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Abstract

Computer experiments facilitate, through mathematical modelling, var-
ious experiments that would otherwise be very difficult to perform, or even
impossible. Computer experiments are employed to emulate situations in
areas such as weather modelling, astrophysics, economics and many more.

In conducting a computer experiment, we are required to select a design
for the initial values x(1), . . . ,x(n) of a process, and then emulate the output
based on the process and the initial values. The quality of the emulator
therefore depends partly on the process and partly on the choice of initial
values. We will only consider the Gaussian Process in this thesis, and the
focus of our analysis will be on the selection of initial values. We consider
the effects of selecting a random versus a rational design for the initial values
of computer experiments.

We aim to study a broad range of possible computer models that are
likely to arise in practice. Therefore, we present the analysis of eight different
design choices, each of which is either random or rational, for the initial
values. These initial values are applied to five different test functions that
we consider to be prevalent in practice. We observe the effect of each of the
designs on each of the test functions at three different sample sizes.

The goal of this thesis is to present a comprehensive study of various
standard design choices and make recommendations to a practitioner on a
robust design for the initial values of a computer experiment on a given
function. As well as ultimately recommend a universally robust design for
the initial values of any computer experiment.
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Chapter 1

Introduction

Traditional problems in many areas of science and engineering have relied
on physical design of experiments to study the effect of various factors on a
response. Historically, once physical experiments were not possible due to
cost or environmental limits, the experiment would not be completed. With
improved computing power we are now able to design computer models that
simulate the output of a complex physical system. Computer experiments
have applications in most areas of research, as it allows the experimenter
to simulate reactions when physical experiments are impossible, such as in
astrophysics, economics, biochemistry, modelling weather systems and many
other disciplines.

Although computer models allow us to run experiments that are other-
wise infeasible, computer models also present some challenges. First, com-
puter experiments are deterministic, meaning that running the code again
at the same input x will result in the same output. This is where computer
experiments and physical experiments differ significantly. The error in phys-
ical experiments is generated by the different outputs from the same input,
which is not the case with the deterministic computer experiment. Deter-
ministic computer experiments eliminate concepts such as randomization
and replication, and the predictive accuracy of the model is affected solely
by the bias in the specification of the computer model. In addition, com-
puter models are often extremely slow to run, meaning that simple Monte-
Carlo sampling of the code is not possible for purposes of optimization or
sensitivity analysis.

Since the deterministic computer models are usually slow to run, we
typically prefer to use a statistical surrogate that can be used to emulate
the code output. Approximating the code via a Gaussian Process (GP) is
now standard practice (Sacks et al., 1989a,b; Currin et al., 1991) and has
proven effective in a large variety of situations. Building a Gaussian Process
emulator requires specifying a set of input locations x(1), . . . ,x(n) at which
to evaluate the code, where responses y

(
x(1)

)
, . . . , y

(
x(n)

)
are observed.

These responses are then used to estimate the unknown parameters in the
GP model.
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Chapter 1. Introduction

Designing computer experiments requires that we select a design for
the initial values x(1), . . . ,x(n) where we wish to run the code. Where
x(i) = (x1, . . . , xd) is a d-dimensional vector representing a point in the
unit hypercube. The exact specification of the input locations can play an
important role in the quality of the estimated model. We consider the effects
of selecting a random versus a rational design for computer experiments. A
random design is simply taking a random sample from [0, 1]d to fill the sam-
ple space, while the rational designs that we consider are a Sobol sequence as
well as six variations of a Latin Hypercube Sample (LHS). Rational designs
have been formulated to satisfy different constraints, each with the goal of
representing the sample space better than a random sample.

To determine an appropriate sample size for our simulations we use the
guideline of 10d but also consider smaller and larger values to get a sense
of the robustness of a particular design choice. We consider five different
test functions, generated by permutations of a fixed design or by a random
design. Then we construct a GP model to emulate the output of the function.
We run the GP model 50 times for each design at three different sample sizes.
In order to assess the performance of the designs we generate the root mean
square error and the absolute max error for each run of the GP model.
Once we have run all the code, we are able to analyze the prediction errors
to select a robust design choice.

Physical experiments and computer experiments are parallel in many
aspects; Firstly, the question of experimental design remains. In computer
experiments the design problem we face is not to reduce random error from
sampling, but rather the selection of initial values for efficient analysis of the
data. Secondly, we are still able to apply statistical principles to the analysis
of simulated data. Thirdly, although deterministic computer models elimi-
nate the random error that we typically wish to quantify in the analysis of a
physical experiment, the statistical problem remains as there is uncertainty
associated with prediction from fitted models. Lastly, in modelling the com-
puter code as a Gaussian Process, and in general any stochastic process, we
are able to quantify the uncertainty of our predictions, as well as it allows
for applications of classical design and analysis (Sacks et al., 1989b).

The goal of this thesis is to present a comprehensive study of various
standard design choices and make recommendations to a practitioner on
good designs for computer experiments. In order to study a wide range of
scenarios we will study various test functions that are believed to represent
computer models that are likely to arise in practice.

This thesis is outlined as follows. In Chapter 2 we introduce the Gaussian
Process and its applications to computer experiments. In Chapter 4 we

2



Chapter 1. Introduction

outline the procedure for running a Computer Experiment and evaluating
the resulting emulations. In Chapter 3 we discuss the various designs we
will be considering and the differences between them. Chapters 5 and 6 will
outline the results of our simulations, and discuss the differences we find
from using the different designs. Chapter 7 will provide conclusions to the
results we have found as well as outline areas of possible future research.
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Chapter 2

Computer Experiments and
the Gaussian Process

Given several input values and one or more (possibly functional) output
variables, we can program a complex computer code that mathematically
describes the relationship between them. Usually, the computer model of
interest is computationally demanding, and scientific objectives like opti-
mization would require too many evaluations if the code is used directly.
In favour of efficiency, it has become common practice to adopt compu-
tationally efficient statistical approximations (emulations) of the code, as
illustrated by Sacks et al. (1989a,b); Currin et al. (1991); O’Hagan (1992).

A homogeneous Gaussian process prior is placed on the possible output
functions, which leads to an approximator of the code output given by the
posterior mean conditional on the data from the computer experiment. Al-
though the output from the computer model is often multivariate, we will
restrict our attention to scalar output. The computer code output is denoted
by y(x), where the code’s vector-valued input, x = (x1, . . . , xd) is assumed
to be a point in a d-dimensional unit hypercube [0, 1]d.

The GP model places a prior on the class of possible output functions
from the computer code. That is, if we let y(x) be the output of the code for
a given vector valued input x = (x1, . . . , xd) and let Y (x) denote a random
function model for y(x), the GP model specifies

Y (x) = fT (x)β + Z(x). (2.1)

Here, f(x) = (f1(x), . . . , fk(x))T contains k known regression functions, β =
(β1, . . . , βk)T is a vector of parameters with unknown values, and Z(x) is
Gaussian with mean zero and unknown variance σ2.

In many cases the regression terms can be replaced by a constant mean,
as the Gaussian process will absorb any linear trends in the data (Lim et al.,
2002; Steinberg and Bursztyn, 2004). Similarly, Linkletter et al. (2006) and
Higdon et al. (2008) have modelled the centred data, y(x) − ȳ, with ȳ the
sample mean of the data for model fitting, as a zero mean process with much
success. In what follows we will assume a constant mean f = µ1.

4



Chapter 2. Computer Experiments and the Gaussian Process

The correlation structure of Z(·) is critical to this approach. Let x and
x′ denote the values of two configurations of the input vector, and define
the correlation between Z(x) and Z(x′) as

Corr(Z(x), Z(x′)) = R(x,x′). (2.2)

The correlation function, R(·, ·), depends on a vector of parameters, θ, with
unknown values. For a deterministic computer code, R(x,x) = 1.

Although there are many choices for the correlation function in what
follows we consider the most common, which is the Power-Exponential cor-
relation function given as

R(x,x′) =
d∏

j=1

exp
(
−θj|xj − x′j|

pj
)
, (2.3)

where θj ≥ 0 controls the sensitivity of the output function with respect to
xj and 1 ≤ pj ≤ 2 controls the smoothness of the function. When pj = 2 we
have the so called Gaussian correlation function which leads to sample paths
that are infinitely differentiable and is appropriate for a smooth (analytic)
response surface.

From running the computer model n times at input vectors x(1), . . . ,
x(n), we have data y(x) = (y(x(1)), . . . , y(x(n)))T for predicting y. Let
x∗ be a new configuration of the input variables, and we want to predict
y(x∗). Conditional on the values of β, σ2, and θ, the posterior predictive
distribution of y(x∗) is Gaussian:

N(m(x∗), v(x∗)), (2.4)

where
m(x∗) = fT (x∗)β + r(x∗)TR−1(y − Fβ),

and
v(x∗) = σ2

(
1− r(x∗)TR−1r(x∗)

)
.

Here, F is the n× k matrix with row i containing fT (x(i)), the n× 1 vector
r(x∗) is generated from the correlation function (2.2) with element i given
by R(x∗,x(i)), and the n× n matrix R has element i, j from R(x(i),x(j)).

The full Bayesian formulation requires the specification of prior distri-
butions for the unknown parameter vector (β, σ2,θ). For computer experi-
ments, Handcock and Stein (1993) and O’Hagan (1994) assume an improper
prior of the form π(β, σ2) ∝ 1/σ2 and marginalize β and σ2. The correlation

5



Chapter 2. Computer Experiments and the Gaussian Process

parameters θ are sampled from the resulting marginal posterior distribution
via Markov chain Monte Carlo (MCMC; Gelman et al. 2004).

In what follows we consider fitting the GP to 10,000 data sets in order
to assess various different design choices on the estimation of the process.
In this situation the MCMC algorithm would be computationally burden-
some. As such, we must consider a more efficient method. Following Currin
et al. (1991) we adopt an empirical Bayesian approach and estimate the
parameters by maximizing the likelihood of the data.

According to the GP model in (2.1), y is multivariate normal and has
the density

L(y |β, σ2,θ) =
1

(2πσ2)n/2 det1/2(R)
exp

(
−

1

2σ2
(y − Fβ)TR−1(y − Fβ)

)
.

(2.5)
Regarding this as a likelihood function with respect to the parameters β,
σ2, and θ, the MLEs of the GP parameters are straightforward to compute
(Sacks et al., 1989b). For any fixed value of θ, the MLEs of β and σ2 are

β̂ = (FTR−1F)−1FTR−1y

and

σ̂2 =
1

n
(y − Fβ̂)TR−1(y − Fβ̂).

Substituting these MLEs into the likelihood function (2.5) yields the
profile likelihood with respect to θ only,

1

(2πσ̂2)n/2 det1/2(R)
exp(−n/2),

which has to be optimized numerically with respect to θ to give the MLE,
θ̂ (e.g., Welch et al., 1992).

In a plug-in predictor, the model parameters are replaced by their MLEs.
With β̂ instead of β the conditional mean in (2.4) becomes

m̂(x∗) = fT (x∗)β̂ + r(x∗)TR−1(y − Fβ̂). (2.6)

Extra prediction uncertainty is introduced by using β̂, and the predictive
variance in (2.4) becomes

v(x∗) = σ2(1− r(x∗)TR−1r(x∗) (2.7)

+(f∗ − FTR−1r(x∗))T (FTR−1F)−1(f∗ − FTR−1r(x∗)))

6



Chapter 2. Computer Experiments and the Gaussian Process

where f∗ = f(x∗). The extra uncertainty from using θ̂ for θ to give the
plug-in predictor, m̂(x∗), is not so easily quantified. Similarly, the extra
uncertainty in estimating (2.8) by using θ̂ and replacing σ2 by σ̂2 is often
ignored.

The plug-in prediction limits for confidence 1− α are

m̂(x∗)± z1−α/2

√
v̂(x∗), (2.8)

where z1−α/2 is the 1− α/2 quantile of the standard normal density.

All that remains is to decide on the actual x(1), . . . ,x(n) locations at
which to evaluate the code. This involves specifying a value for n and the
exact locations x(i). Loeppky et al. (2009) provide evidence that choices
of n ≈ 10d are typically sufficient to estimate any reasonably well-behaved
function. In our analysis we use the guideline of 10d for choice of sample size
but also consider smaller and larger values to get a sense of the robustness
of a particular design choice. In the following chapter we discuss the various
design choices suggested in the literature.

7



Chapter 3

Designs

Design choices for computer experiments can be broadly characterized
into two categories, random or rational. Random designs in this context
would consist of a simple random sample of n points uniformly from [0, 1]d.
Alternatively, rational designs would be based on a more systematic selection
of points. Rational designs can be mainly broken down into two categories.
First are those that are based on a quasi-random sample of points in [0, 1]d.
Design choices here involve Sobol sequences (Sobol, 1967) or designs con-
structed from a Latin hypercube sample (LHS) (McKay et al., 1979) both of
which have been shown to be particularly effective for Monte-Carlo estima-
tion of high-dimensional integrals. Second are designs based on statistical
criterion that could be better suited for estimation of response surfaces. In
this chapter we review the various design choices available for computer ex-
periments. Recall that the computer code is assumed to be deterministic, so
that properties such as randomization, blocking and especially replication
have no place in modern design for computer experiments. The overall con-
cern for computer experiments is finding designs that adequately sample the
unit hypercube. In general we wish to find a design Dn which is a collection
of n points in F ≡ [0, 1]d

3.1 Uniform Designs

Uniform designs (Fang et al., 2000) have been employed with some suc-
cess in computer experiments. Consider d factors over some region Cd and we
wish to find a design Dn ⊂ Cd such that the points are uniformly scattered
on Cd. Finding a good design is typically related to minimizing the discrep-
ancy between the uniform distribution F (x) on Cd and the empirical CDF
of the design Dn which is denoted by Fn(x) typically the Lp discrepancy

Dp(Dn) =

[∫

Dn

|Fn(x)− F (x)|pdx

]1/p

8



3.2. Distance Based Designs

is used. One popular choice is the L∞ norm which is simply

Dp(Dn) = sup
x∈Dn

|Fn(x)− F (x)|.

In such cases the designs are typically constructed using number theoretic
properties or via an algorithm based on a candidate set of points. Since de-
sign construction can be extremely time consuming or difficult these designs
have not gained significant popularity. There are some catalogues of designs
on the unit hypercube, however, these catalogues are very small. For the
purposes of the comparisons in Chapters 5 and 6 the existing catalogues do
not provide run sizes that are large enough to use these designs for compar-
isons. Since the goal is to assess designs for the practitioner to use, we do
not consider this a serious limitation since these designs would be hard to
construct, so practitioners would not be able to readily construct uniform
designs in practice.

3.2 Distance Based Designs

Shewry and Wynn (1987) considered choosing designs that maximize
the entropy. The criterion of maximum entropy characterizes the amount
of information in an experiment introduced by Blackwell (1951) and further
expanded by Lindley (1956). In the context of Gaussian processes, Shewry
andWynn (1987) showed that maximum entropy is equivalent to maximizing
the determinant of the correlation matrix R when there is no regression term
in the model. Since the correlation parameters are unknown a-priori, the
selection of designs using this criterion is not feasible in practice.

Alternatively, Johnson et al. (1990) show that minimizing 1 − det(R)
results in maximizing the minimum weighted distance. Specifically, design
points are selected using the Maxi-Min weighted distance criterion (Johnson
et al., 1990),

max
Dn⊂F

min
x,x′∈Dn

√√√√
d∑

j=1

θj(xj − x′j)
2 .

Again, since the correlation parameters are unknown this leads to a Maxi-
Min distance criterion which chooses a design Dn such that

max
Dn⊂F

min
x,x′∈Dn

√√√√
d∑

j=1

(xj − x′j)
2 .

9



3.3. Latin Hypercube Sampling

There are a number of appealing features of this criterion. First, it
is based on both the maximum entropy criterion and the maximum mean
square error criterion. Secondly, from a practical standpoint, it is much more
computationally tractable than the other design criteria. Although, Maxi-
Min distance designs are intuitively appealing, in practice they tend to push
design points to the boundaries of the design space F which can often result
in poor fits to the underlying response surface. In a later section we review
a modification of the Latin hypercube based on this distance criterion.

3.3 Latin Hypercube Sampling

Routinely, initial sets of code runs for computer experiments are selected
using a latin hypercube sample (LHS)(McKay et al., 1979). These are by far
the most common design choice and are extensively used in practice. Latin
hypercube samples can be constructed by assuming the input domain for
the computer code is [0, 1]d and assuming a probability distribution function
P(x) ≡

∏d
i=1Pi(xi) defined on the hypercube [0, 1]d which is constructed

as the product of independent marginal distributions. A Latin Hypercube
sample (McKay et al., 1979) X is an n × d array in [0, 1]d where n is the
number of runs and d is number of factors. For any column of X, [0, 1] is
divided into n non-overlapping stratum with the same marginal probability
and one sample is selected at random from each stratum. This is done for
every column of X and a random LHS is found by taking permutations
of each column. If the input distribution is assumed to be a product of
one dimensional uniforms this results in a sampling design in [0, 1]d where

any element xij of X is of the form i+εij
n , i = 0, . . . , (n − 1) where, εij ∼

UNIF [0, 1) for all i, j. This results in a random design that achieves an even
sampling of points in any one dimension and obtains some degree of space
filling in higher dimensions. When the input domain is a hyper-rectangle and
the prior distribution on the input is the product of one dimensional marginal
distributions the LHS is an extremely straightforward way of obtaining a
sampling design.

The plot in Figure 3.1 shows two different random LHS designs in [0, 1]2

with n = 6 points. Clearly the design on the left is undesirable, whereas the
design on the right is significantly more appealing since it provides a much
better coverage of the unit square. In what follows we will discuss various
modifications of the LHS designs aimed at improving the space filling nature
of the designs.
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3.4. Orthogonal Array Based LHS
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Figure 3.1: Examples of an undesirable random design and a good random
design.

3.4 Orthogonal Array Based LHS

Tang (1993) and Owen (1992) describe a modification of a random LHS
that is based on using a stratified sampling approach to achieve uniformity
in one-dimensional and higher-order dimensional projections. The designs
are easily constructed by using an Orthogonal array to provide a method of
imposing a stratified sample. These designs are shown to be more efficient
than the random LHS and have been shown to be effective at estimating
computer models. However, since the designs are based on orthogonal arrays
the run sizes are limited to powers of primes or multiples of 4 if a two-level
orthogonal array is used. As such, these design choices are not particularly
useful for our purposes.

11



3.5. MaxiMin LHS

3.5 MaxiMin LHS

Morris and Mitchell (1995) proposed a MaxiMin LHS which imposes a
distance based criterion on top of the random LHS. Specifically, the goal
is to find an LHS that maximizes the minimum distance between any pair
of runs. Imposing the distance measure on top of the LHS prevents design
points going to the boundary of the design space. In this way these designs
should be ideal for computer experiments since they combine the intuitively
appealing statistical aspects of Maxi-Min designs while avoiding the problem
of forcing the design points to the boundary of the design space. These
designs are easy to construct by using a simulated annealing algorithm or a
column pairwise exchange procedure.

3.6 Orthogonal LHS

Iman and Conover (1982) proposed a so-called Orthogonal LHS as a
means of improving the space filling nature of a random LHS. Not to be
confused with the Orthogonal Array based LHS, a perfectly orthogonal LHS
is nothing more than an orthogonal array with a very large number of levels.
When an orthogonal array is not available a near orthogonal array can be
used in its place. In terms of an LHS sample a nearly orthogonal array can
be constructed by finding an LHS where the pairwise correlation among all
the columns in the design is zero or near zero. These designs are easy to
construct numerically and represent a very easily implemented solution for
the practitioner.

3.7 Cosine Transformed LHS

The final variation of the LHS considers a cosine based transformation
of the design points. Dette and Pepelyshev (2010) proposed a method of
constructing space filling designs that place more points on the boundary
of the design space. In particular they consider a transformation of each
univariate projection by an arc-sine transformation. They show that given
an LHS D with design points xij, the resulting arc-sine transformed design
Z can be obtained by defining new design points as

zij =
1− cos(xijπ)

2
.

As seen in Figure 3.2 this results in forcing more points near the bound-
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3.8. Sobol Sampling

ary of the design space which the authors suggest will result in better esti-
mation of the underlying response surface.
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Figure 3.2: Comparing the designs generated under the MaxiMin criterion
with the design of the Cos-transform of the same points.

In the comparisons discussed in the next two chapters we consider using
the cosine transformation for the Random, MaxiMin and Orthogonal LHS
designs.

3.8 Sobol Sampling

Sobol based sampling (Sobol, 1967) is specifically designed for Monte-
Carlo integration of high dimensional functions. Specifically, a Sobol se-
quence is a sequence of n vectors x = (x1, . . . , xd) that fill the d-dimensional
unit hypercube [0, 1]d more uniformly than uncorrelated pseudo-random
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3.8. Sobol Sampling

numbers. Sobol sequences have proven effective for integration and pro-
vide space-filling designs in the unit hypercube. Although not designed for
computer experiments they have shown some utility for estimation of re-
sponse surfaces. One of the major advantages of such Sobol sequences is
that points can be generated sequentially. If the initial run size proves inef-
fective at estimating the function it is easy to generate new points. However,
the new points are not selected in a data adaptive fashion and as such may
not be particularly effective in improving the fitted model.

In the following chapter we will outline a typical approach to running a
computer experiment and outline in detail the simulation studies we conduct
in Chapters 5 and 6.
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Chapter 4

Running a Computer
Experiment

In order to present a systematic comparison of the above design choices
it is important to clearly outline the process we wish to simulate. A typi-
cal computer experiment follows the same general format which we outline
below:

1. Specify a sample size n and construct an appropriate design obtaining
input locations x(1), . . . ,x(n) at which to evaluate the code.

2. Run the computer model f(x) and obtain the responses
y
(
x(1)

)
, . . . , y

(
x(n)

)
.

3. Emulate the computer model output using a GP

(a) Estimate the parameters of the GP using Maximum Likelihood
or running the MCMC.

(b) Specify the posterior predictive process as specified in (2.6) and
(2.8)

4. Assess the quality of the emulator using leave-one-out cross validation
(Currin et al., 1991).

Since the computer model f(x) is assumed deterministic the above model-
fitting procedure results in a fixed outcome for any specified set of data.
That is, if we want to compare designs the above procedure only results in
a single response which will be insufficient to compare different designs. If
a comprehensive design study is to be performed it is necessary to replicate
the above process and obtain different results at each run. In addition, it
would be beneficial to have an external measure of quality of fit.
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4.1. External Validation

4.1 External Validation

Cross validation is one method of comparing the quality of the emula-
tor. However, when comparing multiple emulators of the same process it is
beneficial to have an external estimate of emulator quality. Assuming the
computer model is quick to run, this is possible by evaluating the emulator
using out-of-sample predictions. In particular we look at the designs ability
to predict a set of m test points. That is, given a collection of m random
locations in [0, 1]d, observed function values yi and predicted values ŷi we
compute the Root Mean Squared prediction Error (RMSE) given by

RMSE =

√∑m
i=1(yi − ŷi)2

m
(4.1)

as a measure of average performance. Alternatively, a worst case measure
of performance is given by the Absolute Max Error (AME)

AME = max
i=1,...,m

|yi − ŷi|. (4.2)

When comparing different functions or comparing within functions it is
necessary to know what constitutes an acceptable error. One potential way
of judging if the error is acceptable would be to compare the prediction with
a prediction method that uses ȳ, the mean of the test points, as a predictor.
That is, one might consider

RMSE

Deviation
= 100

√∑
(yi − ŷi)2∑
(yi − ȳ)2

and judge a fit as acceptable when this value is less than 10 and preferably
closer to 5.

The analogous measure for the maximum error would be

AME

MAD
= 100

√
maxi=1,...,m |yi − ŷi|

maxi=1,...,m |yi − ȳ|

where MAD is the maximum absolute deviation about the mean. In this
case acceptable errors would yield a value less than 15.

Using out of sample predictions provides a convenient method to com-
pare different emulators of the same process. However, for each chosen de-
sign choice we only get one emulator of the process. In order to address this
problem we consider two different methods for “replicating” the emulator.
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4.2. Simulation Study

4.1.1 Design Permutations

Given a fixed design D ⊂ [0, 1]d running the code at D produces a set of
n responses. Running the code again at the same D produces the same set of
responses. However, given d unique values x1, . . . , xd evaluating the code at
x1, . . . , xd and x2, x1, x3, x4 . . . , xd for example would result in two different
outputs. That is, the computer model is not invariant to permutations of
the inputs. However, each of the designs discussed in Chapter 5 are invariant
to column permutations. Thus, given a design D of a particular type and
D∗ in which the columns of D are permuted then D∗ is still a design of the
specified type, but evaluating the code at D∗ will result in a different set of
outputs. Thus permuting the columns of D is one way to “replicate” the
experimental process.

4.1.2 Random Functions

In chapter 6 we consider computer models of the form f(x, c) where
c = (c1, . . . , cd) are a specified set of values. Taking

ci =
c0ki∑d
i=1 ki

and ki ∼ UNIF (0, 1)

will also result in a form of replication. In this instance the c’s are changing
which will result in certain dimensions being more or less active in the
function, which takes the place of column permutations above. In addition
changes of this nature also result in small changes to the function output
resulting in a series of different examples all with similar properties.

4.2 Simulation Study

In order to run a full simulation study with replication we use the fol-
lowing procedure

1. Specify a test function

2. Obtain a set of m = 10, 000 points uniformly in [0, 1]d to use for out-
of-sample prediction

3. Run the model to obtain the sample points y1, . . . , ym.

4. For each design choice Di, i = 1, . . . , 8. We consider the eight following
designs:
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4.2. Simulation Study

• Latin Hypercube Sampling (LHS)

• MaxiMin LHS

• Orthogonal LHS

• Cos-Transformed LHS

• Cos-Transformed MaxiMin

• Cos-Transformed Orthogonal

• Sobol Sequences

• Random Sample

5. Finally, repeat the following procedure 50 times:

(a) Run the computer model at D∗
i to obtain data for fitting

(b) Build the GP emulator (as outlined earlier in the chapter)

(c) Using the emulator, predict the m points specified in step 2.

(d) Compute the RMSE and AME resulting in values RMSEj and
AMEj

In Chapter 5 we take D∗
i in step 5a to be a permutation of the columns

of design Di specified in Section 4.1.1. In Chapter 6 we take D∗
i in step 5a

to be the design Di specified in Section 4.1.2. Since the computer model is
random there is no need to consider design permutations.

18



Chapter 5

Design Permutations

The objective of our analysis is to present a comprehensive study of
various standard design choices and make recommendations to a practitioner
on good designs for computer experiments. In order to study a wide range
of scenarios we have chosen five different test functions in d = 10 that are
believed to represent computer models that are likely to arise in practice.

We apply eight different design choices for the initial values to each of
the test functions. We are interested in investigating the differences in the
design choices of the initial values of the simulations from each test function.
Simulations were made at sample sizes of 70, 100, and 200. We consider
eight different design types, the first six are variations of Latin Hypercube
Sampling, where the first will be the Random LHS (LH), the second is
constructed under the MaxiMin criterion (MM), and the third under the
Zero-Correlation (Orthogonal) criterion (OD). The fourth, fifth and sixth
will be the same designs again but under a cosine transformation (CL, CM,
CO respectively). The last two designs are not based off of Latin Hypercube
Sampling; the seventh design is a Sobol Sequence (SS) and finally the eighth
design is the basic Random Design (RD).

Each function requires a constant ci, in this section we define

ci =
c0ki∑d
i=1 ki

where ki = i−0.5
d , i = 1, . . . , 10 and d = 10, we select different values of

c0 depending on the test function, we introduce replication in the form of
permutation. By permuting the columns of the design as discussed in Section
4.1.1 we are able to generate varying designs with the same properties. In
this chapter we introduce and discuss five different functions. For each
function we ran simulations 50 times for each design. The output gave the
RMSE and AME from each simulation, our analysis will focus on a discussion
of the various external validation techniques discussed in Chapter 4.
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5.1. Continuous Function

5.1 Continuous Function

The first test function we will consider is the Continuous function.

f1(x) = exp

(

−
d∑

i=1

ci|xi − wi|

)

In our simulations we use c0 = 5 for the Continuous function, and we let
wi = 0.
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Figure 5.1: Comparing the RMSE and AME generated by the Continuous
test function over three different sample sizes using a constant c0 = 5.

In our discussion of the performance of the designs on the Continuous test
function, we will first consider the RMSE. The first thing to notice in the first
three plots of Figure 5.1 is the variability around the Cos-Transformed de-
signs. Coupled with the largest median values of RMSE across all three sam-
ple sizes that we have considered, we can not recommend a Cos-Transformed
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5.1. Continuous Function

Table 5.1: Mean ratio of RMSE/DEV for each design of the Continuous
function.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 16.19 11.28 4.91

MaxiMin 15.23 10.82 4.68
Orthogonal 17.19 11.25 4.86

Cos-LHS 19.19 12.96 6.08
Cos-MaxiMin 17.73 11.96 6.03

Cos-Orthogonal 23.90 13.75 5.90
Sobol 15.66 11.12 5.12

Random 15.90 11.49 5.02

Table 5.2: Mean ratio of AME/MAD for each design of the Continuous
function.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 25.36 20.40 11.15

MaxiMin 29.24 24.01 10.63
Orthogonal 21.84 21.74 10.88

Cos-LHS 23.76 17.57 8.37
Cos-MaxiMin 25.85 18.39 7.07

Cos-Orthogonal 22.47 17.50 8.24
Sobol 27.67 22.12 10.91

Random 25.84 19.55 10.97

design as a good design for this test function. The one design that stands
out with low variability and small values of RMSE across all three sample
sizes is the MaxiMin design. Also note that with the exception of one out-
lier, the Sobol sequence performs well on the Continuous function as well.
As we increase the sample size all the designs yield smaller values of RMSE
as well as the variability around those values decreases dramatically. Even
at a sample size of 200 we still notice heightened levels of RMSE as well as
variability in the cos-transformed designs.

Similarly, in the lower three plots of Figure 5.1 the AME shows an overall
decrease in magnitude as well as variability as the sample size increases. One
difference that we notice in the AME versus the RMSE is that the MaxiMin
design has the highest magnitude of AME at sample sizes of 70 and 100,
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5.1. Continuous Function

and is in the higher range at the sample size of 200. However, the MaxiMin
design still has the smallest variability across the sample sizes. A distinct
difference that we see between the RMSE plots and the AME plots is the dip
in AME for the Cos-Transformed designs at the sample size of 200, which
contradicts the “spike” in RMSE that we see at the same sample size.

When faced with discrepancies between RMSE and AME it is important
to remember that RMSE is the average error, while the AME is the worst
case error. We desire a design with small RMSE and ideally small AME as
well, but when the RMSE is small and the AME is larger than we would
prefer, we use RMSE as the main criterion for judging a good predictor. If
the discrepancies are considerably large, further criterion such as percentiles
might be useful in deciding whether the AME is large due to large errors
overall, or perhaps just due to one or two outliers. We might consider looking
at the number of points above some set limit or the 95th percentile of the
observed errors.

Our goal is to find a design that performs well in most situations. To
find a design that has a desirable RMSE and find that it does very poorly
in the AME is not a reliable design. To further investigate the reliabil-
ity of the designs, we refer to Table 5.1. A design that yields a ratio for
RMSE/Deviation that is less than 10 and preferably closer to 5 will be con-
sidered a good design. It is obvious that none of the designs perform well
on the Continuous function at a sample size of 70. At a sample size of 100
all of the designs are close to 10 and there is no design that is clearly better
than the others. Similarly, at a sample size of 200, all designs appear to
perform well, but none are distinctly different from the others. If we were
to select a design based on RMSE/Deviation we would select the MaxiMin
design as it has the lowest ratios at all sample sizes.

Referring to Table 5.2 consider the ratio of AME/MAD. In this case
ratios less than 15 will be considered a good fit. Evidently, no design yields
a desirable fit at a sample size of 70. The cos-transformed designs perform
marginally better than the others at a sample size of 100. It is not until
we reach a sample size of 200 that the designs begin to perform well. Once
again we face the issue of no design that is decidedly better than the others.
At a sample size of 200 we would recommend the Cos-transformed MaxiMin
design solely based on the AME/MAD ratio. However, when the sample
size is that large any of the designs will be approximately equivalent.

The question of selecting a robust design remains. Due to the incon-
sistency in the Continuous function it is difficult to recommend a robust
design. Although the MaxiMin design appears to do poorly on the AME
and AME/MAD, we would still prefer it since the maximum values on the
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5.2. Corner Peak Function

Continuous function do not behave well as we discussed earlier, so we are
more inclined to rely on the RMSE as an indication of how well the designs
perform in this case. Thus, we would recommend the MaxiMin design for
the Continuous function.

5.2 Corner Peak Function

The second function we consider is the Corner Peak function.

f2(x) =

(

1 +
d∑

i=1

cixi

)−(d+1)

In our simulations we investigate the effect of two different constants c0 =
0.25 and c0 = 1.85 for the Corner Peak function.

Table 5.3: Mean ratio of RMSE/DEV for each design of the Corner Peak
function with a constant of c0 = 0.25.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 6.08 3.77 1.28

MaxiMin 5.66 3.66 1.24
Orthogonal 6.06 3.88 1.27

Cos-LHS 7.11 4.34 1.62
Cos-MaxiMin 6.90 4.19 1.56

Cos-Orthogonal 8.07 4.57 1.51
Sobol 5.85 3.70 1.36

Random 5.91 3.88 1.32

We evaluate the Corner Peak function at two different constants in order
to better investigate the effect of the constant on the performance of the
designs. In Figure 5.2 we see the same general cascading trend in both the
RMSE and the AME for the Corner Peak function with a constant of 0.25
as we did in the Continuous function. The difference is in the scales; the
scale of RMSE for the Corner Peak function with a constant of 0.25 is less
than 0.009 going down to around 0.002 at the largest sample size. While
the scale of RMSE for the Continuous function goes from 0.015 to around
0.005 when it is at its lowest at the sample size of 200. Similarly, we see a
decrease in the scale of AME, the scale for the Corner Peak goes from 0.07
to around 0.02 at a sample size of 200. While the scale for the AME of the
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5.2. Corner Peak Function
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Figure 5.2: Comparing the RMSE and AME generated by the Corner Peak
test function over three different sample sizes using a constant of c0 = 0.25.

Continuous function was as high as 0.15 going down to around 0.05. The
variability in the RMSE decreases dramatically as we increase the sample
size. We see the same trend that we saw in the Continuous function for the
cos-transformed designs, high values with large variability. The design that
performs the best on the Corner Peak function with a constant of 0.25 in
terms of RMSE across all sample sizes is the MaxiMin design. The MaxiMin
design yields consistently low RMSEs with small variability. Now consider
the AME of the same function, there is not the same dramatic decrease in
variability as we saw in the RMSE, however, the variability is very small for
all designs at a sample size of 200.

Based on the AME we would prefer the cos-transformed Orthogonal
design, as it yields overall lower values of AME. However, the variability of
the cos-transformed Orthogonal design is not smaller than any of the other
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5.2. Corner Peak Function

Table 5.4: Mean ratio of AME/MAD for each design of the Corner Peak
function with a constant of c0 = 0.25.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 10.74 8.06 3.41

MaxiMin 12.73 9.63 3.17
Orthogonal 9.10 8.23 3.27

Cos-LHS 9.96 6.91 2.59
Cos-MaxiMin 11.49 7.51 2.16

Cos-Orthogonal 8.57 6.61 2.36
Sobol 11.80 8.55 3.43

Random 11.08 7.86 3.23

Table 5.5: Mean ratio of RMSE/DEV for each design of the Corner Peak
function with a constant of c0 = 1.85.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 77.19 67.80 47.00

MaxiMin 63.50 58.74 44.35
Orthogonal 103.61 69.25 47.63

Cos-LHS 124.17 94.18 84.17
Cos-MaxiMin 78.95 69.49 69.63

Cos-Orthogonal 267.19 107.90 83.04
Sobol 73.52 64.36 50.92

Random 73.39 71.71 51.16

designs. In fact, the variability of each design within each sample size is
approximately the same. The AME of the Corner Peak function with a
constant of 0.25 shows the same trend in the cos-transformed designs as we
saw in the cos-transformed designs of the Continuous function.

Now consider Table 5.3 to investigate the ratio of RMSE/Deviation.
Again, designs that yield ratios less than 10 are considered good designs,
and ratios less than 5 are preferred. The major difference between the Corner
Peak function with a constant of 0.25 and the Continuous function is that
even the ratios at a sample size of 70 are considered good, while we had to
look at sample sizes of 200 to reach similar ratios in the Continuous case.
Again, based on the RMSE/Deviation ratio for the corner peak function
with a constant of 0.25 we would select the MaxiMin design as the design
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5.2. Corner Peak Function
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Figure 5.3: Comparing the RMSE and AME generated by the Corner Peak
test function over three different sample sizes using a constant of c0 = 1.85.

that performs the best over all sample sizes.
Table 5.4 shows the ratios of AME/MAD for the Corner Peak function

with a constant of 0.25. The ratios for all designs start off better at a sample
size of 70 than they were for a sample size of 200 for the Continuous function.
The ratios steadily decrease as we increase the sample size, however, there
is not one design that consistently performs better than the others in the
AME/MAD case.

Now we will consider the effect of changing the constant of the Corner
Peak function from 0.25 to 1.85. Figure 5.3 shows an obvious difference in
the fit when compared to Figure 5.2. The scales for both the RMSE and
the AME for the Corner Peak function with a constant of 1.85 are nearly
three times as large as they were for the same function with a constant of
0.25. We do not see the same cascading trend in the magnitude of neither
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5.3. Gaussian Function

Table 5.6: Mean ratio of AME/MAD for each design of the Corner Peak
function with a constant of c0 = 1.85.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 76.69 74.46 62.68

MaxiMin 82.15 79.61 63.57
Orthogonal 70.09 76.58 60.92

Cos-LHS 86.40 72.24 65.14
Cos-MaxiMin 74.18 68.99 50.28

Cos-Orthogonal 109.86 78.52 68.29
Sobol 82.12 76.74 63.77

Random 77.19 73.52 63.78

the RMSE nor AME that we saw in the Continuous function and the Cor-
ner Peak function with a constant of 0.25. Although the variability in the
designs decreases as we increase the sample size as it did in the previous
two cases, there is still significant variability in all the designs, especially
the cos-transformed designs at a sample size of 200. In practice, if we were
to see this behaviour we would use Cross Validation to assess how poorly
the function is represented.

It becomes rather obvious that using a constant of 1.85 for the Corner
Peak function is not advisable once we look at Tables 5.5 and 5.6. Both
ratios yield extremely high values, some are even larger than 100, indicating
that the mean of the output would be a better predictor than the predic-
tor itself. Even at a sample size of 200 most values are close to 50 if not
higher. Of course, in a real-world situation we do not have a choice in the
constant, so for our purposes we will extend our recommendation from the
constant of 0.25 to all Corner Peak functions, and recommend either the
Cos-Transformed Orthogonal design, or the MaxiMin design.

5.3 Gaussian Function

The third function we consider is the Gaussian function.

f3(x) = exp

(

−
d∑

i=1

c2i (xi −wi)
2

)

In our simulations we use c0 = 7 for the Gaussian function, and we let
wi = 0.
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5.3. Gaussian Function
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Figure 5.4: Comparing the RMSE and AME generated by the Gaussian test
function over three different sample sizes using a constant of c0 = 7.

In Figure 5.4 we see the familiar cascading values across the sample sizes.
The difference is in the scales where the RMSE for the Gaussian function
ranges from values of 0.035 in the sample size of 70, down to values of 0.005
in the sample size of 200. So it does not perform as well as the Corner Peak
function with a constant of 0.25. The scales of the RMSE for the Gaussian
function are approximately the same as those for the Corner Peak function
with a constant of 1.85. The difference we see in the Gaussian function as
opposed to the Corner Peak function with a constant of 1.85 is the defined
decrease in values and variability of the RMSE as the sample size increases.
Based on the RMSE plots in Figure 5.4 the design that appears to yield
consistently good fits is the Sobol sequence along with the MaxiMin design.

Further investigating the Gaussian function we turn our attention to the
AME. There is a notable decrease in variability as the sample size increases,
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5.3. Gaussian Function

Table 5.7: Mean ratio of RMSE/DEV for each design of the Gaussian func-
tion.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 13.77 9.22 3.91

MaxiMin 13.34 8.93 3.77
Orthogonal 13.10 8.81 3.85

Cos-LHS 16.59 11.63 4.86
Cos-MaxiMin 16.61 11.04 5.55

Cos-Orthogonal 14.34 11.44 4.85
Sobol 13.68 8.78 3.92

Random 13.68 9.28 3.94

Table 5.8: Mean ratio of AME/MAD for each design of the Gaussian func-
tion.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 20.98 14.97 6.98

MaxiMin 21.55 15.61 6.99
Orthogonal 18.12 14.72 6.90

Cos-LHS 24.51 19.38 8.71
Cos-MaxiMin 25.81 17.69 9.16

Cos-Orthogonal 19.14 18.37 8.69
Sobol 20.97 14.24 7.05

Random 20.53 14.68 7.06

as well as a decrease in AME as the sample size increases. One important
difference to note is that the behaviour of the AME in the cos-transformed
designs mirrors the behaviour of the RMSE in the cos-transformed designs.
There are a number of outliers in the AME across all sample sizes, even at
a sample size of 200. This suggests that either we should run the code again
with a larger sample size, or explore ways of improving our emulator.

Table 5.7 shows the ratios of the RMSE/Deviation for the Gaussian
function. None of the ratios for a sample size of 70 are low enough to be
considered good; it is not until we reach sample sizes of 100 that the ratios
become reasonable. Once we reach a sample size of 200 we have good ratios
for all of the designs. There is not one design that yields ratios that are
better than the others at all sample sizes, however, in moving from a sample
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5.4. Oscillatory Function

size of 100 to 200 we prefer the MaxiMin design.
Now consider Table 5.8 for the ratios of AME/MAD. As in Table 5.7 the

ratios are not good at a sample size of 70. Once we reach a sample size of 100
we have ratios that are on the verge of acceptable, and finally at a sample
size of 200 we have desirable ratios. Based on the ratio of AME/MAD at a
sample size of 200 we would prefer the Orthogonal design, but the difference
between the Orthogonal design and the LHS or MaxiMin design is minimal.

5.4 Oscillatory Function

The fourth function we consider is the Oscillatory function.

f4(x) = cos

(

2π +
d∑

i=1

cixi

)

In our simulations we use c0 = 4.5 for the Oscillatory function.

Table 5.9: Mean ratio of RMSE/DEV for each design of the Oscillatory
function.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 9.84 6.39 2.36

MaxiMin 9.61 6.04 2.19
Orthogonal 10.14 6.76 2.23

Cos-LHS 11.29 7.12 2.58
Cos-MaxiMin 10.17 6.62 2.51

Cos-Orthogonal 12.24 7.36 2.42
Sobol 9.35 6.32 2.35

Random 9.94 6.77 2.28

In the RMSE plots of Figure 5.5 the same cascading effect is seen across
the sample sizes that we have become familiar with in most of the other
functions. There is noticeably more variability in the cos-transformed de-
signs in the lower two sample sizes, but at the sample size of 200 all designs
have essentially the same variability around approximately the same RMSE.
At a sample size of 70, the MaxiMin design, the Orthogonal design, and the
Sobol Sequence are approximately equal in terms of variability and median
value of RMSE. To select a preferred design we move to the sample size of
100. At a sample size of 100 the obvious choice is the MaxiMin design. Not
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5.4. Oscillatory Function
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Figure 5.5: Comparing the RMSE and AME generated by the Oscillatory
test function over three different sample sizes using a constant of c0 = 4.5.

only does it have the smallest median value of RMSE, but also the smallest
variability around it. This remains true at a sample size of 200.

In the AME plot of Figure 5.5 the cos-transformed MaxiMin design is
decidedly smaller than the other designs at a sample size of 70. Upon closer
inspection however, the range of the cos-transformed MaxiMin reaches al-
most as high as the maximum values of the MaxiMin design or the Orthog-
onal design or even the Sobol Sequence. Proceeding to a sample size of 100
there is no clear choice for the best design, but the cos-transformed MaxiMin
has the most variability out of all the designs, which suggests that it is not
a robust design. The Sobol Sequence is too variable to be considered a good
design. At a sample size of 100 the Orthogonal design yields low values of
RMSE with small variability. Yet, at a sample size of 200 the Orthogonal
design does not perform well in comparison with the MaxiMin design. The
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5.5. Product Peak Function

Table 5.10: Mean ratio of AME/MAD for each design of the Oscillatory
function.

Sample Size 70 Sample Size 100 Sample Size 200
LHS 20.68 14.70 6.63

MaxiMin 19.66 16.91 5.53
Orthogonal 20.47 14.66 5.98

Cos-LHS 21.97 14.67 5.82
Cos-MaxiMin 17.38 14.40 5.10

Cos-Orthogonal 21.69 14.21 5.24
Sobol 19.73 14.65 6.39

Random 20.90 15.87 5.98

MaxiMin design is a good choice of design for all the sample sizes we have
investigated, so we feel comfortable recommending it as a robust design for
the Oscillatory function.

In Table 5.9 the ratios of RMSE/Deviation are satisfactory for all designs
at a sample size of 70. The smallest ratio at a sample size of 70 is from the
Sobol Sequence, followed closely by the MaxiMin design. At a sample size of
100 the MaxiMin design is preferred followed by the Sobol Sequence. Finally,
at a sample size of 200 the MaxiMin is the preferred design, followed by the
Orthogonal design. At a sample size of 200 the Sobol Sequence does not
perform well in comparison to the other designs.

In Table 5.10 none of the designs yield good ratios of AME/MAD at a
sample size of 70, and no design performs as well as we would expect at a
sample size of 100. It is not until we reach a sample size of 200 that we see
acceptable ratios of AME/MAD. At a sample size of 200 based purely on the
ratios of AME/MAD we would select the cos-transformed MaxiMin design.
However, since the ratio of the MaxiMin design is not drastically different
from its cos-transformed counterpart, we prefer the MaxiMin design as it
consistently performs well.

5.5 Product Peak Function

The fifth and final function we consider is the Product Peak function.

f5(x) =
d∏

i=1

(
c−2
i + (xi − wi)

2
)−1
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5.5. Product Peak Function

In our simulations we use c0 = 7.25 for the Product Peak function, and we
let wi = 0.
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Figure 5.6: Comparing the RMSE and AME generated by the Product Peak
test function over three different sample sizes using a constant of c0 = 7.25.

At a glance, Figure 5.6 makes the Product Peak function appear to be
well-behaved. Upon closer investigation however, we notice that the scale of
RMSE goes from around 2×10−7 at a sample size of 70, and then decreases
further to around 5× 10−8 at a sample size of 200. The scale of the AME is
between 1.6×10−6 at a sample size of 70, down to 5×10−7 at a sample size
of 200. To better understand why the errors are so small, we take a closer
look at the Product Peak function. The Product Peak takes the product
of inverses; this means that the output of the Product Peak function is
expected to be close to zero. So it is not surprising that the emulator does
so well, all it is doing is essentially predicting zero. To be able to predict zero
in practice is not very useful. Since the Product Peak function is not useful
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5.5. Product Peak Function

in practice, we will not include the tables of RMSE/DEV or AME/MAD,
and we will not discuss the design choices. The Product Peak function has
been excluded from the analysis in Chapter 6.
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Chapter 6

Results for Random
Functions

In Chapter 5 we specified the constant ci using ki =
i−0.5
d , i = 1, . . . , 10

with d = 10 and c0 varied depending on the test function. In this chapter we
will use the same values of c0 as in Chapter 5, but we will now find 10 ki ∼
UNIF (0, 1), which will in turn generate 10 different values of ci. So where
the previous test functions remained fixed and the design changed, here the
actual function changes which gives a sense of design performance over many
different functions and not merely design performance over variations of the
same design.

For our discussion of the results in this chapter we have excluded the
tables of RMSE/Deviation and AME/MAD. The reason for this is, as we
found under the Product Peak function in Chapter 5, the tables can be
misleading if we do not have a well behaved function to start with. So we
will focus our discussion on the plots of RMSE and AME.

6.1 Continuous Function

In Figure 6.1 an interesting difference between the RMSE in this case and
the one we observed in Chapter 5, is in the variability. The variability within
each design is much smaller than it was before, but the variability between
the different designs is much larger. At a sample size of 70 the Orthogonal
design, Sobol Sequence and the Random Design perform equally well. At a
sample size of 100 the MaxiMin design performs as well as the Orthogonal
design, or the Sobol Sequence, while the Random Design does not perform
as well as the others any more. At a sample size of 200 the MaxiMin design
or Sobol Sequence design are preferred. The scale of the RMSE ranges from
0.012 at a sample size of 70 down to 0.002 which is a better range than what
we saw in Chapter 5 (from 0.015 to 0.005).

The scale of the AME in Figure 6.1 remains the same from what we
saw in Chapter 5, from 0.15 to 0.05. The design that performs best on the
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6.1. Continuous Function
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Figure 6.1: Comparing the RMSE and AME generated by the Continuous
test function over three different sample sizes using a constant of c0 = 5.

AME at a sample size of 70 is the cos-transformed LHS. The cos-transformed
Orthogonal design has the smallest median AME out of all the designs at a
sample size of 70, it is not preferred however because of the large variability
and what appears to be a cluster of outliers in the upper bounds of the AME.
The median AME for the MaxiMin design is the highest at a sample size of
70, but the variability within the design is among the smallest. Continuing
to a sample size of 100 we see a drastic decrease in the AME of the LHS
design. The variability of the LHS is too large to be considered robust, but
the significant drop in AME is worth making note of. The MaxiMin design
and Orthogonal design along with all three cos-transformed designs perform
well with approximately equal variance at a sample size of 100. To decide
on a preferred design we consider a sample size of 200. We are hesitant to
select a cos-transformed design as the behaviour of the AME contradicts the
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6.2. Corner Peak Function

behaviour of the RMSE. The Orthogonal design has too many outliers to
be considered robust. Thus, we select the MaxiMin design as our design of
choice overall for the Continuous function.

6.2 Corner Peak Function
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Figure 6.2: Comparing the RMSE and AME generated by the Corner Peak
test function over three different sample sizes using a constant of c0 = 0.25.

The RMSE plots of the Corner Peak function with a constant of 0.25 in
Figure 6.2 show that the scale has decreased from what we saw in Chapter 5.
We are now going from around 0.006 (down from 0.008) at a sample size of
70, and then down to 0.001 (down from 0.002) at a sample size of 200. The
cos-transformed designs do not perform well on the Corner Peak function
with a constant of 0.25 at any sample size. Initially, we are drawn to the low
values of RMSE of the Orthogonal design at a sample size of 70. However,
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Figure 6.3: Comparing the RMSE and AME generated by the Corner Peak
test function over three different sample sizes using a constant of c0 = 1.85.

once we increase the sample size the Orthogonal design looks less promising.
At a sample size of 200 the MaxiMin design and the Sobol design appear to
be performing equally well. At a sample size of 100 the same two designs
perform approximately as well again. As we move down to a sample size of
70 however, the Sobol Sequence actually performs better than the MaxiMin
sampling.

The AME plots of the Corner Peak function with a constant of 0.25 in
Figure 6.2 reveal the same trend we saw in the RMSEs of the same plot.
The cos-transformed designs do not perform well consistently, so we will
not consider them to be candidates for a robust overall design. Starting
at a sample size of 70 then, we would prefer the Orthogonal design or the
LHS design, in terms of both median values and variability. Continuing to a
sample size of 100 we prefer the LHS design once more and the Orthogonal
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6.3. Gaussian Function

design or the Sobol Sequence are close contenders thereafter. Once we move
to a sample size of 200, the LHS design does not perform well, and the
Orthogonal design has a few too many outliers to be considered robust. The
Sobol Sequence however performs well across all sample sizes. Therefore, in
terms of RMSE and AME for the Corner Peak function at a constant of
0.25, we would prefer the Sobol Sequence as a robust design choice.

Figure 6.3 confirms what we concluded in Chapter 5, that using a con-
stant of 1.85 for the Corner Peak function does not result in a well behaved
function. Thus, selecting a design that performs well on the Corner Peak
function with a constant of 1.85 is counterproductive.

6.3 Gaussian Function
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Figure 6.4: Comparing the RMSE and AME generated by the Gaussian test
function over three different sample sizes using a constant of c0 = 7.
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6.4. Oscillatory Function

The RMSE of the Gaussian function in Figure 6.4 is relatively consistent
in terms of both variability and the median RMSEs for all designs in each
sample size. The scale of the RMSE for the Gaussian function is between
0.025 for a sample size of 70, down to 0.005 for a sample size of 200. This
is smaller than the scale (from 0.035 to 0.005) we saw in the Gaussian
function of Chapter 5. In general the RMSEs decrease as we increase the
sample size, as well as the variability decreasing for all designs. The cos-
transformed designs have larger values of RMSEs than we desire for a robust
design. At a sample size of 70 the MaxiMin design reaches the lowest values
of RMSE, the variability of the MaxiMin design is large at the small sample
size, but even at its maximum it does not extend past any other design that
can be considered robust except for the Sobol Sequence. At a sample size
of 100 the RMSEs of all designs excluding the cos-transformed designs are
approximately equal. Again, at a sample size of 200, with the exception of
the cos-transformed designs, the RMSE of all the designs is approximately
equal. Since the goal of our analysis is to find a design that consistently
performs well, we would select the MaxiMin function as it is preferred in
the small sample case, and then is equal to the other designs at the larger
sample sizes.

The AME of the Gaussian function in Figure 6.4 shows a similar trend as
what we saw in the RMSE of the same Figure. The MaxiMin design attains
the smallest values of AME at a sample size of 70, and we see more variability
in the cos-transformed designs than in the other designs across all sample
sizes. The scale of the AME starts at smaller values (0.20) for the sample size
of 70 as opposed to 0.3 but at a sample size of 200 the designs do not reach
RMSEs lower than 0.05, what we saw in the previous chapter. Although
the Orthogonal design appears to be the best design at both a sample size
of 70 and 200, it shows some outliers in the higher end at a sample size
of 100. While the MaxiMin design attains values as low as the Orthogonal
at a sample size of 70 and 100, and is among the best designs at a sample
size of 200. This is an indication that the MaxiMin design performs well
on all sample sizes we have considered, and we feel confident recommending
the MaxiMin design as a robust design for the Gaussian function with a
constant of 7.

6.4 Oscillatory Function

In Figure 6.5 we notice that there has been no change in the scales
of neither RMSE nor AME of the Oscillatory function from the previous
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6.4. Oscillatory Function
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Figure 6.5: Comparing the RMSE and AME generated by the Oscillatory
test function over three different sample sizes using a constant of c0 = 4.5.

chapter. Once again, the Cos-Transformed designs do not perform well
consistently in the RMSE. Although the MaxiMin design has outliers in the
RMSE at a sample size of 70, they are towards the lower values, which we
allow. In fact, we would prefer the MaxiMin design at a sample size of 70,
because although the Orthogonal design has less variability, the values of the
Orthogonal are in general larger than in the MaxiMin design. We continue
on to a sample size of 100 and see that most designs have conformed around
approximately the same values of RMSE, but the low variability of the
MaxiMin design make it favourable at a sample size of 100. At a sample
size of 200 the designs are essentially equivalent, so we make the MaxiMin
the preferred design based on the RMSE on the Oscillatory function with a
constant of 4.5.

The AME plots in Figure 6.5 show inconsistencies in the Cos-Transformed
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designs once more. At a sample size of 70, we would consider either the LHS
design or the MaxiMin design as preferable designs both in terms of vari-
ability and RMSE values. At a sample size of 100 the LHS performs better
than all the other designs, while the MaxiMin performs approximately as
well as the other designs. At a sample size of 200 the LHS design is among
the worst designs, which suggests the seemingly superior performance at a
sample size of 100 is due to chance rather than good performance. So across
all sample sizes we prefer the MaxiMin design as a robust design choice for
the Oscillatory function with a constant of 4.5.
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Conclusion

Computer experiments have applications in most areas of research, and
have broadened research opportunities by enabling the researcher to emulate
a mathematical model of the system and then simulate future output. This
allows for experiments that would otherwise be impossible to perform.

In Chapter 2 we introduced the idea of computer experiments and the
applications of the Gaussian Process. In Chapter 3 we introduced various
designs that one might consider for selecting the initial values of the simula-
tions. In our analysis we considered eight of those designs, namely the LHS,
MaxiMin and Orthogonal designs and their cos-transformed counterparts,
as well as the Sobol Sequence and the Random Design.

The goal of our analysis was to present a comprehensive study of various
standard design choices and make recommendations to a practitioner on
good designs for computer experiments. We considered a wide range of
scenarios, varying the sample size, varying the test function, as well as the
effect of changing the constant for one of the test functions. In Chapters
5 and 6 we compared the effects of evaluating the output at fixed points,
versus evaluating the output at random points. The differences in Chapters
5 and 6 were not notable.

One important finding, is that the Cos-Transformed designs yield good
emulators for the simpler functions, but as the function increases in com-
plexity, the Cos-Transformed designs do not perform as well as the other
designs. The MaxiMin design however, is a robust design across all func-
tions except in Chapter 6 for the Corner Peak function with a constant of
0.25 when evaluated at random points, where the Sobol Sequence is the
preferred design choice. Although the Sobol Sequence is preferred in this
case, the difference between the Sobol Sequence and the MaxiMin design is
minimal. In terms of selecting a design choice that will yield consistently
good results for any test function, the MaxiMin would still perform well on
this type of function in practice. So we are confident in recommending the
MaxiMin design as a robust design choice for the initial values of any of the
functions we have considered.

In future work we would consider exploring the effects of different con-
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stants on the different functions. Our work was done in 10 dimensions, so
it would be interesting to investigate the design choices if we consider other
dimensions than 10.
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