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Abstract

We present a joint analysis of the Canada France Ecliptic Plane Survey’s
scattering objects, and the Kaib et al. (2011b) orbital model, measuring the
scattering objects’ size distribution. Scattering objects are Trans-Neptunian
objects which are strongly interacting with Neptune, having scattering en-
counters which change their semimajor axes on short dynamical timescales.
We reject a single power-law distribution at the 99% level, and find that
a dearth of small objects is required. We present a novel parameterisation
of a divot size distribution, which rises as a single power-law to a precipi-
tous drop, then recovers as another single power-law of potentially different
slope. We constrain the form of such a divot distribution, and find that div-
ots are preferred over “knee” size distributions, which are found elsewhere
in the literature for different populations. We present our preferred divot
scenario, which rises as a single power-law of logarithmic slope α = 0.8 as
absolute Hg magnitudes increase to sizes corresponding to D ∼ 100 km, then
dropping by a factor of about 6 in differential number, followed by another
single power-law of logarithmic slope α = 0.5. Our interpretation is that
this feature arose from the size distribution made by planetesimal formation
and is now “frozen in” to the “hot” populations of the outer Solar System.
From this we estimate there are 2 · 109 scattering objects with Hg < 18,
allowing for enough to supply the nearby Jupiter Family comets. This in-
terpretation nicely ties the “hot” populations together while simultaneously
explaining the source of the Jupiter Family comets and the observed paucity
of intermediate-sized (50-100 km) Neptune Trojans.
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Preface

• Identification and design of research project: Measuring the size distri-
bution of the Canada France Ecliptic Plane Survey scattering objects
was a project suggested to the author by Brett Gladman. The form of
the candidate size distributions were determined by both Brett Glad-
man and the author.

• Performing the research: the author inherited the Canada France
Ecliptic Plane Survey’s survey simulator from work by Jean-Marc Pe-
tit and J.J. Kavelaars, and modified it to accept several candidate size
distribution formulations. Additionally, the simulator was modified by
the author for easy deployment of a grid search on a computing clus-
ter. An orbital model, modified with input from Brett Brett Gladman
and the author, was provided by Dr. Nathan Kaib. The author ex-
tracted the scattering object sample from the provided orbital model.
A code for determining the Anderson-Darling statistic was inherited
from Samantha Lawler. Possible candidate size distributions were ex-
plored by the author, with input from Brett Gladman, which is the
subject of this work.

• Manuscript preparation: This manuscript was written entirely by the
author, with feedback from Brett Gladman. The work presented in
this manuscript has been submitted for publication. Section 4.6.2 was
adapted from the submitted work.
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Glossary

Acronym/Symbol Definition

a semimajor axis
e eccentricity
i inclination
d heliocentric distance at detection
Hg absolute magnitude in g-band
AU astronomical unit
JFC Jupiter-family comet
P orbital period
q perihelion distance
D diameter
n diameter distribution power-law index
p albedo
α H distribution logarithmic “slope”

TNO Trans-Neptunian Object
m apparent magnitude
R heliocentric distance
∆ geocentric distance
r radius
ρ density
M mass

Table 1: Glossary of acronyms and symbols.
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Chapter 1

The Outer Solar System

1.1 Introduction

The outer Solar System, beginning at Jupiter, encompasses the four giant
planets and a variety of small-body populations. The outer extent reaches
distances of tens of thousands of astronomical units1 (AU) with the Oort
Cloud. This work focuses on the directly observed populations, which only
extend out to tens of AU. The small-body populations of the outer Solar Sys-
tem are, listed by distance: Jupiter Trojans, Jupiter Family Comets (JFCs),
Centaurs 2, Neptune Trojans, the Kuiper Belt (which has sub-populations),
and the scattering objects. All objects with a semimajor axis beyond that of
Neptune’s are generically referred to as Trans-Neptunian Objects (TNOs).
A fundamental characteristic of all small-body populations in the Solar Sys-
tem is their size distribution. Chapter 1 covers the relevant background
on the outer Solar System populations to understand the significance of a
measured divot in the scattering population’s size distribution.

1.2 Size Distributions

A key characteristic of small-body populations is the focus of this work:
the size distribution. Some combination of accretional physics, which builds
smaller objects, and collisional physics, which also preferentially produces
smaller objects, imbues a population with a distinct distribution of sizes.
Collisional and accretional theories suggest that the size distributions could
take the form of a power-law diameter, D, distribution:

dN

dD
∝ D−n (1.1)

where the power-law index n is set by the history of the population. Col-
lisional models, where the collisions are independent of the body’s cohesive

11 AU is the mean Earth–Sun distance
2Objects on planet crossing orbits with a semimajor axis < 30 AU and pericentre < 7.5

AU that have not coupled with Jupiter.
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1.2. Size Distributions

strength, find that collisional evolution produces a power law of this form,
with n= 3.5 (Dohnanyi, 1969). More recent detailed analytic and numerical
work, taking into account the objects’ strength, also find a power law with n
near 3.5, depending on the conditions (O’Brien and Greenberg, 2005). This
slope is referred to as the collisional equilibrium slope; populations which
have evolved collisionally should tend towards a slope of this value. Accre-
tional simulations build a size distribution as in Equation 1.1, with the n
value dependent on the initial conditions of the Solar nebula. The most re-
cent accretional simulations find a size distribution with n ' 5 (Kenyon and
Bromley, 2012). The size distribution provides access to the population’s
formative and collisional processes, and thus help constrain the conditions
of the early Solar System.

For most observation techniques, the diameters of TNOs are not directly
measurable; it is only possible to get a diameter by assuming an albedo 3, p.
To avoid this, many astronomers instead use the observable magnitude or
the absolute magnitude 4, H to measure the size distribution. The power-
law D distribution corresponds to the exponential H distribution5.

dN

dH
∝ 10αH (1.2)

where α is the logarithmic “slope” and maps to the power-law n value (n =
5α+1). Equation 1.2 is easily rewritten to emphasise that α is a logarithmic
“slope”, with k being an unspecified constant:

logN = k + α ·H (1.3)

The slope α is commonly measured from a distribution of magnitudes (as
with a cumulative luminosity function), but Solar System surveys are done
with reflected light, and so highly sensitive to distance, which an apparent
magnitude distribution does not take into account. Ignoring information
about the distance of detection, d, can obscure features in the size distribu-
tion. Another source for error arises when the results from multiple surveys
are combined; often the observational biases of the particular surveys can
not be taken fully into account when combined. This work avoids both of

3Diameters can be found from the observable Hg and the albedo p:

D = 100 km
√

0.05/p 100.2(9.16−Hg).
4H =< m > +2.5 log φ(γ)

∆2R2 , with < m >, average apparent magnitude, R, heliocentric
distance, φ(γ), a phase factor of order unity, and ∆, geocentric distance.

5Measuring a distribution of H magnitudes is a proxy for the D distribution, and so is
also called a size distribution. Henceforth in this work the term “size distribution” refers
to the H distribution.

2



1.2. Size Distributions

these pitfalls by exclusively using H magnitudes measured in g-band and ob-
servations from the well characterised Canada France Ecliptic Plane Survey
(CFEPS, see Section 2.1).

Slopes6 have been measured throughout the Solar System and it is found
that single power-law forms generally fit well over ranges of a few magni-
tudes. Measurements exist for the main belt asteroids, near Earth objects,
saturnian ring system, Jupiter Trojans, Jupiter Family Comets (JFCs), and
the Kuiper Belt. Slopes for the inner Solar System populations are gener-
ally found to be shallow (0.3-0.5) (Bottke et al., 2002; Gladman et al., 2009;
Jedicke et al., 2002) and outer Solar System populations have steeper slopes
(0.8-1.2) (Elliot et al., 2005; Gladman et al., 2012; Petit et al., 2011). The
distinct difference between these populations arises from their collisional
histories. Inner Solar System objects have shorter period orbits and are
more densely packed, and thus have been more collisionally eroded, lead-
ing to a shallower slope in their size distributions. The outer Solar System
populations have undergone less collisional grinding; their steep slopes are
presumably a signature of the formation conditions for the outer parts of
the Solar System. These steep slopes cannot continue indefinitely, as the
mass for an α > 0.6 slope diverges as H →∞ (D → 0, see Section 2.2.1 for
proof); a change in form of the size distribution, which is generically called
a break, is required. There is evidence for a break in the TNO populations
(Bernstein et al., 2004; Fraser and Kavelaars, 2008; Fuentes and Holman,
2008), which is modelled as a sharp (a “knee”), or gradual (“rollover”),
transition to a different single power-law.

This work examines three types of size distributions: single power-law,
“knee”, and a novel divot size distribution. Figure 1.1 shows schematics
and parameters for these three distributions. The single power-law is simply
parameterised by the slope α, as is shown in Equation 1.2. Both the “knee”
and divot cases are two single power laws joined in some fashion at a specific
H magnitude. Each is parameterised with a bright, αb, and faint, αf slope.
Some works in the literature use a rolling power-law, which is a smoothed
“knee”; these are not considered in this work as the sample size prevents
a fine delineation between a “knee” and a rolling power-law. Divots have
an extra parameter: the contrast, c, which is the ratio of the differential
number on the bright side of the divot to the faint side. A larger value for
c means a bigger drop across the divot. A “knee” can be thought of as a
special case of the divot parameterisation, with c = 1.

This work is the first to model the size distribution with a divot. This

6Henceforth “slope” refers to an α value, which is a logarithmic “slope”.

3



1.2. Size Distributions

Figure 1.1: Schematics for the three size distributions considered in this
work. The single power law is parameterised by its slope, α. Both the
divot and “knee” are parameterised by a bright and faint slope, αb and αf
respectively, and have a break H magnitude. Additionally, the divot has a
contrast c, which increases for a larger drop; c = 1 gives a “knee”.

size distribution is a key result of this work and essential for explaining
several mysteries in the outer Solar System. Section 2.2 covers the the
parameterisation of the divot distribution in greater detail.

It is no surprise that the size distribution might deviate from a single
power-law. Figure 1.2 shows the size distribution for the main asteroid belt,
which has several features. The main asteroid belt’s size distribution is
well-known, as surveys of the belt can see down to small sizes with great
completeness. The size distribution in the asteroid belt differs from those
in the outer Solar System, as the asteroid belt is much denser, with higher
dispersion velocities, and thus collisional evolution plays a dominant role.
The steeper slope from H = 6 − 8 may be accretional (Morbidelli et al.,
2009); this result bears some uncertainty as it is based on < 100 asteroids.
Additionally, accretional physics may have been different in the inner and
outer Solar System. Section 1.3 covers the details of the measured size
distributions for the outer Solar System populations.

In summary:

• Solar System small body populations have size distributions which
arise from accretional and collisional processes.

• The outer Solar System populations have steep size distributions be-
cause they have not been significantly collisionally eroded post the

4



1.3. Populations of the Outer Solar System
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Figure 1.2: A representation of the main asteroid belt’s differential H
distribution, from a parametric representation by Jedicke et al. (2002). Data
interpreted from Bottke et al. (2005). For reference Hg of 19 corresponds
to D ∼ 1 km and Hg = 14 to D ∼ 10 km. The bump at the large-size end
results from small number statistics.

epoch of planet building.

• These steep slopes cannot continue indefinitely. Additionally, there is
evidence that they break.

• By studying the size distributions of the primordial TNO populations,
we can gain access to and perhaps constrain the conditions at the time
of Solar System formation.

1.3 Populations of the Outer Solar System

The small-body populations of the inner Solar System have have been well
observed, with all large asteroid belt objects having been found. While

5



1.3. Populations of the Outer Solar System

strong observational biases and great distances make it much harder to ob-
serve the outer Solar System populations, many small bodies have been
observed, coming from several different populations (Fig. 1.4). The liter-
ature is rich with details about these populations, but to understand this
work one needs only focus on two aspects: the size distributions, and the dif-
ference between the dynamically “hot” and “cold” populations. Figure 1.4
shows the inclinations of the known outer Solar System bodies. It is easy to
pick out by simple visual inspection that there is a group of low inclination,
“cold”, objects between 42 and 47 AU; the rest have an extended, “hot”, in-
clination distribution. This section discusses the various “hot” populations
and their size distributions, for comparison with the new measurement of
the scattering objects’ (a “hot” population) size distribution.

1.3.1 The Kuiper Belt

The Kuiper Belt is a group of small bodies extending from semimajor axis
a = 30 AU to a sharp outer edge at approximately a = 48 AU. Also in this
region of space are members of the resonant, scattering and detached popu-
lations. Figure 1.3 shows a projection onto the ecliptic plane of a synthetic
model for all of these populations, with the clear drop off at around 50 AU.
Figures 1.4 and 1.5 show the orbital distributions for the known objects in
the region around the Kuiper Belt. It is apparent from Fig. 1.4 that there
are two distinct classical belt (black open triangle) inclination populations:
“hot” and “cold”. The “cold” objects have a low inclination, i distribution
peaking at around 2.5◦ and the “hot” objects have an extended i distri-
bution which goes up to ∼ 35◦ (Brown, 2001; Petit et al., 2011). These
groups, while primarily distinguished on their inclination distributions, also
have distinct colours (Sheppard, 2010), and size distributions (Bernstein
et al., 2004; Fraser and Kavelaars, 2009; Petit et al., 2011) suggesting that
they are truly two different populations. Of particular interest here is the
idea that the “cold” classical belt was formed in place, and the “hot” pop-
ulation was implanted over top of it (Petit et al., 2011; Wolff et al., 2012).
For objects larger than D ∼ 150 km, the “hot” population has α = 0.8 and
the “cold” α = 1.2 (Petit et al., 2011). The steeper size distribution from
the “cold” population suggests that it has not been significantly collisionally
eroded, which is consistent with having formed in outer part of the Solar
System, where the collisional timescale is higher.

The deepest Kuiper Belt surveys to date found that the size distribution
for faint H (small size) objects is shallow (Bernstein et al., 2004; Fraser and
Kavelaars, 2009). This is in contrast to measurements for larger objects,

6



1.3. Populations of the Outer Solar System

Figure 1.3: A plot of a synthetic model for the Kuiper Belt from a top-
down view of the Solar System. The orbits of Jupiter, Saturn, Uranus and
Neptune are overlayed. For details on the synthetic model see Petit et al.
(2011). Synthetic distributions for the classical belt, scattering, detached
and resonant objects are all plotted. Image courtesy of J.J. Kavelaars.

demonstrating that the size distribution breaks as expected. These mea-
surements established the need for a broken power-law size distribution for
the outer Solar System populations; there is no reason to believe the other
outer Solar System populations would not also have broken power-laws.

Sprinkled across the Kuiper Belt region are the resonant populations,
which inhabit mean-motion resonances with Neptune. TNOs are thought
to have been captured in these resonances during the epoch when Neptune

7



1.3. Populations of the Outer Solar System

migrated. In these resonances they are protected against close encounters
with Neptune even with q < 30 AU (Fig 1.5 where they cross Neptune’s
orbit. Figure 1.4 shows that the resonant populations (open red squares)
are also “hot”. The Plutinos (the TNOs sharing Pluto’s 3:2 resonance with
Neptune) have a steep slope with α = 0.8 − 0.9 (Gladman et al., 2012),
which is consistent with the “hot” main Kuiper Belt. While there are issues
of small sample sizes, and extreme observational biases to overcome, the
observations to date are consistent with the notion that the “hot” objects in
the Kuiper Belt share a common origin. Naturally one would want to extend
this hypothesis to all of the “hot” populations in the outer Solar System,
namely the scattering objects, Neptune Trojans, and JFCs. Linking all of
the “hot” populations is a central strength of this work’s main result.

1.3.2 Scattering Objects

The scattering/scattered objects are a set of TNOs whose orbital evolution
is primarily driven interactions with Neptune (and hence have been/are be-
ing scattered). They are likely the close-in tail of a large population of
objects which was scattered out of the early Solar System, and now forms
the Oort Cloud (Duncan and Levison, 1997). The term “scattered disk” is
historically used in the literature for scattered/scattering populations (Dun-
can and Levison, 1997; Trujillo et al., 2000), and its authors seek to define
scattering objects via cuts in the orbital parameters, specifically a cut in
the pericentre q. This approach focuses on the current location of an object,
irrespective of its past or future orbital dynamics, and has several shortcom-
ings. The simple q cut allows for the misclassification of resonant objects,
and some inner main-belt TNOs, as scattered objects. Additionally, this
classification scheme does not allow for differentiation in the cosmogony of
an object, as only its current state is used.

We use the classification scheme from Gladman et al. (2008) to identify
scattering objects based on dynamical criteria. Any TNO with semimajor
axis a < 2000 AU whose a changes by 1.5 AU in a 10 Myr time-span is
actively scattering. Table 2.1 lists the CFEPS scattering object sample
(Petit et al., 2011), selected in this manner, which is used in this work.

Scattering objects occupy a much larger volume of the Solar System
than any population interior to the Oort Cloud (see Fig. 1.4). Because they
are being thrown about (scattered) by the Neptune and the other giant
planets, they can simultaneously have large semimajor axes (100s of AU) and
small pericentres, q, that come well inside Neptune, down to around 10 AU
(Fig. 1.5). In a reflected light, flux-limited survey, distance is the key factor

8



1.3. Populations of the Outer Solar System

in detectability. The close pericentre passages of scattering objects presents
a great opportunity for measuring the size distribution; the sensitivity limit
is pushed to smaller diameter objects, potentially allowing for observations
to span a break in the size distribution. In fact, we believe that this is
exactly what we have observed in our scattering sample, which enables our
conclusions.

Trujillo et al. (2000) reported the first, and prior to this work the only,
estimate of the scattering object size distribution. With their three detec-
tions, and using a previous detection from a different survey, they found
that the size distribution was equally consistent with α = 0.4 and α = 0.6.
This small sample result is not a robust determination of the slope and is
mentioned only for completeness.

See Section 2.3.1 for plots and further discussion of the scattering pro-
cess.

1.3.3 Neptune Trojans

Trojans are planetary bodies that roughly share a planet’s orbit and remain
near the L4 (60◦ ahead of the planet) or L5 (60◦ behind) Lagrange points.
There are seven confirmed Neptune Trojans (see Table 4.1). The Neptune
Trojans have a “hot” inclination distribution, which must have been “frozen-
in” to the Trojan’s source population prior their capture (Sheppard and
Trujillo, 2006).

The deep Magellan 6.5 m survey by Sheppard and Trujillo (2010) had
the surprising result of zero detections for intermediate-sized Trojans in
the faintest two magnitudes of the survey. Combining all of the Trojans,
Sheppard and Trujillo (2010) found that a slope of α = 0.8 is consistent
with the Trojans larger than a sudden observed paucity of intermediate
sized Trojans (starting around D < 70 − 100 km). Their non-detection of
intermediate-sized Trojans means that the steep power law of α = 0.8 cannot
continue. Although we believe there are flaws in the analysis in Sheppard
and Trujillo (2010) (highly selective binning, use of two objects which are
not identified nor confirmed as Trojans, no binning across surveys), the non-
detection of intermediate-sized Trojans is robust and necessitates a break
in the size distribution. See Section 4.6.2 for a detailed look at the Trojan
size distribution and a unified explanation for the lack of intermediate-sized
Trojans.

9



1.4. Research Goals

1.3.4 Jupiter Family Comets

The comets which are dynamically controlled by Jupiter are known as the
Jupiter Family Comets. The JFCs all lie near Jupiter, with pericentres inside
Saturn (Fig. 1.5). Because of Jupiter’s strong gravitational influences, close
encounters have a high probability of unbinding orbits, and thus JFCs have
short lifetimes (105 yrs, significantly less than the age of the Solar System).
Given that JFCs currently exist, there must be a resupply mechanism for
them. The hypothesis that leakage from the stable Kuiper Belt (Duncan
et al., 1987; Edgeworth, 1943; Fernandez, 1980) could be the source has since
been shown to not work (Levison and Duncan, 1997). Duncan and Levison
(1997) proposed that JFCs are instead being supplied by the scattering
objects. Volk and Malhotra (2008) examined the feasibility of scatterers as
the source, the main question being “are there enough scatterers to supply
the JFCs?” Because all observed JFCs are small (km scale, H ' 18),
Volk and Malhotra (2008) used the size distribution from Bernstein et al.
(2004), the deepest Kuiper Belt survey to date. The Bernstein et al. (2004)
analysis modelled the slope as rolling over to a negative slope at D ∼ 100
km (Hg ' 9), the continuation of which forces the conclusion that there
are not enough scattering objects to supply the JFCs (Volk and Malhotra,
2008). This problem is addressed by our work.

The JFCs are another “hot” population, with an extended i distribution
(See Fig. 1.4). Measurements for the slope of the JFCs find a slope of about
α = 0.5 (Solontoi et al., 2012; Tancredi et al., 2006), which is approximately
the collisional equilibrium slope (n = 3.5). All observed JFCs are small,
and so it is reasonable to expect that they are the product of collisional
grinding. The JFCs require a source, and must be drawn from the small
size, collisionally evolved tail of this source population.

1.4 Research Goals

Size distributions are key diagnostics for the accretional processes and col-
lisional evolution of small-body populations. Measurements of the size dis-
tributions for the TNO populations has found that there is a difference
between the “hot” and “cold” populations, and that there must be a break
in the size distribution. We present a measurement of the scattering objects’
size distribution and find a divot distribution. Using this measurement, we
present a scenario in which all hot populations in the outer Solar System
share a common source. This links the scattering objects with the JFCs (as
a source) and the Neptune Trojans, and simultaneously explains mysteries
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for these “hot” populations.
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Figure 1.4: A plot of i vs a for detected outer Solar System objects. The
upper panel spans all detected a values, while the lower panel provides a
zoom to better view the structure around the Kuiper Belt. Many outer Solar
System populations are shown: main Kuiper Belt (black open triangles),
resonant objects (red open squares), Jupiter Family Comets (purple circles),
Centaurs (gray diamonds), and scattering objects (green squares). Dashed
lines indicate the locations of the giant planets. This plot is a compilation of
the orbits held in the public database from the International Astronomical
Union’s Minor Planet Center.
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Figure 1.5: A plot of q vs a for detected outer Solar System objects. The
upper panel spans all a values, while the lower panel provides a zoom-in.
Symbols and colours are as in Figure 1.4. The dashed black line denotes
circular obits.

13



Chapter 2

Measuring the Size
Distribution

To measure a size distribution, an observational survey, its detection biases,
and a model are needed. The tremendous biases inherent in a survey, often
compounded by the small number of detections, prohibit a direct measure-
ment of the size distribution from the observations alone. An orbital model,
subjected to the survey’s biases, is compared with the detections to con-
strain the form of the size distribution. This chapter covers the Canada
France Ecliptic Plane Survey, its survey simulator, the orbital models used,
and how they all tie together to measure the size distribution.

2.1 CFEPS and its Survey Simulator

The Canada France Ecliptic Plane Survey was designed to produce a cata-
logue of TNOs, while accurately documenting the survey’s biases. Precisely
knowing the biases allows for a quantitative comparison of theoretical mod-
els and observations via the CFEPS survey simulator. As its name suggests,
CFEPS surveyed the ecliptic, covering ∼ 320deg2 and seeing to depths in
g-band in the range 23.5–24.4 magnitude. A catalogue of 169 TNOs with
precise orbits, including 9 scatterers (Table 2.1) was reported. A follow-up
survey looking at higher latitudes, carried out in a similar fashion, found
two scatterers (HL8a1 and HL7j2) that are included in this analysis; hence-
forth CFEPS refers to the Canada France Ecliptic Plane Survey and its
extensions.

The survey simulator determines the observability of a test object. Given
an orbit, the simulator assigns the object an absolute magnitude, places it
on the sky and then checks all of the CFEPS blocks for the object, applying
all of the observational biases (magnitude limit, survey rate cuts, detection
efficiency) to determine if CFEPS would have detected the object. The sim-
ulator models all of the CFEPS observational blocks, with their particular
magnitude limits and detection efficiencies. The magnitude limits and de-

14



2.2. Drawing H-magnitude Distributions

tection efficiencies were determined by implanting artificial objects into the
survey, and then running them through the detection pipeline. For more on
the calibration of CFEPS see Petit et al. (2011). With an orbital element
model and a size distribution as inputs, the simulator builds a set of abso-
lutely calibrated simulated detections which can then be compared with the
observed CFEPS sample.

Designation a (AU) e i (deg) d (AU) Hg

L4k09 30.19 0.18517 13.586 26.63 9.5
HL8a1 32.38 0.37406 42.827 44.52 7.3
L4m01 33.48 0.33308 8.205 31.36 8.9
L4p07 39.95 0.28088 23.545 29.59 7.7
L3q01 50.99 0.484 6.922 38.17 8.1
L7a03 59.61 0.43949 4.575 46.99 7.1
L4v11 60.04 0.62928 11.972 26.76 10.0
L4v04 64.10 0.50638 13.642 31.85 9.1
L4v15 68.68 0.6999 14.033 22.95 9.0
HL7j2 133.25 0.72374 34.195 37.38 8.4
L3h08 159.6 0.7613 15.499 38.45 8.0

Table 2.1: The CFEPS actively scattering sample (Petit et al., 2011), with
two additions from the unpublished High Latitude follow-up survey, HL8a1
and HL7j2, provided by Brett Gladman. All digits are significant.

The survey simulator was provided by Jean-Marc Petit, and modified by
the author to accommodate “knee” and divot size distributions, the specifics
of the models used, and for easy deployment on a computing cluster.

2.2 Drawing H-magnitude Distributions

A single power-law has a well known and integrable form. As with all
integrable functions, it is a simple matter to generate random numbers from
this distribution. Divot and “knee” distributions are simply composed of
two single power-laws, either joined at a “knee”, or with a disconnect. To
draw from such a distribution, one simply needs to know the number in one
segment of the distribution as a fraction of the whole distribution, and then
draw from each segment by their appropriate fraction. This section derives
the relative fractions for a divot case, and the “knee” case is found by setting
the divot contrast c to 1.
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2.2. Drawing H-magnitude Distributions

As shown in Fig. 1.1, a divot is defined by a bright slope αb, a divot mag-
nitude Hd, a divot contrast c and a faint slope αf . The divot contrast is the
ratio of the number of objects in an infinitesimal bin before the divot, to the
number in an infinitesimal bin after the divot. If c=1, then the distributions
meet and it is a “knee”. To find the relative fractions, the normalisation
constant, k, must also be considered, though it does not appear in the final
equation for the fraction of objects before the divot.

The number of objects in an infinitesimal H-magnitude range is given by

dN

dH
= k α ln(10) 10αH (2.1)

The number of objects in an H range at H = Hd is given by Nd

dN

dH
= kb αb ln(10) 10αbHd = Nd (2.2)

The bright and faint distributions are then matched at the divot, accord-
ing to the divot contrast, with c being the ratio of the differential number
before to after the divot:

dN

dH
= kf αf ln(10) 10αfHd =

Nd

c
(2.3)

Equating Equation 2.2 and Equation 2.3 to solve for kf gives:

kf = kb
αb
αf

10αbHd

10αfHd c
(2.4)

To find the cumulative number of objects before the divot, Nbd, integrate
Equation 2.1 from −∞ to Hd

Nbd =

∫ Hd

−∞
dN =

∫ Hd

−∞
kb αb ln(10) 10αbHdH = kb 10αbH

∣∣∣Hd
−∞

(2.5)

Nbd = kb10αbHd (2.6)

To find the cumulative number after the divot, Nad, integrate Equa-
tion 2.1 from Hd to an arbitrary faint cutoff Hf

Nad =

∫ Hf

Hd

kf αf ln(10) 10αfHdH = kf
(
10αfHf − 10αfHd

)
(2.7)

Inserting Equation 2.4 in to Equation 2.7 gives
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2.2. Drawing H-magnitude Distributions

Nad = kb
αb
αf

1

c
10αbHd 10−αfHd

(
10αfHf − 10αfHd

)
(2.8)

Simplifying Equation 2.8 and inserting Equation 2.6 gives

Nad = Nbd
αb
αf

1

c

(
10αf(Hf−Hk) − 1

)
(2.9)

The important quantity required to generate an H-magnitude distribu-
tion with a “knee” or divot is the ratio Nbd

Ntot
where Ntot = Nbd +Nad

Ntot = Nbd

(
1 +

αb
αf

1

c

(
10αf(Hf−Hd) − 1

))
(2.10)

And finally Nbd
Ntot

is given by

Nbd

Ntot
=

(
1 +

αb
αf

1

c

(
10αf(Hf−Hd) − 1

))−1
(2.11)

Note that the fraction depends only on the two slopes, the H-magnitudes
of the divot and faint end, and the contrast. Equation 2.11 gives the fraction
of objects in the bright distribution. To draw from a divot distribution, one
simply draws from the two different single power-laws, over the appropriate
H ranges, drawing from each such that they contain the appropriate fraction
of objects. Section A provides sample code for drawing from a divot or
“knee” distribution.

2.2.1 Divergent Mass for α > 0.6

It is simple to show that the total mass diverges if α > 0.6 (which corre-
sponds to q > 4).

The mass in a given range is

dM = dN(D) ·M(D) (2.12)

Using Equation 1.1, the total mass is then given by

Mtot ∝
∫ Dmax

Dmin

D−n
4

3
πD3ρdD (2.13)

Mtot ∝
1

4− n

(
D4−n
max −D4−n

min

)
(2.14)
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2.3. Numerical Models of the Orbital Distribution

For n > 4 (α > 0.6), the exponents are negative and as Dmin → 0
Equation 2.14 diverges to ∞. So clearly the α > 0.6 distributions must
become shallower at some Hg magnitude.

2.3 Numerical Models of the Orbital Distribution

The survey simulator does not directly allow for the constraint of a size
distribution, but instead, the “testable” quantity is the joint proposal for
the orbital distribution and the size distribution. One thus needs an exter-
nally supplied orbital distribution for the scattering population. Two such
models for the current orbital distribution of large-a TNOs were combined
with candidate size distributions and compare to the observed CFEPS sam-
ple. Scattering objects were extracted from each model using the criteria
explained in Section 1.3.2.

2.3.1 KRQ11

When the giant planets accreted to their present masses (a quick, run-away
gas accretion process), they quickly scattered out the nearby planetesimals.
Many planetesimals were unbound from the Solar System, many other were
scattered out to form the Oort Cloud (with some help from the galactic tides
and passing stars), and some found stable regions between 30 and 1000 AU
to occupy for the age of the Solar System. The scattered objects retain a
close pericentre (as they are in bound orbits, they must return to where they
started). This results in a distribution of objects with similar pericentres
and widely ranging semimajor axes. If they are scattered far out enough,
the tides begin to pull at them at apocentre (when they have virtually no
velocity relative to the Sun), and these small pulls circularise orbits by lifting
the pericentres. For a more in depth review of scattering in the early Solar
System see the review by Gladman (2005).

Two modified versions of Kaib et al. (2011b) (henceforth KRQ11), one
initially dynamically “cold”, the other “hot”, were used. KRQ11 models the
gravitational effects of the giant planets, passing stars and the galactic tides
on a disk of “massless” planetesimals over the age of the Solar System. The
end-states of the modified KRQ11 simulations were provided by Nathan
Kaib, with iterative input from Brett Gladman and the author. While
KRQ11 examines the effects of different solar environments on the structure
of the Oort Cloud, we use the control simulations from KRQ11 as they
assume a local galactic environment like our current one.
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2.3. Numerical Models of the Orbital Distribution

KRQ11 has an initial disk of planetesimals placed between a=4 AU and
a = 40 AU with the surface density proportional to a−3/2. The initially
“cold” simulation implants test particles with eccentricities, e, less than
0.01 and i < 1.5◦. The four giant planets are emplaced on their present day
orbits, and this system is integrated forward for 4.5 Gyrs. The effects on the
evolving particles due to galactic tides and passing stars are also modelled.
For further details on the model’s specifics see Kaib et al. (2011a) and Kaib
et al. (2011b).

It became apparent that no matter which size distribution was used, a
match to the present inclination distribution could not be found; the inclina-
tions were too “cold”. The scattering out of planetesimals does not vertically
“heat” the initially “cold” inclinations enough to match the observations - a
previously known problem (Petit et al., 2011). We then asked for a new ini-
tially “hot” model, which was provided by Nathan Kaib. The “hot” model
draws initial inclinations from the distributionN(i)di ∝ sin i e(−i/(2σ

2)), with
σ = 12◦, and is identical to the “cold” model in all other ways. See Sec-
tion 4.1 for further details on the necessity and effects of the “hot” distri-
bution.

Figure 2.1: The end-state of the modified KRQ11 “hot” model for a <
10 000 AU. See text for discussion.
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2.3. Numerical Models of the Orbital Distribution

Figure 2.1 shows the full end state for the “hot” KRQ11. The test
particles, which all started within 40 AU, are scattered out to over thousands
of AU by the giant planets across the lifetime of the Solar System. The right
panel of Fig. 2.1 shows a band of objects scattered out with pericentres
q = 30 − 40 AU. Also visible in this panel are resonant “fingers” at some
semimajor axes, where scattering objects have been trapped in mean-motion
resonance with Neptune. On the far right of this panel, test particles are
starting to have their pericentres lifted by the galactic tides; this is the inner
edge of the Oort Cloud. The left panel of Fig. 2.1 shows some high inclination
objects, which are returning from the Oort Cloud with inclinations raised
by galactic tides. All of these test particles have been scattered out by the
giant planets (dominantly) or passing stars, but many of them have found
meta-stable states where they are not strongly affected on short timescales.
Today’s actively scattering population is likely just the temporal vestigial
tail of the TNOs which were scattered out, and formed these meta-stable
populations and the Oort Cloud.

Figure 2.2 shows only the scattering objects from the “hot” KRQ11,
selected via the criteria in Gladman et al. (2008). Note that the resonance
“fingers” have been removed, as well as some large pericentre objects, as
they are not scattering. Figure 2.3 shows in more detail the distributions
for the subset with a < 1000 AU, as CFEPS was not strongly sensitive
to those beyond a = 1000 AU. Note that the a and i distributions are
relatively flat, and that most objects have q between 30 and 40 AU. There
are a few retrograde objects (i > 90◦ which orbit “backwards”), but they
are a negligible fraction (see Fig. 2.3).

2.3.2 Gladman and Chan ’06

To test the sensitivity of our result to the model’s initial conditions we also
use the Gladman and Chan (2006) model, which includes an additional two
Earth-mass rogue planet (ejected after about 200 Myr), does not have planet
migration, and does not model the effects of passing starts nor the galactic
tides. The Gladman and Chan (2006) model features and the sensitivity of
our result to the selection of a model are discussed in Section 4.5.
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2.3. Numerical Models of the Orbital Distribution

Figure 2.2: The end-state of the modified KRQ11 “hot” model for a <
10, 000 AU, showing only the actively scattering objects. Beyond a ' 100
AU the q < 40 AU limit on scattering objects begins to raise because more
weakly-bound orbits more easily feel the scattering effects of the giant plan-
ets while interior to 100 AU heliocentric distance.

21



2.3. Numerical Models of the Orbital Distribution

Figure 2.3: The orbital parameter distributions for the actively scattering
objects from the “hot” KRQ11 model. The three left panels show greater
details of the scattering object initial distribution for a < 1000 AU. Objects
with a > 1000 AU have negligible detection probability. The right column
shows the cumulative distributions for a, q and i.
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Chapter 3

Methods

This chapter covers the details of combining the orbital models with a can-
didate size distribution for comparison with the CFEPS scattering sample.
This work uses the modified version of KRQ11 as its main model, and so
this chapter is discussed in the context of KRQ11 (the same process used for
both the initially “hot” and “cold” versions). This methodology was also
carried out for the Gladman and Chan (2006) model, which was used to test
the sensitivity of our result to the model’s particular parameters.

3.1 Implementation of the Survey Simulator

The scattering objects extracted from KRQ11 constitute the model of the
present day orbital distribution, which is then passed to the CFEPS survey
simulator. Objects are drawn at random from the model sample, with their
specific a, i, q values. Because there can be no resonant scattering objects,
the precise values of an objects orbital parameters should not be special, thus
the object is placed at a random point on its orbit and the orbit randomly
oriented, with the argument of pericentre, argument of periapsis and mean
anomaly all chosen randomly. To smooth the orbital distributions of the
finite model, the a, q, and i values are randomly perturbed; a and q by
±10%, and i by ±1◦. Each object is then assigned an Hg from a candidate
distribution and its observability is assessed. The end result is a set of
simulated detections which have known a, q, i, Hg, and distance at detection
d values. These five parameters are used to assess the quality of a match.

3.2 Comparison and Statistics

Taking the input orbital model as correct (see Section 4.5 for justification),
we test each candidate Hg distribution by comparing the five parameters
a, q, i, Hg, and d of the simulated detections to the CFEPS sample. The
Anderson-Darling (AD) statistic (Kavelaars et al., 2008) is used to quantify
the comparison. The AD statistic is a 1-D distribution test similar to the
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3.2. Comparison and Statistics

Kolmogorov-Smirnoff test, but more sensitive to differences in the distribu-
tion’s tails. The AD statistic tests if a distribution (the CFEPS sample) can
be drawn from a source distribution (the simulated detections). As there
are 11 real CFEPS scattering objects, a random set of 11 objects is drawn
from the simulated detections and its AD distance from the CFEPS sample
calculated. This process is booststrapped, providing a final AD statistic
distribution, which allows one to determine the fraction of the bootstrapped
samples where the CFEPS sample can be said to have been drawn from the
simulated detections. An AD statistic of 5% rejects the hypothesis that the
CFEPS distribution is drawn from the simulated detections at the 95% level;
this is a rejection of the candidate Hg size distribution used to generate the
simulated detections. Figure 3.1 shows the simulated detections (blue) of
a candidate Hg distribution (a single power-law) and the CFEPS sample
(red), with the AD statistics; this candidate distribution is rejectable at the
99% level for the Hg distribution.

Although iterative tuning of the Hg distribution occupied much of our ef-
forts, one result became evident early. For the initially “cold” KRQ11 it was
found that the i distributions were too cold (see Fig. 3.2 Section 4.1). This
work uses the initially “hot” KRQ11 generated to nicely resolve this prob-
lem, which drastically improves the i distribution matches, indicating that
the planetesimals scattered out of the zone of the giant planets already had
significant orbital inclination before scattering started. There is, however a
trade off between the agreement of the i and a distributions. The “hotter”
model improves the i, while weakening the a distribution. We believe that
this simply points to a question of how “hot” the initial disk needed to be,
and that an intermediate initial inclination width will allow for both the i
and a distributions to match well (see Section 4.7). This work’s constraints
on the scattering population’s size distribution come solely from the “hot”
KRQ11 model.

For each candidate size distribution coupled with the “hot” KRQ11, we
assess the AD statistic for q, i, Hg, and d, and determine an acceptability
level for the size distribution from the AD statistic which is most rejectable.
If any of these AD statistics is rejectable, we then reject the candidateHg size
distributions. Because of the noted problem with the a distribution, we do
not include the AD statistic for a in this analysis, though its inclusion does
not alter our conclusion. Figure 3.2 shows, as an example, the cumulative
distributions for the “cold” single power-law candidate size distribution. The
three lower panes are all rejectable at the 99% level, and so this candidate
size distribution is rejected.
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Figure 3.1: An example of a model rejected using a 1-D distribution. The
blue dashed curve is the observationally biased Hg distribution for the “cold”
KRQ11 model from a single power-law with α = 0.8. The red distribution is
the real CFEPS observations’ Hg distribution. AD ' 1 means that only 1%
of the bootstrapped 11-object samples drawn from the dashed blue simulated
detections showed a larger variation than the true sample; this is thus a 99%
rejection of the dashed blue distribution.

3.3 Size Distributions Used

As discussed in Section 1.2 this work considers three kinds of size distribu-
tions: single power-law, “knee”, and divot. The single power-law case only
has one parameter: the slope α. The divot case has four parameters: the
bright side slope αb, the faint side slope αf , the H magnitude of the divot,
and the divot contrast c as shown in Figure 1.1. “Knees” are a special case
of divot with c = 1, and a single power-law is a special case of divot where
c = 1 and αb = αf .

The “hot” TNO populations have a measured slope of α = 0.8, although
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Figure 3.2: A sample set of distributions for a, q, i, Hg, and d. The blue
dashed curves are the simulated detections for the “cold” KRQ11 model
from a single power-law with α = 0.8. The red distribution is the real
CFEPS observations’ Hg distribution. This candidate size distribution fails
because the three distributions on the bottom row are all rejectable at the
99% level, but this can be resolved with a different size distribution.

there is evidence that this steep slope must break at smaller sizes (see Chap-
ters 1 and 2); we thus fix the bright end (large size) slope αb to 0.8. Recent
measurements of the “hot” Plutinos (Gladman et al., 2012) and the “hot”
Classical belt (Petit et al., 2011) show that a single power-law fits the hot
populations down to the survey sensitivity limits Hg of 9 and 8 respectively.
Our observations require a break in the size distribution. If we restrict our
sample to Hg < 9, a single power law fits our observations. We require a
break in our observations’ range and so we fix our knee/divot break at Hg

= 9 (D ' 100 km). This leaves the faint slope αf and the contrast c as the
only free parameters.

26



3.4. Grid Search

3.4 Grid Search

A grid of c and αf pairs was explored. Values for αf ranged from -0.5 to 1.2
in steps of 0.1, encompassing the most negative faint (Bernstein et al., 2004)
and steepest (Petit et al., 2011) slopes proposed for the “hot” population.
Values for the contrast ranged from 100 to 103 in logarithmic steps of 0.25.
For each run of the survey simulator the candidate size distribution was
coupled with the scattering set from the initially “hot” KRQ11 model. Ten
thousand simulated detections were found for each case, in order to produce
a well sampled simulated detection distribution. For each grid point the AD
statistic was calculated for the q, i, Hg, and d distributions, with the most
rejectable of these being recorded. Candidate size distributions are assessed
on their most rejectable AD statistic. The computed AD statistics allow us
to generate confidence regions for the two free parameters (c, αf ).
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Chapter 4

Results and Extensions

4.1 Inclination Distribution

Results later in this section imply that the perihelion and semimjaor axis
distributions retain little memory of their initial conditions because they are
the result of a 4 Gyr random walk process (Duncan et al., 1987). In con-
trast, the current orbital inclination distribution for the scattering objects
is influenced by (a) the process of scattering with Neptune (which does not
efficiently transform the in-plane speeds to out-of-plane speeds), and (b) the
initial inclination distribution of the planetesimals when they giant planets
formed and began scattering them outwards. The current inclination distri-
bution thus does contain some memory of the state of the planetesimal disk
∼ 4 Gyr ago.

Candidate size distributions were initially tested with the “cold” model,
but it was found that all size distributions were rejectable at the 95% level.
Rejectable meaning that the most rejectable of the AD statistics for a, i, q,
d, and H parameters was rejectable at the 95% level. For the majority of
cases, it was the inclination distribution which failed most; clearly the incli-
nations were too “cold”. A “hotter” KRQ11 model was then computed by
Nathan Kaib, with input from Brett Gladman and the author. This “hot-
ter” initial model addressed the inclination problem. Figure 4.1 shows a
comparison of the initially “hot” and “cold” inclination distributions for the
same candidate size distribution. The initially “cold” simulated detection
distribution has 50% of the inclinations below ∼ 8◦, whereas the CFEPS
observations have 50% below ∼ 13◦; too many of the “cold” model objects
have low inclinations and so the distribution is rejectable at greater than
99%. With the “hot” model, the inclination distribution matches very well,
and the inclination is almost never the most rejectable of the tested param-
eters. While the “hot” version dramatically improves the i match, it also
worsens the a match, though not significantly. There is room for tuning the
width of the initial i distribution to better match the a distribution (see
Section 4.7).
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Figure 4.1: The cumulative simulated detection i distributions for the ini-
tially “cold” (solid teal) and “hot” (solid black) KRQ11 models. Dashed-dot
lines are the intrinsic KRQ11 distributions. The initially “cold” distribution
is rejectable at greater than the 99% level, whereas the initially “hot” model
results in many fewer scattering objects today having i < 10, thus providing
an excellent match.

4.2 A Single Power-Law Size Distribution?

With many Solar System populations well fit by a single power-law over
a few magnitude ranges, it needs to be established that a single power-
law does not match the CFEPS scattering objects. Figure 4.2 shows the
simulated detections for the single power-law with α = 0.8, which is well
established for the “hot” populations. Panel E shows that the simulated
detections expect 50% of the detected objects to have Hg > 9, but only
∼20% of the CFEPS sample have Hg > 9; a single power-law produces too
many small object detections. While not shown, if one cuts the sample to
consider only the Hg < 9 scattering objects, a single power-law of α = 0.8
provides a good match. Panel D shows that a single power-law predicts 50%

29



4.2. A Single Power-Law Size Distribution?

20 40 60 80 100120140160
Semimajor axis a(AU)

0.0

0.2

0.4

0.6

0.8

1.0
cu

m
u
la

ti
v
e
 f

ra
ct

io
n

A

10 20 30 40
Inclination i( ◦ )

B

10 15 20 25 30 35 40
Perhelion q(AU)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

u
la

ti
v
e
 f

ra
ct

io
n

C

20 25 30 35 40 45
Detection distance d(AU)

D

7 8 9 10 11
Absolute H-magnitude Hg

E

Figure 4.2: The a, i, q, d, and Hg distributions for the single power-law
α = 0.8 simulated detections (dashed blue) from the “hot” KRQ11. The
CFEPS sample is shown in red. The a and i distributions are acceptable,
but a single power-law fails on the q, d and Hg distributions.

of objects to be detected inside d = 25 AU, but CFEPS only detected one
object that close. For an exponential H-mag distribution, the large number
of objects just inside the survey’s magnitude limit dominate the observed
sample. CFEPS did not observe these small objects, despite being sensitive
to them as panel E shows. A single power-law produces an abundance
of small objects, predicted to be detected at close distances; this was not
observed. Thus a single power-law was rejected at the 99% level. A break in
the size distribution is required to reduce the number of small-sized objects.
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4.3 Grid Results and Constraints

Because the literature has often used “knee” distributions where a single
power-law fails, considerable time was spent exploring “knee” parameter
space. Varying the “knee” location and the slope beyond the “knee” failed
to provide a compelling match. We then explored parameterisations which
include divots.

To constrain the form of a break in the size distribution, a grid of can-
didate size distributions (as described in Section 3.4) was tested; the results
are shown in Figure 4.3. “Knee” distributions are on the left edge of the
plot, with c = 1, and a single power-law is marked by the blue star. Divot
scenarios provide better matches than “knees” with positive slopes. The
CFEPS data set requires a relative lack of small-sized objects. For steeper
post-divot slopes a higher contrast value is required to ensure that there
is not an abundance of small objects, which were not observed. This cre-
ates a band of acceptable (c,αf ) pairings. With this data set we can only
rule out a single power-law, and constrain the (αf ,c) pair. Using arguments
from other TNO populations in the literature, we identify a preferred model
(green star).

Figure 4.3 shows the constraints on the form of the scattering object
size distribution. The yellow band denotes cases of equally good matches
to the CFEPS data set. “Knees” to negative slopes are acceptable given
the CFEPS data set alone (resolved in Section 4.4). Very large (c ∼ 30)
contrasts are allowed if the post-divot slope is large, but this would result in
the same mass non-convergence problem if this slope continues. The black
dashed line in Fig.̃refFig:Contours marks the upper bound for slopes which
converge. There are many acceptable matches. Further constraints can be
found from other outer Solar System populations.
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Figure 4.3: A contour plot of the rejectability level for candidate size distri-
butions. All size distributions have a bright slope αb = 0.8 to Hg = 9. Size
distributions then break to the faint slope αf shown on the y-axis, with the
contrast c shown on the x-axis. The left edge of the plot with c = 1 shows
“knee” distributions. The blue star marks a single power-law of α = 0.8,
which is rejectable at greater than 99%. The green star marks our preferred
divot case (see Section 4.4). The black dashed line marks α = 0.6; αf must
be less than 0.6 or else the total mass diverges. The open circles mark the
tested candidate distributions.

4.4 Preferred Model

As discussed, the CFEPS scattering sample requires a lack of small-sized
objects. Figure 4.3 shows this visually. The best matching models reduce
the number of small-sized (Hg < 9) objects through either a divot, or a
“knee” to a flat/negative slope. There is a distinct difference between these
two cases: positive αf slopes produce a substantial amount of small-sized
objects, whereas negative and flat slopes do not. Many scattered objects,
and their companion objects (Centaurs, JFCs) have been observed for Hg �
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4.4. Preferred Model

9 (Fig. 4.4). Negative slopes, and even divots to shallow slopes, would not
produce enough small objects to allow for the observed small-size objects
(Volk and Malhotra, 2008).

The JFCs, measured in the range Hg ' 14−17, give a slope αf = 0.5±0.1
(Solontoi et al., 2012; Tancredi et al., 2006). As the scattering objects are
the most logical source of the JFCs, we choose a divot with αf = 0.5 for
our preferred size distribution. A divot is singularly capable of explaining
both the paucity beyond the break (which necessitates the break) and the
recovery needed to produce enough scattering objects to feed the JFCs. The
measured rollover to a negative slope for faint TNOs (Bernstein et al., 2004)
is consistent with a divot, as a realistic divot would not drop precipitously,
but instead would decrease initially with a negative slope and then recover
to its post-divot slope. A recent measurement by Fraser et al. (2010) of
faint TNOs found a slope α = 0.4 ± 0.15, consistent with our preferred
αf = 0.5. We computed the Hg magnitudes for these objects and found that
they span the divot, with the majority beyond Hg = 9. Having observations
which span the divot would tend to flatten the measured slope, which further
supports a choice of αf = 0.5. The preferred divot is consistent with the
CFEPS observations, observations of faint TNOs, and can explain the source
of the JFCs (see Section 4.6.1).

From Fig 4.3 it can be seen that there are two well matching divots
with αf = 0.5. The divot with c ' 6 provides a slightly better match and
so was chosen. This size distribution has αb = 0.8 to a divot at Hg = 9,
with a contrast of c ' 6 to a faint slope of αf = 0.5. Figure 4.5 shows
the cumulative distributions for our preferred divot (green) and the single
power-law (dashed blue). The divot provides a very good match, and is not
rejectable on any of the distributions (a, i, q, d, Hg).
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Figure 4.4: A compilation of the scattering objects and Centaurs from
the International Astronomical Union’s Minor Planet Center (a public
database). Complicated selection effects which are combined from many
surveys prevent a measurement of the slope or form of the size distribution
for this combined sample. The mixing of surveys with different limiting
magnitudes means that the termination of the exponential number increase
around Hg=8–9 may be due to the surveys’ limits starting to prevent de-
tections. Half of the sample has Hg > 9, even though only some of the
Centaur surveys were sensitive to such small objects; this means that a neg-
ative slope past Hg = 9 is disfavoured, as very few Hg >12 objects would
exist to be detected if the population had an exponentially declining number
distribution (negative α).
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Figure 4.5: Cumulative distributions for a, i, q, d, and Hg. The CFEPS
sample is plotted in red, with simulated detections from the “hot” KRQ11
shown in dashed blue for a single power-law and solid green for our preferred
divot. The dashed dot distributions in panels A - D show the intrinsic
KRQ11 distributions. The strong observational biases are evident when one
compares the intrinsic and the simulated detections distributions.
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4.5 Gladman and Chan Model Comparison

Because we do not directly test the size distribution, but instead the joint
proposal of the size distribution and orbital model, the effects of the model
choice need to be established. KRQ11 produced a model for today’s scat-
tering objects, arising from the planets in their current orbits, the effects
of the galactic tides, and the effects from passing stars. One might have
concerns that the giant planets did not form in their present day locations,
as in the Nice model (Gomes et al., 2005; Morbidelli et al., 2005; Tsiganis
et al., 2005), or have concerns about the specific parameters for the galac-
tic tides and passing stars used. To examine the sensitivity to the model,
we also performed our analysis using the Gladman and Chan (2006) model
(GC06). Gladman and Chan (2006) models scattering objects much in the
same way as KRQ11. A disc of initially “cold” planetesimals is placed, along
with giant planets, and then evolved for the age of the Solar System. GC06
however does not model the effects of galactic tides, planet migration, nor
passing stars. GC06 has an additional 2MEarth planet in the outer Solar
System (ejected at around 200 Myr), which allows us to partially test the
sensitivity of our result to the location of the giant planets.

Figure 4.6 shows the cumulative distributions for our preferred divot
from both orbital models. GC06 has an initially “cold” disk and so the
“cold” KRQ11 model is used for comparison. The results from the two
models differ only slightly, and neither is rejectable, aside for their i dis-
tributions. This demonstrates that the current distribution of scattering
objects is insensitive to the fine details of the dynamical conditions, and
that galactic tides and passing stars have a small effect. Today’s orbital dis-
tribution of scattering objects is dominated by the giant planets. Because
GC06 also contains a rogue planet, we conclude that the results are not
strongly sensitive to the location of the planets in the outer Solar System.
The rejectability of our preferred model is not strongly dependent on the
choice of model. We thus constrain the form of the size distribution when
the initially “hotter” KRQ11 model, which we believe is the best representa-
tion of the evolution of the scattering objects over the 4.5 Gyr Solar System
history.
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Figure 4.6: Cumulative distributions for a, i, q, d, and Hg. The CFEPS
sample (red) is compared with the simulated detections from the Gladman
and Chan model (dashed black) and the initially “cold” KRQ11 (green).

4.6 Connections and Interpretations

We favour a scenario in which the “hot” populations all share a common
origin. The available constraints imply that a ring of planetesimals with
an already heated inclination distribution (of order ten degrees, which is at
least an order of magnitude hotter than conditions during accretion would
allow) was present in the giant planet region as they arrived at their current
masses. In our scenario, a ring of planetesimals with a “heated” inclination
distribution formed interior to the current Kuiper Belt. This population
would had a divot size distribution, with a slope of αb = 0.8 to around
Hg = 9 (D ' 100 km) where it then drops and recovers as αf = 0.5. The
slope in the post-divot region was set by mutual collisional evolution, while
the steeper slope of 0.8 was set during planetesimal formation. When the
giant planets accreted to their present masses, they quickly scattered this
population out to a much larger volume. This ended all collisional evolution
and thus “froze-in” the size distribution. As this population got scattered
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4.6. Connections and Interpretations

out, parts of it became trapped in mean-motion resonances with Neptune,
and as Neptune Trojans in its L4 and L5 points. Many other members
were scattered out to form the Oort Cloud, leaving a small tail of scattered
planetesimals in the inner Solar System which would constitute the Jupiter
Family Comets, the Centaurs, and the scattering objects. We now look to
the JFCs and Neptune Trojans to test our preferred size distribution. Note
that there are currently no well determined size distribution estimates for
the Centaurs.

4.6.1 Population Estimate and JFCs

Measurements for the JFC size distribution come from the abundant, small
km scale (Hg = 19) comets that come inside Jupiter and are thus easily
observed. Since these nearby comets are eliminated by Jupiter on less than
Myr time scales, they are re-supplied from the Centaurs (which are elimi-
nated on 10-100 Myr time scales), which are in turn thought to be supplied
by the scattering objects (which have enough stability to continue to pro-
vide Centaurs even today). Volk and Malhotra (2008) found that at least
2 · 108 scattering objects with Hg < 19 are required to supply the JFCs. To
test our size distribution, we estimate the size of the scattering population
with our preferred divot. The survey simulator is run, requesting 11 (the
number of CFEPS observations) simulated detections. Each time the survey
simulator tests a model object, this object is counted. The survey simulator
draws and perturbs objects from the model until the required 11 simulated
detections is achieved. Because CFEPS is absolutely calibrated, the total
number of objects drawn for 11 simulated detections gives an estimate of the
intrinsic size of the scattering population. This process was bootstrapped,
and we estimate that there are 2 ·106 scattering objects with Hg < 13, which
extrapolates to 2 · 109 scattering objects with Hg < 19, providing enough
for them to be the JFC source. Figure 4.7 shows our preferred divot with
our actual population estimate on the y-axis.
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Figure 4.7: Histograms of our preferred divot size distribution. A: The
differential distribution, with the preferred solution overlayed in green, and
an extrapolation of the single-power law with slope α = 0.8 beyond Hg

shown in dashed blue. The contrast c ' 6 is the ratio of the bins on either
side of the divot. B: The cumulative size distribution. The vertical axes
show the estimated number of scattering objects with a < 1000 AU using
the absolute CFEPS calibration.

4.6.2 Neptune Trojans

The Neptune Trojans are a “hot” population, and were captured in Nep-
tune’s L4 and L5 points in the scenario where the “hot” populations were
transplanted outward in the early Solar System. In this scenario they would
have the same size distribution as the scattering objects, and so we apply
our preferred divot to the Neptune Trojans.

Because of their low eccentricities, the resonant Neptune Trojans form a
set of TNOs which are nearly all at the same distance, making the conversion
between apparent and absolute magnitude a single fixed offset of Hg ' g −
14.7. The dispersed inclination distribution (Sheppard and Trujillo, 2006),
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although not yet precisely measured, links these objects to all the other
resonant populations, which are also dynamically “hot” (Gladman et al.,
2012). Due to their relative proximity at 30 AU, deep observations of the
Trojans should reach apparent magnitudes past the break, and the roughly
constant distance decreases the confusion caused by detecting objects at
a wide range of distance. Sheppard (2010) used detections for Neptune
Trojans to argue that beyond mR '23 (corresponding to Hg ' 9) there was
an absence of Trojans due to non-detection in their survey, and thus smaller
Trojans were missing. Under the assumption that the Trojans and other
resonant TNOs were implanted from a displaced scattering population and
thus share the same size distribution, we confirmed that the size distributions
we deduce are not in conflict with the non-detection of small Trojans by these
surveys.

The known Neptune Trojans (Table 4.1) are binned and plotted (Fig.
4.8) according to their on-sky surface density; the objects are in half mag-
nitude bins, binned across all surveys simultaneously, with the appropriate
weight given to each object. The bins are plotted with 1σ Poisson error
bars due to small numbers, which dominate over the small uncertainties
in sky coverage. The 2σ upper limits, translated to Hg-magnitude, from
Sheppard (2010) are included. Pairings of the contrast and post-divot slope
which appear yellow in Fig. 4.3 are plotted. All of the models share a single
exponential law with logarithmic slope αb = 0.8 up to Hg = 9. Our pre-
ferred model (green star in Fig. 4.3, green line elsewhere unless indicated)
is coloured in green. This representation is sensitive to bin centres and to
the normalization of the slope above the divot (larger objects).

Name Hg Survey Effective Sky coverage

UP10 9.1 (Sheppard, 2010) 49 deg2

TN53 9.4 (Sheppard, 2010) 49 deg2

T074 8.8 (Sheppard, 2010) 49 deg2

LC18 8.6 (Sheppard, 2010) 49 deg2

QR322 8.5 (Chiang et al., 2003) 89 deg2

RJ103 7.8 (Becker et al., 2008) 120 deg2

Vl305 8.3 (Becker et al., 2008) 120 deg2

Table 4.1: Neptune Trojans and the effective sky coverage of their respective
surveys

Given the uncertainties on the binned data points, and the large degree
of flexibility in bin centre choice, there is little additional constraint from
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the known Neptune Trojans. Fig. 4.8 and Fig. 4.9 demonstrate the degree
to which the choice of bin centres affects the conclusion that there is an
observed drop in the differential surface density of Trojans. The strongest
constraint comes from the non-detections (Sheppard, 2010), which precludes
both a single power-law and a knee to a positive slope.

Given our analysis, the conclusion would not be that small Neptune Tro-
jans are “missing”, but rather that the sudden drop results in the population
fainter than the divot not recovering in terms of on-sky surface density to at
least the value at the divot until Hg > 11, by which point the deepest survey
lacked the sensitivity to detect them. If this scenario is correct, detection
of several small (Hg > 11) Trojans would require surveying ∼ 100 square
degrees of sky to 26th magnitude depth. The D > 100 km Trojans could
all be found in shallower surveys (and there will only be a few hundred of
them), because the divot picks out a “favoured” apparent magnitude for this
population which is, unusually, confined to a narrow range of heliocentric
distances.

Effectively, the Neptune Trojan data set allows size distributions with
very large contrast and strong negative slopes, whereas the scattering object
data set requires a steep slope if there is a large contrast, and disfavours neg-
ative slopes. The Neptune Trojan set does rule out some large contrast/steep
slope scenarios, which our data set would otherwise allow.
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Figure 4.8: The differential luminosity function for the known Neptune
Trojans. Vertical error bars are Poisson 1σ limits, horizontal error bars
denote bin ranges. Black triangles represent 2σ upper limits as interpreted
from Sheppard (2010). The dark blue dashed line is an extrapolation of the
single power law. The solid green line is our preferred solution, dotted gray
lines are solutions which appear yellow in Fig. 4.3 (thus are not rejectable),
and light blue lines are the subset of those which satisfy the 2σ upper limits.
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Figure 4.9: A different choice of bin centres for the Trojan data, showing
the sensitivity to the choice of visualisation. Line styles and colours are the
same as in Fig.4.8.
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4.6.3 How Could A Divot Have Formed?

At first appearance, a divot size distribution may seem like an unrealistic
and arbitrary construction. There are, however, two scenarios already ex-
plored in the literature for producing a divot size distribution. It is possible
that the formation physics for small sizes are different, creating a wave in
the size distribution. This wave would then propagate upwards in the size
distribution with collisional evolution. Smaller objects break up larger ones
through collisional grinding. There is a critical size which a smaller im-
pactor must be in order to cause a disruption of a larger object. Larger
objects are less frequently destroyed if there is a paucity in their critically
sized impactors. Eventually the smaller population builds up from grinding,
and the paucity of objects moves to larger size; the wave propagates up the
distribution. Fraser (2009) showed that a primordial wave in the size distri-
bution at D = 2 km would propagate up to 100 km, leaving a divot in the
size distribution.

An alternate theory for forming a divot borrows a new popular idea from
the asteroid belt: that objects only form to some minimum size (Morbidelli
et al., 2009). The idea here is that planetesimals condense directly into large
bodies inside vortices (Johansen et al., 2007) in the protosolar nebula, and
smaller bodies only form later from collisional processes. Applying this idea
to our preferred divot size distribution gives the following scenario: the “hot”
populations accrete into large bodies with a slope α = 0.8 down to a size
of ∼100 km (Hg ' 9). All smaller objects would form later from collisional
grinding. Fortuitously, and completely independently, Campo Bagatin and
Benavidez (2012) examined this case amongst many simulations of collisional
evolution. They show (their Fig. 6) that an initial distribution with no
D < 100 km objects evolves into a divot with αf ' 0.5 and a contrast of
c ∼ 20 after 500 Myr of collisional evolution. The divot contrast softens as
time goes on, and so reaching a c ∼ 6 (as we find) may only be a matter of
the duration and collisional environment. Their divot has the more realistic
form of a sharp transition to a negative slope, and then recovery to the
post-divot slope. These two works present plausible explanations for the
formation of a divot size distribution.

4.7 Future Work

In order to better constrain a divot in the “hot” objects’ size distributions,
new surveys are required. A survey covering a much larger area, and going as
deep or deeper than CFEPS would be required to detect enough scattering
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objects. The next best population to observe is the Plutinos, many of which
have pericentres inside Neptune. Such a survey would need to go to a g-band
magnitude past 25 in order to see a magnitude past the divot, which is what
is necessary to have strong sensitivity to the divot. A survey which goes to
26th magnitude in g-band and covers hundreds of square degrees would be
able to see the post-divot recovery in the Neptune Trojan population. A
well characterised survey of the Centaurs (none exist, and so there is no well
constrained size distribution) could potentially also measure the divot size
distribution. A Centaur or JFC survey would be sensitive to small, close
objects, and so be dominated by post-divot objects. It would be difficult to
constrain the form across the divot with such a survey, though new large
scale telescopes such as the Large Synoptic Survey Telescope may provide
the scale needed.

The “cold” Kuiper Belt population is confined to semimajor axes be-
tween 42.5 and 44.5 AU (Petit et al., 2011). With eccentricities up to about
0.1, this population is confined to q > 39 AU. While it is not required
that this population also has a divot at the same magnitude nor with the
same contrast, having such a divot at Hg = 9 would mean a rough rollover
magnitude around 26 in g-band. The shallowest luminosity function slopes
(in apparent mag) that have been detected (at about 2 σ) in the literature
(Fraser and Kavelaars, 2008; Fuentes and Holman, 2008) are “knee”. A
divot would be “smeared” to a “knee” when measured in apparent magni-
tudes; this observed “knee” may be a detection of a divot size distribution.
Previous surveys should be re-examined in this light, but the best survey
would be one that is wide enough to have at least 10 detections brighter
than the limit, as well as one that extends to at least a magnitude after the
limit.

While we test the sensitivity of our result to the placement of planets in
the outer Solar System with GC06, the same analysis should be carried out
for a model with planet migration in order to compare with the Nice model.

As stated, the “hotter” KRQ11 model improves the i match, but worsens
the a match. Ongoing and future work includes exploring intermediate ini-
tial inclination distributions, with widths 5◦ < σi < 12◦. This will constrain
the inclination distribution at the time of planetesimal formation.
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Chapter 5

Summary and Conclusions

We present a measurement of a divot in the Kuiper Belt’s scattering objects.
Via joint analysis of the Canada France Ecliptic Plane Survey’s scattering
sample and the Kaib et al. (2011b) model, we constrain the form of the scat-
tering objects’ size distribution. We present a divot with a bright end slope
of αb = 0.8 to Hg = 9 where it drops precipitously by a factor of ∼ 6 and
then recovers with a faint slope of αf = 0.5. Using this size distribution, and
the absolute calibration of CFEPS, we estimate that there are 2 ·106 scatter-
ing objects with Hg < 13. Extrapolating the faint end slope to Hg = 19, we
estimate there are 2 · 109 with Hg < 18, providing enough scattering objects
for the production of the Jupiter Family Comets. We discuss our preferred
divot scenario in the context of an implanted “hot” population, linking the
scattering objects, Plutinos and Neptune Trojans. This is consistent with
the observed size distributions for both populations and explains the previ-
ously thought “missing” intermediate-sized Neptune Trojans. Our scenario
provides an integrated explanation for the “hot” populations of the outer
Solar System and resolves several previously unsolved problems.
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Appendix A

Drawing From A Divot
Distribution

Sample python code for drawing from a divot or “knee” Size distribution:

import numpy as np

random = np.random.random()

#The total number of objects to draw from the distribution

size=10**6

#The distribution parameters

slopeb=0.8 #bright slope

slopef=0.5 #faint slope

hb=1 # arbitrary bright end

hd=9.0 # divot/knee location

hs=13 # faint end H value

c=10**(-0.75) #contrast value

#Determine the fraction in the bright distribution

cbt=1/(1+c*slopeb/slopes*(10**(slopef*(hs-hk))-1))

#Instantiate the H array

hmag=np.zeros(size)

#Draw from the bright and faint distributions

for i in range(0,size):

if (random < cbt):

slope=slopeb

h0=hb

h1=hd
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h0s10 = 10**(slope*h0)

h1s10 = 10**(slope*h1)

random=np.random.random()

h = np.log10( random*(h1s10 - h0s10) + h0s10 ) / slope

else:

slope=slopef

h0=hd

h1=hs

h0s10 = 10**(slope*h0)

h1s10 = 10**(slope*h1)

random=np.random.random()

h = np.log10( random*(h1s10 - h0s10) + h0s10 ) / slope

hmag[i]=h
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Appendix B

Selecting Scattering Objects

A python script which separates scattering objects, given two different 10Myr
time steps:

# This file determines if an object is scattering within the last

# 10 my based on the input from two files.

# Lo is the list of objects from the previous time step.

# f is the file containing the current time step to be checked for

# scattering objects

# out is the output file

#

# Written by Cory Shankman

# November 2011

import numpy as np

Lo = np.genfromtxt(’q200_4-8_gy.dat’)

f=open(’q200_4-9_gy.dat’,’r’)

out=open(’q200_scattering.dat’,’w’)

# Set the necessary scattering condition for the semi major axis in

# units of the input files

scattcon=1.5

# Iniitialize old id to an id value that does not exist

idold = 1

# Is scattering satisfied? Initially assumed to be no

cond=False

while (True):

# Read the next line from the file to be checked

line = f.readline()

# If the size of the input is smaller than some number
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# (10 is arbitrary), then the file has ended, so break the loop

if (len(line)<10):

break

# This takes the input string, removes all blank space and stores

# the rest as a list of strings

Lt =line.rsplit()

# The id needs to be parsed as an int, and a (semi-major axis) as

# a float

id = int(Lt[0])

a = float(Lt[2])

# If the id is the same as the last time, perform the same action

# as before

if (id == idold):

# If id is the same, and scattering condition held for, assume

# scattering condition holds for all particles of same id

if (cond == True):

out.write(line)

# If the scattering condition doesn’t hold, don’t write anything out.

# If this is a new id, have the check between the two files

else:

# Find all lines in old time step where the id being checked exists

exists = np.where(Lo[:,0]==id)

# If it exists in any lines, do the following

if (len(exists[0])>=1):

# Set the row number to the first row where the match is found.

# Again, assumes all particles of same id have same orbit

row = exists[0][0]

# print id, Lo[row,0], abs(a-Lo[row,2])

# This is a line to check to see if the scattering condition is being followed

# If the change in a between the two time steps is greater than

# the scattering condition

if (abs(a-Lo[row,2])>scattcon):

# set condition to true

cond = True
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# write the line out to the output file

out.write(line)

else:

# if not the scattering condition is not satisfied, set

# the condition to false

cond=False

else:

# If the object cannot be found in both files set the

# scattering condition to false. Can happen if object goes

# across q=200 threshold

cond=False

# set idold to current id

idold=id
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