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Abstract

Copy number variants (CNVs) account for both variations among normal individuals and pathogenic

variations. The introduction of DNA microarrays had a significant impact on the resolution of de-

tectable CNVs and yielded a new perspective on the submicroscopic CNVs. Oligonucleotide mi-

croarrays, such as Affymetrix SNP arrays, have been commonly used for genome-wide CNV anal-

ysis. Despite the improvements in the technology, a major concern of using microarrays is how a

putative CNV is defined. A disadvantage of oligonucleotide arrays is the poor signal-to-noise ratio

of the data that leads to considerable variation in reported intensity readouts. Such variation will

lead to false positive and false negative results, regardless of how the data are analysed. The most

common approach to circumvent this problem is looking for abrupt ratio intensity shifts in several

consecutive markers (e.g., SNP probes). However this approach reduces the overall resolution and

mitigates the sensitivity of detecting CNVs with fewer probes. This limitation emphasizes the im-

portance of designing methods that can identify noisy readouts at the probe-level.

The main goals of this work were to study the scale of the variability in Affymetrix SNP arrays

and to develop computational tools that can improve the resolution of CNV detection. By using

simulated data, it was shown that the proposed method improved the accuracy and precision of

detecting CNVs with fewer probes compared to standard methods. This approach was also applied

to tumor/normal pairs from 25 follicular lymphoma patients and 286 candidate CNVs were found,

from which 261 (91.2%) were also seen by other array-based method(s). Importantly, from 32
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novel deletions, undetected by other array-based methods, at least 15 (47%) were real based on

sequence-based validation. An example of a novel discovery was a partial deletion of the extracel-

lular domain of the KIT proto-oncogene that may lead to constitutive activation of this gene. Gain

of function mutations of KIT has been previously reported in several other hematologic cancers

through other mechanisms such as point mutations.

In conclusion, CNV discovery contributes to our understanding of complex diseases and the meth-

ods presented here should provide means for better detection of CNVs and their interpretation.
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Preface

Portions of the statistical methods used to analyse the copy number data in Chapters 3 and 4 have

been described: T. J. Pugh, A. D. Delaney, N. Farnoud, S. Flibotte, M. Griffith, H. I. Li, H. Qian,

P. Farinha, R. D. Gascoyne and M. A. Marra, ”Impact of whole genome amplification on anal-

ysis of copy number variants”. Nucleic Acids Res. 2008; 36, 13:e80. I was involved in the

computational aspects of this study and wrote the relevant sections of the paper. Specifically, I

performed all computational analysis described in ’Sequence analysis of recurrent whole genome
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N. Fernandes, S. Flibotte, A. Go, W. T. Gibson, R. A. Holt, S. J. M. Jones, G. C. Kennedy, M.

Krzywinski, S. Langlois, H. I. Li, B. C. McGillivray, T. Nayar, T. J. Pugh, E. Rajcan-Separovic, J.

E. Schein, A. Schnerch, A. Siddiqui, M. I. Van Allen, G. Wilson, S.-L. Yong, F. Zahir, P. Eydoux,

and M. A. Marra. ”Oligonucleotide Microarray Analysis of Genomic Imbalance in Children with

Mental Retardation”. American Journal of Human Genetics. September 2006; 79(3): 500513. M.

Rahmani, M. Earp, P. Pannu, N. Farnoud, J. Wu, L. Akhabir, J. Halaschek-Wiener, B. Munt, C.
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Thompson, S. Mitropanopoulos, D. Craig, P. Par, B. McManus, and A. Brooks-Wilson. ”Identi-

fication of novel risk loci for calcific aortic valve stenosis on chromosome 1 by a genome-wide

scan of 1,000,000 single nucleotide polymorphisms”. Proceedings of National Research Forum

for Young Investigators in Circulatory and Respiratory Health, May 2009. N. Farnoud, S. Chan,

S. Flibotte, A. Delaney, J.M. Friedman and M. A. Marra. ”DLOH: A novel bioinformatics tool

for detection of copy-number deletions using LOH data”. Proceedings of Advances in Genome

Biology and Technology conference, February 2008.

A manuscript based on Chapter 3 is in preparation: Noushin Farnoud, Stephane Flibotte, Inanc

Birol, P. Eydoux, Robert A. Holt, J. M. Friedman and Marco A. Marra. ”Detecting DNA copy-

number variations based on probe-level analysis of Affymetrix SNP array data”. This manuscript

reports the details of OPAS copy number analysis approach explained in Chapter 3. I developed all

the methods described in the manuscript and made relevant figures and tables with input from my

supervisor M.A.M. and members of my supervisory committee J.M.F and R.A.H. J.M.F. provided

samples and P.E. performed FISH experiments. Figures 3.1, 3.11, 3.15, 3.9 of Chapter 3 and Ta-

ble I.1 are directly taken from this manuscript draft. Figures 3.6, 3.7, 3.12 of Chapter 3 are from the

supplementary material. S.F. and I.B. provided guidance for statistical analysis. M.A.M, R.A.H.,

P. E. and J.M.F. provided guidance for biological interpretation of the CNV results. M.A.M. helped

in data interpretation and provided supervisory support, including manuscript revision.

A version of Chapter 4 is in preparation: Noushin Farnoud, Andy J. Mungall, Susana Ben-

Neriah, Andy Chu, Martin Krzywinski, Inanc Birol, Jacqueline Schein, Randy Gascoyne and

Marco A. Marra. ”Integrated genome-wide DNA copy number and expression analysis of fol-

licular lymphoma genomes”. The samples and SNP array data were provided by R.G. at the Cen-

tre for Lymphoid Cancers. The fluorescent in situ hybridization (FISH) validation results in this

manuscript were performed by S.B.-N. at Clinical Cancer Genetics Laboratory at the BC Can-

cer Agency. The DNA fingerprint profiling of the samples was conducted by J.S. and sequencing
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validation experiments were performed by A.J.M. at the Genome Sciences Center. A.C. imple-

mented the Tumordb database and also helped to obtain the data from multiple platforms used in

the integrated analysis. For this study, I performed all the array copy number analysis of follicular

lymphoma samples (detailed in Sections 4.3.3-4.3.6). I also implemented several additional scripts

to summarize the CNV findings in large-scale studies (automated using Matlab and PERL), such as

scripts to obtain recurrently affected regions across multiple patients (used to generate Figures 4.9

and 4.17; both taken from the manuscript draft), and a script to automatically generate UCSC

tracks for representation of the CNV results with comprehensive graphical details (such as shown

in Figure 4.25c). I also made the figures, tables, interpreted the results and wrote the sections of

the manuscript (a version of Sections 4.2-4.4 of the thesis), with the exception of the FISH images

that were provided by S.B.-N. (Figures 4.3b, 4.28b, 4.32). I also performed the pathway analysis

using Ingenuity software (Figure 4.21 from the manuscript). M.A.M. supervised all aspects of this

study.

I also conducted an integrative analysis of copy number and expression data. The integrated

analysis was performed using an available software package (DR-Integrator) and a script that I de-

signed to integrate copy-number/expression data results a single sample. The latter method is not

included in the thesis since this work was done following thesis preparation. Under the supervi-

sion of M.A.M., I combined the data from different platforms and interpreted the results. M.A.M,

A.J.M. and J.S. provided guidance for biological interpretation of the CNV results and R.G. helped

in conception of integrating gene expression and copy number results. A.J.M. implemented the

experiments for Illumina sequence validation of several CNVs (Section 4.3.8.3, adapted from the

manuscript), and was also involved in designing a computational model to investigate a hypothet-

ical fusion between HVCN1 and PPTC7 genes (Section 4.3.8.1 and Figure 4.29, also from the
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Chapter 1

Methods and Strategies For Analysing
Copy Number Variation Using DNA
Microarrays

1.1 Introduction
Genetic variants resulting in gains or losses of DNA segments are collectively termed copy number
variants or CNVs and are found both in human and other mammals such as chimpanzee [1–3].
From the earliest days of cytogenetics-based chromosomal analysis, scientists were able to iden-
tify chromosomal variants and in many cases were able to associate them with certain human
diseases [4–6] (Table 1.1). Association of copy number variation with a phenotype goes back as
early as 1936 when Bridges identified duplication of the BAR gene in Drosophila melanogaster
as the cause of the ’Bar eye phenotype’ [7]. In 1959, Jérôme Lejeune discovered the first chro-
mosomal disorder in humans, an extra copy of chromosome 21 (trisomy 21) that was associated
with Down syndrome [8], more than 90 years after Down syndrome was first described by John
Langdon Down in 1866 [9]. This discovery of the first human condition definitely attributable to
chromosome copy number variation was regarded as a turning point in cytogenetics. Since then
many other syndromes were associated with large deletions or duplications of chromosomal re-
gions, which were visible using chromosome microscopy [4–6]. In addition to discovery of copy
number variants in human disease, seemingly benign chromosomal variants were also identified
among normal individuals (often referred to as copy number polymorphisms). These events were
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frequently detected in regions of heterochromatin on chromosomes 1, 9 and 16 and in the short arm
of the acrocentric chromosome 6 [10, 11].

Later, the hybridization of molecular probes to human chromosomes, particularly with fluo-
rescence in situ hybridization (FISH) [12], provided an effective tool for detection of subtle DNA
gains and losses, as well as other chromosomal rearrangements such as inversions and transloca-
tions. The advances in molecular analysis technique paved the way for discovery of numerous
new genetic variants including short tandem repeats [13] and single nucleotide polymorphisms
(SNPs) [14–17]. As the result of these discoveries, it became clear that the scale of variation in the
human genome ranged from single base pairs (SNPs1) to regions as large as several megabases in
size [18–25]. Since then, our understanding of chromosomal variants both in human disease and
normal populations has been profoundly expanded as the result of genome-wide chromosome anal-
ysis techniques that have allowed us to interrogate the DNA sequence and discover submicroscopic
CNVs (< 1Mb), much smaller than the earlier cytogenetics analysis (> 5−10 Mb).

We now know that CNVs are common characteristics of human diseases such as mental re-
tardation [26–30], autism [31, 32] and cancer [33–36]. The copy number variants can directly
cause disease through altering the abundance of dosage-sensitive genes [37], as in micro-deletion
or micro-duplication disorders [26, 38, 39], or affect gene expression, either directly by affecting
the genes that are harboured within CNVs, or indirectly through altering upstream or downstream
sequences that are involved in gene regulation [40–43]. Furthermore, multiple recent studies have
indicated the importance of copy number alteration in susceptibility to human complex diseases
such as Alzheimer disease [44–46], Crohn’s disease [47, 48], autism [31, 32, 49, 50], psoriasis [51],
Parkinson’s disease [52–54], schizophrenia [55–59] and glomerulonephritis [60]. Importantly, over
the past several years emerging evidence has shown the significance of smaller copy number vari-
ants associated with human disease [61–65] as well as normal genome diversity [20, 66–68]. How-
ever, the resolution of detecting CNVs is not only dependent on the resolution of the technology,
but also on the sensitivity and precision of the computational methods that are used to for CNV
analysis. The capacity to reliably detect small copy number variations (below 100 kb in size) us-
ing early clinical microarray platforms appeared to be limited [69–71], suggesting that there are
yet undetected and potentially disease causing CNVs that required higher resolution methods of
genome analysis.

As the importance of copy number variants is well established, it is important to note that the
power to detect these variants depends on two main factors: 1) the resolution of the technology

1SNPs are individual base positions in the genome that show natural variation in a population with more than 1%
frequency (according to the Single Nucleotide Polymorphism database; dbSNP).

2



being used to study the sample, and 2) the sensitivity and specificity of the computational methods
that are applied to analyse the data. In the rest of this Chapter, I will first review the technologies
that have been used for CNV detection and then will discuss some of the computational approaches
that are employed for CNV analysis.

1.2 Technologies
The techniques to detect chromosomal abnormalities can be broadly categorized into 3 groups
based on their detection resolution and genome coverage: techniques with low to moderate reso-
lution with limited genome coverage (first generation), high-resolution chromosomal microarray
analysis (second generation), and massively parallel sequencing technologies (third generation).

1.2.1 First Generation Techniques

1.2.1.1 Chromosome Banding

For more than 50 years, the standard clinical method for detection of chromosomal abnormali-
ties was chromosomal cytogenetic analysis using karyotyping, a microscopic method that requires
highly skilled interpretation. The conventional process for karyotyping, known as ”chromosome
banding”, involves adding a dye to metaphase chromosomes that provides a visual image of dif-
ferent regions of each chromosome by its unique pattern (usually as a black-and-white staining
pattern). The most commonly used chromosome banding, G-banding, uses Giesma stains to visu-
alize transverse bands on a chromosome1. Each chromosome has a characteristic banding pattern
that helps to identify it and both members of a chromosome pair have the same banding pattern (see
Figure 1.1). This method typically produces between 400-800 unique bands which can be distin-
guished by the order and size of each band. Karyotypes are arranged with the paired chromosomes
ordered by size, the short arm of the chromosome on top and the long arm on the bottom [72].
Comparing each chromosome’s banding pattern to its normal pattern enables cytogeneticists to
recognize chromosomal abnormalities such as numerical changes as well as deletions, duplications
and translocations if they are of sufficient size (e.g., larger than 4-5 Mb; Figure 1.1). A major
challenge of using G-banding to stain chromosomes is that subtle deletions and translocations near
the telomeres are extremely difficult to identify by this method (since Giesma staining produces

1In general, heterochromatic regions, which tend to be AT-rich stain more darkly in G-banding, in contrast to less
condensed GC-rich chromatin which incorporates less stain and thus appear as light bands in G-banding.
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light bands for most of chromosomes tips), and thus other staining methods such as R-banding1

have been used to detect telomere-specific aberrations [73–75]. Despite their limitations, G-banded
karyotypes are still routinely used in clinical applications to diagnose a wide range of large-scale
chromosomal abnormalities, including trisomy 21 in Down syndrome (written as 47, XX, +21).

1.2.1.2 Spectral Karyotyping (SKY) and Multiple Fluorescent in Situ Hybridization
(M-FISH) Analysis

To improve resolution and efficiency of conventional chromosome banding, Spectral Karyotyping
(SKY) and Multiplex Fluorescent in Situ Hybridization (M-FISH) chromosome analysis methods
were developed. These methods use labeled chromosome-specific paints to provide simultaneous
visualization of chromosomes in different colors [76, 77]. SKY uses multiple fluorochromes to
measure the spectrum of each image pixel, simultaneously, by means of an interferometer. M-
FISH, on the other hand, generates separate images for each of 5 employed fluorochromes through
application of special filters and later superimposes these images automatically to obtain a single
image in full color (see Figure 1.1b). The main advantage of SKY and M-FISH is characterizing
changes with respect to their origin, such as translocation. SKY and M-FISH have been used to
detect and characterize chromosomal abnormalities in different cancers including those of breast
[78, 79], colon [80, 81], bladder [82–84], lung [85, 86] and cervix [79, 83, 84, 87].

In contrast to conventional karyotyping, both SKY and M-FISH generate a digital image in
full color (instead of simple black-and-white pattern), which enhances the observation of structural
aberrations in the entire genome, and provides insight into the chromosomal composition of several
ambiguous marker chromosomes2 [88]. Furthermore, working with digital images allowed scien-
tists to use computers to analyse the ”painted” chromosomes and automate identification of struc-
tural abnormalities. This significantly reduced the cost and time of conventional labour-intensive
karyotyping, and improved the accuracy of finding true abnormalities by minimizing the human
errors of interpreting black-and-white karyotypes. As a result, SKY and M-FISH have been used
to detect chromosomal rearrangements [89, 90]. However, the resolution of these techniques is
estimated to be approximately ∼1-2 Mb for both SKY [91, 92] and M-FISH [93].

1R-banding is a staining method in which chromosomes are heated in a phosphate buffer, then treated with Giesma
stain to produce a banding pattern that is the reverse of that produced in G-banding. Thus, the dark regions are gene-rich
euchromatic and light bands are heterochromatic (tightly packed form of DNA).

2A marker chromosome is an abnormal chromosome that is distinctive in appearance but not fully identified.
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1.2.2 Second Generation High-Resolution Techniques

1.2.2.1 Comparative Genome Hybridization (CGH)

In cytogenetic CGH, which was first developed by Kallioniemi et al. [94], the patient and normal
samples (also referred to as ”test” and ”reference” samples, respectively) are labeled with different
fluorescent tags and co-hybridized to normal metaphase chromosomes. The hybridization fluores-
cence intensities from test and normal samples are converted into quantitative ratio measurements
that represent the gains and losses in the test (patient) genome relative to the reference genome [94].
Cytogenetic CGH has been a popular tool to characterize chromosome imbalances in many differ-
ent clinical applications [94–97] including mental retardation [97–99] and cancer [94, 100–106].
For example application of CGH in ovarian cancer resulted in the discovery of several copy number
variants that affected some of the key genes in ovarian tumorigenesis including loss of 17pter-q21
that harbors p53, gain of 17q that results in amplification of HER2/neu (ERBB2) and amplifica-
tion of 8q24 including the MYC oncogene [107–109]. CGH has also been successfully applied to
analyse hematological cancers such as leukemia and lymphoma [103, 106, 110].

Although cytogenetic CGH technology had a huge impact on cytogenetics analysis of human
disease, these methods were very labor intensive and required the use of metaphase chromosomes,
which led to limited resolution, typically about 5-10 Mb [103, 111, 112]. Completion of the Human
Genome Project [113], where large-insert clone libraries were developed and assembled into over-
lapping contigs for sequencing, initiated a major improvement to CGH techniques. In an attempt
to overcome the aforementioned limitations associated with cytogenetic CGH, investigators devel-
oped a method that combined the principles of CGH with the use of microarrays [114]. Instead of
using metaphase chromosomes, this method, which is known as array CGH (aCGH), used DNA
clones that accurately mapped to known regions of the genome and were robotically spotted onto
array glass slides or glass capillaries [115]. In array CGH labelled samples are applied to a slide
containing thousands or millions of DNA probes [116]. The resolution of such arrays depends on
the size of the genomic fragments that are used as DNA probes (e.g., ∼150 kb for BAC aCGH), the
density of the array (e.g., Agilent ultra-dense 1M array CGH platform includes 1 million probes)
and the structure of the genome sequence being analysed. Similarly to cytogenetic CGH, in array
CGH technology, test and reference DNAs are labeled with different fluorescent dyes and then are
co-hybridized to the array. Relative gains and losses of signal intensities are subsequently mea-
sured and reported as copy number deleted or amplified regions of the genome. This technique has
revolutionized the study of CNVs in many different applications such as cancer studies [116–121].
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Among the genomic representations of DNA that are used as the probes in array CGH plat-
forms, Bacterial Artificial Chromosomes or BACs were heavily used initially, especially for study-
ing CNVs in cancers [36, 122] and mental retardation syndromes [26, 123–125]. Using BACs for
CGH (known as BAC aCGH) provided genome resolution and coverage that was unprecedented
before that time, as shown in a study by Krzywinski et al. [126] which indicated that more than
99% of the entire human genome can be represented by a set of 32,000 BAC clones with an aver-
age intermarker distance of 76 kb between BAC clones. Despite the unprecedented resolution and
genome coverage of BAC-aCGH, the empirical resolution of this technology to detect chromoso-
mal abnormalities was still limited by the average size of BAC clones [126, 127] and by technical
difficulties of producing high density, highly reproducible BAC arrays in large numbers required
for clinical applications.

Following the success of aCGH technology to detect structural aberrations up to one-tenth the
size of those detectable by conventional cytogenetics [36, 122, 126, 128–132], using DNA arrays
with shorter probe sequences became increasing popular in recent years. Thus in the next section
I will focus on describing oligonucleotide arrays as an important tool for high-resolution whole-
genome analysis developed during the past decade.

1.2.2.2 DNA Oligonucleotide Arrays

Oligonucleotide arrays consist of an arrayed series of thousands or millions of microscopic spots of
DNA oligonucleotides, called features, each containing a specific DNA sequence (or probe) [133–
138]. The length of oligonucleotide probes, or oligos, varies between different array types and
vendors but typically is in the range of 25 (used by Affymetrix ) to 60 (used by Agilent and Il-
lumina) nucleotides [137–139]. The intensity of target-probe hybridization is then translated into
measurements representing the abundance of DNA in the test sample relative to the reference.
Oligonucleotide arrays provide the highest potential resolution for microarrays. However, in prac-
tice the effective resolution of oligonucleotide microarrays is dependent on several factors, such as
the length of the oligonucleotide probes (or ”oligos”), the density of the probes on the array and the
coverage of the genome. Another source of data variability in microarrays is the array manufactur-
ing technology. Based on the manufacturing technology, microarrays can be broadly categorized
into ”spotted” and ”in situ synthesized” arrays.

In earlier arrays the probes were synthesized prior to deposition on the array and then spotted
on the array surface by means of a spotting robot (known as ”spotted arrays”). Spotting technology
allowed a maximum of about ∼ 60,000 oligos to be printed on any given array [139] and conse-

6



quently the density of the spotted arrays was limited to approximately a single probe per 50 Kb
sequence [139]. The next major manufacturing technology, in situ hybridization, was fundamen-
tally different from robotic spotting as the oligos were synthesized, base-by-base, directly on the
array surface. Over the past decade, many developments have been made in array technology, and
in particular there has been a significant trend toward increased numbers of features (probes) and
toward shorter DNA sequences as hybridization targets [139], both of which have impacts on the
resolution at which CNVs can be detected. Despite their improved density and detection resolution,
a major disadvantage of oligo arrays is the relatively poor signal-to-noise hybridization intensities
that leads to considerable variability in the reported number and size of CNVs [139–142]. To im-
prove the signal-to-noise ratio (SNR) limitation, Lucito et al. [115] developed a method that is
based on reducing the complexity of the genomic DNA that being is hybridized on oligo arrays,
known as Representational Oligonucleotide Microarray, or ROMA using 70-mer oligos as genome
representations. Briefly, in ROMA the genomic DNA is digested using a restriction enzyme (often
BglII) and the resultant fragments are then ligated to adapters and PCR amplified using universal
primers. Because of preferential PCR amplification of smaller segments the final amplification
product would be depleted in larger fragments, leading to a reduction in the complexity of the sam-
ple [115]. These products were then hybridized to an oligonucleotide array consisting of probes that
were selected to match the reduced set of restriction fragments. But ROMA also suffers from poor
signal-to-noise ratio measurements. Furthermore, it presents other potential problems for CNV
detection studies. First, as the result of the complexity reduction step (explained above) different
regions in the DNA could have different representations due to their sequence content (not their
sequence abundance), and this different representation could be mistakenly interpreted as copy
number variation. Second, different individuals will have different restriction digestion patterns,
and it is possible that some individual probe ratios may be related to restriction fragment size dif-
ferences rather than to true copy number changes. However, the main limitation of ROMA arrays
is their low signal-to-noise ratio compared to BAC arrays, and thus typically 3 probes are averaged
to improve the associated variance of the array data leading to lower CNV detection resolution
compared to BAC aCGH [139].

1.2.2.3 Genotyping Arrays

During the past two decades, Single Nucleotide Polymorphisms (SNPs) have been recognized as
a major source of human genetic variation [14–17, 143–145]1. These findings have been made

1http://www.hapmap.org
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possible largely by the development of high-throughput array technologies for SNP genotyping
from commercial vendors such as Affymetrix and Illumina. Although these arrays were originally
developed for genotyping SNPs, the intensity information from these arrays can be used to detect
copy number variants providing both SNP genotypes and copy number estimates from a single ex-
periment simultaneously. Since the introduction of this technology, extensive research has focused
on studying CNVs in human disease, such as mental retardation [29, 30, 146], schizophrenia [147],
autism [148], cancer [149–160], and normal polymorphisms [69, 153, 158, 161–164]. In the next
two sections I present a brief description of SNP arrays from Affymetrix and illumina.

1.2.2.3.1 Affymetrix SNP Arrays: The first generation of commercial SNP arrays known as
”HuSNP” was produced by Affymetrix and became available more than a decade ago [17]. The
early HuSNP arrays were capable of genotyping 1,494 SNPs in a single experiment, and since then
Affymetrix has continued to release newer arrays with increased numbers of features including
10,000, 100,000, 500,000 and now with ∼1 million SNPs (www.affymetrix.com; see Table 1.2).

Briefly, in this technology, total genomic DNA (250 ng) is digested with a restriction enzyme
(such as Nsp I or Sty I in 500K arrays) and ligated to adaptors for PCR amplification1. The PCR
conditions have been optimized to preferentially amplify fragments in the 200 to 1,100 base pairs
(bp) size range2. This preferential amplification reduces the complexity of the hybridization by
incorporating the smaller fragments. Finally, the amplified DNA is fragmented, labeled, and hy-
bridized to a chip.

In Affymetrix technology used in 10K, 100K and 500K platforms, each SNP sequence is inter-
rogated by a set of 25-mer oligonucleotide probes that target the SNP site and its surrounding base
pairs, as shown in Figure 1.2. Each SNP on the array is represented by a collection of probe quar-
tets, also known as the SNP probe set. A probe quartet consists of a set of 25-mer oligonucleotide
”probe pairs” for two most common alleles (known as ’A’ and ’B’) and for both forward and re-
verse strands (antisense and sense) for the SNPs. Each probe pair consists of a perfect match (PM)
probe and a mismatch (MM) probe (see Table 1.2). The number of designated oligonucleotides in
a probe set varies in each generation of the arrays. In 10K and 100K arrays [135, 137], a probe set
consisted of 40 different oligonucleotide probes, while in 500K analysis this number was generally
reduced to 20 oligonucleotides, although a subset of SNPs in 500K Affymetrix arrays still retain
40 features [165]. For CNV detection, the signal intensities of the probes (see Figure 1.2) are com-
pared with values from another individual (or group of individuals) and the relative copy number

1http://media.affymetrix.com:80/support/technical/datasheets/500k datasheet.pdf
2http://www.affymetrix.com/support/help/faqs/gw human snp5/faq 4.jsp
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per locus is determined [166, 167]. The technology used in the latest Affymetrix genotyping ar-
ray, SNP 6.0, has major differences with the three previous generations of Affymetrix SNP arrays.
The SNP 6.0 array consists of probes for both SNPs and copy number variation. The copy num-
ber variation probes were selected based on Toronto Database of Genomic Variants (DGV) [168].
In SNP 6.0 platform each ’A’ and ’B’ allele of a SNP probe are presented by 3-4 replicate PM
oligonucleotide probes resulting in 6-8 oligos per SNP.

The Affymetrix Genome-Wide Genotyping R� arrays have been widely used for high-throughput
SNP genotyping (in population genetics [169], linkage disequilibrium analysis [170], and whole-
genome association studies [171]), and copy number analysis [149–157].

1.2.2.3.2 Illumina SNP arrays: Similar to Affymetrix technology, Illumina SNP arrays have
also been increased in capacity from 100,000 SNP probes in Human-1 array to ∼1.2 million probes
in Infinium HD BeadChip that consists of both SNP and CNV probes [172, 173]. Both Affymetrix
and Illumina technologies share the same underlying principle for identifying CNVs through us-
ing the array intensity data and both enable simultaneous analysis of genotypes and copy number
data [174]. Despite their similarities, the two products have substantial differences [172, 173, 175].
For example, Illumina arrays use 50-mer oligos compared to Affymetrix’s 25-mers. Also, Illu-
mina has 1 or 2 replicate probes per SNP allele whereas Affymetrix has about 4-6 probes per
allele (Affymetrix 10K-500K arrays have 10-40 oligos to interrogate a SNP locus, however, these
oligos do not have the exact same sequence1). In the context of SNP genotyping, the Illumina
Infinium assay, which runs on its 1M-Duo chip, uses single-base extension with a labeled base to
call a SNP genotype [172, 175], but Affymetrix genotype calls are based exclusively on differen-
tial hybridization [173, 175]. Nonetheless despite their SNP genotyping approaches, in the context
of chromosome copy number discovery, the signal-intensity output from both platforms present
similar analysis and interpretation problems [173, 175–177].

1.2.2.3.3 Application of SNP arrays for CNV Detection: Initial genotyping arrays provided
unprecedented resolution for identifying chromosome copy number aberrations both in normal
and disease states and the results have improved with the subsequent developments of the tech-
nology. Even so, the high level of associated noise has been the main computational challenge
of interpreting the array signal intensity for CNV detection [176]. Since the introduction of this
technology, various methods have been developed to reduce the noise and improve the sensitivity
and specificity of CNV calling [69, 149, 150, 161, 178–183]. Also, various copy number detection

1The new design strategy in Affymetrix 6.0 arrays uses replicate oligonucleotide probes to interrogate each SNP (see
Table 1.2).
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algorithms have been developed to aid CNV detection [161, 168, 184–193]. However, for robust
CNV detection, most of these methods require significant concordant ratio shifts in several probes
sequentially located along the genome, which consequently lowers ”effective resolution” of these
arrays [139, 141]. More importantly, the distribution of the probes is not uniform across the entire
genome (e.g., in Affymetrix GeneChip 100K, SNPs have a median spacing of 8.5 kb but a mean
intermarker distance of 23.6 kb [167]) and, thus, CNV calling approaches based on ratio shifts in
several consecutive SNPs will inevitably limit sensitivity for small CNVs and CNVs in genomic
regions sparsely populated by probes (often methods require at least 8− 10 probes to identify a
CNV).

1.2.3 Third Generation High-Resolution Techniques

More recently with the advent of next-generation sequencing technologies, a few groups have
applied massively parallel sequencing platforms with the aim of improving the sensitivity of CNV
detection to base-pair resolution [194–197]. The existing algorithms for sequencing-based CNV
analysis can broadly be categorized into two groups. The first category is primarily based on
paired-end read mapping (PEM), as was previously reported by Tuzun et al. [24] and Korbel et
al. [198] (both obtained by 454 technology). In the PEM approach, 3 kb paired end reads are
computationally mapped to the human reference genome. The mapped pattern of the 3 kb reads is
then analysed to detect regions of structural variations [198]. Therefore, deletions are identified by
paired ends spanning a genomic region in the reference genome longer than the known fragment
length. Similarly, insertions are predicted through paired ends that span a region shorter than the
reference genome would predict, or pair ends that cross chromosomes. It is reported that PEM-
based detection methods have several limitations and demonstrate particularly poor performance
in complex genomic regions that are rich in segmental duplications and have limited ability to
detect insertions larger than the average insert size of the library [24].

The second category uses the depth of the sequencing coverage to predict CNVs [194]. Evan
Eichler’s group used this approach to develop the mrFAST algorithm. This algorithm measures
the depth of the coverage of whole-genome shotgun sequencing (WGS) reads that are aligned to
the human reference genome by checking every locus in the genome and matching them to reads
with at least 94% identity. The algorithm consequently uses the average depth of the aligned reads
to detect regions of copy number aberration [194]. The performance of this approach was tested
using 3 sequenced human genomes, including Yoruban [199], Han Chinese [187] and the Watson
genome [200]. The result of this study indicated that the number of reads sampled from a given
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region, referred to as read depth, was proportional to the number of times the region appeared in the
corresponding genome. To further test this hypothesis, Alkan et al. [194] studied read depth in 961
autosomal duplications and concluded that at 20-fold sequence coverage, > 90% of all segmen-
tal duplications larger than 20 kb could be accurately identified by analysing the sequencing read
depth. By selecting regions with increased sequence coverage, Alkan et al. [194] identified 725
non-overlapping large segmental duplications. Nearly all of these 725 detected segmental duplica-
tions were present in the sequenced genomes of all three subjects. A similar approach for detecting
structural variations in next generation sequencing data has been posed by Yoon et al. [195]. This
approach, known as event-wise testing or EWT, also uses read depth (RD) of the coverage and
relies on statistical testing of 100-bp RD intervals to identify potential region of increased or de-
creased RD coverage, and then uses this information to infer regions of copy number variation.
The plots of averaged RD data across the chromosome lengths resemble copy number scatterplots
from oligonucleotide arrays, and there seems to be a significant variation in the estimated RD mea-
surements [195]. Furthermore, the windowing approach towards smoothing the RD data has certain
limitations, notably, the criteria that are used to select the optimal window size is rather experiment-
specific and may not be applicable for other experiments (a detailed discussion of the pros and cons
of windowing-based smoothing of the data is presented in Section 1.3). The basis of the method
proposed by Yoon et al. [195] is that the scatterplot of RD coverage along the genome will follow
the normal distribution after averaging the RD measurements in 100-bp intervals; however, this
hypothesis may not hold true for different experiments or even different parts of the genome with
uneven coverage [197]. Therefore, in practice, a 100-bp windowing of RD data may not generate
a normal distribution and thus none of the downstream statistical analysis in EWT [195] would be
applicable, since they are strictly based on the assumption of a normal distribution. Substituting
non-parametric methods to analyse the sequence data could reduce variation in RD data and may
be a potent tool to improve CNV identification at high resolution. It is clear that new computational
approaches are needed to systematically detect copy number variants from sequence data [201].

Oligonucleotide arrays are also being used in parallel with sequencing data. For instance,
Affymetrix 500K SNP arrays were used to assess the accuracy of the known sequence-derived
SNPs from Watson genome [200] and to provide a map of CNVs of the Craig Venter genome [163].
Additionally, as the costs of array production, labelling, and hybridization continue to fall, these
arrays are becoming more accessible and, therefore, the range of their applications is growing [202,
203]. These factors emphasize the significance of developing highly accurate computational meth-
ods that can improve the sensitivity/specificity of current CNV detection algorithms. Additionally,
although next generation DNA sequencers may become the dominant technologies for CNV detec-
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tion [202], computational biologists have already begun borrowing methods initially developed for
oligonucleotide arrays to analyse sequence data. The next section details the history of computa-
tional advances associated with SNP arrays, which have been the focus of my thesis.

1.3 Methods to Discover CNVs Using SNP-array Data
The underlying principle of all SNP array copy number analysis algorithms is to compare the
fluorescence intensity ratios along the length of each chromosome to identify regions of candidate
copy number loss or gain in the test sample, relative to the reference sample. A major concern for
the detection of CNVs using oligonucleotide array technology is how a putative CNV is defined
computationally. There is a plethora of different methods being used to call significant changes
in relative intensity ratio from arrays. Relative to Illumina SNP arrays, more methods have been
developed and evolved to analyse Affymetrix SNP array data, since these arrays have both more
data redundancy per SNP locus and have been commercially available longer than Illumina SNP
arrays. Typically, each copy number analysis algorithm involves 2 main steps: (1) normalization,
and (2) CNV calling. With each new version of Affymetrix SNP array technology, these modules
have evolved and been modified to improve the sensitivity and specificity of CNV detection [69,
149, 150, 161, 178–183].

1.3.1 Normalization Methods

As previously mentioned, SNP array data analysis is based on processing the relative signal ratio
changes in a test array against one or more samples known as the ”reference set”. By doing so,
the analysis inevitably incorporates the variability that exists between different arrays (chip-to-chip
variability) [204]. Therefore, to perform an accurate data analysis, it is crucial to first normalize raw
intensities to correct for the variation that exists between different chips and different hybridization
experiments [205] (also known as between-array normalization). Several commonly used methods
for normalizing SNP microarray data have been adopted from expression arrays, including global
normalization [206], invariant-set normalization [207], and LOWESS [208]. The current consen-
sus, however, is based on Quantile Normalization [205], a non-parametric approach developed by
Terry Speed’s group for SNP oligonucleotide array data normalization. Quantile normalization
guarantees all samples in an analysis have similar intensity distributions (instead of just focusing
on the mean/median of intensities across the chips, as in global normalization).
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1.3.2 CNV Calling Methods

Statistical methods for analysing copy number data are necessary for identification of CNVs. The
development of methods that can accurately identify CNV regions has been a major challenge
for microarray-based copy number analysis during the past several years [175, 176]. Therefore a
variety of statistical analysis and visualization tools have been developed for Affymetrix SNP array
platforms [69, 149, 150, 161, 175, 176, 178–183]. Despite their algorithmic differences, the logical
structure underlying these approaches typically belongs to one of the following statistical models:
(1) hidden Markov models (HMMs), such as QuantiSNP [185], PenCNV [186], HMMSeg [184]
and dChipSNP [188, 209], (2) segmentation algorithms such as DNAcopy [189], GLAD [210],
Circular Binary Segmentation (CBS) [189] and FACADE [211] (3) t-tests and standard deviation-
based thresholding of the log2-ratio intensity measurements, as in [210, 212, 213]. Many of these
methods, such as CBS and HMMs, were initially designed for aCGH and later adopted for SNP
arrays [139, 214]. Below is a brief description of the fundamental basics of each of these algorithm
categories.

One of the simplest approaches to identifying shifts in the array intensity outputs is based on
analysing the standard deviation (also known as SD) of log2-ratio intensities using thresholds for
identifying putative regions with significant log2-ratio deviation from the baseline, as in [212, 215].
These methods were originally developed and widely used for copy number data analysis in aCGH
platforms (such as BAC aCGH [213] and cDNA-based aCGH [34]). Despite their simplicity and
speed, in the presence of non-specific variation in the signal intensities (or noise) the thresholding-
based methods perform poorly in detecting true regions of copy number aberration [175, 176].

In an attempt to overcome limitations of thresholding-based CNV detection algorithms, Pollack
et al. [216] used a modified thresholding approach in an aCGH platform to detect CNVs in 44
primary breast tumors and 10 breast cancer cell lines. In this approach, the data were first smoothed
by averaging over a window of optimal size, and a statistic was calculated for each probe in the
window. Next, based on these statistics, CNV false discovery rates (FDRs) were estimated using
the Benjamini and Hochberg method [217] and applied to determine the thresholds of DNA copy
number gains and losses in the corresponding breast cancer data set [216]. The windowing based
t-test methods have since been widely used in numerous copy number detection studies [29, 30,
162, 215], but these methods suffer from major drawbacks. The main challenge of windowing
approaches is the ambiguous nature of determining an optimal window length (the same limitation
that was described earlier for EWT method, proposed by Yoon et al. [195]; p. 11). In fact, genomics
was not the first field of study that applied windowing to improve signal variation and recognized
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its limitations. The drawbacks of windowing-based smoothing had been previously brought to
attention in neurology when scientists tried to identify normal and abnormal patterns of brain EEG
(electroencephalography)1 and knee VAG (vibroarthrographic)2 signals among individuals. The
common problem of windowing based methods is the optimal length of the defined window (or
window size). Choosing a large window size results in a greater degree of smoothing but would
inevitably hide small copy number changes. On the other hand, if the selected window size is
too small, the presence of a few sporadic noisy probes would be sufficient to generate a false
positive CNV readout. Another drawback of this approach is that it suppresses the magnitude of
signal intensities for both noisy and informative probes. Although such data suppressing reduces
the variation of signal intensities and lowers the overall standard deviation of the signal, it also
reduces the magnitude of true signal aberrations. This limitation can reduce the sensitivity of
CNV detection, particularly for small CNVs or CNVs with fewer SNP probe markers [218–221].
A fundamental drawback of the above approach to data smoothing and thresholding is handling
tumor heterogeneity in cancer, which refers to the presence of different cell subpopulations in a
sample [218]. In such cases the combination of normal and copy number aberrated cells results
in log2-ratio measurements that are well-below the predetermined thresholds of calling a CNV.
Thus methods that are solely based on thresholding cannot detect such changes unless the CNV is
present in the majority of the cells to generate a significant shift in signal intensities away from the
baseline.

To overcome the limitations of thresholding-based CNV calling algorithms to handle noisy
data (particularly in oligonucleotide arrays), model-based algorithms were developed that focused
on statistical analysis of candidate CNV regions to improve the ability to recognize the difference
between non-specific (noise) and informative hybridization signal intensities. One of the earliest
model-based approaches for copy number data was proposed by Hodgson et al. (2001) [33] in
an aCGH study in mice, where a three-component mixture model was fit to islet tumor data in
which each component represented one state of copy number data corresponding to copy number
gain, loss or neutral states. They subsequently used the information from these Gaussian models to
determine the thresholds above or below which aCGH ratios should be considered as increased or
decreased. In 2003, Snijders et al. (2003) [35] developed a heuristic method to fit a Gaussian hidden
Markov model (HMM) to array CGH copy number data, and since then HMMs have been routinely
used to detect CNV regions and to predict the actual ploidy of the regions [184]. A common
assumption by HMMs is that observed intensities are related to an unobserved copy number state

1electrical activity along the scalp produced by the firing of neurones within the brain
2vibration signals emitted during movement of the knee
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at each locus that can be defined by an emission distribution (often assumed to be Gaussian).
Like windowing methods, HMMs have a long history in other applications, mainly in speech

recognition [222], and were later adopted by bioinformaticians initially for DNA sequence align-
ment [223]. Another important assumption of an HMM model is that copy number states follow a
pattern, so neighbouring SNPs have similar copy number states, and thus the transitions between
copy number states can be predicted through a transition matrix that describes the probability of
moving from one state to another. This transition matrix is learned directly from the data (also
known as the training set) by applying another statistical method, such as Expectation Maximiza-
tion (EM) [175, 224]. After the training phase of the model, the HMM can be applied for CNV
detection in a new experiment, where each log2-ratio possibility is assigned a state and the Viterbi
algorithm is used to predict the state for each observed events [175].

Since the introduction of HMM models to array genomic hybridization, many different meth-
ods have been developed for analysing array copy number data from different platforms, such as
HMMSeg [184] (in aCGH), QuantiSNP [185], dChipSNP 1 [188, 209], and PennCNV [186]. But
despite their popularity and various publications that used this technique to identify novel CNVs,
HMM models have their own limitations. First, training an HMM model requires proper initializa-
tion of both transition2 and emission3 matrices, with transition matrix being particularly sensitive
to initialization values. This implies that the transition probabilities, and thus the estimated HMM
results, are sensitive to the assumptions about the patterns of fluctuations of log2-ratio intensity
data between neighbouring probes. Therefore, training an HMM in one particular disease yields a
model that is sensitive to the CNV patterns in that particular disease.

The HMM approach for CNV detection has a number of other limitations. Estimating putative
regions of CNVs depends of the initial hypothesis about present number states in the array data.
Often two states are assumed in the data (one for amplification and another for deletion), however
it can be difficult to assign a single state to a genomic region, particularly in cancer studies. For
example, if a fraction of the tumor cells have lost a particular DNA segment while others have
not (CNV heterogeneity), or if the size of the lost region varies between tumor cells, we would
observe slight gains or losses of signal intensities, that do not necessarily fall into a certain HMM
predefined state. There is an increasing body of evidence to indicate that tumor heterogeneity is
an important characteristic of most cancers [225]. Another factor that can result to an ambiguous
state is sample impurity, for example, when the pathologist has not been successful in removing

1http://biosun1.harvard.edu/complab/dchip/
2Transition probability of an HMM state describes the probability of moving from the current state to a new state.
3Emission probability describes the likelihood of a certain output given the current HMM state
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surrounding normal tissue, or if the tumor sample itself is an admixture of cancer and normal cells.
The above properties of the biological samples which makes it difficult, if not impossible, to

accurately define certain copy number states and the dependency of the HMM model on the pre-
defined number of copy number states suggest that HMM-based models may not be suitable for
CNV analysis in cancer studies. Also, as previously explained, the HMM predictions are depen-
dant on the transition probabilities that are estimated based on the training data. However, results
from cytogenetics and other chromosomal analysis techniques have shown that the patterns of copy
number changes are substantially different between disease (e.g., lymphoma versus mental retarda-
tion). Therefore, it is reasonable to assume that an HMM that is trained on validated copy number
gains and losses from a particular training set would be more sensitive towards identifying CNVs
in samples with similar properties (for example, with similar sample heterogeneity). Furthermore,
if the transition probabilities are not properly initialized, there is a high risk of the algorithm getting
stuck in a local minimum resulting in an improper training of the HMM, which further complicates
HMM initialization.

The aforementioned limitations of HMM (training dependancy and initializations of states),
emphasize that prior to using a computational method to analyse biological data, we need to have
a thorough knowledge of the biological properties of the data as well as the requirements of com-
putational methods to select a model that is likely to generate more accurate results.

Another popular approach for CNV calling is segmentation of log2-ratio copy number data [226,
227]. As is the case with HMMs, there are different kinds of segmentation models, many of which
were originally developed for CNV analysis of cDNA and BAC CGH arrays. The common as-
sumption underlying all copy number segmentation methods is that CNVs occur in contiguous
regions of the chromosomes, often spanning multiple probes. Based on this hypothesis, segmen-
tation methods attempt to split the chromosomes into regions of equal copy number. The average
(or median) log2-ratio of each segment is then used to identify candidate CNVs. Various segmen-
tation methods have been proposed, such as SW-Array (Price et al. [228]), and CGHseg (Picard
et al. [229]). A popular segmentation method is Circular Binary Segmentation (CBS; Olshen et
al. [189]). This non-parametric method is a modification of Binary segmentation (developed by
Sen and Srivastava; [230]), with improved sensitivity towards small variants that may otherwise
be obscured within larger segments. CBS assumes that copy number data may be noisy, and as a
result, some probes do not reflect the true copy number in the test sample. Since this algorithm
does not make any assumption regarding the distribution of the data (non-parametric), it provides a
natural way to segment a chromosome into contiguous regions by recursively applying a statistical
test to detect significant breakpoints in the data, and continues to divide a region into segments
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until it no longer finds a segment that is different from the neighboring regions (or until it reaches
a maximum number of permutations). The CBS change-point detection method is designed to
identify all the places which partition the chromosome into segments with the same (log2-ratio)
copy number. Due to the complete non-parametric treatment of the array data, CBS is potentially
one of the most robust CNV calling algorithms [231, 232]. A comparison of the performance of
segmentation algorithms by Lai et al. [231] using 11 different methods for analysis of aCGH data
found that CBS was among the top 2 algorithms with the best performance under various condi-
tions. Another independent study by Willenbrock and Fridlyand [232] compared 3 Bioconductor
packages: DNAcopy1 [189] (based on CBS segmentation), aCGH software2 (based on HMM) and
GLAD3 [210] (based on adaptive weights smoothing) segmentation methods and found that CBS-
based DNAcopy [189] had the best performance in terms of its sensitivity and FDR for breakpoint
detection [232].

1.4 Limitations of Current CNV Detection Algorithms for SNP Data
Analysis

Regardless of the algorithm used, the variation in hybridization intensity measurements from the
array can impact the reliability of CNV detection. The high rate of variability in signal intensity
outputs increases the number of regions that are mistakenly identified as CNVs, resulting in in-
creased false positive rates. An excellent example of this undesirable effect is the overpopulation
of apparent CNVs that have been observed in the Database of Genomic Variants4 (DGV) in several
independent publications [3, 141, 168]. In addition to increasing false positive rates, such variabil-
ity can hamper our sensitivity to detect true CNVs and subsequently increases the false negative
rate of CNV identification. Parametric approaches mitigate high rates of false positives by apply-
ing more stringent criteria, often requiring that a significant shift in signal intensity outputs must be
detected in multiple neighbouring SNP probes before CNV is identified. This approach inevitably
under-identifies small CNVs or CNVs that occur in regions of the genome with low probe density,
such as segmental duplications [141]. The main caveat of such parametric approaches is that the
discovery procedure emphasizes specificity over sensitivity and as a result, despite a general reduc-
tion in false positive calls, the detection power is dependent on probe counts and the computational
methods are not sensitive enough to detect small CNVs.

1http://watson.nci.nih.gov/bioc mirror/packages/2.3/bioc/html/DNAcopy.html
2http://bioconductor.org/packages/2.6/bioc/html/aCGH.html
3http://www.bioconductor.org/packages/2.4/bioc/html/GLAD.html
4http://projects.tcag.ca/variation
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A study of CNV hotspots in a general population published by Itsara et al. [141] provides a
good example of describing the impact of the aforementioned computational limitations on CNV
measurements by suggesting that their reported CNV findings significantly underestimated the
number and size of small copy number aberrations. They further elaborated that this shortcoming
was due to the dependency of their CNV detection algorithm on the number of probes [141]. Gen-
erally, while large CNVs (> 4 Mb) are routinely identified by most of the available algorithms,
when it comes to identifying small CNVs or variants located in regions with reduced probe density
(< 8−10 SNP probes), these algorithms are no longer consistent. The choice of reference set sam-
ple size (number of required reference samples for a particular algorithm) is another bioinformatics
challenge, especially in cancer analysis where often it is desirable to perform a pairwise analysis
of tumor and matching normal DNA to identify somatic CNVs. Meanwhile, some methods (such
as CNAT [121] and GLAD [210]) depend on smoothing the variation of the intensity data by av-
eraging the reference signal over multiple normal individuals and therefore do not allow pair-wise
analysis.

It is clear that developing a method that can reduce both false positive and false negative CNV
calls will have a major impact on the accuracy and reliability of CNV findings using SNP array
data. As mentioned earlier, controlling false positive/negative rates also depends on improving
the associated noise (non-specific variation) in the SNP intensity outputs. These factors imply
that optimal CNV detection requires an algorithm with the following two components: (1) a pre-
processing phase that filters unwanted noise from the array raw signal intensity readouts, and (2)
a non-parametric CNV calling approach that can translate the intensity information into relative
copy number change and apply statistical methods to identifying locations of gains or losses of
copy number. Nonetheless, very little work has been done to address the associated noise as an
independent module [218, 233, 234]. Instead, most often algorithms tend to adjust the impact of
the unwanted variation by modifying the downstream CNV calling algorithm, which consequently
results in high false positive/negative rates as discussed earlier [140]. In conclusion, the high level
of noise associated with SNP oligonucleotide data are still a major limitation of identifying true
CNVs and their boundaries [175, 235].

1.5 Thesis Objectives and Hypothesis
Copy number gains and losses are shown to be associated with complex human diseases such
as developmental abnormalities [26–32] and cancer [33–36] as well as increased susceptibility to
several diseases (such as Parkinson’s Disease and HIV) [52, 236]. In addition to their role in human
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disease, CNVs are also a major source of genome diversity in unaffected human populations [18–
20, 22, 22, 24, 25, 66, 69, 161, 194, 237]. It follows that identifying and characterizing these
variants are critical to our understanding of genome structure and function and the application of
genomics to human disease, including the development of personalized genomic tools.

Based on literature reviews of copy number detection methods and algorithms, it is well ac-
cepted that oligonucleotide microarray noise is a major source of false positive and negatives in
CNV results, and thus a key factor for underestimation of small CNVs [139, 141, 175, 176]. Con-
sidering the current limitations of available CNV calling algorithms (discussed in Section 1.4), it
is hypothesized that the current available methods have significant statistical biases that results in
lower CNV detection accuracy. This leads to lower sensitivity to detect small aberrations, an is-
sue which has been addressed by several independent groups [141, 238, 239]. A study of global
variation in 270 normal human genomes by Redon et al. [69] using Affymetrix 500K SNP array
found that on average 206 kb of genome is affected by copy number variations in each individ-
ual. Comparing the latter finding with emerging evidence that highlights the prevalence of small
CNVs, between 10-100 kb [20, 22, 24, 240] emphasizes that many smaller variants are missed at
the current effective resolution of the arrays. An underlying assumption of this thesis is that a por-
tion of these events can be successfully identified if proper statistical methods are used to analyse
the array data. The ability to detect such events carries the potential to discover small CNVs that
are associated with human disease or predisposition. For instance, it has been shown that small
deletions between 70 bp to 7 kb of MTUS1 tumor suppressor gene are associated with a decreased
risk of familial and high-risk breast cancer [238, 241].

The general aim of this thesis was to develop new computational methods to facilitate analysis
of Affymetrix SNP microarray data and design a method with improved accuracy for identifying
copy number variant regions. In particular, I focused on developing tools that facilitate identifi-
cation of CNVs based on non-parametric approaches towards improving the quality of SNP array
data at the individual oligonucleotide probe-level. To address these challenges, I took advantage of
developments in CGH microarray technology and non-parametric statistical methods to develop a
novel approach to identify CNVs, and applied this method to study CNVs in follicular lymphoma
patients. By developing these non-parametric probe-specific methods, my goal was to improve the
accuracy of CNV detection, particularly for smaller events [141].

The main hypotheses of this thesis were as follows: (1) detection of candidate CNVs using
current SNP microarray methods is greatly dependent not only on the density of the probes but
also the number of probes within the candidate CNVs, and therefore (2) current analysis methods
largely underestimate the extent of small CNVs. Furthermore (3) the number of candidate CNVs
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reported using current methods is largely dependent on the level of array-wide variation of signal
intensities (SD), which yields an increased chance of false positive calls. Finally (4) non-parametric
probe-level analysis of SNP arrays allows identification of true CNVs that may be important in
disease or disease progression.

1.6 Chapter Summaries
A brief summary of the analysis that I developed and implemented to identify CNVs (Chapters 2
and 3) and two examples of applying this method to identify CNVs in human cancer (follicular
lymphoma, Chapter 4) is provided as below.

In Chapter 2, I focused on evaluating the variability of hybridization intensity outputs from
Affymetrix GeneChip R� SNP arrays. To perform this analysis, I first assessed the technical vari-
ability of SNP arrays by analysing the intensity readouts from 11,564 SNP probes (10K array)
in a replicate study consisting of 72 experiments from 8 individuals. The result of this analysis
indicated that Affymetrix SNP array technology is highly reproducible (CV1 = 5.16% for chip
variability, and CV = 6.3% for labeling variability). Next, I combined statistical theories with the
reproducibility measured from empirical data to predict the likelihood of observing 2 or more ran-
dom probes on the array with k-fold differences in their hybridization intensity (k � 2). The aim of
this chapter was to detect possible sources of variation in SNP array data, and based on the results
presented in this chapter, I concluded that the non-specific variation between the performance of
individual oligonucleotide probes is a major contributor to the overall microarray noise. The repli-
cate experiment that was used in this Chapter was designed and performed by collaborators at the
Affymetrix Company.

The aim of the work presented in Chapter 3 was to develop and implement an enhanced
algorithm to reduce the probe-level variability in SNP array data, in order to assess whether such
an approach would provide improved accuracy for detecting CNVs. The specific aims of this
chapter were (1) to develop an optimized approach for estimating SNP signal intensity, and (2) to
implement an accurate CNV calling model to improve the sensitivity and precision of predicted
CNVs. To develop this model, I took advantage of several non-parametric statistical methods that
had previously been used in different applications, such as speech signal processing, geology and
array CGH technology. The resulting algorithm, called Oligonucleotide Probe-level Analysis of
Signal or OPAS, involves two major components: probe-level analysis and SNP-level analysis.
I then designed and implemented OPAS visualization software and an associated pipeline that

1Coefficient of Variability

20



facilitates automatic sample import and high-throughput sample analysis. An advantage of this
approach is that most of the individual modules can be easily extracted from the source code and
applied to analyse data from other platforms, for example, Illumina SNP arrays and sequence-based
read depth data.

In the pre-processing phase of the algorithm, probe-level analysis is conducted. In this phase,
the intensity of each PM oligonucleotide probe (or oligo) is analysed to identify noisy probes and
subsequently eliminate them from data analysis. To achieve this goal, within each SNP probe set
the PM oligos are categorized into groups or clusters with similar intensity patterns.

To facilitate probe set clustering of PM oligos, I proposed a new clustering approach, referred
to as Fuzzy-Kmeans Clustering, based on combining two well-known clustering methods: k-means
optimization-based and subtractive fuzzy-logic based clustering algorithms. Next, non-parametric
KS-test is applied on each determined cluster of oligos (referred to as ”oligo cluster”) to evaluate
the likelihood that the intensity pattern of the PM oligos, that are involved in the oligo cluster,
represent a significant shift in the signal intensity. These KS-generated probabilities and the oligo
cluster information are then passed to a machine-learning algorithm to identify the most significant
oligo cluster(s) within each SNP probe set. Subsequently the mean log2-ratio intensity of the oligos
in the most significant oligo cluster(s) is estimated and used to represent the SNP log-ratiometric
value.

In the post-processing phase of the algorithm, SNP-level analysis is performed. In this step, I
first apply GC-fragment length normalization to minimize the effect of fragment length biases on
the estimated SNP readouts through a non-linear LOWESS normalization method. Next, in order to
identify regions of the genome with copy number alterations, the algorithm applies Circular Binary
Segmentation (CBS) [189, 242] non-parametric CNV calling method on the pre-processed SNP
data. It is important to note that, while many of the components of this algorithm had been previ-
ously developed in other applications (e.g., CBS was originally designed in aCGH), the adaptation
of these methods to SNP microarray data required a largely novel implementation to accommodate
a different data type.

To facilitate high-throughput data analysis, I designed and implemented OPAS software that
automatically generated a relevant record of the sample analysis. Upon sample import, OPAS
software generates separate image and data folders for each sample that are named according to
the sample file name (and date of analysis, if it already exists). During sample analysis, OPAS
automatically creates a comprehensive catalogue of the graphs and data for each step of the sample
processing, from normalization and mean/intensity (MA) plots to visualization of CNVs in each
chromosome along the chromosome ideogram, and subsequently saves these images and data in
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the pre-designated sample folders (see page 95). The purpose of this enhanced sample recording is
to provide a useful sample tracking method for future follow ups.

Furthermore, despite the fact that all the components of the OPAS algorithm were based on non-
parametric analytical techniques, there were still a few assignable parameters that could affect the
algorithm performance. Thus, I extensively tested each module to better assign these parameters
and to improve the quality and speed of OPAS. The samples used in the work presented in this
Chapter were provided by Dr. Jan Friedman and the ”wet-lab” (sample preparation and Affymetrix
experiments) was performed at the Genome Sciences Centre. Throughout this Chapter, I also
use validated CNV results of mental retardation project by Dr. Friedman that has already been
published [29, 30, 215] to test the performance of my proposed method in detecting known CNVs.

In Chapter 4, I presented the results of applying OPAS to detect somatic CNVs (present in
the tumor but not the matching normal DNA) in 25 follicular lymphoma (FL) patients. Follicular
lymphoma (FL) is the most prevalent type of non-Hodgkin lymphoma (NHL)1 (cancers of the
lymph nodes). In Canada, non-Hodgkin lymphomas accounted for about 7,500 new cases of cancer
in 2010 (making them the fifth most common cancer) and 3,200 estimated deaths2. The statistics
also indicate an increasing rate of incidence of NHL among young women aged 20-39 [243]. More
importantly, follicular lymphomas frequently transform to a more rapidly progressive invasive and
lethal cancer, diffuse large B-cell lymphoma or DLBCL (10 year survival < 20%).

Cytogenetic abnormalities are common characteristics of FL genomes [244–248]. A genetic
hallmark of follicular lymphoma is the recurrent chromosomal translocation t(14;18)(q32;q21),
which is present in approximately 85-90% of the patients [245, 249, 250]. As a result of this
translocation, a part of chromosome 14 involving the enhancer of the immunoglobulin heavy chain
(IGH) locus moves to chromosome 18 and into the proximity of the BCL2 anti-apoptotic gene,
resulting in BCL2 over-expression [245, 249–251]. However, transgenic mice with BCL2 over-
expression do not develop lymphoma [252, 253], and t(14;18) bearing lymphocytes have also been
reported in healthy individuals [254, 255]. These findings suggest that t(14;18) alone is not suf-
ficient to produce clinical FL [256–258]. I hypothesized that the OPAS algorithm could improve
CNV discovery in FL patients and could enhance our understanding of FL genetics. To test this
hypothesis, I looked for candidate somatic aberrations in 25 FL genomes by performing a pairwise
analysis of Affymetrix 500K data from tumor matched normal DNA.

In total, I identified 286 somatic CNVs (11.4 per patient) of which 18.5% (53/286) were smaller
than 150 kb and 14.3% (41/286) encompassed fewer than 10 SNP probe markers. To assess the ac-

1http://www.lymphoma.org
2http://www.cancer.ca
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curacy of the putative CNV calls, I compared OPAS findings in 23/25 patients with the results from
several alternative technologies and methods that were applied to study the same patients, includ-
ing Significance Mean Distance method (SMD [259]) based on 500K SNP arrays, BAC aCGH,
BAC-end fingerprint profiling (FPP), and Illumina sequencing data. This comparison indicated
that 87.9% of all OPAS predicted CNVs are seen by at least one additional dataset, while most
of the remaining candidate events had no corresponding FPP or sequence information that could
reject them. One of the sequence validated CNVs that was below the detection power of standard
SNP calling methods and thus was previously undetected with SNP arrays was a ∼104 kb somatic
deletion on 9p21.3 which included only 8 SNP probes. This deletion harbored the CDKN2A gene
which is frequently deleted in many cancers [260, 261], for instance, in an aggressive subset of
cutaneous T-cell lymphomas [262]. Another interesting finding was detecting a deletion, approxi-
mately 143 kb in length, on chromosome 12q24.11 that encompassed only 4 Nsp SNP probes and
was validated using BAC end sequence data. This deletion affected the HVCN1 and PPTC7 genes.
A recent publication on the voltage-gated proton channel HVCN1 gene suggested that it modulates
the B cell antigen receptor [263]. The deletion of 12q24.11 removes all but the first exon of HVCN1
and the first 3 coding exons of PPTC7, juxtaposing the HVCN1 promoter to the remaining PPTC7
exons. Therefore, this deletion can potentially create a novel fusion gene between the 5’ end of
HVCN1 and 3’ end of PPTC7. Both of the deletions found (CDKN2A and HVCN1-PPTC7) were
validated, although neither of these deletions was previously identified when the same 500K data
were analysed using the SNP analysis method described in [29, 30]. These findings confirmed that
the accuracy of calling CNVs can be improved by performing a probe-level analysis of the array
data and applying non-parametric data mining methods to analyse the data.

Other Advantages: During the past several years, there has been a major breakthrough in mas-
sively parallel sequencing technologies, which offer the promise of detecting whole-genome struc-
tural aberrations at base-pair resolution. The two main aspects of my research that I believe are
relevant to emerging sequencing technologies are (1) methods that are currently developed for de-
tecting CNVs from sequencing data are in their infancy, and many non-parametric modules that
I developed and/or implemented in this work can be easily extracted and modified for detecting
CNVs using sequencing data (for example for analysing RD coverage data, Section 1.2.3, p. 10),
and (2) during the past several years, thousands of projects have been completed using SNP arrays
to study CNVs in thousands of individuals affected with cancers, developmental abnormalities,
rare diseases as well as unaffected ”normal” individuals. The raw array data files (.CEL) of many
of these projects are accessible online (for example HuRef [163] replicate 500K arrays can be
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downloaded from ftp://ftp.jcvi.org/pub/data/huref/; see Table 1.3 for more examples). Re-analysis
of these data sets with an enhanced algorithm, such as OPAS, can result in discovering small re-
current and potentially pathogenic aberrations, well below the sensitivity thresholds of other algo-
rithms. Considering the relatively low cost of computational array analysis with respect to sample
preparation and processing, OPAS re-analysis of the extant data sets will create new discovery
opportunities at minimal cost.

Throughout my research, I have generated many tools to facilitate data acquisition, sequence
interpretation and statistical inference and visualization of the genomic data. In order to keep
my developed tools reusable and traceable, I generated comprehensible Graphical User Interfaces
(GUIs) for most of these tools. For instance, DLOH software and GUI were designed to interrogate
SNP genotype data in order to identify regions of loss-of-heterozygosity (LOH). It also generates
a statistical score for each LOH region to predict potential regions of copy number deletion. I
presented DLOH at the Advances in Genome Biology and Technology (AGBT) conference in
2008.

In addition to the work described in this thesis, I have been involved in several other collabora-
tive projects at the Genome Sciences Centre (GSC) which have resulted in publications or presen-
tations. I used non-parametric statistical tests to assess the impact of whole genome amplification
on analysis of copy number variants (Pugh et al. [264]). In this work, I compared the distribution
of data from paired pre- and post-whole genome amplified (WGA) samples, for 3 separate DNA
samples and identified apparent WGA-induced over- and under-amplifications in each of the three
comparisons of amplified versus unamplified material.

I also collaborated with Dr. Maziar Rahmani in analysing data and preparing genome wide
visualization of markers in several genome wide association studies (GWAS). Based on my results
several novel risk loci were chosen in patients with calcific aortic valve stenosis, which were pre-
sented at the Canadian Human Genetics Conference [265] and National Research Forum for Young
Investigators in Circulatory and Respiratory Health [265]. More recently, a large-scale study has
been initiated by Dr. Rahmani at the Genome Sciences Centre and I will apply the same approach to
identify potentially significant markers which will be then genotyped for validation and presented
in a future manuscript.

In conclusion, whole-genome analysis techniques provided us with the means to understand
the extent of the variation in normal and disease genomes. Nonetheless, the past several years
have yielded rapid developments in sequencing technology, creating a field of investigation that
is transforming both our concept of the human genome and the application to clinical practice.
I believe that merging the vast amount of data available from microarrays and recent sequence
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based studies carries the promise of understanding the mechanisms by which disease and normal
genomes diverge. However, gaining this knowledge is largely dependent on the use of improved
computational methods that can provide accurate analysis of these data.
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1.7 Figures and Tables



(a) Karyotype of an FL patient (48,XY,+X)



(b) M-FISH of the same patient

Figure 1.1: Karyotype and M-FISH chromosome analysis of a patient with follicular lymphoma (FL).
The karyotype and M-FISH analysis of an FL patient is shown in panels (a) and (b), respectively. Both
techniques indicate several microscopically detectable chromosomal alterations in this patient, including
extra copies of chromosomes 7 and X (48,XY,+X, +7). Karyotype and M-FISH results can also detect
balanced translocation, such as t(14;18)(q32;q21) in the above FL patient (figures provided by Dr. Horsman’s
lab at the BCCRC).
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Figure 1.2: Structure of SNP probe sets in Affymetrix GeneChip R� SNP arrays. In Affymetrix tech-
nology, each SNP on the array is represented by a collection of probe quartets, also known as a SNP probe
set. A probe quartet consists of a set of 25-mer oligonucleotide ”probe pairs” for two most common alleles
(known as ’A’ and ’B’) and for both forward and reverse strands (antisense and sense) for the SNPs. Each
probe pair consists a perfect match (PM) probe and a mismatch (MM) probe. The Affymetrix chip design
strategy is to use a set of these PM/MM probe pairs to interrogate the surrounding bases of SNPs for the
forward and or reverse target for both alleles. At the top of the above figure, the ’A’ and ’B’ alleles of a given
SNP are shown by pink and yellow beads in the middle of the green sequence. The 4 rectangles below the
depicted sequence, represent the probe quartets for forward and reverse strands of allele ’A’ (red rectangles)
and allele ’B’ (yellow rectangles). As shown in this figure by blue beads (’G’ and ’A’), the sequence of
MM probes is the same as the PM probes, except for a single nucleotide difference. Furthermore, within a
probe set there are additional probes to interrogate the neighboring bases of the SNP locus, known as ”offset
probes”. The position of the probes within a probe set is typically denoted by (-4, -2, -1, 0, +1, +2, +4),
where the integer n refers to the base position being interrogated by the offset probes relative to the SNP po-
sition (n = 0). The bottom panel illustrates two offset probes (n =−1 and n =+4) of a given SNP sequence.
The number of designated oligonucleotide probes in a probe set varies in each generation of the Affymetrix
GeneChip SNP arrays. In 10K and 100K arrays, a probe set consists of 40 PM/MM oligonucleotide probes.
Thus, for example, the 100K SNP array has in total more than 4.5 million features (oligonucleotide probes)
on the array. The Nsp (∼262,000 SNPs) and Sty (∼238,000 SNPs) arrays from Affymetrix 500K SNP dual
array-set have a density of more than 500,000 SNP sites with 20 or 40 PM/MM probe pairs per SNP locus,
resulting to > 3 million features on each array and a total of ∼6,071,040 features.
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Table 1.1: Aneuploidies and large-scale CNVs associated with human disease

Name of Abnormality Type Chromosomal Variation Cytogenetics Representation

Turner syndrome aneuploidy loss of entire X chromosome (45, X) or (45, X0)
Klinefelter syndrome∗ aneuploidy gain of entire X chromosome (47, XXY)
Edwards syndrome aneuploidy trisomy of chromosome 18 (47, +18)
Down syndrome aneuploidy trisomy of chromosome 21 (47, +21)
Patau syndrome aneuploidy trisomy of chromosome 13 (47, +13)
Cri du chat large-scale CNV loss of the short arm of chromosome 5 46,XX,del(5)(p15.2)
1p36 Deletion syndrome large-scale CNV loss of a region on the short arm of chromosome 1 deletions on 1p36
Angelman syndrome large-scale CNV loss of ∼ 4Mb of the long arm of chromosome 15† 46,XX,del(15)(q11-q13)

∗the most common male chromosomal disease
†observed in 50% of patients with Angelman syndrome

Table 1.2: Comparison of array specifications in 4 generations of Affymetrix SNP array

Enzymes SNPs Probe
Pairs

Quartets Features Median
IMD∗

(kb)

Average
IMD
(kb)

Coverage

10 K XbaI 10,204 40 14 647,080 113 258 at least 1 SNP per 100 kb.
100K XbaI,

HindIII
116,204∗ 40 10 4,648,160 8.5 23.6 92% of genome within 100 kb of a

SNP; 40% within 10 kb of a SNP.
500K NspI, StyI 500,568† 24, 40 6-10 12,013,632 2.5 5.8 85% of genome within 10 kb of a

SNP.

SNP 6.0 NspI/StyI SNP 6.0 has major differences with the three previous generations of Affymetrix SNP arrays:
• combines the NspI and StyI fractions that were previously assayed on two separate arrays
• contains 906,600 SNP probes in addition to 945,826 non-polymorphic copy number (CN) variation probes:
(∼744,000 were selected for their spacing and ∼202,000 were based on known copy number changes‡)
• 3-4 replicate perfect match (PM) probes per SNP probe (CN probes have no replicate)
• median inter marker distance = 2180 bp (CN), 1270 bp (SNP), 680 bp (SNP+CN)
• average inter marker distance = 3160 bp (CN), 3230 bp (SNP), 1600 bp (SNP+CN)

∗IMD: Inter Marker Distance
∗∗There are 58,960 SNP probes on XbaI and 57,244 on HindIII arrays.
†There are ∼262,000 SNP probes on NspI and ∼238,000 on StyI arrays.
‡based on Toronto Database of Genomic Variants (DGV) [168]
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Table 1.3: A partial list of Affymetrix SNP array data (raw .CEL files) that are publicly available

270 samples from HapMap project http://hapmap.ncbi.nlm.nih.gov/downloads/
raw data/affy500k/

9 Tumor/Normal pairs derived from several human cancer cell lines, including adeno-
carcinoma, non-small cell lung carcinoma and primary ductal carcinoma

http://www.affymetrix.com/support/technical/
sample data/copy number data.affx)

GlaxoSmithKline (GSK) has made available the 500K SNP data for over 300 cancer
cell lines from 30 different tissue types in a wide range of cancers including small cell
lung carcinoma, neuroblastoma, lymphoma and glioblastoma

https://cabig.nci.nih.gov/caArray GSKdata/

Marshall et al. (2008; [50]) provided the 500K .CEL files of 1318 individuals with
Autism Spectrum Disorder (ASD)

http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE9222

Chiang et al. (2009; [266]) provided the Mapping250K-Sty array data for 77 repli-
cates of HCC1143 (breast ductal carcinoma), 69 replicates of HCC1143BL (matched
normal), 42 replicates of HCC1954 (breast ductal carcinoma), 36 replicates of
HCC1954BL (matched normal) and 1 replicate of NCI-H2347 (lung adenocarcinoma)

http://www.broadinstitute.org/cgi-bin/
cancer/publications/pub paper.cgi?mode=
view&paper id=182

Solomon et al. (2008; [267]) provided Affymetrix Mapping250K-Nsp array data for
58 glioblastoma multiforme tumor samples

http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE13021

161 primary breast cancer samples (500K array) reported by Kadota et al.
(2009; [268])

http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE16619

141 gliomas and 33 normal tissue samples (100K array), used by Beroukhim et al.
(2007; [269])

http://www.broadinstitute.org/cgi-bin/
cancer/publications/pub paper.cgi?mode=
view&paper id=162&p=t

768 Affymetrix Mapping250K-Sty data for 384 tumor/normal lung adenocarcinoma
pairs for Weir et al. (2007; [270])

http://www.broadinstitute.org/cancer/pub/
tsp/
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Chapter 2

Analysing Variability in Microarray
Data

2.1 Introduction
Oligonucleotide microarrays are powerful tools that enable high-throughput measurement of DNA
copy number alterations across the entire genome. One application of oligonucleotide microarrays
is copy number profiling, which has led to significant advances in the understanding of complex
diseases and discovering submicroscopic aberrations in genes that are associated with or causative
to diseases, such as mental retardation [271, 272] and cancer [273].

A major concern for the identification of CNVs using oligonucleotide microarray technology
is how a putative copy number change is defined. There is a plethora of different methods that
have been used to call changes in DNA copy number values from relative ratio intensity outputs of
these arrays, ranging from simple preset thresholds [213] to complex statistical modelling [212].
Despite their differences, the fundamental principle underlying these approaches often include one
(or a combination) of hidden Markov models (HMMs) [185, 186], segmentation algorithms [189,
210, 242], or t-tests and standard deviations (SDs) of the log2-ratio intensities (referred to as LR in
this thesis) [212]. Regardless of how the data are analysed, nonspecific variations that are due to
assay variability will mitigate the accuracy of the downstream CNV results.

One drawback of such non-specific variation is that the incorporated noise forces the measured
signal intensities to pass over a predefined threshold of CNV calling, leading to false positive
and false negative CNV results. To circumvent the false positive problem, algorithms often apply
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more stringent CNV calling criteria (for example, by raising the LR thresholds of calling significant
deviations from the base-line and/or increasing the minimum number of consecutively shifted SNPs
for calling CNVs). This, on the other hand, mitigates the ability to identify other real aberrations
that do not necessarily meet more stringent constraints, and consequently leads to increased false
negative rate.

Therefore, despite the importance of technological advances in microarray platform design
and array processing during the past decade, it has become increasingly clear that the capability
to assess variability associated with array outputs is of paramount significance and is an essential
factor for developing analytical tools that can maximize the utility of these platforms [139, 274].
Nonetheless, investigating variability and its possible sources have been largely unexplored in SNP
arrays [140, 233, 275], unlike expression arrays where a great effort has been invested to under-
stand the sources of variability among probes for each transcript [207, 234, 276–281]. As a result,
the impact of oligonucleotide probe-level variability on SNP data reproducibility that directly in-
fluences CNV analysis and interpretation has also been largely unexplored.

To address this issue, in this Chapter I explore different sources of variability in Affymetrix
SNP arrays. The specific aims of the work presented in this chapter are: (1) to estimate relative
magnitudes of different sources of variation in Affymetrix SNP array data, and (2) to assess the
variability associated with each probe set by modelling variance as a function of intensity. To per-
form these analyses, I first examine common causes of variation among array results by assessing
the reproducibility of Affymetrix GeneChip R� 10K SNP array platform using a replicate data set
consisting of 69 arrays from 8 individuals. Next, I present a mathematical model to study the
relationship between the empirical variability (%CV) and the theoretical fraction of individual oli-
gos that are expected to differ in their log2-ratio intensity readouts by at least some given factor.
The aim of this model is to incorporate the theoretical probabilities and the empirical variabilities
(%CV) to determine the acceptable range of variability across replicate oligos on 10K SNP arrays.

In the rest of this Chapter, I first explain some of the major sources of variability in microarray
data and then discuss the methods I use to analyse variability in Affymetrix SNP arrays and the
corresponding results.

2.1.1 Variability in Microarray Data

A typical microarray experiment, regardless of the array platform used, has many different sources
of variation [204, 282, 283]. Figure 2.1 illustrates some of the common sources of variability
in Affymetrix SNP genotyping arrays [204, 282]. As seen in Figure 2.1, the sources of variation
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detected by microarrays can be broadly attributed to biological and technical causes. These sources
of variability are briefly explained in the following sections (2.1.2-2.1.3).

2.1.2 Biological Variability

At the highest level of variation hierarchy in Figure 2.1 is the population variability or biological
variability, a well-known source of variation that exists among normal individuals. Such variability
is independent of the microarray experimental process [204]. This type of intrinsic copy number
variation among individuals, known as copy number polymorphisms or CNPs, is responsible for
a substantial amount of human phenotypic variation and genome diversity [19, 66, 69, 163, 284–
287]. Other studies of CNPs have also discovered several associations between CNPs affecting
genes and biological functions related with immunity [46, 288, 289], sensory reception [290, 291]
and other phenotypes, such as predisposition to HIV infection [236], and susceptibility to Crohn’s
disease [47]. Early studies suggested that about 12-18% of the human genome is involved in copy
number polymorphisms [19, 69]. However, more recently, several independent large-scale studies
of CNPs have consistently concluded that the frequency and size of these variations were largely
overestimated in the initial studies [66, 168]. Nonetheless, these biological variations are a major
source of variability among normal individuals and a fascinating field of population genetics [292].

2.1.3 Technical Variability

During microarray experiments, many factors can lead to unwanted variation or noise in the gen-
erated data that are commonly referred to as experimental or technical variation. Such variation
in array data affects our ability to identify real copy number changes in the downstream analy-
sis. Technical variability is, therefore, fundamentally different from biological variability, which
is an indicator of genetic diversity (Sec. 2.1.2). Multiple sources of variation in a microarray ex-
periment can impact the overall experimental variability, including array manufacturing process,
DNA or RNA isolation method, sample preparation, target labeling, hybridization and scanning.
These sources of technical variability are not platform-specific and are relevant to all commercially
available microarrays, albeit to a different degree [204, 293–297].

While the choice of the array platform used can affect the quality of obtained results [205, 298,
299], the ability to compare findings within the same platform requires systematic assessment of
technical variability. An accurate estimation of different sources of technical variability is essential
not only for understanding how well a microarray platform performs, but also for calibrating the
array output signal and improving the sensitivity and specificity of the findings. An extensive
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amount of research has been carried out in the past decade to discover, understand and quantify
unwanted sources of technical variation. These studies have motivated the development of many
advanced computational techniques for microarray data normalization and filtering [180, 205, 296,
300–302]. Figure 2.2 depicts some of the major components of technical variation in microarrays
(applicable to both expression and SNP genotyping arrays). The first component depicted in this
figure is referred to as ”the variation between Cy5 and Cy3 colors” which is specific to two-color
arrays such as CGH-based platforms. In such arrays two samples (e.g., ”test” and ”reference”) are
labeled with different fluorophores (usually cyanine-3 (Cy3) and cyanine-5 (Cy5)) and hybridized
together on a single microarray, and thus the difference between the two dies can affect the integrity
of the resultant readouts (refer to Chapter 1 for more details). Such variation does not exist in one-
color arrays, such as Affymetrix SNP genotyping chips, where in each experiment only a single
sample is hybridized to an array after it has been labeled with a single fluorophore (such as Cy3
or Cy5). This implies that one-color arrays, such as Affymetrix SNP chips, are impacted by fewer
sources of variability compared to two-color arrays.

The next source of variability denoted in Figure 2.2 is labelling variability which is due to the
difference in sample labelling reactions. Such variability has also been addressed in other studies as
the difference in the labelling efficiency across multiple arrays. However, in this Chapter labelling
variability refers to the technical variation that is due to both sample preparation and labelling
process. Another aspect of technical variation, commonly observed in large-scale studies, occurs
when samples are divided into different groups and each group is processed independently. Such
variation, commonly referred to as batch effects [303–308], has been observed from the earliest mi-
croarray experiments [309] and can be caused by many factors including the batch of amplification
reagent used or the hybridization reaction. In contrast to random non-specific variation (noise) in
microarrays, batch effects exclusively describe systematic technical differences when samples are
processed and measured in different batches [303, 307]. In large scale studies, practical considera-
tions limit the number of samples that can be amplified and hybridized at one time, so samples may
be generated several days or months apart and, therefore, batch effects will inevitably confound
the results of such large-scale studies. The batch effects can potentially mask the real biological
events, particularly when the average variation between different batches is significantly larger than
the biological variation within each batch [307, 308]. Thus, proper monitoring and managing of
batch effects is essential for extracting relevant biological information [303, 307, 308].

The variability between hybridization to different arrays, referred to as chip variability, is an-
other major source of technical variability that is illustrated in Figure 2.2. This variability repre-
sents the underlying chip-to-chip variation of the intensity readouts between multiple arrays (of the
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same platform). As shown in Figure 2.2, chip variability is intrinsically dependent on two other
components of technical variability: (1) variability between arrays in relation to the manufactur-
ing process (also referred to as manufacturing variability), and (2) variability between different
hybridization reactions. As the result of intercorrelation between different sources of microarray
variability, as illustrated in Figure 2.2, measuring the independent contribution of each sources of
technical variability is a very difficult, if not impossible, task.

The rationale of the work presented in Chapters 2 and 3 is that an experimental design that takes
into account the impact of experimental variability at the level of individual oligonucleotide probes
can identify and exclude the noisy oligos and minimize the impact of noise in the downstream
CNV detection process. In the next section (Section 2.2), I will discuss some of the methods that
were used to estimate two major components of variability, chip and labelling variability, among
replicate Affymetrix SNP arrays (described in Sections 2.3.3-2.3.4).

2.2 Methods for Measuring and Quantifying Microarray Variability
A common approach for measuring microarray data variability, regardless of the platform, is to
perform replicate studies. Microarray experiments can be replicated at biological and technical
levels to assess the two main categories of variation which were discussed in the previous sections
(Sections 2.1.2-2.1.3).
Biological replicates: are replicates taken at the level of the population being studied (e.g., copy
number polymorphism among normal individuals). Such replicate data sets include samples that
are independently obtained from replicate sources (such as multiple cell lines, multiple biopsies
or multiple patients). The purpose of studying biological replicates in copy number studies is to
evaluate the extent of DNA copy number diversity among normal individuals [19, 66, 69, 163, 284–
286, 310], and to measure the possible functional or phenotypical implications of such variations
on normal individuals [46, 47, 236, 288–291].
Technical replicates: are replicates generated at the level of the experimental process [204]. The
purpose of studying technical replicates in Affymetrix SNP arrays is to evaluate technical variabil-
ity in the generated log2-ratio intensity readouts from a SNP array, which can directly affect the
consistency and reliability of both genotyping and CNV results in the downstream data analysis.
As discussed in detail in Section 2.1.3, technical variability consists of several further components,
such as labeling and chip variability. Estimating these aspects of technical variation and their im-
pact on the data integrity is an important task for evaluating the performance of any microarray
experiment.
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The focus of the remainder of this Chapter is to present the methods that were used and/or
developed to measure technical variability of Affymetrix SNP arrays and the results of applying
these methods to real data from a replicate SNP array experiment.

2.2.1 Quantifying Technical Variability in Affymetrix SNP Arrays

Quantifying the levels of experimental (or technical) variability is a common practice before under-
taking any large-scale microarray project [204]. Such variability is often evaluated by performing
replicate experiments that aim to assess the systematic reproducibility of a particular technology
(as explained in Section 2.2) [204]. Below is the description of some of the main computational
aspects of analysing and quantifying variability in microarray experiments. It is important to note
that these general methods are not platform-specific and can be applied to a variety of different
microarrays, such as Affymetrix and Illumina SNP chips or expression arrays [301, 306].

2.2.1.1 Log-transformation

Often the first step in estimating technical variability in any microarray platform, including Affymetrix
SNP arrays, is to transform raw intensity data of the replicate study into log intensities [204, 311,
312]. It has been shown that generally in all microarray experiments larger intensities tend to
have larger variations [301, 313, 314]. This bias leads to inconsistent variance across a measured
range of intensity. Such inconsistency in variance, which is also described in statistics as ”het-
eroskedasticity”, imposes a serious challenge for analysing variability in any application, including
microarray experiments [315, 316]. One of the primary reasons for performing log-transformation
is that it circumvents the former issue by converting asymmetric distribution of (raw) intensities to
a symmetric and Gaussian-like distribution, as illustrated in the example of Figure 2.3. Further-
more, the latter transformation would enable us to apply powerful statistical methods to stabilize
variance or measure the underlying variability in a microarray experiment (see the following Sec-
tion) [301, 311, 312].

2.2.1.2 Coefficient of Variation (CV)

In statistics, it is common to represent the variability in a data set by evaluating the standard devi-
ation (SD) of the data. In microarray applications, however, it is well-known that the standard de-
viation of intensities is positively correlated with the mean signal intensity of the array [204, 317].
If variance is proportional to raw signal intensity of the data, the application of log transformation
produces a constant variance across the range of signal intensities on the logarithm scale. The most
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important advantage of log-normal assumption is that it allows different levels of variability to be
expressed as a percentage known as the ”coefficient of variability” (CV) [204], defined by:

CV =
σ
µ
×100 (2.2.1)

where σ and µ represent the standard deviation and mean of the input signal, respectively. Based
on Equation (2.2.1), the CV is estimated by finding the ratio of standard deviation of the signal to
its mean and serves as an indicator of data variability.

A key advantage of using coefficient of variation (CV) in SNP arrays, instead of simple stan-
dard deviation (SD), is that the standard deviation (or variance) of microarrays are generally pro-
portional to the mean of signal intensities. Therefore, dividing the standard deviation (σ ) by mean
(µ), as shown in Equation (2.2.1), removes the intensity-specific dependencies of the estimated
variability. This feature makes CV particularly useful for quantifying the variability in replicate
microarray studies. Based on Equation (2.2.1), a lower value of CV represents a higher microar-
ray reproducibility. However, the acceptable range of CV varies between different studies and
groups [318–321]. For example, the Institute of Food and Research1 (IRF) microarray facility in
the UK uses median CV of 5% and 10% as the critical values for technical and biological repli-
cates [321]; and MicroArray Quality Control (MAQC) project has reported 5-20% CV for six2

commercially available microarray platforms for gene expression analysis [318].
Based on theoretical statistics, it is reasonable to assume that if the ratio of mean to standard

deviation in a normal distribution is ≥ 3 the experiment is not reproducible. By using this hypoth-
esis Johnson and Welch et al. had previously stated that 33% CV constitutes a permissible upper
limit of CV, implying that any experiment with CV > 33% is not reproducible [322]. The main
reason behind the debate about the critical value of the CV is that there is no fundamental analysis
that can relate the assay variability with the reliability (or precision) of the biological interpretation
of array findings.

Understanding the link between the measured variability and its impact on the expected fre-
quency of inconsistent readouts is crucial to determine the acceptable extent of technical variation
in microarray experiments. Nonetheless, no previous study has explored the relationship between
the technical variation and the expected frequency of erroneous readouts in CNP arrays. To ad-
dress this limitation, the focus of the rest of this Chapter is to adapt the previous studies of CV and
variability in other applications [279, 323] to develop a comprehensive model that can relate oligo-

1http://www.ifr.ac.uk/safety/microarrays/
2Applied Biosystems; Affymetrix; Agilent Technologies; GE Healthcare; Illumina, and Eppendorf.
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specific variability in Affymetrix SNP arrays (as measured by the CV) to the frequency of potential
SNP-level errors. Such detailed analysis of variability and its impact on SNP data quality allows
us to determine the critical value of CV that defines the acceptable range of technical variation in
SNP microarrays.

2.2.2 A Link Between the CV and the Probability of Observing k-fold Disparities
Between Replicate Measurements

Two studies by Wood et al. [323] and Reed et al. [279] had previously focused on developing a
link between the estimated variation in replicate measurements and the expected fraction of pairs
of those measurements that differ by a given factor, in the context of serological assays. Wood
et al. [323] showed a mathematical relationship between the error frequency and the magnitude
of the SD, under the assumption that the logarithm of measurements is normally distributed and
based on using a maximum acceptable variability of 2 fold change (k = 2). Alternatively, Reed
et al. [279] extended Wood’s approach and derived a mathematical relationship between the CV
and the expected frequency of any k-fold disparate results in serological assays. However, there
is no current publication that links the estimated variation in SNP arrays to their performance and
error rates, similar to Wood et al. [323] treatment of SD or Reed et al. [279] treatment of CV in
serological assays. To address this limitation, I used Reed’s model [279] to correlate the extent of
oligo-specific CV measurements that have k-fold difference in their signal intensity readouts in a
replicate Affymetrix SNP array experiment. I then further expanded this model and used empirical
results of CV to estimate the effect of PM oligo-specific variability on the measured SNP log2-ratio
(LR) values (described in Section 2.3.5).

According to Reed’s model [279], in a given assay with log-normal data distribution and with
a known value of CV, the likelihood that two replicate measurements differ by at least a factor of k
(p(k)) is estimated by Equation (C.9), restated here:

p(k) = 2Φ
�

− log(k)�
2loge(CV2 +1)

�
(2.2.2)

where Φ denotes the cumulative density function (CDF) of ”standard normal distribution” (see
Appendix A and B for more detail). The complete mathematical proof of this equation is presented
in Appendix C. In the context of SNP arrays, the knowledge of this probability (p(k)) helps to
determine what magnitudes of difference between oligos can be expected by chance alone when
a particular coefficient of variation (%CV) is in effect. This information plays a pivotal role in
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understanding whether an estimated CV represents a reproducible or non-reproducible microarray
experiment.

It must be added that the CV is a common standard for assessing microarray data repro-
ducibility and has been used for microarray platform comparisons in MicroArray Quality Con-
trol (MAQC) project and several other studies [318, 324, 325]. Nonetheless, Analysis of Variance
(ANOVA) is another statistical approach for assessing microarray reproducibility. The descrip-
tion of this method and the results of its application on Affymetrix SNP array data are detailed in
Appendix D.

2.3 Results
To estimate the technical variability of Affymetrix SNP arrays, a replicate study was performed
using 69 samples studied on Affymetrix GeneChip R� 10K SNP arrays. It is important to note that
the aforementioned experiment was carried out at the Affymetrix company (part of a collabora-
tion between Affymetrix and the Genome Sciences Centre). My role in this study was to apply
computational techniques to quantify variability in the data generated from this experiment and
to determine if Affymetrix 10K SNP arrays were reproducible. The results of my analyses are
explained in the following sections.

2.3.1 Affymetrix 10K Replicate Experiment

A schematic representation of the replicate experiment is shown in Figures 2.4-2.5. For this ex-
periment, 8 individuals with normal karyotypes were selected by our collaborators at Affymetrix.
The DNA from each subject was divided into 3 batches of approximately 750 ng. Each batch was
labeled and hybridized to 3 Affymetrix SNP chips (10K), providing a total of 9 replicate arrays
for each sample (Figure 2.4). The only exception in this design was sample #1 for which only 6
replicate arrays were available (2 chips per labelled batch). For each subject in this study, sample
processing and hybridization were performed according to the Affymetrix GeneChip R� 10K SNP
assay [326], resulting in 69 arrays for the entire replicate data set. The .CEL files for these 69
arrays were obtained from Affymetrix for further analysis of technical variation. These .CEL files
contain the raw intensity readouts of all (∼462,400) oligonucleotide probes on the 10K chips. This
data set is referred to as ”10K rep-test” in the remainder of this chapter.
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2.3.2 Quantifying Technical Variability in Affymetrix SNP Arrays

In Section 2.2 several computational aspects of evaluating technical variability in replicate mi-
croarray data were discussed. Below is the summary of the steps that were performed to quantify
technical variability in ”10K rep-test” analysis (adapted and modified from Stekel et al. [204]).

1. Log-transform raw probe intensities (obtained from .CEL files) of the 69 arrays in ”10K
rep-test”. Here, I have used natural logarithms for data transformation (see Figure 2.3).

2. Apply global normalization on the arrays by bringing the overall mean intensity of the SNP
arrays to the same level (see Figure 2.6).

3. Estimate the mean log-intensity value of each oligonucleotide probe feature among the repli-
cate arrays1 (10K SNP array has ∼462,400 oligos). This value is commonly known as A in
the context of MA-plots, which will be discussed in Step 5.

4. For each oligo in the replicate arrays, estimate the deviation from the mean. This is also
known as the error between replicate features [204, 205], and is typically denoted by M in
MA-plots (see Step 5).

5. Generate MA-plots [204, 205] to visualize the relationship between the estimated error (or
M, obtained in Step 4) versus mean log-intensities (or A, measured in Step 3). The MA-plots
help to examine whether the magnitude of the error is independent from the signal intensity
(see Figure 2.7).

6. If the data in MA-plot are not symmetrical around a horizontal line, it implies that the error
is reliant on intensity and based on the shape of this plot linear normalization (e.g., linear
regression) or non-linear normalization (e.g., LOWESS) techniques can be applied to correct
for the error biases [205]. Otherwise, proceed to the next step (Step 7).

7. Calculate the standard deviation of error distribution (σe). If the MA-plot suggests that the
variation is dependent on the signal intensity (asymmetrical MA shape), the data can be
partitioned into subsets with different intensity ranges so that the oligo readouts within each

1In this algorithm, the term replicate arrays refers to the chips that are compared together to determine chip or
labelling variability for a particular sample. For example, as seen in Figure 2.5 the first DNA batch (b = 1) of individual
#5 (s = 5) is hybridized to 3 separate chips (c1, c2 and c3). Therefore, to measure chip variability of this particular
batch (s = 5, b = 1), the intensity hybridization between c1,c2 and c3 must be compared. These 3 arrays are, therefore,
referred to as replicate arrays for analysing chip variability for the above DNA batch (s = 5, b = 1).
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subset are intensity-independent. In such circumstances, a separate σe must be evaluated for
each partition, independently.

8. A common model for errors in microarray experiments is the log-normal assumption which
assumes that the deviations in replicate experiments follow a normal distribution in the log-
scale. This can be verified by plotting a histogram of the estimated deviation values (see
Figure 2.8).

9. One advantage of the log-normal model of errors is that the coefficient of variation (CV)
relates to the standard deviation of the errors in the log-scale (σe) by the following formula
(solved in Appendix C):

CV =

�
eσ2 −1 (2.3.1)

If log-normal assumption is validated, evaluate the coefficient of variation (CV) by substi-
tuting σe’s (obtained in Step 7) in Equation (2.3.1). For dataset with multiple partitions, as
described in Step 7, estimate one CV for each partition, independently.

The above algorithm is a general method and can be used to estimate variability in the data from
other biological platforms, when applicable.

As shown in Figure 2.3, the log-transformed intensity readouts of PM oligos from ”10K rep-
test” arrays follow a normal distribution. This finding is consistent across all 69 arrays in this
dataset (each image has been inspected separately, but to avoid redundancy only a subset of the
images are shown in Figure 2.3). Next, according to Step 2, I applied global normalization to
bring the overall (mean) intensity in these arrays to the same level, as shown in Figure 2.6. In
the subsequent step (Step 5), sample-specific MA-plots of deviation of oligo-level hybridization
intensities were generated. As seen in the MA-plots depicted in Figure 2.7, the symmetrical shape
of the data indicate that the oligo-level errors (deviations) in these arrays are mainly independent
from their mean intensity values. This finding is consistent across all other samples in ”10K rep-
test” dataset, suggesting that there is no need to perform any further sophisticated normalization
technique that would have been otherwise required to remove intensity-dependent deviations (as
described in Step 6). Next, according to Step 7, I estimated the standard deviation of the errors (σe)
and then plotted the histograms of these errors to investigate whether the log-normal assumption
was true in the ”10K rep-test” dataset. As shown in Figure 2.8, the histogram of chip-specific
deviations for all 8 samples in ”10K rep-test” dataset followed a normal distribution, and this
observation was consistent across all samples for both chip and labelling variabilities. The latter
finding confirmed the log-normal assumption of the samples in ”10K rep-test” dataset.
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2.3.3 Assessing Chip Variability in the Replicate Dataset (10K)

As shown in Figure 2.5, each DNA sample in the ”10K rep-test” study was hybridized to a total of 9
separate 10K chips (except for sample #1 which had 6 replicate arrays). To measure chip variability
in ”10K rep-test” dataset, the hybridization intensities between these chips were analysed for each
DNA sample, independently. To estimate chip variability for each individual oligonucleotide probe
on the 10K SNP array, the mean (A) and deviation from the mean (M) were calculated based on the
following formulas:

Ap(s,B) =
1
3

3

∑
i=1

log Ip(s,B,Ci) (2.3.2a)

Mp(s,B,C) = log Ip(s,B,C)−Ap(s,B) (2.3.2b)

where s ∈ {1, . . . ,8} corresponds to the DNA sample number, B ∈ {1,2,3} represents the in-
dex of the same DNA batch, and Ci, denotes the i-th replicate chip of a particular DNA batch
(i ∈ {1,2,3}1). Also, Ip(s,B,Ci) represents the intensity of oligonucleotide probe p in the i-th
replicate array (Ci) of a particular DNA batch (B) of sample s. For example, I100(5,1,C3) indicates
the intensity of the 100-th oligo of the 3rd replicate chip (c = 3) of the first batch of sample #5
(b = 1, s = 5; see left panel of Figure 2.5). Based on the above definitions, Equation (2.3.2b)
evaluates the mean (A) of oligonucleotide probe-level signal intensity (Ip) of the same DNA batch
across replicate arrays, and Equation (2.3.2b) uses the estimated mean value (A) to assess the error
(deviation; M) of chip variability across replicate arrays.

As described in page 39, a separate MA-plot was generated for each DNA batch by using the
evaluated oligo-specific M and A values. The aim of this plot was to assess whether oligo-level
variations were dependent on the average intensity across replicate arrays. These values were then
used in Equation (2.3.1) to assess the %CV of chip variability for all 8 samples of ”10K rep-test”
dataset, generating 3 estimates of CV per sample (one for each DNA batch) and a total of 24 CV’s
for the entire dataset. As depicted in Figure 2.9a the estimates of CVl varied between 4 to 7%
among all samples of the ”10K rep-test” dataset, with the mean chip variability (CVc) of 5.16%.

2.3.4 Assessing Labeling Variability in the Replicate Dataset

To assess labelling variability, it is necessary to measure the difference in hybridization intensity
of different labelling reactions of the same DNA sample. Similar to assessing chip variability, log-

1with the exception of sample #1 (s = 1), where i ∈ {1,2}.
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transformation, global normalization and other steps described in Section 2.3.2 were applied on the
replicate arrays to evaluate the variability that was associated with labeling reactions.

According to the experimental design of the ”10K rep-test” dataset and as seen in Figure 2.5,
each DNA sample was hybridized on 9 SNP arrays (with the exception of sample #1 which was
applied to 6 arrays). Considering that the aim of this analysis was to find the signal intensity
deviation between different labelling reactions, I first estimated the average intensity for each batch
and then compared the average batch intensities across the 3 labelling reactions, as illustrated in
Figure 2.5. The formula for M and A for analysing labeling variability is given by:

Ap(s) =
1
9

3

∑
j=1

3

∑
i=1

log Ip(s,Bj,Ci) (2.3.3a)

Mp(s,B) = Ī p(s,B)−Ap(s) (2.3.3b)

Ī p(s,B) =
1
3

3

∑
i=1

log Ip(s,B,Ci)

where s ∈ {1, . . . ,8} represents the sample number, B j, j ∈ {1,2,3}, denotes the batch number
of a specified sample (s), and Ci ∈ {1,2,3} indicates the replicate chip for each batch. Also, as
described before, Ip(s,B,C) corresponds to the intensity of a given oligonucleotide probe p in chip
(C) which is associated with batch B of sample s (For a detailed description of these parameters
see Section 2.3.3, p. 41). In Equation (2.3.3b), Mp(s,B) denotes the deviation of the average signal
intensity of probe p (Īp(s,B)) in the specified DNA batch (s,B) from the mean intensity of the same
probe (Ap(s)) across the entire set of replicate arrays of the same sample (evaluated by Eq. (2.3.3a)).
Next, the standard deviation of the estimated errors associated with labelling variability (σe) were
measured and, subsequently, the coefficients of variability for different labelling reactions (CVl)
were generated based on Equation (2.3.1) (Section 2.3.2). Figure 2.9b illustrates the CVl results
in the ”10K rep-test” dataset. This Figure indicates that CVl varies between 6-7% across the 8
DNA samples in this study, with an average CVl of 6.36% per sample. Here, we observe that the
overall estimate of labelling variability is slightly larger than the chip variability (CVc = 5.16%;
∆CV= |CVl −CVc|≈ 1.20%). The fact that a component of labelling variability is the chip-to-chip
variation between arrays with the same labelled DNA explains this marginal increase of labelling
variability compared to chip variability.
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2.3.5 Analysing the Relationship Between Oligo-level and SNP-level Variabilities

As discussed in Section 2.2.1.2, the coefficient of variability (CV) is preferred over the standard de-
viation (SD) as a means of quantifying the reproducibility of SNP arrays in ”10K rep-test” dataset.
However, understanding the extent to which technical variation influences the measured LR values
requires a reliable formulation that links the CV to assay performance. To characterize this rela-
tionship in Affymetrix SNP arrays and to investigate how it influences the log2-ratio values of the
oligos, I performed the following analysis. Initially, I estimated the acceptable k-fold variation be-
tween intensity measurements of the same oligonucleotide probe across replicate arrays, and then
I used Reed’s model (Equation (2.2.2)) to relate the CV to the probability of two disparate oligos
(i.e., oligonucleotide probes that differ at least by k-fold between replicate arrays) in ”10K rep-test”
dataset.

In the final analysis, I derived a mathematical formulation to link the oligo-specific variability
to the extent of SNP-level LR variations, under the assumption that the average log2-ratio signal
intensity from n PM oligonucleotide probes (oligos) in the same probe set is used to measure the
SNP log2-ratio intensity values (throughout this Chapter, I will refer to the SNP log2-ratio intensity
estimate as the SNP LR values). In conclusion, I applied the above method to the real data obtained
from the ”10K rep-test” experiment to evaluate the associated oligo-level and SNP-level variability
in this dataset. The detailed description of these analyses is presented in the following sections.

2.3.5.1 The Acceptable Range of Variability Between Replicate Oligos

According to Reed’s model (discussed in Section 2.2.2) the probability that two independent mea-
surements from the same sample will differ by a factor of k or more is given by Eq. (2.2.2), under
the assumption that the data from these samples are normally distributed after logarithmic transfor-
mation [279].

As discussed in the previous section, histograms of chip and labeling errors confirmed the
log normal hypothesis of the ”10K rep-test” dataset (p. 40 and Figure 2.3), thus satisfying the
prerequisite of Equation (2.2.2) [209, 275, 327]. By applying this model, I generated Figure 2.10,
which depicts the probability of observing > k fold difference in the raw intensities of two replicate
oligos. The curves in this graph reflects the aforementioned relationship based on a variable range
of k and CV. To interpret the results from this nomogram (Figure 2.10), we need to understand
the critical value of k, which defines the maximum acceptable range of variation between replicate
oligos in the context of copy number data analysis. For copy number analysis, the permissible
variability corresponds to the range of variation between individual PM oligos that does not affect
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the SNP’s overall LR values. To find the proper value of k in 10K SNP arrays, I performed the
following analysis. Let A and R be the readouts of the same normal oligonucleotide probe (LR = 0)
in ’test’ and ’reference’ arrays, respectively. Therefore:

log2
A
R
= 0

⇒ log2 A− log2 R = 0
(2.3.4)

Now assume that in a replicate array the raw signal intensity of this oligo is increased by k-fold
(A� → kA, k > 1). Thus the log2-ratio readout of the same oligo in the replicate array is:

log2
kA
R

= log2 kA− log2 R

= log2 k+ log2 A− log2 R (2.3.5)

Substituting the result of Eq. (2.3.4) in (2.3.5) would result in:

log2
kA
R

= log2 k+0 = log2 k (2.3.6)

The result of Equation (2.3.6) suggests that k-fold increase in the raw intensity readout of a normal
oligonucleotide probe (LR = 0) would result in log2(k) increase in the corresponding log2-ratio
(LR) estimate (assuming that the same reference set is used to analyse the data from replicate ar-
rays). In practice, regardless of the CNV calling method used, not every deviation of LR from
the theoretical baseline (LR = 0) is reported as a significant copy number change. Instead, often
default deletion and amplification thresholds are used to select significant deviations of intensity
as potential regions of copy number aberration [328–330]. For instance, let assume log2-ratio
of ±0.5 is used to call amplifications and deletions. It must be noted that the theoretical log2
ratios of one copy gain and loss are +0.58 and -1, respectively. However, to compensate the ef-
fect of noise often a smaller magnitude of aberration is used to determine significant DNA gains
and losses. Here, the selected values (LR = ±0.5) are arbitrary thresholds that are used to show
the probability of observing random noisy oligos that could shift a normal SNP above a deletion
or an amplification threshold. As seen later in this Chapter, the presented results are generated
based on several conditions that can be used to study the aforementioned probability with different
thresholds. With the above assumption (LR = ±0.5 as CNV thresholds), the acceptable technical
variability is −0.5 < LR < +0.5. Therefore, the critical value of k estimated by Equation (2.3.4)

44



is:
log2 k = 0.5 ⇒ k = 1.4142 ≈ 1.4 (2.3.7)

This result indicates that in the context of copy number analysis, an approximate 1.4-fold differ-
ence in intensity measurements of the same oligonucleotide probe across replicate arrays can be
regarded as the upper limit of acceptable variability. By substituting the measured CV from the
empirical data (”10K rep-test” dataset), the frequency of replicate oligos that differ by � 1.4 fold
in Affymetrix 10K SNP arrays is estimated as the following:

p(1.4) = 2Φ
�

− loge (1.4)�
2loge [(7/100)2)+1

�
= 6.66e−04

where an upper estimate of CV (≈ 7%) was used to assess p(k = 1.4). Alternatively, this value
may also be approximated by inspection of the nomogram presented in Figure 2.10 which plots the
probabilities by using appropriate k (1.4) and CV (7%) values. This nomogram helps to understand
the link between coefficient of variation (CV) and the probability of observing k fold disparate
results in a replicate experiment.
This analysis reveals that based on estimated variability in 10K Affymetrix SNP arrays in the ”10K
rep-test” experiment, the p-value (P) of observing � 1.4 fold1 difference in the raw oligo-level in-
tensities between replicate oligos is P = 6.66e-04. This means that based on estimated CV values
in ”10K rep-test” dataset, by random chance, about 308 oligos from 462,200 oligos on 10K SNP ar-
rays are expected to be significantly different (� 1.4-fold) across replicate experiments. In general
according to Figure 2.10, any variability below 10% would essentially have a p(k) probability of
zero for observing ≥ 1.4 fold difference in SNP-level LR outputs. However, the visible difference
between k = 1.1 and k = 1.4 in this figure emphasizes on the fact that, just by random chance, there
is a much larger probability of observing disparate results (in replicate oligos) between 1.1-1.4 fold
apart (corresponding to ∼ 0.25− 0.48 difference in log2-intensity values). A careful inspection
of Figure 2.10 shows that there is ∼50% probability that log2-ratio readouts of the same oligo in
replicate arrays differ by 0.26 (in log2-scale), even in a highly reproducible experiment with CV as
low as 10%.

2.3.5.2 Finding a Link Between Oligo-level CV to the Changes in SNP-level LR Values

Understanding the extent to which these highly variable oligos affect the SNP-level RL readouts
requires an analytical approach to identify how many noisy oligos in each 10K SNP probe set can

1equivalent to a difference of at least 0.5 between log2-intensity measurements of a replicate oligo
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make a significant change in the LR value of a corresponding SNP probe (each 10K SNP readout
is based on the information from 20 PM oligos). Here, I assumed that the SNP log2-ratio copy
number (LR) values are calculated by averaging the log2-ratio intensity measurements from the
PM oligos that belong to the SNP probe set. So the LR value of SNP ”A” consisting of n perfect-
match oligos, A = {A1,A2, . . . ,An}, is estimated by:

S(A,R) =
1
n

�
log2

A1

R1
+ log2

A2

R2
+ . . .+ log2

An

Rn

�
(2.3.8)

where n = 20 for Affymetrix 10K SNP array; and Ri denotes the intensity of the same PM oligonu-
cleotide probe (i-th probe) in the reference set. The measurement of the same SNP probe, that is
obtained from a replicate array, is represented by:

A� = {A�
1,A

�
2, . . . ,A

�
n}= {k1A1,k2A2, . . . ,knAn}, k > 1

where ki indicates the magnitude of intensity fold-change (of the i-th PM oligo). Similar to Equa-
tion (2.3.8), the average log2-ratio signal intensity of the replicate SNP (A�) is assessed by:

S(A�,R) =
1
n

�
log2

k1A1

R1
+ log2

k2A2

R2
+ . . .+ log2

knAn

Rn

�
(2.3.9)

To understand how ki’s can make a significant change in the estimated LR values, the following
analysis was performed. It was assumed that LR =−0.5 and LR =+0.5 are theoretical thresholds
of loss and gain of DNA copy number, respectively. Thus, for a given normal SNP with LR = 0,
the maximum acceptable random variability between replicate arrays is |LR| < 0.5. This means
that the SNP readouts in replicate experiments are inconsistent (or disparate) if:

S̄(A�,R) =
1
n
(log2

A�
1

R1
+ log2

A�
2

R2
+ . . .+ log2

A�
n

Rn
)� 0.5

= log2
k1A1
R1

+ log2
k2A2
R2

+ . . .+ log2
knAn
Rn

� 0.5n (2.3.10)
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By expanding the logarithm in Equation (2.3.10) and grouping the resultant terms, we have:

S̄(A�,R) =(log2 k1 + log2 k2 + . . .+ log2 kn)+(log2 A1 + log2 A2 + . . .+ log2 An)−

(log2 R1 + log2 R2 + . . .+ logn Rn)� 0.5n

=(log2 k1 + log2 k2 + . . .+ log2 kn)+(log2
A1

R1
+ log2

A2

R2
+ . . .+ log2

A2

R2
)� 0.5n

= log2

n

∏
i=1

ki + S̄(A,R)� 0.5n

Assuming that SNP A represents a normal region of the genome with LR = 0 (S̄(A,R) = 0), and by
substituting this in the previous inequality, we have:

S(A�,R) = log2

n

∏
i=1

ki +0 � 0.5n ⇒
n

∏
i=1

ki � 2(0.5n) (ki = 1 when A�
i = Ai) (2.3.11)

where parameter n denotes the total number of PM probes in the probe set. If the above inequal-
ity (2.3.11) holds true, it implies that the variation in raw oligonucleotide signal intensities (de-
noted by ki) are sufficient to increase the average SNP LR measurement by at least 0.5 units (in
log2-scale). Assuming that m represents the number of variable oligos (i.e., oligos that have at least
k fold-change across replicate arrays) in a SNP probe set (m < n), the left hand side of inequal-
ity (2.3.11) can be substituted by (k̄m)m. Therefore:

m

∏
i=1

k̄m � 2(0.5n) ⇒ (k̄m)
m � 2(0.5n) (2.3.12)

where m denotes the number of variable oligos in the SNP probe set that differ, on average ≥ k̄m

fold across replicate arrays; and n is the total number of oligos per SNP probe set. The extent to
which a random k-fold change in m oligos (of the same SNP probe set) would affect the overall
SNP LR value, can be measured by subtracting Equation (2.3.9) from Equation (2.3.8):

S(A�,R)−S(A,R) =
1
n

log2

n

∏
i=1

ki = ∆S (2.3.13)

where ki is the variability of each PM oligonucleotide probe that belong to the same SNP probe
set. Assuming that a given SNP probe set has only m variable (or disparate) oligos (m < n), with
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an average k̄m fold-change, the above equation becomes:

∆S =
1
n
(log2

m

∏
i=1

k̄m) =
1
n

log2(k̄m)
m =

m
n

log2 k̄m (2.3.14)

Equations (2.3.13) and (2.3.14) represent the magnitude of the difference between LR measure-
ments of the same SNP in two replicate experiments (∆S), depending on the oligo-level variability
of the individual PM oligos in the SNP probe set. Estimating ∆S for hypothetically varied values
of m and k̄m can help to understand variations of SNP LR readouts based on the variability of their
PM oligos.

2.3.5.3 Evaluating the Impact of Oligo-level Variability on the Extent and Frequency of
Noisy SNPs in Replicate Experiments

The work presented in this section aimed to (1) assess what proportion of PM oligonucleotide
probes on an Affymetrix SNP array are expected to vary by a minimum of k fold between replicate
experiments, and (2) what proportion of Affymetrix SNP probe sets are affected by such oligo-
level variations. Table 2.1 presents the results of evaluating oligos that vary by ≥ k fold (aim
#1). The first column, %CV, indicates an arbitrary range of CV values. Columns 2-6 denoted
by p(k),k ∈ {1.2,1.41,1.5,2,3} represent the probability (p) that an oligonucleotide probe would
differ by at least k fold across replicate experiments. The k and CV values used in this table are
selected from the curves in Figure 2.10. As described in Section 2.3.5.1, k = 1.4 corresponds to
the critical value of k in SNP data analysis estimated by Equation (2.3.7). The last 5 columns in
this table (Table 2.1) denote the predicted frequency of oligos in 10K SNP arrays that differ ≥ k
across replicate experiments. It is observed that as the CV increases, the probability of observing
variable oligos also increases. Furthermore, in spite of relatively small p(k) values, we observe a
considerable number of oligos that are highly variable among replicate experiments. For example,
for an experimental platform with a CV = 20%, the probability of an oligonucleotide exhibiting
≥ 1.4 fold difference across replicate experiments is only 0.148 (p(1.5)). However, under these
circumstances the data from a 10K SNP replicate array is expected to contain 68,266 variable
oligos. The impact of oligo-level variability on SNP-level variability is also shown in Table 2.2.

It is observed that for CV between 10-20%, there are between 445 to 3,065 SNPs that have at
least two oligos that vary ≥ 1.2 fold across replicate experiments. As evident from this table, the
predicted frequency of observing ∆S ≈ 0.5 in the log2-ratio intensity measurement from the same
SNP probe set across replicate arrays is dependent on the number of variable PM oligos across
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replicate measurements (m) and the extent of this difference (k̄m). In addition to these parameters,
the frequency of such potentially unreliable SNPs is directly affected by the coefficient of variation
(CV) of the experimental platform.

In summary, in this section I applied a mathematical model on the empirical data from a SNP
array replicate experiment to predict the frequency of SNP readouts with significant non-specific
variability between replicate arrays (more than 1.42-fold difference in raw signal intensities, which
corresponds to more than 0.5 intensity difference in log2-scale). The results of Tables 2.1 and 2.2
indicate that based on the estimated CV in ”10K rep-test” experiment (CV� 7%), it is very unlikely
that the experimental variation in this dataset would result in any significant change (∆S) in the SNP
LR values. However, it is important to note that the assessed CV is particularly low and the same
data quality may not be reproduced in a typical laboratory conditions. Also, it must be pointed out
that even based on the same CV value, there are still many oligos that may have LR changes less
than 0.5 (see the intersection of CV = 7% with k = 1.1 (shown in black) and k = 1.2 (shown in
blue) curves in Figure 2.10).

2.4 Conclusions
In this Chapter, I used a replicate data set obtained from 8 normal individuals to analyse probe-
specific contributions to technical variability in Affymetrix GeneChip R� 10K SNP arrays. To quan-
tify technical variability, a general step-by-step procedure was presented based on using the coef-
ficient of variation or CV (Section 2.3.2). By applying this procedure on a 10K replicate dataset
consisting of 69 samples from 8 individuals (Section 2.3.1), the average chip and labeling CV
values were estimated to be 5.15% and 6.36%, respectively (Figure 2.9). These estimates indi-
cated the measure of technical variability between intensity readouts of the same oligonucleotide
probes across replicate SNP arrays, but they did not provide any information regarding the extent
of variation of the SNP log2-ratios (∆S) across replicate arrays (p. 43). This link is critical to un-
derstanding the impact of estimated CVs to the array performance in the context of copy number
analysis. To address this issue, I used the mathematical model proposed by Reed et al. [279] to find
the relationship between the CV and the probability of observing k-fold random difference (p(k))
in intensity measurements of replicate oligos (Section 2.3.5.1). Next, I further expanded this model
and developed a method to quantify the contribution of probe set-specific technical variability on
the estimated SNP log2-ratio values (∆S; Section 2.3.5.2). Then, I used the estimated CV values
(shown in Figure 2.9) from ”10K rep-test” dataset in the aforementioned model and found that
under these conditions there was only a slight chance (p = 6.66e-04) that two replicate oligos in
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Affymetrix 10K SNP arrays would differ significantly (k ≥ 1.4; p. 45).
The development of the relationship between the CV and p(k) enhances the usefulness of CV in

biological interpretation of SNP array findings, which has never been previously investigated in the
context of microarrays. This model allows generation of a dimensionless index of variability which
is universally applicable to assess the performance of SNP array platforms in different laboratory
conditions. Furthermore, the model can be easily adapted for other applications, for example, to
find the probability of any specified k-fold differences in expression data that occur by random
chance between replicate arrays.

By expanding Reed’s model and applying it to SNP array data (Section 2.3.5), I was able to
accomplish two important applications of the mathematical formulation that linked CV and p(k):
(1) to assess whether or not the difference in raw intensity readouts of the same oligonucleotide
probes between replicate arrays is due to random variation (by analysing the oligo-level variabil-
ity; Table 2.1 and Figure 2.10); and (2) to assess whether the variation in a set of individual PM
oligos can make a significant bias (∆S) in the resultant SNP log2-ratio measurement (Table 2.2).
In clinical applications, this model can also provide a quality control tool through which it can
be determined whether the current estimated variability exceeds what has been established from
past experiments. It is important to note that although in this analysis I used the critical value
of k as minimum 1.4-fold difference in raw intensities (corresponding to ∼0.5 difference in log2-
ratio intensity readouts), the choice of k can also be easily adjusted to optimize the sensitivity and
specificity of a specific analysis. For example, one could use this model to predict the frequency
of observing a difference of 0.25 units across replicate experiments by setting k = 1.19 in Equa-
tion (2.2.2) and Figure 2.10. One important observation of the nomogram in Figure 2.10 is that
any variability below 10% would essentially have p(k) probability of zero for observing k ≥ 1.4
fold difference in SNP-level LR outputs. However, the visible difference between k = 1.1 and 1.2
curves with k = 1.4 curve in Figure 2.10 implies that, just by random chance, there is a much
larger probability of observing replicate oligos that are less than 1.4 fold different (k = 1.1 and
k = 1.2 correspond to log2-ratio intensity changes of ∼0.25 and ∼0.48, respectively). A careful in-
spection of Figure 2.10 also indicates that there is ∼50% probability that two oligos would have at
least 0.26 difference in their log2-ratio intensity readouts between replicate arrays, even in a highly
reproducible experiment with a CV as low as 10%.

In this Chapter, I have outlined an approach to generate a reliable estimate of variability for
Affymetrix SNP arrays and then developed a model to use the measured CVs to determine the
quality of SNP data. The provided Equations, the nomogram visualization in Figure 2.10 and
the critical-value tables provided in this Chapter (Tables 2.1-2.2) are simple tools that extend the
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understanding of the CV and increase its usefulness in interpretation of technical variability of
SNP arrays. The main conclusion of the work presented in this Chapter is that although Affymetrix
10K SNP arrays are shown to be highly reproducible, there is still a significant likelihood of the
occurrence of noisy oligos just by random chance (Section 2.3.5.3). Such noisy oligos may affect
SNP-level LR results and ultimately affect the quality of the downstream CNV findings. Based on
the results of this Chapter, I concluded that in order to improve the quality of CNV results, it is
important to develop a CNV detection method that is based on analysing probe-level variability of
SNP array data.
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2.5 Figures and Tables

Variability between
individuals

(copy number
 polymorphism)

Variability between 
sample preparations

(labeling variability)

Variability between 
arrays and hybridization

(chip variability)

Variability between 
features on the array

(SNP variability and oligo-
variability)

Figure 2.1: Sources of variability in SNP microarray experiments for identification of copy number
variations (CNVs). At the highest level of variability, there is a biological variation in the DNA copy
number values that exists among different individuals in a population, also known as copy number poly-
morphism (CNP). At the experimental level, there is a variability in preparation and labeling of the same
sample (labeling variability), as well as a variability in the hybridization of a sample to different arrays (chip
variability). The last source of variability is a variability between different features on the same array, which
includes both the variability between probes that target different SNPs loci, as well as the variability between
individual oligonucleotide probes within the same SNP probe set.
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Technical 
Variability

Variability between Cy5 
and Cy3 channels 

Does not exist in one-color arrays 
(e.g., Affymetrix SNP arrays)

Variability between hybridization 
to different arrays, referred to as 
chip variability

Variability between differently labelled samples , referred to as 
labeling variability

Batch Effects Refers exclusively to systematic technical differences when 
samples are processed and measured in different batches

Variability in manufacturing the arrays

Variability among different hybridization 
reactions

Figure 2.2: Common sources of microarray technical variability: There are several components of
technical variability in microarray experiments. The first component, ”variability between Cy5 and Cy3
colors”, is specific to two-color arrays, such as CGH-based platforms, where two samples (e.g., test and
reference) are labeled with different fluorophores (usually Cy3 and Cy5 dyes) and co-hybridized on a single
microarray. The other denoted factors are common among all arrays including Affymetrix SNP arrays,
Illumina SNP arrays and aCGH technology. Labeling variability refers to the variation between intensity
readouts of the sample that has been prepared and labelled by separate labeling reactions. The batch effects
are often observed in large-scale studies where due to practical considerations the number of samples that
can be prepared and hybridized at one time is limited. Under such circumstances, samples are often divided
into groups or batches, and the samples in each group are analysed together in separate experiments that may
be conducted several days or months apart. This procedure introduces systematic batch effects between these
separate groups that makes it difficult, if not impossible, to compare between batches. The next source of
technical variability is the variation between hybridization to different arrays, referred to as chip variability.
As indicated in the above diagram, chip variability is dependent on two other components (1) variability
between arrays in relation to the manufacturing process, also known as manufacturing variability; and (2)
variability between different hybridization reactions.
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(a) Histogram of Raw PM Intensities, Sample 5

(b) Histogram of Log-transformed PM Intensities, Sample 5

Figure 2.3: Impact of log-transformation on the distribution of raw signal intensities from Affymetrix
SNP arrays. Panel (a) denotes the histogram of raw intensity readouts from all perfect match (PM) oligos
on a 10K SNP array (total of 231,200 PM oligos), for a given 10K sample (S5 in replicate experiment,
previously discussed in Figure 2.4). It is clear from this graph that the raw intensity data is not normally
distributed. Panel (b) demonstrates the histogram of PM signal intensities of the same sample (S5) after log-
transformation (natural logarithm). The red curve illustrates the estimated normal fit to the log-data. The
bell-shape of the histogram presented in (b) indicates that the raw (PM) intensity readouts tend to follow a
normal distribution after log-transformation.
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Figure 2.4: Schematic representation of Affymetrix 10K replicate study. The replicate exper-
iment, which is referred to as ”10K rep-test”, was designed and performed by our collaborators at
Affymetrix R�according to the process outlined below. The study included 8 normal individuals, referred by
index ’S’ as depicted in Step A. None of these individuals had any previously known genetic abnormality.
Total genomic DNA obtained from each subject (such as S5, shown above) was divided into 3 batches∗.
Each batch was then prepared and labelled independently, as illustrated in Step B. Following labeling pro-
cess, each batch was hybridized onto 3 separate Affymetrix GeneChip R�10K SNP arrays, as demonstrated
in Step C. Thus, the experiment resulted in 9 replicate arrays for each individual ’S’ (except for S1 that had
6 replicate arrays*). The ”10K rep-test” experiment, therefore, generates a dataset consisting of the data
from 69 replicate 10K arrays from 8 individual normal samples.

*The only exception is S1, where only 2 (instead of 3) batches were available for the analysis.
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(a): Evaluating Chip Variability
(for the 1st batch of the 5th subject) 
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(b): Evaluating Labeling Variability
(for S=5 ) 

(

Labeling Variability :  
variability between different batches of the same sample 

c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9

Figure 2.5: Schematic representation of assessing technical variability in 10K SNP array replicate
study. Panel (a) demonstrates how chip-to-chip variability is estimated in ”10K rep-test” experiments.
The ”chip variability” is evaluated based on the difference of oligo-level intensity measurements of the
same labelled sample hybridized to 3 replicate arrays. In the depicted example, chip variability of batch
1 of sample 5 (S5, b = 1), is estimated by comparing the microarray signal intensity outputs from chips
c = 1, c = 2 and c = 3. Panel (b) depicts how ”labeling variability” is measured in ”10K rep-test” datasets.
This variability, defined as the variation between separate labeling reactions of the same sample, is evaluated
by comparing the oligo-level signal intensity outputs from arrays that have been hybridized by different
batches of the same sample. In the depicted example (in panel (b)) the labeling variability of sample 5 (S5)
is evaluated by comparing the variation in hybridization intensity output from 9 arrays, denoted by c = 1 to
c = 9.
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(a) Probe-level Distributions Before Normalization
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Boxplot of Probe−Level Intensities After Global Normalization

(b) Probe-level Distributions After Normalization

Figure 2.6: Global Normalization of log-transformed intensity readouts from 3 replicate arrays. The
boxplots are generated to compare the mean and spread of oligo-specific intensity readouts from 3 replicate
chips of a sample from ”10K rep-test” experiment (S8, b = 3). On each box, the central red line is the
50th percentile (median), the edges of the box are the 25th and the 75th percentiles and outliers are depicted
by red ’+’ markers (see Appendix E for more information about boxplot visualization). Panel (a) shows
the boxplots of log-transformed data before global normalization; and panel (b) denotes the boxplots of the
same data after global normalization. It is evident from these plots that the overall mean intensity in these
arrays have been brought to the same level as the result of normalization.
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Figure 2.7: MA-plots of chip variability. Each dot represents the relationship between deviation in the
log-intensity readouts of a particular oligo across 3 replicate arrays (same labelled sample hybridized to 3
separate 10K arrays, evaluated for 462,400 oligos on 10K array). The x-axis denotes the average intensity
between replicate oligos (’A’), and the y-axis represents the deviation of intensity readouts of the same oligo
between replicate arrays (’M’). Panels (A)-(C) show the MA-plots for 3 different batches of sample S2,
and panels (D)-(F) indicate the MA-plots of 3 different batches of sample S5, described previously in Fig-
ure 2.5.a. These plots indicate that all depicted MA-plots are symmetrical around the x-axis, suggesting that
the overall array deviation is not intensity-specific and, thus, there is no need to apply a more sophisticated
normalization technique prior to quantifying labeling and chip variabilities.
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Figure 2.8: Histograms of deviation (error) in replicate arrays. The above plots show the histogram
of oligo-specific deviation of signal intensities of 4 samples in ”10K rep-test” (S1, S3, S4 and S5). The
associated histogram of oligo-level deviation is shown in blue and the predicted normal fit to each distribution
is superimposed on the histogram plot by red curves. These bell-shaped distributions indicate that log-
transformed intensity deviation (error) follows a normal distribution in these samples. Similar results have
been obtained for the rest of samples in ”10K rep-test” dataset (4 other samples; not shown here). This
finding proves that the errors from ”10K rep-test” experiment are normally distributed, an assumption which
is the prerequisite for several statistical methods that were applied on this dataset throughout this chapter
(such as Reed’s mathematical model of relating the CV to the probability of random different readouts in
replicate experiments; as described in Section 2.2.2).
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(a) Chip Variability in SNP 10K Replicate Dataset

       
















































(b) Labeling Variability in SNP 10K Replicate Dataset
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Figure 2.9: Estimated chip and labeling variability of the Affymetrix 10K replicate experiment. Panel
(a) denotes the results of 10K chip variability in 8 DNA samples of the ”10K rep-test” experiment. The
x-axis (’S’) represents the DNA sample index, and the y-axis (%CV) denotes the measured coefficient of
variation for each specified batch of a given DNA sample. The estimated chip variability for 3 DNA batches
of each sample is represented red, blue and green bars, respectively. The horizontal dashed line depicts the
mean chip variability index across all samples and all batches in ”10K rep-test” dataset (CVc = 5.16%).
Panel (b) denotes labeling variability, evaluated by assessing the variation in hybridization intensity of the
same sample that was prepared through 3 separate labeling reactions (9 replicate arrays per individual; see
Figure 2.5.b). The red dashed line represents the mean labeling variability across all samples (CVl = 6.36%).
1*: denotes the only exception, S1, where only 2 (instead of 3) batches were available for this analysis.
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Figure 2.10: Relationship between array variability and the probability of estimating oligos with k-
fold difference in their intensity readout. This nomogram depicts the probability that two measurements
from the same oligo will differ by a factor of k or more across replicate Affymetrix SNP arrays. The
probability curves in this figure were generated by using a hypothetically varied range of CV and k values in
Eq. (2.2.2). This graph allows monitoring the expected quality and consistency of the data generated from
an array experiment with known variability (%CV).
The red solid curve (labelled as k = 1.4∗) presents the probability of observing 0.5 units difference between
log2-intensity readouts of the same oligo across replicate arrays. This magnitude of difference between
log2-signal intensities (0.5), which is equivalent to 40% difference in raw signal intensities, is assumed as
the maximum acceptable oligo-level variability between replicate measurements in this chapter. By finding
the intersection of k = 1.4 curve with the estimated %CV of ”10K rep-test” data set (max CV = 6.36%),
that was presented in the previous figure (Fig. 2.9), the above nomogram indicates that there is a very low
chance of observing oligos that differ � 1.4 fold between the 10K replicate arrays. Thus, we can accurately
conclude that the data from ”10K rep-test” experiments were highly reproducible.
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%CV p(k) : Probability that oligos differ � k-fold Predicted No. k-fold different oligos in 10K†

p(1.2) p(1.41)∗ p(1.5) p(2) p(3) F‡[1.2] F [1.41] F [1.5] F [2] F [3]

5 0.010 9.38E-07 9.60E-09 1.03E-22 1.68E-54 4566 0.43 0.004 4.77E-17 7.78E-49
6.36 0.042 1.15E-04 6.41E-06 1.22E-14 2.24E-34 19619 53 3 5.63E-09 1.03E-28
7 0.065 4.56E-04 4.12E-05 2.38E-12 1.11E-28 30129 211 19 1.10E-06 5.11E-23
10 0.196 1.40E-02 4.05E-03 8.95E-07 6.82E-15 90689 6481 1872 0.41 3.15E-09
12 0.281 0.040 0.016 4.15E-05 8.20E-11 129854 18680 7624 19 3.79E-05
15 0.387 0.100 0.055 0.001 1.91E-07 179073 46411 25235 470 0.09
20 0.515 0.216 0.148 0.013 8.76E-05 238062 99807 68266 6160 40
25 0.601 0.320 0.244 0.047 0.002 277578 147720 112892 21503 742
30 0.661 0.404 0.329 0.095 0.008 305303 186656 151944 43908 3762
40 0.738 0.525 0.457 0.203 0.044 341056 242523 211111 93962 20224
50 0.785 0.604 0.544 0.299 0.100 362789 279132 251386 138415 46252
60 0.816 0.659 0.605 0.377 0.161 377227 304376 279689 174136 74522
70 0.838 0.698 0.650 0.438 0.219 387431 322601 300345 202287 101053
80 0.855 0.728 0.684 0.486 0.269 394980 336263 315934 224581 124509
90 0.867 0.750 0.710 0.525 0.313 400764 346824 328039 242461 144764

†Affymetrix GeneChip R� 10K SNP array
∗1.41 is the critical value of k in 10K SNP arrays, as estimated by Equation (2.3.7).
‡’F’ denotes the frequency of observing m variable oligos with k̄m fold-differences in the same SNP probe set, across replicate 10K

SNP arrays .

Table 2.1: The relationship between CV and predicted replicate oligos that are ≥ k-fold different. This table
summarizes the probability of obtaining a specific value of fold change, p(k), for various assumed values of CV. This
uses the oligo-level variation information to predict the frequency of SNP probe sets in Affymetrix 10K SNP arrays
that are affected by such variable oligos. The m and k̄m denote the number of variable oligos in a SNP probe set
and the average fold-difference of variable oligos across replicate experiments, respectively. Columns 2-6 denoted by
p(k),k ∈ {1.2,1.41,1.5,2,3} represent the probability (p) that an oligonucleotide probe would differ by at least k fold
across replicate experiments (see Figure 2.10). The last 5 columns of this table denote the predicted frequency of oligos
in 10K SNP arrays that differ � k fold across replicate experiments.
In this table we observe that as the CV increases, the probability of observing variable oligos increases. Furthermore,
in spite of relatively small p(k) values, there can be a considerate number of oligos on the 10K SNP array that differ
� k fold among replicate experiments. For example, for an experimental platform with CV = 20%, the probability of an
oligonucleotide to have ≥ 1.4 fold difference across replicate experiments is only 0.148 (p(1.5)). However, under these
circumstances the data from a 10K SNP array are expected to contain 68,266 oligonucleotide intensity readouts that are
likely to differ by ≥ 1.5 fold across replicate experiments.
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PM Oligos in the SNP Predicted No. of SNPs with ∆S difference in
probe set that differ ≥ k-fold Affymetrix GeneChip R� 10K SNP array

m∗ k̄∗∗m ∆S† CV = 7% CV = 10% CV = 15% CV = 20% CV = 40%

2 1.2 0.03 49 445 1734 3065 6292
5 1.2 0.07 0.01 3 101 419 2528
10 1.2 0.13 1.60E-08 9.77E-04 0.88 15 553
15 1.2 0.20 1.88E-14 2.84E-07 0.01 0.55 121
18 1.2 0.24 5.22E-18 2.15E-09 4.47E-04 0.08 49

2 1.4 0.05 0.01 3 142 609 3330
5 1.4 0.12 1.52E-12 1.68E-05 0.19 7 515
10 1.4 0.24 2.00E-28 2.43E-14 3.20E-06 4.71E-03 23
15 1.4 0.36 2.62E-44 3.52E-23 5.32E-11 3.00E-06 1
18 1.4 0.44 7.76E-54 1.75E-28 7.21E-14 3.64E-08 0.16

2 1.5 0.06 1.96E-05 0.19 34 252 2411
5 1.5 0.15 1.37E-18 1.26E-08 0.01 0.81 230
10 1.5 0.29 1.62E-40 1.37E-20 2.72E-09 5.71E-05 5
15 1.5 0.44 1.91E-62 1.50E-32 1.32E-15 4.01E-09 0.09
18 1.5 0.53 1.33E-75 9.94E-40 2.15E-19 1.29E-11 0.01

2 2 0.10 6.52E-20 9.25E-09 0.01 2 478
5 2 0.25 8.75E-55 6.62E-27 1.26E-11 4.86E-06 4
10 2 0.50 6.63E-113 3.79E-57 1.37E-26 2.04E-15 1.39E-03
15 2 0.75 5.02E-171 2.17E-87 1.49E-41 8.60E-25 4.84E-07
18 2 0.90 6.74E-206 1.56E-105 1.56E-50 2.04E-30 4.06E-09

∗m: number of variable (PM) oligos that belong to the same SNP probe set (m ≤ n; n = 20).
∗∗k̄m: average fold-change of log2-ratio intensity measurements of m variable oligos within the same SNP probe set (p. 47).
†∆S: magnitude of the difference in the LR value of a SNP due to oligo-level variability (estimated according to Eq. (2.3.14)).

Table 2.2: The impact of oligo-level variability across replicate measurements on the expected SNP-level vari-
ability. This table summarizes the effect of variable PM oligos on the estimated variability of SNP log2-ratio readouts
(∆S) and the frequency of such SNPs. The m (1st column) denotes the number of PM oligos in the SNP probe set that are
different between replicate arrays (m ≤ 20, in Affymetrix 10K SNP arrays). The k̄m (2nd column) denotes the average
fold-change, k, of the corresponding m variable oligos (explained in page 47). The magnitude of the resultant difference
in the SNP LR values between replicate arrays is evaluated by Equation (2.3.14) and is shown in the 3rd column of the
above table (∆S). The last 5 columns indicate the predicted frequency of SNPs on Affymetrix 10K SNP array that are
expected to differ � k fold between replicate arrays. For example, for k = 1.4, the expected frequency of SNP probe
sets that have 2 PM oligos that are at least 1.2-fold different across replicate experiments is 49, when the SNP platform
CV is 7% (the approximate value of CV that was estimated for the ”10K rep-test” dataset). Under such circumstances,
the SNP probe set mean signal could vary between replicate experiments by ∆S = 0.03 (in log2-scale). We also observe
that for CV between 10% and 20%, 445 to 3065 SNP probe sets are expected to contain 2 oligos that vary ≥ 1.2 fold
across replicate experiments, and therefore the SNP probe set readouts could differ by ∆S = 0.03. However, this number
increases to 6,292 if the CV of the experimental platform is 40%.
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Chapter 3

Algorithm for Oligonucleotide
Probe-level Analysis of Signal Intensities
(OPAS)

3.1 Introduction
In recent years, high-density SNP genotyping arrays have become increasingly popular for copy
number detection application, since these arrays can serve a dual role for both SNP genotyping
as well as copy number analysis [135, 136, 149, 162, 209]. The most prominent SNP arrays are
from two commercial vendors; Affymetrix and Illumina (explained previously in Section 1.2.2.3).
As described in Chapter 1, the Affymetrix SNP array construction involves synthesizing 25-mer
oligonucleotide probes (which I also refer to as ”oligos” in this thesis) corresponding to a perfect
match and mismatch of the two SNP alleles. This probe quartet, commonly known as a SNP ”probe
set”, is the basic unit for downstream computational analysis (see Figure 1.2 for more details). The
hybridization reaction of target DNA to the above oligos generates signal intensity measurements,
which can then be converted by computational tools to infer SNP genotypes as well as regions of
copy number variation [161, 172].

Successful application of this technology for copy number analysis has discovered a number
of interesting CNVs with relationships to complex disease. For example, rare CNVs have been
linked to schizophrenia [57] in a study where micro-deletions and duplications were shown to be
responsible for disrupting genes involved in neurodevelopment. The UGT2B17 gene on 4q13.2
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was also linked to osteoporosis in a case-control study of 350 affected individuals in a Chinese
population [331]. Despite these advances, a major disadvantage of oligonucleotide arrays is their
poor signal-to-noise that can affect the quality of the predicted CNVs by increasing the rates of
false positive and false negative CNV calls [141, 168, 332]. Several algorithms have been de-
veloped to improve the signal-to-noise ratios in these arrays by taking into account the length
and GC content of the probes, and various algorithms for copy number detection have been de-
veloped to aid CNV detection using approaches often based on either Hidden Markov Models
(such as QuantiSNP [185], PenCNV [186]), Segmentation (such as CBS Segmentation [189]) or
t-tests [210, 212, 213]. Nonetheless, often algorithms depend on multiple sequential SNPs with
significant intensity change to call a putative CNV. As a consequence, several studies (such as
Itsara et al. [141]) have shown that CNV calling algorithms often emphasize specificity over sensi-
tivity and as a result the CNV detection power is dependent on the number of SNP probes markers
in a region of interest. Therefore, while large CNVs (> 4 Mb) are routinely identified by most of
the available algorithms, when it comes to small CNVs (< 100−150 kb) or CNVs in regions with
less probe density (< 8−10 SNP probes), the results from different algorithms are often no longer
consistent [141, 215].

As discussed earlier, each Affymetrix SNP is represented by a collection of oligos that inter-
rogate a SNP locus and its surrounding sequence in the genome. Such design strategy is inherited
from Affymetrix expression arrays, where the relative expression of each gene was estimated by
a set of probes in a probe set. In expression arrays, it was shown that although ideally all probes
within the same probe set should represent the expression of the same gene, there was often a
remarkable variation between their intensity readouts [207, 276].

In this Chapter, I first provide evidence that (1) there is a significant variation both between
SNP probe sets in regions with known copy number values and among the oligonucleotide probes
in the same SNP probe set; and (2) such variation exists regardless of the array density (e.g., 100K
or 500K) or the size of the normal reference set that is used to evaluate intensity ratios, and thus I
hypothesize that (3) the accuracy of predicted CNVs can be improved by distinguishing between
true signal and noisy oligos and incorporating the true information to the downstream CNV call-
ing method. Therefore, the underlying hypothesis of the work presented in this Chapter is that by
improving the quality of SNP readouts, which are the input data to the downstream CNV calling
algorithm, the impact of noise in Affymetrix SNP arrays can also be improved and, consequently,
the CNV detection process would have higher sensitivity and specificity. Based on this hypothesis,
I developed an algorithm which utilizes nonparametric statistical model-based methods for pre-
processing SNP array data by analysing the presence of nonspecific binding and oligonucleotide
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probe-specific effects on the estimated noise in the array readout. I will show in this Chapter that the
pre-processing was able to dramatically improve the oligonucleotide probe level variation (noise)
within SNP probe sets by improving the SD values from 1.22 (before pre-processing) to 0.41 (after
pre-processing). In addition, I will provide further evidence indicating that despite improvements
in the SD values, the magnitudes of copy number aberrations are significantly improved after the
pre-processing phase (Section 3.3.3.5). This provides evidence that the proposed algorithm has
been able to address one of the major issues in analysing SNP array data. As described in Chapter
1, other methods often improve the SD by smoothing the data or incorporating large windows of
neighboring SNPs, which reduces the magnitude of both noisy oligos and true copy number aber-
rations. Thus, apparent noise reduction in such algorithms comes at the cost of reduced detection
sensitivity, particularly CNVs in DNA regions with low density of SNP markers [220, 221]. In
contrast to such methods, the proposed non-parametric approach I implemented distinguishes be-
tween noisy and informative oligonucleotide probes prior to excluding the noisy oligos from the
array readouts.

Contribution
The samples used in the work presented in this Chapter were provided by Dr. Jan Friedman and the
”wet-lab” work (sample preparation and Affymetrix experiments) was performed at the Genome
Sciences Centre. Throughout this Chapter, I also use validated CNV results of mental retardation
(MR) project that have already been published [29, 30, 215] to test the performance of OPAS in
improving the noise and detecting the real CNVs . The reported MR CNVs in the Friedman et
al. study [29] were based on 100K SNP array data [29]. The CNVs were first selected by using
CNAG [180] and dChipSNP [209] software packages with additional t-test statistics, as explained
in [29] (this analysis was performed by a separate group at the GSC). The candidate CNVs were
then examined by FISH analysis performed by Dr. Patrice Eydoux’s lab at the Children’s and
Women’s Hospital in Vancouver. The reported CNVs were a subset of all de novo events (i.e.,
events that were present in the affected child and not in either of the normal parents) that were
successfully validated by FISH analysis.

The second MR-related CNV study was based on Affymetrix 500K SNP arrays [30]. In the
latter study, chip-to-chip normalization, standardization to a reference set, genotype detection and
copy number estimation were all performed using Affymetrix Power Tools (version 1.6.0) software
suite (http://www.affymetrix.com). This analysis was performed by a separate group at the GSC.
Estimation of CNV boundary positions was done using Significance of Mean Difference (SMD)
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method, developed by Delaney et al. [259]. In SMD, the mean of SNP copy number estimates
(or log2-ratios) within a candidate CNV region was compared to the mean of those SNPs on the
rest of the chromosome. The probability of accepting the null hypothesis of Student’s t-test (i.e.,
that the means were from the same distribution) was then calculated and used to identify the most
significant putative CNV regions [30]. The CNVs reported in the Friedman et al. 500K array
publication [30] were selected based on SMD hits with at least 10 contiguous SNPs and with a
p-value less than 10e-8. Similar to the 100K study [29], all reported MR-related CNVs in 500K
publication [30] were validated de novo events. Throughout this Chapter all references to known
CNVs in MR study refer to the results from the aforementioned studies [29, 30].

In this Chapter, I present an algorithm for CNV detection based on probe-level data analy-
sis using Affymetrix GeneChip Mapping 10K, 100K and 500K arrays. This algorithm, called
Oligonucleotide Probe level Analysis of Signal intensities (OPAS), makes no assumptions about
the performance of individual oligos within a SNP probe set; instead, OPAS uses fuzzy-logic the-
ory to analyse the relationship between individual perfect match (PM) oligos in a SNP probe set
to determine how many possible groups of such oligos exist in each probe set. The decision about
which group(s) of oligos are informative is made through non-parametric statistical tests and a ma-
chine learning classifier. The validated CNVs in the aforementioned publications in MR [29, 30]
are used to analyse the oligo-level variabilities in known CNV regions and also to examine the
performance of OPAS in detecting real copy number aberrations. This approach for identifying
individual noisy oligos in each SNP probe set is novel and has not yet been reported in other copy
number detection algorithms [168, 180, 184, 185, 188, 333, 334].

3.2 Methods

3.2.1 Algorithm Design

The OPAS design is divided into two main levels, as illustrated in Figure 3.1. The first module,
”SNP pre-processing”, aims to find the most informative subset of PM oligos in each SNP probe set
and to generate improved SNP log-ratio readouts; the improvements are detailed in Sections 3.3.6-
3.3.7. The next phase, ”SNP post-processing”, applies a normalization method to correct for PCR-
induced biases and to partition each chromosome into regions where copy number changes between
neighbouring segments.

The main underlying hypothesis of OPAS algorithm is that the noise in Affymetrix SNP arrays,
in addition to being SNP dependent, also depends on the oligonucleotide probes within the SNP
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probe sets. Therefore, the data reliability of individual oligos can directly impact the quality of the
estimated SNP log2-ratio (LR) values and consequently the accuracy of the downstream CNV calls.
Detailed explanation of different parts of this algorithm are provided in the following sections.

3.2.2 SNP Pre-processing Phase

As previously described in Chapter 1, Affymetrix genotyping arrays interrogate each SNP genotype
with a set of 25-mer oligonucleotide probes (or oligos), known as a SNP probe set. The oligos in
a probe set are designed to query both DNA strands at multiple offsets with respect to the SNP
position (Figure 1.2). The generated intensity data from these arrays can also be compared to
a reference set to determine the relative abundance of DNA at the specified SNP sites for CNV
analysis.

3.2.2.1 Quantile Normalization

In the first step of pre-processing, a quantile normalization [205, 335] technique is applied on the
log-transformed fluorescent intensity data from test and reference SNP arrays (.CEL files) to enable
differentiation between real variations in DNA copy number and variations due to experimental
differences between multiple arrays. The quantile normalization method was originally designed to
normalize intensities in Affymetrix high-density oligonucleotide expression arrays [205, 335, 336].
However, the same general method can be adapted to normalize the data from SNP arrays. This
normalization method is based on the assumption that the data from all samples (being compared)
follow a common underlying distribution [336]. A possible theoretical problem with this approach
is the risk of removing some of the signal in the tails of the distribution; however, several studies
have shown that empirical evidence does not indicate that quantile normalization leads to such
errors in practise [205, 302]1. The OPAS default normalization approach is a modified version that
adjusts the data in extreme tail values to allow for greater differentiation [336].

3.2.2.2 Clustering Individual Oligonucleotide Probes in a SNP Probe Set

The goal of OPAS pre-processing phase is to improve the quality of the estimated SNP signal by
finding a subset of oligonucleotide probes with the most informative log2-ratio intensity in each
SNP probe set. The OPAS strategy to find such informative subset of oligos is to first cluster

1Appendix F provides a comparative study of several normalization techniques using 500K array data from cancer
samples. The results of this analysis also indicates that background adjusted quantile normalization does not suppress
the magnitude of real CNVs, empirically.
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PM oligos in each SNP probe set into groups with similar LR values. One of the most popular
methods for data clustering is the k-means algorithm [337, 338], a successful method that has been
widely used in several applications, such as gene expression profiling [339–342] and expressed
sequence tag (EST) analysis [343–345]. Despite the popularity of k-means algorithm for data
clustering, one of the limitations of this method is that it requires the number of clusters (k) and
the approximate centroid values (µk) as input parameters. If no prior information is available for
cluster centers, random initialization is often employed. However, k-means is particularly sensitive
to these initialization values. Another drawback of random initialization is that clustering the same
SNP probe set multiple times would not necessarily generates the same clusters.

These limitations imply that in order to apply k-means for clustering oligos, first the appropri-
ate initialization values must be determined in a non-random manner. To accomplish this task, I
designed a two-stage clustering algorithm that first predicts the optimal clustering parameters (k
and µk) using a non-parametric approach based on fuzzy logic theory (subtractive cluster analy-
sis) [346] and then uses these values to initialize an optimization-based k-means clustering. The
details of this clustering approach is described in the following two sections.

3.2.2.2.1 Cluster Prediction: Fuzzy Subtractive Clustering

J In step one of clustering, a fuzzy-logic subtractive algorithm [346–348] was applied on PM
oligonucleotide probe level data in each Affymetrix SNP probe set. Subtractive method is a fast,
one-pass algorithm for estimating the optimal number of clusters (k) and cluster centers (µk) in
a set of data [346–349]. Assuming that P = {pi | i = 1, . . . ,n} denotes a SNP probe set with ’n’
number of PM oligos, the likelihood that the i-th PM oligo (pi) from P is a cluster center is defined
by [350]:

Di =
n

∑
j=1

exp
�
−

�Pi − p j�2

(ra/2)2

�
, i = 1,2, . . . ,n , i �= j (3.2.1)

Where radius ra > 0 is the cluster radius (the best ra default values are usually between 0.2 and
0.5). In the following step, the PM oligo that is associated with the largest D likelihood value is
chosen as the first cluster center. Subsequently, the density measure of the rest of the PM oligos in
this probe set (P) are revised by:

Di = Di −Dc1exp
�
− �Pi − pc1�2

(rb/2)2

�
(3.2.2)

Where, c1 is the first cluster center and rb is usually set at 1.5×ra to avoid obtaining closely spaced
cluster centers. The subtractive clustering algorithm iterates between Equations (3.2.1)-(3.2.2) until
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all of the PM oligos in a SNP probe set are within the radii of a cluster center [350]. Notably, fuzzy
clustering alone did not perform well at clustering border line oligos, and therefore, we combined
it with k-means optimization based clustering as described below.

3.2.2.2.2 Cluster Estimation: k-means Clustering

J In the second phase of clustering, for each SNP probe set the number of clusters (k) and cluster
centers (µk) that were obtained by fuzzy subtractive analysis are used to initialize a k-means clus-
tering algorithm (Sec. 3.2.2.2). The k-means partitions the PM oligos in each SNP probe set into
k mutually exclusive clusters, such that the oligos within each cluster are as close to each other as
possible and as far from oligos in the other clusters as possible. In the rest of this thesis, I refer to
a cluster of similar PM oligos as an ”oligo cluster”.

The k-means method iteratively updates cluster centers to minimize a cost function, until there
is no significant change in the cluster centers or when it exceeds the maximum number of iterations.
The k-means cost function f is defined by:

f = argmin
C

k

∑
i=1

∑
p j∈ci

�(p j −µi)�2, j = 1,2, . . . ,n (3.2.3)

Where ci represents the i-th oligo cluster in a SNP probe set with centroid µi; and k is the number of
predicted oligo clusters in the SNP probe set (1� k � n). When clustering finds more than one oligo
cluster in a SNP probe set, further analysis is required to distinguish between noisy and informative
oligo clusters. This process, referred to as SNP classification, is described in the following section
(Section 3.2.2.3).

3.2.2.3 SNP Classification

The goal of SNP classification is to identify which subset of oligos in a SNP probe set represents the
true SNP signal intensity. The OPAS default SNP classification approach consists of two modules.
First, the likelihood estimation phase tests the null-hypothesis that the log2-ratio intensity values
of each oligo cluster are significantly different from the normal baseline or not. In the next step,
prediction phase, the likelihood of these null-hypothesis tests are used as input data to a machine
learning classifier to find the most informative oligo clusters in each SNP probe. For each SNP, the
center of the informative oligo cluster is then used as the OPAS-estimated LR value.
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3.2.2.4 Likelihood Estimation: Kolmogorov-Smirnov (KS) test

In this phase, three sets of non-parametric Kolmogorov-Smirnov tests are separately applied to
each oligo cluster of the SNP probe sets; as listed in Table 3.1. Each KS-test in this table makes
a statement about how the population of the oligos in an oligo cluster (X) is related to a specified
baseline distribution (e.g., y0). The values of the alternative tests, shown in Table 3.1 (”two.sided”,
”less” and ”greater”), define the null hypothesis that the cumulative distribution function (CDF) of
oligo cluster data X is equal to, not less than or not greater than the cumulative distribution function
of the background, respectively. For instance, KS-test set #1 tests the alternative hypothesis that
the CDFs of the oligo cluster data and the background population are not equal (H1 : X �= y0).

For an oligo cluster X with k number of PM oligos and a standard deviation of σx, the back-
ground distribution for test set #1, y0, is defined as a distribution of k randomly generated numbers
with mean zero and the same standard deviation of the oligo cluster data being compared to (σx).
Nonetheless, when the same background distribution (y0) was used in KS-tests 2-3, often none of
these mutually exclusive null hypothesis tests were rejected. The implication of this observation
was that often we could not determine whether the oligo cluster data is likely smaller or larger than
the zero-mean baseline1. To circumvent this issue, different baseline distributions were used for
the aforementioned test sets (in Tab. 3.1). The baseline distributions for tests 2 and 3 is generated
with the same strategy used to create y0, but with different mean population values (µ(y1) =−0.5,
µ(y2) = +0.6). These values were set following the analysis of > 1300 oligo clusters in more than
600 SNP probe sets from known deleted and amplified regions (from mental retardation project).
These background distributions (y1 and y2) provided the greatest distinguishability between the re-
sults of the aforementioned 3 mutually exclusive tests. Although, it must be added that still ∼20%
of SNP probe sets did not provide any relevant copy number information, mainly not because the
tests failed to generate accurate results, but the fact that the SNP probe set readouts were incon-
sistent with the known DNA copy number of the underlying region. Some of the examples of
inconsistent SNPs were previously described in Section 3.3.3.1 and also seen in Figure 3.6 (e.g.,
SNP80 and SNP81). The schematic representation of clustering and likelihood estimation analysis

1This statement requires further clarification. In biology often a hypothesis test can have one of two outcomes: either
the researcher can ”accept” the hypothesis or ”reject” it. For instance, if the scientist discovers that a particular gene
does not appear in the genome sequence, then it is deduced that it has been deleted. However, in statistics there is a
major issue with the notion of accepting the null hypothesis. Instead, the failure to reject the initial hypothesis implies
that the data are not sufficiently persuasive to prefer the alternative hypothesis over the null hypothesis. Therefore, even
if we reject the null hypotheses that oligo cluster data is equal to the baseline and also reject that is it smaller than the
baseline but fail to reject that is it larger that the latter distribution, we can not directly conclude that the oligo data is in
fact larger than the baseline.
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for a given SNP probe set is presented in Figure 3.10.

3.2.2.5 Machine Learning Classifier Based on Discriminant Analysis

In the next phase of SNP classification, a machine learning-based classifier was implemented to
discover the most informative oligo cluster for each SNP by utilizing the information that was
obtained in the likelihood estimation phase. A quadratic discriminant analysis (QDA) was imple-
mented to perform this classification task. The main inputs to the QDA classifier are the estimated
p-values of the hypothesis tests described in the previous section, the number of PM oligos in
each oligo cluster and the cluster centers. Further description of QDA classifier is presented in
Appendix G.

It is hypothesized that the SNP data manipulations described in the SNP pre-processing phase,
can decrease the overall standard deviation of the array (noise) while increasing the magnitude of
true signal aberrations (results shown in Section 3.3.3.5). Such improvements can directly influence
the quality of the downstream CNV calling process; as detailed in Sections 3.3.6-3.3.7.

3.2.3 Alternative Approach for SNP Pre-processing Based on Naive Bayes
Classification

It has been suggested that instead of clustering oligos into groups with similar LR values and using
likelihood estimation and QDA to independently classify each SNP, a classifier should be directly
applied on the SNPs probe sets. To implement this alternative approach I trained Naive Bayes clas-
sifiers using SNPs from known deleted, amplified and normal regions (the same training data used
for QDA1). The underlying assumption is that a Naive Bayes classifier can directly determine the
SNP copy-number status (i.e., normal, deleted or amplified) by comparing the log2-ratio intensity
pattern of the oligos in the SNP probe set with those from DNA regions with known copy-number
values (Figure 3.2). Two Naive Bayes classifiers were implemented for this analysis, one with
normal (gaussian) distribution and another with kernel smoothing density estimation.

The main difference between the Naive Bayes approach and OPAS default SNP classification
is that all the PM oligos in a SNP probe set are used as the input data to the Naive Bayes classifiers.
However, as explained in the previous section, the OPAS SNP classification approach is based on
QDA analysis of the information that is obtained from oligo clusters (compare the flowcharts in
Figures 3.1 and 3.2). The comparison between the classification performance using the QDA and
Naive Bayes approaches is detailed in Section 3.3.3.4.

1The same 324 SNPs from known classes (deleted, normal and normal regions) that were used for QDA training.
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3.2.4 Post-processing and CNV Calling

The goal of the OPAS post-processing phase is to partition the whole genome into regions where
the copy number changes between contiguous segments. The post-processing phase includes two
main sub-modules (Figure 3.1). In the first step, a second phase of normalization is applied to
SNP log2-ratio data (generated by pre-processing phase) to correct for biases that are due to the
PCR process (Section 1.2.2.3). Next, a non-parametric CNV calling algorithm (Circular Binary
Segmentation) is applied to identify putative regions of copy number change in Affymetrix SNP
data. I hypothesized that incorporating high quality SNP readouts with a non-parametric CNV
calling approach can improve the quality of ultimate CNV calls. In this section, I describe the
OPAS post-processing modules.

3.2.4.1 PCR Fragment Length Normalization

As mentioned in Chapter 1, Affymetrix genotyping assay involves a Polymerase Chain Reaction
(PCR) process to amplify the target DNA sample. It has been shown that locus-specific array
intensity data may be correlated with PCR fragment length [180]. This is due to the fact that
longer fragments usually generate fewer amplified products, which reduces the material available
for labeling and hybridization and results in weaker signals [180, 351]. The magnitudes of such
PCR-induced biases may vary between arrays, so they do not necessarily cancel each other out in
the estimated test versus reference LR ratios [180, 351–353]. To correct for such biases, a non-
linear LOWESS regression method was used [208, 354, 355]. This method has been used in a wide
range of microarray applications, such as adjusting the waves in microarray signal intensities [140,
356] and normalizing Illumina Infinium SNP data [357].

3.2.4.2 Circular Binary Segmentation (CBS) Algorithm

The Circular Binary Segmentation (CBS) algorithm [189] is a modification of binary segmenta-
tion [230], a well-known method for the change-point problem1 in statistics. The basic idea of
this entirely non-parametric approach is to recursively split chromosomes into segments based on a
maximum p-value that is estimated by permutation analysis. A study by Lai et al. [231] comparing
11 different CNV calling algorithms such as mixture model, HMM, maximum likelihood, regres-
sion, wavelets and genetic algorithms, concluded that CBS appears to perform consistently well.
Another comparison study by Willenbrock and Fridlyand et al. [232] found that a CBS-based CNV
calling method (DNAcopy software) [189] had the highest sensitivity rate and the lowest false de-

1http://biostats.bepress.com/cobra/ps/art44
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tection discovery rate (FDR) of CNV breakpoints compared to Gaussian-based GLAD [210] and
an HMM-based method [358].

A key advantage of CBS method is that it does not have a strict limitation on the minimum
number of probes in a candidate CNV region. The main disadvantage of this algorithm is its low
speed. However, the Venkatraman et al. [242] modification of the original algorithm has alleviated
this problem to some extent. Due to its non-parametric nature and proven accuracy, CBS is one of
the most powerful statistical-based algorithms for CNV detection1 [164, 232, 359–362].

3.2.5 OPAS Visualization and Other Features

Several visualization and computational tools have been developed to facilitate OPAS data analysis
and CNV interpretation. Figure 3.3 presents a schematic representation of the data that is generated
during OPAS analysis. As noted in this graph, the OPAS software uses the raw Affymetrix .CEL
files and generates 3 main output files (.jpg, .BED and .txt files). The .jpg files show the OPAS
results of segmented data in each chromosome along the chromosome ideograms based on banding
patterns from USCS genome browser (hg17, hg18 or hg19)2. The .txt file is a list of all estimated
segments in all chromosomes following the CBS analysis.

An additional script has been implemented that allows OPAS to generate UCSC custom tracks
for any list of candidate CNVs, based on .BED formatting3. This tool can also generate tracks
with color spectra for better representation of the type of predicted events (e.g., deletion versus
amplification) or the magnitudes of the estimated LR values. Other computational tools have also
been implemented to allow finding overlapping CNVs across multiple samples; and comparing a
list of putative CNVs with known copy number polymorphisms in Toronto Database of Genomic
Variants (DGV)4. These tools can help to obtain further information about the generated CNV
results.

3.2.6 Simulated Data for Comparative Analysis of CNV Calling Algorithms

A simulated data set was generated based on the Affymetrix 250K Nsp array to evaluate the perfor-
mance of OPAS algorithm. To create the simulated signals, first a distribution of random Gaussian
data was generated. The SNP level and oligonucleotide level standard deviations of the generated

1http://www.broadinstitute.org/cancer/software/genepattern
2The OPAS default genome build is hg18; however, it can be modified through the user interface.
3http://genome.ucsc.edu/FAQ/FAQformat.html#format1
4http://projects.tcag.ca/variation/
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distribution were set to equal those of a Follicular Lymphoma sample1 to demonstrate performance
on real data (SD= 0.08 and 0.04). Next, 200 non-overlapping simulated regions of copy number
change were randomly scattered throughout the simulated signal. These simulated CNVs had 8
different alteration sizes with 2, 4, 8, 10, 15, 25, 100, and 200 data points. For each alteration size
(referred to as w), 25 non-overlapping random CNV regions were generated, resulting in total of
200 (8× 25 = 200) distinct simulated CNVs throughout the entire signal. This data vector is re-
ferred to as a template signal. To implement the range of alterations expected in a typical SNP array
experiment, a constant log2-ratio magnitude of 0.11, 0.2, 0.4, 0.6, 0.8 and 1.0 was then added to
the simulated CNV regions of the template signal. This model is used in comparing the sensitivity
and precision of CNV calling algorithm; detailed in Section 3.3.6.

3.2.7 Analysing the Effect of Noise on CNV Calling Performance

The second simulation analysis used an artificial but biologically inspired model to generate syn-
thetic data to evaluate OPAS CNV detection sensitivity in the presence of added noise. This simu-
lated model is based on Affymetrix Nsp SNP array data (250K) from a follicular lymphoma patient.
The genome of this patient, referred to as ht-17, has been thoroughly analysed for both sequence
level mutations and structural aberrations using several different platforms, including array CGH,
500K SNP arrays, fingerprint profiling (FPP) [363] and whole transcriptome shotgun sequencing
(WTSS) [364] (all these data have been provided by other groups at the GSC).

The FPP results found a deletion on chromosome 14 immunoglobulin heavy locus (IGH@),
spanning approximately 870 Kb (14q32; Figure 3.4). This deletion was validated by BAC end
sequencing (BES) of an FPP clone that harbored this deletion (clone HTa17-0164B08, denoted
in Figure 3.4b). No other CNV was detected in this chromosome by either of the above meth-
ods2. Therefore, it can be hypothesized that the aforementioned deletion on 14q32 (105,163,197-
106,035,402) is likely the only CNV in chromosome 14 of the above patient. To generate simulated
chromosome 14 signals based on real data, I added random Gaussian noise to the original Nsp data
of the this patient. Based on this model, the simulated noisy signal Y is defined by:

Yi = Xi + εi 1 � i � n (3.2.4)

εi ∼ N (0,σ2)

where n represents the sample size and X is the original Nsp data of chromosome 14. The term ε
1This sample is obtained from follicular lymphoma project, described in Chapter 4.
2http://map02.bcgsc.ca:5000/anomaly/
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denotes the added gaussian noise which follows a normal distribution with standard deviation of
σ and mean of zero. Based on this model, signal Y includes the IGH deletion (on 14q32) but is
corrupted with a known magnitude of noise (ε).

3.2.8 Comparative Analysis of OPAS and Circular Binary Segmentation

As explained in Section 3.2.4, in OPAS post-processing phase Circular Binary Segmentation (CBS)
algorithm is applied to detect regions where log2-ratio intensity changes between neighbouring
segments. The aim of the following experiment is to investigate whether analysing a sample using
OPAS has any advantage for CNV detection over application of CBS segmentation alone. The
100K array data from a mental retardation (MR) patient with a known (validated) deletion is used to
perform this experiment. The aforementioned deletion spans approximately 294 Kb (chromosome
2p16.3) and includes 17 Xba SNPs. Next, a series of simulated signals are generated by randomly
selecting N SNPs from the deleted region and eliminating them from the original signal. This
process is repeated multiple times for each value of N (see Section 3.3.7 for more details). The
performance of OPAS and CBS is compared by assessing the sensitivity of each method to detect
the known deletion with fewer SNP probe markers. The results of this analysis are described in
Section 3.3.7.

3.3 Results

3.3.1 Patterns of LR Intensity Fluctuations in SNP Array Data

To study the extent of variabilities in SNP array data, I examined more than 950 SNP probe sets
in known regions of copy number variation using FISH validated CNVs from Friedman et al. [29]
and Taylor et al. [365] publications. The results of this analysis found different fluorescent in-
tensity responses to DNA copy number abundance, both across SNPs in a region with the same
copy number (SNP-level variability), and among perfect-match oligos that are in the same probe
set (oligo-level variability). Figure 3.5 demonstrates examples of such SNP-level and oligo-level
variabilities in log2-ratio fluorescent intensities. The top panel (Fig. 3.5a) presents a scatterplot of a
region on chromosome 10 that includes a known deletion, approximately 353 kb in size (10q24.31-
q25.1; denoted by red arrows). The sample is from a patient with global developmental delay and a
desmoplastic medulloblastoma that was previously reported by Taylor et al. [365]. The phenotypes
in this patient were associated with the disruption of the SUFU gene that is located on the deleted
region. In the rest of this Chapter, I will refer to the aforementioned deletion in this patient as the
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”SUFU deleted region”.
The highlighted SNPs in Figure 3.5a (SNPs 79, 81, 83, 93 and 100) are all within the SUFU

deleted region. As seen in this figure, these deleted SNPs have noticeably different LR values and
standard deviations (Figures 3.5b-3.5e; −1.34 � LR �−0.05, 0.3 � SD � 1.3). Figure 3.5e shows
an example of the impact of oligo-level variability on the quality of the estimated SNP signal. The
depicted SNP (SNP100) has mean LR value of −0.5; however, 5/20 perfect-match (PM) oligos
of this SNP indicate increased signal intensities (with mean log2-ratio value of +0.2; marked by
blue dots) and can be considered as noisy oligos. In the same SNP probe set, 11 other PM oligos
indicate a relative loss of signal intensity (with mean log2-ratio intensity of −0.52; marked by
green dots). The remaining 4 PM oligos in this probe set denote a significant loss of signal intensity
with mean log2-ratio of −1.3 (marked by red dots). The latter subset of oligos represents 2.6-fold
increase in the magnitude of copy number loss compared to the original mean signal of SNP100

(LR = −0.5); and an LR estimate that is approximately equal to the theoretical log2-ratio value
of one copy number loss (log2(1/2) = −1). Such findings, that are commonly observed in SNP
arrays, prove that using a subset of PM oligos to evaluate log2-ratio values can improve the quality
of the SNP signal. It is also reasonable to speculate whether the SNP signal can be improved simply
by increasing the number of reference samples. The analysis of the impact of reference set size on
the estimated log2-ratio intensities is presented in the following section (Section 3.3.2).

3.3.2 Analysing the Impact of the Size of the Reference Set on the Estimated SNP
Signals

To assess whether a larger reference set improves the quality of SNP signals, it is important to mea-
sure its impact on both the magnitude of estimated LR values and the number of informative probes
in regions with known copy number values. These two analyses are described in Section 3.3.2.1
and Section 3.3.2.2, respectively.

3.3.2.1 Impact of the Size of the Reference Set on the Estimated LR Values

For this analysis, the relative copy number ratios of all PM oligos in the ”SUFU deleted re-
gion” were compared using 6 different reference sets with varying sizes. Three of these refer-
ence sets were the normal father (R f ather), normal mother (Rmother) and the mean of both parents
(Rparents) of the affected MR patient. The other three reference sets consisted of 24 (R24), 99 (R99)
and 150 (R150) normal individuals, all with normal karyotypes1. The results of this analysis are

1These samples were part of a larger data set of normal parents in a trio study by Friedman et al. [29].
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presented in Figures 3.6-3.7 and Table 3.2.
Figure 3.7 presents a comparison between the distribution of log2-ratio intensity readouts of

PM oligos in the SUFU deleted region (500) with all other PM oligos on the array (> 1.1 mil),
using the cumulative density plots of these two populations. As seen in this figure, in all cases the
distribution of SUFU deleted oligos falls on the left side of the baseline CDF (CDF of the entire
array; shown in black). The latter observation implies that the distribution of log2-ratio intensities
of the PM oligos in SUFU deleted region is consistently smaller than the rest of the array, regardless
of the size of the reference set that was used to calculate LR values. The distance between the
CDFs of the deleted and the baseline oligos, referred to as δ , represents the distinguishability of
the deleted oligos from the rest of the array. Figure 3.7 also denotes that at F(x) = 0.51, the δ
value with respect to the largest reference set (CDF150; yellow curve) is smaller than the δ with
respect to a single reference sample of the normal father (CDFf ather; blue curve). The latter finding
suggests that a larger reference set does not necessarily improve the magnitude of LR deviation of
real CNVs.

3.3.2.2 Impact of the Size of the Reference Set on the Number of CNV-affirmative Oligos

The Xba SNP array data (50K) of 995 PM oligos in 22 regions of known copy number deletion
(previously reported in [29]) was analysed to investigate whether using a larger reference set im-
proves the proportion of CNV-affirmative oligos in these CNVs. In this analysis, the proportion of
CNV-affirmative oligos (referred to as θ ) is defined as the number of PM oligonucleotide probes in
a deleted SNP probe set that indicate loss of signal intensity (LR< 0) divided by the total number
of SNPs in the corresponding deleted region. The boxplots in Figure 3.8 illustrate the distributions
of the average θ values (average number of affirmative oligos per SNP probe set) across the 22
known deletions with respect to 3 separate reference sets (R24,R99 and R150)2. As seen in this fig-
ure, the reference set with 99 normal samples (R99) has a better θ rate compared to the reference
set with 24 samples (θR24 = 13.3/20 � 66%, θR99 = 15.3/20 = 77%). However, the proportion of
affirmative oligos using the largest reference set with 150 samples is lower than that of 99 samples
(θR150 = 14.3/20 � 71% < θR99 = 77% ).

Similar analysis was applied on 5 SNPs in SUFU deleted region (SNPs 79, 81, 83, 93 and 100;
shown in Fig. 3.5) to study the impact of the size of reference set on the estimated SNP log2-ratio
values and the number of CNV-affirmative oligos in these 5 SNPs. Comparing the data generated
by R150 and R f ather in Table 3.2 reveals that using R f ather leads to larger magnitudes of copy number

1F(x) is defined as the proportion of X values that are less than or equal to x.
2These reference sets were previously described in page 79.
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loss and approximately the same overall number of informative oligos for these 5 deleted SNPs. In
summary, the results of the analyses presented in Sections 3.3.2.1-3.3.2.2 suggest that there is no
substantial evidence to support the hypothesis that increasing the size of a reference set improves
the magnitude of real copy number aberrations1.

3.3.3 Results of OPAS Pre-processing Phase

3.3.3.1 Clustering PM Oligos in SNP Probe-sets

The raw array data (from .CEL files) was normalized using quantile normalization method, as ex-
plained in Section 3.2.2.1. Fuzzy-Kmeans clustering was applied to each SNP probe set according
to the model described in Section 3.2.2.2. Figure 3.9 illustrates examples of fuzzy-kmeans clus-
tering of 5 SNPs in SUFU deleted region that were previously shown to have noticeably different
LR values (see Figure 3.5). Each predicted oligo cluster is shown by a different color in these plots
(red, blue and green). As observed, 3/5 SNPs (Figs. 3.9a-3.9c) are predicted to have 2 separate
oligo clusters (k = 2), while the remaining 2 SNPs (Figs. 3.9d-3.9e) each have 3 separate oligo
clusters (k = 3).

As observed excluding noisy oligos (such as the blue oligo cluster in Figure 3.9c) can lead to
significant improvements in the estimated SNP signal intensities. However, filtering oligos does
not always improve the magnitude of LR deviation. For instance, excluding the blue oligo cluster
from the probe set of SNP81 (Figure 3.9b) does not significantly improve the estimated SNP LR
value (compare LR and LR’ values in Fig. 3.9b). Figure 3.6 also confirms that SNP81 does not
provide any deletion information to begin with (regardless of the reference set). Therefore, the
oligo-level processing cannot have a significant impact on the quality of the estimated signal from
this SNP.

3.3.3.2 Performing Oligonucleotide Probe-level Analysis of the SNP Array Data

As explained in Section 3.2.2.4, for each oligo cluster in a SNP probe set three null-hypothesis
tests were applied to assess whether the oligo cluster indicates a significant LR deviation from
the baseline or not. Figure 3.10 provides an example of clustering and likelihood estimation for
a given SNP on the Xba array (SNP A-1740765, panel (A)). The fuzzy-kmeans clustering found
2 separate PM oligo clusters in the SNP probe set, which are denoted by red and blue colors in

1In fact, based on empirical data, I observed that using a larger reference set can have a negative impact on the ability
to detect somatic changes in cancer samples.
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Panel (B). Panels (D) and (E) show the results of null hypothesis tests for each of the above 2 oligo
clusters (see Sec. 3.2.2.4 for the description of these tests). The generated data from these tests are
passed as input data to the downstream QDA classifier; detailed in the next section.

3.3.3.3 SNPs Classification and LR Estimation

The clustering of SNPs in multiple arrays revealed that less than 5% of SNPs have only 1 oligo
cluster (k = 1). For these SNPs no further pre-processing is applied and the center of the only
predicted oligo cluster is used as the SNP-level LR readouts. The remaining SNPs that have more
than 1 oligo cluster are passed through QDA classifiers (Equation (G.2)). The QDA classifiers were
trained using 108 SNPs from validated regions of copy number loss [29] and the same number
of SNPs from validated regions of copy number gain, as well as 108 SNPs from putative normal
regions1. As more regions of deletion and amplification are validated, the user can add the validated
SNP data to the training set. This feature enables the algorithm to potentially improves its own
decision boundaries. The input data to the QDA classifiers include the p-values of the KS-tests
from likelihood estimation phase, the number of PM oligos in each oligo cluster and their centroid
values.

3.3.3.4 Comparison of OPAS Pre-processing and Naive Bayes Classification

As explained earlier in Section 3.2.3, an alternative approach was suggested for preprocessing
Affymetrix SNP probes based on Bayes classification and without oligo clustering. The same
dataset that was used to train QDA classifier (324 SNPs from known deleted, amplified and normal
regions2) is also used for training the Naive Bayes classifiers. Table 3.3 presents the comparisons
between the performance of QDA and 2 Naive Bayes classifiers (described in Section 3.2.8), using
567 SNPs in 19 regions of copy number deletion in follicular lymphoma samples that were vali-
dated by Illumina sequencing3 (500K data). The aims of this analysis were: 1) to compare the the
proportion of the 567 SNPs that were accurately detected as deleted by each classifier; and 2) to
compare the magnitudes of estimated LR values by each approach. The summary of the results,
presented in the last row of Table 3.3, indicates that the OPAS number of false negative deletions
was 151/567 (27%); however, both of the Naive Bayes classifiers showed lower deletion sensitivity
with 217/567 (38%; kernel fit) and 208/567 (37%; normal fit) false negative deletion calls (these

1The exact copy number values for these regions were not experimentally determined, however all these SNPs had
LR ≈ 0 and manually inspected prior to adding them to the training set.

2108×3 = 324
3These data are from analysis of Follicular Lymphoma CNVs, described in Chapter 4.
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are deletion calls at SNP level and not CNV level. It is also observed that for some of the deleted
regions QDA has a noticeably better sensitivity compared to Naive Bayes classifiers. For instance,
for region #4 in Table 3.3, QDA predicted 101/152 (66%) SNPs as deleted; however, Naive Bayes
classifiers predicted 71-72 (∼47%) deleted SNPs.

The suggested OPAS modification excludes oligo clustering phase (see Fig. 3.2); therefore, the
mean log2-ratio intensity of all PM oligos with LR < 0 were used as LR estimate of the SNPs
that were classified as deleted by Naive Bayes classifiers1. The mean Naive Bayes estimated LR
values of all SNPs within the deleted region is shown in columns 10-11 (LRNBN and LRNBK) of
Table 3.3. This table also shows the original LR values based on average log2-ratio intensity of
all PM oligos in the SNPs probe sets (column 9; LR), as well as the OPAS-estimated LR values
(column 12; LROPAS). Comparing the estimated LR values (columns 9-12) in Table 3.3 reveals that
for all 19 sequence-validated deletions, the OPAS pre-processed LR values (LROPAS =−1.01) have
noticeably larger magnitude of copy number loss compared to the mean probe set LR measurements
before pre-processing (LR =−0.43). The magnitude of OPAS-generated LR values are also larger
than the LR estimates based on Naive Bayes classifiers (LRNBN ≈ LRNBK =−0.59). The boxplots
in Figure 3.13 also demonstrate noticeable differences between LR values of the same deleted
regions based on different approaches. These boxplots indicate that OPAS-estimated LR values
(boxplot 4) have larger magnitudes of copy number loss compared to LR measurements based on
Naive Bayes classifiers (boxplots 2-3). It is also evident from this figure that the LR values of
the deleted regions are significantly improved after OPAS SNP pre-processing analysis (compare
boxplots 1 and 4 in Fig. 3.13). The latter observation confirms the initial hypothesis that oligo-level
analysis of SNPs can lead to improve LR estimates.

It is also important to investigate whether the higher QDA sensitivity to call deleted SNPs com-
pared to Naive Bayes classifiers is because QDA approach has a poor false positive rate for deletion
SNP calls. This can be assessed by randomly selecting SNPs from regions that are putatively nor-
mal and comparing the number of such SNPs that are predicted as deleted by each classifier. To
implement the above analysis, 5672 SNPs were randomly selected from the autosomes of two FL
samples (any known CNV regions were excluded from these autosomes prior to the random SNP
selection). In the rest of this analysis, these 567 randomly selected SNPs are referred to as ’pu-
tative normal SNPs’. The QDA classification of OPAS and the Naive Bayes classifiers were then
applied on these putative normal SNPs the number of deletion calls were estimated. The results of

1For those SNPs that were classified as normal by Naive Bayes methods, the mean of all PM oligos in the probe set
with −0.1 � LR �+0.1 was used as the SNP’s LR measurement.

2the same number of SNPs in 19 deleted regions of Table 3.3
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OPAS analysis suggest that 35.4% (201/567) of the aforementioned putative normal SNPs appear
to indicate loss of signal intensity. The Naive Bayes classifiers with normal distribution and kernel
fit, respectively, predicted 31.2% (177/567) and 39.5% (224/567) of these putative normal SNPs as
deleted. These findings indicate that all 3 classifiers generated almost the same proportion deleted
SNP calls among 567 putative normal SNPs (31.2%, 35.4% and 39.5%).

In conclusion, Table 3.3, Figure 3.13, and the findings of the latter analysis collectively suggest
that using Naive Bayes for SNP pre-processing phase provides no substantial advantage for SNP
pre-processing. Nonetheless, the two Naive Bayes classifiers have also been added as optional
features of OPAS that can be selected by the user instead of the default pre-processing method.

3.3.3.5 An Example of the Impact of SNP Pre-processing on Improving CNV Data Quality

As described in Chapter 1, a major limitation of microarray data smoothing is that such approaches
often tend to smooth the entire signal aggressively in order to eliminate noisy artifacts; and there-
fore, may also suppress the magnitude of true CNVs [220, 221]. To investigate if such problems
exist in OPAS outputs, the distribution of log2-ratio fluorescent intensity readouts of 540 PM oligos
from 45 Nsp SNPs in a known deleted region were analysed before and after pre-processing (this
deletion has been detected in an MR patient and was validated by FISH [30]).

Figure 3.11 illustrates the CDF plot of these 540 deleted oligos before and after pre-processing,
shown by black and red curves, respectively. This figure also depicts the CDF of all oligos on
the array (blue curve) that is considered as a baseline distribution for the copy number analysis1.
As observed, the CDF of deleted oligos after pre-processing (red curve) falls further left of the
distribution of the same oligos before pre-processing (black curve).

In summary, Figure 3.11 indicates that SNP pre-processing improved both the proportion of
informative oligos and the magnitude of LR deviation from the baseline in the aforementioned
known CNV region. As the result, there is a wider separation between the LR distributions of
deleted and baseline oligos. Such improvements can consequently lead to better CNV detection
accuracy in the downstream copy number analysis. Section 3.3.6 details the impact of such oligo-
level improvements on the downstream CNV calling accuracy based on a comparative analysis
using simulated data.

1No other large-scale CNV or aneuploidy was discovered in this MR patient; therefore, it is reasonable to consider
that the distribution of whole-genome microarray data (> 3 mil) represents a copy number normal baseline.
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3.3.4 Results of OPAS Post-processing Phase

Analysing estimated SNP signals from different experiments found that sometimes a considerable
correlation exists between the LR values and PCR fragment length data, such as shown in Fig-
ure 3.12a (r = 0.9, with p-value P = 2e-5). To correct for such biases LOWESS non-parametric
normalization is applied on SNP pre-processed data (described in Section 3.2.4.1). The effect of
LOWESS normalization in removing the fragment length bias is shown in Figure 3.12 [180].

Next, to find regions with multiple SNPs that exhibit a statistically different LR measurements,
Circular Binary Segmentation algorithm is applied on the modified SNP data (Fig. 3.1). As de-
scribed in Section 3.2.4.2, this entirely non-parametric method splits the chromosomes into con-
tiguous regions of equal copy number by modelling discrete copy number gains and losses through
permutation analysis [189, 242]. In OPAS design, a default of 10,000 permutations are used to
estimate the p-values that define the significance of a segment split.

Although, in theory any detected segment with LR deviation from the baseline (|LR| > 0)
presents a putative CNV, in practise other factors can contribute to fluctuations in LR intensities
that are statistically significant but do not represent a real biological event (e.g., DNA quality).
Therefore, in a classification based CNV calling method a second filter is used to choose segments
which likely indicate a real copy number change; and this filter often depends on the LR value.
For example, in a study of ovarian tumor samples, regions with log2-ratio >+0.3 or <−0.3 were
used as candidate CNVs [366] (direct use of LR cut offs for CNV calling); and in another study,
z-scores of the segmented read depth coverage data were used to call putative CNVs from genome
sequence data [195] (z-scores also depend on the distribution of LR values). From the biological
perspective, we also have some prior knowledge about the frequency and extent of genomic CNVs
in different samples. It is well-known that cancer DNA is frequently affected by genome rearrange-
ments compared to copy number polymorphisms among normal individuals [18, 19, 24, 25, 37, 69].
Therefore, instead of using predefined cut-offs to label segments as candidate CNVs, OPAS pro-
vides the list of all segments in the genome (Fig. 3.3) and basic analysis of the distribution of these
segments (meta-data). The proposed approach is to use both the OPAS-generated data and the bi-
ological information to assign proper statistical cut-offs for each separate study, depending on the
type of samples that are being analysed (e.g., cancer or mental retardation).

3.3.5 Assessing the Effect of Noise on CNV Calling Performance

To evaluate the robustness of the CNV calling in the presence of noise, the biologically inspired
model described in Section 3.2.7 was used to generate a dataset of simulated noisy signals. These
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simulated noisy signals represent data from chromosome 14 of a sample with known IGH deletion1

(ht-17).
Figure 3.16 presents the effect of increasing the σ of the underlying noise on the performance

of the CNV calling algorithm based on 9 different levels of noise (σnoise = .01, .03, .05, .09, .13,
.15, .17, .19, .21). For each specified σnoise, 10 random simulated signals were generated and
analysed using OPAS method. The number of times that the known IGH deletion was not detected
in a simulated signal with σnoise divided by the total number of generated signals with the same
σnoise (n = 10) is referred to as the detection error rate (η). The signal-to-noise ratio (SNR) at each
corresponding noise level is also generated based on the estimated amplitude of the original signal
and the known added noise.

The result of this analysis is shown in Figure 3.16. As expected, it is observed that the detection
error rate (η) increases with the standard deviation of the noise. This figure also denotes that when
σnoise reaches 0.17 (marker ’B’ in Fig. 3.16) the IGH deletion is no longer detected in any of the
simulated signals (η = 1). Further study of this particular data point revealed that at σnoise = 0.17
the SNR is approximately equal to 1 (SNR=1.03); and the noise and the original signal have ap-
proximately the same standard deviation (σsignal = 0.1694 and σnoise = 0.17). This finding implies
that when the magnitude of the simulated noise is equal to or greater than the original signal, the
algorithm cannot distinguish between the distribution of the deleted SNPs and the rest of the data.

It must be noted that the above analysis found no false positive CNV calls in any of the sim-
ulated signals (n = 90). Therefore, I continued this experiment by increasing the magnitude of
the added noise in simulated chromosome 14 signals and analysing the estimated CNV calls. The
first false positive CNV call was detected when the amplitude of the added noise was more than
two times larger than that of the original signal (σnoise = 0.35 and σsignal � 0.17). In conclusion,
the findings of these analyses suggest that despite the increased level of noise, the CNV calling
algorithm yields reasonable results.

1The validated IgH deletion is located on chromosome 14q32.33, as shown in Figure 3.4.
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3.3.6 Comparative Analysis of CNV-calling Algorithms

A simulated model was implemented according to the method described in Section 3.2.6 (see Fig-
ure 3.14). OPAS, SMD and GLAD were run with default parameters, as most users will do. For
OPAS and GLAD, all regions with LR < 0 and LR > 0 were selected as candidate deletions and
amplifications, respectively. Based on SMD recommendations, two different p-value cut-offs (p-
values� 1e-6 and � 1e-8) were used to generate two separate lists of SMD results1. The results
from each dataset were compared to the known simulated CNV regions for each alteration size
(w = 2, 4, 8, 10, 15, 25, 100, 200) and LR ratio response (δ = 0.11, 0.2, 0.4, 0.6, 0.8, 1.0).

The results from each dataset were compared to the known simulated CNV regions for each
alteration size (w) and LR ratio response (δ ). True positives, false positives and false negatives
were aggregated for each algorithm and simulation to evaluate the sensitivity (true positive rate;
TPR) and precision (true positive predictive value; PPV) estimates. As shown in Figure 3.15, all
algorithms offered similar sensitivity and precision for alterations with log2-ratio shifts larger than
0.6 (δ � 0.6) that had more than 10 to 15 SNP probe markers (panels D-E and I-J; Figure 3.15).
However, detecting CNVs with fewer number of SNPs (w< 10) was largely dependent on the mag-
nitude of the LR deviation (δ ) and the method used to analyse the data. For example, Figure 3.15.A
shows that all methods had substantially low sensitivity for detecting simulated CNVs with slight
LR deviations which also contained fewer than 10 SNP probe markers (δ = 0.11 and w < 10).
This plot also denotes that the OPAS sensitivity for simulated CNVs with LR deviation of 0.11
improved when these CNV regions contained at least 10-15 SNP probe markers (Panel (A)). Panel
(F) shows that the estimated precision (PPV = T P/T P+FP) of detecting CNVs with only slight
LR deviation (δ = 0.11) was also low, regardless of the algorithm used to analyse the simulated
data.

As expected, in each plot the detection sensitivity and precision increased with the number of
SNP probe markers within the simulated regions (w). The main conclusion of the analysis presented
in Figure 3.15 is that in mid-range LR deviations (δ = 0.2−0.6) OPAS provides a noticeably better
sensitivity and precision for detecting simulated CNVs with fewer than 10 SNP probes (see panels
(B-C) and (G-H)).

1The SMD documentation indicates that generated putative CNVs with p-values �1e-8 have the lowest false positive
rate but a higher rate of false negatives; on the contrary, results with p �1e-6 have better CNV detection sensitivity but
∼40% false positive rate.
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3.3.7 Comparing OPAS and CBS Accuracy

To investigate whether the observed improvements in CNV detection accuracy with fewer SNP
probe markers are due to the OPAS approach in dealing with noisy oligos and not CBS segmen-
tation alone, the performance of OPAS and CBS were compared using the model previously de-
scribed in Section 3.2.8. A series of simulated signals was generated by randomly selecting N
oligos from a known deleted region (on chromosome 2p16.3 of an MR patient) and eliminating
them from the Xba SNP array data (the deletion includes 17 Xba SNP probe markers). Fourteen
different N values (N = {2,3, . . . ,15}) were used to generate these simulated signals. This process
was repeated 100 times for each value of N, resulting in a total of 1,400 simulated signals with 2
to 15 SNP probe markers within the known deleted locus (ι).

The simulated signals were analysed with OPAS and CBS, independently, and segments with
log2-ratio < 0 were considered for further analysis. The boundaries of these segments (with LR<
0) were then compared with the known 2p16.3 deleted region and those with > 60% coverage were
considered as putative correct calls. Table 3.4 and Figure 3.17 show the results of this analysis. As
observed, OPAS detected almost all deletions that had 8 or more SNP probe markers (except for
1 false negative call in 800 signals with ι � 8; see row 7 of Tab. 3.4), and CBS detected almost
all deletions with at least 9 SNP probe markers (except for 2 false negative calls; see rows 5-6 of
Tab. 3.4). The results of this analysis also indicate that as the number of remaining SNPs in the
deleted region (ι) drops below 9, the methods start to show increasingly different CNV detection
accuracies (see the pink dashed line in Fig. 3.17a).

As previously described in page 85, the accuracy of detecting CNVs using a segmentation
based approach not only depends on the ability of the algorithm to find a segment that maps to the
real CNV event, but also its estimated magnitude of LR change. Therefore, to perform an accurate
comparison between OPAS and CBS, the estimated LR values of the known deleted region (within
the simulated signals) are also presented in Figure 3.17b and Table 3.4. Comparing OPAS and CBS
estimated LR values shows significant improvements in the magnitude of copy number loss as the
result of OPAS-analysis.

For instance, the analysis results in Figure 3.17a and Table 3.4 suggest that OPAS detected the
known deletion in 92 of the total 100 (92%) simulated signals that had only 3 deleted SNP probes
(ι = 3). However, CBS detected this deletion in 58 (58%) of these simulated signals. The LR
data of the same simulated signals (ι = 3), presented in Figure 3.17b and Table 3.4, reveal that
CBS and OPAS estimated average LR of the deleted regions is approximately −0.1 and −0.82,
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respectively1 (see columns 6 and 4 of Table 3.4). These findings suggest that eventhough CBS
found an overlapping segment in 58% of the aforementioned ι = 3 signals, unlike OPAS results,
these segments do not appear as significant and reliable deletion calls. Collectively, these data
indicate that OPAS approach resulted in significant loss of signal intensities for the known deleted
region in more than 90% of the signals that had only 3 SNP probe markers within the deleted
boundaries (2p16.3).

In summary, the results of this experiment confirm the initial hypothesis that OPAS oligo-level
data processing has a major impact on the accuracy of finding CNVs with fewer SNP probe mark-
ers and that these improvement are not the result of the CBS segmentation alone (Table 3.4 and
Figure 3.17). This conclusion is also supported by the results of CNV analysis in follicular lym-
phoma patients, presented in the next Chapter, where OPAS detected several real CNVs (validated
by FPP or Illumina sequencing) that were not identified with several alternative methods.

3.4 Conclusions
To investigate the sources of variability in SNP arrays, in this Chapter I studied several factors
that influence signal intensity readouts in Affymetrix GeneChip SNP arrays (Sections 3.3.1-3.3.2),
such as analysing the impact of reference set size on the magnitude of copy number deviation.
This analysis revealed that in contrast to what may be expected, a larger reference set does not
necessarily yield a better CNV detection sensitivity (Tab. 3.2). Based on the observed results and
the results of analysing SNP probe sets (Fig. 3.5), I hypothesized that processing the SNP array data
at the oligo-level could improve the accuracy of the downstream CNV detection. To implement this
idea, I developed the algorithm for Oligonucleoytide Probe-level Analysis of Signal intensities or
OPAS (Fig. 3.1).

In the first step of OPAS, the raw signal intensities between test and reference samples are
log-transformed and normalized using quantile normalization (described in Section 3.2.2.1 and
Appendix F). As mentioned in Section 3.2.2.1, a possible theoretical problem with this approach
is the risk of removing some of the signal in the tails of the distribution; however, several studies
have shown that empirical data does not support this hypothesis [205, 302]. To investigate this
problem, a comparative analysis of the impact of normalization on the estimated log2-ratio values
was performed; as described in Appendix F. This analysis applies 5 normalization methods on
SNP array data (500K) from 8 follicular lymphoma samples and compares the average LR values
of 50 sequence-validated CNVs in these samples. The results of this comparison did not provide

1in both cases LRbaseline � 0
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any substantial evidence to support the hypothesis that quantile-based normalization method sup-
presses the magnitude of real CNVs in the aforementioned follicular lymphoma samples. As seen
in Table F.2, contrary to what was expected, the quantile-based OPAS normalization often showed
an increase in the magnitude of real CNVs in these patients. Nonetheless, the 5 normalization ap-
proaches in Appendix F have been added to the OPAS software and the user can change the default
pre-processing normalization method or replace it by a new user-defined function.

Following normalization, for each SNP on the Affymetrix array, the PM oligos within the
SNP probe set were separated into groups with similar LR values based on a two-level clustering
approach (Fig. 3.10; panels A-B). The proposed clustering method, referred to as fuzzy-kmeans
clustering (Section 3.2.2.2), first uses a fuzzy inference system (subtractive algorithm) to model
the probe set data behavior through a minimum number of rules and then uses this information
to initialize a k-means optimization-based clustering algorithm (Fig. 3.9). Each estimated cluster
of PM oligos (i.e., oligo cluster) is subsequently passed through a hypothesis testing model (Sec-
tion 3.2.2.4) that performs KS-tests to test the null-hypothesis that the distribution of the oligo
cluster is around the normal copy number baseline (panels C-E in Fig. 3.10). These estimates
are then passed to a QDA machine learning classifier (Section 3.2.2.5) to identify the SNP’s oligo
cluster with the most informative signal and subsequently the center of this oligo cluster is used
as the SNP-level log2-ratio (LR) measurement. In the post-processing phase, first a LOWESS
non-parametric method is applied on the estimated SNP LR values to remove the potential PCR-
fragment length biases (Sec. 3.2.4.1, Fig 3.12). The generated OPAS meta-data can also help to
identify some potential issues for specific samples. Analysing the meta-data can help building
quality assurance controls.

It is important to note that in more than 600 analysed samples (from mental retardation, fol-
licular lymphoma, as well as normal individuals) only about 5% of the cases showed a strong
PCR-fragment length bias (r � 0.9; such as shown in Figure 3.12a). Possible causes for such cor-
relation is that experimental issues with PCR process or poor quality of the sample genomic data
(problems at the experiment-level) have resulted in such bias. Although this correlation is com-
putationally improved (Fig. 3.12b), there is no guarantee that the quality of the generated data in
such experiments is at the same level of samples that showed no such experimental biases. The
generated OPAS meta-data, such as intensity scatter plots before and after PCR-fragment length
normalization that are automatically generated and stored during sample analysis, can potentially
help to track down problematic samples. Although building proper quality assurance controls is
beyond the scope of this thesis, analysing the generated meta-data can provide further informa-
tion about the samples and may potentially facilitate quality control process. The final module of
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OPAS, shown in Fig. 3.1 flowchart, is non-parametric CBS segmentation (Section 3.2.4.2). The aim
of applying CBS segmentation is to identify neighboring regions of DNA that exhibit a statistically
significant difference in their average signal intensities.

To assess the CNV calling accuracy, OPAS, GLAD and SMD results were compared using a
simulated Nsp data set (described in Section 3.3.6). The results of this analysis indicated that all
methods had similar sensitivity and precision for LR shifts larger than 0.6 (δ > 0.6), and regions
with more than 10− 15 SNP probe markers (Sec. 3.3.6). The analysis also found that for mid-
range shifts (0.2 � δ � 0.6), the performance of OPAS for detecting CNVs with fewer than 10
SNP probes was noticeably higher than the other methods (Fig. 3.15). The latter finding implies
that OPAS has a better accuracy in detecting CNVs with fewer probes compared to GLAD and
SMD. To investigate if this improved performance was due to OPAS oligo-level pre-processing
analysis and not the CBS segmentation alone, another experiment was implemented to compare
the accuracy of both methods in detecting a known CNV with variable number of SNP probe
markers (Sec. 3.2.8 and Sec. 3.3.7). For this analysis 1,400 signal were generated with 2-15 SNP
probe markers within a known deleted region on chromosome 2p16.3 of a patient with mental
retardation. The results of this analysis (Figure 3.17, Table 3.4) also supported the hypothesis that
OPAS oligo-level processing of SNP data has a major impact on the accuracy of finding CNVs
with fewer SNP probe markers, which is not achieved by using CBS segmentation alone.

In addition to the simulated data analysis, described in Sec. 3.3.6, OPAS was applied on data
from 146 patients with mental retardation and the predcited CNVs were compared to a list of 30
validated CNVs in the same patients that were previously found by integrating the results of 7 alter-
native copy number algorithms [215]. The results of this analysis, presented in Table I.1, revealed
that OPAS detected all of these 30 validated CNVs in addition to 52 extra putative CNVs in these
MR patients. While there is no biological verification for the new putative events, Ingenuity Path-
way Analysis found genetic disorder, neurological disease and behavior are the most significant
functions associated to these candidate MR CNVs. The pathway analysis results provide addi-
tional confidence to OPAS findings in the MR dataset in the absence of experimental validation.

Furthermore, I also used a biologically inspired model to evaluate the performance of CNV
calling in the presence of controlled added noise (on chromosome 14 IGH locus; Fig. 3.4). The
results of this analysis showed that the average error rate (η) increased with the magnitude of sim-
ulated noise and reached 100% when the signal-to-noise-ratio was greater than 1 (Fig. 3.16). The
first false positive CNV call among these simulated signals was observed when SNR � 3. Based
on these findings, it can be speculated that the CNV calling algorithm yields reasonable sensitivity
and specificity to detect real CNVs.
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In the next Chapter (Chapters 4), I will apply OPAS to study CNVs in 25 patients with follic-
ular lymphoma and will use several alternative data sets to compare the predicted CNV results.
This analysis will confirm high sensitivity of the OPAS non-parametric approach in identifying
small CNVs with only a few SNP probes that were otherwise cryptic to alternative SNP CNV
analysis methods (for instance, OPAS detected several deletions with 4-8 SNPs that were validated
by sequencing; p. 132). Such findings support the underlying hypothesis of OPAS design that a
probe-level copy number analysis approach can improve CNV detection accuracy in Affymetrix
SNP arrays, particularly for those events with fewer SNP probe markers.
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3.5 Figures and Tables
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Figure 3.1: Flowchart of the OPAS algorithm: The OPAS algorithm has 2 main modules, pre-processing
(shown by red arrow) and post-processing (shown by yellow arrow). The first phase, pre-processing, aims to
detect the most informative PM oligos within each SNP probe set in order to improved SNP log2-ratio inten-
sity (LR) readouts. The main modules in SNP pre-processing are quantile normalization (Section 3.2.2.1),
fuzzy K-means clustering (Section 3.2.2.2), likelihood estimation (Section 3.2.2.4), and QDA-based ma-
chine learning classification (Section 3.2.2.5). The goal of the next phase, post-processing, is to partition the
whole genome into regions where the copy number changes between contiguous segments. In this phase,
the SNP-level LR intensities are first subjected to a LOWESS normalization to remove the systematic biases
induced by impact of PCR fragment length on the estimated SNP signal intensities (Section 3.2.4.1). Sub-
sequently, the LR values are passed to CBS segmentation algorithm (Section 3.2.4.2). Analysing the mean
log2-ratio values of these segments or their z-scores can help to identify candidate CNV regions.
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Figure 3.2: Flowchart of the alternative approach for SNP pre-processing based on Naive Bayes clas-
sification. The modifications suggested to OPAS pre-processing phase are superimposed on the default
algorithm flowchart (previously shown in Fig. 3.1). The blue boxes on the left of the main flowchart denote
the modifications. The red boxes (with greyed-out text) are the steps of default OPAS pre-processing phase
that are being replaced by these modifications. As seen in this plot, clustering is not applied on SNP probe
sets; and instead, all PM oligos in each probe set are passed to a Naive Bayes classifier. The aim of this clas-
sifier is to determine whether the log2-ratio intensity of each SNP probe set is similar to those SNPs from
known deleted, normal or amplified regions. Since clustering information in not available in this approach
(blue modules), log2-ratio values of SNPs are estimated based on the method explained in Section 3.3.3.3.
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Figure 3.3: Schematic representation of OPAS input/output data. As shown in this figure, the Affymetrix
GeneChip raw .CEL intensity files are the only user-input data to the OPAS algorithm (OPAS allows both
single and batch imports). During sample analysis, several different meta-data are generated which are au-
tomatically stored on the server or the designated storage space. The output .txt file includes a list of all seg-
ments in each 23 chromosomes of the analysed sample. The generated CNV plots (.jpg files) provide a means
to visualize CNVs along chromosome ideograms that are generated based on the UCSC genome browser
(the visualization also accommodates switching between different versions of UCSC genome builds). An
additional script enables generating UCSC custom tracks for any list of OPAS putative CNVs, according
to BED formatting (.BED files). During sample analysis, a series of other figures and data (referred to as
meta-data) are also generated and automatically saved at a pre-allocated space on the server (such as PCR
fragmentation length normalization plots; and probability density plots of the estimated LR values). These
generated meta-data and graphs provide a means to facilitate CNV interpretation and analysis, as discussed
in Section 3.4.
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(a) OPAS visualization output

FPP clone that detected 
the deletion (patient 17)
HTa17_0164B08

OPAS predicted del in patient 17

deletion in patient 17 predicted 
by an alternative CNV analysis

 algorithm (SMD)

(b) UCSC screenshot of the deleted region
with FPP results

Figure 3.4: The Nsp signal of chromosome 14 of a follicular lymphoma patient that harbors a deletion
on 14q32.33 (∼644 kb; 9 SNPs) and is used as the template to generate simulated noisy signals. Panel (a)
shows OPAS visualization output of chromosome 14 of a follicular lymphoma patient (patient 17; obtained
from Chapter 4 CNV analysis). The black arrow highlights a predicted deletion, approximately 644 kb with
9 Nsp SNP probe markers, located on chromosome 14 IGH locus. Panel (b) demonstrates the screenshot of
UCSC genome browser illustrating the fingerprint profiling (FPP) alignment of BAC clones in chromosome
14q32.33 of this sample (ht-17) to the reference human genome (hg18). BACs with linear alignments to the
reference genome are coloured blue and the ones with split alignments are coloured green (see Appendix K
for more information). The two blue arrows indicate that the ends of BAC clone HTa17-0164B08 align
to different loci on chromosome 14, suggesting that the region between these two arrows may have been
deleted. The OPAS predicted region of copy number deletion in the same sample is shown in pink. The
black vertical dashed lines denote the concordance between OPAS and FPP predicted boundaries of IGH
deletion. The black arrow in (b) indicates that the above deletion in patient 17 was also detected by an
alternative CNV calling algorithm (SMD [259]). These observations suggest that the predicted deletion of
IGH locus in patient 17 is a real CNV event.
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Figure 3.5 (previous page): Example of oligo-level and SNP-level variability in SNP arrays (100K
data). Panel (a) denotes the SNP scatterplot of a region on chromosome 10 in a child with developmental
abnormalities that harbors a known deletion, highlighted by the red dashed lines. This deletion is ∼353 kb
in length and includes 25 Xba SNP probes. The deletion disrupts several genes, including the SUFU gene
which has been associated with the observed phenotypes in this patient [365].
Panels (b)-(f) illustrate the probe sets of 5 SNPs in SUFU deleted region (SNPs 79, 81, 83, 93 and 100).
The x-axis denotes the index of PM oligonucleotide probes in the SNP probe set (1,2, . . . ,20); and the y-axis
demonstrates their fluorescent log2-ratio intensity readouts. The probe set plots (b-f) reveal that although
all of the aforementioned 5 SNPs are within the SUFU deleted region, there is a wide range of variability
between their estimated LR values and standard deviations (−1.34 � LR �−0.05, 0.3 � SD � 1.3). Some
of these SNPs have similar probe sets and LR values, such as SNP83 (3.5c) and SNP93 (3.5d) which both
indicate significant loss of signal intensities (LR83 = −1.34, LR93 = −1.33). Compared to these 2 SNPs,
SNP100 (3.5e) has a relatively smaller magnitude of copy number loss (LR100 = −0.5; Panel 3.5e). The
colored dots in panel 3.5e denote the differences between the log2-ratio readouts of PM oligos in SNP100
probe set; as detailed in page 79 (red and green dots show oligos with LR<−0.5 and oligos with 0 < LR �
−0.5, respectively; while the blue dots show noisy oligos with LR> 0). The last plot in this figure (3.5f)
illustrates SNP81 probe set. As observed, the log2-ratio intensity readouts of the PM oligos in this probe set
provide no substantial evidence to conclude that SNP81 is deleted (LR81 � 0).

98



RparentsRmotherRfather

!!

"

!

#$%&'#()#

!!

"

!
#$%&'#(*

!!

"

!

#$%&'#(+

!!

"

!

#$%&'#(,#

!!

!-

"

-

#$%&'#(.#

SNP 95

SNP 96

SNP 97

SNP 98

SNP 94

!!

"

!
#$%&'#()#

!*

"

*

#$%&'#+"

!*

"

*

#$%&'#+*#

!!

"

!

#$%&'#+!

!!

"

!

#$%&'#+,

RefSet

Mother

RefSet

Parents
R

24
R

99
R

150

SNP 83

SNP 82

SNP 81

SNP 80

SNP 79
RefSet Father

SNP80

SNP81

SNP82

SNP83

SNP94

SNP95

SNP96

SNP97

SNP79

SNP98

R24 R99 R150

Figure 3.6: Comparing the impact of the size of the reference set on estimated log2-ratio intensity
readouts of SNP probe sets within SUFU deleted region. These plots demonstrate the probe sets of 10
SNPs in SUFU deleted region. Three of these 10 SNPs were also shown in the previous figure, including
the non-informative SNP81 illustrated in Fig. 3.5f.
The plots in each row illustrate the PM oligonucleotide probe sets of the same SNP. Each column represents
estimated log2-ratio measurements with respect to a separate reference set. These 6 reference sets include
the mother of the affected patient (column 1), his father (column 2), the mean of both parents (column 3),
and three other reference sets with 24, 99 and 150 normal samples (R24, R99, R150; columns 4-6). This figure
indicates that, regardless of the reference set used to estimate LR values, there is a remarkable variation in
the overall pattern of probe set LR intensities. It is also observed that using a larger reference set does not
improve the probe set response of uninformative SNPs, such as SNP81 (Fig. 3.5f) or SNP96.
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Figure 3.7: Comparison of cumulative density functions (CDFs) of all oligos in SUFU deleted region
with 6 reference sets with varying sizes. This figure illustrates the CDF of log2-ratio fluorescent intensities
from 500 Xba PM oligos (representing 25 Xba SNPs) in SUFU deleted region (previously shown in Fig. 3.5).
Six reference sets with varying sizes (Fig. 3.6) were used to estimate log2-ratio intensities of the PM oligos
in this region. Each CDF is depicted by a different color, as detailed in the figure legend (see Section 3.3.2.1
for the description of these reference sets).
In addition to the CDF of deleted oligos, the CDF of all PM oligos on the Xba array (> 1.1 mil PM oligos)
is also shown by the black curve (referred to as base-line CDF). The fact that all CDFs that represent SUFU
deleted region fall on the left side of the base-line CDF emphasizes that no matter what reference set was
used to estimate test versus normal ratios, the log2-ratio intensity distribution of the SUFU deleted region
is smaller than, and distinct from, the LR distribution of the entire array. However, the extent of this distin-
guishability, which is determined by the deviation between SUFU and base-line CDFs, varies depending on
the reference set that was used to estimate the LR values. It is observed that using the largest reference set
(R150; denoted by the orange arrow) does not improve the distinguishability of SUFU deleted oligos from
the rest of the array, compared to single-array reference set of R f ather (denoted by the blue arrow).
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Figure 3.8: Boxplots of the average number of CNV-affirmative PM oligos per SNP probe set (θ ), with
respect to 3 reference sets with varying sizes. Three reference sets with 24, 99 and 150 samples were used
to estimated log2-ratio values of the SNPs from 22 regions of known copy number loss in mental retardation
patients [29, 30]. Each boxplot presents the average number PM oligos in each SNP probe set with LR< 0
across 22 aforementioned deletions with respect to a separate reference set (the reference sets are denotes in
the x-axis).
These boxplots indicate that when R24 is used, on average, 13.3 out of 20 PM oligos in each Xba SNP probe
set indicate loss of signal intensity (θ24 = 13.3/20 � 67%). Using a larger reference set with 99 normal
samples (R99) improves the number of CNV-affirmative oligos per SNP to 15.4/20 (θ = 77%). However,
when the largest reference set (R150) is used the average number of CNV-affirmative PM oligos per SNP
probe set drops to 14.3/20 (θ150 = 71%). This observation implies the number of PM oligos in the probe
set of SNP within a deleted region that indicate loss of signal intensity, does not necessarily improve by
increasing the number of reference samples.
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Figure 3.9: Fuzzy-Kmeans clustering of PM oligos in 5 SNPs within the SUFU deleted region. Each plot
depicts the probe set of an Xba SNP in SUFU deleted region that was previously shown in Figure 3.5 (each
consisting of 20 PM oligos). The fuzzy-kmeans predicted oligo clusters in each SNP probe set are shown
by different colors (red, blue and green). The mean of each oligo cluster is shown by a horizontal dashed
line, with the same color as the corresponding oligo cluster. The red oligo cluster in each plot indicates a
subset of PM oligos with the largest magnitude of copy number loss; while the blue oligo cluster denotes
PM oligos with either mediocre loss of signal (as in 3.9c) or oligos that show positive mean log2-ratio values
(noisy oligos). The reported LR value for each SNP, is the average log2-ratio intensity measurement of 20
PM oligos in the SNP probe set; and LR� presents the average SNP LR value after excluding the blue oligos
from the probe set. 102
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Figure 3.10: Schematic representation of oligo-clustering and likelihood estimation modules of OPAS
default pre-processing. Panel (A) shows the probe set of a given Xba SNP, consisting of 20 PM oligos.
This SNP is from a known deleted region in an MR patient. Panel (B) shows the result of fuzzy-kmeans
clustering (Section 3.2.2.2) that found 2 separate oligo clusters in this SNP probe set (denoted by red and
blue colors, respectively). These oligo clusters are then separately analysed using likelihood estimation
module; described in Section 3.2.2.4. The results of the likelihood estimation phase are presented in Tables
(D) and (E). The first 3 rows of these tables are the p-values of the null-hypothesis tests that were applied
on each oligo cluster (Section 3.2.2.4). The last 2 rows of (D) and (E) are the number of PM oligos in
each oligo cluster and the estimated cluster center. These data are passed to the downstream QDA classifier
(Section 3.2.2.5) to determine the most informative subset of PM oligos in this SNP probe set.
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(a) SNP scatterplot of a selected region in chromosome 6 that includes a known deletion (250 K Nsp array)

(b) Boxplots of the standard deviation (SD) of PM oligonucleotide probes in the deleted SNP probe sets, before and after
pre-processing
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(c) Comparison of the distribution of oligo-level LR intensities before and after pre-processing

Figure 3.11: Distribution of PM log2-ratio intensities before and after pre-processing (500K data).
Panel (a)-left shows the SNP scatter-plot of chromosome 6 of a patient with mental retardation that includes a
validated deletion. This deletion (highlighted in red) spans ∼353 kb and contains 45 Nsp SNP probes. Panel
(a)-right denotes the oligo-level and SNP-level variabilities in 4 selected SNPs within this deleted region
(these Nsp SNPs have 12 PM oligos). It is evident that there is a wide range of variability both between the
SNPs and among the individual PM oligos in the same SNP probe set (similar to the observation in the 100K
array data, shown in Fig. 3.5).
Panel (b) Shows the probe set variability of 45 SNPs within the deleted region, before and after OPAS
pre-processing phase. This variability is estimated by assessing the standard deviation between PM oligos
that belong to the same SNP probe set, before and after pre-processing (see Appendix E for description of
boxplot visualization). These boxplots show more than 4.5-fold improvement in the oligo-level variabilities
as the result of eliminating noisy oligos in pre-processing phase.
Panel (c) shows the CDF of all PM oligos in the aforementioned deletion (45×12 = 540 PM oligos), before
(black curve) and after (red curve) pre-processing. Comparing these CDFs indicates that the rates of oligos
with LR � −0.5 before and after pre-processing is equal to ∼91% and 71%, respectively. This indicates an
improvement of approximately 20% in the rate of informative PM oligos as the result of SNP pre-processing
analysis.
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(a) Before PCR Fragment Length Normalization

(b) After PCR Fragment Length Normalization

Figure 3.12: The correlation between SNP log2-ratio intensities and PCR fragment length, before and
after LOWESS normalization. Panel (a) illustrates the SNP log2-ratio intensities in an Xba array plotted
against the corresponding PCR fragment length data. As seen in this figure, there is a significant correlation
between the estimated LR intensity (y-axis) and PCR fragment length (x-axis) (r = 0.9, P = 2e-5). Panel
(b) shows the same plot after correcting for PCR-induces biases using LOWESS non-parametric normal-
ization. The symmetrical shape of this scatter-plot around the horizontal axis implies that the dependency
of log2-ratio values on fragment length is remarkably improved after applying LOWESS fragment-length
normalization.
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Figure 3.13: Comparing estimated LR values of 567 SNPs in 19 validated regions of copy number
loss based QDA and Naive Bayes classifications. These boxplots illustrate the log2-ratio intensity mea-
surements of 567 SNPs in 19 Illumina sequence-validated deletions in follicular lymphoma samples (500K
data). The first boxplot on the left shows the mean LR values of all SNPs (567) before pre-processing
generated by averaging the log2-ratio intensities of all PM oligos in the SNP probe sets (after between-array
normalization of test and reference samples). The remaining 3 boxplots represent the LR values of the afore-
mentioned SNPs (567) based on different SNP pre-processing methods, as indicated below each bar (OPAS
default QDA-based method, Naive Bayes with normal distribution and Naive Bayes with kernel fit). All 3
pre-processed data sets (bars 2-4) indicate improvements in the magnitudes of copy number loss compared
to the original LR data before pre-processing (bar 1). It is also observed that OPAS pre-processing of the
SNP-level data from deleted regions, in overall, has the largest magnitude of copy number loss compared to
Naive Bayes classification results (LROPAS =−1.09; LRNaiveBayes �−0.59).
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Figure 3.14: Examples of OPAS detected CNVs in simulated signals with different magnitudes of LR
deviations. Panel (a) shows the OPAS-detected CNVs on a simulated chromosome 1 dataset that includes 11
predefined synthetic CNV regions with 2, 8, 10, 15 and 200 SNP probes (w). The results of OPAS analysis
in detecting these simulated CNVs are denoted by pink and yellow circles. These colors indicate whether
the simulated CNV was detected by OPAS (yellow) or not (pink). As seen in (a), from the 11 pre-defined
CNVs in this signal (δ = 0.11), only 4 were detected by OPAS and they all had w ≥ 15. Panel (b) shows the
detection result of the same CNV regions in a simulated signal with δ = 0.2. This figure (3.14b) shows that
10/11 simulated CNVs were detected by OPAS (the only case that was not detected had only 2 probes).
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Figure 3.15: Comparing the accuracy and precision of CNV calling algorithms. Sensitivity (A-E) and
precision (F-J) are obtained by applying OPAS, SMD (Delaney et al. [259]) and GLAD (Hupe et al. [210])
on simulated Nsp 250K array data (described in Sec. 3.2.6). This simulated dataset includes synthetic CNV
regions with varying alteration sizes (w; x-axis) and log2-ratio intensity shifts (δ ; denoted at the top of each
plot). It is observed that all algorithms offer similar sensitivity and precision for alterations at log2-ratio
shifts larger than 0.6 (D-E and I-J) and with more than 10− 15 SNP probe markers. However, detecting
CNVs with fewer number of SNP probe markers (smaller w) was largely dependent on the magnitude of the
LR deviation (δ ) and the method used to analyse the data.
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Figure 3.16: Number of false negative deletion calls of the IGH locus, plotted against increasing noise
of the simulated data. The bottom x-axis (shown in black) denotes the standard deviation (SD) of the
random gaussian noise (σnoise) that was used to generate simulated chromosome 14 signals with known
IGH deletions (Figure 3.4). The corresponding signal-to-noise ratio (SNR) for each value of σnoise is also
displayed at the top x-axis (shown in red).
The average error rate η (y-axis) at any given σnoise is defined as the average number of cases that IGH
deletion was not detected in simulated signals with the specified magnitude of noise (x-axis). This plot
indicates that the error rate η increases with standard deviation of the noise (σnoise). At σnoise = 0.17 (marker
’B’) the IGH deletion is not detected in any of the 10 simulated signals (η = 1). Investigating the top red
axis, reveals that at this level of noise (marker ’B’) the signal-to-noise ratio is approximately equal to 1
(SNR = 1.03). This observation implies that when the amplitude of the added noise is equal to or larger than
the original signal, the known IGH deletion is not detected in any of the simulated noisy signals.
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Figure 3.17: Results of comparing CBS and OPAS performance in detecting a known deletion. Panel
(a) compares the performance of OPAS and CBS in detecting a known deletion with respect to the number of
SNPs in the deleted region. The x-axis denotes the number of SNP probes within the known deleted region
after n random SNPs from the original 17 SNPs in this deleted region were excluded from the Xba data
(n = 1,2, . . . ,15). The y-axis in Panel (a) denotes the total number of cases in 100 trials that an algorithm
found a segment that mapped to the known deleted region (with at least 60% coverage of both regions).
This plot shows that OPAS and CBS both present similar performance in detecting the known deletion with
more than 9−10 SNP probe markers; however, there is a noticeable difference between the accuracy of the
methods when there are fewer than 9 SNP probe markers in the region.
Panel (b) shows the LR values of the deleted region based on the original mean SNP signal (black curve),
as well as OPAS (red curve) and CBS (blue curve) methods. The x-axis is the same as the previous plot
and the y-axis represents the average estimated LR value of the known deleted region across 100 trials. The
green horizontal dashed line illustrates the copy number normal base-line (LR=0). These plots indicate that
the magnitude of the generated copy number loss decreases as more probes are removed from the known
deleted region; however, OPAS shows a consistently larger magnitude of copy number loss, compared to
CBS segmentation approach.
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Set Null Hypothesis (H0) Alternative Hypothesis (H1)

1 X = y0 X �= y0 ”two.sided”
2 X ≤ y1 X > y1 ”greater”
3 X ≥ y2 X < y2 ”less”

Table 3.1: Three sets of hypothesis tests used in null-likelihood phase. Test set #1 tests the alternative
hypothesis that the CDFs of the oligo cluster data and the background population are not equal (H1 : X �= y0).
The next KS-test examines the alternative hypothesis that the CDF of oligo cluster data (X) is larger than the
CDF of the specified background (H1 : X > y1), and the last test examines the alternative hypothesis that the
CDF of X is smaller than that of the background (H1 : X < y2). The significance level α = 0.05 is used in
all of the above tests.
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Rfather Rmother Rparents

SNP # LR n1 n2 LR n1 n2 LR n1 n2

SNP79 -0.89 11 10 0.14 10 1 -0.38 10 10
SNP81 -0.05 10 2 0.05 8 0 0.00 11 0
SNP83 -1.34 19 12 -1.26 16 12 -1.30 19 12
SNP93 -1.33 17 12 -0.90 11 10 -1.12 12 10
SNP100 -0.51 14 9 -0.54 14 10 -0.52 18 9

(a)

R24 R99 R150

SNP # LR n1 n2 LR n1 n2 LR n1 n2

SNP79 -0.40 10 10 -0.85 16 10 -0.74 13 10
SNP81 0.14 10 6 0.16 9 6 0.14 10 6
SNP83 -1.00 17 13 -1.40 19 14 -1.32 19 13
SNP93 -0.60 10 10 -0.61 10 10 -0.59 10 10
SNP100 -0.86 17 11 -1.14 17 11 -1.01 17 11

n1: number of PM oligos in the SNP probe set with LR< 0
n2: number of PM oligos in the SNP probe set with LR<−0.5

(b)
Table 3.2: The impact of the size of reference sets on the estimated SNP signals. These tables present mean log2-
ratio (LR) probe set intensities of 5 SNPs in SUFU deleted region that were previously shown in Figure 3.5 (SNPs 79, 81,
83, 93 and 100). Six reference sets with variable number of reference samples (1,2,24,99 and 150 samples) were used
to estimate the reported LR values (see p. 79 for description of these reference sets). The tables also indicate the total
number of PM oligos within each SNP probe set with LR < 0 (n1; CNV-affirmative oligos) and those with LR < −0.5
(n2).
Table (a) illustrates the impact of small reference sets (with 1− 2 reference samples) on the estimated SNP LR values
(LR) and the number of PM oligos in the SNP probe sets that indicate loss of signal intensity (n1, n2). Table (b) shows
the mean LR, n1 and n2 estimates of the same 5 deleted SNPs based on larger reference sets, consisting of 24, 99 and 150
samples. The red highlighted data denote the estimated log2-ratio intensities of SNP81 that was previously displayed in
Figure 3.5f (as a non-informative SNP in SUFU deleted region). The data in the above table reveals that the estimated
LR value of this SNP (SNP81) does not improve by any reference set. This is an example of a SNP that does not support
copy number deletion in this experiment, regardless of the reference set used to estimate LR intensities.
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Comparing Naive Bayes and QDA Classification Results

Naive Bayes Naive Bayes QDA Mean Signal of the
Normal Func. Kernel Fit (default) Deleted Region (LR)

Del. id N # Deletion
Calls

# False Neg-
atives (β )

# Deletion
Calls

β # Deletion
Calls

β LR∗ LR†
NBN LR†

NBK LROPAS‡

1 30 22 8 20 10 24 6 -0.48 -0.61 -0.58 -1.05
2 24 18 6 16 8 20 4 -0.44 -0.56 -0.50 -1.02
3 4 4 0 3 1 4 0 -0.68 -0.55 -0.55 -1.33
4 152 72 80 71 81 101 51 -0.44 -0.36 -0.37 -0.95
5 13 9 4 10 3 13 0 -0.62 -0.84 -0.84 -1.39
6 28 23 5 23 5 22 6 -0.49 -0.50 -0.69 -1.15
7 152 96 56 98 54 110 42 -0.41 -0.55 -0.56 -1.09
8 5 5 0 5 0 5 0 -0.60 -0.79 -0.79 -1.36
9 5 5 0 5 0 4 1 -0.53 -0.75 -0.75 -1.20
10 5 4 1 4 1 3 2 -0.44 -0.56 -0.56 -1.07
11 5 4 1 4 1 3 2 -0.37 -0.52 -0.52 -0.86
12 14 12 2 11 3 12 2 -0.46 -0.79 -0.79 -1.18
13 5 4 1 2 3 5 0 -0.37 -0.50 -0.35 -1.03
14 5 4 1 3 2 3 2 -0.25 -0.73 -0.73 -1.09
15 9 8 1 8 1 9 0 -0.65 -1.03 -1.09 -1.50
16 9 9 0 8 1 8 1 -0.51 -0.90 -0.90 -1.19
17 11 2 9 2 9 1 10 +0.32 +0.26 +0.23 -0.19
18 80 52 28 53 27 61 19 -0.42 -0.62 -0.61 -1.11
19 11 6 5 4 7 8 3 -0.26 -0.29 -0.21 -0.95

Sum: 567 359 208 350 217 416 151

Average LR Values: −0.43 −0.589 −0.587 −1.09

∗ mean LR value of all SNPs in the deleted region
† mean LR values of all SNPs in the deleted region based on Naive Bayes classification with normal distribution (LRNBN ) and

kernel fit (LRNBK )
‡ OPAS-estimated mean LR value of all SNPs in the deleted region (based on QDA classification)

Table 3.3: Comparison of the performance of Naive Bayes and OPAS QDA-based SNP pre-processing
methods. This table presents the summary of analysing SNPs in 19 regions of copy number deletion in
follicular lymphoma samples (500K data) that were validated by Illumina sequencing (Chapter 4). The
rows correspond to the results of each analysed deleted region. The number of Nsp SNPs within sequence-
validated boundaries of each deletion (N) is reported in the 2nd column of the table. The rest of the columns
present the number of SNPs that were successfully predicted as deleted by 3 different methods (Naive Bayes
classifiers with normal distribution and kernel fit; and OPAS QDA-based classification). The number of
the remaining SNPs in the deleted region (those that were not classified as deleted) is also reported for
each method (β ; number of false negatives). The last 3 columns of the table summarize the estimated LR
values of the deleted regions based on each aforementioned method (LRNBN , LRNBK and LROPAS). The
original mean LR values of these regions are also reported in this table (LR; column 9). The summary of the
comparison across 19 deleted regions, presented in the last 2 rows of this table, shows that in overall Naive
Bayes classifier with normal distribution has better sensitivity to detect deleted SNPs compared to kernel
fit; however, OPAS QDA-based classification appears to outperform both of these Naive Bayes classifiers
(in addition to the above comparison of true positives, the analysis of false positive deletion calls of these 3
methods is presented in page 83).
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OPAS Results CBS Results

# SNPs (ι) Mean
LR

# mapped segments
with LR< 0

LROPAS # mapped segments
with LR< 0

LRCBS

15 -0.312 100 -0.992 100 -0.362
14 -0.311 100 -0.987 100 -0.354
13 -0.301 100 -0.976 100 -0.357
12 -0.285 100 -0.944 100 -0.351
11 -0.262 100 -0.941 99 -0.339
10 -0.247 100 -0.945 99 -0.333
9 -0.253 99 -0.911 100 -0.331
8 -0.245 100 -0.894 90 -0.322
7 -0.183 96 -0.899 91 -0.289
6 -0.173 98 -0.893 86 -0.262
5 -0.150 94 -0.864 78 -0.235
4 -0.127 94 -0.837 78 -0.228
3 -0.047 92 -0.820 58 -0.119
2 -0.083 89 -0.809 63 -0.145

Table 3.4: Comparing CBS and OPAS performance in detecting known CNVs with respect to the number of
SNP probes in the CNV regions. This table presents the results of CBS and OPAS in detecting a known deletion on
chromosome 2p16.3 in a patient with mental retardation using Xba SNP array data (this deletion includes 17 Xba SNP
probe markers). The first column indicates the number of SNP probes in the deleted region after N SNPs were randomly
excluded from this region (2 � N � 15). The 3rd and 5th columns indicate the average number of times that 2p16.3
deletion was detected by CBS and OPAS methods (100 simulated signals were generated for each listed value of N).
The LR value of the known deleted region was estimated based on both CBS and OPAS methods and shown in the 4th
(LROPAS) and 6th (LRCBS) columns of this Table. This table also presents the original estimated (mean) LR value of the
deleted region across 100 simulated signals (Mean LR; column 2). The visual representations of the data in the above
Table are provided in Figure 3.17.
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Chapter 4

Analysing CNVs in Follicular
Lymphoma Genomes

4.1 Introduction
Lymphoma comprises more than 67 subtypes of two related cancers that affect the lymphatic
system, Hodgkin lymphoma and non-Hodgkin lymphoma1 [367]. In Canada, non-Hodgkin lym-
phomas accounted for about 7,500 new cases of cancer in 2010, making them the fifth most com-
monly diagnosed cancers; and 3,200 estimated deaths, which makes them the sixth most common
cancer related mortality2. Follicular lymphoma (FL) is the second most common lymphoma and
comprises about 20-30% of all non-Hodgkin lymphomas [368]. Cytogenetic abnormalities are a
common characteristics of most FL cases [248], including frequent gains of 1q, 2p, 6p, 7, 9p, 12,
17q, 18, X and losses of 6q and 10q [244–248]. Additionally, more than 85% of FL cases are asso-
ciated with a specific translocation, t(14;18)(q32;q21); however, this translocation is not sufficient
to produce clinical FL [254, 369–371]. Therefore, other genetic aberrations may play a role in
lymphoma tumorigenesis.

The advent of high-resolution microarray techniques provided the capability to detect sub-
microscopic DNA copy number gains and losses in FL and led to novel CNV discoveries and
improvements in the characterization of known CNVs in FL [244, 247]. An example of novel
relatively smaller CNVs in FL is 1p36 deletion which was found to be present in 25.5% of 108

1http://www.lymphoma.org
2http://www.cancer.ca/Canada-wide/About%20cancer/Cancer%20statistics/Canadian%20Cancer%20Statistics.

aspx?sc lang=en
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FL patients in a study by Cheung et al. [244] using array CGH. Nonetheless, most of the known
altered regions in FL span several megabases and contain many genes, making it very difficult to
identify specific genes that may play significant role in FL.

The goal of the study presented in this Chapter was to perform copy number analysis of the SNP
array data from a cohort of 25 matched tumor/normal FL samples using the OPAS approach. These
samples had been previously studied at the Genome Sciences Centre (GSC) by a multi-platform
approach, including BAC array CGH1 (BAC aCGH), finger print profiling (FPP) and targeted Il-
lumina sequencing. In addition to OPAS, the 500K SNP array data from these samples have also
been analysed by an alternative CNV calling algorithm known as Significant Mean Distance (SMD)
method [29, 30, 259, 372] (performed by an independent group at the GSC). The specific aims of
this Chapter were (1) to identify candidate somatic CNVs (i.e., CNVs that are present in the tu-
mor but not the matching normal DNA) in these FL patients, (2) to profile the candidate CNVs
and investigate the frequency, size and proportion of DNA gains and losses; and (3) to investi-
gate whether the use of the OPAS method resulted in detecting novel CNVs, particularly smaller
events that were not previously detected in these genomes. The latter analysis would indicate the
usefulness of using OPAS in the context of detecting cancer-related CNVs.

In this Chapter, I focused on using the data from Affymetrix 250K Nsp array (consisting of
3,035,520 PM oligos) that is part of the Affymetrix 500K dual SNP array set2. The reason for
using only Nsp arrays was that it has been shown Sty arrays have lower genotype call rates and
higher genotyping errors compared to Nsp arrays [373]. Such biases could mitigate the genotyping
call rates as well as the accuracy of CNV analysis since the same probe intensity data are used
for both of these analyses. Even with half of the initial data points, an inter-platform comparison,
explained in Section 4.3.7, revealed that the presented analysis (Nsp) found several novel events
smaller than 150 kb that were not previously identified by analysing 500K array (Nsp and Sty) data
with an alternative method.

4.2 Materials and Methods

4.2.1 Samples and Cytogenetic Analysis

The 25 FL tumor and normal specimens were collected at the British Columbia Cancer Agency
(BCCA) in Vancouver, British Columbia. In each case, a lymph node biopsy with FL morphol-

1BAC array CGH experiments were performed at the BC Cancer Agency.
2Affymetrix GeneChip R� 500K SNP array consists of NspI and StyI arrays, each with ∼250K SNPs.
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ogy was paired with a peripheral blood sample as the normal DNA (used as the reference set in
CNV analysis). Cytogenetic analysis of lymph node specimens was performed at the Center for
Lymphoid Cancer (CLC) at BCCA, according to the method previously described by Horsman et
al. [374].

4.2.2 BAC Arrays and SNP Arrays

The array CGH (aCGH) analysis was performed at the CLC using submega base resolution tiling
(SMRT) arrays containing 26,819 BAC clones [121, 375]. Copy number analysis of aCGH data
was also performed at the CLC using the Hidden Markov Model (HMM) program CNA-HMMer
v0.11 [244, 376] and visual inspection.

The Affymetrix GeneChip R� 500K SNP array experiments were performed at the GSC using
500 ng samples of tumor and constitutional DNA according to manufacturer’s protocol [166]. In
addition to analysing the 250K Nsp array data using OPAS, the data from Nsp and Sty arrays were
independently analysed at the GSC using Significant Mean Distance (SMD) method, which has
been used in several other publications [29, 30, 259, 372]. In SMD analysis, putative CNVs in-
cluding at least 10 contiguous SNPs called by the SMD software with a p-value below 1× 10−8

were selected and passed through a manual inspection phase (at the GSC). At the end of this pro-
cess, the analytical and manual inspection of SMD results generated a list of 211 putative somatic
CNVs in 25 FL patients (provided by Dr. Allen Delaney, GSC).

4.2.3 Fingerprint Profiling (FPP)

The finger printing profiling (FPP) and validating candidate rearrangements were performed at the
GSC. Briefly, BACs from each library were subjected to restriction digest fingerprinting, as previ-
ously described by Krzywinski et al. [126]. The FPP method maps each fingerprinted BAC to the
reference genome (hg18), allowing the identification of the differences in the restriction fragment
pattern between patient and the reference genome, such as shown in Figure 4.1. These differences
were then converted by a computational algorithm into a list of 271 candidate rearrangements in
23 FL patients, consisting of 132 deletions, 14 insertions, 13 duplications, and 112 other events (35
translocations, 47 inversions, and 30 complex rearrangements). To validate the FPP candidate re-
arrangements, the BAC clones that captured these events were subjected to paired-end sequencing.
In order to determine the exact rearrangement breakpoints, a subset of candidate rearrangements in
20 FL patients (354), supported by at least two BACs, were chosen for complete Illumina sequenc-

1available at http://www.cs.ubc.ca/?sshah/acgh/
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ing (Figure 4.1). A PCR assay was also performed to identify the origin of these rearrangements
(somatic or germline). The final list of sequence and PCR validated rearrangements, including 193
deletions and 43 insertions/duplications, was compared to candidate CNVs in Section 4.3.7 as a
source of validation. These 236 events (193+ 43) were a subset of all validated rearrangements
that were proven to be somatic (by PCR) or had ”undetermined source”1.

The sequence validation and PCR experiments were performed by Dr. Andy Mungall at the
GSC. The detected rearrangements in the FL dataset from FPP and Illumina sequencing is accessi-
ble through an internal database at the GSC, called Follicular Lymphoma Tumour BAC Fingerprint
Database at http://map02.bcgsc.ca:5000/anomaly/, thereafter, referred to as ”Tumordb”.

4.2.4 Ingenuity Pathway Analysis Software

Ingenuity pathways analysis software (Ingenuity R� Systems, www.ingenuity.com) was used to ex-
amine genes identified by OPAS analysis for their relevance to currently known biological func-
tions and canonical pathways. The p-values are calculated with the right-tailed Fisher’s Exact Test
(P � 0.05 indicates a statistically significant, nonrandom association). The Benjamini-Hochberg
multiple testing correction was also used where appropriate.

Contributions
The Affymetrix experiments for the 25 FL samples were performed at the Genome Sciences Centre
(GSC). The SMD copy number analysis was performed by an independent group at the GSC.
Putative CNVs including at least 10 contiguous SNPs called by the SMD software with a p-value
below 1× 10−8 were selected and passed through a manual inspection phase by the same group.
At the end of this process, the analytical and manual inspection of SMD results generated a list
of 210 putative somatic CNVs in 25 FL patients (provided by Dr. Allen Delaney). Throughout
this Chapter, all references to the SMD detected CNVs indicate regions that have been reported
in the aforementioned list of 210 annotated CNVs which are available at the Tumordb website.
Additionally, Tumordb also contains the CNV results from array CGH analysis of these samples,
which was performed at the CLC lab at BCRC (Section 4.2.2). The aCGH results in Tumordb were
also generated by coupling analytical approach (CNA-HMMer) and visual inspection.

The finger print profiling (FPP) was performed by Mapping group at the GSC. The sequencing
and PCR validation of the source of the events were performed by Dr. Andy Mungall at the GSC.

1If it was not possible to confirm whether the breakpoints were somatic or germline through PCR (for instance, when
it was not possible to design unique PCR primers), the event was called a rearrangement with ”undetermined source”.
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The FPP and sequence data are also available at the Tumordb website.
To identify somatic copy number aberrations, I analysed the SNP 250K Nsp raw signal inten-

sity data (.CEL files) using the OPAS algorithm (described in Chapter 3). The candidate somatic
CNVs were then selected by choosing a subset of all OPAS predicted regions that had log2-ratio
intensity (LR) less then -0.2 or greater than +0.2, or CNVs that had a lower magnitude of LR but
indicated a significant deviation with respect to their surrounding regions (or other chromosomes)
based on their estimated z-scores. The OPAS default parameters were used to filter noisy oligos,
normalize the data by two-level normalization process and split each chromosome into contiguous
regions with different relative copy number estimates. The default parameters included 10,000 per-
mutations to measure segmentation p-values, and a statistical significance of 0.01 to accept change
points in segmentation phase. Candidate somatic CNVs were then selected from the list of all
OPAS generated regions that indicated a significant copy number change based on their estimated
LR or p-values, as described in Section 4.3.1.

4.3 Results

4.3.1 Magnitude of Copy Number Changes in FL Genomes

In a sample with predominantly diploid chromosome numbers, the expectation would be that a copy
number of 2 corresponds to an LR of 0 (log2(2/2) = 0). Thus, LR of -1 (log2(1/2)) and +0.58
(log2(3/2)) represent single copy loss and gain, respectively. However in practice, these values
are compressed by the level of standard deviation of microarray hybridization intensities (noise)
that can vary significantly between different experiments. In addition to microarray noise, CNV
heterogeneity, described as copy number amplification or deletion that is present only in a subset of
cells, further lowers the magnitude of log2-ratio changes of real CNV events. CNV heterogeneity
and aneuploidy are common observations in cancers, further complicating CNV analysis in cancer-
related studies. Therefore, particularly in cancer-related studies, lower LR magnitudes are used
for CNV calling. For example, Berger et al. [377] used LR = ±0.15 to detect CNVs in lung
adenocarcinoma, and Haverty et al. [366] used LR = ±0.3 to report putative CNVs in breast and
ovarian cancers.
To define significant log2-ratio intensity changes, I analysed the distribution of LR values from all
OPAS generated regions with more than 2 snps in 25 FL patients (1931 regions), as depicted in
Figure 4.2. Inspection of Figure 4.2a reveals two change points in the CDF curve that represent
approximately 7% and 93% of all the OPAS estimated regions (among 25 FL samples). The region
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between these two LR values, highlighted by the green box, seems to follow a normal distribution,
as shown in the histogram of Figure 4.2b. Thus, this analysis indicates that about 7% of all OPAS
regions appear to have a distribution that is not consistent with the rest of the data. Therefore, the
cutoffs for significant LR changes representing CNV gains and losses were chosen as the 93% and
7% of the data, corresponding to regions with LR � −0.2 or � 0.2 (Table 4.1 provides a detailed
summary of the frequency of predicted deletions and amplifications with varying range of LR cut-
off values). The LR cut-off values that were used in this study (LR =±0.2) resulted in total of 251
candidate CNVs (134+118).

One limitation of using only LR cut-offs to determine whether an OPAS-estimated region is a
candidate CNV is that depending on the overall spread of the data in a particular chromosome or
sample, sometimes estimated regions with apparent gains or losses of signal intensity do not pass
the LR significance thresholds. For instance, in Figure 4.3, the entire chromosome 1 of patient
9 (ht-9) has log2-ratio of zero, except for a region approximately 7.6 Mb on 1p36 that shows a
clear loss of signal intensity, although its corresponding LR is only -0.13. To circumvent the LR
cutoff problem, z-scores1 were used to identify regions with slight gain or loss of signal intensity
that may reflect a significant deviation with respect to the chromosome they belong to (or other
chromosomes of the corresponding sample). Figures 4.4 and 4.5 compare the distribution of z-
scores of all regions in the FL dataset with significant LR deviation (|LR|� 0.2), and regions with
slight LR change (|LR| < 0.2). As seen in Figures 4.4a and 4.5a, the distributions of z-scores
of regions with significant loss of signal intensity (referred to as ”X”) overlaps with regions with
slight loss of signal intensity (referred to as ”L”). In a linearly non-separable case with overlapping
distributions, such as in Figure 4.4a, misclassification is inevitable. In practise, regions with z-score
less than or equal to −0.9 often represent real deletions (see the estimated z-scores in Table 4.3).
However, the data from validated deletions reveals that larger deletions may have lower magnitudes
of z-scores (e.g., Fig. 4.3). The selected z-score of -0.6, shown by black arrow in Figure 4.4a, is an
arbitrary value between -0.9 and 0 to select regions with slight loss of intensity that may represent
real copy number deletions (z-score � −0.6). The visual inspection of such cases (regions with
−0.2 < LR < 0 and z-score �−0.6) can add more confidence to the selected candidate deletions.

Figures 4.4b and 4.5b show similar analysis to compare the distribution of z-scores for regions
with significant increase of signal intensity (LR�+0.2; referred to as ”Y”) with regions with slight
gain of signal intensities (0 < LR < 0.2; referred to as ”G”). As observed in these plots z-scores of
regions with intensity gain (”Y” and ”G”) have a smaller overlap compared to z-scores of regions

1The z-score is generated using z = (x−µ)/σ , where x is the OPAS estimated LR of the region of interest. Also, µ
and σ are the mean and standard deviation of LR values of all SNPs in the corresponding chromosome(s).
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with loss of intensity (”X” and ”L”). In fact, selecting z-score =+0.6 almost completely separates
the two distributions. The latter suggests that OPAS regions with slight gains of signal intensity but
with z-scores �+0.6 can also be considered as candidate regions of copy number amplification.

Based on the above z-score selection criteria, 34 OPAS detected regions with slight loss (19)
or gain (15) of LR values were also added to list of candidate somatic CNVs in the FL dataset (the
original list included 251 OPAS regions with |LR|� 0.2).

4.3.2 Spectrum of Somatic CNVs in FL Genomes

Genome instability in cancer results in a wide range of copy number rearrangements in these
genomes, ranging from small focal CNVs that target specific genes (such as tumor suppressors
or oncogenes) to aneuploidies that alter the number of chromosomes in the cells (e.g., trisomy 8 in
acute myeloid leukemia1).

In addition to the variation in the size of CNVs in cancer, studies have also shown certain
patterns of CNVs with respect to their location on the chromosome. For instance in colon cancer,
it has been shown that there is a significant abundance of CNVs near centromeres [360] and in
glioblastoma and melanoma there is an increased frequency of CNVs near chromosome ends [360].
In this Chapter any detected copy number variation in FL samples, regardless of its size, is referred
to as a candidate CNV.

In total, 286 candidate somatic CNVs were found in 25 FL patients, with an average of 11.4
variants per individual and a range of 2-26 variants per patient. The predicted 286 CNV regions
had a median size of approximately 895 kb. Analysis of the size of candidate CNVs in FL patients
suggested that 20/25 (84%) patients had at least one CNV � 150 kb, and 22/25 (88%) had at
least one CNV � 2 Mb. The 286 candidate somatic events included 153 (53%) deletions with a
global median of ∼672 kb, spanning between 753 bp-191 Mb in length (with median of 48 SNP
probes). The predicted amplifications accounted for 133 (46%) of all candidate CNVs with global
median of ∼5.4 Mb, ranging between 8 kb and 242 Mb in size (with median of 269 SNP probes),
as described in Table 4.2. The pie chart in Figure 4.7.(a) indicates that the frequency of candidate
somatic amplifications is approximately comparable to that of deletions (53% deletions versus
46% amplifications). However, as shown in panel (b), at smaller sizes (∼150 kb or less) candidate
deletions are ∼1.8 times more frequent than amplifications. In contrast, as shown in panel (c), at
large sizes (> 8 Mb) the frequency of amplifications is two times higher than that of deletions.
In conclusion, this figure suggests that although the overall frequency of candidate deletions and

1http://atlasgeneticsoncology.org//Anomalies/tri8ID1017.html
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amplifications is similar in the FL dataset (25 patients), the proportion of large-scale candidate copy
number gains is likely greater than that of large-scale deletions, with the opposite holding true for
smaller candidate CNVs. The relative enrichment of deletions at smaller sizes (compare (b) and
(c) in Figure 4.7) may reflect higher rates of small acquired copy number loss events in lymphoma
patients. Such small deletions may disrupt the function of specific gene(s) that may be important
in FL.

In terms of the location of the detected CNVs with respect to the rest of the chromosome,
there were 3 main patterns of events across 25 FL patients in this study. These categories can be
summarized as the following: (1) CNVs that affect whole-chromosomes1 or chromosome arms,
(2) CNVs that affect the distal ends of chromosomes, or (3) CNVs that affect other regions of
the genome. These three categories of candidate events are analysed separately in this study, as
described in Sections 4.3.3-4.3.5. In Section 4.3.6 it is also shown that several small (< 150 kb)
OPAS deletions that are validated (by Illumina sequencing) affect known cancer-related genes,
such as the DKN2A tumor suppressor. Another interesting example, discussed in Section 4.3.8.3
is a deletion that removes 3 exons of KIT, a known proto-oncogene. Detailed analysis of this gene
shows that the deleted region corresponds to the extracellular region of KIT which acts as ligand
binding site for this gene. Therefore, the small OPAS detected deletion (which is also validated by
Illumina sequencing) may contribute to constitutive activation of this proto-oncogene by removing
the ligand binding site of KIT (see Section 4.3.8.3).

4.3.3 Category 1: CNVs Affecting Whole-chromosomes or Chromosome Arms
(WCA)

In this study, large-scale events that span the entire length of chromosomes or chromosome arms
are referred to as WCA events (e.g., Figure 4.8). In total, 48 WCA events were found in 172

FL patients (Table 4.2). The summary of the chromosomes that are affected by WCA events in
the FL dataset and the patients that harbor those events are presented in Figures 4.9 and 4.10.
These data indicate that WCA events are frequently observed in FL genomes and that these events
are substantially enriched for copy number amplifications compared to deletions (copy number
amplifications accounted for 42 of the total 48 WCA events). It was also observed that gains of
entire chromosomes were the most prevalent observation in this category (22/48 events were gains
of whole chromosomes; Figure 4.10). Previous studies of rearrangements in FL genomes using

1As mentioned previously, the gain or loss of entire chromosome(s) is a condition known as aneuploidy. However,
in this analysis any predicted change in the DNA copy number, regardless of its size, is referred to as a candidate CNV.

28/25 FL patients did not harbor any WCA events (patients 3, 6, 10, 13, 17, 19, 20, and 26).
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different methods have consistently found gains of whole chromosomes or chromosome arms to be
the most frequent chromosomal copy number abnormality in FL, which is consistent with the high
frequency of WCA events that was detected in the current FL dataset (48/286 of all candidate FL
CNVs ).

From the 48 large-scale WCA events, 46 were directly validated by the results from cytogenet-
ics analysis (karyotyping and/or MFISH). The remaining two candidate WCA events were slight
gains of chromosomes X (LR � 0.08) and 8 (LR � 0.07) in the same patient (ht-29), shown in
Figure 4.11. In addition to OPAS, aCGH analysis also indicated a slight shift in log2-ratio intensity
readouts of the above two chromosomes in ht-29 (Figures 4.11e-4.11f). SMD analysis also reported
one of these two candidate WCA events (+X; ht-29, Figure 4.11d). One possible explanation for
these observations is that whole chromosome gains were only present in a subpopulation of cells
in this patient, which was not detected by conventional cytogenetic analysis.

4.3.3.1 Recurrent WCA CNVs

The 48 WCA CNVs included 22 distinct events that were observed between 1-6 times in the FL
dataset (Fig. 4.9). The most frequently recurrent events (those found in 3 patients or more) among
25 FL samples were +1q (6/25; 24%), +6p (3/25; 12%), -6q (5/25; 20%), +7 (4/25; 16%), and +X
(5/25; 20%). All these events are known to be frequent chromosomal rearrangements in FL that
have been consistently found by other groups (gains of 1q, 2p, 6p, 7, 9p, 12, 17q, 18, X and losses of
6q and 10q have been reported as frequent CNVs in FL by several independent studies [244–248]).

Next, I examined whether there was an association between the detected WCA events among
the 17 patients by using the Fisher exact test. This hypothesis was rejected with a p-value of 0.16,
concluding that there was no significant evidence for co-occurrence of the WCA events among 25
FL samples in thus study. Nonetheless, visual inspection of WCA events presented in Figure 4.9
suggests that there may be a recognizable pattern for such large-scale CNVs among patients with
the highest number of WCA events. As seen in this figure, +1q, +X, and -6q seem to be present
almost in all patients with ≥ 5 WCA events.

4.3.4 Category 2: CNVs Affecting the Distal Ends of Chromosomes

Inspection of the 575 OPAS chromosome plots revealed another frequent pattern of somatic CNVs
in the FL dataset: copy number changes that localized near the ends of chromosomes, such as
shown in Figure 4.12. Subtelomeric regions, regions proximal to chromosome ends, are gene-rich
and therefore even small CNVs in these chromosomal loci can affect the function of genes that may
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be important in FL. For instance, deletions of 1p36 subtelomeric region that have been reported in
several cancers, such as neuroblastoma [378], disrupts the function of multiple known and putative
tumor suppressor genes including TP73. This gene is significantly under-expressed in lymphomas
and leukemias [379]. These results suggest that frequent deletions of chromosome 1p36 in FL
genomes that encompasses TP73 may also play an important role in FL.

After observing a pattern of CNVs, particularly losses of signal intensities, that appeared to en-
compass chromosome ends, I decided to analyse these events in a separate category. This category
of events, thereafter referred to as ’distal CNVs’, consists of candidate OPAS-detected CNVs that
include either the first SNP probe on the p-arm or the last SNP probe on the q-arm of a chromo-
some (excluding CNVs in WCA category). Therefore, all distal CNVs encompass subtelomeric
regions and may also include telomeres. Based on this definition, 29 candidate distal CNVs were
found in 15/23 FL patients, ranging in size between ∼21 kb (Supplementary Figure L.1) to 59.6
Mb (see Table 4.2). Table 4.3 presents a list of distal events in each FL chromosome and whether
each event was also detected by aCGH and/or SMD (these data are available in Tumordb). It is
evident from this table that in contrast to WCA events, FL distal events were enriched in copy
number losses with deletions accounting for 20 of the total 29 distal events (∼69%). The relative
enrichment of deletions that affected chromosome ends may be suggestive of losses of sequences
that affect the functional status of the telomeres. It is important to note that cytogenetic analysis
has particularly poor resolution for detecting CNVs proximal to chromosome ends (∼5-10 Mb).
Therefore, most of the distal CNVs reported in Table 4.3 were not detected by cytogenetics anal-
ysis, even though these events were mainly larger than 2 Mb (Figure 4.12). As seen in Table 4.3,
from the 29 OPAS candidate distal CNVs, 24 (83%) were also detected by aCGH and SMD results
in Tumordb (http://map02.bcgsc.ca:5000/), and 26/29 (∼90%) were detected by aCGH or SMD
(examples shown in Figure 4.13 and Supplementary Figures L.2-L.3).

There are three remaining OPAS candidate distal CNVs that are not seen by aCGH or SMD
results. These 3 cases are shown in Figure 4.14 (∼8.6 Mb) and Supplementary Figures L.1 (∼21.3
kb) and L.4 (∼78 kb). One of these putative OPAS-specific events occurs on 1p36 region (ht-
7) that is frequently deleted in FL samples (Figure 4.14). For the other two detected events that
are exclusively seen by OPAS (Supplementary Figures L.1 and L.4), the FPP data in Tumordb
report coverage gaps (i.e., regions of the genome with no FPP coverage), but no further data was
available to directly validate these putative distal CNVs. Table 4.3 also shows that, in contrast to
WCA events, distal CNVs do not frequently affect the same regions, with the exception of 1p36.33
that was deleted in 32% (8/25; Figure 4.15) of patients in the FL dataset (examples shown in
Figure 4.3, and Supplementary Figures L.2 and L.5). Cheung et al. [244] had previously reported
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deletions of 1p36 in 25.5% of 106 FL patients in an independent study using array CGH technology
(Figure 4.15).

4.3.4.1 Functional Analysis of the Genes Affected by Distal CNVs

Analysis of the gene content of candidate distal CNVs found 1,691 unique genes that were poten-
tially affected by distal deletions and 1,653 unique genes that were potentially affected by distal
amplifications (Table 4.2). Further analysis of the function of genes in candidate distal CNV re-
gions was performed using Ingenuity R�Pathway Analysis software. Two separate analyses were
performed to investigate candidate distal deletions and amplifications. The analysis of candidate
distal deletions showed that four biological function categories- DNA replication, recombination
and repair, cell-to-cell signalling, and cellular assembly and organization- were significantly asso-
ciated with the corresponding genes, after adjusting for false discovery rate (Benjamini-Hochberg
multiple testing correction, P� 0.02). As seen in Figure 4.16a, the top gene network associated
with candidate distal deletions includes several important cancer-related genes and protein fam-
ilies. For instance, Caspase, highlighted by the red arrow in Figure 4.16a, refers to a family of
proteins that are major regulators of apoptosis [380].

Similar analysis was performed using 1,653 candidate distal amplified genes. This analysis
identified that cancer, immunological disease and cell cycle were the top affected networks associ-
ated with candidate distal amplifications (shown in Figure 4.16b). This analysis also revealed that
lymphoid tissue structure and development, and hematological system function and development
were the top physiological functions that were significantly associated with the above candidate
amplifications. The top gene network associated with candidate amplified distal CNVs, illustrated
in Figure 4.16b, also includes several known cancer-related genes, such as MYC. This gene, de-
noted by the blue arrow in Figure 4.16b, is a proto-oncogene that is often up-regulated in many
cancers. It has been hypothesized that MYC over-expression stimulates gene amplification, pos-
sibly through DNA over-replication [381]. The alterations of MYC have also been linked to the
variety of hematopoietic tumors, leukemias and lymphomas, such as Burkitt’s Lymphoma. Im-
portantly, it is hypothesized that MYC regulates the expression of 15% of all genes [382], such
as those associated with cell proliferation (e.g., p21) and growth (e.g., DHFR) [383]. Therefore,
amplification of MYC may result in constitutive up-regulation of this gene and may lead to cancer
formation.
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4.3.5 Category 3: Other CNVs

There were in total 209 candidate CNVs that were not part of WCA or distal events, consisting
of 127 (61%) deletions with a global mean size of 2.13 Mb and 82 (39%) amplifications with a
global mean size of 2.15 Mb (see Table 4.2). As seen in Figure 4.17, the frequency of this category
of CNVs (shown by pink bars) varies remarkably between FL chromosomes. The observed high
frequency of predicted CNVs on chromosomes 14 and 7 is mainly due to the common copy number
changes in the IgH and T-cell receptor genes that are located on these chromosomes. These known
CNV sites include 14q32 (IgH), 14q11.2 (T-cell receptor α and δ ), 7p14 (T-cell receptor γ) and
7q34 (T-cell receptor β ). Since rearrangements in T-cell receptors occur in normal T-cells and are
not lymphoma-specific, these events are excluded from further analysis. Therefore, the most fre-
quently affected chromosomes in this category of events, other than functional immunoglobulin and
T-cell related receptor rearrangements, are chromosomes 3, 4, 6, 7, 9,10,12 and 17 (Figure 4.17).

The regions presented in the previous two categories (WCA and distal CNVs) were generally
large (all 48 WCA CNVs were larger than 37 Mb and 25 of the total 27 distal CNVs were larger
than 500 kb) and contained many genes. Therefore, it was not possible to identify specific gene(s)
that may have been disrupted as the result of targeted CNVs related to FL. Studying the subset of
putative somatic CNVs that are small can help to identify specific genes that are associated with
FL initiation and progression. Therefore, in the following section I further analyse all candidate
somatic events in the FL data set that are smaller than 150 kb (referred to as candidate focal CNVs).

4.3.6 Candidate Focal CNVs in FL Genomes and Functional Analysis of the
Affected Genes

From the total 286 candidate CNVs, 53 (18.5%) events were ≤ 150 kb and are referred to as candi-
date ”focal” CNVs. The focal CNVs were enriched in copy number losses with deletions account-
ing for 34/53 (64%) and amplifications accounting for 19/53 (36%) events. The difference between
the relative proportion of predicted focal deletions and amplifications was further increased when
the apparent candidate amplifications that overlapped with T-cell receptor genes (γ and α) were
excluded from the list of focal events prior to gene analysis (11 of these 53 predicted small events
overlapped with T-cell receptors). After this modification, the candidate focal deletions and ampli-
fications accounted for 81% (34/42) and 19% (8/42) of all (42) candidate focal CNVs, respectively.
From these 42 putative focal amplifications and deletions, less than half (20/42) overlapped with
at least one gene. It is important to note that some of the other 20 focal candidate events that do
not harbor any gene may also be involved in FL. For instance, a copy number alteration may affect
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a region downstream or upstream of a cancer-related gene that is involved in its regulation. Fig-
ure 4.18 presents an example of a sequence validated ∼40 kb deletion (somatic) on chromosome 13
(ht-21) that does not overlap with any gene. Despite the importance of all focal events, in the rest
of this section I focused on functional analysis of a subset of these CNVs that affect at least one
gene (the 20 regions presented in Table 4.4). This table reveals that in total 30 unique genes were
affected by these 20 putative focal CNVs. It also indicates that the most of these candidate focal
CNVs (14/20) affect only a single gene.

From the 30 unique genes in this table, 28 (93%) overlapped with candidate focal deletions
and only 2 (7%) genes, PAX5 and RNF217, overlapped with candidate focal amplifications. The
only gene in Table 4.4 that was observed in more than one FL patient was ERBB4. This gene is
affected by two small candidate deletions in patient 4 (∼24 kb; ht-4) and patient 29 (∼4 kb; ht-29),
that partially affect the same intron of this gene (shown in Figure 4.19). The ERBB4 gene (∼1.6
Mb; 28 exons) is a member of growth factor receptors that regulate signals of cell differentiation,
proliferation, migration and survival. Disruptions in the activation of these receptors have been
associated with tumor development and malignancy in many cancers, such as breast cancer [384,
385]. Furthermore, a study by Soung et al. [386] had found somatic intronic mutations in ERBB4
in several human cancers and suggested that such mutations affect ERBB4 ligand binding [386].
Therefore, although the above candidate focal deletions (in ht-4 and ht-29) do not directly remove
any coding exon of ERBB4, they may affect the function of this gene through altering its ligand
binding domain. Figure 4.19a shows that in ht-4 there is an FPP detected fragment hole that aligns
to the OPAS predicted ∼24 kb deletion on ERBB4 (a fragment hole is referred to as a fragment
in the fingerprint data that does not match to the alignment region in the reference genome; see
Appendix K for more details). This Figure also indicates that in ht-29 there is a fragment hole
next to the OPAS ∼4 kb predicted region of copy number loss on ERBB4. No further data were
available for direct validation of these putative CNVs, however, the FPP detected events suggest
that the above ERBB4 intron may harbor real focal deletions in 2 of the FL patients. As noted in
Table 4.4, 13/20 (65%) gene-affecting focal CNVs overlap with FPP or SMD detected events (e.g.,
Figures 4.19-4.20 and Supplementary Figure L.6), or are directly validated by Illumina sequencing
(e.g., Figure 4.32a). Nonetheless, except the two putative ERBB4 intronic deletions and known
T-cell receptor rearrangements, none of the other reported focal CNVs were recurrent among FL
patients. One speculation of this finding is that the focal amplifications and deletions may target
not necessarily the same genes, but a variety of genes that participate in the same critical pathway.
Based on this assumption, I studied the function of the aforementioned 30 genes using Ingenuity
Pathways Analysis (IPA). This analysis found that cell death, cell cycle and cellular development
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were the most significantly enriched networks among the analysed 30 genes (p-value � 3.28e-02;
Figure 4.21)1. Some of the genes that are affected by focal CNVs, such as CDKN2A and KIT , are
known cancer-related genes and have been reported to be frequently mutated or altered in a variety
of cancers (Cancer Gene Census database).

In the next Section, I will show that several of these focal OPAS predicted events are real based
on Illumina sequencing results. However, the CNV results from aCGH and 500K SNP array data
analysed by SMD had previously failed to detect at least 3 of these known affected genes in the
FL dataset, including deletions of CDKN2A (ht-16, ∼104 kb), KIT (ht-20; ∼119 kb) and HVCN1
(ht-12; ∼143 kb). More discussion about the putative effect of the copy number changes on the
function of these genes is presented in Section 4.3.8.

4.3.7 Comparison of OPAS Generated CNVs with Other Methods

Comparing candidate OPAS CNV calls with the results from other platforms applied to the same
dataset can provide insight into the proportion of the events that are most likely real events. OPAS
results were compared to the manually curated CNV results from aCGH and 500K Affymetrix
SNP arrays2. To analyse the extra OPAS and SMD predicted CNVs (CNVs that were exclusively
detected by OPAS or SMD), these events were compared with FPP events or Illumina sequence
validated deletions and amplifications. It must be noted that 2 of the 25 FL patients were excluded
from the comparison analysis, since these arrays were not evaluated by SMD or aCGH (ht-3 and
ht-5). The following sections describe the aforementioned analysis on candidate deletions and
amplifications in more detail.

Analysis of Candidate Amplifications

The Venn diagram in Figure 4.22 illustrates the overlap, similarities and differences between SMD,
aCGH and OPAS predicted amplifications in 23/25 FL patients. As seen in this figure, the majority
of the OPAS candidate amplifications (81/124) fell within the intersection of all 3 datasets; i.e.,
they are simultaneously observed by aCGH and SMD, as well as OPAS (denoted by ’A’ in Fig-
ure 4.22). These amplifications ranged in size between 83 kb (9 SNP probes) to 242 Mb (21,382
SNP probes). The fact that all events in group ’A’ are independently detected by 3 methods from
two independent platforms (SNP array and array CGH) suggests that these are likely real copy
number gains. There were in total 19 OPAS candidate amplifications that were not reported in

1Other details of the IPA analysis are presented in Supplementary Table L.1.
2Manual curation of CNV results had been performed by independent groups that generated the aCGH and SMD

data. The final results of these analyses are available at Tumordb.
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Tumordb by the alternative SNP array dataset (SMD results from 500K SNP array), referred to as
group ’B’ in Figure 4.22. Table 4.5 provides the list of all the aforementioned 19 OPAS candidate
amplifications (’B’). As seen in this Table, 8 of these extra 19 events in group ’B’ overlap with
T-cell receptors (T-cell γ on 7p14, β on 7q34, and α on 14q11.2). These apparent amplifications
reflect the known rearrangements of the T-cell receptors that are frequently found in the normal
DNA control.

Another known region of copy number gain that was missed in SMD results was a gain of
the IgH locus on chromosome 14 (14q32) that is also known to be frequently rearranged in FL
samples [387]. Subsequently, all regions in group ’B’ were compared to sequence validated am-
plifications that confirmed another OPAS amplification on chromosome 6q16 region of patient 14
(shown in Supplementary Figure L.7). Additionally, 4 other candidate amplifications in this group
(’B’) were also observed by aCGH, implying that these candidate amplifications may also be real.

I also compared the amplifications that were only found by SMD (5 events in group ’C’, de-
noted in Figure 4.22) and aCGH (11) with Illumina sequence validated amplifications, but no over-
lap was found. As shown in Figure 4.22, SMD and aCGH both reported one amplification event
that was missed by OPAS. This amplification is approximately 150 kb and affects the IgH locus
on chromosome 14 (14q32.33). Although this amplification was not validated by sequencing, the
location of this candidate copy number gain and the fact that it was seen by both aCGH and SMD
datasets imply that it is likely a real event that was missed by OPAS.

In summary, the data in Table 4.5 reveals that from the 19 amplifications that were seen by
OPAS and not 500K results in Tumordb (SMD), at least 11 regions (58%) are most likely real
events (9 overlapped with known copy number changes in T-cell and IgH loci, one was seen by
both aCGH and OPAS and another one was validated by Illumina sequencing data), leaving only
8 OPAS amplifications in ’B’ (42%) that can not be validated by available alternative datasets
(referred to as OPAS-exclusive amplifications). As seen in Table 4.5, 3 of these 8 OPAS-exclusive
candidate amplifications potentially affected a single gene, such as a small candidate amplification
that affects PAX5. This focal amplification on 9p13.2 in patient 21 (ht-21) is approximately ∼76 kb
and encompasses 2 exons of PAX5, as shown in Figure 4.23. It is hypothesized that PAX5 may play
an important role in B-cell differentiation and regulation of the CD19 gene that is a B-lymphoid-
specific target gene [388]. In normal cells PAX5 encodes the B-cell lineage specific activator protein
that is expressed at early, but not late stages of B-cell differentiation. It has been reported that
PAX5 is consistently overexpressed in human follicular lymphomas [389]. PAX5 is also involved
in the t(9;14)(p13;q32) translocation that is recurrently observed in a subtype of B-cell lymphomas
(small lymphocytic lymphomas) as well as large-cell lymphomas. This translocation juxtaposes an
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enhancer of IgH gene to PAX5 promoter, suggesting that the changes in the PAX5 gene transcription
likely play a significant role in the aforementioned lymphomas. Although the FPP data did not
detect any translocation at this site in patient 21 and no other dataset found this amplification,
the OPAS-detected significant gain of signal intensity at this locus (LR = 0.33; z-score � +2.4),
depicted in Figure 4.23, suggests that the above partial amplification of PAX5 may be a real event.
Sequencing data would have provided ultimate confirmation of this event, however, since this event
was not seen by FPP analysis sequencing was not performed. Furthermore, the bootstrapping
analysis found that it is unlikely that the candidate amplification of PAX5 exons was obtained by
random chance (p-value P = 2.2e-308; bootstrapping method with 100,000 permutations). Based
on the above descriptions, it can be speculated that the candidate partial amplification on 9p13.2
chromosomal region may have triggered a mechanism that leads to expression of PAX5 in FL
patient 21. However, this event does not reoccur in any other 24 FL patients in this study.

In conclusion, based on the Venn diagram of Figure 4.22, ∼83% (104/124) of OPAS candidate
amplifications were observed by at least one alternative array-based dataset and ∼64% (81/124)
were observed by both array-based results. Furthermore, based on the information in Table 4.5 at
least 58% (11/19)1 of OPAS candidate amplifications that were not detected by 500K SNP results
of Tumordb (region ’B’) and 47% (7/15)2 of amplifications that were exclusively detected by OPAS
are likely real copy number gains.

Analysis of Candidate Deletions

Similarly to the approach that was used to analyse candidate amplifications, an analysis of candi-
date deletions in 23/25 FL patients was also performed. The Venn diagram of Figure 4.24 shows
that 51 of 132 (39%) OPAS candidate deletions were also observed by aCGH and SMD and ranged
in size between 519 kb-113 Mb. The estimated concordance between SMD and OPAS deletion
results and the reciprocal comparison was 95% and 71%, respectively. In contrast, there was a
relatively poor concordance between aCGH and SNP array-based results (43% concordance for
aCGH and OPAS, and 53% for aCGH and SMD).

The apparently reduced concordance between OPAS and aCGH (43%) compared to SMD and
aCGH (53%) is due to the fact that there were more deletion events called by OPAS. However,
it is important to assess whether the additional events predicted by OPAS are real. Therefore, in

18 of the 19 OPAS candidate amplifications in ’B’ overlapped with T-cell receptors, 1 overlapped with IgH locus, 1
was validated by Illumina sequencing and another one was seen by aCGH.

26 of the 15 OPAS-exclusive candidate amplifications overlapped with T-cell receptors, and 1 was validated by
Illumina sequencing.
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the next step I used the data from FPP and Illumina sequence validated deletions (165) to assess
whether any of the OPAS-exclusive candidate deletions (32) would likely reflect a real copy number
loss that was missed by these alternative datasets. Similar analysis was performed to study SMD
exclusive CNV calls. Each FPP event that mapped to a candidate deletion was further analysed
by manual inspection of the predicted FPP event in Tumordb to increase the possibility that the
reported FPP event was likely a real copy number loss1 (such as examples shown in Figures 4.25-
4.28 and Supplementary Figure L.8). As summarized in Table 4.6 and indicated in Figure 4.24,
from the 32 regions that were exclusively seen by OPAS, 11 overlapped with FPP events. These 11
OPAS-exclusive deletions included 5 candidate deletions that mapped to FPP fragment holes2 (e.g.,
Figure 4.19), 2 candidate deletions that aligned to FPP coverage gaps (e.g., Figures 4.25-4.26), and
4 other candidate deletions that mapped to regions that harbored complex FPP events (such as in
Figures 4.27, 4.20 and Supplementary Figure L.8). Furthermore, 4 other OPAS-exclusive deletions
mapped to Illumina sequence validated copy number losses, (e.g., Figure 4.28). Three of these
cases are discussed in more detail in the next section (Section 4.3.8). These sequence validated
deletions had 4, 8 and 13 SNP probe markers and were expected by OPAS to be between 104-143
kb. These findings indicate that from the 32 extra regions that were exclusively found by OPAS, at
least 4 were real copy number losses, and 11 others mapped to FPP events but were not studied by
sequencing; the remaining 17 regions may also be real copy number losses. As seen in Table 4.6,
most of these OPAS exclusive deletions only affect a few genes (5 affect a single gene and 3 others
affect between 2-3 genes). In the next Section, I will discuss about 3 genes that were affected
by validated OPAS-exclusive deletions (HVCN1, CDKN2A and KIT) and the significance of these
CNV findings in the context of cancer.

4.3.8 Examples of Sequence Validated Novel (OPAS-exclusive) CNV Findings

4.3.8.1 HVCN1

One of the OPAS exclusive CNVs that was validated by sequencing data was a deletion on 12q24.11
chromosomal region of FL patient 6 (ht-6) that included only 4 SNP probes, shown in Figure 4.28.
The exact deletion breakpoints found by sequencing indicated that this deletion is 145,148 bp
(OPAS predicted this deletion to be 143,373 bp; Fig. 4.28a). Based on sequence-validated break-
points this deletion removes all but the first exon of HVCN1 and the first 3 coding exons of PPTC7,

1I used the feedback from Dr. Andy Mungall and Matthew Field at the GSC to interpret the FPP results.
2see page 283 for description of these events.
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juxtaposing the HVCN1 exon to the remaining PPTC7 exons (Fig. 4.29a). Therefore, the above
deletion can potentially create a novel fusion gene between the 5’ end of HVCN1 and 3’ end of
PPTC7. It must be added that the probability of detecting a similar deletion (143.4 kb) that over-
laps with HVCN1 just by random chance is estimated to be P = 3.0E-05 (based on bootstrapping
method with 100,000 permutations; see Table 4.7). Thus, it is unlikely that the detected somatic
partial deletion of HVCN1 in ht-6 was just a random observation.

HVCN1 is a newly discovered protein that was identified as the result of a proteomic anal-
ysis of B-cell plasma membranes that were isolated from patients with mantle cell lymphoma
(MCL) [390]. A recent study by Capasso et al. [263] using expression data and function analysis
showed that HVCN1 is a key modulator of B-cell antigen receptor (BCR)1 signalling. This group
also indicated that absence of HVCN1 blunts the immune response [263]. Based on this evidence,
it can be speculated that loss of HVCN1 may disrupt the role of immune system in recognizing
and destroying cancer cells. Therefore, based on these observations, HVCN1 could either act as an
oncogene or a tumor suppressor in B-cell malignancies, and further studies are needed to delineate
its function. Finding of a deletion of HVCN1 supports the putative tumor suppressor role of this
gene in evading the host immune response.

One speculation about the impact of the focal deletion on 12q24.11 chromosomal region of
ht-6 is the possibility of a fusion gene, as mentioned earlier. To further investigate this possibility
using computational tools, I joined the sequence of the 5’ end single remaining exon of HVCN1
and the three remaining 3’ end exons of PPTC7 (as depicted in Fig. 4.29). The hypothetical protein
product of this synthetic sequence was then generated using an online tool (Six Frame Translation
of Sequence). As shown in Figure 4.29, the HVCN1/PPTC7 hypothetical fusion appeared to be
in-frame and, thus, could result in a translated protein product. These speculations need to be
experimentally validated to deduce whether the aforementioned deletion has led to a novel fusion
gene in ht-6. If proved, functional analysis would be required to characterize the function of the
novel protein and whether it contributes to cancer.

In addition to the above OPAS-exclusive partial deletion of HVCN1 in ht-6, this gene was
entirely deleted in another FL patient (ht-9) as the result of a larger deletion (∼1.4 Mb), shown
in Figure 4.30. The latter deletion in ht-9 is not OPAS-specific and SMD (Fig. 4.30b) and aCGH
(Fig. 4.30c) results also detected this copy number loss event in patient 9.

1In B-cells the stimulation of B cell antigen receptors results in production of ROS that participate in B-cell activa-
tion [391].
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4.3.8.2 CDKN2A

Another example of a sequence validated OPAS-exclusive copy number loss is a deletion located
on chromosome 9p21.3 in patient 16 (ht-16) that has 8 SNP probe markers, as shown in Fig-
ure 4.31. The exact breakpoints found by sequencing revealed that this deletion was 124,010 bp
(OPAS data had estimated this deletion to be ∼104.4 kb). As summarized in Table 4.6, this deletion
encompasses the CDKN2A known tumor suppressor gene. This table also indicates that the prob-
ability of detecting a similar CNV (104,434 bp) that overlaps with CDKN2A by random chance is
P = 4.0E-05 (based on bootstrapping method with 100,000 permutations). The latter suggests that
it is unlikely that the observed deletion of CDKN2A in ht-16 is a random finding.
CDKN2A is a known cancer-related gene1 that is frequently mutated or deleted in a wide variety
of cancer cell lines as well as primary tumors, such as lung, breast, brain, bone and lympho-
cyte [260, 261, 392–394]. A study in childhood acute lymphoblastic leukemia (ALL) found that
although mutations of CDKN2A deletion were rare in childhood ALL, deletion of this gene was a
significant secondary abnormality in ALL and was strongly correlated with the observed pheno-
type and genotype. A recent study by Jardin et al. [395] has also showed that patients with diffuse
large B-cell lymphoma or DLBCL (i.e., an aggressive form of B-cell lymphoma) with CDKN2A
deletion, have a distinct gene expression pattern and poor prognosis. The CDKN2A gene encodes
two important cell cycle regulatory proteins, the p16(INK4) protein that interacts with the RB1
pathway; and the p14(ARF) protein which regulates the p53 pathway. The RB1 and p53 pathways
are two of the major tumour suppressor pathways in human carcinogenesis. A deletion of CDKN2A
would therefore disturb both pathways. The impact of the loss of the CDKN2A proteins were previ-
ously studied in mice models by Serrano et al. [396]. His study showed that mice deficient for both
p16(INK4a) and p19(ARF) were viable but highly prone to tumors and died early in life due to lym-
phomas and fibrosarcomas [396]. Another study by Schmitt et al. [397] using p16/p19 null mice
indicated that in these mice lymphomas were formed rapidly, were highly invasive and displayed
apoptotic defects. Furthermore, a study by Lossos et al. [398] had found inactivation of CDKN2A
and its adjacent gene, CDKN2B, as one of the most commonly identified genetic alterations that
were associated with transformation of FL to DLBCL. The body of evidence on CDKN2A deletions
and mutations emphasize that this gene plays a significant role in cancer and may even have a more
profound impact in B-cell lymphomas and in transformation of FL to DLBCL.

In addition to the above OPAS-exclusive deletion of CDKN2A in patient 16 (ht-16), the OPAS
results also indicated deletions on chromosome 9p21.3, encompassing CDKN2A gene, in 3 other

1http://www.sanger.ac.uk/genetics/CGP/Census/
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FL patients (ht-18, ht-22 and ht-24). These results are shown in Figure 4.32 and Table 4.7. Further
FISH experiments validated the above 4 deletions and also indicated that the CDKN2A deletions
were homozygous in 3 cases (ht-16 (Fig. 4.32b), ht-18 (Fig. 4.32c) and ht-24 (Fig. 4.32e)), and
heterozygous in 1 case (ht-22; Fig. 4.32d). Nonetheless, aCGH results in the FL dataset found only
one of the above CDKN2A deletions (ht-24), and SMD detected 3 of these 4 real deletions (ht-18,
ht-22 and ht-24).

In conclusion, 16% (4/25) of all patients in the FL dataset have somatic copy number loss
of CDKN2A, whereas no amplification was detected in this gene in any FL patient. This finding
emphasizes that the focal deletion of this gene in these patients maybe part of a mechanism in FL
genomes that tends to specifically remove the function of CDKN2A.

4.3.8.3 KIT

A deletion on chromosome 4q12 in FL patient 20, depicted in Figure 4.33, is another example of
an OPAS predicted deletion that was not previously detected by aCGH or SMD results (OPAS-
exclusive deletion). Illumina sequencing validated this CNV and estimated that the exact size of
this deletion was 136,811 bp (OPAS data had estimated this deletion to be ∼119.5 kb).

As illustrated in Figure 4.32a, this focal deletion occurs within a larger copy number amplified
region. Array CGH results in Tumordb did not indicate any CNV at this locus, and SMD results
indicated the entire region is amplified (shown by green track in Figure 4.32b). Based on the
sequencing information this deletion is 136,811 bp in length and appears to target the KIT gene
(OPAS results had predicted the deletion to be ∼120 kb), as shown in Figure 4.32a. The probability
of detecting a similar event (119,507 bp) that overlaps with KIT just by random chance is estimated
to be P = 1.0e-04 (based on bootstrapping method with 100,000 permutations; see Table 4.6). The
latter implies that it is unlikely to detect a random ∼120 kb deletion that overlaps with the KIT
gene.

KIT is a proto-oncogene that encodes a receptor tyrosine kinase (RTK) that is crucial to melano-
genesis, hematopoiesis and gametogenesis [399]. Gain-of-function mutations of KIT (i.e., mu-
tations that cause constitutive activation of the KIT tyrosine kinase) have been associated with
several cancers including acute myelogenous leukemia (AML), sinonasal T-cell lymphomas and
gastrointestinal stromal tumor (GIST) [400] (the sites of common mutations of KIT are denoted in
Figure 4.34b). A study by Kitayama et al. [401] in transgenic mice showed that mice with a spe-
cific mutation developed acute leukemia or malignant lymphoma. Since KIT has an oncogene-like
function, it is expected that in cancer KIT would be amplified and not deleted. However, further in-
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spection of KIT deletion site in FL patient 6 indicates that the 136,811 bp deletion does not remove
KIT entirely, but only affects the first 3 exons of this gene (as shown in Figure 4.34a). Figure 4.34b
illustrates the structure of the KIT protein that includes an extracellular domain (exons 1-9), a trans-
membrane domain (exon 10), and an intracellular domain (exons 11-21). It has been shown that
the deletion of the extracellular domain of RTKs facilitates the ligand-independent activation of
this family of genes, since this event removes negative regulatory constraints that are imposed by
the extracellular domain [402]. However, it was also shown that such deletions were not sufficient
for constitutive activation of RTKs and the oncogenic transformation required additional activating
mutations [402, 403]. Introduction of KIT with a deletion of the ligand-binding domain into mice
and cell line models did not result in the constitutive activation of the kinase, while the deletion
of ligand-binding domain coupled with an activating mutation in the kinase domain did have such
an effect [403]. This observation suggests that amplification of the kinase domain of KIT seen in
patient 20 might act similarly to the previously reported gain-of-function point mutations in the
kinase domain of KIT (in GIST tumors and leukemias). Therefore, the amplification of the kinase
domain may act synergistically with the deletion of the ligand-binding domain (exons 1-3) to result
in the constitutive activation of KIT. This finding may represent the first report of such a mechanism
of KIT activation in lymphomas.

4.4 Conclusions
The study presented in this Chapter described high-resolution SNP array analysis of candidate so-
matic CNVs in 25 follicular lymphoma patients (FL). An analytical approach was used to detect
candidate regions of copy number variation in these genomes. This approach involved statistical
analyses of OPAS results from 250K Nsp arrays, as described in Section 4.3.1. In total, 286 candi-
date CNVs were identified among 25 FL patients (11.4 per patient) of which 53 (18%) were smaller
than 150 kb. The profiling of these events found 3 main categories of candidate CNVs among FL
patients (Sections 4.3.3-4.3.5). A separate analysis was performed to study putative focal events
in the FL dataset (CNVs ≤ 150 kb) which found 53 (18.5%) such events in the FL dataset (Sec-
tion 4.3.6). Gene analysis of candidate focal CNVs revealed that they affected more than 30 genes
that were found to be most significantly related to cellular mechanisms that are particularly im-
portant in cancer, including cell death, cell cycle and cellular development (Figure 4.21). Some
of the genes that were affected by these candidate focal events were CDKN2A, ERBB4, KIT and
HVCN1 (Tab. 4.4; all except ERBB4 focal CNVs were also validated by Illumina sequencing). All
these events, except a candidate small intronic amplification of ERBB4, were seen only in one FL
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patient. The latter finding suggests that CNV events in FL do not always affect the same genes, but
instead, they likely affect a variety of genes that may have important roles in FL tumorigenesis or
progression.

To assess the accuracy of the putative CNV calls, I compared OPAS findings with the results
from several alternative technologies that were applied to the same data set, including BAC aCGH,
500K SNP array results from SMD analysis, BAC fingerprint profiling (FPP) and Illumina sequence
validated data (Section 4.3.7). This comparison, which was performed in 23/25 FL samples, in-
dicated that ∼80% (204/256) of all OPAS candidate CNVs in these 23 samples were seen by at
least one other array-based dataset (aCGH or SMD) (Figures 4.22 and 4.24). Importantly, from the
remaining 47 putative OPAS-exclusive putative CNVs, at least 22 (46.8%) regions are likely real
based on the comparison to FPP events or Illumina sequence validated CNVs (6/22 regions were
not seen by FPP, but these were apparent gains of T-cell receptors which are common in B-cell ver-
sus T-cell comparisons, and thus were included in this list). Table 4.6 indicated that more than half
of the candidate OPAS-exclusive deletions (Figure 4.24) had fewer than 10-15 SNP probes, among
which were sequence-validated deletions on chromosomes 9p21.3 (∼104 kb; 8 SNPs), 12q24.11
(∼143 kb; 4 SNPs), and 4q12 (∼120 kb; 8 SNPs), that affected important cancer-related genes (Sec-
tion 4.3.8). These findings emphasize that a CNV calling approach that uses a fixed SNP threshold
as a requirement to call copy number aberrations (for instance, a minimum of 10 deviated SNPs)
would inevitably fail to detect such important CNVs.

In summary, the CNV analysis in 25 FL genomes presented this Chapter has observed several
large-scale FL CNVs that had been previously found in other studies (Section 4.3.3) and showed
that copy number losses at distal regions of chromosomes are frequent observations in FL (Sec-
tion 4.3.4). Additionally, this work provided further insight into the extent of much smaller CNVs
that can potentially affect important genes in FL (see Table 4.4). An example of a new validated
discovery of this study was detecting a focal deletion of CDKN2A tumor suppressor gene in FL
patient 16 that was not previously reported by other array-based datasets in Tumordb. CDKN2A
(which is deleted in 4/25 FL patients) is important in many cancers and may be involved in pro-
gression of FL to DLBCL [398] (Section 4.3.8.2). Another example of a new validated focal CNV
was a partial deletion on 12q24.11 (ht-6) that may result in a fusion event between the HVCN1
and PPTC7 genes (HVCN1 is a newly discovered gene that is a key modulator of B-cell antigen
receptor signalling, and PPTC7 is a T-cell activation protein) (Section 4.3.8.1). Another interesting
new discovery was detecting a small partial deletion of the KIT extracellular domain (ht-20) that,
combined with the amplification of the intracellular domain of this gene, may result in constitutive
activation of this proto-oncogene (Section 4.3.8.3).
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4.5 Figures and Tables
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Figure 4.1: Example of an FPP event on chromosome 4q12 in FL patient 20 that is proved to be a dele-
tion by Illumina sequencing. (a) Screenshot of Tumordb illustrating FPP alignment of BAC clones from
chromosome 4q12 of FL patient 20 to the reference human genome (hg18). BACs with linear alignments to
the reference are coloured blue and those with split alignments are coloured green (’multi fpp’; See K). The
red arrows indicate the ends of BAC clone HTa20-0033M06 have been aligned to two distinct locations on
4q12. The latter suggests that the region between these two positions, highlighted by the pink rectangle, may
have been deleted in this patient. (b) The PCR assay proves that the event is somatic. Three sequence tagged
sites were designed; one to interrogate the breakpoint (’bpt’), and two controls in the flanking sequences,
located centromeric (’cen’) and telomeric (’tel’) of the breakpoint. Each sequence tagged site was used to
amplify tumour DNA and matched peripheral DNA. Since the breakpoint exists in the tumor but not periph-
eral blood, it is concluded that the deletion of 4q12 is a somatic event. c) Capillary sequencing of patient 20
tumour DNA validated the deletion and identifies the exact deletion breakpoints (55,123,271-55,260,082).
The red rectangle indicates the part of the sequence which has been deleted based on the sequencing results
(this information is used in Section 4.3.8 to confirm a deletion that partially affects the KIT gene).
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(a) CDF of predicted LR values of all OPAS estimated regions

)

-0.2 -0.2

(b) PDF of predicted LR values

Figure 4.2: Distribution of LR intensity measurements of all regions across FL dataset. Panel (a) de-
notes the cumulative density function (CDF) of all OPAS detected regions (with more than 2 SNPs) from FL
dataset with 25 samples (total of 1931 regions). The arrows labelled ’A’ and ’B’ mark two apparent change
points in the CDF curve, corresponding to 7% and 93% of all OPAS regions (denoted by the red dashed
lines). The concavity of the CDF curve appears to change at these two points (±0.2). However, between
these two markers (area highlighted in green), the CDF is approximately normal. Panel (b) illustrates the
PDF of the same data (LR measurements of 1931 regions shown in (a)). The green highlighted area in the
PDF plot shows the 7%-93% of the 1931 OPAS regions. The PDF plot also suggests that OPAS regions in
the green area can be approximated by a normal distribution, however, the regions outside this area seem
to have different distribution(s). Based on the observations from (a) and (b), it can be inferred that OPAS
regions that fall outside the green area are statistically different from the rest of the regions. Thus, it is
speculated that these regions constitute candidate copy number changes (CNVs) of the FL dataset. These
putative CNVs consist of the bottom 7% of all OPAS results, corresponding to regions with LR �−0.2, and
the top 7%, corresponding to regions with LR �+0.2.



1p36.33- 1p36.23: 775,852-8,422,292 (7.6 Mb ; 460 SNPs)
LR= -0.13 ; Z-score= -0.7

(a) OPAS scatterplot of chromosome 1 of patient 9, denoting a deletion on 1p36 (∼kb;
SNPs)

Image courtesy of Dr. Horsman's Lab, BCCRC

(test)

(control)

(b) FISH results of 1p36 deletion in ht-9 (22%)

Figure 4.3: Deletion on 1p36 chromosomal region of ht-9 with slight signal deviation (LR= -0.13),
validated by FISH. This figure presents the OPAS scatterplot of chromosome 1 of patient 9 (ht-9). As
observed, there is a region on 1p36 that has a lower signal intensity, compared to the rest of the chromosome
1 (LR = −0.13). The same region has been detected as a putative deletion by aCGH and SMD results of
Tumordb, as shown in Table 4.3. It is observed that the OPAS estimated LR is -0.13, and z-score is -0.7.
Based on the z-score and visual inspection, the above region in ht-9 was selected as a putative deletion.
Panel (b) shows the FISH analysis performed to analyse the above candidate deletion in ht-9 (1p36.23). The
FISH experiment confirmed this deletion. Furthermore, it indicated that the copy number loss was present
in approximately 22% of the cells (data provided by Dr. Horsman’s lab, BCCRC). The latter finding, which
highlights the CNV heterogeneity in this case, explains the relatively small magnitude of signal intensity
loss that was detected in this region (LR =−0.13).
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* z-score= +0.6

*

(a) Probability Density Plot of z-scores of all regions with loss of signal intensity

(b) Probability Density Plot of z-scores of all regions with gain of signal intensity

* z-score= -0.6
*

Figure 4.4: Probability Density Function (PDF) of z-scores from all regions with gain (LR > 0) or
loss (LR < 0) of log2-ratio signal intensity (in FL dataset). Panel (a) shows the histogram of regions
with LR values � −0.2 (referred to as ”X”), compared to other OPAS-estimated regions with slight loss
of signal intensity with −0.2 < LR < 0 (referred to as ”L”). The approximate normal fit to the histograms
is shown by black (for ”L”) and red (for ”X”) dashed lines. The red dashed line denotes the z-score that
is used to call candidate regions with slight loss of signal intensity that may represent significant changes
based on their z-scores (z-score � −0.6). Panel (b) shows similar analysis to compare the distribution of
z-scores for regions with significant gain of signal intensity (LR � +0.2; referred to as ”Y”) with regions
with slight gain of signal intensity (0 < LR < +0.2; referred to as ”G”). The approximate normal fit to
these data is shown by black (for ”G”) and blue (for ”Y”) dashed lines. As observed, the two distributions
have relatively smaller overlap compared to deletion analysis in (a). This plot shows that the z-score of +0.6
approximately separates these two datasets (”G” and ”Y”). The latter finding suggests that OPAS regions
with slight gain of signal intensity but z-scores �+0.6 can also be considered as candidate regions of copy
number amplification.
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z-score= +0.6

(a) Boxplot of z-scores of all regions with loss of signal intensity

z-score= -0.6

(b) Boxplot of z-scores of all regions with gain of signal intensity

(1) (2)

(3) (4)

'X' 'L'

'Y' 'G'

Figure 4.5: Boxplot of z-scores of all regions with loss or gain of log2-ratio signal intensities (in FL
dataset). Panel (a) shows the boxplots of z-scores in OPAS-generated regions with loss of signal intensity
from 25 FL samples (see Appendix E for more information about boxplot visualization). The boxplot on the
left, denoted by ’X’, represents the distribution of z-scores of candidate deleted regions with LR ≤ −0.2.
The boxplot on the right, denoted by ’L’, indicates the z-scores of all other OPAS regions with slight loss of
signal intensity (−0.2 < LR < 0). Similarly, the boxplots in panel (b) indicate the distribution of z-scores
of OPAS regions with significant gain (LR ≥ 0.2; ’Y’) and slight gain of signal intensities (0 < LR <+0.2;
’G’). The red arrow in (a) and blue arrow in (b) indicate regions with slight loss or gain of signal intensity
that have significantly different z-scores (compared to the rest of the regions with slight LR deviation). These
outliers likely include a subset of real CNVs that have slight magnitudes of signal aberration.
As seen in these plots, for both amplification and deletion analyses, the distribution of z-scores of regions
with significant LR values (|LR| > 0.2; ’X’ and ’Y’) overlaps with z-scores of regions with slight signal
deviations (0 < |LR| < 0.2). However, these 2 figures indicate an important difference. For amplification
analysis in panel (b), only the outliers of distribution ’G’, denoted by the blue arrow, overlap with the z-
scores of regions with significant LR increase (’Y’). Therefore, all regions with slight signal intensity gain
that have significantly different amplification z-scores (subset of ’G’ with z-scores �+0.6) were also added
to the list of candidate somatic amplifications of the FL dataset. Although, as seen in panel (a), the overlap of
the z-scores of regions with significant loss (’X’) and slight loss (’L’) of signal intensity includes more that
just the outliers of ’L’ (red arrow). Following manual inspection of the OPAS visualization plots, I decided
to add regions with slight loss of signal intensity that had z-scores equal or less than −0.6 (shown by the red
dashed line in (a)) to the list of candidate copy number deletions (subset of ’L’ regions with z-scores�−0.6).
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4q13.1: ~498 kb (SNPs= 50)
LR= -0.16; z-score= -1.1 

4q31.21: ~1.1 Mb (SNPs= 112)
LR= -0.13; z-score= -0.84

Figure 4.6: Candidate deletions on chromosome 4 of patient 29 with slight signal deviations (LR =
−0.16 and -0.13) but significant z-scores (-0.84 and -1.1). This figure illustrates the OPAS scatterplot of
chromosome 4 of patient 29 (ht-29). As seen there are two predicted regions of copy number deletion with
slight loss of signal intensity, with LR =−0.16 and LR =−0.13. The estimated z-scores of these candidate
deletions are -1.1 and -0.84, respectively, indicating strong losses of signal intensity compared to the rest of
SNPs on chromosome 4 of patient 29. None of these putative deletions was detected by other CNV datasets,
however, the observed patterns of copy number losses in these regions and the estimated z-scores suggest
that these candidate events may be real deletions.
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(a)

(b) (c)

All CNVs

Figure 4.7: Pie charts of the frequency of candidate amplifications and deletions in 25 FL patients.
Panel (a) indicates that the frequency of candidate somatic amplifications is approximately comparable to
that of deletions (53% deletions versus 46% amplifications). Panel (b) illustrates that at smaller sizes, ∼150
kb or less, candidate deletions are ∼1.8 times more frequent than amplifications (64% deletions compared to
36% amplifications). Panel (c) shows that in contrast to small events, for large CNVs ≥ 8 Mb, the frequency
of amplifications is more than two times higher than deletions (70% amplifications versus 30% deletions).
These observations suggest that although the overall frequency of candidate deletions and amplifications is
similar in the FL dataset, the proportion of large-scale putative amplifications is greater than that of large-
scale deletions. Additionally, the frequency of small deletions in the FL data set is likely more than small
amplifications.
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LR = 0.12

LR = 0.13

+7

+18

Image courtesy of Dr. Horsman's Lab, BCCRC

Figure 4.8: Examples of two real whole chromosome gains in an FL patient (ht-11) with slight log-ratio
deviations from base-line (LR = 0.12 and 0.13). The red horizontal dashed line in the top panel denotes
the single OPAS estimated region for chromosome 7 in FL patient 11 (ht-11). This line indicates a clear shift
of log2-ratio intensities from the baseline (LR = 0; shown by the blue line), but only with a slight deviation
(LR = 0.12; z-score = +0.8). The bottom panel shows similar observation in chromosome 18 of the same
patient (LR = 0.13; z-score = +0.84). Similar to chromosome 7, the magnitude of the apparent gain of
chromosome 18 is also small relative to the theoretical LR value of one copy gain (LR = 0.13 compared
to log2(3/2) = 0.58). Despite the slight LR deviations, as shown by the G-banded karyotype, these events
reflect real chromosome duplication (+7 and +18) in the above patient (ht-11).
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Figure 4.9: Frequency of WCA events per chromosome across all FL patients. Each row corresponds
to a chromosome or chromosome arm that is affected by at least one WCA event in the FL dataset. The
columns represent the 17 FL patients that carry such events within the FL dataset. The numbers at the top
row indicate the sum of all such events per FL sample, sorted from left-to-right based on patients with the
most (ht-21) and the least (ht-7) number of candidate WCA events. In total 17 of the 25 FL patients had
at least one WCA event and, thus, there are 17 patient columns in this graph. The last column on the left
represents the sum of all WCA events in a corresponding chromosome or chromosome arm. As shown in
this graph, there is an evident abundance of large-scale WCA gains (shown in blue) in the FL dataset. The
patients with high number of WCA events also seem to have similar patterns of CNVs, including gains of
1q and X and losses of 6q which are present in all patients with more than 4 WCA events.
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iso-chromosome
CN Gain 
CN Loss 

Figure 4.10: Chromosome ideogram view of 48 WCA CNVs in the FL dataset. Regions of copy number
gain are shown by the red lines to the right side of each associated chromosome and regions of copy number
loss are denoted by the green lines on the left side of the chromosomes. In addition to gains and losses of
chromosomes and chromosome arms, another observed pattern of whole chromosomal alteration in the FL
dataset was iso-chromosome1 6p (i(6p)) that was detected in 3/25 (12%) FL patients. This event includes
simultaneous gain of the short arm (+6p) and loss of the long arm (-6q) in the same patient, which is a known
recurrent event in FL genomes2 As seen, in total, there are 48 WCA CNVs in the FL dataset, the majority of
which are copy number gains (42/48 = 87.5%). This plot also shows that WCA events of chromosomes 1q,
2p, 6, 7, 12, 18, 21 and X are observed in at least 3 patients (≥ 12%) of the FL dataset.
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(a) OPAS result; Chr 8, patient 29







(b) OPAS result; Chr X, patient 29

Image courtesy of Dr. Horsman's Lab, BCCRC

(c) mFISH result, patient 29

SMD base-line (CN = 2)

Patient # 29 - Chr X

NT-position

C
N

Image courtesy of Dr. Allen Delaney, GSC

(d) SMD result, Chr X, ht-29

CGH amplification (LR = +1)

CGH deletion (LR = -1) slight signal gain of whole chr 8

Chr 8

Image courtesy of Dr. Horsman's Lab, BCCRC

(e) aCGH result, Chr 8, ht-29

Chr X

CGH deletion (LR = -1)

CGH amplification (LR = +1)

slight signal gain of whole chr X

Image courtesy of Dr. Horsman's Lab, BCCRC

(f) aCGH result, Chr X, ht-29
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Figure 4.11 (previous page): The only two WCA events that were not directly validated by cytogenetic
analysis (slight gains of chromosomes 7 and X in ht-29). Panels (a) and (b) present the OPAS scatterplot
of chromosomes 7 and 8 of patient 29 (ht-29). The horizontal red lines represent OPAS estimated region(s)
in these chromosomes. These plots indicate a slight positive shift of the red line with respect to the base line
(LR = 0) that is denoted by the blue dashed line. Panel (a) shows that the entire chromosome has an LR of
∼0.07. Panel (b) shows that the entire chromosome X has LR of ∼0.08. As indicated in panel (c), none of
these putative gains are observed by M-FISH. However, as shown in panel (d), SMD results also detected a
slight gain of whole chromosome X in this patient (reported in tumordb). Panels (e) and (f) present the BAC
aCGH results of chromosomes 8 and X of ht-29, respectively. These aCGH plots, show a slight increase of
signal intensity in both of these chromosomes (aCGH observations are not reported in tumordb, since these
slight gains do not pass the significance threshold). Therefore, the slight gain of chromosome 8 in ht-29
is observed by both OPAS and SMD results; and slight gain of chromosome X in this patient is observed
by 3 datasets from two separate platforms. The latter implies that although these candidate events are not
supported by cytogenetic analysis, they may indicate real copy number amplifications that are presents in a
small subpopulation of the cells in ht-29.
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~8.6 Mb deletion on chr22 (q13.2-q13.33)
# SNPs= 718 ; LR= -0.41

Patient 22- Chromosome 22

(a) OPAS scatterplot of chromosome 22 in FL patient 22

MFISH (ht 22)

image courtesy of Dr. Horsman's lab, BCCRC

t(x;11)

der(22)t(17;22)

t(14;18)

(b) MFISH results of patient 22

image courtesy of Dr. Horsman's lab, BCCRC

aCGH (22q13.2-q13.33 loss)

(c) aCGH result of chromosome 22 of patient 22

Figure 4.12: Example of a distal CNV on chromosome 22 of an FL patient (ht-22). Panel (a) represents
the OPAS scatterplot of a distal CNV affecting chromosome 22 (q13.2-q13.33) in FL patient 22 (ht-22). The
deleted region, denoted by the red arrow, is approximately 8.6 Mb (718 SNPs ) and includes the distal end
of chromosome 22. Panel (b) shows the MFISH result of this patient (ht-22). As seen, the MFISH analysis
detects a translocation between chromosomes 17 and 22, and added material to chromosome 22, however,
it does not detect the predicted deletion in this chromosome. Panel (c) shows the array CGH result of
chromosome 22 of ht-22. It is observed that aCGH also identifies the same deletion that was seen by OPAS
(22q13.2-q13.33). Based on observed consistent patterns of deletion in (a) and (c) it can be concluded that
the candidate distal deletion in ht-22 is a real event; however, this event was not identified by MFISH. The
latter is due to the fact that conventional cytogenetic analysis has a particularly low resolution in detecting
CNVs in regions proximal to chromosome ends.
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chr5 (q33.3-q35.3): 158,775,034-180,629,495 
(~21.8 Mb; 1969 SNPs) LR= +0.07; Z-score   +0.6

(2)(1)

Chr5 (q23.2-q31.3): 126,044,143-141,003,032  
(~14.9 Mb; 1109 SNPs) LR= +0.08; Z-score=+0.64

≅

(a) OPAS scatterplot of chr 5 of patient 12

Image courtesy of Dr. Horsman's Lab, BCCRC

Patient 12 

(2)

(1)

5q31.1

5q31.2

5q34

5q35.1

5q35.2

5q35.3

5q23.3

(b) aCGH results of chr 5 of patient 12

Figure 4.13: Two candidate amplifications on chromosome 5 of an FL patient (ht-12), including a
distal copy number gain on 5 q-end, detected by OPAS, SMD and aCGH results. Panel (a) presents
the OPAS scatterplot of chromosome 5 of patient 12 (ht-12). The blue and red arrows indicate two large
regions, approximately 15 and 22 Mb, that have slight gains of signal intensities. As shown in this figure,
region #1 (5q23.3-q31.3) has LR = 0.08 and a corresponding z-score of 0.64. Similarly, region #2 (5q34-
q25) has LR = 0.07 and z-score = 0.6. Both of these slight gains have z-scores ≥ 0.6 and indicate patterns
that support copy number amplifications. Based on the estimated z-scores and the observed pattern, these
regions (regions #1 and #2) were selected as putative copy number amplifications in ht-12. In fact, both of
these candidate amplifications are also detected by aCGH and SMD results in Tumordb (both aCGH and
SMD results in Tumordb are generated by coupling computational analysis and visual inspection). Panel (b)
illustrates the aCGH results of chromosome 5 of FL patient 12. The two blue vertical lines represent aCGH
detected copy number gains on 5q23.3-q31.2 (CNV #1) and 5q34-q35 (CNV #2). These aCGH amplified
region correspond to the same OPAS candidate copy number gains that were shown in (a). The similar
findings of aCGH and OPAS imply that the aforementioned putative slight gains on chromosome 5 (ht-12)
are real amplifications.
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 Chr1: 775,852 - 3,922,104 (~3.1 Mb; 72 SNPs)
 LR= -0.12; Z-score= -1.0

Patient 7 - Chromosome 1p36.33-p33

Figure 4.14: Candidate distal deletion on chromosome 1p36 (ht-7) with slight LR deviation but a
significant z-score (LR = -0.12; z-score = -1). This figure presents the OPAS scatterplot of a portion of
chromosome 1 of patient 7 (ht-7) that encompasses a candidate distal deletion (denoted by arrow) on chro-
mosome 1p36 (1p36.33-p36.32). The 1p36 region is a known deletion hotspot of FL genomes [244]. The
denoted deletion has a low magnitude of loss of signal intensity, with LR=−0.12. However, when the afore-
mentioned LR value (-0.12) is compared to the distribution of signal intensities of the entire chromosome 1
in this patient (ht-7), the estimated z-score is -1. Additionally, the loss of signal intensity in this region also
seems to be visually recognizable from the scatterplot. Therefore, these observations indicate that the above
deletion is a putative copy number loss in ht-7. As shown in Table 4.3, aCGH and SMD datasets did not
report this deletion, however, SMD indicated a copy number neutral LOH (”cnnloh”) at this region in ht-7.
In Affymetrix SNP arrays, deleted regions are predominantly called homozygous by genotyping algorithms.
Therefore, observing a copy number neutral LOH for 1p36 region of patient 7 by SMD, may reflect a real
deletion that was not detected by this method. Collectively, these data and the above figure suggest that the
OPAS detected 1p36 loss of signal intensity in ht-7, is a candidate deletion.
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Figure 4.15: Recurrent distal deletion of chromosome 1p36 in the FL dataset. The above ideogram of
chromosome 1 illustrates the predicted recurrent deletions in 1p36 in the FL dataset (red lines), compared
to 1p36 deletion hotspot that has been reported by Cheung et al. [244] (blue line). Cheung et al. [244]
found ∼11 Mb region on 1p36.22-p36.33 as the most frequently altered region in 106 FL samples, with
25.5% deletion rate. As indicated by the red lines in this figure, deletions of 1p36 chromosomal regions
were detected in 8/25 (32%) patients in the FL dataset. From these 8 predicted deletions, 7 were confirmed
by FISH (FISH experiments were performed by Dr. Horsman’s group at the BCCRC; see Supplementary
Figure L.5). For one patient, ht-7, there was no FISH experiment to identify whether this candidate deletion
was real or not.
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(a) Most significant gene network, associated with candidate distal deletions

(b) Most significant gene network, associated with candidate distal amplifications

Figure 4.16: Most significantly associated gene networks with candidate distal CNVs of the FL dataset.
These results are based on IPA analysis (P � 0.02), after correcting for CNV false discovery rate using the
Benjamini and Hochberg method. Panel (a) shows the top network of genes that is associated with candidate
distal deletions. Several of these molecules are important in a variety of cellular processes. For instance,
the red arrow denotes Caspase, a family of proteins that are vital in apoptosis (source: OMIM). Panel (b)
shows the top gene network associated with candidate amplified distal CNVs among 25 FL patients. Similar
to the gene network of distal deletion (a), the network of distal amplifications (b) also includes several
known cancer-related genes such as MYC. This gene, marked by the blue arrow, is a proto-oncogene that is
often up-regulated in many cancers and has been linked to a variety of hematopoietic tumors, leukemias and
lymphomas (source: Entrez).
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Figure 4.17: Frequency of candidate CNVs in each chromosome among 25 FL patients. The red and
blue bars represent the number of candidate WCA (category 1) and distal (category 2) CNVs per chromo-
some among 25 FL patients, respectively. The number of all other candidate CNVs (category 3) in each
chromosome is also denoted by the pink bars. The noticeably high frequency of putative CNVs in chromo-
somes 14 and 7 is due to the copy number changes of IgH and T-cell receptor genes in these chromosomes,
that is common in follicular lymphoma.
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SEQ-MATCH

(13q21.33) del: 68,549,853-68,588,559
                          (38,707 bp)
                          LR ~ -0.64, 8 SNPs

Patient 21- Chr 13 SEQ-validated

(a) OPAS scatterplot of chromosome 13 of patient 21,
detecting a deletion on 13q21.33 (∼38.7 kb; 8 SNPs)

image courtesy of Dr. Allen Delaney; GCS

C
N

(b) SMD plot of chromosome 13 of ht-21, also detecting
13q21.33 deletion

OPAS del in ht-21*
SMD del in ht-21

SEQ-validated del in ht-21**

ends of FPP clone HTa21_0150H21,
capturing the deletion event

 HTa21_0108G10
 HTa21_0108G10

* OPAS predicted deletion boundaries: (13q21.3) 68,549,853-68,588,559
**sequence-validated deletion boundaries: (13q21.3) 68,540,480-68,580,946

(c) Tumordb screenshot of 13q21.33 chromosomal region of ht-21

Figure 4.18: Validated focal deletion (∼38.7 kb) on 13q21.33, detected by OPAS and SMD but not
aCGH results. Panel (a) shows the OPAS scatterplot of chromosome 13 of FL patient 21 (ht-21). The
highlighted region indicates an OPAS predicted focal deletion on 13q21.33, ∼38.7 kb, including 8 Nsp
probe markers and LR≈-0.64. In addition to OPAS, SMD results also found a deletion in the same region
(13q21.33), shown in panel (b) (the y-axis in (b) indicates the SMD predicted copy number and the x-axis is
the relative position in the chromosome in megabase scale). This deletion encompasses only one predicted
Ensemble pseudogene (ENSG00000216426). Panel (c) demonstrates the screenshot of Tumordb illustrating
the FPP alignment of BAC clones in 13q21.33 to the reference human genome (hg18). This deletion was
predicted by OPAS and SMD, shown by red and pink arrows, respectively (aCGH results did not report this
deletion). The black and orange arrows indicate two BACs with split alignments to the reference (HTa21-
0150H21, shown in green; and HTa21-0108G10, shown in orange). The non-contiguous alignment of these
BACs to the reference suggests that they may capture a deletion event on chromosome 13q21.33. This
deletion was validated by Illumina sequencing, as denoted by the blue arrow in (c) (40,466 bp).
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intron 1
exon 1exon 2exons 3-28*

*other ERBB4 isoforms have 20 and 27 exons [source UCSC]

ht-4

ht-29

< <

FPP 'fragment hole' in ht-4 
detected in 4 clones

FPP 'fragment hole' in ht-29
detected in 3 clones

ERBB4

(a) Schematic representation of 2 candidate somatic deletions in FL pa-
tients 4 and 29 that affect the first intron of ERBB4

putative deletion affecting ERBB4
chr2q34: 212,897,542-212,901,669 
(4,127 bp; LR=-0.39; 4 SNPs; z-score= -2.8)

(b) OPAS scatterplot of chromosome 2 in patient 29

Figure 4.19: Candidate focal deletions on chromosome 2 that potentially affect the first intron of
ERBB4 gene in two FL patients (OPAS-exclusive). Panel (a) shows a schematic representation of 2
candidate somatic OPAS deletions on chromosome 2q34 in FL patients 4 and 29. Both of these OPAS-
exclusive deletions, denoted by the red lines in (a), affect the first intron of the ERBB4 gene (although
these candidate CNVs do not overlap). The candidate intronic ERBB4 deletion in patient 4 (ht-4) is ∼25 kb
(13 SNPs; LR = −0.58) and the candidate deletion of patient 29 (ht-29) is ∼4 kb (4 SNPs; LR = −0.39).
None of these events has been reported in Tumordb, thus, no evidence is available to directly validate these
candidate CNVs. However, there is an FPP ”fragment hole” in ht-4 that aligns with the OPAS predicted
deletion (∼25 kb) in this patient. The OPAS candidate deletion in ht-29 (∼4 kb) is also near an FPP detected
”fragment hole”. The blue bars in (a) illustrate FPP clones that align to the above events. The fragment
holes that occur within these clones are denoted by thinner lines (see p. 283 for description of ”fragment
holes”). Although aligning with an FPP fragment hole does not validate these putative events, it increases
the confidence of these OPAS-exclusive results. Panel (b) shows an example of ERBB4 intronic deletion
in ht-29. As indicated, this putative deletion is estimated to be ∼4 kb and includes only 4 Nsp SNP probe
markers. The significant deletion z-score of -2.8 and LR value of approximately -0.4 indicate that the above
deletion in ht-29 is statically significant, however, further experiments are required to investigate this putative
event.
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(1) 3q13.33: 122,499,369-122,596,779 (~97 kb; 8 SNPs; LR= -0.38)
(2): 3q21.1-q22.1: 124,419,559-133,864,289 (~9 Mb; 716 SNPs; LR= -0.4)

(1)

(2)
(1)*

(2)

(a) OPAS scatterplot of chromosome 3 of patient 20, denoting an
OPAS-exclusive focal deletion on 3q13.33 (∼97 kb; 8 SNPs)

FPP clone 20-31J21 with 
alignment to two different 
locations (BES validated)

coverage gap

OPAS predicted deletion in ht-20

Tumordb Affy 
results (SMD)
in all FL 
patients

ht-14 amp
ht-9 LOH

BES also validated the 
breakpoint in 20-156011

(1)*

(2) OPAS candidate del (2) in ht-20

ht-14 amp
ht-9 LOH
ht-20 del

SMD

* OPAS-exclusive candidate CNV

(b) Tumordb screenshot of 3q31.33 chromosomal region of ht-20
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Figure 4.20 (previous page): OPAS-exclusive candidate deletion on chromosome 3q13.33 of patient 20
(∼97 kb) that is adjacent to an FPP inversion event. Panel (a) denotes the OPAS scatterplot of chromo-
some 3 of patient 20 (ht-20). The yellow highlighted region indicates two OPAS candidate deletions that are
∼97 kb (CNV #1) and ∼9 Mb (CNV #2), and are about 1.8 Mb apart. The larger deletion (CNV #2; ∼9 Mb)
is observed by other datasets in Tumordb (aCGH and SMD). However, the smaller deletion (CNV #1; ∼97
kb) is an OPAS-exclusive candidate CNV that includes only 8 SNP probe markers (3q13.33; LR =−0.38).
Panel (b) displays the Tumordb screenshots of chromosome 3q13.33 (top) and chromosome 3q22 (bottom)
of ht-20. The FPP split alignment (”multi fpp”; see Appendix K) was detected in a single clone (20-31J21)
and validated by BAC end sequencing (BES) in two clones (shown by red and blue arrows in top panel). The
bottom panel shows that the other end of clone 20-31J21 (shown in green) is aligned to chromosome 3q22,
as shown by red dashed lines. The FPP and BES analysis have concluded that the above FPP event in ht-20
is an inversion, approximately 11 Mb (3q13.33 and 3q22).
Top panel of (b) demonstrates that the breakpoint of the FPP inversion event in 3q13.33 partially overlaps
with the OPAS-exclusive predicted deletion (CNV #1) in this region. Furthermore, another portion of CNV
#1 aligns with an FPP ”coverage gap” (p. 283), shown by red dashed lines. Although overlapping with
these FPP events does not directly validate the OPAS-exclusive ∼97 kb deletion (CNV #1), it increases the
confidence of this CNV prediction. The bottom panel shows that the larger deletion (CNV #2; ∼9 Mb) is
detected by both SMD and OPAS, and overlaps with the FPP detected inversion in chromosome 3q22.
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Figure 4.21: The most significant gene network associated with OPAS candidate focal CNVs (� 150
kb). Ingenuity pathways analysis software was used to examine 30 genes that overlapped with candidate
OPAS focal CNVs. This figure denotes the IPA result of the most significant gene network in this datasets
(P≤ 3.28e-02). The molecules that overlapped with candidate focal deletions and amplifications were shown
by red and blue colors, respectively. The green color represents a complex deletion/amplification event that
affects the KIT gene (discussed in more detail in Section 4.3.8.3). This network includes several cancer-
related genes. For instance, ERBB4, is a member of growth factor receptors that is linked with cancer
development and malignancy, and PAX5 is involved in early stages of B-cell differentiation and has also been
linked to B-cell and Hodgkins lymphomas (see pp. 130-131 for more detail). The IPA analysis also indicated
that 3 biological function categories (cell death, cell cycle and cellular development) were significantly
associated with the genes that overlapped with candidate focal OPAS CNVs.
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Comparison of Candidate Amplifications in 23/25 FL Patients 

OPAS Amps = 124

aCGH Amps = 96

SMD Amps = 105

~81*
4

19

1

11

4 15

seen in all 3 datasets (81) 
(denoted by 'A')
seen by OPAS but not SMD (15+4=19)
(denoted by 'B')
seen by SMD but not OPAS (4+1=5)
(denoted by 'C')

78%
89%

68%

95%
80%

 'B' 'C'

85%

'A'

* due to the difference in the size of detected CNVs, a few SMD and aCGH predicted amplifications overlap
with more than 1 OPAS predicted amplifications. Therefore, the intersection segment includes 86 OPAS predicted
amps, 80 aCGH amps and 81 SMD amps.

Figure 4.22: Venn diagram comparing predicted copy number amplifications in FL samples, gener-
ated by 3 methods (OPAS, SMD and aCGH). These datasets include candidate amplification results from
aCGH (96; purple), 500K array results based on SMD (105; green), and 250K (Nsp) array results based on
OPAS (125; orange). The pairwise concordance coefficients are shown by two arrows near the correspond-
ing datasets. Here, the concordance percentages was defined as the proportion of predicted amplifications
in one dataset (e.g., OPAS) that corresponded to candidate amplifications in another dataset (e.g., aCGH).
The direction and color of these arrows correspond to the datasets being compared. For instance, the purple
arrow at the top-left indicates that 85% of aCGH amplification results are also observed by SMD (also in Tu-
mordb); and the green arrow, in the opposite direction, indicates that 78% of SMD amplification results are
also observed by aCGH results. These diagrams and their corresponding concordance coefficients indicate
that there is a high similarity between SMD and OPAS results (two SNP array-based datasets), with 95%
and 80% concordance rates, respectively. This is also evident from the diagram since the majority of the
predicted amplification calls generated by OPAS and SMD fall within the intersection area between these
two datasets (SMD∩OPAS = 100). It is also observed that 85%-89% of aCGH putative amplifications are
observed by SNP array-based datasets. However, relatively, fewer OPAS and SMD amplifications are seen
by aCGH.
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9p13.2: 36,864,168-36,940,301 (~76 kb; 14 SNPs; LR= 0.33)

(a)

(b)

Figure 4.23: Candidate OPAS-exclusive focal amplification on 9p13.2 (∼76 kb; 14 SNPs) that encom-
passes 2 exons of PAX5 (OPAS-exclusive). Panel (a) shows the OPAS scatterplot of chromosome 9 of pa-
tient 21, indicating a candidate OPAS-exclusive focal amplification on 9p13.2, approximately 76 kb (76,133
bp; LR = 0.33; z-score = +2.16). This putative copy number gain contains 14 SNP probe markers and
potentially affects 2 exons of PAX5 gene, as shown in panel (b). It has been speculated that PAX5 plays an
important role in B-cell differentiation and regulation of B-lymphoid-specific target gene, CD19 [388, 405].
The estimated p-value of detecting a 76,133 bp CNV that overlaps with PAX5 just by random chance is close
to zero (P = 2.2e-308; based on bootstrap analysis using 100,000 permutations). Since there is no support-
ing data available in Tumordb to confirm this putative event, further experiments are required to investigate
this potentially important OPAS-exclusive candidate amplification (in ht-21).
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OPAS Dels = 132

aCGH Dels = 112

SMD Dels = 99

Comparison of Candidate Deletions in 23/25 FL Patients 

       (OPAS-exclusive)
▪4   dels mapped to sequence-

validated deletions. 
▪11 other dels mapped to 

deletion-like FPP events.

53%
51%

43%

95%
71%

54

51

43

1

4

▪1/6 mapped to deletion-like 
FPP events.

32
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intersection of all 3 datasets (51)

seen by SMD but not OPAS (4+1= 5)
(denoted by 'E') seen exclusively by OPAS (32)

seen by OPAS but not SMD (32+6= 38)
(denoted by 'F')

E F

46%

22 of these regions map to
sequence-validated deletions

Figure 4.24: Venn diagram comparing predicted copy number deletions in FL samples, generated by
3 methods (OPAS, SMD and aCGH). The datasets include candidate deletions from aCGH (112 regions;
purple), 500K array results based on SMD (99 regions; yellow), and 250K (Nsp) array results based on
OPAS (132 regions; red). The arrows denote the concordance percentage of pairwise comparisons between
these datasets (71% and 95% concordance between OPAS and SMD versus ∼50% concordance compared
to aCGH). These findings suggest an increased similarity between the two datasets from SNP array platform
(SMD and OPAS), compared to results from array CGH platform. The area marked by blue dashed lines,
denoted by ’F’, indicates that 38 candidate deletions were observed by OPAS but not SMD. From these
38 putative deletions, 32 were not detected by aCGH either (referred to as ”OPAS exclusive” candidate
deletions). Similarly, the area marked by black dashed lines, denoted by ’E’, indicates that 5 candidate
deletions were detected by SMD but not OPAS. The candidate deletions in ’E’ and ’F’ regions are compared
in Section 4.3.7.
The intersection with aCGH suggests that 6/38 candidate deletions in ’F’ and 1/5 candidate deletions in ’E’
are likely real events. From the remaining 32 regions in ’F’, also referred to as OPAS-exclusive events, 4
aligned to Illumina sequence validated deletions and 11 aligned to FPP events that could represent copy
number deletions. Thus, 15/32 (47%) OPAS exclusive events and 21/38 (55%) events in ’F’ (seen by OPAS
but not SMD) are likely real copy number deletions. There is no additional information that can be used to
prove or reject the remaining 17 OPAS exclusive candidate deletions in ’F’.
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10q23.32 (BES validated)
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(c) Screenshot of Tumordb (10q23.32-q23.33; ht-19)

Figure 4.25: Multiple OPAS candidate deleted regions on chromosome 10 of an FL patient (ht-19), that
align with FPP complex events. Panel (a) denotes the OPAS scatterplot of chromosome 10 of patient 19
(ht-19). The yellow highlighted region demonstrates 2 OPAS candidate deletions in chromosome 10q22.2.
One of these candidate deletions (CNV #1) is an OPAS-exclusive finding (∼226 kb, LR=−0.5) that contains
14 SNP probe markers. The second event (CNV #2) is approximately 449 kb (19 SNPs; LR = −0.58) and
is also found by SMD and aCGH. In addition to these two candidate events in 10q22.2, there is another 1.4
Mb candidate deletion on 10q23.32-q23.33 (CNV #3) that is also detected by SMD and aCGH datasets.
Panel (b) shows the screenshot of Tumordb, illustrating the alignment of FPP BAC clones to the reference
genome (hg18). FPP analysis detected a complex event between 10q22.2-q23.32. This figure denotes an
FPP event that was captured in one BAC (19-157G11; shown in green) and validated by BES in two BACs
(denoted by red and blue arrows). As observed, the candidate OPAS-exclusive deletion (CNV #1) is adjacent
to the FPP validated breakpoint in 10q22.2. Furthermore, the yellow highlighted area in (b) shows that the
depth of FPP coverage data is particularly low in CNV #2 region. These findings suggest that CNV #2 (∼449
kb) is likely a real copy number loss, although, it is not directly validated by FPP.
(continued on the proceeding page)
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(continued): Panel (c) shows that the other end of FPP BAC clone 19-157G11 (that was shown in (b)) is
aligned to chromosome 10q23.32. This BES validated breakpoint is adjacent to OPAS candidate CNV #3 in
chromosome 10. There are no FPP events to directly validate candidate CNV #3, which is also detected by
SMD and aCGH. However, the yellow area in (c) illustrates that the FPP depth of coverage is particularly
low in the predicted region of copy number loss (CNV #3).
Based on these figures, it can be speculated that the three aforementioned candidate deletions on chromo-
some 10 of ht-19, including the OPAS-exclusive event on 10q22.2 (CNV #1), are likely real deletions.
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chr14: 105,169,391-105,399,872
            (230 Kb; 4 SNPs)
            LR ~ -0.99; z-score= -7.2

(a) OPAS scatterplot of chromosome 14 of patient 14, indicating a candidate
deletion on 14q32.33 (∼230 kb; 4 SNPs; LR = -0.99)

Tumordb Affy information 
(based on SMD) predicts no
deletion in this region in ht-14

OPAS predicted deletion
in ht-14

FPP coverage gap

(b) Tumordb screenshot of 14q32.33 chromosomal region of ht-14

Figure 4.26: Candidate OPAS-exclusive deletion on chromosome 14q32.33 of patient 14, mapping to
an FPP ’coverage-gap’ (∼230 Kb; 4 SNPs). Panel (a) denotes the OPAS scatterplot of chromosome 14
of FL patient 14 (ht-14). The yellow highlighted region denotes an OPAS candidate copy number loss,
approximately 230 kb, with 4 SNP probe markers. This candidate deletion is located near the q-end of
chromosome 14 (14q32.33) and demonstrates a strong loss of signal intensity (LR=−0.99; z-score=−7.2).
This putative deletion is not detected by SMD or aCGH results in Tumordb. Panel (b) shows the screenshot
of Tumordb, illustrating the alignment of FPP BAC clones of chromosome 14q32.33 to the reference human
genome (hg18). The red arrow denotes that FPP data detected a ’coverage gap’ (see p. 283), overlapping
with OPAS predicted deletion in (a). Although this FPP event does not validate the aforementioned OPAS-
exclusive candidate deletion, it increases the confidence of this finding.
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chr 15: 18,427,103-20,335,459
            (1.9 Mb; 58 SNPs)

(a) OPAS scatterplot of chromosome 15 of patient 21, in-
dicating an OPAS-exclusive deletion on 15q11.2 (∼1.9 Mb;
58 SNPs)

Ends of FPP clone Hta21_0019A15

other end of FPP 
clone HTa21_0128J21
maps to chr 2

Ends of FPP clone 
Hta21_0055E19

OPAS candidate deletion (ht-21)

(b) Screenshot of Tumordb (chr 15q11.2; ht-21)

Figure 4.27: Candidate OPAS-exclusive deletion on 15q11.2 (ht-21), mapping to a region with several
’multi fpp’ events. Panel (a) shows the OPAS scatter plot of chromosome 15 of patient 21 (ht-21). The
highlighted region indicates an OPAS candidate deletion, ∼1.9 Mb (58 SNP probes) on 15q12 with LR =
−0.2 (z-score = −0.83). Panel (b) illustrates the screenshot of Tumordb, representing the alignment of
FPP BAC clones of chromosome 15q11.2 to the reference genome (hg18). The OPAS predicted region of
deletion is shown by the black bar and denoted by the pink arrow. The red arrows indicate two ’multi fpp’
events (see p. 283) that have been captured by clones Hta21-0055E19 and Hta21-0019A15. Furthermore, the
candidate OPAS-exclusive deletion is adjacent to an FPP translocation event between 15q11.2 and 2q37.3,
that has been captured by BAC clone HTa21-0128J21 (shown by blue arrow). In summary, these FPP
events suggest that the aforementioned OPAS predicted deletion (a) may encompass one or several smaller
deletions. Further experiments are required to investigate this event.
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chr12: 109,501,013 - 109,501,013
            (~143 kb; 4 SNPs; LR= -0.82)

SEQ-validated

(a) OPAS scatterplot of chromosome 12 of ht-6, detecting a focal
deletion (∼143 kb) on 12q24.11 that partially affects HVCN1 and
PPTC7 genes

(control)
(test)

Image courtesy of Susana Ben-Neriah, BCCRC

(b) FISH validation of 12q24.11 deletion in ht-6

SMD results of 
12q24.11-q24.12:
no deletion is
reported in ht-06.

OPAS-predicted 
deletion in ht-06

*

HVCN1

ends of FPP BAC clone : HTa06_0209N22

PPTC7

(c) Screenshot of Tumordb, illustrating FPP alignment of BAC clones in 12q24.11-24.12 chromoso-
mal region of ht-6 to the reference human genome (hg18)
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Figure 4.28 (previous page): Validated OPAS-exclusive focal deletion on chromosome 12 of patient
6 (∼143 kb; 4 SNP probes), affecting 4 genes including HVCN1 and PPTC7 (confirmed by Illumina
sequencing). Panel (a) illustrates the OPAS scatterplot of chromosome 12 of FL patient 6 (ht-6). The
region highlighted by yellow indicates an approximately 143 kb deletion on chromosome 12q24.11 with
LR � −0.6 that includes 4 Nsp SNP probes. This deletion was also detected by FPP analysis (shown in
panel (c)) and Illumina sequencing data. However, aCGH and SMD results in Tumordb both failed to
detect this deletion. Panel (b) shows the result of the FISH experiment that was performed to validate
the aforementioned OPAS-exclusive focal deletion. The FISH experiment was designed and performed
by Susana Ben-Neriah at Dr. Horsman’s laboratory at the BCCRC. Two FISH probes were designed in
this experiment, one to interrogate the 12q24.11 predicted deletion (shown by red dots) and one control
in the flanking sequence (shown by green dots). The two green (control) and one red (test) signals in the
depicted nucleus indicate that 12q24.11 deletion is heterozygous in this patient (ht-6). Panel (c) displays the
screenshot of Tumordb illustrating FPP alignment of BAC clones in ht-6 to the reference human genome
(hg18). A custom track is added to this plot to show the OPAS boundaries of the aforementioned deletion
(109,501,013-109,644,386), denoted by the blue arrow. The black arrows indicate that the ends of BAC
clone HTa06-0209N22 are aligned to two distinct locations on 12q24.11 (’multi fpp’ event; described in
Appendix K). This FPP event suggests that the region between the denoted two BAC ends, shown by pink
dashed lines, may have been deleted in ht-6. An Illumina sequencing experiment confirmed this event and
identified the exact deletion boundaries (109,465,967-109,611,115). As seen in this graph, the above deletion
affects 4 genes including T-cell activation protein PPTC7 and voltage-gated proton channel HVCN1 that is
highly expressed in immune tissues (denoted by red arrows). The possible impact of this focal deletion on
these genes is further discussed in the next figure.
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Figure 4.29: Analysis of a putative fusion between HVCN1 and PPTC7 genes in FL patient 6 as
the result of a focal deletion (145,148 bp1) on 12q24.11 (OPAS-exclusive deletion that was validated
by Illumina sequencing). Panel (a) shows the UCSC screenshot of chromosome 12q24.11 deletion
breakpoints in patient 6 (ht-6), generated by Illumina sequencing (denoted by red dashed lines). As
seen in this plot the deletion of 12q24.11 removes all but the first exon of HVCN1 and the first 3 coding
exons of PPTC7, juxtaposing the HVCN1 first exon to the remaining 3 PPTC7 exons. Therefore, the
above deletion can potentially create a novel fusion gene between the 5’ end of HVCN1 and 3’ end of
PPTC7. To generate a synthetic fusion between HVCN1 and PPTC7 genes, the sequence from the first
exon of HVCN1 is merged with the sequence of the remaining 3 exons of PPTC7. This synthetic fusion
sequence is then translated to obtain its corresponding protein product, using an online tool (available
at http://searchlauncher.bcm.tmc.edu/seq-util/Options/sixframe.html). Panel (b) shows the results of the
translation of PPTC7/HVCN1 synthetic fusion. The fusion point is marked by the red arrow. As indicated,
the sequence on the right of this fusion represents the protein product of the 3 remaining PPTC7 exons and
the sequence on the left of this fusion point (highlighted in blue) indicates the protein product of the only
remaining HVCN1 exon. It is observed that HVCN1/PPTC7 fusion appears to be in-frame. This finding
suggests that the deletion on chromosome 12q24.11 in FL patient 6 could result in a translated protein
product.

1 based on the exact boundaries of the deletion, generated by Illumina sequencing
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Chromosome 12- Patient 9

LR= -0.39

(a) OPAS scatterplot of chromosome 12 of patient 9, indicating a deletion on 9q24 (∼1.4
Mb)

CN

Chr 12- patient 9 (paired analysis)
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Image courtesy of Dr. Allen Delaney; GCS
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encompassing HVCN1

(b) SMD result of chromosome 12 of ht-9
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encompassing 
HVCN1

Image courtesy of Dr. Horsman's Lab; BCCRC

(c) Array CGH result of a portion of chromosome 12 of
ht-9

Figure 4.30: Candidate ∼1.4 Mb deletion on 12q24 in patient 9, encompassing HVCN1 gene. Panel (a)
shows the OPAS scatterplot of chromosome 12 of patient 9 (ht-9), denoting a ∼1.4 Mb candidate deletion in
this patient (45 SNPs; LR =−0.39) that encompasses the HVCN1 gene. This putative copy number loss was
not detected by FPP. Panel (b) denotes the SMD result of chromosome 12 of ht-9 that also found a deletion
in the aforementioned region (shown by black arrow). Panel (c) illustrates a partial screenshot of array CGH
(aCGH) results of chromosome 12 of ht-9. The blue arrow indicates that aCGH analysis also identified a
deletion in the same region (12q24.11-q24.12). Collectively, these plots suggest that although FPP did not
detect the aforementioned candidate deletion in ht-9, it is likely a real CNV.
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chr9: 21,884,299-21,988,733 
         (~104 kb; 8 SNPs)

SEQ-validated

(a) OPAS scatterplot of chromosome 12 of patient 9, detect-
ing CDKN2A deletion (∼104 kb; 8 SNPs)

OPAS predicted deletion in ht16

Tumordb Affy 
results (SMD)
in all FL 
patients

ht-22 del
ht-18 del
ht-24 del

ht-16 LOH

ends of FPP BAC 
clone : HTa16_0157E02
ends of FPP BAC 
clone : HTa16_0092C10

(b) Tumordb screenshot of 9p21.3 chromosomal region of ht-16

Figure 4.31: Sequence validated OPAS-exclusive focal deletion on 9p21.3 in FL patient 16, encom-
passing CDKN2A gene (∼104 kb; 8 Nsp). Panel (a) denotes the OPAS LR scatterplot of chromosome 9
of FL patient 16 (ht-16). The yellow highlighted region indicates an OPAS-exclusive deletion, ∼104 kb
with 8 Nsp SNP probe markers (LR≈ −0.95). Panel (b) shows a screenshot of Tumordb illustrating the
FPP alignment of BAC clones in 9p21.3 region of ht-16 to the reference human genome (hg18). The FPP
coverage data detects a deletion event in this region, captured by two BAC clones that are denoted by green
(HTa16-0157E02) and yellow (HTa16-0092C10), respectively. As seen in (b), there is no FPP coverage
between the highlighted regions of the chromosome, emphasizing that the FPP event is a deletion. This
event confirms the aforementioned OPAS-exclusive deletion (9p21.3; ht-16) that encompasses the CDKN2A
gene. The grey region in ”manual affy annotations” track in (b) shows that SMD reported a copy number
neutral loss-of-heterozygosity (LOH) that contains the aforementioned real deletion. In addition to FPP, this
OPAS-exclusive deletion has also been validated by Illumina sequencing (Section 4.3.8.2) as well as FISH
analysis (Figure 4.32b). The FISH analysis determined that the CDKN2A loss in patient 16 is a homozygous
deletion. The latter finding is consistent with the significant loss of signal intensity (LR≈−0.95) of 9p21.3
loss.
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(a) OPAS results indicating deletions of CDKN2A gene (9p21.3) in 4 FL patients

Figure 4.32: Recurrent deletion of 9p21.3 chromosomal region in 4/25 (16%) FL patients, suggesting
a potentially important role of CDKN2A tumor suppressor in FL. OPAS results identified deletions
on 9p21.3 in 4 FL patients (patients 16, 18, 22 and 24), all encompassing the CDKN2A gene. Panel (a)
illustrates the OPAS scatterplots of chromosome 9 in the aforementioned patients (black arrows denote the
predicted deletion that included CDKN2A). The FISH experiments, shown in panels (b)-(e), confirmed all
of the above 4 predicted deletions in 9p21 and also identified whether these losses were homozygous (-/-) or
heterozygous (-/+) (as shown in the yellow label at the top of each OPAS plot). Two probes were designed
in each FISH experiment, one to interrogate the 9p21 predicted deletion (test) and one in the flanking 9q33
sequence (control). In plots (c)-(e), the red dots represent the probes for 9p21 and the green dots represent
the control probe on 9q33. In plot (b), an opposite color combination is used (red for control and green for
test probes). Nuclei showing homozygous or heterozygous deletion of 9p21 are indicated by the arrows.
FISH images in (b)-(e) confirm all 4 cases of OPAS predicted 9p21 deletions in the FL dataset that include
CDKN2A gene. As noted in these plots, the 9p21 deletion is homozygous in 3/4 FL patients, ht-16 (panel
(b); LR = −0.95), ht-18 (panel (c); LR = −1.3) and ht-24 (panel (e); LR � −1) (continued on the next
page).
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ht-16
80% loss 9p21 -/-

2R2R2G

(test)

(control)

Image courtesy of Dr. Horsman's Lab, BCCRC

(b) FISH validation; patient 16

ht-18
30% loss 9p21 -/-(test)

(control)

Image courtesy of Dr. Horsman's Lab, BCCRC

(c) FISH validation; patient 18

ht#22
52% loss 9p21

1R2G

ht-22
52% loss 9p21 -/+

(9p21 probe)

(control)Image courtesy of Dr. Horsman's Lab, BCCRC

2R2G

(d) FISH validation; patient 22

ht-24 ; 48% loss 9p21 -/- ; gain 9q33

(control)

(test)

2R2G

2R2G 3G

3G

Image courtesy of Dr. Horsman's Lab, BCCRC

(e) FISH validation; patient 24

(continued): The only heterozygous deletion was detected in ht-22 (panel (d); LR = −0.43). As indicated
at the top of each image, the number of FL cells that carry 9p21 deletion differs among these patients,
varying between 30-80% of the cells. It is important to note that SMD [259] and aCGH results in Tumordb
failed to detect ∼104 kb deletion in ht-16 that included 8 Nsp SNP probes, shown in panel (b). The latter
OPAS-specific deletion was also investigated in more detail by Illumina sequencing in Figure 4.31.
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chr 4: 55,172,333- 55,291,840
          (~119 kb; 13 SNPs)

(1)

(2)

(3)

(a) OPAS LR scatterplot of chromosome 4, indicating a complex CNV pattern in
4q12 region of patient 20

one end of FPP BAC 
clone : Hta20-0033M06

the other end of 
clone: Hta20-0033M06

Tumordb Affy results 
(based on SMD) 
in all FL dataste

ht20 del
ht10 del

ht20-amp

opas-amps ht20

opas-dels ht20

(b) Tumordb screenshot of 4q12 chromosomal region of ht-20
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Figure 4.33 (previous page): Sequence validated OPAS-exclusive focal deletion on 4q12 affecting the
KIT gene (ht-20). Panel (a) denotes the OPAS scatterplot of chromosome 4 of FL patient 20 (ht-20). The
yellow highlighted region illustrates a complex structure of several CNVs in 4q12 chromosomal region of ht-
20. CNV #1 is a relatively large deletion that contains an apparently amplified region (CNV #2; highlighted
in red). However, within this apparently amplified region, there is a focal deletion (CNV #3), approximately
119 kb that is indicated by blue arrows. The latter focal deletion (CNV #3) that contains 13 SNP probe
markers (LR =−0.38) is exclusively identified by OPAS.
Panel (b) shows the screenshot of Tumordb illustrating the FPP alignment of BAC clones in 4q12-q13
region of ht-20 to the reference human genome (hg18). As indicated by the red arrows, the ends of FPP
BAC clone Hta20-0033M06 are aligned to two distinct locations on 4q12, suggesting that there may be a
deletion in this region. This FPP event (’multi fpp’; see Appendix K) aligns with the aforementioned OPAS-
exclusive focal deletion (CNV #3) in ht-20. This deletion is also validated by Illumina sequencing (shown
in Fig. 4.1). The Illumina sequencing of this region determined that the above deletion (CNV #3) is 136,811
bp (OPAS analysis had estimated this deletion to be 119,507 bp). Further analysis of this event, described
in Section 4.3.8.3, reveals that CNV #3 affects the extracellular portion of the KIT gene, while the adjacent
amplification impacts the intracellular region of this proto-oncogene.
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(b) Structure of the KIT gene

Figure 4.34: Analysis of the impact of 4q12 deletion (136,811 bp) in FL patient 20 on the KIT gene.
Panel (a) denotes the sequence validated boundaries of a deletion on chromosome 4 of patient 20 (shown by
the black bar). As observed, this deletion removes 3 exons of the KIT gene. The OPAS results also denote
an amplification in the 3’ end of this gene (SMD results detected the entire gene to be amplified). Panel (b)
illustrates the structure of the KIT protein that includes an extracellular domain, a transmembrane domain
and an intracellular domain. Importantly, the ligand binding domain of KIT, exons 1-3, have been previously
implicated in constitutional activating mutations of KIT. Several mutations in KIT have also been linked in
other cancers that are noted on this graph with blue the legends [403].
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Distribution of OPAS regions with respect to their LR values (with more than 2 SNPs; total = 1931)

LR �−0.1 �−0.2 �−0.3 �−0.4 �−0.5 �−0.58 �−0.6 �−0.7 �−0.8 �−0.9 �−1

# Losses 236 134 94 53 31 21 18 13 10 5 3

LR � 0.1 � 0.2 � 0.3 � 0.4 � 0.5 � 0.58 � 0.6 � 0.7 � 0.8 � 0.9 � 1

# Gains 213 118 58 32 23 21 21 17 11 7 4

Table 4.1: Spectrum of LR deviation of all estimated DNA regions from 25 FL genomes. Various
level of LR cut-offs are used to estimate the frequency of OPAS regions (with at least 2 SNPs) with in-
crease/decrease of signal intensity. It is observed that based on the theoretical value of one copy loss
(LR � log2-ratio(1/2) = −1), only 3 OPAS regions in the entire dataset would be called as putative dele-
tions (shown in red). Similarly, if the theoretical value of one copy gain (LR � log2(3/2) = 0.58) is used,
only 21 candidate regions would be considered as putative amplifications (shown in blue). Therefore, these
theoretical cut-offs would result in a total of 24 candidate CNVs in 25 FL patients, less than one CNV per
patient. Considering that copy number variations are one of the hallmarks of cancers, and are particularly
frequent in follicular lymphoma, it can be concluded that using the theoretical LR values to call putative
CNVs in this dataset would significantly underestimate the true extent of CNVs in this study.
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List of Candidate Somatic FL CNVs

Event Category Desc. Freq. Mean Size (min-max) Median #SNPs (min-max) Median GC% # Unique Genes

WCA
Amps 42 102 Mb (37-242.6 Mb) 7162 (2010-21382) 0.38 21,122
Dels 6 115 Mb (76-191 Mb) 10610 (7437-18384) 0.38 2,825
All 48 104 Mb (37-242.6 Mb) 7658.50 0.38 22,213

Distal CNVs
Amps 9 20 Mb (569 kb-59.6 Mb) 1969 (33-5511) 0.41 1,653
Dels 20 9.4 Mb (21 kb-30 Mb) 523 (3-4214) 0.44 1,691
All 29 13 Mb (21 kb-59.6 Mb) 581 (3-5511) 0.41 3,343

Other CNVs
Amps 82 2.15 Mb (8 kb-27.2 Mb) 36 (2-1558) 0.39 2,766
Dels 127 2.13 Mb (753 bp-45 Mb) 31 (3-4469) 0.38 2,413
All 209 2 Mb (753 bp-45 Mb) 22 (2-4469) 0.38 5,142

Table 4.2: Summary of candidate somatic copy number changes in the FL dataset. This table presents
a summary of all CNVs detected in 25 FL patients in this study. The specified CNV categories are explained
in Sections 4.3.3 (WCA), 4.3.4 (distal CNVs) and 4.3.5 (all other CNVs). The first and second rows within
each category summarize candidate amplification (Amps) and deletion (Dels) events, respectively. The third
row presents the summary of all candidate CNVs, collectively (both amplifications and deletions).
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List of candidate distal CNVs in each FL chromosome

Chr p-ter q-ter Size (bp) LR z-score Cytoband Patient id Found by
aCGH?

Found by
SMD?

1 del 7,743,477 -0.39 -2.0 1p36.33-p36.22 ht-24 � �
del 8,517,646 -0.37 -2.2 1p36.33-p36.22 ht-12 � �
del 9,369,740 -0.43 -2.6 1p36.33-p36.22 ht-29 � �
del 3,146,252 -0.46 -1.6 1p36.33-p36.22 ht-6 � �
del 8,604,770 -0.12 1 -1 1p36.33-p36.32 ht-7 - (cnnloh) 2

del 1,937,560 -0.23 -1 1p36.33-p36.32 ht-18 � -
del 12,871,761 -0.42 -1.6 1p36.33-p36.21 ht-28 � �
del 2,570,969 -0.13 3 -0.7 1p36.33-p36.23 ht-9 � �

5 amp 21,854,461 +0.07 4 0.6 5q33.3-q35.3 ht-12 � �

6 amp 17,091,068 +0.22 1 6p15.5-p15.1 ht-11 � �
del 78,003 -0.42 -1.5 7p25.3-p22.3 ht-20 - -

7 del 8,318,241 -0.44 -2.4 7q36.1-q36.3 ht-20 � �

8 del 21,309 -0.23 -1.6 8q24.12-q24.3 ht-25 - -
del 30,341,791 -0.39 -1 8p23.3-p12 ht-24 � �

amps 24,341,677 +0.21 1.3 8q24.12-q24.3 ht-25 � �
amps 59,649,419 +0.25 0.9 8q21.2-q24.3 ht-24 � �
amps 20,717,223 +0.25 1.2 8q24.13-q24.3 ht-28 � �

9 del 5,319,718 -0.38 -1.3 9p24.3-p24.1 ht-24 � �

13 del 13,148,807 -0.26 -0.8 13q33.1-q34 ht-8 � �

14 amp 569,948 +0.18 5 1.1 14q23.33 ht-24 � -
14 del 1,117,776 -0.40 -1.9 14q32.33 ht-21 � �

15 del 27,827,063 -0.30 -1 15q24.1-q26.3 ht-29 � �

17 del 2,783,451 -0.35 -1.6 17p13.3 ht-24 � �
del 7,962,118 -0.21 -1.3 17p13.3-p13.1 ht-10 � �

amp 26,045,703 +0.26 0.9 17q22-q25.3 ht-22 � �

18 del 17,164,386 -0.28 -0.8 18q21.33-q23 ht-24 � �

22 del 8,613,952 -0.41 -1 22q13.2-q13.33 ht-22 � �

X amp 2,570,969 +0.84 3.2 Xp22.23 ht-23 � �
X amp 8,505,076 +0.34 1.1 Xq25-q28 ht-5 � �

Total = 29 (20 deletions and 9 amplifications)

(1) Figure 4.14 (ht-7; del(1p36.33-p36.32)) (4) Figure 4.13 (ht-12; del(5q33.3-q35.3))
(2) copy number neutral loss-of-heterozygosity (LOH) (5) Supplementary Figure L.3 (ht-24; del(14q23.33))
(3) Figure 4.3 (ht-9; del(1p36.33-p36.23))

Table 4.3: Frequency of candidate distal CNVs (category 2) in each FL chromosome. Each row indicates a
candidate distal CNV in an FL patient (’patient id’). The second and third columns (’p-ter’ and ’q-ter’) specify whether
the predicated CNV event is near the end of the short arm (p-ter) or the long arm (q-ter) of the denoted chromosome
(column 1). Columns 4-6 present further information about the candidate distal CNV, including the size, LR value and
z-score of the predicted event. The last two columns denote whether the OPAS candidate distal CNV was also detected
by aCGH or SMD results.
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List of candidate focal CNVs (≤ 150 kb) that affect at least a single gene (20 regions, 30 unique genes)

Chr Cytoband Size
(bp)

LR ID. Symbol Function Validation/ present in
other datasets?

1 1p34.3 59,105 -0.35 ht-21 SFPQ splicing factor proline/glutamine-rich –

2 2q341 24,855 -0.58 ht-4 ERBB4 v-erb-a erythroblastic leukemia viral onco-
gene homolog 4 (avian)

FPP ”fragment hole”

2 2q34 4,127 -0.39 ht-29 ERBB4 v-erb-a erythroblastic leukemia viral onco-
gene homolog 4 (avian)

– (SMD detects this
region as ”cnnloh”)

3 3p14.2 48,959 -0.34 ht-12 FHIT fragile histidine triad gene near an ”FPP hole”

3 3q13.332 97,410 -0.38 ht-20 STXBP5L may play a role in vesicle trafficking and ex-
ocytosis (potential)

FPP ”multi fpp”

4 4q113 119,507 -0.38 ht-20 KIT mast/stem cell growth factor receptor Precur-
sor

Sequencing

6 6p25.3 78,003 -0.42 ht-20 AL035696.14cDNA FLJ43763 fis, clone TESTI2048603 –

6 6p12.3- 113,423 -0.23 ht-7 CENPQ centromere protein Q –
q25.1 MUT methylmalonyl CoA mutase

C6orf141 chromosome 6 open reading frame 141

6 6q22.31 80,350 +0.29 ht-12 RNF217 probable E3 ubiquitin-protein ligase RNF217 –

8 8p23.3 21,309 -0.23 ht-25 ZNF596 zinc finger protein 596 –

8 8q12.1 126,232 -0.37 ht-12 LYN v-yes-1 Yamaguchi sarcoma viral related
oncogene homolog

SMD

8 8q24.3 87,205 -0.63 ht-18 SLC45A4 solute carrier family 45, member 4 SMD
DENND3 DENN/MADD domain containing 3

9 9p21.34 104,434 -0.95 ht-16 MTAP methylthioadenosine phosphorylase Sequencing
CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)

9 9p13.25 76,133 +0.33 ht-21 PAX5 paired box protein Pax-5 (B-cell-specific
transcription factor)(BSAP)

–

12 12q24.116 143,373 -0.82 ht-6 HVCN1 voltage-gated hydrogen channel 1 Sequencing, FISH
PPP1CC protein phosphatase 1
PPTC7 protein phosphatase PTC7 homolog (T-cell

activation protein phosphatase 2C)
TCTN1 regulator of Hedgehog (Hh), required for

both activation and inhibition of the Hh path-
way in the patterning

13 13q21.33 133,291 -0.34 ht-23 KLHL1 kelch-like 1 (Drosophila) –

15 15q24.1 115,472 -0.65 ht-20 CLK3 CDC-like kinase 3 SMD, FPP ”fragment
hole”

ARID3B AT rich interactive domain 3B

17 17p12 121,102 -0.46 ht-22 TEKT3 tektin-3 (function not known) SMD
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(continued)

Chr Cytoband Size
(bp)

LR ID. Symbol Function Validation

19 19p13.21 65,280 -0.39 ht-4 ZNF559 zinc finger protein 559 ”fragment hole” (com-
plex event)

ZNF177 zinc finger protein 177

19 19p13.2 90,114 -0.43 ht-4 ZNF440 zinc finger protein 440 (same as above)
ZNF491 zinc finger protein 491
ZNF441 zinc finger protein 441

(1): Figure 4.19.
(2): Figure 4.20.
(3): Figure 4.33.
(4): Figure 4.31.
(5): Figure 4.23.
(6): Figure 4.28.
(7): Supplementary Figure L.6.

Table 4.4: Summary of all candidate somatic focal CNVs (� 150 kb) that affect at least 1 gene in
an FL patient. This table provides the list of 20 candidate focal CNVs that affect at least one gene in
an FL patient. The first 5 columns indicate specifications of the OPAS predicted focal CNVs. The 6th
column indicates the name of the gene(s) that overlap with a corresponding candidate focal CNV. This list
includes 30 such unique genes that are affected by 20 candidate focal events (generated by OPAS). The
7th column (’Function’) presents a brief description of the gene function, based on Ensemble, Entrez or
SwissProt databases. The last column indicates whether the reported event was validated by FPP or Illumina
sequencing or was seen by other Tumordb datasets, such as aCGH or SMD (the description of FPP events,
such as ’fragment hole’, can be found in Appendix K).
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All OPAS candidate amplifications that were not previously reported by 500K SNP Data

No. Chr Start End Size (bp) LR # SNPs ID. Validation Number of Genes

1* 1 10,488,859 10,724,172 235,313 0.26 15 ht-29 – 2 (PEX14, CASZ1)
2* 1 162,032,628 162,074,256 41,628 0.21 11 ht-7 – –
3* 4 155,025,583 155,110,310 84,727 0.161 16 ht-7 – –
5* 5 104,556,024 104,581,898 25,874 0.26 6 ht-7 – –
6 6 33,076,317 33,599,035 522,718 0.152 50 ht-25 aCGH 22 (e.g., HLA-DOA)
6* 6 98,729,854 101,127,689 2,397,835 0.033 260 ht-24 Seq. 11 (e.g., FBXL4)
7* 6 125,296,761 125,377,111 80,350 0.29 6 ht-12 – 1(RNF217)
8* 7 38,269,645 38,318,500 48,855 0.53 7 ht-16 – T-cell receptor γ site
9* 7 38,285,864 38,318,500 32,636 0.91 5 ht-8 – T-cell receptor γ site
10* 7 38,285,864 38,337,859 51,995 0.99 6 ht-29 – T-cell receptor γ site
11* 7 141,928,232 142,213,198 284,966 0.38 26 ht-8 – T-cell receptor β site
12* 7 141,945,722 142,191,578 245,856 0.25 19 ht-16 – T-cell receptor β site
13* 8 19,824,065 20,524,551 700,486 0.16 83 ht-29 – 4 (e.g., LPL)
14* 9 36,864,168 36,940,301 76,133 0.33 14 ht-21 – 1 (PAX5)4

15* 13 30,565,684 30,573,673 7,989 0.42 5 ht-5 – 1 (RP11-173P16.2)
16 14 21,398,106 21,633,557 235,451 0.29 43 ht-29 aCGH T-cell receptor α site
17 14 21,398,846 21,557,538 158,692 0.23 36 ht-18 aCGH T-cell receptor α site
18* 14 22,038,694 22,069,902 31,208 0.75 7 ht-28 – T-cell receptor α site
19 14 105,786,534 106,356,482 569,948 0.185 33 ht-24 aCGH Immunoglobulin

heavy chain site

* OPAS exclusive amplifications (not detected by aCGH or SMD results).
(1): z-score = +1.3
(2): z-score = +1.3
(3): z-score = +0.6; Supplementary Figure L.7
(4): Figure 4.23
(5): z-score = +1.08

Table 4.5: List of 19 new candidate OPAS amplifications that were not previously detected by SNP
data analysis. The first 8 columns indicate the specifications of OPAS candidate amplifications that were
not reported by 500K SNP array results in Tumordb (SMD). The ’Validation’ column denotes whether the
candidate OPAS amplification was reported by array CGH or Illumina sequencing results in Tumordb. The
’–’ mark in validation column means that no information was available to validate (or reject) the correspond-
ing OPAS amplification. The last column indicates the number of genes that overlap with the candidate
amplification. This table shows that from the 19 amplifications found by OPAS that were not previously
detected by 500K SNP data analysis, at least 11 (58%) are real (9 overlap with known copy number changes
in T-cell receptor and IgH, 1 is seen by both aCGH and OPAS and 1 is validated by Illumina sequencing
data). The remaining 8 candidate amplifications (with no available validation data) range in size from ∼7.9
kb up to 700 kb. Furthermore, 3 of these events potentially affect a single gene, such as ∼76 kb putative
amplification in chromosome 9 (event #14) that may affect PAX5. The PAX5 gene is known to be involved in
lymphomagenesis (see p. 130 for more information), suggesting that OPAS detected amplification in patient
21 may be a real CNV event that is related to FL tumorigenesis (Figure 4.23).
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List of OPAS-exclusive deletions that overlap with FPP or Illumina sequence validated events

OPAS Predicted Deletion FPP/Sequencing Anomaly

ID. Chr Start End Size (bp) #SNPs LR Start End Overlap Status # Genes Affected (examples)

ht-13 1 142,756,696 143,782,024 1,025,328 13 -0.24 120,728,444 143,744,590 CPLX-MATCH 7
143,056,638 143,236,834 SEQ-MATCH

ht-4 2 212,870,593 212,895,448 24,855 13 -0.58 212,862,613 212,878,937 FRAG-MATCH 1 (ERBB4)

ht-20 3 122,499,369 122,596,779 97,410 8 -0.38 122,566,181 133,895,826 CPLX-MATCH1 1 (STXBP5L)

ht-20 4 55,172,333 55,291,840 119,507 13 -0.38 55,123,271 55,260,082 SEQ-MATCH2 1 (KIT)

ht-19 4 131,663,499 131,674,302 10,803 4 -0.72 131,671,379 131,791,464 CPLX-MATCH3 0

ht-16 9 21,884,299 21,988,733 104,434 8 -0.95 21,855,442 21,979,452 SEQ-MATCH4 2 (MTAP, CDKN2A)

ht-19 10 75,378,912 75,604,515 225,603 14 -0.50 75,249,961 75,387,178 COV-GAP 5 3 (VCL, AP3M1, ADK)
75,573,524 75,658,579 FPP-MATCH

ht-20 13 100,531,649 100,535,000 3,351 3 -1.14 100,531,649 100,534,365 FRAG-MATCH 1 (VGCNL1)

ht-6 12 109,501,013 109,644,386 143,373 4 -0.82 109,465,967 109,611,115 SEQ-MATCH6 5 (PPTC7, HVCN1, TCTN1, PPP1CC)

ht-14 14 105,169,391 105,399,872 230,481 4 -0.99 105,296,718 105,476,362 COV-GAP7 7 (IGHG2, IGHA1, IGHEP1, IGHV4-31,
IGHG3, IGHD, IGHM)

ht-25 14 105,169,391 105,786,534 617,143 7 -0.41 105,087,747 105,496,075 CPLX-MATCH 80

ht-21 14 106,137,584 106,356,482 218,898 22 -0.15∗ 106,278,489 106,360,586 COV-GAP 38

ht-21 15 18,427,103 20,335,459 1,908,356 58 -0.20 18,721,630 20,143,540 CPLX-MATCH8 32 (e.g., VSIG7, HERC2P3, POTEB,
VSIG6)

ht-9 16 82,677,316 88,690,776 6,013,460 488 -0.25 87,210,550 87,296,384 FRAG-MATCH 107

ht-22 18 51,189,731 51,368,213 178,482 21 -0.27 51,245,287 51,248,206 FRAG-MATCH 1 (TCF4)

ht-4 19 9,315,173 9,380,453 65,280 6 -0.39 9,347,111 9,350,236 FRAG-MATCH 2 VZNF559, ZNF177)

(1): Figure 4.20 (2): Figure 4.33 (3): Supplementary Figure L.8
(4): Figure 4.31 (5): Figure 4.25 (6): Figure 4.28
(7): Figure 4.26 (8): Figure 4.27 * z-score = -0.61
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Table 4.6: List of OPAS-exclusive deletions that overlap with FPP or Illumina sequence validated
events. The first 7 columns indicate specifications of deletions that were exclusively detected by OPAS. The
next 3 columns indicate the FPP events or sequence-validated deletions that overlap with the corresponding
OPAS deletion. The 10th column (’Overlap Status’) indicates the type of OPAS/FPP overlap (described in
the following). Each reported FPP event in this list has been separately analysed to select only cases that
more likely represented copy number losses. The last column reports the number of genes that overlap with
a candidate OPAS-exclusive deletion, and example(s) of such genes where applicable.

Description of FPP ’overlap status’ (from Appendix K):

SEQ-MATCH: The CNV was validated by sequencing the region.
FPP-MATCH: There is a clone with ’multi fpp’ alignment representing the event but no sequence
information was available at the time of preparing this table.
CPLX-MATCH: A breakpoint inside the OPAS candidate deletion was identified, but only some aspects
of the predicted event was captured.
FRAG-MATCH: There is a ’fragment hole’ that overlaps with the OPAS predicted deletion. Fragment
holes are suspected small rearranged regions within the span of a BAC clone. However, these events have
not been validated (at the time of preparing this table).
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Partial list of some important genes that have been linked to cancer

Gene Cytoband Gene
Size (bp)

ID LR Del(-) or Amp(+) CNV Start CNV End CNV Size p-value

CDKN2A 9p21.3 26,739 ht-22 -0.43 - 20,503,135 22,158,464 1,655,329 9.60E-04
ht-16 -0.95 - 21,884,299 21,988,733 104,434 4.00E-05
ht-18 -1.29 - 21,884,495 22,088,574 204,079 1.00E-04
ht-24 -1.02 - 21,802,349 22,474,016 671,667 3.30E-04

CDKN2B 9p21.3 6410 ht-18 -1.29 - 21884495 22088574 204,079 7.00E-05
ht-22 -0.43 - 20503135 22158464 1,655,329 8.40E-04
ht-24 -1.01 - 21802349 22474016 671,667 4.70E-04

TP53 17p13.1 11551 ht-10 -0.2 - 18901 7981019 79,62,118 1.70E-03

MDM2 12q15 39258 ht-12 0.19 + 61880 74683372 74,621,492 2.66E-02
ht-18 0.27 + 61880 87779978 87,718,098 2.64E-02
ht-25 0.18 + 53502682 94095312 40,592,630 1.51E-02
ht-29 0.28 + 65526302 74259224 8,732,922 3.64E-03

HVCN1 12q24.11 35,643 ht-6 -0.82 - 109,501,013 109,644,386 143,373 3.00E-05
ht-9 -0.39 - 108,796,615 110,200,759 1,404,144 1.60E-04

ERBB4 2q34 1,163,119 ht-4 -0.58 - 212,870,593 212,895,448 24,855 6.70E-04
ht-29 -0.39 - 212,897,542 212,901,669 4,127 6.30E-04

KIT 4q12 82,784 ht-10 -0.29 - 52,972,432 97,996,020 45,023,588 1.80E-02
ht-20 -0.38 - 55,172,333 55,291,840 119,507 1.00E-04
ht-20 0.33 + 55,291,840 55,527,502 235,662 1.60E-04

HERC2P3 15q11.2 122,885 ht-21 -0.2 - 18,427,103 20,335,459 1,908,356 3.00E-05

ALK 2p23.2− 728792 ht-21 0.24 + 21305332 83451071 62,145,739 1.10E-02
p23.1 ht-22 0.26 + 24049 242650580 242,626,531 1.12E-02

ht-28 0.24 + 24049 84234990 84,210,941 1.13E-02

NBS1
(NBN)

8q21.3 51335 ht-23 0.24 + 86614119 104514185 17,900,066 6.10E-03

TP73 1p36.32 43231 ht-6 -0.46 - 1258710 9863480 8,604,770 2.30E-04
ht-12 -0.37 - 1743546 4719663 2,976,117 1.60E-04
ht-24 -0.39 - 775852 8519329 7,743,477 2.00E-04
ht-28 -0.42 - 775852 13647613 12,871,761 1.70E-04
ht-29 -0.43 - 775852 10145592 9,369,740 1.90E-04

WAF1/p21 6p21.31 8622 ht-14 0.27 + 119769 36754465 57,316,797 1.52E-02
BCL2 18q21.33 1426 ht-21 0.21 + 36754465 36763087 12,886,590 5.69E-03

ht-24 -0.28 - 36754465 36763087 17,164,386 7.10E-03

BCL6 3q27.3 15711 ht-14 0.26 + 188921859 188937570 26,212,744 9.14E-03

BCL10 1p22.3 12123 ht-8 -0.3 - 85504048 85516171 526,795 3.00E-04

Table 4.7: Partial list of some important genes that have been linked to cancer and their frequency across the
FL dataset. The first 3 columns present the name of the candidate affected genes, their size and cytoband information.
The 4th column is the FL patient id. The next 5 columns specify the FL candidate CNVs that overlap with the reported
gene. The last column (’p-value’) indicates the gene specific confidence limits for the respective CNVs calculated by
bootstrap analysis with 100,000 permutations.



Chapter 5

Conclusions and Future Directions

5.1 Summary
It is now more than 50 years since Lejeune et al. discovered the first microscopic human chromo-
somal abnormality, trisomy 21, in Down syndrome patients (1959; [406]). In the following years,
classical genetics paved the way to discovering several other whole chromosome changes (aneu-
ploidy) that were associated with human disease, such as monosomy X in Turner syndrome [407]
and XXY in Kleinfelter syndrome [408]. In 1991 Lupski et al. [409] discovered a submicroscopic
gain of DNA copy number, approximately 1.5 Mb in size, on chromosome 17p12 that caused
Charcot-Marie-Tooth type 1 (CMT1) disease. However, it wasn’t before the completion of the
Human Genome Project that scientists began to realize the extent of submicroscopic copy number
variations among normal populations (2004; [18]). Upon this discovery, scientists began to spec-
ulate that submicroscopic copy number changes may account for both normal variations among
humans as well as pathogenic variations [26, 410–412]. Discoveries that associated submicro-
scopic DNA copy number changes to susceptibility to diseases such as HIV infection, neurological
disorders and leukaemia also emphasized the significance of these events in disease predisposi-
tion [18, 19, 46, 60, 236]. Thus, identification and characterization of such submicroscopic DNA
copy number changes is important for both the basic understanding of complex diseases and their
diagnosis.

The advent of microarray technologies initiated an era of high-resolution whole-genome anal-
ysis techniques and provided the means to investigate genome wide chromosome copy number
variations on a sub-chromosomal scale [117, 413, 414]. Oligonucleotide microarrays, such as
Affymetrix SNP arrays [29, 30, 135, 137, 146], have been commonly used for high-resolution
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genome-wide copy number detection studies. However, one of the major challenges for accurate
CNV discovery using the data generated from the arrays is the high level of associated noise with
microarray signal intensity outputs, particularly in oligonucleotide arrays [140, 176, 415]. More
recently the advent of next-generation sequencing technologies offer the potential to detect copy
number variations at the base-pair resolution. Although, the computational methods for analysing
sequencing data to infer CNV regions are still in their infancy [194–198]. In fact, current methods
used to analyse CNVs from sequencing data are often adapted from methods that were originally
used for microarray data analysis [266, 416]. For instance, CNV-seq [416], a method for CNV de-
tection using high-throughput sequencing data, is conceptually derived from array CGH platform.

For SNP oligonucleotide arrays, numerous methods have been developed to improve the accu-
racy of CNV calling [69, 150, 161, 178–183, 185, 186, 188]. However, most algorithms attempt to
apply fixed parametric thresholds to reduce the number of false positive CNV calls. Most notably,
often a candidate aberration is called significant only if changes of log2-ratio intensities are ob-
served in at least a certain number of consecutive SNP probes. Therefore, such approaches would
often emphasize specificity over sensitivity [141]. As a result, several recent publications have
acknowledged underestimating the true frequency of small CNVs (that generally have fewer SNP
probe markers relative to larger CNVs) [141, 146]. Applying more stringent CNV calling criteria
seems to be the only way to avoid calling thousands of putative CNV hits, many of which turn out
to be false positives [146, 259]. Thus, the effective power of finding CNVs not only depends on the
resolution of the technology used but also on the computational methods that are applied to analyse
the data.

The main goals of this thesis were to investigate the sources of variability that mitigate the accu-
racy of CNVs detected by SNP array data analysis (see page 19) and also to design and implement
computational tools that use this information to improve CNV detection accuracy. The underlying
assumption was that by using a non-parametric data analysis approach, we can achieve better CNV
detection sensitivity while attaining a reasonable specificity. As hypothesized in the introduction
of this thesis, such improvements would ultimately allow us to detect small CNVs that may con-
tain only a few SNP probe markers. I also hypothesized that developing further visualization and
analysis tools that could summarize CNV findings is necessary for interpreting and understanding
these results.

In Chapter 1, I provided a literature review of the past and current methods that have been
used to analyse copy number variations and elaborated the limitations of each technology with a
particular emphasis on Affymetrix SNP arrays (Sections 1.1-1.2). This Chapter also discussed the
limitations of some of the common CNV calling methods for analysis of SNP array data (Sec-
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tion 1.4).
In Chapter 2, I focused on studying the reproducibility of the data from Affymetrix SNP ar-

rays. To perform this task, I analysed raw signal intensities at the level of individual probes from
72 Affymetrix 10K replicate SNP arrays from 8 individuals and found that the SNP level data
are highly reproducible (CV = 5.16% for chip variability and 6.3% for labeling variability; Sec-
tions 2.3.3-2.3.4). Next, I applied a theoretical approach to estimate the frequency of observing
random oligonucleotide probes that vary by at least k-fold in their intensities between replicate
measurements (Section 2.3.5). The main motivation behind the latter analysis was to investigate
whether the occurrence of random noisy oligonucleotide probes could be the reason behind non-
specific variations that are commonly observed in Affymetrix SNP array data. The concept of
the theoretical model that was used in this analysis was derived from similar work that had been
previously performed in agriculture [417] and later in the context of biological assays [279] (Sec-
tion 2.2.2). To adapt this model for analysing SNP array variability, I coupled the theoretical model
with the empirical data obtained from the aforementioned reproducibly experiment and further ex-
panded the mathematical formulations to adjust to Affymetrix SNP array data (pp. 45-48). Based
on this approach, I concluded that the variation between individual PM oligonucleotide probes in
the same SNP probe set is likely the main contributor to non-biological variations in SNP array
readouts (Section 2.4).

The aim of Chapter 3 was to elucidate the complexity of SNP array data by developing a
novel method for CNV detection that was based on oligonucleotide probe level analysis of signal
intensities. The analysis of SNP readouts in CNV regions indicated that average SNP probe set
log2-ratio (LR) signal intensities varied significantly among SNPs that were located within the
same (validated) CNVs (Section 3.3.1). Furthermore, I noticed a remarkable difference between
the proportion of informative PM oligos across the SNPs. This observation was consistent with the
conclusion of the theoretical analysis of noisy oligos that was discussed in Chapter 2 (p. 51). The
nature of the observed noisy readouts was so complex that it was clear that averaging the oligos
and applying a global filtering strategy would not be able to minimize the impact of noisy oligos
on the predicted CNV calls (e.g., Figure 3.6).

In order to test whether the observed undesirable variation in oligonucleotide readouts was
due to the choice of reference samples, I studied the distribution of non-informative oligos using
several reference sets with varying number of normal reference samples (ranging from 1 to 150
samples; Section 3.3.2). This analysis revealed that, in contrast to what may be expected, a larger
reference-set does not necessarily yield better CNV detection accuracy. For instance, the example
provided in Chapter 3 showed that using a large reference set (R150) suppressed the magnitude of
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a real pathogenic copy number loss in a patient with mental retardation (Figures 3.7-3.8). This
finding implies that improving the detection sensitivity cannot be achieved by simply increasing
the size of the reference samples.

Based on these results, I went on to develop and implement an algorithm for CNV detection
using non-parametric approaches towards analysing oligonucleotide probe level signal intensities.
The implemented algorithm, called Oligonucleotide Probe-level Analysis of Signal (OPAS), in-
volves two major components, probe-level analysis and SNP-level analysis. The aim of probe level
analysis is to analyse individual oligonucleotide probes within a SNP probe set and identify the
most significant group of such oligos to generate the SNP signal (Figure 3.1).

In the next phase of the algorithm, post-processing, I first applied a non-linear LOWESS nor-
malization technique to minimize the effect of fragment length biases on the estimated SNP read-
outs (Section 3.2.4.1) and then applied non-parametric Circular Binary Segmentation (CBS) [189,
242] to identify regions that likely have different copy number values (Section 3.2.4.2). It is impor-
tant to note that while many of the components of this algorithm (such as CBS) had been previously
developed in other applications, the adaptation of these methods on SNP microarray data required
a largely novel implementation in order to accommodate a different data type.

The underlying assumption is that using the non-parametric data mining approaches that aim to
improve the quality of SNP readouts would ultimately provide better CNV detection accuracy. To
test the above hypothesis, I generated simulated Nsp signals (Sec. 3.2.6) with known CNV regions
with varying number of probes (w= 2,4,8,10,15,25,100,200) and amplitudes of signal aberration
(γ = 0.11,0.2,0.4,0.6,0.8,1.0). I then applied three different algorithms to identify CNVs in these
signals (OPAS, SMD and GLAD). The results from each dataset were then compared to the known
simulated CNV regions for each alteration size and LR ratio response to estimate the correspond-
ing number of true positives and false positives (Section 3.3.6). These values were then used to
evaluate the sensitivity (TPR) and precision (PPV) of each algorithm, respectively (described in
Appendix H). The result of this analysis indicated that while all algorithms showed similar perfor-
mance for detecting CNVs that contained more than 25-100 SNP probes, OPAS had a noticeably
higher sensitivity and precision in detecting CNVs with less than 10 SNP probe markers (Fig-
ure 3.15). The latter finding confirms the initial hypothesis that using a non-parametric approach
results in better CNV detection accuracy for events with fewer SNP probe markers.

To test the impact of additive noise on the performance of CNV calling, I developed a biolog-
ically inspired simulated model by adding white gaussian noise with varying amplitudes to a real
Nsp signal that harboured a known deletion (chromosome 14 of FL patient 17; Section 3.3.5). The
exact breakpoints of this deletion were determined by sequencing. I then assessed whether the sim-
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ulated signals with added noise were capable of identifying the aforementioned known deletion.
Based on the total misclassification rate from 10 trials, I concluded that the CNV calling process
would fail when signal-to-noise ratio is larger than one (SNR > 1; Figure 3.16). In other words, the
algorithm is incapable of distinguishing between specific and non-specific variations of log2-ratio
signal intensities when the signal and noise have approximately the same amplitude.

Another approach to study the impact of noise in CNV analysis is to examine the correlation be-
tween the total number of generated CNVs with respect to the overall standard deviation (or noise)
of hybridization signal intensities from the corresponding arrays. I studied this correlation using
OPAS-predicted CNVs in 25 lymphoma patients and the standard deviation of the Nsp arrays that
were used to generate the CNV calls (Section J). This analysis indicated that the aforementioned
2 parameters (SD and number of CNV calls) were independent (p-value of Pearson’s correlation
� 0.59; Figure J.1)1. The latter finding suggests that the number of OPAS false positive calls do not
significantly increase with the standard deviation of array hybridization intensities. This is likely
due to the fact that in OPAS raw signal intensities are processed by data mining strategies that aim
to identify and remove the effect of noise at the oligonucleotide probe-level prior to applying the
CNV calling algorithm.

In Chapter 4, I focused on finding and profiling somatic CNVs in 25 follicular lymphoma (FL)
patients by using data from Affymetrix 250K Nsp arrays. These samples have also been analysed
using several other technologies such as FPP, BAC aCGH, karyotyping and BAC end sequencing
(Sections 4.2.2-4.2.3). In additional to the results from these alternative platforms, I also compared
OPAS results with CNVs generated from both Nsp and Sty arrays (500K) by another computational
method (SMD) that has already been used in several other studies [30, 259, 372]. The availability of
these alternative datasets provided the opportunity to compare and cross-validate OPAS predicted
CNVs in FL patients.

In total, I identified 286 candidate somatic CNVs (11.4 per patient) from which 53 (18.5%)
were smaller than 150 kb and 41 (14.3%) contained fewer than 10 SNP probe markers. Further-
more, from all (286) somatic events 133 (47%) were candidate amplifications and 153 (53%) were
candidate deletions (Figure 4.7). To provide a comprehensive profile of somatic CNVs in the FL
dataset and in order to facilitate data interpretation, candidate CNVs were subdivided into 3 groups
based on their size and/or location in the chromosomes. This profiling indicated that large-scale
CNVs that affected entire chromosomes (aneuploidy) or chromosome arms (WCA events; Sec-
tion 4.3.3) were the most recurrent copy number alterations in the FL dataset (22 unique CNVs

1A similar study by Itsara et al. [141] showed a strong CNV-SD correlation among their analysed samples and
concluded that the rate of their false positives is proportional to the SD of the analysed arrays.
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resulting in 48 WCA events). Examples of such events include +1q (6/25), -6q (5/25), +7 (4/25)
and +X (5/25). All detected recurrent WCA events have been previously reported in follicular
lymphoma by several independent studies [244–248].

The profiling also showed that 29 of the total (286) CNVs were located proximal to chromo-
some ends, referred to as distal CNVs in the FL dataset (Section 4.3.4). One important observation
in this category was the relative enrichment of deletions compared to amplifications (20 deletions
and 9 amplifications). The latter finding may reflect losses of sequences that affect the functional
status of the telomeres. Even if the telomere is intact, regions proximal to chromosome ends (sub-
telomeric regions) are gene-rich, and thus, even small aberrations in these regions can disrupt the
function of important gene(s) that may be significant in FL. For instance, 32% (8/25) of the FL
patients had deletions near the short (p) end of chromosome 1 (1p36; Figure 4.15)1. This region
contains multiple known or putative tumor suppressor genes such as TP73 that has been shown to
be significantly under-expressed in lymphomas and leukemias [379].

Section 4.3.6 focused on the analysis of focal candidate CNVs (CNVs � 150 kb) that accounted
for 18.5% (53/286) of all somatic CNVs in FL dataset. As explained in Section 4.3.6, after exclud-
ing amplifications that overlapped with T-cell receptor genes, there were 42 candidate focal events
(34 focal deletions and 8 focal amplifications). The gene-content analysis of these events iden-
tified 30 unique genes that were affected by 20 focal events, listed in Table 4.4 (21 other focal
CNVs did not overlap with any gene). Examples of the genes that were disrupted by these putative
focal CNVs are CDKN2A, MTAP, PAX5, ERBB4 (the only gene affected by 2 focal deletions2)
and HVCN1.

In Section 4.3.7, I compared OPAS candidate CNVs with the results from several alterna-
tive technologies that were applied on the same FL samples, including results from BAC array
CGH, BAC fingerprint profiling (FPP) and Illumina sequencing data. Additionally, I compared the
CNV results from my analysis with candidate CNVs generated from 500K SNP arrays based on
SMD analysis. These alternative datasets are part of Follicular Lymphoma Tumour BAC Finger-
print Database (Tumordb). This comparison revealed that 91.2% (261/286) of all OPAS predicted
CNVs were seen by at least one other CNV dataset or mapped to an FPP event (Section 4.4). I
also compared 32 OPAS-exclusive deletions (i.e., deletions that were detected by OPAS but not
detected by other array-based results in Tumordb) with FPP and Illumina sequence-validated data.
This analysis found that from these 32 exclusive deletions, 16 (50%) overlapped with Illumina
sequence-validated deletions or FPP events (Figure 4.24). An important finding of this analysis

1At least 7 of the 8 reported 1p36 deletions are real based on FISH analysis (see Fig. 4.15 for more detail).
2These candidate focal events are non-overlapping deletions on the same intron (intron 1) of ERBB4 (Fig. 4.19b).
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was validation of 4 OPAS-exclusive deletions (4/32) based on Illumina sequencing data, including
3 focal deletions on 12q24.11 (ht-6; ∼104 kb with 4 SNPs), 9p21.3 (ht-16; ∼124 kb with 8 SNPs)
and 4q12 (ht-20; ∼143 kb with 8 SNPs).

Section 4.3.8 provided a description of 3 genes that were disrupted by the above 3 validated
deletions. This section also provided a brief overview as how the focal deletions of these genes may
be important in cancer (2 genes had partial deletions and 1 gene was entirely deleted). One of these
sequence-validated small events was a deletion on 12q24.11 in FL patient 6 (145,148 bp based
on sequencing validated breakpoints, 4 SNPs). Two genes located at the breakpoint boundaries
were affected by this deletion (HVCN1 and PPTC7; Section 4.3.8.1). The voltage-gated proton
channel HVCN1 gene had been previously reported to be highly expressed in immune tissues [418]
and, more recently, it was shown that HVCN1 is involved in modulating the B cell antigen recep-
tor [263]. The aforementioned sequence-validated focal deletion on 12q24.11 (OPAS-exclusive),
removed all but the first exon of HVCN1 and the first 3 coding exons of PPTC7, bringing the
HVCN1 single remaining exon to the 3 remaining PPTC7 exons. Therefore, it was speculated that
the above deletion may create a novel fusion gene between the 5’ end of HVCN1 and 3’ end of
PPTC7. A simulated fusion experiment was then performed to investigate the above hypothesis.
This experiment was implemented by joining the HVCN1 and PPTC7 remaining exons and trans-
lating the resultant sequence using an online tool (Six Frame Translation of Sequence). As shown
in Figure 4.29, the hypothetical HVCN1/PPTC7 fusion appeared to be in-frame. Therefore, it was
concluded that the focal OPAS-exclusive deletion on 12q24.11 (in FL patient 6) could, in theory,
result in a gene fusion event with a translated protein product.

Another important OPAS-exclusive finding was a focal deletion (124,010 bp)1 on chromosome
9p21.3 in patient 16 (8 SNPs) that included CDKN2A tumor suppressor gene (Section 4.3.8.2).
Further analysis indicated that CDKN2A was deleted in 16% (4/25) of the patients in the FL
dataset2 (Figure 4.32). The observed frequent CDKN2A deletions emphasize the importance of
tumor suppressor role of this gene in FL and highlights the significance of detecting the above
OPAS-exclusive deletion.

Section 4.3.8.3 discussed the novel discovery of another small deletion (136,811 bp)3 on 4q12
chromosomal region of FL patient 20 (8 SNPs) that affects the extracellular domain of the KIT
proto-oncogene (Figures 4.33 and 4.34). The intracellular domain of this gene was also amplified.
However, the aCGH results of Tumordb did not detect either of these events and the SMD results

1based on sequencing-validated breakpoints
2All the reported 4 CDKN2A deletions were also validated by FISH (Figure 4.28).
3based on sequencing-validated breakpoints
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reported the entire region as one larger amplification event (Figure 4.32b). KIT is a proto-oncogene
that encodes a receptor tyrosine kinase (RTK) and is crucial to melanogenesis, hematopoiesis and
gametogenesis. Gain-of-function mutations of KIT have been associated with several cancers in-
cluding AML, sinonasal T-cell lymphomas and GIST (Figure 4.34b). It has also been shown that
the deletion of the extracellular domain of RTKs facilitates the ligand-independent activation of
these genes by eliminating the negative regulatory constraints that are imposed by the extracellular
domain [402]. Based on these data, I hypothesized that amplification of the kinase domain of KIT
may act synergistically with the deletion of the ligand-binding domain (exons 1-3) and may result
in the constitutive activation of this gene. This finding may represent the first report of such a
mechanism of KIT activation in follicular lymphoma.

In conclusion, the work presented in Chapter 4 has provided a comprehensive profile of can-
didate somatic chromosome copy number changes in 25 FL genomes and generated a list of 286
candidate somatic CNVs in these patients1. Furthermore, this study provided further insight into
the extent of small CNVs that could potentially affect important genes in follicular lymphoma (such
as deletion of CDKN2A and partial deletions of KIT and HVCN1). Several additional tools have
also been developed to facilitate CNV data visualization and comparison between samples that are
important for interpretation of the CNV results, particularly for large-scale studies.

5.2 Significance and Contribution to Field of Study
One hypothesis of this thesis was that developing non-parametric methods based on oligonucleotide
probe data analysis can improve the accuracy of identifying smaller CNVs from Affymetrix SNP
arrays. This was investigated first based on simulated data in Chapter 3 and then by using real data
from 25 follicular lymphoma patients in Chapter 4. In the latter analysis, in addition to known
large-scale FL-related CNVs, several small somatic CNVs were discovered that were not previ-
ously detected in these samples by other array-based methods. Validation of focal deletions, such
as those affecting CDKN2A, KIT and HVCN1, supported the initial hypothesis that using better
analysis tools can result in discovering novel small events that may be important in follicular lym-
phoma.

It was also mentioned in Chapter 1 that the frequency of small CNVs is largely underestimated
in studies that use stringent CNV selection criteria. The analysis presented in Chapter 4 showed that
∼18.5% (53/286) of all candidate somatic CNVs in 25 follicular lymphoma samples were smaller

1Here, the term CNV is used to refer to all chromosome copy number changes, regardless of their size. Therefore,
the reported 286 candidate events includes both aneuploidies and deletions/amplifications of segments of the DNA.
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than 150 kb and 14.3% (41/286) had fewer than 10 SNP probe markers.
One of the important results of Chapter 4 was that the small somatic CNVs in FL did not always

affect the same genes. However, the pathway analysis of the affected genes indicated important
cancer-related networks that may have been disrupted as the result of these events. Based on these
observations, it can be speculated that CNVs in FL do not necessarily affect the same gene(s), but
instead, these CNVs disrupt a variety of genes that participate in the same critical pathways.

In summary, in this thesis I described an approach for assessing the variation of microarray data
and finding candidate regions of copy number aberration from Affymetrix GeneChip SNP arrays.
Another aspect of this work focused on representing the results of large-scale copy number studies
that are important for the interpretation of the CNV findings. It is important to note that during the
past decade hundreds of projects have been conducted using Affymetrix SNP array platform for
both genotyping and copy number applications and thousands of raw data files (.CEL) from these
projects are now publicly available (see Table 1.3). For instance, the National Cancer Institute
(NIH) has released 500K SNP array data for over 300 cancer cell lines from 30 different tissue
types in a wide range of cancers, including small cell lung carcinoma, neuroblastoma, lymphoma
and brain glioblastoma1. Also, Weir et al. [270] have provided 384 matched tumor/normal data
sets (2×384 = 768 files) from lung adenocarcinoma2, which is one of the most common types of
lung cancer (see Table 1.3). OPAS analysis of the samples of interest from such publicly available
datasets may result in identifying novel small and/or recurrent CNVs that are below the sensitivity
thresholds of other algorithms and have not been previously discovered.

Also, the work presented in this thesis was the result of generating hundreds of computer pro-
grams that aimed to facilitate data acquisition, sequence interpretation, statistical inference and
visualization of the genomic data. In order to keep these tools reusable and traceable, I have devel-
oped Graphical User Interface (GUI) programs for many of these scripts, some of which are already
being used at the GSC. For instance, one of the interactive visualization tools has been used by Dr.
Maziar Rahmani at the GSC and the application of this tool helped to discover significant markers
in calcific aortic valve stenosis [265].

1GlaxoSmithKline (GSK) database, available at https://cabig.nci.nih.gov/caArray GSKdata/
2http://www.broadinstitute.org/cancer/pub/tsp/
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5.3 Potential Applications and Future Directions
One area of future research will be the modification of the developed methods to facilitate their ap-
plication to massively parallel DNA sequencing data. The non-parametric testing strategies and the
proposed approach for clustering small number of data points with unknown behaviour based on
combining fuzzy logic theory with optimization based clustering (in OPAS pre-processing phase)
have the potential to be incorporated into other applications. Some of the tools that were imple-
mented in this thesis have already been adapted for representation and analysis of the read depth
(RD) data from whole-genome sequencing platforms (in collaboration with Dr. Jill Mwenifumbo).

Another potential application is coupling genome sequencing data with SNP array CNV infor-
mation which may allow us to normalize the sequencing data. For instance, comparing two vali-
dated homozygous deletions (-/-) of the CDKN2A gene from FL patients that also had transcriptome
sequencing data revealed an apparent transcriptome coverage across these homozygously deleted
regions. Additionally, depth of coverage data from both genome and transcriptome show patterns
of fluctuation very similar to the ”wave” artifact in microarrays [195, 419]. Therefore, it is reason-
able to assume that copy number information can be incorporated for background subtraction and
possibly normalization of the depth of coverage data from sequencing platforms.

As large scale studies are implemented to characterize copy number variations among nor-
mal and disease populations, the next important subject is how such knowledge can influence the
clinical interpretation of such findings. In the past few years, several studies revealed apparently
acquired CNVs as likely mechanisms that are employed for adaptation to environmental condi-
tions, similar to some nucleotide level changes. Even a more daunting task is to verify whether the
phenotypic consequences of such CNVs vary under different environmental circumstances.

One aspect of this thesis was to develop computational tools that can help us to improve the ac-
curacy of finding CNVs from SNP array platform and to catalogue acquired events in a population
of follicular lymphoma patients. However, another major challenge that exists is the connections
between such genomic observations and clinical implications, a task which is not straight forward
and requires complex models that can verify the implications of such alterations.

As discussed earlier, based on the observations in Chapter 4 it can be speculated that the CNVs
in FL most likely do not target the same gene(s) but, instead, they affect a variety of genes that
participate in critical pathways. This implies the importance of shifting our mindset from a single
gene strategy to other more sophisticated networks of interconnected factors such as gene pathways
or even protein pathways. Increasing the FL sample size and combining genes that are affected by
different mechanisms, such as CNVs, point mutations and expression analysis, may lead to the
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discovery of important pathways or genes that are recurrently affected as the result of such alter-
ations. An example of the significance of gene pathway analysis is a recent study in autism [148]
that discovered new candidate autism pathways based on genes that were enriched in a cohort of
859 affected patients.

Despite these findings, interpretation of the predicted CNVs is a challenging task and much
more work is required to translate the research findings to the clinical context. Meanwhile enhanced
computational techniques are particularly significant tools that can help to provide more accurate
results regarding CNVs and their impact on the affected chromosomes and genes. Thus, the main
goal of large-scale efforts for CNV analysis in complex diseases is that the accumulation of such
data will uncover patterns that correlate these findings to the disease state. I believe that the work
presented in this thesis would facilitate identification and characterization of many novel small
changes that can ultimately help to accomplish this goal.
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Appendix A

Probability Distribution Function and
Cumulative Distribution Function

In probability and statistics, the probability density function (PDF) and cumulative density function
(CDF) give a complete description of the probability distribution of a random variable.

• probability density function1 (abbreviated as PDF) of a continuous random variable is a
function that describes the relative likelihood for this random variable to occur at a given
point in the observation space (often denoted by f (x)).

• The cumulative distribution function2 (abbreviated as CDF) of a random variable X eval-
uated at a number x, is the probability that the random variable X takes on a value less than
or equal to x (often denoted by F(x)).

More detailed description of these two functions and their mathematical relationship are given as
the following.

Definition of Probability Distribution Function (PDF): If X is a continuous random variable
the probability of X falling within a given set is given by the integral of its probability distribution
function (PDF) over the set. As illustrated in Figure A.1 this probability is equal to the area under
the density function within the given range, which is estimated by Equation (A.1).

P(a ≤ x ≤ b) =
� b

a
f (x) dx (A.1)

1also known as ’probability distribution function’ or ’probability mass function’.
2also known as ’cumulative density function’.
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where f (x) denotes the probability density function.





 

Figure A.1: Probability Density Function (PDF): the probability that X takes on a value in the interval
[a,b] is the area under the density function from a to b.

Definition of Cumulative Density Function (CDF): For every real number x, the CDF of a
real-valued random variable X , which is often denoted by F(x), is given by:

x �→ Fx(x) = P(X ≤ x) (A.2)

The CDF of continuous random variable X can, therefore, be defined in terms of its PDF ( f (x)) by
the following equation:

F(x) =
� x

−∞
f (t)d(t) (A.3)

Based on the above equation, for a given value x the CDF (F(x)) is the probability that the observed
value of X will be at most x. The relationship between CDF and PDF is illustrated in Figure A.2.
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Figure A.2: A graphical representation of the relationship between the PDF and CDF. The probability
of x being equal or less than 3 (P(x ≤ 3) is to the highlighted area under the PDF (P = 0.84), which is
equivalent to the CDF of x at X = 3 (CDF(x = 3) = 0.84). As shown in the above figure the value of the
CDF at x is the area under the probability density function up to x.
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Appendix B

Normal and Standard Normal
Distributions

Normal distributions are symmetrical, bell-shaped distributions that are useful in describing real-
world data (Fig. B.1). The standard normal distribution, also represented by Z, is the simplest
form of normal distribution that has a mean of 0 (µ = 0) and a variance of 1 (σ2 = 1) (the red PDF
curve in Figure B.1a depicts a standard normal distribution). The density or PDF function of a
standard normal distribution (which is often denoted by φ ) is given by:

f (x) = φ =
1√
2π

e
−1

2
x2

(B.1)

By substituting the above density formula in Equation (A.3), the CDF of standard normal distri-
bution (which is often shown by Φ(x)) is computed as:

F(x) = Φ(x) =
� x

−∞
φ(x) dt

=
1√
2π

� x

−∞
e−t2/2 dt (B.2)

Figure B.1b show the CDF of several normal distributions, including the CDF of a standard normal
distribution that is shown in red.
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(a) PDF of Normal Distribution

(b) CDF of Normal Distribution

Figure B.1: PDF and CDF of normal distribution. (a) The PDF is shown for several normal distributions
with varied mean (µ) and standard deviation (σ ). The red line corresponds to the PDF of the standard normal
distribution. Similarly panel (b) denotes the CDF of the normal distributions shown in (a), and the CDF of
standard normal distribution is show in red color.
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Transforming a Normal Distribution to Standard Normal Distribution: It is possible to relate
all normal random variables to the standard normal. For example if X is normal with mean µ and
variance σ2, X ∼ N (µ,σ2), then:

Z =
X −µ

σ
(B.3)

where the transformed variable Z has a standard normal distribution (mean 0 and variance 1),
Z ∼ N (0,1).
If X has a normal distribution, the PDF of X can be estimated by first transforming it into a standard
normal distribution (by Equation (B.3)) and then using Equation (B.1) to estimate the PDF. Thus
the PDF of a normal distribution can be estimated by:

X ∼ N (µ,σ2)

f (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(B.4)

⇒ f (x) =
1
σ

φ(x−µ
σ

) (B.5)

Similarly, by substituting Equation (B.4) in cumulative density equation (Eq. (A.3)) the CDF of a
normal distribution is defined by:

F(x) =
1

σ
√

2π

� x

−∞
e
−(t −µ)2

2σ2 dt (B.6)

⇒ F(x) = Φ(
x−µ

σ
) (B.7)

Properties of Normal Distribution: Some of the properties of normal distribution which have
been used in this thesis are as the following:

1. If X is normally distributed with mean µ and variance σ2, then a linear transform aX +b (for
some real numbers a �= 0) is also normally distributed:

aX +b ∼ N (aµ +b,a2σ2)

2. If X1, X2 are two independent normal random variables, with means µ1, µ2 and standard
deviations σ1, σ2, then their linear combination will also be normally distributed:

aX1 +bX2 ∼ N (aµ1 +bµ2,a2σ2
1 +b2σ2

2 )
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3. The converse of the above property (2) is also true: if X1 and X2 are independent and their
sum X1 +X2 is distributed normally, then both X1 and X2 must also be normal.
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Appendix C

Proof of the Relationship Between p(k)
and CV

Let X represent the array raw intensity values from a test sample (T ) that follow an unknown dis-
tribution with mean µ , variance σ2 and CV of v (v = σ/µ). Assume that after log-transformation,
logb(X) is normally distributed with mean m and variance of s2, where b is the base of the logarithm
function. Therefore:

logb(x)∼ N (m,s2) (C.1)

Lindgren [420] has previously shown that the relationships between the mean and standard devia-
tion of a distribution (µ,σ) and its log-transformation (m,s) is defined by:

µ = exp
�

m loge(b)+
s2

2
[loge(b)]

2
�

(C.2a)

σ2 = exp
�

2m loge(b)+ s2[loge(b)]
2
��

exp{s2[loge(b)]
2}−1

�
(C.2b)

If natural logarithm is used to transfer the data (b= e), equations (C.2a) and (C.2b) would become:

µ =exp{m+
s2

2
}

σ2 =exp{2m+ s2}(exps2 −1)
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Therefore the coefficient of variation (CV) will be:

CV =
σ
µ

=

�
exp{2m+ s2}{exps2 −1}

exp{m+ s2/2}
=

�
exps2 −1 (C.3)

where s is the standard deviation of the errors (normally distributed). Solving the above equation
for s gives:

s =
�

loge(CV2 +1) (C.4)

Next, let assume that an additional independent experiment is performed using the same test sample
T , and lets refer to the results of this second assay by random variable Y . Therefore, X and Y are
two independent random variables from a replicate study (using sample T ). Similarly, we assume
that Y would also follow a normal distribution after log-transformation with mean m and variance
s2 (Y ∼ N (m,s2)). As the result of this hypothesis, the probability that the readout from these two
replicate arrays differ by k fold or more is:

p(k) = P(Y/X ≥ k or X/Y ≥ k) = 2P(Y/X ≥ k) (C.5)

where the right-hand side represents the probability that the ratio of the two arrays (X/Y ) takes on
a value greater than or equal to k. This probability implies :

Y/X ≥ k → logb(X)− logb(Y )≥ logb(k) (C.6)

The left hand side of (C.6) is also normally distributed with mean equal to (µx −µy) and variance
of (σ2

x +σ2
y ). Since µx = µy = m and σx = σy = s, we have:

logb(X)− logb(Y )∼ N(0,2s2)

⇒ P(logb(X)− logb(Y )≥ logb(k))

⇒ 1−Φ
�

logb(k)−0√
2s2

�
= Φ

�
− logb(k)√

2s

�
= P(Y/X) (C.7)

Substituting the above estimated P(Y/X) (Eq. C.7) in Equation (C.5) results in:

p(k) = 2Φ
�
− logb(k)

s
√

2

�
(C.8)
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By substituting the formula of s as denoted in Equation (C.4), Equation (C.8) would become:

p(k) = 2Φ
�

− log2
e(k)�

2loge(CV2 +1)

�
(C.9)

Equation (C.9) measures the probability that two replicate measurements in an experiment with a
specific CV, differ by k-fold.
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Appendix D

Estimating SNP-array Reproducibility
Using Analysis of Variance (ANOVA)

In general, the aim of analysis of variance (ANOVA) is to find out whether there is a significant
difference in the means of the tested data from several groups. The one-way ANOVA test measures
significant effects of only one independent variable (or factor) on the estimated response, whereas,
the two-way ANOVA measures the effect of two factors, simultaneously [421, 422]. In order to
evaluate labelling and chip variabilities of each DNA sample, two-way ANOVA model was applied
on the log10-transformed intensity of each SNP on the 10K Affymetrix SNP array, respectively.
The results of ANOVA analysis conducted in this section are used to address the following tasks:
(1) to evaluate whether chip or labeling factors have main effects on the estimated SNP signal, (2)
to find the number of SNPs that show statistically significant differences across replicate measure-
ments due to the aforementioned factors (i.e., labeling or chip variabilities), and (3) to determine
whether a subset of these SNPs show recurrent inconsistencies. In general, these analyses help to
assess the impact of both chip and labeling factors on the estimated signal from Affymetrix SNP
arrays.

Figure D.1 denotes a schematic representation of the input data (X) of the two-way ANOVA
test for a given SNP, such as SNPa. The columns of the input matrix X (Figure D.1) represent
the estimated SNP signal from 3 separate labelled batches of the same sample (factor A of two-
way ANOVA). The data in different rows represent SNP signal from replicate chips1 (factor B of
two-way ANOVA). Here, the p-value of two-way ANOVA includes two components:

1as previously described in Section 2.3.1 and Figure 2.5, each labelled DNA batch was applied on 3 replicate 10K
chips.
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1. pA is p-value of the null-hypothesis H0A that all samples from factor A (column data) are
drawn from the same population. For example, in Figure D.1 pA is the p-value of the null-
hypothesis that the replicate signal intensity readouts of SNPa from 3 separate labeling reac-
tions (columns of matrix X) have the same overall mean.

2. pB is the p-value of the null-hypothesis H0B that all samples from factor B (row data) are
drawn from the same population. In Figure D.1, pB is the p-value of the null-hypothesis that
signal intensity measurements of SNPa from 3 replicate chips (rows of matrix X) have the
same overall mean.

A sufficiently small pA rejects H0A null hypothesis, suggesting that at least one column-sample
mean is significantly different from the others. For instance, in Figure D.1 a sufficiently small
pA (e.g., pA < 0.05 or pA < 0.01) suggests that the estimated SNPa signal in at least one of the
three labelled batches is significantly different from the other batches of the same sample (i.e.,
there is a main inconsistency in the pattern of SNPa intensities across replicate measurements due
to labeling variability) [421, 422]. A sufficiently small pB suggests that at least one row-sample
mean is significantly different from the other row-sample means [421, 422]. In the context of the
ANOVA test illustrated in Figure D.1, a sufficiently small pB (e.g., pB < 0.05) suggests that the
estimated SNPa signal intensity is significantly different in at least one of the three replicate chips
(i.e., there is a main inconsistency in the pattern of SNPa intensities across replicate measurements
that is due to chip-to-chip variability). In the rest of this Section, SNPs with significant chip or
labeling variabilities across replicate measurements are referred to as ”inconsistent SNPs”.

Results
As explained in Section D, to assess chip and labeling variabilities two-way ANOVA was per-
formed on each SNP on Affymetrix 10K SNP array. This experiment was repeated for each DNA
sample from ”10K rep-test” experiment that was previously described in Section 2.3.1. Therefore,
the total of 92,480 (= 11560×8) pA and 92,480 pB values were generated to assess the impact of
labeling and chip variabilities among 8 DNA samples.

Prior to ANOVA analysis, log-transformation was applied on the raw intensity data from 10K
Affymetrix arrays (oligo-level) and global normalization was performed to bring the overall (oligo-
level) mean signal intensities from all the arrays to the same level. The signal intensity of each SNP
was then defined as the average log10-intensity measurement of 40 oligos in the corresponding
SNP probe set. Next, two-way ANOVA was applied for each SNP on the 10K array, as shown
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in Figure D.1. The ANOVA p-values were then adjusted for multiple testing correction based on
Hochberg method [423] with FDR of 5% (significance threshold= 0.05). Figure D.2 and Table D.1
present the summary of two-way ANOVA tests that were performed to analyse 8 DNA samples
in the replicate experiment. As denoted in Table D.1 (column 2) and Figure D.2a, the average
p-value of the two-way ANOVA tests of chip variability across 8 samples is pB � 0.98, ranging
between 0.96 to 0.99 (the mean pB values across all 8 samples is denoted by the green dashed line
in Fig. D.2a). It is also observed that the average p-value of labeling variability across all 8 samples
is pA � 0.97 (denoted by the red dashed line in Fig. D.2a), ranging between 0.941 to 0.998 (column
5 of Table D.1).

Therefore, these data indicate that both labeling and chip related ANOVA p-values are notice-
ably larger than 0.05 significance threshold that is required to reject the H0A and H0B hypotheses1

(pA � 0.941 and pB � 0.962).
As described earlier (p. 255), a main reason of ANOVA analysis of replicate data in this Sec-

tion was to assess the number of SNPs that indicate statistically significant variabilities across
replicate measurements (task 2; see page 255). The summary of this analysis (based on 0.05 sig-
nificance threshold) is shown in Table D.1 and Figure D.2b. As seen in Table D.1, in average ∼1.5%
(0.6-3.8%) of all SNPs on the 10K array indicate statistically significant chip-related (column 4)
and ∼3.14% (0.2-5.9%) show statistically significant labeling-related (column 7) differences across
replicate measurements in each studied DNA sample. The bars in Figure D.2b provide a visual rep-
resentation of the proportion of 10K SNPs that show inconsistent readouts due to chip (green bars)
or labeling (red bars) effects in each DNA sample.

Next, a further analysis was performed to assess the frequency of inconsistent SNPs for both
labeling and chip effects (task 3; see page 255). The results of this analysis are depicted in Fig-
ure D.3. Here, the frequency of each inconsistent SNP, referred to as f , is defined as the total
number of samples where the SNP indicate inconsistent intensity measurements across replicate
data (of the corresponding DNA sample). Therefore, in theory, the value of f in ”10K rep-test”
experiment can vary between 1 to 8. However, it is later shown that the empirical value of f does
not exceed 4 in this experiment.

The above analysis found that there are in total 2,440 unique SNPs that indicate statistically sig-
nificant variabilities across replicate arrays due to labeling effects (Figure D.3.A). Further analysis
of these 2,440 inconsistent SNPs found that 409 (16.7%) of them show inconsistency in at least
2 samples (equivalent to ∼3.5% of all 10K SNPs). However, none of the SNPs has a frequency

1It is observed that the mean p-value of labeling-related variability is just marginally less than chip variability (aver-
age p-values of chip and labeling variabilities are 0.98 and 0.97, respectively).
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greater than four and only 2 SNPs show inconsistency in four independent samples. Similar anal-
ysis was performed to study the frequency of SNPs with chip related inconsistencies across ”10K
rep-test” samples. As shown in the pie chart of Figure D.3.B, in total, there are 1,327 SNPs with
statistically significant chip-related inconsistencies among 8 studied samples, from which 92 (∼7%)
show inconsistencies in at least 2 samples ( f � 2). From these 92 chip-related inconsistent SNPs,
only 1 inconsistent SNP was found in four separate samples (see red arrow in Fig. D.3.B). Similar
to the labeling analysis, none of the SNPs that showed significant differences due to chip effects
had f > 4.

The analysis of the frequency of inconsistencies across 10K SNPs indicated that > 98% of
labeling-related and > 99% of chip-related inconsistent SNPs have f � 2 (Figure D.3). The latter
finding implies that SNPs that show statistically significant inconsistencies across replicate mea-
surements in ”10K rep-test” experiment are generally observed either once or twice.

In the final part of the analysis, all SNPs that indicated labeling and chip related inconsistencies
in at least 2 samples ( f � 2; 409 SNPs with labeling-related (Fig. D.3.A) and 92 SNPs with chip-
related (Fig. D.3.B) inconsistencies) were compared to assess whether a subset of these SNPs are
observed in both datasets. The intersection of these two sets found that based on 0.05 significance
level there are only 6 SNPs (6/11560 = 5.19e-04) that are inconsistent across both labeling and
chip replicates in at least 2 independent samples of ”10K rep-test” experiment. Therefore, it can
be concluded that the hybridization intensity of these 6 SNPs exhibit a large degree of variability
in both chip and labeling replicate measurements. This result is expected since other groups have
shown that probe level variability in hybridization based technologies, is in part caused by experi-
mental factors and in part determined by sequence properties of the probe (e.g., sequence affinities
and DNA secondary structure) [424, 425]1.

In conclusion, similar to the result of analysing Coefficient of Variability (CV) in ”10K rep-test”
experiment, the ANOVA analysis also found that the data from Affymetrix GeneChip R� 10K SNP
arrays are highly reproducible and less than 6% of all SNPs on the 10K array indicate statistically
significant differences across replicate measurements at FDR of 5% (Table D.1).

1Analysis of the details of sequence based effects on the detected variability is beyond the scope of this thesis.
However, later in Chapter 3, I will show examples of the impact of the length of PCR products on the efficiency of
amplification and the resultant nonspecific variation of signal intensities.
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ANOVA results of chip and labeling variability

Chip Variability Labeling Variability

Sample adjusted
pB†

# inconsistent
SNPs (N)

% adjusted
pA†

# inconsistent
SNPs

%

1 0.969 354 3.1 0.998 19 0.2
2 0.991 108 0.9 0.983 199 1.7
3 0.991 106 0.9 0.947 614 5.3
4 0.993 84 0.7 0.941 677 5.9
5 0.988 139 1.2 0.944 653 5.6
6 0.962 437 3.8 0.959 475 4.1
7 0.994 72 0.6 0.990 113 1.0
8 0.989 128 1.1 0.987 146 1.3

average 0.98 178.5 1.5 0.97 362 3.14
min 0.962 72 0.6 0.941 19 0.20
max 0.994 437 3.8 0.998 677 5.90

† based on Hochberg multiple testing correction

Table D.1: Results of assessing chip and labeling variability in 8 samples based on two-way ANOVA
analysis. The rows illustrate the summary of ANOVA tests for all SNPs on the 10K array for each separate
DNA sample in ”10K rep-test” experiment. The 2nd column of this table indicates the average p-values (pB)
of 11560 SNPs on the 10K array for chip-related variabilities, after correcting for multiple testing based on
Hochberg method [423]. The number of SNPs that have significantly small pB values based on FDR=5%
(pB < 0.05) are reported in the 3rd column (N) of this table (i.e., there is a main effect on the estimated signal
intensities of these SNPs due to chip-specific variabilities and these SNPs are considered to have inconsistent
readouts). The 4th column of this table indicates the proportion of 10K SNPs that show inconsistencies due
to chip effects (= (N/11560)× 100). The next 3 columns show the results of labeling variability for each
tested DNA sample (8). As depicted in Figure D.1, the p-value of labeling variability (pA) of each SNP
corresponds to the column p-value of the two-way ANOVA test of input matrix data X . Next the average
p-values of all SNPs, number of inconsistent SNPs and percentage of inconsistent SNPs on the 10K array
were estimated and shown in column 5 to 7, respectively.
The results of this table indicate that based on significance threshold of 0.05, in average 1.5% of all 10K
SNPs show significant differences in their estimated hybridization intensities across replicate measurements
due to chip variability (pB < 0.05), and ∼3% of all 10K SNPs show such statistically significant differences
due to sample preparation or labeling effects (pB < 0.05).
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Figure D.1: Schematic representation of two-way ANOVA test performed on each 10K SNP. This figure
represents a schematic representation of the input data to two-way ANOVA test that is performed on a each
SNP on the 10K array (e.g., SNPa). The columns of the input data X represent the estimated signal of SNPa
from 3 separate labelled batches of the same sample (i.e., factor A of two-way ANOVA). The data in the
rows of X indicate the measured SNPa signal from 3 replicate chips of the same labelled DNA batch (i.e.,
factor B of two-way ANOVA).
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Figure D.2: Measuring the effect of chip and labeling variability in 10K replicate experiment using
two-way ANOVA analysis. Panel (a) shows the average of 11,560 p-values for all SNPs on the 10K ar-
ray. The green and red dots indicate the average p-values for labeling variability (pA) and chip variability
(pB), respectively. This graph indicates that the average p-values are > 0.9 in all 8 DNA samples, which is
noticeably larger than 0.05 significance level. Another observation is that the labeling-related p-values are
marginally smaller than p-values of chip variability (the only exception is sample #1 where labeling variabil-
ity is greater than chip variability. However, as previously mentioned, only 2 labeling batches were available
for this particular sample (instead of 3). Thus, the p-values related to labeling effects for sample #1 are not
as reliable as the other samples).
Panel (b) shows the proportion of SNPs on the 10K array that show inconsistent patterns of signal intensity
across replicate measurements. The SNPs that exhibit inconsistencies related to chip and labeling variabili-
ties are shown by the green and red bars, respectively. This figure indicates that in overall < 6% of all SNPs
on the 10K array indicate statistically significant differences across replicate measurements at FDR=5%.

261



Frequency of SNPs that showed inconsistent intensity patterns 

* 84/Nc = 84/1327= 0.63

1,235
(93%)

84 
(6.3%)*

7 (0.5%) 
1 (0.07%)

inconsistency related to chip effects
Nc = 1,327

(B)

inconsistency related to labeling effects

364 
(15%)

2,031
(83%)

43 (1.8%) 
2 (0.08%)

Nl = 2,440

(A)

Figure D.3: Frequency of inconsistent SNPs across 8 studied DNA samples. The above pie charts depict
the frequency ( f ) of SNPs that have inconsistent readouts in replicate arrays due to labeling (panel A) or chip
(panel B) effects across DNA samples. The denoted percentage data represents the fraction of inconsistent
SNPs with the specified frequency with respect to the total number of inconsistent SNPs in the corresponding
category. For example, in panel (B) there are 84 inconsistent SNPs that occur in 2/8 DNA samples ( f = 2;
pink region) which accounts for 6.3% (= 84/1327) of all SNPs that indicate chip-related inconsistencies in
panel B (see *).
As seen, in both (A) and (B) the majority of inconsistent SNPs are detected only once ( f = 1; blue regions).
Furthermore, the red arrow denote that only 1-2 SNPs from all SNPs on the 10K array (11,560) show
statistically significant variabilities in 4/8 studied samples ( f = 4), and none of the inconsistent SNPs had
f > 4.
Therefore, this analysis indicate that < 1% (92/11560 = 0.008 ≈ 0.8%) of all SNPs on the 10K array have
inconsistent patterns of intensity across replicate measurements with a frequency ( f ) greater than 1. Similar
analysis found that the inconsistent SNPs due to labeling variability that have f > 1 account for ∼3.5%
(409/11560 = 0.035) of all 10K SNPs.
Further analysis of a subset of inconsistent inconsistent SNPs from ’A’ and ’B’ that have f ≥ 2 found that
only 6 SNPs are common among these two groups.
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Appendix E

Description of Boxplots (in the thesis)

IQR

Q1 Q3Q1 - 1.5 x IQR Q3 + 1.5 x IQR

Median

50%

24.65% 24.65%

Figure E.1: Boxplot and a probability density function (PDF) of a dataset with standard normal
distribution (Z ∼ N (0,1))

On each box, the central red line is the 50th percentile (median), the edges of the box are the 25th
and the 75th percentiles. The whiskers extend to the most extreme data value that is not an outlier.
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Points are drawn as outliers if they are larger than 1.5 interquartile range (IQR) of the upper quartile
Q3, or smaller than 1.5× IQR of the lower quantile Q1. Thus, data point x is an outlier if:

x > Q3+1.5× (Q3−Q1) or (E.1)

x < Q1−1.5× (Q3−Q1)

where Q1 and Q3 are the 25th and 75th percentiles of the data, respectively. The default of 1.5
corresponds to approximately ±2.7σ and 99.3% coverage if the data are normally distributed.
Each outlier data point is plotted with a red ’+’ marker.
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Appendix F

Comparative Analysis of the SNP Array
Normalization Techniques

F.1 Introduction
To study the impact of between-array normalization on Affymetrix probe level data several methods
were applied to normalize raw Nsp array data from 8 follicular lymphoma (FL) cancer patients.
These samples have 50 Illumina sequence-validated regions of copy number loss, ranging in size
between 9 bp to 1.7 Mb (with average size of 439.8 kb). The aforementioned 50 copy number
deletions were initially identified by fingerprint profiling (FPP) of these patients, as described in
Chapter 4. The Illumina sequencing of the paired tumor/normal samples determined both the origin
of these events (all 50 aforementioned events are somatic) and the exact deletion breakpoints. The
sequence-validated breakpoints were then used to locate the Nsp SNP probes that lied within the
exact deletion boundaries in each sample.

The aim of the analysis described in this section was to determine which normalization method
improves the quality of Affymetrix array data the most. The specific aim of this study was to
investigate whether quantile normalization, which is the default normalization method of OPAS,
suppresses the magnitude of CNV aberrations in cancer samples.

F.2 Method and Results
For each tumor/normal pairs, five methods were applied to normalize the log2-ratio Nsp array
data. Therefore, a total of 40 (= 8× 5) datasets were generated for this comparative analysis,
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each consisting of more than 3 million PM log2-ratio intensity values. The normalization methods
used in this analysis include (1) global mean normalization [204, 205], (2) median scaling normal-
ization [204, 205], (3) Median Absolute Distance normalization (MAD) [426, 427], (4) quantile
normalization and (5) background adjusted quantile normalization [336] (OPAS default).

It must be added that the ability to identify regions of real copy number change not only depends
on the estimated LR readouts of the probes within the CNV regions, but also on the magnitude of
their LR deviation from the array’s baseline signal. The underlying assumption of this analysis
is that in each sample the LR distribution of the PM oligos within the validated deleted regions
(D) is smaller than the distribution of the PM oligos from the rest of the array (BL)1. Therefore,
a normalization technique that leads to a wider separation between these two distributions (∆ =

D−BL) improves the LR magnitudes real deletions.
A comparison of the results of the normalization methods is shown in Figure F.1 and Table F.2.

For instance, in Figure F.1(a) the top panel illustrates the distribution of 228 PM oligos from 19 Nsp
SNPs that fall within 10 sequence-validated deletions of FL patient 6 (ht-06). The five boxplots in
the top figure present the distributions of the normalized log2-ratio readouts of these deleted oligos
(228) based on the aforementioned 5 normalization methods, respectively. As seen in this plot (top
panel of Fig. F.1(a)), global normalization and MAD both result in slight increase in the signal from
the deleted oligos in ht-06 compared to the theoretical copy number baseline of zero (D1 = +0.2,
D3 = +0.46). It is also observed that there is no significant change in the signal intensities of
the deleted oligos as the result of median scaling normalization (D2 = 0.01). However, as seen in
this boxplot, both quantile and background adjusted quantile normalization methods result in the
decrease of the signal intensity of deleted oligos compared to the theoretical copy number baseline
of zero (D4 =−0.15 and D4 =−0.18). The distributions of more than 3.03 million PM oligos that
are located on the rest of the genome of ht-06 (empirical baseline, BL) are presented in the middle
panel of Figure F.1(a). The distance between D and BL oligos in this patient is shown in the bottom
plot of this figure (also detailed in the first rows of Table F.2).

The data presented in Figure F.1 and Table F.2 reveal that background adjusted quantile normal-
ization leads to the largest magnitude of copy number loss in these 8 FL cancer patients. Another
observation from this analysis is that in some cases the magnitude of copy number loss signal is
significantly smaller than the theoretical LR value of one copy loss (-0.58) regardless of the nor-
malization algorithm used. Such examples include the deleted regions of ht-06 (min(∆) =−0.15),
ht-20 (min(∆) =−0.3) and ht-25 (min(∆) =−0.32). This observation points out to a major com-

1This assumption cannot hold true if most of the patient’s genome is deleted. The list of chromosomal gains/losses
in these FL patients, presented in Table F.1, suggests that it is safe to assume D < BL in this experiment.
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plexity of CNV analysis in cancer samples, emphasizing that detecting smaller magnitudes of signal
aberration that represent real copy number changes in cancer genomes is not necessarily a downside
of the choice of normalization techniques. As discussed in Chapter 4, some of the main reasons
of observing lower magnitudes of copy number aberration in cancer samples may include CNV
heterogeneity of cancer cells and also sample heterogeneity (admixed cancer and normal cells),
both of which are common challenges in cancer CNV analysis.

In conclusion, despite the fact that using a quantile normalization approach poses the risk of
removing some of the signals in the tails of the distribution, the empirical evidence presented in
this analysis showed that such problem does not exist in practice (at least in the case of follicular
lymphoma samples analysed in this study). It must be added that follicular lymphoma is one of the
highly unstable cancer genomes, where DNA is often affected by large-scale copy number alter-
ations (see Table F.1). Therefore, the absence of any apparent downside to using quantile method
for normalizing FL data suggests that it is unlikely that quantile normalization would mitigate
the data quality in other cancers. The result of this experiment is consistent with the findings of
several other microarray studies that have shown empirical evidence does not indicate quantile nor-
malization leads to problems in practise [205, 302].Nonetheless, all of the above 5 normalization
techniques have been added to the new version of OPAS, and the user can change the default quan-
tile normalization to any of the other 4 methods or replace it by a new user-defined normalization
function.
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Figure F.1: Comparing the results of 5 normalization techniques on the estimated probe-level log2-
ratio intensity readouts. Each panel in this figure, denoted by (a) to (h), corresponds to a specific FL
patient. Within each panel, the top figure shows the boxplots of PM oligos that are within the boundaries of
sequence-validated deletions (D) in the corresponding sample.
Each bar in this boxplot, marked by 1 to 5, depicts the distribution of the deleted oligos using a separate
normalization method, as detailed in the figure legend. The middle boxplots show the LR distributions of all
of the remaining PM oligos (BL) based on the aforementioned five normalization techniques. The bottom
panel shows the median of the deleted (D) and baseline (BL) populations, denoted by red and blue dashed
lines respectively. The distance between these two lines (∆) is reported in Table F.2.
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Sample Gains Losses

ht-06 none 1p36.2-p36.3, 14q32.33

ht-08 +18 (18p11-q21), +21q, +Xp, 1q21.3, 14q32.33 1p22.3, 2p11.2, 3p21.31, 5q23.1, 7p21.3, 10q23-q25,
13q33, 14q32.33, 22q11.22

ht-13 none del(10)(q?22q24), 3q26, 3q27, 10q23-q25

ht-20 3p14.2 6q11.2-q15, 7q36, 14q32.33, Xp22.33, 1p36.2-p36.3

ht-21 +X, +18, +17, +11p, dup(17)(q11q23), der(1),
dup(2)(p12p24.1),+der(11)t(1;11;3)(q23.2;q13.1;p26),
1q23-q44

1p36.2-p36.3, 2p11.2, 6q15.1-q27, 14q32.33

ht-22 +2, add(22)(q13) -X, -11
7q21.13, 16p11.2, 16p12.1,17q 7q21.13, 22q13.2-q13.33, Xq28, 1p36.2-p36.3,
none 14q32.33

ht-24 +1q, +6p, +7, +9q, +X -6q
1q21.3-q44, 8q21.2-q24.3, 14q32.33, 17q23.3 1p36.2-p36.3, 8p12-p23.3, 9p242-p24.3, 9p23,

14q32.33, 17p13.3, 18q21.33-18q23, 22q11.22

ht-25 +12, 6p21.3,7p14.1,7q34, 8q24.12-q24.3, 14q32.3
14q11.2, 19p13.2

Table F.1: List of CNVs and large-scale copy number alteration in 8 studied follicular lymphoma
patients. This table presents all CNVs and chromosomal alterations that were detected in these patients
based on cytogenetics and BAC array CGH analyses (for more information please see Chapter 4). As seen
here, these FL genomes include multiple aneuploidies (e.g., whole chromosome 2 gain in ht-22), large-scale
gains and losses of entire chromosome arms (e.g., deletion of the long arm of chromosome 6 in ht-24), as
well as relatively smaller CNVs that affect specific chromosomal regions (e.g., 1p22.3 deletion in ht-08).
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Difference Between D and BL (∆)

Patient N Size (kb) # PM # SNPs ∆1 ∆2 ∆3 ∆4 ∆5

ht-06 10 112.4 228 19 0.06 0.06 0.06 -0.13 -0.15
ht-08 15 1748 27,204 2,267 -0.31 -0.31 -0.31 -0.29 -0.42
ht-13 1 62.7 12 1 -0.8 -0.8 -0.8 -0.79 -0.95
ht-20 2 540 480 40 -0.21 -0.21 -0.21 -0.21 -0.3
ht-21 8 93.6 528 44 -0.3 -0.3 -0.3 -0.32 -0.45
ht-22 4 520.8 2,748 229 -0.36 -0.36 -0.36 -0.35 -0.53
ht-24 3 209.2 216 18 -0.5 -0.5 -0.5 -0.5 -0.8
ht-25 7 231.4 888 74 -0.2 -0.2 -0.2 -0.2 -0.32

Ave. -0.32 -0.32 -0.32 -0.34 -0.49

1: Global mean normalization
2: Median scaling
3: Median Absolute Difference (MAD)
4: Quantile normalization
5: Background adjusted quantile normalization

Table F.2: Comparing the results of normalization methods in 8 cancer samples (FL). The first 3
columns indicate the sample id, number of sequence-validated deletions in the sample (N) and the aver-
age size of these deletions. Columns 4-5 denote the number of PM oligonucleotide probes and the number
of Nsp SNPs that fall within the Illumina sequence-validated deletion breakpoints. The last 5 columns of
this table represent the difference between the median LR values of the deleted PM oligos and those form
the rest of the genome (∆ = D−BL). Numbers 1 to 5 at the top of these columns refer to the methods that
were used for between-array normalization, as detailed in the table legend.
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Appendix G

Description of QDA

According to Bayes theorem, the knowledge of class posteriors Pr(G|c) can help us to perform
an optimal classification [428]. Suppose that X represents the data that we wish to classify into k
possible classes, that for convenience are labeled G = {1,2, . . . ,K}. The Bayes rule is given by:

P(G = k|X = c) =
P(c|k) P(G = k)

P(X = c)

Which can be rewritten as:
P(G = k|X = c) =

fk(c)πk

∑K
l=1 fl(c)πl

(G.1)

Where fk(c) indicates the class-conditional probability that oligo cluster c belongs to class k and
πk represents the prior probability of class k (P(G = k)). Many classifier techniques are based
on models for solving the above class densities, including Naive Bayes and discriminant analy-
sis methods [428]. The main difference between these models is their specific approach towards
solving Equation (G.1). In general, discriminant analysis assumes that each class density, fk(c),
follows a multivariate Gaussian distribution defined by:

fk(x) =
1

(2π)p/2|Σ|1/2 exp(−1
2
(x−µk)

T Σ−1
k (x−µk)) (G.2)

Two of the most common types of discriminant analysis classifiers are linear and quadratic dis-
criminant analyses. Linear Discriminant Analysis (LDA) assumes that the underlying classes have
a common covariance matrix (all Σk values are equal) and utilizes this assumption to solve Equa-
tion (G.2). In contrast, Quadratic Discriminant Analysis (QDA) rejects a common covariance
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assumption and solves Equation G.2 by assigning a separate covariance matrix to each class (Σk).
Both LDA and QDA are widely used with high success rates in a diverse range of applications1, in-
cluding economics [429, 430], face recognition [431], splice junction recognition [432] and cancer
prediction models based on gene expression data [433].

1http://www.is.umk.pl/projects/datasets-stat.html
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Appendix H

Measures of Predicting the Accuracy

• true positive (TP): simulated CNV regions that are also detected by a CNV calling algo-
rithm.

• false positive (FP): predicted CNVs that do not correspond to a pre-defined simulated CNV
region.

• false negative (FN): is ambiguous in the context of comparing CNV-calling algorithms. In
theory, every single SNP probe that does not fall within a pre-defined simulated CNV region
and does not fall within a predicted CNV call (by the algorithm) is a false negative (FN).

Sensitivity and Specificity are the two most widely used measures of accuracy. These parameters
are usually defined by :

T PR =
T P

(T P+FN)
(sensitivity or true positive rate) (H.1)

SPC =
T N

(FP+T N)
(specificity or true negative rate) (H.2)

In the context of simulated CNV analysis, sensitivity (TPR) is the proportion of simulated
CNV regions that have been correctly predicted as a copy number aberration, and specificity is the
proportion of normal SNPs (SNPs that are located in non-CNV regions) that have been correctly
predicted as normal. However, since the frequency of normal SNPs in a high-resolution array
experiment is much greater than the frequency of copy number aberrated SNPs, sensitivity tends
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to be much larger than specificity, and thus SPC, as computed above, systematically produces very
large non-informative values. For instance in a 250K array, even if the algorithm finds 10,000
false positive SNPs (FP), there would still be ∼240,000 SNPs normal probes (true negatives; TN).
Therefore, the estimated specificity would be close to 1 [214], despite the obvious abundance of
false positive calls. The impact of this drawback is observed in several papers that compare CNV
analysis methods, both for SNP arrays and array CGH platforms, [214, 232]. As the result of this
problem, the ROC curves (sensitivity plotted versus specificity) tend to quickly converge towards
100% specificity. Thus, sensitivity overshadows specificity and the true extent of false positive
calls is not clearly understood by using the above approach (ROC curves that use specificity).

To circumvent this problem, in Section 3.3.6 of this thesis the impact of false positive calls in
simulated data analysis is computed as:

PPV =
T P

(FP+T P)
(precision or positive predictive value) (H.3)

where PPV is the proportion of predicted CNV calls that are actually part of predefined simulated
CNV regions. The estimated PPV value represents the ’precision’ of a CNV calling algorithm
This value not only depends on the true positive CNV calls (TP), but also the extent of the false
positives (FP). Thus, if an algorithm finds numerous false positive calls in addition to all known
true positives, it would have a high sensitivity (SPC) but a poor precision (PPV). In contrast, if an
algorithm does not find all simulated CNVs (TP) but, at the same time, does not find many other
false positives either, it would have a low sensitivity but a high precision. Therefore, analysing
the sensitivity and precision at the same time can provide an insight into the performance of an
algorithm with respect to both true positive and false positive calls.
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Appendix I

List of Validated CNVs in 146 MR
Patients
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List of Validated De novo CNVs in 146 MR Children

Friedman et al 2006 and 2009 (SMD) OPAS Result

Chr Del/Amp Cytoband Start End Size Start End Size #SNPs LR

1 Deletion 1p36.32-p36.33 769,185 3,581,308 769,185 775,852 3,684,971 2,909,119 56 -0.42
2 Deletion 2p16.3 50,829,675 51,120,302 290,627 50,829,963 51,130,072 300,109 35 -0.42
2 Duplication 2q37 231,577,285 242,663,303 11,086,018 231,577,285 242,650,580 11,073,295 756 0.23
4 Deletion 4p16.1-p16.3 13,255 8,472,657 8,459,402 19,099 9,057,838 9,038,739 649 -0.41
4 Deletion 4p16.3 190,631 3,277,436 3,086,805 344,051 3,339,443 2,995,392 150 -0.35
4 Deletion 4p16.3 1,346,924 2,846,261 1,499,337 1,324,721 2,876,251 1,551,530 62 -0.43
6 Deletion 6p21.33 29,937,087 30,026,517 89,430 30,024,232 30,045,241 21,009 2 -0.95
6 Deletion 6 q21-q22.31 111,979,175 121,506,916 9,527,741 111,895,841 121,703,987 9,808,146 941 -0.40
7 Deletion 7p22.2-p22.1 3,657,805 6,165,597 2,507,792 3,576,829 7,089,167 3,512,338 210 -0.37
7 Deletion 7p15.3 14,141,506 24,950,414 10,808,908 14,154,194 25,014,570 10,860,376 1341 -0.32
7 Deletion 7q22.1 98,211,585 100,553,755 2,342,170 98,318,717 100,719,050 2,400,333 67 -0.33
8 Duplication 8p23.1-p23.3 180,568 6,898,076 6,717,508 180,568 6,986,630 2,038,410 224 0.27
8 Duplication 8 q12 58,388,614 65,306,097 6,917,483 58,377,571 65,346,519 6,968,948 681 0.25
8 Duplication 8q23.2-q23.3 111,442,951 113,003,770 1,560,819 111398963 113,077,495 1,678,532 128 0.17
9 Deletion 9p11.2-p13.3 33,702,471 44,744,675 11,042,204 33,396,609 66,273,146 32,876,537 356 -0.40
9 Deletion 9 p13.3 34,144,847 38,736,451 4,591,604 33,406,380 68,171,592 34,765,212 357 -0.28
9 Deletion 9q34.3 139,516,033 139,814,485 298,452 139,721,466 139,874,940 153,474 9 -0.52
9 Mosaic Trisomy 9 whole chromosome 140,007,236 140,524 140,147,760 27,641 11466 0.10
9 Mosaic Trisomy 9 whole chromosome 140,007,236 140,524 140,147,760 27,641 11466 0.06
10 Deletion 10q26.13 126,415,527 134,032,911 7,617,384 125,279,327 135,272,495 9,993,168 959 -0.40
12 Deletion 12q14.2-q15 63,362,084 66,737,699 3,375,615 63,387,151 66,796,852 3,409,701 376 -0.43
13 Deletion 13q12.11-q12.12 18,876,037 24,330,232 5,454,195 18,958,454 24,384,515 5,426,061 664 -0.39
14 Deletion 14q11.2 20,741,117 20,988,716 247,599 20,767,781 20,998,178 230,397 18 -0.44
14 Deletion 14q11.2 19,592,409 21,256,822 1,664,413 19,496,544 21,284,915 1,788,371 170 -0.39
16 Duplication 16p13.3 2,681,813 3,927,524 1,245,711 2,814,497 3,844,547 1,030,050 47 0.27
17 Deletion 17q21.31 41,049,321 41,564,451 515,130 41,097,235 41,587,072 489,837 50 -0.45
22 Deletion 22q11.2 19,062,809 19,785,125 722,316 19,072,450 19,773,283 1,807,286 47 -0.30
22 Duplication 22q11.21 19,429,297 19,791,607 362,310 19,444,601 20,258,916 814,315 19 0.26
22 Deletion 22q12.1 26,293,416 27,462,458 1,169,042 26,319,777 27,505,873 1,186,096 71 -0.40
x Duplication Xq12-q21.1 67,088,023 76,204,344 9,116,321 65,158,451 76,235,884 11,077,433 259 0.19
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Table I.1: Validation of OPAS sensitivity in detecting previously known CNVs in 146 mental retarda-
tion patients. This table presents the list of validated CNVs in 146 MR patients that had been previously
reported by Friedman et al. in [30] (all these CNVs were experimentally validated). The first 5 columns
present the CNV data, as reported in [30]; and the last 3 columns indicate an OPAS-estimated CNV that
overlaps with the corresponding region.
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Appendix J

Relationship Between Hybridization
Intensity Noise and the Number of
Predicted CNVs in FL Genomes

The aim of this analysis is to investigate whether the number of predicted CNV calls are correlated
with the overall standard deviation of raw signal intensities from the arrays. To perform this analy-
sis, I studied OPAS-predicted regions of copy number change in 25 Follicular Lymphoma patients
using 250K Nsp array data and plotted their frequency against the SD of the raw PM Affymetrix
Nsp array data (PM oligo-level data obtained from .CEL files), as shown in Figure J.1.

The results of the analysis reveals that there no proof of significant correlation between the
number of OPAS CNV calls (blue curve) and the standard deviation of hybridization intensities
of the arrays (noise; red curve) at 0.05 significance level (Pearson’s linear correlation coefficient
r =−0.1157, with p-value P = 0.59). This finding suggests that the frequency of OPAS predicted
CNV calls does not increase or decrease proportional to the overall SD (noise) of the array.
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Figure J.1: Relationship between variation of hybridization signal intensities and CNV counts in 25
FL genomes. The left y-axis (shown in blue) denotes the number of candidate somatic CNVs in 25 patients
from the follicular lymphoma study (Chapter 4). A low stringency (|LR|≥ 0.15) was used to call candidate
somatic CNVs in 25 follicular lymphoma patients.
The x-axis indicates the patient id, sorted from left to right based on increasing number of CNV counts per
patient. Thus, patient 17 with only 2 CNVs and patients 21 and 24 with 35 predicted CNVs have the least and
the most number of candidate somatic CNVs in this analysis. The right y-axis (shown in red) demonstrates
the standard deviation (SD) of PM log-ratio intensities in the raw array data (250K Nsp array) for each
corresponding patient. This analysis did not find a significant correlation between the SD of hybridization
intensities in the raw array data and the number of predicted CNV calls (p-value of Pearson correlation
p = 0.59). This finding reveals an important advantage of OPAS over other methods, such as in [141],
that had previously reported a significant correlation between the above parameters and found a significant
correlation between standard deviation of the sample intensities. As added by Itsara et al. in [141] when
the aforementioned parameters are positively correlated, the rates of false positive CNV calls proportionally
increase with the standard deviation (noise) of the raw array data.
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Appendix K

Description of FPP Events

• Green color in Tumordb indicates clones with candidate rearrangements that were sequenced
or sent for sequencing.

• Gold denotes clones with candidate rearrangements based on FPP alignments.

• Grey-blue BACs indicate that the FPP mapping is not particularly strong, i.e., the location is
not particularly confident.

• FPP hole or Fragment hole: One or more fragments in the fingerprint does not match to the
alignment region in the reference genome, resulting in a gap (or a hole) in the FPP alignment.
There could be many reasons for such a gap, such as deletion, SNP, or FPP mapping error.

• SNP hole: An FPP-hole that could be explained by a snp in the fragment(s) that do not match
to the reference genome. So candidate FPP holes that overlap with known SNPs are referred
to as SNP holes.

• Multi FPP: the clone alignment is split to multiple regions (as opposed to a contiguous re-
gion). Such events can represent a deletion, translocation, inversion or duplication. However,
further investigation is required to assess the exact source of the event.

• SEQ-MATCH: the CNV was validated by sequencing an FPP BAC clone that represented
the event.

• FPP-MATCH:There is a clone with an FPP alignment representing the event but no se-
quence contig was available at the time of preparing this table.
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• CPLX-MATCH: A breakpoint near the OPAS candidate event was identified, but only some
aspects of the event was captured in a BAC clone. Also refers to events where several likely
real events occurred within the OPAS estimated breakpoints.

• FRAG-MATCH: There is a fragment hole which overlaps with the OPAS predicted event.
Fragment holes are suspected small rearranged regions within the span of a BAC clone.
However, these events have not been validated (at the time of preparing this table).
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Appendix L

Supplementary Material for Chapter 4
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8p23.3: (180,568-201,877; ~21.3 kb)
# SNPs= 3 ; LR= -0.23; z-score= -1.57

Figure L.1: Candidate distal deletion on chromosome 8p23.3 of patient 25 (∼21 kb) containing 3 SNP
probe markers (OPAS-exclusive). Illustrates the OPAS scatter plot of chromosome 8 of patient 25 (ht-25).
The highlighted region indicates a candidate deletion (only detected by OPAS and not SMD or aCGH). This
putative deletion is ∼21.3 kb with LR = −0.23 and a significantly small z-score (z-score = −1.57). The
latter region is located on chromosome 8p23.3 starting within 180 kb of the p-ter and includes only 3 Nsp
SNP probe markers. The FPP data cannot be used to investigate this putative CNV, as FPP does not cover
regions close to chromosome ends.
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Candidate del : 1p36.33 - 1p36.32 (~1.9 Mb) 
22 SNPs; LR= -0.23

(a) OPAS scatterplot of chromosome 1 of patient 18, indicating a candi-
date distal deletion on 1p36.33-p36.32

OPAS detected deletion in ht-18

aCGH detected deletion in 1p36 region of ht-18

SMD results 
(all FL patients)

ht-12 del
ht-6 del

ht-29 del
ht-24 del

ht-9 del
ht-28 del

(b) UCSC screenshot, comparing OPAS, aCGH and SMD results of 1p36 region of patient 18

Figure L.2: Candidate OPAS distal deletion on chromosome 1p36 (ht-18), that includes an array CGH
predicted deletion. Panel (a) represents the OPAS scatterplot indicating a candidate deletion, approximately
1.9 Mb (775,852-2,713,412) in patient 18 (ht-18), which includes 22 Nsp SNP probe markers. This candidate
deletion has LR=−0.23 and affects 1p36 region that is known to be frequently deleted in FL genomes [244].
Panel (b) indicates that OPAS candidate deletion in ht-18 is not confirmed by SMD. This putative deletion
contains an aCGH predicted copy number loss in this patient. FPP results cannot be used to verify this
putative deletion (since it is close to chromosome end). Although, there is no direct data to validate this
candidate deletion, since it occurs at a commonly deleted chromosomal region and the fact that it also
includes and aCGH predicted deletion, emphasize that this candidate CNV may be a real deletion in ht-21.
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Chr14: 105,786,534-106,356,482 (~570 kb; 33 SNPs)
LR= +0.18; Z-score= +1.1

Figure L.3: Candidate distal amplification on 14p36 (ht-7) with slight gain of signal intensity (LR =
+0.18) but a significant z-score (+1.1). This figure represents the OPAS scatterplot of chromosome 14 of
patient 24 (ht-24). As seen there is a region with apparent gain of signal intensity, approximately 570 kb
(denoted by arrow), at the distal end of the chromosome 14q (14q32.33). This putative copy number gain
has a low magnitude of signal intensity deviation from baseline, LR = 0.18. However, compared to the dis-
tribution of the entire chromosome 14, the z-score of this gain is significant (z-score =+1.1). Based on the
estimated z-score and visual inspection of OPAS plot, this region was selected as a candidate copy number
gain in the FL dataset. The above candidate amplification was also detected by aCGH results in Tumordb
(but not SMD; aCGH image was not available but the underlying data can be accessed through Tumordb).
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Chr 6p25.3: (119769-197772; ~78 kb; 11 SNPs)
LR=-0.42 ; z-score= -1.50

Figure L.4: Candidate OPAS distal deletion on chromosome 6 of patient 20 that includes 11 SNP
probes with significant loss of signal intensity (LR = -0.42; z-score = -1.50). This figure displays the
OPAS scatter plot of chromosome 6 of FL patient 20. The image highlights a candidate subtelomeric deletion
proximal to the p-end of chromosome 6 with LR=−0.42 and significant deletion z-score of -1.50. The latter
candidate event is ∼78 kb and includes 11 SNP probe marker. This candidate CNV has not been detected by
aCGH or SMD results in Tumordb (OPAS-exclusive event). FPP data was also not available to investigate
this putative deletion which starts within 119 kb of the p-ter of chromosome 6 (FPP does not cover regions
close to chromosome ends). Nonetheless, the loss of log2-ratio intensity in the aforementioned region that is
evident from OPAS chromosome plot (LR =−0.42) and its significant estimated z-score (z-score =−1.50)
emphasize that the above putative CNV is likely a real copy number loss that affects the subtelomeric region
of chromosome 6 in patient 20. Further experiments are required to investigate this candidate event.
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ht-24 ht-29

ht-28

60% loss 69% loss (4% suspect tetraploidy)

94% loss

ht-9

22% loss

test

control

Figure L.5: Examples of FISH validated 1p36 deletions in 4 FL patients. These plots illustrate the
results of FISH experiments that had been performed (by Dr. Horsman’s lab at the BCCRC) to verify 1p36
deletion in several FL patients of this study. The results shown here confirm 1p36 deletion in 4 FL patients
(ht-24, ht-29, ht-28 and ht-9). The red dots represent probes that were designed to target 1p36 region, and
the green dots represent control probes that were designed to hybridize to a normal region on 1q32.3. As
observed, 1p36 region was deleted in all of these patients, although the deletion heterogeneity varied between
22%-94% among these 4 patients.
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(2) 19p13.2: 11,727,510-11,817,624 (~90.1 kb)
LR= -0.43 (z-score= -2.1); 9 SNPs

(1) 19p13.2: 9,315,173-9,380,453 (~65.3 kb)
LR= -0.39 (z-score= -1.9); 6 SNPs

(2)(1)

(a) OPAS scatterplot of chromosome 14 of patient 14, indicating a deletion on
14q32.33 (∼230 kb; 4 SNPs)

(1)

(b) Tumordb screenshot of 14q32.33 chromosomal region of ht-14

(2)

(c) Tumordb screenshot of 14q32.33 chromosomal region of ht-14

Figure L.6: Candidate OPAS-exclusive focal deletions on chromosome 19 of patient 4. Panel (a) shows
the OPAS scatter plot of chromosome 19 of patient 4. This plot indicates two candidate focal deletions on
6p13.2 that are ∼65 kb (6 SNPs; CNV #1) and ∼90 kb (9 SNPs ; CNV #2). Both of these candidate deletions
indicate strong losses of signal intensity and significant deletion z-scores with LR =−0.39 (z-score =−1.9)
for CNV #1, and LR = −0.43 (z-score = −2.1) for CNV #2. However, none of these deletions have been
reported by SMD or aCGH results of Tumordb. The FPP alignments of these regions are shown in panel
(b) (for candidate CNV #1) and panel (c) (for candidate CNV #2). The red dashed lines in (b) and (c)
indicate the boundaries of OPAS-predicted copy number deletions. As observed there is no FPP event that
can directly validated these candidate deletions. However, for CNV #1 there is only 1 BAC that spans the
entire region (b); and for CNV #2 there are two BACs that span the entire region and a third BAC, shown in
grey, that indicates a potential rearrangement although the expected event has not been validated (c). These
observations may represent hemizygous deletions in these regions.
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Patient 24- Chromosome 6

*

Chr 6: 98,729,854-101,127,689 (~2.4 Mb)
LR~ 0.03; z-score= +0.599 (~0.6)

M

(a) OPAS scatter plot of chromosome 6 of patient 24

*

*

(b) aCGH results of chromosome 6 (ht-24)

*

M

(c) SMD results of chromosome 6 (ht-6)
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Figure L.7 (previous page): Slight gain of signal intensity of a region within a deleted chromosome arm,
predicted to represent an amplification (LR = 0.03; z-score = +0.6). Panel (a) shows the OPAS scatterplot
of chromosome 6 of patient 24. It is clear that the short arm is amplified and the long arm is deleted in this
chromosome (an event known as iso-chromosome). There is also a clear deletion in the amplified p-arm that
is detected by all three datasets (denoted by * in OPAS, aCGH (b) and SMD (c) results). The red arrow in
OPAS plots highlights another potential amplification, located on the predominantly deleted q-arm of this
chromosome. This region (referred to as region M) has LR ≈ 0.03 with a z-score of +0.6. As seen in panel
(b), aCGH result did not detect the increase of signal intensity in this region and reported that the entire
q-arm is deleted. The SMD results, shown in panel (c), identified the pattern of signal intensity, however, it
detected M as a copy number normal region. Based on the observed pattern of intensity in region M, it can
be speculated that this region is likely amplified (z-score =+0.6). This candidate amplification is validated
by Illumina sequencing (Table 4.5). Panel (a) shows that the OPAS-exclusive amplification (M) includes
several genes, such as FBXL4 (highlighted in yellow). According to GNF Atlas expression track of UCSC,
FBXL4 is highly expressed in several leukemias and lymphomas (e.g., Raji-Burkitt’s lymphoma cell line)1.
The observed amplification may also have a similar impact and may lead to increased expression of FBXL4.

1http://genome.ucsc.edu/cgi-bin/hgGene?hgg gene=uc003ppf.1&hgg prot=Q9UKA2&hgg chrom=chr6&hgg
start=99428321&hgg end=99502570&hgg type=knownGene&db=hg18&hgsid=183794759
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OPAS predicted deletion:
chr 4: 131,663,499-131,674,302
(~10 kb; 4 SNPs; LR= -0.72)

(a) OPAS scatterplot of chromosome 4 of patient 19, indicating
a candidate OPAS-exclusive focal deletion on 4q28.3 (∼10 kb; 4
SNPs)

FPP clones predicts a rearrangement 
between the two reported regions on 
chromosomes 2 and 4. 

(b) Screenshot of Tumordb query interface

Chr 2p16.1: 56541768-56673972 (~132 kb; 22 SNPs; LR= -0.58)

(c) OPAS scatterplot of chromosome 2 of patient 19

Figure L.8: Candidate OPAS-exclusive focal deletion on chromosome 4 of FL patient 19 (∼10 kb;
4 SNPs), adjacent to an FPP translocation site between 4q28.3 and 2p25.1. Panel (a) shows the OPAS
scatterplot of chromosome 4, indicating a candidate OPAS-exclusive focal deletion (∼10 kb) on chromosome
4q28.3 in patient 19 (ht-19). This putative deletion includes 4 SNP probe markers and has LR = −0.72.
Panel (b) displays a screenshot of Tumordb query, showing events in ht-19 that overlap with the above OPAS
predicted deletion (OPAS event: 131,663,499-131,674,302). As seen this query finds an FPP translocation
event between chromosomes 2 and 4, shown by red arrow in (b). The red dashed line indicates the FPP
translocation breakpoint in chromosome 4 (chr4: 131,671,379-131,791,464). It is observed that the predicted
translocation event is adjacent to the aforementioned candidate OPAS-exclusive deletion in 4q28.3 (FPP
event: 131,663,499-131,674,302).
The other end of this translocation on chromosome 2 (chr2: 56,670,655-56,736,729) is also adjacent to
another focal deletion (∼132 kb) in this chromosome. However, the second deletion is detected by both
OPAS (shown in panel (c)) and SMD (data can be obtained though Tumordb). Based on these observations, it
can be speculated that a part of the rearranged sequence may have been lost during the t(2p; 4q) translocation
in ht-19. Also, since both of these candidate focal deletions are adjacent to translocation sites, another
possibility is that these small deletions increased the FL genome instability in these chromosomal loci,
which resulted in a subsequent translocation (t(2p; 4q)). Further experiments are required to investigate
whether the OPAS exclusive deletion in 4q28.3 is a real CNV.
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Table L.1: Ingenuity Pathway Analysis list of known genes that were affected by candidate focal CNVs
(� 150 kb)

Symbol Description Location Type of product

ANKS1B ankyrin repeat and sterile alpha motif domain containing 1B Nucleus other
ARID3B AT rich interactive domain 3B (BRIGHT-like) unknown other
C6ORF141 chromosome 6 open reading frame 141 unknown other
CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits

CDK4)
Nucleus transc reg.*

CENPQ centromere protein Q unknown other
CLK3 CDC-like kinase 3 Nucleus kinase
DENND3 DENN/MADD domain containing 3 unknown other
ERBB4** v-erb-a erythroblastic leukemia viral oncogene homolog 4 (avian) Plasma Membrane kinase
FHIT fragile histidine triad gene Cytoplasm enzyme
HVCN1 hydrogen voltage-gated channel 1 unknown ion channel
KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog Plasma Membrane kinase
KLHL1 kelch-like 1 (Drosophila) Cytoplasm other
LYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog Cytoplasm kinase
MTAP methylthioadenosine phosphorylase Nucleus enzyme
MUT methylmalonyl CoA mutase Cytoplasm enzyme
PAX5 paired box 5 Nucleus transc reg.*
PPP1CC protein phosphatase 1, catalytic subunit, gamma isozyme Cytoplasm phosphatase
PPTC7 PTC7 protein phosphatase homolog (S. cerevisiae) unknown phosphatase
SFPQ splicing factor proline/glutamine-rich Nucleus other
SLC45A4 solute carrier family 45, member 4 unknown other
STXBP5L syntaxin binding protein 5-like Cytoplasm other
TCTN1 tectonic family member 1 unknown other
TEKT3 tektin 3 unknown other
ZNF177 zinc finger protein 177 Nucleus other
ZNF440 zinc finger protein 440 Nucleus other
ZNF441 zinc finger protein 441 Nucleus other
ZNF491 zinc finger protein 491 Nucleus other
ZNF559 zinc finger protein 559 Nucleus other
ZNF596 zinc finger protein 596 unknown other

Total number of genes = 29†.
∗: stands for transcription regulator.
∗∗: ERBB4 is affected by two distinct putative small deletions.
†: IPA database did not identify one of the 30 genes in Table 4.4.
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