
Hardware Error Detection in
Multicore Parallel Programs

by

Jiesheng Wei

B.E., Harbin Institute of Technology, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

August 2012

© Jiesheng Wei 2012

Abstract

The scaling of Silicon devices has exacerbated the unreliability of modern

computer systems, and power constraints have necessitated the involvement

of software in hardware error detection. Simultaneously, the multi-core rev-

olution has impelled software to become parallel. Therefore, there is a com-

pelling need to protect parallel programs from hardware errors.

Parallel programs’ tasks have significant similarity in control data due

to the use of high-level programming models. In this thesis, we propose

BlockWatch to leverage the similarity in parallel program’s control data

for detecting hardware errors. BlockWatch statically extracts the similar-

ity among different threads of a parallel program and checks the similarity

at runtime. We evaluate BlockWatch on eight SPLASH-2 benchmarks

to measure its performance overhead and error detection coverage. We find

that BlockWatch incurs an average overhead of 15% across all programs,

and provides an average SDC coverage of 97% for faults in the control data.

ii

Preface

This thesis is based on a work conducted by myself in collaboration with

Dr. Karthik Pattabiraman. The work was published as a conference paper

in the 42nd IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN) [44]. I was responsible for coming up with the solution

and validating it, evaluating the solution and analyzing the results, and

writing the paper. Karthik was responsible for guiding me with the solution

reasoning, experiments design and results analysis, as well as editing and

writing portions of the paper.

Jiesheng Wei and Karthik Pattabiraman, BlockWatch: Leveraging

Similarity in Parallel Programs for Error Detection, the 42nd IEEE/IFIP

International Conference on Dependable Systems and Networks, 2012

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

List of Acronyms . x

Acknowledgements . xi

Dedication . xii

1 Introduction . 1

1.1 Motivation . 1

1.2 Proposed Solution . 2

1.2.1 Advantage of BlockWatch 4

1.3 Contributions . 4

1.4 Related Work . 5

iv

Table of Contents

1.5 Dissertation Organization . 9

2 Approach . 10

2.1 Introduction . 10

2.2 Fault Model . 10

2.3 Assumptions on Parallel Program 11

2.4 Control-data Similarity in Parallel Programs 11

2.5 Runtime Checking . 15

2.6 Summary . 16

3 Implementation . 17

3.1 Introduction . 17

3.2 Similarity Category Identification 17

3.3 Runtime Checking . 25

3.4 Summary . 31

4 Experimental Setup . 33

4.1 Introduction . 33

4.2 Implementation Tools . 33

4.3 Benchmarks . 35

4.4 Performance Evaluation . 39

4.5 Coverage Evaluation . 39

4.6 Summary . 42

5 Results . 43

5.1 Introduction . 43

5.2 Similarity Category Statistics of Branches 43

v

Table of Contents

5.3 Performance Overheads . 45

5.3.1 Scalability . 47

5.4 Error Detection Coverage . 48

5.4.1 Coverage results for branch-flip faults 49

5.4.2 Coverage results for branch-condition faults 51

5.5 Detailed Study . 54

5.5.1 Correlation of output backtrace and coverage 55

5.5.2 Correlation of output backtrace and performance over-

head . 57

5.6 Summary . 58

6 Discussion . 59

6.1 Introduction . 59

6.2 Coverage . 60

6.3 Performance Overhead . 61

7 Conclusion and Future Work 64

7.1 Conclusion . 64

7.2 Future Work . 65

Bibliography . 66

vi

List of Tables

2.1 Branch condition similarity category definition 13

3.1 Rules to infer instruction’s similarity category from its current

category and the operand’s category 19

3.2 Example of category propagation algorithm on Figure 3.1 . . 24

4.1 Description of application programs of SPLASH-2 benchmark

suite . 35

4.2 Characteristics of benchmark programs 38

5.1 Similarity category statistics of the branches in the bench-

mark programs . 44

vii

List of Figures

2.1 Sample pthreads parallel program to illustrate the static sim-

ilarity among all threads in the program. The comments in-

dicate the similarity categories for each branch according to

the classification in Table 2.1. 12

3.1 Example code of multiple runtime instances of the same branch 21

3.2 Pseudo-code to show the similarity category identification al-

gorithm . 22

3.3 Architecture of the runtime monitor in BlockWatch 27

3.4 Example code to show the instrumented program 29

3.5 Architecture of hash table of the monitor 30

5.1 Slowdown of BlockWatch. Lower is better 46

5.2 Geometric mean of the slowdown of BlockWatch Vs. num-

ber of threads . 47

5.3 Coverageoriginal (baseline) and coverageBlockWatch (aggre-

gated number) for branch-flip faults: The dark part is due to

the detection provided by BlockWatch. Higher is better. . 50

viii

List of Figures

5.4 Coverageoriginal (baseline) and coverageBlockWatch (aggre-

gated number) for branch-condition faults: The dark part is

due to the detection provided by BlockWatch. Higher is

better . 52

5.5 CoverageBlockWatch for branch-condition faults Vs. back-

trace step number. Thread number is 32 56

5.6 CoverageBlockWatch for branch-condition faults Vs. normal-

ized checked runtime branches. Thread number is 32 56

5.7 Slowdown of BlockWatch Vs. backtrace step number.

Thread number is 32 . 58

6.1 An example to show why duplication cannot be directly ap-

plied to parallel programs . 60

6.2 One possible improved version of the current monitor 63

ix

List of Acronyms

CFC Control Flow Checking

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

IR Intermediate Representation

LLVM Low Level Virtual Machine

MPI Message Passing Interface

MTTF Mean Time To Failure

MTTR Mean Time To Repair

SDC Silent Data Corruption

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

SSA Static Single Assignment

x

Acknowledgements

First of all, I would like to thank my advisor Dr. Karthik Pattabiraman

for his support during the past two years. Karthik constantly motivated

me to think out of the box independently, and at the same time he gave

me guidance and suggestions at the appropriate time. Without his support,

this thesis would not have been possible, and I would not have improved

so much in creative and critical thinking. Karthik is also a mentor to me.

His passion, enthusiasm and consistency is always something I am trying to

learn.

I would like to thank my colleagues in the Computer Systems Reading

Group (CSRG) for their feedbacks on my practice talks. The weekly paper

discussion meeting is also a place where I got the big picture in this area.

Special thanks to my labmates for making the lab an enjoyable place to

work, and for their advice and suggestions on my work and paper writing.

I am grateful to my dear friends in Canada and China, for helping me

with some real problems or to talk about life.

Finally, special thanks to my family. They do not know what I am

working on exactly, but they have always provided me support. I would

never be whom I am today without their constant support.

xi

Dedication

To my parents

xii

Chapter 1

Introduction

1.1 Motivation

The continued scaling and lower power consumption of Silicon devices have

exacerbated their unreliability and error-proneness. A recent study has

found that during an eight month period, machines with more than 30 days

of accumulated CPU time have 1/190 chance of crashing due to CPU hard-

ware faults. Further, machines that crashed once have a probability of 1/3.3

of crashing a second time [29]. Moreover, microprocessors are expected to

experience significantly higher rates of hardware faults in the near future

because of the decrease in manufacturing process and voltage [7]. For in-

stance, studies have shown that alpha-induced transient faults increase 30

times when the manufacturing process goe from 250nm to 180nm and the

voltage drops from 2V to 1.6V [18]. Processor faults have hitherto been

masked from software through redundancy at the hardware level [38] (e.g.,

dual modular redundancy). However, as power consumption becomes a first

class concern in computer systems, hardware-only solutions become infeasi-

ble due to their high power costs [47]. Therefore, software applications must

be designed to tolerate hardware faults.

On another front, the microprocessor industry has adopted the multi-

1

1.2. Proposed Solution

core paradigm, or the integration of multiple cores on a single die. Already,

eight-core processors are available on the market, and the number of cores is

expected to increase in future generations [8]. The multi-core paradigm has

revolutionized software development, and industry experts have predicted

that parallel programs will become the de-facto standard in the future [40].

Therefore, parallel programs that run on future multi-core processors will

need to be capable of detecting and recovering from hardware errors. While

error recovery for parallel programs has received considerable attention [14],

efficient error detection remains a challenge.

With the two issues above in mind, the research question we address in

this thesis is as follows: How do we detect hardware faults that propagate

to parallel programs at the software level? The solution we provide is to

leverage the similarity across tasks (i.e., threads) of the parallel programs

for error detection, which will be further explained in the following section.

1.2 Proposed Solution

In this thesis, we explore the use of similarity among threads of a paral-

lel program for runtime error detection. The similarity arises as a result

of high-level programming models. For instance, Single-Program-Multiple-

Data (SPMD) paradigm, which is the most commonly used style for parallel

programming [13], has the same control flow graph and some shared data

among threads. Our approach statically extracts the similarity through

compiler-based analysis, and inserts runtime checks in the program. The

runtime checks compare the behaviors of the tasks at runtime, and flag any

2

1.2. Proposed Solution

deviation from the statically extracted similarity as an error. Because we

leverage similarity among a group of tasks for error detection, we call our

approach BlockWatch1.

While there are many sources of similarity in an SPMD program [25],

we focus on the similarity of control-data to detect faults that corrupt the

control-data. Control-data is data that is used to make branch and loop de-

cisions, and we define two threads as exhibiting control-data similarity at a

branch if the behavior of a thread for the branch is constrained by the behav-

ior of the other threads for the same branch. We focus on control-data be-

cause: (1) control-data is critical for the correctness of a program, and errors

in this data lead disproportionately to Silent Data Corruptions (SDCs)2 [41],

(2) SPMD programs exhibit substantial similarity in the control-data (Chap-

ter 5), and (3) no software technique other than duplication can protect this

class of program data. (duplication has some disadvantages as mentioned

in Chapter 6).

BlockWatch consists of two parts: static analysis and runtime check-

ing. We implement static analysis with the LLVM compiler infrastruc-

ture [24]. Our analysis statically extracts the control-data similarity and

instruments the program for collecting the runtime behaviours of different

threads at its branches. We implement the runtime checking by developing

a runtime monitor that checks the collected runtime behaviours for errors.

1BlockWatch is a program for crime prevention by residents watching for suspicious
activities in a neighbourhood and reporting them.

2An SDC is a deviation from the output in an error-free execution.

3

1.3. Contributions

1.2.1 Advantage of BlockWatch

We are not the first to observe that parallel programs exhibit similarity

among their tasks - other techniques have used parallel programs’ similarity

for error detection [9, 27]. BlockWatch differs from these techniques in

two ways. First, the other techniques learn the similarity by observing the

program at runtime, and may consequently incur false-positives because they

cannot distinguish between an unexpected corner case and a deviation due

to an error. In contrast, BlockWatch is based on the static characteristics

of the program, which by definition, incorporates a superset of the dynamic

runtime behaviours, and hence has no false positives. This is especially

important in production settings where a false-positive can trigger wasteful

recovery or diagnosis. Secondly, BlockWatch operates at the granularity

of individual branches in the program while the other techniques operate

at the function or region granularities. As a result, BlockWatch can

detect errors that affect a single branch, even if the error does not cause

deviations at other granularities. To our knowledge, BlockWatch is the

first technique to statically extract the similarity among a parallel programs’

tasks, and leverage it for runtime error detection.

1.3 Contributions

The main contributions we make in this thesis are as follows:

1. We identify the generic code patterns that characterize control-data

similarity in parallel programs, and divide the code patterns into four

4

1.4. Related Work

categories (Chapter 2).

2. We develop compiler techniques to statically extract the control-data

similarity patterns, and instrument the program with runtime checks

corresponding to the categories of the patterns (Chapter 3).

3. We build a scalable, lock-free monitor for dynamically executing the

runtime checks inserted by the compiler (Chapter 3).

4. We evaluate BlockWatch on seven SPLASH-2 benchmark programs [45].

The results of our empirical evaluation show that BlockWatch, (1)

finds considerable control-data similarity in the programs (50% to

95%), (2) incurs average performance overheads of about 15% across

the programs (for 32 threads on a 32-core machine), and (3) provides

average coverage of 97% for transient errors in the control-data.

BlockWatch has three aspects that make it practical. First, Block-

Watch does not require any modifications to the hardware, and can work

on today’s multi-core systems. Secondly, it does not require any interven-

tion from the programmer, and is fully automated. Finally, BlockWatch

incurs no false positives (i.e., does not detect an error unless one occurs in

the program).

1.4 Related Work

In this section, we present prior work related to error checking and parallel

program’s similarity pattern identification. We classify related work into six

5

1.4. Related Work

broad categories. Because we will discuss duplication in detail in Chapter 6,

we do not consider it here.

Control-flow checking: Control-flow Checking (CFC) techniques such

as ECCA [2], PECOS [5] and CFCSS [30] check the conformance of the

program’s control-flow to its static control flow graph. However, CFC tech-

niques cannot detect errors that propagate to the control data and lead to

a valid but incorrect branch outcome, i.e., control-data errors that result in

the branch going the other way than its error-free behavior. BlockWatch

detects this class of errors.

Statistical techniques: AutomaDeD [9] uses Semi-Markov Models

(SMMs) to find parallel tasks that deviate from other tasks’ behavior. Au-

tomaDeD is similar to BlockWatch in that both techniques consider de-

viations as detections. However, AutomaDeD differs from BlockWatch in

three ways. First, AutomaDeD requires the programmer to annotate their

code with region identifiers which are used as the building blocks of the

SMMs. Second, AutomaDeD is targeted towards software bugs during de-

bugging, and not at runtime hardware errors. Finally, AutomaDeD learns

SMMs at runtime, and can incur false-positives.

Mirgorodskiy et al. [27] use statistical techniques based on function ex-

ecution times in parallel programs’ tasks to detect outliers. However, this

approach does not detect errors that do not cause a noticeable difference in

the execution times of functions. Their approach also incurs false-positives

as the execution times are learned at runtime.

Invariant based Checks: DMTracker [15] leverages invariants on data

movement to find bugs in MPI-based parallel programs. They leverage the

6

1.4. Related Work

observation that MPI programs have regular communication patterns, which

gives rise to invariants on the transfer of data among the different tasks.

DMTracker differs from BlockWatch in three ways. First, the invariants

are specific to MPI-based programs, and do not apply for shared memory

parallel programs. Second, the invariants derived by DMTracker pertain to

the messages sent by the program, and not necessarily to the control-data.

Finally, DMTracker attempts to learn the pattern of data transfer at runtime

and may hence incur false-positives.

FlowChecker [10] also finds errors by tracking invariants on communi-

cation operations in MPI parallel programs. FlowChecker extracts message

intentions, which are matching pairs of sends and receive MPI calls, and

checks whether the message flows in the underlying MPI library match the

extracted intentions. The goal of FlowChecker is to find bugs in MPI li-

braries that cause data loss or lead to mismatched messages, rather than

detect runtime hardware errors.

Static and Dynamic Analysis: Static analysis has been extensively

used for verifying in parallel programs [28, 43]. In these cases, the goal is

to find bugs in the program, rather than detect runtime errors arising in

hardware. Pattabiraman et al. [32] use static analysis to derive runtime

error detectors for sequential programs. Their technique differs from ours

in three ways. First, they confine themselves to critical variables that have

high fanout in the program. Second, they duplicate the backward slice of

the critical variable, and compare the value computed by the slice with that

in the program. This approach will not work for non-deterministic parallel

programs. Finally, they use support from the hardware to track control-flow

7

1.4. Related Work

within the program, and hence require hardware modifications.

Dynamic analysis techniques detect errors by learning invariants over

one or more executions [17, 19, 36]. These techniques target only sequential

programs, and hence do not consider similarity across threads . Yim et.

al. [46] propose a technique to learn invariants for GPU programs, and use

the invariants for detecting errors. However, their focus is on errors that

can cause large deviations in the output as GPU programs are inherently

error-tolerant. A generic problem with all dynamic techniques is that of

false-positives, which can trigger unwanted detection and recovery.

Algorithmic techniques: Algorithm-based Fault Tolerance (ABFT)

is an error detection technique for specialized parallel computations such as

matrix manipulation and signal processing [21, 33]. Sloan et al. [37] develop

error-resilient gradient descent algorithms for stochastic processors, or pro-

cessors that allow variation-induced errors to occur by drastically shaving off

design margins in order to save power. Finally, Geist et al. develop a class

of naturally fault-tolerant algorithms for certain classes of iterative parallel

computations [16]. While these techniques are efficient, they only protect

programs of the specific type they target. In contrast, BlockWatch targets

general-purpose parallel programs.

Similarity based performance improvement: Long et al. [25] ex-

ploit the similarity in SPMD applications for performance improvement.

They merge instruction fetching if certain instructions are the same among

different threads and merge instruction execution if the instructions and

their input operands are shared among different threads. However, they do

not leverage the similarity for error checking.

8

1.5. Dissertation Organization

1.5 Dissertation Organization

The rest of this thesis is organized as follows: Chapter 2 discusses the

BlockWatch approach with an example, while Chapter 3 details its im-

plementation. Chapter 4 introduces the experimental setup, and Chapter 5

presents the evaluation. Chapter 6 quantitatively compares BlockWatch

to software-based duplication, and proposes some techniques to further im-

prove BlockWatch. Finally, Chapter 7 concludes and proposes some fu-

ture directions.

9

Chapter 2

Approach

2.1 Introduction

This chapter describes the high-level approach of BlockWatch. Sec-

tion 2.2 presents the fault model for BlockWatch, while Section 2.3 lists

the assumptions we make about the parallel program. Section 2.4 uses an

example parallel program to illustrate the kinds of similarity considered by

BlockWatch. Section 2.5 illustrates the runtime checks introduced by

BlockWatch on the example program.

2.2 Fault Model

We consider transient or intermittent hardware faults that affect at most

one processor or core in a multi-processor or multi-core processor. The fault

can occur in the processor data path, control logic or memory elements in

the core (e.g., caches). However, we assume that no more than one core or

processor is affected by a fault at any time. This is reasonable as hardware

faults are rare events (relative to the total time of execution of a parallel

program).

Our fault model also captures certain kinds of software errors such as

10

2.3. Assumptions on Parallel Program

rare race conditions and memory corruption errors that result in a thread

deviating from its static semantics. However, we do not consider software

errors in this thesis.

2.3 Assumptions on Parallel Program

We make three assumptions regarding the parallel program. First, we as-

sume that it is written using a shared memory model, which is the common

case with multi-core processors today. We have implemented BlockWatch

for pthreads style parallel programs, though it can be extended for other

kinds of shared memory parallel programs (e.g., CUDA programs). Second,

we assume that the parallel program is written in an SPMD style. This

ensures that the code to be executed by each thread is identical, and hence

it suffices to analyze the common code to identify the similarity of branch

runtime behaviour among threads. Finally, we assume that the entire source

code of the program is available for analysis by BlockWatch. If this is not

the case, BlockWatch will not be able to statically extract the program’s

similarity characteristics.

2.4 Control-data Similarity in Parallel Programs

We use Figure 2.1 to illustrate the presence of similarity in the control-

data of a parallel program. In Figure 2.1, the program starts from function

main(), which spawns nprocs threads, all of which execute the function

slave() concurrently. The slave() function first assigns a unique thread ID

procid to each thread in line 17 - 20 in Figure 2.1. It then executes four

11

2.4. Control-data Similarity in Parallel Programs

1 int id = 0;
2 long im = DEFAULT N;
3 struct global private ∗gp;
4 int nprocs;
5
6 int main(int argc , char ∗argv []) {
7 int i ;
8 nprocs = argv [1];
9 for (i = 0; i < nprocs; i++)

10 gp[id]. num = rand();
11 for (i = 0; i < nprocs; i++)
12 pthread create((void ∗)slave);
13 }
14
15 void slave () {
16 int private , procid ;
17 pthread mutex lock();
18 //procid is the thread id
19 procid = id++;
20 pthread mutex unlock();
21 //Branch 1: threadID
22 if (procid == 0) {
23 ...
24 }
25 ...
26 //Branch 2: shared
27 for (i = 0; i <= im - 1; i = i + 1) {
28 ...
29 }
30 ...
31 //Branch 3: none
32 if (gp[procid]. num > im - 1) {
33 private = 1;
34 } else {
35 private = -1;
36 }
37 ...
38 //Branch 4: partial
39 if (private > 0) {
40 ...
41 }
42 }

Figure 2.1: Sample pthreads parallel program to illustrate the static similar-
ity among all threads in the program. The comments indicate the similarity
categories for each branch according to the classification in Table 2.1.

12

2.4. Control-data Similarity in Parallel Programs

branches labelled 1 through 4 in the figure. The bold italic variables in the

slave() are either constants or global variables that are shared among all

threads. In this paper, we include loops in our definition of branches.

Table 2.1: Branch condition similarity category definition
Similarity
Category

Static characteristics
of control data

Branch runtime be-
havior similarity

shared All operands of the in-
struction are shared vari-
ables among threads

All threads take the same
decision at the branch.

threadID One operand depends
on thread ID, and the
remaining operands are
shared variables

The branch decision is
related to thread ID -
threads of certain thread
IDs take the same deci-
sion. For example, if
the condition comparison
statement is an equal-
ity comparison between
thread ID and shared vari-
ables, one thread follows
one path and the re-
maining threads follow the
other path at run time.

partial Local variables, but these
local variables are as-
signed with one of a small
subset of shared variables

The threads which are as-
signed to the same shared
variabl take the same de-
cision.

none Local variables that
cannot be statically in-
ferred to be similar across
threads

No known similarity in
branch runtime behavior
among the threads.

We now illustrate the control-data similarity among the program’s threads

in Figure 2.1 for each of the four branches in the slave() function. The

generic code patterns that result in the similarity are shown in Table 2.1.

The similarity of the control-data in the four branches are as follows:

13

2.4. Control-data Similarity in Parallel Programs

1. Branch 1: The branch condition tests equality of thread ID and a

constant 0. Because the constant is the same for all threads, and the

thread ID is different, at most one thread will take the branch in a

correct execution. This would be classified as threadID according to

Table 2.1.

2. Branch 2: The variable i shares the same initial value, increment

value and end value among all threads. Assuming there are no break

statements in the loop, all threads execute the same number of loop

iterations. This would be classified as shared according to Table 2.1.

3. Branch 3: The variable gp[procid].num is thread local and may be

different for different threads. This would be classified as none accord-

ing to Table 2.1.

4. Branch 4: The variable private is also thread local. However, it’s

value is either 1 or -1, depending on the outcome of branch 3. There-

fore, threads in which private takes the same value will make the same

decision in this branch. This is classified as partial according to Ta-

ble 2.1.

Thus, the control-data for each of the four branches above belongs to a

different similarity category according to Table 2.1. The table also illustrates

the type of similarity exhibited by the branches belonging to each category.

This similarity is encoded as a runtime check in Section 2.5.

Note that the similarity inference only relied on static analysis of the

program’s code, and did not require us to execute it. In this example, we

14

2.5. Runtime Checking

showed the analysis on the program’s source code for simplicity. In reality,

the analysis is done on the program’s intermediate code generated by the

compiler (Section 3.2).

2.5 Runtime Checking

In the previous section, we saw how to statically identify the similarity of the

control data used in the branches in Figure 2.1. In this section, we illustrate

how the similarity can be encoded as a runtime check within the program.

The basic idea is as follows: the statically inferred branch similarity

behaviour among threads is consistent with the actual runtime branch be-

haviour similarity in an error-free execution. However, if a hardware er-

ror propagates to the branch condition data of one thread and causes the

branch’s outcome to flip, the program will deviate from the statically inferred

behaviour. BlockWatch detects the deviation and stops the program.

As an example, we use branch 1 in Figure 2.1 to explain the runtime

checks. As we show in Section 2.4, branch 1 belongs to category threadID

according to the classification in Table 2.1. This means that no more than

one thread (thread 0 in this case) takes the branch. To check this constraint,

we insert a call to the checking code immediately after the branch decision

to record its status. Assume that a hardware error propagates to procid

variable in thread 2, thus causing it to take the branch. This violates the

constraint that no more than one thread takes the branch, and is hence

detected by the check.

15

2.6. Summary

2.6 Summary

This chapter proposed a high-level approach of BlockWatch. The ap-

proach contains identifying similarity patterns in SPMD programs and using

the similarity for runtime checking. Section 2.4 identified the control-data

similarity patterns and divided the patterns into four categories: shared,

threadID, partial and none, as shown in Table 2.1. For the first three cate-

gories, variables depend on either shared variables or thread ID, and hence

we are able to infer their runtime behaviour similarities through static anal-

ysis. Therefore, we focused on error detection for control-data whose cate-

gories belong to one of the first three categories, and Section 2.5 presented a

method to compare their inferred similarity with actual runtime similarity

for error checking at run time.

16

Chapter 3

Implementation

3.1 Introduction

This chapter describes the detailed implementation of BlockWatch. The

implementation consists of two steps. The first step is to infer the branches’

similarity category through static analysis at compile time, and is described

in Section 3.2. The second step is to compare the actual runtime behaviours’

of the branches with the inferred behaviour according to the branches’ sim-

ilarity categories using a runtime monitor, and is described in Section 3.3.

3.2 Similarity Category Identification

In this section, we introduce an algorithm to identify the branches’ similarity

categories. Our algorithm is implemented as part of an optimizing compiler.

The algorithm assumes that the program has been translated into a low-level

intermediate representation (IR) by the compiler’s front-end. Therefore, all

the branches in the program, including those in loops, have been explic-

itly represented as branch instructions prior to the algorithm. Further, we

assume that the IR uses Static Single Assignment (SSA) form [12], which

requires that a variable be assigned exactly once in the program i.e., every

17

3.2. Similarity Category Identification

variable in the program has a unique instruction that assigns to it.

As we show in Chapter 2, the similarity category of a branch depends

upon the nature of the variables used in the branch condition i.e., whether

they are shared, dependent on the thread ID or local to the thread. There-

fore, in order to infer the similarity category of a branch, we need to find the

similarity categories of the operands used in the branch instruction. How-

ever, the operands may themselves be produced by other instructions, and

hence we need to determine the operand type of all instructions in the pro-

gram. This determination is based on whether each operand is derived from

a shared variable (shared), a variable containing the thread ID3 (threadID),

or from a local variable that can only take one of a small number of shared

variables (partial).

Initially, all instructions in the program are assigned a classification of

“NA”, or “Not Assigned”. Then instructions that are directly assigned

from the thread ID variable are assigned to the category threadID. Similarly,

instructions that are directly assigned from a shared variable are assigned to

the category shared. After this step, the similarity categories are propagated

to other instructions in the program as follows: (1) if it is a unary instruction,

the similarity category of the instruction is the same as that of its (only)

operand, (2) if it is a binary or ternary instruction, we consider each operand

separately and update the similarity category of the instruction based on the

rules in Table 3.1.

Propagation Rules: Before we present the overall algorithm, we first

3We look for common code patterns that compute the thread ID. These can be cus-
tomized for different libraries.

18

3.2. Similarity Category Identification

explain Table 3.1. The rows of Table 3.1 correspond to the current instruc-

tion’s similarity category, while the columns correspond to the operand’s

similarity category. The entries in the table indicate the similarity category

to which the instruction should be assigned after processing the operand.

Because we process each operand separately and update the instruction’s

similarity category after doing so, the same table applies for both binary

and ternary instructions.

Table 3.1: Rules to infer instruction’s similarity category from its current
category and the operand’s category

current inst.
operand

NA shared threadID partial none

NA NA shared threadID partial none

shared NA shared threadID partial none

threadID NA threadID threadID none none

partial NA partial none partial none

none NA none none none none

We explain the rationale behind Table 3.1 with an example. Assume that

the current instruction’s similarity category is partial. This corresponds to

the fifth row in Table 3.1. If the next operand belongs to category NA, then

the instruction’s category is set to NA and the inferring process ends for

this instruction (the instruction will be revisited later). If the next operand

is shared or partial, the instruction’s category is set to partial because the

instruction continues to depend on local variables that may come from one

of the shared variables. If the next operand belongs to threadID, the in-

struction’s category is set to none because the instruction depends neither

exclusively on one of several shared variables nor the thread ID, and hence

does not satisfy either category. If the next operand belongs to none, then

19

3.2. Similarity Category Identification

the instruction’s category also becomes none as it depends on private vari-

ables. Note that the inference rules are conservative: even if a single operand

belongs to category none, the instruction is updated to this category (see

optimizations for how to mitigate this effect).

One case where we deviate from the rules in Table 3.1 is when a local

variable is assigned with a shared value in one path of an if-else branch but

not assigned in another, or is assigned different shared values in both paths.

We update its category to partial instead of shared at the convergence point

of the branch (i.e., the phi instruction in the SSA form). This is because the

shared value is only one possible value that the variable may take at runtime.

An example of this case occurs in the variable private in Figure 2.1, which is

assigned to one of the two different constants 1 and −1 in the two outcomes

of branch 3. Hence, its category is assigned to partial.

Multiple Instances: Because a static branch in the program may be

executed multiple times e.g., if it is inside a loop or the function containing

it is called multiple times, its similarity category may vary depending on the

way we group the runtime instances to check. We illustrate this case with

an example in Figure 3.1, which is adapted from FFT in the SPLASH-2

Benchmark Suite [45].

In Figure 3.1, there are two functions slave() and foo() that are executed

by each thread. The slave() function calls foo() in two different places.

Consider branch 1 which is inside function foo(). The function is called at

two different places in slave(), each time with a different value. However,

in each invocation of the function, the local variable used in the branch

condition is the same, namely arg. The variable i in branch 1 also have

20

3.2. Similarity Category Identification

1 bool test ;
2 void slave () {
3 ...
4 foo (1);
5 ...
6 if (test) {
7 foo (2);
8 }
9 ...

10 }
11 void foo(int arg) {
12 //Branch 2
13 for (int i = 0; i < 5; i = i + 1) {
14 //Branch 1
15 if (i < arg) {
16 ...
17 }
18 }
19 }

Figure 3.1: Example code of multiple runtime instances of the same branch

similar issues across different loop iterations.

There are two ways to classify the similarity of this branch. We can

classify it as shared in which case we need to track the value at each call

site and loop iteration number separately and ensure that we are comparing

the values from each loop iteration of each call site separately. Another

possibility is to merge the values across the call sites and across all iterations

in the loop, and treat the branch as belonging to category partial, as it is

derived from multiple shared variables. In this case, we need not track each

invocation and the loop iteration number separately. We adopt the former

policy in spite of the additional performance overhead it entails, as it allows

us to perform tighter checks on the branch.

Algorithm: We now present the overall algorithm for inferring each

21

3.2. Similarity Category Identification

1 map categorymap;
2 int main() {
3 bool changed = true;
4 while (changed) {
5 changed = false ;
6 for (inst in program) {
7 changed = visitInst (inst) || changed;
8 }
9 }

10
11 for (branch in program) {
12 if (branch in categorymap) {
13 branchcategory =
14 categorymap[branch];
15 } else {
16 branchcategory = ‘‘none’’ ;
17 }
18 }
19 }
20
21 bool visitInst (inst) {
22 Category category = NA;
23 for (op in operands) {
24 if (op is shared) {
25 category = lookupTable(
26 category , ‘‘ share ’ ’);
27 } else if (op is thread id) {
28 category = lookupTable(
29 category , ‘‘ threadID’ ’);
30 } else if (op in categorymap) {
31 category = lookupTable(
32 category , categorymap[op]);
33 } else { // op is NA
34 return false ;
35 }
36 }
37
38 Category old = categorymap[inst];
39 categorymap[inst] = category;
40 return (category != old);
41 }

Figure 3.2: Pseudo-code to show the similarity category identification algo-
rithm

22

3.2. Similarity Category Identification

instruction’s similarity category in Figure 3.2. The algorithm iterates over

all instructions in the program and updates the similarity category of each

instruction by calling the visit function (lines 4 - 9) on the instruction.

This process is repeated until there are no more changes in the instructions’

similarity categories. The categorymap contains the inferred categories of

all similar branches at the end of the iterations. The other branches are

assigned to none in line 18.

The visitInst function(lines 23 - 36) takes an instruction as an argument,

and walks through each of its operands in turn. For each operand, it infers

the similarity category based on the category of the operand or by look-

ing up the operand in the categorymap. Then it calls function lookupTable

(not shown in figure) with the current instruction’s category as well as the

category of the operand. The lookupTable function uses Table 3.1 in Chap-

ter 2 to find the similarity category of the current instruction and update it

accordingly.

Note that the algorithm terminates in a finite number of iterations (say

k) because the number of similarity categories is finite and the updated

categories in Table 3.1 flow monotonically (i.e., in one direction only). Also,

each iteration is proportional to the number of instructions in the program

(say N). In the worst case, ‘k’ can be at most equal to ‘N’, and hence the

worst-case complexity of the algorithm is O(N2). In practice, ‘k’ is less than

ten for the programs we studied.

Example: We illustrate the algorithm in Figure 3.2 with the example

in Figure 3.1. Table 3.2 shows the similarity categories of the variables and

branches in the example after each iteration of the algorithm. The variables

23

3.2. Similarity Category Identification

are used as proxies for the instructions that define them (these are not visible

at the source code level) 4. The algorithm converges within three iterations

in this example. Note that the categories of the two branches in the first

iteration are NA because in SSA form, the definition instruction of variable

i has two operands: 0 and i+1, and i+1 is executed after the branch 1 and

branch 2. Therefore, when we visit the two branches in the first iteration, the

category of i is still NA and hence the branches’ categories are not updated.

Later in this iteration, the category of i is determined as shared and the two

branches’ categories are changed in the 2nd iteration, after which there are

no more changes and hence the process is terminated.

Table 3.2: Example of category propagation algorithm on Figure 3.1
Variables
and
Branches

Initial 1st itera-
tion

2nd iter-
ation

3rd iter-
ation

Final cate-
gory

test shared shared shared shared shared

arg NA shared shared shared shared

i NA shared shared shared shared

Branch 1 NA NA shared shared shared

Branch 2 NA NA shared shared shared

Optimizations: We perform two optimizations over the base algo-

rithm in Figure 3.2 to improve the coverage and the performance of the

technique.

Because the algorithm for inferring static branch similarity is conserva-

tive, it will label some branches as none even if there is a single operand that

it determines as private (not shared). However, in practice we find that con-

siderable similarity exists even in these branches, as the private variable may

4In SSA form, instructions and variables are synonymous with each other.

24

3.3. Runtime Checking

have the same value across threads. We therefore promote such branches

to the partial category and only compare the threads which have the same

value for the private variable.

In some cases, a branch can be executed by no more than one thread

at a time (e.g., branches inside critical sections). We remove the checks on

such branches as BlockWatch needs a minimum of two threads to detect

errors that violate the threads’ similarity. Checking such branches would

incur runtime overheads while providing no coverage benefit. We assume

that the program has no race conditions which violate this constraint.

3.3 Runtime Checking

This section details the implementation of a runtime monitor to check the

statically inferred similar branches in Section 3.2. The monitor is spawned

as a separate thread in the program (BlockWatch adds instrumentation

to spawn the monitor thread), and has three design goals as follows.

1. Asynchronous: The monitor must interfere minimally with the pro-

gram’s execution. In particular, it should not be in the critical path

of the program, and must execute asynchronously with the program’s

threads.

2. Unique branch identifier and fast lookup: The monitor must assign a

unique identifier for each runtime branch. Moreover, given a specific

branch identifier, it must be possible to do a fast lookup of the branch’s

runtime characteristics of different threads. The two requirements are

25

3.3. Runtime Checking

important for correlating the information across multiple threads when

storing the branches’ runtime behaviors.

3. Lock freedom: The monitor must acquire no locks, as doing so may

introduce deadlocks in the program, and also lead to unnecessary se-

rialization of the program.

Architecture: We achieve goals 1 and 3 through separate lock-free

front-end queues adapted from Lamport’s algorithm [23] for each thread

to send its branch information. The monitor thread asynchronously scans

the queues and processes the information without using any locks. We

achieve goal 2 through the use of a back-end hash table to store the branches

based on their identifiers. The architecture of the monitor is illustrated in

Figure 3.3.

Operation: The operation of the monitor is as follows:

• When a branch is executed by a thread in the program, it will execute

an instrumentation function that transfers the branch’s information to

the monitor. This function is inserted by the compiler for the branches

identified as similar by the algorithm in Section 3.2.

• The function appends the branch information to the thread-specific

front-end queue of the monitor (recall that in a shared memory archi-

tecture, the entire address space is visible to all the threads), without

taking a lock. The function returns immediately after the insertion.

• The monitor thread asynchronously removes the branch information

from the thread-specific front-end queues in round robin fashion. No

26

3.3. Runtime Checking

Figure 3.3: Architecture of the runtime monitor in BlockWatch

lock is required as the removal is done from the front of the queue

while the insertion is done at the back. Further the queues are of fixed

length5, so there is no need to dynamically allocate memory.

• The monitor thread inserts the branch information into the back-end

hash-table using the identifier of the branch as the key (see below).

Thus, all instances of a given branch across different threads will oc-

cupy the same entry in the hash table.

• Once all threads have reported the outcomes of a specific branch, the

monitor checks them by reading the hash table entry corresponding to

the branch.

5We set the queue length to a sufficiently large value to prevent it from being a bot-
tleneck. This value can be modified if needed.

27

3.3. Runtime Checking

Instrumentation: We instrument the similar branches identified by

the static analysis algorithm in Section 3.2 with calls to our custom library,

which send the branches’ runtime behaviours to the monitor.

We illustrate the instrumentation with an example. Figure 3.4 shows

the instrumentation added for branch 4 in Figure 2.1. Recall that this

branch belongs to the partial category. The library calls are highlighted

with boldface in Figure 3.4, and consist of the following two functions.

• sendBranchCondition: Sends the branch condition to the monitor, so

that the monitor can check if all threads for which the condition vari-

able is identical, have the same branch outcome.

• sendBranchAddr: Sends the branch address to the monitor, so that

the monitor can compare the target addresses of all threads for which

the condition is the same.

In both cases, the functions send the static branch identifier, the outer

loop iteration number, and the thread ID. The former two fields are used to

find the hash table key of the branch, while the thread ID is used to identify

which thread sends the data.

Hash table Key: The hash table key of a branch is obtained by

combining its static identifier with a runtime identifier. The static identifier

encodes the static position of the branch in the program. Each branch

within a function or loop is assigned the same static identifier. The runtime

identifier distinguishes among different instances of the branch in different

loop iterations and at different call sites (through instrumentation). This is

obtained by dynamically encoding the call stack corresponding to the parent

28

3.3. Runtime Checking

1 void slave () {
2 ...
3 sendBranchCondition(4 /∗static branch ID∗/, procid,
4 private /∗condition∗/, loop iter);
5 /∗ loop iter here means the loop iteration
6 number of all outer loops∗/
7
8 //Branch 4: Partial
9 if (private > 0) {

10 sendBranchAddr(4 /∗static branch ID∗/, procid,
11 TAKEN /∗behavior∗/, loop iter);
12 ...
13 } else {
14 sendBranchAddr(4 /∗static branch ID∗/, procid,
15 NOTTAKEN /∗behavior∗/, loop iter);
16 }
17 }

Figure 3.4: Example code to show the instrumented program

function’s invocation and the loop iterations of outer loops. The combination

of the static and runtime identifier yields a unique hash table key for each

runtime instance of a branch. This key is used to store the information

about the branch in the hash table by each thread that executes it.

As shown in Figure 3.5, we implement the hash table as a two level table.

In the first level, the function’s call site ID (added by instrumented code)

and the static branch identifier is used to generate the key. In the second

level, the loop iteration number of all outer loops is used to generate the

key. We separate the function’s call site IDs and the loop iteration numbers

to achieve better utilization of the memory and reduction of access times.

Performance Optimizations: For performance considerations, the

monitor executes asynchronously and does not affect the program execution.

The only thing that the original program needs to do is to send the branch

29

3.3. Runtime Checking

Figure 3.5: Architecture of hash table of the monitor

runtime behaviours to the front-end queue of the monitor. In order to further

improve performance, we do two main optimizations to reduce the time to

send the branch behaviours:

1. Multi-core optimization: Since we need the loop iteration numbers

and call site identifiers of different threads to generate runtime iden-

tifiers for the hash table, we store the information of all threads in

the same object. In this case, data of different threads may belong to

the same cache line, and there will be multiple copies of the cache line

when different threads access this line from different processor cores.

According to the cache coherence protocol [4], a thread in one pro-

cessor core will invalid the cache lines of another thread on another

core when it writes to the cache lines which have another copy on that

core. Because of the invalidation of cache line, other threads have to

re-fetch the data in the memory. This is called false sharing and it

leads to the increase of execution time [4]. To address this problem,

30

3.4. Summary

the multi-core optimization aligns the data of different threads to dif-

ferent cache lines and removes the false sharing of the loop iteration

number and call site identifiers of different threads.

2. Multi-processor optimization: Multi-core optimization removes the

false sharing in cache across different threads and reduces the over-

head of BlockWatch on multi-core processors. However, when the

program runs on a multi-processor machine, threads running on dif-

ferent processors might store their neighbours’ loop iteration number

and call site identifier information on the processor’s last-level cache.

Therefore, there exists false sharing in the last-level cache and a change

in the information in one processor invalids the information of other

processors. Similarly, threads running on different processors have to

spend extra time to re-fetch the data in the memory. Therefore, we use

thread-local object to store data of different threads and ensure they

are not put on the same last-level cache line, which further improves

the performance on multi-processor machines.

3.4 Summary

In Chapter 2, BlockWatch identified the control-data similarity patterns

in SPMD programs and divided them to four categories, and this chap-

ter detailed the implementation of studying the similarity categories of the

branches and using them for runtime error checking. The first step in the

implementation is the static analysis. In this step, because the branches that

we focused on depend on either shared variables or thread ID (See Table 2.1

31

3.4. Summary

in Chapter 2 for details), we inferred the branches’ similarity category by

studying the propagation of shared variables of thread ID in a compiler at

compiling time. The second step is runtime checking. In this step, we first

instrumented the branches at static time to send their runtime behaviours.

At the same time, we implemented a asynchronous, lock-free monitor as

an separate thread which receives the runtime behaviours sent by different

threads and compare the actual runtime behaviours’ of the branches with

the inferred behaviour according to the branches’ similarity categories.

32

Chapter 4

Experimental Setup

4.1 Introduction

In this chapter, we first describe the tools used in implementing Block-

Watch. Then we describe the benchmarks used to evaluate BlockWatch.

Finally, we discuss how we evaluate the performance and the error coverage

of BlockWatch.

4.2 Implementation Tools

We implement BlockWatch using the LLVM compiler infrastructure [24].

LLVM is a compilation infrastructure for lifelong program analysis and

transformation. It has an intermediate representation (IR) that uses Static

Single Assignment (SSA) form. The IR is manipulated by our custom passes

before being compiled to machine code. We first compile the program to

LLVM IR and apply BlockWatch’s static analysis to: (1) analyze the

program’s IR and find the similarity category for each branch; (2) instru-

ment the program’s IR with calls to our custom library. For each of the

benchmarks, the static analysis and instrumentation passes take less than 1

second on a quad-core core i7 machine with 8 GB RAM. Finally, we compile

33

4.2. Implementation Tools

the instrumented IR to machine code on our target platform. We also use

the Boost library’s hash table in the runtime monitor’s implementation [22].

In the static analysis pass, we study the propagation of shared variables

and thread ID (see Section 3.2 for details). To study the propagation, it

is essential to get the definition-use chain of the program variables. This

is intuitive for non-pointer variables, while it is a challenge for pointers.

The reason is that pointer is not statically binded to a object and it might

point to different objects for different runs. For instance, a variable a is

binded to the object a, while a pointer p may point to the object a or the

object b depending on runtime configurations. Since a pointer may point to

several objects, we need to collect the objects the pointer may point to and

understand the definition-use chain of each variable. Resolving the objects

a pointer may point to requires a compiler technique named pointer alias

analysis.

There are some widely-used alias analyses, such as Andersen’s alias anal-

ysis [3], Steensgaard’s alias analysis [39] and Choi’s alias analysis [11]. We

choose Andersen’s alias analysis as our alias analysis tool, because stud-

ies [20] show that Andersen’s alias analysis is precise (compared with Steens-

gaard’s analysis) and efficient (compared with Chois’s analysis). In order to

use Andersen’s analysis, we upgrade an existing Andersen’s alias analysis to

the latest LLVM. The upgrade mainly consists of two parts. First, we add

support for dynamically allocated object (e.g. allocation through malloc()

function) in the existing analysis; Second, we create a mode that is enabled

when the analysis is performed on the whole program during compilation.

The mode is more precise because it assumes the all objects in the program

34

4.3. Benchmarks

can be seen at the compilation stage and hence makes a more aggressive

assumption.

4.3 Benchmarks

We use the SPLASH-2 Benchmark Suite [45] for evaluating BlockWatch.

The SPLASH-2 Benchmark Suite has been extensively used for studies

of shared memory parallel programs. There are nine applications in the

SPLASH-2 Benchmark Suite, and we choose six of them for the evaluation.

Table 4.1 describes each application and explains why the other three ap-

plications are not included. There are also four kernels which are smaller

in the suite, and we include two kernel programs FFT and radix sort for

evaluation because they are small and can be used for more detailed study

(See Chapter 5 for details).

Table 4.1: Description of application programs of SPLASH-2

benchmark suite

Program

name

Description Included in evalua-

tion? If not, why?

Barnes The application implements

the Barnes-Hut algorithm to

simulate the interaction of a

system of bodies (galaxies or

particles, for example) over

a number of time-steps.

No. The application does

not have any output, so

we cannot collect SDC re-

sult, which is the focus

of our evaluation (Sec-

tion 4.5).

35

4.3. Benchmarks

Continuous

ocean

The application studies the

ocean movements under

the influence of eddy and

boundary currents. The

implementation uses dy-

namically allocated 4-D

array for grid data storage.

Yes

FMM The application also per-

forms N-body simulation,

but the algorithm is adap-

tive Fast Multipole Method.

Yes.

Non-

continuous

ocean

The application solves the

same problem as continuous

ocean, but the implementa-

tion uses statically allocated

2-D array for grid data stor-

age.

Yes.

Radiosity The application computes

the equilibrium distribution

of light using iterative hi-

erarchical diffuse radiosity

method.

No. The output is in bi-

nary format and is non-

deterministic. Therefore,

we are not able to dis-

tinguish between an SDC

and correct output.

36

4.3. Benchmarks

Raytrace The application use ray

tracing to render a 3-D

scene.

Yes.

Volrend The application uses a ray

casting technique to render

a 3-D volume.

No. In order to reduce

the time and space over-

head in using loop iter-

ation number to calcu-

late the monitor’s hash

table identifier (Chpa-

ter 3), we made an im-

plementation choice that

we check branches whose

loop depth is less than

5. This is applicable

for most programs, but it

does not hold for Volrend.

Water-

nsquared

The application evaluates

forces and potentials that

occur over time in a system

of water molecules. The al-

gorithm is an O(n2) algo-

rithm.

Yes.

37

4.3. Benchmarks

Water-

spatial

The application solves the

same problem as water-

nsqared, but it is an O(n)

algorithm

Yes.

We use the default configurations of the suite except that we vary the

number of threads in order to study the scalability of BlockWatch. Ta-

ble 4.2 describes the characteristics of the evaluated programs. In the table,

the parallel section refers to the part of the program which is executed con-

currently by two or more threads. Because BlockWatch relies on the

similarity across threads to detect errors, we focus on the parallel section of

the program in reporting the similarity categories assigned to branches.

Table 4.2: Characteristics of benchmark programs
Program name Total

lines of
code
(LOC)

LOC in
parallel
section

Total
number of
branches

Number
of
branches
in parallel
section

continuous ocean 5329 4217 876 785

FFT 1086 561 110 44

FMM 4772 3246 395 321

non-continuous
ocean

3549 2487 543 478

radix 1112 441 99 35

raytrace 10861 7709 726 268

water-nsquared 2564 1474 144 103

water-spatial 2756 1154 202 143

38

4.4. Performance Evaluation

4.4 Performance Evaluation

We evaluate the performance overhead of BlockWatch on a 32-core pro-

cessor that contains four 8-core AMD Opteron 6128 processors running at

2 Ghz each. In order to study the performance overhead and the scalability

of BlockWatch, we vary the number of threads from 1 to 32 and measure

the time spent in the parallel section of the program, both with and without

BlockWatch. We do not measure the checking time of monitor thread,

as the monitor thread is executed asynchronously and hence does not have

a significant effect on the execution time of the program’s parallel section.

The SPLASH-2 programs can scale to at least 64 threads [45].

To measure the performance with 32 threads, we disable the monitor

thread during the execution of the main program so as not to interfere with

it. This is because our machine has only 32 cores and we need 33 threads to

execute the program with the monitor 6. We have verified that the difference

in execution times is negligible under this scenario for the 16 thread case.

Note that the threads still send the branch information to the front-end

queues of the monitor - the only difference is that the monitor does not do

anything with the information.

4.5 Coverage Evaluation

We evaluate the error detection coverage of BlockWatch through fault in-

jection studies. Specially, we focus on detections of Silent Data Corruptions

6We cannot set the thread number to 31 because the SPLASH-2 benchmarks require
the number of threads to be a power of 2.

39

4.5. Coverage Evaluation

(SDCs). SDCs are failures in which the program finishes executing but the

output deviates from the golden result in an error-free run. In this paper,

we focus on SDCs because crashes and hangs can be easily detected through

other means (e.g., heartbeats). Further, the program can be restarted from

a checkpoint upon a crash or a hang, and continued.

We build a fault injector with the PIN tool [34]. PIN is a dynamic

instrumentation framework for programs on X86 processors. The goal of

the fault injector is to simulate transient hardware faults that propagate

to a branch instruction in exactly one thread of the program. We focus

on branch instructions because BlockWatch targets hardware faults that

propagate to the control data of programs (i.e., data used by branches) in

this study.

The fault injection procedure consists of three steps. First, we instru-

ment an m-thread program using PIN and record the number of branches

executed by each thread of the program at runtime (say ni where 0 < i < m).

In the second step, we randomly pick a thread from 1 to m, say j, and choose

the jth thread to inject faults. Then we select a number from 1 to nj , say

k, and choose the kth branch of jth thread at runtime to inject. Thirdly, we

flip a single bit in either the flag register or condition variable of the chosen

branch instruction of jth thread. The former fault leads to the branch being

flipped, i.e., going the wrong (but legal) way. This is to verify the correct-

ness of BlockWatch in detecting branch runtime behaviour deviations.

The latter fault may or may not lead to the branch being flipped. For ex-

ample, a fault in a branch condition that flips the least significant bit of the

condition variable, may not affect the comparison being performed by the

40

4.5. Coverage Evaluation

branch. However, the corruption introduced in the condition variable will

persist even after the execution of the branch, and is more representative of

hardware faults in the control data. This is to verify that the effectiveness

of BlockWatch in detecting control-data errors. Only one fault is injected

in each run of the program to ensure controllability.

Because PIN can monitor all executed instructions in the program, the

fault injection considers all branches in the program, and is not restricted to

those that are instrumented by BlockWatch. However, we do not consider

the instrumentation added by BlockWatch for injection, as errors that

affect these branches can at worst lead to additional crashes or hangs, but

not to SDCs, as they do not affect the program.

After injecting the fault, we track its activation and whether it is detected

by the monitor. If not, we let the program execute to completion (if it does

not crash/hang), and compare the results with the golden result to measure

the SDC percentage.

For each experiment, we inject 1000 faults of each type and count how

many faults are activated (over 75% of the injected faults are activated in our

experiments). We calculate the coverage as the probability that an activated

fault will not lead to an SDC [1]. In other words, coverage = 1 − SDCf ,

where SDCf is the fraction of activated faults that lead to an SDC. Thus

the coverage includes faults that lead to program crashes or hangs as well

as masked faults. In reality, even an unprotected program will typically

have non-zero coverage due to natural redundancies and memory protections

provided by the operating system, and hence we measure the coverage of

the program both with and without BlockWatch.

41

4.6. Summary

False Positives: Since BlockWatch relies on static analysis for

runtime checking, BlockWatch has no false positives. This means that if

there is no faults propagating to original program and monitor, the monitor

does not report an error.

To verify there are no false positives, we perform 100 error-free runs for

each program instrumented by BlockWatch and check if there are errors

reported by it. The results show that BlockWatch does not report any

errors, i.e., there are no false positives.

4.6 Summary

In this chapter, we described the experimental setup for evaluating Block-

Watch. Section 4.2 presented the implementation tool. We chose LLVM

as the compiler tool for BlockWatch’s static analysis and instrumenta-

tion. Section 4.3 presented the benchmark programs (SPASH-2) for evalu-

ating BlockWatch and described the characteristics of the programs. Sec-

tion 4.4 talked about procedure of performance evaluation and Section 4.5

presented the procedure of using fault injection studies to evaluate fault

tolerance of BlockWatch.

42

Chapter 5

Results

5.1 Introduction

In this chapter, we first present the relative frequencies of the branch similar-

ity categories in the benchmark programs as discovered by BlockWatch.

Then we present the performance overheads and error detection coverage

of BlockWatch. Finally, we trace back from the final output of two ker-

nel programs FFT and radix for different steps to further understand the

relation of backtrace and the performance overhead and coverage of Block-

Watch.

5.2 Similarity Category Statistics of Branches

We run the static analysis part of BlockWatch on the eight SPLASH-2

programs. Table 5.1 shows the number of branches in each program that

fall into the similarity categories in Table 2.1, as discovered by the static

analysis phase of BlockWatch. We also calculate the percentage of the

branches that belong to each similarity category based on the total number

of branches in the program’s parallel section.

The results in Table 5.1 are as follows. In general, between 49% to 98%

43

5.2. Similarity Category Statistics of Branches

Table 5.1: Similarity category statistics of the branches in the benchmark
programs

Program Total
No.(%) of branches of each category

shared threadID partial none

continuous
ocean

785 30
(4%)

12
(2%)

723
(92%)

20
(2%)

FFT 44 14
(32%)

11
(25%)

18
(41%)

1
(2%)

FMM 321 51
(16%)

8
(2%)

98
(31%)

164
(51%)

non-continuous
ocean

478 22
(5%)

116
(24%)

329
(69%)

11
(2%)

radix 35 11
(31%)

9
(26%)

7
(20%)

8
(23%)

raytrace 268 12
(4%)

4
(1%)

117
(44%)

135
(51%)

water-nsquared 103 34
(33%)

12
(12%)

26
(25%)

31
(30%)

water-spatial 143 36
(25%)

11
(8%)

41
(29%)

55
(38%)

44

5.3. Performance Overheads

of the branches fall into the shared, threadID and partial categories. This

means the BlockWatch is able to statically identify at least 50% of the

branches as similar across the seven programs. FMM and raytrace have

relatively fewer similar branches, as many branches in these programs have

both variables in the branch conditions to be local variables. These branches

are identified as belonging to category none according to the propagation

rules in Section 3.2.

Thus we see that a significant fraction of branches in each program are

identified as similar by the static analysis phase of BlockWatch, and are

hence eligible for checking in the runtime phase. This shows that Block-

Watch can be applied to commonly used parallel programs. Note that our

static analysis is rather conservative and hence these are lower bounds on

the number of similar branches in a program.

5.3 Performance Overheads

Figure 5.1 shows the execution times of the eight SPLASH-2 programs with

BlockWatch for 4 threads and 32 threads. The results are normalized

to the execution time of the program without BlockWatch (for the same

number of threads), and hence the baseline is 1.0. We name the normalized

execution time slowdown.

From Figure 5.1, the geometric mean of the slowdown of BlockWatch

is 2.01X with 4 threads, and 1.15X with 32 threads. Thus the performance

overhead of BlockWatch with 32 threads is only 15%, and is lower than

that for 4 threads (see below for why).

45

5.3.
P

erform
an

ce
O

verh
ead

s

Figure 5.1: Slowdown of BlockWatch. Lower is better

46

5.3. Performance Overheads

5.3.1 Scalability

We study the scalability of BlockWatch by considering the variation of

the geometric mean of the performance overheads (across all eight programs)

with the number of threads. The results are shown in Figure 5.2 as the

number of threads is varied from 1 to 32.

Figure 5.2: Geometric mean of the slowdown of BlockWatch Vs. number
of threads

In Figure 5.2, we find that the overhead of BlockWatch first increases

as the number of threads increases from 1 to 2, and then decreases as the

number of threads increases from 2 to 32. The reason for the overhead

increase from 1 to 2 threads is that the machine we use consists of four

8-core processors and is not fully symmetric. This asymmetry causes the

memory access time to depend on where the threads execute. When we

increase the number of threads from 1 to 2, the operating system assigns

the 2 threads to cores in different processors. Thus, the threads cannot share

47

5.4. Error Detection Coverage

data at the cache level and the memory access time increases. This hurts

the program with BlockWatch more than the original program, and the

overhead of BlockWatch increases.

The reason for the decrease of overhead from 2 to 32 threads is that when

the number of threads doubles, the work done by each thread reduces by half

and so does the number of branches executed by each thread. However, due

to communication and waiting among threads, the reduction in execution

time of the program is less than 2X. Nonetheless, when the number of threads

increases, the relative time spent by BlockWatch reduces and so does the

overhead of BlockWatch (up to 32 threads in Figure 5.2).

5.4 Error Detection Coverage

We study the coverage of BlockWatch under two kinds of faults: branch-

flip faults and branch-condition faults. The former type of fault is guar-

anteed to flip the branch but does not corrupt any program data directly.

The latter type of fault corrupts the branch’s condition data but does not

necessarily lead to branch flip.

The results are shown in Figure 5.3 and Figure 5.4. Note that the

coverage of y axis in both figures start from 50%. In the figures, coverageoriginal

is the coverage of the original program, and coverageBlockWatch is the cov-

erage of the program protected by BlockWatch.

48

5.4. Error Detection Coverage

5.4.1 Coverage results for branch-flip faults

Figure 5.3 shows the coverage with and without BlockWatch for all pro-

grams under branch flip faults. Across the programs, the average coverageoriginal

is 86%, while average coverageBlockWatch is 98%. Other than raytrace, all

programs have a coverage value between 99% - 100% when protected with

BlockWatch, whereas without BlockWatch, their coverage value is be-

tween 60% (radix) and 98% (FMM). In other words, BlockWatch detects

almost all branch-flip faults that cause SDCs for seven of the eight programs.

49

5
.4.

E
rror

D
etection

C
overageFigure 5.3: Coverageoriginal (baseline) and coverageBlockWatch (aggregated number) for branch-flip faults: The

dark part is due to the detection provided by BlockWatch. Higher is better.

50

5.4. Error Detection Coverage

For raytrace, the coverage with BlockWatch is about 85%, which is

comparable to the coverage obtained without BlockWatch (for both 4

and 32 threads). Thus, the coverage benefit provided by BlockWatch for

this program is negligible. There are two main reasons for this result. First,

raytrace makes extensive use of function pointers, that may point to different

functions for different threads at runtime. Therefore, the number of threads

that execute the same function is low, and hence BlockWatch does not

have enough threads to compare at runtime. Second, As we mentioned in

Chapter 4, due to overhead considerations, we choose to only check the

branches whose nesting levels are smaller than six. In other words, any

branch that occurs in loops deeper than six levels of nesting is not checked

by BlockWatch. Raytrace has some loops deeper than six levels of nesting

which are not checked.

5.4.2 Coverage results for branch-condition faults

Figure 5.4 shows the results of coverage of the eight programs both with

and without BlockWatch, when faults are injected into the branch’s con-

dition data. The results are similar to those in Figure 5.3. For example,

when BlockWatch is used, the coverage increases from 91% to 97% for

the 4-thread case and from 92% to 98% for the 32-thread case. However,

the average coverageoriginal value is between 91% and 92%, which is much

higher than the coverageoriginal for branch-flip faults (average 86%). This

is because unlike branch-flip faults, branch-condition faults may or may not

cause the branch to flip, and branch flips are more likely to lead to SDC in

the programs.

51

5
.4.

E
rror

D
etection

C
overageFigure 5.4: Coverageoriginal (baseline) and coverageBlockWatch (aggregated number) for branch-condition faults:

The dark part is due to the detection provided by BlockWatch. Higher is better

52

5.4. Error Detection Coverage

Implication of the coverage increase: Figure 5.4 shows that the

average coverage increases from 93% to 99% for all programs except raytrace

when it is protected with BlockWatch. This means that the average SDC

percentage of the programs decreases by 7 times (from 7% to 1%) if the

detected SDCs by BlockWatch are recovered. If we assume programs are

already protected from crashes and hangs, the system failure rate decreases

by 7 times. Since transient faults in computation units are memoryless, we

assume the failure distribution is exponential [42]. For exponential model,

the mean time to failure (MTTF) of the system is 1
failure rate [42], and hence

the MTTF of the system increases by 7 times.

Availability is an important metric to measure the quality of service

(QoS) of a system, and it is expressed as Equation 5.1 [42], in which MTTR

is acronym of mean time to repair.

availability =
MTTF

MTTF + MTTR
(5.1)

We express the availability of the original system (availabilityoriginal) and

availability of the system protected with BlockWatch (availabilityBlockWatch)

as Equation 5.2 and 5.3.

availabilityoriginal =
MTTForiginal

MTTForiginal + MTTR
(5.2)

availabilityBlockWatch =
MTTFBlockWatch

MTTFBlockWatch + MTTR

=
7×MTTForiginal

7×MTTForiginal + MTTR
(5.3)

53

5.5. Detailed Study

From Equation 5.2 and 5.3, we conclude the relation of availabilityBlockWatch

and availabilityoriginal can be expressed as Equation 5.4.

availabilityBlockWatch =
7× availabilityoriginal

6× availabilityoriginal + 1
(5.4)

If the availabilityoriginal is 0.99, the availabilityBlockWatch is 0.999. This

means that when BlockWatch is deployed, the system availability has a

big increase, which improves the QoS [26].

5.5 Detailed Study

In this section, we perform a detailed study on two SPLASH-2 kernel pro-

grams FFT and radix sort to understand the correlation of final output

backtrace and BlockWatch’s coverage and overhead. We pick the two

programs because their sizes are small and it is easy to understand the re-

sults on them. Backtrace here means obtaining the list of instructions by

tracing back from the final output of a program for several steps and only

detect immediate branches of these instructions. A branch of k backtrace

step number means there is at least one instruction in the branch that is

used to compute the final output within k steps. The goal of this study is to

understand the breakdown of the BlockWatch’s coverage and overhead

so that programs can choose to get x coverage at the price of y perfor-

mance overhead when they are protected with BlockWatch. The reason

we choose backtrace step number to break down the coverage and overhead

of BlockWatch is because intuitively we believed that the closer a instruc-

54

5.5. Detailed Study

tion is to the final output, the more likely an error that propagates to the

branch outside and affects the instruction will lead to silent data corrup-

tion of the final output, since there are fewer opportunities for errors in the

closer instructions getting masked. The rationale for protecting the immedi-

ate branches of the instructions is that we assume the errors propagated to

immediate branches are more likely to impact a instruction compared with

other branches.

The experiment is done as follows: we take FFT and radix, and choose

backtrace step number 1, 2 and 3. For each backtrace number k, we trace

back k steps and get the instructions that are used to compute the final

output within k steps (including k). Then we find the immediate branches

of the instructions and instrument error checking code for the branches that

are similar. Finally, we generate the executable for k backtrace steps and

evaluate the coverage and performance following the procedure in Chapter 4.

5.5.1 Correlation of output backtrace and coverage

Figure 5.5 shows the coverage of FFT and radix when protected with Block-

Watch for different backtrace numbers. For FFT, the coverage increase is

almost linear when we increase the backtrace step number. For radix, the

coverage increases more when we increase the step number from 2 to 3 when

compared with when we increase the step number from 1 to 2. The results

are counter-intuitive as they show that detecting instructions that are far

away from the final output can be equally (FFT) or more beneficial (radix)

in error detection coverage.

In Figure 5.6, we study the coverage of FFT and radix when protected

55

5.5. Detailed Study

Figure 5.5: CoverageBlockWatch for branch-condition faults Vs. backtrace
step number. Thread number is 32

Figure 5.6: CoverageBlockWatch for branch-condition faults Vs. normalized
checked runtime branches. Thread number is 32

56

5.5. Detailed Study

with BlockWatch for different checked runtime branches. The goal of this

study is to understand whether each runtime branch is equally like to lead

to SDCs. The checked runtime branches in Figure 5.6 are normalized to

the total runtime branches in each program. From the figure, we see that

for FFT, when we increase the checked branch number, the coverage also

increases linearly. For radix, however, the coverage increases by about 2%

when we check negligible more branches from backtrace 1 step to 2 steps,

while the coverage increases less dramatically when we backtrace from 2

steps to 3 steps. The results show that protecting some branches provides

higher coverage benefit than others.

From Figure 5.5 and 5.6, we conclude that protecting some branches

provides higher coverage than others, but the importance of the branch is

not related to whether the immediate instructions within the branch are

closer to the final output. Therefore, if we want to get more coverage by

protecting a proportion of the branches, it is beneficial to find these kinds of

branches first and protect them. One future direction that we plan to explore

is to loosen the restriction of detecting immediate branch to detecting all

branches outside of the selected instructions.

5.5.2 Correlation of output backtrace and performance

overhead

Figure 5.7 shows the slowdown of BlockWatch for different step number.

The variation of the performance overhead is so small that we are not able

to infer any overall trend.

57

5.6. Summary

Figure 5.7: Slowdown of BlockWatch Vs. backtrace step number.
Thread number is 32

5.6 Summary

In this chapter, we presented the result of the evaluation. We found that

BlockWatch is able to identify between 50% and 97% of branches as

similar and can be checked. Then we presented the performance overheads

and error detection coverage evaluation and found that BlockWatch is

able to provide more than 98% coverage with the performance overhead as

low as 15% (for 32-thread case). Finally, we studied the correlation of the

step number of final output backtrace and the coverage and overhead with

two kernels in SPLASH-2. The result showed that protecting some branches

is more beneficial than others in terms coverage, but the benefit does not

depend on whether a branch is an immediate branch of instructions which

have shorter distance to the final output.

58

Chapter 6

Discussion

6.1 Introduction

In this chapter, we compare the error detection coverage and performance

overhead of BlockWatch with that of software-based duplication. Dupli-

cation, or running two copies of a program and comparing their outputs, has

been used to detect errors in sequential programs [35]. The main advantage

of duplication is that it is simple to apply and requires no knowledge of the

application. However, duplication has two main disadvantages when applied

to parallel programs. First, parallel programs are often non-deterministic,

and duplicated versions of a parallel program may yield different results,

thus rendering them ineffective for error detection. We illustrate it with

a simplified pthread program in Figure 6.1. When duplication is directly

applied to detect errors in control-data of branch 1, the same thread of

the original version and duplicated version may acquire the lock differently

and hence lead to different i for them. The difference in i may lead orig-

inal version and duplicated version to make dfifferent decision at branch 1

even in an error-free run. Second, duplication requires twice the amount of

hardware resources, and hence reduces the resources available for the actual

program, thus leading to significant slowdowns [47]. In this chapter, we

59

6.2. Coverage

compare BlockWatch with duplication in terms of error detection cov-

erage and overhead. Although duplication is a general technique that can

protect programs from a large class of errors, we focus on control-data errors

in this chapter as this is the focus of BlockWatch.

1 #define N 10
2 int i = 0;
3 int a[N];
4 void slave () {
5 pthread mutex lock();
6 i++;
7 pthread mutex unlock();
8 // branch 1
9 if (a[i] < N) {

10 ...
11 }
12 }

Figure 6.1: An example to show why duplication cannot be directly applied
to parallel programs

6.2 Coverage

Our results show that BlockWatch improves the SDC coverage of the

SPLASH-2 programs under both branch-flip faults and branch-condition

faults. Other than raytrace, all programs have a coverage value between

98% and 100% for errors in the control data. This indicates that when the

program is protected with BlockWatch, the percentage of SDCs is less

than 2% for seven of the eight programs. To our knowledge, duplication is

the only other generic technique that can provide near 100% coverage for

SDCs. However, it has other disadvantages (see below).

60

6.3. Performance Overhead

The coverage results can be improved in several ways: for example, we

use a fairly conservative method to classify the branches’ category in this

study, the result of which is that there are some branches that may have

runtime similarities but are not checked by BlockWatch. Therefore, it is

possible to improve the coverage of BlockWatch by using a more aggres-

sive static analysis or by incorporating the program’s dynamic information

in the classification of the branches.

6.3 Performance Overhead

The average performance overhead of BlockWatch is 101% for 4 threads

and 15% for 32 threads. In contrast, software-based duplication incurs over-

heads of 100% to 200% for sequential programs [47]. Although this overhead

can be reduced through the use of speculative optimizations [47], doing so

is not straightforward for parallel programs due to their non-determinism.

Thus, the overhead of BlockWatch is comparable to that of software-

based duplication in the 4-thread case, but is almost an order of magnitude

lower in the 32-thread case.

Further, BlockWatch is scalable while duplication is not. This is be-

cause duplication requires program determinism, which may not hold for

parallel programs. This problem can be solved by using determinism induc-

ing techniques [6, 31]. However, determinism inducing techniques require

the replica threads and the programs’ threads to follow the same execution

order. Forcing execution order among threads incurs communication and

waiting overheads that are proportional to the number of threads in the

61

6.3. Performance Overhead

program, and does not scale. In contrast, BlockWatch scales as it neither

requires program determinism nor locking.

BlockWatch can be optimized to further reduce its overhead. For

example, our current implementation adds checks for every branch that is

eligible for checking. However, there may be many branches that depend on

the same set of variables, and faults propagating to the data will affect all

of them. Therefore, it is sufficient to check one of the branches. Moreover,

we showed in Section 5.5 that protecting some branches are more beneficial

and hence we can protect a subset of the branches and reduce the overhead

while getting good enough coverage.

As we scale BlockWatch to higher numbers of threads, it is possible

that the monitor itself becomes a bottleneck. To alleviate this, we can

have multiple monitor threads structured in a hierarchical fashion, each of

which is assigned to a sub-group of branches. Figure 6.2 shows one possible

solution to solve the problem. In this case, we have multiple monitor threads,

and each of them is responsible for different static branches, which can be

encoded at static time or decided at runtime. This solution alleviates each

monitor thread’s pressure while comparing all threads’ runtime behaviours

on the same branch together, which helps BlockWatch maintain the same

coverage. This is a direction for future work.

62

6.3. Performance Overhead

Figure 6.2: One possible improved version of the current monitor

63

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis presented BlockWatch to detect control-data errors in SPMD

parallel programs. BlockWatch statically infers the similarity of the pro-

gram’s control-data across threads, and checks their conformance to the

inferred similarity at runtime. Upon detecting a violation, it raises an ex-

ception and reports the error. We implement the static analysis part of

BlockWatch with LLVM and the runtime checking part by creating an

asynchronous monitor thread. Experimental results on SPLASH-2 programs

show that BlockWatch increases the average SDC coverage across eight

programs from 86% (91%) to 98% for branch-flip faults (branch-condition

faults), while incurring only 15% overhead in the 32 thread case (on a 32 core

machine). BlockWatch is automated, incurs zero false-positives and can

run on unmodified hardware, thus making it suitable for today’s multi-core

processors.

64

7.2. Future Work

7.2 Future Work

Future work will improve BlockWatch in three directions: extending

BlockWatch to other classes of parallel programs (than pthreads-style

programs), and to other program data (in addition to control-data). We will

also explore optimizations to reduce the performance overhead of Block-

Watch even further.

As mentioned in Chapter 2, the similarity that BlockWatch leverages

for error checking comes from the SPMD program structure and the shared

data across tasks (threads). This kind of similarity exists in other SPMD

or Single-Instruction-Multiple-Data (SIMD) programs, such as CUDA pro-

grams (through global variables) and MPI programs (through message pass-

ing). Therefore, we plan to extract the similarity in these programs for error

detection.

Although the current implementation of BlockWatch focuses on control-

data, it can be extended to detect faults that propagate to regular instruc-

tions. Studies have shown that around 80% of the runtime instructions in

SPMD parallel programs exhibit similarity [25], which means they can be

used by BlockWatch for error detection. In the future, we will extend

BlockWatch to protect other program data.

In this study, the overhead of BlockWatch is about 15% when the

thread number of the programs is 32 (on a 32 core machine). However, as

we mentioned in Chapter 6, this overhead can be further reduced. In the

future, we plan to adopt the solutions mentioned in Chapter 6 to further

reduce the performance overhead of BlockWatch.

65

Bibliography

[1] R. Alexandersson and J. Karlsson. Fault injection-based assessment

of aspect-oriented implementation of fault tolerance. In IEEE/IFIP

International Conference on Dependable Systems and Networks, pages

303–314, 2011.

[2] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy, and J.A. Abraham. De-

sign and evaluation of system-level checks for on-line control flow error

detection. IEEE Transactions on Parallel and Distributed Systems,

10(6):627–641, 1999.

[3] Lars Ole Andersen. Program analysis and specialization for the c pro-

gramming language. Technical report, the University of Copenhagen,

1994.

[4] James Archibald and Jean-Loup Baer. Cache coherence protocols: eval-

uation using a multiprocessor simulation model. ACM Transactions on

Computer System, 4:273–298, 1986.

[5] S. Bagchi, Z. Kalbarczyk, R. Iyer, and Y. Levendel. Design and evalu-

ation of preemptive control signature (PECOS) checking. IEEE Trans-

actions on Computers, 2003.

66

Bibliography

[6] C. Basile, K. Whisnant, Z. Kalbarczyk, and R. Iyer. Loose synchro-

nization of multithreaded replicas. In IEEE Symposium on Reliable

Distributed Systems, pages 250–255, 2002.

[7] S. Borkar and A.A. Chien. The future of microprocessors. Communi-

cations of the ACM, 54(5):67–77, 2011.

[8] Shekhar Borkar. Thousand core chips: a technology perspective. In the

Design Automation Conference, pages 746–749, 2007.

[9] G. Bronevetsky, I. Laguna, S. Bagchi, B.R. de Supinski, D.H. Ahn,

and M. Schulz. AutomaDeD: Automata-based debugging for dissimilar

parallel tasks. In IEEE/IFIP International Conference on Dependable

Systems and Networks, pages 231–240, 2010.

[10] Z. Chen, Q. Gao, W. Zhang, and F. Qin. Flowchecker: Detecting bugs

in MPI libraries via message flow checking. In ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1–11, 2010.

[11] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient flow-

sensitive interprocedural computation of pointer-induced aliases and

side effects. In Proceedings of the 20th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, pages 232–245, 1993.

[12] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck.

Efficiently computing static single assignment form and the control de-

pendence graph. ACM Transactions on Programming Languages and

Systems, 13(4):451–490, 1991.

67

Bibliography

[13] Frederica Darema. The SPMD model: Past, present and future. In the

European PVM/MPI Users’ Group Meeting, page 1, 2001.

[14] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.

Johnson. A survey of rollback-recovery protocols in message-passing

systems. ACM Computer Survey, 34:375–408, 2002.

[15] Q. Gao, F. Qin, and D.K. Panda. Dmtracker: finding bugs in large-

scale parallel programs by detecting anomaly in data movements. In

ACM/IEEE Conference on Supercomputing, pages 1–12, 2007.

[16] A. Geist and C. Engelmann. Development of naturally fault tolerant

algorithms for computing on 100,000 processors. Journal of Parallel

and Distributed Computing, 2002.

[17] S. Hangal and M.S. Lam. Tracking down software bugs using auto-

matic anomaly detection. In the International Conference on Software

Engineering, pages 291–301, 2002.

[18] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and Changhong

Dai. Impact of CMOS process scaling and SOI on the soft error rates of

logic processes. In 2001 Symposium on VLSI Technology, pages 73–74,

2001.

[19] M. Hiller, A. Jhumka, and N. Suri. On the placement of software

mechanisms for detection of data errors. In IEEE/IFIP International

Conference on Dependable Systems and Networks, pages 135–144, 2002.

[20] Michael Hind and Anthony Pioli. Which pointer analysis should i use?

68

Bibliography

In Proceedings of the 2000 ACM SIGSOFT International Symposium

on Software Testing and Analysis, pages 113–123, 2000.

[21] K.H. Huang and J.A. Abraham. Algorithm-based fault tolerance for

matrix operations. IEEE Transactions on Computers, pages 518–528,

1984.

[22] B. Karlsson. Beyond the C++ standard library. Addison-Wesley Pro-

fessional, 2005.

[23] Leslie Lamport. Specifying concurrent program modules. ACM Trans-

actions on Programming Languages and Systems, 5(2):190–222, 1983.

[24] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In International Symposium on

Code Generation and Optimization, pages 75–86, 2004.

[25] Guoping Long, Diana Franklin, Susmit Biswas, Pablo Ortiz, Jason

Oberg, Dongrui Fan, and Frederic T. Chong. Minimal multi-threading:

Finding and removing redundant instructions in multi-threaded pro-

cessors. In IEEE/ACM International Symposium on Microarchitecture,

pages 337–348, 2010.

[26] D.A. Menasce. Composing web services: A QoS view. IEEE Internet

Computing, 8(6):88–90, 2004.

[27] A.V. Mirgorodskiy, N. Maruyama, and B.P. Miller. Problem diagnosis

in large-scale computing environments. In ACM/IEEE Conference on

Supercomputing, pages 88–100, 2006.

69

Bibliography

[28] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for

Java. ACM SIGPLAN Conference on Programming Language Design

and Implementation, 41(6):308–319, 2006.

[29] Edmund B. Nightingale, John R. Douceur, and Vince Orgovan. Cycles,

cells and platters: an empirical analysisof hardware failures on a million

consumer PCs. In Proceedings of Conference on Computer systems,

pages 343–356, 2011.

[30] N. Oh, P.P. Shirvani, and E.J. McCluskey. Control-flow checking by

software signatures. IEEE Transactions on Reliability, 51(1):111–122,

2002.

[31] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient determin-

istic multithreading in software. In ACM SIGPLAN Notices, volume 44,

pages 97–108, 2009.

[32] K. Pattabiraman, Z. Kalbarczyk, and R.K. Iyer. Automated deriva-

tion of application-aware error detectors using static analysis. In IEEE

International On-Line Testing Symposium, pages 211–216, 2007.

[33] J.S. Plank, Y. Kim, and J.J. Dongarra. Algorithm-based diskless check-

pointing for fault tolerant matrix operations. In the International Sym-

posium on Fault-Tolerant Computing, pages 351–360, 1995.

[34] V.J. Reddi, A. Settle, D.A. Connors, and R.S. Cohn. PIN: a binary

instrumentation tool for computer architecture research and education.

In the Workshop on Computer Architecture Education, 2004.

70

Bibliography

[35] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August.

SWIFT: Software implemented fault tolerance. In the International

Symposium on Code Generation and Optimization, pages 243–254,

2005.

[36] S.K. Sahoo, M.L. Li, P. Ramachandran, S.V. Adve, V.S. Adve, and

Y. Zhou. Using likely program invariants to detect hardware errors.

In IEEE/IFIP International Conference on Dependable Systems and

Networks, pages 70–79, 2008.

[37] J. Sloan, D. Kesler, R. Kumar, and A. Rahimi. A numerical

optimization-based methodology for application robustification: Trans-

forming applications for error tolerance. In IEEE/IFIP International

Conference on Dependable Systems and Networks, pages 161–170, 2010.

[38] Daniel J. Sorin. Fault Tolerant Computer Architecture. Morgan &

Claypool Publishers, 2009.

[39] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceed-

ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 32–41, 1996.

[40] H. Sutter and J. Larus. Software and the concurrency revolution.

Queue, 3(7):54–62, 2005.

[41] D.D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T. Metodi,

and F.T. Chong. Characterization of error-tolerant applications when

protecting control data. In IEEE International Symposium on Workload

Characterization, pages 142–149, 2006.

71

Bibliography

[42] Kishor S. Trivedi. Probability and statistics with reliability, queuing and

computer science applications. John Wiley and Sons Ltd., 2nd edition

edition, 2002.

[43] A. Vo, S. Aananthakrishnan, G. Gopalakrishnan, B.R. Supinski,

M. Schulz, and G. Bronevetsky. A scalable and distributed dynamic for-

mal verifier for MPI programs. In ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis,

pages 1–10, 2010.

[44] J. Wei and K. Pattabiraman. BlockWatch: Leveraging similarity in

parallel programs for error detection. In IEEE/IFIP International Con-

ference on Dependable Systems and Networks, 2012.

[45] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The

SPLASH-2 programs: Characterization and methodological consider-

ations. In ACM SIGARCH Computer Architecture News, volume 23,

pages 24–36, 1995.

[46] K.S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer. Hauberk:

Lightweight silent data corruption error detector for GPGPU. In IEEE

Parallel & Distributed Processing Symposium, pages 287–300, 2011.

[47] Y. Zhang, J.W. Lee, N.P. Johnson, and D.I. August. DAFT: decoupled

acyclic fault tolerance. In the International Conference on Parallel

Architectures and Compilation Techniques, pages 87–98, 2010.

72

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Proposed Solution
	Advantage of BlockWatch

	Contributions
	Related Work
	Dissertation Organization

	Approach
	Introduction
	Fault Model
	Assumptions on Parallel Program
	Control-data Similarity in Parallel Programs
	Runtime Checking
	Summary

	Implementation
	Introduction
	Similarity Category Identification
	Runtime Checking
	Summary

	Experimental Setup
	Introduction
	Implementation Tools
	Benchmarks
	Performance Evaluation
	Coverage Evaluation
	Summary

	Results
	Introduction
	Similarity Category Statistics of Branches
	Performance Overheads
	Scalability

	Error Detection Coverage
	Coverage results for branch-flip faults
	Coverage results for branch-condition faults

	Detailed Study
	Correlation of output backtrace and coverage
	Correlation of output backtrace and performance overhead

	Summary

	Discussion
	Introduction
	Coverage
	Performance Overhead

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

