
Essays on Sequence Optimization in
Block Cave Mining and Inventory
Policies with Two Delivery Sizes

by

Anita Frances Parkinson

B.Sc.Eng., Queen’s University, 1991
M.S.C.E.P., Massachusetts Institute of Technology, 1994

M.Sc.B.A., The University of British Columbia, 2002

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

The Faculty of Graduate Studies

(Business Administration)

The University Of British Columbia

August, 2012

c© Anita Frances Parkinson 2012

Abstract

Chapter 1 is an introductory chapter for this thesis work. It sets the scene
by describing the motivation and industrial setting for each project.

In Chapter 2, “Optimal Inventory Replenishment with Two Delivery
Sizes”, we consider a periodic review inventory system where a retailer can
order in multiples of a fixed quantityQ1, or multiples ofQ2 = 2Q1, where the
per unit material cost is less for ordering Q2. We extend results of Veinott,
and of Fangruo Chen, to show that an optimal replenishment policy has a
reorder point R, as well as a second parameter controlling when the last
order should be for Q1 instead of Q2 under a linear cost structure.

In Chapter 3, “Sequence Optimization in Block Cave Mining” we in-
vestigate the use of integer programming models to aid the practitioner in
the early planning stages of a Block Cave Mine. Given the footprint of the
ore body divided into draw points or grid squares, sequence optimization
determines which draw points to open in which period to meet the physical
constraints of the mining process and maximize the total net present value
of the mine. Traditionally done by trial and error by experts in the field, this
is a first attempt to use modelling techniques to automate and optimize the
process. We develop three integer programming models and discuss the chal-
lenges of formulating the problem in this framework. Two additional models
are developed for comparison, one using the Column Generation technique
and one using a greedy or myopic algorithm. All models are run on two data
sets provided by our industrial partner, and the performance and results are
compared. This work demonstrates that integer programming models can
generate opening sequences but, like many “real life” problems, this one is
complicated.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vii

Acknowledgements . x

Dedication . xi

1 Introduction . 1

2 Optimal Inventory Replenishment with Two Delivery Sizes 5
2.1 Introduction . 5

2.1.1 The Model and Overview of Results 6
2.2 Analytical Tools in the One Delivery Size Setting 8

2.2.1 Markov Decision Process 8
2.2.2 Finding the Optimal Average Cost Policy 9
2.2.3 Previous Work . 13

2.3 Extensions to Two Delivery Sizes 14
2.3.1 Formal Model . 14
2.3.2 Intuitive Starting Point 15
2.3.3 Structure of Optimal Policy 16
2.3.4 Stationary Distribution of a Two Delivery Size Policy 17
2.3.5 Counterexamples to Optimality of Alpha-Policy . . . 22
2.3.6 An Algorithm for Computing Exact Solutions 31
2.3.7 Upper and Lower Bounds 36

2.4 Numerical Study . 37
2.5 Further Extensions . 42
2.6 Conclusions . 42

iii

Table of Contents

2.7 Acknowledgments . 43

3 Sequence Optimization in Block Cave Mining 45
3.1 Introduction . 45

3.1.1 Current Practice . 47
3.1.2 Tunnel Details . 47
3.1.3 Cave Shape . 52
3.1.4 Other Considerations 54
3.1.5 Assumptions . 54
3.1.6 Previous work . 54

3.2 Model Framework . 56
3.2.1 Data . 56
3.2.2 Decision Variables . 56
3.2.3 Objective . 57
3.2.4 Constraints . 57
3.2.5 Unconstrained Sequence Optimization as a Draw Point

Scheduling Model . 58
3.3 Single Tunnel . 64

3.3.1 Alternating Constraints Formulation 65
3.3.2 Extended Formulation 68
3.3.3 Computational Results 75

3.4 Multiple Tunnels . 76
3.4.1 Introduction/Overview 76
3.4.2 Computation and Data Sets 76
3.4.3 Adapting Single Tunnel Formulations 78
3.4.4 Malkin and Wolsey’s 2D Integral Formulation 84
3.4.5 Formulations Based on 4 Vertices 107
3.4.6 Column Generation 115
3.4.7 Greedy/Myopic Algorithm 124

3.5 Application of Models to Test Data Sets 126
3.5.1 Data Sets . 126
3.5.2 Models . 135
3.5.3 Results . 139
3.5.4 Conclusions . 179

3.6 Conclusions . 179

References . 186

iv

List of Tables

2.1 Possible Transitions from After-Ordering Inventory Position
R+ k . 11

2.2 Transition Probability Matrix for Only Ordering Large De-
livery Sizes . 19

2.3 Transition Probability Matrix for Ordering a Small Delivery
Size at Only One Inventory Position 21

2.4 Candidates for Optimal Policy: Counterexample 1 25
2.5 Alpha Policy Candidates: Counterexample 1 25
2.6 Stationary Distribution and Average Cost of Candidate Poli-

cies: Counterexample 1 . 26
2.7 Candidate Policies: Counterexample 2 29
2.8 Stationary Distribution and Average Costs: Counterexample

2 . 29
2.9 Runs with Uniform Distribution 39
2.10 Runs with Normal Distribution 40
2.11 Details of Policy Iteration . 41
2.12 Runs with Two delivery sizes, Q2 6= 2Q1 44

3.1 Table of Single Tunnel Comparison of Alternating Constraints
Formulation and Extended Formulation 75

3.2 Size of Data Sets Provided for Model Development 78
3.3 Table of Running Times of Malkin Model from Data Sets P2

and P4 . 95
3.4 Partial Table of Running Times for Data Set P2 96
3.5 Comparison of Results of Wandering Axes Variation 103
3.6 Available Data for Data Set RT1 128
3.7 Maximum Active Draw Points for Data Set RT1 129
3.8 Available Data for Data Set RT2 132
3.9 Maximum Active Draw Points for Data Set RT2 134
3.10 Number of Variables and Each Type of Constraints for Basic

Model Runs on Data Set RT1 and RT2 136

v

List of Tables

3.11 Number of Variables and Each Type of Constraints for Malkin
Model Runs on Data Set RT1 and RT2 137

3.12 Number of Variables and Each Type of Constraints for 2Cone
Model Runs on Data Set RT1 and RT2 138

3.13 Results for Data Set RT1 . 139
3.14 Cave Development Results for Data Set RT1 140
3.15 Solution Times: . 140
3.16 Results of Sensitivity Runs: 161
3.17 Cave Sizes in Sensitivity Runs: 161
3.18 Results for Data Set RT2: 168
3.19 Cave Development Results for Data Set RT2: 170
3.20 Results from Selected Runs of Malkin Model on RT2 173
3.21 Integer Programming Formulation Comparison 180

vi

List of Figures

2.1 Two Examples of Set of Q Integer Minimizers of G(·) for
Q = 6 . 12

2.2 Graphical Representation of Optimal Policy: Counterexam-
ple 1 . 27

2.3 Graphical Representation of Optimal Policy: Counterexam-
ple 2 . 30

3.1 A Cross Section of the Underground Workings at the Du-
toitspan Mine . 46

3.2 Cross Section Picture of Block Cave Mine 48
3.3 Plan of Extraction Level of Block Cave Mining Operation . . 49
3.4 Steps in Undercut Development. Adapted from Resolution

Copper Mining (2009) . 50
3.5 Example of Conventional Undercut Layout Showing Blasting

Pattern. Barber (2000) . 50
3.6 Three Examples of Single Tunnel Opening Sequences 51
3.7 Plan of Undercut Level of Block Cave Mining Operation . . . 52
3.8 Typical Diamond Pattern of Opened Draw Points 53
3.9 Network Representation of Single Tunnel in One Period . . . 70
3.10 Simple Network . 71
3.11 Footprints of Data Sets Provided for Model Development . . 77
3.12 Example of Tunnel Numbering 79
3.13 Opening Patterns from Data Set P1 using Extended Formu-

lation Within-Tunnels and Across-Tunnels 82
3.14 Opening Patterns from Data Set P2 using Extended Formu-

lation Within-Tunnels and Across-Tunnels 83
3.15 Example of Centre Point 4,21 86
3.16 Example of Centre Point 4,21 and Direction of the Column

Connected Constraint((3.24)-(3.25)) 88
3.17 Example of Centre Point 4,21 and Direction of the Row Con-

nected Constraint((3.26)-(3.29)) 89

vii

List of Figures

3.18 Example of Centre Point 4,21 and Arrows for All Constraints 90
3.19 Data Set P2, Period 1 Opening 94
3.20 Data Set P4, Centre Point (14,65) 97
3.21 Horizontal Axis Bent Around Hole in Footprint, Centre Point

(14,65) . 98
3.22 Histogram of Total NPV . 99
3.23 Surface Plot of Total NPV for Data Set P2 100
3.24 Projections of the Surface Plots for Draw Point Values of wi

pi
,

wi
exp(−λpi) and Total NPV for Data Set P2 101

3.25 Table of Neighbour Values for Data Set P2 103
3.26 Results from the Wandering Axes Model Variation on Data

Set P2 . 104
3.27 Results from the Malkin Model Centered at Tunnel 6, Draw

Point 12 . 105
3.28 Same Figures Side by Side . 105
3.29 Example of Diamonds with Vertices Having Only One Open

Neighbour . 107
3.30 Example of Diamond with a (Top) Vertex Having Two Open

Neighbours . 109
3.31 Three Examples of Pairs of Cones and Their Intersections . . 110
3.32 An Example of the Extended Footprint for the 2Cone Model 112
3.33 Data Set RT1 . 127
3.34 Histogram of Draw Point Durations at 120 tons/day for Data

Set RT1 . 129
3.35 Distribution of Draw Point Values over the Mining Footprint

for Data Set RT1 . 130
3.36 Data Set RT2 . 131
3.37 Histogram of Durations for Data Set RT2 133
3.38 Results of Basic Model on Data Set RT1 - Period 1 141
3.39 Results of Basic Model on Data Set RT1 - Period 2 142
3.40 Results of Basic Model on Data Set RT1 - Period 3 142
3.41 Results of Basic Model on Data Set RT1 - Period 4 143
3.42 Results of Basic Model on Data Set RT1 - Period 10 143
3.43 Best Results of Malkin Model for Data Set RT1 - Period 1 . . 144
3.44 Best Results of Malkin Model for Data Set RT1 - Period 2 . . 145
3.45 Best Results of Malkin Model for Data Set RT1 - Period 3 . . 145
3.46 Best Results of Malkin Model for Data Set RT1 - Period 4 . . 146
3.47 Best Results of Malkin Model for Data Set RT1 - Period 10 . 146
3.48 Results of 2Cone Model for Data Set RT1 - Period 1 147
3.49 Results of 2Cone Model for Data Set RT1 - Period 2 148

viii

List of Figures

3.50 Results of 2Cone Model for Data Set RT1 - Period 3 148
3.51 Results of 2Cone Model for Data Set RT1 - Period 4 149
3.52 Results of 2Cone Model for Data Set RT1 - Period 10 149
3.53 Results of ColGen Model for Data Set RT1 - Period 1 150
3.54 Results of ColGen Model for Data Set RT1 - Period 2 151
3.55 Results of ColGen Model for Data Set RT1 - Period 3 151
3.56 Results of ColGen Model for Data Set RT1 - Period 4 152
3.57 Results of ColGen Model for Data Set RT1 - Period 10 152
3.58 Results of Greedy Model for Data Set RT1 - Period 1 153
3.59 Results of Greedy Model for Data Set RT1 - Period 2 154
3.60 Results of Greedy Model for Data Set RT1 - Period 3 154
3.61 Results of Greedy Model for Data Set RT1 - Period 4 155
3.62 Results of Greedy Model for Data Set RT1 - Period 10 155
3.63 Opening Patterns for First Two Periods for Basic Model . . . 156
3.64 Opening Patterns for First Two Periods for Malkin Model . . 157
3.65 Opening Patterns for First Two Periods for 2Cone Model . . 157
3.66 Opening Patterns for First Two Periods for ColGen Model . . 158
3.67 Opening Patterns for First Two Periods for Greedy Model . . 158
3.68 Published Sequence Optimization for Sample Data Set 160
3.69 Results of 2Cone Model Starting at Tunnel 5 162
3.70 Results of 2Cone Model Starting on Edge Tunnel 162
3.71 Results of 2Cone Model Starting on Any Edge 163
3.72 Results of 2Cone Model Minimized 163
3.73 Results of Minimum Malkin 164
3.74 Overlay of Published Results and First 3 periods of Generated

Results . 165
3.75 Results of 2Cone Model Starting at Centre 167
3.76 Results from Basic Model on Data Set RT2 172
3.77 Results from Malkin Model (29,80) for Data Set RT2 175
3.78 Results from Malkin Model (39,50) 176
3.79 Results from Greedy Algorithm on Data Set RT2 178

ix

Acknowledgements

Thank you to my thesis advisors Tom McCormick and Maurice Queyranne
who guided and stuck with me through all the ups, downs and gaps in my
thesis process. A big thank you to Tony Diering of Gemcom who was willing
to take on this project with me and taught me all I know about block cave
mining. Thanks also to Brian Graham, who taught me many, many things
and kept me smiling. As is often said, it is not the arrival that is important,
but how you get there.

x

Dedication

This thesis is dedicated to all my fellow students who have struggled with
the Ph.D. experience, and to all the family, friends and humourists who help
us through it.
If you read this let me know firstname.lastname at gmail

“I see my light come shining

From the west unto the east

Any day now, any day now

I shall be released”

Bob Dylan

xi

Chapter 1

Introduction

This thesis contains two chapters of work that are essentially unrelated
to each other. In choosing to work on both of them I was motivated by
real industrial problems. In a previous life, I worked as a chemical engineer,
the perfect blend of theory in the office, and actual implementation in the
chemical plant. There is nothing like staring at a three storey tall evapo-
rator to realize that getting the temperature value that is essential for the
computer model, will be problematic. Theory and models ARE great, but
the art is making it work, or extracting the understanding that you can use
to make it work. When I returned to school to study Operations Research
I chose a master’s program that was focused on an industrial project. With
this background, it is not surprising that I sought out problems with an
industrial basis for this thesis.

Behind the inventory policy work (Chapter 2 Optimal Inventory Re-
plenishment with Two Delivery Sizes), is a shipping problem. A company
produces a product in the southern hemisphere and transports it by using a
fleet of tanker ships to customers in Europe and North America; how should
they schedule their tankers to meet expected demand? The classic Economic
Order Quantity (EOQ) model sets a target inventory position and prescribes
ordering (or delivering) enough to meet that target in each period. The tar-
get trades off between inventory holding costs and fixed delivery charges.
Unless demand is constant, this results in different order quantities in each
time period. In the setting of a fleet of tanker ships, the size of the available
ships may not match the desired order quantity. Also, it would be expected
that the delivery costs would vary with the size of the ship, typically showing
economies of scale. The chapter investigates an ordering policy for a very
simple fleet — one with an unlimited number of ships of two sizes, one twice
the size of the other.

The second project (Chapter 3 Sequence Optimization in Block Cave
Mining) addresses a problem from the mining industry; given that you are
going to mine a given ore body, where do you start and what direction do
you proceed? The current practice is a trial and error process where options
are generated using expert knowledge and evaluated by a set of criteria.

1

Chapter 1. Introduction

This is a classic opportunity where the tools of operations research can be
applied to try to capture some of the experience and art of decision making
and proved to be an inviting project.

The planning of open pit mines has long been aided by integer program-
ming models, but these models do not apply to block cave mines. In block
cave mining, the ore body is approached from underneath. Blasting is done
to start the break up of the rock in a given area called a draw point. When
the blasted rock is removed, a cave is created. Over time the rock continues
to break off from the top of the cave and is removed for processing. Sequence
optimization plans where to do the initial blasting in each period to create
a single cave that matches processing capabilities, and maximizes the total
Net Present Value of the mine. By assuming a fixed removal rate from each
draw point, the three dimensional ore body is reduced to a two dimensional
mining footprint.

In this work we develop three integer programming models. The main
challenge that emerges is the constraint that the open draw points form a
single contiguous cave. This proved difficult in the integer programming
framework, though two of the models were able to meet it. In addition, the
column generation technique is used to move the problem of feasible cave
generation out of the integer programming framework.

All of the models share three basic constraints. Two are straightforward
to frame in the integer programming framework. The Start Once constraint
ensures that each draw point is opened once and only once, and the Global
Capacity constraint ensures the number of active draw points does not ex-
ceed the downstream processing capacity. The third constraint, that the
opened draw points must form a single, contiguous group, or cave, is the
source of the model variations.

In the first model, the Basic model, contiguity is enforced along a two
dimensional grid. Two formulations to achieve this are discussed and one
is selected for the model. Unfortunately, two dimensions are not sufficient
to guarantee a single cave, as is shown on the sample data. This model
does prove useful on our sample data as it provides an upper bound on the
Total Net Present Value of the mine. The model runs to completion in a
reasonable time period on all the sample data sets.

The Malkin model comes from Malkin and Wolsey, whose contributions
are much appreciated. Their model also incorporates the preference of plan-
ning experts for caves with a diamond shape, which is based on the rock
dynamics. A centre point is chosen, which establishes two perpendicular
axes in a two dimensional grid. Contiguity is achieved by only allowing a
draw point to open if those draw points between it and each axis are open.

2

Chapter 1. Introduction

This model runs well on all sample data sets, producing the single, contigu-
ous cave in each period as desired. The challenge comes in choosing the
centre point. For the smaller sample data set it is feasible to have a run
with each draw point as the centre point. This is not feasible for the larger
sample data set.

Achieving a diamond shape cave is also the driving force behind the
2Cone model in which a cave is defined by the intersection of two cone or
triangle shaped groups of draw points. Each cone is defined by a vertex,
and grows by two draw points on each subsequent row of a two-dimensional
grid. The location of each vertex is a decision variable so is chosen by the
model to maximize the Total Net Present Value of the mine. This model
does not complete on all the sample data sets, but when it does, it produces
a single contiguous cave in each period.

The difficulties in achieving a single, contiguous cave in each period
within the integer programming framework gave rise to the use of the Col-
umn Generation technique to create the ColGen model. Briefly, this tech-
nique iterates between generating a set of feasible caves for each period
and using integer programming techniques to select a cave in each period
that maximizes the objective and meets the constraints. The appeal of this
technique is that the feasible caves can be generated outside of the inte-
ger programming framework. Unfortunately, the technique fails to generate
valuable opening sequences. Additional algorithms are generated which en-
sure that each feasible cave added by the technique has caves in preceding
and following periods that overlap to form a feasible sequence. This model
did not complete on all data sets, but did produce a feasible solution on the
smaller sets.

In this chapter we compare the performance of the models on two data
sets. All models perform well on the smaller data set of 236 draw points.
The Basic model returns a sequence with the highest value, though two caves
are generated in the early periods. The Malkin model returns a value that is
98% of the Basic, and the 2Cone and ColGen models come in at 95% of the
the Basic model value. On this data set, the Basic model completes in under
10 seconds while the others take over an hour. We suggest that this speed
shows a usefulness of the Basic model in setting an upper bound on the
value, and indicating high value draw points for initial periods. The second
data set is much larger at 6510 draw points. On this data set, the ColGen
and 2Cone models failed to complete in under a week. After 19 hours the
Basic model returned a sequence which again had multiple caves in the early
periods. It was not feasible to run the Malkin model on all draw points, but
the highest valued of those selected reached 98.8% of the Basic model value.

3

Chapter 1. Introduction

The selection of individual Malkin models runs varied from 1 to 9 hours to
complete. While these running times may seem prohibitively long to many
researchers, in the workplace it may be feasible to run a model over night,
or over a weekend if a single run produces useful results. Again, we suggest
that the Basic model is useful in producing an upper bound against which
the selection of Malkin runs can be evaluated.

4

Chapter 2

Optimal Inventory
Replenishment with Two
Delivery Sizes

2.1 Introduction

Consider a retailer facing uncertain demand who periodically replenishes her
stock from a manufacturer (or distributor, or . . .). Classic models assume
that the quantity ordered can be any number of units. For simple version of
such models, often one can find replenishment policies that are optimal, in
the sense of minimizing long-run average cost. In the absence of fixed costs
for ordering, such policies are often of the form of having an order “up to
level”, or reorder point, R. This means that if the retailer observes that her
stock is below R at an ordering epoch, she orders up to R; otherwise, she
orders nothing.

In reality, the order size is often limited to, e.g., multiples of a full
truckload. Suppose that a full truckload is Q units, so that all orders must
be integral multiples of Q. In this case, Veinott (1965) showed that, for
an appropriate R, a variant of an order up to level policy is optimal: In
each period, the retailer should order the smallest multiple of Q necessary
to bring her inventory position to at least R. Later, Chen (2000) extended
this result to a multi-echelon setting. In these cases the per-unit cost of
items is always the same, so material cost can be ignored.

But in many practical situations, there is a variety of order sizes possible.
For example, there could be both large and small trucks. In a consulting
project we did with a bulk chemical supplier, there were several different
sizes of ocean tankers available for shipping their product. This naturally
raises the question of what optimal ordering policies would be in such cases.

This paper considers a stylized version of such a problem. We assume
that there are two delivery sizes available, Q1 (small truck), and Q2 (big

5

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

truck), with Q2 = 2Q1. We defend this simple model by pointing out that
even this simplest generalization turns out to be quite hard to solve. Denote
the per-unit cost of one item on a big truck as c2, and on a small truck as
c1, so that the total cost of ordering a big truckload is c2Q2. We make
the reasonable assumption that c2 ≤ c1, due to quantity discounts and/or
economies of scale in transportation. This implies that our material ordering
cost is no longer independent of our replenishment policy, since it depends
on the mix of Q2 and Q1 that we order.

Since it is cheaper on a per-unit basis to order big truckloads, it will
never pay to order more than one small truckload. This means that if we
order a small truckload, we effectively pay a penalty of (c1 − c2)Q1 for that
delivery. Note that if c1 < c2 there is never any reason to order the large
delivery size and this becomes Chen and Veinotts’s setting.

It is natural to conjecture that some more elaborate version of a reorder-
point policy will be optimal here. Thus there should be some value R such
that the retailer should order enough Q2’s to bring her inventory just below
R, and then choose whether her last order should be a Q2 or a Q1. This
leads to the basic tradeoff in this model: If the last order is a Q2, then we
save on material cost, but at the expense of having a larger inventory, and
hence larger holding costs. On the other hand, if the last order is a Q1,
then we pay more for the material, but pay lower holding costs as a result
of having less inventory.

Our analysis extends that of Chen (2000).

2.1.1 The Model and Overview of Results

We assume that our retailer operates a single location using periodic review.
Demand during each period is an integer number of units, and follows the
stationary distribution function f . Demands in different periods are inde-
pendent and identically distributed. If demand during a period is greater
than inventory, then we backlog the unserved demand (at a cost).

At the beginning of the period, the retailer assesses her inventory position
and places an order. For simplicity we assume zero lead time, and so the
order arrives instantly. Over the period demand is realized and at the end
of the period, one-period holding or backorder costs, independent of unit
purchase costs, are assessed. We assume that the selling price of the good is
fixed, and does not vary with demand. As a result of this assumption, price
does not enter the model as all demand is met, and price does not affect
demand.

The retailer can order any quantity of the form aQ2 + bQ1, where a is

6

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

a non-negative integer and where we can assess, without loss of generality
(see Section 2.1), that b is zero or one.

We assume an infinite horizon and define an “optimal” policy as one
that minimizes long-run average costs.

We follow Chen in deriving our results for general cost functions, assum-
ing only some convexity properties of the one-period expected cost. As with
Chen, we will be able to show that, e.g., linear holding and backorder costs
lead to cost functions satisfying these properties.

Let’s make an intuitive argument for what an optimal policy should look
like. It certainly should have a reorder point R. As already mentioned, the
retailer should order enough Q2’s to bring her inventory position into the
interval (R − Q2, R], and then decide on her last order. If the all but last
order brings inventory into (R − Q2, R − Q1], then the last order must be
for a large truck to bring the inventory above R. Otherwise inventory is
(temporarily) in (R − Q1, R] and the last order can be either Q1 or Q2. If
we define oi as the amount to order from inventory position i, then a policy
can be described as [oR−Q1+1, oR−Q1+2, . . . , oR] with each oi = Q1 or Q2.

Let G(y) denote the expected one period cost given the inventory po-
sition is y after ordering. Inventory position is the sum of items on hand
plus items on order. Chen proves that with one delivery size Q available
and reorder point R, the stationary distribution of the Markov chain on
inventory position is uniform on (R,R+Q] and hence the long-run average
cost is 1

Q

∑R+Q
y=R+1G(y).

In our case the stationary distribution of inventory position under a two
delivery size policy can be more complicated (see Section 2.3.4), so we must
analyze the problem differently than Chen. We first describe the single
delivery size case as a Markov Decision Process and show that the optimal
policy has a set of recurrent or target states containing the Q smallest integer
minimizers of G(y).

Next we use similar techniques to show that the set of recurrent states
for the two delivery size policy will include the integer minimizer of G(y),
plus the minimizer’s Q1 neighbours which are the next ordered integer min-
imizers. The set of recurrent states may also include the next Q1 integer
minimizers of G(y).

We further provide some guidance on how R and the optimal policy
can be computed in practice. Two approximations are provided as well as
an algorithm for finding the optimal policy based on the Markov Decision
process technique of Policy Iteration. It turns out, in the examples run, that
the reorder points associated with the policies of always ordering just Q2’s,
or always ordering just Q1’s, provide quite good starting approximations for

7

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

our optimal R.

2.2 Analytical Tools in the One Delivery Size
Setting

2.2.1 Markov Decision Process

We will begin the analysis by reviewing the standard model of Veinott (1965)
and the work of Chen (2000) to set the stage for our work. We will consider
the setting as a periodic review inventory model at a single location. At
the beginning of the period, inventory position s is observed and an order is
placed, bringing the inventory position to y. To fix ideas, let us consider the
simple case of one delivery size Q available for ordering. Demand in each
period D, is assumed to be independent and identically distributed taking
only integer values. Unmet demand in any period is backlogged. At the
end of the period a holding charge is assessed on any excess inventory which
is then held to the next period, and a penalty is paid for any backlogged
demand. Let G(y) be the expected one period holding and backorder cost
given that the inventory position immediately after ordering is y. Since all
delivery sizes have the same cost, and unmet demand is backlogged, item
purchasing costs can be ignored. The optimal policy will minimize the long
run average cost under an infinite time horizon. In Chen’s work, he can
prove that G(y) is quasiconvex in y, but we assume that it is to make our
analysis work. See Newman (1987) for a definition of a quasiconvex function.

Recognizing that inventory position is a Markov chain we follow Puter-
man’s (1994) Markov decision process formulation by identifying the follow-
ing:

Decision Epochs The beginning of the period when the ordering decision
must be made

States The inventory position at the time the ordering decision is made.
Define the set of inventory positions at the time the ordering decision
is made by S, with lower bound s and upper bound s, S = {s, s +
1, . . . ,−1, 0, 1, . . . , s − 1, s}. Under reasonable demand distribution,
i.e., one that is bounded below by zero, and above by some finite
value, and a reasonable ordering policy, i.e., one that keeps inventory
position bounded, the inventory position at the beginning of the period
belongs to a finite set.

8

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Actions Order some integer multiple a of delivery size Q. Define the set
of actions for a given state s (the inventory position at the time of
ordering), As, as As = {0, 1, 2, . . . , a}. Following the assumptions that
lead to a bounded state space, we assume there is an upper limit, a,
to the size of the order placed.

Expected Rewards At the end of the period, after demand has been re-
alized, holding and backorder costs are assessed. Define the cost for
action a taken from inventory position s as r(s, a) = G(s+ aQ)

Transition Probabilities Once the order has been made, the transition
probabilities depend on the demand distribution. Denote the proba-
bility of demand equal to d as P{D = d} and define the transition
probability to inventory position j (before the next order is made),
after taking action a from inventory position s as

p(j|s, a) =

{
P{D = s+ aQ− j}, j ≤ s+ aQ;
0, j > s+ aQ.

2.2.2 Finding the Optimal Average Cost Policy

We seek an ordering policy π∗, consisting of actions as, one for each s ∈
S, which minimizes the long run average cost. For a model such as ours
with stationary and bounded rewards, stationary transition probabilities
and finite, discrete state space S, the resulting infinite-horizon Markov chain
{Yt : t = 1, 2, . . .}, has average reward or gain of a policy π given as

gπ(y) = lim
N→∞

1

N
Eπy {

N∑
t=1

r(Yt)}

The policy’s transition probability matrix Pπ = Pπ(s, j) = (p(j|s, as))
has a limiting matrix P ∗π . Denote the stationary distribution as q, the so-
lution to the system of equations qT = qTPπ subject to

∑
j∈S q(s) = 1. It

is easy to show that P ∗π = eqT Puterman (1994) where e is the unit vector.
Under the restrictions of our model, the average reward converges to

gπ(s) = P ∗πr(s).

The average cost in this form can be described as a weighted average
of the expected costs of the states that are reached. The weights are the
long run probability of spending a period in the state. Clearly, the average

9

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

cost is minimized under a policy that orders to the inventory positions that
minimize G(y), the expected one period costs.

Let y∗ be an integer that minimizes G(y). When G(y) is quasiconvex,
then the optimal policy is to order to y∗ in each period. If Q = 1 this would
be possible from all s ∈ S, and results in the class of order-up-to policies.
For Q > 1 it is not always possible to reach y∗. From an inventory position
s < y∗, if it is not possible to reach y∗ by ordering multiples of Q, i.e.,
(y∗ − s) mod Q 6= 0, then cost is minimized by ordering to arg min{G(s +
by
∗−s
Q cQ), G(s+ dy

∗−s
Q eQ)}. That is, ordering either to the closest position

above or below y∗, whichever has a lower expected one period cost. From
inventory s ≥ y∗, no orders should be placed. Thus, from any inventory
position s < y∗ ordering enough deliveries to reach y ∈ (y∗ − Q, y∗], then
for each inventory position y ∈ [y∗ −Q, y∗), ordering an additional delivery
size if G(y +Q) < G(y), is the optimal policy.

For ease of future notation, let y1 = y∗ be the integer that minimizes
G(y) . Similarly, let y2 be the ‘second’ integer minimizer of G(y), i.e.,
y2 ∈ Z, G(y1) ≤ G(y2) ≤ G(y) ∀ y ∈ Z, y 6= y1. Since G(y) is quasiconvex,
y2 = y1 − 1 or y2 = y1 + 1, i.e., y2 is a neighbour of y1

Definition: Let y1, y2, . . . , yQ be such that G(y1) ≤ G(y2) ≤ . . . ≤
G(yQ) ≤ G(y) ∀y ∈ Z 6= yi i = 1, . . . , Q. Define MG,Q ≡ {yi}, i = 1, . . . , Q,
the ordered set of Q integer minimizers of G(y). If G(y) is quasiconvex then
yi = maxj<i{yj}+ 1 or yi = minj<i{yj} − 1

If G(y) is quasiconvex then the optimal policy is to order into the band
of target inventory positions (R,R + Q] containing MG,Q, the Q integer
minimizers of G(y). The bottom of the band is R = minMG,Q

−1.
Under our optimal policy structure, the inventory position after ordering,

y, forms a Markov chain {Yt : t = 1, 2, . . .} over a finite set of inventory
positions Y . As shown in the previous paragraph, Y contains Q inventory
positions which form a contiguous band. In order to evaluate the average
cost, we need the transition probability matrix Pπ. As before, the reward
function r(y) = G(y).

The elements of the transition probability matrix pij are the probabilities
of moving from Yt = i to Yt+1 = j under the policy π, and are solely a
function of the demand faced between orders. Before constructing Pπ for
our optimal policy structure we illustrate the possible transitions that can
be made from target after-ordering inventory position R + k for integer
k, 1 ≤ k ≤ Q. Each line of Table 2.1 below shows the demand faced, the
inventory position (IP) after the specified demand has be realized, the order
placed to return to the set of target states Y , and the end state that is
reached.

10

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Starting State Demand IP after demand Order End State
R+ k 0 R+ k 0 R+ k

1 R+ k − 1 0 R+ k − 1
...

...
...

...
k − 1 R+ 1 0 R+ 1
k R Q R+Q

k + 1 R− 1 Q R+Q− 1
...

...
...

...
Q− 1 R+ k −Q+ 1 Q R+ k + 1
Q R+ k −Q Q R+ k

Q+ 1 R+ k −Q− 1 Q R+ k − 1
...

...
...

...
Q+ k − 1 R−Q+ 1 Q R+ 1
Q+ k R−Q 2Q R+Q

Q+ k + 1 R−Q− 1 2Q R+Q− 1
...

...
...

...

Table 2.1: Possible Transitions from After-Ordering Inventory Position R+k

From this it is easy to construct the probability transition matrix

Pπ =

To State→ R + 1 . . . R +Q− 1 R +Q
From State

↓

R + 1

∞∑
j=0

P{D = jQ} . . .

∞∑
j=0

P{D = jQ + 2}
∞∑
j=0

P{D = jQ + 1}

.

.

.

R +Q− 1
∞∑
j=0

P{D = jQ +Q− 2} . . .
∞∑
j=0

P{D = jQ}
∞∑
j=0

P{D = jQ + 2}

R +Q

∞∑
j=0

P{D = jQ +Q− 1} . . .
∞∑
j=0

P{D = jQ + 1}
∞∑
j=0

P{D = jQ}

Inspection reveals that each row of the probability matrix has the same
entries as the row above, with the values each shifted one column to the
right. In addition to Pπ being stochastic, the columns of Pπ sum to one. As
a result of this symmetry, the solution to qT = qTPπ is

q(R+Q) = q(R+Q− 1) = . . . = q(R+ 1) =
1

Q

11

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

and the long run average cost is

1

Q

Q∑
i=1

G(R+ 1 + i)

as shown by Chen (2000).
Again, we note that if G(·) is quasiconvex, the long run average cost

g = 1
Q

∑Q
i=1G(R + 1 + i) is minimized by MG,Q. The sequential order of

the integer minimizers will vary with G(·), but the quasiconvexity of G(·)
ensures that they form a contiguous band of inventory positions as shown
in Figure 2.1.

Figure 2.1: Two Examples of Set of Q Integer Minimizers of G(·) for Q = 6

These figures also illustrate that for Q = i, Q′ = j with i < j the target
inventory positions for the setting in which multiples of delivery size Q are
ordered are a subset of the target inventory positions for the setting in which
multiples of delivery size Q′ are ordered. This is because MG,Q ⊂MG,Q′ .

In this section we have shown that the optimal policy under delivery
size ordering of size Q is to order into the band (R,R + Q], commonly
known as the (R,nQ) policy. The long run average cost of this policy is
1
Q

∑Q
i=1G(R + 1 + i). This result is a replication of the earlier work of

Veinott and Chen which is described below. We also demonstrated that the
band (R,R + Q] contains the set of Q integer minimizers of G(x), the one
period holding and backorder costs.

12

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

2.2.3 Previous Work

Two approaches to this single delivery size problem have been presented in
the literature. In 1965 Veinott showed the optimality of the (R,nQ) policy,
which he called a (k,Q) policy, for the n-period and infinite period models.
In his setting, at the beginning of a period inventory is reviewed and an
order, consisting of integer multiples of delivery size Q, placed which will be
delivered λ periods later. Over the period previous orders are delivered and
new demand arrives. At the end of the period holding and penalty costs are
assessed on the inventory on hand. Ordering costs of unit cost c per item, are
assessed when the order is made, but are discounted to the end of the period
with one period discount factor α, 0 ≤ α ≤ 1. Under the (k,Q) policy, if the
inventory position at the beginning of the period is less than k, order the
smallest integral multiple of Q that will bring the inventory position to at
least k, otherwise, do not order. Given the inventory position after ordering
is y the cost function is the sum of the ordering cost, and L(y), the expected
future holding and penalty costs. G(y) = (1−α)cy+L(y). G(y) is assumed
to be unimodal and minimized at y. The policy is optimal if it minimizes
the expected discounted cost. The minimizer k is chosen from all values l
such that l ≤ y ≤ l +Q.

The policy is first proved optimal for the n-period model by compar-
ing the period-by-period inventory position under the (k,Q) policy to that
under any other policy. Since unmet demand is backlogged, the difference
in inventory positions after ordering under the two policies will be an inte-
gral multiple of Q in each period. In any given period i, the after-ordering
inventory position under the (k,Q) policy, y′i, will satisfy k ≤ y′i ≤ k + Q
and the after-ordering inventory position under the alternate policy yi will
satisfy either yi = y′i or |yi − y′i| ≥ Q. In both cases G(yi) ≥ G(y′i). Under
the (k,Q) policy, y′i ≥ k + Q can only occur if y′1 ≥ k + Q and by period
i there has not been enough demand to bring y′i below k + Q. In this sit-
uation, yi ≥ y′i i = 1 . . . j where j is the first period where y′i < k + Q,
hence G(yi) ≥ G(y′i) for these periods. Since this policy minimizes G(yi)
it minimizes the expected cost in the n-period model and also the infinite
period model.

Chen looks at the infinite horizon, non-discounted problem where G(y)
is the expected cost (holding and backorder) in a period given the after-
ordering inventory position is y. Chen shows that if band [R+ 1, R+Q]
contains the integer minimizers of G(y + nQ) for any y and integer n, then
this R minimizes

∑Q
x=1G(y + x). Since the demands in each period are

independent, the after-ordering inventory position under the (R,nQ) policy

13

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

will follow a Markov chain. Under some mild conditions on the demand
distribution, the steady-state distribution of the Markov chain is uniform.
Thus the long run average single period cost is 1

Q

∑R+Q
y=R+1G(y). This result

is more general than Veinott’s as Chen assumes that
∑Q

x=1G(y+ x) is qua-
siconvex whereas Veinott assumes G(·) is quasiconvex. Also, Chen extends
to a multi-echelon setting.

2.3 Extensions to Two Delivery Sizes

In this section, the setting is extended to one where two delivery sizes are
available for ordering. We show that this complicates the policy deter-
mination over the single delivery size, illustrate a method of determining
the optimal policy and finally show computationally easy upper and lower
bounds on the long run average cost.

2.3.1 Formal Model

We start with the single delivery size model and extend it to multiple delivery
sizes. We remind the reader of the formal model in which at the beginning
of the period, inventory position s is determined and an order is placed.
Demand is realized over the period with any unmet demand backlogged
to a later period. Assume that demands in each period are independent
and identically distributed taking only integer values, and that demand is
bounded. At the end of the period a penalty is paid for any backlogged
demand and any inventory held over to the next period. Define G(y) as the
single period expected cost given the inventory position after ordering is y.

Now we extend the model to allow for orders made up from two delivery
sizes. Consider the specific case of a small delivery size Q1 and a larger
delivery size Q2 = 2Q1. Any order can consist of an integer multiple of each
delivery size. There are some economies of scale so the unit cost of the small
delivery size is higher than that of the larger delivery size. If ci is the unit
cost of delivery size Qi, then c1 > c2. In this case, it is never economical
to order more than one of the small delivery sizes and orders will be of the
form aQ2 + bQ1 for integers a ≥ 0, b = 0, 1. Since all demand is met in
the model, all reasonable policies will order the same number of items over
the long run. We can consider the material or purchase cost at the lower
unit cost c2 a sunk cost and we can account for differences in unit cost by
charging a cost of Q1(c1 − c2) for each small delivery size ordered.

14

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

These changes result in the following changes to the definition of the
Markov decision process formulation given in Section 2.2.1 above:

Actions Place an order asQ2 + bsQ1

As = {(as, bs)}, as ∈ {0, 1, 2, . . . , a}, bs ∈ {0, 1}.

Expected Rewards At the end of the period, after demand has been
realized, holding and backorder costs are assessed. r(s, (as, bs)) =
G(s+ asQ2 + bsQ1) + bsQ1(c1 − c2)

Transition Probabilities

p(j|s, (as, bs)) =

{
Prob{D = s+ asQ2 + bsQ1 − j}, j ≤ s+ asQ2 + bsQ1

0, j > s+ asQ2 + bsQ1

As for the single order quantity described in the previous section, since
the rewards (costs) are stationary and bounded and the transition proba-
bilities stationary, a stationary policy over an infinite horizon will minimize
the average cost.

2.3.2 Intuitive Starting Point

Intuitively, the two delivery size case should be structurally similar to the
single delivery size case. Consider that we start with a single delivery size
case, Q2. We know that we are trying to reach the optimal reorder point
in each period after ordering, but are often prevented from doing so by
delivery size. Now we introduce the smaller delivery size Q1 = 1

2Q2. With
this smaller delivery size we should have a better chance at reaching the
optimal reorder point, but at added cost. The smaller delivery sizes come
at a greater unit cost and so faces the incremental material cost (c1− c2)Q1.
With this in mind we hope to find a stationary policy, with a reorder point
R, and a finite band of recurrent target states. Since the starting point is
only ordering large delivery sizes, there is reasonable expectation that the
target states will be a subset of the Q2 target states in the single delivery size
case. The decision to order the small delivery size compares the additional
material cost to the savings from reaching a lower cost inventory position.
The retailer orders enough large delivery sizes to reach the band (R−Q2, R],
and then decides if a small or large delivery size should be ordered to bring
the inventory position above R. In the band (R − Q2, R − Q1] there is no
decision to be made as only the addition of a large delivery size will cross
R. This leaves the band (R−Q1, R] in which the decision between the two
delivery sizes can be made, or 2Q1 possible policies.

15

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Due to the quasiconvexity of the cost function, we conjectured in earlier
work, Parkinson (2005), that there would either be a single point in the
band (R − Q1, R] where the optimal decision would switch from the large
delivery size to the smaller, or that no small delivery sizes would be ordered.
That is, moving up in inventory position from R−Q1− 1, if it became cost
effective at inventory position α to order the smaller delivery size, it would
also be cost effective in positions α+ 1, . . . , R. If this were true, then there
would be only Q1+1 candidates for the optimal policy once R is established.
This policy was given the name the alpha-policy.

In the next section we will show that there are 2Q1 candidates for optimal
policy, but that the stationary distribution may change with each candidate
policy making the choice of when to make the tradeoff to the small delivery
size difficult. As a result, the alpha-policy argument does not hold and
all 2Q1 candidate policies must be considered. In Section 2.3.5 we show a
counterexample showing that the alpha-policy conjecture is false.

2.3.3 Structure of Optimal Policy

The analysis of the two delivery size case follows that of the single delivery
size case, but differs significantly enough to be demonstrated in detail.

Recall that we are seeking a policy that minimizes
v(s) = min(a,b)∈As{r(s, (a, b))+λ

∑
j∈S p(j|s, (a, b))v(j)}. For a given policy

π = {(as, bs)} ∈ As, let G(s + asQ2 + bsQ1) = G(s + asQ2 + bsQ1) +
λ
∑

j∈S p(j|s, (a, b))v(j) and let y∗ be an integer that minimizes G(y). We

want to minimize G̃(s+ asQ2 + bsQ1) = G(s+ asQ2 + bsQ1) + bsQ1(c1− c2)
It should be clear that if s + asQ2 + bsQ1 = y∗ and bs = 0, then

G̃(s + asQ2 + bsQ1) is minimized at y∗. Intuitively this makes sense: if it
is possible to reach the minimum cost inventory position with the cheaper,
larger delivery sizes, this should be done. Also, as with the single delivery
size model, no orders should be placed from inventory positions above y∗.

If bs is zero for all s, then G̃(s + asQ2 + bsQ1) = G(s + asQ2) and the
problem is the single delivery size case. The smaller delivery size allows
for the tradeoff of paying the incremental cost of ordering to arrive at an
inventory position with a lower one period cost. That is, the tradeoff should
be considered if G(s+asQ2+Q1) < G(s+asQ2) or G(s+(as−1)Q2+Q1) <
G(s + asQ2). In the first, the additional delivery size raises the inventory
position by Q1 and the second reduces the inventory position by Q1. This
leads us to conclude that if the Q1 integer minimizers of G(y) can be reached
by orderingQ2, no savings can be realized by considering the smaller delivery
size.

16

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Recall the definition of the Q2 integer minimizers of G(y) which would
be the target states if only the large delivery size is ordered, and divide them
in to two groups: the first Q1 indices {yi}, i = 1, . . . , Q1, and the second Q1

indices {yi}, i = Q1 + 1, . . . , Q2. We have shown that {yi}, i = 1, Q1 will
be in the target inventory positions under the optimal policy. This leaves
the possibility that the tradeoff will be worthwhile from the Q1 targets
{yi}, i = Q1 + 1, Q2.

Since G(s) contains the future expected costs, and (as we will demon-
strate) the stationary probabilities are difficult to compute, it is not simple
to evaluate this tradeoff.

We can summarize the results above as follows:

Proposition 2.1. For the setting with two available delivery sizes Q1 and
Q2 = 2Q1 with the unit costs c1 > c2, the set of recurrent states under
the optimal ordering policy will contain the set of Q1 integer minimizers of
G(y).

Proposition 2.2. For the setting with two available delivery sizes Q1 and
Q2 = 2Q1 with the unit costs c1 > c2, there are 2Q1 candidates for an
optimal policy. These policies order into some subset of the set of Q2 integer
minimizers of G(s).

We are in the position of having the structure of the optimal policy, but
it is not clear how to calculate it. For the single delivery size, calculation
was simplified by realizing that the uniform stationary distribution implies
a long run average cost that is fairly easy to compute. In the next section
we will show that this property does not hold for the two delivery size case,
making it difficult to evaluate when the small delivery size should be ordered.

2.3.4 Stationary Distribution of a Two Delivery Size Policy

Let us now look at the long run average cost of policies of the format de-
scribed above, to see if this setting provides insight into determining which
tradeoffs are necessary to arrive at the optimal policy.

As discussed in the previous section, for a given policy π that orders into
a finite band of inventory positions, the average expected reward is

gπ(s) = P ∗πr(s).

In order to track the incremental cost of ordering the smaller delivery size,
we need to differentiate when a state is reached by the small delivery size,

17

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

and so we will extend the state space to (s, b). The long run average cost
becomes

gπ(s, b) = P ∗πr(s, b)

where r(s, b) = G(s) + bQ1(c1 − c2).
If the stationary distributions of all the candidate policies happened to

be uniform, the evaluation of each of the possible tradeoffs would be the
comparison of G(s) to G(s ± Q1) + Q1(c1 − c2). Unfortunately this is not
the case.

Only under the policy that only Q2 is ordered is the stationary distribu-
tion guaranteed to be uniform. For the other 2Q1−1 policies, the stationary
distribution depends on the demand distribution.

Starting from the Q2 only policy, there are 2Q1 − 1 policy options to
consider, including ordering Q1 for any one of the yQ1+1, . . . , yQ2 targets, or
a subset of the targets. Each of these tradeoffs affects the stationary distri-
bution of the recurrent target states. The following illustrates how making
even one of the possible tradeoffs may result in a non-uniform stationary
distribution.

Let us consider the candidate policy of ordering only the large delivery
sizes. The set of target states will be the Q2 integer minimizers of G(y). Let
ym be the largest of the target states. Table 2.2 is the transition probability
matrix for this policy.

18

C
h
a
p
ter

2
.

O
p
tim

a
l
In
v
en
tory

R
ep

len
ish

m
en
t
w
ith

T
w
o
D
elivery

S
izes

P =

To State→ ym − (Q2 − 1) . . . ym − 1−Q1 . . . ym − 1 ym
From State

↓

ym − (Q2 − 1)
∞∑
j=0

P{D = jQ2} . . .

∞∑
j=1

P{D = jQ2 + 2} . . .

∞∑
j=0

P{D = jQ2 + 2}
∞∑
j=0

P{D = jQ2 + 1}

.

.

.

ym − 1−Q1

∞∑
j=0

P{D = jQ2 +Q1 − 2} . . .
∞∑
j=0

P{D = jQ2} . . .
∞∑
j=0

P{D = jQ2 = Q1}
∞∑
j=0

P{D = jQ2 +Q1 − 1}

.

.

.

ym − 1
∞∑
j=0

P{D = jQ2 +Q2 − 2} . . .

∞∑
j=0

P{D = jQ2 +Q1} . . .
∞∑
j=0

P{D = jQ2}
∞∑
j=0

P{D = jQ2 +Q2 − 1}

ym

∞∑
j=0

P{D = jQ2 +Q2 − 1} . . .
∞∑
j=0

P{D = jQ2 +Q1 + 1} . . .

∞∑
j=0

P{D = jQ2 + 1}
∞∑
j=0

P{D = jQ2}

Table 2.2: Transition Probability Matrix for Only Ordering Large Delivery Sizes

19

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Let us now assume that ym − 1 is one of the yQ1+1, . . . , yQ2 integer
minimizers of G(y) so we want to consider ordering the small delivery size
to move to the target inventory position ym − 1 − Q1 which is one of the
Q1 integer minimizers of G(y). In order to track the incremental cost of
ordering the smaller delivery size, we need to differentiate when a state is
reached by the small delivery size and we will use 〈Q1〉 to denote a target
reached by the small delivery size. Thus when ym − 1−Q1 is reached by a
small delivery size it will be referred to as state ym − 1 − Q1 〈Q1〉. With
this one change in ordering policy the probability transition matrix becomes
that shown in Table 2.3

20

C
h
a
p
ter

2
.

O
p
tim

a
l
In
v
en
tory

R
ep

len
ish

m
en
t
w
ith

T
w
o
D
elivery

S
izes

To State→ ym − (Q2 − 1) . . . ym − 1−Q1 ym − 1−Q1 〈Q1〉 . . . ym
From State

↓

ym − (Q2 − 1)

∞∑
j=0

P{D = jQ2} . . .

∞∑
j=0

P{D = jQ2 +Q2 + 2}
∞∑
j=0

P{D = jQ2 + 2} . . .
∞∑
j=0

P{D = jQ2 + 1}

.

.

.

ym − 1−Q1

∞∑
j=0

P{D = jQ2 +Q1 − 2} . . .

∞∑
j=0

P{D = jQ2}
∞∑
j=0

P{D = jQ2 +Q1} . . .
∞∑
j=0

P{D = jQ2 +Q1 − 1}

ym − 1−Q1 〈Q1〉
∞∑
j=0

P{D = jQ2 +Q1 − 2} . . .
∞∑
j=0

P{D = jQ2}
∞∑
j=0

P{D = jQ2 +Q1} . . .
∞∑
j=0

P{D = jQ2 +Q1 − 1}

.

.

.

ym

∞∑
j=0

P{D = jQ2 +Q2 − 1} . . .

∞∑
j=0

P{D = jQ2 +Q1 + 1}
∞∑
j=0

P{D = jQ2 + 1} . . .
∞∑
j=0

P{D = jQ2}

Table 2.3: Transition Probability Matrix for Ordering a Small Delivery Size at Only One Inventory Position

21

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

To summarize the changes in the transition matrix resulting from the
change in the policy

• state ym − 1 −Q1 〈Q1〉 has been added. The entries of this row will
be exactly the same as those of the row for state ym−1−Q1 since the
probability transitions are independent of how the originating state
was reached.

• the values in the column for state ym − 1 have been moved to the
column ym − 1 − Q1 〈Q1〉 since the latter is now reached instead of
the former

• the values in the column for state ym−1 have been set to zero as there
is now no way to reach this state under the revised policy.

In the new transition matrix, the probabilities in each row still sum to
one – with probability one leaving any single state will end up at one of
the other states, however, the probabilities in each column might not. More
importantly, the probabilities in each column do not sum to the same value.
The solution to qTPπ = q now depends on the demand distribution and we
do not see any general closed-form expression for stationary distributions
here. The cost for this policy is

∑Q2−1
i=0,i 6=1 q(ym − i)G(ym − i) + q(ym − 1 −

Q1 〈Q1〉)(G(ym − 1−Q1) +Q1(c1 − c2)) and the tradeoff between holding
and material costs is not transparent. Clearly, the stationary distribution
will only be uniform under very specific demand distributions.

Let us now consider the policy when the small delivery size is ordered
whenever necessary to reach the Q1 integer minimizers of G(·). In this case,
while each column of the probability transition matrix does not sum to one,
the sum of each pair of columns yi, yi 〈Q1〉 does sum to one and the result
is that for each i = 1, . . . , Q1 q(xi) + q(xi 〈Q1〉) = 1

Q1
. The long run

average cost for this policy is 1
Q1

∑Q1
i=1G(xi) +

∑Q1
i=1 q(xi 〈Q1〉)Q1(c1 − c2).

This will be used to create upper and lower bounds on the optimal cost in
Section 2.3.7.

Clearly the stationary distribution is not guaranteed to be uniform and
computation (solving q = qTP) is necessary to determine the long run av-
erage cost of each of the 2Q1 candidate policies.

2.3.5 Counterexamples to Optimality of Alpha-Policy

The previous section suggests that the optimal policy will not always be an
alpha-policy. Here we give two examples demonstrating that alpha-policies

22

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

are not always optimal. In the first we show that the selection of R can
change the appeal of the alpha-policies, and in the second we show a case
where even the selection of R does not make the alpha-policy optimal.

For the first counterexample, consider the following instance:

• Q1 = 3

• h = 25, b = 50

• c1 − c2 = 5

• demand is uniformly distributed over the integers [47, 56], U(47, 56),

i.e., P{D = x} =

{
0.1 for x = 47, 48, . . . , 56
0 otherwise

To compute the optimal policy we must identify the Q2 minimizers of
the cost function then evaluate the 2Q1 candidate policies. In this example
we use the following analysis to identify the minimizers.

The one period expected holding cost given that the inventory position
after ordering is y is a combination of the expected holding and backo-
rder costs to be paid at the end of the period after demand D is realized.
Under linear costs, a unit holding cost of h is applied to each item held,
and unit backorder cost of b is applied to each item in shortfall. Using
(y)+ = max{y, 0} and E[y] as the expected value of y, the cost function is
given by

G(y) = E[h(y −D)+ + b(D − y)+]

G(y) = (h+ b)(yP{D ≤ y} −
y∑
d=0

dP{D = d})− b(y − E[D])

In this analysis we will use the following:

G(y)−G(y − 1)

= (h+ b)(yP{D ≤ y} −
y∑
d=0

dP{D = d}) + b(E[D]− y)

− [(h+ b)((y − 1)P{D ≤ (y − 1)} −
y−1∑
d=0

dP{D = d}) + b(E[D]− (y − 1))]

= (h+ b)(yP{D ≤ y} − (y − 1)P{D ≤ (y − 1)} − yP{D = y})− b
= (h+ b)(yP{D = y}+ P{D ≤ y − 1} − yP{D = y})− b

= (h+ b)P{D ≤ y − 1} − b

23

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

If y∗ is a minimizer then G(y∗) < G(y∗ + 1) and G(y∗) < G(y∗ − 1).
Starting with the first,

G(y∗)−G(y∗ + 1) < 0

(h+ b)P{D ≤ y∗} − b > 0

P{D ≤ y∗} >
b

h+ b

And the second

G(y∗)−G(y∗ − 1) < 0

(h+ b)P{D ≤ y∗ − 1} − b < 0

P{D ≤ y∗ − 1}) <
b

h+ b

So if G(y) minimized at y∗ then

P{D ≤ y∗ − 1} < b

h+ b
< P{D ≤ y∗}

In our example, P{D ≤ 52} = 0.6, b
h+b = 0.66, and P{D ≤ 53} = .7 and

we identify 53 as the minimizer. Evaluating G(y) in the vicinity of y = 53

we see

G(50) = 120
G(51) = 100
G(52) = 87.5
G(53 = y∗) = 82.5
G(54) = 85
G(55) = 95
G(56) = 112.5
G(57) = 137.5

and establish our Q2 minimizers are [51, 56],

G(53) < G(54) < G(52) < G(55) < G(51) < G(56), and R = 50.
From the demand distribution, the entries in the probability transition

matrices are
∞∑
i=0

P{D = iQ2} = 0.2

∞∑
i=0

P{D = 1 + iQ2} = 0.2

∞∑
i=0

P{D = 2 + iQ2} = 0.2
∞∑
i=0

P{D = 3 + iQ2} = 0.1

∞∑
i=0

P{D = 4 + iQ2} = 0.1

∞∑
i=0

P{D = 5 + iQ2} = 0.2

We have 23 = 8 candidates for the optimal policy as listed in Table 2.4

24

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Target Inventory Positions
Policy 51 52 53 54 55 56 53 〈Q1〉 54〈Q1〉 52〈Q1〉

1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 1 1

Table 2.4: Candidates for Optimal Policy: Counterexample 1

Across the top are first listed the Q2 inventory positions that minimize
the cost function, followed by the Q1 inventory positions that can be reached
by ordering the smaller delivery size. In this example inventory positions
51 through 56 are the 6 minimizers, then 53, 54, 52 can also be reached
by ordering small delivery sizes. In the first policy only large delivery sizes
are ordered and all inventory positions 51 through 56 are reached. In the
second policy, the choice has been made to order a small delivery size to
reach inventory position 53 instead of reaching 54 with the large delivery
size. The remaining policies enumerate the combination of choices for small
delivery size.

Note that the alpha-policies allow a switch from the large delivery size
to the small delivery size at or below inventory position R, in the band
(R−Q1, R]. In this case, only two of the Q1 = 3 minimizers can be reached
by ordering a small delivery size from at or below inventory position R = 50.
The alpha-policies are the subset of the candidates shown in Table 2.5

Target Inventory Positions
Policy 51 52 53 54 55 56 53 〈Q1〉 54〈Q1〉 52〈Q1〉

1 1 1 1 1 1 1
2 1 1 1 1 1 1
6 1 1 1 1 1 1

Table 2.5: Alpha Policy Candidates: Counterexample 1

25

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

The stationary distributions for each policy, and the average cost are
given in the Table 2.6 .

Target Inventory Positions
Policy 51 52 53 54 55 56 53 〈Q1〉 54 〈Q1〉 52 〈Q1〉 Avg Cost

1 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 0 0 0 93.77
2 0.1687 0.1852 0.1831 0.1646 0.1481 0 0.1502 0 0 90.89
3 0 0.1687 0.1852 0.1831 0.1646 0.1481 0 0.1502 0 92.92
4 0.1852 0.1831 0.1646 0.1481 0 0.1687 0 0 0.1502 95.08
5 0 0.1852 0.2 0.1815 0.1481 0 0.1333 0.1519 0 90.39
6 0.1852 0.2 0.1815 0.1481 0 0 0.1519 0 0.1333 92.06
7 0 0.1852 0.1852 0.1667 0 0.1481 0 0.1667 0.1481 94.17
8 0 0.2 0.2 0.1667 0 0 0.1333 0.1667 0.1333 91.50

Table 2.6: Stationary Distribution and Average Cost of Candidate Policies:
Counterexample 1

Policy 5 has the lowest cost at 90.93, and we conclude that it is optimal
to order the large delivery size at every inventory position at or below 49,
and to order the small delivery size at inventory positions 50 and 51.

The example is illustrated in Figure 2.2 below which shows G(y) for
this counterexample 1. The Q1 = 3 minimizers are shown as solid cir-
cles {52, 53, 54} and the remaining 3 minimizers are shown as open circles
{51, 55, 56}. R is indicated with the vertical line at inventory position 50.
Along the bottom are indicators of the delivery size ordered from an inven-
tory position, the open triangles and squares, and the delivery size ordered
to arrive at a target state, closed triangles and squares. The open triangles
show the Q1 = 3 inventory positions from which Q1 can be ordered to reach
one of the Q1 minimizers, and the open squares show the Q1 = 3 inventory
positions from which Q2 can be ordered to reach one of the Q1 minimizers.
In this run, Q2 was ordered from inventory positions at or below 49 to reach
target states {52, . . . , 54, 55}, and Q1 is ordered from inventory positions
{50, 51} to reach target state {53, 54}. We see that at inventory position 49
the large batch is ordered and an inventory position outside of the set of Q1

minimizers is reached.

26

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Figure 2.2: Graphical Representation of Optimal Policy. The Q1 = 3 mini-
mizers are shown as solid circles {52, 53, 54} and the remaining 3 minimizers
are shown as open circles {51, 55, 56}. The open triangles and squares show
the inventory positions where the last order is placed. The triangles indicate
where Q1 can be ordered to reach a Q1 minimizer, and the squares indicate
where Q2 can be ordered to reach a Q1 minimizer. The solid triangles and
squares show the inventory positions in the set of recurrent states for this
policy.

27

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

While one may argue that instead of being a counterexample, the exam-
ple above instead makes a case for somehow tweaking the definition of the
alpha-policy, the next example will show that the optimal policy can have
gaps that no tweaking can cover.

For the second counterexample, consider the following instance:

• Q1 = 3

• h = 25, b = 50

• c1 − c2 = 5

• Demand distribution, P{D = x} = 0 except for the cases listed below.

P{D = 23} = 0.09667 P{D = 29} = 0.064 P{D = 53} = 0.10267
P{D = 27} = 0.08467 P{D = 48} = 1

6 P{D = 57} = 0.082
P{D = 28} = 0.08467 P{D = 49} = 1

6 P{D = 58} = 0.082

Following the steps from the previous example, we first identify the min-
imizer of G(y), y∗ = 49.

P{D ≤ 48} < 50

75
=

2

3
< P{D ≤ 49}

Next we calculate the single period expected holding and back order costs
of given inventory position after ordering around the minimizer.
G(47) = 348
G(48) = 328
G(49) = 320.5
G(50) = 325.5
G(51) = 330.5
G(52) = 335.5
G(53) = 340.5
G(54) = 353.2
From the above list, the cost function is minimized at 49. We can order the
minimizers as follows: G(49) < G(50) < G(48) < G(51) < G(52) < G(53)

From the demand distribution, the entries in the probability transition
matrices are
∞∑
i=0

P{D = iQ2} = 0.1667

∞∑
i=0

P{D = 1 + iQ2} = 0.1667

∞∑
i=0

P{D = 2 + iQ2} = 0.07

∞∑
i=0

P{D = 3 + iQ2} = 0.1667

∞∑
i=0

P{D = 4 + iQ2} = 0.1667

∞∑
i=0

P{D = 5 + iQ2} = 0.2633

28

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

We again have 23 = 8 candidates for the optimal policy as shown in
Table 2.7

Target Inventory Positions
Policy 48 49 50 51 52 53 48 〈Q1〉 49〈Q1〉 50〈Q1〉

1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 1 1

Table 2.7: Candidate Policies: Counterexample 2

The stationary distributions for each policy, and the average cost are
given in Table 2.8.

Target Inventory Positions
Policy 48 49 50 51 52 53 48 〈Q1〉 49〈Q1〉 50〈Q1〉 Avg Cost

1 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667 330.083
2 0.1655 0.1989 0.1729 0.1344 0.1604 0.1679 331.608
3 0.1604 0.1655 0.1989 0.1729 0.1344 0.1679 329.634
4 0.1344 0.1604 0.1655 0.1989 0.1729 0.1679 330.275
5 0.1604 0.1989 0.1989 0.1344 0.1729 0.1344 331.293
6 0.1344 0.1989 0.1729 0.1344 0.1989 0.1604 332.073
7 0.1344 0.1604 0.1989 0.1989 0.1729 0.1344 329.774
8 0.1344 0.1989 0.1989 0.1989 0.1344 0.1344 331.683

Table 2.8: Stationary Distribution and Average Costs: Counterexample 2

While the difference is small, policy 3 is the lowest cost policy. It qual-
ifies as a non-alpha-policy since one should order the small delivery size
at inventory position 52 − 6 = 46, but at inventory position 47 the large
delivery size should be ordered. This creates a gap in the set of recurrent
states at inventory position 46. This example shows the intuition behind
the alpha-policy that once a transition to the small delivery size is made
it is not reversed, does always not hold, thus the alpha-policy conjecture is
false.

29

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

The example is illustrated in Figure 2.3 below which showsG(y) for coun-
terexample 2. The Q1 = 3 minimizers are shown as solid circles {48, 49, 50}
and the remaining 3 minimizers are shown as open circles {51, 52, 53}. R
is indicated with the vertical line at inventory position 47. Along the bot-
tom are indicators of the delivery size ordered from an inventory position,
the open triangles and squares, and the delivery size ordered to arrive at a
target state, closed triangles and squares. In this run, Q2 was ordered from
inventory positions {42, . . . , 45, 47} to reach target states {48, . . . , 51, 53},
and Q1 is ordered from inventory positions 46 to reach target state 49.

Figure 2.3: Graphical representation of optimal policy. The Q1 = 3 mini-
mizers are shown as solid circles and the remaining 3 minimizers are shown
as open circles. The open triangles and squares show the inventory posi-
tions where the last order is placed. The triangles indicate where Q1 can be
ordered to reach a Q1 minimizer, and the squares indicate where Q2 can be
ordered to reach a Q1 minimizer. The solid triangles and squares show the
inventory positions in the set of recurrent states for this policy. Note that
at inventory position 46 a small delivery size is ordered, but at inventory
position 47 the large delivery size is ordered.

30

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

2.3.6 An Algorithm for Computing Exact Solutions

As demonstrated, the stationary distribution of a policy depends on the de-
mand distribution. We have shown that there are 2Q1 possible candidates
for optimal policy, and each candidate can be evaluated by finding the sta-
tionary distribution and evaluating the long run average cost. Let us denote
the 2Q1 possible candidates for optimal policy as D∗. For small values of
Q1, evaluating each candidate policy may be feasible, but as Q1 grows, this
quickly becomes infeasible. For Q1 = 10 there are 1024 candidate policies.

Ideally one would look at each of the Q1 possible inventory positions
where the small delivery size can be ordered, and decide if the tradeoff is
warranted. Instead, we turn to conventional methods for solving Markov
decision processes. Puterman (1994) describes some algorithms used for
solving Markov decision processes. The basis for these algorithms is the
Bellman or optimality equations. Since we have a finite set of candidate
policies, we choose the policy iteration of Howard (1960). Each step of
policy iteration uses a modified form of the Bellman equations to search
through candidate policies for one that has an improvement in value. We
also show that the structure of policy iteration provides a separation of the
problem that allows for evaluation of each of the Q1 tradeoffs individually.

In a Markov process states are classified by the expected traffic to the
states. The traffic to a state s is described with two random variables, the
number of visits, vs and the time of the first visit τs. If the chain starts
at state s then τs represents the time of the first return visit. A state
is recurrent if it is expected that it will be visited repeatedly. That is,
E[τs] < ∞. Otherwise, if E[τs] = ∞ the state is transient and the state
will rarely be visited. Using the number of visits, a state is recurrent if and
only if E[vs] = ∞, that is, there is nothing that stops visits to the state.
Recurrent states are then grouped into sets based on accessibility between
the states. Two states are accessible if there is a non-zero probability of
transitioning between them in any number of periods. Formally, state i is
accessible from state j if pn(i|j) > 0 for some n ≥ 0. For a finite state space
where all states are recurrent and accessible, the Markov chain is referred
to as unichain.

Since the probability matrix for our problem consists of a single recur-
rent class for each of the candidate policies, the model can be classified
as unichain. The Unichain Policy Iteration Algorithm provided by Put-
erman converges to an optimal solution in a finite number of iterations
for a unichain model. The algorithm is started with an arbitrary decision
rule/policy d, for which the stationary distribution P ∗d and average reward

31

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

g = P ∗d rd are computed. Next

0 = rd − ge+ (Pdn − I)hn and P ∗dnhn = 0

are solved to obtain the vector h, referred to as the bias. The bias is the
expected difference between the reward in each state and the average reward
under a given policy. In the policy improvement step

dn+1 ∈ arg max
d inD

{rd + Pdhn}

is computed. In this step, the bias from the previous iteration is used to
estimate the average reward of the other candidate policies, and the best is
selected. The algorithm terminates when there is no improvement possible.
Since the algorithm only proceeds if there is an improvement in average
value, no candidate policy is evaluated more than once and the algorithm is
guaranteed to converge to the optimal solution if there is a finite number of
policies.

To start the Unichain Policy Iteration Algorithm a decision rule must be
chosen and the set of target states determined. We have already shown that
the optimal policy will only target some subset of the Q2 integer minimizers
of G(·). Since Q1 of these may be reached both by ordering Q2 or by ordering
the additional Q1, there are Q2 +Q1 target states if we also include in the
state definition the number of small delivery sizes that must be ordered to
reach it. These 3Q1 states are the

• the Q2 integer minimizers of G(·), {x1, . . . , xQ2}, and

• the Q1 states reached by ordering a small delivery size
{x1 〈Q1〉, . . . , xQ1 〈Q1〉}

By choosing the policy in which no small delivery sizes are ordered, the
calculations in the first iterations can be simplified. First, g =

∑Q2
i=1G(xi)

is easily calculated, and second, the stationary distribution P ∗ is the square
matrix with all entries in the first Q2 columns 1

Q2
and zero in all remaining

entries.
The reward rd i is the cost for spending a period in state i, under policy

d. In this model, the cost for spending the period at one of the Q2 integer
minimizers after ordering a large delivery size is policy independent and
rd xi = rxi = G(xi). Similarly, for an inventory position reached by ordering
a small delivery size, rd xi 〈Q1〉 = rxi 〈Q1〉 = G(xi) +Q1(c1 − c2).

The calculation of h is further simplified by the observation that since
rxj 〈Q1〉 = rxj +Q1(c1 − c2), it follows that hn xj 〈Q1〉 = hn xj +Q1(c1 − c2)
for j = 1, . . . , Q1.

32

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Once h is calculated, the policy improvement step is next, and here is
where each tradeoff can be individually evaluated, thus reducing the need
to evaluate all 2Q1 policies.

Since rdi does not change with policy, policy improvement is reduced to
inspecting dn+1 ∈ arg maxd∈D{Pdhn}. For each state i, the improvement of
policy d over dn is

Q2∑
j=1

(pd i,xj − pdn i,xj)hn xj +

Q1∑
j=1

(pd i,xj 〈Q1〉 − pdn i,xj 〈Q1〉)hn xj 〈Q1〉.

Nominally, this is only 3Q1 comparisons, instead of the 2Q1−1 other policies
in D∗.

Fortunately a few simplifications can be made to reduce the number of
comparisons down to Q1 as a result of the structure of the problem. Recall
the description of the construction of the transition matrices for policies
where small delivery sizes are ordered, described above, using the transition
matrix for the ordering only large delivery size policy as a starting point.
For replacement of xj with state xi 〈Q1〉, a row is added with the same
probabilities as xi. Next, a new column taking the entries of the xj column is
added and the entries in column xj set to zero. This construction highlights
the following:

• for any policy d ∈ D∗, pd i,xj = pdn i,xj for j = 1, . . . , Q1. The transi-
tion probabilities from any state to one of the Q1 minimizers does not
change with policy since these columns are unchanged. Now, for each
state i, the improvement of policy d over dn is

Q2∑
j=Q1+1

(pd i,xj −pdn i,xj)hn xj +

Q1∑
j=1

(pd i,xj 〈Q1〉−pdn i,xj 〈Q1〉)hn xj 〈Q1〉.

• for each pair of states xj 〈Q1〉 = xk ± Q1, j = 1, . . . , Q1, k = Q1 +
1, . . . , Q2, only one can be in the final set of recurrent states. When
comparing policy d to dn

either xk in d but the switch to xj 〈Q1〉 has been made in policy dn.
In this case pdn i,xj 〈Q1〉 = pd i,xk and pd i,xj 〈Q1〉 = pdn i,xk = 0
The contribution of this pair of states to potential improvement
of policy dn is

(pd i,xk − pdn i,xk)hn xk + (pd i,xj 〈Q1〉 − pdn i,xj 〈Q1〉)hn xj 〈Q1〉

= pd i,xkhn xk − pdn i,xj 〈Q1〉hn xj 〈Q1〉

= pd i,xk(hn xk − hn xj 〈Q1〉)

33

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

or xj 〈Q1〉 in d but the switch to back to xk has been made in policy
dn. In this case pdn i,xk = pd i,xj 〈Q1〉 and pd i,xk = pdn i,xj 〈Q1〉 =
0. The contribution of this state pair to policy improvement
becomes pd i,xj 〈Q1〉(−hn xk + hn xj 〈Q1〉)

or xj in both pdn i,xj 〈Q1〉 = pdn i,xk = 0 and pdn i,xk = pd0 i,xk . With
no change in policy for these states there is potential improve-
ment.

Combining these, policy improvement at the end of the first iteration, can be
reduced to looking at the Q1 differences hn xj<Q1> − hn xk j ∈ [Q1 + 1, Q2].
If hn xj<Q1>− hn xk < 0 then the tradeoff should be made to take the small
delivery size when at state xk as it will result in a reduction in the long
run cost of the policy. In further iterations, evaluation of the potential
contribution for each pair of points as above, determines if there is a policy
with lower costs.

This simplification is illustrated using the following example in which
Q1 = 2 and a cost function G(·) such that G(20) < G(21) < G(22) <
G(19) < G(y) y ∈ Z, y 6= {21, 22, 23, 24}. In this example there will be 4
candidate policies with the following probability transition matrices.

Policy: Order all Q2 Policy: Order Q1 at 19

19 20 21 22 20〈Q1〉 21〈Q1〉 19 20 21 22 20〈Q1〉 21〈Q1〉
19 0.1 0.2 0.3 0.4 0 0 19 0 0.2 0.3 0.4 0 0.1
20 0.4 0.1 0.2 0.3 0 0 20 0 0.1 0.2 0.3 0 0.4
21 0.3 0.4 0.1 0.2 0 0 21 0 0.4 0.1 0.2 0 0.3
22 0.2 0.3 0.4 0.1 0 0 22 0 0.3 0.4 0.1 0 0.2

20 〈Q1〉 0.4 0.1 0.2 0.3 0 0 20 〈Q1〉 0 0.1 0.2 0.3 0 0.4
21〈Q1〉 0.3 0.4 0.1 0.2 0 0 21〈Q1〉 0 0.4 0.1 0.2 0 0.3

Policy: Order Q1 at 21 Policy: Order all Q1

19 20 21 22 20〈Q1〉 21〈Q1〉 19 20 21 22 20〈Q1〉 21〈Q1〉
19 0.1 0.2 0.3 0 0.4 0 19 0 0.2 0.3 0 0.4 0.1
20 0.4 0.1 0.2 0 0.3 0 20 0 0.1 0.2 0 0.3 0.4
21 0.3 0.4 0.1 0 0.2 0 21 0 0.4 0.1 0 0.2 0.3
22 0.2 0.3 0.4 0 0.1 0 22 0 0.3 0.4 0 0.1 0.2

20 〈Q1〉 0.4 0.1 0.2 0 0.3 0 20 〈Q1〉 0 0.1 0.2 0 0.3 0.4
21〈Q1〉 0.3 0.4 0.1 0 0.2 0 21〈Q1〉 0 0.4 0.1 0 0.2 0.3

If we start the algorithm with the policy of ordering all Q2 as d0 we
can compare the improvement of the other policies as (Pd − Pd0)h0. Let
us use h0s to indicate the state s component of the bias vector from the

34

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

initialization step. The improvement for ordering the small delivery size at
inventory position 19 is

−.1
−.4
−.3
−.2
−.4
−.3

 (h019 − h021〈Q1〉
),

for ordering the small delivery size at inventory position 22

−.4
−.3
−.2
−.1
−.3
−.2

 (h022 − h020〈Q1〉
),

and for always ordering small delivery sizes

−.1
−.4
−.3
−.2
−.4
−.3

 (h019 − h021〈Q1〉
) +

−.4
−.3
−.2
−.1
−.3
−.2

 (h022 − h020〈Q1〉
).

Clearly, if h019 − h021〈Q1〉
< 0 then the tradeoff to the smaller delivery

size at inventory position 19 should be made for the next iteration. Sim-
ilarly, if h022 − h020〈Q1〉

< 0 then the tradeoff to ordering the smaller de-
livery size to reach inventory position 22 should be made for the next it-
eration. By evaluating the difference in bias between pairs of states for
each opportunity to order the smaller delivery size, the policy that satisfies
dn+1 ∈ arg maxd inD{rd + Pdhn} is quickly found. The improvement for
each tradeoff consideration is additive and the policy improvement step is
reduced to the consideration of Q1 tradeoffs.

While the evaluation of each step is fast, the consideration of Q1 trade-
offs, it may be necessary for the algorithm to evaluate all of the 2Q1 possible
candidates for optimal policy before completion. In practice, however, this
algorithm converges quickly. In the eighteen examples worked to date with

35

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

linear cost functions, 4 converge in one step and the others converge in at
most 4 steps. These examples are discussed in Section 2.4

In this section we have shown that one pass of the Unichain Policy It-
eration Algorithm can easily provide a method of evaluating the tradeoff
of ordering a small delivery size at each of the inventory positions where it
may be considered. Unfortunately we can’t prove that it will converge in
one pass of the algorithm. If convergence is not reached in a small number
of iterations, then it may be sufficient to bound the results. The following
section provides easily calculated upper and lower bounds on the value of
the optimal policy.

2.3.7 Upper and Lower Bounds

Faced with the potential evaluation of many iterations of the Unichain Policy
Iteration Algorithm or finding the stationary distribution of 2Q1 policies to
find the optimal policy, we have developed upper and lower bounds on the
cost of optimal policies. This section describes the bounds and demonstrates
that the gap between the bounds is small for reasonable examples.

Proposition 2.3. For the setting with two available delivery sizes Q1 and
Q2 = 2Q1 with the unit costs c1 > c2, 1

Q1

∑Q1
i=1G(xi) is a lower bound on

the long run average cost of the optimal policy.

Proof. When onlyQ1 is available to be ordered, the optimal policy is to order
to the set of Q1 integer minimizers of G(·) resulting in a long run average
cost of 1

Q1

∑Q1
i=1G(xi)+ ordering. Adding the possibility of ordering Q2

allows for the tradeoff of higher holding cost, for a savings in ordering cost.
While there is not a policy with cost 1

Q1

∑Q1
i=1G(xi), it is a lower bound on

the policy.

Proposition 2.4. For the setting with two available delivery sizes Q1 and
Q2 = 2Q1 with the unit costs c1 > c2, min{ 1

Q1

∑Q1
i=1G(xi) + Q1(c1 −

c2),
1
Q2

∑Q2
i=1G(xi)} is an upper bound on the long run average cost of the

optimal policy.

Proof. The long run average cost of the optimal policy when only the large
delivery size is ordered is 1

Q2

∑Q2
i=1G(xi), thus this is a feasible solution and is

an upper bound. WhenQ1 is ordered so that the set ofQ1 integer minimizers
of G(·) are always reached, the long run average cost is 1

Q1

∑Q1
i=1G(xi) +∑Q1

i=1 q(xi 〈Q1〉)Q1(c1 − c2) for 0 ≤ q(xi 〈Q1〉) ≤ 1
Q1

as shown at the

end of Section 2.3.4. Since 1
Q1

∑Q1
i=1G(xi) +

∑Q1
i=1 q(xi 〈Q1〉)Q1(c1 − c2) ≤

36

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

1
Q1

∑Q1
i=1G(xi) + Q1(c1 − c2) this is an upper bound to this policy. Thus,

the minimum of the two upper bounds is an upper bound on the optimal
policy.

The gap between the upper and lower bounds is

min{ 1

Q1

Q1∑
i=1

G(xi)+Q1(c1−c2)−
1

Q1

Q1∑
i=1

G(xi),
1

Q2

Q2∑
i=1

G(xi)−
1

Q1

Q1∑
i=1

G(xi)}

= min{Q1(c1 − c2),
1

Q2
(

Q2∑
i=Q1+1

G(xi)−
Q1∑
i=1

G(xi))}.

The gap is the minimum of the incremental material cost of the small de-
livery size, and the average incremental one period costs under the large
delivery size. This is the fundamental tradeoff and the extremes are the
basis for the bounds. Unfortunately, this gap could be arbitrarily bad
if 1

Q1

∑Q1
i=1G(xi) is close to zero. However, it seems unlikely that

1
Q2

∑Q2

i=Q1+1G(xi) would be excessively large if 1
Q1

∑Q1
i=1G(xi) is close to

zero. The following numerical study provides some evidence that the gap
is can be small in practice, although some instances had a gap 32% of the
optimal cost.

2.4 Numerical Study

An numerical study was conducted to demonstrate the magnitude of the gap
between the upper and lower bounds and compare the solution techniques.

A linear holding and backorder model was considered where the one pe-
riod expected cost after ordering is given by G(y) = hE[y−d]++bE[d−y]+.
The demand was assumed to follow either a normal or uniform distribution.

The parameters for the runs were chosen to create instances that varied
not only with delivery size, but also with relative costs and demand. Small
delivery size ranged from 3 to a maximum of 20 and the incremental cost
of ordering the small delivery size, c2− c1 was either 1,3 or 5. Two levels of
holding and back order costs were used; low, approximately 5, and high, 20
to 30. The spread of the demand distribution relative to the delivery size
was also varied.

Ten instances were selected and run with uniformly distributed demand
for Runs 1 through 10, then with normally distributed demand for Runs 11
through 20.

37

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

In each run, we computed the upper and lower bounds and solved the
instance using the following three algorithms

1. Computation of stationary distributions and total cost of each of the
2Q1 candidates for optimal policy

2. Unichain Policy Iteration Algorithm (UPIA) as described in
Section 2.3.6

3. Computation of stationary distributions and total cost of the up to
Q1 + 1 alpha-policy candidates

Table 2.9 shows the results for runs with uniform demand distribution
and Table 2.10 the results for the runs with normal demand distribution.
Matlab was used for the computations.

We use the following notation in the presentation of the results.
g∗ is the average cost of the optimal policy (obtained through

enumeration)

UB Q1
1
Q1

∑Q1
i=1G(xi) +Q1(c1 − c2)

UB Q2
1
Q2

∑Q2
i=1G(xi)

UB min{ UB Q1, UB Q2}
LB 1

Q1

∑Q1
i=1G(xi)

gP∗ the average cost of the policy found through the UPIA
gP1 is the average cost of the policy from one iteration of the UPIA

Note: The 0th iteration will have value UB Q2

It is the number of iterations required for the UPIA to converge
Note: Starting with ordering all Q2 is considered the 0th

iteration. One additional iteration is required to confirm
convergence.

gα is the average cost of the policy found from evaluating
only at most Q1 + 1 alpha-policies

In the cases run, the gap between the upper and lower bound ranges between
0.12% and 32% of the optimal solution and did not confirm the proposition
that the gap between bounds is small.

The success of policy iteration is also demonstrated with very few iter-
ations required for the algorithm to converge. Of the instances run, some
converged after one iteration and the maximum number of iterations re-
quired was 4. In the instance with Q1 of 20, UPIA converged in 3 iterations
and we were unable to complete the 220 = 1 048 476 evaluations necessary
for full enumeration.

38

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Run 1 2 3 4 5 6 7 8 9

Q1 3 5 7 3 15 5 10 15 20
c1 20 20 15 20 20 20 20 20 20
c2 19 19 12 15 19 19 19 19 19

h 30 30 22 20 30 5 5 5 5
b 30 30 33 20 30 3 3 3 3

Demand
Uniform (65,135) (90,110) (77,123) (85,115) (90,110) (40,60) (40,60) (40,60) (40,60)

g∗ 533.60 162.38 319.22 156.88 192.38 21.21 24.81 30.37
UB Q1 535.68 165.00 333.45 170.27 198.81 25.05 31.21 38.22 45.96
UB Q2 533.73 169.29 319.59 156.88 261.67 21.21 25.96 32.99 41.17

UB 533.73 165.00 319.59 156.88 198.81 21.21 25.96 32.99 41.17
LB 532.68 160.00 312.45 155.27 183.81 20.05 21.21 23.22 25.96

UB-LB 1.06 5.00 7.14 1.61 15.00 1.17 4.74 9.77 15.21
UB−LB

g∗ 0.2% 3.08% 2.24% 1.03% 7.8% 5.5% 19.1% 32.2%
UB−LB
LB

0.2% 3.13% 2.28% 1.04% 8.16% 5.82% 22.4% 42.1% 58.6%

gP∗ 533.60 162.38 319.22 156.88 192.38 21.21 24.81 30.37 35.39
gP1 533.60 162.38 319.22 156.88 193.29 21.21 24.81 30.47 35.70

gP1 − g∗ 0 0 0 0 0.914 0 0.000 0.093
It 2 2 2 1 4 1 2 3 3

gα 533.60 167.38 319.50 156.88 242.12 21.21 25.31 31.62
gα − g∗ 0 5.0 0.275 0 49.74 0 0.505 1.24

Solve Time (s)
UPIA 0 0 0.016 0 0.031 0 0.015 0.031 0.063
all 2Q1 0.016 0.015 0.141 0 531.20 0.016 2.032 529.05
α 0 0.016 0.016 0 0.047 0 0.015 0.062

Table 2.9: Runs with Uniform Distribution

The UPIA proved most effective for the large values ofQ1 where complete
enumeration was time consuming or not possible (Runs 9 and 18). These
runs also demonstrate that the minimum value alpha-policy is not always
optimal, with the largest gap of 25% from optimality. Note that these runs
provide further counterexamples to the alpha-policy conjecture beyond those
in Section 2.3.5

Table 2.11 illustrates the first step of the UPIA for three instances that
converged in one iteration. Recall that the 0th iteration assumes only the

39

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Run 10 11 12 13 14 15 16 17 18

Q1 3 5 7 3 15 5 10 15 20
c1 20 20 15 20 20 20 20 20 20
c2 19 19 12 15 19 19 19 19 19

h 30 30 22 20 30 5 5 5 5
b 30 30 33 20 30 3 3 3 3

Demand
Normal (100,35) (100,10) (100,23) (100,15) (100,10) (50,10) (50,10) (50,10) (50,10)

g∗ 739.95 243.95 477.50 240.51 268.69 31.57 34.83 38.95
UB Q1 742.09 246.95 492.78 254.44 276.29 35.64 41.57 48.07 55.13
UB Q2 739.96 249.02 477.57 240.51 320.29 31.57 35.13 40.54 47.24

UB 739.96 246.95 477.57 240.51 276.29 31.57 35.13 40.54 47.24
LB 739.09 241.95 471.78 239.44 261.29 30.64 31.57 33.07 35.13

UB-LB 0.87 5.00 5.79 1.07 15.00 0.94 3.56 7.47 12.12
UB−LB

g∗ 0.12% 2.05% 1.21% 0.44% 5.58% 2.96% 10.2% 19.2%
UB−LB
LB

0.12% 2.07% 1.23% 0.45% 5.74% 3.05% 11.3% 22.6% 34.5%

gP∗ 739.95 243.95 477.50 240.51 268.69 31.57 34.83 38.95 43.56
gP1 739.95 243.95 477.50 240.51 268.69 31.57 34.83 38.96 43.63

gP1 − g∗ 0 0 0 0 0 0 0 0.013
It 2 2 2 1 2 1 2 3 3

gα 739.95 246.49 477.57 240.51 296.88 31.57 35.06 39.67
gα − g∗ 0 2.538 0.0747 0 28.19 0 0.222 0.71

Solve Time (s)
UPIA 0.015 0 0.016 0 0.032 0 0.015 0.031 0.062
all 2Q1 0 0.032 0.141 0.016 546.3 0.016 2.313 530.4
α 0 0 0.015 0 0.109 0 0.015 0.078

Table 2.10: Runs with Normal Distribution

large delivery size is ordered and has uniform stationary distribution of
1
Q2

for each state. The table shows the h values for each of the integer
minimizers where the decision to order the small delivery size can be made,
and compares it to the h value at its tradeoff pair. Note yj denotes the
states that are candidates for tradeoffs, i.e., {yj} = {xi} i ∈ [Q1 + 1, Q2]
Where the difference in h value, i.e., ∆ = hxi 〈Q1〉−hy1 is negative, a switch
to ordering the small delivery size is made. The lower section of the table
enumerates the 2Q1 candidate policies and value, identifying them by the

40

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

which tradeoffs, if any, to the small delivery size have been made. In the
three instances shown, the first iteration policies match the optimal policies
found through enumeration.

Run 1 4
Normal (100,35) Normal (100,15) Uniform (91, 105)
Q1 = 3, c1 = 20, c2 = 19 Q1 = 3, c1 = 20, c2 = 15 Q1 = 3, c1 = 20, c2 = 19

h = 30, b = 30 h = 20, b = 20 h = 30, b = 30

hy1 0.552 hy1 1.75 hy1 11.02
hxi 〈Q1〉 2.151 hxi 〈Q1〉 13.59 hxi 〈Q1〉 -2.68

∆ 1.6 ∆ 11.84 ∆ -13.70 order Q1

hy2 0.163 hy2 -0.34 hy2 2.13
hxi 〈Q1〉 2.344 hxi 〈Q1〉 14.63 hxi 〈Q1〉 -1.8

∆ 2.18 ∆ 14.97 ∆ -3.93 order Q1

hy3 1.913 hy3 1.913 hy3 0.74
hxi 〈Q1〉 1.877 hxi 〈Q1〉 13.58 hxi 〈Q1〉 -0.41

∆ -0.036 order Q1 ∆ 11.67 ∆ -1.15 order Q1

Tradeoff Policy Tradeoff Policy Tradeoff Policy
to Q1 Value to Q1 Value to Q1 Value
none 739.96 none 240.51 none 118.33
y1 740.22 y1 242.48 y1 115.88
y2 740.32 y2 243.01 y2 117.63
y3 739.95 y3 242.47 y3 118.13

y1&y2 740.58 y1&y2 244.98 y1&y2 115.28
y1&y3 740.22 y1&y3 244.45 y1&y3 115.53
y2&y3 740.31 y2&y3 244.97 y2&y3 117.4

y1&y2&y3 740.58 y1&y2&y3 246.94 y1&y2&y3 114.93

Table 2.11: Details of Policy Iteration

For the example in the left of Table 2.11, Run 1, policy iteration chooses
the policy that only makes the tradeoff for the small delivery size at y3, for
the example in the middle, Run 4, policy iteration chooses never to make
the tradeoff. In the third example, policy iteration indicates the best policy
makes the tradeoff whenever possible — again supported by calculating the
value of all policies. These policies are all demonstrated to be optimal in
the lower rows.

41

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

2.5 Further Extensions

One natural extension is to the case where Q2 is not restricted to 2Q1. In
this case, if only Q2 were ordered, the set of Q2 integer minimizers of G(·)
would be the targets and form the band (R,R+Q2]. The long run average
cost for this policy is easily computed as the stationary distribution is 1

Q2
.

With no differences in unit costs between delivery sizes, the lowest cost
policy will order into the set of Q1 integer minimizers of G(·). If Q2 is an
integer multiple of Q1 then 1

Q1

∑Q1
i=1G(xi) still is a lower bound. If Q2 is

not an integer multiple of Q1 then it is not guaranteed that the stationary
distribution of the policy ordering to the set of Q1 integer minimizers of G(·)
will be constant over all states.

For any two delivery size sets Q1 < Q2 and unit costs ci such that it is
reasonable to order both, there are 2Q2−Q1 candidates for optimal policy. For
each of the Q2 −Q1 integer minimizers of G(·) {xQ1+1, . . . , xQ2} a decision
is made to order Q1 to reach an inventory position with lower value for G(·)
at the cost of an incremental delivery size.

Starting with a policy of ordering only the large delivery size, and a set
of target states including

• the Q2 integer minimizers of G(·)

• the Q2−Q1 states reached by ordering a multiple of Q1. These states
will be a subset of the above group, but are differentiated with the
notations < Q1 > denoting that a small delivery size must be ordered
to reach them.

The same policy iteration technique can be used to identify the optimal
policy.

Table 2.12 shows the results of some runs with two delivery sizes, Q2 6=
2Q1.

These runs illustrate the extension to arbitrary delivery sizes and in these
examples the Unichain Policy Iteration converged to the optimal solution
within two iterations.

2.6 Conclusions

In this work we studied the problem of optimal inventory policy when orders
are made up of a combination of two delivery sizes. We found that the
optimal solution was highly dependent on the demand distribution, and
so optimal solutions do not in general have a simple form. Our analysis

42

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

shows how to identify the candidate policies and provides easily calculated
upper and lower bounds on the optimal solution. Finally, we demonstrate
that Unichain Policy Iteration Algorithm can leverage the structure of the
problem to reduce the policy improvement step to a simple subtraction for
each of the states where the option to order a smaller delivery size exists.
In the runs in the numerical study, Unichain Policy Iteration Algorithm
converged with at most 4 iterations.

2.7 Acknowledgments

Research supported in part by research grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC). We thank Jeannette
Song, Mahesh Nagarajan, Tim Huh and Eric Cope for their valuable help.

43

Chapter 2. Optimal Inventory Replenishment with Two Delivery Sizes

Q1 2 2 2 2 7
Q2 6 5 7 8 21
c1 20 20 15 20 20
c2 19 19 12 15 19

h 30 30 22 20 30
b 30 30 33 20 30

Demand
Uniform (65,135) (90,110) (77,123) (85,115) (90,110)

g∗ 533.50 158.48 312.45 158.39 167.52
UB Q1 534.61 159.86 316.22 165.16 169.86
UB Q2 533.73 160.00 312.45 158.39 209.52

UB 533.73 159.86 312.45 158.39 169.86
LB 532.61 157.86 310.22 155.16 162.86

UB-LB 1.13 2.00 2.22 3.23 7.00
UB−LB

g∗ 0.21% 1.26% 0.71% 2.04% 4.18%
UB−LB
LB 0.21% 1.27% 0.72% 2.08% 4.3%

gP∗ 533.50 158.48 312.45 158.39 167.52
gP1 533.50 158.48 312.45 158.39 167.52

gP1 − g∗ 0 0 0 0 0
It 2 2 1 1 2

Solve Time (s)
UPIA 0 0.016 0.016 0.016 0.015

all 2Q2−Q1 0 0 0.016 0.031 125.56
g∗ average cost of the optimal policy obtained through enumeration

UB Q2
1
Q2

∑Q2
i=1G(xi)

gP∗ average cost of the policy found through the Unichain Policy Algorithm
gP1 average cost of the policy found from one iteration of the Unichain Policy

Iteration Algorithm. Note: The 0th iteration will have value UB Q2

It number of iterations of the Unichain Polity Iteration Algorithm to

convergence. Note: Ordering all Q2 is considered the 0th iteration.
One additional iteration is required to confirm convergence.

UPIA Unichain Policy Iteration Algorithm

Table 2.12: Runs with Two delivery sizes, Q2 6= 2Q1

44

Chapter 3

Sequence Optimization in
Block Cave Mining

3.1 Introduction

When ore bodies such as diamonds, gold and copper lie far below the sur-
face, traditional open pit mining techniques are neither cost effective nor
environmentally friendly. Instead, deep ore bodies can be excavated using a
technique called block cave mining, Gertsch (1998). Vertical shafts are sunk
below the ore body and a network of horizontal tunnels are dug as a plat-
form for the mining operation. Blasting is done above the tunnels causing
the rock to fall in a controlled manner into the tunnels. The cave formed by
the initial blasting weakens the rock above, and the rock continues to fall.
Figure 3.1 shows a cross section of a block cave mine.

It is well known that the traditional open pit mine design problem can
be represented in a network flow framework, Ahuja et al (1993), and solved
using the Lerchs Grossman algorithm, Lerchs & Grossman (1965) or min-
cut/ max flow algorithms, i.e., Yegulalp and Arias (1992), Giannini et al
(1991). The ore body is divided into blocks via a 3-dimensional grid, each
with an estimated value based on the ore composition. The objective is
to determine the blocks to extract to maximize the total value, subject
to physical constraints. These constraints include having to remove the
blocks above a desired block and maintaining a pit shape that contains
stable slopes.

At a first approximation, a block cave mine can be thought of as an
inverted open pit mine. The ore body is divided into blocks, with each
vertical column of blocks accessible from a draw point along the horizontal
tunnels. Ore at the bottom of a column must be extracted before ore at
the top can be reached, and in order to keep the caves stable, neighbouring
draw points must extract at a similar rate.

Block cave mining differs significantly from open-pit mining in two ways.
First, the amount extracted from each draw point in each time period must

45

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.1: A cross section of the underground workings at the Dutoitspan
mine, Kimberley, South Africa. Adapted from De Beers. (American Mu-
seum of Natural History (2008))

exceed a minimum amount in order to keep the rock flowing, and must
not exceed a maximum amount for safety considerations. Secondly, having
the draw point locations tied to both the tunnel structure and the blasting
procedures used imposes additional constraints on the order in which the
draw points are brought into production.

Typically a block cave mine will consist of 200 to 2000 draw points and
will be mined for 10 to 20 years. Gemcom (2006), our industrial partner
in this work, provides specialised mining productivity solutions that help
their clients plan, monitor and improve their mining operations. They have
worked with every major mining company in the world and have extensive
experience planning block cave mines. To support this work they have de-
veloped PC-BC, a program for designing and evaluating block cave mining

46

Chapter 3. Sequence Optimization in Block Cave Mining

operations, Diering (2000). Given the layout of draw points, the order in
which they should be opened, and detailed information on the ore body
such as grade and grade distribution which would be important to define
the NPV values mentioned later, the program produces a production plan
that tries to maximize the net present value of the material extracted from
the mine. The model takes into consideration both vertical mixing, within
the rubble in a draw point, and horizontal mixing, across draw points.

This work is designed to assist in providing a required input to the PC-
BC program; the order in which the draw points are opened. This step,
known as sequence optimization, is currently a manual process that relies
on the expertise of the mine planner. The sequence lists which draw points
will be opened in each year of operation and is used by PC-BC to plan each
year of mine operation. The current process first manually develops a se-
quence, then evaluates the sequence using PC-BC, then tries to improve the
sequence, etc. As it is practical to evaluate only a small subset of sequences,
planners do not know how much value they are missing out on, and how
much effort should be invested in the iterative process. The objective of this
work is to find an optimal opening sequence in an automated manner.

3.1.1 Current Practice

Currently sequence optimization is done by an experienced person on a
trial and error basis. It is assumed once a draw point is opened ore will
be withdrawn at a constant rate and a lifetime can be calculated for each
draw point. A value can also be assigned to each draw point which takes
into consideration the estimated lifetime and the ore profile. The feasible
opening sequences are created by incorporating draw point value, knowledge
of physical constraints and experience, then evaluated. A series of opening
sequences are evaluated and the results used to try to create an opening
sequence that improves on the highest achieved net present value. Unless
every possible feasible opening sequence is evaluated, this trial and error
approach can not be guaranteed to deliver the plan with the highest net
present value. It is also not possible to estimate or put bounds on the
highest net present value for a given ore body using the trial and error
approach.

3.1.2 Tunnel Details

The procedures used in the mine to develop and open the draw points con-
strains the order in which they can be opened. We now describe the process

47

Chapter 3. Sequence Optimization in Block Cave Mining

to aid in the development of the algebraic constraints.
A block cave mine consists of the tunnels and access routes in the mining

footprint, the “draw bells” where the blasting is done and the “draw points”
where the ore is removed by the trucks. As the broken rock is removed from
draw points, the rock above the draw bell falls into the open space creating
more broken rock to be removed. All the blasting, rock removal and other
mining activities take place at the mining footprint below the ore body that
is being mined. See Figure 3.2

Figure 3.2: Cross Section Picture of Block Cave Mine

The draw points are arranged on a network of parallel, horizontal tunnels
at the bottom of the mining area. This is known as the Extraction Level.

Between the tunnels a series of draw bells are constructed, each accessed
by two draw points. Figure 3.3 shows draw point and draw bell orientation
to tunnels. The rock will fall from above into the draw bells, then be removed
through the draw points and transported along the tunnels to the conveyor
system which takes the rock out of the mine.

Approximately 18 meters (m) above the Extraction Level is the Under-
cut Level where the initial blasting is done. The steps of Undercut Level
development are summarized in Figure 3.4. Horizontal Undercut Tunnels
are dug above and parallel to the tunnels in the Extraction Level. Depending
on the mine layout, the Undercut Tunnels are either directly aligned with
the Extraction Tunnels, or at some consistent offset. When a draw point is

48

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.3: Plan of Extraction Level of Block Cave Mining Operation

scheduled to start producing, blasting is done to free the rock above so it
can fall into the draw bell. Blast holes are drilled in the walls and ceiling
of the Undercut Tunnel above the draw bell, making a ring or fan shape
around the tunnel. The holes are packed with explosives and the blasting
causes the rock to fall down to the draw bell below. See Figure 3.5.

For the purposes of this work, the constraints of the blasting process
can be summarized as follows: blasting starts at one point in the undercut
tunnel and works along the tunnel, in both directions, from that point.
Since the draw point opening is synonymous with blasting, the draw point
opening sequence must also progress along the tunnel from the initial start
point. At any time, the opened draw points must form a contiguous group
with no gaps between opened draw points. This is illustrated in Figure 3.6
which depicts three single tunnels and the draw points along them. For each
example, the number in each square refers to the period in which the draw

49

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.4: Steps in Undercut Development. Adapted from Resolution Cop-
per Mining (2009)

Figure 3.5: Example of Conventional Undercut Layout Showing Blasting
Pattern. Barber (2000)

point is opened. In the first example, a draw point in the middle region
is the initial start point and the draw points to the right are opened until
the end of the tunnel is reached, then those to the left of the start point
are opened. In the second example, the opened draw points progress in
both directions. Both these examples form contiguous groups and meet the
blasting constraints. The third example, at the bottom of the figure, breaks
contiguity in the third period by opening a lone draw point at the left hand

50

Chapter 3. Sequence Optimization in Block Cave Mining

end of the tunnel.

Figure 3.6: Three Examples of Single Tunnel Opening Sequences. Each
square represents a draw point on a tunnel and the number in it the period
in which the draw point is opened. The top two maintain a contiguous group
of opened draw points, the bottom one does not.

In addition to the constraints on the order in which draw points within
a tunnel can be opened, there are also some across-tunnel constraints. In
general, the mining operation is thought of as a cave and the structural
conditions of the cave roof govern the falling rock and the propagation of
the cave upwards. The objective is a contiguous cave that grows out from
a starting point. The shape should be convex so as not to leave isolated
pockets of rock. A diamond shape cave is commonly created as this has
resulted in good rock behavior. As a result, the opening sequence of draw
points must consider what is happening in adjacent tunnels. In the PC-BC
program this is covered under neighbour constraints which prevent one draw
point from producing much more than its within-tunnel and adjacent-tunnel
neighbours.

To create/preserve the cave structure, some coordination is needed be-
tween the tunnels. When work begins in an adjacent tunnel, it will be next
to rings that have already been developed, see Figure 3.7. The difference in
the number of blasting rings between adjacent tunnels is controlled so that
the lead or lag does not exceed an upper limit. Generally it is acceptable
to have a lead of one draw bell (approximately 7 rings), but a lead of two
draw bells (15 rings) may not be acceptable.

While the cave must grow in some sort of contiguous fashion, it is not
always a constraint that there be only one cave. In rare cases such as very

51

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.7: Plan of Undercut Level of Block Cave Mining Operation

large mines, mining can begin in two separate tunnels, and the caves merge
together over time. In practice, a cave is initiated by opening multiple
adjacent draw points in order to create the conditions that cause the rock
to drop and it is not common to have multiple caves forming.

3.1.3 Cave Shape

In current practice, the draw point opening pattern grows in a diamond
shape, aligned with the tunnels as illustrated in Figure 3.8. A chevron
pattern is also common.

This diamond/chevron pattern conserves the within-tunnel constraint of
one starting point, and also links the adjacent tunnels together.

Mining engineers prefer the diamond shape opening patterns over other
shapes for operational reasons. One reason is the known as the “hydraulic
radius”. The hydraulic radius is the ratio of the opening area to perimeter,

52

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.8: Typical Diamond Pattern of Opened Draw Points. The solid
dark draw points are opened in the first period, the white ones in the second
period and the hatched ones in the third period. Diamond shapes have been
drawn around the draw points opened in each period.

and gives an indication of how well the rock will break apart and fall into
the draw points. Diamond shaped openings result a hydraulic radius in the
desired range for good caving. The diamond shapes also ensure that mining
progresses into new rock in a straight-edged wedge shape. While the interior
angle of this wedge can vary, in practice values below 40 degrees have not
been used.

53

Chapter 3. Sequence Optimization in Block Cave Mining

3.1.4 Other Considerations

There are other considerations that can arise. At this time they are outside
of the scope of this thesis, but will be listed here.

Cave Limitations

Some mines may have additional constraints imposed that are unique to
that mine. For example, there may be surface activity above part of the ore
body that must be completed before the block cave mining can begin. As
a result, the options for the starting point would be restricted to a smaller
subset of draw points not below the surface activity.

There may also be additional data available from sampling that indi-
cates additional information or constraints. This could also take the form
of setting the starting draw points for the mine.

Grade Limitations

Some ore bodies are contaminated with other minerals. While this is usually
not a concern with mine planning, it may be a concern in the final product
leaving the downstream processing plant. A planning schedule may have to
take into account that on average the final product may have limits on the
contaminant content.

3.1.5 Assumptions

A starting assumption in this work is that we can estimate a lifetime for
each draw point by assuming a constant draw rate. The draw rate is the
amount of broken rock that is removed in each period from each draw point.
In reality this is not the case as the PC-BC program helps to optimize the
draw rates of each draw point. In addition, production rate increases over
time since the rock removed generally becomes finer over time. That is,
when a draw point is first opened, the rock removed is large, coarse pieces,
but over time the rock pieces become smaller.

3.1.6 Previous work

Models have been created of many stages of the mining process. Newman
(2000) reviews mine planning applications of operations research and notes
the literature dates back to the 1960s. The work had been conducted on
surface and underground mine planning problems that include equipment se-
lection and long- and short-term production scheduling. Work in block cave

54

Chapter 3. Sequence Optimization in Block Cave Mining

mining includes Diering (2006), who models the rock flows from individual
draw point, taking into account lateral mixing. Rubio (2002) maximizes
NPV in a block cave mine using draw rate as one constraint. The cave area
is set by specifying the area of a contiguous cave. Weintraub (2008) creates
a global model of all the copper mines owned by CODELCO, the Chilean
state copper mine. All these models assume that the opening sequence is
known and use it as a constraint that is determined prior to running their
models.

55

Chapter 3. Sequence Optimization in Block Cave Mining

3.2 Model Framework

The problem that we consider is the following. Given the total net present
value (NPV) and expected lifetime of each draw point, determine which draw
points should open in each period to maximize the total NPV of the mine
subject to the physical and operational constraints. Due to discounting, the
total NPV of the mine is a function of the opening sequence. Intuitively,
opening draw points with higher total NPV first increases the total NPV of
the mine over starting with draw points of lower value. In the absence of
any constraints, opening all positively valued draw points in the first period,
and never opening the negatively valued ones, maximises the total NPV of
the mine.

The total NPV of draw point i is the net present value if it was started
at time 1 and ore was extracted at a constant rate until it was exhausted,
and is represented by wi. “Total” emphasises that this value represents the
cumulative value over all the periods from start to completion. The time
to exhaustion/completion is its duration, pi. A discount rate, λ, is used to
calculate the net present value. Typically, a discount rate of between 7 to
12 % per year has been used, but values as high as 15% have been used,
Diering (2006).

To clarify, the period when the first material is removed from a draw
point is the period in which a draw point is started. In this model, the draw
point will be active for the next pi periods including the period in which it
was started. A draw point will be called open or opened in the period it is
started and each following period until the end of the time horizon. In this
model we are interested in how many draw points are active in each period,
and the contiguity of opened draw points.

3.2.1 Data

Data :

pi duration of draw point i

wi total NPV value of draw point i if started immediately

λ discount rate, 0 ≤ λ ≤ 1.

m capacity constraint on number of draw points active at any time

3.2.2 Decision Variables

Decision Variables Si,t Binary decision variable modelling the start date
for draw point i, over the lifetime of the mine, 1 ≤ t ≤ T . First

56

Chapter 3. Sequence Optimization in Block Cave Mining

period is 1. Si,t =

{
1 if draw point i is started in period t,
0 otherwise

Typically the plans are done with a period of length one year or six
months. We will assume one period is a year long, but essentially the same
formulation works for any period length.

3.2.3 Objective

The objective function is the sum of draw point values, discounted to the
start date.

maxV alue =
∑
i

wi
∑
t

Si,te
−λ(t−1)

for some discount rate λ.

3.2.4 Constraints

Constraints :

Start Once To control the openings, each draw point can be started
at most once ∑

t

Si,t ≤ 1 ∀ draw points i (3.1)

Note: If
t∑

u=1

Si,u = 1 then the draw point was started at some

period {1, . . . , t} and is considered open. Otherwise, this sum
equals zero.

Global Capacity We assume a global capacity constraint, whereby
at most m draw points can be active at any time. In general,
this capacity is linked to the capacity of the downstream ore
processing plant.

∑
i

t∑
u=t−pi+1

Si,u ≤ m ∀ periods t (3.2)

Due to the high cost of developing each draw point, approximately
$300,000, production will typically ramp up over the first few years.

This can be handled by imposing a maximum number, mt to open each
year t, i.e., m1 = 50,m2 = 120,mt = 200 for t ≥ 3.

57

Chapter 3. Sequence Optimization in Block Cave Mining

Ideally, the ramping rate would be dictated by the model and be a func-
tion of the opening cost and the initial available money. A budget constraint
for each period would ensure that the draw point opening expenditure did
not exceed the available money plus any revenue generated. In reality, the
opening cost is incurred at time zero, and the revenues start to flow back at
time 1. In the current structure of the model, the revenue has been lumped
to a NPV to the end of the first period after opening – so all the revenues
would occur at time 1 instead of distributed over the assumed life of the
draw point. To approximate, we could take the total NPV and distribute it
evenly over the life of the draw point. If more detailed information of the
revenue variation over time was available it could also be included.

Tunnel Development

The mechanics of Block Cave Mining impose two main tunnel development
constraints, one within-tunnel and the other across-tunnels.

Additional Constraints :

Within-Tunnel Contiguity Within a tunnel, the draw point open-
ing starts at one point in a tunnel, then progresses successively in
both directions along the tunnel. There are no gaps left between
open draw points.

Across-Tunnel Contiguity Between tunnels, the opened draw points
must form some sort of contiguous cave. Thus when the first draw
point in a tunnel is opened, it must be next to opened draw points
in an adjacent tunnel.

These constraints are difficult to write in algebraic form. Several options
will be presented in this work.

3.2.5 Unconstrained Sequence Optimization as a Draw
Point Scheduling Model

The unconstrained version has the Start Once (3.1) and Global Capacity
(3.2) constraints, but none of the cave defining constraints. A parallel can
be drawn between the unconstrained version of this problem and machine
scheduling problems. The unconstrained version of sequence optimization
can be viewed as scheduling the n draw points as “jobs” on m “parallel,
identical machines”.

58

Chapter 3. Sequence Optimization in Block Cave Mining

This problem is well studied in a non-discounted setting as p‖
∑
wjCj .

See Pinedo (1995) for notation explanation and introduction to scheduling
problems. The objective is to schedule jobs, all available from the first time
period, to minimize the weighted sum of completion times. For the case of
a single machine, the optimal solution can be found using Smith’s Rule or
the Weighted Shortest Processing Time (WSPT) rule: sequence the jobs in
nondecreasing order of their ratio of processing time to weight, pi

wi
. When

there is more than one machine, the problem is NP Hard. Results from this
problem show that once jobs have been allocated to a machine, they are
scheduled using WSPT on that machine.

We look at the discounted problem under two conditions, one of uni-
form draw point duration, and the other when there is no assumption of
uniformity.

Uniform Draw Point Duration pi = p

In the case of uniform draw point duration of p periods, the problem reduces
to deciding which m draw points will open in periods 1, p + 1, 2p + 1 . . .
In the absence of discounting, it does not matter in what order they are
opened. With discounting, it is intuitive that to maximize NPV, the most
valuable draw points should be opened first. We now show that a greedy
algorithm on wi, the total value of the draw point, is optimal.

Proposition 3.1. When scheduling jobs of uniform duration p on m ma-
chines, greedily choosing jobs in non-increasing order of wi, the total value
of the job, maximizes NPV, with discount factor λ.

Proof. It is clear that for non-negative wi it is optimal to start each job as
soon as possible, so it would never be optimal not to start m jobs in the first
period, or to ever have less than m jobs active in any given period (except
at the end if there are no remaining jobs).

We order the jobs by value wi, in non-increasing order, w1 ≥ w2 ≥ . . . ≥
wJ . In period 1 start the m most valuable jobs, i.e., w1, . . . , wm for a value
of
∑m

k=1wk, then, in period p+1, the next m most valuable jobs are started
for a value of

∑2m
k=m+1wke

−λp, etc.
Consider any alternate sequence of the same job values (s1, s2, . . . , sn),

and the resulting schedule defined similarly, by starting the first m jobs, i.e.,
those with values s1, . . . , sm for a value of

∑m
k=1 sk, then, in period p+1, the

next m jobs are started for a value of
∑2m

k=m+1 ske
−λp, etc.

We will switch the first job in the alternate sequence, that does not
match with greedy sequence. Denote this as job r. We have that si =

59

Chapter 3. Sequence Optimization in Block Cave Mining

wi for i = 1 . . . r − 1 and sr < wr. Let sα = wr and we shall switch the
positions of sr and sα. If sr and sα are originally in the same period, then
there is no change to the value of the sequence by making the switch. If
sr was originally in period q + 1 and sα was originally in a later period
q + β + 1, β > 0, then the value of the sequence will change by −sre−λq +
sre
−λ(q+β) − wre

−λ(q+β) + wre
−λq. Reorganizing, the change in objective

value is (wr − sr)e−λq + (sr −wr)e−λ(q+β)= (wr − sr)(e−λq − e−λ(q+β)). For
λ ≥ 0 we conclude that this switch is an improvement to the value of the
sequence and the thus the algorithm gives us an optimal solution.

Non-uniform Draw Point Duration

This problem is more difficult.
In this form the problem is similar to the NP-hard, Garey (1979), schedul-

ing problem p‖
∑
wjCj , which minimizes the sum of delay penalties calcu-

lated as the time to completion (Cj) times a per period penalty (wj). To see
the similarity, assign each draw point i value wdelayi, the total value of the
draw point at the end of its lifetime pi, given that the draw point was started
at period 1. Thus our problem becomes maxi

∑
wdelayie

−λCi. If instead we
had a linear discount T−Ci

T the problem would become maxi
∑
wdelayi

T−Ci
T =∑

wdelayi−
∑
wdelayi

Ci
T , and the similarity to minj

∑
wjCj becomes clear.

However, the discounting in our problem is not linear so a different solution
is needed.

Let’s start with a single machine and a modified greedy algorithm.

Proposition 3.2. When scheduling jobs of non-uniform duration pi, each
with total value wi, on a single machine, greedily choosing jobs in non-
increasing order of wi

1−eλpi , maximizes NPV, with discount factor λ.

Proof. Order the jobs by ratio of wi
1−eλpi in non-increasing order and run

the jobs in that order. Again it is clear that the machine should always be
busy for non-negative wi. The total objective value will be w1 + w2e

−λp1 +
w3e

−λ(p1+p2) + . . .+ wJe
−λ(p1+...+pJ−1). Consider any alternate sequence of

the same ratios (s1
1−eλd1 ,

s2
1−eλd2 , . . . ,

sn
1−eλdn). Running the jobs in this or-

der will result in an objective value of sw1 + s2e
−λd1 + s3e

−λ(d1+d2) + . . .+
sJe
−λ(d1+...+dJ−1). Let r be the position of the first ratio in the alternate se-

quence that differs from the greedy sequence. We have that si
1−eλdi = wi

1−eλpi
for i = 1 . . . r−1 and sr

1−eλdr <
wi

1−eλpi . Let sα
1−eλdα = wr

1−eλpr . Unless both jobs
have the same duration, or are immediately adjacent to each other, i.e., α =
r+1, more than these two terms in the objective function will change. Let us

60

Chapter 3. Sequence Optimization in Block Cave Mining

first consider the case of adjacent jobs, α = r+1. The objective function will
change by −sre−λ(p1+...+pr−1)−wre−λ(p1+...+pr−1+pα)+sre

−λ(p1+...+pr−1+pr)+
wre

−λ(p1+...+pr−1) = e−λ(p1+...+pr−1)(wr + sre
−λpr − sr − wre−λpα)

= e−λ(p1+...+pr−1)(wr(1 − e−λpα) − sr(1 − e−λpr)) > 0. For λ > 0 this is
an improvement to the value of the sequence. Next look at the case where
α = r + 2. This switch can be broken down into two adjacent job switches.
First change the order of job α = r+ 2 and job r+ 1. We have shown above
that this switch improves the objective value. Now switch jobs α and r.
Since wr

1−eλpr ≥
wr+1

1−eλpr+1
≥ wα

1−eλpα we can again use the argument above to

show that the switch improves the value of the alternate sequence. Since
there is improvement from both of the two adjacent switches we conclude
there is improvement from the switching of jobs r and α. A similar argu-
ment can be made for any switch of jobs and we conclude that the ordering
wi

1−eλpi maximises the objective value.

Next, move on to scheduling on multiple machines. We have shown above
that once the jobs are allocated to each machine, there is a greedy algorithm
that is optimal. It is the allocation of jobs to machines that is the problem. It
can be shown by the following counter-example that using WSPT ordering
to assign to multiple machines is not optimal when minimizing weighted
completion times.

Example: Schedule the 8 jobs shown below on three parallel machines;
the jobs have been sorted in nonincreasing wi

pi

Job Number wi pi
wi
pi

1 10 2 5
2 4 1 4
3 9 3 3
4 3 1 3
5 8 4 2
6 9 5 1.8
7 5 3 1.667
8 7 5 1.4

A scheduling of the jobs as ordered above is as follows. In period 1 start
job 1 on machine 1, job 2 on machine 2 and job 3 on machine 3. In period
2 job 2 will be completed with a value of 2, and job 4 is started on machine
2. In period 3 jobs 1, value 20, and 4, value 6, are completed and job 5
is started on machine 1 and job 6 started on machine 2. In period 4 job
3 is completed, value 27, and job 7 started on machine 3. In period 7 job
5 is completed, value 48, and job 8 started on machine 1. Finally, job 7 is

61

Chapter 3. Sequence Optimization in Block Cave Mining

completed in period 6 for a value of 30, job 6 is completed in period 7 for a
value of 63 and job 8 is completed in period 11 for a value of 77. The total
weighted completion time is 275. The job schedule and weighted completion
times are illustrated below.

Period 1 2 3 4 5 6 7 8 9 10 11

Machine 1 job 1 1 5 5 5 5 8 8 8 8 8 total
wiCi 20 48 77 145

Machine 2 2 4 6 6 6 6 6
wiCi 4 6 63 73

Machine 3 3 3 3 7 7 7
wiCi 27 30 57

275
Now let’s switch the scheduled order of jobs 6 and 7. There is no change

in the schedule until period 3. Instead of starting job 6 on machine 2, job
7 is started in its place. In period 4 job 3 is completed and job 6 is started
on machine 3. In period 5 job 7 is completed with a new, lower, value of
25, and job 8 is started on machine 2. Next job 6 completes in period 8 for
an increased value of 72 and job 8 is completed in period 10 for a reduced
value of 70. Overall the weighted completion time is reduced to 272, an
improvement over the original schedule as illustrated below.

Period 1 2 3 4 5 6 7 8 9 10 11

Machine 1 job 1 1 5 5 5 5 total
wiCi 20 48 68

Machine 2 2 4 7 7 7 8 8 8 8 8
wiCi 4 6 25 70 105

Machine 3 3 3 3 6 6 6 6 6
wiCi 27 72 99

272
This example demonstrates that using WSPT is not optimal for schedul-

ing jobs, with non-uniform duration, on multiple machines when minimizing
weighted completion time.

The same example can be used to show that a greedy algorithm on the
ratio wi

1−e−λpi does not maximize total NPV when λ = 0.1. Switching the
order of jobs 6 and 7 increases the NPV from 47.180 to 47.272 as shown
below.

62

Chapter 3. Sequence Optimization in Block Cave Mining

Job Number wi pi
wi
pi

wi
1−e−0.1∗pi Value with Value with jobs

greedy 6 and 7 switched

1 10 2 5 55.167 10 10
2 4 1 4 42.033 4 4
3 9 3 3 34.725 9 9
4 3 1 3 31.525 2.175 2.175
5 8 4 2 24.266 6.550 6.550
6 9 5 1.8 22.873 7.369 6.667
7 5 3 1.667 19.291 3.704 4.094
8 7 5 1.4 17.790 3.842 4.246

total 47.180 47.272

The forgoing shows that even simple variations of this problem are chal-
lenging. This motivates investigating the use of general integer programming
methods.

63

Chapter 3. Sequence Optimization in Block Cave Mining

3.3 Single Tunnel

We begin by capturing the physical neighbour constraints on opening the
draw points begun within a single tunnel, as the Within-Tunnel Contiguity
constraint is a more manageable starting point than the combined Within-
Tunnel Contiguity and Across-Tunnel Contiguity constraints of the two-
dimensional problem.

We assume that a tunnel consist of n draw points and they are numbered
in increasing order along the tunnel, so the neighbours of draw point i are
i − 1 and i + 1. The draw points at the end of the tunnel, 1 and n, each
only have a single neighbour, 2 and n− 1 respectively.

The problem with formulating the single tunnel problem is to write al-
gebraic constraints that result in a single, contiguous cave in each period.
The cave includes previously opened draw points as well as any that may
open in that period.

A simple approach is to say that a given draw point can be started in
a period if either of its immediate neighbours was started in the current or
any previous period, i.e., if considered open in the current period. For the
draw points at the ends of the tunnel there is only one immediate neighbour.

This constraint works if the global capacity constraint is m = 1, but if
multiple draw points can be started in a period then they can be next to
each other and act as open neighbours for each other, since the sum is up
to and including the current period. This can be avoided by only counting
draw points opened in previous periods, i.e., sum to previous period. Un-
fortunately, this would only allow at most two draw points to start each
period, one on each end as no others would have an neighbour open in an
earlier period.

Two formulations were developed for the single tunnel problem. The
alternating constraints formulation, see Section 3.3.1, sums up each odd
subset of draw points in a tunnel. If there is only one cave along the tunnel,
each sum will be at most one. If there are multiple tunnels, at least one sum
will exceed one. There are a large number of these constraints, but we show
a subset that is sufficient if binary variables are used.

In the extended formulation, see Section 3.3.2, an additional binary de-
cision variable is added that compares each draw point to its neighbour and
indicates if that draw point is the first in a new cave. By allowing only one
transition to a new cave, a single, contiguous cave is achieved.

64

Chapter 3. Sequence Optimization in Block Cave Mining

3.3.1 Alternating Constraints Formulation

Single Tunnel: Alternating Constraints

This section describes a model that uses a set of constraints we have called
alternating constraints to achieve the Within-Tunnel Contiguity constraint.

Mathieu Van Vyve (2005) suggested the following set of constraints to
describe the convex hull of the Within-Tunnel Contiguity constraint.

Decision Variables xi,t ≥ 0 xi,t =
∑t

u=1 Si,u and indicates if the draw

point is open in period t. xi,t =

{
1 if draw point i is open
0 otherwise

and the following alternating inequalities:

for any increasing sequence i(1) < i(2) < . . . < i(k) ∈ {1, . . . , n} with
k positive, odd integer

k∑
j=1

(−1)j+1xi(j),t ≤ 1.

The k = 1 constraints, xi,t ≤ 1 are satisfied by the definition that 0 ≤
Si,t ≤ 1 and the Start Once (3.1) constraint.

Van Vyve further suggested that if Si,t is forced to binary, that k = 3 is
sufficient, see Theorem 3.1 below, but the higher values of k are necessary
for the linear relaxation. This is further discussed below.

For a single tunnel of n draw points there are
(
n
3

)
= (n)(n−1)(n−2)

6 , k = 3
constraints plus

(
n
j

)
, k = j constraints for j = 5, 7, . . . , n if integrality of Si,t

is not specified, in each period.

Theorem 3.1. The k = 3 alternating constraints ensure the Within-Tunnel
Contiguity constraint if Si,t are binary. Let C = {x ∈ {0, 1}n | x is contiguous }
and let A = {x ∈ {0, 1}n | xi,t − xj,t + xl,t ≤ 1 ∀ i < j < l ∀ t}. We claim
that A = C.

Proof. It suffices to show C ⊆ A and A ⊆ C.
Start with the first, that every consecutive vector satisfies all the (k = 3)

alternating constraints.
Given x ∈ C, for any pair xi,t, xj,t i < j there are 4 cases

(xi,t = 0, xj,t = 0) Then for any xl,t, l > j the alternating sum will be ≤ 1

(xi,t = 0, xj,t = 1) Then for any xl,t, l > j the alternating sum will be ≤ 0

65

Chapter 3. Sequence Optimization in Block Cave Mining

(xi,t = 1, xj,t = 1) Then for any xl,t, l > j the alternating sum will be ≤ 1

(xi,t = 1, xj,t = 0) Then since x ∈ C, for any l > j xl,t = 0 and the alter-
nating sum will be zero.

Thus x ∈ A and C ⊆ A.
For the reverse, take x ∈ A. By definition, x satisfies all of the k = 3

alternating constraints. For x ∈ {0, 1}n the only way to fail the alternating
constraint is to have the triple {xi,t, xj,t, xl,t} = {1, 0, 1},∀ i < j < l. Thus
x ∈ A means that for every pair {xi,t, xl,t}, i < l, if xi,t = 1 and xl,t = 1
then each xj,t = 1 ∀ i < j < l. This means that there are no “gaps” in the
1’s, and thus x ∈ C and A ⊆ C.

In fact, some of the k = 3 alternating constraints are redundant and not
all
(
n
3

)
are required.

Lemma 3.2. One sufficient set of k = 3 alternating constraints is xi,t −
xi+1,t + xl,t ≤ 1 ∀ i+ 1 < l. There are (n−1)(n−2)

2 constraints in each period
in this set.

Proof. Let B = {x ∈ {0, 1}n | xi,t − xi+1,t + xl,t ≤ 1 ∀ i+ 1 < l}.
Following the proof for Theorem 3.1, we first recognize that since B is

a subset of A, every consecutive vector satisfies the subset of the (k = 3)
alternating constraints.

For the reverse, take x ∈ B. By definition, x satisfies the subset of the
k = 3 alternating constraints. For x ∈ {0, 1}n the only way to fail the
alternating constraint is to have the triple {xi,t, xj,t, xl,t} = {1, 0, 1},∀ i <
j < l.

Since x ∈ B, for every pair {xi,t, xl,t}, i < l, if xi,t = 1 and xl,t = 1 then
xi+1,t = 1 ∀ i+ 1 < l. Thus if xi,t = 1 and xl,t = 1, then xi+1,t = 1. Now we
have xi+1,t = 1 and xl,t = 1, so xi+2,t = 1. Thus each pair {xi+u,t, xi+u+1,t}
will both be 1 ∀ u < l − 1 − i. This means that there are no “gaps” in the
1’s, and thus x ∈ C and B ⊆ C.

Separation of Alternating Constraints

There are potentially a huge number of alternating constraints, roughly
2n−1, the number of odd subsets of {1, . . . , n}.. If these constraints do
describe the convex hull of the contiguity constraint, it may be more useful to
employ a “Branch and Bound” strategy (Wolsey 1998). This would require

66

Chapter 3. Sequence Optimization in Block Cave Mining

a separation algorithm to determine if a produced x vector were in the hull,
and if not, which constraints it violated.

The following algorithm is a first attempt at a separation algorithm for
the k = 3 alternating constraints. The idea is to start with the x(i) entries
with the highest value. If adding them together does not get us over the 1
hump, then there is no chance of subtracting something and staying over 1.

Algorithm for k = 3 alternating constraints
Start with vector x(i), 1 ≤ i ≤ n with i designating the position in the

tunnel, i = 1 at one end and i = n at the other.
Create d(j), a sorting of x, such that d(j) gives the position in the tunnel

of the jth largest value of all x(i), i.e., d(1) = a if x(a) ≥ x(k) ∀ k = 1, . . . , n
and d(n) = a if x(a) ≤ x(k) ∀ k = 1, . . . , n

Start with the highest two x values, if their sum is not greater than one,
stop. If they do, look for an x located between them in the tunnel that,
when subtracted from the sum, does not bring the total below 1. If one
cannot be found, go on to next highest value and try again.

procedure k = 3(x, n)

1: if x(d(1)) + x(d(2)) ≤ 1 then
2: STOP {will never find a triple to violate the constraints.}
3: end if
4: if x(d(1)) + x(d(2))− x(d(n)) ≤ 1 then
5: STOP {will never find a triple to violate the constraints.}
6: end if
7: for j = 1 : n− 1 do
8: if x(d(j)) + x(d(j + 1)) ≤ 1 then
9: STOP {no more options of finding a triple}

10: end if
11: for l = j + 1 to N do
12: if x(d(j)) + x(d(l)) > 1 then
13: {continue and look for a middle value to complete the triple}
14: for h = min{d(j), d(l)}+ 1 to max{d(j), d(l)} − 1 do
15: if x(d(j))− x(h) + x(d(l)) > 1 then
16: {have violation, record and proceed to next h}
17: end if
18: end for{next h}
19: end if
20: end for{next l}
21: end for{next j}

Running Time: The actual running time will be a function of the num-

67

Chapter 3. Sequence Optimization in Block Cave Mining

ber of constraints that are violated. To estimate the worst-case run time,
consider that all triples are checked, so the run time is O(n3) as there are
n3 triples.

Related Work

In the unit commitment problem Rajan (2005), machines are scheduled
to meet known future demand at minimum cost. For some machines, for
example electric generators, there are requirements on the minimum time
that they must be run, and the minimum time that they must be down before
restarting. If the operating status of a generator is modelled using a binary
variable for each period, then the problem is to create sequences of ones and
zeros that meet the demand and are long enough to meet the minimum up
and down times. Lee (2003) developed a set of constraints for the relaxation
of this problem which they called the “alternating up inequalities” (for the
time periods the machine is running) and “alternating down inequalities”
(for the periods the machine is down) and presented a separation algorithm
that runs in linear time. Rajan (2005) studied an extension of this problem
in which there are start-up and shut-down costs. In order to track these
costs, an additional binary variable that indicates if a machine is started up
in a given period is needed. This new variable is then used in a set of “turn
on/off inequalities” which limit the number of start-ups/shut-downs in each
interval of length minimum up time /minimum down time. This new set
of inequalities dominates the “alternating up/down” inequalities, and it is
also “much smaller in size”. A linear time separation algorithm is presented
for use in a branch-and-cut algorithm. This additional variable and set of
inequalities is a more general form of the second formulation we developed
for the single tunnel problem, which is presented below.

3.3.2 Extended Formulation

The idea behind the extended formulation is based on the spatial setting of
the draw points in the tunnel and the requirement that a group of opened
draw points must have a starting point, or first opened draw point, as one
moves along the tunnel in order of increasing draw point number. The
beginning of a set of open draw points is characterized by moving from an
unopened draw point to an opened one. Setting a limit of only one such
transition results in one contiguous set of open draw points. We have called
it an extended formulation as an additional decision variable that marks the
draw point where the transition occurs, has been added.

68

Chapter 3. Sequence Optimization in Block Cave Mining

Single Period

In the single tunnel, single period setting, the problem is to determine which
contiguous set of draw points to open. Since there is only one period, either
a draw point is open/active in the period or remains unopened; we need not
be concerned about draw points that are open/inactive.

Data : pi, wi, λ,m

n number of draw points in tunnel

Decision Variables : Si,t

Fi,t Binary decision variable modelling the “first” open draw point in
the tunnel in period t, 1 ≤ i ≤ n.

Fi,t =

1 if draw point i is the first open draw point along the

tunnel in period t,
0 otherwise

Then since there is only one period and hence no discounting, the ob-
jective is

max
∑n

i=1wiSi,1

Constraints :

Start Once (3.1)

Global Capacity (3.2)

One First Open at most one first open draw point.

n∑
i=1

Fi,1 ≤ 1 (3.3)

Definition of First Open i can only be first open draw point if i is
open and i− 1 is unopened, 2 ≤ i ≤ n

Fi,1 ≥ Si,1 − Si−1,1 (3.4)

Definition of First Open, First Draw point in Tunnel draw point
1 can only be first open draw point if it is open.

F1,1 ≥ S1,1 (3.5)

69

Chapter 3. Sequence Optimization in Block Cave Mining

First Open Must have Started i can not be first open draw point
if unopened, 1 ≤ i ≤ n.

Fi,1 ≤ Si,1 (3.6)

The new binary variable Fi,1 calculates any difference between two draw
points in their cumulative operating history, and indicates the beginning of
a contiguous group of open draw points. Beginning is defined in the sense
of moving down the tunnel of consecutively numbered draw points starting
from the lowest numbered one.

Thus, Fi,1 = 0 if both, or neither, draw point i and i− 1 are open, or if
i is open, but i − 1 is not. This definition is enforced by the Definition of
First Open (3.4) constraint. Definition of First Open, First Draw Point in
Tunnel (3.5) is included to indicate when the first open draw point is at the
beginning of the tunnel. In order to form a contiguous group, the sum of
Fi,1 i = 1 . . . n must be 1 (unless nothing is open and the sum would be 0).

This single tunnel, single period problem can be framed as a most prof-
itable path problem with the network shown in Figure 3.9 with one unit
available to flow from source to sink. The nodes {1, n} represent the draw
points in the tunnel and the nodes {1′, n′} represent the open draw points.
Leaving the source, the unit chooses the path Fs,1, s ∈ {1, n}, the variable

Figure 3.9: Network Representation of Single Tunnel in One Period

indicating which draw point is the first open in the tunnel in the first period.
Next the unit continues along the horizontal path until the node denoting
the last open draw point, t, t ∈ {s, n} is open, before travelling to the sink.
As a result, arcs Ss,1, Ss+1,1, . . . , yt are chosen and set to 1.

This problem has an integral optimal solution when the binary con-
straints on Fi,1 and Si,1 are relaxed. We can show this by first showing
that a simple network flow with integral capacities has an integral optimal

70

Chapter 3. Sequence Optimization in Block Cave Mining

solution. Then we show a transformation from the simple network to that
in Figure 3.9.

Figure 3.10 shows a simple network with a source and sink and n nodes.
The flow on each of the arcs are given by the variables below.

Figure 3.10: Simple Network

let
xs,i be the flow from the source to draw point i
xi,z be the flow from draw point i to the sink
xi,j be the flow from draw point i to draw point j = i+ 1

Then the objective is
max

∑n
i=1wi(xs,i + xi−1,i)

subject to ∑n
i=1 xs,i ≤ 1 send at most one unit

of flow from source
xs,1 = x1,2 + x1,z flow balance on node 1
xs,i + xi−1,i = xi,i+1 + xi,z 2 ≤ i ≤ n flow balance on node i

The Integral Flow Theorem, Dantzig (1956), states that if the capacities
of a network are integers, then there exists an integral maximum flow.

The integrality of the optimal solution can also be shown through uni-
modularity. A linear programming problem of the form max{cx : Ax ≤
b, x ∈ Rn+} will have an optimal solution that is integral if the matrix A
is totally unimodular Wolsey (1998). There are three conditions that are
sufficient to show that matrix A is totally unimodular, and we can show
they are met with the problem above. First, all elements aij ∈ {−1, 0,+1},
which is true for this problem. Secondly, each column contains a most two
nonzero coefficients. If A is constructed in the order of the constraints listed
above, we can see that each xs,i will appear in the first row, then again in
row for the balance on node i, meeting the condition. Similarly, xi,z only

71

Chapter 3. Sequence Optimization in Block Cave Mining

appears in the row for the balance on node i, meeting the condition. Finally,
xi,i+1 appears once in the balance on node i− 1 and once in the balance on
node i again meeting the condition. The third condition is that there is a
partition (M1,M2) of the set M of rows such that each column j containing
two nonzero coefficients satisfies

∑
i∈M1

aij−
∑

i∈M2aij
= 0 (Wolsey (1998)).

If we partition A such that M1 is the constraint on the flow from source,
and M2 is the remaining constraints, we can satisfy this third condition and
show that A is totally unimodular and the problem will have an integral
optimal solution.

Next we show the translation from the simple network problem Fig-
ure 3.10 to the single tunnel, single period problem Figure 3.9. To show
the translation, split each node into two and
let

Fi,1 = xs,i
S1,1 = xs,1

Si,1 = xi−1,i + xs,i the flow between two parts of each node
And we get the formulation for the single tunnel above, which will also

have an integral optimal solution.
max

∑n
i=1wi(xs,i + xi−1,i) =

∑n
i=1wiSi,1

subject to ∑n
i=1 xs,i ≤ 1 becomes

∑n
i=1 Fi,1 ≤ 1

xs,1 = x1,2 + x1,z S1,1 = S2,1 − F1,1 + x1,z
S1,1 ≥ S2,1 − F1,1

F1,1 ≥ S2,1 − S1,1
xs,i + xi−1,i = xi,i+1 + xi,z Fi,1 + Si,1 − Fi,1 = Si+1,1

−Fi+1,1 + xi,z 2 ≤ i ≤ n
Fi+1,1 ≥ Si+1,1 − Si,1 2 ≤ i ≤ n

While this result is promising for the extended formulation, the addition
of the Global Capacity Constraint (3.2) can result in fractional solutions.

72

Chapter 3. Sequence Optimization in Block Cave Mining

Multiple Periods

In a single tunnel, multiple period setting a contiguous set of draw points
is opened in the first period. As each active draw point reaches the end of
its duration pi, it becomes open but inactive and an additional draw point
may be opened. The newly opened draw points in each period together
with the previously opened draw points (both active and inactive) must be
part of contiguous set. In each period, the capacity constraint parameter m
provides an upper limit on the number of active draw points.

The formulation becomes

Data : n, pi, wi, λ,m

T number of periods in the lifetime of the mine

Decision Variables : Si,t, Fi,t

Now with multiple periods, the discounting appears in the objective
function:

max
∑n

i=1wi
∑T

t=1 Si,te
−λt

And the constraints are extended to include multiple periods

Constraints :

Start Once (3.1)

Global Capacity (3.2)

One First Open at most one first open draw point, in each period

n∑
i=1

Fi,t ≤ 1 ∀ 1 ≤ t ≤ T (3.7)

Definition of First Open i can only be first open draw point if i is
open and i− 1 is unopened, 2 ≤ i ≤ n

Fi,t ≥
t∑

u=1

Si,u −
t∑

u=1

Si−1,u ∀ 1 ≤ t ≤ T (3.8)

Definition of First Open, First Draw point in Tunnel draw point
1 can only be first open draw point if it is open.

F1,t ≥
t∑

u=1

S1,u ∀ 1 ≤ t ≤ T (3.9)

73

Chapter 3. Sequence Optimization in Block Cave Mining

First Open Must have Started i can not be first open draw point
if unopened, 1 ≤ i ≤ n.

Fi,t ≤
t∑

u=1

Si,u ∀ 1 ≤ t ≤ T (3.10)

74

Chapter 3. Sequence Optimization in Block Cave Mining

3.3.3 Computational Results

A series of runs were done to test the practicality of computing with the two
formulations. CPLEX 9.1 was used on a computer with an Intel Pentium(R)
D CPU 3.20 GHz processor with 1.99 GB of RAM for all computational runs.

k = 3 Extended Formulation
Alternating Constraints

Number of Variables D × T 2D × T
(all binary) (half are binary)

Number of Constraints approx D2 × T approx 2D × T
Example 1:

single tunnel 300 binary 300 binary, 300 continuous
10 draw points 1,120 constraints 650 constraints
time to solve 2.23 seconds 1.59 seconds

Example 2
single tunnel 1,150 binary 1,150 of each

23 draw points 11,623 constraints 2,423 constraints
time to solve 15,701 seconds 1,513 seconds

Table 3.1: Table of Single Tunnel Comparison of Alternating Constraints
Formulation and Extended Formulation

These runs showed that for small tunnels there was little difference in
the computation times in CPLEX between the two formulations. However,
when the tunnel got longer, the extended formulation solved much quicker
than the alternating constraints. Hence we will use the extended formulation
as we move towards multiple tunnel formulations in the next section.

75

Chapter 3. Sequence Optimization in Block Cave Mining

3.4 Multiple Tunnels

3.4.1 Introduction/Overview

With this understanding of the single tunnel problem, we move to the real
mine setting of multiple tunnels. In this setting the idea of one contiguous
cave still holds within a tunnel, but is expanded to link together activity
within adjacent tunnels.

The biggest challenge in this work is the definition of an acceptable cave,
and writing the constraints to achieve it. It is not fully clear from discussions
with Gemcom exactly just what ‘acceptable’ means here, and thus there is
some trade-off between mathematical tractability and goodness of the model.

The models fall into three main approaches. The first (see Section 3.4.3)
is an expansion of the single tunnel formulations discussed in the previous
section. Keeping the Within-Tunnel Contiguity conditions, the indices of
the decision variables are expanded to reflect multiple tunnels. In partic-
ular, a second dimension approximately perpendicular to the tunnels and
called “across-tunnel” is added. The same ideas for contiguity (either alter-
nating constraints or extended formulation) are applied in the across-tunnel
direction to satisfy the Across-Tunnel Contiguity constraint.

The second model, (see Section 3.4.4) comes from a suggestion by Malkin
& Wolsey (2006). They propose a series of models, but realize that in the 2-
dimensional setting (multiple tunnels) it is hard to guarantee the formation
of a single contiguous cave. Instead, multiple contiguous caves could be
produced. Their suggestion is a model based on a centre point, where only
draw points connected to the centre points by open (active or inactive) draw
points can be opened.

The third set of models, (see Sections 3.4.5— 3.4.7) is motivated by the
desire of practitioners (see e.g., Deiring (2006)) to have a “diamond-shaped”
cave. The diamond is defined by its vertices and all draw points within the
diamond should be open and will be explained more fully later. Finding the
relationship between vertices and the draw points is the challenge of this
modelling approach.

3.4.2 Computation and Data Sets

In order to develop the models proposed in this work, Gemcom made avail-
able four data sets to us. See Figure 3.11 for the mining footprints of the
four data sets. In the figures, the circles represent the draw points and
the zig-zag lines represent the tunnels. These four data sets include one
footprint (data set P2) that is (almost) convex, but the others display the

76

Chapter 3. Sequence Optimization in Block Cave Mining

Data Set P1 Data Set P2

Data Set P3 Data Set P4

Figure 3.11: Footprints of Data Sets Provided for Model Development

variety of footprint shapes that can be encountered in actual mines. Data
set P3 has the additional property of two distinct ore bodies.

The data sets also demonstrate the size variations encountered in mine
planning. Table 3.2 show that these sets range from 236 draw points up to
3181 draw points.

Unfortunately this data is confidential and so is not publicly available.
Some of these data sets will be referred to in the model description sections
later in this document. Multiple data sets were provided to illustrate some
of the possible footprint variations, and to aid in model development. Not
all of the data sets were used for all models. The performance of all the
models will be compared on two additional data sets in Section 3.5. These
data sets were not involved in the model development.

77

Chapter 3. Sequence Optimization in Block Cave Mining

Number of Tunnels Total Number of Draw Points
Data Set P1 31 780
Data Set P2 14 236
Data Set P3 33 3181
Data Set P4 39 2387

Table 3.2: Size of Data Sets Provided for Model Development

3.4.3 Adapting Single Tunnel Formulations

This section shows the extension of the single tunnel formulations to cover
the mine footprint. Unfortunately, the computational results at the end
of this section will show that these are not sufficient to guarantee a single
contiguous cave.

Basic Model Formulation

In moving from the one tunnel setting to multiple tunnels, the challenge is to
incorporate the Across-Tunnel Contiguity Constraint. This constraint ap-
peared to have direct parallels to the Within-Tunnel Contiguity Constraint
in that the cave had to start in one tunnel or a number of parallel tunnels,
and gradually grow outwards leaving no gaps. From this idea the single
tunnel models were adapted by writing contiguity constraints similar to the
Within-Tunnel Constraints, for the across-tunnel direction.

We proposed two formulations for single tunnel, alternating constraints
and extended formulation. In theory we could apply either of these in the
within and across-tunnel directions, for a total of four combinations. The
combination of extended formulation for both directions was used since the
extended formulation performed so well in the single tunnel setting.

The Basic model formulation is shown below. Note that the draw point
index is now two dimensional such that ·, dpt is within tunnel and tn, · is
across-tunnel. In the draw point numbering example shown in Figure 3.12,
the six horizontal tunnels are numbered from bottom to top, and the draw
points from left to right. The across-tunnel dimension runs from bottom to
top and includes the (tn, dpt), (tn, dpt + 1) pair from each tunnel, for each
odd dpt.

Data : T,m, λ

nTNLS the number of tunnels in the mine

78

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.12: Example of Tunnel Numbering

Fdpttn the number of the first draw point in tunnel tn, 1 ≤ tn ≤
nTNLS

Ldpttn the number of the last draw point in tunnel tn, 1 ≤ tn ≤
nTNLS

ptn,dpt the expected duration or periods draw point dpt in tunnel tn
will remain open, 1 ≤ tn ≤ nTNLS, dpt = Fdpttn . . . Ldpttn

wtn,dpt the expected total NPV, if started immediately, of draw point
dpt in tunnel tn, 1 ≤ tn ≤ nTNLS, dpt = Fdpttn . . . Ldpttn

Decision Variables :

Stn,dpt,t binary variable that is 1 in the period the draw point is opened

79

Chapter 3. Sequence Optimization in Block Cave Mining

Ftn,dpt,t binary variable that is 1 if the draw point is the first along
the tunnel to be open in the period

Gtn,dpt,t binary variable that is 1 if the draw point is the first across
the tunnel to be open in the period

Total Number of (binary) Decision Variables: nDPTS × T × 3

Objective :

maxV alue =

nTNLS∑
tn=1

Ldpttn∑
dpt=Fdpttn

wtn,dpt
∑
t

Stn,dpt,te
−λ(t−1)

Constraints :

Start Once
T∑
u=1

Stn,dpt,u ≤ 1 ∀ tn, ∀ dpt (3.11)

Global Capacity

nTNLS∑
tn=1

Ldpttn∑
dpt=Fdpttn

t∑
u=t−ptn,dpt

Stn,dpt,u ≤ m ∀ t (3.12)

Define First Along Tunnel A draw point is the first along the tun-
nel to be open if it is open but the previous draw point is not

Ftn,dpt+1,t ≥
t∑

u=1

Stn,dpt+1,u −
t∑

u=1

Stn,dpt,u ∀ t, ∀ tn, ∀ dpt (3.13)

First Along Tunnel Must be Open A draw point must be open
to be the first along the tunnel

t∑
u=1

Stn,dpt,u − Ftn,dpt,t ≥ 0 ∀ t, ∀ tn, ∀ dpt (3.14)

Only One First Along Tunnel Each tunnel can only have one first
to be open in each period

Ldpttn∑
dpt=Fdpttn

Ftn,dpt,t ≤ 1 ∀ t, ∀ tn (3.15)

80

Chapter 3. Sequence Optimization in Block Cave Mining

Define First Across Tunnel A draw point is the first across the
tunnel to be open if it is open but the previous draw point is not.
The next draw point is either in the same tunnel or the adjacent
one

Gtn,dpt,t ≥
t∑

u=1

Stn,dpt,u −
t∑

u=1

Stn,dpt+1,u ∀ t, ∀ tn, ∀ dpt odd

(3.16)

Gtn,dpt,t ≥
t∑

u=1

Stn,dpt,u −
t∑

u=1

Stn−1,dpt−1,u ∀ t, ∀ tn, ∀ dpt even

(3.17)

First Across Tunnel Must be Open A draw point must be open
to be the first across the tunnel

t∑
u=1

Stn,dpt,u −Gtn,dpt,t ≥ 0 ∀ t, ∀ tn, ∀ dpt (3.18)

Only One First Across Tunnel

nTNLS∑
tn=1

(Gtn,dpt,t +Gtn,dpt+1,t) ≤ 1 ∀ t, ∀ dpt odd (3.19)

Total Number of Constraints : nDPTS+T+nDPTS×T×4+nTNLS×T×2

Results

We had success with data set P1 (see Section 3.4.2); the formulation pro-
duced a single, contiguous cave that grew over time. The progression is
shown in Figure 3.13

Unfortunately, the results for data set P2 were not so nice, see Fig-
ure 3.14. In the first period the opening pattern has two distinct caves,
violating our goal of a single, contiguous cave.

As this result does not violate the constraints as written in the formu-
lation, it points out a failing of the formulation. Conceptually, in order
to guarantee a single, contiguous cave these constraints would have to be
applied across every possible axis through the mining footprint. Our formu-
lation only addresses two axes, along and across the tunnels and hence does

81

Chapter 3. Sequence Optimization in Block Cave Mining

First Period Opening Pattern First 6 Periods Opening Pattern

First 12 Periods Opening Pattern First 17 Periods Opening Pattern

Figure 3.13: Opening Patterns from Data Set P1 using Extended Formula-
tion Within-Tunnels and Across-Tunnels

not guarantee a single cave. It apparently would take a much bigger, more
complicated formulation to try to truly enforce contiguity.

Even though this model does not guarantee a single cave, it could prove
useful to the mine planner. In Section 3.5 the performance of this model
is compared to others we developed for this problem. If a single cave is
produced, it is a feasible solution. If a single cave is not produced, the
solution highlights high value draw point groups in the mining footprint.
The result can also form an upper bound against which solutions from other
models can be compared.

The appearance of multiple caves in data set P2, but not in data set
P1 led us to rely more heavily on data set P2 than data set P1 for the
development of the other models.

82

Chapter 3. Sequence Optimization in Block Cave Mining

First Period Opening Pattern First 20 Periods Opening Pattern

Figure 3.14: Opening Patterns from Data Set P2 using Extended Formula-
tion Within-Tunnels and Across-Tunnels

Contribution

The Basic formulation presented in this section is a new idea I developed
for this thesis work. The formulation and implementation is new work on
the problem of Sequence Optimization and is part of the contribution of this
thesis to the research literature.

83

Chapter 3. Sequence Optimization in Block Cave Mining

3.4.4 Malkin and Wolsey’s 2D Integral Formulation

Motivated by the possibility of obtaining a disconnected solution from the
two-dimensional solution proposed in Malkin (2006), Malkin and Wolsey
proposed an integral two-dimensional formulation (Section 3.1). This formu-
lation chooses a starting or centre point with coordinates (r, c), and ensures
that the row and column of this centre point form a dominant axis of the
opened draw points in each period. They write “The row with the largest
interval must be r and the column with the largest interval must be c” and
“The region somewhat resembles a diamond” which is good in practice.

Formulation

The formulation suggested by Malkin and Wolsey, translated to our standard
variables, is as follows

Data :

r, c the coordinates of the centre point, where the diamond axes in-
tersect

Decision Variables : Stn,dpt,1

Constraints : The column-wise neighbour between the draw point and
column c must be open to open draw point tn, dpt:

Stn,dpt,1 ≤ Stn,dpt+1,1 ∀ tn, ∀ dpt < c (3.20)

Stn,dpt,1 ≤ Stn,dpt−1,1 ∀ tn, ∀ dpt > c (3.21)

Similarly, the row-wise neighbour between the draw point and row/tunnel
r must be open to open draw point tn, dpt:

Stn,dpt,1 ≤ Stn+1,dpt,1 ∀ tn < r, ∀ dpt (3.22)

Stn,dpt,1 ≤ Stn−1,dpt,1 ∀ tn > r, ∀ dpt (3.23)

84

Chapter 3. Sequence Optimization in Block Cave Mining

Adapting to Mining Layout

The formulation proposed by Malkin has two apparent drawbacks. The first
is that the centre point must be specified. This can be overcome by running
the formulation using each draw point as the centre point (nDPT times)
and evaluating the objective function for each centre point. This may be
feasible for a smaller mine but may be too time consuming for the larger
mines. Alternatively, a heuristic could be developed to select good centre
points. The second drawback is that since the axes are set by the centre
point, the axes for the diamond are fixed for the duration of the mine. In
reality, a better schedule might result from allowing the axes to vary over
time as is possible under current methods.

This formulation requires two approximately perpendicular axes which
can be realized in the tunnels and the across direction discussed in the
previous section. We use the convention that in the mining data, the “rows”
are the tunnels and the “columns” are the across-tunnel pairs of draw points.
Using the naming convention (tunnel, across), the draw points zigzag down
the tunnels as shown earlier in Figure 3.12.

If we choose the centre point 4, 21 we get the axes for the diamond as
shown by the dark line in Figure 3.15. It might seem that the results from
centre point 4, 21 and centre point 4, 22 would be the same, but this is not
necessarily true. For example, if draw point 4, 22 has a low value, a cave
generated from centre point 4, 21 may not include 4, 22 and draw points in
adjacent tunnels. However, draw points on these tunnels may be included
if low valued 4, 22 were chosen as the centre point, resulting in a different
cave.

Malkin Model Formulation

The Malkin formulation is as follows

Data : nTNLS, Fdpttn, Ldpttn, T,m, ptn,dpt, wtn,dpt, λ

TnC,DptC the coordinates of the centre point, where the diamond
axes intersect

Decision Variables : Stn,dpt,t

Total Number of (binary) Decision Variables: nDPTS × T

85

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.15: Example of Centre Point 4,21

Objective :

maxV alue =

nTNLS∑
tn=1

Ldpttn∑
dpt=Fdpttn

wtn,dpt
∑
t

Stn,dpt,te
−λ(t−1)

Constraints :

Column Connected The column-wise neighbour between the draw
point and column c must be open in order to open draw point
i, j:

t∑
u=1

Stn,dpt,u ≤
t∑

u=1

Stn,dpt+1,u ∀ tn, ∀ dpt < DptC, ∀ t (3.24)

86

Chapter 3. Sequence Optimization in Block Cave Mining

t∑
u=1

Stn,dpt,u ≤
t∑

u=1

Stn,dpt−1,u ∀ tn, ∀ dpt > DptC, ∀ t (3.25)

Row Connected The row-wise neighbour between the draw point
and row r must be open to open draw point i, j:

t∑
u=1

Stn,dpt,u ≤
t∑

u=1

Stn+1,dpt+1,u ∀ tn < TnC, ∀ dpt odd, ∀ t

(3.26)

t∑
u=1

Stn,dpt,u ≤
t∑

u=1

Stn,dpt−1,u ∀ tn < TnC, ∀ dpt even, ∀ t

(3.27)

t∑
u=1

Stn,dpt,u ≤
t∑

u=1

Stn,dpt+1,u ∀ tn > TnC, ∀ dpt odd, ∀ t (3.28)

t∑
u=1

Stn,dpt,u ≤
t∑

u=1

Stn−1,dpt−1,u ∀ tn > TnC, ∀ dpt even, ∀ t

(3.29)

Start Once (3.11)

Global Capacity (3.12)

Total Number of Constraints: nDPTS + T + nDPTS × T × 2
Figure 3.16 illustrates the Column Connected Constraints in the tunnel

setting. The arrows point to the draw point that must be open before the
indicated draw point can open. The dark line shows the across-tunnel axis,
and it is evident that all the arrows point towards this axis. The draw
points directly on the axis, in this example those numbered 21, do not have
constraints.

Figure 3.17 shows the Row Connected constraint with the second axis
at tunnel 4, shown in black. Again, the arrows point to the draw point that
must be open before the indicated draw point can open. It is evident that
all the arrows point towards the within-tunnel axis, tunnel 4. The draw
points directly on the axis do not have constraints.

The combined picture is presented in Figure 3.18

87

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.16: Example of Centre Point 4,21 and Direction of the Column
Connected Constraint((3.24)-(3.25)). Each arrow represents a constraint
and points to the draw point that must be opened before the draw point at
the tail of the arrow can open.

88

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.17: Example of Centre Point 4,21 and Direction of the Row Con-
nected Constraint((3.26)-(3.29)). The arrows show the draw point that must
be open before the draw point at the tail of the arrow can open.

89

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.18: Example of Centre Point 4,21 and Arrows for All Constraints

90

Chapter 3. Sequence Optimization in Block Cave Mining

Theoretical Properties

The basic formulation of the one-period model as proposed by Malkin and
Wolsey, (3.20) — (3.23), gives an integral solution. A linear programming
problem of the form max{cx : Ax ≤ b, x ∈ Rn+} will have an optimal solution
that is integral if the matrix A is totally unimodular Wolsey (1998). It is
straightforward to show that A is unimodular and we conclude that the
polyhedron is integral.

The multiperiod formulation presented is more complicated for several
reasons. First, the simple neighbour constraints are extended to the mul-
tiperiod setting. Secondly, the Start Once and Global Capacity constraints
are added.

Nominally, the multiperiod constraints say that a given draw point can
not open in period t unless the neighbour closer to the axis started in period
t or prior. These could be written in the form

Stn,dpt,t ≤
t∑

u=1

Stn,dpt+1,u ∀ tn, ∀ dpt < DptC. (3.30)

Instead we have chosen to use an aggregated form of the constraints (3.24)
— (3.29) which we will show is a tighter formulation. In the aggregated
form, the constraints say a given draw point can only have started in period
t or earlier if the neighbour closer to the centre point started in period t or
prior, for all periods 1 ≤ t ≤ T .

To demonstrate the aggregated constraints are stronger than the dis-
aggregated constraints we look at the following example for a single draw
point.

Period one In period one both constraints are the same

Stn,dpt,1 ≤ Stn,dpt+1,1

Period two In period two the disaggregated constraint is

Stn,dpt,2 ≤ Stn,dpt+1,1 + Stn,dpt+1,2

and the aggregated constraint is

Stn,dpt,1 + Stn,dpt,2 ≤ Stn,dpt+1,1 + Stn,dpt+1,2

This constraint is stronger than the disaggregated one as there are two
non-negative variables on the left-hand side instead of the single one

91

Chapter 3. Sequence Optimization in Block Cave Mining

in the disaggregated constraint. There is also no possibility of having
Stn,dpt,1 = 1 and Stn,dpt+1,2 = 1 since the period one constraint would
require that if Stn,dpt,1 = 1 then Stn,dpt+1,1 = 1 and then the Start
Once constraint would not allow Stn,dpt+1,2 = 1

The following example shows a fractional solution that satisfies the dis-
aggregated constraints (3.30) but violates the aggregated constraints (3.24):

Stn,dpt,1 =
1

2
, Stn,dpt,2 =

1

2

Stn,dpt+1,1 =
3

4
, Stn,dpt+1,2 = 0.

The disaggregated constraints are satisfied:

Stn,dpt,1 =
1

2
≤ Stn,dpt+1,1 =

3

4

Stn,dpt,2 =
1

2
≤ Stn,dpt+1,1 + Stn,dpt+1,2 =

3

4
,

but the aggregated constraints are violated

Stn,dpt,1 =
1

2
≤ Stn,dpt+1,1 =

3

4

Stn,dpt,1 + Stn,dpt,2 = 1 6≤ Stn,dpt+1,1 + Stn,dpt+1,2 =
3

4
.

The multiperiod setting also requires the addition of the Start Once con-
straint. This constraint is required to ensure that the valuable draw points
are not opened multiple times in order to increase the objective value. An
alternative may be to only restrict the centre point, draw point TnC,DptC
to open once.

T∑
t=1

STnC,DptC,u ≤ 1

Combining this constraint with the aggregated neighbour constraints, should
limit the sum

∑T
t=1 Stn,dpt,u to one for all draw points thus ensuring each

opens at most once. This constraint was not tested computationally.
Finally, the Global Capacity constraint is needed in its multiperiod form

to reflect the non-uniformity of draw point durations. If all draw points had
uniform duration then this constraint and the overall formulation could be

92

Chapter 3. Sequence Optimization in Block Cave Mining

simplified. With uniform duration p one is only interested in periods t = kp

for k = 1, 2, . . .
⌊
T
p

⌋
and the Global Capacity constraint becomes

nTNLS∑
tn=1

Ldpttn∑
dpt=Fdpttn

Stn,dpt,t ≤ m ∀ t

Initial inspection suggests that the multiperiod formulation may be in-
tegral with uniform duration of all draw points, but that with varying du-
rations the Global Capacity constraint becomes an obstacle to integrality.

Results

This formulation provides solutions with one, contiguous open cave if the
mine footprint is convex. The shape may not always be a diamond, but it
is based on two axes.

Sample results from data set P2 are shown below in Figure 3.19. The
tunnels are the zig-zag lines running approximately parallel to the horizontal
axis and the axes for the formulation are shown in black and intersect at
the chosen centre point.

However, when the footprint is not convex, multiple caves can form. This
can be seen in Figure 3.20 which shows results on data set P4. The draw
points on the horizontal axis of the diamond are only constrained to have
a neighbour closer to the vertical axis of the diamond. In the case of a gap
in the footprint, the neighbour to the edge draw point is on the other side
of the gap, and it opened in period 1. This allows draw points along the
horizontal axis of the diamond to open and form an additional cave.

This can be fixed by bending the axes around the footprint. We have
chosen to bend the axes around the opening in the mine footprint, then
continue in a straight line tangent to the opening. An example of this is in
Figure 3.21.

This method finds a solution, and finds it relatively quickly for some
centre points in data set P2. Results from runs from data set P2 and data
set P4 are shown in Table 3.3 for comparison. The comment Original Axes
refers to the setting of the axes from the center point even if they cross a
empty section of the mining footprint. The comment Bent Axes means that
the axes are bent around any empty sections. There are no such comments
for data set P2 as there are no empty sections in this data set. While some
runs from data set P2 complete in less than a minute, most runs from data
set P4 still take over an hour. This table also indicates that there are some
variations in objective values from different centre points. Most of the cases

93

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.19: Data Set P2, Period 1 Opening

where the axes are bent took longer to solve than those with the original
axes, but not in all cases. Since the solutions without bent axes resulted in
multiple caves, the extra time is the price for a feasible solution. Similarly,
in most but not all cases the bending of the axes increased the objective
value.

We are still faced with the problem of finding a good centre point.
Since data set P2 has only 236 draw points, the model was repeatedly

run using each draw point as the centre point of the formulation. The results
of these runs show the variation in objective value as well as differences in
running time over the footprint. Table 3.4 and Figure 3.22 below show some
of the results from these runs.

94

Chapter 3. Sequence Optimization in Block Cave Mining

Data Run Time Centre Centre Total comments
Set (sec) Tunnel Dpt NPV
P2 89.8 5 12 452,746 max Total NPV
P2 55.2 6 12 451,207
P2 4,217.9 1 20 412,537 min Total NPV
P2 11.6 5 10 451,894 fastest run time
P2 25,763.7 10 21 424,758 longest run time

P4 3,178.6 13 90 606,162 Original Axes
P4 5,280 13 90 609,400 Bent axes
P4 4,176.4 14 65 608,322 Original Axes
P4 3,105.6 14 65 608,648 Bent axes
P4 3,076.6 14 95 604,280 Original Axes
P4 4,028.3 14 95 607,859 Bent Axes
P4 4,488 28 135 606,454 Original Axes
P4 6,184.9 31 57 607,713 Original Axes
P4 2,978.6 31 103 609,901 Original Axes
P4 3,605 31 103 609,416 Bent Axes

Table 3.3: Table of Running Times of Malkin Model from Data Sets P2 and
P4

95

Chapter 3. Sequence Optimization in Block Cave Mining

Data Set Run Time Centre Centre Total NPV
(sec) Tunnel Dpt

P2 544.234 1 7 435,414
P2 387.891 1 8 436,801
P2 196.031 1 9 443,198
P2 17.188 1 10 443,198
P2 120.422 1 11 443,232
P2 517.094 1 12 444,724
P2 879.984 1 13 443,340
P2 173.406 1 14 442,610
P2 178.844 1 15 437,418
P2 168.516 1 16 436,455
P2 371.829 1 17 430,991
P2 423.516 1 18 429,554
P2 4714.88 1 19 413,992
P2 4217.95 1 20 412,537
P2 1052.12 2 5 431,796
P2 447.437 2 6 432,407
P2 117.297 2 7 439,908
P2 91.828 2 8 441,360
P2 95.094 2 9 445,872
P2 96.234 2 10 446,274
P2 69.625 2 11 446,743
P2 75.36 2 12 447,803
P2 266.407 2 13 447,159
P2 128.313 2 14 446,376
P2 664.437 2 15 442,037
P2 178.843 2 16 441,616
P2 201.047 2 17 434,607
P2 241.547 2 18 434,960
P2 1398.74 2 19 422,581
P2 2149.45 2 20 421,452
P2 557.906 3 5 436,816
...

...
...

...
...

Table 3.4: Partial Table of Running Times for Data Set P2

96

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.20: Data Set P4, Centre Point (14,65)

97

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.21: Horizontal Axis Bent Around Hole in Footprint, Centre Point
(14,65)

98

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.22: Histogram of Total NPV

There is a range of about 9% from the lowest NPV of 412,537 to the
highest NPV of 452,746 for data set P2, so it is worth some effort to find the
centre point yielding the highest value. The distribution is shown in Fig-
ure 3.22. Note, these runs were done with the CPLEX setting of MIPGAP
0.01. This means that computation is stopped when a solution within 1%
of optimality is reached. For this range of objective values, 1% is approxi-
mately 4,400 which explains some of the variation in the results.

A surface plot of objective values over the footprint of the mine is shown
in Figure 3.23 for data set P2. For this data set, highest objective values are
for centre points in the centre of the mine, dropping off quite steeply at the
mine edges. While there is some variation at the centre, there is no single,
small cluster of high objective value points.

Figure 3.24 is a preliminary attempt to heuristically locate the optimal
centre point. Each of the three graphs is a contour plots over the footprint
of the mine for data set P2. The draw points are the intersection of the grid
lines. The tunnels run horizontally across the plot and the across numbering
runs vertically. The plot on the right is for the TOTAL NPV given the
draw point is the centre point for the Malkin model. The dark shape in the

99

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.23: Surface Plot of Total NPV for Data Set P2

centre indicates the highest value draw points. The two plots on the left are
representations of the value of the individual draw points. The top one is the
ratio wi

pi
, the total value divided by the duration. The lower one is the ratio

modified to represent the discount factor and is wi
exp(−λpi) . This figure does

not support the conjecture that individual draw point value predict TOTAL
NPV if used as a centre point. There are three clusters of draw points with
the highest wi

pi
ratio. The top group does not at all overlap with the high

TOTAL NPV draw points, and there are perhaps one or two from the other
two groups that overlap. There are also three clusters of high wi

exp(−λpi) ratio

draw points, but there is only a single draw point (tunnel 4, draw point 10)
that is also in the cluster of high TOTAL NPV draw points.

100

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.24: Projections of the Surface Plots for Draw Point Values of wi
pi

,
wi

exp(−λpi) and Total NPV for Data Set P2

101

Chapter 3. Sequence Optimization in Block Cave Mining

Variation: Wandering Axes formulation

One potential drawback to the formulation proposed by Malkin and Wolsey
is that the axes for the diamonds are fixed over the entire duration of the
mine. It is not clear whether this is an necessary restriction on the mine
growth or not, and it may overly constrain the problem. The following
variation of the above formulation allows the axes to deviate from the tunnel
and draw point chosen as the centre point. The idea is that if the axes are
allowed to deviate, or wander, then the formulation may lead to better
objective values; we have named it the Wandering Axes formulation.

The variation is executed by picking a centre point, then deciding where
the axes will run. When this has been done, the model runs as above with
the constraints requiring neighbours between the draw point and the axes
at the location of the draw point to be open before the draw point can start.

The centre point is heuristically chosen as the draw point with the highest
average value of a cluster of neighbours, and the progress of the axes are also
influenced by the average value of neighbours. The neighbours are defined
as those within a diamond shape containing approximately m draw points
around the centre point. For simplicity we looked at diamond shapes of size
n(n−1)

2 + n−1
2 when n is an odd integer. The diamond extends n−1

2 draw
points along the tunnel, in either direction from the centre point. In the
adjacent tunnel there are n− 2 draw points in the diamond. Each adjacent
tunnel is included with the number of draw points decreasing by two until
n−1
2 tunnels away there is a single draw point in the diamond. Since not

every centre draw point will have a full diamond of neighbours (for example
the draw points at the edge of the mining footprint) the average value over
the number of existing neighbours is used. The following procedure was
used.

1. For each draw point the average neighbour value was calculated. The
total value of the draw point wi was used. The centre point was chosen
as the draw point with the highest neighbour value. For data set P2
a diamond of size 25 was used and the chosen centre point was tunnel
6, draw point 12.

2. The axes started at the chosen centre point TnC,DptC and stayed
with the centre tunnel and draw point in the adjacent tunnels and
draw points for one step. From here the axis following the centre draw
point alternates between choosing the direction of highest neighbour
value in one tunnel, holding that same path in the next tunnel, then
again deciding the highest value route in the next tunnel. That is, in

102

Chapter 3. Sequence Optimization in Block Cave Mining

the next adjacent tunnels TnC±2, the neighbour values of three draw
points (TnC + 2, DptC − 1), (TnC + 2, DptC), (TnC + 2, DptC + 1)
are compared, and the axis moves to the draw point with the highest
neighbour value. The axis stays the same in the adjacent tunnel,
but in the next, a similar choice is made. Similarly, for the along
tunnel axis a decision is made at DptC+2 between (TnC−1, DptC+
2), (TnC,DptC + 2), (TnC + 1, DptC + 2) for the draw point with
the highest neighbour value, and also at DptC − 2 between (TnC −
1, DptC − 2), (TnC,DptC − 2), (TnC + 1, DptC − 2). An example is
shown in Figure 3.25

Figure 3.25: Table of Neighbour Values for Data Set P2. Rows are tunnels
and columns are draw point numbers. The boxes show the three values
considered in each decision and the bold values indicated the selected axes.

In the data set P2 this criterion chose tunnel 6, draw point 12 as the
centre point. The results from this run of the model are shown in Table 3.5.
Runs from the basic Malkin model with centre points 5, 12 and 6, 12 are
included for comparison.

Data Run Time Centre Centre Total Cplex comments
Set (sec) Tunnel Dpt NPV Optimality gap
P2 54.6 6 12 452,530 0.10% Wandering Axes
P2 89.782 5 12 452,746 0.02% basic Malkin
P2 55.156 6 12 451,207 0.36% basic Malkin

Table 3.5: Comparison of Results of Wandering Axes Variation

The results show that the Wandering Axes variation did not give a higher
objective value than the basic Malkin model, in that the values of 452,746 for
the basic model and 452,530 for the Wandering Axes variation are within the

103

Chapter 3. Sequence Optimization in Block Cave Mining

optimality gap of CPLEX. The Wandering Axes variation was successful as a
single run heuristic of approximating in a single run the maximum objective
value obtained by running the basic formulation over all draw points.

Figure 3.26: Results from the Wandering Axes Model Variation on Data Set
P2

Figure 3.26 shows the resulting plan for the mine. The black lines show
the axes. While the along tunnel axis does “wander” there is little movement
in the across-tunnel axis.

Figure 3.27 shows the resulting plan for the mine from the basic Malkin
model centred at tunnel 6 draw point 12. The black lines show the axes and
Figure 3.28 compares wandering axis and basic Malkin model results side
by side.

104

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.27: Results from the Malkin Model Centered at Tunnel 6, Draw
Point 12

(a) (b)

(Wandering Axes) (Basic Malkin)

Figure 3.28: Same Figures Side by Side

105

Chapter 3. Sequence Optimization in Block Cave Mining

This model runs quickly and does produce a single, contiguous cave. The
best value for data set P2 is 452,746. The Wandering Axes heuristic did not
produce a higher objective value, but did closely approach the best value
over the data set. Results from this data set suggest that the extra work
required to determine the changes in the axes was not justified by improved
objective value. The formulation does work so could be evaluated on other
data sets if there was reason to believe an improvement is achievable.

The Malkin model guarantees a single cave in each period which is an
improvement over the Basic model. The main cost of this model is the
determination of the fixed centre point. For smaller data sets it may prove
feasible to run the model for all draw points. In Section 3.5 the performance
of this model is compared to others we developed for this problem.

Contribution

The single period formulation of the Malkin model was suggested by Malkin
and Wolsey after discussions with Maurice Queyranne. They have not pub-
lished this work. Nor, to my knowledge, have they done further work on
it or Sequence Optimization. The extension of the formulation to multiple
periods and the implementation on data sets is new work I did for this thesis
and is part of the contribution of this thesis to the research literature.

106

Chapter 3. Sequence Optimization in Block Cave Mining

3.4.5 Formulations Based on 4 Vertices

A third approach to formulating this problem is rooted in the operational
preference for a diamond-shaped group of draw points in each period (Deir-
ing (2006)). The mining engineers favour a cave with a diamond shape as it
has the desired area to perimeter ratio to have good rock behaviour. Ideally
a square cave is favoured over a long and thin one.

Diering (2006) defines a diamond as “On a given front [of the cave],
the line of draw points is relatively straight”. We define a diamond as a
shape with 4 vertices such that the diagonals intersect at right angles. The
formulations that follow are based on this definition.

4 Vertices

In the 4 Vertices model the general idea is that a diamond is defined by
its 4 vertices which induce its 4 edges and interior points. The points in
a diamond can be described by the number of open neighbours. In the
mine layout a typical draw point has two within-tunnel neighbours and one
across-tunnel neighbour. Draw points at the edges of the footprint may only
have a subset of these three neighbours. Clearly a point in the interior of
the diamond has all three neighbours open. Points on an edge have two
neighbours open and a vertex has either one or two open neighbours.

Diamond Example 1 Diamond Example 2

Figure 3.29: Example of Diamonds with Vertices Having Only One Open
Neighbour

107

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.29 shows examples of diamonds in which the vertices have only
one neighbour. The zig zag lines represent the tunnels and the draw points
occur at the bends in the zig-zag. The vertical lines connect the draw points
to their across-tunnel neighbours. The vertices are marked with asterisks,
draw points with two open neighbours are marked with open circles, and
those with three open neighbours are marked with open squares.

With this picture in mind, an attempt was made to write a formulation
to open draw points if they either have at least two open neighbours or are
one of the four vertices. The size of the diamond is constrained by the Global
Capacity constraint, and each draw point can only be opened once.

There were difficulties in writing the formulation for the constraint to
achieve that a draw point requires two neighbours open, or be one of the
4 vertices in order to open. The attempts quickly identified two problems
with this model concept.

1. The vertex definition of having only one open neighbour does not hold
for all possible diamonds.

2. Interior points are not forced to have all three neighbours open and
holes can form within the diamond

The first problem is illustrated in Figure 3.30. The draw point in the
top vertex position has 2 open neighbours and so can open without being
designated as a vertex. As a result, another draw point, not in this diamond,
can be assigned the vertex and initiate another diamond, not connected to
the one shown.

The second problem arises from the constraint that a draw point must
have at least two open neighbours to open. Ideally there would be one
constraint for edges, allowing only two open neighbours, and one for inte-
rior draw points requiring all three. We were not able to write a set of
constraints that differentiated between edge and interior points. Instead, a
more restrictive definition of the diamond was sought.

108

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.30: Example of Diamond with a (Top) Vertex Having Two Open
Neighbours

109

Chapter 3. Sequence Optimization in Block Cave Mining

2 Vertices and Cones

The 2 Vertices and Cones formulation is an adaptation of the 4 Vertices
formulation to specifically address the target of one contiguous cave. In
this formulation the diamond is identified by a “top” vertex (Vertex1), a
“bottom” vertex (Vertex4), and the intersection of a upward-pointing cone
defined by Vertex1, and an downward-pointing cone defined by Vertex4.

If a draw point is Vertex1 in period t then the draw points in the cone
above it are forced open to form BottomCone for period t. Similarly if a
draw point is Vertex4 in period t then the draw points in the cone below
it are forced open to form TopCone for period t. The draw points in the
intersection of the two cones must either have opened in an earlier period
i < t or in that period t.

Figure 3.31: Three Examples of Pairs of Cones and Their Intersections.
Only when a vertex from each cone are in both cones (middle case) does a
diamond result

The intersections of the two cones will only give the desired diamond
shape if both vertices are in both cones, see Figure 3.31. A constraint is
desired that will ensure that both vertices are in both cones.

The definition of the cones defines the possible shapes that can occur.
More specifically, the definition of the cones fixes the interior angles at each
vertex.

Two attempts were made at this model. In the first, unsuccessful, at-
tempt, constraints were written to define which draw points could be in-
cluded in a cone, but allow the model to determine the actual shape of the
cones during execution. The cone definition began with the corresponding

110

Chapter 3. Sequence Optimization in Block Cave Mining

vertex, then neighbours adjacent to the vertex could be included, then their
neighbours etc. Despite all attempts, the formulations either generated mul-
tiple caves in a single period or over multiple periods, and proved to have
many of the problems of the 4 Vertices model; the results are not presented
here.

The second attempt was based on a much more rigid definition of the
cones. In this 2Cone model there is a defined cone that is forced open
for each vertex. Based on discussions with Gemcom (Deiring (2006)), we
proceeded with cones that grow by two draw points per incremental tunnel.
If the intertunnel spacing equals the inter draw point spacing this will result
in a base angle of approximately 45 degrees.

2Cone Formulation

If the vertices are limited to the footprint of the mine, then it will never be
possible to include all the draw points in the defined cone and open them.
For example, if the top vertex is in the top tunnel at draw point dpt, then
at most its two within-tunnel neighbours dpt− 1 and dpt+ 1 will be in the
cone, and dpt−2 can not open unless the vertex moves to dpt−1 in the next
period. To overcome this difficulty, the space for the vertices is extended
beyond the mine footprint with extra tunnels. In general, enough tunnels
should be added below the first tunnel and above the last tunnel so that the
maximum tunnel length in the footprint can be in a cone if it occurred any
tunnel. An extended footprint is created by adding eTNLS tunnels above
and below the mine footprint. For a cave that grows at two draw points
per tunnel, the eTNLS is one half the longest tunnel length. An example
is shown in Figure 3.32.

Data : nTNLS, T,m, ptn,dpt, wtn,dpt, λ

eTNLS the number of tunnels added above and below the mine foot-
print to create the extended footprint. For a cave that grows by
two draw points per tunnel, the value is half of largest across-
tunnel value for all tunnels, eTNLS = d0.5 ∗maxtn(Ldpttn)e.

Decision Variables :

Stn,dpt,t binary variable that is 1 in the period the draw point is in
both cones in a given period. Note the definition of this variable
is altered slightly for this model only.

111

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.32: An Example of the Extended Footprint for the 2Cone Model.
The outline of the mine footprint is shown, and the 8 tunnels (horizontal
lines) shown in solid lines. Since the longest tunnel is 20 draw points long,
eTNLS = 10 and 10 additional tunnels above and below the mine footprint
are shown in dashed lines. Two example cones are shown, one originating
at a vertex in the extended footprint.

Vertex1tn,dpt,t binary variable that is 1 if the draw point is the bottom
(lowest tunnel) vertex in a given period. This variable is defined
over the extended footprint 1 ≤ tn ≤ nTNLS + eTNLS, 1 ≤
dpt ≤ 2 ∗ eTNLS

Vertex4tn,dpt,t binary variable that is 1 if the draw point is the top
(highest tunnel) vertex in a given period. This variable is defined
over the extended footprint 1 + eTNLS ≤ tn ≤ nTNLS + 2 ∗
eTNLS, 1 ≤ dpt ≤ 2 ∗ eTNLS

BottomConetn,dpt,t binary variable that is 1 if the draw point is the
the cone projecting up from Vertex1 in a given period

TopConetn,dpt,t binary variable that is 1 if the draw point is in the
the cone projecting down from Vertex4 in a given period

112

Chapter 3. Sequence Optimization in Block Cave Mining

Total Number of (binary) Decision Variables: nDPTS × T × 5

Objective :

maxV alue =
nTNLS∑
tn=1

Ldpttn∑
dpt=Fdpttn

wtn,dpt
∑
t

Stn,dpt,te
−λ(t−1)

Constraints :

Start Once (3.11)

Global Capacity (3.12)

One Vertex4 : in each period

nTNLS+2∗eTNLS∑
tn=1+eTNLS

2∗eTNLS∑
dpt=1

V ertex4tn,dpt,t ≤ 1 ∀ t (3.31)

One Vertex1 : in each period

nTNLS+eTNLS∑
tn=1

2∗eTNLS∑
dpt=1

V ertex1tn,dpt,t ≤ 1 ∀ t (3.32)

Define Top Cone : Starting at Vertex4, the cone grows by two draw
points per tunnel.

TopConetn,dpt,t =

nTNLS+eTNLS∑
tun=tn

dpt+(tun−tn)∑
d=dpt−(tun−tn)

V ertex4tun+eTNLS,d,t

∀ tn, ∀ dpt, ∀ t (3.33)

Define Bottom Cone

BottomConetn,dpt,t =

tn∑
tun=1−eTNLS

dpt+(tn−tun)∑
d=dpt−(tn−tun)

V ertex1tun+eTNLS,d,t

∀ tn, ∀ dpt, ∀ t (3.34)

113

Chapter 3. Sequence Optimization in Block Cave Mining

Open Intersection of Cones draw points in both cones must be in
the pattern

In Both
t−1∑
u=1

Stn,dpt,u ≥ TopConetn,dpt,t+BottomConetn,dpt,t−1 ∀ tn, ∀ dpt, ∀ t

(3.35)

In Top

Stn,dpt,t ≤ TopConetn,dpt,t ∀ tn, ∀ dpt, ∀ t (3.36)

In Bottom

Stn,dpt,t ≤ BottomConetn,dpt,t ∀ tn, ∀ dpt,∀ t (3.37)

Previous Cave in Current Cave
t−1∑
u=1

Stn,dpt,u ≤ BottomConetn,dpt,t ∀ tn, ∀ dpt, ∀ t ≥ 2 (3.38)

t−1∑
u=1

Stn,dpt,u ≤ TopConetn,dpt,t ∀ tn, ∀ dpt,∀ t ≥ 2 (3.39)

Total Number of Constraints : nDPTS+T×3+nDPTS×T×7−nDPTS×2
————————————————————————

Results

The 2Cone model was successfully run on data set P2. The model ran in
22 seconds and returned a single cave in each period with a total NPV of
356,187. This model significantly faster than the Malkin model, which took
89 seconds on the maximum value run alone. The value of the 2Cone result
was approx 79% of value of the maximum value Malkin run. The initial cave
was centred in the middle of the footprint, on tunnels 6 and 7, close to the
centre point for the maximum value Malkin run.

In Section 3.5 the performance of this model is compared to others we
developed for this problem on two trial data sets.

Contribution

The 2Cone formulation presented in this section is a new idea I developed
for this thesis work. The formulation and implementation is new work on
the problem of Sequence Optimization and is part of the contribution of this
thesis to the research literature.

114

Chapter 3. Sequence Optimization in Block Cave Mining

3.4.6 Column Generation

Since other approaches did not seem to guarantee a single contiguous cave
that could move freely over the mining footprint, a completely different ap-
proach was proposed by Maurice Queyranne. This approach uses the well
known technique called column generation Wolsey (1998). Column gen-
eration breaks the problem down into a Master problem which selects a
solution from a set of presented options, and a Subproblem that generates
additional feasible options that will improve the objective function. The pre-
sented options are denoted as ‘columns’ and the Subproblem generates more
‘columns’ for the Master problem, hence the name column generation. The
appeal of this technique for solving Sequence Optimization is that while the
Master problem must be run as a linear/integer program, the Subproblem
is not limited to the linear/integer programming structure. Note that these
“columns” are not the same columns used to describe the mining footprint.

Clearly, if we could enumerate all the possible opening patterns at the
start of the procedure the Master problem would be sufficient and the prob-
lem solved in one pass. Since each opening pattern is already an acceptable,
single contiguous cave, the constraints in the Master problem would guaran-
tee the other requirements such as Start Once Constraint, Global Capacity
Constraint, and any others such as the lead/lag time of adjacent draw point
openings. However, there are far too many possible patterns for this to
work.

ColGen Model Formulation

The Master problem will contain a variable that indicates which columns
are chosen. While this will be a binary integer variable, the linear program
relaxation of the Master problem is solved in order to generate dual val-
ues/shadow prices for each of the constraints. These values are used by the
Subproblem to generate a new column that is not only feasible, but also
that will improve the objective function of the Master problem. After con-
vergence is reached, the Master problem is run as an integer program to
determine the final solution.

Column generation has been successfully used in large scheduling prob-
lems such as course registration at colleges and airline scheduling (Lübbecke
(2005)). In these settings the constraints on feasible schedules are complex,
and there are a large number of feasible schedules, which is similar to our
problem.

The overall objective is to determine in which period to start each draw

115

Chapter 3. Sequence Optimization in Block Cave Mining

point in order to maximize total NPV subject to a global capacity constraint
and shape constraints on the open mine in each period.

Decision Variables :

Stn,dpt,t binary variable that is 1 in the period the draw point is
opened.

Constraints :

Start Once (3.11)

Global Capacity (3.12)

Open Mine shape The open draw points in each period must form
a contiguous shape that is roughly a diamond.

Master Problem

Our motivation in applying the column generation method is to remove the
Open Mine Shape constraint from the rest of the problem as it has proven
difficult to formulate in the linear and integer programming setting.

The Master problem will choose one mine opening pattern for each period
t ≤ T to form a feasible opening sequence that maximizes NPV.

We construct the Master problem as

Data : nTNLS, Fdpttn, Ldpttn, T,m, ptn,dpt, wtn,dpt, λ

Kt the number of feasible mine opening patterns for period t, 1 ≤ t ≤
T

Ltn,dpt,t,k a binary array of feasible mine opening patterns (tn, dpt) for
period t, 1 ≤ tn ≤ nTNLS, dpt = Fdpttn . . . Ldpttn, 1 ≤ k ≤ Kt,
1 ≤ t ≤ T . These patterns are created in the Subproblem and
are included as data in the Master problem.

Decision Variables :Stn,dpt,t

Xt,j binary variable that is 1 if mine opening pattern L∗,∗,t,j is chosen
in period t, 1 ≤ t ≤ T

Objective :

maxV alue =

nTNLS∑
tn=1

Ldpttn∑
dpt=Fdpttn

wtn,dpt
∑
t

Stn,dpt,te
−λ(t−1)

116

Chapter 3. Sequence Optimization in Block Cave Mining

Constraints :

Start Once (3.11)

Global Capacity (3.12)

Link Selected Mines Together: First period

Stn,dpt,1 =

allpatterns∑
k=1

Ltn,dpt,1,kX1,k ∀ tn, ∀ dpt (3.40)

Link Selected Mines Together: All other periods

Stn,dpt,t =

allpatterns∑
k=1

Ltn,dpt,t,kXt,k

−
allpatterns∑

k=1

Ltn,dpt,t−1,kXt−1,k

∀ tn, ∀ dpt, ∀ t > 1 (3.41)

Select At Most One Pattern Per Period

allpatterns∑
j=1

Xt,j ≤ 1 ∀ t (3.42)

Improving Objective Function

When the Master problem is run as a linear program, a shadow price will be
generated for each constraint. In choosing new patterns for each period to
add to L (the role of the Subproblem), the Master objective function will be
improved if the reduced cost of the added patterns improves the objective.
In this case, the objective is

maxV alue =

nTNLS∑
tn=1

Ldpttn∑
dpt=Fdpttn

wtn,dpt
∑
t

Stn,dpt,te
−λ(t−1)

for the given discount rate λ. For each period t, we seek a new pattern such
that the reduced cost is greater than zero. The reduced cost is a function of
the objective coefficient of X for period t, in this case zero, and the shadow
prices of the constraints on X for period t.

Let us assign the following dual variables to the constraints of interest.

117

Chapter 3. Sequence Optimization in Block Cave Mining

Link Selected Mines Together: First Period (3.40)

dual variable πtn,dpt,1 ∀ tn, ∀ dpt

Link Selected Mines Together: All Other Periods (3.41)

dual variable πtn,dpt,t ∀ t > 1, ∀ tn,∀ dpt

Select At Most One Pattern Per Period (3.42)

dual variable µt ∀ t

The dual formulation related to the X variables becomes

Xt,k : −
∑
tn

∑
dpt

Ltn,dpt,t,kπtn,dpt,t +
∑
tn

∑
dpt

Ltn,dpt,t,kπtn,dpt,t+1 + µ1 ∀ t < T

XT,k : −
∑
tn

∑
dpt

Ltn,dpt,T,kπtn,dpt,T + µT

Simplifying, the dual formulation related to the X variables becomes

Xt,k : −
∑
tn

∑
dpt

Ltn,dpt,t,k(πtn,dpt,t − πtn,dpt,t+1) + µt ∀ t ≤ T

XT,k : −
∑
tn

∑
dpt

Ltn,dpt,T,kπtn,dpt,T + µT

An optimal solution to the (relaxed) Master problem is attained if all
possible columns have negative reduced costs, that is, there is no way to
generate a new column with positive reduced cost. Thus the Subproblem is
to generate an opening pattern with positive reduced costs for each period
to be added to the columns X of the Master problem.

In each period t, we are looking to add a new pattern Ltn,dpt,t,i such that

−
∑
tn

∑
dpt

Ltn,dpt,t,i(πtn,dpt,t − πtn,dpt,t+1)− µt ≥ 0

Equivalently, we are looking for an “acceptable” Ltn,dpt,t,i for each period
satisfying ∑

tn

∑
dpt

Ltn,dpt,t,i(πtn,dpt,t+1 − πtn,dpt,t)− µt ≤ 0

118

Chapter 3. Sequence Optimization in Block Cave Mining

Subproblem

The Subproblem is to generate new “acceptable” patterns that satisfy

−
∑

{tn,dpt} ∈ pattern

(πtn,dpt,t − πtn,dpt,t+1)− µt ≥ 0

for each period, if they exist.
Two Subproblem routines were developed, both based on the two inter-

secting cone concept. The first is an integer program formulation, and the
second is an enumeration routine.

It was hoped that since the Global Capacity Constraint was included in
the Master problem the dual values would transfer over information on the
size of the pattern.

The Subproblem is run for each period t ≤ T .

Data : nTNLS, Fdpttn, Ldpttn, eTNLS

Dualtn,dpt the dual value of each draw point for the chosen period t,
Dualtn,dpt = πtn,dpt,t − πtn,dpt,t+1, 1 ≤ tn ≤ nTNLS, Fdpttn ≤
dpt ≤ Ldpttn

The integer programming formulation of the Subproblem for a single
period is based on constructing cones with a fixed angle at the vertex. The
cone starts with the vertex then grows by two draw points per tunnel.

Decision Variables :

Pattn,dpt binary variable that is 1 if draw point is the pattern

Vertex1tn,dpt binary variable that is 1 if the draw point is the bottom
(lowest tunnel) vertex in a given period. This variable is defined
over the extended footprint 1 + eTNLS ≤ tn ≤ nTNLS + 2 ∗
eTNLS, 1 ≤ dpt ≤ 2 ∗ eTNLS.

Vertex4tn,dpt binary variable that is 1 if the draw point is the top
(highest tunnel) vertex in a given period. This variable is defined
over the extended footprint 1 + eTNLS ≤ tn ≤ nTNLS + 2 ∗
eTNLS, 1 ≤ dpt ≤ 2 ∗ eTNLS

BottomConetn,dpt binary variable that is 1 if the draw point is in
the cone projecting up from Vertex1 in a given period

TopConetn,dpt binary variable that is 1 if the draw point is in the
cone projecting down from Vertex4 in a given period

119

Chapter 3. Sequence Optimization in Block Cave Mining

Objective :

maxV alue =

nTNLS∑
tn=1

Ldpttn∑
dpt=Fdpttn

Pattn,dptDualtn,dpt

Constraints :

One Vertex4

nTNLS+2∗eTNLS∑
tn=1+eTNLS

2∗eTNLS∑
dpt=1

V ertex4tn,dpt ≤ 1 ∀ tn, ∀ dpt (3.43)

One Vertex1

nTNLS+eTNLS∑
tn=1

2∗eTNLS∑
dpt=1

V ertex1tn,dpt ≤ 1 ∀ tn, ∀ dpt (3.44)

Define TopCone Starting at the vertex, the cone grows by two draw
points per tunnel.

TopConetn,dpt =

nTNLS+eTNLS∑
tun=tn

dpt+(tun−tn)∑
d=dpt−(tun−tn)

V ertex4tun+eTNLS,d

∀ tn, ∀ dpt (3.45)

Define BottomCone

BottomConetn,dpt =

tn∑
tun=1−eTNLS

dpt+(tn−tun)∑
d=dpt−(tn−tun)

V ertex1tun+eTNLS,d

∀ tn, ∀ dpt (3.46)

Open Intersection of Cones draw points in both cones must be in
pattern

In Both

Pattn,dpt ≥ TopConetn,dpt+BottomConetn,dpt−1 ∀ tn, ∀ dpt
(3.47)

120

Chapter 3. Sequence Optimization in Block Cave Mining

In Top
Pattn,dpt ≤ TopConetn,dpt ∀ tn, ∀ dpt (3.48)

In Bottom

Pattn,dpt ≤ BottomConetn,dpt ∀ tn,∀ dpt (3.49)

The enumeration routine of the Subproblem for a single period is also
based on the two cone idea. The algorithm can be summarized as follows:
For each possible pair of Top Vertex, Bottom Vertex draw points

• Determine the mine opening pattern for the vertex pair

• Determine the size (number of draw points), and value of the mine
opening

• If the current pattern has a higher value than the previous contender
continue, else go to next vertex pair

• If the current pattern is the correct size, the current pattern replaces
the contender

• Go to the next vertex pair

The mine opening pattern is determined by the vertex pair and, as above,
starts at the top vertex and grows by two draw points per tunnel until the
mid point, then reduces by two draw points per tunnel until the bottom
vertex is reached. If we denote tunnel and across coordinates of the top and
bottom vertices as (Ttn, Tdpt) and (Btn, Bdpt), for each tunnel t, Ttn ≤ t ≤
Btn, the mine opening consists of draw points {max(Tdpt − (t− Ttn), Bdpt −
(Btn − t)), . . . ,min(Tdpt + (t− Ttn), Bdpt + (Btn − t))}.

Initial Results

The first run was done using the data set P2, size 236 draw points. This
data set was chosen both because it is small and because earlier work has
shown that this data set tends to violate the one contiguous mine constraint.
A value of 20 was chosen for m in the Master problem and the model run
for 10 periods. The duration of the draw points range from 2 to 8 periods
with very few of duration less than 4.

When the iterations converged, and the master model was finally run as
an integer program, there was a huge gap between the IP and LP objective
values. Inspection of the generated set of patterns showed some patterns

121

Chapter 3. Sequence Optimization in Block Cave Mining

smaller than the maximum active size m, and some that were clearly too
large, i.e., larger than m in period 1. Neither of these groups of patterns
were truly feasible patterns. Closer inspection of the intermediate results of
the Master problem showed very fractional solutions that pieced together a
collection of patterns to maximize the LP relaxation of the problem. Clearly
the Global Capacity constraint did not transfer enough information from
the Master problem to the Subproblem and it was concluded that both a
minimum and maximum size constraint were needed for the Subproblem.

Determining Limits on Subproblem Mine Size

For period 1 the mine should be of size m. For all other periods, the size
is a function of the activity in the previous periods and it is not possible to
determine exact size unless all draw points have the same duration.

Lower size limits for each period can be determined by relaxing the
Open Mine Shape assumption and instead assuming the draw points will
open in order of increasing duration. Number the draw points di such that
pdi ≤ pdi+1

. Start with the m shortest duration draw points, {d1, . . . , dm},
in period 1, then open the next one, dm+1 in period pd1 + 1 when the first
active draw point closes. Continue to open draw points as the active draw
points close, keeping track of the size of the mine in each period. This
generates a lower bound on the number of open draw points or size of the
mine in each period. Similarly, the upper size limits for each period can
be determined by opening the draw points in order of decreasing duration.
Since these estimation methods do not consider the feasibility the pattern
size they are conservative and, if there is a wide spread of duration values,
are not expected to be tight bounds.

Generating Sequences of Patterns

The preliminary runs also revealed that while the algorithm generated feasi-
ble mine patterns in a given period, it did not guarantee the generation of a
feasible sequence of mine patterns over all periods. The linear relaxation of
the model could use fractional solutions to incorporate the newly generated
patterns and increase the objective value, but the final run as an integer
program often reverted back to the initial set of columns to obtain a feasible
solution.

We considered two solutions. In the first all mine patterns generated by
the Subproblem can be selected by the Master problem for any period. This
increases the number of feasible solutions as a mine pattern of sizem could be

122

Chapter 3. Sequence Optimization in Block Cave Mining

selected in all periods. In the second, a set of mine patterns is generated by
the Subproblem for each period. This solution was strongly recommended by
members of the thesis committee, so it was chosen. Since it is not possible
to input the pattern of the previous period pattern to the Subproblem,
there is no guarantee that the model will return a set of patterns that can
be linked from period to period; there may be no feasible solution to the
Master problem. To accommodate this, the definition of a feasible solution
to the Subproblem is extended to include mine patterns in all other periods
that together form a feasible sequence with the generated pattern. Once the
Subproblem generates a mine pattern for period t, an algorithm generates a
feasible pattern, or precursor for the period t−1 that is subset of the pattern
t. The algorithm is repeated for each period t−1 . . . 2 generating a sequence
of feasible, linked patterns that could lead to the opening of the pattern
generated by the Subproblem. If a feasible sequence for periods 1 . . . t− 1 is
generated, then another algorithm generates a feasible, linked sequence of
patterns for periods t + 1 . . . T and all the mine patterns are added to the
Master problem. If no feasible sequence is generated for period 1 . . . t − 1,
then the pattern generated by the Subproblem is not added to the Master
problem.

The algorithms for generating patterns for periods 1 . . . t− 1, precursor
patterns, and for period t + 1 . . . T , following patterns, use enumeration
to try to maximize the dual value of each pattern. For the precursors,
all pairs of vertices and projected cones are evaluated to see if they are
contained in the current pattern, and meet the Global Capacity constraint.
The pattern with the highest dual value is selected as the precursor, and
the algorithm is repeated to find a precursor to this pattern. Similarly,
for each of the following patterns, an estimate of the maximum size of the
pattern is generated from the durations of the current pattern and all pairs
of vertices and corresponding projected cones that cover the current pattern
are evaluated to find the one with the maximum dual value.

Generating the Initial Columns

The column generation process begins by running the LP relaxation of the
Master problem, which requires a feasible solution. A simple initial solu-
tion is the same set of m draw points, in a feasible shape, in each of the
periods. As an alternative, the algorithms developed for mine sequence
generation, discussed above, were adapted to generate a feasible sequence.
First the Subproblem is run to generate the mine pattern for period one,
then the algorithm is used to generate a sequence of following patterns.

123

Chapter 3. Sequence Optimization in Block Cave Mining

Since dual values are not available for the Subproblem or following pattern
algorithm, draw point values are substituted in all periods. We called this
the greedy/myopic algorithm as it opens the adjacent draw points of highest
value in each period. It is discussed below, in Section 3.4.7

Contribution

Column Generation is a well used technique in solving large problems, in-
cluding parallel machine scheduling. In applying Column Generation to
Sequence Optimization I developed the mine sequence algorithms necessary
to produce a feasible sequence of caves. The algorithms and implementation
are new work on the problem of Sequence Optimization and is part of the
contribution of this thesis to the research literature.

3.4.7 Greedy/Myopic Algorithm

The Greedy/Myopic algorithm is a direct result of the work done on the
ColGen model. In order to begin the ColGen algorithm and generate the first
set of dual prices, a feasible set of columns must be included in the Master
problem. For the first few attempts the initial set of columns was generated
by hand. With the modification of the ColGen algorithm to generate mine
openings that preceded and followed the mine opening generated by the
Subproblem, the opportunity to generate a feasible initial set of columns
presented itself.

The Greedy algorithm uses the ColGen Subproblem routine to generate
a mine opening pattern for the first period, then uses the routine written to
generate mine openings for the rest of the periods. Draw point weights are
substituted for the reduced costs in the routines. As a result, the highest
valuation mine opening is selected for each period resulting in a myopic or
greedy algorithm. This is essentially the same method used to generate the
initial columns for the ColGen algorithm.

Results

Since both the ColGen model and the Greedy algorithm use the same cave
shape definition as the 2Cone model, the generated caves are similar to
those from the 2Cone model. In Section 3.5 the performance of both the
ColGen model and the Greedy algorithm on its own are compared to others
we developed for this problem.

124

Chapter 3. Sequence Optimization in Block Cave Mining

Contribution

The idea of a greedy algorithm using a myopic view is well established. In
this work, I have created an algorithm that develops a feasible sequence of
caves using a greedy approach. The algorithm and implementation is new
work on the problem of Sequence Optimization and is part of the contribu-
tion of this thesis to the research literature.

125

Chapter 3. Sequence Optimization in Block Cave Mining

3.5 Application of Models to Test Data Sets

This section describes the application of the developed models to two new
data sets. The models were developed using the four previously described
data sets, so there was a risk that the models were tailored to these data
sets. Thus we sought out new data sets from Gemcom. They provided us
with two data sets coming from a project with Rio Tinto, one of the worlds
leading mining and exploration companies. Unfortunately this data is con-
fidential and so is not publicly available. Evaluating the models on two new
data sets was an attempt to objectively evaluate and compare the models.
The objective was to evaluate the efficiency and practical applicability of
the models to aid in the Sequence Optimization process. In addition, the
execution speed of the models is compared. All models discussed in the pre-
vious sections were run and the solutions and time to solve were compared.
Some additional runs were also conducted with constraints on the starting
opening pattern constraints to answer additional planning considerations.

3.5.1 Data Sets

We now describe the two data sets. RT1 is a mine with a small footprint
consisting of 332 draw points to be opened over 10 years. Planners believe
that the small size of the footprint reduces the possible combination of se-
quences and makes it easier to determine a good Sequence Optimization by
traditional methods. Running the new models on this data set allows us
to demonstrate their potential on a data set not considered difficult to plan
for using existing techniques. This mine is already under production which
provided a basis of comparison for Rio Tinto. The mining sequence was pub-
lished graphically (Calder (2000)) but without values so a value comparison
is not possible.

By contrast, RT2 is a mine with a huge footprint of 6510 draw points
to be opened over 20 periods. The size of the data set clearly presents
challenges to any solution technique, and so it is a good test of the new
models.

Data Set RT1

The data set RT1 consists of 332 draw points along 19 vertical tunnels, the
longest of which is 30 draw points long; see Figure 3.33 below.

126

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.33: Data Set RT1

Provided Data:

Table 3.6 is a sample of the data available for each draw point as supplied
by Gemcom:

Draw Point Name: A naming convention used by Gemcom to identify
each draw point. The name consist of an “L” followed by a tunnel then
either a “W” or an “E” followed by a draw point number

X, Y: are the location coordinates of the draw point
Tot Dol: this is the total value of the column of ore above the draw

point. It is assumed that this is already discounted to represent the net
present value (NPV); the details behind the generation of this data were
not provided to us as they were considered confidential by Gemcom.

Tonnage: the total tonnage (units) of the column of ore above the draw
point.

Required Data:

Duration and Value: Duration and NPV value of each draw point is
required for the models. The duration of each draw point is calculated by
dividing the amount of ore to be mined by the assumed constant draw rate.

127

Chapter 3. Sequence Optimization in Block Cave Mining

Draw Point Name X Y Tot Dol Tonnage
L01W01 13348.78 -24016.7 11061.73 452,008
L01W02 13348.78 -24033.7 8689.515 432,104
L01W03 13348.78 -24050.7 6138.938 443,745
L01W04 13348.78 -24067.7 7823.849 444,517
L01W05 13348.78 -24084.7 17987.16 455,378
L01W06 13348.78 -24101.7 16093.53 439,121
...

...
...

...
...

Table 3.6: Available Data for Data Set RT1

In this project, the data in column Tonnage was divided by the assumed
draw rate which was provided at 120 tons/day. textbf120 tons/day (120
tons/day *365 days/year = 43,800 tons/year) was used. To determine
the duration of each draw point the following formula was used

Duration = round(Tonnage/43,800 tons per year)

The round function converts the result to the nearest integer value (up
or down). As a result, the durations ranged from 7 to 17 years and the
distribution of durations is shown in Figure 3.34.

The total value of each draw point, discounted to the period it is opened,
is also required as input to the models. The results in this thesis used the
Tot Dol column from the provided data for this input.

In this data set there are 37 draw points with negative value that must
be opened to complete the mine. As can be seen in Figure 3.35, these draw
points with negative value are grouped in tunnels 6, 7 and 8. The highest
value draw points are in a cluster just two tunnels over.

Maximum active draw points: The downstream processing capacity
is captured in the models with a maximum active draw points constraint for
each period. The downstream processing capacity was provided in the form
of an annual production rate which increases from 3 to 12.41 Mt/y over the
first four years of operation. In order to determine the number of active draw
points the annual production rate was converted into equivalent number of
draw points. Table 3.7 shows the estimated number of draw points in each
period, for the constant production rates supplied, 120 tons/day.

Discount rate: A discount rate of 10% was supplied by Gemcom
Other data: The coordinates of the draw points were converted into

tunnel and draw point numbers consistent with the grid system used in the

128

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.34: Histogram of Draw Point Durations at 120 tons/day for Data
Set RT1

Constant Draw Rate
120 tons/day

Annual Maximum active
production rate draw points

Mt
Year 1 3 70
Year 2 6 138
Year 3 9 206
Year 4 12.41 284
Subsequent years 12.41 284

Table 3.7: Maximum Active Draw Points for Data Set RT1

models.
In this data set the tunnels were parallel to the “Y” coordinate and the

across-tunnel draw points were perpendicular to the tunnels. The data were

129

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.35: Distribution of Draw Point Values over the Mining Footprint
for Data Set RT1

rotated through 90◦ to align the tunnels across the grid to be consistent
with our prior usage. Under this transformation, the tunnel numbering is
in the reverse order from the tunnel assigned by Gemcom, and tunnel 1
is a combination of L20E and L19W. The “W” draw points take the even
numbering and the “E” become the odd. Thus L19W01 becomes tunnel 1,
draw point 1 and L20E01 becomes tunnel 1, draw point 2. The Gemcom
draw point numbering convention begins with 01 at the start of each tunnel,
but due to the shape of the footprint, the ends of the tunnels are not aligned.
The new draw point numberings correct for this.

130

Chapter 3. Sequence Optimization in Block Cave Mining

Data Set RT2

The data set RT2 consists of 6510 draw points along 56 vertical tunnels, the
longest of which is 196 draw points long; see Figure 3.36 below.

Figure 3.36: Data Set RT2

Provided Data:

Table 3.8 is a sample of the data available for each draw point as supplied
by Gemcom:

131

Chapter 3. Sequence Optimization in Block Cave Mining

DPTNAME XCOORD YCOORD Tot Dol TON14M
P01 5621W 495460.3 3683259 -214.0677338 116,799
P01 5524W 495408.8 3683232 -200.9185181 75,699
P01 5524E 495417.9 3683226 -435.5866394 101,510
P01 5523W 495419.1 3683249 158.174881 74,210
P01 5523E 495428.3 3683243 10.73392391 86,200
...

...
...

...
...

Table 3.8: Available Data for Data Set RT2

DPT Name: A naming convention used by Gemcom to identify each
draw point. The name begins with a letter and two digits followed by an
underscore then 4 digits and either “W” or “E”. The meaning of the segment
before the underscore is not clear but could refer to a section of the mine, but
it appears that the underscore is followed by a tunnel number and a draw
point number. While the tunnel numbers appear to be consistent across
sections, the draw point numbering is not.

XCOORD, YCOORD: are the location coordinates of the draw point
Tot Dol: this is the total value of the column of ore above the draw

point.
TON14M: the total tonnage (units) of the column of ore above the

draw point.

Required Data:

Duration and Value: Duration and NPV value of each draw point is
required for the models. The duration of each draw point is calculated by
dividing the amount of ore to be mined by the assumed constant draw rate.
In this project, the data in column TON14M was divided by the assumed
draw rate of 270 tons/day. This value for the draw rate was chosen in
conjunction with the maximum active draw points to ensure that the entire
footprint could be mined in 20 periods.
270 tons/day (270 tons/day *365 days/year = 98,550 tons/year) was
used. To determine the duration of each draw point the following formula
was used:

Duration = round(TON14M/98,550 tons per year)

As a result, the durations ranged from 1 to 5 years, with a single draw
point at 5 years, and the distribution of durations is shown in Figure 3.37.

132

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.37: Histogram of Durations for Data Set RT2

The total value of each draw point, discounted to the period it is opened
is also required as input to the models. The results in this thesis used
the Tot Dol column from the provided data and the calculated duration to
calculate this input.

The total value is calculated using the PV(present value) function in
Microsoft Excel. It is the PV of Duration installments of (Tot Dol/Duration)
payments at the discount rate.

Maximum active draw points: The downstream processing capacity
is captured in the models with a maximum active draw points constraint
for each period. The maximum active draw points values were chosen along
with the daily draw rate to ensure that all draw points could be mined in
20 periods and are shown below in Table 3.9.

Discount rate: A discount rate of 10% was supplied by Gemcom
Other data: The coordinates of the draw points were converted into

tunnel and draw point numbers consistent with the grid system used in the
models.

In order to establish the grid, the data was projected onto a new coor-
dinate set. The new axis R runs parallel to the tunnels and is obtained by
rotating the original coordinates through 50◦. This is the rotation required

133

Chapter 3. Sequence Optimization in Block Cave Mining

Constant Draw Rate
270 tons/day

Annual production Maximum active
rate draw points
Mt

Year 1 28,382,400 288
Year 2 54,793,800 566
Year 3 82,387,800 836
Year 4 109,587,600 1112
Subsequent years 109,587,600 1112

Table 3.9: Maximum Active Draw Points for Data Set RT2

to align the first tunnel along the horizontal axis. The new S axis runs in
the across draw point axis and is perpendicular to the R axis. It is obtained
by rotating the original coordinates through 60◦. The procedure followed
was as follows

1. Choose a point as the “origin”, it will have new coordinates (0,0).
Denote the original coordinates of this point as (Xo,Yo)

2. calculate the distance from each draw point to the origin using the X
and Y coordinates

3. calculate the new R coordinate as distance×sin{90−50−arcsin{(Y −
Yo)/distance}}

4. calculate the new S coordinate as distance×sin{arcsin{(Y−Yo)/distance}−
60}

134

Chapter 3. Sequence Optimization in Block Cave Mining

3.5.2 Models

Five sequence optimization models were run on data sets RT1 and RT2. Four
of the models were written in the linear/integer programming framework
using the language AMPL and solved using CPLEX solver Version 9.1. The
fifth model, a greedy algorithm, was written in Visual Basic. All five models
used the same input data, and the same layout of draw points. The models
were run on a Intel Pentium (R) D CPU 3.20 GHz machine with 1.99 GB
of RAM.

Basic Model: This is the original “across and along” model, i.e., con-
tiguity along and across each tunnel, described in Section 3.4.3. The con-
straints ensure that in each period, if a tunnel contains open or active draw
points that they form a single contiguous segment. There are also constraints
to enforce a similar contiguity constraint in the across-tunnel dimension. Re-
call from Section 3.4.3 that earlier runs have shown that enforcing contiguity
in only two directions does not guarantee a single contiguous cave in each
period.

Maximize: NPV

Subject to :

Start Once : (3.11)

Global Capacity : (3.12)

Contiguous along tunnels: (3.13) - (3.15)

Contiguous across tunnels: (3.16) - (3.19)

Table 3.10 shows the number of binary variables and constraints for the
Basic model. In addition to the set of variables that indicate which draw
points are open in each period, there are two sets of binary variables which
denote the first open draw point along and across each tunnel. There are
four contiguity constraints for each draw point in each period plus two for
each tunnel in each period. These form the majority of the constraints for
the model. For Data Set RT1 there are a total of almost 14 000 constraints,
and this grows to almost 530 000 for Data Set RT2.

Malkin Model: This model is a formulation based on the ideas of
Malkin and Wolsey, Malkin (2006). For a convex mine footprint, the model,
described in Section 3.4.4, guarantees a single cave in each period by defining
a fixed centre point to the cave and only allowing draw points to open if
they are connected by open or active draw points to the centre point. A

135

Chapter 3. Sequence Optimization in Block Cave Mining

RT1 RT2
Binary Variables nDPTS × T × 3 9 960 390 600

Constraints
Start Once nDPTS 332 6 510
Global Capacity T 10 20
Contiguous Along nDPTS × T × 2 + nTNLS × T 6 970 261 520
Contiguous Across nDPTS × T × 2 + nTNLS × T 6 970 261 520
Total Constraints nDPTS + T+ 13 922 529 570

nDPTS × T × 4 + nTNLS × T × 2

Table 3.10: Number of Variables and Each Type of Constraints for Basic
Model Runs on Data Set RT1 and RT2

fixed set of axes are constructed from the centre draw point to help with the
formulation. The fixed centre point model was used as the increased data
preparation for the “wandering axes” variation did not result in improved
results in the developmental runs in Section 3.4.4.

Maximize: NPV

Subject to :

Start Once : (3.11)

Global Capacity : (3.12)

Column Connected: (3.24)-(3.25)

Row Connected: (3.26)-(3.29)

Table 3.11 shows that the Malkin model is considerably smaller than the
Basic number, both in number of binary variables and number of constraints.
The Malkin model has one third of the variables, and approximately one
half of the constraints of the Basic model. For Data Set RT1 there are
approximately 7 000 constraints, and approximately 130 000 constraints for
Data Set RT2.

2Cone Model: The 2 vertices 2 cone model, described in Section 3.4.5,
is an attempt to get a single cave that has a diamond shape. The cave is
the intersection of two cones or triangles each determined by the decision
variable representing the vertex of the cone. Figure 3.31 illustrates the
concept.

136

Chapter 3. Sequence Optimization in Block Cave Mining

RT1 RT2
Binary Variables nDPTS × T 3 320 130 200

Constraints
Start Once nDPTS 332 6 510
Global Capacity T 10 20
Column Connected nDPTS × T 3 320 130 200
Row Connected nDPTS × T 3 320 130 200
Total Constraints nDPTS + T + nDPTS × T × 2 6 982 266 930

Table 3.11: Number of Variables and Each Type of Constraints for Malkin
Model Runs on Data Set RT1 and RT2

Maximize: NPV

Subject to :

Start Once : (3.11)

Global Capacity : (3.12)

One top vertex in each period: (3.31)

One lower vertex in each period: (3.32)

Cone Definition : (3.33) - (3.34)

Open Intersection of Cones : (3.35) - (3.37)

Previous Cave Contained in Current Cave: (3.38) - (3.39)

The 2Cone model is the largest of the three integer programming mod-
els, as can be seen in Table 3.12. There are five sets of binary variables,
including the two for the vertices over the extended footprint. This model
has approximately 21 000 binary variables for Data Set RT1, and just over 1
000 000 for Data Set RT2. A large number of constraints are needed to de-
fine the cones and their intersection resulting in a model with approximately
twice as many constraints as the Basic model.

ColGen : The column generation technique, described in Section 3.4.6,
uses a LP model to choose from a set of cave patterns to form a maximum
value, feasible sequence over all periods. A separate algorithm, not limited
by the LP/IP framework, uses the dual prices generated in the LP to add
new candidates to the set of cave patterns. In this case, the algorithm was
based on the 2 Cone concept and found the highest value candidates by
enumeration.

137

Chapter 3. Sequence Optimization in Block Cave Mining

RT1 RT2
Binary Variables nDPTS × T × 5+ 21 100 1 035 160

eTNLS2 × T × 2

Constraints
Start Once nDPTS 332 6 510
Global Capacity T 10 20
One of Each Vertex T × 2 20 40
Cone Definition nDPTS × T × 2 6 640 260 400
Cone Intersection nDPTS × T × 3 9 960 390 600
Previous Cone nDPTS × (T − 1)× 2 5 976 247 380
Total Constraints nDPTS + T × 3+ 22 938 904 950

nDPTS × T × 7− nDPTS × 2

Table 3.12: Number of Variables and Each Type of Constraints for 2Cone
Model Runs on Data Set RT1 and RT2

Greedy : The greedy model uses the cave generation algorithms from
the ColGen model to generate an initial set of cave patterns that form a
feasible sequence and is described in Section 3.4.7. Since there were no dual
values available, the total value of the draw point is used.

138

Chapter 3. Sequence Optimization in Block Cave Mining

3.5.3 Results

Results on Data Set RT1

Table 3.13 compares the total NPV and number of caves from running the
models discussed above on Data Set RT1. As the Basic model has the most
relaxed constraints, it is expected to give the highest NPV so will be used
as a benchmark for the other models.

Total NPV # of Caves % of max NPV
Basic $ 3,507,820 >2 100
Malkin $ 3,457,480 1 98.6
2Cone $ 3,314,810 1 94.5
ColGen $ 3,333,938 1 95
Greedy $ 3,333,520 1 95

Table 3.13: Results for Data Set RT1

The highest NPV is from the Basic model, however inspection of the
results shows that this model does not actually result in a single contiguous
cave. Note that the Malkin result is (3,457,480/3,507,820 = 0.986) 98.6%
of the Basic model result and the 2Cone result is (3,314,810/3,507,820 =
0.945) 95% of the Basic model result.

Somewhat surprising is the success of the Greedy model to achieve such
a good result;(3,333,520/3,507,820 = 0.950) 95.0% of the Basic model result.
Subsequent iterations of the ColGen model, from the Greedy initial solution,
did result in improvement of the objective value, but it is almost negligible.
(3,333,938/3,507,820 = 0.950) 95.0% of the Basic model result was achieved
with ColGen model.

Table 3.14 reports the differences in active cave size over the ten periods
for the different models. There is very little difference between the models
with the exception of the Basic model. There are 37 draw points with
negative value that must be mined for structural reasons. Some of the
models may delay these until the last period and therefore discount this
loss. This may explain why the Basic model only opens 132 of the possible
140 draw points in the second period.

As can be seen from the results in Table 3.15, the models took from
4 seconds to almost an hour to run. Listed are both the times for the
complete set of Malkin models, with a run with each of the 332 draw points
as the fixed centre point, and the single run that produced the highest value
pattern. The Basic model ran far faster than the 2Cone and Malkin models,

139

Chapter 3. Sequence Optimization in Block Cave Mining

Number of draw points active in each period

1 2 3 4 5 6 7 8 9 10
Basic 70 132 205 284 284 284 284 284 283 254
Malkin 70 140 206 284 284 284 284 284 284 241
2Cone 70 140 198 284 284 284 284 283 283 223
ColGen 70 140 204 284 284 284 284 276 284 232
Greedy 70 140 205 284 284 284 284 279 279 232

Table 3.14: Cave Development Results for Data Set RT1

Total NPV Solution Time

Basic $ 3,507,820 4 seconds
2Cone $ 3,314,810 3 050 seconds ≈ 50 minutes
Malkin: all draw points 2 416 seconds ≈ 40 minutes
Malkin (maximum value) $ 3,457,480 2 seconds

“Malkin: all draw points” is the aggregation of 332 runs of the Malkin model,
once for each draw point as the fixed centre point.
‘Malkin (maximum value)” is the single run that produced the highest value

Table 3.15: Solution Times:

however the resulting multiple caves are undesirable. In this case, the 2Cone
model took 10 minutes longer to run than the Malkin model, but produced
a higher NPV.

We now look at the mine shapes generated by solving these models on
data set RT1. The figures show how well the results conform to the objective
of a single cave as well as the preferred diamond shape. We also compare the
progression of the caves over time to see how the results from the different
models vary.

140

Chapter 3. Sequence Optimization in Block Cave Mining

Basic:

The following sequence was determined using the Basic model. As has been
found in the past, this model does not guarantee a single contiguous cave.
The results show that there is a high value group of draw points on the right
side that is chosen in the first period. It also shows that there is a valuable
group on the left side that is also chosen in the first period, despite not being
adjacent to the group on the right.

Figure 3.38: Results of Basic Model on Data Set RT1 - Period 1

141

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.39: Results of Basic Model on Data Set RT1 - Period 2

Figure 3.40: Results of Basic Model on Data Set RT1 - Period 3

142

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.41: Results of Basic Model on Data Set RT1 - Period 4

Figure 3.42: Results of Basic Model on Data Set RT1 - Period 10

143

Chapter 3. Sequence Optimization in Block Cave Mining

Malkin:

The Malkin model was run repeatedly, changing the centre point over all
draw points to find the centre point yielding the highest NPV. The run
using this centre point was chosen for reporting and the pattern is shown
below. As with the Basic model, in the first period draw points on right are
chosen with a movement towards the left in the second period. The caves for
years 2 and 3 extend along the across-tunnel axis and do not look diamond
like. We can see that the constraints are met, in each period there are no
gaps between any open draw point and either axis. In the first period, the
cave is a diamond shape, but the axes of the diamond do not align with
the designated axes. In the second and third period, the lack of symmetry
around the axes results in a non-diamond shape.

Figure 3.43: Best Results of Malkin Model for Data Set RT1 - Period 1

144

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.44: Best Results of Malkin Model for Data Set RT1 - Period 2

Figure 3.45: Best Results of Malkin Model for Data Set RT1 - Period 3

145

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.46: Best Results of Malkin Model for Data Set RT1 - Period 4

Figure 3.47: Best Results of Malkin Model for Data Set RT1 - Period 10

146

Chapter 3. Sequence Optimization in Block Cave Mining

2Cone:

The 2Cone model generated a single cave in a diamond pattern. The first
period cave is very similar to that chosen in the Basic model and the highest
value Malkin model. After choosing the high value draw points in the first
period, the model moved to the right before moving left through the negative
value draw points.

Figure 3.48: Results of 2Cone Model for Data Set RT1 - Period 1

147

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.49: Results of 2Cone Model for Data Set RT1 - Period 2

Figure 3.50: Results of 2Cone Model for Data Set RT1 - Period 3

148

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.51: Results of 2Cone Model for Data Set RT1 - Period 4

Figure 3.52: Results of 2Cone Model for Data Set RT1 - Period 10

149

Chapter 3. Sequence Optimization in Block Cave Mining

ColGen:

The ColGen Model also generated a single cave in a diamond pattern, but
the first period cave was not as centrally located as the other models. The
first period cave includes some high value draw points but extends over to
the right hand edge. Over the remaining periods the cave is extended left,
then ends with draw points at the bottom of the layout.

Figure 3.53: Results of ColGen Model for Data Set RT1 - Period 1

150

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.54: Results of ColGen Model for Data Set RT1 - Period 2

Figure 3.55: Results of ColGen Model for Data Set RT1 - Period 3

151

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.56: Results of ColGen Model for Data Set RT1 - Period 4

Figure 3.57: Results of ColGen Model for Data Set RT1 - Period 10

152

Chapter 3. Sequence Optimization in Block Cave Mining

Greedy:

As noted above, there is very little difference between the Greedy algorithm
results, and the improvements made by subsequent iterations of the ColGen
model. Differences do not appear until year 4 and only on the edges of the
cave.

Figure 3.58: Results of Greedy Model for Data Set RT1 - Period 1

153

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.59: Results of Greedy Model for Data Set RT1 - Period 2

Figure 3.60: Results of Greedy Model for Data Set RT1 - Period 3

154

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.61: Results of Greedy Model for Data Set RT1 - Period 4

Figure 3.62: Results of Greedy Model for Data Set RT1 - Period 10

155

Chapter 3. Sequence Optimization in Block Cave Mining

Comparison of first two periods over all models

This section is included to facilitate comparison of the results for the first
two periods across all models. As can be seen below, all models start with
the draw points in tunnels 13 through 19; tunnels numbered from left to
right (Figure 3.33). The results are very similar, with the exception of those
for the Basic model which moves to tunnels 1 through 10 in the second
period and results in multiple caves.

While all models created a diamond-shaped cave in the first period,
the 2Cone, ColGen and Greedy models are more successful at generating
diamond-shaped caves in the second period. Combining this with the NPV
value results suggests the 2Cone model performs better than the other mod-
els.

Figure 3.63: Opening Patterns for First Two Periods for Basic Model

156

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.64: Opening Patterns for First Two Periods for Malkin Model

Figure 3.65: Opening Patterns for First Two Periods for 2Cone Model

157

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.66: Opening Patterns for First Two Periods for ColGen Model

Figure 3.67: Opening Patterns for First Two Periods for Greedy Model

158

Chapter 3. Sequence Optimization in Block Cave Mining

Sensitivity:

This data set was chosen for this project as it was thought by planners that
its relatively small size provided few opening sequences and would not lead to
much sensitivity to sequence patterns. To test sensitivity to sequence, some
alternate scenarios, intended to be different from those generated above,
were run as follows:

1. Start at LHS (2Cone): Force mining to start on the left-hand side of
footprint, i.e., Tunnel 5 if counted from the LHS. This was done by
forcing all the draw points in tunnel 5 to start in period 1 or period
2. All the results above started with the high value draw points in
the centre or right of centre of the layout. The choice of tunnel 5 is
distinct from the centre point of the model results above, and allows
for a diamond shaped first period cave, without running into the edge
of the footprint.

2. Start on Edge (First or Last Tunnel) (2Cone): Force mining to start on
an edge (Tunnel 1 or Tunnel 19) instead of the centre of the footprint.
As mentioned in Section 3.4.4, some mining sequences originate at the
edge of a mining footprint so that the equipment used to remove the
mined rock does not cross an active mining front. If the sequence does
not start on a footprint edge, often the mined rock must be carried
on a level below the mining to cross the mining front. Sequences that
start on a footprint edge are of interest to understand the tradeoffs
between these two approaches.

3. Start on Edge (Any) (2Cone): Force mining to start on an edge (Tun-
nel 1 or Tunnel 19 or “top” or “bottom”)

4. Look for Minimum NPV (2Cone): run the model to minimize NPV.
Since the easiest way to do this is delay starting all draw points until
the end, or not open any at all, a new constraint was added to require
at that least “maximum number of active draw points - 4” must be
active in each period. This sequence can provide a measure of the
worst case scenario of a badly chosen sequence, and demonstrate the
potential value of the models on this data set.

5. Lowest value Malkin: The Malkin model solution with the fixed centre
point yielding the lowest NPV. Again, this is a worst case scenario to
show effect of chosen sequence on value.

159

Chapter 3. Sequence Optimization in Block Cave Mining

6. Force mining to start in the middle (2Cone). This was done by forcing
draw points in tunnels 10 and 11 (numbered from LHS) to start in
period 1 or period 2. It was chosen to reproduce the published sequence
(Calder (2000)) for this data set. Figure 3.68 below shows the sequence
that was published for the data set.

Figure 3.68: Published Sequence Optimization for Sample Data Set

Table 3.16 reports the results of the sensitivity runs. The 2Cone model
from the earlier runs was used as a benchmark to compare the values of these
alternate runs, based on its high NPV value and diamond-shaped caves.

The results in Table 3.16 do show that the total NPV of caves produced
on this data set is sensitive to the opening sequence with many of the alter-
nates 10% below the 2Cone value from the original runs. The results also
show a variation in solution times. The individual Malkin run is faster than
most of the 2Cone results. The more constrained the 2Cone model is, the
faster the run completed. While the longest 2Cone solution time of 8 hours
is not fast by any measure, it would be possible to run this model overnight,
especially for the scale of costs involved with mine planning.

There is not much variation in the number of active draw points in each
cave between the runs; some runs did not open a full 70 draw points in the
first period. See Table 3.17

The caves from the first two years are presented below in Figure 3.69
through Figure 3.73 to confirm that the objectives of each scenario were
met.

160

Chapter 3. Sequence Optimization in Block Cave Mining

Total NPV % of 2Cone Solution time
NPV

Basic $ 3,507,820 105.8 4 sec ≈ 0.001 h
2Cone $ 3,314,810 100 3 050 sec ≈ 0.8 h
Start at LHS (2Cone) $ 3,025,550 91.3 694 sec ≈ 0.2 h
Start on Edge $ 2,932,900 88.4 2 598 sec ≈ 0.7
(First or last
tunnel)(2Cone)
Start on Any Edge $ 3,304,930 99.7 1 564 sec ≈ 0.4 h
(2Cone)
Minimize (2Cone) $ 2,809,050 84.7 29 132 sec ≈ 8 h
Malkin (low value) $ 3,063,040 92.4 303 sec ≈ 0.08 h
Start in centre (2Cone) $ 3,136,930 94.6 149 sec ≈ 0.04 h

Table 3.16: Results of Sensitivity Runs:

Number of draw points active in each period
1 2 3 4 5 6 7 8 9 10

Basic 70 132 205 284 284 284 284 284 283 254
2Cone 70 140 198 284 284 284 284 283 283 223
Start at LHS 66 135 202 284 284 284 284 284 283 234
Start on Edge 67 137 202 284 284 284 284 284 279 267
(First or last
tunnel)
Start on Edge 69 138 205 284 284 284 284 282 283 237
(Any)
Minimize 67 137 202 280 280 280 280 260 238 251
Malkin 70 140 206 284 284 284 284 284 284 268
(low value)
Start in centre 70 137 205 283 283 283 283 279 263 205

Table 3.17: Cave Sizes in Sensitivity Runs:

161

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.69: Results of 2Cone Model Starting at Tunnel 5

Figure 3.70: Results of 2Cone Model Starting on Edge Tunnel

162

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.71: Results of 2Cone Model Starting on Any Edge

Figure 3.72: Results of 2Cone Model Minimized

163

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.73: Results of Minimum Malkin

164

Chapter 3. Sequence Optimization in Block Cave Mining

Start at centre This run was an attempt to reproduce the published
sequence for this data set. Figure 3.74 below is an overlay of the sequence
for the first 3 periods with the published sequence. While the published
sequence starts in the middle of tunnel 5, as opposed to the bottom in the
model result, both move to open the draw points in the tunnels to the right
before moving towards the tunnels on the left. The value of the published
sequence is not available for comparison.

Figure 3.74: Overlay of Published Results and First 3 periods of Generated
Results

The following figures show the generated results without the overlay of
the published results. As mentioned, the first period cave is in the middle
tunnels, but touches the lower edge of the mining footprint. In the second
period it moves to the left, and after that grows in both directions.

165

Chapter 3. Sequence Optimization in Block Cave Mining

166

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.75: Results of 2Cone Model Starting at Centre

167

Chapter 3. Sequence Optimization in Block Cave Mining

Results on Data Set RT2

Table 3.18 reports the results of the models discussed above. Due to the
length of time of each run it was not feasible to run the Malkin model on
all 6510 possible centre points. Instead a sampling was taken based on the
draw points selected in the first period of the Basic model. The 2Cone model
did not run to completion on this data set. After two days of calculations
the results were not returned and it appeared the maximum memory was
exceeded. Similarly, there are no results for the ColGen model as there were
no results after several days of running and no intermediate results were
returned.

Total NPV Number % of Basic Solve Time
of Caves NPV (sec)

Basic $ 11,062,600 2 100 55 719.6 ≈ 19 hr
Malkin (29,80) $ 10,934,200 1 98.8 5 372.8 ≈ 1.5 hr
Malkin (23,85) $ 10,877,400 1 98.3 4 299.7 ≈ 1 hr
Malkin (26,95) $ 10,861,900 1 98.2 3 649.2 ≈ 1 hr
Malkin (35,70) $ 10,831,700 1 97.9 33 128.1 ≈ 9 hr
Malkin (25,100) $ 10,803,000 1 97.6 4 867.4 ≈ 1 hr
Malkin (39,50) $ 10,706,000 1 96.8 25 849.4 ≈ 7 hr
2Cone infinite
ColGen infinite
Greedy $ 10,441,300 1 94.4 > 6 days

Table 3.18: Results for Data Set RT2:

The highest NPV is from the Basic model. However, inspection of the re-
sults, see Figure 3.76 shows that this model produces two contiguous caves.
The Malkin run with the highest result is (10,934,200/11,062,600= 0.988)
98.8% of the Basic model result and the Malkin run with the lowest result
is (10,706,000/11,062,600= 0.968) 96.8% of the Basic model result, demon-
strating that the choice of centre point can improve objective value.

As with data set RT1, the Greedy model achieved a very good result
achieving (10,441,300/11,062,600= 0.944) 94.4% of the Basic model result.

The models took considerably longer to run on this data set than on
Data Set RT1, as expected. The Basic model took almost a day to complete,
and the Greedy model almost a week. Since the ColGen model initializes
with the Greedy model, it is not surprising that it did not complete. The
Greedy algorithm evaluates the caves formed by each pair of draw points,

168

Chapter 3. Sequence Optimization in Block Cave Mining

roughly 42 million combinations for data set RT2. Clearly there is some
room to improve this algorithm and as a result, improve the speed of the
ColGen model. While individual Malkin runs appear much quicker, many
runs would be needed to find the best centre point.

Table 3.19 shows the number of active draw points in each period for
the Basic, the highest and lowest total value from the sample of Malkin
runs, and the Greedy algorithm. There are 201 draw points with negative
value that must be mined for structural reasons. Some of the models may
delay these until the last period and therefore discount this loss. This may
explain why the models wait until the last period to open the remaining
draw points.

We now look at the mine shapes generated by solving these models on
data set RT2. Inspection of the figures provides a count of caves formed.
We also compare the shape and progression of the caves over time to see
how the results from the different models vary.

169

Chapter 3. Sequence Optimization in Block Cave Mining

Basic Malkin Malkin Greedy
Maximum Minimum
of sample of sample
(29,80) (5,80)

Number of draw points
active in each period

1 288 288 278 288
2 566 566 543 566
3 835 831 794 836
4 1090 1087 1067 1117
5 1099 1086 1067 1106
6 1109 1117 1075 1102
7 1095 1102 1067 1086
8 1103 1154 1081 1112
9 1080 1126 1082 1108
10 1064 1073 1092 1089
11 1077 1030 1048 1095
12 1155 1113 1055 1095
13 1139 1113 1137 1104
14 1184 1172 1159 1134
15 1108 1126 1190 1114
16 792 846 1068 906
17 22 21 42 189
18 3 2 0 42
19 1 0 0 35
20 163 116 124 33

Table 3.19: Cave Development Results for Data Set RT2:

170

Chapter 3. Sequence Optimization in Block Cave Mining

Basic:

The following sequence was determined using the Basic model. As has been
found on other data sets, this model did not return a single contiguous cave
in the first period. The results show that there is are two high value groups
of draw points on the right side that are chosen in the first period. It also
shows that there is a valuable group on the bottom left side that is not
adjacent to those chosen in the first period but which the model seeks in the
fourth period.

171

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.76: Results from Basic Model on Data Set RT2

172

Chapter 3. Sequence Optimization in Block Cave Mining

Malkin:

As each run of the Malkin model took between 1 and 9 hours it was not
feasible to run the model for each of the 6510 draw points as the starting
point. Instead 6 runs were done, each starting in one of the two caves selected
in the first period of the Basic model run. Of the runs done, the maximum
total NPV was centre point (29,80) with NPV $10,934,200, which was 2.6%
higher than the minimum at centre point (39,50) with NPV $10,706,000.
While there is not much difference in the total NPV between the Malkin
runs, the two centred on (35,70) and (39,50) took much longer time to run
than the others. These two runs were the only two centred in the right hand
cave generated in first period of the Basic model.

Starting Total NPV Number Solve Time
Tun Dpt of Caves (sec)

29 80 $ 10,934,200 1 5 372.8 ≈ 1.5 hours
23 85 $ 10,877,400 1 4 299.7 ≈ 1 hour
26 95 $ 10,861,900 1 3 649.2 ≈ 1 hour
35 70 $ 10,831,700 1 33 128.1 ≈ 9 hours
25 100 $ 10,803,000 1 4 867.4 ≈ 1 hour
39 50 $ 10,706,000 1 25 849.4 ≈ 7 hours

Table 3.20: Results from Selected Runs of Malkin Model on RT2

Due to similarities in the caves generated, graphical results from only
the runs centred at (29,80) and (39,50) are shown below.

173

Chapter 3. Sequence Optimization in Block Cave Mining

Tunnel 29, Draw point 80 This run was started in the left hand cave
selected in the first period of the Basic model run. As with the Basic model,
the cave moves to the right, then heads towards the bottom left of the
footprint in period five.

174

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.77: Results from Malkin Model (29,80) for Data Set RT2

175

Chapter 3. Sequence Optimization in Block Cave Mining

Tunnel 39, Draw point 50 This run was centred on the upper right
corner of the right hand cave selected in the first period of the Basic run on
this data set. As with the other Malkin run from the right hand side, Malkin
(35,70), the cave moves to the left, almost reaching the edge by period five.
The cave then moves to the bottom left of the footprint, which is notably
different from all runs other than Malkin (35,70).

Figure 3.78: Results from Malkin Model (39,50)

176

Chapter 3. Sequence Optimization in Block Cave Mining

Greedy:

The Greedy model returned a diamond-shaped sequence that begins in the
same area as the Basic model. The cave grows to the left hand edge in the
early periods but the tight shape restrictions prevent it from reaching the
bottom left until much later in the run.

177

Chapter 3. Sequence Optimization in Block Cave Mining

Figure 3.79: Results from Greedy Algorithm on Data Set RT2

178

Chapter 3. Sequence Optimization in Block Cave Mining

3.5.4 Conclusions

The new models demonstrated their contribution on the two data sets. On
both data sets the models not only identified high value opening sequences,
but also demonstrated sensitivity of total NPV to opening sequences. While
the Basic model did not produce a feasible opening in the early periods, it
did provide an upper bound on the NPV as well as indicate the sections of
the footprint with high value. The Malkin model ran well on both data sets,
and provided feasible opening sequences as well as an opportunity to test
the sensitivity of the results to different initial opening constraints. The
2Cone model was effective on the smaller data set, but proved to be too
large for the larger data set. On the smaller data set, the 2Cone model also
proved an effective tool for runs to investigate the sensitivity of the NPV
to restrictions on the opening sequence. The Greedy algorithm produced
results that were close to those of the other models for Data Set RT1. For
Data Set RT2 the total NPV was close to the maximum, but the generated
caves were noticeably different from those from the Basic and Malkin model
runs. Finally, the ColGen algorithm produced results similar to those of the
2Cone model for Data Set RT1, but, like the 2Cone model, was not able to
manage the large number of draw points in Data Set RT2.

From these two data sets, it seems that no one model provides the so-
lutions that a practitioner seeks, but instead each contribute to the under-
standing of the problem. The Basic model provides an upper bound on the
total NPV and indicates high value starting areas. Unfortunately, the fre-
quent generation of multiple caves makes the solution impractical. In large
data sets, running the Malkin model on all centre points may be infeasible
due to time constraints. However, individual runs can be useful in inves-
tigating sensitivity to centre point or other constraints. The 2Cone model
also proved useful, and ran in a reasonable time on the smaller data sets.
The Greedy algorithm performed reasonably well but as it was not faster
than the others it seems less useful than the other models.

3.6 Conclusions

In the preceding sections we presented five model formulations to assist the
mine planner with the sequence optimization process for planning a block
cave mine. The models each have strengths and weaknesses which will be
discussed below. This is a complex problem, and this work has not found a
simple answer. Instead, a combination of the presented models is proposed
to provide insight to the planner.

179

Chapter 3. Sequence Optimization in Block Cave Mining

Model Number of (Binary) Number of Constraints
Decision Variables

Basic nDPTS × T × 3 nDPTS + T + nDPTS × T × 4
+nTNLS × T × 2

Malkin nDPTS × T nDPTS + T + nDPTS × T × 2

2Cone nDPTS × T × 5+ nDPTS + T × 3 + nDPTS × T × 7
eTNLS2 × T × 2 −nDPTS × 2

Table 3.21: Integer Programming Formulation Comparison

All models share the common goal of creating a single, contiguous cave,
the size of which is regulated over time by a production capacity. The models
differ on how they achieve the single cave, as this proved a challenging
constraint to implement. All models require the same data preparation,
namely the numbering of draw points on a two-dimensional grid with one
axis aligned with the planned tunnels, and a second axis perpendicular to
the first. The first axis is referred to as “along-tunnel” and the second as
“across-tunnel”.

Three of the models, Basic, Malkin and 2Cone, use general integer pro-
gramming methods for the formulation. The ColGen model, based on the
column generation technique and a Greedy algorithm round out the set of
models.

Table 3.21 compares size of the three models based on integer program-
ming formulations. The Malkin model is the smallest both in number of
decision variables, and number of constraints.

Basic Model

The Basic model is the most general of the models. The cave is allowed
to grow as long as, in each period, the opened draw points form a single,
contiguous group along each tunnel, and a single contiguous group in the
across-tunnel direction. With this first model, there is no attempt to create
the desired diamond shape, only a single, contiguous cave in each period.

The single, contiguous group is created by specifying a direction to travel
along each axis, then, for each row, naming an open draw point following a
closed draw point the “First opened” and allowing only one in each period.

180

Chapter 3. Sequence Optimization in Block Cave Mining

Thus, in each row of each axis there is only one transition from closed to
open draw points, creating a contiguous group along each row.

Running this model revealed that it does not guarantee a single cave
in each period. Apparently, for some data sets, the constraints are needed
along more axes than the two defined for this work.

Despite the failure of the formulation to produce a feasible sequence,
there is value to this model. The formulation may return a single cave in
each period, or even a sequence that can be modified into something useful
by the mine planner. If multiple caves are returned, the result can be used
as an upper (unreachable) bound against which the sequences created by
the skilled mine planner, and other models can be evaluated. The caves
generated from the early periods can also be used to highlight high value
areas which may be used as input into other models presented.

The Basic model ran to completion on the two data sets tested. It ran
in 4 seconds on the smaller data set, but this rose to 19 hours for the larger
one. To some, 19 hours may seem unexpectedly long, but in practice it may
be acceptable to run it over the weekend if it does not need to be repeated
often.

Malkin Model

The Malkin model was based on the 2D Integral Formulation proposed by
P. Malkin and L. Wolsey. In this formulation, a centre point is specified
which locates a dominant axis in each of the across-tunnel and along-tunnel
directions. In each period, a draw point can open if those between it and each
dominant axis are open. The formulation is the smallest of those presented
as it is simple and does not require any decision variables in addition to the
set describing which draw points are open.

For a convex mine footprint, this formulation guarantees a single, con-
tiguous cave in each period. While the dominant axes can suggest a diamond
shape, there is nothing in this model that evenly distributes open draw points
on either side of the axes. In trials on our data set, this leads to a variety of
shapes from a square with the origin of the axes at one corner, to irregular
shapes with long, thin protrusions along an axis. Additional work would be
required by the mine planner to obtain a usable sequence of caves, and this
work would change the total NPV of the sequence.

The obvious challenge with this model is the task of choosing a centre
point. In this work we were able to run the model on all centre points in less
than an hour for a smaller data set. On the larger data set, individual runs
took over an hour making it infeasible to run all 6510 centre points. For the

181

Chapter 3. Sequence Optimization in Block Cave Mining

larger data set we ran the model on a selection of centre points chosen from
the caves formed by the Basic model in the first period. The best result
from this selection of runs was evaluated against the upper bound formed
by the Basic model result.

On the smaller test data set, the best Malkin model achieved 98.6% of
the Total NPV of the Basic model, while the best of the selection of runs
on the larger data set achieved 98.8% of the Total NPV of the Basic model.
The test data sets showed that the strengths of this model are that it can
return sequences for a single cave, and they can be close to the upper bound
created by the Basic model. This is in contrast to some of the other models
that did not return a solution on the larger data set.

This model does provide the mine planner with a way to compare a
variety of starting points in the mine footprint. For example, production
method constraints may require the cave to begin along an edge of the
footprint. Running the model on a selection of points around the perimeter
could identify which edge is most favorable. In theory all of the integer
programming models can perform this task, but this model is the smallest
and individual runs were faster than Basic model runs on our trial data sets.

2Cone Model

In the 2Cone model the cave for each period is defined by the intersection of
two cones, or triangles. Each cone has a draw point as its vertex, then grows
from the vertex by two draw points per tunnel. Other than the constraints
that ensure previous caves are contained within the current one, the vertices
are unrestricted across the mining footprint.

This formulation will provide a single cave in each period on a convex
data footprint. The shape of each cave is much closer to a diamond shape
than those produced by the Basic model and Malkin model, especially in
the earlier periods.

The definition of each of the cones uses two sets of decision variables, one
for the vertex, and one for the cone. As a result, this was the largest of the
integer programming formulations. On the smaller data set, this model took
slightly longer to run than running the Malkin model on all centre points.
The value of the result was lower than that of the best Malkin model run,
94.5% of the Basic model result, suggesting that the shape constraint was
more restricting than the fixed dominant axes constraint. This model did
not complete on the larger data set.

The strength of this model is in the creation of diamond shaped caves.
This formulation has specified that the cave grows at two draw points per

182

Chapter 3. Sequence Optimization in Block Cave Mining

tunnel, a restriction which may not suit all, if any, mining footprints. We
would suggest that this model, or a similar one with a different diamond
proportions, could be used in conjunction with one of the above models.
The above models can identify draw points that should be in the initial
cave. If the cave sequence is not well shaped, the 2Cone model could be
used to suggest improvements. With an additional constraint specifying a
set of draw points to open in the first period, the 2Cone model can be run
to create well shaped caves over all periods. Consultation with the expert
mine planner can suggest other diamond proportions that are acceptable.

ColGen Model

The ColGen model uses the Column Generation technique to separate the
task of generating feasible caves from that of picking the cave in each period
that maximizes the total NPV. The later task still utilizes Integer Program-
ming techniques, but we were free to use other methods to generate the
caves. In this work, we used an algorithm based on the 2Cone model to
generate the feasible caves for each period.

The technique first requires a set of caves for all periods, then the Master
program selects the sequence that maximizes the total NPV. The shadow
prices generated by the Master program are then used to generate new
caves that will improve the NPV, and so the model iterates until no more
improvement is possible.

Creating the set of caves for each period proved complicated as there was
not always sufficient information in the shadow prices to create reasonably
sized caves that overlapped in consecutive periods. By reasonably sized we
mean close to but not exceeding the Global Capacity Constraint. The algo-
rithms added to estimate limits on cave sizes in each period, and generate
feasible preceding and succeeding sequences greatly increased the size of the
model, and the time to run.

On the small trial data set, the result from the ColGen model was within
half a percent of the 2Cone model result. This is not surprising as both
models were based on the same cave shape definition. As with the 2Cone
model, the larger trial data set proved to be too large, and a solution was
not returned.

Greedy Algorithm

The Greedy model is the algorithm that was developed to generate the initial
cave sequence for use in the ColGen model. The algorithm enumerates all

183

Chapter 3. Sequence Optimization in Block Cave Mining

caves of maximum size, and chooses the one with the highest total of draw
point weights for the first period cave. For each subsequent period, it counts
how many draw points have completed, then enumerates all caves of the new
size that fully overlap with the cave from the previous period. The cave with
the highest incremental draw point weight becomes the cave for that period
and the process is repeated. In this work, caves matching the shape of those
in the 2Cone model were generated.

This model ran to completion on both the trial data sets. On the smaller
data set, the model generated a sequence that achieved $3,333,520 which is
essentially the same as the ColGen result of $3,333,938. On this data set,
the additional iterations of the ColGen model did not significantly improve
on the starting sequence generated by the Greedy algorithm. As mentioned
above, the Greedy algorithm / ColGen model result is also very close to that
from the 2Cone model. On the larger data set, the Greedy algorithm ran for
over 6 days, but did return a solution, unlike the ColGen and 2Cone models.
The value of the solution was 94.5% of the Basic model solution, not leaving
much room for improvement had the ColGen model run to completion.

In these two trial data sets, the Greedy algorithm performed strongly. If
cave shapes that can not be well defined in the integer programming frame-
work are desired, we suggest running this model, modified to the desired
shape, and comparing the result to the Basic model benchmark. If there is
a large gap, the ColGen model may add some value, but if not, the extra
computation may not be worthwhile.

In theory, the Greedy algorithm (and the ColGen model) can be adapted
to generate other cave shapes. The results from these trials show that even
with the simple, single cave definition, the Greedy algorithm can be slow.
This suggests additional, or more complex cave definitions may perform even
worse. Depending on the size of the data footprint, and the complexity of
the problem, the mine planner can decide if using this model is worth the
time to reach a solution.

Future Work

This work is a first attempt to use models to generate opening sequences for
planning block cave mining. In the process, we learned, as often happens
with real world problems, that writing the rules, or constraints of this task
is complex. We have shown that it is possible to write models that can
generate sequences, but before any further work is done we recommend
consulting expert mine planners to learn their opinion on how useful the
models are.

184

Chapter 3. Sequence Optimization in Block Cave Mining

The slow speed of the Greedy algorithm directly impacts the speed of the
ColGen model. The Greedy algorithm is very simplistic and evaluates the
cave made by each pair of draw points, approximately nDPTS2 of them.
Future work could be focused on this algorithm to make it more efficient
and faster.

Much further down the road, if useful sequences can be generated, work
could be done to combine this program with PC-BC, Gemcom’s mine plan-
ning software.

In real life, much of the data is stochastic (ore price, discount rate, etc.)
and so having a model that takes this into account would be valuable.

The models in this work are all in the integer programming setting.
There are many other optimization techniques available, and this problem
could be tried on them. For example constraint programming (Marriott
1998) or genetic algorithms and other global optimization algorithms (Weise
2008).

185

References

Ahuja, Ravindra K., Thomas L. Magnanti, and James B. Orlin. 1993. Net-
work flows: theory, algorithms, and applications. Prentice Hall.

Americal Museum of Natural History. (2008). Mining a Kimberlite Pipe. In
The Nature of Diamonds. Retrieved June 25, 2008 from
http://www.amnh.org/exhibitions/diamonds/mining.html.

Barber, J., Thomas, L., & Casten, T. 2000. Freeport Indonesia’s Deep Ore
Zone Mine. Proceedings MassMin 2000. 291.

Calder, K., Townsend, P., & Russell, F. 2000. The Palabora Underground
Mine Project. Proceedings MassMin 2000. 219–225.

Chen, F. 2000. Optimal Policies for Multi-Echelon Inventory Problems with
Batch Ordering. Operations Research. 48 no. 3, 376–389.

Dantzig, G. B., & Fulkerson, D. R. 1956. On the Max-Flow Min-Cut The-
orem of Networks. Linear Inequalities and Related Systems 215–221.

Diering, T. 2000. PC-BC: A Block Cave Design and Draw Control System.
Proceedings MassMin 2000. 469–484.

Diering, T. 2006. Personal communication.

Garey, M.R., & Johnson, D.S. 1979. Computers and intractability: a guide
to the theory of NP-completeness. W.S. Freeman..

GEMCOM. 2006. Company website. http://www.gemcomsoftware.com/

Gertsch, R. E. & Bullock, R.L. 1998. Techniques in Underground Mining.
Society for Mining, Metallurgy, and Exploration (U.S.)

Giannini, L. M., Caccetta, L., Kelsey, P., & Carras, S. 1991. PITOPTIM:
A New High Speed Network Flow Technique for Optimum Pit Design
Facilitating Rapid Sensitivity Analysis. AusIMM Proc. 2 57–62.

Howard, R. 1960. Dynamic Programming and Markov Processes. (M.I.T.
Press).

Lee, J., Leung, J. & Margot, F. 2003. Min-up / Min-down Polytopes. Tep-
per School of Business Paper 272, http://repository.cmu.edu/tepper/272

186

Chapter 3. Sequence Optimization in Block Cave Mining

Lerchs, H. & Grossman, I. F. 1965. Optimum Design for Open Pit Mines.
CIM Bulletin. 58 (January) 47–54.

Lübbecke, M & Desrosiers, J. 2005. Selected Topics in Column Generation.
Operations Research [serial on the Internet]. 53 no. 6, 1007-1023.

Malkin, P. & Wolsey, L. 2006. Possible Formulations of the Mining Problem.
Manuscript.

Malkin, P. & Wolsey, L. 2006. Personal Correspondence.

Marriott, K. & Stuckey, P. J. 1988. Programming with Constraints: An
Introduction. MIT Press, Cambridge MA

Newman, A., Rubio, E., Weintraub, A. & Eurek, K. 2010. A Review of
Operations Research in Mine Planning. Interfaces 40 no. 3, 222-245.

Newman, P. 1987.“Indirect Utility Function” The New Palgrave:A Dictio-
nary of Economics. Eds John Eatwell, Murray Milgate and Peter New-
man. Palgrave Macmillan. 1987.

Parkinson, A., McCormick, S.T. 2005. Optimal Replenishment with Two
Delivery Sizes. (MSOM Conference Presentation).

Pinedo, M. 1995. Scheduling: Theory, Algorithms, and Systems. Prentice
Hall..

Puterman, M. 1994. Markov Decision Processes. (John Wiley and Sons).

Rajan, D. & Takriti, S. 2005. Minimum Up/Down Polytopes of the Unit
Commitment Problem with Start-Up Costs. IBM Research Report

Resolution Coper Mining. (2009). Block Cave Mining. Block Cave Mining.
Retrieved November 12, 2009, from
http://www.resolutioncopper.com/res/ourapproach/BlockCaveMining.pdf

Rubio, E. 2002. Long Term Planning of Block Cave Operations using Math-
ematical Programming Tools. Masters Thesis, UBC.

Van Vyve, M. 2006. Personal communication.

Veinott, A. 1965. The Optimal Inventory Policy for Batch Ordering. Oper-
ations Research. 13 1103–1145.

Weintraub, A., Pereira, M. & Schultz, X. 2008. A Priori and A Posteriori
Aggregation Procedures to Reduce Model Size in MIP Mine Planning
Models. Electronic Notes Discrete Math 30 297- 302.

Weise, T. 2008. Global Optimization Algorithms - Theory and Applications
-. http://www.it-weise.de.

Wolsey, L. 1998. Integer Programming. John Wiley and Sons..

187

Chapter 3. Sequence Optimization in Block Cave Mining

Yegulalp, T. M., & Arias, A. J. 1992. A fast algorithm to solve the ultimate
pit limit problem. Proc. 23rd International APCOM Symposium 391–
397.

188

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Optimal Inventory Replenishment with Two Delivery Sizes
	Introduction
	The Model and Overview of Results

	Analytical Tools in the One Delivery Size Setting
	Markov Decision Process
	Finding the Optimal Average Cost Policy
	Previous Work

	Extensions to Two Delivery Sizes
	Formal Model
	Intuitive Starting Point
	Structure of Optimal Policy
	Stationary Distribution of a Two Delivery Size Policy
	Counterexamples to Optimality of Alpha-Policy
	An Algorithm for Computing Exact Solutions
	Upper and Lower Bounds

	Numerical Study
	Further Extensions
	Conclusions
	Acknowledgments

	Sequence Optimization in Block Cave Mining
	Introduction
	Current Practice
	Tunnel Details
	Cave Shape
	Other Considerations
	Assumptions
	Previous work

	Model Framework
	Data
	Decision Variables
	Objective
	Constraints
	Unconstrained Sequence Optimization as a Draw Point Scheduling Model

	Single Tunnel
	Alternating Constraints Formulation
	Extended Formulation
	Computational Results

	Multiple Tunnels
	Introduction/Overview
	Computation and Data Sets
	Adapting Single Tunnel Formulations
	Malkin and Wolsey's 2D Integral Formulation
	Formulations Based on 4 Vertices
	Column Generation
	Greedy/Myopic Algorithm

	Application of Models to Test Data Sets
	Data Sets
	Models
	Results
	Conclusions

	Conclusions

	References

