3.1: Tail goodness-of-fit of the parametric models in the left tail
of MOR1 and MOR2 and corresponding 5th percentile estimates

D‡(F̃n, F̂n) Quantile Estimate [SD]

Model MOR1 MOR2 MOR1 MOR2

Weibull 0.021 0.011 4.51 [0.255] 4.64 [0.141]
Log-normal 0.023 0.009 4.47 [0.257] 4.57 [0.138]
Gamm 0.022 0.009 4.48 [0.231] 4.59 [0.138]
Minimum Gumbel 0.018 0.013 4.53 [0.242] 4.69 [0.140]

Moreover, based on the curves of these censored parametric models, it is

not surprising to find that the difference of those quantile estimates from the
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four different censored parametric models only lies in the third digit. This

difference is not significant if we consider the standard deviation (SD) of the

quantile estimate 1 and compare them with a Wald test (Casella and Berger,

2002). Therefore, unlike the parametric quantile estimate in Table 2.1, the

choice of parametric tail will not remarkably influence quantile estimate

under subjective censorship.

In this way, we will only consider the Weibull distribution as the para-

metric tail density for the semi-parametric model (3.1) in the sequel.

3.3 Computation of the censored Weibull MLE

As discussed above, we maximize (3.2) to achieve the parameter estimate

of the lower tail and then obtain the quantile estimate. However, the in-

tractability of (3.2) makes the direct maximization difficult. In particular,

differentiating L(X;α, η) with respect to the parameters is difficult. It is

simpler to maximize the logarithm of it:

l(X;α, ζ, C) =m ln(α) +m ln(ζ)− ζ
m∑
i=1

Xα
i

+ (α− 1)

m∑
i=1

ln(Xi)− (n−m)ζCα, (3.6)

where we assume forX1, X2, . . . , Xn are i.i.d. from a modelG andX1, X2, . . . , Xm ≤
C and Xm+1, Xm+2, . . . , Xn ≥ C. Also ζ = η−α is introduced to save com-

putational effort. It is easy to see that if C > max{Xi} for all i (and then

m = n), the (3.6) is the log-likelihood of the ordinary Weibull MLE.

Differentiating (3.6) with respect to α and ζ, we get,
∂l

∂α
=
m

α
− ζ

m∑
i=1

Xα
i ln(Xi) +

m∑
i=1

ln(Xi)− (n−m)ζCα ln(C)

∂l

∂ζ
=
m

ζ
−

m∑
i=1

Xα
i − (n−m)Cα

. (3.7)

1The standard deviation here is estimated by bootstrap with 5000 replicates, whose
detail will be introduced in Chapter 5.
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According to (Rinne, 2009), the solution α̃, η̃ to the above system of equa-

tions are the maximum likelihood estimates. Some basic algebra yields:

1

α
=
ζ

m
[

m∑
i=1

Xα
i ln(Xi) + (n−m)Cα ln(C)]−

∑m
i=1 ln(Xi)

m
(3.8)

1

ζ
=

∑m
i=1X

α
i + (n−m)Cα

m
. (3.9)

The Newton-Raphson method can be applied here to solve (3.8) and (3.9)

simultaneously and quickly, but it is prone to numeric instability. Here we

can substitute ζ in (3.8) by (3.9):

1

α
=

∑m
i=1X

α
i ln(Xi) + (n−m)Cα ln(C)∑m
i=1X

α
i + (n−m)Cα

−
∑m

i=1 ln(Xi)

m
. (3.10)

This iteration algorithm is quite insensitive to the initial value of α and

guaranteed to converge under mild conditions (Rinne, 2009). Then, after

solving α̃, it is straightforward to obtain ζ̃ based on (3.9)and the original

scale parameter η̃ = ζ̃−1/α. With the α̃, η̃ obtained from this censored

Weibull MLE, the quantile estimate q̃ can be calculated as,

q̃ = η̃ [− log(1− p)]1/α̃ . (3.11)

3.4 Simulation comparison of the censored
Weibull MLE and the parametric or
non-parametric quantile estimates

In this section, we will present the simulations to compare the 5th per-

centile estimate obtained by the ordinary Weibull MLE (OMLE), censored

Weibull MLE (CMLE), empirical quantile (EMP, Type IX definition) and

the quantile estimate obtained from kernel density estimate (KDE) under

varied models. Following the industrial standard, the censoring threshold C

in the CMLE will be the 10th empirical percentile of each replicate.

Generally, we have two sets of simulations to imitate MOR1 and MOR2

data set respectively, which will be first introduced in this section. Under
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these models, 10000 replicates of size 300 are simulated to evaluate these

four quantile estimates. The RMSE of these four quantile estimate will be

first compared and then we will further analyse the variance and bias of the

CMLE to understand its advantages and limitations.

3.4.1 Model settings

Based on the complexity of the models from which we simulated the data, we

will classify them into three categories, parametric models, mixture models

and nonparametric models and introduce them separately.

Parametric models

The parametric models from which we simulated data are identical to those

we used to obtain the censored MLE of the quantile estimates in Section 3.2

and Figure 3.1. Here their parameters are summarized in Table 3.2.

Table 3.2: Parameters for the censored parametric models to imitate
the left tail of MOR1 and MOR2

Model MOR1 MOR2

Weibull α = 6.822 η = 7.173 α = 7.378 η = 6.738
Log-normal µ = 2.072 σ = 0.336 µ = 1.976 σ = 0.2916
Gamma k = 12.93 s = 0.601 k = 16.16 s = 0.4407
Minimum Gumbel a = 6.620 b = 0.650 a = 6.315 b = 0.5997

Mixture models

From the histogram of the MOR1 and MOR2 in Figure 1.1, there are two

modes in each data set. Then, it is natural to consider our data as generated

by a mixture of two uni-modal distributions with PDF:

f(x) = p1f1(x) + (1− p)f2(x), (3.12)

where the f1, f2 are the density functions of the two sub-populations. They

can be either from the same distribution families or from different distribu-
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tion families. Here p indicates the proportion from the first sub-population,

which also means that a random variable X from (3.12) has probability p of

being from the first sub-population and probability 1 − p from the second

sub-population. Of course, we can also consider mixture models with more

than two sub-populations.

Our simulations suggest that we can consider mixture models with only

two sub-populations and the sub-populations are from the same distribu-

tion family. The distributions considered here are normal, log-normal and

Weibull. The parameters in this mixture model can be estimated by the

EM algorithm, which will be introduced in the next chapter. The estimated

parameters of the three mixture models are summarized in Table 3.3. Here

we does not apply censoring in the EM algorithm for the mixture models,

as they have more parameters and thus more flexibility to approximate the

tail even without censoring.

Table 3.3: Mixture models to imitate MOR1 and MOR2

Model p Majority Population Minority Population

MOR1
Normal 0.5629 µ1 = 5.953 σ1 = 0.970 µ2 = 7.676 σ2 = 1.215
Log-normal 0.9758 µ1 = 1.897 σ1 = 0.189 µ2 = 1.245 σ2 = 0.102
Weibull 0.7448 α1 = 5.494 η1 = 7.599 α2 = 15.81 η2 = 5.983

MOR2
Normal 0.5406 µ1 = 5.924 σ1 = 1.042 µ2 = 7.859 σ2 = 1.095
Log-normal 0.6649 µ1 = 1.976 σ1 = 0.167 µ2 = 1.736 σ2 = 0.226
Weibull 0.7932 α1 = 5.427 η1 = 7.642 α2 = 12.01 η2 = 6.186

Non-parametric models

As we have discussed above, we can never be certain about the validity of

our model assumptions for the data set. So the model we use to simulate

data might not represent the real data set (even if we consider only the tail).

On the other hand, we can use the non-parametric kernel density estimate

with Gaussian kernel in (2.4) to simulate data sets similar to our real data

set, which can be viewed as a kind of smoothed bootstrap (Shao, 1993).

To simulate data from a kernel density estimate with Gaussian kernel and

bandwidth b of a real data set, we will first sample with replacement from
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Figure 3.2: Mixture models for MOR1 and MOR2
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the original data set. Then i.i.d. random noise from the normal distribution

with mean 0 and standard deviation b will be added to each observation in

the re-sample of the real data set. In this way, we will obtain a simulated

data set re-sampled from the original data set plus some noise.

As discussed in Section 3.1, we will use the “Solve-the-Equation” ap-

proach (Sheather and Jones, 1991) to select the bandwidth for the kernel

density estimate. The bandwidth selected for MOR1 is 0.0419 while the

bandwidth for MOR2 is 0.04056. The curves of these two kernel density

estimates are shown in Figure 3.3.

3.4.2 RMSE of the quantile estimates

Although our list of models imitating the real data sets could be expanded,

we believe the above 16 models are sufficient to evaluate these quantile esti-

mates. Following the settings above (10000 replicates with size 300), these

16 simulations have been carried out and the RMSE of these four quan-

tile estimates are summarized in Table 3.4 and 3.5 for the models imitating

MOR1 and MOR2, respectively.

The Monte Carlo standard error of the RMSE estimates are smaller than

0.001 in these simulations and thus omitted in the tables. For readability

and the comparison of results, we have highlighted the background of each
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Figure 3.3: Kernel density models for MOR1 and MOR2
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the root MSE is.

Table 3.4: RMSE of the quantile estimates from OMLE, CMLE,
KDE, and EMP under the models imitating MOR1

Model OMLE CMLE KDE EMP

Weibull 0.112 0.150 0.171 0.173
Log-normal 1.009 0.169 0.300 0.184
Gamma 0.671 0.160 0.258 0.181
Minimum Gumbel 0.183 0.168 0.157 0.168
Normal Mixture 0.533 0.113 0.177 0.129
Log-normal Mixture 0.548 0.158 0.225 0.194
Weibull Mixture 0.506 0.162 0.178 0.185
MOR1 (KDE) 0.522 0.164 0.218 0.188

From these two tables, it is easy to see that the CMLE has the smallest

RMSE among all four approaches in most models considered in our simula-

tions. The exceptions are the Weibull and Gumbel model, where the OMLE

or KDE does the best. But the disadvantage of CMLE under the Weibull or

Gumbel model is negligible when it advantage under the other models are

considered. For example, the RMSE of CMLE is around 1.4 times larger
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Table 3.5: RMSE of the quantile estimates from OMLE, CMLE,
KDE, and EMP under the models imitating MOR2

Model OMLE CMLE KDE EMP

Weibull 0.099 0.135 0.152 0.157
Log-normal 0.871 0.142 0.243 0.157
Gamma 0.609 0.139 0.217 0.157
Minimum Gumbel 0.165 0.153 0.145 0.155
Normal Mixture 0.370 0.125 0.191 0.143
Log-normal Mixture 0.375 0.139 0.172 0.152
Weibull Mixture 0.350 0.167 0.198 0.190
MOR2 (KDE) 0.284 0.149 0.189 0.177

than the RMSE of OMLE under the Weibull model, but OMLE has an

RMSE 5 to 6 times larger than the RMSE of the CMLE under the Gamma

or log-normal models.

3.4.3 Bias and standard deviation of the quantile estimates

To further understand the advantages and the limitations of CMLE, it is

better to study the bias and standard deviation of these four quantile es-

timates, as shown in Table 3.6. Here a similar table can be obtained for

the models imitating MOR1 but it is omitted as it shows the same trend as

Table 3.6.

From Table 3.6, it can be learned that the CMLE does not have an

extraordinarily large bias relative to the OMLE in the non-Weibull models

nor a large standard deviation relative to the empirical quantile. Generally

speaking, if these four quantile estimates are ranked by the absolute bias,

the order is EMP < CMLE < KDE < OMLE. If they are ranked according

to the standard deviation, the order is OMLE < CMLE < KDE < EMP.

The censored Weibull MLE is neither the most accurate as the empirical

quantile nor the most efficient as the OMLE, but it is the best one balanced

between the accuracy and efficiency.

Moreover, the reasons that the CMLE has a larger RMSE than OMLE

or KDE under the Weibull or Gumbel models can also be found in Table 3.6.
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Table 3.6: Bias and [standard deviation] of the quantile estimates
(×100) from OMLE, CMLE, KDE, and EMP in the models im-
itating MOR2

Model OMLE CMLE KDE EMP

Weibull 0.62 [9.90] 0.56 [13.5] 6.39 [13.8] 0.19 [15.7]
Log-normal 86.05 [13.7] 4.75 [13.4] 19.57 [14.4] 0.09 [15.7]
Gamma 59.48 [13.1] 3.61 [13.4] 16.39 [14.1] 0.04 [15.7]
Minimum Gumbel 13.88 [8.91] 4.16 [14.7] 3.47 [14.1] 0.64 [15.5]
Normal Mixture 35.21 [11.3] 2.42 [12.3] 14.16 [12.9] 0.07 [14.3]
Log-normal Mixture 35.41 [12.3] 5.45 [12.8] 10.82 [13.4] 0.42 [15.2]
Weibull Mixture 33.10 [11.5] 2.05 [16.5] 10.40 [16.9] 0.68 [19.0]
MOR2 (KDE) 25.97 [11.4] 4.59 [14.2] 10.92 [15.5] 0.26 [17.7]

Under the Weibull model, both the OMLE and CMLE are almost unbiased,

but the OMLE is more efficient than the censored Weibull MLE as it uses

all the data, which will be further discussed in the next section. The kernel

density estimate usually approximates the left tail of the true distribution

worse than the censored Weibull MLE and thus the quantile estimate from

KDE is more biased than the CMLE in most models we considered. How-

ever, the KDE approximates the Gumbel model amazingly well, which will

be illustrated in Section 3.6 and thus the CMLE loses its advantage in the

accuracy under the Gumbel model.

3.5 Comparison of the censored Weibull MLE
and ordinary Weibull MLE

The above simulation only serves as empirical evidence of the advantage of

CMLE over the OMLE, but we need some theoretical work to understand

how subjective censoring works. Here in this section, we will compare the

score function of the CMLE and OMLE and then their asymptotic variance.

3.5.1 Score function

As both OMLE and CMLE solve a system of equations as in (3.7), we

can further study their difference from their corresponding score functions
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(Huber, 1981; Serfling, 1980). Briefly speaking, the system of equations

as in (3.7) is the sum of the score functions evaluated at the observations

Xi, i = 1, 2, . . . , n. In this way, different Xi’s will have different “weights”

in this system of equations and thus different “weights” on the parameter

estimates.

The score function for θ = (α, η) for the ordinary Weibull MLE is

ψOα (x) =−
(
x

η

)α
log

(
x

η

)
+ log

(
x

η

)
+

1

α
(3.13)

ψOη (x) =− α

η
+
αxα

ηα+1
; (3.14)

The upper-script O indicates the ordinary MLE. Similarly, the score function

for θ = (α, η) of the censored Weibull MLE is:

ψCα (x) =


−
(
x

η

)α
log

(
x

η

)
+ log

(
x

η

)
+

1

α
, x ≤ C

−
(
C

η

)α
log

(
C

η

)
, x > C

; (3.15)

ψCη (x) =


−α
η

+
αxα

ηα+1
, x ≤ C

αCα

ηα+1
, x > C.

(3.16)

It is easy to see that (3.15) and (3.16) are truncated versions of (3.13)

and (3.14) respectively. The curves of −ψCα (x), −ψOα (x), ψCη (x) and ψOη (x)

under Weibull(7, 7) are provided in Figure 3.4, where we plot the negative

score functions for α to make it easier to read. The censoring threshold C

for the censored Weibull MLE is chosen as the 10% theoretical quantile of

Weibull(7, 7).

If we compare one observation in the left tail (e.g., Xi < 4) and an

observation in the right tail (e.g., Xi′ > 9), it is easy to see that Xi′ has a

larger absolute score function than the Xi for the OMLE. As the OMLE of

the Weibull parameters is the solution of the system of equations as in (3.7)

(with n = m), the Xi′ will have a larger influence on the parameter estimate,
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Figure 3.4: Score function −ψCα (x), −ψOα (x), ψCη (x) and ψOη (x) under
Weibull(7, 7)
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and thus the quantile estimate, than Xi. This contradicts our intuition that

the lower quantile should be more influenced by the observations in the left

tail rather than the right tail. This is one of the reasons that the ordinary

Weibull MLE is not suitable for the lower quantile estimation.

For the CMLE, the score function is a constant when x is larger than

censoring threshold and this constant (around −0.02 for α and 0.05 for η) is

close to zero when compared to the score function value of the uncensored

part. Therefore, the Xi′ in the right tail will have a smaller influence on the

parameter estimate and equivalently, the lower quantile estimate than the

Xi in the left tail. In this way, the lower quantile estimate will be mostly

determined by the observations in the left tail.

3.5.2 Asymptotic Variance of censored Weibull MLE

Although censoring helps to avoid the undesired influence of some large

observations on the lower quantile estimate, it sacrifices some of the efficiency

of the ordinary MLE. As shown in Table 3.6, the CMLE always has a larger

standard deviation than the OMLE. It is interesting to find this loss of

efficiency theoretically via the asymptotic variance of the quantile estimates.
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According to Lawless (1982) and Rinne (2009), the usual large-sample

maximum likelihood properties are valid for the censored MLE when the

shape parameter exceeds 2 and the number of uncensored observations ap-

proaches infinity at rate n as n → ∞. For our data, the estimate of the

shape parameter, censored or not, is larger than 4. So, it is reasonable to

assume that the first condition above is satisfied. As censoring is subjec-

tive, the second condition can be also be satisfied. In this way, information

matrix

I(θ) = −EG
(
∂ψ

∂θ

)
can be calculated by taking the expectation of the partial derivatives of the

score function in (3.15) and (3.16). Here θ = (α, η) denotes the parameters

of the Weibull tail. As the information matrix here cannot be written in a

close form and the formulas are long, its detailed calculation is provided in

the appendix.

Suppose we have derived the information matrix. Based on maximum

likelihood theories,

√
n

[(
α̃n

η̃n

)
−

(
α

η

)]
→d N

(
0, I−1(θ)

)
,

where

I(θ) =

−EG
∂ψα(x)

∂α
− EG

∂ψα(x)

∂η

−EG
∂ψα(x)

∂η
− EG

∂ψη(x)

∂η

 .
As in (3.11), the quantile estimate q̃n is a function of the parameter

estimates and the true quantile is a function of the true parameters. The

asymptotic variance of
√
n(q̃n−q) can be derived via Delta method (Casella

and Berger, 2002). The derivative of the quantile q with respect to the

32



parameters θ = (α, η) is

∇q(θ) =


∂q

∂α
∂q

∂η

 =

− η

α2
[− log(1− p)]

1
α log (− log(1− p))

[− log(1− p)]
1
α

 .

Then, with the Delta method,

√
n(q̃n(θ̃)− q(θ))→d N

(
0,∇q(θ)T I−1(θ)∇q(θ)

)
. (3.17)

Moreover, Lawless (1982) derived the asymptotic variance of Type I

censored log-Weibull MLE, where a log-Weibull random variable is the log-

arithm of a Weibull random variable. The formulas there are relatively

easier to read but they still require numerical integration to calculate. We

have verified that our results above are the same as the one converted from

the results in Lawless (1982).

Figure 3.5: Asymptotic variance of
√
n(q̃−q) and CDF under different

threshold
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To illustrate the efficiency sacrificed in the censoring Weibull MLE, we

plot the curve of the asymptotic variance of the 5th percentile estimate q̃

(the variance of
√
n(q̃ − q)) at different censoring thresholds C together
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with corresponding cumulative probability up to C in Figure 3.5. The true

models are chosen to be Weibull(5, 7) and Weibull(7, 7). Similar patterns

can be observed under Weibull distribution of different parameters. It is easy

to see that the asymptotic variance decreases with the increase of censoring

threshold, as more data points and information are taken into consideration.

Meanwhile, it is interesting that the asymptotic variance after the 10th

percentile is relatively flat when compared to the curve before the 10th per-

centile. The asymptotic variance of the quantile estimate when we censor

at 10th empirical percentile is around 2 times larger than that of the ordi-

nary MLE. In this way, we only pay a small cost of efficiency to achieve an

accurate estimate of the lower tail.

3.6 Goodness-of-fit in the left tail

In the above two sections, we have verified that the CMLE is almost unbiased

for the 5th percentile estimate and the CMLE can avoid the influence of the

observations in the upper tail with a small cost of efficiency, but the above

conclusions are limited to the 5th percentile estimate. It is interesting to

find out how the CMLE performs in the estimation of other lower quantiles,

such as the 1st or 3rd percentile.

The efficiency of the quantile estimates is determined by the censoring

threshold and we have confirmed that the censoring with 10th empirical

percentile only causes a small efficiency loss. What remains to be verified is

that the CMLE can still provide almost unbiased quantile estimates for the

1st or 3rd percentile as the 5th percentile estimate. Instead of carrying out

intensive simulations to evaluate other quantile estimates, we will study the

goodness-of-fit in the left tail achieved by the CMLE. If the CMLE fits the

lower tail of other models well, the quantile estimate will not be very biased.

In this section, we will first introduce the statistic we use to evaluate the

tail goodness-of-fit and then discuss the corresponding simulation results.
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3.6.1 Statistic to study the Goodness-of-fit

As in Section 3.2, we will measure the goodness-of-fit in the lower tail with

the following truncated Kolmogorov–Smirnov statistic:

D†(F̃n) = sup
x≤C
{|F̃n(x)−G(x)|}, (3.18)

where F̃n(·) is a distribution estimate, e.g., the one from the censored Weibull

MLE, and G(·) is the true population CDF (it does not have to be the

Weibull). Here we choose to truncate the statistic at threshold C in order

to focus on the goodness-of-fit in the left tail.

The distribution of D†(F̃n) under a model G can be estimated by Monte

Carlo methods, but the distribution of D†(F̃n) is not informative: For ex-

ample, if it is found that the distribution is nested in the interval of (0.1, 0.3)

when the sample size is 300, we cannot know if this 0.1 or 0.3 is large or

small for a reasonably good approximation.

On the other hand, it is possible to find a reference non-parametric dis-

tribution estimate, such as the empirical distribution in (2.1) and the kernel

density estimate in (2.4). Then we can compare the truncated Kolmogorov-

Smirnov statistic D† in the Weibull left tail against the empirical distribu-

tion or the kernel density estimate. Let F̂n denote the empirical CDF and

K̃b(x) =
∫ x
−∞ k̃(u)du be the distribution estimate obtained from the kernel

density estimate. For one data set, we will have the following statistics:

d(F̃n, F̂n) =D†(F̃n)−D†(F̂n) (3.19)

d(F̃n, K̃n) =D†(F̃n)−D†(K̃b). (3.20)

We can use the Monte Carlo method to estimate the distribution of

d(F̃n, F̂n) and d(F̃n, K̃n) and then compare D†(F̃n) to D†(F̂n) or D†(K̃b).

As d(F̃n, F̂n) or d(F̃n, K̃n) is a random variable, we are mainly interested in

Pr{d(F̃n, F̂n) < 0} and Pr{d(F̃n, K̃n) < 0}.
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3.6.2 Simulation results

The simulations to obtain the Monte Carlo estimate of the distribution of

d(F̃n, F̂n) and d(F̃n, K̃n) are carried out in the same setting as in Section 3.4.

The results for the models imitating MOR1 and MOR2 are very similar, so

here we will only display the results from the models imitating MOR2. The

box-whisker plots of d(F̃n, F̂n) and d(F̃n, K̃n) are included in Figure 3.6.

Figure 3.6: Box-whisker plot of d(F̃n, F̂n) and d(F̃n, K̃n) in the models
imitating MOR2
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As shown in Figure 3.6, the medians of d(F̃n, F̂n) and d(F̃n, K̃n) are

smaller than zero in most of the models considered in our simulations.

Table 3.7 summarizes the Monte Carlo estimate of Pr{d(F̃n, F̂n) < 0}
(Pr{d(F̃n, K̃n) < 0}). As the number of replicates is 10000, the Monte

Carlo standard deviation of these estimate are only in the second digits

(maximum 0.05) and thus omitted.

From Table 3.7, it is easy to see that Pr{d(F̃n, F̂n) < 0} > 70% in all the

models considered in our simulations and except for the kernel density model

imitating MOR2, Pr{d(F̃n, F̂n) < 0} > 90%. Therefore, we may conclude

that the left tail achieved by the CMLE approximates the true distribution

better than the empirical distribution most of the time for a data set similar

to the MOR2.

The advantage of the CMLE over the kernel density estimate is not as

remarkable as the advantage of the CMLE over the empirical distribution,
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Table 3.7: Pr{d(F̃n, F̂n) < 0} (Pr{d(F̃n, K̃n) < 0} under the models
imitating MOR2

Pr{d(F̃n, F̂n) < 0} Pr{d(F̃n, K̃n) < 0}
Weibull 0.98 0.51
Log-normal 0.95 0.66
Gamma 0.96 0.64
Minimum Gumbel 0.95 0.47
Normal Mixture 0.97 0.64
Log-normal Mixture 0.94 0.54
Weibull Mixture 0.98 0.60
MOR2 (KDE) 0.74 0.44

but Pr{d(F̃n, K̃n) < 0} is still larger than 50% in most of the models consid-

ered in our simulations, which indicates that the censored Weibull left tail

is better than the kernel density estimate in the sense that it is more likely

to be closer to the true distribution in the left tail. The two exceptions are

the minimum Gumbel and kernel density model. It is not surprising that

the CMLE cannot beat the kernel density model when the data is simu-

lated from a kernel density model. For the minimum Gumbel model, the

goodness-of-fit achieved by the kernel density estimate helps to explain why

the quantile estimate from KDE is less biased than the quantile estimate

from CMLE as in Table 3.6.

Moreover, besides Pr{d(F̃n, F̂n) < 0} or Pr{d(F̃n, K̃n) < 0}, we can also

study the mean of d(F̃n, F̂n) or d(F̃n, K̃n), which is smaller than zero in most

of our models, which indicates that the left tail estimate by CMLE is better

than the empirical distribution and KDE on average. For the simplicity of

writing, those results are omitted here.

In this way, we have verified that the left tail estimate by the CMLE

can be as good as the non-parametric distribution estimate such as the

empirical distribution or the kernel density estimate. Thus the CMLE can

provide almost unbiased quantile estimate besides the 5th percentile.

As a summary of this chapter, we have studied the censored Weibull

MLE from a statistical point of view and confirmed that it is a good lower
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quantile estimate from varied aspects. However, the censored Weibull MLE

only uses an ad-hoc and small proportion of the data, which inspires us to

further improve it.
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Chapter 4

Weibull Mixture and

Censored Weibull Mixture

As discussed in the previous chapter, the censored Weibull MLE approach

censors some information in the data and thus is not fully efficient. In order

to fully utilize the data set and keep the accuracy of the quantile estimate,

we can consider fitting a more complex model, for example, a mixture model,

to the data set. In this chapter, we mainly consider a mixture of two Weibull

distributions, which will be estimated by the EM algorithm. The definition

of the mixture model and the EM algorithm are introduced in Section 4.1. To

compare the Weibull mixture to a single Weibull distribution, the bootstrap

homogeneity test is introduced and discussed in Section 4.2. Moreover, to

ensure the accuracy of quantile estimates obtained from the Weibull mixture,

subjective censoring can still be applied to the Weibull mixture and this is

discussed in Section 4.3. Finally, a simulation comparison of the mixture

approaches against the censored Weibull MLE and empirical quantile is in

Section 4.4.
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4.1 Definition and estimation of a Weibull
mixture

The general definition of mixture models has been introduced in Section 3.4.

As both MOR1 and MOR2 have two modes, it is reasonable to assume our

data are from a mixture of two uni-modal distributions. Following the fairly

standard practice of using the Weibull distribution, we will only consider a

mixture of two two-parameter Weibull distributions with the following PDF:

f(x; p, α1, η1, α2, η2) = pf(x;α1, η1)+(1− p)f(x;α2, η2), (4.1)

= p
α1

η1

(
x

η1

)α1−1
e
−
(
x
η1

)α1
+(1− p)α2

η2

(
x

η2

)α2−1
e
−
(
x
η2

)α2

for x > 0. In this way, the random variable from this distribution has

a probability p to be from a Weibull (α1, η1) and probability 1 − p from

Weibull (α2, η2), but the label of the sub-population is not observed.

4.1.1 EM estimation of the Weibull mixture

To estimate the parameters θ = (p, α1, η1, α2, η2) in (4.1), we can still try

to maximize the following log-likelihood:

lI(X;θ) =

n∑
i=1

log (pf(Xi;α1, η1) + (1− p)f(Xi;α2, η2)) . (4.2)

However, the direct maximization of the above log-likelihood is numerically

difficult and unstable. For example, the partial derivative of (4.2) against

α1 will involve α2, which can be complicated to deal with. The problem

would be much easier to solve if we knew which sub-population Xi is from,

for example, if Zi = 1{Xi is from Weibull(α1, η1)} is also observed. In this

case, the PDF can be written as

f(x, z;θ) = [pf(x;α1, η1)]
z[(1− p)f(x;α2, η2)]

1−z.
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Correspondingly, the θ can be estimated by maximizing the following log-

likelihood:

lC(X,Z;θ) =
n∑
i=1

Zi[log(pf(Xi;α1, η1))]+

(1− Zi)[log((1− p) + f(Xi;α2, η2))]. (4.3)

To distinguish the log-likelihood in (4.3) from that in (4.2), (4.3) is called

the “complete” log-likelihood (“C” in the upper-script) while (4.2) is the

incomplete log-likelihood (“I” in the upper-script).

The EM algorithm (Dempster et al., 1977) is designed to carry out the

maximum likelihood estimation in (4.3). The basic idea of EM algorithm

is the following: Although Zi is not observed in practice, we can still cal-

culate its expectation (the “E” step) conditioning on the current parameter

estimates and then maximizing (the “M” step) the parameters conditioning

on the expectation of Zi; the E step and M step will be alternated until

the parameter estimates and likelihood converge. In this way, the com-

plex maximization problem can be accomplished by a series of smaller and

easier maximization problem. Under certain regularity conditions, the EM

algorithm provides consistent parameter estimates (Wu, 1983). For a more

detailed description of the EM algorithm, refer to Dempster et al. (1977).

For our mixture of Weibulls, the expectation of Zi conditioned on the

current parameter θ(s) can be easily calculated as

Z̃
(s)
i =E(Zi|Xi,θ

(s)) = P (Zi = 1|Xi,θ
(s))

=
p(s)f1(Xi;α

(s)
1 , η

(s)
1 )

p(s)f1(Xi;α
(s)
1 , η

(s)
1 ) + (1− p(s))f2(Xi;α

(s)
2 , η

(s)
2 )

. (4.4)

Plugging Z̃
(s)
i into (4.3), we have:

l̃C(X, Z̃(s);θ) =
n∑
i=1

Z̃
(s)
i [log(p) + log(f(Xi;α1, η1))]

+ (1− Z̃(s)
i )[log(1− p) log(f(Xi;α2, η2))]. (4.5)
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After the above “E” step, we will carry on to the “M” step and find the pa-

rameters maximizing (4.5). It is easy to find that the p̃(s+1) maximizing (4.5)

is

p̃(s+1) =
1

n

n∑
i=1

Z̃
(s)
i ,

by differentiating (4.5) against p.

Similarly, by differentiating (4.5) with respect to other parameters, we

can obtain the equations of α1, η1, α2, η2 whose solution will maximize (4.5).

With the help of Z̃i, the equation to solve for α̃
(s+1)
1 , η̃

(s+1)
1 will not involve

α2, η2, that is, we can solve the following iteration function to obtain α̃
(s+1)
1 :

1

α
=

∑n
i=1 Z̃

(s)
i Xα

i ln(Xi)∑n
i=1 Z̃

(s)
i Xα

i

−
∑n

i=1 Z̃
(s)
i ln(Xi)∑n

i=1 Z̃
(s)
i

, (4.6)

and then obtain η̃
(s+1)
1 by

η
(s+1)
1 =

∑n
i=1 Z̃

(s)
i X

α̃
(s+1)
1

i∑n
i=1 Z̃

(s)
i

1/α̃
(s+1)
1

. (4.7)

Next, we can replace Z̃
(s)
i by 1 − Z̃

(s)
i in (4.6) and (4.7) to achieve the

formulas for α̃
(s+1)
2 , η̃

(s+1)
2 . These “E” and “M” steps will be alternated

until convergence of the parameter estimates or the likelihood.

After obtaining (p̃, α̃1, η̃1, α̃2, η̃2), we can get the quantile estimate by

equating the CDF of Weibull mixture

F (x; p, α1, η1, α2, η2) =pF (x;α1, η1) + (1− p)F (x;α2, η2) (4.8)

=1− pe−
(
x
η1

)α1
− (1− p)e−

(
x
η2

)α2
,

and the percentage of the quantile of interest, e.g. 5th percentile, and then

solve the resulting equation numerically with bi-section method.
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4.1.2 The issue of non-finite likelihood of Weibull mixture

The above EM algorithm is aimed at finding the parameters that maximize

the log-likelihood (4.2). However, (4.2) diverges to infinity, e.g., when η1 =

X1 and α1 →∞. So, the real maximum of the likelihood in (4.2) is not well

defined. This is also the main issue in the failure of convergence of the EM

algorithm as sometimes the estimates of α1 or α2 diverge to infinity very

quickly.

This is also a problem for the mixture of normal distributions with both

means and standard deviations to be estimated for both sub-populations.

Several solutions for this issue have been proposed: Hathaway (1985) put

additional constraints on the parameter space, e.g., limiting the space of σ

in the normal mixture case; Chen et al. (2008) added a penalty function on

σ. For our Weibull mixture, we will simply constrain the space of α1, α2 to

[0, 30] and terminate the EM algorithm when α1 or α2 violates this constrain.

4.1.3 Weibull mixture estimates for real data sets

For our two real data sets, the EM algorithm successfully converges and the

parameter estimates have been summarized in Table 3.3 and Table 4.1. The

curves of the densities of the mixture models together with the densities of

the sub-populations are summarized in Figure 4.1.

Figure 4.1: Weibull mixture model for MOR1 and MOR2
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Table 4.1: Weibull mixture models for MOR1 and MOR2

Data p Majority Population Minority Population

MOR1 0.7448 α1 = 5.494 η1 = 7.599 α2 = 15.81 η2 = 5.983
MOR2 0.7932 α1 = 5.427 η1 = 7.642 α2 = 12.01 η2 = 6.186

The Weibull mixtures in MOR1 and MOR2 are very similar: the major

population contributes 80% of the data and it has almost the same range

as the data set. The minor population is nested in the central part of the

major population with a relatively larger shape parameter. Also, the major

population fits the right mode of the real data set while the minor population

fits the left mode.

The above mixture models could be better supported if they were ex-

plained by the MSRC variables (“most strength reducing characters”) mea-

sured on the tested boards, as introduced in Cheng (2010). We have tried to

fit the posterior probability (the value of Z̃
(s)
i in the last round of EM algo-

rithm) with varied regression models on those covariates, but unfortunately

no significant relationship was found. Other methods like classification tree

and forests have also been tried, but they also failed to explain our mixture

models either. Perhaps one possible reason is that the minor population is

nested in the major population and it is extremely difficult to distinguish

between them.

4.2 Bootstrap homogeneity test

Although the Weibull mixture currently cannot be explained by natural

clusters (covariates) in the data, it is still possible to support it by testing

whether the Weibull mixture fits the data significantly better than a single

Weibull distribution. In this way, the following homogeneity hypothesis is

tested:

H0 : The sample X = {X1, X2, . . . , Xn} is from a single Weibull

distribution v.s.

H1 : X is from a mixture of two Weibull distributions.
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Here the word “homogeneity” means that the data come from only one

population and its opposite word “heterogeneity” means there is more than

one population in our data set.

As the Weibull model is nested in the Weibull mixture model, the most

natural test uses the likelihood ratio test. However as discussed above,

the likelihood of the Weibull mixture is not finite, which violates one of

the regularity conditions that ensures the common asymptotic properties of

the likelihood ratio test. Together with some other issues similar to those

for the homogeneity test of a normal mixture (Chen and Li, 2009), the

twice the negative of log likelihood ratio between the single Weibull and

Weibull mixture will not have asymptotically a χ2 distribution with degrees

of freedom equal the difference between number of parameters of the two

models.

Varied approaches have been designed to perform the homogeneity test

for the normal mixture, such as resampling (Wolfe, 1971), the bootstrap

(McLachlan, 1987), the modified likelihood ratio (Chen et al., 2001), the L2

distance (Charnigo and Sun, 2004), and the EM based modified likelihood

ratio (Chen and Li, 2009; Li et al., 2009). The EM based modified likelihood

ratio is the most powerful of them, but it requires additional work to design

the penalty functions for the mixture proportion p and the shape parameter

α. As our main purpose is to estimate the quantile rather than perform

homogeneity test, we will adapt the simpler but less powerful bootstrap

approach of McLachlan (1987).

4.2.1 Definition

First proposed by Efron (1979), the bootstrap method estimates the dis-

tribution of a statistic by re-sampling from a density estimate of the data,

such as the empirical distribution or some parametric density estimate. A

more detailed introduction will be provided in the next chapter. To conduct

the homogeneity test, the log likelihood test statistic −2 log λ will be boot-

strapped, where λ is the ratio of the likelihood under H0 (the single Weibull

model) against the likelihood under H1 (Weibull mixture).
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According to McLachlan (1987), the bootstrap homogeneity test is car-

ried out as follows: (α̃, η̃) and θ̃ = (p̃, α̃1, η̃1, α̃2, η̃2) are the MLE of the pa-

rameters of the single Weibull and Weibull mixture models on the real data

set and −2 log λ is the log likelihood ratio statistic between these two models;

Next, a so-called bootstrap sample is generated from Weibull(α̃, η̃), the value

of −2 log λ∗ is computed after fitting the single Weibull and the Weibull mix-

ture for this bootstrap sample; This sampling and computation of −2 log λ∗

will be repeated for B = 500 times to achieve an estimate of the distribu-

tion of −2 log λ; The p-value is of this test is 1
B

∑B
1 1{−2 log λ∗ > −2 log λ}.

Here the choice of B = 500 is a moderate bootstrap replicates size, but it is

already much larger than the recommendations in McLachlan (1987).

4.2.2 Evaluation of the p-value

Before we apply the bootstrap homogeneity test on our data sets, it is nec-

essary to evaluate whether this test procedure yields the correct p-value. If

so, the p-value should be uniformly distributed on (0, 1) when the data are

from the null hypothesis (the single Weibull for our case).

Here we simulated N = 1000 replicates from Weibull(7, 7) with sample

size 100 and ran the above test procedure on each of them. The empirical

CDF of the p-values are presented in Figure 4.2, from which it is easy to

tell that the empirical CDF of those p-values are quite close to the CDF

of Uniform(0, 1). The Komologov-Smirnov statistic between them is only

0.0256 with a p-value of 0.5461 for the goodness-of-fit test (The detail of this

test can be found in D’Agostino and Stephens (1986)). Similar simulations

have been done under different parameters of a Weibull model and with

different sample sizes, which all yield similar conclusions. This indicates

that the p-value is almost uniformly distributed between (0, 1) and the p-

value from this bootstrap homogeneity test is reliable.

4.2.3 Results and discussion

Following this procedure, the p-value of this homogeneity test on MOR1 is

0.032 and 0.016 for MOR2. Both the p-values are smaller than 0.05, which
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Figure 4.2: Empirical CDF of the p-values and the CDF of
Uniform(0, 1)
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indicates that it is hardly possible that MOR1 and MOR2 are from a single

Weibull distribution when compared to the Weibull mixture. Although we

cannot conclude that they are from a Weibull mixture with this test, they

partially support our choice of the Weibull mixture.

4.3 Censored Weibull mixture approach

As will be shown in the simulations, the Weibull mixture is not a very flexible

approximation for some non-Weibull models. To ensure the accuracy of the

quantile estimates, we can try to apply the idea of subjective censoring

to the Weibull mixture. As the Weibull mixture is more flexible than a

single Weibull distribution, it seems possible to achieve the accuracy as the

censored Weibull MLE with less of censoring in the mixture model and the

quantile estimate can be more efficient as more information are used.
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Similarly as in the censored Weibull MLE case, the censoring threshold is

denoted by C. The corresponding likelihood of the censored Weibull mixture

with parameters θ = (p, α1, α2, η1, η2) is:

L(X;θ) =

n∏
i=1

[pf(Xi;α1, η1) + (1− p)f(Xi;α2, η2)]
δi ∗

[p(1− F (C;α1, η1)) + (1− p)(1− F (C;α2, η2))]
1−δi , (4.9)

where δi = 1{Xi ≤ C} indicates whether Xi is censored or not and f(·) and

F (·) denote the PDF and CDF of the Weibull distribution respectively.

The maximum likelihood estimate of the θ can be computed by the EM

algorithm as in the case of the uncensored Weibull mixture. Here we will

only provide the formulas to compute a few important quantities in the EM

algorithm:

• E-step: The expectation of the sub-population label Zi conditioning

on the current θ(s) as in (4.4):

Z̃
(s)
i = E(Zi|Xi,θ

(s)) = P (Zi = 1|Xi,θ
(s)) =

p(s)f(Xi;α
(s)
1 , η

(s)
1 )

p(s)f(Xi;α
(s)
1 , η

(s)
1 ) + (1− p(s))f(Xi;α

(s)
2 , η

(s)
2 )

, Xi ≤ C

p(s)(1− F (C;α
(s)
1 , η

(s)
1 ))

p(s)(1− F (C;α
(s)
1 , η

(s)
1 )) + (1− p(s))(1− F (Xi;α

(s)
2 , η

(s)
2 ))

, Xi > C

.

• M-step: After plugging in the Z̃
(s)
i into the incomplete likelihood, the

updated p̃(s+1) is still 1
n

∑n
i=1 Z̃

(s)
i . The iteration equation to solve for

α̃
(s+1)
1 is a re-weighted version of the iteration equation to be solved

in the censored Weibull MLE case as in (3.10):

1

α
=

∑m
i=1 Z̃

(s)
i Xα

i ln(Xi) + (n−m)Z̃
(s)
n Cα ln(C)∑m

i=1 Z̃
(s)
i Xα

i + (n−m)Z̃
(s)
n Cα

−
∑m

i=1 Z̃
(s)
i ln(Xi)∑m

i=1 Z̃
(s)
i

,

where n is the sample size and we assume X1, X2, . . . , Xm ≤ C while

Xm+1, Xm+2, . . . , Xn ≥ C. Here it is easy to verify that Z̃
(s)
m+1 =
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Z̃
(s)
m+2 = . . . , Z̃

(s)
n based on their definitions and they are all denoted

by Z̃
(s)
n . Then we can obtain η̃

(s+1)
1 by

η̃(s+1) =

(∑m
i=1 Z̃

(s)
i Xα(s+1)

i + (n−m)Z̃
(s)
n Cα

(s+1)∑m
i=1 Z̃

(s)
i

)1/α(s+1)

.

Then, equations to solve for the α̃
(s+1)
1 and η̃

(s+1)
1 can be found by

replacing Z̃
(s)
n by 1− Z̃(s)

n in the above equations.

4.3.1 Choice of censoring threshold

As in the case of the censored Weibull MLE, a key issue in the application of

censored mixture is the choice of the censoring threshold C. This issue has

never been addressed in literature and we do not have an industrial standard

to follow as in the case of censored Weibull MLE. Initially as a first step

in our investigation of the censored Weibull mixture, we consider only the

cases of C being the median and 70th empirical percentile of the sample.

Here we choose the censoring threshold no smaller than the median as it

is found in our simulations that when C is smaller than the median, the EM

algorithm for the censored mixture fails to converge in more than 10% of the

replicates when the sample size is around 100 (similar as the size of MOR).

This 10% failure ratio stops the censored mixture from becoming a reliable

method in practice. (The other methods, such as the censored Weibull

MLE and Weibull mixture, do not fail to converge in more than 1% of the

replicates.) On the other hand, if the C is larger than the third quartile,

the parameters in the censored mixture are very close to the uncensored

mixture. However, our choice of the threshold is still far from scientifically

validated and more work needs to be done on threshold selection for the

censored mixture.

4.3.2 Censored Weibull mixture for real data

When the censoring threshold C is chosen to be the median, the fitted mix-

ture models on the two data sets are plotted in Figure 4.3 and the parameter
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estimates are in Table 4.2. For MOR1, the censored Weibull mixture is still

very similar to the uncensored Weibull mixture as in Table 4.1. For MOR2,

the major population and the minor population in the censored Weibull

mixture have similar shape parameters but different scale parameters, which

allows them to have different positions for the mode.

Figure 4.3: Censored Weibull mixture models with the median as the
censoring threshold
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Table 4.2: Censored Weibull mixture models for MOR1 and MOR2
with median as the censoring threshold

Data p Majority Population Minority Population

MOR1 0.7478 α1 = 6.034 η1 = 7.428 α2 = 14.87 η2 = 6.013
MOR2 0.8397 α1 = 6.806 η1 = 7.208 α2 = 6.945 η2 = 6.250

When the censoring threshold is increased to the 70th empirical per-

centile, the censored mixture models are summarized in Table 4.3 and Fig-

ure 4.4. These censored mixture models are very similar to the uncensored

Weibull mixture for both MOR1 and MOR2.

Although the parameters in the censored Weibull mixture might be very

similar to that of the uncensored Weibull mixture models, the censored

Weibull mixture can approximate the left tail of the real data sets better than

the uncensored mixture, as shown by the truncated Kolmogorov-Smirnov

50



Figure 4.4: Censored Weibull mixture models with the 70th empirical
percentile as the censoring threshold
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Table 4.3: Censored Weibull mixture models for MOR1 and MOR2
with the 70th empirical percentile as the censoring threshold

Data p Majority Population Minority Population

MOR1 0.7653 α1 = 5.960 η1 = 7.481 α2 = 16.42 η2 = 5.951
MOR2 0.7877 α1 = 5.294 η1 = 7.671 α2 = 12.22 η2 = 6.205

D‡(F̃n) in Table 4.4.

Table 4.4: Tail Goodness-of-Fit up to 10th empirical percentile
(D‡(F̃n)) of different Weibull mixture models on MOR1 and
MOR2

Uncensored Censored Mixture with C Censored
Data Mixture Median 70th Percentile Weibull MLE

MOR1 0.0245 0.0202 0.0183 0.0207
MOR2 0.0146 0.0109 0.0132 0.0108

Here in Table 4.4, the definition of the D‡(F̃n) is the same as in (3.5) with

10th empirical percentile as the threshold and the F̃n will be the distribution

estimate achieved by the censored or uncensored Weibull mixture. Also, the

D‡(F̃n) achieved by the censored Weibull MLE is also included as a reference.

From Table 4.4, it is easy to see that the censored Weibull mixture
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approximates the left tail of the real data sets better than the uncensored

Weibull mixture. Moreover, although the censored Weibull mixture censors

much less data (50% and 30%) than the censored Weibull MLE (90%), they

achieve very similar tail goodness-of-fits. In the case of MOR, the censored

mixture is even better than the censored Weibull MLE.

This indicates that the censored Weibull mixture can still approximate

the tail reasonably well while it utilizes more information from the data,

which probably makes it more efficient. However, our intuition that the

more we censor the right part of the data, the better we approximate the left

tail does not seem to be true for the censored Weibull mixture, as in MOR1

the one with the 70th empirical percentile as the threshold approximates the

left tail better then the one with the median as the threshold.

4.4 Simulation comparison

In the previous chapter, we concluded that the censored Weibull MLE is the

best quantile estimation approach under most of the models considered in

our simulations. Here in this chapter, we will compare the censored Weibull

MLE with the threshold as the 10th empirical percentile (CMLE), to the

quantile obtained from the Weibull mixture (MIX), censored Weibull mix-

ture with censoring threshold C being the median (50% censoring, CMIX5

for short) and the 70th empirical percentile (30% censoring, CMIX7 for

short). The ordinary Weibull MLE, quantile obtained from the kernel den-

sity estimate, and the empirical quantile will not be included here as they

are shown to be inferior to the CMLE.

The quantile of interest is still the 5th percentile. As the conclusions

from the parametric models imitating MOR1 and MOR2 are very similar, we

will only show the simulation results from the parametric models imitating

MOR2 with sample size of 300 in this chapter. The number of replicates

is still 10000. Similarly as in tables of RMSE in the previous chapter, the

darker the background is, the larger the RMSE is.
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4.4.1 RMSE of the quantile estimates

The RMSE of these five quantile estimates in the nine models are summa-

rized in Table 4.5. Here the Monte Carlo standard deviation is controlled

to be smaller than 0.001 and thus is omitted. From the background color in

Table 4.5, it is hard to find a winner in most of the models considered here.

The Weibull mixture has the smallest RMSE under the Weibull, Weibull

mixture and the kernel density model imitating MOR2 while the CMIX7 is

the best under the remaining parametric models: Gamma, log-normal, Min-

imum Gumbel, normal mixture and log-normal mixture. Although at least

one of the Weibull mixture models (censored and uncensored) does better

than the censored Weibull MLE in terms of the RMSE in all the models we

considered in these simulations, none of them does uniformly better than

the censored Weibull MLE in all the models considered here.

Table 4.5: RMSE of the quantile estimates from CMLE, MIX,
CMIX5, and CMIX7, under the models imitating MOR2

Model CMLE MIX CMIX5 CMIX7

Weibull 0.134 0.129 0.135 0.133
Log-normal 0.142 0.283 0.140 0.134
Gamma 0.139 0.203 0.140 0.136
Minimum Gumbel 0.155 0.140 0.140 0.139
Normal Mixture 0.125 0.125 0.124 0.121
Log-normal Mixture 0.139 0.146 0.138 0.138
Weibull Mixture 0.166 0.158 0.164 0.167
MOR2 (KDE) 0.148 0.147 0.151 0.155

4.4.2 Bias and standard deviation of the quantile estimates

To further compare these methods, we will decompose the RMSE into the

bias and standard deviation as shown in Table 4.6. It is easy to see that

the uncensored Weibull mixture has an extraordinarily large bias under the

log-normal, gamma and normal mixture models, which indicates that it fails

to approximate the left tail of those models.

On the other hand, it is interesting to find that the CMIX7 is gener-
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ally less biased than all the other three quantile estimates. Meanwhile, the

quantile estimates from the CMIX7 and CMLE have very similar standard

deviations. In the sense of similar RMSEs but less bias, the CMIX7 offers

better quantile estimates than the censored Weibull MLE.

Table 4.6: Bias and [Standard deviation] of the quantile estimates
(×100) of the quantile estimates from CMLE, MIX, CMIX5, and
CMIX7 under the models imitating MOR2

Model CMLE MIX CMIX5 CMIX7

Weibull 0.46 [13.4] 1.55 [12.8] 1.00 [13.5] 1.08 [13.3]
Log-normal 4.75 [13.4] -23.56 [15.6] 3.59 [13.6] 0.87 [13.4]
Gamma 3.46 [13.5] -14.20 [14.5] 2.59 [13.7] 1.21 [13.6]
Minimum Gumbel -4.27 [14.9] 0.45 [14.0] -0.24 [14.0] -0.16 [13.9]
Normal Mixture 2.16 [12.3] -4.35 [11.7] 2.10 [12.3] 0.81 [12.1]
Log-normal Mixture 5.38 [12.8] -5.37 [13.6] 4.37 [13.1] 3.74 [13.3]
Weibull Mixture -2.15 [16.4] -0.69 [15.8] 0.18 [16.4] -0.43 [16.7]
MOR2 (KDE) 4.19 [14.2] 2.35 [14.5] 4.40 [14.5] 3.84 [15.1]

Table 4.6 also reveals several trends which contradict our intuition men-

tioned in the beginning of this chapter. It is expected that the more data

we use, the more efficient quantile estimate we can achieve. Nonetheless the

standard deviation of the quantile estimates from Weibull mixture is larger

than the standard deviation of the CMIX5 under the log-normal, gamma,

Gumbel and log-normal mixture models. Also, the standard deviation of

CMIX7 is larger than that of the CMIX5 under the kernel density model

imitating MOR2.

One possible explanation for this unexpected result is that when the

Weibull mixture fails to approximate the true underlying model, e.g., log-

normal and gamma, more information (no censoring) will not help to im-

prove the efficiency. Also, the Weibull mixture is too complicated to be

tracked theoretically during my master study and thus a more convincing

explanation remains to be explored.

Perhaps we will find a threshold that makes the censored Weibull mixture

uniformly better than the censored Weibull MLE, but the Weibull mixture

is too complex to be a good starting point of the study on how to choose
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the threshold. In this way, we will study how to select a better censoring

threshold for the censored Weibull MLE in the next chapter.
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Chapter 5

Bootstrap Threshold

Selection in the Censored

Weibull MLE

As discussed in Chapter 3, the choice of censoring threshold C to be the

10th empirical percentile is an ad-hoc choice in the current industrial stan-

dard (ASTM, 2004a). In this chapter, we will first study the relationship

between the censoring threshold and the mean squared error of the quan-

tile estimate in the censored Weibull MLE approach. In order to find the

optimal threshold for a data set, we propose to first estimate the MSE of

quantile estimates of the censored Weibull MLE with different thresholds by

the bootstrap and then choose the optimal threshold with the smallest esti-

mated MSE. According to our simulations, this censored Weibull MLE with

bootstrap threshold selection method is better than the original CMLE.

5.1 Relationship between MSE and the censoring
threshold

In Chapter 3, the censoring threshold C is fixed to be the 10th empirical

percentile in the censored Weibull MLE approach, which is an ad-hoc choice

in industrial standard (ASTM, 2004a). If we increase C, more data will
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be included in the analysis, so the quantile estimate can be more efficient.

But at the same time, the increase of C might reduce the goodness of the

approximation of the non-Weibull distributions achieved by the Weibull left

tail and thus the quantile estimate might be become more biased. As the

mean squared error is the sum of variance and bias, it is not clear that how

the MSE will change with the censoring threshold, but this relationship can

be easily estimated by Monte Carlo methods if the model is known.

Here Figure 5.1 shows the relationship between MSE and censoring

threshold (as an empirical percentile). These theoretical MSEs are eval-

uated by 20000 replicates under all the 8 models imitating MOR2 with

sample size of 300. The candidates for censoring threshold range from the

10th empirical percentile to 100th empirical percentile (no censoring) in steps

of 5%. Similar curves can be found under the models imitating MOR1 and

are thus omitted.

Figure 5.1: Relationship between the MSE and censoring threshold in
the models imitating MOR2
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Under the Weibull model, the MSE continuously decreases with the

threshold, as the censored Weibull MLE is almost unbiased under any thresh-

old, but the variance of the quantile estimate decreases with the increase of

threshold. For all the other models, the MSEs all decrease first and then

increase dramatically for large thresholds. As for small censoring thresholds,

the bias does not increase much while the variance decreases, resulting in a
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decreasing MSE. On the other hand, when the censoring threshold is large,

for example, larger than the median, the bias of the quantile estimate in-

creases dramatically while the benefits in the variance shrinks, which leads

to the increase of MSE. The optimal censoring threshold (with the smallest

MSE) of most of those non-Weibull models are around 30th to 50th per-

centile.

5.2 Bootstrap estimate of MSE

In the above simulations, we can easily find out the relationship between

the MSE and the censoring threshold as we know the true model. But in

practice, the true model is never known. Meanwhile, the empirical distri-

bution of the real data set is a consistent estimate of the true distribution.

It is possible to estimate the MSE under a certain censoring threshold by

bootstrapping from the real data set and then choosing the threshold with

the smallest estimated MSE.

The bootstrap, first proposed by Efron (1979), is a re-sampling technique

to approximate and estimate the sampling distribution of a statistic and its

properties, such as the bias and variance. For our problem, the bootstrap

estimate of MSE

EGn (q̃∗n(C)− q̂n)2 ,

can be an estimate of the true MSE under the model G

EG (q̃n(C)− q)2 .

Here the Gn is the empirical distribution of a sample from model G and q̂n

is the empirical quantile (Type IX definition in R). q̃n(C) is the quantile

estimate obtained from the censored Weibull MLE with threshold C and

q̃∗n(C) is the censored Weibull MLE under the bootstrap sample. Notice

here the G does not necessarily have to be a Weibull model or a model with

a Weibull tail. It can be any reasonable parametric model for our data.

If the EGn (q̃∗n(C)− q̂n)2 is a consistent estimator of EG (q̃n(C)− q)2,
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namely,

EGn(q̃∗n(C)− q̂n)2 − EG (q̃n(C)− q)2 →p 0, n→∞, (5.1)

we will have,

lim
n→∞

Pr
{
EGn(q̃∗n(C1)− q̂n)2 > EGn(q̃∗n(C2)− q̂n)2

}
= 1, (5.2)

when

EG(q̃n(C1)− q̂n)2 > EG(q̃n(C2)− q̂n)2, (5.3)

for any given C1 and C2.
1

In this way, we can choose the best threshold corresponding to the small-

est MSE of the quantile estimate from a finite set of threshold candidates

asymptotically. In a finite sample with fairly large sample size, the probabil-

ity that we choose the best threshold can also be larger than the probability

we fail to choose the best threshold.

In this section, the computation of the bootstrap estimate of MSE will

first be described. Then, we will discuss a promising plan to prove the

consistency of bootstrap estimate of MSE. Later, a few simulations on the

consistency of bootstrap MSE will be presented.

5.2.1 Computation of the bootstrap MSE

Before we start to discuss the simulations designed to verify the consistency

of the bootstrap estimate MSE, it is first necessary to clarify how to compute

EFn(q̃∗n(C)− q̂n)2: For an i.i.d. sample X = {X1, X2, . . . , Xn}, we will first

calculate the Type IX empirical quantile introduced in Chapter 3 as q̂n.

Then, we will re-sample X with replacement and get the bootstrap sample

X∗ = {X∗1 , X∗2 , . . . , X∗n}. Next, we will apply a Type II subjective censoring

on this bootstrap sample, namely, calculate the censored Weibull MLE based

1Here we may need a few more conditions to ensure we can achieve (5.2) from (5.3)
and (5.1). As the proof of (5.1) is still incomplete at the time of writing, we will not
discuss those conditions here.
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on the smallest r observations in the bootstrap sample, where r is the number

of the observations no larger than the censoring threshold C in the original

sample X. Based on the censored Weibull MLE of the parameters, we can

obtain the quantile estimate on this bootstrap sample q̃∗X∗ . The re-sampling

and calculation of q̃∗
X∗i will be repeated for B (e.g., B = 5000) times and

the upper-script will be used to indicate the i-th bootstrap sample; Finally,

EGn(q̃∗n(C)− q̂n)2 is calculated as

EGn(q̃∗n(C)− q̂n)2 =
1

B

B∑
i=1

(q̃∗X∗i − q̂n)2.

Given a set of threshold candidates C for the sample X, the threshold

with the smallest bootstrap MSE will be selected as the best threshold and

the corresponding quantile estimate under this threshold will be an quantile

estimate of this sample, which is named as the bootstrap censored Weibull

MLE (BMLE for short).

As the wood engineering field does not want to use less than 10% of

the data nor more than half of the data, we now consider only selecting

the thresholds from 10th, 20th, . . . , 50th empirical percentiles for the 5th per-

centile estimate. The step of 10% is chosen for the computational simplicity.

Here are some issues to be clarified for the bootstrap procedure.

Discussion on the types of censoring in bootstrap

As we have discussed in Chapter 3, whether the subjectively censoring in

the CMLE is treated as Type I or Type II censoring will not affect the

quantile estimate. But whether we use Type I or Type II censoring in the

bootstrap will affect the quantile estimate and thus the MSE estimate. We

can also apply Type I censoring in the bootstrap sample, that is, censoring

the bootstrap sample with the threshold C, which is a sample quantile of the

original sample (an order statistic decided from Type III definition of the

empirical quantile), such as the 10th empirical percentile. The two different

types of censoring in the bootstrap will result in slightly different MSE

estimates.
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If we compare the RMSE of BMLE quantile estimates with type I or

type II censoring, type II censoring is slightly better than type I censoring

in our simulations. Those results are available upon request. In this way,

we will use type II censoring for our study.

Number of bootstrap replicates

In the bootstrap procedure, the number of bootstrap replicates B will af-

fect the precision of the MSE estimate. Clearly, the larger B is, the more

precise the MSE estimate is and the more computation is required. For our

study, the B is usually chosen to be 5000, which is chosen to guarantee that

the MSE estimates in our two real data sets given the threshold candidates

10%, 20%, . . . , 50% will be significantly different when the Monte Carlo ran-

domness in the bootstrap is considered. In this way, the threshold selected

will not be affected by Monte Carlo randomness and be sure to have the

smallest RMSE one under the empirical distribution of the real data sets.

However, in our simulations, each replicate is different and sometimes the

bootstrap estimated MSE under different thresholds are almost equal. It is

thus almost impossible to ensure the threshold selected in the simulated

data sets will not be affected by the bootstrap Monte Carlo randomness

when B = 5000. Although we want more bootstrap replicates, B = 5000 is

already the computational limit we can afford in the simulations.

5.2.2 Consistency of the bootstrap estimate of MSE

To ensure our bootstrap censored Weibull MLE works asymptotically, it

is necessary to show the consistency of the bootstrap estimate of MSE as

in (5.1). The population MSE and bootstrap MSE can be decomposed into

the squared bias and variance two parts:

EGn(q̃∗n − q̂n)2 =V ar(q̃∗n) + (EGn q̃
∗
n − q̂n)2

EG(q̃n − q)2 =V ar(q̃n) + (EGq̃n − q)2.

Based on the Slutsky’s theorem (as introduced in Casella and Berger
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(2002)), we can establish the consistency of the bootstrap estimate of MSE (5.1)

by showing that

(EGn q̃
∗
n − q̂n)2 − (EGq̃n − q)2 →p 0, n→∞ (5.4)

V ar(q̃∗n)− V ar(q̃n)→p 0, n→∞. (5.5)

Simplification of (5.4)

The left hand of (5.4) can be simplified as

(EGn q̃
∗
n − q̂n)2 − (EGq̃n − q)2 =

[(EGn q̃
∗
n − q̂n) + (EGq̃n − q)] [(EGn q̃

∗
n + q̂n)− (EGq̃n − q)]

The empirical quantile q̂n and the true quantile q are finite and the estimated

quantile is obtained by q̃ = η̃ [− log(1− p)]1/α̃. The proportion of interest

is smaller than 0.1, which indicates that − log(1 − p) < − log(0.9) < 0.2.

The observations of MOR are always finite in our study and the parameter

estimates η and α for them are bounded according to Rinne (2009). So, the

quantile estimate is guaranteed to be bounded, which further indicates that

[(EGn q̃
∗
n − q̂n) + (EGq̃n − q)] will be bounded. In this way, (5.4) is equivalent

to

[(EGn q̃
∗
n + q̂n)− (EGq̃n − q)]→p 0, n→∞.

Again, with Slutsky’s theorm, (5.4) can be proved by showing

EGn q̃
∗
n−EGq̃n →p 0, n→∞ (5.6)

q̂n−q →p 0, n→∞ (5.7)

The equation (5.7) is a well-known result, for example in Serfling (1980).

What remains to be proved is (5.6).
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Strengthening (5.5)

As discussed in Chapter 3, the asymptotic variance of
√
nq̃n is a finite

number that depends on the parameters and censoring threshold under the

Weibull model, which indicates that V ar(q̃n)→p 0 when n→∞. Therefore,

(5.5) can be proved if V ar(q̃∗n) →p 0 when n → ∞. However, without any

bootstrap, V ar(q̃∗n) ≡ 0 is also a consistent estimate of V ar(q̃n). Although

it might be true that the MSE equals to the squared bias asymptotically, we

still need to estimate the variance together with the bias part for the usage

in a finite sample.

In this way, we will strengthen (5.5) to:

V ar(q̃∗n)/V ar(q̃n)→p 1, n→∞. (5.8)

If (5.8) is true,

1− V ar(q̃∗n)/V ar(q̃n))→p 0, n→∞

and thus

V ar(q̃∗n)− V ar(q̃n)→p 0, n→∞.

when V ar(q̃n) is finite.

A tentative plan to prove the consistency

As discussed above, we can establish the consistency of bootstrap MSE

estimate by showing (5.6) and (5.8), which are kind of convergence of in the

first two moments (Shao and Tu, 1995). More detailed introduction of this

stochastic convergence in moments can be found in Bickel and Freedman

(1981) and Shao and Tu (1995).

Most of the techniques for proving the consistency of bootstrap have

been summarized in Shao and Tu (1995). These include the Mallows’ dis-

tance, imitation and linearization, etc. Shao and Tu (1995) developed most

of their theorems on the consistency of bootstrapping M-estimators with
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the help of the differentiability of the estimators. However, it is difficult to

verify the differentiability of our censored Weibull MLE due to the lack of

corresponding theoretical results. According to our literature review, some

sufficient conditions to ensure an M-estimator is differentiable are studied in

Clarke (1983) and Clarke (1986), which requires the estimator to be contin-

uous in x (the domain of the random variable). As shown in Section 3.5, our

censored Weibull MLE is not continuous in x. Although the continuity is

only a sufficient condition for differentiability, it will be very time consuming

to verify the differentiability from definition.

On the other hand, it is possible to find the Bahadur representation (a

kind of linearization of the estimator, as discussed in (Serfling, 1980)) of the

censored Weibull MLE with the similar techniques as discussed in Jureckova

and Sen (1987) and He and Shao (1996). With the Bahadur representation

the estimate, it is possible to demonstrate the stochastic convergence of

the distribution of the bootstrapped censored Weibull MLE with similar

techniques as discussed in Section 3.1.5 in Shao and Tu (1995). Then, with

some conditions including uniform integrability, the stochastic convergence

in moment might be established.

The above is only a tentative plan to prove the consistency of our boot-

strap MSE estimate, but the substantial amount of work leads us to defer

this to future work. However, we will partially demonstrate the consistency

with simulations.

5.2.3 Simulation evaluation of the consistency

If the bootstrap MSE is a consistent estimate of the true population MSE,

we should observe in the simulations that the distribution of the difference

between the bootstrap MSE and the true population MSE degenerates to

zero with the increase of sample size, as the convergence in probability im-

plies converges in distribution.

For these simulations, we will simulate N = 10000 replicates from a

known model imitating our real data sets with sample size as (300, 500,

1000, 2000, 3000) respectively. For each replicate of each sample size, we will
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first calculate the quantile estimate q̃in from censored Weibull MLE using the

10th empirical percentile as the threshold, where the superscript indicates

the i-th replicate with sample size n (subscript). This quantile estimates

will be used to calculate the Monte Carlo estimate of the population MSE

under sample size n, donated as Mn:

Mn =
1

N

N∑
i=1

(q̃in − q)2,

where the q is the true quantile under the model we simulate data from.

Moreover, for each replicate, we will also apply the bootstrap procedure

introduced above to obtain the MSE estimate M̂ i
n with B = 5000 bootstrap

replicates and the M̂ i
n−Mn gives a Monte Carlo estimate of the distribution

of the difference of the bootstrap MSE and population MSE.

This set of simulations has been performed on all the models imitating

MOR1 and MOR2 as introduced in Section 3.4. The trend of the distribu-

tion of M̂ i
n −Mn with respect to n is very similar among all those models.

For simplicity, we will only present the results on the Weibull and Weibull

mixture models imitating MOR2. The box-plots of M̂ i
n−Mn under different

sample sizes are in Figure 5.2.

Figure 5.2: The box-whisker plot of M̂ i
n −Mn under different sample

sizes
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From Figure 5.2, it is easy to find that the “box” (distribution) of M̂ i
n−

Mn concentrates at zero and the right tail becomes shorter with an increase

of the sample size. To evaluate this convergence, the
√
n times the mean and

standard deviation of M̂ i
n−Mn are summarized in Table 5.1 and Table 5.2.

It is easy to see that both of them strictly decrease with the increase of

sample size, which probably indicates that the mean and standard deviation

of M̂n −Mn decrease at a rate of 1/
√
n.

Table 5.1:
√
n times the mean of M̂ i

n − Mn under different sample
sizes

Model 300 500 1000 2000 3000

Weibull 0.104 0.083 0.059 0.045 0.036
Weibull Mixture 0.152 0.122 0.091 0.062 0.051

Table 5.2:
√
n times the standard deviation of M̂ i

n−Mn under differ-
ent sample sizes

Model 300 500 1000 2000 3000

Weibull 0.193 0.145 0.094 0.065 0.051
Weibull Mixture 0.316 0.239 0.166 0.133 0.117

The above trends in these simulations are just some necessary conditions

for the consistency of bootstrap MSE. So far, we just have not found any

evidence to disprove the consistency. It is still necessary to find a rigorous

mathematical proof to prove its consistency. We need to make sure that

this bootstrap censored Weibull MLE is a better method than the original

industrial standard (CMLE) and thus worthy proving the consistency of

bootstrap MSE.

5.3 Simulation comparison

In the following simulations, we will compare the 5th percentile estimate

achieved by the bootstrap censored Weibull MLE (BMLE) to the other quan-

tile estimates introduced in the previous chapters, which includes the cen-
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Table 5.3: RMSE of the quantile estimates from CMLE, BMLE, MIX,
CMIX7, and EMP under the models imitating MOR1

Model CMLE BMLE MIX CMIX7 EMP

Weibull 0.150 0.147 0.149 0.152 0.175
Log-normal 0.167 0.174 0.396 0.159 0.186
Gamma 0.162 0.166 0.269 0.159 0.183
Minimum Gumbel 0.169 0.143 0.153 0.147 0.165
Normal Mixture 0.115 0.120 0.139 0.110 0.130
Log-normal Mixture 0.158 0.156 0.210 0.155 0.196
Weibull Mixture 0.163 0.149 0.152 0.163 0.187
MOR1 (KDE) 0.163 0.159 0.169 0.156 0.188

sored Weibull MLE with 10th empirical percentile as the threshold (CMLE),

the Weibull mixture (MIX), the censored Weibull mixture with 70th empir-

ical percentile as the threshold (CMIX7). These three quantile estimates

are “winners” among the quantile estimates proposed in Chapters 3 and 4.

Moreover, the empirical quantile will also be considered as reference.

The models from which we simulate data are the same as in Chapter

3: eight models imitating MOR1 and eight models imitating MOR2. The

sample size here are all chosen to be 300. Under each model, we will have

N = 10000 replicates and each replicate will be bootstrapped B = 5000

times for the BMLE. The RMSE of those quantile estimates are summarized

in Table 5.3 and 5.4. As in the previous chapters, a darker background

corresponds to a larger RMSE. Here the Monte Carlo estimation standard

error of those RMSE is controlled to be around 0.001 and thus the at least

the first two digits are significant. For ease of displaying the tables, we

will not include the Monte Carlo standard error here, but they are available

upon request.

In the rest of this section, we will analyse the simulation results in Ta-

ble 5.3 and 5.4 to compare the five quantile estimates. To under the advan-

tage and limitation of the BMLE, we will compare the bias and standard

deviation of the BMLE, CMLE in Section 5.3.2. Later, we will study the

threshold chosen by the BMLE procedure to understand the advantages and
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Table 5.4: RMSE of the quantile estimates from CMLE, BMLE, MIX,
CMIX7, and EMP under the models imitating MOR2

Model CMLE BMLE MIX CMIX7 EMP

Weibull 0.134 0.131 0.130 0.134 0.155
Log-normal 0.142 0.148 0.283 0.134 0.158
Gamma 0.138 0.142 0.202 0.135 0.156
Minimum Gumbel 0.155 0.134 0.140 0.137 0.154
Normal Mixture 0.127 0.132 0.127 0.123 0.144
Log-normal Mixture 0.139 0.134 0.146 0.139 0.153
Weibull Mixture 0.167 0.156 0.159 0.168 0.192
MOR2 (KDE) 0.150 0.147 0.148 0.158 0.179

limitations of BMLE.

5.3.1 Comparison of the RMSE of the quantile estimates

From the background shades of Table 5.3 and 5.4, it is easy to see that either

BMLE or CMIX7 is the best quantile estimates in most of the models we

considered. Among the models imitating MOR1, CMIX7 has the smallest

RMSE in 5 models while BMLE has the smallest RMSE in 3 models; Among

the models imitating MOR2, BMLE is the best in 4 models while CMIX7

is the best in 3 models.

Although it seems that CMIX7 achieves the largest number of “first

places” in the 16 models considered in our simulations, it also has the second

largest RMSE in several models, such as the Weibull or Weibull mixture

models, which means that it is only better than the empirical quantile under

those models. On the other hand, only the normal mixture model imitating

MOR2, BMLE has the second largest RMSE.

In order to summarize the performance of these five quantile estimates,

we will compare their average rank in the models from which we simulate

data. For each model, we will first calculate the rank of these five quantile

estimates. For example, in the Weibull model imitating MOR, the ranks

are: CMLE (3), BMLE (1), MIX (2), CMIX7 (4) and EMP (5). Then the

ranks of each quantile estimate will be averaged across the 16 models. The
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results are:

CMLE BMLE MIX CMIX7 EMP

Averaged rank 2.9375 2.1875 2.9375 2.2500 4.6875

It is easy to find that the BMLE has the smallest averaged rank among these

five quantile estimates and the CMIX7 is in the second place. Furthermore,

as the lumber strength data is commonly modelled by a Weibull distribution,

the models closely related to the Weibull model, such as Gumbel, Weibull

mixture, and the KDE models of real data sets should be assigned more

weight in the averaged rank. Those models are also the models where BMLE

generally does better than CMIX7. In this way, the average rank obtained

in our simulations might “underestimates” the advantage of BMLE over

CMIX7 in practice.

The BMLE is uniformly better than the empirical quantile and the

BMLE has a smaller RMSE than the Weibull mixture (MIX) in all except

one models considered in our simulations. However, when we compare the

BMLE to the fixed threshold CMLE, the BMLE has larger RMSE than the

CMLE under the Gamma, log-normal and normal mixture models, which

stimulates us to first compare the bias and standard deviation of the BMLE

and CMLE.

5.3.2 Comparison of the bias and standard deviation of
BMLE and CMLE

The bias and standard deviation (SD) of the quantile estimates from BMLE

and CMLE in the models imitating MOR2 are summarized in Table 5.5. The

results from the models imitating MOR1 are very similar as in Table 5.5 and

are thus omitted. Similarly as in the previous tables, a darker background

corresponds to a larger absolute bias (standard deviation).

For Table 5.5, it is easy to find that the BMLE reduces the bias of the

quantile estimate in most of the models here. However, except the Weibull,

Gumbel, Weibull mixture models, the quantile estimate from BMLE has

a larger SD than the CMLE. The increase of SD is especially large in the
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Table 5.5: Bias and standard deviation (SD) of the quantile esti-
mates (×100) from CMLE and BMLE under the models imi-
tating MOR2

Bias SD

Model CMLE BMLE CMLE BMLE

Weibull 0.87 0.95 13.4 13.1
Log-normal 4.64 -0.43 13.4 14.8
Gamma 3.66 -0.50 13.3 14.2
Minimum Gumbel -4.19 -0.24 14.9 13.4
Normal Mixture 2.29 -1.19 12.4 13.2
Log-normal Mixture 5.31 1.94 12.8 13.3
Weibull Mixture -1.87 -0.97 16.6 15.6
MOR2 (KDE) 4.26 2.12 14.4 14.5

Gamma, log-normal and normal mixture models, where the BMLE has a

larger RMSE than the CMLE.

Taken the log-normal model as an example, standard deviation of the

100× quantile estimates from the censored Weibull MLE with fixed censoring

threshold at 10th, 20th, . . . , 50th empirical percentile are 13.5, 13.4, 13.6, 13.7,

13.7 respectively, which are all smaller than the 100× standard deviation of

the BMLE (14.8).

This is because the selection procedure will actually bring in additional

variance to the quantile estimates, as the BMLE is a data-driven procedure

and it can select different thresholds in different samples. To understand

the randomness introduced by the selection procedure, we will study the

threshold selected in our simulations.

5.3.3 Discussion on the threshold selection of BMLE

Here Table 5.6 has summarized the proportion of each threshold been se-

lected by the bootstrap procedure in the N = 10000 replicates in the models

imitating MOR2. Similar trend is observed in the models imitating MOR1

and thus we have omitted the corresponding table. As a reference, the the-

oretical RMSE of the quantile estimate from censored Weibull MLE with

70



fixed thresholds as 10%, 20%, . . . , 50% empirical quantile under those models

are also included.

In Table 5.6, the first row under each model is the theoretical RMSE

(estimated by Monte Carlo in our simulations) and the second row is the

proportion of the threshold selected by the bootstrap procedure. Similarly as

in the previous tables, a darker background corresponds to a larger RMSE.

Ideally, the larger the RMSE is, the less frequent it will be selected by the

bootstrap. So for the proportion of selected thresholds, a darker background

will indicate a smaller proportion, which ideally will make the background

colour of the two rows under a model agree.

Table 5.6: RMSE of the quantile estimates from censored Weibull
MLE with different fixed censoring thresholds and the propor-
tion of these thresholds selected by the BMLE under the models
imitating MOR2

Model 10% 20% 30% 40% 50%

Weibull
0.134 0.134 0.131 0.127 0.122
21.0% 12.7% 12.7% 15.5% 38.1%

Log-normal
0.142 0.141 0.135 0.148 0.190
22.9% 19.2% 21.5% 19.2% 17.3%

Gamma
0.138 0.138 0.133 0.138 0.160
22.9% 17.1% 18.5% 18.0% 23.5%

Minimum Gumbel
0.155 0.151 0.139 0.130 0.124
15.9% 10.0% 9.8% 12.5% 51.1%

Normal Mixture
0.127 0.126 0.123 0.131 0.159
23.0% 17.8% 19.6% 18.7% 21.0%

Log-normal Mixture
0.139 0.139 0.134 0.130 0.130
23.0% 14.3% 15.1% 16.2% 31.4%

Weibull Mixture
0.167 0.164 0.157 0.148 0.141
10.7% 6.5% 9.8% 21.3% 51.6%

MOR2 (KDE)
0.150 0.150 0.148 0.143 0.133
21.4% 11.4% 10.6% 13.7% 42.9%

Obviously, the background shades of every two rows in Table 5.6 barely

agree, which indicates that the BMLE procedure does not exactly follow

our expectation to choose the threshold with a smaller RMSE more often
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than the threshold with a larger RMSE. It seems that the BMLE procedure

chooses the 10th and 50th as the best threshold more often than the other

thresholds, especially in the log-normal, gamma and normal mixture models.

This is the main reason why the BMLE is worse than the CMLE under those

models.

However, as the empirical distribution is only an approximation of the

true population distribution, we should not expect to be able tos choose

the optimal threshold of the true population based on a sample of 300.

Moreover, it might be difficult for the Weibull left tail to approximate the

left tail of those models. On the other hand, in the models like Weibull,

Gumbel, Weibull mixture and the KDE model imitating MOR2, which are

relatively easier for a Weibull model to approximate, the BMLE chooses the

theoretically best threshold more frequently than any other thresholds.

5.3.4 Advantages and limitations of BMLE

To further study the advantage and limitation of BMLE, we will first get

the following two differences from our simulation results: The first is the

difference between the RMSE of the quantile estimates from CMLE and

BMLE, which will be denoted by

RCMLE −RBMLE.

The other difference of the difference between the RMSE of the quantile esti-

mates from CMLE (censored Weibull MLE with 10th empirical percentile as

threshold) and minimum RMSE of the quantile estimate from the censored

Weibull MLE with fixed thresholds in our threshold candidates set, which

will be denoted by

RCMLE −min{R}.

Take the Weibull model imitating MOR2 as an example, the minimum

RMSE is achieved by the threshold of 50th empirical percentile. TheRCMLE−
min{R} equals 0.134− 0.122, as shown in Table 5.6.
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Here we will plot the RCMLE − RBMLE against RCMLE − min{R} in

Figure 5.3. It is easy to find that the RCMLE −min{R} are all smaller than

0.009 in the models where the BMLE has a larger RMSE than the CMLE.

This indicates that when the difference in the RMSE between the original

CMLE and the best censored Weibull MLE with a fixed threshold (given

in our candidates set) is very small, it is very difficult for the bootstrap

procedure to identify this difference and choose the best threshold. This

limitation of BMLE might help to explain why the bootstrap procedure

selects the original 10th percentile as threshold more often than the best

threshold in the log-normal, gamma and normal mixture models.

Figure 5.3: Relationship between RBMLE − RCMLE and RCMLE −
min{R} in the mdoels imitating MOR1 and MOR2
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Moreover, from Figure 5.3, another interesting trend is that RBMLE −
RCMLE generally increases with RCMLE −min{R}; that is, the BMLE will

have more advantage over the CMLE when the difference between the RMSE

of CMLE and the censored Weibull MLE with the best threshold becomes

larger and thus easier for the bootstrap procedure to identify.

In order to further improve the BMLE, it is necessary to find a better

candidate threshold sets for our data, which remains to be explored. Af-

ter all, the bootstrap censored MLE is a better quantile estimate than the
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CMLE as the BMLE reduces the RMSE of the quantile estimates in the

models relatively closer to our real data sets and also reduces the bias of

quantile estimate in most of the models we consider.
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Chapter 6

Conclusions and Future

Work

In this thesis, we mainly focus on the statistical methods of lower quantile

estimation of wood strength data, which is a critical problem for the safety of

construction with lumber materials. The intuitive non-parametric quantile

estimates, such as the empirical quantile, are unbiased but very inefficient,

while the parametric quantile estimates are fully efficient but seriously biased

under mis-specified models. In order to overcome the shortcomings of the

non-parametric or parametric quantile estimates, the wood engineering field

applies the censored Weibull MLE approach (ASTM, 2004a), which can be

viewed as a semi-parametric approach.

The basic idea of this censored Weibull approach is that the quantile can

be sufficiently determined by the density below it. Thus we can focus on

fitting a parametric model to the left tail and subjectively censor the rest

observations. Our simulations and theoretical study yield that this censored

Weibull MLE strikes a good balance between the variance and bias, with a

smaller mean squared error (MSE) than the parametric or non-parametric

quantile estimates.

When compared to the empirical quantile, the censored Weibull MLE

is slightly more biased but remarkably more efficient. This serves as an

example that we can improve the empirical methods by finding a proper
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parametric approximation to the model. When compared to the paramet-

ric quantile estimate, the censored Weibull MLE is less efficient under the

correct, namely, the Weibull model, but much less biased under the mis-

specified models. A small part of the efficiency of the parametric model is

sacrificed to achieve the accuracy in this censored Weibull MLE approach.

However, the censored Weibull MLE is not perfect and still has room to

be improved. In this thesis, we first consider fitting a more complex data to

the model, which enables us to utilize more information from the data. In

this way, the Weibull mixture and censored Weibull mixture are proposed.

According to our simulations, the censored Weibull mixture reduces the

bias of the censored Weibull MLE, but we still have to find a way to select

a better censoring threshold for the censored Weibull mixture.

The other way to improve the censored Weibull MLE is to select a better

censoring threshold based on the data set, which leads us to bootstrap the

real data set and achieve an MSE estimate based on the bootstrap samples.

For a given finite set of threshold candidates, we can choose the threshold

with the smallest bootstrap MSE estimate, which leads us to the censored

Weibull MLE with bootstrap threshold selection (BMLE). Although, the

bootstrap threshold selection procedure introduces additional variance to

the quantile estimate, which is a common issue of a data-driven procedure,

the BMLE generally performs better than all the other methods mentioned

in this thesis.

As for future research, we will first prove the consistency of bootstrap

estimate of the MSE and the consistency of the threshold selection based

on the bootstrap MSE estimate, which may provide deeper insight into the

performance of the BMLE. Also, we plan to explore the censored Weibull

mixture with bootstrap threshold selection to further improve the quantile

estimate.
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Appendix A

Supporting Materials

A.1 Introduction of some other distributions

Here are the PDF and some brief introduction about the distributions other

than Weibull used in our study.

• Log-normal distribution is the exponential transformation of normal

distribution, which means that the logarithm of a log-normal random

variable will be normally distribution. Its PDF is,

f(x;µ, σ) =
1

xσ
√

2π
exp

(
−(log(x)− µ)2

2σ2

)
, x ≥ 0. (A.1)

• Gamma distribution is also parameterized by a shape parameter k and

a scale parameter s,

f(x; k, s) =
xk−1

Γ(k)sk
exp

(
−x
s

)
, x ≥ 0. (A.2)

• Gumbel distribution (maximum or minimum) is the type I extreme

value distribution introduced by Frechét (1927) and Fisher and Tippet

(1928). Only the Gumbel distribution of the minimum is considered

in our simulation. It is necessary to point out that people usually

treat the maximum type Gumbel as the default Gumbel distribution.
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So we will specify the Gumbel distribution we use here as “minimum

Gumbel”, whose PDF is:

f(x; a, b) =
1

b
exp

(
x− a
b
− exp

(
x− a
b

))
(A.3)

A.2 Derivation of the asymptotic variance of
censored Weibull MLE

The score function for shape parameter α is

ψα(x) =


∂ log(f(x))

∂α
=

1

α
+ log(x)− log(η)−

(
x

η

)α
log

(
x

η

)
, x ≤ C

∂ log(1− F (C))

∂α
=−

(
C

η

)α
log

(
C

η

)
, x > C

.

(A.4)

Similarly the score function for the scale parameter η is

ψη(x) =


∂ log(f(x))

∂η
=− α

η
+
αxα

ηα+1
, x ≤ C

∂ log(1− F (C))

∂η
=
αCα

ηα+1
, x > C

. (A.5)

As the information matrix

I(θ) = −EG
(
∂ψ

∂θ

)
we need to differentiate the score function against the parameters, which

are:

∂ψα(x)

∂α
=


− 1

α2
−
(
x

η

)α
log2

(
x

η

)
, x ≤ C

−
(
C

η

)α
log2

(
C

η

)
, x > C

, (A.6)
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∂ψη(x)

∂η
=


α

η2
− α(α+ 1)xα

ηα+2
, x ≤ C

−α(α+ 1)Cα

ηα+2
, x > C

(A.7)

and

∂ψα(x)

∂η
=
∂ψη(x)

∂α
=


−1

η
+

xα

ηα+1
+
αxα

ηα+1
, x ≤ C

Cα

ηα+1
+
αCα

ηα+1
log

(
C

η

)
, x > C

. (A.8)

Then take the expectation of (A.6), (A.7) and(A.8), we will have

−EG
∂ψα(x)

∂α
=

∫ C

0

[
1

α2
+

(
x

η

)α
log2

(
x

η

)]
f(x;α, η)dx+

(
C

η

)α
log2

(
C

η

)∫ ∞
C

g(x)dx

=

∫ C

0

[
1

α2
+

(
x

η

)α
log2

(
x

η

)]
f(x;α, η)dx+

(
C

η

)α
log2

(
C

η

)∫ ∞
C

f(x;α, η)dx

=

∫ C

0

(
1

α2
+

(
x

η

)α
log2

(
x

η

))
αxα−1

ηα
exp

(
−
(
x

η

)α)
dx

+

(
C

η

)α
log2

(
C

η

)
exp

(
−
(
C

η

)α)
(A.9)

Similarly, we have,

−EG
∂ψη(x)

∂η
=
α2

η2

(
1− exp

(
−
(
C

η

)α))
(A.10)

−EG
∂ψα(x)

∂η
=

∫ C

0

(
1

η
− xα

ηα+1
− αxα

ηα+1

)
αxα−1

ηα
exp

(
−
(
x

η

)α)
dx

+

(
Cα

ηα+1
+
αCα

ηα+1
log

(
C

η

))
exp

(
−
(
C

η

)α)
(A.11)

In practice, the evaluation of these integrals require numeric techniques, but

the “integrate” function can handle them easily.
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