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Abstract

A main task in evolutionary biology is phylogenetic tree reconstruction, which

determines the ancestral relationships among different species based on observed

molecular sequences, e.g. DNA data. When a stochastic model, typically continuous

time Markov chain (CTMC), is used to describe the evolution, the phylogenetic in-

ference depends on unknown evolutionary parameters (hyper-parameters) in the

stochastic model. Bayesian inference provides a general framework for phyloge-

netic analysis, able to implement complex models of sequence evolution and to

provide a coherent treatment of uncertainty for the groups on the tree. The conven-

tional computational methods in Bayesian phylogenetics based on Markov chain

Monte Carlo (MCMC) cannot efficiently explore the huge tree space, growing su-

per exponentially with the number of molecular sequences, due to difficulties of

proposing tree topologies. sequential Monte Carlo (SMC) is an alternative to ap-

proximate posterior distributions. However, it is non-trivial to directly apply SMC

to phylogenetic posterior tree inference because of its combinatorial intricacies.

We propose the combinatorial sequential Monte Carlo (CSMC) method to gen-

eralize applications of SMC to non-clock tree inference based on the existence of

a flexible partially ordered set (poset) structure, and we present it in a level of gen-

erality directly applicable to many other combinatorial spaces. We show that the

proposed CSMC algorithm is consistent and fast in simulations. We also investi-

gate two ways of combining SMC and MCMC to jointly estimate the phylogenetic

trees and evolutionary parameters, particle Markov chain Monte Carlo (PMCMC)

algorithms with CSMC at each iteration and an SMC sampler with MCMC moves.

Further, we present a novel way to estimate the transition probabilities for a general

CTMC, which can be used to solve the computing bottleneck in a general evolu-
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tionary model, string-valued continuous time Markov Chain (SCTMC), that can

incorporate a wide range of molecular mechanisms.
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Chapter 1

Introduction

A main task in evolutionary biology is phylogenetic reconstruction, which recon-

structing the ancestral relationships among different species and estimating evolu-

tionary parameters as well. The available data are typically biological sequences

of DNA, RNA, and protein. Bayesian phylogenetics aims to estimate the posterior

distribution of phylogenetic tree and evolutionary parameters given the observed

biological sequences, and then to make inferences about a function of the tree by

computing its posterior expectation.

Calculating the posterior distribution of phylogenetic trees analytically would

theoretically involve summation over all possible trees and for each tree integration

over all possible combinations of branch lengths. There is no closed-form solution

except for very small trees. Moreover, the total number of possible phylogenetic

trees grows super exponentially with the number of biological sequences increases.

This hard posterior computation is typically estimated using Markov chain Monte

Carlo (MCMC) algorithms.

In phylogenetics, MCMC algorithms construct a Markov chain that has the

desired posterior distribution of phylogenetic trees as its equilibrium distribution.

At each MCMC iteration, a new tree is proposed by making small perturbations

on the current tree and then we accept the proposed tree with the probability of the

Metropolis-Hastings (MH) ratio or remain at the current tree with the remaining

probability.

Various MCMC methods for phylogenetics differ from one another because of
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different evolutionary models, proposal distributions, and prior distributions. The

development of modern Bayesian phylogenetics originated in the earlier work of

[52, 67, 70, 77, 82, 113]. [82] and [113] showed how posterior probabilities of

trees could be calculated under a linear birth-death prior for a small number of

species. [77] proposed the GLOBAL algorithm in which all branch lengths are

changed with every cycle. In these publications, a common assumption is that

the phylogenetic tree is a molecular clock. [67] discussed two types of MCMC

algorithms, the GLOBAL algorithm and LOCAL algorithm, programmed in their

software package BAMBE. [67] also extended these algorithms from clock trees to

nonclock trees. [70] restricted their model to molecular clock trees. Their MCMC

algorithm uses auxiliary variables of the sequences of internal nodes to improve

computational efficiency per cycle by avoiding integrating over these sequences.

[52] provided an overview of the traditional and Bayesian approaches for phy-

logeny estimation.

Bayesian phylogenetics is becoming more and more popular for several rea-

sons. Many studies have focused on comparing nonparametric bootstrap and pos-

terior probabilities in terms of estimating the tree uncertainty [1, 20, 29, 96, 102].

These studies show that bootstrap tends to be too conservative. Moreover, Bayesian

methods might be a faster way to assess support for trees than maximum like-

lihood bootstrapping [25]. In addition, the Bayesian framework can incorporate

complex evolutionary models, and there are many user-friendly software packages

available for Bayesian phylogenetics using MCMC; e.g. BAMBE [97], MrBayes

[55, 90, 91], and BEAST [28].

The main difficulty in Bayesian phylogenetic inference with MCMC lies in

the efficiency with which topology proposals sample tree space. Since the target

posterior distribution of phylogenetic trees is high dimensional and multimodal,

it can be difficult to design appropriate proposal distributions needed to achieve

efficient MCMC algorithm. [66] evaluated two classes of proposal distributions

that change topology and branch lengths simultaneously for phylogenetic inference

for unrooted trees. [51] studied different proposal distributions for constrained

rooted clock trees. The results in [66] and [51] show that the design of the currently

used transition kernels leads to a low acceptance rate of transitions unless a small

neighborhood is used. As a result, MCMC algorithms need a long computing time

2



to give reliable estimates for the parameters under study. [50] explored new MCMC

transition kernels for sampling the posterior distribution in tree space. However,

due to the huge size of the tree space, it remains challenging to design proposal

distributions that make Markov chains mix well and move quickly among all the

trees with high probability mass. Another main disadvantage of using MCMC is

that it can be difficult to determine whether the MCMC approximation has achieved

convergence.

Moreover, the MCMC algorithms are often computationally expensive because

each iteration requires recalculating the likelihood of the full tree even when only

a small perturbation is made on the current tree. This computation bottleneck has

prevented the application of Bayesian methods to large phylogenetic studies, and

increase in the CPU speed is unlikely to address this issue because increasingly

cheap sequencing technologies are creating massive molecular data at a faster rate.

Such data represent an opportunity for estimating more accurate models of evo-

lutionary histories underlying species. At the same time, the massive amount

of molecular data makes a computational challenge for Bayesian phylogenetics,

where running MCMC chains for several months is not uncommon.

sequential Monte Carlo (SMC) is an increasingly popular alternative to MCMC,

because of its speed and scalability. [42] contributed a pioneering paper of SMC

focusing on tracking applications. Since then, various SMC algorithms have been

proposed to obtain full posterior distributions for problems in nonlinear dynamic

systems in science and engineering. To date, these algorithms for nonlinear and

non-Gaussian state-space models have been successfully applied in various fields

including computer vision, signal processing, tracking, control, econometrics, fi-

nance, robotics, and statistics [15, 26, 27, 71]. However, it is still an open question

how to use SMC to break the computing bottleneck imposed by many combinato-

rial problems in computational biology, such as phylogenetic inference, inference

over alignments, and gene networks.

[105] and [43] have applied SMC to a restricted class of phylogenetic models,

coalescent trees. However, since ultrametric trees, such as the coalescents, put un-

realistic constraints on phylogenetic inference, which prevents this method from

fitting the real data. Their approach cannot be applied to standard phylogenetic

models, based on non-clock trees. There has also been a large body of work apply-

3



ing sequential methods that are closely related to SMC, e.g., importance sampling

and approximate Bayesian computation, to problems in population genetics, but

these methods also focus on coalescent models ([45]; [7]; [76]; [57]; [81]).

[9] extended the application of classical SMC to phylogenetic data analysis

based on partially ordered sets (posets). However, this work requires an artificial

restriction on proposals, which is difficult to be satisfied for the case of non-clock

trees. [109] applied sequential sampling and reweighting methods to phylogenet-

ics, but in the context of pooling results from stratified analyses rather than con-

structing a single joint tree posterior.

[22, 23] proposed the SMC sampler to consider a sequence of distributions that

are defined on a common continuous space. Their proposed SMC sampler uses

MCMC kernels to propose particles, and they introduced artificial backward (in

time) Markov kernels in the importance weight update. However, the SMC sampler

in [22, 23] is focused on state-space models and it cannot be readily applied to

phylogenetics.

We propose a new algorithm, the combinatorial sequential Monte Carlo (CSMC)

algorithm, to approximate posteriors of phylogenetic trees given fixed evolution-

ary parameters. SMC is proposed to improve the efficiency of the standard MCMC

methods. The technique we use to generalize SMC to non-clock trees depends on

the existence of a flexible poset structure, and we present it in a level of generality

directly applicable to many other combinatorial spaces. We show that the proposed

CSMC algorithm is consistent and fast in simulations.

We investigate two frameworks of combining SMC and MCMC, the two main

Monte Carlo tools to sample from complex and high-dimensional probability dis-

tributions, to jointly estimate phylogenetic trees and evolutionary parameters (hyper-

parameters). The first framework is particle Markov chain Monte Carlo (PMCMC)

[3, 53], in which each MCMC iteration uses our proposed CSMC to approximate

the posterior distribution of the phylogenetic trees and the marginal likelihoods of

data, given parameters in the evolution model. The second algorithm is an SMC

sampler, in which each SMC iteration uses an MCMC kernel to propose artificially

intermediate states, which are full trees with tempering parameters.

Ideally, the evolutionary model in Bayesian phylogenetics should be flexible

enough to incorporate a wide range of evolutionary phenomena, e.g. slipped strand

4



mispairing (SSM), a well known explanation for the evolution of repeated se-

quence. We propose more realistic evolutionary models by incorporating a wide

range of evolutionary phenomena. Specifically, the model is a string-valued con-

tinuous time Markov Chain (SCTMC) where the exponential rates are allowed to

depend on an unbounded context. We propose a novel SMC algorithm to sample

the posterior distribution of the phylogenetic tree and hidden molecular sequences

given the unaligned sequence data.

The rest of this dissertation is organized as follows. In Chapter 2 we provide

a brief review of Monte Carlo methods, including MCMC, SMC, and PMCMC.

Chapter 3 introduces backgrounds on phylogenetics, starting with the phylogenetic

trees, followed by a review of methods of phylogeny reconstruction. Especially,

Bayesian phylogenetics (Section 3.4.3) is necessary to understand the rest of this

dissertation. Chapter 4 presents a novel SMC algorithm, CSMC, for Bayesian phy-

logenetic inference for non-clock trees. Note that the proposed CSMC is general

enough to be applied to many other applications. In Chapter 5 we presents dif-

ferent ways of combining MCMC and SMC, focusing on PMCMC and an SMC

sampler with MCMC kernels. In Chapter 6, we propose a general evolutionary

model based on SCTMC, and we implement Bayesian phylogenetic inference us-

ing a novel sequential Monte Carlo (SMC) algorithm. Finally, Chapter 7 concludes

the contributions of this dissertation and outlines some future work.
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Chapter 2

Monte Carlo Methods

Monte Carlo Methods are a class of computational algorithms that make use of

random samples to compute expectations. Monte Carlo Methods are commonly

used to approximate intractable integrals of high dimensions. From Monte Carlo’s

view, any probability distribution π, regardless of its complexity, can always be

represented by a discrete (Monte Carlo) sample from it. An important issue is to

find a convenient and efficient discrete representation. [88] provided an excellent

review on Monte Carlo statistical Methods. In this chapter, we will briefly review

the major Monte Carlo Methods that will be used in the following chapters.

Throughout this chapter, π denotes the target distribution of some random vari-

able defined on a measurable space (E,E). Assume the density function is denoted

by π(x), x ∈ E. We are interested in computing the integral of a measurable function

φ : E→ R with respect to π

Eπ(φ) =

∫
E
φ(x)π(dx).

To simplify notation, for the most part, especially algorithms, of this disserta-

tion we do not distinguish random variables from their realization.

2.1 Markov Chain Monte Carlo (MCMC)
Since it is typically difficult to obtain a large number of independent and identically

distributed samples from a distribution of interest, π, MCMC methods [88] are
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widely used to draw a dependent sample from π by constructing an ergodic Markov

chain which has the desired target distribution π as its equilibrium distribution. A

Markov chain, {Xn}, can be thought of as a sequence of random variables evolving

over time that has the following property: given the present state, future transitions

of the chain are independent of the past history. More precisely, for every initial

distribution µ,

P(Xn+1 ∈ A|x0, x1, · · · , xn) = P(Xn+1 ∈ A|xn) =

∫
A

M(xn,dx),

where M is a transition kernel defined in a measurable space (E,E) such that:

1. ∀x ∈ E, M(x, ·) is a probability measure;

2. ∀A ∈ E, M(·,A) is measurable.

Providing a discrete Markov chain, {Xn}, is irreducible and aperiodic, and π is

the equilibrium distribution, we have

P(Xn = y|X0 = x)→ π(y) as n→∞ for all x,y,

i.e. the equilibrium distribution of this Markov chain is our target distribution.

Further, given the chain is irreducible, for any function φ(·) such that Eπ|φ(X)| <∞,

1
K

K∑
k=1

φ(Xk)→ E(φ(X)) as K→∞,

with almost sure convergence in probability. In other words, this Markov chain

converges to the required target distribution. Please refer to [88] for more details.

In order to construct an appropriate Markov chain, we require the transition

kernel to satisfy the detailed balance condition defined as follows

Definition 1. A Markov chain with transition kernel M satisfies the detailed bal-

ance condition if there exists a function f satisfying

M(y, x) f (y) = M(x,y) f (x) (2.1)

for every (x,y).
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According to [88], we have the following result:

Theorem 2. Suppose that a Markov chain with transition function M satisfies the

detailed balance condition with π a probability density function. Then:

1. The density π is the invariant density of the chain.

2. The chain is π-reversible.

2.1.1 Metropolis-Hastings (MH)

The most popular algorithm to construct appropriate Markov chains is the Metropolis-

Hastings (MH) algorithm, which was first proposed by [78] and later adapted by

[48]. To construct a Markov chain {Xn}n=1,2,···, proposal distributions K(x, ·) are

chosen to propose a candidate value for the state, y, based on the current value x

with the density K(x,y). The following MH acceptance probability α(x,y) is cal-

culated

α(x,y) = min
(
1,
π(y)K(y, x)
π(x)K(x,y)

)
.

With probability α(x,y), the new state of the Markov chain is updated to y, other-

wise it remains x. Algorithm 2.1 summarizes the MH algorithm. The initial value

of the chain can be selected arbitrarily. The choice of K(x, ·) is also arbitrary as long

as it satisfies the requirement that the constructed Markov chain is irreducible.

Algorithm 2.1 Metropolis-Hastings Algorithm
1: Choose a starting value x0.
2: for k > 1 do
3: Sample x∗ ∼ K(xk−1, ·).
4: Compute an MH acceptance ratio α(xk−1, x∗).
5: Accept x∗ with the above probability. If x∗ is not accepted, then xk = xk−1.
6: end for

We can show that the MH algorithm produces a Markov kernel which has the

desired invariant distribution by showing that this Markov kernel satisfies the de-

tailed balance condition for π. Using Algorithm 2.1, the Markov transition kernel,
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M : E→E, is

M(x,dy) = α(x,y)K(x,dy) + (1−α(x,y))δx(dy)

=

[
1∧

π(y)K(y, x)
π(x)K(x,y)

]
K(x,dy) +

[
1−

(
1∧

π(y)K(y, x)
π(x)K(x,y)

)]
δx(dy),

where δx is the Dirac delta function for x ∈ E. Using the MH acceptance probability

α(x,y) ≤ 1, it is easy to show that

π(x)M(x,y) = π(x)
[
π(y)K(y, x)
π(x)K(x,y)

K(x,y) +

(
1−

π(y)K(y, x)
π(x)K(x,y)

)
δx(y)

]
= π(y)

[
K(y, x) +

(
π(x)
π(y)
−

K(y, x)
K(x,y)

)
δx(y)

]
= π(y)K(y, x) (α(x,y) ≤ 1⇒ α(y, x) = 1)

= π(y)
[
α(y, x)K(y, x) + (1−α(y, x))δy(x)

]
= π(y)M(y, x).

2.1.2 Gibbs Sampler (GS)

Gibbs sampler (GS) is applicable to problems of multivariate state. The value of

each element is sampled from the full conditional distribution of the element given

the most recent values of all the other variables.

Let x = (x1, · · · , xD) denote the vector of a multivariate random variable, and

let xk = (xk,1, · · · , xk,D) denote the k-th sample of x. Algorithm 2.2 describes a

deterministic scan GS in which the order to elements to update is fixed. In this

algorithm, xk,−d = (xk,1, · · · , xk,d−1, xk−1,d+1, · · · , xk−1,D). We can also use a random

scan GS in which we randomly choose the element to update.

Algorithm 2.2 Gibbs Sampling
1: Choose a starting value x0.
2: for k > 1 do
3: for d = 1 to D do
4: Sample xk,d ∼ π(·|xk,−d)
5: end for
6: end for
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GS can be regarded as one special case of the MH sampler [39], in which the

MH acceptance probability is always 1, shown as follows:

α(x, (x−d,yd)) =
π((x−d,yd))π(xd |x−d)

π(x)π(yd |x−d)

=
π(x−d)π(yd |x−d)π(xd |x−d)
π(x−d)π(xd |x−d)π(yd |x−d)

= 1,

where (x−d,yd) = (x1, · · · , xd−1,yd, xd+1, · · · , xD).

Since the GS requires sampling from the full conditional distributions, it might

be impossible to sample from some of the full conditional distributions for many

complex models. In such cases, an MH step is used to sample from the full con-

ditional distribution. In addition, the GS can be very inefficient when the variables

are closely correlated or sampling from the full conditionals is extremely expensive

or inefficient.

2.2 Sequential Monte Carlo (SMC)
The sequential Monte Carlo (SMC) method is an increasingly popular alternative

to MCMC. In this section, we first review the generic SMC algorithm and use the

application to state space models as a specific example. Then, we summarize some

resampling methods used in SMC. Finally, we shall introduce an SMC sampler

that is relevant to our work.

2.2.1 Generic SMC

In this section, we will briefly review the generic SMC algorithms to sample from

a given target distribution π defined on a measurable space (E,E); the density func-

tion is denoted π(x), x ∈ E. This method requires us to introduce a sequence of

intermediate probability distributions

{πr(xr),r = 1, · · · ,R} (2.2)

defined on a sequence of measurable spaces {(Er,Er),r = 1, · · · ,R} such that πR(xR) =

π(x). Here r is a general index for the intermediate distributions which is not nec-

essary to be an index for time as in state space models. Typically, xr = x1:r =
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(x1, · · · , xr), where xr ∈ X implying that Er = Xr.

Each density of the intermediate distributions is assumed known up to a nor-

malizing constant; i.e. for r = 1, · · · ,R,

πr(xr) = Z−1
r γr(xr),

where γr : Er → R
+ can be evaluated pointwise, but the normalizing constant Zr is

unknown. We will denote ZR by Z.

A concrete example of the general applications of SMC is state space models

[6, 10, 10, 11, 30, 31, 41, 41, 42], in which r is an index for time; the intermediate

distributions are given by state space models themselves, i.e.

πr(xr) = p(x1:r |y1:r)

defined on the product space Er = Xr, where x1:r are from a hidden X-valued

discrete-time Markov process, and y1:r are the observations. The unnormalized

density can be evaluated pointwise as follows

γr(xr) = p(x1:r,y1:r) = µ(x1)
r∏

n=2

f (xn|xn−1)
r∏

n=1

g(yn|xn),

where f (xn|xn−1) are the transition probability densities, and g(yn|xn) are the marginal

densities of the observations.

We wish to estimate expectations of test functions φr : Er→ R

Eπr (πr) =

∫
φr(xr)πr(dxr),

and the normalizing constants Zr. In SMC algorithms, we do this sequentially; i.e.

we first estimate π1 and Z1 at iteration 1, then π2 and Z2 at iteration 2 and so on.

A generic SMC algorithm is described in Algorithm 2.3. At the r-th iteration

of the algorithm, the proposal distributions qr are used to propose the particles,

{xr,k}k=1,··· ,K , of the current iteration based on the particles, {x̃r−1,k}, from the pre-

vious iteration. The intermediate distribution πr is approximated by the set of K

weighted samples (also called particles), {xr,k,Wr,k}k=1,··· ,K , where xr,k denotes the
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Algorithm 2.3 Generic Sequential Monte Carlo
At iteration r = 1,

sample x1,k ∼ q1(·)
set its unnormalized weight w1,k = γ1(x1,k)/q1(x1,k).
normalize weights W1,k = w1,k/

∑K
k=1 w1,k

resample {x1,k,W1,k} to obtain new particles denoted {x̃1,k}

At iteration r ≥ 2,
sample xr,k ∼ qr(x̃r−1,k→ ·), and xr,k = (x̃r−1,k, xr,k)
compute

wr,k = w(x̃r−1,k, xr,k) =
γr(xr,k)

γr−1(x̃r−1,k)qr(x̃r−1,k→ xr,k)

normalize weights Wr,k = wr,k/
∑K

k=1 wr,k

resample {xr,k,Wr,k} to obtain new particles denoted {x̃r,k}

k-th particle and Wr,k represents its normalized weight correspondingly, i.e.

Wr,k =
wr,k∑K

k=1 wr,k
.

We have the following approximation of πr(xr),

πr,K(dxr) =

K∑
k=1

Wr,kδxr,k (dxr).

A byproduct of the SMC algorithm is an estimate of the normalizing constant

Z. We can rewrite the first constant normalizing constant as

Z1 =

∫
γ1(x1)
q1(x1)

q1(x1)dx1 =

∫
w1(x1)q1(x1)dx1.

Correspondingly, an estimate of Z1 is

Z1,K =
1
K

K∑
k=1

w1,k.
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Similarly, we can rewrite the ratio of the normalizing constants as

Zr

Zr−1
=

∫
γr(xr)dxr

Zr−1
=

∫
γr(xr)dxr

γr−1(xr−1)/πr−1(xr−1)

=

∫
γr(xr)

γr−1(xr−1)
πr−1(xr−1)dxr

=

∫
γr(xr)

γr−1(xr−1)qr(xr−1→ xr)
πr−1(xr−1)qr(xr−1→ xr)dxr

=

∫
wr(xr)πr−1(xr−1)qr(xr−1→ xr)dxr.

Straightforwardly, an estimate of Zr/Zr−1 is provided by

Ẑr

Zr−1
=

1
K

K∑
k=1

wr,k.

Since the estimate of the normalizing constant can be rewritten as

Z ≡ ZR = Z1

R∏
r=2

Zr

Zr−1
,

an estimate of the normalizing constant Z is

ZR,K =

R∏
r=1

 1
K

K∑
k=1

wr,k

 , (2.3)

which can be obtained from an SMC algorithm readily. Moreover, Equation (2.3)

is a consistent estimate of Z [21, 26].

The performance of SMC algorithms can be improved by using sophisticated

resampling methods, strategically designing the sequence of target distributions,

and carefully choosing the proposal distributions. In the next section, we will only

briefly review some resampling methods.

2.2.2 Resampling Methods

As the iteration index increases, the variance of the unnormalized weights {wr,k}

tend to increase and all the mass is concentrated on a few number of particles. A
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resampling step is used to reset the approximation by pruning the particles with

low weights and multiply the particles with high weights. The rationale is that if

a particle at iteration r has a low weight then often it will still have a low weight

at iteration r + 1. We want to focus our computational efforts on the promising

particles.

Resampling at every iteration is neither necessary nor efficient. We need a

resampling schedule to determine when we implement the resampling step. A

resampling schedule can be either deterministic or dynamic. In a deterministic

schedule one conducts resampling at iteration r0,2r0, · · · , where r0 depends on a

particular problem. In a dynamic schedule, we resample only when the variation

of the weights is higher than some prefixed threshold.

We can use two criteria, the effective sample size (ESS) or the coefficient of

variation (CV), to measure the variation of the weights. ESS can be computed

using

ES S =

 K∑
k=1

W2
r,k


−1

.

If Wr,k = 1/K for any k, we have ES S = K; if Wr,i = 1 and Wr, j = 0 for j , i, we

have ES S = 0. CV can be computed using

CV =

 1
K

K∑
k=1

(KWr,k −1)2


1/2

If Wr,k = 1/K for any k, we have CV = 0; if Wr,i = 1 and Wr, j = 0 for j , i, we have

CV =
√

K −1.

In the following, we will summarize two commonly-used resampling methods,

multinomial resampling and stratified resampling.
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Multinomial Resampling

The simplest resampling scheme is multinomial resampling which samples K times

x̃r,k ∼ πr,K(dxr) to build the new approximation

π̃r,K(dxr) =
1
K

K∑
k=1

δx̃r,k (dxr).

We can rewrite the above by

π̃r,K(dxr) =

K∑
k=1

Nr,k

K
δx̃r,k (dxr),

where (Nr,1, · · · ,Nr,K) ∼Multinomial(K;Wr,1, · · · ,Wr,K) thus

E[Nr,k] = KWr,k,Var[Nr,k] = KWr,k(1−Wr,k).

Stratified Resampling

A better resampling method can be designed such that

E[Nr,k] = KWr,k,Var[Nr,k] < KWr,k(1−Wr,k).

Stratified resampling, described in Algorithm 2.4, is a popular alternative to multi-

nomial resampling.

Algorithm 2.4 Stratified Resampling
Normalise the weights {wr,k} of the K particles and label them according to the
order of the corresponding xr,k to obtain Wr,(k),k = 1, · · · ,K.
Construct the corresponding cumulative distribution function: for k = 1, · · · ,K,

Qr(0) ≡ 0, Qr(k) ≡
∑
j≤k

Wr,( j),

Sample U1 uniformly on [0,1/K] and set U j = U1 + ( j−1)/K for j = 2, · · · ,K.
For k = 1, · · · ,K, if there exists j ∈ {1, · · · ,K} such that Qr(k− 1) ≤ U j < Qr(k),
then xr,k survives. Update Nr,k = #{U j : Qr(k−1) ≤ U j < Qr(k)}.
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2.2.3 Sequential Monte Carlo Samplers

Recent work on SMC has focused on the problem of sampling from arbitrary se-

quences of distributions. The SMC sampler framework proposed by [22, 23] is a

very general method for obtaining a set of samples from a sequence of distribu-

tions which can exist on the same or different spaces. This is a generalization of

the standard SMC method [27] in which the target distribution exists on a space of

strictly increasing dimension.

[22, 23] mainly addressed the case of the sequence of target distributions {πr}

that are defined on a common continuous space X, e.g. πr is the posterior distribu-

tion of a parameter given the data collected until time r, i.e. πr(x) = p(x|y1:r). This

SMC sampler can be obtained by defining a sequence of distributions that admit

the distribution of interest, πr(xr), as the recent iteration marginal

π̃r(xr) = πr(xr)
r−1∏
j=1

L j(x j+1, x j),

where L j(x j+1, x j) is the artificial backward Markov kernels from iteration j + 1 to

j. Then we apply the standard SMC on this sequence of distributions. Sample at

iteration r,

xr,k ∼ Kr(xr−1,k, ·),

where Kr is a Markov kernel defined on Er−1 ×Er. The resulting sampler has a

weight update

Wr,k ∝
πr(xr,k)Lr−1(xr,k, xr−1,k)
πr−1(xr,k)Kr(xr−1,k, xr,k)

,

which is different from the one in a standard SMC.

Algorithm 2.5 summarizes the SMC sampler. A common approach in SMC

samplers is to choose Kr(xr−1, xr) to be πr-invariant, typically MCMC kernels. A

convenient backward Markov kernel that allows an easy evaluation of the impor-

tance weight is

Lr−1(xr, xr−1) =
πr(xr−1)Kr(xr−1, xr)

πr(xr)
.
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Algorithm 2.5 An SMC Sampler
sample x1,k ∼ q1(·)
set its unnormalized weight w1,k = γ1(x1,k)/q1(x1,k).
normalize weights W1,k = w1,k/

∑K
k=1 w1,k

resample {x1,k,W1,k} to obtain new particles denoted {x̃1,k}

for r ∈ 2, . . . ,R do
sample xr,k ∼ Kr(x̃r−1,k, ·)
compute

wr,k = w(x̃r−1,k, xr,k) =
γn(xr,k)

γr−1(x̃r−1,k)
·

Lr−1(xr,k, x̃r−1,k)
Kr(x̃r−1,k, xr,k)

normalize weights Wr,k = wr,k/
∑K

k=1 wr,k

resample {xr,k,Wr,k} to obtain new particles denoted {x̃r,k}

end for

With this backward kernel, the incremental importance weight becomes

wr = w(xr−1, xr) =
γr(xr)

γr−1(xr−1)
·

Lr−1(xr, xr−1)
Kr(xr−1, xr)

=
γr(xr)

γr−1(xr−1)
·
πr(xr−1)Kr(xr−1, xr)

πr(xr)
·

1
Kr(xr−1, xr)

=
Zrπr(xr−1)
γr−1(xr−1)

=
γr(xr−1)
γr−1(xr−1)

.

2.3 Particle MCMC
[3] proposed a whole class of efficient and flexible MCMC algorithms, named

particle Markov chain Monte Carlo methods (PMCMC), to approximate a target

distribution, π. Typically, the target distribution is a posterior distribution; i.e.

π(x) ≡ p(x|Y). The PMCMC algorithms combine respective strengths of MCMC

and SMC algorithms by using SMC methods to build efficient high dimensional

proposal distributions at each of the MCMC steps. Particle MCMC can make bold

moves in exploring the parameter space. The PMCMC algorithms include the

particle independent Metropolis-Hastings (PIMH), particle marginal Metropolis-

Hastings sampler (PMMH), and particle Gibbs sampler (PGS).
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2.3.1 Particle Independent Metropolis-Hastings (PIMH)

A standard independent Metropolis-Hastings (IMH) sampler targeting π(x)≡ p(x|Y)

uses a proposal distribution q(·) to propose candidates x∗ independent of the current

state x, and accepts x∗ with probability

min
{

1,
π(x∗)
π(x)

·
q(x)
q(x∗)

}
.

The particle independent Metropolis-Hastings (PIMH) algorithm uses SMC

approximations of π(x) as a proposal [3], i.e. using q(x) = πR,K(x). After we obtain

a set of weighted samples {(WR,k, xR,k)}k=1,··· ,K using SMC, we draw the proposed

sample using a resampling method (see Section 2.2.2) from

πR,K(dxr) =

K∑
k=1

Wr,kδxr,k (dxr).

The resulting PIMH sampler has a simple form as described in Algorithm 2.6.

Generally, PIMH and SMC perform similarly with respect to estimate accuracy

given the same running time. Actually, for many cases, it is preferable to use

SMC [3, 53]. However, the memory limit of our computers might prevent us from

running a large number of particles which is required for a complicated model,

and consequently the estimate may not be accurate. In contrast, the benefit of

using PIMH is its nature of iteration, which allows us to run it for any specified

amount of time. We could run PIMH until a sufficient number of particles have

been generated.

2.3.2 Particle Marginal Metropolis-Hastings Sampler (PMMH)

We are interested in sampling from a joint distribution of static parameters θ ∈ Θ

and a high dimensional variable of interest x ∈ E

π(θ, x) =
γ(θ, x)

Z
,
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Algorithm 2.6 The Particle Independent Metropolis-Hastings Algorithm

1. Initialization, i = 0,

(a) run an SMC algorithm targeting π(x),

(b) sample x(0) ∼ πR,K(·) and compute ZR,K(0)

2. For iteration i ≥ 1,

(a) run an SMC algorithm targeting π(x),

(b) sample x∗ ∼ πR,K(·) and calculate Z∗R,K using (2.3),

(c) with probability

min
{

1,
Z∗R,K

ZR,K(i−1)

}
,

set x(i) = x∗ and ZR,K(i) = Z∗R,K ; otherwise set x(i) = x(i − 1) and
ZR,K(i) = ZR,K(i−1).

where γ : Θ× E → R+ is known pointwise. As an example, there is often some

static parameter θ ∈ Θ in the state space models mentioned in Section 2.2.1. More

precisely, the unnormalized target distribution is

γ(θ, x) = p(θ, x1:R,y1:R) = µθ(x1)
R∏

n=2

fθ(xn|xn−1)
R∏

n=1

gθ(yn|xn).

Consider an MH algorithm of target density π(θ, x) and proposal density

q((θ, x)→ (θ∗, x∗)) = q(θ→ θ∗)π(x∗|θ∗),
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Then the resulting MH acceptance ratio is given by

min
(
1,
π(θ∗, x∗)
π(θ, x)

q((θ∗, x∗)→ (θ, x))
q((θ, x)→ (θ∗, x∗))

)
= min

(
1,
π(θ∗, x∗)
π(θ, x)

q(θ∗→ θ)π(x|θ)
q(θ→ θ∗)π(x∗|θ∗)

)
= min

(
1,
π(θ∗)
π(θ)

q(θ∗→ θ)
q(θ→ θ∗)

)
where π(θ) is the marginal distribution.

To build a proposal approximating π(x∗|θ∗), we use an SMC algorithm using a

sequence of distributions πr. PMMH utilizes the fact that the normalizing constant

estimate obtained at iteration R of SMC is an estimate of the unnormalized π(θ),

denoted γ(θ). Algorithm 2.7 shows the PMCMC algorithm for sampling from

π(θ, x).

Algorithm 2.7 The Particle Marginal Metropolis-Hastings Sampler
Step 1: initialization, i = 0,

set θ(0) arbitrarily and
run an SMC algorithm targeting π(x|θ(0)),
sample x(0) ∼ πR,K(·|θ(0)) and let γR,K(θ(0)) = ZR,K

Step 2: for iteration i ≥ 1,
sample θ∗ ∼ q(θ(i−1)→ ·),
run an SMC algorithm targeting π(x|θ∗),
sample x∗ ∼ πR,K(·|θ∗) and γR,K(θ∗) = ZR,K

with probability

min
(
1,

γR,K(θ∗)
γR,K(θ(i−1))

q{θ∗→ θ(i−1)}
q{θ(i−1)→ θ∗}

)
(2.4)

set θ(i) = θ∗, x(i) = x∗, and γR,K(θ(i)) = γR,K(θ∗); otherwise set θ(i) = θ(i− 1),
x(i) = x(i−1), and γR,K(θ(i)) = γR,K(θ(i−1)).

2.3.3 Particle Gibbs Sampler (PGS)

A standard Gibbs sampler for sampling from π(θ, x) iteratively samples from the

full conditionals π(θ|x) and π(x|θ). Sampling from π(θ|x) is relatively easy. In
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many cases it is possible to sample exactly from π(θ|x). Otherwise an MH step

of invariant density π(θ|x) can be used. In contrast, since x of interest is typically

high dimensional, e.g. a large phylogenetic tree, sampling from π(x|θ) might be

very challenging.

The particle Gibbs sampler (PGS) approximates the standard Gibbs sampler

using a special type of PMCMC update called the conditional SMC update to sam-

ple from π(x|θ). The conditional SMC, described in Algorithm 2.8, is similar to a

standard SMC algorithm but it ensures that a prespecified particle and its ancestral

lineage survive and samples the remaining K − 1 particles as usual. Suppose the

j-th particle is the “frozen” one and its ancestral lineage is denoted (A j
1,A

j
2, · · · ,A

j
R),

where A j
r represents the index of the “parent” at iteration r− 1 of particle xr, j for

r = 2, · · · ,R. The PGS is described in Algorithm 2.9.

Algorithm 2.8 Conditional SMC
At iteration 1

For k , A j
1, sample x1,k ∼ q1(·), and set its unnormalized weight

w1,k =
γθ(x1,k)
q1(x1,k)

,

Resample K − 1 times from {x1,k,w1,k} to obtain {x̃1,k : k , A j
1} and set

x̃1,A j
1

= x1,A j
1
.

At iteration r ≥ 2,
For k , A j

r,
Sample xr,k ∼ qr(x̃r−1,k→ ·), set xr,k = (x̃r−1,k, xr,k),
Compute

wr,k =
γθ(xr,k)

γθ(x̃r−1,k)qr(x̃r−1,k→ xr,k)
,

Resample {xr,k,wr,k} to obtain new particles denoted {x̃r,k : k , A j
r} and set

x̃r,A j
r
= xr,A j

r
.
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Algorithm 2.9 The Particle Gibbs Sampler
Initialization: i = 0

Sample θ(0) arbitrarily
Run an SMC algorithm targeting π(x|θ(0))
Sample x(0) ∼ πR,K(·|θ(0)) and record its ancestral lineage.

for i ≥ 1 do
Sample θ(i) ∼ π(·|x(i−1))
Run a conditional SMC algorithm targeting π(x|θ(i−1)) conditional on x(i−1)
and its ancestral lineage.
Sample x(i) ∼ πR,K(·|θ(i−1)).

end for
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Chapter 3

Background on Phylogenetics

3.1 Phylogenetic Tree
Let X be a set of observed taxa, typically modern species, each of which is rep-

resented by a biological sequence, a string of symbols or characters from a finite

alphabet Σ. For example, the alphabet for DNA sequences is the set of four nu-

cleotides {A,C,G,T }. A phylogenetic X-tree represents the relationship among

taxa via a tree topology, which is represented by a connected acyclic graph, (V,E),

where V is the set of vertices for the observed and unobserved taxa and E is the

set of edges between taxa. The vertices in X are called external nodes or leaves,

which are nodes with only one neighbour. Note that in a tree any two vertices are

connected by exactly one simple path. In other words, a tree is a connected graph

without cycles. Further, a forest is a disjoint union of trees.

In this dissertation, we only consider binary phylogenetic X-trees, which is also

the main type of trees studied in the phylogenetics literature. Each vertex of a bi-

nary phylogenetic tree has a maximum of three neighbors. A binary phylogenetic

tree can be rooted or unrooted. Figure 3.1 shows an example of a rooted tree and an

unrooted tree of 5 taxa. A rooted phylogenetic tree is a directed tree with a unique

node corresponding to the most recent common ancestor of all the leaf taxa of the

tree. In a rooted binary tree, vertices with one, two, and three neighbors correspond

to leaves, root, and internal nodes, respectively. In contrast, an unrooted phyloge-

netic tree represents the relatedness of leaf taxa without making assumptions about
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their common ancestor. In an unrooted binary tree, each vertex has either one or

three neighbors.

A B E DC

E
DA

B
C

Rooted tree Unrooted tree

Figure 3.1: Examples of a rooted tree and an unrooted tree.

A rooted phylogenetic X-tree describes the evolution of a set of species in the

tree from a common ancestor at the root. We regard the edges as being directed

away from the root. Branch lengths are positive real numbers associated with each

edge, specifying the amount of evolution between nodes.

We consider the ultrametric (or clock ) trees where the leaf nodes are all equally

distant from the root. If a tree is a molecular clock, its edge lengths can be speci-

fied corresponding to distances among the taxa. Since a binary tree with n leaves

has n− 1 internal nodes including the root, the branch lengths of a clock tree are

determined by the n− 1 distances among the taxa. Typically, the branch lengths

of a clock tree are reparameterized as distances between heights from the leaves,

shown in Figure 3.2.

Although a clock tree is a convenient representation of the evolutionary rela-

tionship among taxa, it is too restricted and unrealistic because it implies a constant

evolutionary rate. In contrast, a non-clock tree refers to a more general tree with-

out these constraints. A non-clock tree is typically represented by an unrooted tree.

However, most evolutionary models are reversible models in which the likelihood

for an unrooted tree is equal to the likelihood of a rooted tree by rooting at an arbi-
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Figure 3.2: Heights of subtrees on a clock tree. Height 4 is the height of this
clock tree.

trary point in the tree. For a non-clock tree, the branch lengths are determined by

2(n−1) values.

3.2 Data for Phylogenetics

3.2.1 Data Types

Although all kinds of characteristics of species can be used for phylogenetic re-

construction, modern technologies have allowed us to study the evolutionary rela-

tionship among species at a molecular level. Deoxyribonucleic acid (DNA), Ri-

bonucleic acid (RNA), and proteins are the three major macromolecules that are

essential for all known forms of life. Therefore, the commonly-used types of data

for phylogeny analysis include DNA, RNA, and amino acid data. In this disserta-

tion, we reconstruct the phylogenetic relationship among the taxa using the DNA

sequences or RNA sequences to illustrate the performance of our methods. But the

methodologies can be easily adapted to any types of biological sequence data.

Usually DNA is a right-handed helix composed of two complementary chains

twisted around each other. Each chain is a linear polynucleotide consisting of

four nucleotides, two purines: adenine (A) and guanine (G), and two pyrimidines:

cytosine (C) and thymine (T).
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The chemical structure of RNA is very similar to that of DNA, but RNA con-

tains uracil (U) instead of thymine (T); i.e. RNA is made up of a long chain of

nucleotides from the set {A,U,G,C}. In addition, most RNA molecules are single-

stranded and can adopt very complex three-dimensional structures.

3.2.2 Aligned Data via Multiple Sequence Alignments

The common methods of reconstructing phylogenetic trees are based on a fixed sin-

gle multiple alignment, in which the homologous nucleotides aligned in columns

using multiple sequence alignment (MSA) algorithms, e.g. ClustalW [44, 68] and

T-coffee [12].

We useY to denote the set of observed molecular sequences for an X-tree. For

simplicity, we will assume that the observation, Y , takes the form of a matrix yx,s,

where x ∈ X and s denotes an aligned position on the genomes, called a site. In this

dissertation, we assume the sites are independent.

3.2.3 Datasets

The DNA sequences we will analyze are aligned protein coding mitochondrial

DNA sequences obtained from 32 species of cichlid fishes [17, 64]. Each DNA

sequence consists of 1047 sites. Identical nucleotides are observed on 569 sites,

and we use the nucleotides on the remaining 478 sites for phylogenetic tree con-

struction.

In this dissertation, we will use ribosomal RNA (rRNA) sequence data arbi-

trarily chosen from the Comparative RNA Web (CRW) Site (http://www.rna.ccbb.

utexas.edu) which contains RNA sequences and structure information, results of

data analysis, interpretation, etc [13].

3.3 Score-based Methods for Phylogeny Reconstruction
During the past several decades, researchers have proposed many methodologies to

reconstruct evolutionary histories using molecular sequence data. [52] provided a

good review of these methods. In this section, we will briefly introduce two score-

based methods, neighbor joining (NJ) [37, 92, 98] and maximum parsimony [36,

75, 93]. We will introduce the model-based methods for phylogeny reconstruction
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in Section 3.4.

3.3.1 Neighbour-joining Method

The neighbor joining (NJ) method is a bottom-up clustering method used for re-

constructing phylogenetic trees using the distance between each pair of taxa in the

tree [52, 92]. The evolutionary distance represents the number of changes, e.g.

A→G, that have occurred along the branches between two sequences.

The main advantage of NJ is that it can be implemented in a polynomial time,

making it capable of handling massive datasets. The main drawbacks of NJ are

rooted in the inaccuracy of approximating evolutionary distances by observed dif-

ferences between sequences. Please refer to [52] for details.

3.3.2 Maximum Parsimony

The maximum parsimony method searches all possible tree topologies to choose

the tree that requires the fewest possible mutations to explain the data. The classi-

cal parsimony problem has direct connections with graph theory and enumerative

combinatorics. To find the most parsimonious tree, we must have a way of calcu-

lating how many changes of state are needed on a given tree. The most famous

algorithms for Maximum Parsimony are Fitch’s algorithm [36] and Sankoff’s al-

gorithm [93].

The advantages of the maximum parsimony method include that it is fast enough

for the analysis of hundreds of sequences and it is robust if branches are short [52].

The main disadvantage is that maximum parsimony can be inconsistent in the case

of ‘long-branch attraction’ [8, 32]. In other words, two long branches that are not

adjacent on the true tree are inferred to be the closest relatives of each other by par-

simony. Another drawback is that it makes unrealistic assumption that the number

of mutations is to be equal on all branches of a tree.

3.4 Model-based Methods for Phylogeny Reconstruction
Because the weight or cost parameters in score-based methods cannot be easily

estimated and interpreted, they are replaced by stochastic modelling of nucleotide,

codon, or amino acid evolution. The advantages of stochastic modelling include
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explicit models of evolution, meaningful parameters, and allowance for hypothesis

testing and model comparison. The parameters can be estimated by maximum

likelihood [33, 46, 62] or Bayesian techniques [67, 70, 77, 82, 113]. Both the

maximum likelihood method and Bayesian phylogenetics are heavily dependent on

the probabilistic model of evolution. We will first introduce stochastic evolutionary

models and then provide more details on Bayesian phylogenetics.

3.4.1 Stochastic Evolutionary Model

continuous time Markov chain (CTMC) over characters

The standard technique to specify the transition probability of a node v in a graph-

ical model given its parent %(v) is to use a stochastic process. A stochastic process

is a collection of random variables indexed by a set S , {Ys, s ∈ S }. In phylogenetics,

we use a stochastic process called a CTMC, where S = [0,T ] represents the time

interval for a large number of successive generations and the individual variables

Ys are assumed to have a countable domain Σ, e.g. Σ = {A,C,G,T } for DNA data.

The probability of transitioning from Y0 = i to YT = j along a branch of length

T is denoted by the (i, j)-th element, Pi, j(T ), of a matrix P(T ). The matrix of

transition probabilities P satisfies the matrix differential equation P
′

= PQ with

initial condition P(0) = I, where I is the identity matrix, and Q is called the rate

matrix.

Under the Markov assumption, P(T ) must satisfy P(T +T ∗) = P(T )P(T ∗). This

implies the solution of P
′

= PQ is

P(T ) = exp(QT ) = I +

∞∑
i=1

QiT i/i!, (3.1)

where exp is the matrix exponential, and I denotes the |Σ| × |Σ| identity matrix.

In practice, the matrix exponential is computed by diagonalization. Denote

λ1, · · · ,λ|Σ| as the eigenvalues of Q, and denote U as the orthogonal matrix in which

the columns are composed of the corresponding eigenvectors. Using the diagonal-
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ization Q = UΛU−1, Equation (3.1) becomes

P(T ) = exp(QT ) = Udiag(exp(λ1T,λ2T, · · · ,λ|Σ|T ))U−1.

There are many evolutionary models for the rate matrix of DNA or RNA se-

quences. The HKY85 model introduced by [47] is one of the popular ones. In

HKY85, the rate matrix is modelled by

Q =


- πCrtv πGrti πT rtv

πArtv - πGrtv πT rti

πArti πCrtv - πT rtv

πArtv πCrti πGrtv -

 ,

where rtv is the transversion1 rate, rti is the transition2 rate, and (πA,πC ,πG,πT )′ is

the stationary distribution of CTMC. The notation − is short for minus the sum of

all the other entries in the same row. For example, in the first row of Q, it represents

−(πCrtv +πGπti +πT rtv). The transition probabilities, P(T ), of the HKY85 model is

calculated using Equation (3.1); The explicit expression can be found in [70].

The HKY85 model is often reparameterized by the transition to transversion ra-

tio, i.e. κ = rti/rtv, representing a relative bias toward the occurrence of transitional

events over transversional events. More precisely,

Q = α


- πC κπG πT

πA - πG κπT

κπA πC - πT

πA κπC πG -

 ,

where the parameter α represents an overall transversion rate.

A special case of the HKY85 model is the Kimura two-parameter model (K2P)

model [60], in which the stationary state frequencies are fixed to be equal, i.e.

πA = πC = πG = πT = 0.25. Using the K2P model for phylogenetic reconstruction,

the parameter α and branch lengths are unidentifiable. Without loss of generality,

1Transition refers to a mutation between two pyrimidines (T↔C) or two purines (A↔G).
2Transversion refers to a mutation between a pyrimidine and a purine (A↔C, A↔T, G↔C, or

G↔T).
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we assume α = 1. In this dissertation, we use the K2P model with parameter κ = 2

as the default model.

Let θ denote the vector of parameters of the evolutionary model; θ ∈Θ. We call

θ evolutionary parameters. In the case of the K2P model, θ ≡ κ. Recall that we use

Y to denote the observed biological sequences. From now on, we use t to denote a

phylogenetic tree in a tree space X.

The likelihood, L(θ, t|Y), of the evolutionary parameter θ and the phylogenetic

tree t is calculated by the sum-product algorithm, which can be easily expressed as

a recursion. Let Lv( j) denote the probability of everything that is observed below

the internal node v conditional on v having character j. We start the recursion from

calculating the likelihoods of leaves. If the leaf v has an observation i, let Lv(i) =

1, and Lv( j) = 0 for all j ∈ Σ, j , i. Then the sum-product algorithm computes

Lv(i) for each internal node v on the tree from the conditional likelihood function

of its immediate descendant nodes, C(v). Mathematically, this recursion can be

expressed as follows:

Lv(i) =


1, if v ∈ X and Y(v) = i

0, if v ∈ X and Y(v) , i∏
v∈C(v)

{∑
j Pi j(bv)Lv( j)

}
, if v is an internal node

(3.2)

where Pi j(bv) is the transition probability of changing from i to j along the branch

of length bv, calculated by Equation (3.1). The sum-product algorithm continues

the recursion until it computes L0(i), the probability of the tree with the root having

character i. Finally, the likelihood is computed by

L(θ, t|Y) =
∑
i∈Σ

πiL0(i). (3.3)

String-valued Continuous Time Markov Chain (SCTMC)

The most popular SCTMC is the TKF91 model proposed in the pioneering paper of

[106]. TKF91 is a time-reversible Markov model for single nucleotide insertions

or deletions (indels). TKF91 does proper statistical analysis for two sequences

by obtaining pairwise maximum likelihood of sequence alignments and estimating
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the evolutionary distance between two sequences. Its main advantage is that its

marginals P(YT = s|Y0) can be expressed as a string transducer with a set of weights

obtained from closed-form functions of T such that it is as fast as score-based

approaches. TKF92 [107] was developed based on TKF91 to deal with arbitrary-

length non-overlapping indels by breaking one biological sequence into indivisible

fragments. The math for TKF92 is similar to the TKF91 model, but with “residues”

replaced by “fragments”. Furthermore, [79] presented a probabilistic “long indel”

model of sequence evolution, allowing for overlapping indels of arbitrary length.

For more backgrounds and references, see http://biowiki.org/.

Researchers have used SCTMCs to compute the marginals of the process in

order to obtain the probability of trees (and alignments) [54, 73, 106]. However, the

computational bottleneck has prevented a broader applications based on SCTMCs.

We will mainly focus on the CTMC over characters in this dissertation, and explore

a computational method for a general SCTMC in Section 6.

3.4.2 Maximum Likelihood

In maximum likelihood inference, trees and evolutionary parameters are estimated

by maximizing the likelihood function in Equation (3.3) that fully captures what the

data tell us about the phylogeny under a given model [46]. Finding the maximum of

the likelihood function involves searching through a multidimensional parameter

space. Whether maximum likelihood is computationally expensive depends on the

thoroughness of the search.

Although maximum likelihood [33] can be efficient for obtaining point esti-

mates of phylogenies, it is difficult to determine statistical confidence [40]. The

most commonly used procedure for assessing phylogenetic uncertainty is using

nonparametric bootstrap [34]. Many studies have focused on comparing nonpara-

metric bootstrap and posterior probabilities with regard to estimating the tree un-

certainty [1, 20, 29, 96, 102]. These studies show that bootstrap tends to be too

conservative.
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3.4.3 Framework of Bayesian Phylogenetics

Bayesian phylogenetics has a strong connection to the maximum likelihood method.

The same evolutionary models used in maximum likelihood can be used in Bayesian

methods simply by specifying the prior distributions for the tree and evolutionary

parameters. Priors incorporate previous knowledge from sources other than the

data at hand. Bayesian methods estimate the posterior distribution which is a func-

tion of both the likelihood and the prior.

In this dissertation, we will focus on Bayesian phylogenetics methods because

of several advantages. First, Bayesian methods allow complex models of sequence

evolution to be implemented. Second, Bayesian phylogenetics produces both a tree

estimate and measures of uncertainty for the groups on the tree. Third, Bayesian

methods might be a faster way to assess support for trees than maximum likelihood

bootstrapping [25].

Recall that Y is a set of observations on the leaves of a phylogenetic X-tree.

For X′ ⊂ X, we use the notationY(X′) for the subset of observations corresponding

to a subset X′ of the leaves.

Our objective is to use n observed biological sequences,Y, to estimate a phylo-

genetic tree using Bayesian approaches. Let θ ∈ Θ denote the vector of parameters

of the evolutionary model. Let p(θ) denote the prior for θ. For a tree t ∈ X, the

density of the prior distribution given θ is denoted by p(t|θ). The probability model

for observed data Y conditioning on a specific choice of parameters θ and tree t is

P(Y|θ, t). Bayesian inference is based on the posterior density

p(θ, t|Y) =
P(Y|θ, t)p(t|θ)p(θ)∫

θ

∫
t P(Y|θ, t)p(t|θ)p(θ)dtdθ

(3.4)

where P(Y|θ, t) is the likelihood function L(θ, t|Y) in Equation (3.3). All statistical

inferences are based on the sample trees and model parameter values form their

joint posterior distribution.

The total number of distinct labelled topologies of a rooted tree of n leaves is

(2n− 3)!! [95], which increases at a super-exponential rate as the number of taxa

increases. For example, when n = 10, the possible tree topologies are greater than

34 millions. Therefore, the denominator of the posterior density in Equation (3.4)
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involves high-dimensional summations and integrals for which there is no closed-

form solution except for very small trees.

Since typically the likelihood function for phylogenetic models are too com-

plex to integrate analytically, we use Monte Carlo methods to approximate the

posterior distribution of phylogenetic trees and evolutionary parameters. Conven-

tional Bayesian phylogenetic inference uses MCMC to approximate the posterior

probabilities of trees, which will be the focus of next subsection.

3.4.4 Bayesian Phylogenetics via MCMC

MCMC is conventionally used for approximating posterior distribution of phyloge-

netic trees [50–52, 66, 67, 70, 77, 82, 113]. Many user-friendly software packages

have been developed for implementing MCMC for phylogenetics. The most popu-

lar packages include BAMBE [97], MrBayes [55, 90, 91], and BEAST [28].

The space under consideration is a joint space of all the possible trees and all

the evolutionary parameters, denoted Ω = Θ×X. An MCMC algorithm samples a

dependent sequence of points from the space Ω such that after some point in the

sequence, all subsequent sampled points are distributed approximately according

to the posterior distribution. Each iteration of the MH algorithm, described in

Algorithm 2.1, proposes a new point of specifications of a phylogenetic tree and

evolutionary parameters, usually similar to the present one, and we use the MH

ratio to accept or reject it.

The main difficulty in Bayesian phylogenetic inference with MCMC lies in

the efficiency with which topology proposals sample tree space. Ideally, a well

functioned proposal distribution can lead to a well-mixing Markov chain that can

rapidly traverse the posterior distribution such that inferences will be sufficiently

accurate based on a computationally feasible sample. However, MCMC imposes

relatively strict constraints on the types of proposals that can be used, making it

is challenging to design fast mixing proposal distributions. Due to combinatorial

constraints, the distribution on tree space is often a complex multimodal distribu-

tion, pronounced moves are likely to result in sample points with low posterior

probabilities because the phylogenetic tree space is so huge that the posterior den-

sity is usually low for most places in the tree space. Design of the currently used
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proposal distributions leads to a low acceptance rate of transitions unless a small

neighborhood is used [51, 66]. Therefore, the proposed point is usually close to

the present point of the chain, requiring the MCMC chain to run for a long time to

explore the full possibilities of ‘tree space’.

With a few exceptions [50, 51, 66], the proposals used by current phylogenetic

MCMC sampler [67] have remained unchanged in the past decade. [67] discussed

two types of MCMC algorithms, the GLOBAL algorithm and LOCAL algorithm,

programmed in their software package BAMBE. The version of the GLOBAL al-

gorithm modifies all branch lengths and potentially changes the tree topology si-

multaneously. In contrast, the LOCAL algorithm proposes changes to only small

portions of the tree. Each algorithm has two versions, one assumes a molecular

clock and one assumes a non-clock tree. A composition of two different basic

update mechanisms are used to traverse the space of phylogenetic trees and evo-

lutionary parameters. One cycle of MCMC iteration consists of two stages: in the

first stage, keep the current tree fixed, propose the new evolutionary parameters,

and either accepted it or rejected it according to the MH ratio; the second stage is

to modifies the current tree while holding the evolutionary parameters fixed.

[66] evaluated two classes of proposal distributions to change topology and

branch lengths simultaneously in phylogenetic inference for unrooted trees. More

precisely, branch-change proposals modify branch lengths or branch attachment

points continuously in a way that produces topology changes in some cases; branch-

rearrangement proposals use the pruning-regrafting moves to prune a subtree from

the rest of the tree and regraft it somewhere else or use swapping moves to sim-

ply trade places of two subtrees. [51] studied different proposal distributions for

constrained rooted clock trees. [50] explored new MCMC proposal distributions to

find more efficient MCMC algorithms.

In this dissertation, we will use the nearest neighbor interchange (NNI) [58] to

propose a new tree topology, illustrated in Figure 3.3. The edge e has four nearest

neighbors, A, B, C, and D, each of which can be a subtree. By interchanging the

four nearest neighbors, the NNI proposal changes the first topology to one of the

second and third topologies randomly.

One proposal for branch lengths, multiplicative branch proposal, picks one

edge at random and multiply its current value by a random number distributed
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uniformly in [1/a,a] for some fixed parameter a > 1 (controlling how bold the

move is) [66].

Figure 3.3: The Nearest Neighbor Interchange (NNI) Proposal [58].

In addition to the difficulty in designing proposal distributions, assessing whether

the chain has converged is a crucial issue for using MCMC. Moreover, existing

MCMC proposals are computationally expensive because they require recalculat-

ing the likelihood of the full tree from scratch, even when only a small perturbation

is made on the current tree. In order to speed up computation, next chapter of this

dissertation is focused on our work of exploring SMC algorithms for reconstructing

general phylogenetic trees.

3.5 Consensus Tree and Tree Distances
In this section, we address the problem of summarizing a sample of phylogenetic

trees, e.g. from MCMC algorithms. Moreover, we introduce the tree distance

between two trees for the purpose of evaluating the estimated tree.

Contrary to summarizing a sample of real numbers, it is not a trivial problem

for trees that are composed of tree topology and branch lengths. The summary

tree usually refers to the maximum a posteriori (MAP) tree or the consensus tree

[67]. Consensus trees are trees that summarize the information contained in a set
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of trees having the same species on their leaves. In this dissertation, we use the

majority-rule consensus tree which consists of those groups that are present in no

less than a half of the trees [33].

We measure the distance between a reference tree t and an estimated consensus

tree t′ using three types of tree distance metrics: Robinson-Foulds (RF) [89], the

partition metric (PM) [35], and Kuhner Felsenstein (KF) [65]. We first discard

the edge directions from rooted trees to get unrooted trees. Each branch on an

unrooted tree can partition the whole set of leaves into two unordered subsets,

called one bipartition. We use S (t) to denote the set of all the bipartitions of t:

S (t) = {Bi, i = 1, · · · ,ne}, where Bi is the bipartition resulting from the i-th edge.

The set of different bipartitions of t and t′ is denoted by D(t, t′) = S (t)4S (t′), where

A14A2 denotes the symmetric difference of sets A1 and A2. The partition metric

of t and t′ is defined as the number of their different bipartitions, denoted |D(t, t′)|.

The RF metric of t and t′ is defined as
∑

B∈D(t,t′) |b(B; t)− b(B; t′)|, where b(B; t)

denotes the length of the branch corresponding to the bipartition B on tree t. The

KF metric is defined as
∑

B∈D(t,t′)(b(B; t)−b(B; t′))2.

To make these distance metric more comparable for different trees, we normal-

ize the partition metric of t and t′:

Normalized partition =
|D(t, t′)|

(|S (t)|+ |S (t′)|)
, (3.5)

and we normalize the RF metric of t and t′:

Normalized RF =

∑
B∈D(t,t′) |b(B; t)−b(B; t′)|

(
∑ne

i b(Bi; t) +
∑n′e

j b(B j; t′))
. (3.6)
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Chapter 4

Combinatorial SMC

sequential Monte Carlo (SMC) is another approach to approximation of posterior

distributions, which has been very successful in state-space models ([15, 26, 27,

71]), and more recently, to more general settings [22, 23]. However, because of

the intricacies of phylogenetic tree spaces, it is non-trivial to directly apply these

general frameworks to posterior tree inference.

Previous work on applying SMC to phylogenetics has been limited in two im-

portant ways. First, it has relied on more restrictive SMC algorithms [9, 43, 105],

and as a consequence, they are limited in the types of phylogenetic proposals they

can use. Second, no previous results have been published on applying SMC to non-

clock trees. This is an important limitation, as most current work in phylogenetics

depends on non-clock tree models.

Our contribution is to show how both of these limitations can be addressed

using a new framework for building SMC phylogenetic tree inference algorithms.

In our combinatorial sequential Monte Carlo (CSMC) framework, the flexibility

on the proposal distributions generalizes both MCMC methods and previous work

on phylogenetic SMC. In particular, this flexibility makes it possible to construct

non-clock tree proposals that do not require recalculating the likelihood of the full

tree at each proposal step.

The proposed SMC algorithm is motivated by a certain over-counting problem

in sequentially constructing a non-clock phylogenetic tree. A conventional SMC

algorithm will favour the trees which can be constructed in multiple ways, whereas
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in our algorithm, a graded poset on an extended combinatorial space is used to

compute correction terms.

The remainder of this chapter is organized as follows. Section 4.1 introduces

some notations used in this chapter. Section 4.2 describes the CSMC algorithm,

its asymptotic consistency properties and its application to phylogenetics. In Sec-

tion 4.3, we show some results of simulation studies and apply the proposed SMC

methods to real RNA datasets. Section 4.4 concludes this chapter and provides

some discussions.

4.1 Notation
Recall that we use π to denote the normalized measure of interest, which can be ex-

pressed as π = γ/Z using the unnormalized measure γ and the normalizing constant

Z. In this chapter, we introduce another notation, ‖γ‖, to denote the normalizing

constant, i.e. Z ≡ ‖γ‖, for the purpose of describing the SMC algorithm in a com-

pact form.

In Bayesian phylogenetics, π is the normalized posterior over trees, i.e. π =

p(θ, t|Y); the unnormalized posterior γ is a measure over trees t with density

p(θ, t,Y) = P(Y|θ, t)p(t|θ)p(θ);

the normalizing constant is the data likelihood in the denominator of (3.4), i.e.

‖γ‖ = P(Y). In this chapter, we assume that the evolutionary parameters θ is fixed

and we focus on the phylogenetic tree reconstruction. We can omit θ from the

notation for simplicity.

We are interested in approximate expectations of a function φ with respect to

π. Denote πφ as a short-hand for integration of φ with respect to π, i.e. πφ =∫
π(dt)φ(t). As a concrete example of the posterior expectation of a function φ in

phylogenetics, we define φ as an indicator of whether a clade, a group consisting

of a species and all its descendants, is in a phylogenetic tree t or not. Let clades(t)

denote the set of all clades in t. For a clade a, define φ(t) = 1(a ∈ clades(t)), where

1 is an indicator function.
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components decreases by one at every step. More precisely, we will build each

rooted X-tree t by proposing a sequence of X-forests s1, s2, . . . , sR = t, where

an X-forest sr = {(ti, Xi)} is a collection of rooted Xi-trees ti such that the

disjoint union of leaves of the trees in the forest is equal to the original set of

leaves, !iXi = X. Note that with this specific construction, a forest of rank r

has |X| − r trees.

The sets of partial states considered in this Section are assumed to satisfy

the following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss

for all r $= s (in phylogenetics, this holds since a forest with r trees cannot

be a forest with s trees when r $= s).

2. The set of partial state of smallest rank should have a single element

denoted by ⊥, S1 = {⊥} (in phylogenetics, ⊥ is the disconnected graph

on X).

3. The set of partial states of rank R should coincide with the target space,

SR = X (in phylogenetics, at rank R = |X|−1, forests have a single tree

and are members of the target space X ).

These conditions will be subsumed by the more general framework of Sec-

tion 4.5, but the more concrete conditions above help understanding the poset

framework.

In order to grow particles from one rank to the next, the user needs to

specify a proposal probability kernel ν+. Given an initial partial state s and

a set of destination partial states A, we denote the probability of proposing

an element in A from s by ν+
s (A). In the discrete case, we abuse the notation

14

s0= s1 s2 s3 

Figure 4.1: An example of the partial states of a discrete rooted X-tree.

4.2 Method
In this section, we describe CSMC, an algorithm to approximate expectations πφ

and find the normalization of an unnormalized positive measure γ on a target com-

binatorial space X. To simplify the presentation, we first introduce the algorithm

under the assumption that X is a finite but large combinatorial set, e.g. a set of tree

topologies. We will show in Section 4.2.5 that this assumption can be relaxed, e.g.

to accommodate branch lengths in phylogenetics.

4.2.1 Discrete Setup

At a high level, the main assumption on which our algorithm depends is that any

object t in the target sample space X can be constructed incrementally using a

sequence of intermediate states s0, s1, . . . , sR = t. Here sr will be called a partial

state of rank r, the set of all partial states of rank r will be denoted by Sr, and the

set of partial states across all ranks will be denoted by S =
⋃

rSr. Our terminology

(partial states, rank) has an order theoretic motivation that will be described in

more details shortly. Note that we consider phylogenies without branch lengths in

this subsection.

In phylogenetics for example, the partial states we will use are based on forests.

Consider for example a discrete rooted X-tree as in Figure 4.1. In this section,

we use the term tree as a short-hand for tree topology. Such a tree can be con-

structed by starting from the disconnected graph with vertices X, and by adding,

at each step, one internal node v < X, and a pair of edges connected to v such that
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the number of connected components decreases by one at every step. More pre-

cisely, we will build each rooted X-tree t by proposing a sequence of X-forests

s0, s1, . . . , sR = t, where an X-forest sr = {(ti,Xi)} is a collection of rooted Xi-trees ti
such that the disjoint union of leaves of the trees in the forest is equal to the original

set of leaves,
⋃

i Xi = X. Note that with this specific construction, a forest of rank r

has |X| − r trees.

The sets of partial states considered in this section are assumed to satisfy the

following three conditions:

1. The sets of partial states of different ranks should be disjoint, i.e. Sr∩Ss for

all r , s (in phylogenetics, this holds since a forest with r trees cannot be a

forest with s trees when r , s).

2. The set of partial state of smallest rank should have a single element denoted

by ⊥, S0 = {⊥} (in phylogenetics, ⊥ is the disconnected graph on X).

3. The set of partial states of rank R should coincide with the target space, i.e.

SR = X (in phylogenetics, at rank R = |X| − 1, forests have a single tree and

are members of the target space X).

These conditions will be subsumed by the more general framework of Section 4.2.5,

but the more concrete conditions above help understanding the poset framework.

In order to put the CSMC algorithm under service, the user first needs to specify

an extension of the measure γ (the corresponding normalized measure is denoted

by π), defined only on the target space X, into a measure over the larger space

S. The restriction of this extended measure on X should coincide with the target

measure γ. We abuse notation and use γ and π for both the extended and the target

measures.

In phylogenetics for example, a measure over X-trees is usually specified by the

user: in the Bayesian setup of Section 3.4.3 it is given by a prior times a likelihood:1

γ(t) = γY(t) = P(Y|t)p(t),

1Since we assume a discrete space in this section, we write γ(t) = γ({t}) and denote the probability
mass function of the prior by p(t).
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where we are assuming fixed parameters θ, an assumption we will relax in Chap-

ter 5. A natural choice in non-clock models to obtain an extension of γ into forests

is to take a product over the trees in the forest s as follows:

γ(s) =
∏

(ti,Xi)∈s

γY(Xi)(ti).

We call this choice of extension the natural forest extension, and note that a range

of other choices are possible (see Section 4.4 for more examples).

4.2.2 Algorithm

Algorithm 4.1 The Combinatorial Sequential Monte Carlo Algorithm

1. Step 1: initialization

(a) for all k ∈ {1, . . . ,K},

i. set s0,k to ⊥
ii. set w0,k to 1/K

(b) construct γ0,K using Equation (4.1)

2. Step 2: for iteration r = 1,2, . . . ,R,

(a) for all k ∈ {1, . . . ,K}:

i. sample s̃r−1,k ∼ πr−1,K

ii. sample sr,k ∼ ν
+
s̃r−1,k

iii. compute wr,k = w(s̃r−1,k, sr,k) using Equation (4.2)

(b) construct γr,K using Equation (4.1)

3. Step 3: return γR,K

In this section, we introduce the CSMC algorithm, an iterative procedure that

approximates the target measure π in R iterations. At each iteration r, a list of

K partial states is kept in memory. Each element of this list is called a particle,

denoted sr,1, sr,2, . . . , sr,K ∈ Sr. We also assume there is a positive weight wr,k asso-

ciated with each particle sr,k. Refer to Algorithm 4.1 for an overview of the steps
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described in more details in the following.

The general form of the algorithm has similarities with standard SMC algo-

rithms, with the important exception of the weight updates, which needs to be

altered to accommodate general combinatorial structures.

Given a list of weighted particles, we construct a discrete positive measure as

follows:

γr,K(A) = ‖γr−1,K‖
1
K

K∑
k=1

wr,kδsr,k (A), for all A ⊂ S. (4.1)

The algorithm constructs these discrete measures recursively, and returns the mea-

sure γR,K at termination. Note that in most descriptions of standard SMC algo-

rithms, the algorithm is described in terms of a target probability distributions π.

Allowing γ and the intermediate particle populations to be unnormalized has the

advantage of revealing more explicitly the connexion between the estimators for

the evidence P(Y) and posterior distribution p(t|Y).

The algorithm is initialized with the rank r = 0 populated with K copies of

the least partial state ⊥ described in the previous section. Each of these copies is

associated with a uniform initial weight, 1/K.

Given the empirical measure γr−1,K from the previous population of particles,

a new list of particles and weights is created in three steps. Figure 4.2 provides a

graphical illustration of the three steps of an SMC algorithm.

The first step is to select a promising list of particles while preserving the cor-

rect asymptotic distributions. In this section we use the simplest scheme, multi-

nomial resampling, to accomplish this, but other schemes are possible and are dis-

cussed in Section 2.2.2. In multinomial resampling, this first step is simply done

by resampling K times from the normalized discrete measure πr−1,K . We denote

these sampled particles by s̃r−1,1, s̃r−1,2, . . . , s̃r−1,K .

The second step is, for each particle s̃r−1,k in this list, to use the proposal ν+
s̃r−1,k

to grow each of the resampled particle into a new particle of rank r, denoted by sr,k.

In order to do this, the user needs to specify a proposal probability kernel ν+
s : S→

[0,1] for all s ∈ S. Given an initial partial state s and destination partial state s′,

we denote the probability of proposing s′ from s by ν+
s (s′) or by a more readable
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Figure 4.2: A graphical illustration of the SMC algorithm.

notation ν+(s→ s′) especially when subscripts are involved. We assume that the

successors proposed from a partial state of rank r will always have rank r + 1, i.e.

if s ∈ Sr and ν+
s (s′) > 0, then s′ ∈ Sr+1. This proposal is applied independently to

sample a successor to each particle s̃r−1,k: sr,k ∼ ν
+
s̃r−1,k

.

For example, when building discrete rooted X-trees, the proposal needs to se-

lect a pair of trees to merge. One simple choice is to pick a pair uniformly at

random among the
(
|X|−r

2

)
pairs; other choices are discussed in Section 4.4.

The third step is to compute a weight for each of these new particles. This is

done using the following formula:

wr,k = w(s̃r−1,k, sr,k)

=
γ(sr,k)
γ(s̃r−1,k)

·
ν−(sr,k→ s̃r−1,k)
ν+(s̃r−1,k→ sr,k)

, (4.2)

where we call the function ν− an overcounting function. Note that while this weight

update looks like a Metropolis-Hastings ratio, it has the fundamental difference

that ν+ , ν− in general. The overcounting correction is more closely related to the

backward kernels of [22, 23], but because of the combinatorial nature of the space,
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the poset framework plays an instrumental role in constructing ν− in the types of

spaces we are interested in.

After running this algorithm, the discrete positive measure γR,K can be used to

approximate γ, where γR,K is obtained from applying Equation (4.1) to the particles

output at the last generation. Concretely, this means that ‖γR,K‖ can be used to

estimate P(Y), and for any statistic of interest φ, its expectation under the posterior

can be estimated by πR,Kφ.

In the next section, we show how ν− can be selected to guarantee convergence

of the algorithm to the target distribution π when K→∞. The precise meaning of

convergence will be discussed in Section 4.2.4 and 4.2.5.

4.2.3 Overcounting Correction

In the previous section, we have described an algorithm similar to standard SMC,

with the exception of the overcounting correction, which has an extra factor ν− in

the weight update. Before explaining how to compute this correction in general, we

first describe the problem that would arise if we were to omit the correction in the

specific case of phylogenetic non-clock inference. To simplify the discussion, we

start by considering a model where there is no observation (in practice, sampling

from the prior would not require an approximate algorithm, but it is instructive to

start by studying this simpler example).

For this example, refer to Figure 4.3 (a), where we show that all the different

sequences of partial states (forests) leading to one of the 1 ·3 ·5 = 15 fully specified

states (rooted X-trees). An arrow between partial states s and s′ in this figure

means that s′ can be obtained from s by one application of the proposal, i.e. that

ν+(s→ s′) > 0.

It can be seen in the figure that a balanced binary tree on four taxa, for example

one with rooted clades {A,B}, {C,D}, can be constructed in two distinct ways: either

by first merging A and B, then C and D, or by first merging C and D, then A and

B. On the other hand, an unbalanced tree on the same set of tax can be constructed

in only one way, for example the tree with clades {A,B}, {A,B,C} can only be con-

structed by first proposing to merge A and B, then C and {A,B}. A consequence of

this dichotomy is that under the uniform proposal, the expected fraction of parti-
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Figure 4.3: (a) All the different sequences of partial states (forests) leading
to fully specified states (rooted X-trees). (b) An example of the set of
parents %(s) of a partial state s. (c) An example of a simple cyclic poset.

cles with a balanced topology of each type is 2/21, while it is 1/21 for unbalanced

topologies (since there are 21 proposal paths, 2 for each balanced topologies, 1 for

each unbalanced one). Since we would like the probability π of each topology to

be close to 1/5, the naive estimate is therefore inconsistent.

In order to resolve this issue (by defining an appropriate overcounting func-

tion), it will be useful to formalize the graph shown in Figure 4.3 (c). This can

be done by defining a partial order ≤ on S. Recall that (S,≤) is called a partially

ordered set, or briefly a poset, if ≤ is a binary relation on S that is reflexive, anti-

symmetric, and transitive [99]. Also, for s, s′ ∈ S, we say that s is covered by s′,

written s ≺ s′, if s ≤ s′ and there is no z ∈ S between s and s′. Since the covering

relation determines the partial order in a finite ordered set, this means that in our

combinatorial setup we can induce a poset on the extended space S by deeming

that s′ covers s if and only if ν+(s→ s′) > 0.

By the way we defined S =
⋃

rSr, we get that ≤ actually has an extra structure

called a rank ρ: a function from S to {0,1, · · · ,R} such that ρ(s0) = 0 if s0 is a
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minimal element of the poset, and ρ(s′) = ρ(s) + 1 if s′ covers s in S.

With these definitions, graphs such as Figure 4.4 (left) can then be understood

as the Hasse diagram corresponding to this induced poset, namely a graph where

the set of vertices is S, and there is an edge between s and s′ whenever s covers s′.

In previous work [9], the overcounting problem has been avoided by forbidding

proposals ν+ that induce a cyclic Hasse diagram. In the CSMC algorithm, ν− is

used to avoid this artificial restriction. We present the solution in discrete spaces S

in this section. The discrete assumption is lifted in Section 4.2.5.

Generally, in order to have consistency as in Equation (4.6), the only require-

ment on ν− is:

Assumption 3. For all s, s′ ∈ S, ν+(s→ s′) = 0 implies ν−(s′→ s) = 0.

Let % : S → FS denote the set of parents %(s) of a partial state s. In phylo-

genetics for example, the number of parents is equal to the number of nontrivial

trees in the forest, where a tree is said to be trivial if it has a single leaf in it (see

Figure 4.3 (b) for an example).

A simple choice of ν− that satisfies this condition is

ν−(s′→ s) = |%(s′)|−1×1[ν+
s (s′) > 0], (4.3)

when |%(s′)| is finite. Correspondingly, we get the following formula for the case

of rooted non-clock tree inference:

ν−(s′→ s) =

 ∑
(ti,Xi)∈s′

1[|Xi| > 1]

−1

. (4.4)

While Assumption 3 is very weak, it is of interest to select ν− so as to minimize

the variance of the weights appearing in the CSMC algorithm. By generalizing

Proposition 3.1 in [22], one can show that the optimal choice for ν− is

ν−
opt(s′→ s) =

π(s)∑
s′′≺s′ π(s′′)

. (4.5)
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4.2.4 Analysis in the Discrete Case

To motivate the overcounting correction, we sketch in this section an elementary

proof that CSMC converges to the correct value as the number of particles goes

to infinity. Again, we restrict our attention to the discrete case for now (|S| <∞),

where the proof is transparent. In Section 4.2.5, we present a general result that do

not make this assumption.

Formally, we will prove the following result, where for simplicity, in this chap-

ter → denotes convergence as the number of particles K →∞ in L2 unless stated

otherwise.

Proposition 4. Under Assumption 3, we have for all test functions φ : X→ R

γR,Kφ→ γφ. (4.6)

There are two important corollaries of consistency results of the form of Equa-

tion (4.6):

1. The normalized weighted particles obtained at iteration R of the SMC algo-

rithm, πR,K , form a consistent estimator for computing expectations under

π:

πr,Kφ→ πφ.

This corollary is important because π corresponds to a posterior expectation

in the Bayesian framework.

2. The normalization of γ can be consistently estimated as follows:

‖γr,K‖ → ‖γ‖. (4.7)

This corollary is important because ‖γ‖ corresponds to a marginal likelihood

in the Bayesian framework. Note that the left-hand side of Equation (4.7) is

equal to the product of all the weight normalizations divided by KR (which
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is the way this result is usually presented), i.e.

Zr,K ≡ ‖γr,K‖ =

r∏
j=1

1
K

K∑
k=1

w j,k.

Proposition 4 can be established in two steps. First, we note that when the

induced Hasse diagram is acyclic, previous SMC consistency proofs apply directly.

Second, we show that in the cyclic case, we can construct a certain distribution π̌

and proposal q̌+ on a larger space Š with the following properties.

1. The target distribution π can be obtained from π̌ by straightforward marginal-

isation of the samples.

2. The induced Hasse diagram is acyclic, so the algorithm on Š is consistent by

the first step of the proof.

3. The proposal steps and weight updates in the algorithm on Š can be shown

to be equivalent to those of the original algorithm on S. This shows that the

algorithm on S is also consistent.

As described above, let us start by assuming the poset is acyclic. In this case,

we claim that we can invoke Proposition 4 of [9]. First, the boundedness assump-

tions required in Proposition 4 are automatically satisfied since here |S| <∞. Sec-

ond, the connectedness assumption made in this previous work, Assumption 2b,

can be shown to hold using the following argument: assume on the contrary that

there is a connected component C ⊂ S in the Hasse diagram that does not contain

⊥, and let s be a minimal element, where s ∈ C by finiteness. Since {s′ : ν−(s→

s′) > 0} ⊂ ρ−1(ρ(s)−1), we have a contradiction. Therefore there can be only one

connected component.

If the poset is not acyclic, we now present the reduction to the acyclic case. Let

S0:r = S0 ×S1 × · · · ×Sr, the set of paths of length r in S. We will view the algo-

rithm as incrementally building partial states over a larger space, with š0 ∈ S0, š1 ∈

S0:1, š2 ∈ S0:2, . . . , šR ∈ S0:R. In other words, instead of viewing the algorithm as

operating over S =
⋃R

r=0Sr, we will view it as operating over Š =
⋃R

r=0S0:r.
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XXX: make sure the measure norm and normalized are carefully defined

Formally, we show that under Assumption 1, we have, for all test function

φ : X → R, πR,Kφ → πφ a.s. and in L2.

The proof has two steps. First, we note that when the induced Hasse

diagram is acyclic, previous SMC consistency proofs apply directly. Second,

we show that in the cyclic case, we can construct a certain distribution π̌ and

proposal q̌+ on a larger space Ŝ with the following properties.

1. The target distribution π can be obtained from π̌ by straightforward

marginalisation of the samples.

2. The induced Hasse diagram is acyclic, so the algorithm on Š is consistent

by the first step of the proof.

3. The proposal steps and weight updates in the algorithm on Š can be

shown to be equivalent to those of the original algorithm on S. This

shows that the algorithm on S is also consistent.

As described above, let us start by assuming the poset is acyclic. In this

case, we claim that we can invoke Proposition 4 of XXX. First, the bound-

edness assumptions required in Proposition 4 are automatically satisfied since

here |S| < ∞. Second, the connectedness assumption made in this previous

work, Assumption 2b, can be shown to hold using the following argument: as-

sume on the contrary that there is a connected component C ⊂ S in the Hasse

diagram that does not contain ⊥, and let s be a minimal element, where

s ∈ C by finiteness. Since {s′ : ν−(s → s′) > 0} ⊂ ρ−1(ρ(s) − 1), we have a

contradiction. Therefore there can be only one connected component.

If the poset is not acyclic, we now present the reduction to the acyclic case.

Let S0:r = S0 × S1 × · · · × Sr, the set of paths of length r in S. We will view
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XXX: make sure the measure norm and normalized are carefully defined

Formally, we show that under Assumption 1, we have, for all test function

φ : X → R, πR,Kφ → πφ a.s. and in L2.

The proof has two steps. First, we note that when the induced Hasse

diagram is acyclic, previous SMC consistency proofs apply directly. Second,

we show that in the cyclic case, we can construct a certain distribution π̌ and

proposal q̌+ on a larger space Ŝ with the following properties.

1. The target distribution π can be obtained from π̌ by straightforward

marginalisation of the samples.

2. The induced Hasse diagram is acyclic, so the algorithm on Š is consistent

by the first step of the proof.

3. The proposal steps and weight updates in the algorithm on Š can be

shown to be equivalent to those of the original algorithm on S. This

shows that the algorithm on S is also consistent.

As described above, let us start by assuming the poset is acyclic. In this

case, we claim that we can invoke Proposition 4 of XXX. First, the bound-

edness assumptions required in Proposition 4 are automatically satisfied since

here |S| < ∞. Second, the connectedness assumption made in this previous

work, Assumption 2b, can be shown to hold using the following argument: as-

sume on the contrary that there is a connected component C ⊂ S in the Hasse

diagram that does not contain ⊥, and let s be a minimal element, where

s ∈ C by finiteness. Since {s′ : ν−(s → s′) > 0} ⊂ ρ−1(ρ(s) − 1), we have a

contradiction. Therefore there can be only one connected component.

If the poset is not acyclic, we now present the reduction to the acyclic case.

Let S0:r = S0 × S1 × · · · × Sr, the set of paths of length r in S. We will view
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Figure 2: An example of a simple cyclic poset.

the algorithm as incrementally building partial states over a larger space, with

š0 ∈ S0, š1 ∈ S0:1, š2 ∈ S0:2, . . . , šR ∈ S0:R. In other words, instead of viewing

the algorithm as operating over S =
⋃R

r=0 Sr, we will view it as operating over

Š =
⋃R

r=0 S0:r.

XXX: say we abuse notation in finite measure for π(s)

Let us start by introducing a new measure π̌ on Š. Let š be an element

in Š, i.e. a sequence of forests, say of length r, š = šr = (s0, s1, . . . , sr) ∈

S0:r. Following XXX, we define the new measure by a product π̌(ŝr) =

π(sr)
∏r−1

j=1 ν
−(sj → sj−1). Note that since the ν−(s → ·) are assumed to be

normalized probability densities, marginalization over s0, s1, . . . , sr−1 recovers

the original extended measure π.

The proposal over Š creates an identical copy of the sequence of forests,

and adds to it a new elements by sampling from the original proposal density

ν+. Note that with this definition, given an element š ∈ Š, there can be only

23

Figure 4.4: An example of changing a simple cyclic poset to an acyclic case.

Let us start by introducing a new measure π̌ on Š. Let š be an element in Š,

i.e. a sequence of forests, say of length r, š = šr = (s0, s1, . . . , sr) ∈ S0:r. Following

[22, 23], we define the new measure by a product γ̌(šr) = γ(sr)
∏r−1

j=1 ν
−(s j→ s j−1).

Note that since the ν−(s→ ·) are assumed to be normalized probability densities,

marginalization over s0, s1, . . . , sr−1 recovers the original extended measure π.

The proposal over Š creates an identical copy of the sequence of forests, and

adds to it a new elements by sampling from the original proposal density ν+. Note

that with this definition, given an element š ∈ Š, there can be only one predecessor

%(š), namely the prefix of the sequence with the last element removed. As a simple

example, Figure 4.4 shows the picture of a simple finite cyclic poset and its acyclic

poset over the extended space.

Finally, standard SMC operating on this extending space can be seen to be

equivalent to CSMC, since the weight updates simplify to:

γ̌(šr)
ν+(šr−1→ šr)γ̌(šr−1)

=
γ(sr)

∏r
j=1 ν

−(s j→ s j−1)

ν+(šr−1→ šr)γ(sr−1)
∏r

j=1 ν
−(s j→ s j−1)

=
γ(sr)ν−(sr→ sr−1)
γ(sr−1)ν+(sr−1→ sr)

This completes the proof in the discrete cyclic case.
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4.2.5 General Setup

As in the previous section, γ denotes the target positive measure, but in this section

we do not restrict γ to be defined over a discrete space. More precisely, let FX
denote a sigma-algebra on X, and let γ : FX → [0,∞). We assume that the user

has provided an extension γ : FS → [0,∞), and a pair of forward and backward

proposal probability kernels ν+, ν− : S×FS→ [0,1].

Next, we define the following measures on the product space S×S:

τ+(A×B) = γA(ν+(B)) =

∫
γA(dx)ν+

x (B) (4.8)

τ−(A×B) = γB(ν−(A)) =

∫
γB(dx)ν−x (A), (4.9)

where A,B ∈ FS, and for any measure λ and measurable A, λA(B) denotes λ(A∩B).

Informally, and up to normalization, the measure in Equation (4.8) corresponds to

picking A according to γ, and then propagating the points in A using the forward

proposal. The measure in Equation (4.9) corresponds to the inverse situation of

picking B according to γ and then propagating these points using the backward

proposal (this second situation is hypothetical since the algorithm does not sample

from ν−, but is useful in the analysis).

We make the following assumptions:

Assumption 5. We have τ−� τ+,

which implies by the Radon-Nikodym theorem the existence of a derivative

τ−/τ+ : S×S→ [0,∞). We also assume that there is a version w = τ−/τ+ with the

following properties:

Assumption 6. There is a ranked poset (S,≺,ρ) such that s′ covers s iffw(s, s′)> 0,

ρ : S → Z. Using the notation γr as a short hand for γρ−1(r), we assume that the

Hasse diagram induced by ≺ is (a) connected and (b) that there is an R such that

γr = γ for r ≥ R, and that γr is a Dirac delta for r ≤ 0.

To get a compact notation for CSMC, we introduce the following Monte Carlo
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propagation operator:

(propK λ)φ = ‖λ‖

 1
K

K∑
k=1

w(S k,S ′k)φ(S ′k)

 ,
where S k ∼ λ̄ (λ̄ denotes the normalized measure of λ), S ′k|S k ∼ ν

+(S k → ·), inde-

pendently, λ : FX→ [0,∞) is an arbitrary measure on the poset, and φ : S→ R is a

test function.

Note that the propagation operator incorporates both a multinomial resampling

step and a proposal step in one equation. If we denote the composition of these

operators by prop2
K γ0 = (propK(propK γ0)), then the full CSMC algorithm can be

summarized by γR,K = propR
K γ0.

With this notation, we can write the main result as:

Proposition 7. If φ : X→ R is measurable and such that φ ≤ C1,w ≤ C2 for some

C1 and C2, then

γR,Kφ→ γφ.

The proof and supporting lemmas can be found in the appendix. There are

many similarities between our proof and that for consistency in general state space

models, however the main point of the appendix is to illustrate how the conditions

on the poset are used in the proof.

In the next section, we show how this result can be specialized to various phy-

logenetics setups.

4.2.6 Connection to Phylogenetics with Branch Lengths

In an ultrametric setup, the poset S is defined as the set of ultrametric forests over

X. An ultrametric forest s = {(ti,Xi)} is a set of ultrametric Xi-trees ti such that the

disjoint union of the leaves yields the set of observed taxa. Defining the height of

an ultrametric forest as the height of the tallest tree in the forest. Heights of subtrees

on a clock tree has been shown in Figure 3.2. The height increment, denoted ∆r

where r = ρ(s), of the forest s represents the waiting time between two coalescent

events. A common prior for ultrametric trees is the coalescent [61]. We assume
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ratio in the MH ratio is

q{κ(i − 1)|κ∗}
q{κ∗|κ(i − 1)} = m.

4 Numerical examples

4.1 Synthetic posets

We start with an illustration of the effect that a lack of appropriate correction

can have on the approximation in cyclic posets. We use a small synthetic

poset where the exact target distribution can be computed easily, namely the

finite poset S from Figure 3 (left). Here both the exact solution and the

approximations are low-dimensional multinomial distributions, so the total

variation distance can be computed efficiently.

First, we use this simple test case to show that Assumption 2 on ν− is

necessary to have consistency (Proposition 4). Two versions of the parti-

cle algorithm presented in the previous section are compared: the first one,

‘Poset-correction’ uses a backward kernel satisfying Assumption 2, while the

second one, ‘Standard-SMC’, does not. The latter uses a backward proposal

proportional to ν̃− ≡ 1, in which case the weight update reduces to the weight

update found in state-space SMC algorithm. It can be checked easily that this

choice violates Assumption 2.

In Figure 4 (left), we compare the performance of the two algorithms as

the number of particles increases. Performance is measured using the total

variation distance, and the experiment for each number of particle is repeated

1000 times using different random seeds. The results show that only the algo-

rithm satisfying Assumption 2 gives an approximation with a total variation
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Figure 4.5: The support of the backward kernels used in the synthetic poset
experiments.

the unconditional distribution of the topology is the uniform distribution over all

possible topologies. The prior for ∆r is Exp
(
µ0

(
|s|
2

))
.

In a non-clock setup, the poset S is defined as the set of non-clock forests over

X. A non-clock forest s = {(ti,Xi)} is a set of Xi-trees ti in which the root is the

newly formed internal node when s is a partial state and the root is an arbitrary

point on the new branch when s is a full state. A common prior on a branch length

of an unrooted non-clock phylogenetic tree is Exp(µ0).

When building discrete rooted X-trees, three elements need to be proposed at

each step: which pair of trees to merge, what is the length of the added branch,

and what is the new position of the root. For efficiency, in a non-clock setup, we

assume in most of what follows that the pair is picked uniformly at random among

the
(
|X|−r

2

)
pairs, that the branch length is sampled according to the prior, and that

the position of the root is sampled uniformly on the newly inserted branch. An

ultrametric setup can be regarded as a special case of a non-clock setup with some

constraint: the unique position of the root is selected to ensure the newly formed

tree is ultrametric. In practice, this constraint is satisfied by sampling the height

increment rather than the branch length directly.
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4.3 Numerical Examples

4.3.1 Synthetic Posets

We start with an illustration of the effect that a lack of appropriate correction can

have on the approximation in cyclic posets. We use a synthetic poset with a small

cardinality |S| < ∞ so that the exact target distribution can be computed easily.

The poset has a support as in Figure 4.4 (left) 2. Here both the exact solution

and the approximations are low-dimensional multinomial distributions, so the total

variation distance can be computed efficiently.

First, we use this simple test case to show that Assumption 5 on ν− is neces-

sary to have consistency (Proposition 7). Two versions of the particle algorithm

presented in the previous section are compared: the first one, ‘Poset-correction’

uses a backward kernel satisfying Assumption 5, while the second one, ‘Standard-

SMC’, does not. The latter uses a backward proposal proportional to ν̃− ≡ 1, in

which case the weight update reduces to the weight update found in state-space

SMC algorithm. It can be checked easily that this choice violates Assumption 5.

The support of the two backward kernels are shown in Figure 4.5.

In Figure 4.6 (left), we compare the performance of the two algorithms as the

number of particles increases. The performance of the algorithms is measured

using the total variation distance, and the experiment for each number of particle is

repeated 1000 times using different random seeds. The results show that only the

algorithm satisfying Assumption 5 gives an approximation with a total variation

distance going to zero as the number of particles increases.

We did a second experiment to give an example where cycles in posets are

beneficial. In this experiment, we fix the structure of the backward kernel as in

the ‘Poset-correction’, with the exception of one of the backward transition, which

we parameterize with a number q ∈ [0,1] shown in Figure 4.5 (left). When q ∈

{0,1}, this effectively corresponds to removing a cycle in the Hasse diagram of

the poset. We show in Figure 4.6 (right) the total variation distance as a function

of this parameter q for a fixed number of particles (10). It can be seen that the

2The values of π,ν+, ν− can be downloaded from http://www.stat.ubc.ca/∼l.wang/phylo/
syntheticPoset/.
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Figure 4.6: Total variation distance of the particle approximation to the exact
target distribution. Left: the performance of the two algorithms as the
number of particles increases. Right: the total variation distance as a
function of the parameter q for a fixed number of particles (10).

best performance is attained away from the points {0,1}, showing that the cycle is

indeed beneficial.

4.3.2 Synthetic Phylogenies

In this study, we evaluate the proposed CSMC method on estimating phylogenetic

trees. We summarize the set of the random trees obtained from the CSMC algo-

rithm using the consensus tree [67]. We calculate the tree distance between esti-

mated consensus trees and true trees using the RF metric and the PM. The smaller

the tree distance, the better the performance. See Section 3.5 for an introduction to

consensus trees and distance metrics for phylogenetic trees.

We simulated 100 ultrametric trees of 10 taxa with µ0 = 10. The non-clock

trees were obtained by perturbing the branch lengths of ultrametric trees. More

precisely, we modified a branch of length b by adding a noise randomly sampled

from Unif(−.3b, .3b). We generated 10 datasets for each tree. In each dataset, a

total of 10 DNA sequences were generated given a tree and the K2P model with

the parameter κ = 2. The length of each sequence is 1000. We generated the
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sequence on the root by randomly sampling from the stationary distribution of the

CTMC; then we generated each of its children using the transition probability that

was computed with κ and the branch length by Equation 3.1. This procedure was

recursively implemented until reaching leaves. The sequences of the internal nodes

were discarded and those on leaves were taken as the observations.

CSMC was applied to each of these datasets. For comparison, we also used

one widely-used Bayesian phylogeny software, MrBayes (MB), which implements

MCMC for a range of tree models [55]. For both software, we fixed the parameter,

κ, to be the true value and focused on comparing their performance in phylogenetic

tree estimation. Priors for the branch lengths were exponential distributions with

rate 10. The initial tree for MB was of an arbitrary topology and branch lengths

sampled from exponential distribution with the true tree rate.

In both the CSMC and MCMC algorithms, the computational bottleneck is

the peeling recurrence, which needs to be computed at each speciation event in

order to evaluate π(t). Therefore, we report running times as the number of times

the peeling recurrence is calculated. Figure 4.7 shows the average Robinson Foulds

metric and partition metric versus the running times in log scale using 1000 datasets

simulated from ultrametric trees and non-clock trees, respectively. On average,

CSMC outperforms MB in terms of obtaining a smaller tree distance with a smaller

number of steps. Regarding the partition metric, our SMC algorithm is 100 times,

or 2 orders of magnitude, faster than MCMC to reach 0. The vertical line shows

the 50% credible intervals of the estimates. For ultrametric trees, the variance of

estimates using SMC is smaller than or equal to those from MB. For non-clock

trees, with a small number of particles, SMC is obviously better. After reaching

convergence, SMC and MB performs similarly.

4.3.3 RNA Data

We analyzed aligned curated ribosomal RNA (rRNA) sequences obtained from

199 species of Chloroplast [13] 3. We randomly selected four sub-datasets of 5,

10, 20, and 30 taxa, respectively, from the whole dataset. Numbers of sites are

3The dataset was downloaded from http://www.rna.ccbb.utexas.edu/DAT/3C/Alignment/ on
08/09/2011
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121, 121, 126, and 140, respectively. Using a K2P model with κ = 2, both SMC

and MrBayes were applied to these datasets. Figure 4.8 shows the log-likelihood of

the consensus trees of using CSMC and MrBayes versus the running times (divided

by 1000). We can see that CSMC can obtain higher log-likelihood than MB using

a smaller running time. For large numbers of iterations and particles, the MCMC

sampler slightly outperformed CSMC on the real data of 30 taxa.

4.4 Discussion
We have presented a general class of SMC methods that provide an alternative to

MCMC for Bayesian phylogenetic inference. Our proposed method, CSMC, can

efficiently explore the huge phylogenetic tree space by making use of the order-

theoretic notion of a poset. Our CSMC methods can do inference for not only

ultrametric trees but also non-clock trees which have not been approached by SMC

previously. Both theoretical and experimental results show that CSMC can ob-

tain a consistency estimate of the expectation of a function with respect to a target

measure. In addition, extensive numerical simulations show that CSMC can ob-

tain comparable results to the MCMC method in terms of computation speed and

estimation accuracy.

4.4.1 Choices of the Partial States and Their Distributions

Besides the natural forest extension, described in Section 4.2.1, there are other

potential extensions of π into forests. As an example, we can define π(sr) =

p(Y,NJ(sr)), where NJ(sr) refers to a complete phylogenetic tree that is obtained

by fixing the subtrees in the current forest sr and applying the neighbor joining (NJ)

method, briefly reviewed in Section 3.3.1, to the roots of sr.

Moreover, there are more than one way to define the sequence of partial states

as long as the objects obtained at the last iteration of CSMC are in the target space,

i.e. a phylogenetic tree in our example. The method we have used is based on

building a complete tree by starting from the disconnected graph and by connecting

a pair of subtrees in a forest at every step. An alternative, called ‘star-shaped

decomposition’, is to build a complete tree by starting with all leaves of molecular
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sequences connected to a single centre node and separating a pair of nodes attached

to the centre node at each step. The likelihood of a star-shaped partial state can be

computed in a similar way as a binary tree using Equation (3.3).

4.4.2 Choices of the Proposal Distributions

The design of the proposal distributions has significant impact on the performance

of the CSMC algorithm. We have the flexibility to choose forward proposal dis-

tributions as long as it induces a poset on all possible partial states. In addition

to the simple proposal distribution used in Section 4.2.2, an alternative proposal

distribution is to consider all possible pairs of subtrees to merge, i.e.

ν+(sr−1→ sr) =
π(sr)∑

s′r:sr−1≺s′r π(s′r)
.

This is called Prior-Post proposal in [43, 105].

For a partial state sr−1 of m subtrees, the Prior-Post proposal considers m(m−

1)/2 possible pairs of subtrees, which is computationally expensive for a large

number m. From our simulation studies, intensive computing for each particle

allows us to use a smaller number of particles to obtain the same estimation accu-

racy. However, there is no obvious benefits in terms of the total computing time.

Therefore, we choose to use the simple proposal distribution in this dissertation.

4.4.3 Resampling Strategies

CSMC algorithms can be improved by using more sophisticated resampling strate-

gies that have been developed for other SMC algorithms, for example, stratified

sampling [63] and adaptive resampling [24]. Other potential improvements are

reviewed in [14] and [26].

4.4.4 Another Application: Self-avoiding Walk

Although the proposed method is motivated by Bayesian phylogenetic inference,

CSMC is general enough to be applied to many other applications. Bayesian infer-

ence problems in computational biology, e.g., statistical alignment for proteins and

DNA and grammatical inference for RNA, may benefit from the CSMC framework.
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One of other applications is to compute the total number of different self-avoiding

walks (SAWs) of a fixed length.

SAWs in a two- or three-dimensional lattice space have been studied as the

most basic model for chain polymers in polymer physics [85, 110, 111]. In a two-

dimensional lattice model, a chain polymer of length N is fully characterized by

the positions of all of its molecules, x = (x1, · · · , xN), where xi = (a,b), and a and b

are integers. The distance between xi and xi+1 has to be exactly 1, and xi+1 , xk for

all k ≤ i.

The target distribution of interest is π(x) = 1/ZN , where the space of x is the

set of all SAWs of length N and ZN is a normalizing constant, which is equal to the

total number of different SAWs of length N.

Let s0 be the walk of length 0 as well as the initial state. We sequentially

generate partial states s1, s2, · · · , by using a proposal distribution with density a

ν+(sr−1 → sr): for the partial state sr−1, we have a walk of length r − 1 and we

generate a partial state sr of length r by uniformly inserting one step to the walk

sr−1. We require sN ≡ x.

Previous work [110] can be shown to be a special case of our framework where

the backward proposal distribution has the following density ν (sr → sr−1) = 1/r.

After running the CSMC algorithm, ZN can be estimated by ‖γr,K‖ =
∏

r
1
K
∑

k wr,k.
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Chapter 5

Combining MCMC and SMC

In previous chapters, we have introduced the applications of MCMC and SMC in

Bayesian phylogenetic tree inference. As the two important types of Monte Carlo

methods, they have their own strengths and drawbacks. MCMC is a class of very

powerful methods that have a rich literature. The main problem with MCMC is

that it is typically difficult to design appropriate proposal distributions for high-

dimensional and multimodal target distributions. Consequently, the chain often

mixes poorly and it takes an extremely long time to reach convergence. On the

contrary, our proposed CSMC is fast in computation; but it requires to run a large

number of particles simultaneously.

It is tempting to study combinations of MCMC and SMC to utilize their advan-

tages and circumvent their limitations. Since the main limitation of using MCMC

is unrealistic running time while the main constraint of using SMC is computer

memory, an ideal framework of their combination should provide a flexible way of

allocating the available total budget, including time and computing resources.

In this chapter, we will investigate two frameworks for combining SMC and

MCMC in applications to phylogenetics. The first one is a set of particle Markov

chain Monte Carlo (PMCMC) algorithms [3, 53], in which each MCMC iteration

uses our proposed CSMC algorithm to approximate the posterior distribution of

the phylogenetic trees and the marginal likelihoods of data, given parameters in

the evolutionary model. Using PMCMC, we can incorporate global uncertainty of
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hyperparameters, e.g. random nucleotide evolutionary models.1 This is of concern

since modelling uncertainty over evolutionary processes is one of the key selling

point of Bayesian phylogenetic methods [25]. The second framework is to em-

bed the standard MCMC algorithms in phylogenetics literature [52, 66, 67, 70],

reviewed in Section 3.4.4, into an SMC sampler proposed by [22, 23], reviewed in

Section 2.2.3.

5.1 Particle MCMC for Phylogenetics
In phylogenetics, our goal is to estimate the phylogenetic tree t and evolutionary

parameters θ based on n observed biological sequences Y. Using Bayesian ap-

proaches, the target distribution is the posterior distribution of t and θ, i.e. π(t, θ) ≡

p(t, θ|Y). When the evolutionary parameters, θ, are assumed to be known or fixed,

the target distribution is denoted πθ(t) ≡ pθ(t|Y).

In Section 2.3, we have reviewed the generic PMCMC algorithms, including

PIMH, PMMH, and PGS. In this section, we will focus on practical details when

applying these algorithms to estimate the phylogenetic trees and evolutionary pa-

rameters using our proposed CSMC algorithm described in the previous chapter.

5.1.1 The Particle Independent Metropolis-Hastings (PIMH)

If estimating the evolutionary parameters is not of interest, we can use the PIMH,

described in Algorithm 5.1, to approximate the posterior of phylogenetic tree t,

i.e. pθ(t|Y). Algorithm 5.1 is a special case of the generic PIMH (Algorithm 2.6),

where the CSMC algorithm (Algorithm 4.1) is used in each iteration of the PIMH.

Although the PIMH algorithm and the SMC algorithm perform similarly in

terms of estimation accuracy with the same total number of particles [3, 53], it

is quite useful to have this alternative for Bayesian phylogenetics because of a

practical reason. The implementation of an SMC algorithm is often limited by

the computer memory capacity due to the fact that a large number of particles are

required simultaneously. It may not be a problem when each particle is small.

However, this is not the case in phylogenetics because typically each particle is a

1We use the ‘hyperparameter’ terminology because we view the phylogenetic tree as a parameter
itself.
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partial or a complete phylogenetic tree of many biological sequences with hundreds

and thousands of sites. Contrary to SMC, the PIMH algorithm allows us to run a

smaller number of particles in each iteration and run it for any specified amount

of time until a sufficient number of particles have been generated. We will use an

example to demonstrate the similarity in performance between PIMH and SMC in

Section 5.1.4.

Algorithm 5.1 The PIMH Algorithm for Phylogenetics

1. Initialization, i = 0,

(a) run the CSMC algorithm (Algorithm 4.1) targeting pθ(t|Y),

(b) sample t(0) ∼ p̂θ(·|Y) and compute p̂θ(Y)(0).

2. For iteration i ≥ 1,

(a) run the CSMC algorithm (Algorithm 4.1) targeting pθ(t|Y),

(b) sample t∗ ∼ p̂θ(·|Y) and calculate p̂θ(Y)∗ using (2.3),

(c) with probability

min
{

1,
p̂θ(Y)∗

p̂θ(Y)(i−1)

}
,

set t(i) = t∗ and p̂θ(Y)(i) = p̂θ(Y)∗; otherwise set t(i) = t(i − 1) and
p̂θ(Y)(i) = p̂θ(Y)(i−1).

5.1.2 Particle Marginal Metropolis-Hastings (PMMH)

The PMMH algorithm approximates a ‘marginal Metropolis-Hastings’ (MMH) up-

date targeting directly the marginal density pθ(Y) that is estimated as a byproduct

of the CSMC algorithm using

ZR,K = ‖γR,K‖ =

R∏
r=1

 1
K

K∑
k=1

wr,k

 .
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Algorithm 5.2 explicitly rewrite the PMMH algorithm for phylogenetics with our

CSMC Algorithm 4.1 in each iteration.

Algorithm 5.2 The PMMH for Phylogenetics

1. Initialization, i = 0,

(a) set θ(0) arbitrarily and

(b) run the CSMC algorithm targeting pθ(0)(t|Y), sample t(0) ∼ p̂θ(0)(·|Y)
and let p̂θ(0)(Y) denote the marginal likelihood estimate.

2. For iteration i ≥ 1,

(a) sample θ∗ ∼ q(θ(i−1)→ ·),

(b) run the CSMC algorithm targeting pθ∗(t|Y), sample t∗ ∼ p̂θ∗(·|Y) and
let p̂θ∗(Y) denote the marginal likelihood estimate, and

(c) with probability

min
(
1,

p̂θ∗(Y)p(θ∗)
p̂θ(i−1)(Y)p(θ(i−1))

q{θ∗→ θ(i−1)}
q{θ(i−1)→ θ∗}

)
(5.1)

set θ(i) = θ∗, t(i) = t∗, and p̂θ(i)(Y) = p̂θ∗(Y); otherwise set θ(i) = θ(i−1),
t(i) = t(i−1), and p̂θ(i)(Y) = p̂θ(i−1)(Y).

Recall that there is only one evolutionary parameter κ in the K2P evolutionary

model, i.e. θ = κ. We choose an exponential distribution with rate µ0 as the prior

for κ, i.e. κ ∼ Exp(µ0). Regarding the proposal distribution q{κ→ ·}, one choice

is to propose a new κ∗ by using a multiplier of κ [66]; i.e. let κ∗ = mκ, where

m ∼Unif( 1
a ,a) with a prefixed tuning parameter a > 1. A lower value of a will lead

to a higher acceptance rate, which can also mean that the MCMC chain will mix

slowly. By [66], the proposal ratio in the MH ratio is

q{κ∗→ κ(i−1)}
q{κ(i−1)→ κ∗}

= m. (5.2)
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The prior ratio is

p(κ∗)
p(κ)

=
µ0 exp(−µ0κ

∗)
µ0 exp(−µ0κ)

= exp(µ0(κ− κ∗)) = exp(µ0κ(1−m)).

In each implementation of the CSMC algorithm, we use a total number of K

particles. By results of [3, 53], for any fixed number K ≥ 1 of particles, the tran-

sition kernels of PMCMC leave the target density of interest, p(θ, t|Y), invariant,

and under weak assumptions the PMCMC sampler is ergodic. In practice, how

to choose the number K is an issue that will affect the performance of a PMCMC

algorithm.

5.1.3 The Particle Gibbs sampler (PGS)

Another PMCMC algorithm that can do joint estimation of phylogenetic trees and

evolutionary parameters is the particle Gibbs sampler (PGS) described in Algo-

rithm 2.9. Contrary to the PMMH algorithm that bypasses the phylogenetic tree

in calculating the MH ratio by marginalizing it, PGS requires a special type of

PMCMC update called the conditional SMC update. To demonstrate how PGS

applies to phylogenetics, we rewrite the two algorithms, the conditional SMC (Al-

gorithm 2.8) and the PGS (Algorithm 2.9), explicitly for phylogenetics in Algo-

rithm 5.3 and Algorithm 5.4, respectively, with more details and explanations.

The introduction of the notation for ancestral lineage in the conditional SMC

(Algorithm 2.8) is mainly for the purpose of asymptotic proofs in [3]. In the condi-

tional CSMC algorithm for phylogenetic trees (Algorithm 5.3), we abandon these

complicated notations for ancestral lineage. Instead, to simplify notations and im-

plementation, we switch the positions of particles such that the first particle is

the frozen one. Obviously, we can switch particles without affecting the particle

approximation towards the target distributions. In addition, Algorithm 5.3 is a con-

ditional version of the CSMC algorithm (Algorithm 4.1) whilst Algorithm 2.8 is a

conditional version of the generic traditional SMC.

Recall that K is the number of particles in the CSMC algorithm. Let s′1:R =

(s′1, s
′
2, · · · , s

′
R) denote the frozen particle path that the conditional CSMC algorithm

is conditioned on. In other words, this path always survives whereas the remaining

65



Algorithm 5.3 Conditional CSMC for Phylogenetic Trees
s0,k←⊥, ∀k ∈ {1, · · · ,K}
w0,k← 1/K
construct γ0,K using Equation (4.1)
for r ∈ 1, . . . ,R, do

sr,1← s′r
wr,1←

γ(sr,1)
γ(sr−1,1) ·

ν (sr,1→sr−1,1)
ν+(sr−1,1→sr,1)

for k ∈ 2, · · · ,K, do
sample s̃r−1,k ∼ πr−1,K
sr,k ∼ ν

+(s̃r−1,k→ ·)
wr,k←

γ(sr,k)
γ(s̃r−1,k) ·

ν (sr,k→s̃r−1,k)
ν+(s̃r−1,k→sr,k)

end for
construct γr,K using Equation (4.1)

end for
return γR,K

K −1 particles are generated as in the CSMC algorithm.

Now we will apply the conditional CSMC (Algorithm 5.3) in the framework of

the generic PGS to estimate the joint posterior of θ and t, summarized in Algorithm

5.4. Since we cannot obtain the closed-form full conditional distribution for θ,

i.e. p(θ|t,Y), we use a step of the Metropolis-Hastings algorithm within Gibbs

sampling to sample θ from p(θ|t,Y), where t is the current phylogenetic tree. The

MH ratio for accepting a newly proposed θ∗ is

α(θ→ θ∗|t) = min
(
1,

p(θ∗|t,Y)
p(θ|t,Y)

q{θ∗→ θ}

q{θ→ θ∗}

)
(5.3)

= min
(
1,

p(Y|θ∗, t)p(θ∗|t)
p(Y|θ, t)p(θ|t)

q{θ∗→ θ}

q{θ→ θ∗}

)
,

where the likelihood p(Y|θ, t) can be calculated by (3.3). A common assumption

is that the priors for θ and t are independent, i.e. p(θ|t) = p(θ). In the K2P model,

the only parameter is κ, i.e. θ = κ. The same prior as described in the PMMH

algorithm can be used; i.e. the prior κ ∼ Exp(µ0), and the proposal q{κ→ κ∗} = mκ,
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where m ∼ Unif( 1
a ,a) with a prefixed tuning parameter a > 0. As a result,

α(κ→ κ∗|t) = min
(
1,

p(Y|θ∗, t)
p(Y|θ, t)

· eµ0κ(1−m) ·m
)
.

Algorithm 5.4 The MH within Particle Gibbs Sampler for Phylogenetics
Initialization: i = 0

Sample θ(0) arbitrarily
Run the CSMC algorithm targeting pθ(0)(t|Y)
Sample t(0) ∼ p̂θ(0)(·|Y) and record its ancestral lineage.

for i ≥ 1 do
Sample θ(i) ∼ p(·|t(i−1))

(a) Draw θ∗ ∼ q(θ(i−1)→ ·)
(b) with probability α(θ(i−1)→ θ∗|t(i−1)) calculated by (5.3), set θ(i) =

θ∗; otherwise set θ(i) = θ(i−1).
Run the conditional CSMC algorithm targeting pθ(i)(t|Y) conditional on t(i−
1) and its ancestral lineage.
Sample t(i) ∼ p̂θ(i)(·|Y).

end for

5.1.4 Simulation Studies

In this section, we evaluated PIMH and PMMH using some simulated datasets. In

order to simulate the datasets, we first generated a set of random trees, including

topologies and branch lengths, as the reference trees. Then, for each reference

tree, we simulated DNA sequences using the K2P model with parameter κ = 2.0,

described in Section 3.4.1. For each unrooted tree, we chose an arbitrary point on

the tree as its root. The data generation started from the root of a tree by randomly

sampling from the stationary distribution of the CTMC (see Section 3.4.1). As-

suming site independence, we generated the data for the children of the root using

the transition probability computed by (3.1). This procedure was recursively im-

plemented until reaching the leaves. We discarded the data at the internal nodes

and took the data on leaves as the simulated observations. Table 5.1 summarizes

the settings for the simulated datasets that will be used in this section.
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Dataset Tree type Data type # Tree # taxa # sites Tree rate
1 clock DNA 100 5 200 1.0
2 non-clock DNA 100 10 200 1.0

Table 5.1: Settings for the simulated data.

We constructed a consensus tree using the random trees from the results of ap-

plying the PMCMC algorithms for phylogenetics to each simulated dataset. These

estimated consensus trees were assessed by their log-likelihoods, and their tree dis-

tances from the reference trees measured by PM, RF, and KF tree metrics. Please

refer to Section 3.5 for the definition of the consensus tree and tree distance met-

rics.

PIMH Versus CSMC

In this study, we compared the performance of PIMH and SMC on the same

datasets using the same computing cost, i.e. a fixed number of total particles. As

mentioned earlier in this chapter, the use of SMC algorithms is limited by computer

memory capacity. For example, an “out-of-memory” error occurred when we tried

to run 5,000,000 particles simultaneously for a dataset of 10 taxa of 200 sites using

a 4-gigabytes memory limit. To avoid such a problem, we used a set of small clock

trees of 5 taxa (Dataset 1 of Table 5.1) without loss of generality for the purpose of

illustration.

In the CSMC algorithm, all these particles are run simultaneously. In PIMH

algorithms, we need to decide the number of particles used at each iteration, which

is shown in the first column of Table 5.2. We used a total number of 1,000,000

particles. From the results in Table 5.2, PIMH and SMC performed very similarly

in terms of the log-likelihood of the consensus trees and their distances from the

reference trees.

PMMH and MrBayes

The purpose of this simulation study is to evaluate PMMH in terms of estimating

the evolutionary parameter κ and the phylogenetic trees using a set of simulated
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Method #particles/iter. # iteration log-likelihood RF PM KF
CSMC 1000,000 - -1091.32 (153.59) 0.063 (0.048) 0 (0) 1.38 (3.34)
PIMH 10 100,000 -1091.40 (153.60) 0.062 (0.046) 0 (0) 1.38 (3.33)
PIMH 100 10,000 -1091.40 (153.64) 0.062 (0.046) 0 (0) 1.38 (3.35)
PIMH 1,000 1,000 -1091.39 (153.62) 0.061 (0.046) 0 (0) 1.41 (3.41)
PIMH 10,000 100 -1091.45 (153.65) 0.062 (0.046) 0 (0) 1.34 (3.24)

Table 5.2: Tree estimates using PIMH for clock trees. Log-likelihood refers
to that of the consensus tree.

Methods log-likelihood κ RF PM KF
PMMH -1894.84 (162.01) 1.99 (0.25) 1.44 (1.43) 0 (0.45) 0.45 (3.76)

MrBayes -1898.89 (175.43) 3.72 (0.47) 1.62 (1.13) 0 (1.35) 0.56 (3.15)

Table 5.3: Comparison of PMMH and MrBayes for a set of non-clock trees in
terms of estimating the parameter κ (true value 2.0) and the phylogenetic
tress. Log-likelihood refers to that of the consensus tree.

non-clock trees (Dataset 2 of Table 5.1). We used 10,000 particles at each iteration

of PMMH and ran 5,000 iterations. For the purpose of comparison, we also used

MrBayes to run MCMC for 50,000,000 MCMC iterations on the same datasets

such that the total computing cost is comparable to that of PMMH.

PMMH outperformed MrBayes from the results for the two algorithms us-

ing the 100 simulated non-clock datasets, shown in Table 5.3. For the results

of PMMH, we also calibrated the credible intervals using coverage probabilities,

shown in Figure 5.1. As expected, the coverage probabilities (circles) are close

to the values of credible intervals (solid line). In addition, Figure 5.2 shows the

trace plot and histogram of κ estimated by PMMH for three arbitrarily selected

non-clock datasets.

5.1.5 Real Data Analysis

We also applied PMMH for non-clock trees to the same datasets in Section 4.3.3

with 1000 particles at each iteration. By estimating κ rather than using a pre-
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Figure 5.1: Coverage probability versus credible intervals for the estimates
of κ using PMMH.

fixed value, the log-likelihoods of the obtained consensus trees increased, shown

in Figure 5.3 as an example. The parameter a in PMMH was set to be 1.2. Better

performance might be achieved by choosing a more sensible value.

In order to evaluate the influence of the number of particles at each PMMH

step, we set this number to be 100, 1000, 10000 and 25000, respectively, and com-

pared the log-likelihoods of the consensus trees using the datasets of 5, 10, and

20 taxa, shown in Table 5.4. We found that the smaller the number of particles,

the lower log likelihood and higher variance. Theoretically, we can always achieve

higher accuracy by increasing the number of particles. In practice, running a large

number of particles can be computationally expensive. Therefore, it is a trade-off

between speed and accuracy.

We analyzed the aligned protein coding mitochondrial DNA sequences of 32

species of cichlid fishes [17, 64], described in Section 3.2, using PMMH for non-
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Figure 5.2: Trace plot and histogram of κ estimated by PMMH for three ar-
bitrarily selected non-clock datasets.
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Figure 5.3: Log-likelihoods of the consensus trees versus the running times
(divided by 1000) using RNA datasets of 5 taxa. (Left) We only esti-
mated the phylogenetic tree with MB and CSMC. (Right) We estimated
both the phylogenetic tree and the parameter κ with MB and PMMH.

Number of particles
# taxa 100 1000 10000 25000

5 -231.12 (0.18) -231.13 (0.059) -231.12 (0.086) -231.10 (0.033)
10 -438.99 (2.06) -436.64 (0.86) -436.66 (0.62) -436.28 (0.23)
20 -1608.41 (3.12) -1581.16 (3.36) - -

Table 5.4: Log-likelihoods of the consensus trees obtained using PMMH for
3000 iterations with different numbers of particles at each iteration using
non-clock trees.

clock trees. We used 10,000 particles for each MCMC iteration, and ran PMMH

for 2,000 iterations. For comparison, we ran MrBayes on the same dataset for

20,000,000 iterations. The log-likelihoods of the consensus trees from PMMH

and MrBayes were -6,892.51 and -6,942.20, respectively. Figure 5.4 shows the

consensus tree estimated by PMMH, and Figure 5.5 by MrBayes. The result was

consistent with previous studies [17, 64]. For example, the top clade of 7 species2

on our consensus tree are species in the same tribe Lamprologini [64].
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Figure 5.4: The consensus tree for cichlid fishes estimated by PMMH. The
species on the root is Lamprologus callipterus.
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Figure 5.5: Consensus tree for the dataset of Cichlid Fishes using MrBayes.
The species on the root is Lamprologus callipterus.
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5.2 An SMC Sampler with MCMC Kernels
As reviewed in Section 2.2.3, SMC samplers [22, 23] provide a framework of con-

verting an MCMC algorithm for a static distribution π into an SMC algorithm by

doing MCMC moves within SMC iterations. In this section, we describe how the

standard MCMC algorithms in Bayesian phylogenetics can be used within an SMC

algorithm.

In Bayesian phylogenetics, the target distribution of interest is the joint poste-

rior of a phylogenetic tree t and evolutionary parameters θ, i.e. π(t, θ) ≡ p(t, θ|Y).

For simplicity of notation, we denote x = (t, θ).

We define

πr(x) ∝ π(x)φr , (5.4)

where 0 ≤ φ1 < · · · < φR = 1, and πR(x) = π(x) = p(x|Y).

We will use the SMC sampler (Algorithm 2.5) with the backward kernel,

Lr−1(xr, xr−1) = πr(xr−1)Kr(xr−1, xr)/πr(xr).

As mentioned in Section 2.2.3, with this backward kernel, the incremental impor-

tance weight becomes γr(xr−1)/γr−1(xr−1). More precisely, using Equation (5.4),

we have

γr(xr−1)/γr−1(xr−1) = {γ(xr−1)}φr−φr−1 = {p(xr−1)p(Y|xr−1)}φr−φr−1 .

A common choice for the Markov kernels, Kr(xr−1, ·), is to use MCMC ker-

nels [22, 23]. A typical MH kernel used in an SMC sampler is composed of the

following steps:

1. Let q(xr−1, ·) be a proposal distribution. Propose a new tree and new evolu-

tionary parameters, denoted x∗r , from q(xr−1, ·).

2Telmatochromis temporalis, Neolamprologus tetracanthus, Neolamprologus brichardi, Lepidio-
lamprologus elongatus, Lamprologus callipterus, Julidochromis marlieri, Chalinochromis popelini.
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2. The MH ratio is computed as

α(xr−1, x∗r ) = min
{

1,
πr(x∗r )q(x∗r , xr−1)
πr(xr−1)q(xr−1, x∗r )

}
.

3. With probability α(xr−1, x∗r ), the proposal x∗r is accepted, and with (1-α(xr−1, x∗r ))

probability, the chain remains at xr−1.

In phylogenetics, there is a rich literature on using MCMC algorithms to sam-

ple from the posterior and then do phylogenetic inference. In order to take an

advantage of these methods, we can combine different MCMC samplers into mix-

tures and cycles of several individual samplers. This is justified by a very pow-

erful and useful property of MCMC [2, 108]: if each of the transition kernels

{Ki}, i = 1, · · · ,M, have invariant distribution π, then the cycle hybrid kernel
∏M

i=1 Ki

and the mixture hybrid kernel
∑M

i=1 piKi,
∑M

i=1 pi = 1, are also transition kernels with

invariant distribution π.

Algorithm 5.5 summarizes the SMC sampler for phylogenetics where the pro-

posal Ki
r can be any MCMC kernel, including those proposed in Bayesian phylo-

genetics literature, e.g. [52, 66, 67, 70]. In the numerical examples of this section,

we used the proposals Ki
r defined as follow:

1. K1
r : the multiplicative branch proposal described in Section 3.4.4.

2. K2
r : the global multiplicative branch proposal that proposes all the branch

lengths by applying the above multiplicative branch proposal to each branch.

3. K3
r : the stochastic nearest neighbor interchange (NNI) proposal described in

Section 3.4.4.

4. K4
r : the stochastic NNI proposal with resampling the edge that uses the above

nearest neighbor interchange (NNI) proposal and the multiplicative branch

proposal for the edge under consideration.

5. K5
r : the independent branch proposal that proposes an branch length for an

arbitrary branch with an exponential distribution.
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R log-likelihood RF PM KF
10 -2147.78(289.48) 0.81(0.01) 1.00(0.08) 3.16(21.97)
100 -1505.19(241.31) 0.43(0.13) 0.42(0.136) 0.27(42.39)
500 -1375.70(221.25) 0.17(0.14) 0(0.18) 0.036(154.43)
1000 -1371.15(203.14) 0.11(0.11) 0(0.16) 0.014(92.45)

Table 5.5: Comparison of the SMC sampler with MH moves with different
number of iterations for a set of non-clock trees in terms of estimating
the phylogenetic tress. Log-likelihood refers to that of the consensus tree.
Here the tree distance metric, RF and PM, is the normalized version.

Note that we have only considered estimating phylogenetic trees in our current

research. But this method can be used for estimating evolutionary parameters θ

simply by using {Ki
r} that propose θ.

Algorithm 5.5 An SMC Sampler using MH Kernels for Phylogenetics
x1,k←⊥, ∀k ∈ {1, · · · ,K}
w1,k← 1/K
for r ∈ 2, . . . ,R do

Sample xr,k ∼
∑M

i=1 piKi
r(xr−1,k, ·),

∑M
i=1 pi = 1

wr,k← {p(xr−1,k)p(Y|xr−1,k)}φr−φr−1

Normalize weights Wr,k ∝ wr,k, and resample {xr,k,Wr,k}

end for

We are interested in how different choices of K and R affect the performance

of Algorithm 5.5. In our numerical examples, we used a sequence of φi = i/R for

simplicity. We simulated 100 non-clock trees with rate 10 and one dataset for each

tree. Each sequence has length 200. Figure 5.6 shows the median (50% credible

interval) of the log-likelihoods of the consensus trees and their tree distances from

the reference trees. From these results, the log-likelihoods are very similar and

the tree distances slightly decrease with different values of K. From the results of

varying R with a fixed K = 5000, shown in Table 5.5, a larger number of R leads to

a better estimate.
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Figure 5.6: Results of running the SMC sampler with MH moves using dif-
ferent number of particles, K, for a set of simulated non-clock trees.

5.3 Parallel Computing
Inferring large scale trees is often computationally expensive or infeasible, which

motivates us to develop parallel Monte Carlo algorithms to tackle the computa-

tional challenges in phylogenetics.

There are two types of parallelization, coarse-grain and fine-grain methods

[100]. Coarse-grain parallelization refers to multi-core CPUs that are linked loosely

through an Ethernet network where communication between nodes is supported by

Message Passing Interface (MPI). This type of parallelization is limited by a com-
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bination of latency, throughput, and cost. In contrast, fine-grain parallelization

refers to shared memory multiprocessing, e.g. multi-threaded processing within a

single computer, where communication between computing units is fast and cheap.

In the following, we will focus on the fine-grain methods.

5.3.1 Fine-Grain Parallelization

There is a large literature on parallelization of both MCMC and SMC algorithms.

SMC is intrinsically parallelizable algorithms. Most of the work has been on par-

allelization of the proposal steps [69]. Although MCMC algorithms are intrinsi-

cally serial algorithms, complicated statistical models typically require us to use

advanced MCMC algorithms in which auxiliary variables are added to consider a

larger space for the purpose of improving mixing of the Markov chain. Many ad-

vanced MCMC algorithms, e.g. slice sampling and parallel tempering [103], can

be decomposed into fine-grain problems for parallelizing within MCMC iterations.

Algorithm 5.6 Outline of the Fine-grain Parallelization for SMC Algorithms
1: . . . Serial code . . .
2: for r = 1, · · · ,R do
3: Update particles to their r-th partial state using multiple threads.
4: if Resampling is needed then
5: Synchronize the threads.
6: Resampling the particles.
7: Synchronize the threads.
8: end if
9: end for

10: . . . Serial code . . .

The art of designing efficient parallelization programming is essentially to re-

duce the serial computations and optimize the use of the multi-cores [69, 100]. In

other words, the bottleneck is the fraction of irreducibly serial computations in the

code. Fine-grain parallelization can be implemented by running multiple threads

on a single CPU or on graphics processing units (GPUs) [69, 100].

Algorithm 5.6 outlines the fine-grain parallelization for SMC algorithms in

which we distribute the computing for K particles to multiple threads (either on
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CPU or GPUs). The bottleneck is the resampling step which involves synchroniz-

ing the threads. Fortunately, as mentioned in Section 2.2.2, resampling at every

iteration is neither necessary nor efficient; instead, we resample only when the

variation of the particle weights is higher than some prefixed threshold.

It is straightforward to do parallelization programming for PMCMC simply by

using Algorithm 5.6 whenever an SMC algorithm is required. Furthermore, we

can apply the idea of parallel tempering to PMCMC and implement subchains in

parallel. Within each iteration of the PMCMC subchain, we implement the SMC

algorithm in parallel. Therefore, parallel tempering PMCMC is highly paralleliz-

able. To be concrete, we will briefly describe the parallel tempering PMCMC and

its parallelization mainly based on [69] but in the context of phylogenetics and

PMCMC.

The idea of using parallel tempering for PMCMC is to speed up convergence

of the PMCMC chain for π defined on X by constructing a Markov chain on a

joint space XM using M−1 auxiliary variables each in X. In other words, we have

M parallel subchains each with stationary distribution π(i), i ∈M = {1, · · · ,M} such

that π(M) = π. Each subchain i is associated with a PMCMC kernel that leaves π(i)

invariant. The stationary distribution of the joint chain is π̃(x1:M) ≡
∏M

i=1π(i)(xi)

with support in the joint space XM. By construction, π̃ admits π as a marginal

distribution.

In phylogenetics, x is a description of the phylogenetic tree and evolutionary

parameters. Using the parallel tempering methodology, we select π(i)(x) = π(x)φi

with 0 < φ1 < · · · < φM = 1. The rationale is that MCMC converges more rapidly

when the target distribution is flatter. Hopefully, these auxiliary subchains can

speed up convergence of the chain of interest by swapping their values [56]. The

chains i and j swap their values with probability min{1,αi j} where

αi j =
π(i)(x j)π( j)(xi)
π(i)(xi)π( j)(x j)

.

It is obvious that the PMCMC subchains can be executed in parallel. How-

ever, the value-swapping moves among subchains need synchronization of the

threads which becomes the bottleneck of using the parallel tempering. [69] pro-

posed one way to exchange values between adjacent chains such that all value-
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Figure 5.7: Time in milliseconds versus different number of threads for a
dataset of an ultrametric tree (left) and a dataset of a non-clock tree
(right) using CSMC.

swapping moves can be done in parallel, i.e. swapping values of each pair in either

{{1,2}, {3,4}, · · · , {M − 1,M}} or {{2,3}, {4,5}, · · · , {M − 2,M − 1}, {M,1}}, each with

probability half.

5.3.2 Multiple Threads on a Single CPU

We provide some results of executing multiple threads on a single CPU to illus-

trate the advantage of parallelizing CSMC. We ran the CSMC algorithm on two

simulated datasets from an ultrametric tree and a non-clock tree, respectively, of

30 taxa and 2000 sites using 100,000 particles with various number of threads on

a 2.40GHz Intel Xeon 16-cores E7330 architecture. Figure 5.7 shows the comput-

ing time in milliseconds versus different number of threads for the two datasets.

It is obvious to see the computing time decreases when the number of threads in-

creases. If we parallelize more parts of our code, or use more machines, the CSMC

algorithm will be even faster.
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5.4 Discussion
PMCMC provides an alternative method to the standard MCMC approach to sam-

ple from the joint posterior of the phylogenetic trees and evolutionary parameters.

We have demonstrated in our experiments that for a range of situations, PMCMC

can achieve better estimates for the evolutionary parameters with the same com-

puting cost. This result can be explained by comparing PMCMC and the standard

MCMC, especially in the ways of proposing new states.

The main disadvantage of standard MCMC methods is that it is difficult to de-

sign proposal distributions that can efficiently explore the huge parameter space.

Since the likelihood of a tree may change significantly with the change of the evo-

lutionary parameters, proposing a new tree and a evolutionary parameter simulta-

neously or proposing a very different tree from the current one often leads to a high

rejection rate. In a standard MCMC approach, this problem is alleviated by iterat-

ing between updating parameters given a fixed phylogenetic tree and updating the

tree given the parameters with small moves. In other words, at each MCMC step,

only a small perturbation is made on the current tree to propose a new tree.

To show the problem with this coordinate-wise strategy, we use a simplified

situation as an illustration where the hyperparameter θ can only take two values,

θ1, and θ2, and there are only two possible trees, t1 and t2. In other words, there

are only 4 possible states: (θ1, t1), (θ1, t2), (θ2, t1), and (θ2, t2). At each iteration

of MCMC, the chain is at one of these 4 states. Suppose the probability mass of

the 4 states are 0.1, 0.3, 0.5, and 0.1, respectively. A good Markov chain should

move quickly among the states with high probabilities. In this example, the states

with higher probabilities are (θ1, t2) and (θ2, t1). However, if we start from the state

(θ1, t2) in a standard MCMC in which we either fix θ to update t or fix t to update θ,

the proposal is highly likely to be rejected. As a result, it is difficult to move from

(θ1, t2) to (θ2, t1).

Contrary to the standard MCMC, PMCMC can make bold moves in the param-

eter space. Specifically, for a given θ, PMCMC will consider the whole population

of trees and sample from them according to the posterior. As a result, the proposal

is more sensible and more likely to be accepted, especially for high dimensional

and multimodal distributions. Therefore, although the better proposals in PMCMC
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are paid by the price of a much higher computing cost at each iteration, it is worth-

while because it leads to better estimates with a lower total cost.

The SMC sampler with MCMC moves provides another flexible framework

to exploit the previous work in Bayesian phylogenetics using MCMC moves in

an SMC algorithm. This method looks very similar to parallel tempering MCMC

[103] in which subchains of tempered target distributions are implemented in par-

allel and value-swapping moves among subchains are used to help the chain for

the target distribution to converge faster. The difference between the two methods

is subtle. SMC samplers bypass the awkward value-swapping moves. In an SMC

sampler, each tempered target distribution is approximated by a set of weighted

particles at each SMC iteration. Contrary to running subchains with various tem-

peratures in parallel, an SMC sampler starts from a very flat distribution and then

approaches the target distribution gradually by increasing the temperature little by

little. In this way, we can alleviate the main problem of using MCMC in phyloge-

netics, i.e. inefficient exploration in the tree space because only small moves are

allowed. In the example of this chapter, we have used the MCMC moves that are

designed for standard MCMC algorithms in phylogenetics. In future, it is desirable

to design more bold MCMC moves that are more suitable for SMC samplers.
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Chapter 6

A General Evolutionary Model
Based on String-valued CTMC

Current tree inference methods ground their analysis on a relatively restricted range

of evolutionary phenomena, limited in most cases to substitution events and, less

frequently, to context independent long indels [80]. However, sequence change

is caused by many other important molecular mechanisms, e.g. slipped strand

mispairing (SSM), a well known explanation for the evolution of repeated sequence

[59, 80, 104]. Most of the molecular mechanisms have not yet been exploited as

phylogenetically informative events [80], since it is generally non-trivial to extend

tractable sequence evolution models beyond point mutations.

Researchers have used string-valued continuous time Markov Chain (SCTMC)

to use the marginals of the process to obtain the probability of trees (and align-

ments) [54, 73, 106]. The computational bottleneck has prevented a broader ap-

plications based on SCTMCs. Many applications of CTMC need to compute the

transition probability Pa,b(T ) of the process moving from state a to state b in a fi-

nite time interval of length T ≥ 0. Calculating transition probabilities for a CTMC

can be regarded as a building block of the likelihood computation of a full phylo-

genetic tree. [19] proposed an efficient method to evaluate the finite-time transition

probabilities for general birth-death processes (BDPs) which is a special class of

CTMC. However, currently there is no robust and efficient method to evaluate

transition probabilities for a more general CTMC, e.g. SCTMCs.
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We propose a novel way to estimate the transition probabilities for a general

CTMC. Our approach is based on the idea of expressing explicitly the probability

of a sequence of states of a continuous-time Markov jump process (MJP) [16] and

using importance sampling to sample a set of weighted sequences of states. Our

method is different from the relevant work of [84] in which they sample MJP paths,

completely characterized by the jump times and the sequence of states, based on a

method named uniformization [49]. We have verified our method using numerical

examples of birth-death processs (BDPs).

Further, we describe a more flexible evolutionary model based on string-valued

CTMC that can incorporate a wide range of evolutionary phenomena. The Bayesian

phylogenetic inference is implemented by extending the importance sampling for

transition probabilities of a general CTMC to a sequential Monte Carlo (SMC)

algorithm.

The rest of this chapter is organized as follows. In Section 6.1, we introduce the

transition probabilities for a general CTMC and propose to compute it using impor-

tance sampling. In Section 6.2, we provide an example of the proposed importance

sampling for transition probabilities using BDPs. Section 6.3 describes an evolu-

tionary model, a general SCTMC, and how we implement Bayesian phylogenetic

inference using a novel sequential Monte Carlo (SMC) algorithm. Discussions are

provided in Section 6.4.

6.1 Importance Sampling for Transition Probabilities

6.1.1 Transition Probabilities

CTMCs, {Yt : 0 ≤ t ≤ T }, are often used to model data sampled at discrete time

points. For example, we only observe partial data, typically on the leaves, in phy-

logenetics. We are interested in the transition probabilities Pa,b(T ) = P(YT = b|Y0 =

a). Let m be the number of state transitions between two states, the beginning

state a and the ending state b. The total time spent in these states is T . The m

state-change events occur at time points T0 = 0 < T1 < · · · < Tm < Tm+1 = T .

Let Qx,x′ be the instantaneous rate of transiting from state x to state x′. Let

λ(x) =
∑

x,x′ Qx,x′ be the instantaneous rate of departing from state x.
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A path of a CTMC {Yt} is completely described by the sequence of time T0:m+1 =

{T0,T1, · · · ,Tm+1} and the sequence of states x0:m = {x0, x1, · · · , xm}. Denote t0:m =

{t0, · · · , tm}, where ti = Ti+1−Ti, denoting the waiting time until the i-th state change.

The probability density of this path conditional on the beginning state x0 is

g(x0:m, t0:m|x0,T ) (6.1)

=

m−1∏
i=0

f (ti;λi)J(xi→ xi+1)

 (1−F(tm;λm))

=

m−1∏
i=0

λie−λiti ·
Qxi,xi+1

λi

e−λmtm

=

m−1∏
i=0

Qxi,xi+1

λi

m−1∏
i=0

λie−λitie−λmtm

where f (t;λ) is the density of an exponential distribution with rate λ; F(t;λ) is the

cdf of an exponential distribution; J(x→ x′) is the probability of jumping from x

to x′. Here λi is a function that depends on the i-th state xi; i.e. λi = λ(xi).

Using Monte Carlo methods, we can sample the sequence of states and the

jump times to approximate transition probabilities. Alternatively, we can marginal-

ize the time intervals when we are not interested in the jump times. That is,

g(x0:m|x0,T ) =

m−1∏
i=0

Qxi,xi+1

λi
G(λ1,λ2, · · · ,λm;T ) (6.2)

where

G(λ0,λ2, · · · ,λm;T )

=

∫
· · ·

∫
0<t0+t2+···+tm−1<T

m−1∏
i=0

λie−λitie−λm(T−
∑m−1

i=0 ti)dt1dt2 · · ·dtm−1.

The above integral is equal to the (1,m + 1)-th element of a matrix exponential,
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eQ̃T , where Q̃ is

Q̃ =



−λ0 λ0 0 · · · 0 0

0 −λ1 λ1 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · −λm λm

0 0 0 · · · 0 0


.

When the rates, λ0,λ1, · · · ,λm, are distinct,

G(λ0,λ1, · · · ,λm;T ) =

m−1∏
i=0

λi

 m∑
k=0

e−λkT∏m
j=0, j,k(λ j−λk)

.

When all the rates are equal, i.e. λ = λ0 = λ1 = · · · = λm, the probabilities are given

by the Poisson probabilities

G(λ0,λ1, · · · ,λm;T ) =
e−λT (λT )m

m!
.

If some of the rates are equal, i.e. λk = λ j then the expression should be interpreted

as a limit when λk→ λ j. Assume that λ0, · · · ,λm takes m∗ distinct values λ̃1, · · · , λ̃m∗

with the frequencies n1, · · · ,nm∗ , where
∑

ni = m + 1, then

G(λ0,λ1, · · · ,λm;T ) =

 m∏
i=0

λi

 m∗∏
i=1

(−1)ni−1

(ni−1)!
∂ni−1

∂λ̃ni−1
i

m∗∑
k=1

e−λ̃kT∏
j,k(λ̃ j− λ̃k)

. (6.3)

6.1.2 Importance Sampling

Since the probability density of the sequence of states and jump times, denoted

g(x0:m, t0:m|x0,T ), can be computed by (6.1) pointwise, we can use Monte Carlo

methods to obtain a sample of sequences of states and jump times that start from x0

and end with xm. We propose to use importance sampling. Denote qpath(x0:m, t0:m)

as the density of the proposal distribution for x0:m and t0:m satisfying x0 = a, xm = b,

and
∑m

i=0 ti = T . The importance weight for the proposed path, {x0:m, t0:m}, can be
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computed by

wpath(x0:m, t0:m) =
g(x0:m, t0:m|x0,T )
qpath(x0:m, t0:m)

.

The transition probability Pa,b(T ) can be rewritten as

P(YT = b|Y0 = a)

=
∑

{x0:m,t0:m}:x0=a,xm=b,
∑m

i=0 ti=T

g(x0:m, t0:m|x0 = a,T )

=
∑

{x0:m,t0:m}:x0=a,xm=b,
∑m

i=0 ti=T

g(x0:m, t0:m|x0 = a,T )
qpath(x0:m, t0:m)

·qpath(x0:m, t0:m)

=
∑

{x0:m,t0:m}:x0=a,xm=b,
∑m

i=0 ti=T

wpath(x1:m, t0:m) ·qpath(x0:m, t0:m).

Hence, a consistent estimate of Pa,b(T ) is

P̂a,b(T ) =
1
K

K∑
k=1

wpath(x(k)
0:m, t

(k)
0:m),

where wpath(x(k)
0:m) is the importance weight for the k-th proposed paths.

Alternatively, we can sample a sequence of states without sampling the jump

times. Denote qstate(x0:m) as the density of the proposal distribution for x0:m with

the fixed ends, i.e. x0 = a and xm = b. The importance weight for the proposed

path, x0:m, can be computed by

wstate(x0:m) =
g(x0:m|x0,T )
qstate(x0:m)

.
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The transition probability Pa,b(T ) can be rewritten as

P(YT = b|Y0 = a)

=
∑

x0:m:x0=a,xm=b

g(x0:m|x0 = a,T )

=
∑

x0:m:x0=a,xm=b

g(x0:m|x0 = a,T )
qstate(x0:m)

·qstate(x0:m)

=
∑

x0:m:x0=a,xm=b

wstate(x1:m) ·qstate(x0:m).

Hence, a consistent estimate of Pa,b(T ) is

P̂a,b(T ) =
1
K

K∑
k=1

wstate(x(k)
0:m),

where wstate(x(k)
0:m) is the importance weight for the k-th proposed sequence of states.

In order to use the importance sampling method to estimate Pa,b(T ), we need

to choose a proposal distribution for sampling x0:m that starts from x0 = a and ends

with xm = b. The choice of a proposal distribution depends on the particular appli-

cation. We will provide more details about the proposal distribution in importance

sampling for transition probabilities of CTMCs in Section 6.2 and that in the SMC

algorithm for an evolutionary model in Section 6.3.

6.2 Birth-death Processes
In this section, we will use BDPs as an example of CTMC to illustrate the impor-

tance sampling method for transition probabilities. In a BDP with an instantaneous

birth rate υn and a death rate µn, the rate of departing from state n is λ(n) = υn +µn.

After we sample a sequence of states, x0,m, we evaluate its probability using Equa-

tion (6.2), in which the λi’s are computed by λi = λ(xi) = υxi +µxi .

6.2.1 Sampling a Sequence of States with Fixed Two Ends

Now the task is to sample x0,m that starts from x0 = a and ends with xm = b for the

BDP. Suppose the current state is x, the next state, denoted x′, can only be x− 1
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or x + 1 in BDP. We build the proposal using a sequence of small proposals from

the current state to its adjacent state. We use two parameters, αstop and η, in our

proposal distributions. If x is the final state b, the proposed sequence of states ends

with probability αstop, or jumps to either x−1 or x+1 with probability (1−αstop)/2;

if x is not the final state, it jumps to x + 1 with probability

p0 = 1(b > x)(1−η) + 1(b < x)η,

or to x−1 with probability 1− p0, where 0 < η < 0.5, and 1 is an indicator function.

In this way, the proposal avoids the possibility of being trapped in a loop of jumping

back and forth between some states such that it will never end with state b.

6.2.2 Example 1

For the simple BDP with υn = nυ0 and µn = nµ0, we have the closed-form solution

given explicitly by Bailey [4] as

Pa,b(t) =

min(a,b)∑
j=0

(
a
j

)(
a + b− j−1

b−1

)
αa− jβb− j(1−α−β) j

Pa,0(t) = αa,

where α =
µ0(e(υ0−µ0)t−1)
υ0e(υ0−µ0)t−µ0

, and β =
υ0(e(υ0−µ0)t−1)
υ0e(υ0−µ0)t−µ0

.

Figure 6.1 shows comparison of transition probabilities P10,b(T = 1) computed

using our method for the birth-death processes with υ0 = 0.2 and µ0 = 0.4. In

this example, the number of sampled sequences of states is K = 1000; the tuning

parameters in the proposal distribution are αstop = 0.3, and η = 0.4.

6.2.3 Example 2

The second example is a BDP with the linear rates υn = nυ0 + ν and µn = nµ0 +γ.

This model can be used in a population model for the number of organisms in an

area with new immigrants arrive at rate ν, and emigrants leave at rate γ [19].

Figure 6.2 shows P10,b(T ) for several times T and state b, with the parameters
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Figure 6.1: Comparison of transition probabilities P10,b(T = 1) computed us-
ing our importance sampling algorithm (solid line) and their true values
(circles) for the birth-death processes with υ0 = 0.2 and µ0 = 0.4.

υ0 = 0.5, ν = 0.2,µ0 = 0.3, and γ = 0.1. The number of sampled sequences of states

is chosen to be K = 1000; the tuning parameters in the proposal distribution are

αstop = 0.3, and η = 0.4. For the purpose of evaluating our method, we deliberately

use the same setting for this example as in [19], and the results agree with each

other.

6.3 A General Evolutionary Model for Phylogenetics

6.3.1 String-valued CTMC on a Phylogenetic Tree

We are interested in modelling the evolution between two sequences at the ends

of one branch on a phylogenetic tree. Suppose the branch length is T . We use

an SCTMC, {Yt : 0 ≤ t ≤ T }, to model the evolution between two sequences. The

individual variable Yt is assumed to have a countable infinite domain of all pos-
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Figure 6.2: Transition probabilities P10,b(T ) with T = 1 (solid) and T = 2
(dashed) computed using our importance sampling algorithm for the
birth-death processes with υ0 = 0.5, ν = 0.2,µ0 = 0.3, and γ = 0.1.

sible molecular sequences. Let m be the total number of mutation events be-

tween two sequences. The sequence of states is a sequence of molecular strings

x0:m = {x0, x1, · · · , xm} along the branch under consideration. The state changes

whenever a mutation event occurs. Hence the sequence of states is completely

determined by the mutation events.

We propose a general evolutionary model that can incorporate various evolu-

tionary phenomena. This is accomplished by defining the rate of jumping away

from the current state x as a flexible function of various mutation events, e.g. the

single-nucleotide indels, substitutions etc. As an example, in the following, we

define the rate, λ(x), as a function of the point mutation rate per base θsub, the

global point insertion rate λpt, the point deletion rate per base µpt, the global SSM

insertion rate λS S M, and the SSM deletion rate per valid SSM deletion location

µS S M:

λ(x) = nθsub +λpt + nµpt +λS S M + k(x)µS S M, (6.4)
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where n is the length of x, and k(x) is the number of valid SSM deletion locations.

The substitution model in this example is a simple Jukes-Cantor model, but our

method can be easily adapted to handle more complicated ones such as the General

Time Reversible (GTR) family.

The jump probability from xk to xk+1 is
Mutation type from x to x′

J(x→ x′) = 1
λ(x)



θsub Point substitution
λpt
n+1 Point insertion

µpt Point deletion
λS S M
k(x) SSM insertion

µS S M SSM deletion.

To extend the proposed SCTMC on one branch to describe the evolution on a

phylogenetic tree, we first introduce some notations. Let τ denote the phylogenetic

X-tree under consideration, including the tree topology and the associated branch

lengths. Let V(τ) is the set of internal nodes except for the root. Let M denote

the mutation events and their times on the tree, which fully determine the hidden

molecular sequences. For the internal node v ∈V(τ), ρ(v) denotes its parent; x̃(v) de-

notes the hidden molecular sequence on v; β(v) is the length of the branch, denoted

ev, that points to v in the direction from the root.

We assume there exists a bijection between M and the hidden strings. The

probability of observed sequences Y and the mutation events M given the phylo-

genetic X-tree τ is

p(Y,M|τ) = p(x̃(0))
∏

v∈V(τ) g(x(v)
0:mv

, t(v)
0:mv
|x(v)

0 = x̃(ρ(v)),β(v)) (6.5)∏
u∈X g(x(u)

0:mu
, t(u)

0:mu
|x(u)

0 = x̃(ρ(u)),β(u))1(x(u)
mu =Y(u)),

where {x(v)
0:mv

, t(v)
0:mv
} are the sequences of hidden strings and the jump times along the

branch ev. We use an improper uniform distribution over the strings on {A,C,G,T}

as the distribution for the root sequence x̃(0).

Using Bayesian approaches, the target distribution is the posterior of τ and M
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given Y that is proportional to

γ(τ,M) = γY(τ,M) = p(Y,M|τ)p(τ), (6.6)

where the likelihood model is described in Equation (6.5) and p(τ) is a prior on the

tree τ.

6.3.2 Sequential Monte Carlo

We currently propose to use a simple SMC algorithm that requires fixing the evo-

lutionary parameters. In the proposed method for our evolutionary model, the r-th

partial state sr is a forest that includes the forest topology and the associated branch

lengths, denoted τr, as well as the mutation events and the jump times, denoted Mr;

i.e. sr = (τr,Mr). Consider a sequence of intermediate distributions over forests:

γ(sr) =
∏

(τi,Xi)∈sr

γY(Xi)(τi,Mr(τi)),

where Mr(τi) denotes the mutation events and their jump times on tree τi.

At the r-th iteration of SMC, the weight update for the k-th particle is

wr,k = w(s̃r−1,k, sr,k) =
γ(sr,k)
γ(s̃r−1,k)

·
ν−(sr,k→ s̃r−1,k)
ν+(s̃r−1,k→ sr,k)

,

where ν+ is the forward proposal distribution, and ν− is the backward proposal

distribution. For simplicity, in this chapter we only consider clock trees for which

ν− ≡ 1.

The proposal ν+(s→ ·) randomly selects a pair of trees in s to merge and pro-

poses the hidden strings and jump times along the newly proposed branches. Sup-

pose the root strings of the selected subtrees are a and b. We sample the hidden

strings x0:m that starts from x0 = a and ends with xm = b using an epsilon greedy

strategy based on Levenshtein distances to the fixed ending string. We use two

parameters, αstop and αgreedy, in our proposal distributions. For the current string

x, we consider all possible next strings. The potential next string, denoted x′, can

be obtained by applying one mutation event to x. If x′ is the final state b, the

proposed sequence of states ends with probability αstop; otherwise, x′ is selected
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probabilistically according to

qM(x, x′) ∝ exp(αgreedy ·d(x′,b)),

where d(x′,b) is the Levenshtein distance between x′ and the ending string b.

6.3.3 Simulation Studies

Asymptotic String Lengths

We investigate the distribution of the asymptotic string length by varying one pa-

rameter and fixing all the other parameters. Figure 6.3 shows the mean string

lengths and standard deviations using 10000 iterations of forward simulation. One

interesting result is the asymptotic string lengths versus the point substitution rates.

If there were no SSM mutations, we expect the string length does not change much

with the point substitution rates. However, we can see that the mean string length

increases with the number of point substitution rates due to the interplay between

the SSM mutations and the point mutations. More specifically, SSM deletion is

one large factor for evolving shorter strings, and a larger point substitution rate

will reduce the positions for possible SSM deletions.

Tree Inference

We sampled 10 random trees from the coalescent on ten leaves, and along each

of randomly generated tree, we simulated 5 sets of molecular sequences with dif-

ferent random seeds according to our evolutionary model. The parameters used

are: SSM length=3, the point mutation rate per base θsub = 0.03, the global point

insertion rate λpt = 0.05, the point deletion rate per base µpt = 0.2, the global SSM

insertion rate λS S M = 2.0, and the SSM deletion rate per valid SSM deletion loca-

tion µS S M = 2.0. Figure 6.4 shows one subset of simulated data. The unaligned

sequences on leaves are used for tree reconstruction using the SMC algorithm. In

the proposal distribution, we used αstop = 0.9 and αgreedy = 50. We summarized

the posterior over trees using a consensus tree optimizing the posterior expected
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Figure 6.3: Mean string lengths and standard deviations using 10000 itera-
tions of forward simulation. The basic setting for parameters is: SSM
length=3, θsub = 0.01, λpt = 1.0, µpt = 0.1, λS S M = 3.0, and µS S M = 0.2.
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Figure 6.4: A subset of simulated data.

pairwise distances. Figure 6.5 shows tree distances between generated trees and

consensus trees reconstructed using our evolutionary model. The partition metric

decreases with the number of particles increases, suggesting that it is possible to

reconstruct fairly accurate topologies from noisy data that are generated by com-

plex evolutionary mechanisms. Although the KF metric results also improve with

more particles, a non-trivial error remains even using a large number of particles.

It is probably because we are currently sampling the times of the changes using a

simple proposal, the uniform order statistics distribution.

6.4 Discussion
We have presented a flexible evolutionary model using SCTMC that can incor-

porate a wide range of evolutionary phenomena. The flexibility comes from the

perspective that the molecular evolution can be modelled as a string-valued jump

process where the jumps depend only on a localized context. Specifically, the rate

of jumping from the current state s to other states is a function of it, denoted λ(s),

which allows us to design complicated and realistic evolutionary models.
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Figure 6.5: Performance on estimating trees.

The greatest challenge of the SMC method for our evolutionary model lies in

designing appropriate proposal distributions with fixed starting and ending states.

In the current SMC algorithm for our evolutionary model, we sample both the hid-

den strings and the jump times. As shown in our example, a non-trivial error in

terms of the KF metric remains even using a large number of particles, implying

poor proposals for the jump times. In future, we need to explore more sophisticated

and efficient proposals for proposing both the states and jump times. One alterna-

tive is to integrate the jump times out using Equation (6.2). If there are identical

values in {λi : i = 0, · · · ,m}, this method involves the complicated partial deriva-

tives in Equation (6.3), which can be challenging to compute when the orders of

derivatives are high.

Our ultimate goals include estimating the evolutionary parameters in our SCTMC

model. Currently we simplify the problem by focusing on estimating phylogenetic

trees with fixed evolutionary parameters. In future work, we can use our SMC

method within each iteration of the particle Markov chain Monte Carlo (PMCMC)

algorithms to jointly estimate the evolutionary parameters and the phylogenetic

trees.
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Chapter 7

Summary and Future Work

In this concluding chapter, we summarize our contributions in Bayesian phyloge-

netics and propose some research directions for future work.

7.1 Summary
We have presented various Monte Carlo methods for Bayesian Phylogenetic in-

ference to sample from the joint posterior distribution of phylogenetic trees and

evolutionary parameters.

We propose a novel and general class of SMC algorithms that is motivated

by the over-counting problem when applying SMC to a non-clock phylogenetic

tree. Contrary to the standard application of MCMC in Bayesian phylogenetic

inference, the proposed CSMC can efficiently explore the huge phylogenetic tree

space. Both theoretical and experimental results show that CSMC can obtain a

consistent estimate of the expectation of a function with respect to a target measure.

We have proposed to jointly estimate phylogenetic trees and evolutionary pa-

rameters in two ways of combining MCMC and SMC. The first method is a set of

PMCMC algorithms with CSMC at each iteration. At each iteration of a PMCMC

algorithm, a phylogenetic tree is proposed by running CSMC. Since the main ad-

vantage of CSMC is that one can use low-dimensional proposal distributions to

efficiently reconstruct high-dimensional phylogenetic trees, the proposal is more

sensible such that it can lead to a bold move in the huge tree space. The second
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method, an SMC sampler, provides a way to embed the standard MCMC algo-

rithms in phylogenetics literature into an SMC algorithm. We have also described

the framework for fine-grain parallelization of SMC algorithms, implemented us-

ing multiple threads on a single CPU.

The above work provides a set of flexible and efficient tools for all kinds of

situations in Bayesian phylogenetic inference. First, our methods is very general

that they works for both non-clock trees and restricted clock trees. Second, from

our results, PMMH can achieve a better estimate for the evolutionary parameter

than the standard MCMC. Third, users can fully utilize their computing resources

and time by carefully specifying the number of particles at each PMCMC iteration

and the number of iterations. For example, if computer memory does not allows us

to run simultaneously a sufficient number of particles in CSMC, we can run PIMH

for enough iterations as an alternative.

In addition to the efficient algorithms for general phylogenetic tree reconstruc-

tion, we have presented a general evolutionary model based on string-valued con-

tinuous time Markov Chain (SCTMC), incorporating a wide range of molecular

mechanisms, and we have explored an SMC algorithm to do Bayesian phyloge-

netic inference.

7.2 Inferring Large Scale Trees
Genome-wide datasets offer opportunities for resolving difficult phylogenetic prob-

lems but also pose computational and statistical challenges for data analysis [83].

Our ultimate goal in phylogenetics is to develop new statistical evolutionary mod-

els and computational algorithms for efficient analysis of large-scale datasets. A

large-scale dataset may have a large number of taxa, or a large number of sites for

each sequence, or both.

When the dataset is large-scale, our proposed methods in the previous chapters

might fail for two possible reasons: main memory shortages, or unrealistic running

times. We propose to infer large scale trees by: 1) algorithms using divide-and-

conquer strategies; 2) parallel computing.
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7.2.1 Divide-and-Conquer Strategies

We propose three divide-and-conquer strategies to decompose a large scale phy-

logenetic inference problem. The first one, which consists in using the PIMH al-

gorithm to replace SMC, is a general strategy to deal with a main memory short-

age. The second one, the particle block Gibbs algorithm, targets datasets with a

large number of taxa. The third one, an SMC algorithm using partial data, targets

datasets with a relatively small number of taxa but each taxa has a long sequence.

Using the PIMH Algorithm

The PIMH algorithm can be used as one divide-and-conquer strategy to divide the

task of running a large number K of particles required in an SMC algorithm into

several smaller steps. More precisely, when the K particles cannot be accommo-

dated in main memory, we can use a smaller number K′ of particles in each of

the R iterations using the PIMH algorithm, where K′ is the maximum number of

particles that fit in main memory, and RK′ ≥ K. This method is justified by the

simulation studies of Section 5.1.4 in which PIMH and SMC perform similarly in

terms of phylogenetic tree inference.

The Particle Block Gibbs Algorithm

We can sample sub-blocks of a phylogenetic tree t when the number of taxa, n,

is so large that a prohibitive number of particles is required to lead to an efficient

global update. We divide t into D large sub-blocks, {t1, · · · , tD}, and use a con-

ditional SMC algorithm for each sub-block. Denote t−d = {t1 · · · , td−1, td+1, · · · , tD}

for d ∈ 1, · · · ,D. Algorithm 7.1 describes the proposed particle block Gibbs sam-

pler for phylogenetics, in which p(td |t−d,Y) can be pθ(td |t−d,Y) that depends on a

hyperparameter, θ. We omit θ from the notation for simplicity.

The compact pseudo-code shown in Algorithm 7.1 hides two difficulties. The

first difficulty lies in how we divide t into sub-blocks. Another difficulty is that we

need to adapt the conditional CSMC algorithm to make it target p(td |t−d,Y), which

is dependent on how we define sub-blocks of a tree. A natural way is to define

a sub-block as a subtree which can be resampled using our CSMC algorithm. In

101



Algorithm 7.1 The Particle Block Gibbs Sampler for Phylogenetics
Initialization: i = 0; sample t(0) arbitrarily.
for i ≥ 1 do

Randomly divide t(i−1) into Di large sub-blocks. {t1(i−1), · · · , tDi(i−1)}
for d ∈ 1, · · · ,Di do

Run a conditional CSMC algorithm targeting p(td |t−d,Y) conditional on
td(i−1) and its ancestral lineage.
Sample td(i) ∼ p̂K(·|t−d,Y).

end for
end for

the following, we will describe how we partition a non-clock tree and a clock tree,

respectively, into a set of subtrees.

For non-clock trees, we randomly choose a pair of leaves and identify the path

between the two leaves. Note that the path between two nodes is unique on a tree.

Then we randomly choose a node on the path and select one clade connected to

this node as a sub-block to update.

It is more complicated to partition a clock tree than a non-clock tree because of

the ultrametric constraints. We propose to cut a clock tree using a horizontal line

with a random height. The block above the horizontal line is a clock subtree with

pseudo-observations; and the part below this line is a forest of clock subtrees and

part of their top branches. We randomly choose one of these subtrees to update. In

order to maintain a clock tree after one subtree is updated, we restrict the height

of an updated subtree below the horizontal line to be its height before the update.

This height restriction is embedded in the proposal of the SMC algorithm in which

the proposed forest height cannot exceed the original subtree height.

An SMC Algorithm Using Partial Data

Chopin [18] introduced an SMC algorithm that targets a posterior distribution of

partial data and applied it to two examples, mixture models and discrete general-

ized linear models. Relevant previous work include [5, 87] which focuses on a

similar SMC algorithm for massive datasets targeting on the posterior distribution

of a smaller, more manageable portion of the whole dataset at each iteration. Their

examples include a mixture of transition models that can be used to model web
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traffic and robotics, and a Bayesian logistic regression model.

We propose to extend the traditional applications of this type of SMC algorithm

to Bayesian phylogenetics. Recall that our target distribution in Bayesian phyloge-

netics is the joint posterior of a phylogenetic tree t and evolutionary parameters θ,

i.e. π(x) ≡ p(x|Y), where x = (t, θ). For the situation where each taxa is described

by a long sequence, we can use the observed data, Y, sequentially by considering

sub-blocks of the data, Y1,Y2, · · · ,YR. Denote the first r blocks of data by Y1:r.

We define the r-th intermediate distribution as

πr(x) = p(x|Y1:r), (7.1)

where Y1:R =Y and πR(x) = π(x) = p(x|Y).

We will use the SMC sampler (Algorithm 2.5) with the backward kernel,

Lr−1(xr, xr−1) = πr(xr−1)Kr(xr−1, xr)/πr(xr),

which leads to the incremental importance weight, w(xr−1, xr) = γr(xr−1)/γr−1(xr−1).

More precisely, using (7.1), we have

w(xr−1, xr) =
p(xr−1)p(Y1:r |xr−1)

p(xr−1)p(Y1:r−1|xr−1)
= p(Yr |xr−1).

The proposed method is summarized in Algorithm 7.2, where the MH kernels,

{Ki
r}, are described in Section 5.2.

Algorithm 7.2 An SMC Sampler using Partial Data
x1,k←⊥, ∀k ∈ {1, · · · ,K}
w1,k← 1/K
for r ∈ 2, . . . ,R do

Sample xr,k ∼
∑M

i=1 piKi
r(xr−1,k, ·),

∑M
i=1 pi = 1

wr,k← p(Yr |xr−1,k)
Normalize weights Wr,k ∝ wr,k, and resample {xr,k,Wr,k}

end for

Regarding how we define sub-blocks of the sequence data, one choice is: Y1

includes data from site 1 to site [m/R], Y2 includes data from site [m/R + 1] to
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site [2m/R], and so on, where m is the total number of sites, and the number of

sub-blocks of data is equal to the number of SMC iterations, R.

7.2.2 Parallel Computing on GPUs

As discussed in Section 5.3, SMC and PMCMC algorithms are more efficient if

implemented in parallel. We have demonstrated that the performance of CSMC

can be improved when it is executed with multiple threads on a single CPU. Since

graphics processing units (GPUs) have an extremely large number of computer

cores [69, 100], it is worthwhile to explore ways to parallelize PMCMC algorithms

on GPUs.

GPUs are self-contained parallel computational devices. Contrary to CPU,

GPUs have an extremely large number of relatively simple computer cores, each

being capable of executing fast arithmetic and logical instructions. Computer cores

on GPUs are organized in blocks. Each block has a shared memory that is common

to all the cores of this block. In addition, there is device memory that is accessible

to all cores. Communication between CPU and GPUs is only possible via device

memory.

The threads on GPUs are different from those of CPUs. Creating and destroy-

ing threads on a CPU is very expensive. In contrast, the creation of GPU threads

is significantly faster than that of CPU threads. Actually, one can create several

thousand threads in less than ten clock cycles [69, 100].

GPU computing is characterized by SIMD, single instruction, multiple data

[69, 100]. This characteristics makes GPUs suitable for SMC algorithms in which

the same set of instructions, i.e. updating and reweighting a particle, is used to

update each of a large number of particles of the same structure.

It is challenging to use GPUs for reconstructing phylogenetic trees because

each particle might be too large to be loaded into device memory. Therefore, infer-

ring large scale trees on GPUs will involve a combination of the proposed divide-

and-conquer strategies and super-fine grain parallelization. Another challenge of

computing with GPUs is to develop skills of low-level programming for the hard-

ware, GPUs. Two software packages, Open Multi-Processing (OpenMP) and Com-

pute Unified Device Architecture (CUDA), can be used to parallelize computation
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on GPUs.

7.3 Harnessing Non-Local Evolutionary Events for Tree
Inference

In Chapter 6, we have presented our preliminary work on this topic. By non-local,

we mean that sequence changes can depend on contexts of unbounded random

size. More precisely, the model is based on an extension of the Doob-Gillespie

construction for continuous time Markov chain (CTMC), where the exponential

rates are allowed to depend on an unbounded context. In the near future, we are

going to work towards the following directions:

1. Understand some important molecular mechanisms, e.g. context-sensitive

substitutions, structural constraints in RNA evolution etc. We are particu-

larly interested in slipped strand mispairing (SSM), a well known explana-

tion for the evolution of repeated sequence [59, 80, 104]. Although λ(s) in

Equation (6.4) is very flexible, biology backgrounds are required to under-

stand how we can incorporate appropriately various molecular mechanisms

in λ(s).

2. Develop a tree sampling algorithm allowing non-local sequence evolution

models. We propose to use PMCMC algorithms to approximate the poste-

rior distribution of the evolutionary parameters, phylogenetic trees, and the

hidden molecular sequences given the observed data on leaves. At each iter-

ation, the evolutionary parameters are updated; within each iteration, we use

the SMC algorithm proposed in Chapter 6 to update the hidden molecular

sequences and the phylogenetic trees.

3. We will apply our method to study how the complex interplay between SSMs

and point mutations affects the inferred trees. Our experiments will involve

simulated sequence data with realistic patterns of SSMs. We will com-

pare the tree reconstructions obtained with our model incorporating SSMs

to other models that ignore SSMs. We will also apply our method to plant

intron datasets, where SSMs play an important role in sequence change.
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7.4 Joint Estimation of MSA and Phylogeny
It is desirable to jointly estimate phylogeny and alignment from their joint posterior

distribution [86, 101]. Using a fixed single multiple sequence alignment (MSA)

will often make the phylogenetic tree estimate biased toward the guide tree that is

used to do the multiple sequence alignments [112]. In addition, a single guide tree

may decrease MSA accuracy [38] . On the other hand, estimating MSA depends

on the tree reconstruction. [72] proposed an MSA inference algorithm based on

the result from a high performance algorithm for phylogenetic tree. Estimating

MSA and phylogenetic tree can be iterated for several times. However, these sys-

tems have a lack of theoretical understanding, the difficulty of getting calibrated

confidence intervals, and over-alignment problems [74, 94].

An ambitious goal is to extend our model do joint estimation of MSA, phy-

logeny, and evolutionary parameters. In contrast to methods based on an MSA

point estimate, joint estimation avoids guide tree bias and over-confidence prob-

lems. Moreover, non-local evolutionary events, such as SSMs, are known to affect

MSAs and are already used to do manual alignment. One direction in future is to

develop efficient algorithms to do joint estimation of MSAs and phylogeny based

on the work proposed in Section 7.3.
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Appendix A

Proof of Consistency

To prove Proposition 7, we start by introducing a series of lemmas. In the follow-

ing, we will use the following objects: φ : S→ R, λ : FS→ [0,∞).

Lemma 8. For all positive measure λ with ‖λ‖ <∞, we have:

E[(propK λ)φ] = (propλ)φ,

where:

(propλ)φ =

∫
λ(dx)

∫
ν+(x, dy)w(x,y)φ(y).

Proof. By definition and linearity:

E[(propK λ)(A)] = ‖λ‖E[w(S k,S ′k);S ′k ∈ A]

= ‖λ‖

∫
λ̄(dx)

∫
A
ν+(x, dy)w(x,y)

= (propλ)(A),

for all A ∈ FS. �

Lemma 9. For all positive measure λ with ‖λ‖ <∞, we have:

(propK λ)φ
L2

−→ (propλ)φ,
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with the following rate:

E
[
(propK λ)φ− (propλ)φ

]2
≤

(C1C2)2‖λ‖2

K
.

Proof. Using independence of the S k in the definition of propK , we have:

E
[
(propK λ)φ− (propλ)φ

]2
=
‖λ‖2

K
E[w(S k,S ′k)φ(S ′k)]2

≤
(C1C2)2‖λ‖2

K
.

�

Corollary 10. We have:

E
[
γr,Kφ− (propγr−1,K)φ

]2
→ 0.

Proof. Since ‖γr,K‖ ≤CR <∞,

E
[
γr,Kφ− (propγr−1,K)φ

]2
= E

{
E
[(
γr,Kφ− (propγr−1,K)φ

)2
∣∣∣γr−1,K

]}
≤ E

[
‖γr−1,K‖

2C4

K

]
→ 0.

�

Lemma 11. For all r, propγr = γr+1.

Proof. First note that for all simple measurable f : S2→ R,∫ ∫
γ(dx)ν+(x, dy) f (x,y) =

∫ ∫
τ+(dx, dy) f (x,y),

so the same identity holds for all bounded measurable f by the dominated conver-
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gence theorem. Similarly,∫ ∫
γ(dy)ν−(y, dx) f (x,y) =

∫ ∫
τ−(dx, dy) f (x,y).

Using these identities and basic properties of the Radon-Nikodym derivative w =

dτ−/dτ+:

(propγr)φ =

∫
1[ρ(x) = r]γ(dx)

∫
ν+(x, dy)w(x,y)φ(y)

=

∫ ∫
1[ρ(y) = r + 1]γ(dx)ν+(x, dy)w(x,y)φ(y)

=

∫ ∫
1[ρ(y) = r + 1]τ+(dx, dy)w(x,y)φ(y)

=

∫ ∫
1[ρ(y) = r + 1]τ−(dx, dy)φ(y)

=

∫ ∫
1[ρ(y) = r + 1]γ(dy)ν−(y, dx)φ(y)

=

∫
1[ρ(y) = r + 1]γ(dy)φ(y)

∫
ν−(y, dx)

= γr+1φ.

Here to change the indicator 1[ρ(x) = r] into 1[ρ(y) = r + 1], we have used the

definition of the poset and the fact that its Hasse diagram is connected. �

Lemma 12. If for all measurable φ <C,

γr,Kφ
L2

−→ γrφ, (A.1)

then for all φ′ <C, we also have:

(propγr,K)φ′
L2

−→ (propγr)φ′. (A.2)

Moreover, by Lemma 11 the RHS of Equation (A.2) is equal to γr+1φ
′.
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Proof. It is enough to show the result with φ′(x) = 1[x ∈ A]. Let

φ′′(x) =

∫
A
ν+(x, dy)w(x,y).

Since φ′′ <C, we can use φ = φ′′ in Equation (A.1) to get Equation (A.2). �

We can now prove the main proposition:

Proof. We proceed by induction, showing for r ≥ 0 that the following equation

holds:

γr,Kφ
L2

−→ γrφ.

The base case is trivial, since γ0,K and γr are equal to a Dirac delta on the same

atom.

To prove the induction hypothesis, we first decompose the L2 distances using

Minkowski inequality, and control each term separately:

E1/2 [γr+1,Kφ−γr+1φ
]2
≤E1/2 [γr+1,Kφ− (propγr,K)φ

]2
+

E1/2 [(propγr,K)φ−γr+1φ
]2 .

But by Corollary 10, the first term goes to zero; and by Lemma 12 and the

induction hypothesis, the second term also goes to zero. �
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